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GLOSSARY

anomalous inconsistent with or deviating from what is usual, normal, or expected

diffusion the process whereby particles of liquids, gases, or solids intermingle as the

result of their spontaneous movement caused by thermal agitation and in

dissolved substances move from a region of higher to one of lower concen-

tration

DSC a thermoanalytical technique in which the difference in the amount of heat

required to increase the temperature of a sample and a reference is measured

as a function of temperature

fluorescence luminescence that is caused by the absorption of radiation at one wavelength

followed by nearly immediate reradiation usually at a different wavelength

and that ceases almost at once when the incident radiation stops

FRAP a microscopy-based method for measuring molecular diffusion by focusing

a laser beam to a region of a sample with a fluorescent probe to induce

photobleaching, and observing the fluorescence intensity of the sample after

photobleaching as a function of time

FT a mathematical transform that decomposes a function into its constituent

frequencies, such as the expression of a musical chord in terms of the volumes

and frequencies of its constituent notes

photobleach to lose color or whiten by the action of light; for example, the use of a laser

to bleach a fluorescent dye covalently linked to a macromolecule

segmentation the process of partitioning a digital image into multiple segments (sets of

pixels) with the goal of simplifying and/or changing the image into some-

thing that is more meaningful and easier to analyze

SHG a nonlinear optical process in which two photons with the same frequency

interact with a nonlinear material, and generate a new photon with twice

the energy of the initial photons and conserved coherence of the excitation
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ABSTRACT

Fourier transform fluorescence recovery after photobleaching (FT-FRAP) with patterned

illumination is demonstrated for quantitatively evaluating normal and anomalous diffusion.

Diffusion characterization is routinely performed to assess mobility in cell biology, phar-

macology, and food science. Conventional FRAP is noninvasive, has low sample volume

requirements, and can rapidly measure diffusion over distances of a few micrometers. How-

ever, conventional point-bleach measurements are complicated by signal-to-noise limitations,

the need for precise knowledge of the photobleach beam profile, potential for bias due to sam-

ple heterogeneity, and poor compatibility with multi-photon excitation due to local heating.

In FT-FRAP with patterned illumination, the time-dependent fluorescence recovery signal

is concentrated to puncta in the spatial Fourier domain through patterned photobleaching,

with substantial improvements in signal-to-noise, mathematical simplicity, representative

sampling, and multiphoton compatibility. A custom nonlinear-optical beam-scanning mi-

croscope enabled patterned illumination for photobleaching through two-photon excitation.

Measurements in the spatial Fourier domain removed dependence on the photobleach pro-

file, suppressing bias from imprecise knowledge of the point spread function and enabled flow

analysis through the spatial phase shift. Simultaneous measurement of diffusion at multiple

length scales was enabled through analysis of multiple spatial harmonics of the photobleach-

ing pattern. Anomalous diffusion was characterized by FT-FRAP through a nonlinear fit to

multiple spatial harmonics of the fluorescence recovery.

Furthermore, FT-FRAP with patterned illumination enabled simultaneous diffusion mea-

surements at every position throughout the field of view for normal and anomalous diffusion.

Inverse Fourier transformation of peaks shifted to the origin in the spatial frequency domain

produced fluorescence recovery maps in real space based on the spatial-frequency peak shape.

Diffusion contrast across the field of view was determined through image segmentation and

fitting the integrated fluorescence recoveries to a diffusion model.
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1. BACKGROUND

Therapeutic macromolecules, including monoclonal antibody (mAb) drug conjugates, have

enabled treatments of conditions ranging from asthma[1 ] to rheumatoid arthritis[2 ], now

representing approximately half the total global market for new chemical entities.[3 ] Sub-

cutaneous (SC) delivery of therapeutic macromolecules greatly increases patient compliance

and access by minimizing the skill level required for administration.[4 ] However, SC in-

jection, when compared to the established intravenous route, has many issues regarding

incomplete bioavailability. SC tissue and the lymphatic system act as barriers, meaning that

SC bioavailability can be negatively impacted by transport within the SC space. Even in a

fully optimized formulation, SC bioavailability of mAbs is typically 52-80%, meaning that

as much as half of the delivered dose in an SC injection routinely never reaches the blood-

stream for systemic availability.[5 ] Following SC injection, mAb drug conjugates generally

enter into the bloodstream through the lymphatic system, as the lymphatic system provides

a direct route to the lymph nodes and limits exposure of the antibody to antigens in blood

and normal tissues.[6 ] Losses limiting the dose delivered to the bloodstream ultimately arise

from enzymatic proteolysis in the SC space and/or within the lymphatic system.[5 ] For the

non-denatured mAbs delivered subcutaneously, high protein mobility to the lymphatic sys-

tem can reduce the timescales over which mAbs are susceptible to enzymatic degradation

within the SC space.[5 ]

1.1 Optimization of biopharmaceuticals motivates improved diffusion measure-
ments

Diffusion measurements in well-characterized matrices highly representative of those an-

ticipated within SC environments may provide early-stage in vitro assessments of anticipated

in vivo bioavailability for SC injection of potential therapeutic mAb candidates. This goal is

challenging to realize in practice. The SC environment is chemically and structurally diverse,

and a host of interactions may happen as the biopharmaceutical minutes to hours after injec-

tion.[7 ] One problem includes regulating temperature of the injection site as some sites closer

to the body’s core have different temperatures than sites in the extremities. In addition, up-
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take of the biopharmaceuticals is dependent on the biopolymers within the extracellular

matrix (ECM); hyaluronic acid, collagen, elastin, and adipocytes may exhibit non-specific

and specific interactions with protein. Another potential issue is the impact of the pH tran-

sition from the biopharmaceutical formulation to the SC injection site on the bioavailability,

as changes in pH can alter the non-uniform surface charge of the protein leading to various

complexities.[8 ] Other possible induced stressful events include transition through the iso-

electric point and slower diffusion of the biopharmaceutical protein through SC injection site

due to interactions with the ECM.[7 ] As the SC bioavailability is dependent on the ability

of the biopharmaceutical to be absorbed, challenges arise as uptake into systemic circulation

are dictated on physico-chemical properties of the molecules – the biophysical status of the

SC injected protein or peptide and interactions with the ECM are not easily monitored.[7 ]

Heterogeneity and complexity greatly complicate in vitro assay development for two reasons:

i) no single set of conditions in an assay is likely to adequately capture the inherent diversity

associated with the suite of local in vivo environments encountered by therapeutic proteins

within the SC space that dictate bioavailability, and ii) increasing the inherent complexity

within such a multi-component multi-phase mixture often coincides with a decrease in ex-

perimental reproducibility. Source-specific and/or lot-to-lot differences in additives used in

multi-component in vitro assays scale additively to degrade reproducibility. Decreases in ex-

perimental reproducibility compromise the information accessible about the system required

to make a meaningful assessment. From a measurement-science standpoint, it is therefore

significantly more advantageous to assess complexity through combining many highly repro-

ducible measurements across a panel of diverse compositions. Such measurements can serve

two roles: i) to quantify variability within the matrices used to assess therapeutic protein

mobility, and ii) to inform on new protein mobility for well-characterized matrices.

1.2 Common methods for diffusion measurements

Several strategies have been developed for precise diffusion measurements of proteins that

are compatible with mAb analyses in in vitro assays, with many of them being label-free.

The elucidation of the diffusion coefficient is often done through methods that characterize
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molecular interactions, which can be quantified by the equilibrium dissociation coefficient,

Kd.[9 ] One method of measuring diffusion is analytical ultracentrifugation (AUC). In AUC,

each protein of unique molecular mass and shape forms a boundary during ultracentrifugation

and sediments at a characteristic speed.[10 ], [11 ] Kd can be determined through analysis of

the velocity of the boundary using a genetic algorithm.[10 ], [12 ] However, AUC can be time

and cost prohibitive due to low throughput, computationally expensive genetic algorithms,

and the careful attention required in experimental design and surface treatment.[9 ]–[11 ],

[13 ] Other established benchtop methods have similar disadvantages - isothermal titration

calorimetry and nuclear magnetic resonance have significant time and sample demands, while

surface plasmon resonance requires substantial experimental design and surface treatment

considerations.[9 ]

Another method, dynamic light scattering (DLS) has been used as a characterization

tool for protein diffusion, and as a complementary method to both high pressure liquid

chromatography and AUC.[14 ] DLS is based on the concept that light passing through a

solution containing molecules will scatter, and the fluctuations of the scattering intensity

due to the Brownian motion of molecules in solution allow for the determination of diffusion

properties.[5 ], [14 ], [15 ] DLS is an ideal method for calculating the individual contributions of

monomers and dimers to the light scattering.[14 ] DLS, however, is sensitive to the presence

of large aggregates, and the signal from a small number sub-visible particles can saturate the

scattering signal needed to measure diffusion.[15 ], [16 ] In addition, the resolution between

peaks in DLS can be quite low, which at times makes it difficult to distinguish the monomer

peak from dimer peaks in studies with mAbs.[15 ] Although the throughput of this method

is efficient, the presence of multiple peaks and wide peak distributions makes it difficult to

analyze DLS data.[15 ]

Microscale thermophoresis (MST) is another method for measuring mobility that mea-

sures the direct motion of molecules induced by a temperature gradient.[9 ] MST only requires

a few microliters of sample solution and is compatible with label-free samples.[17 ] However,

thermophoresis can be unpredictably affected by the presence of high protein concentration

and MCT experiments usually neglect the potential effects of association and dissociation ki-
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netics. Additionally, commercial MST instruments and the corresponding analytical software

do not report accurate confidence limits (although there have been corrections reported).[9 ]

The high signal-to-noise ratio (SNR) demanded to inform predictive modeling provides

a strong impetus to consider fluorescently labeled proteins in mobility assessments. Trace

fluorescence labeling can increase sensitivity to the tagged proteins and greatly suppress

the background, providing a large SNR enhancement. However, these advantages must be

weighed against possible perturbations to the protein upon functional group modification by

labeling with a fluorophore. Dye induced perturbations can substantially impact electrostatic

behaviors, as charge-sites in the protein often serve as labile locations for dye attachment.

Even if only a small fraction of the total protein content is labeled, the fluorescence measure-

ments report only on the mobility of the labeled fraction, which may not be representative

of the unlabeled protein.

1.3 Fluorescence recovery after photobleaching (FRAP)

Fluorescence recovery after photobleaching (FRAP) is a well-established and widely ac-

cessible method for probing diffusion of fluorescently-labeled analytes.[18 ], [19 ] In FRAP, a

region of a fluorescently-labeled sample is permanently photobleached using a short, high-

intensity burst of light. After the photobleach, mobile fluorescent molecules diffuse into the

region and mobile photobleached molecules diffuse out of the region. This combined mobility

results in a time-dependent recovery of fluorescence intensity in the photobleached region.

Diffusion information can be obtained by fitting the fluorescence recovery to a mathematical

model.

The first FRAP experiment was performed by Peters et. al. in 1974 to measure the

mobility of membrane proteins in red blood cell ghosts.[20 ] More recently, FRAP has been

used to probe epidermal growth factor receptor clustering in Chinese hamster ovary cell

membranes,[21 ] intercellular communication via septal junctions in multicellular cyanobac-

teria,[22 ] and the dynamics of intermediate filament-like protein in the hyphae of Strepto-

myces venezuelae.[23 ] FRAP has also been used to study protein aggregation in the context of

liquid-liquid phase separation,[24 ] to characterize the effect of structure on solute diffusivity
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in microporous tissue engineering scaffolds,[25 ] to compare the mobility of 45 proteins in-

volved in synaptic transmission, and to measure diffusion anisotropy in porcine ligaments.[26 ]

Additionally, FRAP has been applied broadly in the pharmaceutical community to under-

stand molecular transport in hydrogels[27 ]–[30 ] and in extracellular matrices[31 ], [32 ] in an

effort to improve drug delivery outcomes. Recent efforts have also been made to utilize

FRAP as a pre-screening assay for in meso crystallization of membrane proteins in lipid

cubic phase.[33 ]–[36 ]

1.4 Limitations of conventional FRAP & review of previous FRAP innovations

Despite the advantages of FRAP, quantitative diffusion analysis is typically complicated

by the requirement for precise knowledge of the photobleaching profile.[37 ], [38 ] To support

rapid diffusion measurements, FRAP is generally optimized for fast recovery by using a

small photobleach spot. To compensate for low signal from a small photobleach spot, high

photobleach depth is used to increase the SNR. However, increasing the photobleach depth

runs the risk of complicating reproducibility in the spatial photobleach profile by introducing

nonlinearities from optical saturation and perturbations to diffusion from local heating.[39 ]

To address this issue, alternative photobleach patterns have been explored, most notably

disc,[40 ] line,[41 ] and fringe pattern[42 ]–[44 ] illumination. Disc illumination has the advan-

tage of increasing the overall number of molecules photobleached, but largely negates the

1/f noise reductions from highly localized photobleaching and correspondingly fast recover-

ies. Line illumination is a reasonable compromise, supporting fast recovery in the direction

orthogonal to the photobleach line and SNR averaging along the length of the line. With the

possible exception of disc and fringe illumination, in which the contiguous photobleach spot

is large relative to the optical point-spread function, the point and line photobleach patterns

with the greatest reduction in 1/f noise are most prone to artifacts from ambiguities in the

photobleach point spread function (PSF).

Alternative photobleaching patterns have also been employed in FRAP to measure dif-

fusion in multiple regions or over a broader region. While FRAP is typically performed

by photobleaching one point to ensure a fast fluorescence recovery, measurements of diffu-
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sion across broad regions of a sample require alternative photobleaching patterns. Multiple,

single point FRAP measurements have been performed in parallel to measure diffusion in

2-3 regions of a sample.[24 ], [45 ] This can be achieved with a confocal beam-scanning micro-

scope by programming an acousto-optical modulator (AOM) or acousto-optical tunable filter

(AOTF) to rapidly modulate laser power while scanning, producing multiple photobleached

regions in the field of view (FOV).[46 ] However, this strategy only informs on diffusion in

a few discrete regions of the sample. Alternative photobleaching patterns have also allowed

FRAP measurements of larger areas, but these strategies integrate over the total FRAP

signal, rather than inform on differences in local diffusion throughout a FOV.[47 ]–[51 ]

Several studies have successfully used FRAP to measure differences in diffusion over broad

regions of a sample. Hagen and coworkers developed a FRAP technique that simultaneously

performs an arbitrary number of single-point FRAP experiments across a FOV using struc-

tured illumination in a programmable array microscope (PAM).[52 ] The PAM uses a spatial

light modulator as a photobleaching mask to produce multiple photobleached spots at the

sample plane. The authors used this technique to measure local variation in diffusion for

erbB3 (HER3) receptor tyrosine kinase in cells. In another study, Superfine and coworkers

leveraged selective plane illumination to photobleach an entire two-dimensional plane of a

sample and generate a fluorescence recovery image of NLS-GFP and 53BP1-mCherry in live

cells.[53 ] The authors used a combination of a cylindrical lens and an annulus to produce a

Line Bessel Sheet for photobleaching the YZ plane. Horizontal imaging of the fluorescence

recovery was achieved using a right-angle reflective prism.[54 ] A simple closed-form solution

to the diffusion equation was not possible in this case due to the complexity of the illumina-

tion profile. Instead, the investigators used a numerical diffusion simulation to convert from

fluorescence recovery time to diffusion coefficient.

Spatial Fourier analysis (SFA) is one of the more successful strategies used to date for

addressing ambiguities in the PSF for point-excitation.[40 ], [55 ]–[57 ] In summary, diffusion

in FRAP can be modeled as the convolution of the photobleach PSF with a time-varying

Gaussian function. This convolution produces a function describing the real-space fluores-

cence recovery that is dependent on both time and the photobleach PSF. Moreover, this

convolution generally produces a real-space recovery with no simple closed-form analytical
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solution, with a few notable exceptions for the photobleach PSF (e.g., Gaussian). However,

in the Fourier transform domain, the convolution corresponds to a simple multiplication,

disentangling the time-dependent decay from the photobleach profile. The decay curves for

each spatial frequency in SFA can be used individually or collectively for recovering the dif-

fusion coefficient. In this manner, the detailed functional form for the initial PSF becomes

less critical in the analysis, as the fluorescence recovery is only dependent on time and not

on the initial photobleach PSF for a single spatial frequency.[58 ] For point-excitation, SFA

suffers by distributing the signal power from sharp features in the real-space image out over

many low-amplitude frequencies in the SFA image, but the intrinsic SNR can be recovered

through simultaneous, collective analysis at multiple spatial frequencies. When one or a

small number of frequencies are used, this distribution of power can result in a reduction in

SNR, the cost of which represents a trade-off for the benefits in reducing ambiguities related

to the PSF.

Furthermore, point-bleach FRAP lacks sensitivity for characterizing anomalous diffu-

sion. Diffusion is categorized as anomalous when it deviates from normal Brownian diffusion.

Whereas the mean squared displacement (MSD) in normal diffusion evolves with a linear de-

pendence on time, the MSD in anomalous diffusion exhibits a nonlinear dependence on time,

resulting in a time-varying/distance-dependent diffusion coefficient.[59 ], [60 ] Anomalous dif-

fusion has been observed in a variety of systems, such as the cell and polymeric networks.[61 ]–

[64 ] Anomalous diffusion in point-bleach FRAP can be identified through a nonlinear fit of

the fluorescence recovery to an anomalous diffusion model.[65 ] However, the relatively sub-

tle differences in the point-bleach recovery curves between normal and anomalous diffusion

can complicate identification and quantification of deviations from normal diffusion. Fur-

ther complications in accurately characterizing anomalous diffusion with point-bleach FRAP

arise from the requirement for precise knowledge of the photobleaching PSF. In addition,

significant covariance between fitting parameters can result in relatively large uncertainties

in the recovered coefficients (e.g., the diffusion coefficient and an anomalous exponent).

Finally, point excitation poses particularly problematic practical challenges from local

heating effects in multi-photon excited FRAP measurements.[66 ] Because of the general in-

efficiency of multi-photon excitation, a large flux of light is typically introduced, only a small

25



fraction of which contributes to excitation and fluorescence. Weak but nonzero absorption of

the incident light and Stokes Raman transitions leading to local heat deposition both com-

pete with multi-photon excitation. When the excitation beam is fixed at a single location,

local temperatures can quickly escalate until the rate of heat dissipation matches the rate of

deposition. Depending on the steady-state temperature differential, this transient temper-

ature gradient can potentially bias subsequent diffusion measurements based on isothermal

assumptions.

Figure 1.1. Schematic depicting A) conventional point-bleach FRAP illumi-
nation, B) patterned illumination with comb excitation, and C) spatial FT of
the patterned illumination in (B). Conventional point-bleach FRAP produces
a sharp point in real space. FT-FRAP with patterned illumination produces
sharp puncta in the spatial Fourier domain.

1.5 Fourier transform fluorescence recovery after photobleaching (FT-FRAP)

In this work, comb patterns for illumination during photobleaching were demonstrated

to support high SNR measurements of normal and anomalous diffusion in Fourier transform

analysis of fluorescence recovery with multi-photon excitation. In brief, photobleach patterns

were selected to concentrate signal to puncta in the spatial FT domain, rather than a point

in the real-space image, as shown in Figure 1.1 . Patterned illumination using rapid line-

scanning distributed the power from the photobleach over much larger regions in the field
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of view, removing many of the potential nonlinearities and biases associated with highly

localized excitation while enabling multi-photon excitation with negligible artifacts from local

heating. Probing diffusion at multiple length scales by interrogating multiple harmonics in

the spatial frequency domain was shown to increase confidence in recovered fitting parameters

in analysis of anomalous diffusion. A comparison between FT-FRAP and conventional,

point-bleach FRAP is shown in Table 1.1 .

Table 1.1. Figures of merit for FRAP methods
Conventional FRAP Fourier Transform FRAP

Knowledge of PSF required Knowledge of PSF not required
Incompatible with multiphoton excitation Compatible with multiphoton excitation

Samples one point Samples the entire field of view
Probes average diffusion over all lengths Probes diffusion at multiple lengths

We also present FT-FRAP with dot array illumination patterns which were designed to

concentrate signal to an array of puncta in the spatial frequency domain through Fourier

transformation, as shown in Figure 1.2 . Performing the diffusion analysis in the spatial fre-

quency domain following this patterned illumination substantially increased signal, reduced

bias from heterogeneity, simplified the mathematical model by removing dependence on the

photobleach profile, and has the potential to characterize anisotropic diffusion.

Lastly, we present diffusion imaging using FT-FRAP with patterned illumination. In

FT-FRAP, a fluorescent sample is photobleached using patterned illumination to produce

a periodic fluorescent pattern. As shown in Figure 1.3 , FRAP signal is concentrated to

a set of peaks in the spatial frequency domain through Fourier transformation, with each

peak representing the spatial frequency harmonics of the photobleach pattern. By excising

a peak, translating the peak to the origin of the spatial frequency domain, and performing

an inverse Fourier transform (IFT), a stack of fluorescence recovery images is produced. A

diffusion image is generated by fitting each pixel (or superpixel) of the fluorescence recovery
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Figure 1.2. Schematic depicting patterned illumination with A) a dot ar-
ray pattern, which Fourier transforms to B) a two-dimensional set of equally
spaced puncta.

image stack to a simple exponential decay for normal diffusion or a Mittag-Leffler function

for anomalous diffusion.

The theoretical foundation for Fourier-transform fluorescence recovery after photobleach-

ing (FT-FRAP) with patterned illumination is evaluated in proof-of-concept studies of model

systems for characterizing normal and anomalous diffusion.

1.6 Comparison of FT-FRAP to previous work

The illumination patterns investigated in this work were specifically designed for spatial

Fourier transform analysis and as such differ significantly from a host of previous FRAP

studies using patterned illumination. Previous work investigated the use of arbitrary photo-

bleach patterns to select objects or regions of interest within the field of view.[38 ], [67 ], [68 ]

Alternatively, several investigators have explored measurements with line-excitation.[41 ], [69 ]

However, none of these previous patterned illumination studies incorporated intentional pe-

riodicity within the photobleach patterns that could subsequently integrate into FT-FRAP

analysis. Control over the number of lines within the comb provides the advantage of match-

ing the distances over which diffusion is measured, and correspondingly the timeframe for

recovery. Under high magnification, the field of view is reduced, which can be compensated

by reducing the number of lines within the patterned photobleach. Conversely, measurement
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Figure 1.3. Graphical depiction of diffusion imaging by FT-FRAP. Two-
dimensional Fourier transformation of fluorescence recovery images after comb
photobleaching produces a series of peaks in the spatial frequency domain.
Excising one peak and shifting it to the center of the spatial frequency domain
enables diffusion imaging through inverse Fourier transformation and least-
squares fitting at each pixel or superpixel.

time can be reduced to improve throughput by increasing the number of lines in the photo-

bleach pattern to reduce the diffusion distances in the comb. The closest work to the present

study is arguably in early studies by Lanni and Ware, in which sinusoidal modulation of a

photobleach pattern was performed by passing the excitation beam through a grating.[70 ]

The apparatus was designed so that the image of the grating was at the focus of the sample,

creating a photobleaching mask at high laser power. The subsequent fluorescence recovery

was probed by translating the grating, producing a phase shift in the illumination pattern

at the sample, which generated a periodic signal in the integrated fluorescence intensity

over time as the grating was shifted. The integrated fluorescence signal was recorded on a

single-channel detector and the Fourier components were analyzed to recover the diffusion

coefficient. The conceptual foundation for the studies by Lanni and Ware is aligned with the

principles undergirding the work presented herein. The difference lies in the tools that were

used to realize the FT-FRAP measurement. Laser-scanning microscopy makes FT-FRAP a
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faster, higher SNR, measurement than similar techniques with different tools from decades

ago.
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2. THEORY

Prior to discussion of FT-FRAP with patterned illumination, it is useful to review conven-

tional FRAP as a comparator within the FT framework.

2.1 Fourier analysis of the diffusion equation

Fick’s Law of Diffusion is given by the following general expression.

∂

∂t
C (ρ, t) = ∆D∆C (ρ, t) (2.1)

In which C (ρ, t) is the concentration of the analyte of interest as a function of position

ρ and time t, and D is the three-dimensional diffusion tensor.

This differential equation is arguably simpler to evaluate by first performing the spatial

Fourier transform to generate C̃ (ν̄, t), in which C̃ is the spatial Fourier transform of C and

ν̄ is the 3D spatial wavevector. Upon Fourier transformation of the diffusion equation given

in Eq. 2.1 , each derivative transforms as multiplication by the “diagonal” function i2πν̄.

∂

∂t
C̃ (ν̄, t) = −4π

2ν̄TDν̄C̃ (ν̄, t) (2.2)

Evaluation of ν̄TDν̄ considering diffusion just within the (x, y) plane yields the nonzero

scalar products ν̄2
xDxx + 2ν̄xν̄yDxy + ν̄2

yDyy. For a choice of (x, y) coordinates defined along

the principal moments of the diffusion tensor D (including the case of constant diffusion in

all (x, y) directions), Dxy = 0. In this case, the diffusion equation can be independently

evaluated in each of the (x, y) directions. The expression for the x-direction is given below,

with an analogous expression present for the y-direction.

