
A NOVEL FRAMEWORK FOR INVARIANT NEURAL
NETWORKS APPLIED TO GRAPH AND SET DATA

by

Ryan L. Murphy

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Department of Statistics

West Lafayette, Indiana

May 2021

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Vinayak Rao, Co-Chair

Department of Statistics, Department of Computer Science (Courtesy)

Dr. Bruno Ribeiro, Co-Chair

Department of Computer Science

Dr. Jennifer Neville

Department of Computer Science, Department of Statistics

Dr. Min Zhang

Department of Statistics

Approved by:

Dr. Jun Xie

2

Dedicated to my family, my friends, and the limitless source of energy that comes from

pursuing one’s dreams.

3

ACKNOWLEDGMENTS

First, I would like to thank my advisors, Drs. Rao and Ribeiro, for their mentorship

and for helping me develop as a machine learning researcher. In our work, I learned an

overwhelming amount of new theoretical ideas and programming/computational techniques.

I would like to highlight Dr. Rao’s Computational Statistics course, which I took in my first

semester. This course reaffirmed the power of what I would learn throughout this degree

and motivated me through the pre-research years. Additionally, I thank Dr. Ribeiro for the

opportunity to present my work at NetSci and for the generous support.

Next, I would like to thank my main collaborators, Balasubramaniam Srinivasan and

Shishang Wu. Their thoughtful discussions and work strengthened Janossy pooling and

Birkhoff regularization. I also thank the students in my professors’ research groups. I

learned so much about programming and computation from my computer science peers, and

had countless thoughtful discussions of recent research papers.

Moving past academics, it goes without saying that my parents and brother taught me

the importance of hard work, perseverance, and determination. My family supported me

every step of the way, not least during the incredibly refreshing holidays spent back home!

I also thank the contemporaries that I met at Purdue. I especially thank April Yue for her

encouragement, support, and boundless wisdom. We grew together in countless ways through

these years. Jincheng Bai, Will Eagan, Eric Gerber, Emery Goossens, Nathan Hankey, Babak

Ravandi, Tim Smith, Jeremy Troisi, Qi Wang, Yumin Zhang and others offered wisdom,

mentorship, and invaluable opportunities for blowing off steam. I am grateful to Farzin

Shamloo, Michelle Blitzman, and James Sterritt whose selflessness helped me through a

rather sudden and unexpected challenge.

Finally, I must mention Professors Steven Landsburg, Paulo Barelli, Josh Kinsler, and

Michael Rizzo at my undergraduate university. They ignited my passion for pursuing higher

education and its power for making a positive difference in this world. When I decided

that I would not pursue this dream through economics, it was the journalists at the MIT

Technology Review and similar media that ultimately shaped my decision to move towards

statistics, machine learning, and computer science.

4

TABLE OF CONTENTS

LIST OF TABLES . 10

LIST OF FIGURES . 12

LIST OF SYMBOLS . 14

NOMENCLATURE . 15

ABSTRACT . 16

1 INTRODUCTION . 17

2 BACKGROUND: INVARIANCES IN NEURAL NETWORKS 21

2.1 Artificial Neural Networks in Modeling Graphs and Sets 21

2.1.1 Neural Networks and Optimization 21

Other Neural Networks . 23

2.1.2 Benefits and Limitations of Various Neural Network Approaches . . . 24

Automating Feature Engineering: an Asset for Modeling Graph and

Set Data . 24

Universal Approximation: A Beneficial Property but no Panacea . . . 25

2.2 Invariances and Equivariances in Neural Networks 26

2.2.1 Motivating Invariances with Convolutional Neural Networks 27

2.2.2 Formalizing Invariance and Equivariance with Group Theory 29

2.2.3 Enforcing Invariances to Improve Performance 33

Weight Sharing and Convolutions . 33

Special Invariant Layers . 34

Variations on Training Strategies . 34

Strengths and Weaknesses . 36

2.2.4 Inductive Biases and Extrapolation 37

3 GRAPHS AND SETS . 39

5

3.1 Permutation Invariance in Graphs and Sets 39

3.1.1 Motivation and Basic Definitions . 39

3.1.2 Definitions for and Nuances of Graphs 40

3.1.3 Definitions for and Nuances of Sets 45

3.1.4 Summary Without Group-Theoretic Terms 47

3.2 Existing Work . 48

3.2.1 Methods Applicable to Both Graphs and Sets 48

Ordering the Graph or Set . 48

Weight Sharing and Beyond . 49

3.2.2 Existing Graph-Focused Approaches 50

Message Passing Graph Neural Networks 50

Other Noteworthy Graph-Focused Literature 53

3.2.3 Existing Set-Focused Literature . 53

Pooling in Latent Space . 54

Higher-Order Methods . 55

Other Noteworthy Set-Focused Methods 56

4 JANOSSY POOLING FOR INVARIANT MODELS 57

4.1 Janossy Pooling . 58

4.1.1 Expressive Power and Choices for f⇀ 61

RPGNN f
⇀

 . 63

Padded MLPs . 72

RNNs and CNNs . 72

4.1.2 Approximations . 73

Tractability with π-SGD . 74

Tractability with k-ary Dependencies 82

Combining k-ary and π-SGD . 90

Canonical and Poly-canonical Orderings 90

Synthesis of Approximation Schemes 92

4.2 Probabilistic Motivations . 92

6

4.2.1 Review of Infinite and Finite Exchangeability 93

4.2.2 Exchangeability and Neural Networks 94

4.3 Extensions . 95

4.3.1 Equivariance . 96

4.3.2 Separate Janossy Pooling . 96

4.4 Experiments . 97

4.4.1 Datasets . 97

Integer Arithmetic Datasets . 98

Circulant Skip Link Graphs . 99

Molecules . 99

Vertex Classification Datasets: PPI and Citation 101

4.4.2 Modeling Higher-Order Relationships 103

4.4.3 Expressiveness of MPGNNs and RPGNNs 104

4.4.4 Impact of k and Number of Sampled Permutations: GraphSAGE . . 106

4.4.5 Exploring Different f⇀ Architectures and Canonical Orderings 109

4.4.6 π-SGD Training Learns an Approximately Invariant Model 110

4.5 Impact in the Literature . 111

5 REGULARIZING TOWARDS INVARIANCE . 112

5.1 Motivating BReg . 113

5.1.1 Appropriateness of Invariance . 113

5.1.2 π-SGD Variance . 115

5.1.3 Additional Related Work . 115

5.2 Birkhoff Regularization Penalty . 116

5.2.1 TangentProp Perspective and Mathematical Tools for BReg 118

5.2.2 General BReg . 124

Space of Tangent Vector . 124

Measuring Variation in the Latent or Prediction 125

Finite Differences . 127

5.2.3 Choice of Doubly-Stochastic Matrices 127

7

Prespecified ε . 127

Sampling Doubly-Stochastic Matrices 129

5.2.4 Backprop through the Jacobian . 129

5.3 Training with BReg . 130

5.4 Optimization Perspective and Connections to Other Work 132

5.4.1 Linear Model Example: Not a Shrinkage Penalty 133

5.4.2 Connections to Existing Methods . 135

5.4.3 Projections and BReg . 136

5.5 Experiments . 137

5.5.1 BReg Training in Permutation-Sensitive and Permutation-Invariant

Tasks . 137

Permutation-Invariant Task: Predict the Maximum 138

Permutation-Sensitive Task: “First Large” 141

Summary . 145

5.5.2 Variance Reduction and Latent Regularization 145

Adding Random Noise to Latent Quantities 145

Variance Reduction . 146

6 SUMMARY AND DIRECTIONS FOR FUTURE WORK 149

REFERENCES . 152

A APPENDIX . 179

A.1 Technical Details and Examples . 179

A.1.1 Permutation Matrices . 179

A.1.2 Vec Operation . 179

Graphs . 179

Sequences . 181

A.1.3 Bipartite Graphs . 181

A.1.4 Additional Details for Backpropagation through the Jacobian 181

A.2 MPGNN for Molecular GNN . 182

8

A.3 More Experimental Setup . 182

A.3.1 Integer Sequences . 184

A.3.2 CSL Graphs . 184

A.3.3 Molecules . 185

A.3.4 Vertex Classification . 186

A.3.5 BReg in PS and PI Tasks . 188

A.4 Proofs . 188

A.4.1 Doubly-Stochastic Matrices . 189

9

LIST OF TABLES

3.1 Non Group-theoretic Summary. We show the encoding and describe the permu-
tation action for sets and graphs. . 47

4.1 Arithmetic Tasks. Length n and support size M for (multi)sets of integers sam-
pled uniformly at random with replacement from {0, 1, . . . ,M − 1}. 98

4.2 Molecular Graph Data. The datasets come from MoleculeNet and DeepChem
[41], [274]. Each train/val/test split is roughly 80%, 10%, and 10% of the total
number of graphs, respectively. The number of vertex and edge features depend
on the model and thus the experiment. . 100

4.3 Real-World Vertex Classification Datasets . 101

4.4 Modeling Higher-Order Relationships on Arithmetic Tasks. Mean (standard de-
viation) performance, measured in RMSE for the variance task and accuracy (A)
for the remaining arithmetic tasks, averaged across 15 runs. We compare JP mod-
els trained with π-SGD on the full sequence to 1-ary JP. DeepSets [26], a special
case of JP, is shown in typewriter font. “u sum” denotes unique sum, similarly
for “u count”, and “Aff.” denotes an affine layer. We study k-ary approximations
and the number of sampled permutations in Section 4.4.4 103

4.5 Mean (standard deviation) accuracy across five folds on the CSL task. 105

4.6 Performance on Molecular Tasks. We show mean (standard deviation) ROC-
AUC across multiple random data splits. The baseline MPGNN is from Duve-
naud, Maclaurin, Iparraguirre, et al. [40] and described in Algorithm 5 . Models
under the JP framework are RPDuvenaud et al. and two based on poly-canonical
orderings, described in Sections 4.4.3 and 4.4.5 106

4.7 k-ary Approximations and the Arithmetic Tasks. Mean (standard deviation)
performance, measured in RMSE for the variance task and accuracy (A) for
the remaining arithmetic tasks, averaged across 15 runs. We compare k-ary JP
models trained exactly with different values of k. DeepSets [26], a special case of
JP, is shown in typewriter font. . 109

5.1 Variants and Examples of BReg. (Left): An overview of regularization strategies
existing under the BReg framework. We can (1) compute tangent vectors of
model components or inputs; (2) measure (and penalize) variability in the
predicted or latent quantities; (3) use TangentProp (TP) [15] or Finite Differences
(FD) as the style of regularization. To define the regularization, we make a
choice from each row. (Right): Examples. In the first row, we compute tangent
vectors in input space, measure variability in the predicted quantity, and use
a TangentProp penalty. As shown, more details on this case can be found in
Definition 18 and Algorithm 3 . . 117

10

5.2 Performance on Permutation-Invariant Max Task. Mean (SD) Mean Absolute Er-
ror as well as model permutation sensitivity. Sequences in the validation datasets
have the same sort-order as the training data (ascending sort), while the two test
datasets contain sequences with different orderings. The first two rows show a
PI and PS model, respectively. The bottom two rows correspond to Transform-
ers trained with BReg using the random-segment and center-step schemes. The
permutation sensitivity is measured by PEV (Remark 12). 141

5.3 Performance on Permutation-Sensitive Task . 144

A.1 Vertex Classification Results. Performance (Micro-F1 score) using Janossy pool-
ing with k-ary dependencies and π-SGD training in a graph neural network –
GraphSAGE – with 20 permutations sampled at test time. k1 and k2 are the
number of neighbors sampled at aggregations one and two, respectively. Stan-
dard deviations over 30 runs for Cora/Pubmed and 4 runs for PPI (a much larger
graph) are shown in parentheses. . 186

11

LIST OF FIGURES

2.1 Simplified Illustration of a Conv Operation . 28

2.2 Invariances (Isometries) of a Square . 30

3.1 Graphs and Orderings. (a) An example of an abstract graph. (b) and (c) show
two equally valid orderings thereof, by drawing numbers in V = {1, . . . , 5} on the
vertices. The two ordered graphs differ by a swap of vertices “4” and “5”. (d)
and (e) show the corresponding adjacency matrices. Notice that these matrices
are not equivalent, and we have highlighted an element in row 4 where they differ. 41

3.2 Encoding a Graph with Features . 43

3.3 Example Set Data: a Point Cloud . 46

4.1 Janossy Pooling Layer for a Sequence Input . 60

4.2 CSL Graphs. These nonisomorphic graphs cannot be distinguished by the WL
test (color refinement). 64

4.3 An illustration of full RPGNN. We append one-hot ID features to every ver-
tex before passing to a GNN. Repeating this for all permutations of the graph
amounts to all 3! ID assignments. (Note, we multiply by 3! on the left-hand side
since JP is defined as an average). We see the power of RPGNN to break sym-
metries; the leaves have identical neighborhoods (the root) but their IDs make
them distinguishable. 65

4.4 Example of k-ary JP . 83

4.5 Impact of Increasing k and the Number of Inference Permutations in the GraphSAGE-
LSTM Model on the PPI Dataset . 107

4.6 π-SGD Promotes Invariance. We show the permutation-sensitivity, measured by
the variance over permutations, of RPGIN throughout optimization with π-SGD
and “standard” training. 110

5.1 Challenges of π-SGD Training. We study loss as a function of epoch. Left:
training RPGNN on a CSL task (Section 4.4.1) with large graphs. Right: training
an MLP to predict the variance of the input. 116

5.2 Examples of Permutohedra. For n ∈ Z≥1, the standard permutohedron PHn is
defined as the convex hull of all permutations of (1, 2, . . . , n). For any x ∈ Rn, the
generalized permutohedron PH(x) is the convex hull of permutations of x. Left:
examples for n = 2. The standard permutohedron is the line segment connecting
(1, 2) to (2, 1). Two generalized permutohedra, PH

(
(1, 3)

)
and PH

(
(1.5, 2.5)

)
are also shown. Notice that these permutohedra overlap since 1+3 = 1.5+2.5 = 4.
Right: the standard permutohedron PH3. 121

5.3 Example Tangent Vector for BReg . 122

12

5.4 Regularizing a Transformer-like Model with BReg 126

5.5 Performance vs. λ on Permutation-Invariant Max Task. Performance is shown in
Mean Absolute Error on three types of datasets, averaging over five independent
samples of each. The sequences in the validation data have the same ordering
as the training data: ascending sort. The sequences in the two test datasets are
respectively sorted in descending order and randomly shuffled. The permutation-
sensitive Transformer model achieves low MAE on the training data but a much
larger loss on the test datasets. In contrast, the regularized Transformer models
generally perform much better on the test data. 140

5.6 Permutation Sensitivity vs. λ on Permutation-Invariant Max Task. Permutation
sensitivity measured by Positional Encoding Variance (see Remark 12), as a func-
tion of regularization strength. The variance of the fully permutation-sensitive
Transformer model is shown for reference. . 142

5.7 Performance vs Regularization Strength on Permutation-Sensitive Task 143

5.8 Permutation Sensitivity vs. λ on Permutation-Sensitive “First Large” Task. Per-
mutation sensitivity is measured by Positional Encoding Variance (see Remark

 12). The variance of the fully permutation-sensitive Transformer model is shown
for reference. . 144

5.9 Toy Experiment: Adding Noise to Latent Vector. We show the norm of the
hidden layer (before noise is added, if applicable) as a function of epoch. 146

5.10 Variance over Permutations in Regularized RPGNN Training. That is, Maximum
Prediction Variance (across sampled permutations) of RPGNN models trained
with π-SGD and a variety of BReg schemes. Ribbons show the mean ± 0.5
standard deviations for clarity. 147

5.11 Performance of Regularized RPGNN Training in Cycle Detection 148

A.1 Bipartite Graph. Such graphs represent two distinct groups of entities. Figure
adapted from [314]. 181

13

LIST OF SYMBOLS

A A tensor (multi-dimensional array)

A A matrix

π The ISO standard for the constant 3.1415 . . .

π Usually denotes permutations

14

NOMENCLATURE

Encoding a Graph/Set Storing a graph/set on a computer.

Graph Graph refers to input relational data. See Network.

Labeling A function defined on the vertex set. See Target.

Multilayer Perceptron Feedforward neural network of affine layers, all weights free.

Network Usually reserved for neural networks. See Graph.

Target The response variable, the quantity to predict.

15

ABSTRACT

The generalization performance of neural networks can be improved by respecting in-

variances inherent in a problem. For instance, it is often the case that rotating an image

does not change its meaning; the target variable is likely invariant to rotations of the in-

put. Models for graph and set data are typically designed to be permutation-invariant, since

the order of set elements and isomorphisms of graphs usually do not change their mean-

ing, but a unified paradigm for both types of data is lacking. Moreover, existing models

are either insufficiently flexible or difficult to reliably train in practice. This dissertation

presents Janossy pooling (JP), a novel framework for training neural networks that are (ap-

proximately) invariant to a prespecified finite group of transformations (e.g., permutations),

with a focus on graphs and sets. Motivated by partial exchangeability and Janossy den-

sities, we view transformation-invariant models as averages over all transformations of the

input, each passed to a transformation-sensitive function. As the set of transformations can

be very large, we advance three approximation strategies: π-Stochastic Gradient Descent

(π-SGD), k-ary approximations, and poly-canonical orderings. Compared to state-of-the-

art approaches, JP is capable of expressing a richer class of models than Message Passing

Graph Neural Networks and does not necessitate the use of highly complex and discontin-

uous functions for modeling sets effectively. Empirical evidence, including experiments on

molecular and protein-protein-interaction datasets, supports the theory we develop and the

practical benefits of JP. However, on another note, it may be unclear whether enforcing

invariances is appropriate in any given task, such as in the case of time-evolving graphs.

Accordingly, we propose a data-driven scheme where the extent of transformation sensitivity

is determined by a regularization hyperparameter. This approach invokes the Birkhoff-von

Neumann theorem, making it directly applicable to both graphs and sets, and establishes

a link between existing methods and infinitely strong regularization. Finally, we verify this

approach experimentally.

16

1. INTRODUCTION

The generalization performance of neural networks can be significantly improved by designing

them to respect data invariances. Neural networks are highly flexible function approxima-

tors, which contributes to their success in numerous applications, but the same flexibility

makes them prone to overfitting to nuisance variation in the data. For example, in set

data, the order of elements carries no meaning; the true function of the data is invariant to

permutations of the input. However, a neural network that is not designed to respect this

invariance could make very different predictions for the same set with different orderings [1].

We can mitigate this by building a model that respects the permutation invariance. We say

that this invariance arises due to the lack of a unique encoding of the data (see also Fig-

ure 3.1). Invariances also arise from physical laws governing the data-generating process [2],

[3]. Similarly, it is often important for models to respect equivariances such as translation

equivariance. For example, if a model is designed to localize an object in an image by draw-

ing a bounding box around it, translations of the object should result in a corresponding

translation of the box. We call any strategy that promotes invariance or equivariance to some

input transformations, such as permutations, rotations, or phase shifts, invariant modeling.

The goal of invariant modeling is to maintain the same level of flexibility while improving

the generalization performance. Numerous works demonstrate that invariant models can

achieve better generalization and extrapolation performance [4]–[9] and these models have

been successful in applications such as speech recognition [10], [11], image classification [12],

[13], and protein structure prediction [14].

Some invariant modeling strategies enforce strict invariance, where the model makes

the same prediction for all relevant input transformations, whereas others simply encourage

predictions to be similar, and both can be effective [9]. Examples include modifying the

optimization objective with TangentProp [15], augmenting the data with transformed inputs

[16], [17], and crafting functions that are invariant by design [18]–[24].

Permutation invariance is important for graph and set data, which appear widely in

practice. In set applications, each input is a variable-length collection of vectors (without

loss of generality) whose ordering is arbitrary. To be clear, this differs from classical linear

17

regression settings where every input has the same ordering (e.g., Xi,1 corresponds to height,

Xi,2 to age, etc.). Set data appear in point cloud classification (Figure 3.3) [25]–[28]; mul-

tiple instance learning, which can be used in disease classification [29]–[34]; piloting drone

swarms [35]; and many others [2], [3], [36]–[39]. Graph data arise whenever entities (i.e.,

vertices) are connected (i.e., by edges), such as by a physical connection or a less tangible

relationship. These find applications in chemical property prediction and drug discovery

(atoms are connected by bonds) [40]–[44]; protein-protein interactions (connections indicate

an interaction between proteins) [45], [46]; knowledge bases [47], [48]; and others [49]–[53].

Beyond relationships, graph data often capture additional vertex- or edge- level features (see

Figure 3.2). As we will see, permutation-invariant models designed for set inputs can also

be used in graph modeling as an aggregator over features in each vertex neighborhood [45],

[54]–[56].

A state-of-the-art approach to modeling sets is pooling in latent space [25], [26]. In these

models, each element of a set is first passed through a neural network g, then the outputs are

aggregated with a simple permutation-invariant function like summation, and the result is

passed through another network r. It has been shown that these models can approximate any

permutation-invariant function arbitrarily well given suitable choices for g and r [25], [26],

[57]–[59]. However, independently processing each element in the input causes difficultly in

capturing relationships among set elements, as we described in [54] and was also pointed out

by [30], [32], [60], [61]. Consequently, the networks g and r must be very complex and contain

a large number of parameters, making modeling difficult in practice [62]. Regarding graphs,

a state-of-the-art approach is Message Passing Graph Neural Networks (MPGNNs) [40], [44],

[45], [56], [63]–[67], which recursively aggregate feature vectors in the neighborhood of each

vertex. Unfortunately, MPGNNs are not flexible enough to model any graph function, an

expressiveness limitation not shared by neural network models applied to other types of data

[68]–[73]. In particular, MPGNNs predict the same value for some pairs of nonisomorphic

graphs, since passing messages over neighborhoods cannot distinguish complex cycles [74].

A third approach, applicable to both sets and graphs, is to apply an algorithm that orders

the input [5], [75]–[77], which renders the original ordering irrelevant. Unfortunately, there

18

is no guarantee that the ordering will be effective, as observed empirically in [55]. Moreover,

these methods often rely on heuristics and do not provide guidance for general applicability.

We advance Janossy pooling (JP) to address these challenges, which stem from the

difficulty of specifying a permutation-invariant model that is flexible enough to express all

permutation-invariant functions without relying on the ability to model complex functional

forms. Instead, in JP, we use permutation-sensitive functions f
⇀ to build a permutation-

invariant model. In particular, full JP is defined by averaging the values of f
⇀ over all

permutations of the input. In practice, we must approximate full JP, thus constituting

an approximate invariant modeling approach like TangentProp or data augmentation. We

demonstrate that modeling f
⇀ with a Recurrent Neural Network better captures relationships

in the input than latent space pooling, and we propose a special f⇀ called RPGNN that is

more flexible than MPGNNs. We then discuss and justify three approximation schemes:

π-SGD, k-ary dependencies, and poly-canonical orderings. In parallel, we show that many

prior methods can be seen as approximations to JP, which further clarifies limitations of

these works and motivates simple yet effective improvements thereof. For instance, our

Circulant Skip Links dataset (Section 4.4.1), which highlights limitations of MPGNNs, has

been adopted to test new graph neural networks [8], [78]–[80]. We demonstrate the benefits of

JP on protein-protein-interaction and molecular graph datasets, and explore our theoretical

predictions on these and other synthetic data.

We proposed JP in [54] and elaborated on its applications to graph data in [81], under the

name Relational Pooling (RP). However, JP can be extended to building models invariant to

transformations other than permutations. Accordingly, we will write JP regardless of whether

the input is a set or graph and touch on its applicability to invariant modeling at large.

Indeed, a key contribution here is to provide one framework for modeling disparate data

types such as sets and graphs, whereas previous literature focused on separate approaches

for each.

Along another direction, we observe that the appropriateness of permutation-invariant

modeling in a given task may be difficult to determine a-priori. While permutation invariance

is indeed a sensible condition, due to the nonunique encoding of graphs and sets, it does not

imply that the order never conveys meaning in the data-generating process. For instance,

19

in graphs that arise from preferential attachment and fitness mechanisms [82], knowledge

of the temporal ordering can help distinguish between “fit” and “early” vertices (although

these types are not necessarily mutually exclusive). We introduce Birkhoff regularization

(BReg), a permutation sensitivity penalty that we include in the optimization objective,

and train any arbitrary permutation-sensitive function. Tuning the regularization strength

serves a data-driven approach for identifying whether invariances are appropriate for the

task. Our regularization is inspired by TangentProp [15], and penalizes model fluctuations

along tangent vectors in the direction of permutations. We experimentally demonstrate that

training with BReg can indeed adapt to the appropriateness of invariance in a task.

Finally, we make deeper connections between existing methods, probability, and opti-

mization. Studying exchangeable distributions provides a motivation for JP, which is in fact

named after Janossy densities [83], [84], and shows that DeepSets corresponds to the strong

and restrictive assumption of infinite exchangeability. We also show that sum pooling models

(e.g., DeepSets) arise from infinitely strong Birkhoff regularization.

Terminology. This work exists at the intersection of numerous fields that sometimes

use different terminology. The nomenclature above clarifies the most common sources of

confusion. For instance, graph and network will refer to data and models, respectively.

Graph size refers to the number of vertices. Also, while sets cannot have duplicates by

definition, this term is commonly used in the literature even when duplicates are allowed.

Outline. In Chapter 2 , we motivate artificial neural networks for modeling graphs and

sets, and introduce invariant modeling. In Chapter 3 , we carefully explain graph and set

data, and the importance of permutation invariance. We then summarize the most important

literature and highlight limitations. In Chapter 4 , we introduce JP and its dual role as a

more flexible approach to invariant modeling and as a unifying framework. We introduce

and theoretically justify the approximation schemes, which we then explore and validate in

experiments. We also see the probabilistic motivations behind JP, revealing that DeepSets

makes strong assumptions. In Chapter 5 , we propose BReg as an approach for enforcing

the correct amount of invariance in the model, as dictated by the data. We demonstrate

its success experimentally and draw connections between BReg and existing sum pooling

methods.

20

2. BACKGROUND: INVARIANCES IN NEURAL NETWORKS

In this Chapter, we establish the necessary background of neural networks and invariances

before engaging with set and graph data in Chapter 3 . We (1) review neural network method-

ology and justify its use for graph and set data as opposed to other statistical approaches;

(2) define invariant modeling of neural networks and explain its importance; (3) introduce a

mathematical framework that facilitates a unified discussion of graphs and sets; and (4) re-

view the broader literature in neural network invariances to streamline and better appreciate

the related work in graphs and sets. Furthermore, while graphs and sets will be our focus,

our proposed Janossy pooling is not conceptually limited to graph and set data. Discussing

invariances in general opens up avenues for future exploration.

We will largely restrict the scope here and in Chapters 3 and 4 to supervised learning.

2.1 Artificial Neural Networks in Modeling Graphs and Sets

Our contributions to modeling graph and set data are largely formulated with artifi-

cial neural networks, henceforth simply neural networks (NNs). I refrain from writing “Deep

Learning” as many successful models – certainly for Graph Neural Networks – are not “deep”

models in the usual sense (see Section 3.2.2). In this section, we will fix notation and termi-

nology, review NNs, and briefly review optimization techniques that are used to estimate NNs

and Janossy pooling models. We then review properties of NNs that make them useful for

modeling graphs and sets. Many references treat these ideas in greater depth, including [24],

[85], [86].

2.1.1 Neural Networks and Optimization

We begin with Multilayer Perceptrons (MLPs). For this dissertation,1 MLP refers to the

class of feedforward neural networks where each layer is fully connected and all parameters

are free. Specifically, let X ∈ Rn×p denote n observations of p-dimensional data vectors and
1MLP may refer to slightly different models throughout the literature. Our definition helps distinguish from
other neural networks.

21

consider first a regression problem so that Y ∈ Rn×1 are the associated targets. An MLP

computes predictions Ŷ by first setting H(0) = X, computing the following for l = 1, . . . , L,

L ∈ Z≥2,

H(l) = ψ(l)
(
B(l−1) +H(l−1)W (l−1)

)
, (2.1)

and finally setting Ŷ = H(L) ∈ Rn×1, where ψ(l) : R→ R are nonlinear functions applied ele-

mentwise, ψ(L) is the identity mapping ψ(L)(x) = x, and B(0), . . . ,B(L−1),W (0), . . . ,W (L−1)

are parameter matrices of real numbers that must be estimated from data. All parameters in

{W (l)}L−1
l=0 are free, so we can have (W (l))ij 6=(W (l))km for all i, j, k,m and all l. In the bias

matrices B(l), every value in a column takes the same value. Hence, each layer l computes

one or more affine functions of its input, with B(l) serving as the translation terms, fol-

lowed by an elementwise nonlinear function. The modeler specifies the number of columns

d(0), . . . , d(L−2) ∈ Z≥1 of W (0), . . . ,W (L−2) and B(0), . . . ,B(L−2) as hyperparameters; the

remaining row and column dimensions are determined by X and Y . We are also free to

specify L ∈ Z≥2 and the nonlinear activation functions ψ(l), for l < L, such as the sigmoid

σ(x) = exp(x)
exp(x)+1 or ReLU(x) = max(0, x). These hyperparameters constitute the architecture

of the network and are tuned with standard methods. L is termed the depth or the number

of layers; the quantities d(l) are referred to as the number of neurons, number of units, or

the width of a layer. Since {H(l)}0<l<L are not observed in the data or as predictions, we

say they are hidden.

Next, to estimate (i.e., train) the parameters (i.e., weights), we minimize an objective

function using variants of (Stochastic) Gradient Descent [24]. For regression problems, it

is common to use the `1 or squared `2 loss. Given true targets Y and predictions Ŷ , the

loss function L satisfies L
(
Y , Ŷ

)
∈ Rn

≥0 and is defined (in the case of `1) by L(Y , Ŷ)i =

|Yi−Ŷi|. Specifically, for a given choice of fixed hyperparameters, let Θ denote a vector of all

parameters
(
W (l),B(l)

)L−1

l=0
of a neural network f(·; Θ).2 To optimize the parameters Θ with

2We write f(·; ·) as the function defined by fixing the terms appearing after “;” e.g., Θ.

22

Gradient Descent, we first randomly initialize Θ(0) (e.g., using Xavier initialization [87]) and

iteratively compute

Θ(t+ 1) = Θ(t)− η(t)∇Θ(t)
1
n

n∑
i=1
L
(
Y , f

(
X; Θ(t)

))
i

(2.2)

for t ∈ Z≥0 and some learning rate η(t) > 0 until a termination criterion has been satisfied.

We write η(t) as a function so that it may vary according to a schedule during training,

often decreasing in t [88]. The total number of iterations is termed the number of epochs.

Stochastic Gradient Descent (SGD) samples and averages over subsets from {1, . . . , n} when

computing Equation 2.2 , and the parameters are updated using the gradients from each

subset. SGD has been shown to converge with probability 1 given appropriate conditions

[88]–[90].3 The objective function is non-convex, with many local minima. Many variants of

SGD, such as Adam [91], have been proposed and often result in better performance.

To extend beyond the regression case, we modify the final layer and the loss function.

For binary classification, define ψ(L)(h) = exp(h)
exp(h)+1 , h ∈ R so that the outputs of the network

are values in (0, 1). The resulting probability is used to compute the cross-entropy loss. For

prediction, we can threshold probabilities as in logistic regression. For K-class classification,

we can define the last layer to yield K-dimensional values (Ŷ ∈ Rn×K) and compute the

row-wise softmax : RK → (0, 1)K , defined by softmax(h)k = exp(hk)∑K

j=1 exp(hj)
, so that the output

is a probability vector. In this case, we again use cross-entropy. Other loss functions such as

the hinge loss may be used. Estimation again proceeds with Gradient Descent or Stochastic

Gradient Descent.

Other Neural Networks

It is instructive to contrast Equation 2.1 with other NNs (and layers thereof) such as

convolutional layers [23], [92]. Such methods also compose affine functions and elementwise

nonlinearities, train with SGD or its variants, and have numerous hyperparameters. The

key difference for us is that all parameters of an MLP are free whereas weights in a CNNs

are shared, or tied, as discussed more in Section 2.2 .
3More details on the convergence of SGD are provided in later sections.

23

Another note to highlight is that Equation 2.1 assumes fixed-sized vectors as inputs. In

contrast, Recurrent Neural Networks (RNNs) [93], [94] can process variable-length sequences,

which is appropriate for natural language tasks such as translating sequences from English

to French.

Affine layers in Equation 2.1 need not constitute an entire architecture, but can be used

in conjunction with convolutional and other neural network layers. This observation is used

throughout graph and set literature.

2.1.2 Benefits and Limitations of Various Neural Network Approaches

In this section, we will examine the benefits of using neural networks for tasks defined

on sets and graphs. We then review the limitations of MLPs that motivate invariances.

Automating Feature Engineering: an Asset for Modeling Graph and Set Data

Not all applied problems call for neural network solutions. Yet, their ability to automate

feature engineering makes them very useful for graph and set data [23], [95]–[97]. To moti-

vate with a classical example, the prevailing approach to Computer Vision was for decades a

two-stage procedure of first extracting hand-crafted features of images then treating them as

input to a statistical model [13], [98], [99]. The advent of better computing resources, data

availability, and better methodological understanding catalyzed a shift away from this ap-

proach to Convolutional Neural Networks [100]–[103]. These models can be applied directly

to the raw input (e.g., a matrix of nonnegative real numbers representing pixel intensities of a

grayscale image) and are trained end-to-end, rather than in a two-stage procedure. Without

predefined features, the optimization process allows the model to “learn” the best function

for the specific task. The statistical understanding behind “automatic” feature engineering

is provided by, for example, [85].

To elaborate, we start with an observation that linear functions are often unlikely to

capture the true underlying function of the data. One solution is to compute a basis expansion

f(x;w) =
M∑
m=1

wmhm(x)

24

where x ∈ Rp, hm : Rp → R are M nonlinear transformations, and w ∈ RM is a parameter

vector. Thus we define a nonlinear function of the data by computing transformations (such

as square terms or interactions), which can express more complex functions. Now, if L = 2

in Equation 2.1 , we can view H(1) as the result of applying nonlinear transformations of

the original inputs X. Thus, the MLP is analogous to a basis expansion models except

the transformations are data driven and learned through optimization. In other words, the

intermediate layers of MLPs are effectively derived features. Moreover, when L > 2, each

layer extracts hierarchical features at different levels of resolution [104]–[106]. We say that

these models learn a representation for the data. When enough data are available to fit more

complex neural network models, this is often a preferable approach.

Now, for graph regression and classification,4 a similar trend has emerged [4], [107]–

[110]. Modelers are beginning to apply specialized neural networks directly on graph data

rather than on graph-specific precomputed features. This has led to performance improve-

ments in applications such as chemistry [40], [44], [111] and neuroscience [96], [112], [113].

More broadly, defining graph features and passing them to (kernelized) models describes the

approach of graph kernels [114]–[116]. While graph kernels remain an actively researched

approach, they have been outperformed by neural networks when data and computational

resources are sufficient [75], [117]. Indeed, this reflects a broader trend where neural net-

works, which are said to learn a kernel, are gaining popularity over kernel methods [95],

[118].

The literature on set-like data has also followed this trend. Examples can be found in

applications to point clouds (see Chapter 3) [25], [119]–[121] and in multiple instance learning

[34], [122], [123].

More methods and related work are discussed at length in subsequent sections. We turn

to universal approximation, and ultimately motivate invariances in neural networks.

Universal Approximation: A Beneficial Property but no Panacea

Multilayer Perceptrons have been shown to be universal approximators [24], [71], [124]–

[126]. For our purposes, such results state that functions we are likely to encounter in practice
4Graph classification and regression refer to predicting a single property of an entire graph.

25

for vector data (i.e., continuous functions on finite-dimensional spaces) can be approximated

arbitrarily well by some function in the class of MLPs defined in Equation 2.1 . This holds for

a broad choice of hyperparameters, but may require a very large number of parameters. The

relationship between the depth and width is conceptually related to learning representations.

Shallower networks may have difficulty representing any function without an impractically

large width. This is intuitive given that subsequent layers derive effective representations of

the data [104], [105].5

While it is encouraging that this class of models is capable of mathematically express-

ing most functions, it does not imply we can specify the correct architecture or estimate

the correct parameters in practice. First, we may lack sufficient time to comprehensively

tune hyperparameters. Second, we may not have enough data to estimate a model with a

large number of parameters that generalizes effectively. Third, the objective is non-convex,

containing many local minima, and highly complex; the estimated parameters at the end of

training may not be the best for generalization [24], [103], [127], [128].

To reconcile these ideas, it is often remarked that MLPs can learn the correct function

with infinite training time and data [15]. However, we have access to neither, so indeed MLPs

cannot simply be applied to any task. Invariances/Equivariances and inductive biases in NNs

facilitate learning models that generalize better given only finite resources, and are central

to learning on sets and graphs.

2.2 Invariances and Equivariances in Neural Networks

We leverage invariances to train effective models when data and resources are finite.

Invariances capture the notion that the target value for some input is unchanged by, or

invariant to, transformations of the input. Prior knowledge of the invariances can make

neural networks generalize (and extrapolate) better given limited data and computational

resources. Invariances are also called symmetries: by definition, “a symmetry is a property of

an object which causes it to remain invariant under certain classes of transformations” [129].

Since MLPs do not in general enforce invariances – they are defined with affine functions
5This intuition cannot be applied naively to graph data, as we will explain below.

26

in which all parameters are free – these methods introduce means for promoting invariant

predictions.

As noted by Lyle, Wilk, Kwiatkowska, et al. [9], “invariant training” itself has many

meanings in the literature, from enforcing exact invariance, promoting “insensitivity” to

transformations, “approximate invariance”, etc. Sometimes it is written that a training ap-

proach “encourages” invariance. We will use “invariance” broadly as all such interpretations

share similar motivations and capture the expected benefits of invariant training. We will

see that a highly useful paradigm for leveraging the benefits of invariant training is to specify

an exactly invariant model and estimate it, thus encouraging invariance.

This section presents ideas in a degree of generality just above the minimum needed

for modeling graph and set data. This will enable us to unify the treatment of sets and

graphs, better highlight the contributions of Janossy pooling, and lay the foundation for

future applications thereof.

2.2.1 Motivating Invariances with Convolutional Neural Networks

Convolutional Neural Networks (CNNs) serve as a classic example of invariances and

equivariances in NNs. Beyond serving as a familiar example, the convolution is a funda-

mental invariant operation – indeed, appearing in Linear Time Invariant theory [130], [131]

– and has been generalized to several domains/applications [132]–[136]. Furthermore, con-

volutions are appropriate for variable-sized inputs, a characteristic of graph and set data.

We introduce the key ideas for CNNs applied to images here; more detailed accounts can be

found in [12], [13], [24], [101], [137].

Typically, image classifiers should be invariant to local translations. If asked to iden-

tify the animal shown in an image, our answer would not depend on its exact position

against the background.6 Accordingly, the CNN model does not associate a unique free

parameter to every pixel in the input image. Rather, we apply the same parametric affine

function over different parts of the image, which is thus less sensitive to the animal’s exact

location on the image. This conv layer returns a hidden output H . Next, in the pooling

layer, a symmetric function such as max combines adjacent hidden representations (e.g.,
6We ignore pathological cases such as when the object of interest (e.g., dog, cat) slides off the image.

27

(a) Input & conv filters

(
h1 h2
h3 h4

)
(b) Hidden

max (h1, h2, h3, h4)
(c) Pooling

Figure 2.1. Simplified Illustration of Conv Operation. (a) Illustration of a
conv layer on a grayscale image input (a matrix of nonnegative numbers). The
pink rectangles depict inputs to an affine transformation with a small – relative
to the size of the image – parameter matrix (or filter). The filter slides over the
image, shown by repeating the image and drawing the filter at four locations.
(b) Shows the output of the conv. The value h1 is the result of applying an
affine function and activation function ψ over the top-left of the image. h2 is
the output of the same operation on the top-right, and so on. (c) Shows a
max pooling step. If our task was to classify whether a tie was present in the
image, the tie would likely be “detected” even if it were translated to different
corners of the image.

max(H1,1,H1,2,H2,1,H2,2)). Together, these approximately achieve local translation invari-

ance. An illustration is provided in Figure 2.1 . The conv layer described performs a discrete

convolution between a parameter matrix and an input with a finite number of nonzero ele-

ments (the image), hence its name.

Remark 1 In this example, an observation about the invariances inherent in image classifi-

cation motivated an architecture with fewer parameters. If we were to apply an MLP on the

(vectorized) image input, there would have been a distinct free parameter for every coordinate

(pixel) of the input. Additionally, the result would not be invariant in general. In contrast,

the CNN architecture reuses, or shares, parameters in its operations on different parts of

the image. This can mitigate overfitting. Moreover, CNNs admit computationally faster

implementations, allowing for more thorough optimization and hyperparameter tuning [24],

[134].

28

Models that enforce invariances will not in general be capable of expressing the same class

of functions as MLPs. Fortunately, CNNs have universality guarantees for the restricted class

of true functions exhibiting these invariances [68]–[70]. In support of the theory, CNNs have

repeatedly achieved strong empirical performance [138]–[141].

Remark 2 Invariant models are less expressive than those that do not encode invariances.

It is important to characterize their expressiveness; ideally, they should be universal within

their function class so long as they perform well in practice.

Since convolutional networks enforce translation invariance and can operate on variable-sized

inputs, they are applied to other domains such as audio and graphs [10], [24], [142], [143].

Last, note that additional factors explain the success of CNNs [24], [134], [144], but this

short section has served to introduce invariances in neural networks.

2.2.2 Formalizing Invariance and Equivariance with Group Theory

In his dissertation [145], Risi Kondor wrote “Since groups ultimately capture symmetries,

the study of invariants has been inseparable from group theory from the start”. Figure 2.2

illustrates that the symmetries of a square are described by a group of transformations;

loosely speaking, the square is invariant to these operations. Basic group theory will facilitate

a unified treatment of sets and graphs. The key idea is the action of the symmetric group.

Simply put, this describes permutations of an arbitrary object. These definitions are standard

and the reader can refer to [145]–[149] for additional background. Also note that important

methodological and theoretical contributions do not rely on group structure, but it does

provide a streamlined theoretical tool for characterizing invariances in general [9].

Definition 1 (Group) Let G 6= ∅ be a set and · : G × G → G be a binary operation on

G. We say G is a group7
 with the group operation · if the following properties hold: (1)

(Associative) (a · b) · c = a · (b · c) for all a, b, c ∈ G; (2) (Identity) there exists an element

E ∈ G such that a · E = a = E · a for all a ∈ G, and (3) (Inverses): For all a ∈ G , there

exists a−1 ∈ G such that a · a−1 = a−1 · a = E.
7We use G to denote groups and G to denote graphs.

29

Figure 2.2. Invariances (Isometries) of a Square. This figure shows the sym-
metry group of a square, i.e., the dihedral group D4. Intuitively, we know
that rotating a square in a plane by 90o does not change its appearance on
the page. Formally, the distance-preserving bijections of the square into itself
form a group whose operation is the composition of functions. These trans-
formations are precisely those that the square is invariant to. Note that the
symmetry group is distinct from the symmetric group, the group of permuta-
tions. The figure is from the open project [150].

To verify that (G, ·) is a well-defined group, one often verifies that G is closed under ·.

Some definitions (as above) let this be implicit in the fact that · is a well-defined binary

operation with codomain G. As an example, Figure 2.2 shows the symmetry group (which is

different from the symmetric group) of a square. G is the set of transformations shown and

· denotes composition of these functions. We can verify its group properties; for instance,

function composition is a well-defined binary operation on these transformations, the identity

mapping is present, all reflections are their own inverses, and so on.

The most important group for this dissertation is the symmetric group.

Definition 2 (Permutations and the Symmetric Group) The permutations of a finite

set A are the bijective maps of A onto itself. The set SA = {π : A→ A : π is a permutation}

is a group under the operation of function composition, called the symmetric group.8 Sn
denotes the symmetric group on {1, 2, . . . , n}, or the set of permutations of n objects.
8We usually let π denote a permutation and π the constant.

30

For example, S2 = {π1, π2}, where π1(i) = i for i ∈ {1, 2} is the identity permutation and

π2(1) = 2 and π2(2) = 1 is the permutation that swaps indices. Next, group actions help to

formalize invariant functions. This more general notation facilitates a unified treatment of

sets and graphs.

Definition 3 (Group action) Let A be a set and G be a group with operation · and identity

element E. A left action, or simply action, of G on A is a function γ : G × A → A such

that γ(E, a) = a and γ
(
g, γ(h, a)

)
= γ(g · h, a) for all g, h ∈ G and a ∈ A. It is common to

use the shorthand g · a rather than γ(g, a).

Intuitively, a group action on a set A takes in a group element and “returns” a function

that then operates on the original set A. The first property states that a group action

associates the group identity E ∈ G with the identity function on A. The symmetric group

Sn acts on Rn by permuting vectors: for x ∈ Rn and π ∈ Sn, the action is defined to be9

π · x =
(
xπ−1(1), . . . , xπ−1(n)

)
.

For example, taking π ∈ S3 defined by π(1) = 2 , π(2) = 3, and π(3) = 1,

π · (x1, x2, x3) = (xπ−1(1), xπ−1(2), xπ−1(3)) = (x3, x1, x2).

More generally, consider an order (d+ 1) array (or tensor), X ∈ Rn×···×n×p with (X)i1,...,id ∈

Rp. This data structure associates tuples of d indices (i1, . . . , id) with a p-dimensional data

vector. Beyond being suitable for encoding graphs and sets (see Chapter 3), tensors can

be used to study the association between human subjects (axis one), words (axis two), and

brain activity at different voxels (axis three), as well as product-item interactions [152]–[154].

While these cases would be described by tensors of shape n1 × n2 × p, we can assume that

all axes but the last have the same shape for our purposes (i.e., n1 = n2). Thus, following
9Keith Conrad gives a detailed explanation of why we do not define π · x =

(
xπ(1), . . . , xπ(n)

)
in [151].