∂

∂t
C̃ (ν̄x, t) = −4π

2ν̄2
xDxxC̃ (ν̄x, t) (2.3)
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Since only C̃ (ν̄x, t) in Eq. 2.3 depends on time, the expression in Eq. 2.3 is of the form

f ′ (t) = kf (t), for which one general solution, subject to the constraint of a decay, is given

by an exponential function of the form f (t) = f (0) ekt, with k < 0.

C̃ (ν̄x, t) = C̃ (ν̄x, 0) e−4π2ν̄2
xDxxt (2.4)

This solution to the differential equation along the x direction is a Gaussian function in

ν̄x. Multiplication by a Gaussian in the spatial Fourier domain corresponds to convolution

with a Gaussian in real space.

C (x, t) = C (x, 0) ⊗ 1√
2πσ2

t

e
− x2

2σ2
t ; σ2

t = 2Dxxt (2.5)

The standard deviation of the spatial Gaussian distribution σt increases with the square

root of time, corresponding to convolution with an ever-broadening Gaussian as diffusion

proceeds.

2.2 Conventional FRAP

In the limit of a thin sample, diffusion in the z-direction can be neglected, with diffusion

expressed with respect to both x and y. Under these conditions in conventional FRAP

(depicted in Figure 1.1 A), the photobleach pattern for a symmetric Gaussian illumination

pattern on the back of an objective is also Gaussian within the field of view.

C (x, t, 0) = A
(
2πσ2

b

)−1
e

− x2+y2

2σ2
b (2.6)

In isotropic media, diffusion is identical in both the x and y coordinates, such that the

diffusion tensor can be replaced by a single scalar diffusion coefficient D. In this limit, the

convolution of two 2D Gaussian functions (one from the initial photobleach and one from

diffusion) has the convenient property of producing yet another Gaussian function, the width

of which evolves in time.

C (x, y, t) = A
(
2πσ2

b

)−1
e

− x2+y2

2σ2
b ⊗ (4πDt)−1 e− x2+y2

4Dt (2.7)
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Evaluation of the convolution results in the following expression for the time-dependence.

C (x, y, t) = A
(
2πσ2

b + 4πDt
)−1

e
− x2+y2

2σ2
b

+4Dt (2.8)

If the system is anisotropic, selection of the principal spatial coordinates that diagonalize

the diffusion matrix allows the diffusion equation to incorporate differences in diffusivity

along different spatial dimensions.

C (x, y, t) = A
(
2πσ2

b

)−1
e

− x2+y2

2σ2
b ⊗

[
(4πDxxt)− 1

2 e− x2
4Dxxt (4πDyyt)− 1

2 e− y2
4Dyyt

]
(2.9)

C (x, y, t) = A
[(

2πσ2
b + 4πDxxt

) (
2πσ2

b + 4πDyyt
)]− 1

2 e
− x2

2σ2
b

+4Dxxt e
− y2

2σ2
b

+4Dyyt (2.10)

In the more general case of a non-Gaussian function describing the photobleach pattern

C (x, y, 0), the situation is significantly more complex. In general, no simple analytical

forms are expected for the convolution of a Gaussian with non-Gaussian functions, requiring

numerical methods for approximations. Unfortunately, non-Gaussian photobleach patterns

are commonplace. Even when Gaussian patterns are intended, photobleaching can often

approach saturating conditions when the peak photobleach depth approaches unity, resulting

in “top-hat” initial photobleach peak shapes. In such cases, the shape of the recovered region

can be complicated to integrate analytically into the diffusion analysis for recovery of the

diffusion coefficient.[39 ]

2.3 Comb-photobleach FT-FRAP

In FT-FRAP, the initial photobleach pattern is selected to produce sharp puncta in the

spatial frequency domain, rather than in real-space. One such pattern is a comb, or a periodic

series of lines. For mathematical purposes, we will define the comb pattern to proceed along

the x-axis in the laboratory frame with constant illumination along the y-axis, producing
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a series of photobleached stripes (depicted in Figure 1.1 B). The initial photobleach pattern

C (x, 0) is constant in the y-axis and given below, in which δx,±n/2πν̄0
x

is a delta function

at the positions ±nxν̄0
x and n ∈ 0, 1, 2, ..., C0 is the initial concentration of the analyte of

interest, and A is the photobleach depth.

C (x, 0) = C0

1 − A
∑

n=0,1,2,...

(
δx,±n/2πν̄0

x
⊗ PSF (x)

) (2.11)

By taking the spatial Fourier transform of this equation, the convolution of the photo-

bleach PSF (x) with the comb pattern δx,±n/2πν̄0
x

is replaced by a multiplication operation,

simplifying the analysis. The initial (t = 0) spatial Fourier transform of C (x, 0) along the

x-direction is then given by the following expression, in which ΦP SF (ν̄x)is the spatial Fourier

transform of PSF (x).

C̃ (ν̄x, 0) = C0

δν̄x,0 − A
∑

n=0,1,2,...

δν̄x,±nν̄0
x
ΦP SF (ν̄x)

 (2.12)

C̃ (ν̄x, 0) = C0δν̄x,0 − C0A
∑

n=0,1,2,...

δν̄x,±nν̄0
x
ΦP SF

(
±nν̄0

x

)
(2.13)

In brief, the initial photobleach corresponds to a series of puncta in the spatial Fourier

domain positioned at (ν̄x, ν̄y) = (±nν̄0
x, 0) , each of which is scaled in initial amplitude by the

spatial Fourier transform of PSF (x), with additional amplitude at the origin (ν̄x, ν̄y) = (0, 0)

from the overall average fluorescence intensity.

The time-dependent behavior of each point in the FT can be evaluated by an approach

analogous to that illustrated in Eq. 2.4 for the nth harmonic (n > 0).

C̃ (ν̄x, t) = C̃
(
±nν̄0

x, 0
)

e−
(

2πnν̄0
x

)2
Dxxt; C̃n

(
±nν̄0

x, 0
)

= −C0AΦP SF,x

(
±nν̄0

x

)
, x (2.14)

For a given impulse in the FT image, a single-exponential decay is expected; irrespective

of the functional form for PSF (x), the time-constant is given by τ =
[
(2πnν̄0

x)2
Dxx

]−1
.

This single-exponential recovery is in stark contrast to conventional FRAP analysis based
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on measurements performed in real-space, for which the time scale for recovery depends

sensitively on precise foreknowledge of PSF (x) for recovery of the diffusion coefficient. The

time-constant of the fluorescence recovery in FT-FRAP is independent of PSF (x), which

allows for simplified mathematical recovery of Dxx while circumventing error associated with

imprecise estimates of PSF (x).

Through this analysis, comb photobleaching has the additional practical advantage of

simultaneously enabling diffusion analysis over multiple length scales. For example, the

fourth harmonic will probe diffusion over a length 4-fold shorter than the first harmonic,

and by nature of the quadratic dependence on spatial frequency, the fourth harmonic will

recover 16-fold faster than the first harmonic for normal diffusion. This disparity enables

analyses of both normal and anomalous diffusion without the need for changing instrument

settings.

2.4 Dot-array-photobleach FT-FRAP

It is interesting to consider instances in which mobility is not isotropic (e.g., within

lamellar structures or along microtubules). In such cases, dot array illumination in principle

provides single-shot access to the full 2D 2 × 2 diffusion tensor. Generalization of Eq. 2.4 

for normal but anisotropic diffusion yields the expression below, in which is the reciprocal

of the spatial lattice constant for the periodic illumination.

C̃ (ν̄0, t)hk = C̃ (ν̄0, 0) e−(2πν̄)2[
h2Dxx+2hkDxy+k2Dyy

]
t (2.15)

Analysis of the decay constant measured for different combinations of h and k indices

should, in principle, allow for recovery of all three unique elements describing diffusive mo-

tion.

2.5 Anomalous diffusion

The capability of FT-FRAP to simultaneously measure diffusion over multiple length

scales enables quantitative analysis of anomalous diffusion. While normal diffusion is charac-
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terized by fluorescence recovery with a quadratic dependence on spatial frequency, anomalous

diffusion will produce fluorescence recovery that deviates from a quadratic dependence. The

ability to simultaneously interrogate diffusion over several discrete, well-defined distances by

FT-FRAP with comb illumination provides a convenient route for quantifying anomalous

diffusion, if present.

Numerous mathematical models for anomalous diffusion can be found for trends antic-

ipated under a diverse suite of conditions.[60 ], [71 ]–[75 ] A model based on continuous-time

random walk and fractional diffusion is considered in this work because of its general ap-

plicability to systems with both time-varying and distance-dependent diffusion.[59 ] In a

continuous-time random walk model, diffusion is approximated as a series of random steps.

Normal diffusion is characterized by a Gaussian pdf in step lengths (variance = 2σ2) and

a Poisson pdf in wait times between steps (characteristic wait time = τ). Deviation from

normal Brownian diffusion can arise from various sources, two of which we will consider

in the anomalous diffusion model used in this work. First, anomalous diffusion can arise

when the characteristic wait time, τ diverges. When τ is finite, as in normal diffusion, the

MSD exhibits a linear time dependence. When the distribution of wait times diverges due

to binding or association, the time dependence of the MSD deviates from linear and scales

with time to the power α.

〈
x2

〉
∝ tα (2.16)

Normal diffusion corresponds to α = 1, subdiffusion corresponds to 0 < α < 1, and

superdiffusion corresponds to α > 1. The fluorescence recovery in this class of anomalous

diffusion is modeled as a one-parameter Mittag-Leffler function Eα.

C̃n (ν̄x, t) = C̃
(
±nν̄0

x, 0
)

Eα

[
−

(
2πnν̄0

x

)2
Dxxtα, α

]
(2.17)

The Mittag-Leffler function is a fractional generalization of an exponential function. The

one-parameter Mittag-Leffler, Eα (z, a) converges to an exponential E1 (z, 1) = ez for α = 1,

and E0 (z, 0) = 1
1−z

for α = 0. A second source of anomalous diffusion is a deviation in

the step-length distribution. Normal diffusion exhibits a Gaussian step-length pdf with a
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variance of 2σ2, leading to a quadratic dependence of the diffusion coefficient on spatial

frequency. However, in cases where the variance in the step-length distribution diverges,

Lévy-flight behavior is observed, and the anomalous diffusion coefficient will adopt a depen-

dence on σµ instead of σ2 for normal diffusion.

Dxx ≡ σµ

τ
(2.18)

Lévy-flight diffusion produces a stretched exponential decay in the spatial frequency

domain, where the spatial frequency is raised to the power µ rather than 2 for normal

diffusion.

C̃n (ν̄x, t) = C̃
(
±nν̄0

x, 0
)

e−
(

2πnν̄0
x

)µ
Dxxt (2.19)

A system can exhibit both subdiffusive and Lévy-flight behavior when both τ and σ

diverge. An equation describing such as system results from modification of the Mittag-

Leffler function shown in Eq. 2.17 by replacing the quadratic dependence on the spatial

frequency term with the exponent µ and by scaling the exponent of t by 2/µ.

C̃n (ν̄x, t) = C̃
(
±nν̄0

x, 0
)

Eα

[
−

(
2πnν̄0

x

)µ
Dxxt2α/µ, α

]
(2.20)

FT-FRAP is capable of sensitively characterizing anomalous diffusion because it can

measure diffusion on multiple length scales. A fit to Eq. 2.20 involves parameters that

are likely to have high covariance if the fit is performed with only one recovery curve. By

performing a global fit with multiple recovery curves at multiple length scales, the fit can

be constrained to recover more accurate values for the parameters describing anomalous

diffusion.

2.6 Signal power

In comparison to analysis in real space, the Fourier domain analysis with patterned

illumination provides a substantial advantage in terms of the available power of the detected

signal. Power is conserved upon Fourier transformation, allowing direct comparisons across

37



both representations. For a Gaussian photobleach spot with a width parameter σ, and peak

photobleach depth Ap, the power is generated by integration over the 2D Gaussian.

PGaussian =
∫ 512

0

∫ 512

0

[
C0Ape− (x−x0)2+(y−y0)2

2σ2

]2
dx dy (2.21)

In a typical experiment, the Gaussian width is much smaller than the field of view in order

to reduce measurement times by minimizing the diffusion length. In the limit that σ << 512

pixels (assuming a field of view of 512×512 pixels), the discrete limits of integration can be

safely evaluated as ±∞. The integrals can be further simplified by substituting x′ = x − x0

and noting that dx = dx′ (with analogous substitutions for y).

PGaussian ≈ (C0Ap)2
∫ ∞

−∞
e− x′2

σ2 dx′
∫ ∞

−∞
e− y′2

σ2 dy′ ≈ πσ2 (C0Ap)2 (2.22)

The power in the impulse in the FT image produced by comb illumination can be similarly

calculated by evaluating the same power through integration of the real-space photobleach

pattern. For a photobleach depth Ap, the power in a comb with N lines is given by the

following expression.

Pcomb =
∫ 512

0

∫ 512

0

[
N∑

n=1

(
C0Apδx,±nxν̄0

x
⊗ PSF (x)

)]2

dx dy

≈ (C0Ap)2 (512)
N∑

n=1

∫ ∞

−∞
|PSF (x)|2 dx ≈ (C0Ap)2 (512) N

√
πσ2 = PGaussian × 512N√

πσ2

(2.23)

The power advantage for comb excitation with a beam PSF with a characteristic width

of 2 pixels relative to point excitation is 2,300-fold greater than that in the Gaussian pho-

tobleach spot with an identical photobleach depth and 32 lines in the comb. This potential

for signal-to-noise enhancement is particularly noteworthy since the peak photobleach am-

plitude Ap is bounded to be less than unity and is typically much less than 0.5 to reduce

nonlinear effects from saturation and local heating. It is worth emphasizing that this signal

increase represents the theoretical upper limit corresponding to a 2,300-fold increase in the

total power used for illuminating the sample. In practice, local heating and/or the availabil-
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ity of laser power may limit the practical advantages accessible experimentally. Fortunately,

distribution of the power over the entire field of view should reduce perturbations associated

with heating effects. Furthermore, advances in laser technology are increasing the availability

of high-power CW lasers compatible with many photobleaching experiments.

In addition to the power advantage, FT-FRAP with a comb photobleach pattern provides

an anticipated intrinsic signal-to-noise advantage through Fourier-domain analysis. White

noise is uniformly distributed in both space and spatial frequency. Localized detection in the

Fourier domain that changes in amplitude but not shape maintains fixed noise contributions

in spatial frequency. In contrast, the spread in the photobleach over time increases the noise

contributions over which the signal is integrated.

Figure 2.1. Decay of FRAP signal over time for point-bleach FRAP and FT-
FRAP with 32-line patterned illumination. Signal rapidly degrades for point-
bleach relative to comb-illumination even when normalized for total bleach
power. In principle, the signal of FT-FRAP increases as the distance between
photobleached lines increases.

Direct comparisons between point-bleach and FT-FRAP measurements can be made by

considering the SNR of the measurements during recovery. Major increases in signal are po-
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tentially accessible in FT-FRAP by distributing greater photobleach excitation power over

the entire field of view. For the purposes of direct comparison, we will assume a constant

integrated bleach power for both comb-illumination FT-FRAP and point-bleach FRAP. For

point-bleach analysis in the spatial domain, the illumination point-spread function (assumed

for simplicity to be Gaussian) is convolved with a 2D time-varying Gaussian function, the

standard deviation of which is dependent on the diffusion coefficient and time through Eq.

2.8 . As the photobleach profile expands, the peak signal S measured at the center of the

photobleach profile is reduced in time scaling as S (t) = S0σ
2
b / (σ2

b + 2Dt) , generated by

normalizing Eq. 2.8 for an initial peak amplitude of S0. An identical scaling arises for the

SNR measured in a given pixel when fixing the integrated area of the photobleach peak and

considering the increase in number of pixels over which the signal is distributed. For compar-

ison, the integrated cross-section of the peak in the FT domain is independent of time, with

a corresponding fixed noise power. The signal (and correspondingly the SNR) in a given har-

monic decays exponentially with time with a time-constant given by τ =
[
(2πnν̄0

x)2
Dxx

]−1
.

For a spatial period of 16 pixels between lines consistent with the experimental implemen-

tation of FT-FRAP and an initial photobleach width with a standard deviation of 2 pixels,

calculations are shown in Figure 2.1 for the anticipated time-dependence of the SNR for

point vs. patterned illumination. As can be seen from Figure 2.1 , even when normalized for

total bleach power, the SNR rapidly degrades for point-bleach relative to comb-illumination.

In principle, the integrated SNR of comb illumination can be further increased by increasing

the distance between lines, thereby slowing the loss in the spatial harmonic. In practice,

implementation may introduce additional 1/f noise contributions not explicitly considered

herein.

2.7 Phasor analysis of flow in FT-FRAP

The preceding description is based on the assumption of even functions for the comb

photobleach pattern relative to the origin of the image (typically, the center). Even assuming

the initial photobleach pattern is symmetric about the origin, directional flow within the

sample could result in displacements along the flow direction (assumed to be x for simplicity)

40



over time. Displacements in real space correspond to shifts in phase in the Fourier domain,

such that phase analysis in the FT domain has the potential to inform on flow. Considering

comb excitation, a shift of ∆x in the initial photobleach pattern will produce shifts in the

δ-functions associated with the comb.

C (x, 0) = C0

1 − A
∑

n=0,1,2,...

(δ (∆x) ⊗ PSF (x))
 (2.24)

In which δ (∆x) = δx,±n(x+∆x)ν̄0
x
. The influence of displacement is easily integrated into

the FT analysis using the shift theorem, in which displacement by an offset from the origin

of ∆x is accounted for in the spatial FT through multiplication by ei2πν̄∆x for a given value

of n.[76 ]

C̃ (ν̄x, t) = C̃
(
±nν̄0

x, 0
)

e−
(

2πnν̄0
x

)2
Dxxtei2π

(
nν̄0

x

)
∆x (2.25)

At t = 0, the initial phase angle of the nth reflection is related to the argument ϕn of

C̃ (ν̄x, 0), which is simply ϕn = 2πnν̄0
x∆x . In the absence of time-averaged flow in the x-

direction, the argument of the nth reflection will be preserved throughout the experiment. If

flow is nonzero, then ∆x is a function of time. Assuming a constant flow rate of qx = ∆x/t,

then ∆x can be replaced by qxt + ∆x0 in Eq. 2.25 , in which ∆x0 is the phase shift at t = 0.

This substitution results in an argument for the nth peak given by the following equation.

ϕn = 2πnν̄0
x (∆x0 + qxt) (2.26)

Notably, the rate of change in the phase shift from flow is proportional to n, such that the

higher harmonics corresponding to higher spatial frequencies are likely to be more sensitive

to flow than the lower harmonics. This trend mirrors analogous sensitivities to time in the

fluorescence recovery from diffusion in Section 2.3 , in which the higher harmonics report on

fast diffusion times measured over short distances.

41



2.8 Patterned versus point photobleaching

It is worthwhile to compare the FT-FRAP approach demonstrated herein with previous

studies employing spatial Fourier analysis (SFA) of FRAP measurements. In those prior

studies, Fourier analysis was performed to aid in interpretation of recoveries using conven-

tional photobleach illumination of localized points. SFA provided similar computational ben-

efits in the mathematical simplicity arising in the Fourier domain. However, FT-FRAP has

a major signal-to-noise advantage over conventional point-illumination. In the numerator,

FT-FRAP supports major increases in the signal power (>2000-fold with comb illumination)

by distributing the photobleach amplitude over the entire field of view, whereas conventional

point-illumination saturates (photobleach depth approaching unity) at a much lower inte-

grated signal power. Furthermore, patterned illumination enables shifting of the signal to a

quiet spatial frequency for noise suppression. By analogy with 1/f noise in electronics, anal-

ysis of natural images suggests a power spectrum obeying a 1/ν̄ dependence.[77 ] For optical

detection in the shot-noise limit, the variance in signal is proportional to the mean. Since

visible photons are often detectable with signal-to-noise approaching the shot-noise limit in

instrumentation optimized for FRAP, it stands to reason that the noise in the Fourier do-

main will also scale with the signal power in an image with natural contrast. Consequently,

the low frequency noise power spectrum is also expected to scale with 1/ν̄ , in direct analogy

with 1/f noise in electronics. As in electronics, shifting of the signal to a frequency regime

with lower noise through modulation can provide a substantial noise reduction.

2.9 Diffusion imaging

Patterned photobleaching can be described by Eq. 2.27 , where ρ is position, C (ρ, 0) is

the initial post-bleach image, C0 (ρ) is the pre-bleach image and Cb (ρ) is the photobleach

pattern.

C (ρ, 0) = C0 (ρ) · Cb (ρ) (2.27)
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The photobleach pattern, Cb (ρ) can be described as the convolution of the photobleach

pattern with the point spread function of the laser beam, shown in Eq. 2.28 as a pictorial

equation (not to scale).

(2.28)

Two-dimensional spatial Fourier transformation of Eq. 2.27 yields Eq. 2.29 , where

C̃ (ν̄, 0) is FT of the initial post-bleach, C̃0 (ν̄) is the pre-bleach image. Note that by the

convolution theorem Cb (ρ) transforms to the multiplication of FT of the two functions de-

picted in Eq. 2.28 . Also, by the same theorem, the multiplication in Eq. 2.27 become a

convolution following Fourier transformation.

(2.29)

If C0 (ρ) from Eq. 2.27 is a constant, as in a homogeneous sample, then C̃0 (ν̄) is an

impulse and convolution by C̃0 (ν̄) is equivalent to multiplication by a factor. However, if

C0 (ρ) is not homogeneous but has structure, then the spatial FT of C̃0 (ν̄), which contains

information about the pre-bleach, will be convolved with each peak from the FT of the comb

photobleach. This will produce a series of peaks that contain duplicate information about

the spatial contrast in C0 (ρ). This relationship is captured in Eq. 2.30 , where n is the

43



harmonic, An is an amplitude scaling based on the FT of the PSF in Eq. 2.29 and the

equation assumes a comb photobleach pattern in the x axis.

C̃0 (ν̄x − nν̄0, ν̄y) ≈ C̃0 (ν̄x, ν̄y) An (2.30)

The harmonic peaks at nν̄0, where ν̄0 is the fundamental frequency, in theory have an

identical relative peak shape which contains information about the structure of the image.

This equation only holds for low frequency features where ν̄x < ν̄0
2 to ensure no overlap

between peaks in the spatial frequency domain.

Before bringing in the time-dependence, we will assume C0 (ρ) contains segmented do-

mains of local, isotropic diffusion with diffusion coefficient Di in each domain,i , as shown

in Eq. 2.31 and Eq. 2.32 .

C0 (ρ)tot =
∑

i
C0 (ρ)i (2.31)

C̃0 (ν̄)tot =
∑

i
C̃0 (ν̄)i (2.32)

The solution in Eq. 2.4 holds for each domain, such that the time-evolving peak shape

about nν̄0 will be:

C̃ (ν̄x − nν̄0, ν̄y, t)tot =
∑

i
C̃ (ν̄x − nν̄0, ν̄y, 0)i e−4π2(nν̄0)2Dit (2.33)

Centering the spatial frequency domain about nν̄0 and taking the two-dimensional inverse

FT yields Eq. 2.34 , noting that the exponential term is not a function of ν̄x and ν̄y (when ν̄x,
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ν̄y < ν̄0 ).When centering the spatial frequency domain about nν̄0, it is important to merge

the two symmetric peaks to preserve phase information.

C (x, y, t)tot =
∑

i
C (x, y, 0)i e−4π2(nν̄0)2Dit (2.34)

The integrated amplitude of each segment i in the inverse FT image decays with a

single exponential dependence on nν̄0 and Di . An analogous expression can be produced for

anomalous diffusion.

C (x, y, t)tot =
∑

i
C (x, y, 0)i Eαi

[
−

(
2πnν̄0

x

)µi
Dit

2αi/µi , αi
]

(2.35)
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3. MATERIALS AND METHODS

FT-FRAP was performed using two different fluorescence microscopes: one using two-photon

excited fluorescence, and the other using one-photon excited fluorescence. FT-FRAP was

also performed using two different illumination patterns: comb illumination and dot matrix

illumination.

3.1 Two-photon excited fluorescence (TPEF) microscopy

A schematic of the TPEF microscope used in this study for comb photobleach FT-FRAP

is depicted in Figure 3.1 A. The light source of the microscope was an 80 MHz, Ti:Sapphire

laser (Mai Tai, Spectra-Physics, Santa Clara, CA), tuned to 800 nm. The laser beam was

scanned across the sample using a galvanometer/resonant mirror pair with an 8.8 kHz reso-

nant scanning mirror (Electro-optical Products Corporation, Ridgewood, NY) for the fast-

scan axis and a galvanometer mirror (Cambridge-Tech, Bedford, MA) for the slow-scan axis.