31

Maron, Fetaya, Segol, et al. [149], we can define the action of the symmetric group on arrays

Rn×···×n×p by permuting all the indices of the array except for the last,

(π ·X)i1,...,id,j = Xπ−1(i1),...,π−1(id),j, π ∈ Sn,X ∈ Rn×···×n×p. (2.3)

There are many other groups and possible actions, but these will be sufficient for this

dissertation. Now we can formally define an invariant function. In what follows, sets X and

Y can be thought of as the input feature space and the target space in some modeling task,

respectively.

Definition 4 (G-invariant function) Let G be a group with binary relation · that acts

on the set X . Let Y be a set and f : X → Y a function. We say f is G-invariant if

f(g · x) = f(x) ∀x ∈ X ,∀g ∈ G.

If X = Rnd×p for some d, n ∈ Z≥1, we say a function f is permutation-invariant if f(π ·

x) = f(x) for all π ∈ Sn and x ∈ X . An example is f(X) = ∑
i1 · · ·

∑
id

∑
id+1(X)i1,...,id,id+1 .

Next we define the more general notion of equivariance. For this definition, Y can be thought

of as the space of hidden variables or output space of a neural network.10

Definition 5 (G-equivariant function) Let G, ·, X , Y and f be defined as in Defini-

tion 4 . Assume that G acts on both X and Y. We say that f is G-equivariant if

f(g · x) = g · f(x) ∀x ∈ X ,∀g ∈ G.

Note that X need not equal Y but the group action G should be well-defined on both.

For instance, if X = Rn×p, Y = Rp, and G = Sn, the action is still well-defined. Consider

for example row summation f(X)i = ∑p
j=1(X)i,j for all X ∈ Rn×p. Permuting the rows

does not change the sums, only their ordering in the output matrix: f(π ·X) = π · f(X).

However, if we put X = Rn×p and Y = Rm×p for n 6= m, then we cannot say Sn acts on

both. For the present dissertation, we do not need a more general definition.
10This can be generalized to G,H-equivariance but is not necessary for the main discussion of Janossy pooling.

32

Fact 1 A function f = fL ◦ fL−1 ◦ · · · ◦ f1 is G-invariant if f1, . . . , fL−1 are G-equivariant

and fL is G-invariant. The converse is not true.

Finally, permutation matrices [155] will be convenient in calculations.

Definition 6 A matrix P ∈ {0, 1}n×n is a permutation matrix if it is obtained by permuting

the rows of the n× n identity matrix In.

Every row and column of a permutation matrix has exactly one 1, the rest 0. Permutation

matrices can affect the action of Sn on Rn×p; PX permutes the rows of a matrix X ∈ Rn×p.

An example is shown in the appendix. Another useful property is that the inverse of a

permutation matrix is its transpose.

Fact 2 If P is any n × n permutation matrix, then PP T = P TP = In, where In is the

n× n identity matrix.

2.2.3 Enforcing Invariances to Improve Performance

In this section, we first provide an overview of common invariant modeling methods

then review why they improve (generalization) performance. We conclude with a summary

of recent literature invoking invariances to improve extrapolation performance to provide

further insights into invariances as well as to provide hints of opportunities for future work.

Weight Sharing and Convolutions

An MLP f(·; Θ) : X → Y cannot be G-invariant in general if all its weights are free.

Some must be tied (i.e., shared) [18], [19], [148], [156]. Ravanbakhsh, Schneider, and Poczos

[19] demonstrate a method for tying the parameters of layers in Equation 2.1 to achieve a

desired equivariance uniquely. Here, uniquely refers to the fact that unwanted invariances are

not enforced; functions with a singleton image are invariant to every transformation but are

not very useful. A similar analysis in a slightly less general context was performed earlier by

Shawe-Taylor [18]. In Hartford, Graham, Leyton-Brown, et al. [154] and Maron, Ben-Hamu,

Shamir, et al. [157], the authors take a different approach and derive a basis for the space

33

of invariant/equivariant functions. In these approaches, the only parameters are the scalars

associated with each basis component in a linear combination, and there are at most 15.

We saw that convolutions reduce the number of parameters and are a fundamental oper-

ation for invariances. These have been generalized to several domains. Spherical CNNs [21]

and steerable filters [22] were developed for rotation invariance. Cohen and Welling [135]

develop G-CNNs (“G” stands for group-equivariant) which use fewer free parameters than

the standard conv layer.

Special Invariant Layers

Beyond tying weights, specialized layers can help to achieve invariance. We have already

seen pooling functions in CNNs that facilitate local translation invariance. Recent works

have proposed new pooling operations for CNNs to achieve a wider scope of invariances [20],

[158], [159]. Instance normalization is an averaging method proposed to improve contrast

invariance in image stylization [160]. Pyramidal layers have been proposed to improve scale

invariance in computer vision tasks [161], [162]. More generally, an entire literature exists

on spiking neurons, which rethink the operations and training procedure of artificial neural

networks, and some of their promise has been linked to shift-invariant and scale-invariant

properties [163]–[165]. Interestingly, pooling operations have also appeared outside of neural

networks; the symmetrized kernel, which bears similarity to the Janossy pooling frame-

work [145], is a group-invariant kernel. We will see that specialized architectures are popular

in modeling graphs and sets.

Variations on Training Strategies

Another approach to training approximately invariant models is to modify the train-

ing strategy instead of the model architecture. Unlike weight sharing, these methods do

not enforce exact invariance. Rather, they encourage models to be less sensitive to given

transformations [9], but have been used successfully to improve the performance of neural

networks. The following have close parallels to Janossy pooling.

34

Data augmentation [16] is considered one of the simplest approaches [19] and is still

quite effective [166]. To learn models whose predictions are less sensitive to some class

of transformations, we apply those transformations to inputs in the training data (without

changing the target) and train in the usual way. For example, rotating images in the training

data can be used to promote rotation invariance. Empirically, training with data augmen-

tation can lead to models that are “more invariant” and improve generalization [17], [167].

However, Lyle, Wilk, Kwiatkowska, et al. [9] point out that data augmentation may only re-

duce transformation sensitivity over in-distribution, but not out-of-distribution, data. There

have been variations of data augmentation. For instance, claiming that data augmentation

still models nuisance variation, Laptev, Savinov, Buhmann, et al. [166] apply multiple trans-

formations to the same input, pass each through the model, and predict the elementwise

maximum of the output vectors.

TangentProp [15] is motivated by the observation that if the true function is invariant

to some transformation, then its directional derivatives are zero along the direction of the

transformation. Accordingly, TangentProp penalizes the norm of the directional derivatives

during optimization. In particular, let x ∈ Rp and si : Rp × Ωi → Rp, i = 1, . . . ,m be

m ∈ Z≥1 transformations of an input x. For example, s(·, ω) may rotate a vector by angle

ω ∈ [0, 2π).11
 To be clear, the quantities ω are not parameters to be estimated, but instead

describe transformations of the input. Then, the TangentProp penalty term is

m∑
i=1

∥∥∥∥f ′(x) · ∂si(x, ω)
∂ω

∣∣∣
ω=0

∥∥∥∥2

2
, (2.4)

where f is the neural network model, f ′(x) is the Jacobian (or gradient) of f with respect

to its input, and ·|ω=0 denotes the quantity evaluated at ω = 0. The tangent vectors are

approximated by finite differences. Interestingly, the authors invoke group theory [168] to ar-

gue that invariance to m directional derivatives will induce invariance to linear combinations

thereof. The authors argue that TangentProp is more data efficient than data augmentation

since, in the case of data augmentation, transformed inputs are highly correlated with the

originals. This method is part of a wider class of approaches that invoke the manifold hy-
11Some operations, such as rotations of digital images, need to be smoothed [15].

35

pothesis. It is thought that data points from a similar class concentrate close together on a

lower-dimensional manifold of the data, and penalizing tangent vectors prevents the function

from assigning different classes to those data [24].

Strengths and Weaknesses

Weight sharing can mitigate overfitting, improve sample complexity, and tighten gen-

eralization bounds by reducing the number of parameters [9], [22], [85], [135], [169]–[171].

VC theory [85], [169], [172], [173] provides insights into this general result and in particular

some of the weight sharing schemes for sets and graphs, despite its possible limitations to

studying general neural networks.12
 Weight sharing reduces the hypothesis space (for a fixed

architecture), thereby the VC dimension, and consequently the sample size needed to fit the

model. The assumption of invariances implies a partition of the input space X into sets

orbit(x) = {g · x : g ∈ G} for x ∈ X , where G is a group acting on X ; a coarser partition

implies a greater reduction in VC dimension. It is interesting to point out that reducing

the input space is a motivation for symmetrized kernels, which average over the action of a

group, an approach similar to Janossy pooling [145].

Weight sharing and convolutions can be considered as placing an “infinitely strong prior”

on the parameters of an MLP that forces the model to respect desired invariances. In the

context of Convolutional Neural Networks, Goodfellow, Bengio, and Courville [24] write:

“This infinitely strong prior says that the weights for one hidden unit must be identical to

the weights of its neighbor but shifted in space.” We know that a strong prior, when appro-

priate for the problem, effectively increases the sample size and affects better inference [175].

However, just as poorly specified priors inhibit accurate inference, strictly enforcing invari-

ances will hurt predictive performance when the true task does not exhibit those invariances.

Indeed, this motivates some approaches that try to “learn” the correct type or extent of in-

variance from the data [176]–[180]. Other examples in which incorrectly enforcing invariance

hurts performance are discussed in [181], [182].
12There has been some recent progress in studying the VC dimension of neural networks [174].

36

Many invariant models are universal approximators among “true” functions respecting

those invariances [58], [68], [69], [149], [183]–[186]. However, some invoke constructions that

are not practical, as is the case, for example, in [149], [183] (cf. [187]).

There are a plethora of examples demonstrating that data augmentation can improve

generalization performance, as described in [24], [188] and references therein. It can be

applied generally and does not confine modelers to using predefined architectures to achieve

invariance. One interesting theoretical justification is that data augmentation provides lower-

variance estimates of an augmented risk and its gradients, compared to the estimates of risk

from “standard” training, if the group of invariances is small enough to feasibly apply all

transformations during training [9]. However, if the group of transformations is large (i.e.,

continuous or a large discrete set) then the variance in the risk estimation could overwhelm

this benefit. Additionally, this approach may be inefficient due to correlations between

the original image and its transformations, as well as the added overhead [15]. To the

best of the author’s knowledge, most of the community’s understanding of the benefits of

data augmentation and the merits of its various forms are driven by empirical rather than

theoretical work (cf. [188]).

2.2.4 Inductive Biases and Extrapolation

We will conclude this section by briefly discussing benefits that invariances may furnish

to good extrapolation performance. Humans do not require observing cars at all angles,

forms of ambient lighting, colors, etc. in order to recognize a car in the future. Humans can

extrapolate. In contrast, many existing approaches suffer from what Mouli and Ribeiro [179]

call an “unseen-is-underspecified” hypothesis. It is believed that intelligent beings exploit

symmetries in their mental representations, pointing towards the need for invariant models

[50], [179]. Anselmi, Leibo, Rosasco, et al. [170] write that “[this is] is supported by previous

theoretical work showing that almost all the complexity in recognition tasks is often due

to the viewpoint and illumination nuisances that swamp the intrinsic characteristics of the

object”, citing in particular [189]. The review paper by Battaglia, Hamrick, Bapst, et al.

[50] argues – among other points – that the community should encode inductive biases into

models, which refers broadly to techniques and architectures that “bias” towards estimating

37

invariant models.13
 Interestingly, they argue that models of graphs, which capture relation-

ships among entities, will be a key methodology going forward. Mouli and Ribeiro [179]

advance a framework that improves extrapolation performance by leveraging invariances.

Along a slightly different direction, Arjovsky, Bottou, Gulrajani, et al. [190] propose a new

paradigm that enforces invariance across different training environments to improve gener-

alization and extrapolation capabilities. Additional literature on the role of invariances in

extrapolations can be found in [191] and the references therein.

13In this usage, bias refers to neither the “intercept” term in neural networks nor the usual statistical
definition of “bias” when describing estimators.

38

3. GRAPHS AND SETS

With the broader context of invariances and neural networks established, we introduce neural

network approaches for graph and set data. The reader may find the review of such literature

slightly disjointed, which in fact highlights a major contribution of Janossy pooling (JP);

JP provides a theoretical and methodological framework applicable to both. Of course,

there are unavoidable nuances of both data types, which we will highlight. We focus on

supervised learning tasks, undirected graphs, and joint permutation invariance (as opposed

to separate permutation invariance) to simplify the discussion. Extensions will be deferred

to Section 4.3 .

3.1 Permutation Invariance in Graphs and Sets

We begin by illustrating the appropriate invariance for graphs and sets and treating

the nuances of both. Then we introduce a unified notation for discussing both abstractly.

Specifically, we will ultimately write x for either sets or graphs and π · x for permutations

thereof.

3.1.1 Motivation and Basic Definitions

There are two common properties between graphs and sets. Models thereof are often

permutation-invariant, and datasets can contain variable-size inputs.1

By definition, sets do not have order: {1, 2, 3} = {3, 2, 1} = {2, 1, 3}. However, to store

a set on a computer, we cannot escape assigning some ordering. Thus, we say that sets

are stored (i.e., encoded2
) as sequences, using the term “sequence” rather than “vector” to

highlight their variable-size nature. Concretely, two valid encodings of the set {1, 2, 3} are

(1, 2, 3) and (2, 3, 1) yet (1, 2, 3) 6= (2, 3, 1). To encode a dataset of N sets where the longest

has length p, we can specify some ordering for each and create a matrixX ∈ RN×p. Sequences

shorter than p are padded with a special character, as is typical in the field. Whenever we
1In graph theory, size refers to the number of edges and order the number of vertices. However, it would
be terribly confusing to refer to graph order in the context of invariances, so we follow the convention in the
literature and write size as the number of vertices.
2“Encode” here is unrelated to its appearance in “autoencoder”, and is chosen to avoid the special word
“representation”.

39

write X, we implicitly suppose some arbitrary ordering has been chosen. Once the sets have

been encoded as a matrix, we may be tempted to pass X to an MLP (Equation 2.1) and

inherit its automatic feature engineering and universal approximation capabilities, but we

know that this would fail to leverage the theoretical and empirical benefits of invariant models

(Chapter 2). Rather, our models should respect the invariance inherent in the problem; all

permutations of the input set should yield the same prediction.

A graph G = (V , E) is a pair containing a vertex set V and an edge set E ⊆ V × V .3

For simplicity, we assume graphs are undirected: (u, v) ∈ E ⇐⇒ (v, u) ∈ E . Figure 3.1

shows an example of encoding a graph. First we order (i.e., label) the vertices, then create

an adjacency matrix. An adjacency matrix is a square matrix s.t. (A)(u,v) = 1 if (u, v) ∈ E

and (A)(u,v) = 0 otherwise. There are multiple valid orderings, leading to possibly different

adjacency matrices, so the encoding is ambiguous.

Remark 3 The encoding of sets and graphs is ambiguous, with n! possible orderings. These

reorderings are permutations, so graph and set models should be permutation-invariant. An

imprecise (for now) but intuitive condition we would like to satisfy is: if x is any set or graph

then f(π · x) = f(x) for any permutation π. To be precise, we define π · x on both sets and

graphs. A summary without group theory is provided in Section 3.1.4 .

To better formalize this, we will need to introduce notation.

Definition 7 We use colon notation to facilitate indexing matrices and tensors. Given

integers a, b such that b > a, we write a : b = (a, a+1, . . . , b−1, b). The notation a : denotes

(a, a+ 1, . . . , n) where n ≥ a is the total number of possible values in the given axis. Simply

writing : denotes all entries for the given axis. Indexing starts at 1 and the bounds a, b are

always included.

3.1.2 Definitions for and Nuances of Graphs

In most graph applications, we do not use solely the adjacency matrix, which only cap-

tures relationships between entities (i.e., topological information). In applications, graphs
3G denotes a group and G denotes a graph.

40

Figure 3.1. Graphs and Orderings. (a) An example of an abstract graph.
(b) and (c) show two equally valid orderings thereof, by drawing numbers in
V = {1, . . . , 5} on the vertices. The two ordered graphs differ by a swap of
vertices “4” and “5”. (d) and (e) show the corresponding adjacency matrices.
Notice that these matrices are not equivalent, and we have highlighted an
element in row 4 where they differ.

41

also contain vertex- and edge-level information. An example lies in using graphs to predict

molecular properties [40], [41], [44], [192]. Figure 3.2 shows a simple example encoding a

molecule, using feature vectors to capture atom type and the number of bonds (single, dou-

ble, etc.). In practice, one may encode many additional vertex- and edge-level features, such

as charge and aromaticity [193].

Accordingly, we encode a graph of size n with a vertex feature matrix F ∈ Rn×dv , dv ≥ 1,

and an adjacency tensor A ∈ Rn×n×de , de ≥ 1. Let π : V → {1, . . . , n} denote an ordering

and define (F)π(v),: to be the vector of vertex features associated with vertex v. If the raw

data do not provide vertex features, it is common to precompute simple graph statistics for

each vertex or simply let F = (1, . . . , 1)T [56], [194]. Thus, the vertex feature dimension

always satisfies dv ≥ 1. Next, for every pair (u, v) ∈ V , we define (A)π(u),π(v),1 = 1 if (u, v) ∈ E

and (A)π(u),π(v),1 = 0 otherwise, so the first frontal slice of A encodes the usual adjacency

matrix. The remaining dimensions (A)π(u),π(v),2: contain any additional edge features such

as bond type and distance.4 Notice that de ≥ 1. Henceforth we simply write A and F and

implicitly assume an ordering has been defined. This does not imply the ordering is the

“true” ordering.

Molecules have varying numbers of atoms, so datasets contain variable-size graphs. How-

ever, the feature dimensions (e.g., dv) do not typically vary from graph to graph. All defini-

tions below apply to variable-size graphs.

Definition 8 A graph data input of arbitrary size n ∈ Z≥1 with dv ∈ Z≥1 dimensional

vertex features and de ∈ Z≥1 dimensional edge features is a pair G = (A,F) of an adjacency

tensor A ∈ Rn×n×de and vertex feature matrix F ∈ Rn×dv . We may also write x = (A,F)

to unify treatment with sets. It is understood that some arbitrary ordering was specified to

define the rows of F and A. |G| denotes the number of vertices in the graph.

We saw in Figure 3.1 and Remark 3 that graph models should be permutation-invariant.

To make this precise, we define the action of the symmetric group Sn on the set of all graphs

with features. Intuitively, different orderings result in permutations of the rows (but not the

columns) of F and of the first two modes of A. Vertex/edge feature vectors (e.g., columns of
4Please refer to Definition 7 for the meaning of colon notation.

42

(a) Molecule

H C

H

H

C

H

O

(c) Vertex Feature Matrix

(b) Graph with Features

F1,:

F2,:

F3,:

F5,:F4,:

F6,:

F7,:

A1,2,:

A1,5,:

A1,4,:

A1,3,:

A5,6,:

A
5,7,:

(d) Part of Adjacency Tensor

F =

(C) 1 0 0
(H) 0 1 0
(H) 0 1 0
(H) 0 1 0
(C) 1 0 0
(O) 0 0 1
(H) 0 1 0

0 1 1
1 0 0
1 0 0

0 2 1
2 0 0
1 0 0

A5:7,5:7,: =

Figure 3.2. Encoding a Graph with Features. (a) displays a molecule and (b)
illustrates at a high-level a corresponding graph with features, for some vertex
ordering indicated by the first index of F . The layout of the drawing mimics
that of the molecule to ease understanding, but in general the positions of
vertices on the page carry no meaning. We can see that vertices encode atoms
and edges encode bonds. While in reality each pair of vertices corresponds to a
fiber of the tensor A, regardless of whether an edge is present, we only draw A
on the edges to avoid clutter. (c) shows that atom types are encoded by one-hot
vectors in rows Fv,:, where v ∈ {1, 2, . . . , 7} is the index associated with a vertex
in the ordering. For example, (F)1,: = (F)5,: = (1, 0, 0) represents carbon
and (F)6,: = (0, 0, 1) represents oxygen. (d) Each pair (v, u) ∈ {1, . . . , 7}2 is
associated with a vector (A)v,u,: where (A)v,u,1 indicates absence/presence of
an edge and (A)v,u,2: holds additional edge features (not shown). We show
only a sub-tensor of A, for space considerations, corresponding to vertices 5,
6, and 7 (Carbon, Oxygen, and Hydrogen on the right). The closer slice with
shaded cells is the submatrix of the standard adjacency matrix for the selected
vertices, with 1 denoting edge presence. The farther slice indicates whether
the bond, if present, is single or double; for purely illustrative purposes, we
use a “continuous” variable to count the number of edges as opposed to a one-
hot encoding for single-, double-, and triple-bonds. We write this graph as
G = (A,F) where A is 7× 7× 2 and F is as shown.

43

F) are never permuted. We decide in advance which coordinates of the vectors correspond

to which features, as we would with linear regression, and it does not depend on the vertex

ordering.

Definition 9 Fix n, dv, de ∈ Z≥1 and denote by Gn,dv ,de =
{

(A,F) : A ∈ Rn×n×de ,F ∈

Rn×dv

}
all graphs with n vertices of given feature dimensions. The set of variable-size graphs

is Gdv ,de = ⋃
n∈Z≥1 Gn,dv ,de. With a slight abuse of notation, we define the action of the

symmetric group Sn on Gdv ,de as

π · G def= (π ·A, π · F), for any G = (A,F) ∈ Gdv ,de and π ∈ S|G|,

where the operation π ·A is applying the action on Rn×n×de and π · F the action on Rn×dv

defined in Section 2.2.2 (see Equation 2.3). Notice that, by definition, this action does not

permute the last dimension corresponding to vertex and edge features.

This definition satisfies the conditions of a group action. We say that two graphs G1,G2

are isomorphic if there exists some π ∈ S|G| such that π·G1 = G2. We say π is an isomorphism.

Definition 10 (Graph permutation invariance and equivariance) Let dv, de ∈ Z≥1

be arbitrary feature vector dimensions and Y be a task-appropriate target space. We say a

function f : Gdv ,de → Y is permutation-invariant or isomorphism-invariant if for all x =

G ∈ Gdv ,de,

f(π · x) = f(x),

where we write graphs as x to help unify notation for sets and graphs. A similar definition

exists for equivariance (see Definition 5 with G the symmetric group).

Example 1 (Permutation-sensitive graph function) Define f : Gdv ,de → R by f(G) =

f(A,F) = ∑|G|
j=1(A)1,j,1. This is the sum of the first row of the adjacency matrix, or the

degree of the “first” vertex in some implicit ordering. This is not a permutation-invariant

function since different vertices typically have different degrees. Thus, the value of the func-

tion depends on whichever vertex is first in the ordering.

The following example is important for Message Passing Graph Neural Networks.

44

Example 2 (Permutation-invariant graph function) Suppose dv = de = 1, so that

the adjacency tensor reduces to an adjacency matrix A, and F is a column vector. Define

the function f(G) = f(A,F) = AF . We will show that this is a permutation-equivariant

function. Written in terms of permutation matrices (Definition 6), the permutation of a

graph (A,F) is carried out as (PAP T,PF). By Fact 2 , we can write

f(PAP T,PF) = (PAP T)(PF) = PAF = P f(A,F),

for any |G|×|G| permutation matrix. In other words, f(π ·G) = π ·f(G), so f is permutation-

equivariant. Now, if g is any permutation-invariant function such as sum or max, then g ◦ f

is a permutation-invariant graph function.

Remark 4 In Example 2 , the function AF computes the sum over vertex neighborhoods.

In an undirected graph with vertex set V and edge set E, the neighborhood N (v) = {u ∈

V : (u, v) ∈ E} of v is the set of vertices connected to v by an edge. This example suggests

that we can construct permutation-invariant or -equivariant functions of graphs by defining

permutation-invariant functions of vertex neighborhoods; the function should be permutation-

invariant as the neighborhood set will be encoded as a sequence whose order depends on the

vertex ordering. The action of permutations π · G changes the order in which neighboring

vertices are “visited”.

3.1.3 Definitions for and Nuances of Sets

Set data contain a variable number of elements of arbitrary complexity and the ordering

does not matter. Mathematically, sets should not contain duplicates. However, consistent

with the literature and for brevity, we will write set instead of multiset even when duplicates

are present. Existing methods like DeepSets [26] can process multisets,5 as can Janossy

pooling.

A classic set task is point cloud classification [25]–[28] where an object (e.g., a chair or

table) is depicted by a set of three dimensional coordinates tracing out the object, as in

Figure 3.3 . Clearly, reordering the same points (in computer storage) without changing the
5While some proofs in the DeepSets paper assumed sets, later works extended it to multisets.

45

Figure 3.3. Example Set Data: a Point Cloud. This point cloud is a set of
three dimensional coordinates {(xi, yi, zi)}ni=1 tracing out an object. We would
encode this set by pre-specifying some ordering and arranging the coordinates
as vectors in a matrix S ∈ Rn×3. The point cloud shown is from Meng, Yang,
Ribeiro, et al. [27].

coordinates does not change the shape of the object in question. Moreover, point clouds are

often subsampled prior to analysis, adding additional ambiguity to their ordering. Another

example set task is in multiple instance learning for high resolution medical images. To

overcome the sheer size of these images, modelers break them into sets of image patches and

predict whether the set of patches represents a healthy or afflicted patient [32]–[34].

Abstractly, a set of vectors with some implicit ordering is a sequence (x(1), . . . ,x(n)), for

x(i) ∈ Rds and some ds ≥ 1, that we encode as a matrix S ∈ Rn×ds such that (S)i,: = x(i).

In practice, we are not limited to modeling sets of vectors and can process sets of images or

other structures. However, it is more convenient to write elements as vectors. Theoretically,

we can suppose images are vectorized, and similarly for other data types.

To define the action of the symmetric group on set data, let ds ∈ Z≥1, and Sn,ds = Rn×ds

denote the set of all sequences of length n whose vectors are of dimension ds. Let Sds =⋃
n Sn,ds denote variable-length inputs. For S ∈ Sn,ds , we will write |S| as its number of

rows, equally the cardinality of the set being encoded. The action of the symmetric group

on Sn,ds is the one defined in Section 2.2.2 and Equation 2.3 . That is, π · S permutes the

rows of S according to π ∈ S|S|. We may also write x = S ∈ Sds to unify with graphs. Now

we can define a permutation-invariant and permutation-equivariant set function.

Definition 11 Given a set task with appropriate target space Y and feature dimension ds ≥

1, let f : Sds → Y be a function over variable sized sets. f is permutation-invariant if for

46

Table 3.1. Non Group-theoretic Summary. We show the encoding and
describe the permutation action for sets and graphs.

Input Type Encoding Permutation
Set, size n x=S∈Rn×ds Permute the rows of S

Graph, size n x=G=(A,F)∈Gn,dv ,de Permute first/second mode of A and rows of F

any n ∈ Z≥1, it is G-invariant to the action of group G = Sn on Sn,ds = Rn×ds defined in

Equation 2.3 . Permutation equivariance is defined similarly.

Remark 5 To simplify exposition, we have considered the input set S to be an encoding of

the “raw” input data, but this need not be the case. We can also use learnable permutation-

invariant layers on sets of hidden representations in a broader neural network architecture.

One eminently important example is in Message Passing Graph Neural Networks (described

below).

3.1.4 Summary Without Group-Theoretic Terms

A summary of the encodings and permutations of sets/graphs is provided in Table 3.1 .

When discussing a framework in which the input can be a set or a graph (as in Janossy

pooling), we will write x to denote either.

Pairwise information in a graph is encoded in a 3-mode tensor A. The first two modes of

A correspond to vertices and the third to feature vectors for pairs thereof. Vertex attributes

are encoded in a matrix F whose rows are vertex features. Thus, reordering a graph permutes

the first two modes of A and the rows of F .

Set inputs with vector elements are encoded as a matrix, with elements stored as rows.

Permuting a set thus permutes the rows of this matrix. To ease notation, more abstract

objects like images are assumed to be vectorized, although in practice this need not be the

case.

47

3.2 Existing Work

Having introduced graphs and sets as well as the importance of permutation invariance,

we turn to existing work. In particular, we expose key contributions of JP, which (1) pro-

vides a unified theoretical framework for models of graphs and sets, (2) generalizes existing

methods, (3) improves the expressiveness of state-of-the-art graph models, and (4) improves

finite-sample learning for sets.

3.2.1 Methods Applicable to Both Graphs and Sets

Two methods, ordering data and weight sharing, are broadly applicable to graphs and

sets.

Ordering the Graph or Set

One approach is to define a canonical ordering and reorder graphs or sets accordingly

before passing to permutation-sensitive layers. This renders the original arbitrary ordering

irrelevant. Typically, the canonical reordering function does not contain learnable parame-

ters, an example being sorting by some characteristic. Niepert, Ahmed, and Kutzkov [75]

propose to sort vertices in a graph by some user-specified vertex statistic like betweenness

centrality before passing to a specially designed architecture. Montavon, Hansen, Fazli, et

al. [195] sort molecules according to the norms of the vertex features.

A canonical ordering is only useful if it is relevant to the task at hand; unwittingly sorting

by some characteristic orthogonal to the task could result in failure. Concretely, Moore and

Neville [55] observed that ordering vertices by Personalized Page Rank [196], [197] ultimately

resulted in lower accuracy than simply randomizing the ordering.

Rather than predefining a canonical order, one can try to learn an ordering. PointCNN [76]

uses an MLP (Equation 2.1) to learn a special vector that is used to orient a point cloud

“like an image” which is then passed to convolutional layers. Mena, Belanger, Linder-

man, et al. [198] propose to incorporate permutations of the input into the architecture

and optimize them during end-to-end training by way of a differentiable tempered Sinkhorn

operator. Building on this, Zhang, Hare, and Prügel-Bennett [199] propose a Permutation-

48

Optimization module that better incorporates pairwise interactions in a set. Note that

permutation matrices are discrete but the elements of the learned matrices are parameters

in R, so these methods each propose additional steps to recover an actual permutation of the

input. For instance, a “proper” permutation matrix is recovered when the temperature of

the Sinkhorn approaches zero. Another approach is used in NeuralSort [5] where changes in

the training scheme allow a simple row-wise argmax to provably recover a permutation ma-

trix. These were inspired by Vinyals, Bengio, and Kudlur [77], who use ancestral sampling

to sample permutations that optimize performance in an otherwise permutation-sensitive

architecture. Overall, we are unaware of a careful theoretical or empirical exploration of

heuristics such as those used in [77]. Consequently, it is difficult to apply in new tasks.

Finally, in another direction, Linderman, Mena, Cooper, et al. [200] use variational inference

and the reparameterization trick [201], [202] to estimate optimal permutations of the input

data. The authors apply the method to a Bayesian regression analysis where the ordering of

the predictors {x1, . . . , xp} is unknown due to measurement ambiguity. Interestingly, many

of these methods invoke continuous relaxations to enable SGD optimization over a discrete

object, the permutation matrix, which we return to in Chapter 5 .

Optimizing permutations is rooted in a different philosophy than training (approximately)

invariant models. Fundamentally, as described in Chapter 2 , modelers choose invariant

architectures or training schemes to achieve better generalization (or even extrapolation)

capabilities, often believing that the ordering is simply nuisance variation. In contrast,

learning a permutation assumes that some permutations are more advantageous than others

given some architecture and task. We discuss this more in Chapter 5 .

Weight Sharing and Beyond

Broadly, the weight sharing approaches discussed in Chapter 2 can be used for sets

and graphs (e.g., [18], [19], [154], [157]). However, an affine layer (see Equation 2.1) is

permutation-equivariant if and only if its weight matrix takes the form θI + ϑ11T for pa-

rameters θ, ϑ ∈ R, where I is the identity matrix and 11T is the matrix where every element

is 1 [19], [26]. In particular, there are only two free parameters. This is related to our discus-

sion in Section 2.2.3 ; the sheer size of the symmetric group restricts the degrees of freedom.

49

Recently, Haan, Cohen, and Welling [203] argue to rethink permutation equivariance in fa-

vor of a new paradigm that is more flexible. While exciting, it is beyond the scope of this

dissertation.

3.2.2 Existing Graph-Focused Approaches

We focus our discussion on neural network models for graph data. A brief discussion of

graph kernels is provided in Section 2.1.2 .

Message Passing Graph Neural Networks

Graph Neural Networks with message passing form one of the most popular classes of

methods [40], [44], [45], [56], [63]–[67]. These were developed in different communities and

with different approaches: convolutional signal-processing approaches, probabilistic models,

and the Weisfeiler-Lehman test. In [132], William Hamilton writes: “the convergence of

these three disparate areas into a single algorithm framework is remarkable”. Despite their

disparate theoretical underpinnings, the practical methods are so similar that it is possible

to implement methods from all three perspectives into one common software framework, an

example being PyTorch Geometric [204]–[206]. While each perspective has a rich literature

and a clear impact on researchers’ motivations (cf. [56], [66]), the best exposition of Janossy

pooling comes from treating them as one.

Recall that Example 2 and Remark 4 suggest that permutation-invariant graph functions

can be built by constructing permutation-invariant functions of neighborhoods. This is the

approach of Message Passing Graph Neural Networks (MPGNNs). In particular, suppose

G = (A,F) is an input data graph (in some implicit ordering). Let V = {1, 2, . . . , |G|}

denote its vertices, E its edges, and N (v) = {u ∈ V : (u, v) ∈ E} denote the neighborhood of

v ∈ V . Putting aside edge attributes momentarily, a general MPGNN initializes H(0) = F

and computes the following recursion for all vertices v ∈ V , for layers l = 1, . . . , L:

H(l)
v,: = g

H(l−1)
v,: , f

((
H(l−1)

u,:

)
u∈N (v)

; Θ(l)
f

)
; Θ(l)

g

, (3.1)

50

where g(·, ·; Θ(l)
g) is a nonlinear function with learnable parameters Θ(l)

g that are typically

distinct at each layer l, f(·; Θ(l)
f) is a permutation-invariant learnable function of variable-

length inputs called the aggregator, and
(
H(l−1)

u,:

)
u∈N (v)

denotes the sequence of (hidden or

visible) features in the neighborhood of v at layer l. Notice that the features of a vertex v ∈ V

constitute one argument of g and the aggregated features as a second, thus treating “self”

features specially. Ultimately, this yields hidden representation matrices H(l) ∈ R|G|×dl ,

l = 1, . . . , L (whose column dimensions are hyperparameters). To map these to a single

prediction of the entire graph, we may apply a permutation-invariant readout over the rows

of H(L), obtaining a prediction r(H(L)) = r
(
(H(L)

1,: ,H
(L)
2,: , . . . ,H

(L)
|G|,:)

)
. A common example

is summation, r(H(L)) = 1TH(L) = ∑|G|
v=1H

(L)
v,: . It is also common to apply the readout

to all intermediate layers, r(F on H(1) on · · · on H(L)) where on: Rm×p × Rm×q → Rm×(p+q)

denotes concatenating the rows of two matrices [207]. We ensure that the entire GNN is

(sub)differentiable in its parameters so that the function can be learned “end-to-end”. Finally,

note that in practice MPGNNs can be computed with matrix multiplications: Example 2

shows a simple case.

A popular MPGNN is the Graph Isomorphism Network (GIN) [56] which defines g(a, b; Θ(l)
g) =

MLP(a+ b; Θ(l)
g) and f as a summation without parameters. In particular, one variation of

GIN defines the recursion

H(l)
v,: = MLP

H(l−1)
v,: +

∑
u∈N (v)

H(l−1)
u,: ; Θ(l)

g

 (3.2)

and uses summation for the readout r(F on H(1) on . . . on H(L)). There is also a variation

of GIN that premultiplies H(l−1)
v,: with (1 + ϑ(l)), for learnable scalars ϑ(l). Our experiments

use the version of GIN with these ϑ terms.

To model edge features, a general approach is to introduce the edge feature vectors

(Av,u,2:)u∈N (v) as input to the aggregator f . Examples that appear in the literature are

described in [8]. Additional variations use attention mechanisms [64] and incorporate neigh-

borhood size in the function f [63]. In general, any learnable permutation-invariant function

of variable-length inputs can be used as the aggregator. Janossy pooling serves as a general-

purpose approach to learning the aggregator, and our experiments show that it can improve

51

upon existing methods. Interestingly, along a different direction, Chen, Bian, and Sun [194]

demonstrate that learning a set function on the vertex features, ignoring graph structure,

can sometimes achieve decent performance. The authors argue for using this approach as a

simple baseline.

Limitations and the WL Test. Message Passing Graph Neural Networks (MPGNNs)

do not enjoy universal approximation guarantees. There are pairs of nonisomorphic graphs

that MPGNNs cannot distinguish; that is, there exist graphs G1,G2 such that π · G1 6= G2 for

all permutations π ∈ S|G1| yet MPGNN(G1;Θ) = MPGNN(G2; Θ) for any Message Passing

GNN and any parameters Θ. Consequently, any true permutation-invariant function of

graph data % such that %(G1) 6= %(G2) cannot be approximated by any MPGNN. This was

demonstrated by the parallel works of Xu, Hu, Leskovec, et al. [56] and Morris, Ritzert, Fey,

et al. [208].

Specifically, MPGNNs cannot distinguish pairs of nonisomorphic featureless graphs that

the Weisfeiler-Lehman (WL) graph isomorphism testing heuristic (also known as color re-

finement) [209]–[211] cannot distinguish.6 Intuitively, this follows from the fact that the

WL test follows the same recursion as Equation 3.1 , replacing a learnable neural network

layer with an injective “hash” function. This “hash” is designed specifically to distinguish

graphs, so learnable layers in an MPGNN cannot perform better in this regard. Hence,

we say “MPGNNs are no more powerful than the WL test”. Indeed, sometimes GNNs in

Equation 3.1 are called WLGNNs to highlight the parallel, but this has become increasingly

confusing as new researchers suggest new methods related to the k-dimensional higher-order

versions of the Weisfeiler-Lehman test (WL[k]) [6], [208], [212].

Several papers propose solutions to this limitation. For example, models that use high-

order tensors can achieve universality but are computationally intractable [149], [187], [213].

In contrast, the Janossy pooling framework provides simple and effective strategies to make

MPGNNs more powerful.
6There are “higher-order” WL algorithms and different variants. When we write WL, we refer to color
refinement, which is described in the text.

52

Other Noteworthy Graph-Focused Literature

There is an abundance of work aiming to improve different aspects of GNNs; compre-

hensive reviews are provided in [214], [215]. Many are not our focus, but JP can incorporate

several of the ideas directly. Rather than summarize the entire literature, we briefly sum-

marize a few interesting directions. Several papers explain that using too many recursion

layers (“deep” MPGNNs) can actually result in loss of information [216]–[218] and some

solutions are described in [207], [219]. Indeed, GRAPH-BERT, a new neural network on

graphs, cites this depth problem as a motivation [220]. We had made some theoretical

progress towards a description of this phenomenon but others published before we did. Hy-

perbolic message passing was designed to better capture graph structure [221], [222]. Some

works aim to make GNNs faster, perhaps a leading factor in the widespread adoption of

new methods [223], [224]. These include Hierarchical Aggregation, which reduces redundant

calculations in GNN architectures; clever neighborhood sampling that reduces the compu-

tational burden of aggregation while keeping variance low [45], [225]; and using a linear

model rather than a neural network as a simple and fast baseline that can achieve adequate

performance on some tasks [226].

Convolution, a fundamental operation in invariances, has been generalized to the graph

domain [63], [133], [227]–[229]. These treat the vertex feature matrix F as a graph signal and

proceed by the graph Fourier transform. Exact convolutions are computationally intensive

and require approximations that effectively become recursive functions of the adjacency

matrix (i.e., MPGNNs) [63], [66]. Moreover, the proper convolutions are not suited for

graph-wide classification/regression tasks (only vertex-level tasks on one graph).

3.2.3 Existing Set-Focused Literature

Permutation-invariant models for set data (encoded as sequences) take a few broad ap-

proaches.

53

Pooling in Latent Space

We have seen that pooling is a common operation in invariant models. Pooling in latent

space has been one of the most popular neural network models for sets, including applica-

tions in controlling drone swarms [35], reinforcement learning with natural language [230],

detecting cancerous regions in histopathology images [34], and point clouds [25], [26]. This

approach became popular when Zaheer, Kottur, Ravanbakhsh, et al. [26] and Qi, Su, Mo,

et al. [25] described the method, demonstrated its empirical success, and characterized its

universality properties. The idea is to (1) map every vector in a set to a hidden space with

neural network layers, (2) apply a simple symmetric function such as summation, and (3)

pass the resulting vector through another neural network to obtain a prediction. Formally,

as in Definition 11 , let ds ∈ Z≥1 be a fixed vector dimension,7 Y denote the target space,

and Sds = ⋃
n∈Z≥1 Sn,ds = ⋃

n∈Z≥1 R
n×ds be the space of input sets – encoded as sequences of

vectors (i.e., matrices). Recall from Remark 5 that S can also denote a set of hidden outputs

in some broader neural network architecture. Then, the DeepSets [26] model f : Sds → Y

is defined by

f(S) = r
((|S|∑

i=1
g
(
Si,:; Θg

))
; Θr

)
, ∀S ∈ Sds , (3.3)

where g(·; Θg) : Rds → Rdh is a learnable mapping with parameters Θg, dh is a hyperpa-

rameter, and r(·; Θr) : Rdh → Y is another learnable mapping to the target space. The

function g can be an MLP like Equation 2.1 or other appropriate neural network layers.

We ensure that f is (sub)differentiable in its parameters so that all the parameters can be

trained end-to-end. PointNet of Qi, Su, Mo, et al. [25] replaces summation with max and

Ilse, Tomczak, and Welling [34] add attention mechanisms to affect a weighted summation.

Learnable Aggregation Functions [231] is a family of aggregation functions (including sum

and max) and that provides the flexibility to learn the most appropriate aggregation func-

tion. Indeed, numerous differentiable/learnable pooling functions on the latent space (i.e.,

after g) have been proposed [29], [34], [232], [233], but summation and maximum have been

the most common in practice.
7We reiterate that DeepSets can handle arbitrary vector dimensions, and fixing the dimension is analogous
to assuming a fixed number p of covariates in linear regression. The number of vectors in the input set may
vary.

54

Latent space pooling methods like DeepSets and PointNet are universal approximators

of set functions under fairly general assumptions [25], [26], [57]–[59]. However, we know that

mathematical universality guarantees do not always ensure good real-world performance

(cf. Chapter 2). The forms of g and r in Equation 3.3 must often be very complex or

discontinuous, the number of parameters must grow with the cardinality of the set, and

these approaches struggle to handle tasks where inputs are variable-length [62], [231]. Thus,

it is difficult to find the correct parameters of the model through standard optimization

routines.

Moreover, latent space pooling reduces all latent representations g(Si,:) into a single

vector via a simple function such as summation. This can present challenges in capturing

the relationships between elements in the input set. Consider learning the range of a set of

scalars, range(S) = maxi(Si,:) − mini(Si,:), ∀S ∈ S1. This requires identifying the largest

and smallest elements – by definition relative concepts – and taking their difference. These

relationships among set elements may be lost in summation, so the outer function r must

somehow capture that lost signal. This can only be achieved by making the output dimension

of g very large or making r complex (not smooth), as supported by the theory in [62]. Our

Janossy pooling paper was an early paper to discuss this issue and propose solutions, but it

was also discussed in narrower contexts at a similar time, (e.g., [60], [234]).

Higher-Order Methods

Whereas the first layer g in latent space pooling takes each individual element of S as

input, other approaches strive to capture relationships among elements in the set more di-

rectly. PointNet++ [235] partitions point clouds into spatial regions and models distances

to regional centroids. This method also uses geodesics to capture intrinsic structure within

a point cloud on a Non-Euclidean space. SetTransformer [60] (inspired by [236]) uses several

permutation-equivariant Multi-head Attention Blocks that each capture pairwise interac-

tions in variable-size inputs. Additional recent approaches leverage self-attention layers to

model point clouds [237], [238]. Relation Network [51] is similar to latent space pooling

(Equation 3.3) but learns representations for pairs of inputs, replacing the input to r with

55

∑
i,j g(Si,:,Sj,:; Θg). Finally, Meng, Yang, Ribeiro, et al. [27] consider sets of sets – where

the “elements” of a set are themselves sets.

Higher-order methods take an important step towards capturing relationships among

elements in the input sequence, which Janossy pooling generalizes. Many of the approaches

discussed above, including Relation Network [51] and SetTransformer [60] are special cases

thereof.

Other Noteworthy Set-Focused Methods

Some authors use Recurrent Neural Networks [93], [94] to process variable-size sets.

However, RNNs are permutation-sensitive models. To overcome this, one approach that

has been used is to randomly permute the input sequence at each iteration [45], [55]. This

approach enjoyed empirical success but lacked the theoretical justification we later provided

in Janossy pooling [54], as discussed in Chapter 4 .

56

4. JANOSSY POOLING FOR INVARIANT MODELS

To preserve permutation invariance in modeling sets and graphs, the literature advances

generic methods applicable to both types of data (weight sharing and ordering) as well as

those specific to each. As discussed, the general methods are limited in their capacity and

modeling flexibility. Yet, we also saw that the set- and graph-specific state-of-the-art mod-

els such as DeepSets and Message Passing Graph Neural Networks face challenges as well.

DeepSets models rely on neural networks with a very large number of parameters to com-

pensate for processing set elements independently, and MPGNNs are unable to express all

permutation-invariant graph functions. The Janossy pooling (JP) framework simultaneously

unifies models for sets and graphs and can overcome limitations of the state-of-the-art meth-

ods specific to each. Moreover, this unified framework provides a new perspective of and

theoretical justification for existing approaches.

A key observation is that JP can be incorporated into graph models in two distinct

ways. First, as a model for variable-length sets, it can be used as a neighborhood aggrega-

tor in MPGNNs (Equation 3.1). Second, we can apply JP to a graph directly to learn a

permutation-invariant representation thereof (see Definition 9). In Murphy, Srinivasan, Rao,

et al. [81], we referred to JP for learning graph representations as relational pooling (RP).

The original motivation for JP came from graph and set data. Thus, most of our dis-

cussion here, which appeared in our publications [54], [81], focus on such data. However,

we will see that JP can be generalized to other invariances and note avenues for future ex-

ploration. First, JP involves a sum over the symmetric group of permutations, but other

transformation sets could be considered. Second, while we mostly focus on the form of

permutation-invariant models for graphs defined in Chapter 3 – joint invariance – we will

also briefly mention possible extensions to separate invariance as well as G equivariance.

Indeed, since publishing, other scholars have advanced new methods based on our ideas and

refined the theory. We will mention these works throughout the discussion.

We begin by introducing the JP framework in the context of invariant neural networks and

explain its ability to improve on existing methods (Section 4.1). Next, since it is computation-

ally expensive to compute full JP, we advance three approximation strategies (Section 4.1.2).

57

Then, we discuss a parallel motivation for JP with the lens of probability (Section 4.2) and

extensions (Section 4.3). We empirically investigate JP and demonstrate its benefits on sev-

eral graph and set tasks in Section 4.4 before concluding with a summary of the impact of

JP on the literature in Section 4.5 .

4.1 Janossy Pooling

It can be challenging to directly specify a permutation-invariant model of variable-length

inputs. By summing over latent representations of the input, pooling in latent space (e.g.,

PointNet, DeepSets [25], [26]) can satisfy both requirements, but presents challenges in esti-

mation. As discussed in Section 3.2.3 , a key problem is that processing inputs individually

loses much of the signal, so highly complex and high-dimensional functions are required to

compensate. MPGNNs invoke set functions on graph neighborhoods but are no more pow-

erful than the WL test and fail to distinguish pairs of nonisomorphic graphs (Section 3.2.2).

We also saw that the size of the symmetric group implies that weight sharing techniques can

only use two free parameters per layer (Section 3.2.1).

Motivated by this, we propose JP, which allows modelers to invoke permutation-sensitive

functions in approximating a permutation-invariant function. For instance, JP allows one to

use Recurrent Neural Networks [93], [94], which are successful in modeling the complexities

of language, to capture relationships in a variable-length sequence. In principle, without the

burden of capturing relationships, downstream layers need not be as complex as those in

DeepSets. More concretely, we will see that permutation-sensitive graph models give rise to

a simple and effective strategy for making MPGNNs “more powerful” than the WL test.

To obtain an invariant model from permutation-sensitive functions, we can sum over

permutations of the input. This is expensive, so we must use approximations. This is in line

with existing training schemes that promote “approximate” invariances (see Chapter 2) and is

justified by our empirical results. This idea is not totally new. Summing over transformations

has been used in the symmetrized kernel [145] and is related to the Reynolds operator in

algebra [239]. We set ourselves apart by proposing a variety JP models that provably fill gaps

in existing literature on graphs and sets, proposing approximation schemes and developing

58

supporting theory thereof, and posing JP as a unifying framework under which many existing

methods can be understood.

Formally, let X denote the space of inputs to the JP layer, such as variable-size sets

or graphs, depending on the application. X can either denote “raw” data such as point

clouds or molecules, or a set of hidden representations from preceding neural network layers.

Specifically, assume either X = Gdv ,de or X = Sds for some graph feature dimensions dv, de ∈

Z≥1 or set feature dimension ds ∈ Z≥1 (see Definitions 9 and 11). Since we have defined

the actions of the symmetric groups on Gdv ,de and Sds , we can simply write π · x to refer to

permutations of a set or graph, where x ∈ X , π ∈ S|x| is a permutation, and |x| the size

of x. A review of these operations is provided in Table 3.1 . Letting f
⇀ denote any (possibly

permutation-sensitive) function on X , with parameter matrix Θ, JP defines a permutation-

invariant function by

f(x; Θ) = 1
|x|!

∑
π∈S|x|

f
⇀(π · x; Θ). (4.1)

f is called the Janossy function associated with f
⇀, and is permutation-invariant. Specifically,

f
⇀ is any composition of neural network layers, (sub)differentiable in Θ. f can be a layer in

a broader neural network architecture trained end-to-end, in which case we call it a Janossy

layer, or the entire model itself. Notice that, while we have defined JP as an average, it can

equivalently be defined with summation, letting f
⇀(x; Θ) = |x|!g⇀(x; Θ) for some function

g
⇀ on X . Although the merits of sum pooling versus average pooling are still debated [56],

[240], writing as an average exposes the equivalent form

f(x; Θ) = Eπ∼Unif(S|x|)[f
⇀(π · x; Θ)], (4.2)

where E denotes an expectation and Unif denotes the discrete uniform distribution. Thus,

training with JP can be regarded as approximating a population mean, the “true” Janossy

function. Figure 4.1 illustrates a JP layer for the special case of a sequence input.

We reiterate that JP will often be just one component in an architecture. In many such

cases, the output of f will not be the dimension of the target (especially for graphs), and

downstream layers can be used to map to the prediction. Additionally, as we have seen,

59

Figure 4.1. Janossy Pooling Layer for a Sequence Input. A variable-length
input set of vectors – encoded as a sequence – is shown at the bottom. The
stacks of solid and dashed blocks indicate two different vectors in the sequence.
Full JP (which we approximate) permutes the length-n input sequence with all
n! permutations π1, π2, . . . , πn! ∈ Sn. Two such permutations, π1 and πn!, are
shown; notice that the solid and dashed vectors are swapped on the right. We
compute a permutation-sensitive

⇀

f on all permutations of the sequence and
sum (or average) the outputs. This can be applied to latent representations or
the raw input.

adding more downstream layers can facilitate learning a more expressive function, especially

when capacity is lost in approximating f . Thus, letting y(·; Θf ,Θr) : X → Y denote the full

model, we may write

y(x; Θf ,Θr) = r
(
f(x; Θf); Θr

)
(4.3)

to emphasize the downstream readout layer r(·; Θr). Note that the sequence or graph struc-

ture in x will be “reduced” by the operation f , so the input to r will be a vector, not a

sequence or graph. Hence it can simply be one or more affine layers (Equation 2.1). We

will call r ◦ f a Janossy model. Observe that f itself can be a full model by letting r be the

identity map.

More generally, we can define JP for other invariances by replacing S|x| with another

group G, defining the action of G on X (that is, defining π ·x), and specifying an appropriate

f
⇀. Examples of transformations of images include the set of 90 degree rotations, channel

60

permutations (RGB), and vertical flips [179]. In fact, many JP approaches need not rely on a

proper group structure. Rotation by angles in [−π/2, π/2] is not closed under composition,

and therefore does not form a group, but we could still contemplate a JP approach by

averaging over these rotations.

Later, Lyle, Wilk, Kwiatkowska, et al. [9] studied Equation 4.2 from a more theoretical

standpoint. They extend the analysis to arbitrary compact groups and the Haar measure.

The main similarity with our work is that both unify and characterize a broad range of

existing methods. The main difference is that our work presents a methodological approach

with concrete instantiations that improve existing models of sets and graphs. Interestingly,

though, their work provides further justification and understanding of JP, which we will

highlight in Section 4.1.2 .

Before discussing approximation strategies, we study the expressive power of Janossy

pooling and choices for f⇀.

4.1.1 Expressive Power and Choices for f
⇀

In this section, we establish that JP is a most-powerful framework for learning on sets

and graphs. Then we highlight some specific definitions of f⇀ that realize improvements over

existing methods.

We desire a framework for constructing permutation-invariant models f (or r ◦ f to

emphasize the downstream layer) that can approximate any (well-behaved) permutation-

invariant function arbitrarily well. A necessary condition is:1 for all x,x′ ∈ X , if x 6= π · x′

for any π ∈ S|x|, then f(x) 6= f(x′). The following theorem characterizes the expressive

power of JP, that is, the permutation-invariant functions that JP layers can approximate

arbitrarily well. Note that the result would be trivial for arbitrary f
⇀ and r, but we are

restricting them to be expressible by neural network models.

Theorem 1 (JP is most expressive) Let Y denote a space of targets in some task.

(1) For set tasks, let % : Sds → Y denote any “true” permutation-invariant function of

variable-length inputs with feature dimension ds ∈ Z≥1. Then, there exist functions f
⇀ and

1Recall that x is either encoded as a matrix or a pair of tensors, so we can write standard equality =, as
opposed to '. Even if graphs are isomorphic, they may not be equal once encoded as tensors.

61

r, composed of learnable neural network layers, such that r ◦ f approximates % arbitrarily

well for some choice of parameters, where f is the Janossy function associated with f
⇀. (2)

Assume graphs and their features come from a finite subset Hdv ,de ⊂ Gdv ,de. That is, for all

G = (A,F) ∈Hdv ,de, A and F take elements from a finite set (i.e., features are discrete) and

there exists some M ∈ Z≥1 such that |G| ≤M . Then, for any “true” permutation-invariant

function % : Hdv ,de → Y , there is a choice of neural network layers f⇀, r and parameters such

that r ◦ f approximates % arbitrarily well.

The proof uses the following lemma.

Lemma 1 Any function that can be expressed using the DeepSets model (Equation 3.3) can

be expressed using a JP model of the form written in Equation 4.3 , for an appropriate choice

of f⇀ and r.

We defer the proof of this lemma to Section 4.1.2 , as it uses ideas from our k-ary approxi-

mations. For now, we proceed with the proof of Theorem 1 .

Proof 1 (1) DeepSets is a universal approximator for permutation-invariant functions of

variable-length input sets [26], [58], [59].2 By Lemma 1 , we can find a Janossy model that

is equivalent to DeepSets to finish this proof. (2) For graphs, we first construct a one-

hot encoding. Denote N = |Hdv ,de| < ∞ and define any bijective mapping ι : Hdv ,de →

{1, 2, . . . , |N |}. Then, define g
⇀ : Hdv ,de → {0, 1}N by

(
g
⇀(G)

)
j

=

1 ι(G) = j

0 otherwise
, for j =

1, . . . , |N |, G ∈ Hdv ,de (recall that isomorphic graphs, encoded as tensors, are different in

Hdv ,de). Next, let f
⇀ be an MLP that approximates g

⇀ arbitrarily well for some choice of

parameters, which is guaranteed to exist [24], [71], [124]–[126]. Drop the parameters in
2Technically, for universal guarantees, DeepSets should be redefined to average pooling, but this can also be
captured by JP.

62

writing f
⇀ to simplify notation, and let orbit(G) = {π · G : π ∈ S|G|} for all G ∈ Hdv ,dh

. Let

G ′ ∈ orbit(G) and notice orbit(G) = orbit(G ′), so we can verify

f(G) = 1
|G|!

∑
π∈S|G|

f
⇀(π · G) = 1

|G|!
∑

G∈orbit(G)
f
⇀(G)

= 1
|G ′|!

∑
G∈orbit(G′)

f
⇀(G) = 1

|G ′|!
∑

π∈S|G′|

f
⇀(π · G ′) = f(G ′). (4.4)

Hence, the output of the JP layer is a “fingerprint”, a uniquely identifying value, for the orbit.

The readout function r will operate on these fingerprint vectors. The universal approximation

theorems guarantee that there exists an MLP r, with some choice of parameters, that agrees

with % arbitrarily well on the fingerprints of the orbits in Hdv ,dh
. Thus r ◦ f approximates

% arbitrarily well, completing the proof.

Theorem 1 implies that, if f⇀ and r are modeled as neural network layers, then it is possible

to estimate a Janossy model that can approximate any permutation-invariant function of

sequences or (finite feature) graphs arbitrarily well. As we have discussed, universal approx-

imation results ensure that the model class is flexible enough. Hence, this theorem shows

that JP is a good starting point for developing permutation-invariant models, including graph

models that exceed the expressive capacity of MPGNNs (see Section 3.2.2). Regarding as-

sumptions, it is generally true that graphs are bounded in size. The stronger assumption is

that of discrete features. We will see that there are benefits to this framework even when

this assumption is violated.

However, as we have discussed, the usefulness of universal approximation results is limited

if it is too difficult to learn effective models in practice. We still need to propose successful f⇀

and approximations for JP since summing over all permutations is typically infeasible. We

start with specific functions for f⇀ that are theoretically justified and effective in practice.

RPGNN f
⇀

In this section, we consider a special f⇀ for graph models motivated by the observation that

MPGNNs are no more powerful than the WL test (i.e., color refinement) in distinguishing

63

GCSL(11, 2) GCSL(11, 3)

Figure 4.2. CSL Graphs. These nonisomorphic graphs cannot be distin-
guished by the WL test (color refinement).

pairs of graphs [208], [209], [211], [241]. We call it Relational Pooling Graph Neural Network

as JP can be called relational pooling when applied to graphs [81].

Motivation. The first MPGNN recursion (Equation 3.1) does not yield hidden repre-

sentations capable of distinguishing whether two vertices have the same neighbor or distinct

neighbors with the same features. Successive layers of the MPGNN update vertex representa-

tions with the hope that vertices eventually get unique representations (up to isomorphisms),

but this may not occur when graphs have complex cycles. This limits the ability of MPGNNs

to learn an expressive graph representation.

In particular, recall that MPGNNs are no more powerful than the WL test (Section 3.2.2).

Figure 4.2 shows an example of nonisomorphic graphs that cannot be distinguished by the

WL test [78], [209], [211], [241]. In general, WL cannot distinguish degree-regular graphs

with the same degree and number of vertices [56], [208], [241].3 This pair of graphs may serve

as an extreme example, but it is useful for illustrative purposes. We call these Circulant Skip

Links (CSL) graphs, a type of circulant graph [242], and define them below.

Definition 12 (CSL graphs) Let a and n denote co-prime natural numbers with n−1 > a.

That is, the only common factor between a and n is 1. Then, GCSL(n, a) = (V , E) denotes an

undirected 4-regular graph with vertices V = {0, 1, . . . n−1} whose edges form a cycle and have

skip links. That is, for the cycle, {j, j + 1} ∈ E for j ∈ {0, . . . , n − 2} and {n − 1, 0} ∈ E.

For the skip links, recursively define the sequence s1 = 0, si+1 = (si + a) mod n and let

{si, si+1} ∈ E for every i ∈ Z≥1.

Two CSL graphs GCSL(n, a) and GCSL(n′, a′) are not isomorphic unless n = n′ and a ≡

±a′ mod n [78]. Thus, while the two graphs in Figure 4.2 are indistinguishable by the WL
3An undirected graph is d-regular if all vertices have d edges.

64

3!× RP GNN = GNN
001

010 100 + GNN
001

100 010 + GNN
010

001 100

+ GNN
010

100 001 + GNN
100

010 001 + GNN
100

001 010

Figure 4.3. An illustration of full RPGNN. We append one-hot ID features
to every vertex before passing to a GNN. Repeating this for all permutations
of the graph amounts to all 3! ID assignments. (Note, we multiply by 3! on the
left-hand side since JP is defined as an average). We see the power of RPGNN
to break symmetries; the leaves have identical neighborhoods (the root) but
their IDs make them distinguishable.

test, they are nonisomorphic. Thus, an MPGNN would always fail on a task that requires

classifying these graphs differently.

This toy example was for illustration, but there are real-world parallels. Sato [243] shows

two pairs of molecules that WL cannot distinguish: Decalin/Bicylopentyl and Decaprisman-

e/Dodecahedrane.

Naturally, this challenge can be mitigated if vertex or edge features are available. Yet,

the molecules discussed by Sato [243] do have features, the atom type. However, they are

highly cyclical with only C and H atoms, so successive recursions did not result in differing

hidden representations. A more robust solution is to add unique vertex features to break

graph symmetries and yield distinct representations. Such intuition leads to RPGNNs.

Defining RPGNN. We will append unique one-hot encoding vectors of the vertices

in a graph G – the standard basis vectors of R|G| – to the vertex features. In statistical

terminology, we are defining a new categorical variable such that each vertex has its own

level. After appending these features, we pass the augmented graph to an MPGNN. Note that

these unique identifier features (IDs) will depend on the implicit ordering of the graph, e.g.,

the “first” vertex will have ID (1, 0, . . . , 0). Hence, appending IDs is a permutation-sensitive

operation. To respect permutation invariance, we average the result over permutations, per

the JP framework. Figure 4.3 shows an example.

65

Formally, let G = (A,F) ∈ Gdv ,de be a graph with vertex feature matrix F , or F = 1T

if no features are available. To add unique one-hot IDs, we concatenate F with the identity

matrix. Let GNN(·; Θ) : Gdv ,de → Y denote an MPGNN, on denote row concatenation

of two matrices as defined in Section 3.2.2 (i.e., leading to a “wide” matrix), and define

f
⇀(A,F ; Θ) = GNN(A,F on I|G|; Θ). Note that f

⇀(π ·A, π · F ; Θ) = GNN(π ·A, (π · F) on

I|G|; Θ). That is, I|G| is not permuted. Thus, RPGNN is defined by

f(G; Θ) = f(A,F ; Θ) = 1
|G|!

∑
π∈S|G|

GNN
(
π ·A, (π · F) on I|G|; Θ

)
. (4.5)

RPGNN can also be defined as a model with readout, r ◦ f (see Equation 4.3). One implica-

tion is that the dimension of the augmented vertex features passed to the GNN depends on

the graph size. In Remark 6 below, we discuss modeling variable-size graphs with RPGNN.

The following proposition is useful for understanding and implementing RPGNN. It shows

that we only need to permute I|G|, not A and F . Further improvements to the computational

aspects of RPGNN will be discussed after establishing its expressiveness in Theorem 2 .

Proposition 1 Equation 4.5 can be written equivalently as

f(G; Θ) = f(A,F ; Θ) = 1
|G|!

∑
π∈S|G|

GNN
(
A,F on (π · I|G|); Θ

)
.

Proof 2 We use the facts that GNNs yield permutation-invariant graph representations and

that all groups (including the symmetric group of permutations) have a unique inverse for

each element [146]. For any π ∈ S|G|, we can write

f
⇀(π ·A, π · F ; Θ) (1)= GNN

(
π ·A, (π · F) on I|G|; Θ

)
(2)= GNN

(
π ·A, (F̃); Θ

)
(3)= GNN

(
π−1 · (π ·A), π−1 · (F̃); Θ

)
(4)= GNN

(
A, π−1 ·

(
(π · F) on I|G|

)
; Θ
)

(5)= GNN
(
A,F on (π−1 · I|G|

)
; Θ
)
,

66

where (1) follows by definition; (2) follows by putting F̃ = (π · F) on I|G|; (3) follows since

GNN is permutation-invariant and that all permutations have an inverse; (4) follows from

the definition of group actions and expanding F̃ ; (5) from the fact that ifA ∈ Rn×d and B ∈

Rn×p, then π · (A on B) = (π ·A) on (π ·B). In detail, point (5) simply says that we can

permute the rows of two matrices before binding them, or bind them and then permute,

without changing the result. Therefore, we can write Equation 4.5 as

f(G; Θ) = f(A,F ; Θ) = 1
|G|!

∑
π∈S|G|

f
⇀(π ·A, π · F ; Θ)

= 1
|G|!

∑
π∈S|G|

GNN
(
A,F on (π−1 · I|G|

)
; Θ
)

(6)= 1
|G|!

∑
π∈S|G|

GNN
(
A,F on (π · I|G|

)
; Θ
)
,

where (6) follows because each π ∈ S|G| has a unique inverse π−1 ∈ S|G| and summation is

commutative.

The following theorem establishes that RPGNNs are more powerful than MPGNNs. To avoid

confusion, note that this theorem characterizes the set of functions that can be expressed by

MPGNN versus RPGNN, not approximation. Thus, we drop the parameter matrices Θ.

Theorem 2 (Expressiveness of RPGNN) Let F be the set of permutation-invariant

graph functions and FGNN denote the set of functions that can be expressed (exactly) by

MPGNNs for some architecture and choice of parameters. Finally, define FRPGNN simi-

larly with the RPGNN models defined in Equation 4.5 . Then, FGNN ⊂ FRPGNN ⊆ F . In

particular, RPGNNs represent a more expressive model class than MPGNNs.

Proof 3 Since MPGNNs are permutation-invariant (i.e., isomorphism-invariant), FGNN ⊆

F . Similarly, FRPGNN ⊆ F since RPGNNs are a special case of JP (see also Equation 4.4).

To complete the proof, we need to show: (1) ∀fG ∈ FGNN, ∃fR ∈ FRPGNN such that fG(G) =

fR(G) for all G ∈ Gdv ,de , (2) ∃fR ∈ FRPGNN such that ∀fG ∈ FGNN, fG(G) 6= fR(G) for some

graph G. Note that, when we say an RPGNN is equal to an MPGNN, we do not necessarily

mean they take the same functional form or parameters. Rather, they express the same

mapping from input space to output space.

67

(1) Let fG ∈ FGNN be arbitrary. By definition, fG computes the recursions and readout

function described in Equation 3.1 and the surrounding text in Section 3.2.2 . In particular,

let G be any graph with vertex set V , neighborhoods denoted by N (v) ⊆ V for v ∈ V , and

vertex feature matrix F . We set H(0) = F and compute the recursions

H(l)
v,: = c(l)

H(l−1)
v,: , a(l)

((
H(l−1)

u,:

)
u∈N (v)

) (recursions of fG),

for all v ∈ V and l ∈ {1, 2, . . . , L}, where we have renamed the functions to a(l) and c(l)

(aggregate and combine) to avoid confusion. By definition, an RPGNN defines a function f
⇀

by similar recursions, with the first being

H(1)
v,: = c

(1)
R

H(0)
v,: on Iv,:, a(1)

R

((
H(0)

u,: on Iu,:
)
u∈N (v)

) (first recursion in RPGNN), (4.6)

where I denotes the |G| × |G| identity matrix and Iu,: denotes row u (the one-hot IDs). The

other recursions (layers l ∈ {2, . . . , L}) are defined similarly, but do not append IDs I. Like

the GNN, this RPGNN f
⇀ is followed by a permutation-invariant readout function.

Now, we can define a(1)
R and c(1)

R to ignore the dimensions in their input corresponding to

the IDs. Thus, it is not difficult to specify aggregate and combine functions such that a(l)
R

agrees with a(l) and c
(l)
R agrees with c(l) for all l. That is, they return the same value when

presented the same input graph. Similarly, we can set the readout functions of fG and f
⇀ to

be the same. This implies that f
⇀ is permutation-invariant, whence its associated Janossy

function satisfies f = f
⇀. Therefore, defining fR := f ∈ FRPGNN, we have fG(G) = f

⇀(G) =

f(G) = fR(G), for all graphs G. Thus FGNN is a subset of FRPGNN.

(2) To be concrete, we consider G1 := GCSL(11, 2) and G2 := GCSL(11, 3) shown in Fig-

ure 4.2 . Let GCSL(11, 2) = (A1,1) and GCSL(11, 3) = (A2,1) be their respective encod-

ings into an adjacency matrix and constant features (no additional edge/vertex features are

present). We have seen that the WL (color refinement) algorithm cannot distinguish these

nonisomorphic graphs [56], [208], [241] and hence for all fG ∈ FGNN, fG(A1,1) = fG(A2,1).

Note, we do not need to show this for all permutations, since fG is already permutation-

68

invariant. We will demonstrate that ∃ fR ∈ FRPGNN, an RPGNN function, such that

fR(A1,1) 6= fR(A2,1).

To make the discussion more concrete, we define a specific GNN inspired by GIN [56].

Given a graph (A,F), we define

GNN(A,F) = r
(

(A+ I)F
)
,

where I is the identity matrix of appropriate dimension and r is a permutation-invariant

function (defined by neural network layers) over the rows of its input. In other words,

(A+I)F computes a vertex representation for every vertex, and r is a permutation-invariant

function defined over them. This is a slight modification of the function shown in Example 2

(see also Remark 4).

Next, recall that we can write permutations of a graph (A,F) as (PAP T,PF) where P

is a permutation matrix. Hence, the corresponding RPGNN taking one of the CSL graphs

with adjacency matrix A and constant vertex features 1 is computed by

∑
P

GNN(PAP T, (P1) on I) =
∑
P

r
(

(PAP T + I)(1 on I)
)

=
∑
P

r
(

51 on (PAP T + I)
)
,

where the sum is over all permutation matrices P with the same number of rows as A. The

term 51 = (5, . . . , 5)T appears since all rows in PAP T + I have five entries equal to 1 and

the rest 0. Denote CA,P := 51 on (PAP T + I).

Next, observe that π · G1 6= σ · G2 for all π, σ ∈ S|G1|, since the graphs are nonisomorphic.

Equivalently, for all |G1| × |G1| permutation matrices P and Q, it holds that PA1P
T 6=

QA2Q
T. Roughly speaking, this implies that the ‘sets’ of vertex representations passed to r

are different between the two graphs. More precisely, if we let r be an injective permutation-

invariant neural network [26], [56],4 then

{{
r
(
CA1,P

)}}
P
6=
{{
r
(
CA2,P

)}}
P
,

4An injective function over sets is injective over canonical representations of every set (i.e., injective over the
space mod orbits).

69

where double brackets denote a multiset, and they run over all permutation matrices. There-

fore, we know [26], [56] there exist neural networks ρ and φ such that

ρ

∑
P

φ
(
r
(
CA1,P

)) 6= ρ

∑
P

φ
(
r
(
CA2,P

)).
Hence, if we define

fR(G) = fR(A,F) = ρ

 1
|G|!

∑
P

φ
(

GNN(PAP T, (PF) on I)
),

where we use the GNN defined above and an injective neural network r, then fR(A1,1) 6=

fR(A2,1). The functions φ and r can fuse into one function, but we have written it in this

way for clarity of exposition.

On Vertex Identifiers. We have already established that full JP (and thus RPGNN) is

computationally expensive and requires approximations, but here we provide strategies spe-

cific to RPGNN that further reduce its computational burden. These can be used alongside

the approximations. As written, we append |G|-dimensional ID vectors to the feature ma-

trix. Even for moderate-sized graphs (e.g., |G| ≥ 100), this substantially increases the cost

of each operation and the number of parameters. It also presents an additional challenge

in implementing RPGNN for variable-size graphs. We propose two strategies to limit the

dimension of the unique IDs.

First, the increased expressiveness of RPGNNs results from the fact that unique vertex

features result in unique vertex neighborhoods. However, we may not need to define a

new unique ID for each vertex to achieve this. If the graph already has vertex features

(dv > 1), we can preprocess graphs, inspecting them to determine a smaller ID dimension

that still affects unique neighborhoods. For example, we can use the atom type in molecules;

in CH2O2, the augmented RPGNN vertex features (C, 0, 1), (H, 0, 1), (H, 1, 0), (O, 1, 0),

and (O, 0, 1) render every vertex unique. As an added benefit, this reduces the number of

considered permutations from 5! = 120 to (1!)(2!)(2!) = 4.

70

Second, we can reduce the computation and parameter count by limiting the number

of new IDs to m ∈ Z≥1. In particular, for each graph G, define the ID function idm :

{1, . . . , |G|} → {0, 1}m by

(idm(v))j =

1, (v − 1 mod m) = j − 1

0, otherwise
, j = 1, . . . ,m, v ∈ {1, . . . , |G|}.

We can then replace F on I in Equation 4.5 with a new matrix FID defined by (FID)v,: =

Fv,: on idm(v). Of course, this does limit the extent to which IDs can break symmetries.

Thus, there is a tradeoff between computation and model flexibility, with m = 1 collapsing

to the standard MPGNN on one end and m = |G| providing the most expressive yet most

computationally intensive RPGNN on the other. Notice this strategy is applicable even

when vertex features are not available.

Remark 6 (RPGNN with variable-size graphs) With the mod strategy for defining

RPGNN IDs, it is straightforward to handle variable-size graphs. In particular, the dimen-

sion of the augment vertex feature matrix does not vary from graph to graph.

Finally, one may inquire about the choice of one-hot IDs rather than continuous IDs for

breaking symmetries. A benefit of one-hot IDs is that they encode neighborhood structure

with a bit vector. Moreover, discrete IDs do not have a natural order, a case for which

one-hot vectors is a standard encoding choice (cf. [244]).

After we published [81], additional scholars proposed to use IDs to overcome limitations

of MPGNNs. Vignac, Loukas, and Frossard [245] propagate one-hot encodings to learn the

local context of vertices in a directly permutation-equivariant manner. Sato, Yamada, and

Kashima [187] sample random IDs and pass to GNNs to break symmetries in cycle structures.

They show that this method can return solutions of graph algorithm problems, such as the

minimum dominating set, that are close to the true solution with high probability. They write

that their “analysis provides another justification of [RPGNN] because the approximation

ratios of RPGNNs” can be proved similarly when using the π-SGD approximation scheme

discussed below. Abboud, Ceylan, Grohe, et al. [246] sample random IDs from Unif[0, 1]

before passing to a GNN and show that this can approximate invariant graph functions

71

arbitrarily closely with large probability (i.e., is an (ε, δ) approximation) for the correct

choice of hyperparameters. The authors completed this proof using the logic-based analysis

framework proposed in [247]. In contrast to previous results on universality that leveraged

computationally intractable constructions, this method is relatively cheap to compute. A

similar idea was presented in [248]. Interestingly, these methods invoke randomness to extend

universality results beyond the finite case we considered in the theorems above.

Padded MLPs

We have seen that MLPs are permutation-sensitive and powerful function approximators,

making them a possible choice for f
⇀. Since these models are defined for vector inputs, we

must vectorize the input with vec : X → Rp, p ∈ Z≥1. We define vec precisely for graphs

and sequences in Section A.1.2 of the appendix. Another challenge is that affine layers do

not naturally accept variable-length inputs. To solve this, we can pad the input. Letting

M ∈ Z>1 be the largest input we expect to encounter in the data, zero padding is defined

by

paddedvec(x; 0) :=
(
vec(x), 0, . . . , 0︸ ︷︷ ︸

M−|x|

)
.

Thus we can define f
⇀(x; Θ) = MLP(paddedvec(x); Θ). Since vec is defined (i.e., “over-

loaded”) for both graphs and sequences, this describes the approach for both such inputs.

However, recurrent and convolutional layers arguably provide a more principled and flexible

approach that we will discuss next.

RNNs and CNNs

Any function (i.e., layer) that is (sub)differentiable in its parameters and accepts variable-

size inputs can be considered for f
⇀. For sequences, recurrent layers [93], [94] and one-

dimensional convolutional layers [24] are two popular layers that meet these criteria. One-

dimensional convolutions pass a filter along the “time” dimension of the sequence, similar to

Figure 2.1 , an operation that naturally accepts variable-length inputs. Recurrent layers are

popular in language precisely because they can capture rich relationships among elements

72

(words) in the sequence (sentence), and their recurrent nature makes them permutation

sensitive. Thus, using RNNs as f
⇀ in JP should better capture relationships than a latent

space pooling approach like DeepSets or PointNet. More recently, Transformer-inspired

models [236], [249]–[251] have become a popular alternative to recurrent approaches. These

mostly consist of permutation-equivariant attention layers but use a positional encoding that

renders the model permutation-sensitive. We will characterize the attention layers in these

models as a type of approximation to JP in Section 4.1.2 .

For graphs G = (A,F) ∈ Gdv ,de , we can define CNN to be a 2D CNN if de = 1 (no

additional edge features) or 3D CNN [252] if de > 1, with pooling and affine layers succeeding

convolutions to output a vector. Then we can define

f
⇀(A,F ; Θ1,Θ2) = CNN(A; Θ1) on MLP(paddedvec(F ; 0); Θ2), (4.7)

where MLP outputs a vector and on denotes concatenation. In essence, the CNN treats the

adjacency tensor as if it were an image (see Figure 2.1). As we have discussed, convolutions

can be designed for variable-size inputs [253], but the vertex feature matrix needs padding.

Overall, this returns a graph-wide representation vector. This is just one possible architec-

ture. We could define a more complex f
⇀ that passes the graph representation to additional

affine layers. Additionally, we can define a similar model that replaces CNN with an RNN

that treats Av,:,: – the edge features associated with vertex v ∈ V – as a sequence. We will

investigate these architectures in our experiments.

4.1.2 Approximations

In most cases, computing a full JP layer will be impractical as it requires a factorial

number of gradient computations at each training iteration (see Equations 2.2 , 4.1). Thus,

we propose three general strategies to tractably approximate full JP: π-SGD, k-ary depen-

dencies, and (poly-) canonical orderings. We will also see that these methods can be used in

tandem.

73

Tractability with π-SGD

Janossy pooling involves an expected value over all permutations in the symmetric group

(Equation 4.2), so we can estimate JP by sampling permutations at each training iteration.

This procedure, shown in Algorithm 1 , reduces computation tremendously. The name π-

SGD derives from the fact that we sample permutations π in the context of SGD training.

Despite the name, the idea could be generalized to actions of another finite group on an

input space.

We will formalize π-SGD, then justify it theoretically by showing that π-SGD: (1) min-

imizes an upper bound to the original objective, (2) can improve generalization properties

compared to standard training of a permutation-sensitive function f
⇀, and (3) converges to

the optimal solution almost surely under similar conditions as typical SGD. Moreover, we

discuss how π-SGD training of JP provides a theoretical explanation for the successes of

existing methods.

Review of Optimization. Let us expand on the review of neural network optimization

in Section 2.1.1 . Denote a training set by D(tr) =
{

(x(1),y(1)), (x(2),y(2)), . . . , (x(Ntr),y(Ntr))
}

,

whereNtr ∈ Z≥1 is the number of observations in training, x(i) ∈ X are inputs (e.g., sequences

or graphs), and y(i) ∈ Y are associated targets, for i = 1, . . . , Ntr. We use superscripts ·(i) for

indexing examples to avoid confusion with elements of a vector or matrix. To optimize with

Stochastic Gradient Descent, we train with mini-batches of the training data. In particular,

we sample subsets B(1), . . . ,B(dNtr/be) without replacement from D(tr) such that all batches

(except possibly the last) have b input-target pairs,5 then perform gradient updates on

B(j) according to Equation 2.2 , j = 1, . . . , dNtr/be. This is one epoch, and we repeat for

multiple epochs. In this section, we write the loss L as a scalar-valued function of one

prediction/target pair.

When optimizing neural networks, we also maintain a validation data set D(vl) ⊂ X ×Y ,

often disjoint from D(tr), that is used to estimate generalization performance of the model.

The ultimate goal is to attain good performance on a test dataset that becomes available after

model fitting. Computations on D(tr), such as computing gradients and updating weights,
5In practice, some discard the last batch if it has fewer than b samples.

74

Algorithm 1 π-SGD Step

1: Input 1: Minibatch B =
(
x(i),y(i)

)b
i=1

2: 2: Step size η > 0
3: 3: Functions f⇀, r with parameters Θf , Θr, respectively
4: 4: Loss function L
5: Learnable Parameters: Θ ≡ Θf ,Θr

6:
7: Z← 0 . Initialize random gradient
8: for i← 1, . . . , b do . For loop (for illustration) to compute batch gradients
9: Sample π ∼ Unif(S|x(i)|) . Sample a random permutation

10: xπ ← π · x(i) . Permute set or graph input
11: ŷ ← r

(
f
⇀(xπ; Θf); Θr

)
. Compute a prediction

12: Z← Z + 1
b
∇ΘL(y(i), ŷ) . Differentiate loss, increment batch gradient

13: end for
14: Θ ← Θ − ηZ . Update parameters
15:
16: return Θ
An optimization step according to π-SGD, as a subroutine in a broader architecture. This
update follows SGD, but in practice other updates like Adam [91] can be used.

are called training time computations, whereas computations on D(vl) or test data are called

inference time computations. With π-SGD, we will see that there are differences between

training and inference times with regards to the number of permutations sampled.

π-SGD. We begin by defining a single π-SGD step given an input mini-batch, which is

also shown in Algorithm 1 .

Definition 13 (π-SGD) Let B ⊆ D(tr) ⊂ X × Y be a mini-batch of size b := |B| ∈ Z≥1.

Without loss of generality, write B as a sequence B =
(
x(i),y(i)

)b
i=1

. Let η > 0 be some step

size (learning rate), and r and f
⇀ be the readout and permutation-sensitive functions of a JP

model (Equation 4.3). Compose them to define the parameterized function r
(
f
⇀
(
·; Θf

)
; Θr

)
:

X → Y where Θ ≡ (Θf ,Θr) is either randomly initialized or from previous optimization

steps. To compute a parameter update, sample independent permutations π(i) ∼ Unif
(
S|x(i)|

)
,

for i = 1, . . . , b, and compute the random gradient

Z = 1
b

b∑
i=1
∇ΘL

y(i), r
(
f
⇀
(
π(i) · x; Θf

)
; Θr

), (4.8)

75

Algorithm 2 Full Training Loop with π-SGD

1: Input 1: Training set D(tr) =
(
x(i),y(i)

)Ntr

i=1
, batch size 1 ≤ b ≤ Ntr

2: 2: Learning rates following a schedule η1, η2, . . .
3: 3: Functions f⇀, r parameterized by Θf , Θr, respectively
4: 4: Loss function L
5: Learnable Parameters: Θ ≡ Θf ,Θr

6:
7: Initialize Θ . Initialize parameters of f⇀ and r
8: t← 1
9: while Stopping criterion not met do

10: Shuffle D(tr)

11: Partition D(tr) into mini-batches B1, . . . ,BdNtr/be
12: for i← 1, . . . , dNtr/be do
13: Θ ← πSGD(Bi, ηt, f

⇀

, r,L,Θ) . Update with Algorithm 1

14: t← t+ 1
15: end for
16: end while
17: Return Θ
A full optimization loop using the π-SGD “subroutine” of Algorithm 1 . This closely follows
Algorithm 8.1 of [24].

where L is the loss function. Then, we can compute the π-SGD update

Θnew ← Θ − ηZ.

Note that the readout and transformation-sensitive functions, r and f
⇀, are “fused” to-

gether into a single function when we train by π-SGD. This is a consequence of replacing the

pooling operation – an average over multiple permutations – with just one permutation. One

could generalize the definition of π-SGD training to include sampling more permutations,

which we will discuss more below. Now, Definition 13 describes the update for just one batch;

the full training loop is shown in Algorithm 2 . One important aspect of the full training

procedure is the learning rate scheduler. Intuitively, it is helpful to use a large learning rate

initially, to explore the loss landscape efficiently, and a smaller one later on to settle into an

optimum. An important type of scheduler follows the Robbins-Monro conditions [88], [254].

76

Definition 14 (Robbins-Monro scheduler) Let η(t) for t = 1, 2, . . . denote a sequence of

learning rates. We will say the sequence follows a Robbins-Monro schedule, or the Robbins-

Monro conditions if (1) ∑∞t=1 η(t) =∞; (2) ∑∞t=1 η(t)2 <∞.

Now we focus on the theoretical justifications for π-SGD.

Minimizes an Upper Bound. Proposition 2 below states the first “punchline”, in

simple terms, which we will then formalize and prove. Note that the assumption that r is

an identity mapping is largely for the clarity of the mathematical exposition. Since r and f
⇀

are “fused” when sampling one permutation in π-SGD training, it carries less significance in

practice. Further, assuming a convex loss function is not unrealistic. Recall that the loss L

refers to a mapping from targets and predictions to R≥0, but the objective is the full quantity

we minimize during training. Although the objective function of neural network models is

typically not convex, we only need L to be convex in its second argument, the prediction.

That is, we only need L(y, ŷ) to be convex in ŷ, which is satisfied for many common loss

functions.

Proposition 2 Let r ◦ f denote a Janossy model. Assume L : Y × Y → R≥0 is a convex

loss function and that r is an identity function. Then, π-SGD training minimizes an upper

bound of the original training objective.

To make this precise, we define the objective functions in question. When the readout

function r is an identity map, the original optimization objective for a single input-target

pair (x,y) ∈ X × Y is

J(x,y,Θ) = L
(
y, f(x; Θ)

)
= L

(
y,Eπ∼Unif(S|x|)[f

⇀(π · x; Θ)]
)
, (4.9)

where we have used the form of JP shown in Equation 4.2 . Training with π-SGD estimates

an alternative objective function in which the expectation comes out of loss,

J̃(x,y,Θ) = Eπ∼Unif(S|x|)
[
L
(
y, f

⇀(π · x; Θ)
)]
. (4.10)

Intuitively, this follows since we sample permutations before computing the loss (see Algo-

rithm 1). We can thus prove Proposition 2 with Jensen’s inequality.

77

Proof 4 (Proposition 2) Assume B ⊆ D(tr) ⊂ X ×Y is a batch of training data and consider

the full objective. By convexity of L, the fact that J and J̃ differ by swapping the order of

expectation in Equations 4.9 and 4.10 , and Jensen’s inequality,

∑
(x,y)∈B

L
(
y,Eπ∼Unif(S|x|)[f

⇀(π · x; Θ)]
)
≤

∑
(x,y)∈B

Eπ∼Unif(S|x|)
[
L
(
y, f

⇀(π · x; Θ)
)]
. (4.11)

That is, π-SGD training minimizes an upper bound of the original training objective function.

Observe that the inequality in Equation 4.11 becomes an equality if f⇀ is a permutation-

invariant function. That is, in this case, the π-SGD objective reaches its lower bound.

Consequently, minimizing the objective with π-SGD can be understood as regularizing f
⇀

towards permutation invariance. Thus, we would expect it to result in a model that has

better generalization performance when the true task is invariant, even if it does not train

a strictly invariant model. We demonstrate this experimentally. Hence, our approach joins

the large literature of neural network training schemes that promote, rather than enforce, an

approximate invariance and achieve empirical success.

Before proceeding, consider the case that r is not the identity function, but rather another

sequence of neural network layers. Then the original objective becomes

J(x,y,Θ) = L
(
y, r

(
Eπ∼Unif(S|x|)[f

⇀(π · x; Θ)]
))
,

and the order of the expectation and loss cannot be “flipped” in general. Thus, Jensen’s

inequality is not applicable. In practice, however, our scheme is to sample a single permu-

tation, forward the permuted input, and compute a loss. We can thus fuse the functions to

define f
⇀

new = r ◦ f
⇀, and then the result still holds if we follow Algorithm 2 withf⇀new.

Generalization Analysis and Data Augmentation. After the publication of JP [54],

Lyle, Wilk, Kwiatkowska, et al. [9] conducted a theoretical analysis of the approach, calling it

Feature Averaging. They derive PAC-Bayesian bounds [255] that provide an understanding

of the generalization performance of invariant training. We can directly inherit their results,

which we summarize here, writing JP instead of Feature Averaging. Note that these results

78

do not confine to the case that r is the identity mapping, even when more permutations are

sampled.

Assume that the joint distribution PX,Y on X ×Y is truly G-invariant, in the sense that

PX,Y (X, Y) = PX,Y (G ·X, Y) for all G ∈ G. Then, standard (non-invariant) training would

minimize the empirical risk (objective function) 1
n

∑n
i=1 L

(
f(X(i)), Y (i)

)
, where (X(i), Y (i))

denotes a (random) training example. Loosely speaking, this reduces the risk RL(f) :=

EX,Y∼PX,Y
[L(f(X), Y)], the quantity that measures generalization performance [85]. The

authors take a Bayesian approach since PAC-Bayesian bounds have provided non-vacuous

generalization bounds for neural networks, unlike other approaches [256]. In this context,

the measure of generalization performance becomes RL(Q) = Ef∼Q[RL(f)], where Q is a

posterior distribution obtained after estimating a function f from a class F on which we

have placed some prior Q0. In short, PAC-Bayesian bounds find an upper-bound for RL(Q)

in terms of the empirical risk, sample size, and the KL divergence KL(Q||Q0) between the

prior and posterior. This KL term can be seen as a measure of model complexity [255].

We prefer the risk upper bound for a model to be smaller, in which case the generalization

performance may be superior.

In short, Theorem 7 in Lyle, Wilk, Kwiatkowska, et al. [9] shows that the generalization

bound that comes from training any model with (full) Janossy pooling is tighter than that

of standard empirical risk minimization. The intuition is that training towards invariance

through averaging compresses the model, bringing down the KL(Q||Q0) term and thus the

generalization bound. The authors were even able to prove this for the case when the group

G is large and sampling is required. In particular, they show that increasing the number

of samples can lead to a reduction in the KL term (Proposition 8). This suggests that

sampling more permutations in JP can be beneficial to generalization, even in the case when

r is not the identity map. Finally, they show that this training scheme reduces the variance

in gradient estimates.

However, we cannot unequivocally advise that increasing the number of permutations

sampled at training time will improve performance. Given the complexity of stochastic

optimization of neural networks, the interplay between theory and practical performance is

still not completely understood [9]. A telling example is mini-batch size. Using larger mini-

79

batches reduces variance in the estimates of the gradient but it has been argued that smaller

batches lead to faster convergence and better generalization performance [257]. Moreover,

sampling more permutations at training time results in substantial computational overhead

since derivatives must be computed for each. In our empirical work, we typically sample one

permutation per epoch at training time.

It is also worth pointing out the connection between π-SGD and data augmentation.

Note that data augmentation can refer to both sampling transformations of the training

inputs and adding those transformations to the dataset. When a JP layer is applied directly

to the input, as is the case for RPGNN, and we sample one training-time permutation, it is a

form of data augmentation. When sampling multiple permutations in the context of JP, we

average over the outputs before computing one loss, which is no longer data augmentation

in the usual sense. Lyle, Wilk, Kwiatkowska, et al. [9] and Chen, Dobriban, and Lee [188]

study the impact of data augmentation by studying the associated risk function, which is

equivalent to Equation 4.10 . Unfortunately, their results most meaningful only when full

data augmentation can be computed – that is, all transformations are considered in the

training data – so these analyses are generally not applicable to permutations. The results

for Feature Averaging are more applicable to JP.

Finally, the authors conduct experiments to show that these two approaches can make the

model more invariant during training. We show some experiments of our own in Section 4.4 .

Convergence. We conclude this section by showing that training with π-SGD (Al-

gorithms 1 and 2) converges under similar conditions as usual SGD. The following result

extends the Stochastic Approximation Convergence theorem in [90]. The first condition

states that the expected update is large enough in the direction of the true solution and the

second indicates that the update noise is bounded [90].

Proposition 3 (π-SGD Convergence) Consider π-SGD training (Algorithm 2). Let

Θ∗ denote an optimum of the objective function for some JP model and denote D(Θ) =
1
2‖Θ−Θ

∗‖2. Write the π-SGD random gradient (Equation 4.8) as Z(Θ,π,B), to emphasize

the parameters and random permutations, and denote the sequence of parameters by Θ(t).