The mirror pair was 4f -coupled to the back of a 10X, 0.3 NA objective (Nikon, Melville,

NY) to enable beam-scanning imaging at the focal plane. Each pixel in the FOV was mea-

sured sequentially as the laser beam was raster-scanned across the sample. The high light

fluence of the laser beam produced TPEF from emitters in the focal volume. The TPEF

was collected in the epi direction using a dichroic mirror (650DCXR, Chroma, Bellows Falls,

VT) and a band-pass filter (FGS900, Thorlabs, Newton, NJ) to isolate the TPEF, and a

photomultiplier tube (H7422P-40 MOD, Hamamatsu, Hamamatsu City, Shizuoka, Japan)

as the detector. The signal from the photomultiplier tube was digitized synchronously with

each laser pulse and mapped onto a 512×512-pixel image using custom software using MAT-

LAB (MathWorks, Natick, MA). Scanning mirrors and data collection were synchronized

using custom phase-locked timing electronics.[57 ] All videos in this study were recorded at

approximately 4 frames per second.
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Figure 3.1. Instrument schematic of a nonlinear-optical beam-scanning mi-
croscope used for multi-photon FT-FRAP. A HWP on a flip mount was used
to modulate from low power ( 50 mW) to high power ( 500 mW) for the pho-
tobleach. Beam scanning was performed with galvanometer (slow axis) and
resonant (fast axis) mirrors. DCM = dichroic mirror, HWP = half-wave plate,
PMT = photomultiplier tube, SPF = short-pass filter, TPEF = two-photon
excited fluorescence.

3.2 Comb-photobleach FT-FRAP

A simple change to the scan pattern of the galvanometer (slow axis) mirror was used to

generate a comb photobleach pattern at the sample. Following an initial low-power period for

baseline TPEF microscopy of the full field of view, patterned photobleaching was performed

simply by changing the number of steps in the ramp function driving the galvanometer

mirror from 512 (used for normal imaging) to an integer fraction of 512 corresponding to

the fundamental spatial frequency (e.g., 8, 16, 32 pixels = 1/ν̄0). The dwell time per step

was also increased proportionally such that the repetition rate of the slow axis mirror was

independent of the number of lines in the comb photobleach pattern. A flip mount with

a half-wave plate (depicted in Fig. 3.1 ) was synchronized to switch the excitation source

from low power to high power concurrently with the reduction in ramp steps. This protocol

resulted in a comb photobleach pattern as seen in Figure 4.1 A. After 2 seconds at high

power the flip mount was removed, reducing the laser power, and the number of steps for
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the slow axis mirror was changed back to 512 to facilitate normal imaging at low power to

track the fluorescence recovery of the sample.

3.3 Dot matrix photobleach FT-FRAP

A commercial FRAP microscope (Formulatrix, Bedford, MA) was modified in-house to

support periodically patterned illumination during photobleaching for FT-FRAP experi-

ments, as shown in Figure 3.2 . A detailed description of the commercial microscope has

been published previously.[58 ] A diffractive optical element (DOE) (DE-R 244) (HOLOEYE

Photonics AG, Berlin, Germany) was added to the excitation light path of the microscope

immediately before the dichroic mirror. The DOE diffracted the photobleach laser into a

matrix of photobleach spots during the photobleaching phase of the FRAP experiment. Dis-

tributing the photobleach power across many points in the sample enabled illumination with

a higher power light source for photobleaching without saturation of the sample. Conse-

quently, the 10 mW, 532 nm photobleaching laser in the FRAP microscope was replaced

with a 5 W, 532 nm, continuous-wave laser (SpectraPhysics Millenia SpectraPhysics, Santa

Clara, CA), which was coupled into the microscope with a Thorlabs custom fiber optic patch

cable at the location of the original photobleaching laser. The photobleach time was approx-

imately 2 seconds and produced a dot matrix pattern that could be analyzed in the spatial

frequency domain to characterize diffusion.

3.4 Sample preparation

Solution of fluorescein isothiocyanate bovine serum albumin (FITC-BSA) in 2:1 glyc-

erol/water was prepared by dissolving lyophilized FITC-BSA in water at a concentration of

3 mg/mL and mixing at a ratio of 1:2 with glycerol to produce a final FITC-BSA concentra-

tion of 1 mg/mL. A solution of trimethyl rhodamine immunoglobulin G (TMR-IgG) in PBS

was prepared by dissolving lyophilized TMR-IgG in PBS at a concentration of 1 mg/mL.

Solutions of 2 mg/mL fluorescein isothiocyanate (FITC) polydextran (2 MDa) (Millipore-

Sigma, Burlington, MA) were used to evaluate the FT-FRAP approach. These fluorescently

labeled molecules were solubilized in either 50/50 glyercol/water or in an aqueous solution
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Figure 3.2. Instrument schematic of a commercial FRAP microscope that
was modified for dot array photobleach FT-FRAP. Modifications are indicated
by red dashed boxes. A more powerful laser replaced the original photobleach
laser and a DOE was added to the excitation light path to produce a dot
array photobleach pattern. DCM = dichroic mirror, DOE = diffractive optical
element, CCD = charge-coupled device camera, LED = broadband green light
emitting diode.

of 22 mg/mL hyaluronic acid (15 MDa) (Lifecore Biomedical, Chaska, MN). Solutions were

mixed thoroughly prior to FRAP analysis.

3.5 Data analysis

Analysis of the FT-FRAP data was performed using custom software written in-house

using MATLAB. A 2-dimensional FT was taken of each image. FT-FRAP curves were

recovered by integrating over peaks in the FT magnitude. A fit was performed to recover

the diffusion parameters using Eq. 2.14 for normal diffusion and Eq. 2.20 for anomalous

diffusion. A MATLAB function written by Roberto Garrappa was used for evaluating the
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Mittag-Leffler function in Eq. 2.20 .[78 ] Phasor analysis of flow was performed by taking the

argument of the complex-valued 2D-FT peaks and relating the phase back to flow velocity

through Eq. 2.26 . Uncertainties in the fits were calculated based on the second derivative of

χ2-space in the vicinity of the minimum and were obtained from the covariance matrix, X

which was calculated from the Jacobian, J and the variance in the residuals, vR, as shown

in Eq. 3.1 .

X = vR

(
JT × J

)−1
(3.1)
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4. NORMAL DIFFUSION CHARACTERIZATION

The capabilities of comb-photobleach and dot-array-photobleach FT-FRAP for character-

izing normal diffusion were evaluated using three analytes: a polymer, a protein, and an

antibody.

4.1 Polymer diffusion analysis by comb-photobleach FT-FRAP

As shown in Figure 4.1 A, a comb pattern was employed for photobleaching a solution of

2 mg/mL FITC-polydextran (2 MDa) in 50/50 glycerol/water. Following photobleaching,

spatial Fourier transformation produced sharp puncta with symmetric amplitudes about

the origin peak as shown in Figure 4.1 B. As diffusion progressed, the FT peak intensities

exhibited simple exponential decays, as shown in Figure 4.1 C. These observations are in

excellent agreement with theoretical predictions in Eq. 2.4 . Consistent with prior arguments

on signal power, the FT-FRAP analysis clearly provides high signal-to-noise photobleaching

curves by combining the analysis over the entire field of view.

Comb patterns for photobleaching enabled simultaneous analysis over multiple length

scales through the nth spatial harmonics ν̄x,n, as shown in Figure 4.1 . Theoretical predictions

in Eq. 2.14 suggest an exponential decay of each impulse with a decay constant given

by τ = 1/ [4π2 (nν̄0
x) Dxx]. Higher harmonics are expected to exhibit faster decays with a

quadratic dependence on n for normal diffusion. The decays of the first and second harmonic

peaks were fit to Eq. 2.14 , recovering a diffusion coefficient of 3.70±0.02 µm2/s. The reported

uncertainty is the standard deviation of the fit.

4.2 Protein diffusion analysis by comb photobleach FT-FRAP

Spatial frequency diffusion analysis of FITC-BSA is shown in Figure 4.2 . A 16-line comb

photobleach pattern, shown in Figure 4.2 A, was used to probe the mobility of FITC-BSA.

The comb photobleach pattern produced a one-dimensional series of peaks in the spatial

frequency domain, as shown in Figure 4.2 B. The central peak represents the fluorescence

background and contains no diffusion information. However, the other peaks represent har-
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Figure 4.1. Multiphoton excited FT-FRAP with comb photobleach of FITC-
polydextran (2 MDa) dissolved in 50/50 glycerol/water. A) Image of the
solution immediately after a 32-line comb bleach. B) 2D-FT of (A) with the
circled peaks corresponding to the first and second spatial frequency harmonics
of the 32-line comb bleach. C) Fluorescence recovery of the first and second
harmonic peaks with best-fit curves recovering a diffusion coefficient, D =
3.70 ± 0.02 µm2/s. The reported uncertainty is the standard deviation of the
fit.

monics from the Fourier series of the comb photobleach pattern. The time-dependent decay

of the first harmonic and the second harmonic are plotted in Figure 4.2 C and 4.2 D respec-

tively, along with fits to Eq. 2.14 . Both harmonics exhibit a simple exponential decay,

consistent with expected theory for normal diffusion. When the harmonics were fit indepen-
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dently, they recovered diffusion coefficients that were in good agreement with one another

(8.23 ± 0.05 and 8.25 ± 0.09 µm2/s respectively), despite having significantly different decay

constants. Uncertainty values are the standard deviation of the least-squares fit. As pre-

dicted by theory, the decay time-constants were dependent on the square of the Euclidean

distance from the origin in the spatial frequency domain. For this reason, the first and sec-

ond harmonic exhibit decay time-constants that differed 4-fold but recovered approximately

the same diffusion coefficient.

The comb bleach in Figure 4.2 is particularly well suited for multiphoton excitation

in FRAP. Efficient two-photon excitation requires high peak intensity for the excitation

beam, which is typically achieved by focusing an incident ultrafast laser to a tight point-

spread function. Tight focusing of an intense beam at a single location as is typically

performed in point-bleach FRAP can also produce rapid local heating. In such instances,

the dynamics of recovery can potentially be altered by damage/modification within the focal

volume. Rapid beam-scanning allows distribution of this deposited heat over substantially

larger volumes, with much smaller corresponding transient temperature increases. In beam-

scanning imaging using raster patterns, comb bleaching can be achieved simply by altering

the slow-scan pattern from a continuous ramp to instead translocate the beam to discrete

stepped locations, as demonstrated in Figure 3.1 . The same hardware is used both for

patterning the photobleach and subsequently recording the recovery, ensuring co-alignment.

4.3 Antibody diffusion analysis by dot-array-photobleach FT-FRAP

Periodically patterned photobleaching using a dot array is shown in Figure 4.3 for diffu-

sion analysis of tetramethyl rhodamine-labeled immunoglobulin G (TMR-IgG) as a model

antibody. This periodic pattern was produced using diffractive optics. The undiffracted

(zero-order) beam resulted in the deep photobleach at the origin of the array, enabling

simultaneous point-bleach and FT analyses. In the spatial Fourier domain, the dot array

photobleach pattern produced a two-dimensional set of peaks, as shown in Figure 4.3 B. As in

2D electron diffraction, each peak corresponds to a lattice plane in reciprocal space, described

by the lattice indices h and k. The central peak represents the average fluorescence intensity
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Figure 4.2. FT-FRAP with comb bleach of FITC-BSA dissolved in a 2:1
solution of glycerol/water. A) Image of the solution immediately subsequent
to a 16-line comb bleach. B) 2D-FT of (A). C) Fluorescence recovery measured
at the 1st harmonic of the 2D-FT. D) Fluorescence recovery measured at the
2nd harmonic of the 2D-FT.

of the image; while containing no diffusion information, this peak does enable quantification

of (and correction for) fluorescence changes from photobleaching during the recovery mea-

surements. Theory predicts that the decay time-constant of these peaks is dependent on the

diffusion coefficient and the Euclidean distance (h2 + k2) in reciprocal space from the origin

of the spatial Fourier transform image. In the absence of flow and for isotropic diffusion,

timescales for recovery are dictated solely by the distance scale and not the direction. Con-

sistent with this expectation, peaks were pooled according to their distance from the origin

(h2 +k2 = 1 or h2 +k2 = 2) and the time-dependent decay of the peaks was plotted in Figure
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4.3 C, along with a fit to Eq. 2.15 . As with the comb photobleach pattern, the decays were

in good agreement with simple exponential trends predicted by theory for normal diffusion,

and the data exhibited the predicted dependence on Euclidean distance. When all the data

from h2 +k2 = 1 and h2 +k2 = 2 peaks were fit, the best-fit diffusion coefficient of TMR-IgG

was 1.92 ± 0.03 µm2/s, where the uncertainty is the standard deviation of the fit.

Figure 4.3. FT-FRAP with dot array bleach of TMR-IgG dissolved in PBS.
A) Image of the solution immediately after dot array bleach. B) 2D-FT of
(A). Blue and red circles indicate peaks that are equidistant from the origin C)
Fluorescence recovery of pooled peaks with best-fit curves. The best-fit value
for the diffusion coefficient was 1.92 ± 0.03 µm2/s. The reported uncertainty
is the standard deviation of the fit.
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5. FLOW CHARACTERIZATION

The impact of flow on the phase of the recovered Fourier transform peaks was evaluated in the

results shown in Figure 5.1 , in which unidirectional fluid motion was simulated by sample

translation with an automated stage during the fluorescence recovery. The sample under

investigation was an aqueous solution of 2 mg/mL FITC-polydextran (2 MDa) in 50/50

glycerol/water. Recovery of the diffusion coefficient in FT-FRAP only requires analysis of

the magnitude of the Fourier peaks. However, the real and imaginary components of the

Fourier peaks contain information about the spatial phase of the photobleach pattern. Figure

5.1 A shows an oscillatory decay of the real and imaginary components of the first and second

harmonic peaks. The phase of the Fourier peak can be calculated using the argument of the

complex number describing the peak at each time point. Figure 5.1 B shows the phase shift

of a sample that was not translated and the phase shift of the first and second harmonic

peaks of a sample that was translated. Consistent with the expression in Eq. 2.26 , the phase

angle changed linearly with time for the system undergoing directional translation in the x-

direction of the photobleach comb, with a proportionality constant of 2πnν̄0
xqx. Consequently,

the nth harmonic is predicted to exhibit an n-fold increase in the rate of phase angle change

over time relative to the fundamental peak. From the results summarized in Figure 5.1 B,

precisely this trend was observed in the measurements, in excellent agreement with the

theoretical predictions. The measured flow rate for the translated sample (4.14 ± 0.02 µm/s;

uncertainty is the standard deviation of the fit) matched the measured translation rate of the

sample stage (4.0 ± 0.4 µm/s; uncertainty is the standard deviation of three measurements).

Interestingly, statistically significant flow of 0.09 ± 0.01 µm/s was observed even in the

absence of sample translation. This subtle but nonzero flow is attributed to slow sample

convection within the viscous 50/50 glycerol/water solvent. The sensitivity of phase analysis

is noteworthy, as this flow is >40 times slower than the sample translation and corresponds

to a displacement of approximately 1-2 pixels (2 µm) over the entire 25 seconds of data

collection. It should be noted that flow (in the absence of mixing) only changes the phase of

the FT peak and not the magnitude. Phase changes are independent of the magnitude and

do not influence the fluorescence recovery curve.
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Figure 5.1. Bulk flow measured by FT-FRAP of FITC-polydextran (2 MDa)
in 50/50 glycerol/water. A) Real and imaginary amplitudes of the 2D-FT
fundamental and 2nd harmonic peaks upon sample translation during diffusion.
B) Phase calculated from real and imaginary amplitudes of 2D-FT peaks. The
non-translated sample has minimal bulk flow. The velocities calculated from
the fundamental and 2nd harmonic peaks of the translated sample are within
one standard deviation of each other and close to the translation rate of the
sample stage (4.0 ± 0.4 µm/s) after correcting for bulk flow from convection.
The reported uncertainties are the standard deviation of the fit.
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6. ANOMALOUS DIFFUSION CHARACTERIZATION

Additional results were obtained to characterize anomalous diffusion in a viscous matrix. Fig-

ure 6.1 shows FT-FRAP with a comb photobleach pattern on FITC-polydextran (2 MDa) in

22 mg/mL hyaluronic acid (HA). HA is a glycosaminoglycan polymer that is found through-

out the connective tissues of the body. The physiological functions in which HA is involved

include lubrication, wound repair, and cell migration. HA is known to increase viscosity when

added to aqueous solution. In this experiment, the fluorescence recovery of the first three

spatial harmonics of the comb photobleach pattern was analyzed to characterize anomalous

diffusion of FITC-polydextran in a solution with HA.

Several models for anomalous diffusion were considered. First, the three harmonics were

fit to a model for systems with subdiffusive mobility, described in Eq. 2.17 . Subdiffusion

was considered because of possible binding and unbinding or association and dissociation

of the FITC-polydextran with the HA matrix. However, analysis with this model did not

produce a satisfactory fit because the data did not exhibit a quadratic dependence on spatial

frequency. Second, the data were fit to a model for systems exhibiting Lévy flight, described

in Eq. 2.19 . Lévy flight behavior was considered because of possible crowding or trapping

by HA acting as an obstacle to constrict free diffusion of the FITC-polydextran. While the

Lévy flight model produced best-fit curves with a better match for the spatial frequency

dependence, the shape of the best-fit curves was exponential and far from a good fit to the

fluorescence recovery curves. Models incorporating just one of these two effects (subdiffusion

and Lévy flight) were insufficient to describe the data.

Third, a global fit of the first three harmonics to a combined subdiffusion-Lévy flight

model, described in Eq. 2.20 , was performed to recover the anomalous diffusion coefficient

D = 1.124 ± 0.008 µmµ/s2α/µ, the subdiffusive parameter α = 0.571 ± 0.003, and the Lévy

flight parameter µ = 1.173 ± 0.006. The reported uncertainties are the standard deviations

in the fit. The result of this fit is shown in Figure 6.1 . The combined model was able to

account for both the spatial frequency dependence of the harmonics and the shape of the

recovery curves, which deviates from exponential. The value of α < 1 indicates that the
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Figure 6.1. Harmonic analysis of anomalous diffusion with FITC-polydextran
(2 MDa) in 22 mg/mL hyaluronic acid. Fluorescence recovery of the first,
second, and third harmonics are fit to a modified Mittag-Leffler function to
recover the anomalous diffusion coefficient, D = 1.124 ± 0.008 µmµ/s2α/µ, the
subdiffusion parameter, α = 0.571 ± 0.003, and the Lévy flight parameter,
µ = 1.173 ± 0.006. The recovered parameters reveal subdiffusive and Lévy
flight behavior in the sample. The reported uncertainties are the standard
deviations in the fit.

characteristic wait time diverges (subdiffusion). Furthermore, the value for µ < 2 indicates

that the step length variance diverges (Lévy flight).

The results of the analysis demonstrate that FT-FRAP can sensitively and precisely

disentangle covariant parameters describing anomalous diffusion by simultaneously fitting

to multiple harmonics acquired in parallel. The same analysis performed with only the

first harmonic yields lower confidence in the recovered parameters: D = 1.9±0.1 µmµ/s2α/µ,

α = 0.69±0.01, and µ = 1.57±0.05. The reduction in precision likely arises from the increase

in covariance in the single-harmonic fit; the recovered parameters are highly correlated (D

& α = 0.976, D & µ = 0.995, and α & µ = 0.993, where ±1 corresponds to perfectly
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correlated/anti-correlated parameters). By comparison, the correlation coefficients obtained

in the three-harmonic fit are much less significant: D & α = −0.204, D & µ = 0.286, and

α & µ = 0.850. Comparison with a one-harmonic fit demonstrates that measuring diffusion

at multiple length scales with FT-FRAP can substantially increase statistical confidence in

the parameters recovered from fitting to an anomalous diffusion model by constraining the

model to describe diffusion globally.
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7. DIFFUSION IMAGING

To demonstrate experimentally the capability of FT-FRAP to map diffusion locally, diffusion

imaging by FT-FRAP was performed using a comb photobleach pattern on two samples

containing HA and FITC-dextran.

Figure 7.1. Diffusion imaging by FT-FRAP of two droplets containing FITC-
dextran (2 MDa) and varying concentration of HA. A) Fluorescence image of
the droplets after photobleaching. B) Segmented image defining the bound-
aries of regions I (18 mg/mL HA) and II (9 mg/mL HA). C) Decay curves of
the first, second, and third spatial frequency harmonics in region I. D) Decay
curves of the first, second, and third spatial frequency harmonics in region
II. Regions I and II exhibit significantly different diffusion coefficients D and
anomalous diffusion parameters α and µ.
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The first system used to evaluate diffusion imaging by FT-FRAP had two regions sep-

arated by an air gap, as shown in Figure 7.1 . Droplet I was composed of a solution of 18

mg/mL hyaluronic acid (HA) and droplet II was composed of a solution of 9 mg/mL HA.

Both droplets contained 1 mg/mL FITC-dextran (2 MDa). Figure 7.1 A shows a TPEF im-

age of the sample immediately after photobleaching. Figure 7.1 B shows a segmented image

of 7.1 A. The image was segmented into two regions so that diffusion analysis could be per-

formed separately on each region of the sample. Figures 7.1 C & 7.1 D show the decay of the

spatial frequency harmonics over time for regions I and II, respectively. Anomalous diffusion

parameters were recovered by a least-squares fit of the decay curves for regions I and II to

Eq. 2.35 and are shown in Figure 7.1 . These best-fit values demonstrate that there is a

significant difference in diffusion behavior between regions I and II. A simple point-bleach

FRAP experiment would only be able to characterize one of the two diffusion environments

at a time and FT-FRAP analysis without diffusion imaging would yield the averaged dif-

fusion behavior over the entire field of view, rather than localized diffusion characteristics.

FT-FRAP with diffusion imaging enables simultaneous measurements of local diffusion in

different regions of the FOV.

The second system used to evaluate diffusion imaging by FT-FRAP was a heterogenous

sample with two distinct adjacent regions, as shown in Figure 7.2 . The sample was composed

of photo-crosslinked methacrylated HA (MeHA) spheres surrounded by collagen in PBS.

Both the MeHA spheres and surrounding solution contained 1 mg/mL FITC-dextran (2

MDa). Figure 7.2 A shows a TPEF image of the sample before photobleaching. Figure 7.2 B

shows a segmented image of 7.2 A. The image was segmented into two regions so that diffusion

analysis could be performed separately on each region of the sample. Figures 7.2 C & 7.2 D

show the decay of the spatial frequency harmonics over time for regions I and II, respectively.

Diffusion parameters were recovered by a least-squares fit of the decay curves for regions I

and II to Eq. 2.35 and Eq. 2.14 , respectively, and are shown in Figure 7.2 . These best-fit

values demonstrate that there is a significant difference in diffusion behavior between regions

I and II. Anomalous diffusion is observed in region I, whereas normal diffusion is observed

in region II. Furthermore, the recovery in region I is much faster than the recovery observed

in region II. A simple point-bleach FRAP experiment would only be able to characterize one
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Figure 7.2. Diffusion imaging by FT-FRAP of FITC-dextran (2 MDa) dif-
fusing in a sphere of methacrylated HA (MeHA) surrounded by collagen in
PBS. A) Fluorescence image of the MeHA sphere before photobleaching. B)
Segmented image defining the boundaries of regions I (MeHA sphere) and II
(collagen). C) Decay curves of the first and second spatial frequency harmon-
ics in region I, exhibiting anomalous diffusion. D) Decay curves of the first
spatial frequency harmonics in region II, exhibiting normal diffusion. Regions
I and II exhibit significantly different diffusion behavior.

of the two diffusion environments at a time and FT-FRAP analysis without the diffusion

imaging approach would yield the averaged diffusion behavior over the entire field of view,

rather than localized diffusion characteristics. FT-FRAP with diffusion imaging enables

simultaneous measurements of local diffusion in different regions of the FOV.
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8. CONCLUSION

FT-FRAP with patterned illumination has been described theoretically and demonstrated

experimentally to characterize normal and anomalous diffusion. Relative to conventional

point-bleach FRAP, FT-FRAP has the advantages of mathematical simplicity, higher SNR,

representative sampling, and multi-photon compatibility. Proof-of-concept measurements

with model systems showed good agreement with theory. Flow was quantified using the

phase of the real and imaginary components of the FT peaks. Anomalous diffusion was

characterized by FT-FRAP through a global fit to multiple harmonics of the photobleach

pattern.

Diffusion imaging by FT-FRAP was demonstrated as a method for mapping diffusion

properties across a FOV. Diffusion images can be generated by leveraging the information

about image contrast contained in spatial frequency domain peaks. The local contribution to

each spatial frequency domain peak can be obtained through centering and inverse Fourier

transformation of the peak. Finally, fitting to a model recovers local diffusion properties for

each pixel or segment of an image.