Then, Θ(t) converges to Θ∗ with probability 1 if (1) −∇D(Θ)TE[Z(Θ,π,B)] ≥ K1D(Θ)

for some constant K1, (2) Et
[
‖Z(Θ,π,B)‖2

]
≤ K2(1 + D(Θ)) for some constant K2 and

80

the expectation is over all data prior to step t, and (3) the learning rates η(t) follow the

Robbins-Monro conditions in Definition 14 .

Proof 5 π-SGD training is a stochastic approximation algorithm of the form of Equation

(3) in [90]. Thus, the result holds directly from the proof therein and is a consequence of

the supermartingale convergence theorem [258].

It is reassuring that π-SGD training has similar convergence properties to SGD, a widely

used method. In practice, other variants such as Adam [91] can achieve better performance

than SGD, and we may also train with Adam-style updates rather than SGD updates. The

key step, sampling permutations to estimate a random gradient, is unchanged. Another

important observation is that this convergence guarantee does not shed light on the variance

in π-SGD training (cf. [9]). One simple strategy for reducing the variance in our prediction

at inference time is to sample more permutations.

Inference Time. Recall that JP can be written as an expected value over permutations

and π-SGD effectively trains by Monte Carlo estimates at each gradient step. At inference

time, we can sample more permutations and average over the results to obtain a lower-

variance estimate of Eπ∼Unif(S|x|)[f
⇀(π · x; Θ)]. That is, we sample permutations π1, . . . , πm

uniformly at random from all permutations and compute

f̂(x; Θ) = 1
m

m∑
i=1

f
⇀(πi · x; Θ). (4.12)

At inference time, we do not need to compute gradients, so the process is less time and

memory intensive.

π-SGD Theoretically Justifies Existing Methods. Previous works found that pass-

ing randomly-permuted sequences to an RNN could achieve surprisingly strong performance

as a neighborhood aggregator in graph tasks [45], [55]. JP offers a theoretical explanation;

this approach estimates a JP layer with π-SGD. Our experiments show that, using this

insight, we can straightforwardly improve the performance of GraphSAGE [45].

Remark 7 Since this analysis did not make use of the special structure of the permutation

group, π-SGD is a very general approach. We could extend it to approximating JP over the

81

actions of another finite group G on the input space, sampling from G instead of Sn. This

was indeed considered in later work [9].

Tractability with k-ary Dependencies

Next, we provide a different strategy that trades off model expressiveness and computa-

tional complexity in Janossy pooling. To simplify the sum over permutations in Equation 4.1 ,

we impose the constraint that f⇀ depends only on the first k components of its input. This

results in redundant permutations that can be ignored. Thus, if it is appropriate to assume

that only k-ary dependencies in the input are relevant to the task at hand, we can use this

strategy to substantially reduce computational cost. For example, to compute variance, only

pairwise (k = 2) relationships are needed. We will show that DeepSets [26], which uses sum

pooling, corresponds to a k = 1 approximation. It is not clear whether the k-ary approach

generalizes beyond set and graph inputs, so we will focus on these for this section. First we

formalize the operation of selecting the first k elements.

Definition 15 Fix k ∈ Z≥1. For variable-length sets, we take the input space to be X =

Sds = ⋃
n∈Z≥1 Sn,ds, for some feature dimension ds. Recall that length-n sets are encoded as

n× ds matrices, Sn,ds = Rn×ds. Define the function ↓k: Sds → Sk,ds by

↓k(S) =

S1:k,:, |S| ≥ k

S

JJ 0k−|S|, |S| < k

∀S ∈ Sds ,

where we have used colon subsetting notation (Definition 7),

JJ denotes column concatena-

tion,6 |S| denotes the length, and 0k−|S| is a (k − |S|)× ds matrix of zeros. This zero-pads

sequences of length less than k. For graphs, X = Gdv ,de = ⋃
n∈Z≥1 Gn,dv ,de and for a graph

G ∈ Gdv ,de, ↓k (G) =↓k (A,F) = (A1:k,1:k,:,F1:k,:) if |G| ≥ k. If |G| < k we zero-pad the

remaining elements of the adjacency tensor and vertex feature matrix.
6If A is m× p and B is n× p , then A

JJB is (m+ n)× p.

82

A(3,3,2) A(3,4,2) A(3,1,2) A(3,2,2) A(3,5,2)

A(4,3,2) A(4,4,2) A(4,1,2) A(4,2,2) A(4,5,2)

A(1,3,2) A(1,4,2) A(1,1,2) A(1,2,2) A(1,5,2)

A(2,3,2) A(2,4,2) A(2,1,2) A(2,2,2) A(2,5,2)

A(5,3,2) A(5,4,2) A(5,1,2) A(5,2,2) A(5,5,2)

A(3,3,1) A(3,4,1) A(3,1,1) A(3,2,1) A(3,5,1)

A(4,3,1) A(4,4,1) A(4,1,1) A(4,2,1) A(4,5,1)

A(1,3,1) A(1,4,1) A(1,1,1) A(1,2,1) A(1,5,1)

A(2,3,1) A(2,4,1) A(2,1,1) A(2,2,1) A(2,5,1)

A(5,3,1) A(5,4,1) A(5,1,1) A(5,2,1) A(5,5,1)

Permuted adjacency tensor π · A where π is
the permutation such that π · (1, 2, 3, 4, 5)T =
(3, 4, 1, 2, 5)T. The result of ↓3(π·A) is the 3×3×2
shaded subtensor.

1

2

3

4
5

An illustration of ↓3(π ·A) using the permu-
tation defined in the left panel. We select a
k-sized induced subgraph with the vertices
{3, 4, 1}, indicated by shaded vertices and
thick edges.

Figure 4.4. Example of k-ary JP, or in particular the operation ↓3 on a 5-
vertex graph. The adjacency tensor A is 5 × 5 × 2, since we assume de = 2
for illustration. We show a permutation of that tensor, π · A, and show ↓3
(π ·A). In k-ary approximations, we must compute ↓k(π ·A) for every non-
redundant permutation (see text). For 3-ary JP, we iterate over all 5!/2! such
permutations. For π-SGD with k-ary, we only need to sample one subgraph
each iteration. Note that we would also need to compute ↓3(F) since graphs
have both vertex and edge features, G = (A,F), which is not shown.

For example, if x = (1, 2, 3)T ∈ R3×1 and π · x = (3, 2, 1)T, then ↓2 (π · x) = (3, 2)T.

For graphs, this amounts to selecting an induced subgraph of size k.7 An example is shown

in Figure 4.4 . The graph G on the right is numbered by some “original” arbitrary vertex

ordering. We assume there is one edge feature, in addition to connectivity information, so

de = 2 (not shown). The tensor on the left shows π ·A for some permutation π. ↓3(π ·A)

selects the shaded 3 × 3 × 2 upper-left “corner” of this tensor, and corresponds to the

shaded subgraph. Since our chosen permutation satisfies π · (1, 2, 3, 4, 5)T = (3, 4, 1, 2, 5),

the subgraph contains vertices “1”, “3”, and “4” in the original ordering. Along with the

vertices and edges shown, we also select the features of the edges between “1”, “3”, and “4”,

indicated by the farther slice of the adjacency tensor.
7A k-sized induced subgraph is formed by selecting k vertices and keeping all edges between them, see [259]
for details.

83

To define k-ary JP, we suppose there is some (generally permutation-sensitive) function

f
⇀ over variable-size inputs and define a new (generally permutation-sensitive) function f

⇀

k

by f
⇀

k(x; Θ) = f
⇀(↓k(x); Θ). In particular, k-ary JP is defined by

fk(x; Θ) = 1
|x|!

∑
π∈S|x|

f
⇀

k(π · x; Θ) = 1
|x|!

∑
π∈S|x|

f
⇀(↓k(π · x); Θ). (4.13)

The subscript k emphasizes that f
⇀

k only defines a computation over a size-k input and

we will write fk as the Janossy function associated with f
⇀

k. We may also say that fk is

associated with f
⇀, but it is implied that we take only the first k when computing f

⇀. We

call fk a k-ary approximation to Janossy pooling.8 As written, it may appear that this does

not reduce any computation, due to the sum over the full set of permutations. However, the

implementation should ignore redundant permutations, and the next proposition shows that

this results in a significant reduction in computation.

Proposition 4 Computing the k-ary JP in Equation 4.13 only requires summing over |x|!
(|x|−k)!

distinct terms, thus saving computation when k < |x|.

Proof 6 Fix k ∈ Z≥1 and let f
⇀ denote any function. For an arbitrary x, let π ∈ S|x| and

let Qπ = {π̃ ∈ S|x| :↓k (π · x) =↓k (π̃ · x)}. Notice that |Qπ| = (|x| − k)! (the number of

permutations of the remaining elements). For any π, we can always pick a representative

element ofQπ, the equivalence class, and we let S|x|[k] denote the set of all such representative

permutations. Observe that |S|x|[k]| = |x|!
(x−k)! . Thus, k-ary JP becomes

1
|x|!

∑
π∈S|x|

f
⇀(↓k(π · x)) = (|x| − k)!

|x|!
∑

π∈S|x|[k]
f
⇀(↓k(π · x)),

a sum over only |x|!
(x−k)! distinct elements.

For example, given prior belief that the task only requires modeling pairwise interactions,

we can set k = 2 to reduce the number of terms to sum over from |x|! to |x|(|x| − 1). In

fact, Santoro, Raposo, Barrett, et al. [51] take this approach in training a neural network to
8We use “approximation” loosely here, simply referring to a more tractable version of full JP.

84

model pairwise relationships among objects in a scene; their model can be seen as JP with

2-ary approximations. In practice, we can compute ∑π∈S|x|[k] f
⇀(↓k(π · x)) without explicitly

permuting x. Instead, we can enumerate subsequences/subgraphs of size k and traverse the

list to compute the summation. The practitioner can choose whichever approach is more

efficient in any given problem.

Trade-offs of k-ary Approaches. Unsurprisingly, the computational savings of k-ary

approximations come at the cost of reduced flexibility in the JP layer. Theorem 3 below

shows that the class of functions that can be expressed by (k + 1)-ary approximations is

strictly larger than that of k-ary approximations. Note that this theorem does not involve

universal approximation but simply the size of a function class. To emphasize this, we drop

the parameters Θ. Additionally, this result refers purely to the pooling layer, not the full

Janossy model r ◦ fk.

Theorem 3 Suppose X is the space of graph or sequence inputs and Y is the target space.

For any k ∈ Z≥1, define Fk = {∑π∈S|x| f
⇀(↓k (π · x))|f⇀ : X → Y is arbitrary} to be the

set of permutation-invariant functions defined on X that can be represented (exactly) by k-

ary Janossy pooling. Then, Fk ⊂ Fk+1 if |X | > 1. Furthermore, for graphs, there exist

fk+1 ∈ Fk+1 \ Fk such that fk+1 is non-constant on featureless graphs of the same size.

Note that the assumption |X | > 1 holds in all nontrivial tasks. For graphs, we are

interested in functions that use the graph structure, not simply the vertex features, or

equivalently those that are non-constant over featureless graphs of the same size. Otherwise,

the problem devolves into a set problem. The idea of the proof for sequences is that no

function of k-sized subsequences can capture the product of k + 1 elements in general. For

graphs, we use large CSL graphs in which we cannot determine from a k-sized induced

subgraph whether it is taken from a CSL graph with skip links of length k + 1 or k.

Proof 7 To avoid confusion, note that when we write fk, for some fixed k, we are defining

only one function, not a class of functions parameterized by k. The subscript indicates that

it is a k-ary JP function.

(Sets) To consider sets, write X = Sds for some ds.

85

First, we need to show that fk ∈ Fk =⇒ fk ∈ Fk+1. Let fk be associated with f
⇀,

some function of variable-size inputs, such that fk is the result of pooling over f⇀k(·) = f
⇀(↓k

(·)). Observe that ↓k◦ ↓k+1 = ↓kby Definition 15 . Now, define some other function g
⇀ by

g
⇀(S) = f

⇀

k(S), whence g
⇀

k+1(S) = g
⇀
(
↓k+1 (S)

)
= f

⇀

k(↓k+1 (S)) = f
⇀

k(S). Thus, for any

input sequence S,

fk(S) = 1
|S|!

∑
π∈S|S|!

f
⇀

k(π · S) = 1
|S|!

∑
π∈S|S|!

g
⇀

k+1(π · S) ∈ Fk+1.

Second, we need to demonstrate ∃fk+1 ∈ Fk+1 such that ∀gk ∈ Fk, gk 6= fk+1. For

S ∈ Sds (encoded as a matrix, or equivalently a sequence of vectors), we can define f
⇀(S) =∏

i Si,1, the product of the first coordinate of the vectors in S. Let fk+1 be the (k + 1)-ary

JP function associated with f
⇀. We now prove that, for all functions g

⇀ on Sds , we have

gk 6= fk+1 for all k-ary approximations gk associated with g
⇀. It suffices to prove this for sets

of length k+ 1, since functions must agree on every input to be equivalent. We will proceed

by showing that, for any g
⇀ and length-(k + 1) sequence S, the quotient gk/fk+1 cannot be

identically equal to 1.

By definition, since |S| = k + 1, and the product function is permutation-invariant,

gk(S)
fk+1(S)

=
1

(k+1)!
∑
π∈Sk+1 g

⇀

k(π · S)
1

(k+1)!
∑
π∈Sk+1

∏
i Si,1

=
∑
π∈Sk+1 g

⇀

k(π · S)
(k + 1)!∏i Si,1

.

Next, again using |S| = k + 1, we rewrite g
⇀

k(π · S) = g
⇀((π · S)−(k+1),:) where S−i,: denotes

the sequence with index i removed. We will use this to find another expression for the

summation. Observe that {(π · S)−(k+1),: : π ∈ Sk+1} = ⋃k+1
i=1

⋃
π̃∈Sk

(π̃ · (S−i,:)). In other

words, we remove element i in the (implicitly ordered) sequence and permute the remaining

elements. Thus,

∑
π∈Sk+1

g
⇀

k(π · S) =
∑

π∈Sk+1

g
⇀((π · S)−(k+1),:) =

k+1∑
j=1

∑
π̃∈Sk

g
⇀(π̃ · (S−j,:))

86

and so

∑
π∈Sk+1 g

⇀

k(π · S)
(k + 1)!∏i Si,1

=
∑k+1
j=1

∑
π̃∈Sk

g
⇀(π̃ · (S−j,:))

(k + 1)!∏i Si,1
= 1

(k + 1)!

k+1∑
j=1

1
Sj,1

∑
π̃∈Sk

g
⇀(π̃ · S−j,:)∏

i 6=j Si,1
.

︸ ︷︷ ︸
denote by a(S−j,:)

Therefore, altogether, we have shown

gk(S)
fk+1(S)

= 1
(k + 1)!

k+1∑
j=1

a(S−j,:)
Sj,1

. (4.14)

Finally, suppose for contradiction that gk/fk+1 ≡ 1. Then, 1
(k+1)!

∑k+1
j=1

a(S−j,:)
Sj,1

= 1 and so

a(S−1,:) = S1,1
(
(k + 1)!−

k+1∑
j=2

a(S−j,:)
Sj,1

)
.

Thus, we see that a(S−1,:), a function that by definition ignores S1,: is a function of S1,1.

This cannot be true in general for |X | > 1, a contradiction that completes the proof.

(Graphs) To consider graphs, write X = Gdv ,de for some dv, de. Proving Fk is a subset

of Fk+1 is similar to the above, with ↓k now selecting induced subgraphs rather than subse-

quences. We need to show that there is a (k+1)-ary JP function, not constant on featureless

graphs of the same size, that cannot be represented by a k-ary graph function, for k ∈ Z≥1.

The case for k = 1 is trivial, since a 1-ary graph function cannot select any pairs of vertices,

so let k ≥ 2.

We will consider CSL graphs (Definition 12 and Figure 4.2). Let nk > 2(k + 1)2 be

a prime integer.9 Since nk is prime, it is co-prime with k and k + 1, and furthermore

nk − 1 > k + 1 > k. Thus, we can construct CSL graphs GCSL(nk, k) and GCSL(nk, k + 1),

and it suffices to demonstrate that a (k + 1)-ary graph function exists that can distinguish

GCSL(nk, k) from GCSL(nk, k + 1) while no k-ary function can.

First, observe that Definition 12 effectively defines an ordering for CSL graphs. It is

easy to see that we can identify whether a graph is in this ordering – as opposed to some

other permutation – by inspecting the adjacency matrix. In short, in this ordering, there
9The choice of nk facilitates intuition. The idea is that the CSL graph is so large that many hops along
edges are required before it can wrap around.

87

is a 1 in each entry just above and just below the main diagonal. For all graphs G and

permutations π, define f
⇀

k+1(π · G) = f
⇀

k+1(π ·A,1) = g
⇀

k+1
(
π ·A

)
I(π ·A), where I is the

indicator function that takes 1 if π · A is in this canonical ordering and 0 otherwise, and

g
⇀

k+1(π ·A) = ∑k+1
i=1

∑k+1
j=1(↓k+1(π ·A))i,j is twice the number of edges in the k-size induced

subgraph. Thus, the associated Janossy function fk+1 counts (twice) the number of edges

in the subgraph induced by vertices 1, 2, . . . , k + 1 of the graph in canonical order. Letting

Gcanon
k+1 := GCSL(nk, k + 1) be the graph in canonical ordering and similarly for Gcanon

k , we see

g
⇀

k+1
(
Gcanon
k+1

)
< g

⇀

k+1
(
Gcanon
k

)
since the skip connection of length k + 1 skips “outside” the

subgraph. Finally, the Janossy function associated with f
⇀

k+1 is

fk+1(GCSL(nk, k + 1)) = 1
nk!

∑
Snk

f
⇀

k+1
(
π · GCSL(nk, k + 1)

)

= 1
nk!

g
⇀

k+1
(
Gcanon
k+1

)
<

1
nk!

g
⇀

k+1
(
Gcanon
k

)
= fk+1(GCSL(nk, k)).

Thus, fk+1 takes different values on these two graphs.

Second, we will show that no k-ary fk ∈ Fk can distinguish GCSL(nk, k+1) and GCSL(nk, k).

In particular, denote by Lk =
{{
↓k(GCSL(nk, k))

}}
the multiset of induced subgraphs of size

k in GCSL(nk, k) and Lk+1 =
{{
↓kGCSL(nk, k + 1)

}}
be the k-sized induced subgraphs in

GCSL(nk, k+ 1). If we can show that Lk and Lk+1 are “equivalent”, then there is no way for

a function that models k-sized subgraphs of each to distinguish the two graphs. Formally,

we will construct a bijection γ : Lk → Lk+1 such that, for every H ∈ Lk, γ(H) ∈ Lk+1 is

isomorphic to H, and if such a bijection exists, we will write Lk+1 ' Lk. What follows is a

sketch since the idea is clear but would require much notation.

We show that all induced subgraphs in Lk and Lk+1 are forests10
 with maximum degree

of four. The maximum degree is four since CSL graphs are four-regular by definition. To

see they are acyclic, consider what is required to form a cycle in k-sized induced subgraphs

of CSL graphs. Call the two types of edges in Definition 12 1-step and skip-link edges. We
10A forest is a disjoint union of trees. A tree is acyclic.

88

could create a cycle by wrapping around the circle on 1-step and skip-link edges, but this is

not possible due to the large value of nk. Next, we could form “local” cycles: without loss of

generality, we could traverse clockwise and then return on a skip link. But, with skip links

of size k or k + 1, at least (k + 1)-sized subgraphs would be required.

Without cycles as k-sized induced subgraphs, the induced subgraphs of these CSL graphs

become identical. In particular, any tree in Lk must be created by following either 1-step

or k-step links in GCSL(nk, k), but any such tree can be created in GCSL(nk, k + 1). The

other direction is true, so it follows that Lk+1 ' Lk. Since the multisets of k-sized induced

subgraphs are indistinguishable, no k-ary JP function can distinguish the graphs.

Thus, we see that k is an important hyperparameter, trading off between expressiveness and

computational cost.

Implications for Latent Space Pooling. One of our motivations for JP was that

DeepSets fails to capture higher-order interactions in the input. We now prove Lemma 1 ,

that DeepSets is a special case of JP, 1-ary JP.

Proof 8 (Lemma 1) We prove that any DeepSets model can be written as a 1-ary JP model.

Recall from Equation 3.3 that, for neural networks r and g with parameters Θr and Θg

respectively, the DeepSets model computes r
((∑|S|

i=1 g
(
Si,:; Θg

))
; Θr

)
, for any set S. A JP

model is defined by a readout rJP and a function f
⇀ with parameters ΘJP and Θf respectively.

So, define f
⇀(S; Θf) = |S|g

(
↓1(S); Θg

)
for all sets S and rJP(h; ΘJP) = r(h; Θr) for all

(hidden) vectors h ∈ Rdh . Then, by Equation 4.3 and the same reduction of redundant

terms used in the proof of Proposition 4 , the JP prediction is

y(S; Θf ,ΘJP) = rJP

(1
|S|!

∑
π∈S|S|

f
⇀(π · S; Θf); ΘJP

)
= r

(|S|
|S|

|S|∑
i=1

g
(
Si,:; Θg

)
; Θr

)

= r
(|S|∑
i=1

g
(
Si,:; Θg

)
; Θr

)
.

Observing that this is a 1-ary JP model completes the proof.

Remark 8 Theorem 3 and Lemma 1 imply that the pooling layer of DeepSets is less expres-

sive than k-ary JP with k > 1. This formalizes our intuition that processing one input at a

89

time is less expressive than processing pairs, triplets, and so on. Yet, since DeepSets has uni-

versal approximation guarantees, we conclude that the responsibility of modeling high-order

relationships is pushed to r. This offers an alternative explanation for the fact that DeepSets

requires highly complex functions to achieve universal guarantees over set inputs, sometimes

making it difficult to learn in practice [62].

Unification. Let us highlight that existing approaches in the literature can be consid-

ered k-ary JP, such as the latent space and higher-order methods discussed in Section 3.2.3 .

DeepSets is 1-ary JP while SetTransformer and Relation Network use 2-ary JP layers. The-

orem 3 offers theoretical insights and a new perspective for specifying permutation-invariant

models. Choosing between DeepSets and SetTransformer, for example, amounts to a choice

of k and f
⇀. In particular, the modeler should carefully consider any prior knowledge about

the order of interrelations (i.e., value of k) and the availability of computational resources

when when specifying a permutation-invariant model.

Combining k-ary and π-SGD

While k-ary approximation reduces computation from |x|! to |x|!/(|x|−k)!, this can still

be intractably large even for inputs of moderate size. Therefore, we can combine π-SGD

with k-ary approximations, which amounts to a scheme of selecting random k-sized subsets

or induced subgraphs from x before passing to f
⇀. An example is shown in Figure 4.4 . How-

ever, uniformly sampling would not result in unbiased estimation of graph characteristics.

Exploring the connections between our approach and efficient unbiased samplers [260], [261]

is an avenue for future work.

Canonical and Poly-canonical Orderings

We saw in Section 3.2.1 that ordering the data is a popular approach to constructing

permutation-invariant models of graphs or sets. In the JP framework, this is equivalent to

defining a new function f
⇀

canonical = f
⇀

◦ ORDER where ORDER(x) = ORDER(π · x) is

a “simple” permutation-invariant function and f
⇀ is any function on X . In this case, JP

reduces to f canonical(x) = 1
|x|!

∑
π∈S|x| f

⇀

canonical(π ·x) = f
⇀
(
ORDER(x)

)
, eliminating the sum

90

over permutations. Equivalently, we can define this approximation as enforcing the constraint

f
⇀(x) = 0 whenever x 6= ORDER(x). Note that this is not as computationally intensive as

original JP when ORDER is a simple function such as SORT. If we have prior knowledge

about a “good” ordering, then this is a viable strategy for permutation-invariant modeling.

However, we discussed its limitations in Section 3.2.1 and believe that the flexibility of π-SGD

and k-ary approximations make them more generally applicable solutions.

We also saw that an ordering can be learned from the training data, and this is another

viable approximation strategy if learning can be performed efficiently. However, we saw

that this approach may not lead to strong generalization performance and is philosophically

different than invariant training.

Poly-canonical Orderings. Rather than defining an ordering that maps all of orbit(x) =

{g · x : g ∈ G} to a singleton, we can define a poly-canonical ordering that yields more

than one, but fewer than |x|!, possible outputs. For instance, consider a graph G with

vertex set V = {1, 2, . . . , |G|}. For all permutations π, π · G can be sorted by depth-

first search or breadth-first search starting from π(1) [262]. A DFS defines a bijection

DFS : V → V , i.e., a permutation, and we can define Πdfs(G) = {DFS(π · G) : π ∈ S|G|}.

Typically, |Πdfs(G)| < |G|!, so pooling over permutations π ∈ Πdfs reduces computation. As

an example, consider these two isomorphic graphs 1 2 3 and 1 3 2 . The numbers illustrate

orderings, or permutations,11
 π1 and π2. A DFS would start at the vertex labeled 1 and result

in 1 2 3 for each. However, a DFS ordering of 2 1 3 is still 2 1 3 and therefore different

from the previous examples. Hence, the DFS reduces the number of distinct permutations

to sum over, but not to just one.

Enumerating all DFS or BFS orderings can be expensive, but this becomes computation-

ally feasible when used in conjunction with our other tractability approaches. For instance,

using π-SGD, k-ary approximations, and DFS ordering is equivalent to selecting a ran-

dom vertex and running DFS until k vertices have been selected. This has the advantage

of sampling connected subgraphs, whereas simply combining π-SGD and k-ary can sample

disconnected subgraphs, which may be less meaningful. In a sparse graph, selecting only
11Recall from Chapter 3 that encoding a graph requires defining an ordering on the vertex set, which is
effectively a permutation, without loss of generality.

91

connected induced subgraphs can dramatically reduce the number of subgraphs considered

compared to naive k-ary with π-SGD.

More General Invariances. Canonical orientations have a natural extension to other

group invariances beyond permutations. For instance, in a rotation-invariant image classifi-

cation task, we could pre-rotate an image into one or a few useful orientations. As another

example, we can view any preprocessing of image brightness or contrast as a canonicaliza-

tion [160]. Whether the canonical form is meaningful will depend on the task and model at

hand, and it still may be preferable to use other strategies such as an architecture that is

transformation-invariant by design or an analogue of π-SGD.

Synthesis of Approximation Schemes

Our approximations are not mutually exclusive and can be combined to form a vast array

of strategies for enforcing invariance or encouraging approximate invariances. On the one

hand, k-ary and poly-canonical orderings provide spectrums that trade off prior knowledge

and computation. Canonical orderings may succeed if the ordering is correlated to the task

at hand but can fail otherwise. k-ary approximations correspond to an assumption about

the order of relationships (pairwise, ternary, etc.) that are important to solving the task.

On the other hand, π-SGD is broadly applicable and does not make an explicit assumption

about the task other than that (approximate) invariances are important.

In terms of computation, canonical orderings collapse the number of permutations to

sum over and can lead to significant time savings. π-SGD also reduces the number of

permutations, but unlike training on data in fixed canonical orientations, requires permuting

the input at every training epoch. While k-ary approximations also reduce the number of

terms to pool over, computation may still be infeasible if |x| is large, in which case we can

pair it with π-SGD training.

4.2 Probabilistic Motivations

Our work has strong connections to probability and exchangeable distributions. We

motivated JP through the lens of invariances in neural networks, but probabilistic insights

92

offer an alternative perspective. We begin with a review of the concepts and then discuss

connections to JP.

4.2.1 Review of Infinite and Finite Exchangeability

A fundamental result underpinning Bayesian statistics is de Finetti’s theorem, which

characterizes the distribution of exchangeable random variables [175], [263]. We say that

a sequence of random variables is exchangeable when the joint probability distribution is

invariant to permutations, a weaker condition than independence. Consider an infinite se-

quence of exchangeable random variables or a finite sequence whose distribution arises as

a marginalization of an infinitely long exchangeable sequence [175], [264], [265]. When this

holds, the data distribution P(X1, X2, . . .) can be decomposed as

P(X1, X2, . . .) =
∫
θ∈Θ

∞∏
i=1

P(Xi | θ)P(θ)dθ, (4.15)

where Θ is the parameter space.12
 One interpretation is that this theorem justifies the use

of a prior distribution. For our purposes, it implies a mixture distribution over conditionally

independent random variables given θ [263], [265]. Moreover, it imposes strong structural

requirements: the probability of any subsequence must equal the marginalized probability

of the original sequence (i.e., projectivity).

Finite exchangeability drops this projectivity requirement [264]. To be concrete, consider

the representational form of such distributions [266], [267]. Letting X1, X2, . . . , Xm be m

binary random variables, their probability distribution can be represented by the generation

process: (1) randomly select an integer s ∈ {1, . . . ,m}, (2) put m balls in an urn where

exactly s are labeled “success”, and (3) randomly draw balls from that urn one at a time.

Observe that if an urn has s successes, and the first s draws are all successes, next cannot be.

In other words, the draws are not i.i.d. In general, finite exchangeable distributions cannot be

simplified beyond some form involving a non-i.i.d. distribution Pmexch(X1, . . . , Xm) [84]. Thus,
12This decomposition is written in a simplified form, as in [175], which is satisfactory for our discussion here.
A more general form can be found in [265]. We follow convention in letting Θ denote the parameter space.
In this discussion, it does not represent a matrix.

93

whereas infinite exchangeability implies a mixture over conditionally independent random

variables, finitely exchangeability implies a mixture over dependent random variables [264].

A special permutation-invariant distribution arises in point processes, which include dis-

tributions over points in space. Consider a generating process where both the number of

points and their location are random. This arises, for instance, in Lajos Janossy’s study of

particle showers [83], [84], and the distribution is described by a Janossy measure. We will

introduce a simple example to make the connection apparent. Following Vo, Dam, Phung,

et al. [268], if we suppose X is a countable input space, then, the likelihood function of a

point pattern is

f(X1, . . . , XK) = Pc(K)
∑
π

P(Xπ(1), . . . , Xπ(K) | K),

where Pc(K) is the probability of there being K points total, π are permutation functions,

and P(xπ(1), . . . , xπ(K) | K) gives the joint probability of the points. Noting the similarity of

this expression to Equation 4.1 , we call our approach Janossy pooling.

Turning to graphs, there is an analogue of de Finetti’s theorem for exchangeable 2-arrays,

of which graphs are a special case. Observed graphs are considered to be induced subgraphs

of an infinite random 2-array, and the distribution is characterized by the Aldous-Hoover

theorem [265], [269], [270]. There are two notions of exchangeability for graphs. We

have focused on joint exchangeability: the distribution of the array is invariant to applying

the same permutation to the rows and columns. A separately exchangeable distribution is

invariant to applying different permutations to the rows and columns. These ideas helped

formulate the definition of JP and our extension to bipartite graphs in Section 4.3.2 .

4.2.2 Exchangeability and Neural Networks

Zaheer, Kottur, Ravanbakhsh, et al. [26] note the similarity between DeepSets and the

decomposition in Equation 4.15 . Indeed, the pooling operation ∑
i g(Si,:) can be viewed as

(proportional to) a log likelihood of conditionally i.i.d. random variables, where g(Si,:) is

the log probability. Thus, DeepSets arises from an assumption of infinite exchangeability,

and may be misspecified. This connection provides another perspective into the limitation

94

that DeepSets struggles to capture higher-order relationships. In contrast, JP captures

relationships among random variables in a set and does not assume conditional independence,

more like the finitely exchangeable distributions. To draw further parallels, finite Gibbs

models [271] restrict the structure of Pexch to fixed-order dependencies, similar to k-ary

Janossy.

Bloem-Reddy and Teh [148] develop a link between invariant deterministic functions

and exchangeable distributions to inform neural network design by leveraging the idea of

noise outsourcing. That is, under some fairly general conditions, the conditional distri-

bution between any random variables X and Y , PY |X , has a decomposition into a de-

terministic function of X and independent noise. Let G be a compact group, which in-

cludes the symmetric group of permutations. They show that a G-invariant distribution can

be represented by noise outsourcing with a deterministic neural network if there exists a

maximal-invariant function of the data. By definition, such functions are constant on orbits

orbit(x) = {G · x : G ∈ G} and assign different values to distinct orbits. Providing a unique

representation for every orbit is precisely the goal of many JP models and forms the idea

behind our proofs of their expressive power. It is interesting that maximal invariants can

in theory always be computed for the discrete case, but may not be trivial to construct for

continuous groups of transformations. This represents an interesting challenge for any future

explorations of JP for continuous transformations.

4.3 Extensions

In this section, we briefly outline extensions of JP. These open interesting avenues for

future exploration and further demonstrate the flexibility of JP as a framework, although we

have not explored them at length. Moreover, just as JP provides a theoretical explanation

of existing approaches for supervised learning on graphs and sets, a theoretical development

of these ideas could further our understanding of other methods.

95

4.3.1 Equivariance

As defined in Equation 4.1 , JP models invariant functions and maps possibly variable-

size inputs to fixed-length vector or scalar outputs. However, JP can be extended to learning

equivariant representations (see Definition 5). That is, it can map inputs to an output of

the same size in an equivariant way.

For simplicity and brevity, we will define equivariant JP for fixed-length sequences, but

it is straightforward to generalize the definition to graphs and variable-length inputs. Let

f
⇀ : Rn×ds → Rn×dh be a permutation-sensitive function whose input and output are both

length-n sequences. Then, we can define equivariant JP by

f(x) = 1
|x|!

∑
π∈S|x|

π−1 · f
⇀(π · x), x ∈ Rn×ds ,

where π−1 ∈ S|x| denotes the inverse element of π in S|x|. Notice that Sn acts on both

Rn×ds and Rn×dh by permuting the rows but not the columns (see Equation 2.3). Such a

pooling layer could be useful for mapping every element in a sequence to a latent space

without losing the sequence structure or the ordering presented. To define this for graphs,

we simply let x denote a graph and use the appropriate action of the symmetric group on

graphs (Definition 9). Equivariant JP could provide another approach to learning vertex-

level representations.

4.3.2 Separate Janossy Pooling

Motivated by the distinct notions of separate exchangeability and joint exchangeabil-

ity [265], we can also extend Janossy pooling to bipartite graphs. A bipartite graph is a

graph G = (V , E) such that V is partitioned into nonempty sets V1 and V2 with the property

that all edges are between exactly one vertex in V1 and one in V2 [259]. An example is shown

in Figure A.1 of the appendix. Bipartite graphs are often used to represent relationships

between distinct entities, such as users (V1), movies (V2), and the ratings that users assign

to movies (edges) [265]. As before, we must encode such graphs by defining an ordering over

96

V1 and V2 (see Figure 3.1 and Section 3.1.2), and thus an invariant/equivariant model is

typically desired.

For simplicity, consider a bipartite graph G without vertex or edge features. Rather than

encoding G with an adjacency matrix, we construct a matrix M ∈ {0, 1}|V1|×|V2| whose rows

represent entities in V1, columns represent V2, and whose binary entries indicate whether an

edge is present. Then, to extend JP, we sum over two sets of permutations, S|V1| and S|V2|,

applying permutations π1 ∈ S|V1| to rows and π2 ∈ S|V2| to columns. Extensions to graphs

with features and to multipartite graphs are possible but omitted for brevity. Since bipartite

graphs typically represent different types of entities, learned vertex-level representations may

be more useful than graph-wide representations. Hence, we could combine equivariant JP

with separate JP to learn vertex-level representations in bipartite graphs.

4.4 Experiments

In this section, we empirically demonstrate the stated benefits and validate the theoretical

properties of JP. Five broad questions that we answer are: (1) Do we find that JP can better

model complex relationships in a set, compared to DeepSets? (2) Does RPGNN improve the

expressiveness of MPGNNs? (3) Do experiments bear out the predicted benefits of increasing

k and the number of sampled permutations? (4) How do different ordering schemes perform?

(5) Does π-SGD training learn an approximately invariant model? Meanwhile, by illustrating

a diverse set of tasks and datasets, we showcase the flexibility of the JP framework.

Since different tasks are brought to bear on the same questions, we will first lay out

the datasets. Then, we will proceed through different explorations and discuss the results.

Implementation details such as hyperparameter tuning and loss functions are provided in

the appendix.

4.4.1 Datasets

We use datasets of both sets and graphs. The first two are simple synthetic datasets

which abstract away complexities that are not central to our investigation. That is, they are

97

Table 4.1. Arithmetic Tasks. Length n and support size M for (multi)sets of
integers sampled uniformly at random with replacement from {0, 1, . . . ,M−1}.

sum range variance unique sum unique count
n 5 5 10 10 10
M 100 100 100 10 10

designed to be what John Lafferty called “fruit fly” experiments in a presentation at Purdue.

The remaining are real-world datasets that are popular in the literature.

Integer Arithmetic Datasets

This dataset extends the experiments in [26]. We sample (multi)sets of length n, uni-

formly at random and with replacement, from the set of integers {0, 1, . . . ,M − 1}, where

integers n and M depend on the task and are shown in Table 4.1 . The goal is to compare

JP to DeepSets (a universal approximator) on tasks that require modeling relationships be-

tween elements, and we predict DeepSets to struggle. In contrast, π-SGD training will allow

us to model the full sequence (e.g., with an LSTM) to capture higher-order relationships,

while promoting permutation invariance for the sake of generalization. We consider summa-

tion (unary relationships) for comparison, population variance (binary relationships), unique

sum, unique count, and range (higher-order relationships).

Population variance is defined by Var(x) = 1
n

∑
i(xi − x̄)2 = 1

2n2
∑
i,j(xi − xj)2 for a

sequence x of integers and involves 2-ary relationships. Unique count is the number of

unique elements in the input and unique sum is the sum thereof. The range is defined by

max(x)−min(x).

The values of n and M , shown in Table 4.1 , are loosely based on the choices of [26], and

are varied to control the difficulty of the task. We keep the sequences relatively small to

enable experiments with exact k-ary training (i.e., k-ary without π-SGD). A large value of

M for the sum, range, and variance tasks prevents the problem from becoming too easy, as

these functions can center around some value that can be predicted without learning the

correct function. Unique sum and unique count are already difficult, so we kept M at 10,

per [26].

98

Following existing literature, we treat all tasks except for variance as binary classification:

either the prediction is correct or incorrect. For variance, we consider a regression problem

with RMSE as the metric. The training data consists of 100,000 randomly sampled sequences.

Circulant Skip Link Graphs

We create a dataset of CSL graphs (Definition 12 and Figure 4.2). Recall that GCSL(n, a)

and GCSL(n, a′) are not isomorphic unless a ≡ ±a′ mod n but MPGNNs (Equation 3.1) are

incapable of yielding distinct predictions for the two. Thus we define a graph classification

task: for a fixed graph size n = 41, we create CSL graphs with different skip lengths a and

predict the length a ∈ {2, 3, 4, 5, 6, 9, 11, 12, 13, 16}. These skip lengths produce graphs that

cannot even be distinguished by the more sophisticated vf2 testing algorithm [272], and 41

is the smallest number of vertices such that 10 such skip lengths can be produced. This

is tantamount to classifying graphs into an isomorphism class. Note, we are not tackling

the graph isomorphism problem since our method is an approximation. To generate mul-

tiple graphs in a class, we create a “canonical” CSL graph for each a, then apply random

permutations. We sample 15 graphs in each class.

In this fruit fly experiment, no additional features were added, so dv = de = 1. Thus,

graphs are encoded by pairs (A,1) containing an adjacency matrix and a constant vertex

feature.

Molecules

Learning on molecules, encoded as graphs (Figure 3.2), is a popular task for bench-

marking the effectiveness of graph neural networks. Not only does modeling molecules have

important applications, but molecular datasets are also more challenging than other avail-

able benchmarks [273]. We chose three datasets from the MoleculeNet project [41], [274]:

MUV, HIV, and Tox21 [275]–[277].

The HIV dataset contains molecules and whether or not they inhibit HIV, resulting in

a binary classification problem. The Tox21 dataset is associated with the Toxicology in the

21st Century initiative to advance the science around biochemical pathways. It measures

99

Table 4.2. Molecular Graph Data. The datasets come from MoleculeNet
and DeepChem [41], [274]. Each train/val/test split is roughly 80%, 10%, and
10% of the total number of graphs, respectively. The number of vertex and
edge features depend on the model and thus the experiment.

Data Set Total Number of Graphs Number of Targets
HIV 41,127 1
MUV 93,087 17
Tox21 7,831 12

molecular toxicity on 12 targets such as aromatase inhibition and aryl hydrocarbon activation.

Finally, the MUV dataset is a carefully curated dataset that facilitates virtual screening

analyses. It contains information on whether compounds are active/inactive for 17 targets,

including various kinase and protease inhibition. Note that Tox21 and MUV are multiple-

target problems. All targets are binary across all tasks.

All vertices (atoms) and edges (bonds) in all graphs (molecules) are associated with

feature vectors. Atom features include one-hot encodings of the atom type, hybridization

(SP, SP2), and aromaticity. The bond features include a one-hot encoding of bond type

and stereochemistry in the E-Z convention [278]. The dimension of these feature vectors

depends on the model, and differs from experiment to experiment. In short, we follow the

recommendations of DeepChem. For each dataset, the data are split randomly into training,

validation, and testing sets containing roughly 80%, 10%, and 10% of the total graphs

respectively. A basic summary is shown in Table 4.2 .

For experiments on molecular datasets, we will use the MPGNN of Duvenaud, Maclau-

rin, Iparraguirre, et al. [40]. This is a highly influential method for predicting molecular

properties and is implemented in the DeepChem library [274]. The method, detailed in Al-

gorithm 5 of the appendix, takes advantage of constraints that chemistry places on graphs.

In short, it uses different aggregation functions depending on the degree of the vertex, since

vertex degree is bounded in a small set by bonding laws.

100

Table 4.3. Real-World Vertex Classification Datasets

Characteristic Cora Pubmed PPI
Number of Vertices 2,708 19,717 Total 56,944, Average 2,373a

Average Degree 3.898 4.496 28.8a

Number of Vertex Features 1,433 500 50
Number of Classes 7 3 121b

Number of Training Vertices 1,208c 18,217c 44,906d

Number of Validation Vertices 500 500 6,514d

Number of Test Vertices 1,000 1,000 5,524d

a The PPI dataset comprises several graphs, so the quantities marked with an “a”
represent an average across graphs.

b The PPI task has 121 binary targets (it is multi-task).
c The validation and test sets were split evenly among the remaining vertices.
d All of the training vertices come from 20 graphs while the testing vertices come from

graphs not seen during training.

Vertex Classification Datasets: PPI and Citation

We will use JP as an aggregator in MPGNNs for vertex classification/regression. That is,

we define a model with the recursions described in Equation 3.1 , using JP as a neighborhood

aggregator. However, rather than ultimately aggregating the hidden vertex representations

H
(L)
1,: ,H

(L)
2,: , . . . ,H

(L)
|G|,: into a graph-wide prediction, we use each to predict properties of

vertices 1, 2, . . . , |G|.

We consider the three undirected graph datasets used by Hamilton, Ying, and Leskovec

[45]: Cora, Pubmed [279], and a protein-protein interaction (PPI) graph [46], [280], [281].13

The first two are citation graphs where vertices represent papers, edges represent citations,

and vertex features are bag-of-words representations of the document text. The task is to

classify the paper topic. The PPI dataset is a collection of several graphs each representing

a different human tissue; vertices represent proteins, edges represent protein interactions,

features include genetic and immunological characteristics, and the task is to classify protein

roles. We now discuss each dataset in more detail, and summary statistics are provided in

Table 4.3 .
13It is much more common to say protein-protein interaction network, but we write graph for consistency
and to avoid confusion.

101

Protein-Protein Interaction Graphs Understanding protein function is critical for

developing therapies and advancing our understanding of biology. Modeling protein-protein

interaction (PPI) graphs [46] is an important tool in this endeavor. In such graphs, vertices

represent proteins and the edges represent interactions. Interactions are measured by lab

experiments such as yeast two-hybrid screens [282].

We will use the PPI dataset created by Hamilton, Ying, and Leskovec [45]. The authors

obtained PPI graphs from the 2015 update of the BioGRID database [280], a collection

of expert-curated protein interactions from different studies. Inspired by [46] the authors

selected several PPI graphs, each corresponding to different tissues. Their motivation was

to evaluate whether their GraphSAGE model trained for vertex classification on one set of

graphs could generalize to unseen graphs. Specifically, there are 24 graphs, with 20 used

for training, two for validation, and two for test. These particular graphs (tissues) were

selected as they have at least 15,000 edges. Altogether, there are 56,944 vertices (proteins).

The authors obtained vertex feature and target information from the Molecular Signature

Database, an oncology of protein information [281]. For each vertex, there are 50 features

representing properties such as immunological genetic information. These particular 50

attributes were chosen since they are expressed relatively frequently in the proteins collected.

Still, most feature vectors are sparse. Every vertex is associated with a 121-dimensional

binary target vector. Each binary value indicates whether or not a protein has some specific

function.14
 A binary cross-entropy loss is applied to each target. Additional information on

these graphs can be found in Table 4.3 .

Cora graph The Cora citation dataset represents 2,708 papers from seven categories such

as Neural Networks, Reinforcement Learning, and Genetic Algorithms. It is encoded as a

graph whose vertices represent papers, edges represent citations, and vertex features capture

information about the words in the document. While citations are inherently directed, the

graph is encoded as an undirected graph. The vertex features are 1,433-dimensional binary

vectors where a 1 indicates presence of word and 0 indicates absence; 1,433 is the number

of unique words in all papers after performing stemming and stop-word removal. The task

is to classify the paper topic, and cross-entropy loss is used.
14Unfortunately, more detail about the features and targets were not provided by the authors.

102

Table 4.4. Modeling Higher-Order Relationships on Arithmetic Tasks. Mean
(standard deviation) performance, measured in RMSE for the variance task
and accuracy (A) for the remaining arithmetic tasks, averaged across 15 runs.
We compare JP models trained with π-SGD on the full sequence to 1-ary JP.
DeepSets [26], a special case of JP, is shown in typewriter font. “u sum”
denotes unique sum, similarly for “u count”, and “Aff.” denotes an affine layer.
We study k-ary approximations and the number of sampled permutations in
Section 4.4.4 .

Model r k samples var (RMSE) sum (A) range (A) u sum (A) u count (A)
MLP Aff. 1 – 119.05(1.29) 1.00(0.00) 0.04(0.00) 0.07(0.00) 0.36(0.01)
MLP MLP 1 – 1.95(0.24) 1.00(0.00) 0.97(0.01) 1.00(0.00) 1.00(0.00)

GRU Aff. |x| 1 1.43(0.23) 0.99(0.01) 0.98(0.00) 1.00(0.00) 1.00(0.00)
GRU Aff. |x| 20 1.20(0.23) 0.99(0.00) 0.99(0.00) 1.00(0.00) 1.00(0.00)
GRU MLP |x| 1 0.42(0.62) 0.99(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)
GRU MLP |x| 20 0.40(0.37) 0.99(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)

Pubmed The Pubmed dataset is another citations graph consisting of 19,717 papers on

the topic of diabetes. There are 44,338 citation links, which are treated as undirected. Each

paper is classified into three topics: Experimental Diabetes, Type 1 Diabetes, or Type 2

Diabetes. The vertex features are the TFIDF scores [283], an indicator of word importance,

for each of the 500 words in the corpus.

4.4.2 Modeling Higher-Order Relationships

As a first step, we explore modeling higher-order relationships in a sequence. One of our

key observations is that DeepSets is equivalent to 1-ary Janossy pooling, so its modeling

capacity relies on a complex readout function r. In contrast, we expect pooling over a

permutation-sensitive function f
⇀, such as an RNN, whose input is the entire sequence, to

attain better performance in general. To efficiently estimate a JP model with an RNN, we

will train with π-SGD, sampling one permutation at each training epoch. We will study

k-ary approximations more closely in Section 4.4.4 using several different datasets.

In particular, we use the integer arithmetic dataset of Section 4.4.1 . These tasks require

modeling varying levels of interactions within the set. We define f⇀ as a GRU (an RNN) [94];

given a sequence input x = (x1, . . . ,xn), the GRU model returns a sequence (h1, . . . ,hn),

103

and we take hn.15
 We will approximate the Janossy model with π-SGD, sampling one and

20 permutations at inference time (inference time is studied more closely in Section 4.4.4).

Our baseline is a 1-ary JP model where f
⇀

1 is an MLP. For both full-sequence and 1-ary JP,

we leverage two readout functions r: affine and MLP. When r and f
⇀

1 are both MLPs, the

model is equivalent to the DeepSets model [26] (see Lemma 1 and its proof). For a fixed

r, we choose hyperparameters that keep the number of learnable parameters in the model

similar. Many architectural choices were made to parallel the experiments in [26], and more

details are provided in the appendix. We quantify variability by running the experiment 15

times.

Table 4.4 bears out our theoretical expectations. With a simple affine readout function

r, the 1-ary model performs poorly for several tasks (e.g., unique sum and variance). How-

ever, when r is an MLP (DeepSets), performance improves dramatically. This demonstrates

reliance on complex outer layers to achieve adequate performance. Yet, although DeepSets

is a universal approximator, it does not outperform the Janossy models on the variance task.

Overall, the JP models achieve much better performance regardless of the choice of readout,

though a more complex r does improve performance on the variance task. Additionally, sam-

pling more permutations at inference time improves performance. Finally, it is interesting

that all but the simplest models are able to achieve near-perfect performance for several of

the tasks.

4.4.3 Expressiveness of MPGNNs and RPGNNs

Next, we empirically demonstrate another key observation: RPGNNs are more powerful

than MPGNNs (Theorem 2). We saw that MPGNNs cannot distinguish graphs such as

the CSL graphs, but by adding permutation-sensitive one-hot IDs and training with JP,

RPGNNs can.

CSL task. We begin with the CSL synthetic dataset. We choose GIN, a theoretically

most powerful MPGNN [56], as the baseline, and in particular the variant with additional

parameters ϑ (see Section 3.2.2). By definition, RPGIN is a JP model that defines f
⇀ by

15To be clear, we are following the notation defined at https://pytorch.org/docs/stable/generated/
torch.nn.GRU.html (accessed March 2021).

104

https://pytorch.org/docs/stable/generated/torch.nn.GRU.html
https://pytorch.org/docs/stable/generated/torch.nn.GRU.html

Table 4.5. Mean (standard deviation) accuracy across five folds on the CSL task.

GIN RPGIN
0.1(0.0) 1.0(0.0)

adding IDs to the vertex features then passing the augmented graph to GIN (Equation 4.5).

We use π-SGD to estimate JP. To evaluate performance at inference time, we sample 20

permutations and average the output, per Equation 4.12 . To tune hyperparameters, we

swept over the number of GNN recursions, width of the aggregator MLP, dimension of the

one-hot ID, batch normalization, and dropout on an independent set of CSL graphs.

We evaluate both models with five-fold cross validation to estimate the generalization

error. The classes are balanced in each. Table 4.5 bears out the theoretical predictions;

GIN achieves only random accuracy – 10% on this 10-class classification task. In contrast,

the RPGIN achieves strong performance, verifying the theory that it is more expressive and

demonstrating that it can be trained effectively with π-SGD training.

Molecular Task. Next, we evaluate the performance of RPGNN on the real-world

molecular dataset. As a baseline GNN, we chose that of Duvenaud, Maclaurin, Iparraguirre,

et al. [40], discussed in Section 4.4.1 and Algorithm 5 . Again, we append permutation-

sensitive IDs to the features to define the RPDuvenaud et al. model. We train with π-SGD

and 20 inference-time permutations. In terms of decisions about hyperparameters, data

splits, and performance metrics, we follow those of [41], [274], which were based on existing

chemoinformatic literature. We provide more details in the appendix.

The results shown in Table 4.6 suggest that RPDuvenaud et al. can improve perfor-

mance over the baseline but does not impose a risk of hurting performance. Note that

canonical orderings approaches are also shown in this table so that they can be compared

with RPDuvenaud et al. in our discussion in Section 4.4.5 .

Conclusions The CSL task showed that the RPGNN model can dramatically improve

over the baseline for highly symmetric graphs when no features are available. For the molec-

ular tasks, rich features are available, which help to break symmetries even in the baseline

GNN. For these, the results of RPDuvenaud et al. were promising on the HIV task and

achieved similar performance to the baseline on the others. Putting these two experiments

105

Table 4.6. Performance on Molecular Tasks. We show mean (standard
deviation) ROC-AUC across multiple random data splits. The baseline
MPGNN is from Duvenaud, Maclaurin, Iparraguirre, et al. [40] and described
in Algorithm 5 . Models under the JP framework are RPDuvenaud et al. and
two based on poly-canonical orderings, described in Sections 4.4.3 and 4.4.5 .

Model HIV (AUC) MUV (AUC) Tox21 (AUC)
RPDuvenaud et al. 0.832 (0.013) 0.794 (0.025) 0.799 (0.006)
Duvenaud et al. 0.812 (0.014) 0.798 (0.025) 0.794 (0.010)
CNN-DFS 0.542 (0.004) 0.601 (0.042) 0.597 (0.006)
RNN-DFS 0.627 (0.007) 0.648 (0.014) 0.748 (0.055)

together, we suggest that practitioners train with RPGNN in place of their favorite GNN as

it may improve generalization performance. The extent of improvement will depend signifi-

cantly on the nature of the task.

4.4.4 Impact of k and Number of Sampled Permutations: GraphSAGE

Now we investigate the impact of k and π-SGD in approximating a JP model. We expect

that increasing the number of sampled permutations at inference time for models trained

with π-SGD will drive down variance and lead to better generalization performance. We also

expect that increasing k in k-ary approximation makes the pooling layer more expressive

(Theorem 3). The effect of k can be studied both with and without π-SGD. Additionally,

by casting GraphSAGE [45] as a k-ary JP model with π-SGD, we leverage the insights from

our theory to provide a simple modification that improves its performance.

Vertex classification. JP can be used as a neighborhood aggregator in a vertex classifi-

cation task. Indeed, the GraphSAGE-LSTM [45] model uses an RNN over a set of randomly

sampled features in vertex neighborhoods as an aggregator, making it a k-ary π-SGD JP

aggregator. The model uses two layers of recursion, hence two approximate JP layers. How-

ever, the authors originally used only one permutation sample at inference time. Therefore,

the vertex classification dataset of [45] serves the double purpose of a task for studying the

effect of increasing k and the number of permutations sampled, as well as whether sampling

more permutations at inference time can improve GraphSAGE. Regarding the architecture

and evaluation, we mostly followed [45]. Note that our choice of the micro-averaged F1 score

106

●

●
● ● ● ● ● ● ● ●

0.6

0.625

0.65

0.675

0.7

0.725

0.75

0.775

1 2 3 4 5 6 7 8 9 10
Number of inference−time permutations sampled

M
ic

ro
−

av
er

ag
ed

 F
1

k1, k2
● 10, 25

25, 10
25, 25
100, 100

Figure 4.5. Impact of increasing k and the number of inference permutations
in the GraphSAGE-LSTM model on the PPI dataset. The GraphSAGE-LSTM
model uses a JP neighborhood aggregator with π-SGD and k-ary training. The
setting k1, k2 refers to the number of permutations sampled in recursions 1 and
2, respectively.

as the metric for the PPI dataset also follows from that paper. Other details are provided

in the appendix.

Figure 4.5 shows the impact of increasing the permutations and k at inference time using

the PPI dataset. Since there are two aggregation steps, we can try different values of k in dif-

ferent layers. We see that increasing k systematically improves performance. Sampling more

permutations also increases performance, but diminishing returns set in relatively quickly.

Still, using paired tests – t and Wilcoxon signed rank – we find that test performance with

seven sampled permutations versus one permutation is significant with p < 10−3 over 12

replicates. It is exciting that the generalization of GraphSAGE can be improved by the

straightforward modification of sampling more permutations at inference time.

For the other two citations datasets, we found that all models performed similarly, in-

cluding naive mean pooling. This points to an easy task, and in retrospect it stands to reason

that the topic of a paper can be adequately predicted by computing the average represen-

107

tations of papers in the neighborhood (papers with citation links). This may not require

modeling relationships between neighboring papers. The research community has since come

to the conclusion that these citation graphs cannot be used to effectively benchmark among

graph models of varying degrees of complexity and sophistication [8]. The results, which are

not very insightful, are shown in the appendix.

Arithmetic Tasks. We return to the “fruit fly” arithmetic task. On these tasks, we

have some insight into the order of relationships (e.g., variance is 2-ary). Moreover, we

made the sequences small so that we can evaluate the performance of exact k-ary inference.

Our architecture for f⇀k performs the following computations: map each integer to a higher-

dimensional space, concatenate each of the hidden vectors, and pass to an MLP. We perform

this for all k-sized subsequences, pool the results, and pass the vector through a readout

function r. Altogether, this constitutes a k-ary JP model. Note that we are not training

with π-SGD.

Table 4.7 shows the results for two levels of complexity in the readout function. For

a simple readout r, increasing k improves performance on several tasks, including range,

unique sum, and unique count. Increasing k does not improve performance on the sum task

(1-ary). On the variance task, which we know to be 2-ary, setting k = 2 achieves the best

performance. We are slightly surprised to find that setting k = 3 hurts performance. This

points to a challenge with optimizing the 3-ary model. Inspecting the results when r is an

MLP reveals no obvious benefit to increasing k in the preceding JP layer. The most logical

explanation is that the optimization problem is more challenging.

While these results somewhat support our theory when r is a simple affine layer, they also

point to difficulty in training k-ary models. This observation, and the strong performance

observed with π-SGD training on a model that uses the full sequence (Table 4.4), suggest the

latter may be a more robust training approach. Simultaneously, exploring the optimization

is an interesting avenue for future work.

Finally, we can study the impact of increasing the number of permutations when training

with π-SGD. From Table 4.4 we observe a modest benefit when increasing the number of

inference-time permutations from 1 to 20.

108

Table 4.7. k-ary Approximations and the Arithmetic Tasks. Mean (standard
deviation) performance, measured in RMSE for the variance task and accuracy
(A) for the remaining arithmetic tasks, averaged across 15 runs. We compare
k-ary JP models trained exactly with different values of k. DeepSets [26], a
special case of JP, is shown in typewriter font.

Model k r var (RMSE) sum (A) range (A) uniq. sum (A) uniq. count (A)
MLP 1 Affine 119.05(1.29) 1.00(0.00) 0.04(0.00) 0.07(0.00) 0.36(0.01)
MLP 2 Affine 4.37(0.50) 0.99(0.00) 0.09(0.00) 0.17(0.00) 0.74(0.03)
MLP 3 Affine 8.99(0.99) 0.99(0.00) 0.21(0.00) 0.44(0.02) 0.89(0.04)
MLP 1 MLP 1.95(0.24) 1.00(0.00) 0.97(0.01) 1.00(0.00) 1.00(0.00)

MLP 2 MLP 3.49(0.48) 1.00(0.00) 0.97(0.01) 1.00(0.00) 1.00(0.00)
MLP 3 MLP 6.90(0.47) 0.93(0.02) 0.93(0.02) 1.00(0.00) 1.00(0.00)

4.4.5 Exploring Different f
⇀

Architectures and Canonical Orderings

In this section, we investigate two other proposed schemes in the JP framework. First,

we explore CNN and RNN architectures for f
⇀ on graph tasks. Equation 4.7 describes the

CNN model. The RNN f
⇀ reinterprets the adjacency tensor as a sequence. In brief, for a

vertex v in a graph G, we pass the sequence (Av,1,:,Av,2,:, . . . ,Av,|G|,:) to an LSTM, and the

vertex features to an MLP, to obtain a hidden representation for the vertex. All vertex-level

representations form another sequence that we pass to another LSTM model. The details

are provided in the appendix. Arguably, these methods rely on the vertex and edge features

more so than the previous approaches. Since the molecules dataset contains rich feature

information, we evaluate these architectures on those.

Arguably, it is more sensible to run an RNN on a connected subgraph. Thus, we run BFS

and DFS from a randomly-selected vertex to collect a k-sized connected induced subgraph. In

other words, we take a k-ary π-SGD approach with poly-canonical orderings (Section 4.1.2).

The results are shown in Table 4.6 . Unfortunately, we see that these approaches tend to

perform poorly. The only exception is the RNN-DFS, which approaches the performance of

the GNNs on the Tox21 dataset, but still appears inferior. We cannot conclude that CNNs

and RNNs are systematically worse approaches, but that further exploration is required to

understand if and under which circumstances these models could perform well.

109

0.0

0.5

1.0

1.5

2.0

0 250 500 750 1000
Epoch

M
ax

 O
rb

it
V

ar
ia

nc
e,

 L
at

en
t

0.0

0.5

1.0

1.5

2.0

0 250 500 750 1000
Epoch

M
ax

 O
rb

it
V

ar
ia

nc
e,

 P
re

di
ct

io
n

 Standard Training π − SGD

Figure 4.6. π-SGD Promotes Invariance. We show the permutation-
sensitivity, measured by the variance over permutations, of RPGIN throughout
optimization with π-SGD and “standard” training.

4.4.6 π-SGD Training Learns an Approximately Invariant Model

We have seen that π-SGD training of permutation-sensitive models can lead to strong

generalization performance. However, we have not verified that π-SGD training learns an

approximately invariant model. Formally, assuming that the output of f⇀ is scaled to have

unit norm,16
 consider whether π-SGD training reduces the quantity

∑
π1∈S|x|

∑
π2∈S|x|

∥∥∥f⇀(π1 · x; Θ̂f)− f
⇀(π2 · x; Θ̂f)

∥∥∥2

2
, (4.16)

where Θ̂f denotes the estimated parameters from π-SGD training. Note that Equation

4.16 is related to the sum of the diagonals of the empirical variance-covariance matrix.

To investigate this, we compare training an RPGIN architecture with π-SGD to standard

training on the CSL data. We train to convergence in both cases. Throughout training,
16The output of f⇀ is always a vector in this section. For scalar outputs, it is not sensible to scale to unit
norm.

110

we estimate Equation 4.16 with 100 pairs of sampled permutations on a set of graphs that

were not seen during training. Since there are several graphs in the validation dataset,

we compute Equation 4.16 for each and report the maximum (the results for the mean

are similar). Furthermore, we quantify the permutation-sensitivity of both the latent graph

representation and the (pre-softmax) graph-wide prediction. Figure 4.6 shows these results

for one round of training. We repeated this experiment several times and found that the

results were similar. The results suggest that training with π-SGD reduces the permutation-

sensitivity of the RPGIN function.

4.5 Impact in the Literature

Insights from the Janossy pooling framework have been leveraged in other theoretical and

applied works. Of particular note is the idea of appending IDs to improve MPGNNs (i.e.,

RPGNNs), which has since been applied by numerous authors. Sato, Yamada, and Kashima

[187] show that RPGNNs with π-SGD training can approximately learn algorithmic solvers

on graph-theoretic problems. Chen, Villar, Chen, et al. [78] propose a local RP that operates

over small egonets of a graph. RPGNNs also inspired a new method that uses Laplacian

Eigenmaps to break symmetries in graphs [8]. Related to the expressiveness of GNNs, many

authors have used the CSL task as a benchmark [8], [78]–[80]. A second key contribution of

ours, highlighting limitations of DeepSets, was built upon in [62]. Indeed, Janossy pooling

was suggested as a flexible approach for learning permutation-invariant aggregation functions

in graph neural networks by the textbook [132]. Looking at the framework overall, JP was

leveraged in [27] to learn set-of-set representations. A last example to mention is that the

concept of poly-canonical orderings of graphs was used in [284] to learn an invariant graph

generation model.

On the applied front, the ideas of JP have been recognized in works on calcium imag-

ing [285] and diagnostic predictions from Electronic Health Records [286].

111

5. REGULARIZING TOWARDS INVARIANCE

There are two potential drawbacks of the methods we have discussed so far. First, as a gen-

eral principle, invariant training can degrade generalization performance if the true function

of the data is not invariant. Second, in spite of the theoretical and empirical evidence that

π-SGD training is effective, it can also lead to challenges in optimization. We hypothesize

that regularizing a model towards invariance is a sensible approach to addressing both chal-

lenges. First, training any model with a permutation-sensitivity penalty allows the extent of

enforced invariance to be data driven; if a model trained with strong regularization towards

invariance cannot fit the data, it suggests that an invariant model is inappropriate. To trade

off between the generalization benefits of invariant models and the corresponding reduction

in flexibility, we will select the model trained with the largest regularization strength that

does not damage train/validation performance unacceptably. Typically, this model will not

be exactly permutation-invariant, but we demonstrate that it is usually less variable over

permutations of the input. Second, some of the challenges with π-SGD optimization may

arise from the variance of f⇀ over transformations, and it stands to reason that regularization

could stabilize π-SGD. Overall, such an approach provides a framework encompassing both

(approximately) permutation-invariant models and permutation-sensitive ones.

In this chapter, we propose Birkhoff regularization (BReg), which defines a penalty term

that can be added to the optimization objective. This BReg term penalizes the extent

to which a function varies along tangent vectors in the direction of permutations. These

tangent vectors are created with doubly-stochastic matrices, giving rise to the name of our

method; the Birkhoff polytope is the set of doubly-stochastic matrices. In Section 5.1 , we

elaborate on the aforementioned motivations for introducing regularized training with BReg.

In Section 5.2 , we introduce the BReg penalty and discuss training details in Section 5.3 .

Then, we gain insights into BReg via an optimization perspective in Section 5.4 and finally

empirically validate the method with experiments.

112

5.1 Motivating BReg

In this section, we further discuss the motivations for a regularization that penalizes

model sensitivity to permutations.

5.1.1 Appropriateness of Invariance

Restricting the function class to invariant models comes at the cost of flexibility. While

invariant models can generalize better when the true data distribution is (at least approx-

imately) invariant to some transformation, they incur bias when the assumption is inap-

propriate. For example, the function f(s) = f(s1, s2, . . . , sn) = max(s1, s2) for s ∈ Rn

is difficult to model with a permutation-invariant function. In practice, it is not always

clear what types and magnitudes of invariances are appropriate. This was observed by

Li, Hu, Wang, et al. [287], who propose a method to search for the most appropriate

invariances for a task so that the data can be augmented accordingly. In Mouli and

Ribeiro [179], the authors propose CGReg, a training scheme that preserves all invari-

ances except those that are inconsistent with the training data. Their experiments demon-

strate cases where incorrectly enforced invariances result in failure. Some authors are

concerned with learning the subset of transformations the model should be invariant to.

Benton, Finzi, Izmailov, et al. [176] propose to learn the correct magnitude of invari-

ance (e.g., a subset [0, 2π) of rotation angles) end-to-end using the reparameterization

trick [202] and construct synthetic tasks where fully rotation-invariant steerable CNNs [288]

will fail. Cohen-Karlik, Ben David, and Globerson [177] point out that the half-range func-

tion HR((x1, . . . , xn)) = max{x1, . . . , xbn/2c} −min{xbn/2c+1, . . . , xn}, is not invariant to all

permutations [177]. In this section, we are most interested in the former case, where there

is uncertainty about whether invariance to permutations is helpful for a task.

This challenge is quite relevant to modeling graph data. Consider time-evolving graphs

such as the preferential attachment model with fitness [82]. In this model, new vertices

are added to the graph at different time steps. The probability that new vertices form an

edge with existing vertices is increasing in their degree and level of fitness. Thus, in the

observed graph, a vertex with high degree can be either one that entered the graph early

113

or one with high fitness. Knowledge of the temporal ordering can help to identify whether

high-vertex degrees are “fitter” or “earlier”. Fitness and preferential attachment have been

used to describe many phenomena including citations networks and protein interactions [82],

[289]. As another example, the ordering of vertices in representing brain graphs can depend

on brain atlases [113], [200], [290]. If nearby brain regions are close together in the indexing,

then the ordering has scientific meaning. Using a model that is permutation-invariant could

underperform when there is meaning in the ordering.

It may appear that our present argument – that ordering may carry useful information in

some tasks – contradicts our previous account of the importance of permutation-invariance

in graph and set data. Previously, we saw that some ordering must be assigned in order

to encode a graph or set on the computer (e.g., Figure 3.1). There is not a unique order-

ing, and certainly when one is chosen arbitrarily, a permutation-invariant model is strongly

recommended. However, part of our contribution is to present an argument in the relevant

literature1
 that the ordering present in the data may be meaningful, and we will propose a

new method on the basis of this argument. In other words, while an arbitrary encoding is

sometimes used to encode these data, it does not imply that there is never a meaningful or-

dering. Moreover, we emphasize that one cannot always ask an expert whether the ordering

is relevant. Often, datasets arise from a curation process that may involve several scholars,

possibly working independently, and sometimes by aggregating different data sources [291].

A data-driven approach would make an important contribution to the literature.

To address this challenge, one might consider learning the best ordering, and we discussed

some methods above. However, if order matters, standard training of a permutation-sensitive

model may be a better solution. In that case, the model can adapt to optimally use the

information in the ordering, supervised by the target variables. Moreover, many models that

learn an ordering must still hand-code task knowledge into the architecture [5]. We believe

that a permutation-sensitivity penalty is more adaptive.

Remark 9 In this section, it is arguably more appropriate to say “graph-like” and “set-like”

data than it is to say graphs and sets. Technically, stating that the order of elements may
1The importance of ordering is not mainstream in the literature on neural networks for graphs and sets, but
we do not argue that this is the case in other disciplines.

114

carry meaning contradicts the definition of a set. Nonetheless, our goal is to train models

whose inputs are encoded as sets or graphs, as discussed in Chapter 3 , with a regularization

scheme designed to let the data decide whether the order matters through the choice of a

hyperparameter.

5.1.2 π-SGD Variance

Various scholars have pointed out that training with π-SGD can prove challenging. Pab-

baraju and Jain [292] construct synthetic tasks where π-SGD performs poorly and show

that it leads to models with large orbit variance (Equation 4.16) when the input is a long se-

quence. Cohen-Karlik, Ben David, and Globerson [177] report that π-SGD failed to converge

in their experiments. We speculate that these observations may arise when π-SGD training

alone is insufficient for variance reduction. Figure 5.1 provides a glimpse into the challenges

by plotting training loss against epoch. The left plot corresponds to training an RPGNN

to solve the CSL task on very large graphs. We see that there is a large spike in the loss

after apparent convergence, which creates challenges in model training and selection. On

the right, we compare standard training to π-SGD in predicting the variance of fixed-length

sequences. In this case, f⇀ is an MLP. Models trained with π-SGD stabilize at a large loss

value far from zero. Since the target is indeed permutation-invariant, and the function is

within the class of functions that JP can express, this points to an issue of variance. Adding

a permutation-sensitivity penalty could mitigate these difficulties.

5.1.3 Additional Related Work

A few methods have been proposed related to regularization and invariances. SIRE [177]

regularizes recurrent models towards permutation-invariance for set-like inputs specifically.

Yang, Wang, and Heinze-Deml [293] propose defenses against worst-case transformations

to improve model robustness, but their method can only enforce invariance to a subset of

the group of transformations, such as small rotations. This is not suitable for permutation-

invariance (invariance to the action of the symmetric group). In contrast, our approach

is applicable to both graph and set data, and is compatible with a wide array of different

115

25

50

75

100

125

0 1000 2000 3000
Epoch

Tr
ai

ni
ng

 M
A

E

π −sgd
Standard Training

Figure 5.1. Challenges of π-SGD Training. We study loss as a function of
epoch. Left: training RPGNN on a CSL task (Section 4.4.1) with large graphs.
Right: training an MLP to predict the variance of the input.

models. In principle, BReg is equally applicable to sequence models like Transformer and

Recurrent Neural Networks, as well as permutation-sensitive graph models such as RPGNNs.

To the best of our knowledge, we are the first to leverage the Birkhoff-von Neumann theorem

to propose a regularizer for permutation-invariance for set- and graph-like data.

To train models with the BReg penalty, we draw inspiration from [179], where the authors

propose to encourage invariance to any transformations that do not contradict the data. This

allows models to inherit the generalization (and extrapolation) benefits of invariant training

but limits the bias. Similarly, we will let the permutation-invariant regularization strength

grow until the performance degrades unacceptably. If even small regularization results in a

significant deterioration, we can use the original model. In contrast to [179], this work delves

deeply into graph- and set-like data, providing a host of specific strategies, as well as deeper

insights into that literature.

5.2 Birkhoff Regularization Penalty

To promote permutation-invariance, we will add a permutation-sensitivity penalty to the

optimization objective, analogously to the parameter norm penalties in LASSO and ridge

regression [85], [244]. In particular, we will define a nonnegative function R : X ×F → R≥0

where X is a input space of set- or graph-like data and F = {f⇀(·;Θ)}Θ is the function

116

Table 5.1. Variants and Examples of BReg. (Left): An overview of
regularization strategies existing under the BReg framework. We can (1)
compute tangent vectors of model components or inputs; (2) measure
(and penalize) variability in the predicted or latent quantities; (3) use
TangentProp (TP) [15] or Finite Differences (FD) as the style of regulariza-
tion. To define the regularization, we make a choice from each row. (Right):
Examples. In the first row, we compute tangent vectors in input space, mea-
sure variability in the predicted quantity, and use a TangentProp penalty. As
shown, more details on this case can be found in Definition 18 and Algorithm 3 .

BReg Variants
Tangent vector of: Input, Model
Measure variation in: Prediction, Latent
Penalty term style: TP, FD

Examples of BReg Described At Length
Tan Vec Measure Var Style Reference
Input Pred TP Def 18 , Alg 3

Input Pred FD Eq 5.2

Model Pred FD Fig 5.4

class to search over.2 We sum this penalty with the task loss in the objective function, and

control its importance with a strength parameter λ ≥ 0. Note that the task loss component

could either be that of a Janossy model estimated with π-SGD (Equation 4.10) or the typical

empirical risk for any permutation-sensitive model.

To compute the BReg penalty, we approximate the extent to which a function varies

in the direction of permutations. Broadly speaking, we achieve this with an approach like

TangentProp (Equation 2.4) or by finite differences. Tangent vectors are computed via mul-

tiplications with a doubly-stochastic matrix, which we will make precise below. In many

cases, it is helpful to compute tangent vectors along directions in the input space (perturba-

tions to the data) or the model (perturbations to model components). For example, we will

see that regularization can be applied to the positional encodings of Transformer models. All

told, BReg is highly flexible and can be implemented in many ways to better suit the model

architecture, modeling goal, or task. Table 5.1 provides an overview and the terminology

that we will use.

In the next section, we will simultaneously introduce the mathematical tools and one type

of BReg to make the idea concrete. Then, we turn to a general discussion of the different

forms of BReg, their individual merits, and some specific architectures. In this chapter, the
2As in Remark 5 , we can take X to be a space of latent representations from prior layers.

117

norm ‖ · ‖ denotes the `2 norm if the input is a vector, the Frobenius norm for matrices, and

its natural generalization for higher-order arrays (i.e, tensors). This is the norm used in the

definition of TangentProp [15].

5.2.1 TangentProp Perspective and Mathematical Tools for BReg

We saw in Equation 2.4 that TangentProp (TP) penalizes the extent to which a model

varies along tangent vectors of some transformation of the input, thereby training a model

towards invariance. We will use this to motivate BReg.

A Closer Look at TangentProp. Simard, Victorri, LeCun, et al. [15] argue that,

while invariances could be learned directly from infinite data and computation, this may

not happen in practice. Accordingly, they propose TP, a regularization towards invariance.

Relevant to our goal, the authors specifically mention that data augmentation – which de-

scribes π-SGD with one training-time sample – is an inefficient strategy for training towards

invariance. We hypothesize that TP could be more efficient at reducing variance over per-

mutations. Moreover, summing over multiple tangent vectors in Equation 2.4 can enforce

invariance to linear combinations of transformations. In our case, this implies that the reg-

ularization can promote invariance in the span of multiple permutations, which could more

efficiently explore the space of permutations than sampling alone. As another justification,

TP-BReg can be seen as an efficient proxy for a minimization problem over the Birkhoff poly-

tope. In brief, we will construct tangent vectors via multiplication with doubly-stochastic

matrices, which also arise when relaxing a discrete optimization problem over permutations

to their convex hull. We will explore this more in Section 5.4 .

To the best of our knowledge, this is the first work to bridge the gap between TP and reg-

ularizing towards permutation-invariance in graphs/sets and to derive connections between

regularization and set models. Like TP, training with the BReg penalty will not result in a

fully permutation-invariant model, but can reduce the permutation sensitivity.

TangentProp for Permutation-Invariance and the Birkhoff Polytope. To use

TP regularization, we must approximate tangent vectors. We begin by reviewing the scheme

for enforcing rotation-invariance when modeling images. Let I0 denote an original image and

Iε denote the image rotated by a small angle ε > 0. Then, the tangent vector approximation

118

is (Iε−I0)/ε. Multiplying the Jacobian of the model with respect to the input by this tangent

vector and taking the norm gives the penalty in Equation 2.4 .

To introduce the idea for regularizing permutation sensitivity, let x ∈ Rn×1 denote a

sequence of n real numbers, and let P denote any n × n permutation matrix except the

identity In (see Definition 6). Recall that Px denotes a permutation of x. The relevant

analogue of rotating an image is a step along the line towards a permutation given by

s(c) = (1− c)Ix+ cPx = ((1− c)I + cP)x, c ∈ [0, 1]. Thus, a tangent vector pointing from

x to its permutation Px will be of the form

((1− c′)I + c′P)x− x
c′

= Dx− x
c′

, (5.1)

for some c′ ∈ [0, 1], where D := ((1 − c′)I + c′P) is a convex combination of the identity

and permutation matrices. We will see that D is a doubly-stochastic (DSt)3
 matrix, which

forms the backbone of our approach.

Definition 16 For any n ∈ Z≥1, a matrix D ∈ [0, 1]n×n is doubly-stochastic if ∑n
i=1Di,j =∑n

j=1Di,j = 1 for all j ∈ {1, . . . , n} and all i ∈ {1, . . . , n} [294].

Observe that permutation matrices, including the identity matrix, are doubly-stochastic.

Next, we will characterize the set of all DSt matrices.

Definition 17 Let A = {A(1), . . . ,A(m)} ⊂ Rn×p be a finite set of matrices. Then the

convex hull of A is given by conv(A) = {∑i c
(i)A(i) : c(i) ≥ 0∀i, and ∑

i c
(i) = 1}.

The following result shows formally that DSt matrices arise as convex combinations of

permutations matrices, a fact that is often utilized in convex relaxations of minimization

problems over permutations [200], [295]–[297].

Theorem 4 (Birkhoff-von Neumann Theorem [298], [299]) For any n ∈ Z≥1, let

Pn denote the set of all n × n permutation matrices. Then, conv(Pn) = {D ∈ [0, 1]n×n :

D is doubly-stochastic}.
3We refrain from abbreviating doubly-stochastic as DS to avoid confusion with DeepSets.

119

Bn := conv(Pn) is called the Birkhoff polytope. So, tangent vectors, which in this case

arise as convex combinations of permutation matrices, are defined by DSt matrices. It can be

shown that the Birkhoff polytope is overparameterized in the sense that fewer than (n−1)2+1

terms (i.e., permutation matrices) in the convex combination are needed to represent any

doubly-stochastic matrix [298]. This suggests that invariance along the directions of all

permutations can be enforced with far fewer than n! vectors. In other words, these O(n2)

permutations suffice to constrain the model to achieve the desired invariance. However, in

most cases, it will be too computationally expensive to pass O(n2) permutations of the input

through the model at each optimization step.

The Permutohedron. Before generalizing to any set or graph, let us introduce the

permutohedron, which facilitates visualization. Letting Pn denote the set of n× n permuta-

tion matrices, the set PHn := conv({P (1, 2, . . . , n)T : P ∈ Pn})4
 is called the permutohe-

dron [295], [300].5 Examples are shown in Figure 5.2 . We will view (1, . . . , n) as the indices

of a set or graph input. Permutations of the indices correspond to vertices of the permu-

tohedron, denoted V(PHn), and multiplication by a general DSt matrix maps to any point

on PHn. In fact, the permutohedron is a projection of the Birkhoff polytope from Rn×n to

Rn [295]. These facts will facilitate our construction of tangent vectors in the direction of

permutations.

Going beyond permutations of (1, . . . , n)T, the generalized permutohedron is the convex

hull of permutations of any sequence of real numbers. Therefore, the tangent vector in

Equation 5.1 lies on the generalized permutohedron of x, which we will denote PH(x).

This is useful when visualizing permutations of sequences and is especially helpful for the

discussion in Section 5.4 .

Generalizing Tangent Vectors. Equation 5.1 hints that we can define tangent vectors

for any graph or set input with doubly-stochastic matrices. Now, just as an angle parameter-

izes a rotation matrix, we parameterize doubly-stochastic matrices with a single hyperparam-

eter ε > 0. For now, we write D(ε, n) as any DSt matrix such that ‖D(ε, n)− In‖ = ε,6 for
4Following convention, vectors are assumed to be column vectors, hence we transpose here.
5The permutohedron is also spelled permutahedron, and some authors define it with 0-indexing: (0, . . . , n−1).
6Recall that ‖ · ‖ denotes the `2, Frobenius norm, or its natural generalization to tensors in this chapter,
which is also the norm used in TangentProp [15].

120

(1, 2)

(2, 1)

x

y

(1, 3)

(3, 1)

(1.5, 2.5)

(2.5, 1.5)

(1, 2, 3)

(1, 3, 2)

(2, 1, 3)

(2, 3, 1)(3, 2, 1)

(3, 1, 2)

x

y

z

Figure 5.2. Examples of Permutohedra. For n ∈ Z≥1, the standard permuto-
hedron PHn is defined as the convex hull of all permutations of (1, 2, . . . , n).
For any x ∈ Rn, the generalized permutohedron PH(x) is the convex hull of
permutations of x. Left: examples for n = 2. The standard permutohedron
is the line segment connecting (1, 2) to (2, 1). Two generalized permutohedra,
PH

(
(1, 3)

)
and PH

(
(1.5, 2.5)

)
are also shown. Notice that these permutohe-

dra overlap since 1 + 3 = 1.5 + 2.5 = 4. Right: the standard permutohedron
PH3.

any ε > 0 and n ∈ Zn≥2.7 The hyperparameter ε controls the distance between the identity

matrix and a doubly-stochastic matrix inside the Birkhoff polytope, but is not equivalent

to the length of the tangent vector. In particular, ‖D(ε, n)x − x‖ depends on the value of

x ∈ Rn×1. For instance, if x = (1, . . . , 1)T, then ‖Dx − x‖ = ‖0‖ = 0, for all DSt D, by

definition. Analogously, the angle between vectors does not depend on their magnitudes.

Details on creating D and setting the hyperparameter ε are provided in subsequent sections.

The next definition formalizes the tangent vectors, and an example is shown in Figure 5.3 .

Effectively, we already know how to permute a set or graph with permutation matrices P ,

and we simply replace P with any DSt matrix D.

Definition 18 (Tangent Vectors for BReg) For any n, let Sn,ds = Rn×ds be the set

of length-n sequences of ds-dimensional vectors, ε ∈ R>0, and D(ε, n) denote any n × n

7We suppose n ≥ 2 since the case n = 1 is not of practical interest and can result in uninteresting corner
cases.

121

x

y

x = (0, 2)T

Px = (2, 0)T

(0.2,1.8)

εT̂ ′D(ε,n)(x)

Figure 5.3. Example Tangent Vector for BReg. We visualize T̂ ′D(ε,n) for a
sequence of scalars. The input sequence is x = (0, 2)T ∈ R2×1 and we let P be
the only n × n non-identity permutation matrix for n = 2. If we let ε = 0.2,

then the doubly-stochastic matrix D =
(

0.9 0.1
0.1 0.9

)
satisfies ‖D − I2‖ = ε

where I2 is the identity matrix. The product TD(x) = Dx = (0.2, 1.8)T

sends (0, 2)T towards the vector (2, 0)T. The tangent vector is εT̂ ′D(x) =
(0.2, 1.8)T − (0, 2)T = (0.2,−0.2)T.

122

doubly-stochastic matrix such that ‖D(ε, n) − In‖ = ε. We can send length-n sequences in

the direction of permutations with a function TD(ε,n) : Sn,ds → Sn,ds defined by

TD(ε,n)(S) = D(ε, n)S,∀S ∈ Sn,ds .

For graphs, we can define a similar operation. First, without edge features, we only have the

adjacency matrix, and we can define

TD(ε,n)(G) = TD(ε,n)(A,F) = (D(ε, n)AD(ε, n)T,DF)

for all G = (A,F) ∈ Gn,dv ,de, dv ≥ 1 and de = 1. When edge features are present (de > 1),

we have an adjacency tensor A, and we compute D(ε, n)A:,:,jD(ε, n)T for all j = 1, . . . , de.

We will call TD(ε,n) a soft permutation and have deliberately overloaded it so that we can

generalize to graph- or set-like inputs. Letting x denote an arbitrary set or graph and vec

the graph or set vectorization operation defined in the appendix, write

T̂ ′D(ε,n)(x) = vec(TD(ε,n)(x))− vec(x)
ε

,

as the tangent vector approximation of a permutation transformation associated with doubly-

stochastic matrix D.

Remark 10 Note that this definition applies to modeling variable-sized inputs for any n ≥ 2.

Our schemes for creating D(ε, n) are general and have similar geometric interpretations

regardless of n. Moreover, we have used vec only for the sake of being mathematically

precise. In practice, we can make use of broadcasting in computational libraries such as

PyTorch [301], and leave the inputs as matrices/tensors.

Notice that TI((1, . . . , n)T) = (1, . . . , n)T, so TI leaves the indices unchanged. For per-

mutation matrices P , TP ((1, 2, . . . , n)T) affects a permutation, or a mapping of indices to

another vertex on the permutohedron. In general, TD performs the action of the symmetric

group in the special case that D is a permutation matrix. An example of the TP-BReg

penalty is shown in Algorithm 3 (see also Table 5.1).

123

Algorithm 3 Computing the TP-BReg Penalty
1: Input 1: Either sequence S or graph G = (A,F)
2: 2: Hyperparameters ε > 0, regularization strength λ > 0
3: 3: Model f⇀

4:
5: n← size of input
6: Create doubly-stochastic D s.t. ‖D − In‖ = ε . See Section 5.2.3

7: if input is a sequence S then
8: Sperturbed ←DS . Perturb input, i.e., compute TD(ε,n)

9: v ← 1
ε
vec(Sperturbed − S) . Compute tangent vector, i.e., T̂ ′D(ε,n)

10: end if
11: if input is a graph (A,F) then
12: Aper ←DADT . Perturb adjacency matrix, i.e., part of TD(ε,n)
13: Fper ←DF . Perturb vertex features, i.e., part of TD(ε,n)

14: v ← 1
ε

(
vec(Aper,Fper)− vec(A,F)

)
. Compute tangent vector T̂ ′D(ε,n)

15: end if
16: J ← Compute Jacobian of f⇀ w.r.t (vectorized) input . See Section 5.2.4

17: Return λ‖Jv‖2

Computing the TP-BReg penalty RTP(x, f⇀Θ), for the case that we (1) compute tangent
vectors in the input space, (2) measure variation in the predicted quantity, and (3) use TP-
style penalization (see Table 5.1). We have made a few simplifying assumptions for clarity.
We can sum over multiple tangent vectors (see Equation 2.4) with a simple modification.
When edge features are present, we computeDA:,:,jD

T for all j = 1, . . . , de. The vec function
to vectorize inputs is used for mathematical clarity, but it is not required in practice (see
Remark 10).

5.2.2 General BReg

Now we introduce several varieties of BReg, providing detail to Table 5.1 . The following

are different categories of BReg strategies, and the schemes we choose from each category

can be used in any combination.

Space of Tangent Vector

We are not restricted to defining transformations TD over the input. Rather, we can

penalize sensitivity to transformations TD applied to parameters of the model. As an exam-

ple, consider the Transformer model [236] for sequences. Aside from a positional encoding

layer, Transformer uses permutation-equivariant layers [60]. When used with the trainable

124

positional encoding of [302], which are permutation-equivariant for some values of the pa-

rameters, Transformers form a family of models on a spectrum of permutation sensitivity.

Precisely, the learnable positional encoding layer is defined by f
⇀

1(S; ξ) = S + ξ, where

ξ ∈ Rn×ds is a matrix of trainable parameters and S is a sequence input. In words, we asso-

ciate each index i ∈ {1, . . . , n} of the sequence with a vector of parameters ξi,: and add it to

the corresponding vector Si,:. This helps to leverage information in the ordering of elements

in a sequence. Yet, if the columns of ξ are constant, the layer is permutation-equivariant.

Thus, to penalize permutation sensitivity, we can compute transformations TD(ε,n)(ξ) = Dξ,

tangent vectors T̂ ′D(ε,n)(ξ) = 1
ε

(
vec(TD(ε,n)(ξ))− vec(ξ)

)
, and use a TangentProp approach.

In this way, we can simultaneously learn the correct amount of permutation invariance, in

an interpretable fashion, and take advantage of the strong expressive power of Transformers.

An example is shown in Figure 5.4 , which also uses the Finite Differences BReg penalty

described below.

Measuring Variation in the Latent or Prediction

Our discussion in the previous section suggested regularizing the permutation-sensitivity

of the entire neural network f
⇀ = f

⇀

L ◦ f
⇀

L−1 ◦ · · · ◦ f
⇀

1 . However, another common strategy

in learning invariant models is to enforce the latent vector returned by the penultimate

layer f⇀L−1 ◦ · · · ◦ f
⇀

1 to be invariant to permutations of the input [9], [149]. One reason for

doing so is related to transfer learning; given a powerful invariant latent representation, we

would only need to fine tune the last layer to transfer to a new task [24]. Thus, we may

want to penalize “permutation sensitivity in the latent”. The approach is similar penalizing

permutation-sensitivity in the prediction. Tangent vectors are computed as before, but the

Jacobian matrix is now defined as (∂hi/∂xj)ij where h = f
⇀

L−1 ◦ · · · ◦ f
⇀

1(x).

Arbitrary Scaling We encounter a difficulty when measuring variation in the latent;

the penalty can be reduced by changes in model parameters that do not achieve the desired

effect. For example, if we redefine f
⇀

L ◦ f
⇀

L−1 ◦ f
⇀

L−2 ◦ · · · ◦ f
⇀

1 to g
⇀

L ◦ g
⇀

L−1 ◦ f
⇀

L−2 · · · ◦ f
⇀

1

where g
⇀

L−1(h) = 1
α
f
⇀

L−1(h) and g
⇀

L(h) = f
⇀

L(αh), we can reduce the penalty by making

α large, since the penalty is computed on the output of layer L − 1. To prevent this, we

125

+ξ

SetTransformer

L(·,y)

+

Total Loss

+ ×

D

ξ

Set Transformer−

‖ · ‖

× λ

Input S

Figure 5.4. An example regularizing a permutation-sensitive Transformer-like
model with BReg. The flavor of regularization, in the terms of Table 5.1 , are:
(1) compute a tangent vector on model parameters, (2) measure variation in
the predicted quantity, and (3) use the Finite Differences style of penalty. The
left chain describes the typical model architecture. A learnable positional en-
coding ξ is added to the input S and passed to SetTransformer. On the right,
we see regularization computations. We multiply the positional encoding ma-
trix with a doubly-stochastic matrix, created with a scheme from Section 5.2.3 ,
and pass the result to SetTransformer. The norm of the difference is multi-
plied with a regularization strength and added to the task loss. Rectangles
with rounded edges indicate operations with trainable parameters, diamonds
indicate hyperparameters, and ellipses are mathematical operations.

propose to add random noise to the latent value. That is, if h(L−1) is the hidden vector of

the penultimate layer, then in the last layer, we compute

f
⇀

L(h(L−1) + ζ),

where ζ ∼ N(0, σ2I) is of the same dimension as h(L−1). When noise is added, the optimiza-

tion should pressure the previous layers f
⇀

L−1 ◦ · · · ◦ f
⇀

1 to output values with larger norm,

outside of the noise range. Otherwise, all the signal is lost in the noise. We do not have a

formal proof of this but demonstrate the phenomenon empirically in the experiments. The

126

benefit of this strategy is that it only adds zero-mean noise to the penalty. In contrast, a

naive solution such as scaling the latent vector to have a constant norm could interfere with

the BReg penalty, which is designed to measure the norm difference in the latent values.