Future work includes implementation of these techniques in new application spaces, in-

cluding measurement of mobility in pharmaceutically relevant matrices, quantification of

protein aggregation, characterization of gels, and live-cell imaging. Future algorithm de-

velopment includes quantification of diffusion during photobleaching, and the extension of

FT-FRAP to different photobleaching patterns.
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9. STOCHASTIC DSC BY NONLINEAR OPTICAL

MICROSCOPY

Though not directly related to FT-FRAP, this chapter describes a project completed early

in the doctoral work of the author and is included in this thesis to highlight the full body of

work completed throughout the Ph.D. of the author.

9.1 Abstract

Stochastic phase transformations within individual crystalline particles were recorded

by integration of second harmonic generation (SHG) imaging with differential scanning

calorimetry (DSC). The SHG-activity of a crystal is highly sensitive to the specific molecular

packing arrangement within a noncentrosymmetric lattice, providing access to information

otherwise unavailable by conventional imaging approaches. Consequently, lattice transforma-

tions associated with dehydration/desolvation events were readily observed by SHG imaging

and directly correlated to the phase transformations detected by the DSC measurements. Fol-

lowing studies of a model system (urea), stochastic differential scanning calorimetry (SDSC)

was performed on trehalose dihydrate, which has a more complex phase behavior. From

these measurements, SDSC revealed a broad diversity of single-particle thermal trajectories

and direct evidence of a “cold phase transformation” process not observable by the DSC

measurements alone.

9.2 Background

In pharmaceutical drug development, drug substances and formulations with long-term

physical and chemical stability ensure full optimized of a drug when administered to the

patient. During the time consuming process of formulations development (estimated > 3

months and $1 million) it is thus critical to employ methods that inform on possible avenues

of reduced bioavailability.[79 ] Identifying possible failure points early can reduce the chances

of late-stage failure, which can be costly and time consuming to remediate. For active

pharmaceutical ingredients administered as crystalline formulations, phase transitions to al-
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ternate crystal forms can have deleterious effects on aqueous dissolution rates, affecting both

oral and parenteral bioavailability.[80 ]–[82 ] Administering these drugs as amorphous solid

dispersions or as liquid formulations does not altogether avoid the problem, as spontaneous

crystallization can occur during storage or even in vivo under certain conditions.[83 ]–[89 ]

Phase transitions can dictate both direct physical depletion of bioavailable drugs through

transitions to low solubility crystal forms, as well as susceptibility to chemical depletion

through transitions to more reactive crystalline, liquid or glassy states. There is therefore a

need in the pharmaceutical industry to thoroughly map the phase space of potential drug

candidates, excipients, and mixtures. Several thermal methods exist for characterizing phase

transitions within pharmaceutical powders. Differential thermal analysis applies equal heat

to reference and sample pans and measures the temperature differential between the two

pans to detect thermal events associated with phase transitions. Thermal gravimetric anal-

ysis (TGA) continuously measures the mass of a sample while varying temperature. TGA

is especially useful for dehydration and decomposition. Differential scanning calorimetry

(DSC) enables the detection of phase transitions as a function of the energy differential be-

tween reference and sample pans heated to the same temperature. DSC is a widely used

technique for phase transition characterization because of its sensitivity, ease-of-use, and

short measurement time.[90 ]

Despite these advantages, DSC probes the energy transfer into the full ensemble of the

sample, averaging over all particles in the formulation. Phase transitions for ensembles of

crystals are predicted to be stochastic, with nucleation typically being the rate-limiting step

on a per-particle basis.[91 ]–[93 ] If phase transformation is stochastic, individual transient

events may be obscured or missed in ensemble-averaged analysis. Additionally, single-particle

measurements can enable the accurate modelling of kinetics for phase transitions, allowing

the distinction between different mechanisms of transition (i.e., concerted or continuous).[94 ]

Optical microscopy measurements of changes in gross morphology coupled with DSC

can recover information on single-particle phase transformations. Reading and coworkers

have developed an image analysis algorithm dubbed thermal analysis by structural charac-

terization (TASC) to detect phase transitions and the spatial distribution of phases from

images acquired using hot-stage microscopy.[95 ]–[99 ] TASC measures the subtle difference
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between an original image and subsequent images to quantify morphological changes within

a region-of-interest as temperature is varied. The algorithm also accounts for the possibil-

ity of translation of the region-of-interest within the field-of-view (FOV). TASC is a fast

and inexpensive method for characterizing the spatial distribution of phase transformations.

However, TASC methods rely exclusively on morphological changes in the optical response,

which are only intrinsically related to a subset of all possible phase transformations. Solid

/ solid phase transformations are largely inaccessibly by TASC, and glass / solid phase

transformations can be challenging to reliably detect without perturbing the samsample.

Desolvation (including dehydration) or polymorph transitions in the solid state are typi-

cally not accompanied by obvious changes in the gross morphology of a particle but can

profoundly influence physico-chemical characteristics that are accompanied by thermal tran-

sients in DSC measurements. In addition, structural rearrangements between polymorphs

with similar bulk free energies are quite challenging to detect by either conventional DSC or

bright-field microscopy. Coupling DSC with concurrent imaging capabilities that are more

directly tied to crystal form would help address these ambiguities associated with conven-

tional bright-field microscopy and DSC.

In this work, we demonstrated the integration of second harmonic generation (SHG)

microscopy with DSC analysis to monitor phase transitions on a per-particle basis. This

multimodal approach enabled simultaneous single-particle analysis for distinguishing the

impact of crystal size and shape on phase transitions in a single experiment, complementing

the ensemble-averaged information obtained from DSC. Furthermore, the strict symmetry

requirements for SHG allow the mapping of complex desolvation and crystal form transitions

with sensitivity in the ppm regime.[100 ] Previous work has utilized the exquisite sensitivity

of SHG microscopy to internal structure of the lattice in non-centrosymmetric crystals as a

standalone tool for polymorph discrimination, calibration-free quantification of trace crys-

tallinity, and protein crystal centering at X-ray beamlines.[101 ]–[103 ] Raman spectroscopy,

terahertz spectroscopy, and SHG have all previously been used to characterize crystallinity,

polymorphism, and phase transitions.[104 ]–[111 ] Herein, aspects of the complex phase be-

havior of trehalose dihydrate are elucidated through the integration of simultaneous SHG

and DSC measurements.
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9.3 Methods

SDSC was implemented using the scientific apparatus, experiments measurements, data

analysis methods, and sample preparation procedures described herein.

Figure 9.1. Schematic of the integrated SHG-DSC microscope. A pulsed
laser beam (800 nm, 80 MHz) was scanned with a galvo-resonant scan pair,
which was 4f coupled to the back of an objective and focused onto a DSC
sample pan. The SHG signal was collected in the epi direction, isolated with
a dichroic mirror and detected with a photomultiplier tube.

9.3.1 SHG microscopy

The experimental apparatus is depicted in Figure 9.1 and consists of an SHG micro-

scope built in-house integrated with an optical DSC stage (Linkam, DSC450). A tunable 80

MHz, Ti:sapphire, femtosecond laser (Spectra-Physics, Mai Tai) was used for the incident
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light source. The fundamental beam was raster-scanned across the sample using a reso-

nant scanning mirror at 8.8 kHz (EOPC) for the fast-scan axis and a galvanometer mirror

(Cambridge-Tech) for the slow-scan axis. A 4x, 0.1 NA objective (Nikon) was used to focus

the beam onto the sample, and the SHG signal was collected in the epi direction through

the same objective used for delivery of the fundamental beam. The laser was tuned to 800

nm with a power of 80–120 mW at the sample. Two long-pass dichroic mirrors (Chroma,

650DCXR) and a band-pass filter (Chroma HQ400/20M-2P) were used to isolate the 400 nm

SHG signal before it was detected by a photomultiplier tube (PMT) (Hamamatsu, H7422P-

40 MOD). Responses of the PMT were digitized synchronously with the laser pulses by using

a digital oscilloscope card (Alazar Tech, ATS9350) and mapped onto 512 × 512 images via

custom software written in-house (MATLAB).[112 ] The SHG videos were recorded at 17

frames per second for urea samples and at eight frames per second for trehalose samples.

9.3.2 DSC measurements

Stochastic differential scanning calorimetry (SDSC) measurements were acquired by inte-

gration of the SHG microscope with a Linkam Optical DSC450 stage. The DSC temperature

ramp range was 125–145 °C for the urea samples and 80–250 °C for the trehalose samples

with ramp rates of 10 °C/min and 20 °C/min, respectively. Before the data collection, an

isothermal hold time of two minutes for both urea and trehalose ensured a reliable start-

ing temperature for all experiments to reduce the effects of initial temperature variation.

Temperature and input power were measured by the DSC at a rate of five Hz. Standard

aluminum sample pans were used in all DSC experiments, and were not sealed to allow for

optical access of the sample. The DSC was calibrated using an indium standard in an open

pan.

9.3.3 Data analysis

ImageJ (NIH) was used to perform single-particle analysis on the images acquired with

the integrated SHG-DSC microscope. The single-particle SHG areas were measured by

calculating the fraction of pixels above a threshold within the region of interest.
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9.3.4 Sample preparation

Supersaturated solutions of urea (Sigma-Aldrich) were prepared in DI water and rapidly

recrystallized in an ice bath. The water was decanted, and the crystals were left to dry

overnight. Crystals were then passed through a 63 µm mesh into the aluminum DSC sample

pan. D-(+)-trehalose dihydrate (Sigma Life Sciences) was added to a DSC pan as-received.

9.4 Results and Discussion

SDSC was applied to study the phase transformations of urea and trehalose samples.

Additionally, the impulse response function (IRF) of the DSC instrument was determined

using data collected by SDSC.

9.4.1 SDSC of urea crystals

Initial proof of concept studies for SDSC were performed using urea, which undergoes a

simple, single-stage, solid/liquid phase transformation. Figure 9.2 A shows the DSC trace for

the melting transition of a urea sample (black line) overlaid with vertical lines corresponding

to the normalized SHG areas of individual particles dropping below a threshold of 10% (view

Figure 9.3 for the overlay of the DSC trace and the full traces of the normalized SHG areas

of each particle).

The DSC trace indicates that the melting transition occurred at ∼ 135 °C. This temper-

ature is slightly higher than the literature value of 133 °C. This difference is attributed to a

non-negligible heat transfer time to the sample. The need for optical access required the use

of an unencapsulated sample pan, resulting in slower heat transfer.[113 ] Despite some base-

line drift in the per-particle SHG activity from particle motion, the single-particle SHG area

shows much sharper transitions from the SHG-active crystalline form to the SHG-inactive

molten liquid of urea indicated by the DSC trace, consistent with independent, stochastic

melting events. Single-particle analysis yields a mean phase transition duration of 1.0 ±

0.6 s/particle while the DSC melting peak has a full-width-half-maximum of 3.3 s. This

difference indicates that the rate of phase transformation was dictated largely by the rate for
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Figure 9.2. A) SDSC analysis of urea by combined SHG microscopy and
DSC. The solid black line is the DSC trace of the melting of urea with en-
dothermic direction being down (left-axis). The vertical colored lines show the
temperatures in which the normalized SHG intensity of individual urea parti-
cles (acquired concurrently with DSC measurements) drops below a value of
0.1. DSC and SHG measurements both indicate a structural transformation
in the same temperature range. The inset shows a zoom-in of the tempera-
ture range 135.5–136.5 °C where the color lines correspond to the normalized
SHG intensity of individual urea particles. B) SHG microscope images of urea
crystals during SDCS analysis. SHG microscopy reveals the stochastic nature
of the melting transition and enables analysis on a per-particle basis.

seed formation of the liquid-state within individual particles, followed by rapid phase trans-

formation within a given particle. Figure 9.2 B shows representative frames from a video

acquired with the SHG microscope during the melting of urea. From the SHG results, the

nucleation rate at the phase transformation temperature can be estimated. In this work,
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Figure 9.3. SDSC analysis of urea by combined SHG microscopy and DSC.
The solid black line is the DSC trace of the melting of urea with endothermic
direction being down (left-axis). The thin colored lines show the normalized
SHG intensity of individual urea particles (right-axis), acquired concurrently
with DSC measurements. DSC and SHG measurements both indicate a struc-
tural transformation in the same temperature range.

a nucleation event is defined as the phase transformation of a single crystal (in this case,

from solid to liquid). Nucleation rates were determined from the loss rate of SHG-active

particles, measured as the intensity of each crystal decreased below a threshold (close to

zero). Approximations for the per-particle mass using the density of urea and volume es-

timated from particle cross-sectional area yield a peak nucleation rate of 1.6 ± 0.2 × 104

nuclei per s per mg (based on the observed rate of 6.13 nuclei/s in a FOV with an estimated

0.39 µg of particulate mass; standard deviation was determined based on Poisson statistics

for the number of crystals within the FOV). See Figure 9.4 for the distribution of crystal

volumes and a description of the use of Poisson statistics for obtaining the uncertainty in

the nucleation rate

Consistent with numerous previous DSC studies of powders, SDSC measurements were

performed exclusively as the temperature was increased to interrogate phase transforma-

tions.[114 ], [115 ] While in principle, additional information can be obtained from mea-
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Figure 9.4. Distribution of urea crystal volumes. The estimated volume
of the crystals was calculated from the crystal cross-sectional area (assuming
rod-like shape). A total mass of 0.39 µg was calculated from the sum of these
volumes multiplied by the density of urea (1.32 g/cm3). The mass combined
with the observed nucleation rate of 6.13 nuclei/s yields the nucleation rate of
1.6 ± 0.2 × 104 nuclei per second per milligram.

surements of thermal events upon cooling, the phase transformations induced by heating

were generally not easily reversible (e.g., dehydration). Even in the absence of composition

changes, melting of many individual isolated particles results in coalescence to a homogeneous

melt, while the reverse process will not recover isolated crystalline particles upon cooling.

Furthermore, SDSC measurements upon cooling are complicated in practice by wicking of

the liquid, which moves much of the sample out of the field of view. Although not the focus

of the present study, it is worth noting that SHG microscopy has a rich history of inform-

ing on crystallization kinetics in accelerated stability assessments for active pharmaceutical

ingredients.[116 ]
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Figure 9.5. Comparison of the experimental DSC trace and the DSC trace
generated from melting events. The best-fit double-exponential IRF (yellow)
is convolved with impulsive melting events (blue) of single-particles observed
in SHG images to generate the purple trace, which is in good agreement with
the experimental DSC data (red). The time constant and offset of double-
exponential IRF were optimized to minimize difference be-tween experimental
and generated DSC traces. Best-fit values of 1.161 ± 0.019 s, 0.435 ± 0.013 s,
and 3.088 ± 0.013 s were computed for the double-exponential time constants
and the offset respectively.

9.4.2 IRF determination with SDSC

The simultaneous SHG measurements were also used to determine the impulse response

function (IRF) of the DSC instrument. As described in a preceding paragraph, the ther-

mal events induced in the sample produced an instrument response with a temporal delay

associated with heat transfer times. The macroscopic DSC endotherm arose from the net
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collective contributions from many such stochastic events. As such, the DSC observables

were given by the convolution of the impulsive phase transformations with the IRF of the

DSC system. Assuming a double-exponential IRF consistent with heat flow through a ther-

mal resistor, the measured set of impulsive phase transformations by SHG x can be combined

with the recorded DSC trace y to recover the maximum likelihood estimate (MLE) for the

impulse response function f̂IRF = fIRF (â) described by the set of parameters a through

â = arg min
a

||y − x ⊗ fIRF (a)||2. The results of an MLE fit of the measured DSC transient

using the single-crystal phase transformation data from SHG is shown in Figure 9.5 , recover-

ing a phase-lag of 3.088 ± 0.013 s and rising and falling exponential time constants of 1.161

± 0.019 s and 0.435 ± 0.013 s, respectively, for the double-exponential IRF. The phase-lag

between the DSC event and the mean of the SHG events is attributed to delays from dif-

fusive heat transfer from the individual particles to the pan and sample mount of the DSC

instrument. The two time constants are tentatively attributed to the thermal diffusion times

from the sample to the sample stage, and from the stage to the heat sink.[117 ] Even in a

relatively simple melting transition, SHG provides the capability of mapping phase transfor-

mations on individual particles with temporal resolution much faster than achievable from

conventional ensemble-averaged DSC measurements. The pairing of both methods provides

information inaccessible by DSC alone; namely, that phase transformation proceeds through

slow nucleation followed by rapid growth on a per particle basis with an intrinsic rate of 1.0

± 0.6 s/particle (variance is dominated by particle-to-particle stochastics).

9.4.3 SDSC of trehalose dihydrate crystals

The performance of SDSC using the integrated SHG-DSC microscope was further tested

with trehalose dihydrate, a molecule with complex phase behavior, including the existence of

multiple transient crystal forms accessible under varying conditions.[118 ]–[121 ] Since signif-

icant differences in crystal structure can exist between polymorphs, hydrates, and solvates,

SHG has the potential to aid in distinguishing transitions due to its sensitivity to non-

centrosymmetric crystal forms.[101 ] Figure 9.6 summarizes the SDSC analysis of trehalose

dihydrate. Each colored line represents the percentage of pixels in an individual trehalose
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Figure 9.6. SDSC analysis of trehalose by SHG microscopy. The colored lines
show the percentage of pixels in a trehalose particle above an SHG intensity
threshold overlaid with the black line of the DSC trace with the endothermic
direction being down. SDSC images were summed for the temperature range
of 140–220 °C and the logarithm of the summed image was cropped to the mea-
sured region of each particle (each cropped image points to the representative
SHG trace).

crystalline particle that exceeds a threshold. Four individual particles were monitored in this

study. The black line is the DSC curve, in which dips correspond to endothermic events.

For the temperature range of 140-220 °C, the collected SDSC images were summed and the

logarithm of this summed image was cropped to the measured region of each particle.

DSC and SHG data were interpreted using previously reported literature values to map

the polymorphic transitions of the sample through the temperature ramp. At the initial 80

°C, the weak SHG signal arises from the trehalose dihydrate (Th) form that was initially

added to the DSC pan before the temperature ramp.[122 ] The composition of this starting

material was confirmed by powder X-ray diffraction (pXRD) to be primarily composed Th,

although the unstable anhydrous form (Tα) may also be present at trace levels; previous

reports indicate observation of the Tα form following room temperature storage at low rel-
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ative humidity.[122 ], [123 ] The first signs of phase transformation activity occurred in the

temperature range of 80–130 °C. The DSC curve exhibited a major endothermic peak in

this range. This peak was previously reported to be the result of the dehydration of Th.[114 ]

Additionally, two distinct trends appear in the individual particle SHG data. Three of the

trehalose particles increased in SHG activity while the other particle decreased over this

same lower temperature range. The disparity in SHG activity between individual particles

can be explained by the two major dehydration pathways available for Th in this temperature

range; Th can either partially dehydrate with rearrangement to the crystalline Tγ form or

completely dehydrate to an amorphous form (Tam).[114 ], [122 ] Similarly, the Tα form can

also transition to the Tam form upon heating.[114 ], [115 ], [122 ], [123 ] The Tγ polymorph is

theorized to be a mixture of Th encapsulated in a shell of the crystalline, anhydrous form

(Tβ), which is SHG-active.[114 ], [123 ] Therefore, we conclude that the three particles that

increased in SHG area in this temperature range likely transitioned to the SHG-active Tγ

form, while the particle that reduced in SHG activity likely transitioned to the SHG-inactive

Tam form at ∼ 110 °C from either the Th or Tα form.

The SHG activity generally increased for individual particles over the subsequent tem-

perature range of 130–160 °C. The DSC curve exhibited small but reproducible features in

this temperature range, the magnitude of which varied between experiments, and has been

reported to be due to the dehydration of Th.[114 ] Measurements of the fraction of SHG-active

pixels in individual particles show that the three particles that previously exhibited SHG

signal continue to convert over this temperature range. This increase in highly SHG-active

fraction can simply be attributed to Tβ crystal growth over this temperature range. The

fourth particle that previously decreased in SHG area shows a sharp increase in SHG area

starting at ∼ 160 °C. SHG-inactive Tam has been previously reported to transition to SHG-

active Tβ in the range of 150–200 °C.[114 ], [122 ] Likewise, the Tα form has been reported

to be able to transition directly to the Tβ when held at a temperature of ∼ 150 °C.[114 ],

[115 ], [122 ], [123 ] However, this Tα transition has not been observed with the faster heating

rates (20 °C/min.) used in the present study. Therefore, we conclude that this polymorphic

transition from Tam to Tβ is likely the cause of the sharp peak in SHG from the particle

represented by the magenta trace.
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Following the monotonic increases in transitioning to the Tβ form from 130–160 °C,

decreases in SHG were observed for all four particles in the range 160–200 °C. No peaks are

observed in the DSC curve in this range, but the trehalose particles exhibit slowly varying

and inhomogeneous loss in SHG activity. Several possible mechanisms for this loss in SHG

activity were considered, two of which are described in detail. One possible explanation for

loss in SHG activity with large crystal-to-crystal variability may be from interference effects

as crystal sizes change during phase transformation.[124 ] Interference fringes from single

crystals were reported previously in SHG microscopy measurements. However, interference

effects were deemed unlikely for three reasons: i) interference effects would be anticipated to

produce increases or decreases in SHG activity with equal probability, while only decays were

observed experimentally, ii) the backwards coherence length is short (∼ 100 nm) relative

to the sizes of the crystals, such that average activities would be expected, and iii) the

interference is expected to vary with thickness, such that crystals with variance in dimensions

would likely produces fringes over which the intensities are integrated. Alternatively, the

decay in SHG signal can be explained by condensation of water vapor released by Th onto

the optical window of the DSC. Condensation was commonly seen in our experiments when

working with hydrated samples because open crucible pans were used in the experiment to

allow for imaging during DSC scans. Additionally, no purge gas was used to remove water

vapor from the system, as addition of purge gas introduced measurement variance in the DSC

analyses from variable heat transfer to the bath gas. Previously reported results by TGA

indicate gradual water loss up to 200 ˚C, consistent with the observed reduction in SHG

signal that is proposed to arise from scattering losses from condensation.[114 ] Furthermore,

condensation is likely to impact some locations within the FOV to a greater extent than

others, potentially providing an explanation for the large crystal-to-crystal variability in the

loss. Thus, condensation is concluded to be the main cause of this loss in SHG signal.

Following the slow SHG signal loss from condensation, dramatic changes in the SHG-

activity arose from 200–240 °C. In this range the DSC curve exhibited an endothermic peak

at ∼ 230 °C, and the SHG data displayed a sharp increase and subsequent decrease during

the DSC peak. It is clear from the literature that the endothermic DSC peak arises from

a melting transition.[114 ], [123 ] The final fall in SHG area is attributed to this melting
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event. However, the source of the sharp increase in SHG area prior to the melt has no

precedent in reported DSC measurements. Two origins for the transient SHG area increase

were considered.

First, significant mobility in the sample arose during the melting transition, which could

alter the positions of the sample crystals relative to the focal plane. Crystals moving into the

focal plane could result in an increase in SHG area, as SHG intensity scales with the squared

intensity of incident light. Second, the increase could be explained by a change in the crystal

form, degree of crystallinity, or crystal size of trehalose. To evaluate the first mechanism, a

custom optic, designed in-house, was added to the beam path to extend the depth-of-field

from ∼ 20 µm to ∼ 100 µm.[125 ] The sharp peak in SHG prior to the melt was still observed

while imaging with an extended depth-of-field, suggesting that crystal movement into the

focal volume is not likely to be the major cause of the increase in SHG area.

Alternatively, the increase in SHG area could arise from a change in the crystal form,

degree of crystallinity, or crystal size of trehalose. While it is possible that there exists a

previously unknown polymorphic transition immediately prior to the melt of trehalose, this

possibility was rejected on the principal of Occam’s razor, in light of the extensive body of

prior work done to characterize the polymorphism of trehalose. A more plausible origin for

the spike in SHG area is from the final conversion of the remaining Th core of Tγ polymorph

to Tβ, promoted by an increase in the energy in molecular diffusion immediately prior to the

melting transition. Additionally, another closely related contribution to the increase in SHG

area could be the rapid growth of Tβ crystalline domains of trehalose from residual Tam due

to increase mobility immediately prior to the melt. In summary, the particles observed in

this study are theorized to undergo one of two general phase transition pathways: Th → Tam

→ Tβ → melt or Th → Tγ → Tβ → melt.