Finite Differences

As discussed, BReg involves computing a TP-style penalty. In practice, we find that

TP-BReg is expensive in both time and memory. Backpropagating through the Jacobian

requires two passes through the network in frameworks that use reverse-mode differentiation

like PyTorch (see Section 5.2.4). An alternative, but similarly motivated approach is to

directly use Finite Differences (FD) of the form

RFD
(
x, f

⇀
)

=
‖f

⇀
(
x
)
− f

⇀
(
TD(ε,x)(x)

)
‖

ε
=
‖f

⇀
(
TI|x|(x)

)
− f

⇀
(
TD(ε,|x|)(x)

)
‖

ε
, (5.2)

for any x ∈ X and f
⇀

∈ F , where F is parameterized by trainable parameters. This

approach can be extended to measuring variation in the latent and tangent vectors of model

components. An example is shown with Transformers in Figure 5.4 .

5.2.3 Choice of Doubly-Stochastic Matrices

To compute meaningful tangent vectors, we have supposed that doubly stochastic matri-

ces are distance ε from In. There are two approaches we can take to ensure this. The first,

which we use in our experiments, involves specifying ε and computing an appropriate D.

An alternative approach which could provide more flexibility is to sample a DSt matrix and

then compute the appropriate ε. We can mix these approaches to create multiple tangent

vectors at each epoch, and sum over the penalties corresponding to each (see Equation 2.4).

Prespecified ε

We define algorithms to construct DSt matrices D such that ‖D(ε, n)− In‖ = ε. These

have a dual interpretation in geometry and our regularization. The geometric interpretations

are independent of the choice of n ∈ Z≥2 and regularization can be applied to problems with

127

variable-length inputs. The strategies below leverage the fact that the convex combination

of DSt matrices is DSt.

Center Steps. For all n ∈ Z≥2, the centroid of the polytope Bn is Cn := 1
n
1n1T

n , where

1n is a vector containing n ones [298]. We defineDcenter (ε, n) = (1−c(ε, n))In+c(ε, n) 1
n
1n1T

n

where c(ε, n) = ε√
n−1 and ε ∈ (0, 1). The definition of c(ε, n) ensures that ‖Dcenter (ε, n) −

In‖ = ε (proven in the appendix) and the condition ε ∈ (0, 1) ensures c(ε) ∈ (0, 1) for all

n ≥ 2. We call this the center-step scheme.

Notice that, for a sequence S of length n, the multiplication TCn(S) = CnS computes

the average of the vectors in S. If A is an adjacency matrix of a graph, then CnAC
T
n =

1
n2
∑
i,j Ai,j11T. This matrix can be viewed as the adjacency matrix of a completely connected

weighted graph, where all edges have the same weight, and the weight depends on the original

edge density. Thus, T̂ ′Dcenter(ε,n) computes tangent vectors that point to the average of the

input. In some sense, a BReg penalty defined with center-step accounts for all permutations

at once.

Random Segment Steps. We can also create an n × n DSt matrix by the following

scheme: (1) sample i, j uniformly without replacement from {1, . . . , n}, (2) swap rows i, j of

the identity matrix In to form matrix Qn, (3) define Dsegment(ε, n) = (1− c(ε))In + c(ε)Qn

where c(ε) = ε/2 for ε ∈ (0, 2]. Again, the definition of c(ε) guarantees ‖Dsegment(ε, n) −

In‖ = ε and the range for ε guarantees a valid convex combination. Instead of swapping two

rows, we could sample any random permutation matrix and perform a convex combination.

However, in this case, we would need to compute the appropriate form of c(ε, n) such that

‖D − I‖ = ε and ensure that the sampled matrix is not the identity. In our experiments,

we just swap two rows for simplicity.

For the geometric intuition, let v ∈ V(PH) be a vertex of the permutohedron obtained

by swapping two elements of (1, . . . , n)T ∈ V(PH). A line segment can be drawn between

these two vertices hence we call this the random-segment scheme and write Dsegment.

In the context of regularization, this corresponds to enforcing invariance to random trans-

positions. Invariance to all such transpositions implies invariance to all permutations. To-

gether with the fact that TP can enforce invariances to linear combinations of the tangent

vectors penalized, we hypothesize that this is an efficient way to penalize sensitivity to permu-

128

tations. This somewhat resembles π-SGD training, and the two approaches are not mutually

exclusive. We can train with π-SGD and regularize to tame orbit variance. However, this

regularization places an explicit penalty on permutation sensitivity.

Computation. In practice, there are more efficient strategies than computing explicit

convex combinations. Instead, we can analytically derive the result. For instance, if i and

j are the rows to swap when computing Dsegment, we can directly set Di,j = Dj,i = c(ε),

Di,i = Dj,j = 1− c(ε), and let all other rows besides i, j have 1 on the diagonal and 0 on the

off-diagonal.

Sampling Doubly-Stochastic Matrices

We can construct valid tangent vectors by sampling any doubly-stochastic matrix D and

then computing ε = ‖D − I‖.

Linderman, Mena, Cooper, et al. [200] proposes a stick-breaking approach for sampling

doubly-stochastic matrices from the Birkhoff polytope. This distribution includes a tem-

perature parameter that controls the concentration around exact permutation matrices (the

vertices of the permutohedron), which is arguably most natural. Alternatively, we can create

any random permutation matrix P (except the identity matrix) and take a convex combi-

nation with the identity matrix, as with the center-step and random-segment schemes. On

a final note, we could leverage the popular Sinkhorn-Knopp algorithm [303]. This algorithm

is designed to map matrices of positive elements to the Birkhoff polytope by iteratively nor-

malizing the rows and columns to sum to one. It is known to converge, but may not result

in an exact DSt matrix in infinite iterations. Nonetheless, we could sample a matrix of

positive elements with any sampler, then apply Sinkhorn-Knopp for several iterations. Note

that these are not computations we need to differentiate as we are not optimizing over DSt

matrices, in contrast with several works in the literature.

5.2.4 Backprop through the Jacobian

TangentProp requires computing and differentiating a Jacobian-vector product (JVP),

i.e., a vector multiplied on the left by the Jacobian (see Equation 2.4). While automatic

129

differentiation typically liberates the researcher from calculating derivatives, this particular

computation is not straightforward. In particular, frameworks like PyTorch [301] often

use reverse-mode differentiation [304], which does not give direct or efficient access to the

Jacobian or to the Jacobian-vector product. Rather, these are optimized for computing

vector-Jacobian product (VJP). To compute the JVP efficiently, we use the trick developed

in [305], which only requires backpropagating twice through the network. In contrast, the

computation required to extract the Jacobian directly grows with the size of the input in

current PyTorch implementations.

In brief, we can compute (and backprop through) the Jacobian-vector product with

PyTorch by computing two vector-Jacobian products. Let f be a model and v a vector of

appropriate dimension, and we desire the JVP f ′(x)v, where f ′(x) denotes the Jacobian of

the model f with respect to input x (see Equation 2.4). Then, letting u denote a dummy

vector of the same dimension as f(x), we first compute the vector-Jacobian product uTf ′(x).

The second vector-Jacobian product multiplies v by the Jacobian of uTf ′(x), viewed as a

function of u. A short mathematical justification is provided in [305], and we provide

additional details in the appendix.

5.3 Training with BReg

So far, we have given a mathematical description of R, the BReg penalty function. Op-

timizing a model regularized with BReg is similar to training models that use other regular-

ization schemes like the `2 weight penalty. However, there are some nuances to discuss.

Choosing a Regularization Strength. The goal of BReg is to train a permutation-

invariant model whenever invariance does not contradict the data. Increasing the regu-

larization strength λ used during training should result in a corresponding reduction in

permutation sensitivity of the estimated model. We demonstrate this in our experiments.

As a result, we anticipate that regularized models will often have worse performance on the

data observable during training, since we are limiting the flexibility of the model. How-

ever, the goal is to reap benefits in generalization or extrapolation, especially if the test-set

data are ordered differently than what is observed during training. Accordingly, we should

choose the model trained with the strongest acceptable regularization, which we call the

130

Maximum Acceptable Strength (MAS), for test-time predictions. To select λMAS, we inspect

the validation-set performance of models trained with varying strengths. Numerically, we

can follow [179] and choose the strength resulting in a model whose accuracy is within five

percentage points of the largest validation accuracy. The practitioner can also decide from

a plot, for instance choosing a strength beyond which performance starts to degrade rapidly

(see Section 5.5). In our experiments, we found it helpful to search over a logarithmic scale

including zero to identify an appropriate range, and one can subsequently sweep over a finer

set of values if necessary. For instance, we chose λ ∈ {0, 2−3, 2−2, . . . , 24}.

To emphasize the importance of choosing a MAS λ, consider the task of predicting the

maximum element in a sequence. If all sequences in the training data are sorted in ascending

order, then a permutation-sensitive model can fit the data by learning a function that simply

reports the last sequence element. However, this would fail if test-time sequences have a

different ordering. Naively choosing the regularization strength with best performance at

training time could result in selecting the smallest regularization strength, corresponding

to the fully permutation-sensitive model, and failing at test time. Meanwhile, shuffling the

sequences (i.e., data augmentation or indeed π-SGD training) to solve this problem is not the

only suitable approach. Doing so encodes an assumption of invariance, which may contradict

the task. Our experiments further explore these ideas.

Selecting ε. The hyperparameter ε appears in the definition of tangent vectors. In the

TangentProp framework, it should be infinitesimally small, but in practice this could lead to

numerical stability challenges. We experimented with tuning ε and found that the optimal

value does indeed vary with the task, model, and regularization scheme (TP versus FD and

so on). We typically tuned ε in the range [0.0001, 0.1].

Alternatively, setting ε to be “large” results in regularization approaches with a different

interpretation. In particular, when ε is large enough, our schemes for constructing doubly-

stochastic matrices can result in strict permutation matrices other than the identity. For

instance, consider the naive penalty scheme of sampling a random permutation π from the

subset of permutations that swap two elements and computing ‖f⇀(x; Θ)− f⇀(π ·x; Θ)‖. This

is equivalent to using Random Segment doubly-stochastic matrices with ε = 2 (see Section

5.2.3). Thus, such approaches are part of our framework. A direction for future work is

131

to provide concrete theoretical guidance on the choice of ε, and we explore a few different

choices in the experiments.

Computational Cost. The regularization penalty adds computational overhead to the

optimization procedure. We find that regularized models must be trained for more epochs to

converge. Intuitively, minimization must balance competing goals of reducing the penalty R

and fitting the training data. However, we argue that the additional computational cost is

justified in pursuit of models that have better generalization performance and a data-driven

scheme for deciding the appropriate amount of invariance for a given task. As a solution, we

typically do not stop training until the validation-set performance has stopped decreasing

for (say) 100 epochs. Another interesting direction for future work would be exploring

regularization strength schedulers, their relationships with learning rate schedulers, and the

impact on convergence.

Selecting a BReg Variant. We have proposed numerous variants of BReg. To choose

among them, one can begin by deciding whether the chosen model for the task admits

a natural regularization with BReg, such as the positional encoding of Transformer-like

models. Next, if computational resources or training time are limited, the FD approach

offers a faster alternative to TP, although TP achieves better performance in some of our

experiments. Broadly speaking, the question of which approach to use is an empirical one

that we begin to address in our experiments section.

5.4 Optimization Perspective and Connections to Other Work

Fundamentally, the goal of BReg is to reduce some quantity over all permutations, so

we draw inspiration from optimization literature on permutation problems. These are NP-

Hard discrete optimization problems and are approached with a variety of relaxations and

heuristics [306]–[308]. Relaxations involve solving a minimization over the Birkhoff polytope

Bn – a convex set – and converting the solution back to as permutation [200], [295]–[297].

We will connect optimization problems over Bn to BReg. For simplicity of notation

and visualization, assume for now that the input is a sequence of scalars, X = Rn×1. So,

regularization is posed as reducing the fluctuations in f
⇀ over the convex hull of permutations

132

of its input. That is, letting PH(x) denote the generalized permutohedron of x, we could

define the penalty as

R(x, f⇀) = Ex†∼µ(PH(x))

[
|compPH(x)∇x† f

⇀(x†)|
]
, (5.3)

where µ is any probability measure on PH(x), compPH(x)(·) is the scalar projection onto

the permutohedron, and | · | is the absolute value. For vectors v and u, the scalar pro-

jection compuv gives the magnitude of v in the direction of u and is given by compuv =

cos(ω(v,u))‖v‖, where ω(v,u) is the angle between v and u [309]. In our case, the absolute

value of compPH(x) measures the length of a vector in the direction of the permutohedron.

Without the projection, we would penalize fluctuations in f
⇀ along directions that do not

point to permutations. The probability measure µ can be chosen to induce a continuous

distribution that concentrates near permutations (vertices of permutohedra), a discrete dis-

tribution that only puts mass on permutations, and so on.

Notice that Equation 5.3 can be written

ED∼µ̃(Bn)

[
|compPH(x)∇Dx f

⇀(Dx)|
]
,

where the expectation now runs over doubly-stochastic matrices D in the Birkhoff polytope

Bn, and µ̃ is a probability measure over Bn. As we will see in Section 5.4.3 , the projections are

difficult to implement efficiently in practice. Hence, we will not dwell on a formal description,

other than noting that TP and FD BReg can be viewed as tractable proxies. Instead, we will

study this theoretically to glean new insights into BReg, including the FD and TP variants.

5.4.1 Linear Model Example: Not a Shrinkage Penalty

It is instructive to study the linear model defined by f
⇀(x;w) = wTx for any x ∈ Rn×1

and fixed w ∈ Rn×1. The gradient is ∇x f
⇀(x;w) = w, for any x, so if our penalty was not

defined in terms of projected gradients, it would effectively reduce to Ex†∼µ(PH(x))[‖w‖] =

‖w‖.8 Hence, the penalty would only be minimized by the zero vector, which is a stronger
8Without the projection, the absolute value would be a norm.

133

condition than needed. For permutation invariance, it suffices to set w = w1, a vector where

every weight has the same value w ∈ R. We will see that this is the condition enforced by

Equation 5.3 .

To compute the penalty, we must compute compPH(x)∇x† f
⇀(x†;w) for all x† ∈ PH(x).

First, we observe that PH(x) lies on a hyperplane: if s = ∑
i xi, then ∑

i x
†
i = s for all

x† ∈ PH(x). Hence, we describe the permutohedron by its normal vector, which we can

read off of the coefficients of the hyperplane equation as 1 = (1, . . . , 1)T [309]. Since vectors

are normally written to be unit-norm, we write the normal vector of the permutohedron as

z = 1√
n
1.

Next we compute cos
(
ω(∇x f

⇀(x;w),v)
)

= cos(ω(w,v)) where ω(w,v) is the angle

between w and any vector v that points in a direction along PH(x). First observe that the

angle with the normal vector is ω(w, z) = cos−1
(wTz

‖w‖
)
. Moreover, we can suppose without

loss of generality that the angle between w and v is not obtuse, since we only need the

absolute value of the scalar projection. Thus, with standard trigonometry, we can derive

cos
(
ω(w,v)

)
=
√

1− 1
‖w‖2

(
zTw

)2
.

Hence, after some computation, for any x† ∈ PH(x),

|compPH(x)∇x† f
⇀(x†;w)| = |compPH(x)w|

= ‖w‖| cos
(
ω(w,v)

)
|

= ‖w‖
√

1− 1
‖w‖2

(
zTw

)2

=
√√√√ n∑
i=1

w2
i − nw̄2,

where w̄ := 1
n

∑n
i=1wi. Notice that this is proportional to the (population) standard deviation

of w. Since this holds true for any x†, we have proven the following proposition.

Proposition 5 When f
⇀(x;w) = wTx, the penalty defined in Equation 5.3 becomes

R(x, f⇀) = Ex†∼µ(PH(x))

[
|compPH(x)∇x† f

⇀(x†)|
]

=
√√√√ n∑
i=1

w2
i − nw̄2 = sd(w)

√
n− 1,

134

for any x ∈ Rn×1. That is, the penalty is proportional to the standard deviation of the

regression coefficients. Therefore, R(x, f⇀) = 0 if w = w1, w ∈ R and R(x, f⇀) > 0 otherwise.

Remark 11 This example has shown that the penalty enforced by the alternative regular-

ization defined in Equation 5.3 has an intuitive interpretation in the case of a linear model.

The penalty is only minimized when the coefficients are all the same, rendering the model

permutation-invariant. Furthermore, we highlighted that we cannot simply compute the gra-

dient of f⇀, but rather the component of its projection along the direction of permutohedra.

5.4.2 Connections to Existing Methods

In this section, we will see that sum pooling arises as the only model that can achieve

zero penalty in general using the alternative regularization in Equation 5.3 . Thus, when the

strength λ tends to infinity, sum pooling is the only function that can achieve finite penalty

and thus a finite cost.

Before stating the theorem, we note that Figure 5.2 gives a visual proof. Vectors whose

elements sum to the same value have overlapping permutohedra. Therefore, f
⇀ must be

constant on all inputs with the same sum in order for the expectation to be zero.

Theorem 5 (Sum pooling) Suppose µ puts full support on the input space (thus full sup-

port on all permutohedra) and let f⇀ ∈ F denote an architecture parameterized by a vector

of parameters. Then, if R is defined by Equation 5.3 ,

R(x, f⇀) = 0 ⇐⇒ f
⇀(x) = w

∑
i

xi + C ∀x = (x1, . . . , xn)T ∈ X ,

for some w ∈ R and constant C.

Proof 9 (⇐=) When f
⇀(x) = w

∑
i xi + C, ∇x f

⇀(x) = w1 for any x ∈ X . We saw that

1 is orthogonal to vectors along the direction of PH(x). Therefore, for all x† ∈ PH(x),

compPH(x)∇x† f
⇀(x†) = 0. Thus,

R(x, f⇀) = Ex†∼µ(PH(x))

[
|compPH(x)∇x† f

⇀(x†)|
]

= Ex†∼µ(PH(x))[0] = 0.

135

(=⇒) Let x ∈ X be arbitrary. IfR(x, f⇀) = 0, then we must have |compPH(x)∇x† f
⇀(x†)| =

0 for all x† ∈ PH(x), since µ puts full support on X . This implies that ∇x† f
⇀(x†) is or-

thogonal to vectors lying in the direction of the permutohedron. Since normal vectors are

unique, up to scaling, ∇x† f
⇀(x†) = w1 for some w. It follows that f⇀(x) = w

∑
i xi + C.

The key idea behind this proof is that summation of a vector can be written as the inner

product with 1, and 1 is orthogonal to the permutohedron. With this idea, the result can

be extended to regularization for variable-sized sequences of vectors.

This result implies that not all permutation-invariant functions have zero penalty, and

thus Equation 5.3 imposes a much stronger condition than permutation invariance. More-

over, since Theorem 5 can be extended to sequences of vectors, it offers new insights into

sum pooling methods like DeepSets. Suppose we penalize permutation sensitivity over hid-

den vectors of a model. If the regularization strength is infinite, then sum pooling is the only

function that can have finite cost. That is, sum pooling arises as the only model that can sat-

isfy the stronger restrictions of Equation 5.3 . This is the second time sum pooling emerged

as a model satisfying very strong structural assumptions, the first being an assumption of

infinite exchangeability (see Section 4.2).

5.4.3 Projections and BReg

Equation 5.3 is very computationally expensive. While the expectation can be sampled,

the projection is challenging to handle in the general case for variable-size sequences and

graphs. In particular, the general case requires projections onto the Birkhoff polytope. Doing

so efficiently is an active area of research and uses sophisticated mathematical machinery.

For instance, Li, Sun, and Toh [310] use a semismooth Newton method on the dual and

Jiang, Liu, and Wen [311] use a dual gradient method with Barzilai-Borwein step sizes (see

also [308], [312]). Birdal and Simsekli [298] use Riemannian geometry in an optimization

over the Birkhoff polytope specifically to avoid these projections. Since we would need to

backpropagate through this projection at every epoch, it is infeasible.

Fortunately, our TP/FD BReg approaches can be seen as efficient proxies for Equa-

tion 5.3 . Taking the FD case as an example, 1
ε
‖f

⇀
(
x
)
− f

⇀
(
TD(ε,x)(x)

)
‖ measures the change

136

in f
⇀ in the direction of the Birkhoff polytope, which was exactly the goal of computing the

length of the projected gradient. Moreover, computing tangent vectors starting at x corre-

sponds to defining a measure µ that puts probability only on the vertices of Bn. Hence, this

perspective offers another perspective and justification of the BReg penalty.

5.5 Experiments

Next, we will investigate the performance and behavior of BReg. First, we construct

an idealized pair of tasks to illustrate that the appropriateness of permutation-invariance

is uncertain and evaluate whether BReg training can adapt. Moreover, we demonstrate

empirically that training with BReg reduces permutation sensitivity. Second, we explore

whether BReg can improve the variance of π-SGD training on a graph classification task,

proposed in [245], on which π-SGD training of an RPGNN underperformed.

5.5.1 BReg Training in Permutation-Sensitive and Permutation-Invariant Tasks

In this section, we explore the key hypothesis that it may not be obvious a-priori whether

a permutation-sensitive or permutation-invariant model will achieve stronger test-time per-

formance on any given task. We conjecture that training with BReg and selecting the

Maximum Acceptable Strength λMAS provides a data-driven solution. If λMAS is large, then

we ultimately use a model trained with strong regularization – a more invariant model – for

test-time predictions.

Accordingly, we propose a pair of synthetic tasks. One is permutation-invariant (PI) and

the other is permutation-sensitive (PS). In both, we will compare: (1) a PI model, (2) a PS

model with standard (unregularized) training, (3) a PS model trained with BReg.

All models will be based on the SetTransformer, which is PI by design [60]. To introduce

a natural spectrum of permutation sensitivity, we incorporate a trainable positional encoding

layer with weights ξ as discussed above [302]. When the model has such a layer, we will call

it a Transformer model for brevity. This in a slight abuse of terminology as it is not identical

to the original Transformer [236], which uses a larger architecture and extra components

such as dropout layers [313].

137

Remark 12 The permutation-sensitivity of a Transformer can be measured by the sum of

the variances down every column in the positional encoding ξ. If all columns in ξ have zero

variance, then the model will be permutation-invariant. We will write Positional Encoding

Variance as PEV and use it as a simple and efficient metric for quantifying permutation

sensitivity.

We consider several BReg strategies for regularizing the Transformer (see Table 5.1) to

empirically explore their relative merits. The first follows the architecture shown in Figure

5.4 , a FD approach where D is multiplied by the positional encodings, and the second is

similar but replaces the FD approach with TP. Similarly, we also train with the TP and

FD variants when we multiply D by the input. For each of these, we train by constructing

doubly-stochastic matrices using both the random-segment and center-step schemes (Sec-

tion 5.2.3). There are eight approaches in total. In light of this, we carefully evaluate on

several independently sampled test sets – not seen during training – to avoid being misled

by multiple testing.

Permutation-Invariant Task: Predict the Maximum

Taking inspiration from the SetTransformer paper, we predict the maximum of a sequence

of integers. In particular, input sequences have length 10 and are sampled uniformly at

random from {0, 1, . . . , 98}.

For PI tasks, we expect that a PS model can fit the training data. Indeed, MLPs are

PS and usually overfit. The real challenge for PS models is in achieving adequate test-

set performance. To test this, we will order the sequences in training (and validation) in

ascending order but apply different orderings in the test data. Specifically, we randomly

shuffle and apply a descending sort. The PS model should fail on the test set, but PI

models should not be distracted by the ordering and perform well on test. We hope to

see: (1) training with BReg causes the model to become more invariant; (2) the model

trained with BReg using a maximum acceptable strength λMAS generalizes better than the

PS model; (3) the model trained with λMAS achieves similar performance compared to the

138

PI SetTransformer. Also, we are interested in the behavior of the various regularization

strategies.

We proceed as follows: we (1) tune hyperparameters, including identifying λMAS, on

the validation data alone; (2) select a model trained with BReg and λMAS, and compare

its performance with the SetTransformer and Transformer (which are PI and PS models,

respectively) on test datasets; (3) visualize the effect of regularization on the test datasets

and on model variance. Note that step (2) emulates a real modeling scenario whereas (3) is

for the purpose of exploring BReg more thoroughly.

Our model architecture closely follows that provided by the authors of SetTransformer,

and we add a trainable positional encoding to form a Transformer [302]. We performed a hy-

perparameter search over learning rate and batch size with cross validation. For the regular-

ized models, we swept over ε ∈ {0.01, 0.1} and regularization strengths λ∈{0, 2−3, 2−2, . . . , 24},

and the aforementioned BReg variants. All cross-validation folds have about 32,000 obser-

vations. Following [60], we evaluate with `1 loss (Mean Absolute Error). Further details are

provided in the appendix.

Model Selection and λMAS. We found that the BReg variant of taking tangent vec-

tors on the positional encoding and a value of ε = 0.01 performed better on the validation

data. Our next step is to choose λMAS before evaluating models on the test set. To do

so, we visualize performance as a function of λ on the validation data, which has the same

sort-order as the training data. We will pick the largest λ before performance drops off. The

left side of Figure 5.5 , shows that the validation performance does not start to deteriorate

substantially for TangentProp models even with a regularization strength of 16. In contrast,

the Finite Differences models deteriorate around 21. Since the models trained with Tan-

gentProp appear more stable, we will choose models trained with TangentProp and strength

λ = 16. We will show the performance of both center-step and random-segment matrices

for comparison. Note that, in this stage, we are not looking at the test-set data! We must

select hyperparameters based on the validation set alone.

Measuring Performance. In Table 5.2 , we compare the performance of the two base-

lines to the Transformer trained with the aforementioned regularization strategy. We see that

the Transformer is able to perform well on the validation data but fails when the ordering

139

Figure 5.5. Performance vs. λ on Permutation-Invariant Max Task. Perfor-
mance is shown in Mean Absolute Error on three types of datasets, averaging
over five independent samples of each. The sequences in the validation data
have the same ordering as the training data: ascending sort. The sequences in
the two test datasets are respectively sorted in descending order and randomly
shuffled. The permutation-sensitive Transformer model achieves low MAE on
the training data but a much larger loss on the test datasets. In contrast,
the regularized Transformer models generally perform much better on the test
data.

changes in the test set. In contrast, the Transformer trained with BReg and the random-

segment scheme achieves similar performance to the SetTransformer, which is permutation-

invariant by design. BReg with center-step still outperforms the unregularized Transformer

but is worse than the random-segment scheme. Finally, we see that regularization sub-

stantially decreases the permutation-sensitivity of the model, as measured by PEV (see

Remark 12).

Further Exploration of Regularization Strength. Strictly for the purposes of ex-

ploration, we can inspect the test-set performance of all the regularized models in Figure 5.5 .

In general, we see that stronger regularization corresponds to increasingly better test-set per-

formance. This is encouraging as the task is specifically designed such that only PI models

can perform well on the test data. This suggests that BReg is correctly regularizing to-

wards permutation-invariance. Further evidence is shown in Figure 5.6 , where we see that

140

Table 5.2. Performance on Permutation-Invariant Max Task. Mean (SD)
Mean Absolute Error as well as model permutation sensitivity. Sequences in
the validation datasets have the same sort-order as the training data (ascending
sort), while the two test datasets contain sequences with different orderings.
The first two rows show a PI and PS model, respectively. The bottom two
rows correspond to Transformers trained with BReg using the random-segment
and center-step schemes. The permutation sensitivity is measured by PEV
(Remark 12).

Model Val (ASort) MAE Test (DSort) MAE Test (Shuffle) MAE Perm Sens
SetTransformer 0.253(0.033) 0.288(0.013) 0.288(0.013) N/A

Transformer 0.251(0.034) 31.530(19.321) 24.585(8.582) 0.014(0.006)
BReg, λ=16, RS 0.252(0.033) 0.289(0.015) 0.291(0.014) 0.000(0.000)
BReg, λ=16, CS 0.250(0.033) 15.136(5.513) 6.397(1.233) 0.001(0.000)

PEV, our measure of permutation sensitivity, tends to decrease as the regularization strength

increases.

Permutation-Sensitive Task: “First Large”

Using the same dataset of randomly sampled integers, we propose to learn the classifier

f(S) =

1 S1 > 49

0 otherwise
,

for any sequence S = (S1, . . . , Sn)T, where 49 is the median of the support {0, 1 . . . , 98}.

This function only depends on the first element, in some ordering, and is therefore PS. Unlike

the previous task, we do not need to apply different orderings to the sequences to illustrate

our ideas for this task.

For PS tasks, the true function lies outside the class of PI models. Thus, we expect the

SetTransformer (a PI model) to perform poorly on both the validation and test data whereas

the Transformer should be able to achieve strong performance. For this experiment, we are

expecting: (1) that stronger regularization causes the model to become more permutation-

invariant, and thus worse at modeling this PS function, and (2) that the techniques for

selecting a maximum acceptable strength λ point to a small value.

141

Figure 5.6. Permutation Sensitivity vs. λ on Permutation-Invariant Max
Task. Permutation sensitivity measured by Positional Encoding Variance (see
Remark 12), as a function of regularization strength. The variance of the fully
permutation-sensitive Transformer model is shown for reference.

The hyperparameters and other training details are similar to those used in the max

task (additional details can be found in the appendix), with one difference being that fewer

epochs were needed for convergence. We measure performance in accuracy since this is a

binary classification task, and the target is relatively balanced among training, validation,

and test datasets.

Effect of Regularization. Figure 5.7 shows the performance as a function of regular-

ization strength on the validation and test datasets. The results are similar on both datasets

since the sequences are sampled from the same distribution. As expected, the performance

degrades as regularization strength increases, regardless of the choice of regularization strat-

egy. The performance of the regularized models seems to converge to that of SetTransformer

– a permutation-invariant model – as the regularization strength increases. Figure 5.8 shows

the impact of regularization strength on permutation sensitivity. When DSt matrices are

created via the random-segment scheme, stronger regularization leads to a corresponding

reduction in permutation-sensitivity, as expected, for both TP and FD variants. Indeed,

when large regularization is in effect, the variance is significantly smaller than that of the

unregularized and fully permutation-sensitive Transformer. However, such a trend does not

appear for the center-step scheme of creating doubly-stochastic matrices. In fact, as regu-

142

Figure 5.7. Performance vs. λ on Permutation-Sensitive “First Large” Task.
We show accuracy on validation and testing datasets, averaged over five inde-
pendent samples of each. We trained Transformers with BReg variants TP/FD
and created doubly-stochastic matrices via the random-segment and center-
step schemes. The performance of the fully permutation-invariant SetTrans-
former – which is expected to fail on this task – is shown for reference. The
plots are similar as the validation and testing datasets come from the same
distribution.

larization increases, permutation sensitivity seems to increase for these models. Notice that

the vertical axes are very different since the PEV is large for center-step.

λMAS and Test-set Performance In practice, we would need to select the maximum

acceptable regularization strength before selecting a model and making predictions on test

data. We query the model whose validation-set performance is closest to 95% accuracy,

which is within five percentage points of unregularized model (see Section 5.3). This turns

out to be the model trained with λ = 0.25, a TP-style penalty where D is multiplied by the

positional encoding and constructed with the random-segment scheme.

Table 5.3 displays performance results numerically. We see that the PI model (SetTrans-

former) performs poorly whereas the PS model (Transformer) achieves near-perfect accuracy.

All models perform similarly on the validation and test data. More interestingly, we see that

the PEV of the model trained with regularization is substantially smaller than that of the

Transformer, pointing towards a reduction in permutation sensitivity (see Remark 12).

143

Figure 5.8. Permutation Sensitivity vs. λ on Permutation-Sensitive “First
Large” Task. Permutation sensitivity is measured by Positional Encoding Vari-
ance (see Remark 12). The variance of the fully permutation-sensitive Trans-
former model is shown for reference.

Table 5.3. Performance on Permutation-Sensitive “First Large” Task. We
show mean (SD) accuracy, as well as model permutation sensitivity. The
training and validation datasets are sampled from the same distribution.
The first two rows show a PI and PS model, respectively. The bottom row
corresponds to a Transformer model trained with BReg and λMAS = 0.25.
The permutation sensitivity is measured by PEV (Remark 12).

Model Validation Accuracy Test Accuracy Perm Sens
SetTransformer 0.624 (0.002) 0.622 (0.000) N/A

Transformer 1.000 (0.000) 0.999 (0.000) 0.010 (0.004)
BReg, λ = 0.25 0.964 (0.006) 0.964 (0.006) 0.004 (0.000)

144

Summary

Overall, regularization performed as expected. On the permutation-invariant task, train-

ing with BReg helps performance when the out-of-training datasets have sequences ordered

differently than in training. In contrast, the permutation-sensitive Transformer model was

distracted by the ordering. On the permutation-sensitive task, BReg correctly adapted,

helping us observe that strong regularization is not appropriate for the task. In both cases,

regularization successfully reduced model permutation sensitivity, as measured by PEV.

Additionally, we performed experiments with ε = 2 in the Random Segment scheme,

which recovers exact permutation matrices (see Section 5.3). The overall patterns of the

results were similar.

5.5.2 Variance Reduction and Latent Regularization

In this section, we explore the variance-reduction of BReg in the context of π-SGD. First,

we explore the strategy of adding latent noise, discussed in Section 5.2.2 , with a simple fruit-

fly task. The goal is to check whether adding random noise strategy can increase the value

of latent layers, preventing them from becoming arbitrarily small in a regularization context.

Then, we apply BReg regularization to π-SGD training of an RPGNN on the cycle-detection

graph classification task from [245].

Adding Random Noise to Latent Quantities

For simplicity, we estimate a linear model f(x) = wTx, where w ∈ R10 is sampled from

a normal distribution. We train an MLP (Equation 2.1) with L = 2 and dh = 16. We add

random noise, so that H(1) + ζ is the input to the last layer, where ζ is sampled from a

standard normal distribution. The results are shown in Figure 5.9 , comparing to a model

where we do not add random noise. We can see that training with noise causes the latent

to increase, but apparently without bound. Our goal is to stabilize the scale of the latent –

without it becoming too large or too small – so we add an additional penalty term to the

objective, γ‖H(1)‖. Training with this additional term led the loss to stabilize to a value

145

0

500

1000

1500

0 2500 5000 7500 10000
Epoch

N
or

m
 o

f L
at

en
t V

ec
to

r

Training

Standard

Noise, No Latent Penalty

Noise, Latent Penalty

Figure 5.9. Toy Experiment: Adding Noise to Latent Vector. We show the
norm of the hidden layer (before noise is added, if applicable) as a function of
epoch.

that is larger than the standard model. Next, we experiment with these strategies in context

of BReg.

Variance Reduction

We have hypothesized that it can be difficult to train RPGNNs with π-SGD (especially

in large graphs) due to large variance. We explore whether BReg can ameliorate the variance

and improve performance.

Vignac, Loukas, and Frossard [245] propose a cycle-detection task on larger graphs on

which RPGNNs perform poorly. Specifically, the task is binary classification, to identify

whether the graph contains a cycle of length 8. The dataset contains synthetically generated

graphs that are very sparse and contain graphs that do or do not have cycles. We take up this

task to explore whether we can improve the performance. After tuning hyperparameters, we

train the following hierarchy of models: (1) a baseline RPGNN, (2) an RPGNN with BReg,

(3) a regularized model that adds noise to the latent graph representation (before an affine

layer), (4) a model with noise and an additional penalty ‖H‖. We also propose a fifth model,

a regularized model with a penalty for ‖H‖ but no noise. We test two variants of BReg that

measure permutation-sensitivity in the hidden graph representation (BReg-penalize-latent)

and in the prediction (BReg-penalize-pred). We expect that the fourth model – adding

noise and a small norm penalty – is necessary for successful regularization when training

146

Figure 5.10. Variance over Permutations in Regularized RPGNN Train-
ing. That is, Maximum Prediction Variance (across sampled permutations)
of RPGNN models trained with π-SGD and a variety of BReg schemes. Rib-
bons show the mean ± 0.5 standard deviations for clarity.

with BReg-penalize-latent. We will call this the noise-and-norm regularization strategy. We

quantify permutation sensitivity with the Maximum Prediction Variance over permutations

(MPV), and report results over five cross-validation folds. That is, we estimate Equation 4.16

for all graphs in the validation data and report the maximum.

Results in Figure 5.10 shows the MPV, after training, as a function of regularization

strength. The left corresponds to BReg-penalize-latent. We see that most models slightly

reduce variance compared to the unregularized RPGNN baseline. Surprisingly, the variance

does not reveal a downward trend as a function of regularization strength. The benefit of the

noise-based regularization strategies is not apparent. Interestingly, if we look at the model

with BReg-penalize-pred, we find the trends we expected for BReg-penalize-latent training.

The noise-and-norm strategy leads to by far the smallest variance and the variance decreases

as a function of strength.

Next we study the validation-set accuracy in Figure 5.11 . Again, we do not find con-

vincing evidence that the regularization strategies improve performance in the case of BReg-

penalize-latent. However, the noise-and-norm strategy, which effectively reduced variance in

147

Figure 5.11. Performance of Regularized RPGNN Training in Cycle Detec-
tion. Accuracy of RPGNN models trained with π-SGD and a variety of BReg
schemes. Ribbons show the mean ± 0.5 standard deviations for clarity.

BReg-penalize-pred, also results in a noticeable increase in accuracy over the baseline when

regularization is sufficiently large.

In summary, we did not find that random noise benefited the strategy BReg-penalize-latent,

but it did confer a small benefit for BReg-penalize-pred. However, the performance is still

not strong (less than about 60% on a binary classification task). Generally speaking, we have

yet to find convincing evidence that BReg can improve π-SGD training. We conclude that

there is a stronger case for BReg regarding our first hypothesis, that the extent of invariance

is not always clear.

148

6. SUMMARY AND DIRECTIONS FOR FUTURE WORK

Summary. In this work, we made two contributions to building neural network models

that respect invariances in the data, which is known to improve their generalization and

extrapolation capabilities. Set and graph data are widespread in practice, and models thereof

typically respect permutation-invariance.

First, we saw Janossy pooling, a framework that provides novel approaches to invariant

training, especially in the context of sets and graphs. In JP, we define invariant functions f
as an average over a transformation-sensitive function f

⇀. Modeling f
⇀ with a flexible network

such as our proposed RPGNN for graphs or an RNN provably and empirically leads to a

more expressive model. Since averaging over permutations is computationally intractable,

we proposed three general approximation schemes. First, in π-SGD, we sample permutations

π of the inputs at each epoch but otherwise proceed as we would in standard SGD training.

We saw that π-SGD minimizes an upper bound of the original loss, tightens generalization

bounds by compressing the model, and converges under similar conditions to standard SGD.

π-SGD does not make explicit assumptions about the task and proved to be a successful

approximation scheme in many synthetic and real-world experiments. Second, with k-ary

approximations, we redefine f
⇀ to take only the first k elements of its input, rendering many

permutations redundant. Averaging over only the nonredundant permutations reduces the

computational complexity. Unlike π-SGD, k-ary approximations make an assumption about

the degree of relationships that are important in a task (e.g., variance is a k = 2 task).

Increasing k strictly enlarges the set of functions that a pooling layer can express, which

reveals a limitation of methods that correspond to 1-ary JP approximations like DeepSets.

Third, in poly-canonical orderings, we pass an input through some ordering algorithm (like

sort or depth-first search) that collapses the number of possible permutations. Like k-ary,

this approach also makes an assumption about the data and in particular which orderings

will be useful for the task. These three general approximations can be used together, leading

to strategies such as running a DFS from a random starting vertex to select k vertices

from a graph (π-SGD, k-ary, and poly-canonical orderings). In parallel, we saw that a wide

array of existing methods can be viewed as approximations to JP, which offered insights

149

and simple but effective modifications that improve their performance. Experiments with

JP showed that our theoretical predictions are realized and that it can increase performance

on real-world tasks. Of particular note is that our CSL task (Section 4.4.1) was adopted by

numerous scholars.

Next, we observed that it may not be clear a-priori whether enforcing permutation-

invariance is appropriate in a given task. For example, while graph and set models are

typically permutation-invariant due to the arbitrary ordering of such data, it does not im-

ply the ordering never carries information in the data-generating process. Accordingly, we

propose regularization towards invariance to let the data make this decision. We choose

the model trained with the largest acceptable strength, identified from the validation data,

for test-set predictions. Specifically, we propose Birkhoff regularization, which uses doubly-

stochastic matrices to define tangent vectors in the direction of permutations. Given these

vectors, we compute a penalty inspired by TangentProp, which we also saw can be viewed

as a proxy for a minimization problem over permutations. We outlined several variations of

this approach. In particular, we may be interested in enforcing permutation-invariance in

hidden vectors, but this may encounter a scaling problem that we propose to fix by adding

random noise to the hidden vectors. From a theoretical perspective, we saw that infinite reg-

ularization results in a sum pooling model like DeepSets. In fact, we also saw that DeepSets

arises from the strong assumption of infinite exchangeability. In experiments, we showed

that Transformers trained with BReg can indeed perform well when the appropriateness of

invariance is not clear. When using regularization to reduce variance in π-SGD training, we

had surprising findings. Although we thought that adding random noise was only relevant

for obtaining invariant latent vectors – as opposed to invariant predictions – it seemed more

effective for the latter.

Future work. JP is a new framework, and there are several interesting avenues for

future work. First, while JP can naturally be extended beyond permutation-invariance, we

did not explore these directions experimentally or theoretically in detail. Perhaps there are

f
⇀ functions that, when pooled over, lead to benefits in tasks beyond graphs and sets. Also,

k-ary approximations are somewhat tailored for such inputs, and there may be interesting

approximations for others. Next, we observed some unanticipated behavior in the optimiza-

150

tion. For example, when the readout r is not a simple affine layer, we saw that increasing the

value of k did not improve performance as expected (Table 4.7). Given that larger k can only

make the model more expressive, the most natural conclusion is that there are difficulties

in optimization. Turning to Birkhoff regularization, there is an opportunity to expand on

the experiments, especially on real-world datasets in which invariance is not clear a-priori.

Protein-Protein-Interaction graphs are an interesting direction for this, as the vertex order-

ing arguably carries meaning [289]. For sequence tasks, sentiment analysis may not depend

strongly on the ordering, but simply the presence, of keywords anywhere in the sentence.

Methodologically, one could consider schedulers that increase or decrease the regularization

strength throughout training. This may help the model converge faster or to better optima,

but requires a careful empirical and theoretical study. Finally, we did not investigate sam-

pling doubly-stochastic matrices with an approach such as stick-breaking [200], as opposed

to constructing them with convex combinations. Such an approach could add flexibility in

the directions of tangent vectors.

151

REFERENCES

[1] N. Segol and Y. Lipman, “On universal equivariant set networks,” in International
Conference on Learning Representations, 2020. [Online]. Available: https://openreview.
net/forum?id=HkxTwkrKDB .

[2] K. Zhang and J. S. Bloom, “Classification of periodic variable stars with novel cyclic-
permutation invariant neural networks,” arXiv preprint arXiv:2011.01243, 2020.

[3] G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-Maranto,
and L. Zdeborová, “Machine learning and the physical sciences,” Reviews of Modern
Physics, vol. 91, no. 4, p. 045 002, 2019.

[4] N. Dehmamy, A.-L. Barabási, and R. Yu, “Understanding the representation power of
graph neural networks in learning graph topology,” arXiv preprint arXiv:1907.05008,
2019.

[5] A. Grover, E. Wang, A. Zweig, and S. Ermon, “Stochastic optimization of sorting net-
works via continuous relaxations,” in International Conference on Learning Represen-
tations, 2019. [Online]. Available: https://openreview.net/forum?id=H1eSS3CcKX .

[6] H. Maron, H. Ben-Hamu, H. Serviansky, and Y. Lipman, “Provably powerful graph
networks,” in Advances in Neural Information Processing Systems, H. Wallach, H.
Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, Eds., vol. 32,
Curran Associates, Inc., 2019, pp. 2156–2167. [Online]. Available: https://proceedings.
neurips.cc/paper/2019/file/bb04af0f7ecaee4aae62035497da1387-Paper.pdf .

[7] K. Xu, J. Li, M. Zhang, S. S. Du, K.-i. Kawarabayashi, and S. Jegelka, “What can
neural networks reason about?” In International Conference on Learning Representa-
tions, 2020. [Online]. Available: https://openreview.net/forum?id=rJxbJeHFPS .

[8] V. P. Dwivedi, C. K. Joshi, T. Laurent, Y. Bengio, and X. Bresson, “Benchmarking
graph neural networks,” arXiv preprint arXiv:2003.00982, 2020.

[9] C. Lyle, M. van der Wilk, M. Kwiatkowska, Y. Gal, and B. Bloem-Reddy, On the
benefits of invariance in neural networks, 2020. arXiv: 2005.00178 [cs.LG] .

[10] T. N. Sainath, R. J. Weiss, A. Senior, K. W. Wilson, and O. Vinyals, “Learning the
speech front-end with raw waveform cldnns,” in Sixteenth Annual Conference of the
International Speech Communication Association, 2015.

[11] D. Yu and J. Li, “Recent progresses in deep learning based acoustic models,” IEEE/-
CAA Journal of automatica sinica, vol. 4, no. 3, pp. 396–409, 2017.

152

https://openreview.net/forum?id=HkxTwkrKDB
https://openreview.net/forum?id=HkxTwkrKDB
https://openreview.net/forum?id=H1eSS3CcKX
https://proceedings.neurips.cc/paper/2019/file/bb04af0f7ecaee4aae62035497da1387-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bb04af0f7ecaee4aae62035497da1387-Paper.pdf
https://openreview.net/forum?id=rJxbJeHFPS
https://arxiv.org/abs/2005.00178

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in neural information processing systems,
2012, pp. 1097–1105.

[13] Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional networks and applica-
tions in vision,” in Proceedings of 2010 IEEE international symposium on circuits and
systems, IEEE, 2010, pp. 253–256.

[14] J. Dauparas and F. Fuchs. (2021). Alphafold 2 and equivariance, [Online]. Available:
https://fabianfuchsml.github.io/alphafold2/ (visited on 02/10/2021).

[15] P. Simard, B. Victorri, Y. LeCun, and J. S. Denker, “Tangent prop-a formalism for
specifying selected invariances in an adaptive network,” in NIPS, Citeseer, vol. 91,
1991, pp. 895–903.

[16] D. A. Van Dyk and X.-L. Meng, “The art of data augmentation,” Journal of Com-
putational and Graphical Statistics, vol. 10, no. 1, pp. 1–50, 2001.

[17] A. Fawzi, H. Samulowitz, D. Turaga, and P. Frossard, “Adaptive data augmentation
for image classification,” in 2016 IEEE international conference on image processing
(ICIP), Ieee, 2016, pp. 3688–3692.

[18] J. Shawe-Taylor, “Symmetries and discriminability in feedforward network architec-
tures,” IEEE Transactions on Neural Networks, vol. 4, no. 5, pp. 816–826, 1993.

[19] S. Ravanbakhsh, J. Schneider, and B. Poczos, “Equivariance through parameter-
sharing,” in Proceedings of the 34th International Conference on Machine Learning-
Volume 70, JMLR. org, 2017, pp. 2892–2901.

[20] H. Gholamalinezhad and H. Khosravi, “Pooling methods in deep neural networks, a
review,” arXiv preprint arXiv:2009.07485, 2020.

[21] T. S. Cohen, M. Geiger, J. Köhler, and M. Welling, “Spherical cnns,” arXiv preprint
arXiv:1801.10130, 2018.

[22] S. Graham, D. Epstein, and N. Rajpoot, “Dense steerable filter cnns for exploiting
rotational symmetry in histology images,” IEEE Transactions on Medical Imaging,
vol. 39, no. 12, pp. 4124–4136, 2020. doi: 10.1109/TMI.2020.3013246 .

[23] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, 2015.

[24] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http:
//www.deeplearningbook.org .

153

https://fabianfuchsml.github.io/alphafold2/
https://doi.org/10.1109/TMI.2020.3013246
http://www.deeplearningbook.org
http://www.deeplearningbook.org

[25] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point sets
for 3d classification and segmentation,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017, pp. 652–660.

[26] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. Salakhutdinov, and A. Smola,
“Deep Sets,” in NIPS, 2017.

[27] C. Meng, J. Yang, B. Ribeiro, and J. Neville, “Hats: A hierarchical sequence-attention
framework for inductive set-of-sets embeddings,” KDD, 2019.

[28] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon, “Dynamic
graph cnn for learning on point clouds,” ACM Transactions on Graphics (TOG),
vol. 38, no. 5, p. 146, 2019.

[29] O. Maron and T. Lozano-Pérez, “A framework for multiple-instance learning,” in
Advances in neural information processing systems, 1998, pp. 570–576.

[30] Z.-H. Zhou, Y.-Y. Sun, and Y.-F. Li, “Multi-instance learning by treating instances
as non-iid samples,” in Proceedings of the 26th annual international conference on
machine learning, ACM, 2009, pp. 1249–1256.

[31] D. Shen, G. Wu, and H.-I. Suk, “Deep learning in medical image analysis,” Annual
review of biomedical engineering, vol. 19, pp. 221–248, 2017.

[32] S. Kalra, M. Adnan, G. Taylor, and H. Tizhoosh, “Learning permutation invariant
representations using memory networks,” arXiv preprint arXiv:1911.07984, 2019.

[33] Z. Wang, J. Poon, S. Sun, and S. Poon, “Attention-based multi-instance neural net-
work for medical diagnosis from incomplete and low quality data,” in 2019 Inter-
national Joint Conference on Neural Networks (IJCNN), Jul. 2019, pp. 1–8. doi:
10.1109/IJCNN.2019.8851846 .

[34] M. Ilse, J. Tomczak, and M. Welling, “Attention-based deep multiple instance learn-
ing,” in Proceedings of the 35th International Conference on Machine Learning, J. Dy
and A. Krause, Eds., ser. Proceedings of Machine Learning Research, vol. 80, Stock-
holmsmässan, Stockholm Sweden: PMLR, 2018, pp. 2127–2136. [Online]. Available:
http://proceedings.mlr.press/v80/ilse18a.html .

[35] G. Shi, W. Hönig, Y. Yue, and S.-J. Chung, “Neural-swarm: Decentralized close-
proximity multirotor control using learned interactions,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA), IEEE, 2020, pp. 3241–3247.

[36] Y. Guo, T. Ge, and F. Wei, “Fact-aware sentence split and rephrase with permutation
invariant training,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, 2020, pp. 7855–7862.

154

https://doi.org/10.1109/IJCNN.2019.8851846
http://proceedings.mlr.press/v80/ilse18a.html

[37] H. Kim, A. Mnih, J. Schwarz, M. Garnelo, A. Eslami, D. Rosenbaum, O. Vinyals, and
Y. W. Teh, “Attentive neural processes,” in International Conference on Learning
Representations, 2019. [Online]. Available: https://openreview.net/forum?id=
SkE6PjC9KX .

[38] J. Lee, Y. Lee, and Y. W. Teh, “Deep amortized clustering,” arXiv preprint arXiv:1909.13433,
2019.

[39] A. Richard and J. Gall, “A bag-of-words equivalent recurrent neural network for
action recognition,” Computer Vision and Image Understanding, vol. 156, pp. 79–91,
2017.

[40] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-
Guzik, and R. P. Adams, “Convolutional Networks on Graphs for Learning Molecular
Fingerprints,” in NIPS, 2015.

[41] Z. Wu, B. Ramsundar, E. N. Feinberg, J. Gomes, C. Geniesse, A. S. Pappu, K.
Leswing, and V. Pande, “Moleculenet: A benchmark for molecular machine learning,”
Chemical science, vol. 9, no. 2, pp. 513–530, 2018.

[42] J. Klicpera, J. Groß, and S. Günnemann, “Directional message passing for molecular
graphs,” arXiv preprint arXiv:2003.03123, 2020.

[43] H. Altae-Tran, B. Ramsundar, A. S. Pappu, and V. Pande, “Low data drug discovery
with one-shot learning,” ACS central science, vol. 3, no. 4, pp. 283–293, 2017.

[44] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural mes-
sage passing for quantum chemistry,” in Proceedings of the 34th International Con-
ference on Machine Learning, D. Precup and Y. W. Teh, Eds., ser. Proceedings of
Machine Learning Research, vol. 70, International Convention Centre, Sydney, Aus-
tralia: PMLR, 2017, pp. 1263–1272. [Online]. Available: http://proceedings.mlr.
press/v70/gilmer17a.html .

[45] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive Representation Learning on
Large Graphs,” in NIPS, Jun. 2017. arXiv: 1706.02216 . [Online]. Available: http:
//arxiv.org/abs/1706.02216 .

[46] M. Zitnik and J. Leskovec, “Predicting multicellular function through multi-layer
tissue networks,” Bioinformatics, vol. 33, no. 14, pp. i190–i198, 2017.

[47] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Van Den Berg, I. Titov, and M. Welling,
“Modeling relational data with graph convolutional networks,” in European Semantic
Web Conference, Springer, 2018, pp. 593–607.

155

https://openreview.net/forum?id=SkE6PjC9KX
https://openreview.net/forum?id=SkE6PjC9KX
http://proceedings.mlr.press/v70/gilmer17a.html
http://proceedings.mlr.press/v70/gilmer17a.html
https://arxiv.org/abs/1706.02216
http://arxiv.org/abs/1706.02216
http://arxiv.org/abs/1706.02216

[48] C. Shang, Y. Tang, J. Huang, J. Bi, X. He, and B. Zhou, “End-to-end structure-aware
convolutional networks for knowledge base completion,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, 2019, pp. 3060–3067.

[49] F. B. Fuchs, A. R. Kosiorek, L. Sun, O. P. Jones, and I. Posner, “End-to-end recur-
rent multi-object tracking and trajectory prediction with relational reasoning,” arXiv
preprint arXiv:1907.12887, 2019.

[50] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, M.
Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, et al., “Relational in-
ductive biases, deep learning, and graph networks,” arXiv preprint arXiv:1806.01261,
2018.

[51] A. Santoro, D. Raposo, D. G. Barrett, M. Malinowski, R. Pascanu, P. Battaglia, and
T. Lillicrap, “A simple neural network module for relational reasoning,” in Advances
in neural information processing systems, 2017, pp. 4967–4976.

[52] M. Zitnik, M. Agrawal, and J. Leskovec, “Modeling polypharmacy side effects with
graph convolutional networks,” Bioinformatics, vol. 34, no. 13, pp. i457–i466, 2018.

[53] C. Li and D. Goldwasser, “Encoding social information with graph convolutional
networks forpolitical perspective detection in news media,” in Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, 2019, pp. 2594–
2604.

[54] R. L. Murphy, B. Srinivasan, V. Rao, and B. Ribeiro, “Janossy pooling: Learning deep
permutation-invariant functions for variable-size inputs,” in International Conference
on Learning Representations, 2019. [Online]. Available: https://openreview.net/
forum?id=BJluy2RcFm .

[55] J. Moore and J. Neville, “Deep collective inference.,” in AAAI, 2017, pp. 2364–2372.

[56] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural net-
works?” In International Conference on Learning Representations, 2019. [Online].
Available: https://openreview.net/forum?id=ryGs6iA5Km .

[57] C. Bueno and A. G. Hylton, Limitations for learning from point clouds, 2020. [Online].
Available: https://openreview.net/forum?id=r1x63grFvH .

[58] A. Zweig and J. Bruna, “A functional perspective on learning symmetric functions
with neural networks,” arXiv preprint arXiv:2008.06952, 2020.

[59] T. Pevny and V. Kovarik, Approximation capability of neural networks on sets of
probability measures and tree-structured data, 2019. [Online]. Available: https://
openreview.net/forum?id=HklJV3A9Ym .

156

https://openreview.net/forum?id=BJluy2RcFm
https://openreview.net/forum?id=BJluy2RcFm
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=r1x63grFvH
https://openreview.net/forum?id=HklJV3A9Ym
https://openreview.net/forum?id=HklJV3A9Ym

[60] J. Lee, Y. Lee, J. Kim, A. Kosiorek, S. Choi, and Y. W. Teh, “Set transformer: A
framework for attention-based permutation-invariant neural networks,” in Proceedings
of the 36th International Conference on Machine Learning, K. Chaudhuri and R.
Salakhutdinov, Eds., ser. Proceedings of Machine Learning Research, vol. 97, Long
Beach, California, USA: PMLR, Jun. 2019, pp. 3744–3753. [Online]. Available: http:
//proceedings.mlr.press/v97/lee19d.html .

[61] B. Yang, S. Wang, A. Markham, and N. Trigoni, “Robust attentional aggregation of
deep feature sets for multi-view 3d reconstruction,” International Journal of Com-
puter Vision, Aug. 2019, issn: 1573-1405. doi: 10.1007/s11263- 019- 01217- w .
[Online]. Available: https://doi.org/10.1007/s11263-019-01217-w .

[62] E. Wagstaff, F. Fuchs, M. Engelcke, I. Posner, and M. A. Osborne, “On the limitations
of representing functions on sets,” in Proceedings of the 36th International Conference
on Machine Learning, K. Chaudhuri and R. Salakhutdinov, Eds., ser. Proceedings
of Machine Learning Research, vol. 97, Long Beach, California, USA: PMLR, Jun.
2019, pp. 6487–6494. [Online]. Available: http://proceedings.mlr.press/v97/
wagstaff19a.html .

[63] T. N. Kipf and M. Welling, “Semi-Supervised Classification with Graph Convolutional
Networks,” Sep. 2016. arXiv: 1609.02907 . [Online]. Available: http://arxiv.org/
abs/1609.02907 .

[64] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph
attention networks,” in International Conference on Learning Representations, 2018.
[Online]. Available: https://openreview.net/forum?id=rJXMpikCZ .

[65] J. Klicpera, A. Bojchevski, and S. Gunnemann, “Predict then propagate: Graph neu-
ral networks meet personalized pagerank,” in International Conference on Learning
Representations, 2019. [Online]. Available: https://openreview.net/forum?id=
H1gL-2A9Ym .

[66] F. M. Bianchi, D. Grattarola, L. Livi, and C. Alippi, “Graph neural networks with
convolutional arma filters,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, pp. 1–1, 2021. doi: 10.1109/TPAMI.2021.3054830 .

[67] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph
neural network model,” IEEE Transactions on Neural Networks, vol. 20, no. 1, pp. 61–
80, 2009.

[68] D. Yarotsky, “Universal approximations of invariant maps by neural networks,” arXiv
preprint arXiv:1804.10306, 2018.

[69] D.-X. Zhou, “Universality of deep convolutional neural networks,” Applied and com-
putational harmonic analysis, vol. 48, no. 2, pp. 787–794, 2020.

157

http://proceedings.mlr.press/v97/lee19d.html
http://proceedings.mlr.press/v97/lee19d.html
https://doi.org/10.1007/s11263-019-01217-w
https://doi.org/10.1007/s11263-019-01217-w
http://proceedings.mlr.press/v97/wagstaff19a.html
http://proceedings.mlr.press/v97/wagstaff19a.html
https://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=H1gL-2A9Ym
https://openreview.net/forum?id=H1gL-2A9Ym
https://doi.org/10.1109/TPAMI.2021.3054830

[70] W. Kumagai and A. Sannai, “Universal approximation theorem for equivariant maps
by group cnns,” arXiv preprint arXiv:2012.13882, 2020.

[71] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are
universal approximators,” Neural networks, vol. 2, no. 5, pp. 359–366, 1989.

[72] H. Siegelmann and E. Sontag, “On the computational power of neural nets,” Journal
of Computer and System Sciences, vol. 50, no. 1, pp. 132–150, 1995.

[73] A. M. Schafer and H.-G. Zimmermann, “Recurrent neural networks are universal
approximators.,” International Journal of Neural Systems, vol. 17, no. 4, pp. 253–
263, 2007.

[74] R. L. Murphy, B. Srinivasan, V. Rao, and B. Ribeiro, “Relational pooling for graph
representations,” in Proceedings of the 36th International Conference on Machine
Learning, 2019.

[75] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional neural networks
for graphs,” in International conference on machine learning, PMLR, 2016, pp. 2014–
2023.

[76] Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen, “Pointcnn: Convolution on x-
transformed points,” in Advances in Neural Information Processing Systems, S. Ben-
gio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds.,
vol. 31, Curran Associates, Inc., 2018. [Online]. Available: https://proceedings.
neurips.cc/paper/2018/file/f5f8590cd58a54e94377e6ae2eded4d9-Paper.pdf .

[77] O. Vinyals, S. Bengio, and M. Kudlur, “Order Matters: Sequence to Sequence for
Sets,” ICLR, 2016.

[78] Z. Chen, S. Villar, L. Chen, and J. Bruna, “On the equivalence between graph
isomorphism testing and function approximation with gnns,” in Advances in Neu-
ral Information Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F.
d’Alché-Buc, E. Fox, and R. Garnett, Eds., vol. 32, Curran Associates, Inc., 2019.
[Online]. Available: https : / / proceedings . neurips . cc / paper / 2019 / file /
71ee911dd06428a96c143a0b135041a4-Paper.pdf .

[79] J. Toenshoff, M. Ritzert, H. Wolf, and M. Grohe, Graph learning with 1d convolutions
on random walks, 2021. arXiv: 2102.08786 [cs.LG] .

[80] Z. Zhang, P. Cui, J. Pei, X. Wang, and W. Zhu, Eigen-gnn: A graph structure pre-
serving plug-in for gnns, 2020. arXiv: 2006.04330 [cs.LG] .

158

https://proceedings.neurips.cc/paper/2018/file/f5f8590cd58a54e94377e6ae2eded4d9-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/f5f8590cd58a54e94377e6ae2eded4d9-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/71ee911dd06428a96c143a0b135041a4-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/71ee911dd06428a96c143a0b135041a4-Paper.pdf
https://arxiv.org/abs/2102.08786
https://arxiv.org/abs/2006.04330

[81] R. Murphy, B. Srinivasan, V. Rao, and B. Ribeiro, “Relational pooling for graph
representations,” in International Conference on Machine Learning, PMLR, 2019,
pp. 4663–4673.

[82] G. Bianconi and A.-L. Barabási, “Competition and multiscaling in evolving net-
works,” EPL (Europhysics Letters), vol. 54, no. 4, p. 436, 2001.

[83] L. Jánossy, “On the absorption of a nucleon cascade,” in Proceedings of the Royal
Irish Academy. Section A: Mathematical and Physical Sciences, JSTOR, vol. 53, 1950,
pp. 181–188.

[84] D. J. Daley and D. Vere-Jones, An introduction to the theory of point processes:
volume II: general theory and structure. Springer Science & Business Media, 2007.

[85] T. Hastie, R. Tibshirani, and J. Friedman, “The elements of statistical learning: Pre-
diction, inference and data mining,” Springer-Verlag, New York, 2009.

[86] C. M. Bishop et al., Neural networks for pattern recognition. Oxford university press,
1995.

[87] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward
neural networks,” in Proceedings of the thirteenth international conference on artifi-
cial intelligence and statistics, JMLR Workshop and Conference Proceedings, 2010,
pp. 249–256.

[88] H. Robbins and S. Monro, “A stochastic approximation method,” The annals of math-
ematical statistics, pp. 400–407, 1951.

[89] L. Younes, “On the convergence of markovian stochastic algorithms with rapidly
decreasing ergodicity rates,” Stochastics: An International Journal of Probability and
Stochastic Processes, vol. 65, no. 3-4, pp. 177–228, 1999.

[90] A. Yuille, “The Convergence of Contrastive Divergences,” in NIPS, 2004.

[91] D. P. Kingma and J. L. Ba, “ADAM: A Method for Stochastic Optimization,” Inter-
national Conference on Learning Representations, ICLR, 2015.

[92] Y. LeCun, Y. Bengio, et al., “Convolutional networks for images, speech, and time
series,” The handbook of brain theory and neural networks, vol. 3361, no. 10, p. 1995,
1995.

[93] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

159

[94] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio, “Learning phrase representations using rnn encoder-decoder for sta-
tistical machine translation,” EMNLP, 2014.

[95] P. Domingos, “Every model learned by gradient descent is approximately a kernel
machine,” arXiv preprint arXiv:2012.00152, 2020.

[96] A. Segato, A. Marzullo, F. Calimeri, and E. De Momi, “Artificial intelligence for brain
diseases: A systematic review,” APL bioengineering, vol. 4, no. 4, p. 041 503, 2020.

[97] S. Minaee, N. Kalchbrenner, E. Cambria, N. Nikzad, M. Chenaghlu, and J. Gao,
“Deep learning based text classification: A comprehensive review,” arXiv preprint
arXiv:2004.03705, 2020.

[98] M. Yang, Y. Lin, F. Lv, S. Zhu, K. Yu, M. Dikmen, L. Cao, and T. S. Huang, “Videos
semantic indexing using image classification.,” in TRECVID, Citeseer, 2010.

[99] D. G. Lowe, “Object recognition from local scale-invariant features,” in Proceedings
of the seventh IEEE international conference on computer vision, Ieee, vol. 2, 1999,
pp. 1150–1157.

[100] N. O’Mahony, S. Campbell, A. Carvalho, S. Harapanahalli, G. V. Hernandez, L.
Krpalkova, D. Riordan, and J. Walsh, “Deep learning vs. traditional computer vision,”
in Science and Information Conference, Springer, 2019, pp. 128–144.

[101] Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, and M. S. Lew, “Deep learning for
visual understanding: A review,” Neurocomputing, vol. 187, pp. 27–48, 2016.

[102] F.-F. Li, A. Karpathy, and J. Johnson, “Cs231n: Convolutional neural networks for
visual recognition 2016,” [Online]. Available: http://cs231n.stanford.edu/ .

[103] M. Hardt and B. Recht, Patterns, predictions, and actions: A story about machine
learning. https://mlstory.org , 2021. arXiv: 2102.05242 [cs.LG] .

[104] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson, “Understanding neural
networks through deep visualization,” in Thirty-First International Conference on
Machine Learning Workshop, Lille, France, 2015.

[105] S. Siddiqui, I. Malik, F. Shafait, A. Mian, M. Shortis, and E. Harvey, “Automatic fish
species classification in underwater videos: Exploiting pretrained deep neural network
models to compensate for limited labelled data,” ICES Journal of Marine Science,
vol. 75, May 2017. doi: 10.1093/icesjms/fsx109 .

[106] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,”
in European conference on computer vision, Springer, 2014, pp. 818–833.

160

http://cs231n.stanford.edu/
https://mlstory.org
https://arxiv.org/abs/2102.05242
https://doi.org/10.1093/icesjms/fsx109

[107] J. Ugander, L. Backstrom, and J. Kleinberg, “Subgraph frequencies: Mapping the
empirical and extremal geography of large graph collections,” in Proceedings of the
22nd international conference on World Wide Web, 2013, pp. 1307–1318.

[108] T. Guo and X. Zhu, “Understanding the roles of sub-graph features for graph classifi-
cation: An empirical study perspective,” in Proceedings of the 22nd ACM international
conference on Information & Knowledge Management, 2013, pp. 817–822.

[109] S. Bonner, J. Brennan, G. Theodoropoulos, I. Kureshi, and A. S. McGough, “Deep
topology classification: A new approach for massive graph classification,” in 2016
IEEE International Conference on Big Data (Big Data), IEEE, 2016, pp. 3290–3297.

[110] J. P. Canning, E. E. Ingram, S. Nowak-Wolff, A. M. Ortiz, N. K. Ahmed, R. A. Rossi,
K. R. Schmitt, and S. Soundarajan, “Predicting graph categories from structural
properties,” 2018.

[111] D. Rogers and M. Hahn, “Extended-connectivity fingerprints,” Journal of chemical
information and modeling, vol. 50, no. 5, pp. 742–754, 2010.

[112] T.-A. Song, S. Chowdhury, F. Yang, H. Jacobs, G. Fakhri, Q. Li, K. Johnson, and J.
Dutta, “Graph convolutional neural networks for alzheimer’s disease classification,”
vol. 2019, Apr. 2019, pp. 414–417. doi: 10.1109/ISBI.2019.8759531 .

[113] M. De Domenico, S. Sasai, and A. Arenas, “Mapping multiplex hubs in human func-
tional brain networks,” Frontiers in neuroscience, vol. 10, p. 326, 2016.

[114] N. M. Kriege, F. D. Johansson, and C. Morris, “A survey on graph kernels,” Applied
Network Science, vol. 5, no. 1, pp. 1–42, 2020.

[115] N. Shervashidze, P. Schweitzer, E. J. Van Leeuwen, K. Mehlhorn, and K. M. Borg-
wardt, “Weisfeiler-lehman graph kernels.,” Journal of Machine Learning Research,
vol. 12, no. 9, 2011.

[116] S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M. Borgwardt, “Graph
kernels,” Journal of Machine Learning Research, vol. 11, pp. 1201–1242, 2010.

[117] W. Ye, O. Askarisichani, A. Jones, and A. Singh, “Deepmap: Learning deep repre-
sentations for graph classification,” arXiv preprint arXiv:2004.02131, 2020.

[118] M. Belkin, S. Ma, and S. Mandal, “To understand deep learning we need to under-
stand kernel learning,” in International Conference on Machine Learning, PMLR,
2018, pp. 541–549.

161

https://doi.org/10.1109/ISBI.2019.8759531

[119] M. M. Bronstein and I. Kokkinos, “Scale-invariant heat kernel signatures for non-rigid
shape recognition,” in 2010 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, IEEE, 2010, pp. 1704–1711.

[120] M. Aubry, U. Schlickewei, and D. Cremers, “The wave kernel signature: A quantum
mechanical approach to shape analysis,” in 2011 IEEE international conference on
computer vision workshops (ICCV workshops), IEEE, 2011, pp. 1626–1633.

[121] Y. Fang, J. Xie, G. Dai, M. Wang, F. Zhu, T. Xu, and E. Wong, “3d deep shape
descriptor,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2015, pp. 2319–2328.

[122] X. Wang, Y. Yan, P. Tang, X. Bai, and W. Liu, “Revisiting multiple instance neural
networks,” Pattern Recognition, vol. 74, pp. 15–24, 2018.

[123] T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez, “Solving the multiple instance
problem with axis-parallel rectangles,” Artificial intelligence, vol. 89, no. 1-2, pp. 31–
71, 1997.

[124] K. Hornik, M. Stinchcombe, and H. White, “Universal approximation of an unknown
mapping and its derivatives using multilayer feedforward networks,” Neural networks,
vol. 3, no. 5, pp. 551–560, 1990.

[125] G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Mathematics
of control, signals and systems, vol. 2, no. 4, pp. 303–314, 1989.

[126] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken, “Multilayer feedforward networks
with a nonpolynomial activation function can approximate any function,” Neural
networks, vol. 6, no. 6, pp. 861–867, 1993.

[127] R. Reed and R. J. MarksII, Neural smithing: supervised learning in feedforward arti-
ficial neural networks. Mit Press, 1999, Chapter 8.

[128] G. B. Orr and K.-R. Müller, Neural networks: tricks of the trade. Springer, 2003,
pp. 9–48.

[129] E. W. Weisstein, Symmetry. From MathWorld—A Wolfram Web Resource. [Online].
Available: https://mathworld.wolfram.com/Symmetry.html .

[130] Y. Shmaliy, Continuous-time systems. Springer Science & Business Media, 2007,
Chapter 4.

[131] B. G. Osgood, Lectures on the Fourier transform and its applications. American Math-
ematical Soc., 2019, vol. 33, See Chapters 3 and 8.

162

https://mathworld.wolfram.com/Symmetry.html

[132] W. L. Hamilton, “Graph representation learning,” Synthesis Lectures on Artificial
Intelligence and Machine Learning, vol. 14, no. 3, pp. 1–159,

[133] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and locally
connected networks on graphs,” arXiv preprint arXiv:1312.6203, 2013.

[134] J. F. Henriques and A. Vedaldi, “Warped convolutions: Efficient invariance to spatial
transformations,” in International Conference on Machine Learning, PMLR, 2017,
pp. 1461–1469.

[135] T. Cohen and M. Welling, “Group equivariant convolutional networks,” in Interna-
tional conference on machine learning, PMLR, 2016, pp. 2990–2999.

[136] A. Kanazawa, A. Sharma, and D. Jacobs, Locally scale-invariant convolutional neural
networks, 2014. arXiv: 1412.5104 [cs.CV] .

[137] Y. LeCun, P. Haffner, L. Bottou, and Y. Bengio, “Object recognition with gradient-
based learning,” in Shape, contour and grouping in computer vision, Springer, 1999,
pp. 319–345.

[138] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S. Thrun,
“Dermatologist-level classification of skin cancer with deep neural networks,” nature,
vol. 542, no. 7639, pp. 115–118, 2017.

[139] M. Shaban, Z. Ogur, A. Mahmoud, A. Switala, A. Shalaby, H. Abu Khalifeh, M.
Ghazal, L. Fraiwan, G. Giridharan, H. Sandhu, et al., “A convolutional neural net-
work for the screening and staging of diabetic retinopathy,” Plos one, vol. 15, no. 6,
e0233514, 2020.

[140] A. S. Lundervold and A. Lundervold, “An overview of deep learning in medical imag-
ing focusing on mri,” Zeitschrift für Medizinische Physik, vol. 29, no. 2, pp. 102–127,
2019.

[141] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification,” in 2015 IEEE International Conference
on Computer Vision (ICCV), 2015, pp. 1026–1034. doi: 10.1109/ICCV.2015.123 .

[142] T. N. Sainath, O. Vinyals, A. Senior, and H. Sak, “Convolutional, long short-term
memory, fully connected deep neural networks,” in 2015 IEEE international confer-
ence on acoustics, speech and signal processing (ICASSP), IEEE, 2015, pp. 4580–
4584.

[143] Y. Aytar, C. Vondrick, and A. Torralba, “Soundnet: Learning sound representations
from unlabeled video,” arXiv preprint arXiv:1610.09001, 2016.

163

https://arxiv.org/abs/1412.5104
https://doi.org/10.1109/ICCV.2015.123

[144] A. Hyvärinen, J. Hurri, and P. O. Hoyer, Natural image statistics: A probabilistic
approach to early computational vision. Springer Science & Business Media, 2009,
vol. 39.

[145] I. R. Kondor, Group theoretical methods in machine learning. Columbia University
New York, 2008, vol. 2.

[146] E. D. Bloch, Proofs and fundamentals: a first course in abstract mathematics. Springer
Science & Business Media, 2011.

[147] P. A. Grillet, Abstract algebra. Springer Science & Business Media, 2007, vol. 242.

[148] B. Bloem-Reddy and. Teh, “Probabilistic symmetries and invariant neural networks,”
Journal of Machine Learning Research, vol. 21, no. 90, pp. 1–61, 2020. [Online]. Avail-
able: http://jmlr.org/papers/v21/19-322.html .

[149] H. Maron, E. Fetaya, N. Segol, and Y. Lipman, “On the universality of invariant
networks,” in ICML, 2019, pp. 4363–4371. [Online]. Available: http://proceedings.
mlr.press/v97/maron19a.html .

[150] A. Bart and B. Clair, Math and the art of mc escher, https://mathstat.slu.edu/
escher/index.php/Math_and_the_Art_of_M._C._Escher , Image file Symmetry-
group-square.png.

[151] K. Conrad, Group actions, https://kconrad.math.uconn.edu/blurbs/grouptheory/
gpaction.pdf .

[152] B. Ribeiro, Tensor decomposition, Lecture Notes for CS573 Data Mining, Fall 2016.

[153] E. E. Papalexakis, C. Faloutsos, T. M. Mitchell, P. P. Talukdar, N. D. Sidiropoulos,
and B. Murphy, “Turbo-smt: Accelerating coupled sparse matrix-tensor factorizations
by 200x,” in Proceedings of the 2014 SIAM International Conference on Data Mining,
SIAM, 2014, pp. 118–126.

[154] J. Hartford, D. Graham, K. Leyton-Brown, and S. Ravanbakhsh, “Deep models of
interactions across sets,” in Proceedings of the 35th International Conference on Ma-
chine Learning, J. Dy and A. Krause, Eds., ser. Proceedings of Machine Learning Re-
search, vol. 80, Stockholmsmässan, Stockholm Sweden: PMLR, Jul. 2018, pp. 1909–
1918. [Online]. Available: http://proceedings.mlr.press/v80/hartford18a.html .

[155] E. W. Weisstein, Permutation matrix. From MathWorld—A Wolfram Web Resource.
[Online]. Available: https://mathworld.wolfram.com/PermutationMatrix.html .

[156] M. L. Minsky and S. Papert, “Perceptrons, expanded ed,” MIT Press, Cambridge,
MA, vol. 15, p. 767 776, 1988.

164

http://jmlr.org/papers/v21/19-322.html
http://proceedings.mlr.press/v97/maron19a.html
http://proceedings.mlr.press/v97/maron19a.html
https://mathstat.slu.edu/escher/index.php/Math_and_the_Art_of_M._C._Escher
https://mathstat.slu.edu/escher/index.php/Math_and_the_Art_of_M._C._Escher
https://kconrad.math.uconn.edu/blurbs/grouptheory/gpaction.pdf
https://kconrad.math.uconn.edu/blurbs/grouptheory/gpaction.pdf
http://proceedings.mlr.press/v80/hartford18a.html
https://mathworld.wolfram.com/PermutationMatrix.html

[157] H. Maron, H. Ben-Hamu, N. Shamir, and Y. Lipman, “Invariant and equivariant graph
networks,” in International Conference on Learning Representations, 2019. [Online].
Available: https://openreview.net/forum?id=Syx72jC9tm .

[158] Y. Gong, L. Wang, R. Guo, and S. Lazebnik, “Multi-scale orderless pooling of deep
convolutional activation features,” in European conference on computer vision, Springer,
2014, pp. 392–407.

[159] H. Jégou, F. Perronnin, M. Douze, J. Sánchez, P. Pérez, and C. Schmid, “Aggregating
local image descriptors into compact codes,” IEEE transactions on pattern analysis
and machine intelligence, vol. 34, no. 9, pp. 1704–1716, 2011.

[160] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Instance normalization: The missing
ingredient for fast stylization,” arXiv preprint arXiv:1607.08022, 2016.

[161] T. Lindeberg, “Provably scale-covariant continuous hierarchical networks based on
scale-normalized differential expressions coupled in cascade,” Journal of Mathematical
Imaging and Vision, vol. 62, no. 1, pp. 120–148, 2020.

[162] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature
pyramid networks for object detection,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2017, pp. 2117–2125.

[163] M. Beer, J. Urenda, O. Kosheleva, and V. Kreinovich, “Why spiking neural networks
are efficient: A theorem,” in International Conference on Information Processing and
Management of Uncertainty in Knowledge-Based Systems, Springer, 2020, pp. 59–69.

[164] A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and A. Maida, “Deep
learning in spiking neural networks,” Neural Networks, vol. 111, pp. 47–63, 2019.

[165] W. Maass, “Networks of spiking neurons: The third generation of neural network
models,” Neural networks, vol. 10, no. 9, pp. 1659–1671, 1997.

[166] D. Laptev, N. Savinov, J. M. Buhmann, and M. Pollefeys, “Ti-pooling: Transformation-
invariant pooling for feature learning in convolutional neural networks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, 2016, pp. 289–
297.

[167] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understanding deep
learning requires rethinking generalization,” in International Conference on Learning
Representations, 2017. [Online]. Available: https://openreview.net/forum?id=
Sy8gdB9xx .

[168] R. Gilmore, Lie Groups, Lie Algebras and some of their Applications. Wiley, New
York, 1974.

165

https://openreview.net/forum?id=Syx72jC9tm
https://openreview.net/forum?id=Sy8gdB9xx
https://openreview.net/forum?id=Sy8gdB9xx

[169] R. Gens and P. M. Domingos, “Deep symmetry networks,” Advances in neural infor-
mation processing systems, vol. 27, pp. 2537–2545, 2014.

[170] F. Anselmi, J. Z. Leibo, L. Rosasco, J. Mutch, A. Tacchetti, and T. Poggio, “Unsu-
pervised learning of invariant representations with low sample complexity: The magic
of sensory cortex or a new framework for machine learning?,” 2014.

[171] J. Shawetaylor, “Sample sizes for threshold networks with equivalences,” Information
and Computation, vol. 118, no. 1, pp. 65–72, 1995.

[172] Y. S. Abu-Mostafa, “Hints and the vc dimension,” Neural Computation, vol. 5, no. 2,
pp. 278–288, 1993.

[173] N. Vapnik Vladimir, The nature of statistical learning theory (information science
and statistics), 1999.

[174] P. L. Bartlett, N. Harvey, C. Liaw, and A. Mehrabian, “Nearly-tight vc-dimension and
pseudodimension bounds for piecewise linear neural networks,” Journal of Machine
Learning Research, vol. 20, no. 63, pp. 1–17, 2019. [Online]. Available: http://jmlr.
org/papers/v20/17-612.html .

[175] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin,
Bayesian data analysis. CRC press, 2013.

[176] G. Benton, M. Finzi, P. Izmailov, and A. G. Wilson, “Learning invariances in neural
networks from training data,” in Advances in Neural Information Processing Systems,
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, Eds., vol. 33, Curran
Associates, Inc., 2020, pp. 17 605–17 616. [Online]. Available: https://proceedings.
neurips.cc/paper/2020/file/cc8090c4d2791cdd9cd2cb3c24296190-Paper.pdf .

[177] E. Cohen-Karlik, A. Ben David, and A. Globerson, “Regularizing towards permuta-
tion invariance in recurrent models,” in Advances in Neural Information Processing
Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, Eds.,
vol. 33, Curran Associates, Inc., 2020, pp. 18 364–18 374. [Online]. Available: https://
proceedings.neurips.cc/paper/2020/file/d58f36f7679f85784d8b010ff248f898-
Paper.pdf .

[178] M. van der Wilk, M. Bauer, S. John, and J. Hensman, “Learning invariances using the
marginal likelihood,” in Advances in Neural Information Processing Systems, S. Ben-
gio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds.,
vol. 31, Curran Associates, Inc., 2018. [Online]. Available: https://proceedings.
neurips.cc/paper/2018/file/d465f14a648b3d0a1faa6f447e526c60-Paper.pdf .

166

http://jmlr.org/papers/v20/17-612.html
http://jmlr.org/papers/v20/17-612.html
https://proceedings.neurips.cc/paper/2020/file/cc8090c4d2791cdd9cd2cb3c24296190-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/cc8090c4d2791cdd9cd2cb3c24296190-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d58f36f7679f85784d8b010ff248f898-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d58f36f7679f85784d8b010ff248f898-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d58f36f7679f85784d8b010ff248f898-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/d465f14a648b3d0a1faa6f447e526c60-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/d465f14a648b3d0a1faa6f447e526c60-Paper.pdf

[179] S. C. Mouli and B. Ribeiro, “Neural network extrapolations with g-invariances from a
single environment,” in International Conference on Learning Representations, 2021.
[Online]. Available: https://openreview.net/forum?id=7t1FcJUWhi3 .

[180] F. Anselmi, G. Evangelopoulos, L. Rosasco, and T. Poggio, “Symmetry-adapted repre-
sentation learning,” Pattern Recognition, vol. 86, pp. 201–208, 2019, issn: 0031-3203.
doi: https://doi.org/10.1016/j.patcog.2018.07.025 . [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0031320318302620 .

[181] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab:
Semantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs,” IEEE transactions on pattern analysis and machine intelligence,
vol. 40, no. 4, pp. 834–848, 2017.

[182] M. Varma and D. Ray, “Learning the discriminative power-invariance trade-off,” in
2007 IEEE 11th International Conference on Computer Vision, IEEE, 2007, pp. 1–8.

[183] N. Keriven and G. Peyré, “Universal invariant and equivariant graph neural net-
works,” in Advances in Neural Information Processing Systems, H. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, Eds., vol. 32, Curran As-
sociates, Inc., 2019, pp. 7092–7101. [Online]. Available: https : / / proceedings .
neurips.cc/paper/2019/file/ea9268cb43f55d1d12380fb6ea5bf572-Paper.pdf .

[184] W. Kumagai and A. Sannai, Universal approximation theorem for equivariant maps
by group {cnn}s, 2021. [Online]. Available: https://openreview.net/forum?id=
7TBP8k7TLFA .

[185] A. Sannai, Y. Takai, and M. Cordonnier, Universal approximations of permutation
invariant/equivariant functions by deep neural networks, 2020. [Online]. Available:
https://openreview.net/forum?id=HkeZQJBKDB .

[186] N. Dym and H. Maron, “On the universality of rotation equivariant point cloud
networks,” in International Conference on Learning Representations, 2021. [Online].
Available: https://openreview.net/forum?id=6NFBvWlRXaG .

[187] R. Sato, M. Yamada, and H. Kashima, “Random features strengthen graph neural
networks,” in Proceedings of the 2021 SIAM International Conference on Data Min-
ing, SDM, 2021.

[188] S. Chen, E. Dobriban, and J. H. Lee, “A group-theoretic framework for data augmen-
tation,” Journal of Machine Learning Research, vol. 21, no. 245, pp. 1–71, 2020.

[189] T. Lee and S. Soatto, “Video-based descriptors for object recognition,” Image and
Vision Computing, vol. 29, no. 10, pp. 639–652, 2011.

167

https://openreview.net/forum?id=7t1FcJUWhi3
https://doi.org/https://doi.org/10.1016/j.patcog.2018.07.025
https://www.sciencedirect.com/science/article/pii/S0031320318302620
https://proceedings.neurips.cc/paper/2019/file/ea9268cb43f55d1d12380fb6ea5bf572-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/ea9268cb43f55d1d12380fb6ea5bf572-Paper.pdf
https://openreview.net/forum?id=7TBP8k7TLFA
https://openreview.net/forum?id=7TBP8k7TLFA
https://openreview.net/forum?id=HkeZQJBKDB
https://openreview.net/forum?id=6NFBvWlRXaG

[190] M. Arjovsky, L. Bottou, I. Gulrajani, and D. Lopez-Paz, “Invariant risk minimiza-
tion,” arXiv preprint arXiv:1907.02893, 2019.

[191] E. Creager, J. Jacobsen, and R. Zemel, “Exchanging lessons between algorithmic
fairness and domain generalization,” arXiv preprint arXiv:2010.07249, 2020.

[192] B. Sanchez-Lengeling and A. Aspuru-Guzik, “Inverse molecular design using ma-
chine learning: Generative models for matter engineering,” Science, vol. 361, no. 6400,
pp. 360–365, 2018.

[193] S. Kearnes, K. McCloskey, M. Berndl, V. Pande, and P. Riley, “Molecular graph con-
volutions: Moving beyond fingerprints,” Journal of computer-aided molecular design,
vol. 30, no. 8, pp. 595–608, 2016.

[194] T. Chen, S. Bian, and Y. Sun, “Graph feature networks,” in Proceedings of the ICLR-
2019 Workshop on Representation Learning on Graphs and Manifolds, 2019.

[195] G. Montavon, K. Hansen, S. Fazli, M. Rupp, F. Biegler, A. Ziehe, A. Tkatchenko,
A. V. Lilienfeld, and K.-R. Müller, “Learning invariant representations of molecules
for atomization energy prediction,” in Advances in Neural Information Processing
Systems, 2012, pp. 440–448.

[196] G. Jeh and J. Widom, “Scaling personalized web search,” in Proceedings of the
12th international conference on World Wide Web, Citation Key: jeh2003scaling bib-
tex[organization=Acm], 2003, pp. 271–279.

[197] L. Page, S. Brin, R. Motwani, and T. Winograd, The PageRank citation ranking:
Bringing order to the web. 1999.

[198] G. Mena, D. Belanger, S. Linderman, and J. Snoek, “Learning latent permutations
with gumbel-sinkhorn networks,” in International Conference on Learning Represen-
tations, 2018. [Online]. Available: https://openreview.net/forum?id=Byt3oJ-0W .

[199] Y. Zhang, J. Hare, and A. Prügel-Bennett, “Learning representations of sets through
optimized permutations,” in International Conference on Learning Representations,
2019. [Online]. Available: https://openreview.net/forum?id=HJMCcjAcYX .

[200] S. W. Linderman, G. E. Mena, H. Cooper, L. Paninski, and J. P. Cunningham,
“Reparameterizing the birkhoff polytope for variational permutation inference,” arXiv
preprint arXiv:1710.09508, 2017.

[201] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational inference: A review
for statisticians,” Journal of the American statistical Association, vol. 112, no. 518,
pp. 859–877, 2017.

168

https://openreview.net/forum?id=Byt3oJ-0W
https://openreview.net/forum?id=HJMCcjAcYX

[202] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint
arXiv:1312.6114, 2013.

[203] P. de Haan, T. S. Cohen, and M. Welling, “Natural graph networks,” in Advances
in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, and H. Lin, Eds., vol. 33, Curran Associates, Inc., 2020, pp. 3636–
3646. [Online]. Available: https://proceedings.neurips.cc/paper/2020/file/
2517756c5a9be6ac007fe9bb7fb92611-Paper.pdf .

[204] M. Fey and J. E. Lenssen, “Fast graph representation learning with PyTorch Geo-
metric,” in ICLR Workshop on Representation Learning on Graphs and Manifolds,
2019.

[205] M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou, C. Ma, L. Yu, Y.
Gai, T. Xiao, T. He, G. Karypis, J. Li, and Z. Zhang, “Deep graph library: A
graph-centric, highly-performant package for graph neural networks,” arXiv preprint
arXiv:1909.01315, 2019.

[206] D. Grattarola and C. Alippi, “Graph neural networks in tensorflow and keras with
spektral,” in Proceedings of the ICML-2020 workshop on Graph Representation Learn-
ing and Beyond, 2020.

[207] K. Xu, C. Li, Y. Tian, T. Sonobe, K.-i. Kawarabayashi, and S. Jegelka, “Repre-
sentation Learning on Graphs with Jumping Knowledge Networks,” in ICML, 2018.
[Online]. Available: http://arxiv.org/abs/1806.03536 .

[208] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan, and M.
Grohe, “Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks,”
Proc. Thirty-Third AAAI Conf. Artif. Intell., 2019.

[209] V. Arvind, J. Köbler, G. Rattan, and O. Verbitsky, “Graph isomorphism, color re-
finement, and compactness,” computational complexity, vol. 26, no. 3, pp. 627–685,
2017.

[210] B. Weisfeiler and A. Lehman, “A reduction of a graph to a canonical form and an
algebra arising during this reduction,” Nauchno-Technicheskaya Informatsia, vol. 2,
no. 9, pp. 12–16, 1968.

[211] M. Fürer, “On the combinatorial power of the Weisfeiler-Lehman algorithm,” in In-
ternational Conference on Algorithms and Complexity, Springer, 2017, pp. 260–271.

[212] G. Bouritsas, F. Frasca, S. Zafeiriou, and M. M. Bronstein, Improving graph neural
network expressivity via subgraph isomorphism counting, 2021. [Online]. Available:
https://openreview.net/forum?id=LT0KSFnQDWF .

169

https://proceedings.neurips.cc/paper/2020/file/2517756c5a9be6ac007fe9bb7fb92611-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/2517756c5a9be6ac007fe9bb7fb92611-Paper.pdf
http://arxiv.org/abs/1806.03536
https://openreview.net/forum?id=LT0KSFnQDWF

[213] N. Keriven and G. Peyré, “Universal invariant and equivariant graph neural net-
works,” in Advances in Neural Information Processing Systems 32, H. Wallach, H.
Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, Eds., Curran
Associates, Inc., 2019, pp. 7090–7099. [Online]. Available: http://papers.nips.cc/
paper/8931-universal-invariant-and-equivariant-graph-neural-networks.
pdf .

[214] Y. Zhou, H. Zheng, and X. Huang, Graph neural networks: Taxonomy, advances and
trends, 2021. arXiv: 2012.08752 [cs.LG] .