Notably, this “cold phase transformation” phenomenon, in which phase transformation

to the SHG-active crystalline form occurs immediately prior to the transition to the liquid

form, was clearly observable by SHG but undetectable in the DSC measurements. This latter

proposed mechanism has precedent in observations of “cold crystallization” in DSC, in which

transient crystallization arises upon transformation from a glassy state to a liquid.[126 ] In

DSC, cold crystallization appears as an exothermic peak immediately preceding an endother-
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mic peak. Cold crystallization has been observed in studies of Th for the transition from a

glassy material to the Tβ form.[123 ] However, to our knowledge, this study represents the

first observation of cold transformation between two different solid-state crystalline forms

prior to the melt. Importantly, evidence supporting cold transformation was undetectable by

DSC alone, presumably obfuscated by the comparatively longer response time and inherent

ensemble averaging associated with the DSC measurements.

As discussed before, the reversibility of the SDSC was not investigated for trehalose

dihydrate. Like the urea samples, wetting of the sample pan after heating of the sample

presented challenges in maintaining sample position within the field of view following the

melt. Likewise, reversibility after dehydration (< 220 °C) would not be anticipated due to

the large entropic barriers involved with rehydration of the sample under high humidity.

Studies have shown that the dehydrated sample can rehydrate to the original material, but

over timescales significantly longer than easily accessible by DSC.[127 ], [128 ]

Analysis of the impulse response function from urea provides a route for connecting the

cold phase transformation and melting processes to the DSC endotherm at ∼ 230 °C. The

entire transformation to produce the SHG-active crystal form, followed by melting progressed

all within ∼ 2 seconds, likely explaining the absence of prior work describing cold phase

transformation. Figure 9.7 shows the results of the convolution of the IRF determined from

the urea analysis, with impulses corresponding to either the initial rise from the “cold phase

transformation” or the melt. Neither of the resulting curves coincides directly with that of

the DSC melting peak. This disparity likely arises from the statistics of small numbers, as

only four particles in the FOV were available for analysis (as opposed to 58 crystals for urea).

Differences between single-particle and ensemble-averaged measurements are particularly

noteworthy in the results shown in Figure 9.6 . The integrated SHG intensity from one

particular crystal indicated by the green trace nicely tracks the DSC trace and is likely

to be representative of the major ensemble-averaged thermal event at ∼ 110 °C. However,

it is clear that distinctly different phase transformation behaviors are observed within a

subset of the population, exemplified by the red, cyan, and purple traces. This apparent

incongruency is attributed to the stochastic nature of the sample, with multiple thermally

accessible transformation pathways available.
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Figure 9.7. IRF analysis of trehalose dihydrate. The final DSC peak in the
trehalose dihydrate experiment was analyzed using the IRF recovered from
the urea experiment (see Fig. 9.5 ). The “cold phase transformation” events
and the melting events of the four particles were convolved with the best-fit,
double-exponential IRF determined from analysis of SDSC data for urea. The
results of the convolution are shown as colored curves. Neither the cold phase
transformation events nor the melting events produced curves that matched
well with the DSC peak. This perhaps indicates that the four particles ob-
served using SHG microscopy are not representative of the full population of
particles in the sample. A more complete set of phase transformation events
would possibly produce a curve that would better match the DSC peak.

Trehalose dihydrate has multiple competing pathways to various crystal forms, which

are stochastically accessed over large temperature ranges and which are likely to produce

significantly different heats of phase transformation. This rich landscape of crystal form

space is largely obscured by ensemble-averaged measurements of DSC alone, but is clearly

accessed by per-particle analysis using SHG microscopy.
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9.5 Conclusions

SDSC was shown to enable connection of internal structural rearrangements within crys-

talline materials measured by SHG on single particles to the heat flow recorded by DSC.

SHG measurements were sensitive to variations in the molecular packing arrangements dur-

ing the phase transitions of individual particles that are generally inaccessible in conventional

microscopy. Coupling the structural data acquired from SHG imaging with DSC enabled

single-particle measurements disentangled from the ensemble-averaged thermal transients

recorded with DSC. A proof-of-concept SDSC experiment was performed on urea, which

has a single solid/liquid phase transformation. From these measurements, the IRF of the

DSC system was determined, showing that the melt proceeds through a slow nucleation step

followed by rapid growth on a per particle basis. Next, SDSC was used to characterize the

phase behavior of a more complex system, trehalose dihydrate. The dehydration events of

trehalose dihydrate were readily observed by SDSC and the higher temporal resolution of

SHG measurements, compared to that of the temporal resolution of typical DSC measure-

ments, allowed for detection of a rapid phase transformation not observable by DSC. Thus,

SDSC is proposed as a novel technique for the pharmaceutical drug development pipeline

for the characterization of single-particle phase transformations.
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DATA ANALYSIS SCRIPTS

This appendix includes MATLAB data analysis scripts that were used to process images

from the FT-FRAP experiments to calculate diffusion properties.

Normal diffusion analysis by comb photobleach FT-FRAP script

The following is a MATLAB script that is used to analyze a comb photobleach FT-FRAP

experiment on a sample exhibiting normal diffusion:

% title: ft_frap_analysis

% author: Andreas C Geiger

% date last updated: 2020/11/23

% purpose: this program analyzes ft-frap data

% instructions:

% 1) change user-defined inputs

% 2) Hit "Run"

%% user-defined inputs

path = 'str'; % folder name

file = 'str'; % file name

t0 = 40; % first frame of fluorescence recovery

t_end = 121;

ft_peak = 31; % number of lines - 1

vpix = 512; % number of pixels in vertical axis

hpix = 512; % number of pixels in horizontal axis

microns = 284;% number of microns in one axis

%% import data

FID = fopen(strcat(path, file));
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image = fread(FID, 'uint32');

image = reshape(image, vpix, hpix, []);

image_norm = image ./ mean(image(:, :, 1:21), 3);

%% extract fluorescence recovery with fourier transform

clear ft

clear ft_norm

% compute 2d fourier transform

for i = 1:t_end

ft(:, :, i) = fft2(image(:, :, i));

ft_norm(:, :, i) = fft2(image_norm(:, :, i));

end

power = sqrt(ft_norm .* conj(ft_norm));

% compute power from fourier transform

peak_x = 1:5; % width of peak

peak_y = ft_peak: ft_peak + 2; % length of peak

frap = reshape(sum(power(peak_x, peak_y, t0:end), [1, 2]), 1, []);

% integrate over peak

t = 4/17 * (0:(numel(frap) - 1));% time in seconds

%% fit fluorescence recovery to recovery diffusion parameters

A = frap(1); % amplitude of recovery

a = mean(sum(power(peak_x, peak_y, 1:20), [1, 2])); % baseline

frap = (frap - a) / (A - a); % normalize and remove baseline

% nonlinear fit

fun = @(r) (1 - r(2)) * exp(-t * 4 * pi^2...

* (ft_peak / vpix)^2 * r(1)) + r(2) - frap;

% cost function to minimize

r0 = rand(1, 2); % random initial guess
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options = optimoptions('lsqnonlin', 'MaxFunctionEvaluations', 100000,...

'MaxIterations', 10000);

[r, ~, residual, ~, ~, ~, jacobian] = ...

lsqnonlin(fun, r0, [], [], options);

% nonlinear fitting function

% calculate uncertainty in the fit

residual = reshape(residual, 1, []); % residuals from the fit

var_res = var(residual, [], 2); % variance in the residuals

J = full(jacobian); % jacobian from the fit

J = J(:, 1:numel(r));

covar = inv(J' * J) * var_res; % calculate the covariance matrix

[sigma, corr] = cov2corr(covar); % calculate standard deviation

D = r(1) * (microns)^2 / (vpix)^2; % diffusion coefficient in um^2/s

stdev = sigma(1) * (microns)^2 / (vpix)^2;

% standard deviation in um^2/s

%% plot and display results

fit = ...

(1 - r(2)) * exp(-t * 4 * pi^2 * (ft_peak / vpix)^2 * r(1)) + r(2);

% result from fit

% plot ft-frap data and fit

figure

hold on

plot(t, frap, 'o', 'MarkerSize', 4)

plot(t, fit, 'LineWidth', 2, 'Color', 'r')

xlabel('Time (s)')

ylabel('FT peak intensity')
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% display results

disp('Diffusion Coefficient (um^2 / s)'); disp(D)

disp('Diffusion Coefficient Error (um^2 / s)'); disp(stdev)

disp('Percent Recovery'); disp(r(2))

disp('Percent Recovery Error'); disp(sigma(2))

Flow analysis by comb photobleach FT-FRAP script

The following is a MATLAB script that is used to analyze a comb photobleach FT-FRAP

experiment on a sample exhibiting flow:

% title: ft_frap_flow

% author: Andreas C Geiger

% date last updated: 2020/11/23

% purpose: this program analyzes ft-frap data from experiments with flow

% instructions:

% 1) change user-defined inputs

% 2) Hit "Run"

%% user-defined inputs

path = ''; % folder name

file = ''; % file name

t0 = 40; % first frame of fluorescence recovery

t_end = 121;

ft_peak = 31; % number of lines - 1

vpix = 512; % number of pixels in vertical axis

hpix = 512; % number of pixels in horizontal axis

microns = 284;% number of microns in one axis

% flow analysis
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flow = 0; % 1 = calculate flow, 0 = do not calculate flow

flow_time = 25; % number of time points in flow analysis

flow_offset = 6; % time offset in flow analysis

%% import data

FID = fopen(strcat(path, file));

image = fread(FID, 'uint32');

image = reshape(image, vpix, hpix, []);

image_norm = image ./ mean(image(:, :, 1:21), 3);

%% extract fluorescence recovery with fourier transform

clear ft

clear ft_norm

% compute 2d fourier transform

for i = 1:t_end

ft(:, :, i) = fft2(image(:, :, i));

ft_norm(:, :, i) = fft2(image_norm(:, :, i));

end

% compute power from fourier transform

power = sqrt(ft_norm .* conj(ft_norm));

peak_x = 1:5; % width of peak

peak_y = ft_peak: ft_peak + 2; % length of peak

% integrate over peak

frap = reshape(sum(power(peak_x, peak_y, t0:end), [1, 2]), 1, []);

% real component

frap_real = reshape(real(ft(1, ft_peak, t0:end)), 1, []);

% imaginary component

frap_imag = reshape(imag(ft(1, ft_peak, t0:end)), 1, []);

frap_complex = frap_real + 1i * frap_imag; % complex-valued recovery

t = 4/17 * (0:(numel(frap) - 1));% time in seconds
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phase = angle(frap_complex); % phase angle of complex number

%% fit fluorescence recovery to recovery diffusion parameters

A = frap(1); % amplitude of recovery

a = mean(sum(power(peak_x, peak_y, 1:20), [1, 2])); % baseline

frap = (frap - a) / (A - a); % normalize and remove baseline

% nonlinear fit

% cost function to minimize

fun = @(r) (1 - r(2)) * ...

exp(-t * 4 * pi^2 * (ft_peak / vpix)^2 * r(1)) + r(2) - frap;

r0 = rand(1, 2); % random initial guess

options = optimoptions('lsqnonlin', 'MaxFunctionEvaluations', 100000,...

'MaxIterations', 10000);

% nonlinear fitting function

[r, ~, residual, ~, ~, ~, jacobian] = lsqnonlin(fun, ...

r0, [], [], options);

% calculate uncertainty in the fit

residual = reshape(residual, 1, []); % residuals from the fit

var_res = var(residual, [], 2); % variance in the residuals

J = full(jacobian); % jacobian from the fit

J = J(:, 1:numel(r));

covar = inv(J' * J) * var_res; % calculate the covariance matrix

[sigma, corr] = cov2corr(covar); % calculate standard deviation

D = r(1) * (microns)^2 / (vpix)^2; % diffusion coefficient in um^2/s

stdev = sigma(1) * (microns)^2 / (vpix)^2;

% standard deviation in um^2/s
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%% flow analysis

phase_v = phase(1 + flow_offset:flow_time + flow_offset);

t_v = t(1:flow_time);

% linear fit

beta_v = [sum(phase_v); sum(t_v .* phase_v)];

alpha_v = [numel(t_v), sum(t_v);

sum(t_v), sum(t_v.^2)];

v = alpha_v \ beta_v;

v_fit = v(1) + v(2) * t_v;

% calculate uncertainity in the fit

ssr = sum((v_fit - phase_v).^2); %% sum of squared residuals

sigma_2r = ssr / (numel(phase_v) - 2); % divide by degrees of freedom

ssxx_slope = sum((t_v - mean(t_v)).^2);

sigma_slope = sqrt(sigma_2r / ssxx_slope);

flow_v = v(2) / 2 / pi / ft_peak * microns; % flow velocity in um / s

flow_std = sigma_slope / 2 / pi / ft_peak * microns;

% standard deviation

%% plot and display results

% result from fit

fit = ...

(1 - r(2)) * exp(-t * 4 * pi^2 * (ft_peak / vpix)^2 * r(1)) + r(2);

% plot ft-frap data and fit

figure

hold on

plot(t, frap, 'o', 'MarkerSize', 4)
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plot(t, fit, 'LineWidth', 2, 'Color', 'r')

xlabel('Time (s)')

ylabel('FT peak intensity')

% plot flow analysis results

if flow

figure

hold on

plot(t(1:100), frap_real(1:100))

plot(t(1:100), frap_imag(1:100))

xlabel('Time (s)')

ylabel('FT peak amplitude')

legend('Real', 'Imaginary')

figure

hold on

plot(t_v, phase_v, 'o', 'MarkerSize', 5)

plot(t_v, v_fit, 'LineWidth', 2, 'Color', 'r')

xlabel('Time (s)')

ylabel('Phase (rad)')

legend('Experimental', 'Linear fit')

end

% display results

disp('Diffusion Coefficient (um^2 / s)'); disp(D)

disp('Diffusion Coefficient Error (um^2 / s)'); disp(stdev)

disp('Percent Recovery'); disp(r(2))

disp('Percent Recovery Error'); disp(sigma(2))

disp('Flow (um / s)'); disp(flow_v)

disp('Flow Error (um / s)'); disp(flow_std)
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Anomalous diffusion analysis by comb photobleach FT-FRAP script

The following is a MATLAB script that is used to analyze a comb photobleach FT-

FRAP experiment on a sample exhibiting anomalous diffusion. The script contains a MAT-

LAB function named ”ml.m” written by Roberto Garrappa for evaluating the Mittag-Leffler

function:

path = 'str';

file = 'str';

t0 = 40;

ft_peak_1 = 31;

ft_peak_2 = ft_peak_1 * 2;

ft_peak_3 = ft_peak_1 * 3;

peak_x = 1:3;

peak_y_1 = ft_peak_1:ft_peak_1 + 2;

peak_y_2 = ft_peak_2:ft_peak_2 + 2;

peak_y_3 = ft_peak_3:ft_peak_3 + 2;

%%

FID = fopen(strcat(path, file));

image = fread(FID, 'uint32');

image = reshape(image, 512, 512, []);

%%

clear ft

for i = 1:numel(image(1, 1, :))

ft(:, :, i) = fft2(image(:, :, i));

end

power = sqrt(ft .* conj(ft));

%power = power(:, :, 1:100);

frap_1 = reshape(sum(sum(power(peak_x, peak_y_1, t0:end))), 1, []);
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frap_2 = reshape(sum(sum(power(peak_x, peak_y_2, t0:end))), 1, []);

frap_3 = reshape(sum(sum(power(peak_x, peak_y_3, t0:end))), 1, []);

%%

A_1 = max(frap_1);

a1_1 = mean(sum(sum(power(peak_x, peak_y_1, 1:20))));

frap_1 = (frap_1 - a1_1) / (A_1 - a1_1);

A_2 = max(frap_2);

a1_2 = mean(sum(sum(power(peak_x, peak_y_2, 1:20))));

frap_2 = (frap_2 - a1_2) / (A_2 - a1_2);

A_3 = max(frap_3);

a1_3 = mean(sum(sum(power(peak_x, peak_y_3, 1:20))));

frap_3 = (frap_3 - a1_3) / (A_3 - a1_3);

t = 4/17 * (0:(numel(frap_1) - 1));

N = numel(t);

fun = @(r) cat(2,

(1 - r(2)) * ml(-t.^(2 * r(5)/r(6))...

* (2 * pi * ft_peak_1 / 512)^(r(6)) * r(1), r(5))...

+ r(2) - frap_1,...

(1 - r(3)) * ml(-t.^(2 * r(5)/r(6))...

* (2 * pi * ft_peak_2 / 512)^(r(6)) * r(1), r(5))...

+ r(3) - frap_2,...

(1 - r(4)) * ml(-t.^(2 * r(5)/r(6))...

* (2 * pi * ft_peak_3 / 512)^(r(6)) * r(1), r(5))...

+ r(4) - frap_3);

r0 = rand(1, 6);

lb = [0, -0.5, -0.5, -0.5 0, 0];
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ub = [inf, 1, 1, 1, 2, 4];

options = optimoptions('lsqnonlin', 'MaxFunctionEvaluations', 100000,...

'MaxIterations', 10000);

[r, ~, residual, ~, ~, ~, jacobian] = ...

lsqnonlin(fun, r0, lb, ub, options);

% r(1) = Diffusion Coefficient, r(2)-r(4) = recoverable fractions,

% r(5) = alpha parameter - normal = 1, r(6) = mu parameter - normal = 2

residual = reshape(residual, 1, []);

var_res = var(residual, [], 2);

J = full(jacobian);

J = J(:, 1:numel(r));

covar = inv(J' * J) * var_res;

[sigma, corr] = cov2corr(covar);

fit_1 = (1 - r(2)) * ml(-t.^(2 * r(5)/r(6))...

* (2 * pi * ft_peak_1 / 512)^(r(6)) * r(1), r(5)) + r(2);

fit_2 = (1 - r(3)) * ml(-t.^(2 * r(5)/r(6))...

* (2 * pi * ft_peak_2 / 512)^(r(6)) * r(1), r(5)) + r(3);

fit_3 = (1 - r(4)) * ml(-t.^(2 * r(5)/r(6))...

* (2 * pi * ft_peak_3 / 512)^(r(6)) * r(1), r(5)) + r(4);

figure

hold on

plot(t, frap_1, 'o', 'MarkerSize', 4)

plot(t, fit_1, 'LineWidth', 2)

plot(t, frap_2, 'o', 'MarkerSize', 4)

plot(t, fit_2, 'LineWidth', 2)

plot(t, frap_3, 'o', 'MarkerSize', 4)

plot(t, fit_3, 'LineWidth', 2)

xlabel('Time (s)')
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ylabel('FT peak intensity')

factor = (808)^2 / (512)^2;

r(1) = r(1) * factor;

sigma(1) = sigma(1) * factor;

Dot-array photobleach FT-FRAP normal diffusion analysis script

The following is a MATLAB script that is used to analyze a dot-array photobleach FT-

FRAP experiment on a sample exhibiting normal diffusion.

% title: ft_frap_h_k_harmonic

% author: Andreas C Geiger

% date last updated: 2020/09/14

% purpose: this program analyzes ft-frap data with a dot-matrix

% photobleach pattern

% instructions:

% 1) change user-defined inputs

% 2) Hit "Run"

%% user-defined inputs

path = ''; % folder name

t0 = 6; % first frame after photobleaching

t_end = 100; % last frame to analyze

h_max = 1; % highest peak index in x-axis

k_max = 1; % highest peak index in y-axis

a = round(sqrt(2^2 + 12^2)); % number of pixels between Fourier peaks

theta = atan(12/2); % angle of peak between 0 and pi/2

x_crop = 1:700; % range of pixels to crop in x-axis (y-axis in imagesc)

% range of pixels to crop in y-axis (x-axis in imagesc)

y_crop = 350:350 + 699;
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% conversion factor from pixels to microns (microns divided by pixels)

factor = 1604 / 1392;

%% error messages

xpix = numel(x_crop); % number of pixels in x_range

ypix = numel(y_crop); % number of pixels in y_range

if xpix ~= ypix

error('ERROR: xpix and ypix must be equal')

end

%% read image files

directory = dir(path); % obtain list of objects in folder

im = 0; % initialize index

% waitbar(0, 'Reading image files') % initialize waitbar

for i = 1:numel(directory)

if contains(directory(i).name, '.tif')

im = im + 1; % increase index by one for every file

file = directory(i).name; % obtain file name

data = imread(strcat(path, file)); % import image file

image(:, :, im) = double(data(:, :, 1)); % save to workspace

t(im) = str2double(directory(i).name(end-9:end-4)) * 0.001;

end

end

t = t(t0:t_end); % discard pre-photobleach and photobleach frames

% adjust the time 0 to be at the bleach point. to exclude the prebleach

t = t - t(1);

image_norm = image ./ mean(image(:, :, 1:3), 3); % normalize images

image_norm = image_norm(x_crop, y_crop, :); % crop images
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%% calculate fourier transform

clear ft

clear ft_norm

for i = 1:t_end

ft(:, :, i) = fft2(image(:, :, i)); % fourier transform

% fourier transform of normalized images

ft_norm(:, :, i) = fft2(image_norm(:, :, i));

% shift fourier transform to center

ft_norm(:, :, i) = fftshift(ft_norm(:, :, i));

end

% compute power from fourier transform

power = sqrt(ft_norm .* conj(ft_norm));

%% identify coordinates of fourier peaks

peak_x_grid = a * repmat([0:h_max]', [1, k_max + 1]); % x coordinates

peak_y_grid = a * repmat(0:k_max, [h_max + 1, 1]); % y coordinates

% rotation

peak_x = round(cos(theta) * peak_x_grid - sin(theta) * peak_y_grid);

peak_y = round(sin(theta) * peak_x_grid + cos(theta) * peak_y_grid);

peak_x = peak_x + xpix / 2; % move to center

peak_y = peak_y + ypix / 2; % move to center

%% extract fluorescence recovery signal

% preallocate arrays

frap = zeros(h_max^2 + k_max^2, t_end - t0 + 1);

a1 = zeros(h_max^2 + k_max^2, 1);

% loop through each fourier peak

for h = 0:h_max

for k = 0:k_max

111



n2= h^2 + k^2; % calculate distance from origin

if n2 > 0

% extract fluorescence recovery and sum equidistant peaks

frap(n2, :) = frap(n2, :) + reshape(sum(sum(power...

(peak_x(h + 1, k + 1):peak_x(h + 1, k + 1) + 2,...

peak_y(h + 1, k + 1):peak_y(h + 1, k + 1) + 2,...

t0:t_end), 1), 2), 1, []);

a1(n2, :) = a1(n2, :) + mean(sum(sum(power...

(peak_x(h + 1, k + 1):peak_x(h + 1, k + 1) + 2, ...

peak_y(h + 1, k + 1):peak_y(h + 1, k + 1) + 2, ...

1:3), 1), 2)); % calculate background

end

end

end

% excludes columns with no data

n2_i = [1:n2]';

n2_i(sum(frap, 2) == 0) = [];

frap(sum(frap, 2) == 0, :) = [];

a1(sum(a1, 2) == 0, :) = [];

%% fit fluorescence recovery to diffusion model

A = frap(:, 1); % first frap data point

frap = (frap - a1) ./ (A - a1); % normalize frap data

% nonlinear fit

fun = @(r) fun_h_k(r, frap, t, n2_i, a); % function to minimize

r0 = rand(numel(n2_i) + 1, 1); % random initial guess values

lb = cat(1, 0, -0.5 * ones(numel(n2_i), 1)); % lower bound

112



ub = cat(1, inf, 1 * ones(numel(n2_i), 1)); % upper bound

% least-squares minimization

[r, ~, residual, ~, ~, ~, jacobian] = lsqnonlin(fun, r0, lb, ub);

% r(1) = diffusion coefficient (pixels^2/s)

% r(2:end) = recoverable fraction

% error analysis

residual = reshape(residual, 1, []);

var_res = var(residual, [], 2);

J = full(jacobian);

J = J(:, 1:numel(r));

covar = inv(J' * J) * var_res;

[sigma, corr] = cov2corr(covar);

sigma = sigma'; % standard deviation of the fit

%% plot results of fit

% calculate best-fit curve

D = r(1);

R = r(2:end);

fit = (1 - R) .* exp(-4 * pi^2 * (n2_i / a^2) * D * t) + R;

% generate figure

figure

hold on

plot(t, frap, 'o', 'MarkerSize', 4)

plot(t, fit, 'LineWidth', 2)

% convert from pixels to microns

r(1) = r(1) * factor^2; % diffusion coefficient (um^2/s)
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sigma(1) = sigma(1) * factor^2; % standard deviation of the fit

The previous script uses a MATLAB function named ”fun_h_k.m”, which is as follows:

function F = fun_h_k(r, frap, t, n2_i, a)

D = r(1);

R = r(2:end);

F = (1 - R) .* exp(-4 * pi^2 * (n2_i / a^2) * D * t) + R - frap;

Diffusion imaging by comb photobleach FT-FRAP script

The following is a MATLAB script that is used to perform diffusion imaging by comb

photobleach FT-FRAP experiment on a sample exhibiting anomalous diffusion. In this

script, the image is segmented and pixels are pooled prior to fitting for greater SNR in the

recovered diffusion properties.

% title: ft_frap_analysis_segmented_ml

% author: Andreas C Geiger

% date last updated: 2021/02/09

% purpose: this program produces segmented images...

% of diffusion properties from a comb-bleach ft-frap...

% experiment with a sample exhibiting anomalous diffusion

% instructions:

% 1) change user-defined inputs

% 2) Hit "Run"

%% user-defined inputs

path = '' % folder name

file = '' % file name

t0 = 40; % first frame of fluorescence recovery
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t_end = 400;

ft_peak_1 = 31; % number of lines - 1

ft_peak_2 = 31 * 2;

ft_peak_3 = 31 * 3;

vpix = 512; % number of pixels in vertical axis

hpix = 512; % number of pixels in horizontal axis

microns = 693;% number of microns in one axis

%% import data

FID = fopen(strcat(path, file));

image = fread(FID, 'float32');

image = reshape(image, vpix, hpix, []);

image_norm = image ./ mean(image(:, :, 1:20), 3);

%% extract fluorescence recovery with fourier transform

clear ft

% compute 2d fourier transform

for i = 1:t_end %numel(image(1, 1, :))

ft(:, :, i) = fft2(image(:, :, i));

ft_norm(:, :, i) = fft2(image_norm(:, :, i));

%ft(:, :, i) = fftshift(ft(:, :, i));

end

power = sqrt(ft_norm .* conj(ft_norm));

% compute power from fourier transform

peak_x = 1:3;

peak_y_1 = ft_peak_1:ft_peak_1 + 2;

peak_y_2 = ft_peak_2:ft_peak_2 + 2;

peak_y_3 = ft_peak_3:ft_peak_3 + 2;

%% peak shape analysis
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% crop and center ft peaks

ft_crop_1 = ft_norm(:, ft_peak_1 + 1:end - ft_peak_1, :);

ft_crop_1(:, round(ft_peak_1/4):end - round(ft_peak_1/4), :) = 0;

ft_crop_1(round(ft_peak_1/4):end - round(ft_peak_1/4), :, :) = 0;

ft_crop_2 = ft_norm(:, ft_peak_2 + 1:end - ft_peak_2, :);

ft_crop_2(:, round(ft_peak_1/4):end - round(ft_peak_1/4), :) = 0;

ft_crop_2(round(ft_peak_1/4):end - round(ft_peak_1/4), :, :) = 0;

ft_crop_3 = ft_norm(:, ft_peak_3 + 1:end - ft_peak_3, :);

ft_crop_3(:, round(ft_peak_1/4):end - round(ft_peak_1/4), :) = 0;

ft_crop_3(round(ft_peak_1/4):end - round(ft_peak_1/4), :, :) = 0;

% perform inverse ft on cropped and centered ft peaks

for i = 1:numel(ft_norm(1, 1, :))

ift_crop_1(:, :, i) = ifft2(ft_crop_1(:, :, i) , 512, 512);

diff_im_1(:, :, i) =...

sqrt(ift_crop_1(:, :, i) .* conj(ift_crop_1(:, :, i)));

diff_im_gauss_1(:, :, i) = imgaussfilt(diff_im_1(:, :, i), 10);

ift_crop_2(:, :, i) = ifft2(ft_crop_2(:, :, i) , 512, 512);

diff_im_2(:, :, i) =...

sqrt(ift_crop_2(:, :, i) .* conj(ift_crop_2(:, :, i)));

diff_im_gauss_2(:, :, i) = imgaussfilt(diff_im_2(:, :, i), 10);

ift_crop_3(:, :, i) = ifft2(ft_crop_3(:, :, i) , 512, 512);

diff_im_3(:, :, i) =...

sqrt(ift_crop_3(:, :, i) .* conj(ift_crop_3(:, :, i)));

diff_im_gauss_3(:, :, i) = imgaussfilt(diff_im_3(:, :, i), 10);

end
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% pool inverse ft pixels from each image segment

for i = 1:numel(mask_segment(1, 1, :))

diff_region_1(i, :) = ...

mean(mean(diff_im_1 .* mask_segment(:, :, i), 1), 2);

diff_region_2(i, :) = ...

mean(mean(diff_im_2 .* mask_segment(:, :, i), 1), 2);

diff_region_3(i, :) = ...

mean(mean(diff_im_3 .* mask_segment(:, :, i), 1), 2);

end

% background subtraction and normalization

A_1 = diff_region_1(:, 40);

a1_1 = mean(diff_region_1(:, 1:20), 2);

diff_1 = (diff_region_1(:, 40:end) - a1_1) ./ (A_1 - a1_1);

A_2 = diff_region_2(:, 40);

a1_2 = mean(diff_region_2(:, 1:20), 2);

diff_2 = (diff_region_2(:, 40:end) - a1_2) ./ (A_2 - a1_2);

A_3 = diff_region_3(:, 40);

a1_3 = mean(diff_region_3(:, 1:20), 2);

diff_3 = (diff_region_3(:, 40:end) - a1_3) ./ (A_3 - a1_3);

%% nonlinear fit to diffusion model

% upper and lower bounds of fitting parameters

lb = [0, -0.5, -0.5, -0.5, 0, 0];

ub = [inf, 1, 1, 1, 2, 4];

% r(1) = Diffusion Coefficient,
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% r(2)-r(4) = recoverable fractions,

% r(5) = alpha parameter, r(6) = mu parameter

% initial arrays

diff_map = zeros(512, 512);

s_diff_map = zeros(512, 512);

rec_map = zeros(512, 512);

alpha_map = zeros(512, 512);

s_alpha_map = zeros(512, 512);

mu_map = zeros(512, 512);

s_mu_map = zeros(512, 512);

frap_1 = diff_1;

frap_2 = diff_2;

frap_3 = diff_3;

t = 4/17 * (0:(length(frap_1) - 1));% time in seconds

% perform fit on frap decay from each image segment

for i = 1:numel(mask_segment(1, 1, :))

% function to minimize

fun = @(r) cat(2, (1 - r(2)) * ml(-t.^(2 * r(5)/r(6))...

* (2 * pi * ft_peak_1 / 512)^(r(6)) * r(1), r(5))...

+ r(2) - frap_1(i, :),...

(1 - r(3)) * ml(-t.^(2 * r(5)/r(6))...

* (2 * pi * ft_peak_2 / 512)^(r(6)) * r(1), r(5))...

+ r(3) - frap_2(i, :),...

(1 - r(4)) * ml(-t.^(2 * r(5)/r(6))...

* (2 * pi * ft_peak_3 / 512)^(r(6)) * r(1), r(5))...
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+ r(4) - frap_3(i, :));

r0 = rand(1, 6);

[r, ~, residual, ~, ~, ~, jacobian] = lsqnonlin(fun, r0, lb, ub);

% r(1) = Diffusion Coefficient,

%r(2)-r(4) = recoverable fractions,

%r(5) = alpha parameter, r(6) = mu parameter

% uncertainty analysis

residual = reshape(residual, 1, []);

var_res = var(residual, [], 2);

J = full(jacobian);

J = J(:, 1:numel(r));

covar = inv(J' * J) * var_res;

if sum(diag(covar) >= 0) == numel(r0)

[sigma, ~] = cov2corr(covar);

% store recovered diffusion parameters and uncertainties

diff_map = diff_map + r(1)...

* (microns)^2 / (vpix)^2 * mask_segment(:, :, i);

s_diff_map = s_diff_map + sigma(1)...

* (microns)^2 / (vpix)^2 * mask_segment(:, :, i);

rec_map = rec_map + r(2) * mask_segment(:, :, i);

alpha_map = alpha_map + r(5) * mask_segment(:, :, i);

s_alpha_map = s_alpha_map + sigma(5)...

* (microns)^2 / (vpix)^2 * mask_segment(:, :, i);

mu_map = mu_map + r(6) * mask_segment(:, :, i);

s_mu_map = s_mu_map + sigma(6)...

* (microns)^2 / (vpix)^2 * mask_segment(:, :, i);
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% store best-fit curves

fit(:, 1, i) = (1 - r(2)) * ml(-t.^(2 * r(5)/r(6))...

* (2 * pi * ft_peak_1 / 512)^(r(6)) * r(1), r(5)) + r(2);

fit(:, 2, i) = (1 - r(3)) * ml(-t.^(2 * r(5)/r(6))...

* (2 * pi * ft_peak_2 / 512)^(r(6)) * r(1), r(5)) + r(3);

fit(:, 3, i) = (1 - r(4)) * ml(-t.^(2 * r(5)/r(6))...

* (2 * pi * ft_peak_3 / 512)^(r(6)) * r(1), r(5)) + r(4);

end

end
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CHAPTER 18

Autonomous Science: Big Data
Tools for Small Data Problems
in Chemistry

ANDREAS C. GEIGER, ZIYI CAO, ZHENGTIAN SONG,
JAMES R. W. ULCICKAS AND GARTH J. SIMPSON*

Purdue University, Department of Chemistry, 560 Oval Drive,
West Lafayette, IN 47907, USA
*Email: gsimpson@purdue.edu

18.1 Introduction
Arguably, the greatest opportunities to capitalize on machine learning ad-
vances lie at the interface between data science and measurement science;
algorithms can inform the choice of measurements, which in turn can serve
as inputs to algorithms. In this framework, two general classes of data sci-
ence challenges emerge. In the first, the ever-increasing volume of data
produced by high throughput (HT) instrumentation generates databases
that can subsequently be mined.1–5 Alternatively, many chemical measure-
ments are limited by instrumental, kinetic, or sample constraints, restricting
the number of measurements that can be practically made to inform de-
cisions. This latter case is the primary focus of the present work, in which
‘‘big data’’ tools are brought to bear to optimize the information content
produced by the fewest possible experimental measurements.

In contrast, most machine learning methods have focused on analysis and
training using large volumes of preexisting data, including those generated
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by HT chemical instrumentation. HT screening has been applied to cell-
based microfluidics,6–10 protein engineering,11–15 metabolomics,16–20

proteomics,21–25 pharmacotoxicology,26–28 nanomaterials synthesis,29 and
efforts in small-molecule synthetic optimization.30,31 Techniques like these
have enabled researchers to collect ‘‘big data’’ in ever shorter periods of
time, which can then be mined for pattern-analysis and data-driven de-
cision-making.

In turn, machine learning methods have been applied extensively in
mining of chemistry databases, spanning a range of applications.
Algorithms have been demonstrated with the capability of predicting
chemical reactivities,32,33 predicting compound properties34–36 and deter-
mining chemical structures.37 Zhuo and coworkers developed a machine-
learning model that accurately predicted the band gap of inorganic solids
solely from composition.38 The model used support vector classification to
separate metals from nonmetals and support vector regression to predict
the band gap. The results from this method were closer to experimentally
reported values than density functional theory calculations. Coley and
coworkers used a graph-convolutional neural network to predict the
major product of a reaction.39 The network accurately predicted the major
product 85% of the time, a significant improvement from previous
methods. Turcani and coworkers predicted shape persistence and cavity
size in porous organic cages using a random forest algorithm.40 Their
model achieved a 93% accuracy for the prediction of shape persistence.
Advances like these have made it possible for chemists to leverage their
‘‘big data’’ to make impactful discoveries.

One obvious limitation on ‘‘big data’’ tools is the requirement that the
data must be big. Many time-consuming experiments are incommensurate
with conventional machine learning methods because of the intrinsic
sparsity of the available data. An illustrative example is the National Ignition
Facility at Lawrence Livermore National Laboratory, which houses the
world’s largest and most energetic laser.41–43 The laser (formally a combin-
ation of 192 lasers) is only fired about 400 times per year (B10�5 Hz repe-
tition rate). The capacity for such experiments to benefit from machine
learning tools lies in the ability to optimally select conditions for the next
experiments based on the limited availability of preceding information. Such
cases are arguably best described as ‘‘little data’’ problems, presenting both
challenges and opportunities for integration into the emerging ‘‘big data’’
infrastructure.

These challenges are not new. Rather than random ‘‘shotgun’’ sampling,
an experienced bench chemist working the laboratory with limited data
availability will generally use the outcomes of the preceding set of measure-
ments to inform the next selection of conditions (or more commonly, to know
which conditions to avoid). Rationale for selection of the next experiment is
typically made by combining the observations to date with the experience of
the investigator in working with similar compounds in similar scenarios.
Porting this decision-making process over to machine learning platforms
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involves methods capable of both capturing the experience of the bench
chemist from general knowledge of related molecular systems and ap-
proaches for optimally selecting the most informative next set of experiments.

When coupled with experimental automation, this algorithm-driven in-
dependent design of experiments enables autonomous science, in which
machine learning or AI algorithms are trained to design experiments, in-
terpret results, and execute additional measurements through hardware
automation. In principle, such systems operate independently in all phases
of the scientific method. As shown in Figure 18.1, hypothesis-making, ex-
perimental design, data collection, data analysis, and hypothesis-testing
are performed iteratively with all previous experiments informing the
design of future experiments until chemical space is sufficiently mapped
to provide an answer.

Autonomous instrumentation should be distinguished from automated
instrumentation. Many modern laboratories have increased experimental
throughput by fully automating processes that were previously done by
hand.44–48 The emerging revolution in chemical measurement science is in
automating the hypothesis-making and experimental design steps in the
scientific method.49–51 By delegating these tasks to algorithms, the loop can
be closed to reduce human intervention in the scientific method.

The rest of this chapter will delve into topics that are relevant for the
development of machine learning algorithms and autonomous

Figure 18.1 Diagram of the scientific method. An autonomous laboratory can
independently operate in all phases of the scientific method.
Adapted from ref. 54, https://doi.org//10.1107/s160057751601612x,
under the terms of the CC BY 4.0 licence, https://creativecommons.org/
licenses/by/4.0/.
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instrumentation for optimized collection in ‘‘little data’’ situations, in which
the number of experiments is limited by time, sample, or expense. An
overview of autonomous experimental design and execution will detail
strategies for implementing experiments with algorithms producing au-
tonomous scientific decisions. One architecture for autonomous chemistry
will be reviewed in detail, building upon the concept of sparsely sampling
chemical space, to dynamically sampling chemical space, and finally a
supervised learning approach to dynamic sampling as applied to chemical
imaging. Furthermore, a detailed discussion is presented on the potential
for adversarial attacks against algorithms that are used in a chemical con-
text. The discussion reveals that dimension reduction techniques are po-
tentially susceptible to adversarial attacks and provides relevant context on
the general robustness of machine-learning-based classifiers for autono-
mous science. Some suggestions and methods to improve general stability
versus adversarial attacks and spurious misclassification are discussed.

18.2 Autonomous Design of Experiments
Autonomous science requires both the ability to act independently (auto-
mation) and to make independent decisions based upon evolving knowledge
(intelligence). The focus of this chapter is squarely on the latter, as auto-
mation is a largely solved problem on many modern instruments supporting
HT analyses. An autonomous system is an ‘‘expert’’ that can incorporate new
information to revise a governing hypothesis and guide improvements. This
definition can be broken down into two key constituent functions: the ac-
quisition of new information, and the selection of future experiments. The
focus here largely rests upon autonomous systems designed to reduce the
experimental burden associated with mapping chemical space. Initial dis-
cussions will focus on a prerequisite capacity for functioning autonomous
systems: the ability to extrapolate anticipated experimental outcomes from
previously sampled data. Fixed pattern sparse sampling strategies will serve
to illustrate some approaches that can be undertaken to achieve this goal.
The discussion of sparse sampling will be followed by a survey of dynamic
sampling approaches, which aim to reconstruct chemical space with the
smallest number of measurements. These methods differ from fixed pattern
sparse sampling strategies in that real-time experimental observations can
be leveraged to inform future experiments on the fly. Various algorithms for
dynamic sampling will be discussed, first in the intuitively simple context of
chemical imaging, and later in the more abstract context of chemical space
(e.g., protein concentrations in live cell cultures). This section will conclude
with a brief discussion of modularized autonomous laboratories with
multiple autonomous instruments, which utilize advanced software that
integrates various modules (e.g., communication, databases, robotics,
characterization, learning, and analysis) to map highly complex feature
spaces.
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Challenges

In cases where single experiments can be relatively costly, building a map of
observables as a function of experimental parameters can be accelerated by
using sparse sampling strategies. Chemical measurements tend to be highly
correlated, providing opportunities for sparse sampling. Using chemical im-
aging as an example, the composition in a given pixel is likely to be highly
dependent on the composition in adjacent pixels. As such, reasonably good
estimates of the composition distribution can be made from sampling a subset
of the total number of pixels and ‘‘inpainting’’ the unsampled locations. The
presence of correlations between measurements is a fundamental require-
ment of autonomous science; if every measurement were completely in-
dependent, no rationale would be available for selecting any particular set of
conditions. Learning the underlying patterns connecting chemical measure-
ments is a critical first step in developing methods for autonomous science.

Applications involving chemical imaging can leverage advances in image
recognition to assist in predicting spatial correlations in chemical com-
position. Using these tools, architectures for generating complete repre-
sentations of chemical space from a limited number of sampling events have
had great success in novel sampling strategies to sparsely collect data from
point-probe microscopes (e.g., Raman microscopy,52 scanning electron mi-
croscopy (SEM),53 synchrotron X-ray diffraction54). In point-wise image ac-
quisitions, sparse sampling offers the potential to dramatically reduce the
number of measurements. Sparse sampling methods have been imple-
mented to minimize sample damage for beam-sensitive materials, reducing
total time for data acquisition and minimizing sample exposure to potential
structural change from, e.g., X-ray or electron dose.55,56

There are two main components of a sparse sampling strategy: the sparse
sampling pattern and the ‘‘inpainting’’ algorithm. Figure 18.2 illustrates the
general strategy in sparse sampling. The pattern used determines which
experiments will be performed; in many cases, the most intuitive pattern is
random, which generates a wide distribution of measurements to inform the
‘‘inpainting’’ algorithm and leaves minimal artifacts from the sampling
pattern. However, random sampling can increase measurement time sig-
nificantly compared to continuous sampling patterns. For example, in beam
scanning fluorescence microscopy, the time required to re-position the laser
beam at a random pixel (milliseconds) is far greater than the time required
to measure a pixel (nanoseconds). In this case, a continuous sampling pat-
tern (e.g. Lissajous trajectories) takes full advantage of the sampling speed
while also sampling from a wide distribution of positions in the field of view.
The optimal sampling pattern for a sparse sampling strategy will be specific
to each technique and dependent on the slowest step in the measurement.

In previous studies, sparse sampling patterns such as random sampling,
low-discrepancy sampling, and Lissajous trajectories were employed to ac-
celerate data collection. Simpson and coworkers developed a beam-scanning

18.2.1 Sparse Sampling Strategies for ‘‘Small Data’’
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optical microscope based on Lissajous trajectory imaging, which achieved
up to kHz frame-rate optical imaging on multiple simultaneous data ac-
quisition channels.57,58 They used two fast-scan resonant mirrors to direct
the optical beam on a circuitous trajectory through the field of view and used
an ‘‘inpainting’’ algorithm to interpolate unsampled pixels.

Once sparsely sampled data are collected, it is the job of the ‘‘inpainting’’
algorithm to predict the values of unsampled conditions and locations. If
only local correlations between measurements are considered, a smoothing
function can be used for interpolation. Garcia and coworkers developed an
‘‘inpainting’’ algorithm that performs a smoothing function to fill in miss-
ing data points from a data set of arbitrary dimensions.59,60 The algorithm
predicts missing values using a penalized least squares regression. The cost
function to be minimized is shown in eqn (18.1), where y is the sparsely
sampled data set, ŷ is the smoothed, interpolated data set, 8 8 denotes the
Euclidean norm, s is a parameter that controls the degree of smoothing, and
P is a penalty term that represents the degree of roughness in the smoothed
data set, defined as P( ŷ)¼ 8Dŷ82 where D is a tridiagonal matrix, which
describes the distance between sampled pixels.

F( ŷ)¼ 8ŷ� y82þ sP( ŷ) (18.1)

The minimization of F( ŷ) gives the linear system in eqn (18.2), where I is
the identity matrix.

(Iþ sDTD)ŷ¼ y (18.2)

To account for missing data points, a diagonal matrix W is added to
eqn (18.2) in the place of I, where the diagonal elements Wii are equal to 0
when yi is missing and 1 when yi is present.

(Wþ sDTD)ŷ¼ y (18.3)

Eqn (18.2) and (18.3) can be solved by left-matrix division. When sparsely
sampled data are evenly spaced, a discrete cosine transform can be used to
simplify and speed up the solution.

Figure 18.2 Sparse sampling combines fixed or random sampling patterns with
‘‘inpainting’’ algorithms. This reduces total measurement time by ‘‘in-
painting’’ unsampled conditions and locations with predictions rather
than performing measurements at every condition and location. Sparse
sampling strategies rely on correlations between proximal data points.
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Other algorithms go beyond smoothing and look for non-local correl-
ations in data sets. Bouman and coworkers have demonstrated model-based
iterative reconstruction (MBIR) approaches for accurately performing in-
painting.61 In MBIR, forward models provide a mechanism for assigning the
unsampled pixels, based in part on training using similar images.

Patterned sparse-sampling approaches provide a key step toward au-
tonomous decision-making in imaging by enabling image reconstruction
from subsampled measurement sets; however, these methods are limited in
the sense that they do not necessarily sample the optimal pixels for an ac-
curate reconstruction of the system. Reconstruction algorithms employed in
fixed-pattern or random sparse sampling techniques provide a starting point
for extension to autonomous laboratory systems, which aim to reconstruct
descriptions of chemical space with maximal accuracy under the constraint
of minimal sampling.59 Such methods, referred to here as dynamic sampling
methods, enable more rapid reconstruction of chemical space by deciding
the optimal positions to sample within chemical space.62–64

18.2.2 Simplex Approaches for Autonomous Design of
Experiments

Early work in autonomous experimental design focused on both chemical
synthesis and optimizing chemical measurements through the simplex
architecture of algorithm design. The simplex is a specific type of dy-
namic sampling strategy, where some probe of chemical space is mapped
to a geometric representation with an arbitrary number of vertices and
sides, a simplex. Beginning along one vertex of the polytope, which can be
thought of as a discretized chemical space, a simplex algorithm is used
to find the maximum value within the feasible region via walking
along the edges of the shape in the direction of increasing values of the
objective function.

The modified simplex algorithm was described in detail by Nelder and
Mead as an algorithm for function minimization.65 A function with n vari-
ables without constraints is minimized first by sampling nþ 1 points within
the parameter space. Each sampled point is the vertex of the geometric
simplex, giving rise to the method’s name. To minimize the objective
function, the output of each parameter set is first computed. The vertex with
the highest valued objective function (i.e., the worst performing set of par-
ameters) is then reflected about the hyperplane of the remaining vertices,
across the centroid of the hyperplane. Depending on whether the new point
is an improvement over the previous vertex, the operations of expansion or
contraction can be utilized, which shift the sampled position according
to the local curvature of the objective function about the reflection. When
iterated, this procedure will generate a simplex that converges about the
minimum of the objective function, i.e., the volume of the simplex will
contract about the minimum point. Figure 18.3 illustrates the procedure for
2-dimensional optimization.
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Beginning in the 1970s, simplex algorithms were applied to chemical
automation, including the genesis of closed-loop automated synthetic plat-
forms.64,66,67 Other work utilized simplex algorithms to generate H2O2

complexed with Ti(IV) in the presence of EDTA; automated injection of
reagents was followed by measurement of the absorbance spectrum, with
wait times added to assess the stability of the product.68 The optimization of
aerosol delivery in a flame spectrophotometer by Denton and coworkers
serves as a simple example to illustrate how the simplex procedure can be
utilized for automated analysis.66 In that work, the physical position of the
aerosol spray nozzle is the optimization space, with stepper motors con-
trolling x and y position on orthogonal axes. The aim was to generate the
maximum possible signal detected at the calcium emission line of 422.7 nm.
Using Figure 18.3 as a template, consider the scenario where three unique
sets of coordinates are used to measure calcium emission, represented by
the vertices A, B, and C. Vertex B is found to result in the lowest amount of
signal, so a new vertex is generated by reflecting across the line AC.
The outcome of measurement at the new vertex B* determines whether
the simplex will be kept at this new location, expanded, or contracted.
The mathematical details of this procedure are described fully in ref. 65.
These initial simplex-based approaches to autonomous chemical
experimentation use relatively simple algorithms, however they serve to
illustrate the general architecture of dynamic sampling approaches to

Figure 18.3 A 2-dimensional simplex optimization step. The initial simplex is
defined by the vertices ABC. The objective function is computed for
each set of parameters, and B is found to be the worst input. The
reflection B* is generated about the centroid of the line segment AC.
The algorithm can then either expand the simplex, accepting a new
vertex D in place of B*, or contract the simplex, accepting E in place of
B*, according to local curvature.
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autonomous experimentation, with one key difference. The simplex ap-
proach aims to optimize a single function, returning only the optimal value.
In contrast, the dynamic sampling approaches described below reconstruct a
full objective function using various interpolation and reconstruction algo-
rithms. By mapping the full space of the objective function, dynamic sam-
pling approaches can address more complex chemical problems, such as
chemical classification.

18.2.3 Interpolation Algorithms for Dynamic Sampling

Dynamic sampling is a critical component in autonomous instruments, as it
provides real-time feedback about the most beneficial experiment to be
conducted with respect to the targeted goal. Dynamic sampling can enable
instruments to advance in performance beyond automated, HT systems by
increasing the value of each experiment.

Notingher and coworkers developed a dynamic sampling algorithm for
Raman microscopy to determine the most informative sampling location by
assigning a score to each unmeasured pixel in real time.69,70 The score was
calculated at each unsampled pixel as the difference between the values
predicted by two different interpolation algorithms, a cubic spline, and a
Kriging interpolation. The pixel location where the reconstruction algorithms
differed the most was treated as the most informative pixel and then selected
for subsequent measurement. Due to the integration of interpolation algo-
rithms, this method showed an improvement in efficiency over random
sampling. For biological tissue imaging, this method achieved up to 30 times
reduction in the sampling time compared to raster-scanning, with sufficient
spectral signal-to-noise ratio to identify individual tissue structures.

One strategy for further improving the performance of dynamic sampling
is to use an algorithm that is trained prior to analysis. This approach, a
supervised learning approach for dynamic sampling (SLADS) has been de-
veloped to improve the accuracy of dynamic sampling algorithms through
training data that is specific to the sample under study.

18.2.4 A Supervised Learning Approach for Dynamic
Sampling

The SLADS algorithm, developed by Bouman and coworkers, represents
an illustrative case-study for understanding the general architecture of au-
tonomous laboratory workflows.62–64 SLADS uses a machine-learning-based
algorithm to select the next most information-rich location to sample during
real-time measurements. However, in contrast to other dynamic sampling
algorithms, SLADS uses training data with a known ground truth to train the
algorithm to calculate the expected reduction in distortion (ERD) for each
sampling location. Leveraging this training, SLADS is capable of dramatic-
ally reducing the number of measurements required to obtain a
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reconstructed image without a significant loss in image quality. The theo-
retical framework of SLADS is demonstrated by the flow chart in Figure 18.4
and eqn (18.4)–(18.6).

The SLADS algorithm represents a 2D image as a matrix X. In eqn (18.4), Xr

is a single pixel of the image at location rAO. The location of each of the k
measured pixels are encoded within S¼ {s(1),s(2), . . . s(k)}. Intuitively, Y (k) can
be interpreted as storing all known measured information about the image.

Y kð Þ ¼
s 1ð Þ; Xs 1ð Þ

..

.

s kð Þ; Xs kð Þ

0
B@

1
CA: (18:4)

Y (k), as a k�2 matrix of sampling location and measured values, can then be
used to reconstruct an image X̂(k) which is the best estimate of the ground
truth image X. SLADS is then employed to find the next sampling location,
which maximizes the ERD, E[R(k;s)|Y (k)] given in eqn (18.5), where R is the
reduction in distortion. Maximizing the ERD results in reconstructing an
image with the minimum amount of error relative to the true image.

s kþ1ð Þ ¼ arg max
sA OnSf g

E R k ; sð Þ j Y kð Þ
h in o

(18:5)

Eqn (18.6) shows the calculation of R resulting from measuring pixel s. X̂(k)

is the reconstruction result made by Y (k), while X̂(k;s) is the reconstruction
made from Y (k) and Xs, the next sampled location. D(X, X̂(k)) represents the

Figure 18.4 The SLADS algorithm samples the unmeasured pixel with the highest
ERD until the stopping criterion is met.
Adapted from ref. 54, https://doi.org//10.1107/s160057751601612x,
under the terms of the CC BY 4.0 licence, https://creativecommons.org/
licenses/by/4.0/.

Autonomous Science: Big Data Tools for Small Data Problems in Chemistry
Pu

bl
is

he
d 

on
 1

5 
Ju

ly
 2

02
0 

on
 h

ttp
s:

//p
ub

s.
rs

c.
or

g 
| d

oi
:1

0.
10

39
/9

78
18

39
16

02
33

-0
04

50

View Online

132



distortion between the ground truth image X and the reconstructed image
X̂(k) with k measurements. In short, selection of an optimal new sampling
location Xs will maximize R, reproducing the true image with minimal
distortion.

R(k;s)¼D(X, X̂(k))�D(X, X̂(k;s)). (18.6)

As the ground truth image X is not available during image acquisition,
the ERD needs to be calculated from Y (k). A function relating Y (k) to the ERD,
f s
y(Y), is learned through supervised learning with a training set of known

ground truth. The overall SLADS architecture thus updates the sampled lo-
cations stored in Y(k), at each step, and the optimal next pixel location s(k11)

is determined by a supervised learning algorithm trained to maximize
the ERD.

18.2.5 SLADS for Raman Hyperspectral Imaging and X-Ray
Diffraction Imaging

In recent studies, SLADS has shown broad application in point-wise imaging
techniques such as confocal Raman microscopy, synchrotron X-ray dif-
fraction imaging, and SEM. Simpson and coworkers implemented SLADS
into confocal spontaneous Raman imaging, which was an early use of
a machine learning approach for sparse sampling Raman imaging.52

Integration of SLADS into the feedback for beam positioning enabled fully
autonomous control over the selection of location and data acquisition.
By using this approach, chemical images of pharmaceutical materials
were acquired with 499.5% accuracy from 15.8% sampling, representing
a B6-fold reduction in measurement time compared to conventional raster
scanning methods.

The SLADS algorithm was designed to select optimal sampling locations
within images, while each pixel in a Raman image included a Raman
spectrum with thousands of elements. As such, utilization of SLADS with
Raman was enabled by preprocessing and classification of acquired Raman
spectra to identify the chemical composition of the sample measured at
specific locations. SLADS was then able to select the next pixel based on the
greatest uncertainty in its predicted class. Classification was conducted by
combining two supervised learning algorithms: linear discriminant analysis
(LDA) and support vector machine (SVM).71,72 LDA was performed for initial
dimensional reduction, followed by SVM for classification by constructing
optimal hyperplanes in data space to separate different clusters of data
points. The SLADS algorithm was iterated until the maximum ERD of the
reconstructed image converged below a threshold.

Simulated random sampling experiments were performed to compare the
performance and efficiency of SLADS with other alternative sparse sampling
methods. Figure 18.5D shows the image reconstruction error for random
sampling and SLADS; the error achieved with random sampling was 4.65%
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Figure 18.5 Raman hyperspectral imaging with SLADS. (A) Instrument schematic
showing a Raman microscope with a dual-galvo scan mirror pair.
SLADS experiments were carried out through automated control of
the mirror pair to position the laser beam at the pixel with the highest
ERD. (B) Dynamically sampled image after classification at each
sampled pixel. (C) Reconstructed image using trained SLADS algorithm.
(D) Plot comparing reconstruction error between random sampling and
dynamic sampling.
Adapted from ref. 52 with permission from American Chemical Society,
Copyright 2018.
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with a 15% sampling rate, which was 20 times higher than the error with
SLADS. Most incorrectly classified pixels obtained from random sampling
were located at the boundaries of the sample particles in different classes.
From an image analysis perspective, these boundaries can be considered to
contain high spatial frequency information compared to other positions
in the image, which means the boundaries are the most ambiguous and
informative positions for the measurements. Random sampling does not
adjust its measurement density according to the different spatial frequency
at different positions, which significantly reduces its efficiency. SLADS ad-
justed the measurement density and selectively measured more pixels with
higher spatial frequency information, enabling image reconstruction with a
much lower error percentage than is achievable via random sampling with
the same sampling rate.

Simpson and coworkers also implemented the SLADS algorithm with
synchrotron X-ray diffraction experiments, which significantly reduced
both dose and measurement time due to crystal positioning.54 Crystal
centering is required for macromolecular diffraction at synchrotron facil-
ities, with X-ray diffraction mapping growing in popularity as a mechanism
for localization. In X-ray raster scanning, diffraction is used to identify the
crystal positions based on the detection of Bragg-like peaks in the scat-
tering patterns. However, this additional X-ray exposure may result in de-
tectable damage to the crystal prior to data collection. SLADS reconstructed
the X-ray image with a 31% sampling of the total volume and only 9% of the
interior of the crystal, greatly reducing the X-ray dosage on the crystal.
When implemented into the beamline at Argonne National Laboratory an
acceptable reconstruction was obtained with 3% of the image sampled
corresponding to approximately 5% of the crystal. Dynamic sampling is
well-matched to problems in which the cost of single-pixel acquisition
limits the overall imaging time, consistent with diffraction imaging de-
scribed herein. The cost here is not only in measurement time but also in
sample integrity through X-ray induced damage.

SLADS is a powerful tool to accelerate 2D imaging, but extension to higher
dimension remains to be demonstrated. Conceptually, dimensionality can
be extended most trivially by incorporating time-domain information or a
third spatial dimension. Adding in time-dependent changes in chemical
composition adds another layer of complexity to these measurements.
However, the curse of dimensionality makes higher dimensional re-
constructions more difficult to solve. As dimensionality increases, the fast
growth in the volume of measurement space also increases the data sparsity.
To obtain a reliable statistical significance, the amount of data should in-
crease exponentially with dimensionality. Furthermore, dimension re-
duction approaches also become increasingly challenging, either from a
need for more training data to achieve the same resolution in projection
onto a lower-dimensional space, or by covariance obfuscating dimension
reduction. Therefore, a key step in facilitating extrapolation to higher di-
mensions is the ability to generate robust dimension reduction techniques
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and classifiers capable of overcoming these challenges for autonomous
decision-making. Consequently, understanding where and how these ma-
chine learning methods fail will facilitate the expansion of autonomous
measurement methods to higher dimensions, as described in greater detail
in Section 18.3 on adversarial attack strategies. However, before strategies
for improving classifiers are considered, the following discussion surveys
dynamic sampling methods used to map more complex chemical spaces in
cellular biology and materials science.

18.2.6 Noniterative Dynamic Sampling for Autonomous
Design of Experiments

One example of dynamic sampling applied to a complex chemical space was
performed by King and coworkers who built a ‘‘Robot Scientist’’ named
‘‘Adam’’ that could generate and test hypotheses in functional genomics
space.73 Adam was designed to operate almost completely autonomously
while measuring growth rates of microbial samples. In this work, the robot
was applied to determine the genes that encoded some of the enzymes in a
yeast organism, S. cerevisiae. Adam used prior knowledge about the func-
tional genomics of S. cerevisiae from a database to select the most in-
formative experiments to perform. Adam generated 20 hypotheses about the
connections between 13 pairs of genes and enzymes (e.g. gene X encodes
enzyme Y). After performing the experiments and analyzing the data, Adam
confirmed 12 of the 20 hypotheses (with Po0.05 for the null hypothesis).
Researchers confirmed some of Adam’s results by expressing the proteins
from the genes that Adam concluded to be encoding the yeast enzymes.
Manual enzyme assays with the expressed proteins confirmed three of the 12
conclusions, while review of the scientific literature provided strong evi-
dence for six conclusions and revealed a possible error in one conclusion
made by the robot.

The key innovation in the development of Adam was the integration of
models, databases, and software to make this autonomous genomics ex-
periment possible. A logical model, designed with metabolites as nodes and
enzymes as connections between nodes, was used to encode knowledge
about the metabolism of S. cerevisiae.74 Information connecting genes with
the proteins they encode was obtained from a bioinformatics database,
which in turn informed the hypothesis generating software used by Adam.
As shown in Figure 18.6, the software operated in the following stepwise
fashion,: 1) find all reactions in the model of S. cerevisiae that are orphans
(enzyme is not linked to a known gene), 2) determine which of these re-
actions would affect cell growth, 3) find the enzyme commission (EC) class of
these reactions, 4) find the genes that express enzymes in the same EC class
in other organisms, 5) find genes in S. cerevisiae with similar sequences to
those in other organisms 6) make hypotheses linking genes with orphan
enzymes. Additional software was used for experimental design, laboratory
automation, and data analysis.

Autonomous Science: Big Data Tools for Small Data Problems in Chemistry
Pu

bl
is

he
d 

on
 1

5 
Ju

ly
 2

02
0 

on
 h

ttp
s:

//p
ub

s.
rs

c.
or

g 
| d

oi
:1

0.
10

39
/9

78
18

39
16

02
33

-0
04

50

View Online

136



The experimental selection procedure that Adam used differs from other
dynamic sampling methods in that it is noniterative. Adam is designed to
synthesize knowledge from various databases and models to narrow down
the set of possible experiments to the most informative hypotheses. In
contrast, more recent work in dynamic sampling has explored the ability to
generate de novo hypotheses from real-time experimental outcomes, as de-
scribed elsewhere in this chapter (18.2.3–18.2.5, 18.2.7–18.2.9). The non-
iterative framework of Adam is well-suited for the functional genomics
questions at hand because of the large amount of information available in
databases. Experiments in similar fields with high availability to databases
could likewise benefit from a noniterative approach to dynamic sampling.

18.2.7 Active Machine Learning

Innovative work in autonomous biochemical research has been accomplished
by Murphy and coworkers in their application of active machine learning to
investigate the effects of active compounds on proteins within cells. Active
machine learning is simply a strategy for experimental design based on ob-
served data whereby the strategy adapts the experiment dynamically to ac-
count for real-time measurements.75–78 Elsewhere in this chapter, we refer to
active machine learning as dynamic sampling. In their first publication,
Murphy and coworkers tested their active machine learning algorithms with
simulations and experimental results of drug activity on gene expression.79

The active machine learning process presented in this work is described
in Figure 18.7. (A) The experiments are codified by target and condition.
(B) Samples are clustered based on the phenotype revealed by experimental
measurements. (C) Correlations between targets and conditions are identified
based on the phenotypic distributions. (D) The next set of experiments is
chosen based on gaps in a predictive model. Steps B–D are repeated until a
stopping condition is met.

Figure 18.6 Diagram of the dynamic sampling framework used in Adam. At first, all
known orphan enzymes in a species are considered. Then, enzymes
candidates are selectively eliminated based on a predetermined set of
criteria (impact on cell growth, similarity to well-characterized enzymes
in other organisms, etc.). The most critical experiments are selected
based on the most probable hypotheses.

Chapter 18
Pu

bl
is

he
d 

on
 1

5 
Ju

ly
 2

02
0 

on
 h

ttp
s:

//p
ub

s.
rs

c.
or

g 
| d

oi
:1

0.
10

39
/9

78
18

39
16

02
33

-0
04

50

View Online

137



Figure 18.7 The active machine learning process described by Murphy and coworkers.
(A) Samples are codified by targets and conditions (B) Samples are clustered
into phenotypes based on experimental observations. (C) Correlations are
identified between target, condition, and phenotype. (D) The next set of
experiments is chosen.
Reproduced from ref. 79, https://doi.org/10.1371/journal.pone.0083996,
under the terms of the CC BY 4.0 licence, https://creativecommons.org/
licenses/by/4.0/.
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A key component of this method, and every dynamic sampling method, is
the underlying predictive model that informs future measurements. In this
work, the predictive model comprised a set of distributions that described
the phenotypic dependence on targets and conditions. The model was
constructed using clustering algorithms, which classified observations into
phenotype groups. These algorithms also identified correlations between
measurements and produced distributions, which described the correl-
ations and collectively made up the predictive model. Greedy Merge
and B-Clustering algorithms were used in this work. In this active machine
learning method, the next experiment is chosen based on a score given to
every unobserved experiment, based on the number of distinct predictions
that can be made for each experiment. It is possible that one unobserved
experiment could be described by more than one predicted distribution and
therefore more than one predicted phenotype. The experiments for which
the model had the most predicted phenotypes were assumed to be the most
informative experiments to perform and were selected for subsequent
analysis.

In their second publication, Murphy and coworkers integrated their active
learning algorithm into an instrument to enable autonomous science in a
real-time experiment.80 They investigated the effect of 48 chemical com-
pounds on the subcellular localization of 48 proteins. Experiments were
performed with an automated fluorescence microscope, an automated li-
quid handling robot for transferring cell culture and chemical compounds,
and automated image analysis software. 48 different clones expressing dif-
ferent EGFP-tagged proteins were generated and treated with one of 48
different compounds. The active machine learning algorithms guided the
instrument in real-time to select the most informative protein-drug pair for
the next experiment, based on prior results. Cells were imaged using the
fluorescence microscope six hours after the selected drug was added to the
culture media. Subcellular localization of the EGFP-tagged protein was de-
termined using an image analysis method which produced a vector repre-
sentation for each cell describing the positions of protein and DNA stains
relative to each other.81–84 A predictive model was updated on the fly during
data collection until a stopping criterion was met. At the end of the experi-
ment, the autonomous instrument achieved a 92% accuracy with only 29%
sampling of all possible experiments.

18.2.8 Dynamic Sampling for Materials Synthesis

Research in materials synthesis has also leveraged autonomous chemical
measurement, as demonstrated by Maruyama and coworkers from the Air
Force Research Laboratory, who developed an Autonomous Research System
(ARES).85 ARES optimized the growth rate of single-walled carbon nanotubes
(CNTs) through the combination of an automated growth reactor, rapid
in situ characterization, and an AI system. The system utilized an AI planner
to iteratively propose new experiments in order to optimize CNT growth rate
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without a priori knowledge of the underlying physical processes. CNTs were
synthesized in each experiment by a chemical vapor deposition process in
which the growth conditions were varied (temperature, pressure, and partial
pressures of ethylene, hydrogen, and water vapor). A laser was used to
simultaneously heat the sample and as the excitation source for Raman
spectroscopy.86,87 The change in intensity of a characteristic Raman band
was used as the readout for CNT growth rate and the experimentally deter-
mined growth rate was used as the feedback mechanism for the ARES system
in its objective to optimize CNT growth.

The ARES system used a random forest model to make predictions about
the CNT growth rate for untested conditions. A random forest is a machine
learning method related to a decision tree.88–91 A decision tree is an algo-
rithm designed to perform a classification or regression on a data set
through a branching series of decision nodes, where the most discriminate
feature is used to divide the data set into two subsets.92–94 A random forest is
simply a set of decision trees in which each decision tree is trained using a
random subset of the training data and a random set of features to divide the
data. The averaged response of all the decision trees in the random forest is
used as the output of the algorithm. In this case, an initial set of 84 user-
designed experiments was provided to the random forest model as a training
set to enable operation in autonomous mode. The random forest model then
predicted experimental conditions that would achieve the user-specified
target growth rate. After each experiment, the random forest model was
updated to account for the most recent results and the experiment with the
closest predicted growth rate to the target was performed. This process was
iterated until the difference between the predictions and the experimental
measurements of the growth rate converged within the noise floor of the
experimental results. Figure 18.8 shows SEM images of CNTs produced
by the ARES system. The images show samples with CNT growth rates of
a) 500 s�1, b) 3000 s�1, and c) 16 000 s�1. ARES was shown to design, execute,
and analyze its own experiments 100 times faster than conventional
experiments and represents an early demonstration of an autonomous
research system in materials science.

18.2.9 Modular Architectures for Autonomous Design
of Experiments

The preceding sections have focused on autonomous design of experiments
where often only a single autonomous agent governs the process. In each
case, a single measurement was conducted, which then provided feedback
for the selection of the next best parameter set to sample. If multiple in-
struments are required to probe the chemical problem of interest, a central
hub is needed to control communication between instruments, execution of
experiments, evaluation of the objective function, and selection of the next
experiments. Figure 18.9 illustrates one possible architecture that could be
utilized for an autonomous laboratory.
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Figure 18.8 SEM images of CNTs produced by the ARES system. Images show CNT
growth rates of (a) 500, (b) 3000, and (c) 16 000 (s�1). Scale bar is
500 nm.
Reproduced from ref. 85, https://doi.org/10.1038/npjcompumats.2016.
31, under the terms of the CC BY 4.0 licence, https://creativecommons.
org/licenses/by/4.0/.
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To illustrate how the central hub might interface with the individual
modules, consider a hypothetical scenario where the aim is to cook the
most delightful omelet. In the described scenario, each module has both
an input and output flow of information. First, the hub might access the
internet with its data mining module, providing the input of targeted
databases. The data mining module has been outfitted with several dif-
ferent data mining approaches, including an image and video analysis tool,
which extracts cooking tutorials in video form, as well as text-learning
modules that mine recipes from the internet. These modules individually
access and learn key features of the data. The learned features are then
passed back to the central hub, which relates the learned features to the
‘‘machine learning from experiment’’ module. This module can be used to
generate a regression model predicting key input variables, such as the
number of eggs, the temperature of the cooking vessel, amount of salt to
add, time of cooking, etc. This module is distinct from the data mining
module, as it can follow an active learning/dynamic sampling architecture
where subsequent information gathered from experiment is incorporated.
The regression model is fed back to the hub, and the hypothesis generation
module is then called in to predict the set of parameters for the optimal
omelet. With the predicted set of parameters, the hub must then

Figure 18.9 Sample modular layout for the autonomous laboratory. Data handling
is delineated into two general protocols: communication, where data
are transferred from one module to another, and learning, where the
hub utilizes available data to generate models. Each module on the far
right is considered as a distinct element of the whole architecture,
enabling the addition of new modules as necessary to add to existing
capabilities.
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communicate to activate the robotics that control the cracking of eggs, the
beating of eggs, the addition of other ingredients, etc. Each robotic action
is accompanied with an activation of the module, initiating the task, and
successful execution of the programmed motion will return completion
back to the hub to initiate each subsequent robotic motion. In this ex-
ample, the beginning of the cooking process corresponds to the activation
of the instrument. Once cooking has been completed, the hub receives a
completion command. As the deliciousness of an omelet requires human
testing, the hub can then prompt the user that the output is ready. Various
factors relating to the quality of the omelet such as taste, temperature,
mouthfeel, smell etc. can be requested as feedback from the user. This
feedback, in turn, can be cycled from the communication module through
the hub and back to the machine learning module to improve upon
the model.

Recent progress on the front of multi-instrument integration in autono-
mous science has been made by Aspuru-Guzik and coworkers who have
developed ChemOS, a software designed for operating autonomous labora-
tories.95,96 ChemOS is composed of a set of modules or functions: (i) com-
munication, (ii) databases, (iii) robotics, (iv) characterization, (v) learning,
and (vi) analysis. The communication module enables interaction between
ChemOS and researchers, while the learning module is designed to propose
parameters for new experiments based on previous results. The module
provides real-time feedback to suggest more informative experiments to ef-
ficiently investigate an application space. ChemOS has been applied to a
diverse set of experiments, demonstrating the versatility of the software to
solve problems in disparate fields.95,96 Aspuru-Guzik and coworkers showed
that ChemOS can map ‘‘color space’’ by experimenting with mixing dye
solutions, learn ‘‘Tequila Sunrise space’’ to optimize cocktail taste based on
feedback from researchers, and calibrate a robotic sampling sequence for
direct-inject HPLC analysis. The flexibility of this modular framework for
directing autonomous science suggests that it could be applied in a variety of
research contexts.

Modular architectures to achieve the autonomous laboratory allow the
integration of new experimental probes and models in a dynamic fashion.
This is particularly powerful in the regime of ‘‘little data’’, where individual
measurements are costly or time-consuming. In scenarios where database
information can be leveraged, the modular framework can enable model
generation from previous experiments with continuous optimization af-
forded by dynamic sampling methods. Considering this, it is critical to note
that for many chemical questions there is little existing data to build from,
and consequently, machine learning methods can be limited in scope and
application. The subsequent section will discuss existing methods in ma-
chine learning that have been leveraged to solve similar problems in image
analysis, with emphasis on generative adversarial networks (GAN) and an
illustrative linear analog.

Chapter 18
Pu

bl
is

he
d 

on
 1

5 
Ju

ly
 2

02
0 

on
 h

ttp
s:

//p
ub

s.
rs

c.
or

g 
| d

oi
:1

0.
10

39
/9

78
18

39
16

02
33

-0
04

50

View Online

143



18.3 Generative Adversarial Methods for
Data-limited Training

The preceding section highlights the benefits of integrating pre-trained
machine learning tools to aid in optimally reducing the number of sam-
ples required to inform a chemical decision and support autonomous design
of experiments. In contrast, the central focus of this section moves back one
level in the pipeline, focusing on methods to optimally train machine
learning and conventional chemical classification tools for these tasks and
others when confronted with limited or expensive training data. As one ex-
ample, the dynamic sampling method described in Section 18.2.5 used
Raman spectral analysis to determine composition at each spatial location
in an image. The algorithm used LDA for dimension reduction and SVM for
identification of classification boundaries, both of which required relatively
large training sets to optimize. Similarly, the large number of parameters
available for optimization in an artificial neural network (ANN) generally
cannot be stably trained with ‘‘small data’’ inputs, exacerbating further the
challenges in leveraging machine learning tools in data-sparse scenarios.

Generative adversarial strategies have had great success in addressing
many of the most insidious training challenges in data-limited scenarios.
Adversarial approaches support the generation of additional training data
that are ideally randomly produced from a similar underlying probability
density function (pdf) as the raw inputs. If the data were truly from an
identical pdf, they would be indistinguishable from the results obtained
from additional experimental measurements. In practice, the utility of the
generated inputs hinges on the degree to which the small data inputs cap-
ture the underlying features of the pdf and how well those can be extracted
algorithmically. The goals of this section are threefold: i) review previous
successes using adversarial attacks and general adversarial networks in
nonlinear problems (e.g., image and speech recognition) as a foundation for
extension to chemical applications, ii) improve the understanding of oper-
ations ‘‘under the hood’’ in adversarial attacks by devising analogous effects
in more intuitive models based on simpler linear spectral analysis, and iii)
lay the foundation for integration of generative adversarial attacks in linear
spectroscopic analysis to improve chemical classifiers.

18.3.1 Review of Generative Adversarial Networks in Image
Recognition Applications

ANNs are designed for optimal performance when trained with large input
databases. The numerous weights within each hidden layer in an ANN col-
lectively comprise a large number of free adjustable parameters, which in
turn generally requires large volumes of training data to reliably train. In the
absence of sufficient training data, the disparity between dimensionality in
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parameters and inputs generally results in poor statistical confidence in the
assignment of an ANN output from undertraining. In brief, limited data
sizes do not provide sufficient constraints to prevent underdetermination in
the neural network architecture. In such situations, neural networks trained
with limited training data can be prone to erroneous results and/or low
confidence in classification of testing data.

Even when training with relatively large data sets, residual noise contri-
butions manifested within the ANN weights invariably remain. In such
cases, dimension reduction followed by classification is susceptible to hid-
den ‘‘traps’’ in classification. The susceptibility of machine learning meth-
ods (e.g., convolutional neural networks) to spurious changes in input data
has been reported in multitude.97–101

Generative adversarial strategies work by first identifying potential weak
points in an ANN through targeted attacks, and then fortifying the ANN by
training it to recognize these attacks. This process is iterated, with the
generated ‘‘attack’’ data serving to further refine and train the ANN as a
surrogate for large volumes of genuine experimental input data. This itera-
tive two-step process is arguably most well established in neural networks for
image recognition, the first step of which is identifying weak points by
producing attacks designed to induce image misclassification.

Prior to considering attack strategies in machine learning methods, it is
useful to consider how human perception can be influenced by the way
image data are portrayed to examine the interplay between a presented set of
data and subsequent interpretation. Figure 18.10 shows an example of an
optical illusion (Adelson’s checker-shadow), designed specifically to attack
human neural networks.102,103 In Adelson’s shadow, a checkerboard pattern
is overlaid with a cylinder that appears to cast a shadow across the check-
erboard. The shadow itself is used to selectively darken several squares in
the checkerboard; inspection of the left image yields a perception that the
squares A and B are of distinctly different brightness, when in reality A is
precisely the same shade as square B. Optical illusions demonstrate how a
designed pattern can attack decisions derived from a human neural net-
work; subtle perturbations to the input image can result in interpretation of
the image with incorrect conclusions.

Adversarial attacks operate in a qualitatively similar manner, but with
dramatically different quantitative outcomes in selecting the optimal at-
tacks. Specifically, residual noise within the neural network weightings
arising from finite training dataset sizes often serves as a ‘‘handle’’ for
launching attacks in neural network classifiers. As such, the malicious
perturbation is often engineered to be challenging to identify by naı̈ve
human inspection, but with profound impacts on classification by a ma-
chine learning algorithm.104 Figure 18.11 demonstrates an example of ad-
versarial attack in handwriting recognition, in which the effect of the attack
can be easily rationalized in hindsight.105 Changing a few spots in the
handwriting input can cause the number 1 to be identified as the number 4.
Close examination of this example reveals that the added dots to the image
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could, in fact, be connected with lines to form a shape of a 4 – the neural
network here is weighting those particular pixels with enough importance to
outweigh the lack of true connections, generating the full shape of a 4.
However, as the dimensionality of the image increases, retrospective ra-
tionalization of the perturbations can be increasingly challenging to intuit.

When discussing adversarial attacks, it is useful to distinguish between
attacks on models where the architecture and weights of the trained clas-
sifier are known prior to the design of an attack versus cases in which they
are unknown. Attacks on networks where the attacker has full knowledge of
the classification structure and weights are known as white box attacks, in

Figure 18.10 An example of visual illusion: Adelson’s checker-shadow. In the left
image, area B looks brighter than area A. In the right image, two gray
bars were added as a reference revealing that area A and area B have
the same brightness.
Reproduced with permission from E. H. Adelson, In On seeing stuff:
The perception of materials by humans and machines, Conference on
Human Vision and Electronic Imaging VI, San Jose, Ca, Jan 22–25;
Spie-Int Soc Optical Engineering: San Jose, Ca, 2001; pp. 1–12.

Figure 18.11 Adversarial attack on handwriting recognition. An adversarial sample
(bottom row) is produced by slightly altering a legitimate sample
(top row) in a way that forces the model to make a wrong prediction,
whereas a human would likely correctly classify the sample.
Reproduced with permission from N. Papernot, P. McDaniel and
I. Goodfellow, Transferability in machine learning: from phenomena
to black-box attacks using adversarial samples. arXiv preprint
arXiv:1605.07277 2016.
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which cases the optimal perturbations can typically be calculated analytically
to efficiently fool classifiers for given inputs and targets. The strategies for
attack can vary widely, targeting different image aspects. In one of the most
common implementations, back-propagation of the neural network allows
determination of the steepest gradient toward a classification boundary,
corresponding to the smallest perturbation required to induce a given
misclassification. In contrast, attacks, where only the classification outcome
is accessible to the attacker, are known as black box attacks – such methods
rely on optimization approaches to generate a perturbation to the input data
to produce the desired classification outcome.

Illustration of a white box attack is shown in Figure 18.12, in which an
optimized, subtle perturbation added to an image of a panda bear resulted
in the GoogLeNet image classifier confidently misclassifying the image as a
gibbon.106,107 In this attack, the elements of the perturbation are equal to the
sign of the elements of the gradient of the cost function with respect to the
input, a method dubbed the fast gradient sign method. Intuitively this ap-
proach can be interpreted as identifying the direction of highest classification
uncertainty and adding the minimal push to the input data x. The scaling factor
A¼ 0.007 is the magnitude of the smallest bit of an 8-bit image encoder after
conversion to real numbers. Notably, this approach does not point the classifier
to a specific outcome, but rather utilizes the full knowledge of the training cost
function to minimally push the classifier to an incorrect conclusion.

In many cases, the analytical solution for optimizing an attack pattern is
not known, for which the outcomes of the neural network for given inputs
alone serve to inform the optimization of an attack. Such black box attacks
add small perturbations to input data, test the classifier, and then iteratively
optimize perturbations numerically to achieve a classification confidence
subject to a cost function. Kevin Eykholt and coauthors illustrate an example
of a black-box attack, in which perturbations were determined to induce
misinterpretation of traffic sign images by image recognition algorithms.108

Figure 18.12 A demonstration of fast adversarial example generation applied to
GoogLeNet on ImageNet. By adding an imperceptibly small perturb-
ation, GoogLeNet’s classification of the image is significantly altered.
Reproduced with permission from I. J. Goodfellow, J. Shlens, and
C. Szegedy, Explaining and Harnessing Adversarial Examples.
arXiv e-prints (2014).
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In this black-box attack, they were able to induce misclassification of a stop
sign as a 45 mph speed limit sign through perturbations difficult to
rationalize upon human inspection. Without knowing the neural network
behind the traffic sign classification, the attack pattern sampled from a
distribution that modeled physical dynamics (in this case, varying distances
and angles), and used a mask to project computed perturbations to a shape
that resembled graffiti. This attack fooled two convolutional neural net-
works, LISA and GTSRB-CNN with over 85% confidence.

Despite the success of these adversarial attack strategies in ANNs, the
inherent nonlinear nature of many ANN architectures complicates intuitive
rationalization of both the intrinsic susceptibilities to attack and origins of
the optimized attack patterns. The greatest strengths in ANNs arguably lie in
their abilities to exploit underlying patterns through coupled but highly
nonlinear transformations. However, the intrinsic nonlinearities associated
with the pattern-matching in ANNs greatly complicate meaningful mapping
onto more intuitive and tractable linear frameworks more commonly used in
spectral analyses. It is challenging enough to intuit the strengths and
weaknesses of an ANN in general, while it is more challenging to interpret a
numerically generated adversarial attack thereof.

18.3.2 Illustrative Linear Example of Adversarial Attacks:
Adversarial Spectroscopy

Many of these training challenges in ANNs under data-limited conditions
have direct analogs in classical, linear dimension reduction methods, pro-
viding a significantly more intuitive and tractable context for interpreting
the origins of these potential numerical instabilities. When used for classi-
fication of images, sounds, or spectra, neural networks can be viewed as
dimension reduction methods, in which high-dimensional objects in image
or spectral space result in low-dimensional classified outputs. As such, linear
methods for dimension reduction such as principal component analysis
(PCA) and LDA can potentially serve as simple ANN surrogates for inter-
preting the design and execution of adversarial attacks, which is the primary
subject of this section.

As an illustrative example, it is useful to compare dimension reduction/
classification by ANNs with conventional LDA for spectral classification. In
LDA, supervised inputs are used to identify a new lower-dimensional space
designed to maximize the resolution between the classified inputs.
Maximizing the resolution is mathematically analogous to maximizing the
Fischer linear discriminant. For a given projection in spectral space w, the
corresponding value of the Fisher discriminant J is given by the eqn (18.7), in
which the matrices Sw and SB correspond to the within-class and between-
class variance/covariance matrices, respectively.

J¼ wT SBw
wT Sww

(18:7)
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Mathematically, the direction in spectral space that maximizes the value
for J can be found by solving the eigenvector/eigenvalue problem in eqn
(18.8).

Jw¼ Sw
�1SBw (18.8)

Upon extension to multiple classes, the vector w can be replaced by a
matrix W to produce sets of eigenvectors corresponding to the reduced di-
mensional coordinates generated by LDA.

The matrix inversion step in eqn (18.8) provides a source of potential in-
stability in data-limited applications, directly analogous to data-limited
training of ANNs. Specifically, the Sw matrix is only nonsingular and for-
mally invertible when the number of training spectra is greater than the
length of a given spectrum. When training data are limited and this criterion
is not met, direct application of LDA with numerical methods to estimate the
matrix inversion operation results in poorly constrained selection of di-
mensions highly prone to ‘‘overfitting’’, in which noise contributions within
the data contribute significantly or dominate the selection of dimensions to
maximally resolve the classified data. Even when the number of training
data exceed the dimensionality of the spectral space, the matrix Sw is gen-
erally still not sufficiently overdetermined to remove significant contri-
butions from noise in the loading vectors used for dimension reduction. As
such, spurious noise contributions can potentially result in misclassification
or classification with low statistical confidence. In LDA, this noise-
susceptibility is apparent upon inspection of the ‘‘loading plots’’, which
correspond to the directions in spectral space that each spectrum is pro-
jected onto in order to generate the corresponding position in LDA-space.
Representative loading plots shown for a simulated training set of Raman
spectra just large enough (1424 spectra) to satisfy the nonsingularity re-
quirement are shown in Figure 18.13, clearly indicating significant contri-
butions of residual noise to the classifiers designed to maximize the
resolution between classes. As expected, increasing the number of simulated
Raman spectra in the training set by about two orders of magnitude (160884
spectra) significantly reduced the noise in the LDA loading plots.

The benefits of generative adversarial approaches to enable chemical
analyses with limited data hinge on the success of the adversarial attacks in
identifying points of vulnerability in classifiers. In this illustration of ad-
versarial spectroscopy, a perturbation to the initial spectrum d is added to
the initial sample spectrum xs to produce the perturbed spectrum x0 ¼ xsþ d.
The cost function to optimize the attack is given in eqn (18.9) as the sum of
two terms. The first term, 8D(xsþ d� lt)8

2, minimizes the squared deviation
of the perturbed spectra xsþ d and the target spectrum lt in LDA space. The
transform matrix D maps the difference in spectral space xsþ d� lt to LDA
space, driving the input data to the location of the target class mean and
inducing misclassification. The second term minimizes the overall magni-
tude of the perturbation 8d82, constraining the overall perturbation to a
small magnitude and reducing the visual difference between the initial and
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attacked spectrum. In other words, the first term fools the classifier, while
the second term fools the human. The scaling parameter b allows for em-
pirical adjustment of the importance of subtlety; b¼ 1 was used for
this study.

d̂¼ arg min
d

Dðxs þ d� ltÞk k2þb dk k2� �
(18:9)

The large apparent contributions of noise to the loading plots in LDA-
based dimension reduction suggests that a significant contribution to the
chemical classification includes contributions from spurious noise in the
training data, creating potential susceptibilities for adversarial attacks. In-
corporation of spurious noise within the dimension reduction operation in
LDA is directly analogous to ‘‘overfitting’’ in ANNs, in which classification
becomes overly dependent upon random features (including spurious noise)
within the training data that serve as toeholds for adversarial perturbations.
While in principle, this intrinsic susceptibility to attack could be minimized
through increases in the size of the training set, practical limitations can
complicate such approaches, particularly when data are relatively expensive
or time-consuming to obtain.

Figure 18.13 Comparison of LDA loading plots with different amounts of simulated
training spectra. An original set of 267 experimental Raman spectra
are supplemented with simulated spectra from the same statistical
distribution. As expected, noise is significantly reduced when perform-
ing LDA with a greater number of training spectra.
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An example in Figure 18.14 illustrates the vulnerability of a Raman spec-
tral classification informed by LDA. An initial spectrum (top trace in A)
clearly corresponds to Class I (middle right of B), both by its visual similarity
to the Class I mean spectrum and by its corresponding position in LDA-
space. Addition of a perturbation to the spectrum according to the cost
function in eqn (18.9) results in minor visual changes in the spectrum (middle
trace in A), but quite dramatic reclassification to Class II (bottom of B), with
495% confidence based on the position in LDA-space.

This susceptibility to adversarial perturbation is an intrinsic consequence
of the dimension reduction by projection onto the LDA coordinates; there is
an infinite set of possible spectra that correspond to the same position in
LDA-space. Correspondingly, innumerable perturbations to any initial
spectrum can shift its position to the target location in LDA-space. The
definition of the cost function selects the one spectrum among this set that
corresponds to the optimal perturbation (in this case, the perturbation with
the smallest squared magnitude). For this cost function, the presence of
residual noise within the LDA-coordinates preferentially selects many
small ‘‘nudges’’ over more obvious large perturbations at a small number
of wavelengths. Most significantly, the perturbations generally do NOT result
in spectra with peaks similar to those expected in the target class.

Figure 18.14 Illustration of an adversarial spectroscopic attack (A) An initially
unperturbed spectrum (top) is attacked, generating the attacked spec-
trum (middle). The attacked trace is then classified as the target
spectrum (bottom). Note the attacked spectrum (middle) does not
bear a significant spectral resemblance to the target class (bottom).
The classifier is fooled while human inspection will not detect the
perturbation. (B) Demonstration of an adversarial attack in LDA space.
The attack spectrum is moved from class 1 (middle right) to class 2
(bottom left) by adding small amounts of noise to the original spec-
trum. The boxed region denotes the area of greatest uncertainty for
classification.
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The optimized perturbations shown in panel A of Figure 18.14 retained
major spectral features of the original class while misclassifying withZ95%
confidence.

The vulnerability to adversarial attack inherent in many spectral classifiers
illustrated in this section also presents opportunities for exploiting adver-
sarial strategies to improve chemical classification algorithms. Potential
benefits of defensive strategies for improving chemical classification algo-
rithms are the primary subject of the next section.

18.3.3 Illustrative Example of Data Generation: Generative
Adversarial Linear Analysis

The primary utility of adversarial spectroscopy is arguably in its potential for
improving the general reliability of chemical classifiers. Training data for
creating classifiers are necessarily finite resources, with any practical data
set potentially susceptible to spurious or malignant misclassification. One
promising avenue to address this vulnerability is through generative adver-
sarial strategies in spectrochemical analysis, inspired by parallel successful
implementation of GANs in image processing.109

A GAN is specifically designed to identify and shore-up potential weak-
points in a given classifier through the generation of ‘‘fake’’ inputs (e.g.,
images), followed by discrimination between real and fake inputs. GANs are
typically deep neural networks comprised of two key components: a gener-
ator and a discriminator. Random arrays serve as inputs to the generator,
which produces an output of fake inputs (e.g., images) for the discriminator.
Knowledge of the discriminator is used in training the generator to produce
fake inputs through adversarial attacks that will be classified into target
categories. Next, a new discriminator is produced capable of additionally
distinguishing between real and fake inputs. This new discriminator is then
used to train a new generator, and this adversarial back-and-forth is iterated
until some convergence criterion is met. Through this process, the final
discriminator exhibits substantial improvements against adversarial or
spurious perturbations.

The success of GANs can be interpreted within the context of signal aver-
aging. If we could devise a perfect generator, the output would produce
spectra or images statistically identical to genuine measurements, which in
turn, could be used for noise suppression in the discriminator as illustrated
in Figure 18.15. Stated differently, the perfect generator captures all the
complex and generally nonlinear relationships associated with the under-
lying pdf describing the experimental measurements. Just as a Gaussian pdf
describing the generation of many thousands of measured inputs can be
described by just two parameters (mean and variance), the generated inputs
to a discriminating neural network can be fundamentally described by lower-
dimensional latent-space parameters. In neural networks, the functional
form for the pdf and the nature of the underlying latent parameter-space are
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generally not known or even analytically derivable, but rather are learned
through training of the generator.

The authors expect adversarial spectroscopic approaches to ultimately
result in analogous improvements in chemical classification upon inte-
gration into future generative adversarial architectures. A conceptual over-
view of how such an approach could be implemented is envisioned in
Figure 18.16. Using the results described in Figure 18.14 as an example,
measured spectral data first undergo dimension reduction for noise sup-
pression and to aid in the definition of classification boundaries (indicated
by the ellipses in the left-most plot). Randomly generated initial spectra (e.g.,
Gaussian distributed random values) can serve as starting points for
launching adversarial attacks targeting one of the chemical classes. Pro-
jection of these random initial spectra onto the reduced dimensional space
is illustrated by the large ellipse in the middle plot. Using the cost function
given in eqn (18.9), the attack minimizes the distance to the target in the
reduced dimensional space, while simultaneously reducing the overall
magnitude of the perturbation in the higher-dimensional spectral space.
Next, a new set of loading plots for dimension reduction is determined that
includes discrimination between the initial genuine data and the fake
spectra generated by performing attacks on random initial inputs. Iteration

Figure 18.15 Workflow of a GAN. The generator is trained to produce fake data
that will ‘‘fool’’ the discriminator while the discriminator is trained
to distinguish fake data from real data. By forcing the generator
and discriminator to compete, the discriminator will become more
robust.
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of this procedure has the potential to suppress noise contributions within
the loading plots through mechanisms qualitatively similar to those arising
from signal averaging. Furthermore, no explicit assumptions are necessary
regarding the underlying pdfs describing the signal or noise in the
measurements.

18.4 Conclusion
Recent advances in machine learning have opened exciting avenues for
leveraging big data tools in small data applications. Individual chemical
measurements can be time-consuming and practically difficult, or otherwise
costly. To meet these challenges, several strategies were explored for
minimizing the total number of measurements required to inform decision-
making. In chemical imaging, sparse sampling strategies were shown to
leverage intrinsic image compressibility to reliably ‘‘inpaint’’ composition
within unsampled pixel locations. Coupling sparse sampling methods with
models for predicting the most informative experiments enables dynamic
sampling, in which the previous set of measurements dynamically informs
the next sampling locations. Finally, recent advances in GANs for neural
network training in data-limited scenarios were mapped to analogous

Figure 18.16 The workflow of generative adversarial approaches in spectral classi-
fication involves the following conceptual steps: (i) initial data are
analyzed by dimension reduction, (ii) ‘‘fake’’ data are generated in
spectral space using random inputs and projected into this lower-
dimensional space, (iii) each of the fake spectra is perturbed by an
adversarial attack to induce classification into one of the target
classes, (iv) a new dimension reduction operation is performed to
separate the real and fake spectra. Steps ii–iv are then iterated to a
desired level of convergence.
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operations in linear classifiers, providing a route for understanding the
mechanism of operation underpinning GANs and enabling extension of those
concepts to more traditional linear algorithms for chemical classification.
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96. L. M. Roch, F. Häse, C. Kreisbeck, T. Tamayo-Mendoza, L. P. E. Yunker,

J. E. Hein and A. Aspuru-Guzik, Sci. Robot., 2018, 3, 2.
97. A. Madry, A. Makelov, L. Schmidt, D. Tsipras and A. Vladu, arXiv pre-

print arXiv:1706.06083, 2017.
98. A. Kurakin, I. Goodfellow and S. Bengio, arXiv preprint arXiv:1611.01236,

2016.
99. N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik and

A. Swami, 2017.

Chapter 18
Pu

bl
is

he
d 

on
 1

5 
Ju

ly
 2

02
0 

on
 h

ttp
s:

//p
ub

s.
rs

c.
or

g 
| d

oi
:1

0.
10

39
/9

78
18

39
16

02
33

-0
04

50

View Online

159



100. L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein and J. D. Tygar, 2011.
101. B. Biggio and F. Roli, Pattern Recognit., 2018, 84, 317–331.
102. W. Y. Ma and S. Osher, Inverse Problems and Imaging, vol. 6, 2012,

pp. 697–708.
103. E. H. Adelson, in Human Vision and Electronic Imaging VI, International

Society for Optics and Photonics, 2001, vol. 4299, pp. 1–12.
104. V. Zantedeschi, M.-I. Nicolae and A. Rawat, presented in part at the

Proceedings of the 10th ACM Workshop on Artificial Intelligence and
Security, Dallas, Texas, USA, 2017.

105. N. Papernot, P. McDaniel and I. Goodfellow, arXiv preprint arXiv:1605.
07277, 2016.

106. I. J. Goodfellow, J. Shlens and C. Szegedy, arXiv preprint arXiv:1412.
6572, 2014.

107. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke and A. Rabinovich, in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2015, pp. 1–9.

108. K. a. E. Eykholt, Ivan and Fernandes, Earlence and Li, Bo and Rahmati,
Amir and Xiao, Chaowei and Prakash, Atul and Kohno, Tadayoshi and
Song, Dawn, The IEEE Conference on Computer Vision and Pattern Rec-
ognition (CVPR), 2018, June.

109. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville and Y. Bengio, in Advances in Neural Information
Processing Systems, 2014, pp. 2672–2680.

Autonomous Science: Big Data Tools for Small Data Problems in Chemistry
Pu

bl
is

he
d 

on
 1

5 
Ju

ly
 2

02
0 

on
 h

ttp
s:

//p
ub

s.
rs

c.
or

g 
| d

oi
:1

0.
10

39
/9

78
18

39
16

02
33

-0
04

50

View Online

160


	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS
	ABBREVIATIONS
	GLOSSARY
	ABSTRACT
	BACKGROUND
	Optimization of biopharmaceuticals motivates improved diffusion measurements
	Common methods for diffusion measurements
	Fluorescence recovery after photobleaching (FRAP)
	Limitations of conventional FRAP & review of previous FRAP innovations
	Fourier transform fluorescence recovery after photobleaching (FT-FRAP)
	Comparison of FT-FRAP to previous work

	THEORY
	Fourier analysis of the diffusion equation
	Conventional FRAP
	Comb-photobleach FT-FRAP
	Dot-array-photobleach FT-FRAP
	Anomalous diffusion
	Signal power
	Phasor analysis of flow in FT-FRAP
	Patterned versus point photobleaching
	Diffusion imaging

	MATERIALS AND METHODS
	Two-photon excited fluorescence (TPEF) microscopy
	Comb-photobleach FT-FRAP
	Dot matrix photobleach FT-FRAP
	Sample preparation
	Data analysis

	NORMAL DIFFUSION CHARACTERIZATION
	Polymer diffusion analysis by comb-photobleach FT-FRAP
	Protein diffusion analysis by comb photobleach FT-FRAP
	Antibody diffusion analysis by dot-array-photobleach FT-FRAP

	FLOW CHARACTERIZATION
	ANOMALOUS DIFFUSION CHARACTERIZATION
	DIFFUSION IMAGING
	CONCLUSION
	STOCHASTIC DSC BY NONLINEAR OPTICAL MICROSCOPY
	Abstract
	Background
	Methods
	SHG microscopy
	DSC measurements
	Data analysis
	Sample preparation

	Results and Discussion
	SDSC of urea crystals
	IRF determination with SDSC
	SDSC of trehalose dihydrate crystals

	Conclusions

	REFERENCES
	DATA ANALYSIS SCRIPTS
	VITA
	SELECTED PUBLICATIONS