[215] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A comprehensive survey
on graph neural networks,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 32, no. 1, pp. 4–24, 2021. doi: 10.1109/TNNLS.2020.2978386 .

[216] Q. Li, Z. Han, and X.-M. Wu, “Deeper insights into graph convolutional networks
for semi-supervised learning,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 32, 2018.

[217] X. Miao, N. M. Gürel, W. Zhang, Z. Han, B. Li, W. Min, X. Rao, H. Ren, Y. Shan,
Y. Shao, Y. Wang, F. Wu, H. Xue, Y. Yang, Z. Zhang, Y. Zhao, S. Zhang, Y. Wang,
B. Cui, and C. Zhang, Degnn: Characterizing and improving graph neural networks
with graph decomposition, 2020. arXiv: 1910.04499 [cs.LG] .

[218] K. Oono and T. Suzuki, “Graph neural networks exponentially lose expressive power
for node classification,” in International Conference on Learning Representations,
2020. [Online]. Available: https://openreview.net/forum?id=S1ldO2EFPr .

[219] J. Zhang and L. Meng, “Gresnet: Graph residual network for reviving deep gnns from
suspended animation,” arXiv preprint arXiv:1909.05729, 2019.

[220] J. Zhang, H. Zhang, C. Xia, and L. Sun, “Graph-bert: Only attention is needed for
learning graph representations,” arXiv preprint arXiv:2001.05140, 2020.

[221] Q. Liu, M. Nickel, and D. Kiela, “Hyperbolic graph neural networks,” arXiv preprint
arXiv:1910.12892, 2019.

[222] I. Chami, R. Ying, C. Ré, and J. Leskovec, “Hyperbolic graph convolutional neural
networks,” Advances in neural information processing systems, vol. 32, p. 4869, 2019.

[223] A. Porter and M. Wootters, On greedy approaches to hierarchical aggregation, 2021.
arXiv: 2102.01730 [cs.DS] .

[224] Z. Jia, S. Lin, R. Ying, J. You, J. Leskovec, and A. Aiken, “Redundancy-free compu-
tation for graph neural networks,” in Proceedings of the 26th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data Mining, 2020, pp. 997–1005.

170

http://papers.nips.cc/paper/8931-universal-invariant-and-equivariant-graph-neural-networks.pdf
http://papers.nips.cc/paper/8931-universal-invariant-and-equivariant-graph-neural-networks.pdf
http://papers.nips.cc/paper/8931-universal-invariant-and-equivariant-graph-neural-networks.pdf
https://arxiv.org/abs/2012.08752
https://doi.org/10.1109/TNNLS.2020.2978386
https://arxiv.org/abs/1910.04499
https://openreview.net/forum?id=S1ldO2EFPr
https://arxiv.org/abs/2102.01730

[225] J. Chen, T. Ma, and C. Xiao, “FastGCN: Fast learning with graph convolutional net-
works via importance sampling,” in International Conference on Learning Represen-
tations, 2018. [Online]. Available: https://openreview.net/forum?id=rytstxWAW .

[226] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger, “Simplifying graph
convolutional networks,” in International conference on machine learning, PMLR,
2019, pp. 6861–6871.

[227] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst, “Geometric
Deep Learning: Going beyond Euclidean data,” IEEE Signal Processing Magazine,
vol. 34, no. 4, pp. 18–42, Jul. 2017, issn: 1053-5888. doi: 10 . 1109 / MSP . 2017 .
2693418 . [Online]. Available: http://ieeexplore.ieee.org/document/7974879/ .

[228] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks
on graphs with fast localized spectral filtering,” in Advances in Neural Information
Processing Systems, 2016, pp. 3844–3852.

[229] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs via
spectral graph theory,” Applied and Computational Harmonic Analysis, vol. 30, no. 2,
pp. 129–150, 2011.

[230] C. Colas, T. Karch, N. Lair, J.-M. Dussoux, C. Moulin-Frier, P. Dominey, and P.-Y.
Oudeyer, “Language as a cognitive tool to imagine goals in curiosity driven explo-
ration,” in Advances in Neural Information Processing Systems, H. Larochelle, M.
Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, Eds., vol. 33, Curran Associates,
Inc., 2020, pp. 3761–3774. [Online]. Available: https://proceedings.neurips.cc/
paper/2020/file/274e6fcf4a583de4a81c6376f17673e7-Paper.pdf .

[231] G. Pellegrini, A. Tibo, P. Frasconi, A. Passerini, and M. Jaeger, Learning aggregation
functions, 2020. arXiv: 2012.08482 [cs.LG] .

[232] J. Ramon and L. De Raedt, “Multi instance neural networks,” in Proceedings of the
ICML-2000 workshop on attribute-value and relational learning, 2000, pp. 53–60.

[233] O. Z. Kraus, J. L. Ba, and B. J. Frey, “Classifying and segmenting microscopy images
with deep multiple instance learning,” Bioinformatics, vol. 32, no. 12, pp. i52–i59,
2016.

[234] T. Le and Y. Duan, “Pointgrid: A deep network for 3d shape understanding,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2018,
pp. 9204–9214.

171

https://openreview.net/forum?id=rytstxWAW
https://doi.org/10.1109/MSP.2017.2693418
https://doi.org/10.1109/MSP.2017.2693418
http://ieeexplore.ieee.org/document/7974879/
https://proceedings.neurips.cc/paper/2020/file/274e6fcf4a583de4a81c6376f17673e7-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/274e6fcf4a583de4a81c6376f17673e7-Paper.pdf
https://arxiv.org/abs/2012.08482

[235] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical fea-
ture learning on point sets in a metric space,” in Advances in Neural Informa-
tion Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fer-
gus, S. Vishwanathan, and R. Garnett, Eds., vol. 30, Curran Associates, Inc., 2017.
[Online]. Available: https : / / proceedings . neurips . cc / paper / 2017 / file /
d8bf84be3800d12f74d8b05e9b89836f-Paper.pdf .

[236] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin, “Attention is all you need,” in Advances in neural information
processing systems, 2017, pp. 5998–6008.

[237] H. Zhao, L. Jiang, J. Jia, P. Torr, and V. Koltun, Point transformer, 2020. arXiv:
2012.09164 [cs.CV] .

[238] M.-H. Guo, J.-X. Cai, Z.-N. Liu, T.-J. Mu, R. R. Martin, and S.-M. Hu, Pct: Point
cloud transformer, 2020. arXiv: 2012.09688 [cs.CV] .

[239] M. Billik and G.-C. Rota, “On reynolds operators in finite-dimensional algebras,”
Journal of Mathematics and Mechanics, vol. 9, no. 6, pp. 927–932, 1960.

[240] G. Corso, L. Cavalleri, D. Beaini, P. Liò, and P. Veličković, “Principal neighbourhood
aggregation for graph nets,” in Advances in Neural Information Processing Systems,
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, Eds., vol. 33, Curran
Associates, Inc., 2020, pp. 13 260–13 271. [Online]. Available: https://proceedings.
neurips.cc/paper/2020/file/99cad265a1768cc2dd013f0e740300ae-Paper.pdf .

[241] J.-Y. Cai, M. Fürer, and N. Immerman, “An optimal lower bound on the number of
variables for graph identification,” Combinatorica, vol. 12, no. 4, pp. 389–410, 1992.

[242] V. Vilfred, “On circulant graphs,” in Graph Theory and its Applications, R. Bal-
akrishnan, G. Sethuraman, and R. J. Wilson, Eds., Narosa Publishing House, 2004,
pp. 34–36.

[243] R. Sato, A survey on the expressive power of graph neural networks, 2020. arXiv:
2003.04078 [cs.LG] .

[244] M. H. Kutner, C. J. Nachtsheim, J. Neter, W. Li, et al., Applied linear statistical
models. McGraw-Hill Irwin Boston, 2005, vol. 5.

[245] C. Vignac, A. Loukas, and P. Frossard, “Building powerful and equivariant graph
neural networks with structural message-passing,” in Advances in Neural Informa-
tion Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H.
Lin, Eds., vol. 33, Curran Associates, Inc., 2020, pp. 14 143–14 155. [Online]. Available:
https://proceedings.neurips.cc/paper/2020/file/a32d7eeaae19821fd9ce317f3ce952a7-
Paper.pdf .

172

https://proceedings.neurips.cc/paper/2017/file/d8bf84be3800d12f74d8b05e9b89836f-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/d8bf84be3800d12f74d8b05e9b89836f-Paper.pdf
https://arxiv.org/abs/2012.09164
https://arxiv.org/abs/2012.09688
https://proceedings.neurips.cc/paper/2020/file/99cad265a1768cc2dd013f0e740300ae-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/99cad265a1768cc2dd013f0e740300ae-Paper.pdf
https://arxiv.org/abs/2003.04078
https://proceedings.neurips.cc/paper/2020/file/a32d7eeaae19821fd9ce317f3ce952a7-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/a32d7eeaae19821fd9ce317f3ce952a7-Paper.pdf

[246] R. Abboud, I. I. Ceylan, M. Grohe, and T. Lukasiewicz, The surprising power of graph
neural networks with random node initialization, 2021. [Online]. Available: https:
//openreview.net/forum?id=L7Irrt5sMQa .

[247] P. Barceló, E. V. Kostylev, M. Monet, J. Pérez, J. Reutter, and J. P. Silva, “The logical
expressiveness of graph neural networks,” in International Conference on Learning
Representations, 2019.

[248] G. Dasoulas, L. Dos Santos, K. Scaman, and A. Virmaux, “Coloring graph neu-
ral networks for node disambiguation,” in Proceedings of the Twenty-Ninth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-20, C. Bessiere, Ed., Main
track, International Joint Conferences on Artificial Intelligence Organization, Jul.
2020, pp. 2126–2132. doi: 10.24963/ijcai.2020/294 . [Online]. Available: https:
//doi.org/10.24963/ijcai.2020/294 .

[249] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language
models are unsupervised multitask learners,” 2019.

[250] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep
bidirectional transformers for language understanding,” in Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Min-
neapolis, Minnesota: Association for Computational Linguistics, Jun. 2019, pp. 4171–
4186. doi: 10.18653/v1/N19-1423 . [Online]. Available: https://www.aclweb.org/
anthology/N19-1423 .

[251] Y. Sun, S. Wang, Y. Li, S. Feng, X. Chen, H. Zhang, X. Tian, D. Zhu, H. Tian, and
H. Wu, “ERNIE: enhanced representation through knowledge integration,” CoRR,
vol. abs/1904.09223, 2019. arXiv: 1904.09223 . [Online]. Available: http://arxiv.
org/abs/1904.09223 .

[252] S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks for human
action recognition,” IEEE transactions on pattern analysis and machine intelligence,
vol. 35, no. 1, pp. 221–231, 2013.

[253] C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, and L. J. Guibas, “Volumetric and
multi-view cnns for object classification on 3d data,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 5648–5656.

[254] L. Bottou and Y. LeCun, “Large scale online learning,” Advances in neural informa-
tion processing systems, vol. 16, pp. 217–224, 2004.

[255] B. Guedj, “A primer on pac-bayesian learning,” arXiv preprint arXiv:1901.05353,
2019.

173

https://openreview.net/forum?id=L7Irrt5sMQa
https://openreview.net/forum?id=L7Irrt5sMQa
https://doi.org/10.24963/ijcai.2020/294
https://doi.org/10.24963/ijcai.2020/294
https://doi.org/10.24963/ijcai.2020/294
https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://arxiv.org/abs/1904.09223
http://arxiv.org/abs/1904.09223
http://arxiv.org/abs/1904.09223

[256] G. K. Dziugaite and D. M. Roy, “Computing nonvacuous generalization bounds for
deep (stochastic) neural networks with many more parameters than training data,”
arXiv preprint arXiv:1703.11008, 2017.

[257] D. Masters and C. Luschi, Revisiting small batch training for deep neural networks,
2018. arXiv: 1804.07612 [cs.LG] .

[258] G. Grimmett and D. Stirzaker, Probability and random processes. Oxford university
press, 2001.

[259] D. B. West et al., Introduction to graph theory. Prentice hall Upper Saddle River, NJ,
1996, vol. 2.

[260] C. H. Teixeira, L. Cotta, B. Ribeiro, and W. Meira Jr, “Graph pattern mining and
learning through user-defined relations (extended version),” arXiv preprint arXiv:1809.05241,
2018.

[261] C. H. Teixeira, M. Kakodkar, V. Dias, W. Meira Jr, and B. Ribeiro, “Sequential
stratified regeneration: Mcmc for large state spaces with an application to subgraph
counting estimation,” arXiv preprint arXiv:2012.03879, 2020.

[262] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algorithms.
MIT press, 2009.

[263] B. De Finetti, “La prévision: Ses lois logiques, ses sources subjectives,” in Annales de
l’institut Henri Poincaré, [Translated into Enlish: H. E. Kyburg and H.E. Smokler,
eds. Studies in Subjective Probability. Krieger 53-118, 1980], vol. 7, 1937, pp. 1–68.

[264] P. Diaconis, “Finite forms of de finetti’s theorem on exchangeability,” Synthese,
vol. 36, no. 2, pp. 271–281, 1977.

[265] P. Orbanz and D. M. Roy, “Bayesian models of graphs, arrays and other exchangeable
random structures,” IEEE transactions on pattern analysis and machine intelligence,
vol. 37, no. 2, pp. 437–461, 2015.

[266] P. Diaconis and D. Freedman, “De finetti’s generalizations of exchangeability,” Studies
in inductive logic and probability, vol. 2, pp. 233–249, 1980.

[267] M. L. Easton, “Chapter 8: Finite de finetti style theorems,” in Group invariance in
applications in statistics, ser. Regional Conference Series in Probability and Statistics.
Haywood CA and Alexandria VA: Institute of Mathematical Statistics and American
Statistical Association, 1989, vol. Volume 1, pp. 108–120. [Online]. Available: https:
//projecteuclid.org/euclid.cbms/1462061038 .

174

https://arxiv.org/abs/1804.07612
https://projecteuclid.org/euclid.cbms/1462061038
https://projecteuclid.org/euclid.cbms/1462061038

[268] B.-N. Vo, N. Dam, D. Phung, Q. N. Tran, and B.-T. Vo, “Model-based learning for
point pattern data,” Pattern Recognition, vol. 84, pp. 136–151, 2018.

[269] D. J. Aldous, “Representations for partially exchangeable arrays of random variables,”
Journal of Multivariate Analysis, vol. 11, no. 4, pp. 581–598, 1981.

[270] D. N. Hoover, “Relations on probability spaces and arrays of random variables.,”
Institute of Advanced Study, Princeton”, Tech. Rep., 1979.

[271] J. Moller and R. P. Waagepetersen, Statistical inference and simulation for spatial
point processes. Chapman and Hall/CRC, 2003.

[272] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “An improved algorithm for
matching large graphs,” in 3rd IAPR-TC15 workshop on graph-based representations
in pattern recognition, 2001, pp. 149–159.

[273] O. Shchur, M. Mumme, A. Bojchevski, and S. Günnemann, “Pitfalls of graph neural
network evaluation,” arXiv preprint arXiv:1811.05868, 2018.

[274] B. Ramsundar, P. Eastman, K. Leswing, P. Walters, and V. Pande, Deep Learning for
the Life Sciences. O’Reilly Media, 2019, https://www.amazon.com/Deep-Learning-
Life-Sciences-Microscopy/dp/1492039837 .

[275] S. G. Rohrer and K. Baumann, “Maximum unbiased validation (muv) data sets for
virtual screening based on pubchem bioactivity data,” Journal of chemical informa-
tion and modeling, vol. 49, no. 2, pp. 169–184, 2009.

[276] A. Mayr, G. Klambauer, T. Unterthiner, and S. Hochreiter, “Deeptox: Toxicity pre-
diction using deep learning,” Frontiers in Environmental Science, vol. 3, p. 80, 2016.

[277] R. Huang, M. Xia, D.-T. Nguyen, T. Zhao, S. Sakamuru, J. Zhao, S. A. Shahane, A.
Rossoshek, and A. Simeonov, “Tox21challenge to build predictive models of nuclear
receptor and stress response pathways as mediated by exposure to environmental
chemicals and drugs,” Frontiers in Environmental Science, vol. 3, p. 85, 2016.

[278] R. Panico, W. Powell, and J.-C. Richer, A guide to IUPAC Nomenclature of Organic
Compounds. Blackwell Scientific Publications, Oxford, 1993, vol. 2, Recommendation
7.1.2.

[279] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad, “Collective
classification in network data,” AI magazine, vol. 29, no. 3, p. 93, 2008.

[280] A. Chatr-Aryamontri, B.-J. Breitkreutz, R. Oughtred, L. Boucher, S. Heinicke, D.
Chen, C. Stark, A. Breitkreutz, N. Kolas, L. O’Donnell, et al., “The biogrid interaction
database: 2015 update,” Nucleic acids research, vol. 43, no. D1, pp. D470–D478, 2015.

175

https://www.amazon.com/Deep-Learning-Life-Sciences-Microscopy/dp/1492039837
https://www.amazon.com/Deep-Learning-Life-Sciences-Microscopy/dp/1492039837

[281] A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A. Gillette,
A. Paulovich, S. L. Pomeroy, T. R. Golub, E. S. Lander, et al., “Gene set enrichment
analysis: A knowledge-based approach for interpreting genome-wide expression pro-
files,” Proceedings of the National Academy of Sciences, vol. 102, no. 43, pp. 15 545–
15 550, 2005.

[282] R. Oughtred, J. Rust, C. Chang, B.-J. Breitkreutz, C. Stark, A. Willems, L. Boucher,
G. Leung, N. Kolas, F. Zhang, et al., “The biogrid database: A comprehensive biomed-
ical resource of curated protein, genetic, and chemical interactions,” Protein Science,
vol. 30, no. 1, pp. 187–200, 2021.

[283] A. Rajaraman and J. D. Ullman, Mining of massive datasets. Cambridge University
Press, 2011.

[284] R. Liao, Y. Li, Y. Song, S. Wang, W. Hamilton, D. K. Duvenaud, R. Urtasun, and
R. Zemel, “Efficient graph generation with graph recurrent attention networks,” in
Advances in Neural Information Processing Systems, H. Wallach, H. Larochelle, A.
Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, Eds., vol. 32, Curran Associates,
Inc., 2019. [Online]. Available: https://proceedings.neurips.cc/paper/2019/
file/d0921d442ee91b896ad95059d13df618-Paper.pdf .

[285] E. Pnevmatikakis, Invariant and equivariant neural networks, https : / / indico .
flatironinstitute.org/event/52/attachments/81/122/main.pdf , 2019.

[286] T. Zhang, M. Chen, and A. A. Bui, “Diagnostic prediction with sequence-of-sets
representation learning for clinical events,” in International Conference on Artificial
Intelligence in Medicine, Springer, 2020, pp. 348–358.

[287] Y. Li, G. Hu, Y. Wang, T. Hospedales, N. M. Robertson, and Y. Yang, “Differen-
tiable automatic data augmentation,” in European Conference on Computer Vision,
Springer, 2020, pp. 580–595.

[288] T. Cohen and M. Welling, “Steerable cnns,” in International Conference on Learning
Representations, 2017.

[289] G. Caldarelli, A. Capocci, P. De Los Rios, and M. A. Munoz, “Scale-free networks
from varying vertex intrinsic fitness,” Physical review letters, vol. 89, no. 25, p. 258 702,
2002.

[290] O. Sporns, Networks of the Brain. MIT press, 2010.

[291] B. Bevilacqua, Y. Zhou, and B. Ribeiro, Size-invariant graph representations for graph
classification extrapolations, 2021. arXiv: 2103.05045 [cs.LG] .

176

https://proceedings.neurips.cc/paper/2019/file/d0921d442ee91b896ad95059d13df618-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/d0921d442ee91b896ad95059d13df618-Paper.pdf
https://indico.flatironinstitute.org/event/52/attachments/81/122/main.pdf
https://indico.flatironinstitute.org/event/52/attachments/81/122/main.pdf
https://arxiv.org/abs/2103.05045

[292] C. Pabbaraju and P. Jain, Learning functions over sets via permutation adversarial
networks, 2020. arXiv: 1907.05638 [cs.LG] .

[293] F. Yang, Z. Wang, and C. Heinze-Deml, “Invariance-inducing regularization using
worst-case transformations suffices to boost accuracy and spatial robustness,” in
Advances in Neural Information Processing Systems, H. Wallach, H. Larochelle, A.
Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, Eds., vol. 32, Curran Asso-
ciates, Inc., 2019. [Online]. Available: https://proceedings.neurips.cc/paper/
2019/file/1d01bd2e16f57892f0954902899f0692-Paper.pdf .

[294] E. W. Weisstein, Doubly stochastic matrix. From MathWorld—A Wolfram Web Re-
source. [Online]. Available: https://mathworld.wolfram.com/DoublyStochasticMatrix.
html .

[295] C. H. Lim and S. Wright, “Beyond the birkhoff polytope: Convex relaxations for
vector permutation problems,” in Advances in neural information processing systems,
2014, pp. 2168–2176.

[296] R. E. Burkard, “Quadratic assignment problems,” Handbook of combinatorial opti-
mization, pp. 2741–2814, 2013.

[297] J. T. Vogelstein, J. M. Conroy, V. Lyzinski, L. J. Podrazik, S. G. Kratzer, E. T. Harley,
D. E. Fishkind, R. J. Vogelstein, and C. E. Priebe, “Fast approximate quadratic
programming for graph matching,” PLOS one, vol. 10, no. 4, e0121002, 2015.

[298] T. Birdal and U. Simsekli, “Probabilistic permutation synchronization using the rie-
mannian structure of the birkhoff polytope,” in Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 2019, pp. 11 105–11 116.

[299] G. Birkhoff, “Tres observaciones sobre el algebra lineal,” Univ. Nac. Tucuman, Ser.
A, vol. 5, pp. 147–154, 1946.

[300] A. Postnikov, “Permutohedra, associahedra, and beyond,” International Mathematics
Research Notices, vol. 2009, no. 6, pp. 1026–1106, 2009.

[301] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmai-
son, L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” 2017.

[302] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin, “Convolutional
sequence to sequence learning,” in International Conference on Machine Learning,
PMLR, 2017, pp. 1243–1252.

[303] R. Sinkhorn and P. Knopp, “Concerning nonnegative matrices and doubly stochastic
matrices,” Pacific Journal of Mathematics, vol. 21, no. 2, pp. 343–348, 1967.

177

https://arxiv.org/abs/1907.05638
https://proceedings.neurips.cc/paper/2019/file/1d01bd2e16f57892f0954902899f0692-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/1d01bd2e16f57892f0954902899f0692-Paper.pdf
https://mathworld.wolfram.com/DoublyStochasticMatrix.html
https://mathworld.wolfram.com/DoublyStochasticMatrix.html

[304] B. Speelpenning, “Compiling fast partial derivatives of functions given by algorithms,”
Illinois Univ., Urbana (USA). Dept. of Computer Science, Tech. Rep., 1980.

[305] J. Townsend. (2017). A new trick for calculating jacobian vector products, [Online].
Available: https://j-towns.github.io/2017/06/12/A-new-trick.html (visited
on 03/15/2021).

[306] J. E. Atkins, E. G. Boman, and B. Hendrickson, “A spectral algorithm for seriation
and the consecutive ones problem,” SIAM Journal on Computing, vol. 28, no. 1,
pp. 297–310, 1998.

[307] Y. Aflalo, A. Bronstein, and R. Kimmel, “On convex relaxation of graph isomor-
phism,” Proceedings of the National Academy of Sciences, vol. 112, no. 10, pp. 2942–
2947, 2015.

[308] F. Fogel, R. Jenatton, F. Bach, and A. d’Aspremont, “Convex relaxations for per-
mutation problems,” in Advances in Neural Information Processing Systems, 2013,
pp. 1016–1024.

[309] J. Stewart, D. K. Clegg, and S. Watson, Calculus: early transcendentals. Cengage
Learning, 2020.

[310] X. Li, D. Sun, and K.-C. Toh, “On the efficient computation of a generalized jacobian
of the projector over the birkhoff polytope,” Mathematical Programming, vol. 179,
no. 1-2, pp. 419–446, 2020.

[311] B. Jiang, Y.-F. Liu, and Z. Wen, “L p-norm regularization algorithms for optimization
over permutation matrices,” SIAM Journal on Optimization, vol. 26, no. 4, pp. 2284–
2313, 2016.

[312] F. Wang, P. Li, and A. C. Konig, “Learning a bi-stochastic data similarity matrix,”
in 2010 IEEE International Conference on Data Mining, IEEE, 2010, pp. 551–560.

[313] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout:
A simple way to prevent neural networks from overfitting,” The journal of machine
learning research, vol. 15, no. 1, pp. 1929–1958, 2014.

[314] G. M. (https://tex.stackexchange.com/users/3954/gonzalo-medina), Bipartite graphs,
TeX Stack Exchange, https://tex.stackexchange.com/questions/15088/bipartite-graphs
(accessed March 5, 2021).

[315] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning
and stochastic optimization,” Journal of Machine Learning Research, vol. 12, no. Jul,
pp. 2121–2159, 2011.

178

https://j-towns.github.io/2017/06/12/A-new-trick.html

A. APPENDIX

In the appendix, we provide additional details.

A.1 Technical Details and Examples

This section provides additional examples and definitions.

A.1.1 Permutation Matrices

An example showing that multiplication by a permutation matrix applies the action of

the symmetric group (i.e., a permutation). Put

P =

0 0 1

1 0 0

0 1 0

 ,X =

x11 x12

x21 x22

x31 x32

as examples of a permutation matrix and a matrix. Then left-multiplication yields

PX =

x31 x32

x11 x12

x21 x22

 .

A.1.2 Vec Operation

Vectorizing a sequence or graph is useful in our theory, and may also be used in practice

to render these inputs suitable for input to an MLP model (with padding). There is already a

precise mathematical definition of the vec operation on matrices, but it should be generalized

and modified to our encoding of graphs.

Graphs

For simplicity, assume graphs are a fixed size n. It is easy to extend this operation to

variable-size graphs. Let G = (A,F) be a graph where A is n × n × de and F is n × dv.

179

The function vec : Rn×n×de × Rn×dv → Rn3dvde converts a graph to a vector by generalizing

the traditional vec operation. One exception is that vec is often defined by running down

the rows first then the columns. Instead, we run down the latter dimensions first so that

features for a given vertex are contiguous. For example, consider a graph with three vertices,

one edge attribute at each edge, and two vertex attributes at each vertex. The connectivity

structure and edge attributes are represented by the 3× 3× 2 adjacency tensor A,
A(1,1,2) A(1,2,2) A(1,3,2)

A(2,1,2) A(2,2,2) A(2,3,2)

A(3,1,2) A(3,2,2) A(3,3,2)A(1,1,1) A(1,2,1) A(1,3,1)

A(2,1,1) A(2,2,1) A(2,3,1)

A(3,1,1) A(3,2,1) A(3,3,1)

A =

and vertex attributes are represented in a matrix

F =
(
F1,1 F1,2
F2,1 F2,2
F3,1 F3,2

)
.

A simple vec operation is shown below. The modeler is free to make modifications such as

applying an MLP to the vertex attributes before concatenating with the edge attributes.

Representing G by A and F ,

vec(G) =
(
A(1,1,1), A(1,1,2), A(1,2,1), A(1,2,2), A(1,3,1), A(1,3,2),F1,1,F1,2, A(2,1,1), A(2,1,2),

A(2,2,1), A(2,2,2), A(2,3,1), A(2,3,2),F2,1,F2,2, A(3,1,1), A(3,1,2), A(3,2,1), A(3,2,2),

A(3,3,1), A(3,3,2),F3,1,F3,2
)
.

Starting with the first vertex, each edge attribute (including the edge indicator) is listed,

then the vertex attributes are added before doing the same with subsequent vertices. The

vectorization method for k-ary type models is similar, except that we apply vec on induced

subgraphs of size k.

180

V1

V2

Figure A.1. Bipartite Graph. Such graphs represent two distinct groups of
entities. Figure adapted from [314].

Sequences

We represent sequences as a matrix S ∈ Rn×ds ,

S =

S11 · · · S1n
...

Sn1 · · · Snn

 .

Consistent with our definition of vec for graphs, we traverse the row dimension first. This

makes vector elements contiguous in the vectorized output. That is,

vec(S) = (S11, S12, . . . , S1n, S21, S22, . . . S2n, . . . Sn1, Sn2, . . . Snn)T.

A.1.3 Bipartite Graphs

An example of a bipartite graph is shown in Figure A.1 .

A.1.4 Additional Details for Backpropagation through the Jacobian

Implementing the Jacobian-vector product in a way that admits backpropropagation can

be done in a few lines of Python code, using PyTorch, but there are several nuances that

181

are lost in generic pseudocode. For instance, due to broadcasting and other details, we do

not actually need to transpose the tensors. Accordingly, the Python code we use is shown

in Algorithm 4 .

Algorithm 4 PyTorch Code for Jacobian-vector Product

1 def get_jvp (y, x, vec):
2 """
3 Construct a differentiable Jacobian - vector product for a function
4 Trick from: https ://j-towns. github .io /2017/06/12/A-new -trick.html
5

6 :param y: output of f
7 :param x: input of f
8 :param vec: vector in the Jacobian - vector product
9 """

10 # Arbitrary auxillary variable
11 u = torch. zeros_like (y, requires_grad =True)
12 # vector - jacobian product : model Jacobian times auxillary variable
13 # (create_graph =True so we can backprop through this operation)
14 ujp = torch. autograd .grad(y, x, grad_outputs =u, create_graph =True)[0]
15 # Second backprop gives jacobian - vector product
16 jvp = torch. autograd .grad(ujp , u,
17 grad_outputs =vec ,
18 create_graph =True)[0]
19 return jvp

A.2 MPGNN for Molecular GNN

We make use of the Message Passing Graph Neural Network proposed in [40]. This

algorithm exploits special properties of molecules. Duvenaud, Maclaurin, Iparraguirre, et al.

[40] refer to the procedure as finding a learnable fingerprint of a molecule, which would be

called a learned representation in the machine learning community. The details are provided

in Algorithm 5 .

A.3 More Experimental Setup

Code from our publications are on GitHub. For [54], https://github.com/PurdueMINDS/

JanossyPooling , and for [74], https://github.com/PurdueMINDS/RelationalPooling .

182

https://github.com/PurdueMINDS/JanossyPooling
https://github.com/PurdueMINDS/JanossyPooling
https://github.com/PurdueMINDS/RelationalPooling

Algorithm 5 Duvenaud et al. MPGNN for Molecules
1: Input: Graph G = (A,F), Number of Layers, L, dimension of latent dh
2: Randomly initialized learnable parameters:
3: Θ(1)

1 , . . . ,Θ(1)
5 , . . . ,Θ(L)

5 , degree-specific aggregation parameters,
4: Ξ(1), . . . ,Ξ(L), aggregation parameters,
5: Λ(1), . . . ,Λ(L), layer-specific readout function parameters,
6: γ(1), . . . ,γ(L), bias (intercept/translation) for aggregation,
7: β(1), . . . , β(L), bias (intercept/translation) for readout.
8:
9: Let N be the number of vertices

10: H(0) ← F . Write the vertex features as H(0)

11: for l← 1, . . . , L do . Message passing loop
12: for v ← 1, . . . , N do . Loop over vertices (for loop for clarity)
13: z ← ∑

u∈N (v)H
(l−1)
u,: on Av,u,: . Sum neighboring features

14: d← |N (v)| . The degree of v
15: H(t)

v,: ← ψ
(
H(l−1)

v,: Ξ(l) + zΘ(l)
d + γ(l)

)
. Learnable aggregation

16: end for
17: end for
18: for l← 0, . . . , L do . Readout for each layer
19: Initialize matrix R with N rows
20: for v ← 1, . . . , N do
21: Rv,: ← softmax

(
H(t)

v,: Λ(t) + β(l)
)

. Updates not in message passing
22: end for
23: f (l) ← colSums(R) . Molecular ‘fingerprint’ at layer
24: end for
25: f ← colSums(R) . Learned ‘fingerprint’ of entire molecule.
Algorithm proposed by Duvenaud, Maclaurin, Iparraguirre, et al. [40] to learn a molecular
“fingerprint” with MPGNNs. In the relevant chemical applications, the degree of a vertex
is in {1, 2, 3, 4, 5}, hence the use of 5 Θ matrices at each layer. All vectors shown are row
vectors here. Clearly, this exposition favors clarity rather than efficiency.

183

We presented the experiments by topic of inquiry (expressiveness, impact of k, and so

on). Thus, the same dataset appeared in different sections. Here, since our models are tuned

based on the dataset, we group model details by dataset.

A.3.1 Integer Sequences

Most of our implementation and hyperparameter choices are based on [26] as DeepSets

is an important baseline. Full-sequence Janossy pooling uses a GRU as f
⇀ with 80 hidden

units, chosen to be consistent with [26]. The MLPs related to f
⇀ have 30 neurons whereas

the MLPs in r have 100 neurons. The readout r is either a learnable affine function or an

MLP with one hidden layer, with 100 units. All activations are tanh.

For all models, we map the sequence elements to higher-dimensional space with a non-

learnable dictionary encoding. For k-ary models with k ∈ {2, 3}, the output of this function

is b100/kc to keep the total number of parameters consistent. We concatenate then pass the

output into an MLP.

We optimize with Adam [91] with a tuned learning rate, searching over {0.01, 0.001, 0.0001, 0.00001}.

We train for 1,000 epochs when the readout is affine and 2000 epochs otherwise. Training

was performed on GeForce GTX 1080 Ti GPUs.

A.3.2 CSL Graphs

Our GIN architecture uses eight layers of recursion, where every MLP(l) has 32 neurons

in the hidden layers. Each layer outputs a vector h(l)
v osf dimension 16 for each vertex v. The

graph embedding is mapped to the output through a final affine layer. We use the variant of

GIN with additional scalar parameters ϑ(l). For RPGNN, we add one-hot IDs to the vertices.

The results we show were stable across a wide set of architectures, as GIN is theoretically

unable to distinguish the CSL graphs. We train RPGNN with π-SGD. For inference, we

average the score over 20 random permutations. We trained for 800 epochs using Adam [91]

and a learning rate of 0.01. We performed 5-fold cross validation with classes balanced in

all folds.

184

A.3.3 Molecules

Here we provide additional details on the molecular experiments.

MPGNN and RPGNN For the models based on Duvenaud et al., we extend the

architecture provided from DeepChem and the MoleculeNet project [41], [274]. Following

them, the learning rate was set to 0.003, we trained with mini-batches of size 96, and used

the Adagrad optimizer [315]. Models were trained for 100 epochs. Training was performed

on 48 CPUs using the inherent multithreading of DeepChem.

The loss function in DeepChem is weighted since MUV and Tox21 are multi-task prob-

lems. Misclassification is weighted differently depending on the target. The overall perfor-

mance metric is the mean of the AUC across all tasks. One difference is that the DeepChem

recommends either metrics PRC-AUC or ROC-AUC and splits “random” or “scaffold” de-

pending on the dataset under consideration. Since ROC-AUC and random splits were the

most commonly used among the three datasets we chose, we decided – before training any

models – to use random splits and ROC-AUC for every dataset for simplicity. We also

note that the authors of MoleculeNet report ROC-AUC scores on all three datasets. Re-

garding the sizes of the train/validation/test splits, we used the default values provided by

DeepChem.

CNN and RNN. We explore k = 20 -ary RP with f
⇀ as a CNN, learned with π-

SGD. At each forward step, we run a DFS from a different randomly-selected vertex to

obtain a 20 × 20 × 14 subtensor of A there are 14 edge features, which we feed through

two iterations of convolution, ReLU, and max pool to obtain a representation hA of A.

The corresponding vertex attributes are fed through an MLP and concatenated with hA to

obtain a representation hG of the graph which in turn is fed through an MLP to obtain the

predicted class. Zero padding was used to account for the variable-size molecules. Twenty

initial vertices for the DFS (i.e., random permutations) were sampled at inference time.

We also consider RP with an RNN as f
⇀ learned with π-SGD, starting with a DFS to

yield a |G| × |G| × 14 subtensor. For f
⇀, we treat the edge features of a given vertex as a

sequence: for vertex v, we apply an LSTM to the sequence (Av,1,:,Av,2,:, . . . ,Av,|G|,:) and

extract the long-term state. We also take the vertex attributes and pass them through an

185

Table A.1. Vertex Classification Results. Performance (Micro-F1 score)
using Janossy pooling with k-ary dependencies and π-SGD training in a graph
neural network – GraphSAGE – with 20 permutations sampled at test time.
k1 and k2 are the number of neighbors sampled at aggregations one and two,
respectively. Standard deviations over 30 runs for Cora/Pubmed and 4 runs
for PPI (a much larger graph) are shown in parentheses.

f
⇀ method k1 k2 Cora Pubmed PPI
LSTM π-SGD 3 3 0.860 (.009) 0.889 (0.01) 0.538 (.005)
LSTM π-SGD 5 5 – – 0.579 (.015)
LSTM π-SGD 10 25 – – 0.650 (.013)
LSTM π-SGD 25 10 – – 0.689 (.062)
LSTM π-SGD 25 25 – – 0.702 (.044)
LSTM π-SGD |G| |G| – – 0.757 (.040)
Identity exact 1 1 0.860 (.008) 0.881 (.011) 0.767 (.013)
(mean-pool)

MLP. The long term state and output of the MLP are concatenated, ultimately forming a

representation for every vertex (and its neighborhood) which we view as a second sequence.

We apply a second LSTM and again extract the long term state, which can be denoted

hG, the embedding of the graph. Last, hG is forwarded through an MLP yielding a class

prediction. Twenty starting vertices (i.e., permutations) were sampled at inference time.

Variability was quantified with 5 random train/val/test splits for both neural network based

models. To model the RNN, we use an LSTM with 100 neurons.

We used the Adam optimizer [91], training all models with mini-batches of size 96 and

50 epochs, again following DeepChem. We performed a hyperparameter line search over the

learning rate in {0.003, 0.001, 0.01, 0.03, 0.1, 0.3}.

A.3.4 Vertex Classification

Table A.1 shows the vertex classification results. All models perform similarly on Cora

and Pubmed, likely due to the ease of the task.

Our implementation follows the PyTorch code associated with [45], available at https:

//github.com/williamleif/graphsage-simple/ . That repo did not include an LSTM

aggregator, so we implemented our own following the TensorFlow implementation of Graph-

186

https://github.com/williamleif/graphsage-simple/
https://github.com/williamleif/graphsage-simple/

SAGE, and describe it here. At the beginning of every forward pass, each vertex v is associ-

ated with a vertex attribute. For every vertex in a batch, we sample k1 neighbors uniformly

at random and then pass through an LSTM. From the LSTM, we take the hidden state

associated with the last element in the input sequence. This hidden state is passed through

an affine layer to yield a vector of dimension dh/2, where dh is the user-specified latent

representation dimension. The vertex’s own attribute is also fed forward through an affine

layer with dh/2 output neurons. At this point, for each vertex, we have two representation

vectors of size dh/2 representing the vertex v and its neighbor multiset, which we concatenate

to form an representation of size dh. This describes one layer, and it is repeated a second

time with a distinct set of learnable weights for the affine and LSTM layers, sampling k2

vertices from each neighborhood and using the representation of the first layer as features.

After each message passing step, we may optionally apply a ReLU activation and/or em-

bedding normalization, and we follow the decisions shown in the GraphSAGE code. After

both layers, we apply a final affine layer to obtain the score, followed by a softmax (Cora,

Pubmed) or sigmoid (PPI). The loss function is cross-entropy for Cora and Pubmed, and

binary cross-entropy for PPI.

The number of trainable parameters in each model is independent of k1 and k2 by the

design of LSTMs (the same is true for the mean-pooling aggregator). The only variation in

the number of weights is in the dimensions of the input and output features, which differ by

dataset.

Optimization is performed with the Adam optimizer. The training routine for the smaller

graphs (Cora, Pubmed) is not guaranteed to see the entire training data, in contrast with

the scheme applied to the larger PPI graph (following the author’s code). For Cora and

Pubmed, we form 100 minibatches by randomly sampling subsets of 256 vertices from the

training dataset (with replacement). With PPI, we perform 10 full epochs: at each epoch,

the training data is shuffled, partitioned into minibatches of size 512, and we pass over each.

In either case, the weights are updated after computing the gradient of the loss on each

minibatch.

The hyperparameters were set by following[45]; no hyperparameter optimization was

performed. For every dataset, the embedding dimension was set to 256 at both message-

187

passing layers. For Pubmed and PPI, the learning rate is set at 0.01 while for Cora it is set

at 0.005. Finally, evaluation is with F1 score per [45].

At test time, we load the weights obtained from training, perform 20 forward passes,

and average the predicted probabilities (i.e., softmax output). We choose the class that

maximizes the averaged probabilities.

A.3.5 BReg in PS and PI Tasks

We used the SetTransformer [60] implementation from the authors, available at https://

github.com/juho-lee/set_transformer . Our max regression task was inspired by theirs,

and we use the model that they used for max regression. This is a so-called “small” Set-

Transformer. Our “Transformer” model has a trainable positional encoding matrix ξ. We

initialized it to have the same mean and standard deviation as the FairSEQ implementation

of the models in [302] https://github.com/pytorch/fairseq .

There is a difference in our training. The authors sample new data at every batch. We

followed a more traditional setup. However, to guarantee that the training data was rich

enough, we made sure there were about 32,000 training samples in every training fold.

We evaluated hyperparameters with 3-fold cross validation. We swept over learning rates

in {0.0001, 0.001, 0.01}, and compare full-batch to mini-batch size of 128. Ultimately, we

found that full-batch training was most effective for the baselines. The optimal learning rate

was 0.0001 for max prediction and 0.001 for “first large”. We trained models with at least

10,000 epochs and did not stop training until validation-set performance stopped decreasing

for 300 consecutive epochs. The regularized models typically require more epochs in order

to converge, so we set the minimum epochs to 20,000 epochs. Please note that all models

were trained to convergence, so the comparison is still fair. For regularization, we tuned

ε ∈ {0.01, 0.1}.

A.4 Proofs

Here we give more proof details.

188

https://github.com/juho-lee/set_transformer
https://github.com/juho-lee/set_transformer
https://github.com/pytorch/fairseq

A.4.1 Doubly-Stochastic Matrices

For any n ∈ Z≥2, let D := Dcenter (ε, n) = (1 − c(ε, n))I + c(ε, n) 1
n
11T and I := In.

Then,

‖D − I‖2 = ‖(1− c(ε, n))I + c(ε, n) 1
n

11T − I‖2

= ‖ − c(ε, n)I + c(ε, n) 1
n

11T)‖2

=
(
c(ε, n)

)2(
n(n− 1

n
)2 − n(n− 1) 1

n2

)
=
(
c(ε, n)

)2(
n− 1

)

Next, using the fact that c(ε, n) = ε√
n−1 , this becomes (ε√

n−1)2(n−1) = ε2. Hence, ‖D−I‖ =

ε.

189

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS
	NOMENCLATURE
	ABSTRACT
	INTRODUCTION
	BACKGROUND: INVARIANCES IN NEURAL NETWORKS
	Artificial Neural Networks in Modeling Graphs and Sets
	Neural Networks and Optimization
	Other Neural Networks

	Benefits and Limitations of Various Neural Network Approaches
	Automating Feature Engineering: an Asset for Modeling Graph and Set Data
	Universal Approximation: A Beneficial Property but no Panacea

	Invariances and Equivariances in Neural Networks
	Motivating Invariances with Convolutional Neural Networks
	Formalizing Invariance and Equivariance with Group Theory
	Enforcing Invariances to Improve Performance
	Weight Sharing and Convolutions
	Special Invariant Layers
	Variations on Training Strategies
	Strengths and Weaknesses

	Inductive Biases and Extrapolation

	GRAPHS AND SETS
	Permutation Invariance in Graphs and Sets
	Motivation and Basic Definitions
	Definitions for and Nuances of Graphs
	Definitions for and Nuances of Sets
	Summary Without Group-Theoretic Terms

	Existing Work
	Methods Applicable to Both Graphs and Sets
	Ordering the Graph or Set
	Weight Sharing and Beyond

	Existing Graph-Focused Approaches
	Message Passing Graph Neural Networks
	Other Noteworthy Graph-Focused Literature

	Existing Set-Focused Literature
	Pooling in Latent Space
	Higher-Order Methods
	Other Noteworthy Set-Focused Methods

	JANOSSY POOLING FOR INVARIANT MODELS
	Janossy Pooling
	Expressive Power and Choices for 2.5muf-11mu1.6ex⇀
	RPGNN 2.5muf-11mu1.6ex⇀
	Padded MLPs
	RNNs and CNNs

	Approximations
	Tractability with π-SGD
	Tractability with k-ary Dependencies
	Combining k-ary and π-SGD
	Canonical and Poly-canonical Orderings
	Synthesis of Approximation Schemes

	Probabilistic Motivations
	Review of Infinite and Finite Exchangeability
	Exchangeability and Neural Networks

	Extensions
	Equivariance
	Separate Janossy Pooling

	Experiments
	Datasets
	Integer Arithmetic Datasets
	Circulant Skip Link Graphs
	Molecules
	Vertex Classification Datasets: PPI and Citation

	Modeling Higher-Order Relationships
	Expressiveness of MPGNNs and RPGNNs
	Impact of k and Number of Sampled Permutations: GraphSAGE
	Exploring Different 2.5muf-11mu1.6ex⇀ Architectures and Canonical Orderings
	π-SGD Training Learns an Approximately Invariant Model

	Impact in the Literature

	REGULARIZING TOWARDS INVARIANCE
	Motivating BReg
	Appropriateness of Invariance
	π-SGD Variance
	Additional Related Work

	Birkhoff Regularization Penalty
	TangentProp Perspective and Mathematical Tools for BReg
	General BReg
	Space of Tangent Vector
	Measuring Variation in the Latent or Prediction
	Finite Differences

	Choice of Doubly-Stochastic Matrices
	Prespecified
	Sampling Doubly-Stochastic Matrices

	Backprop through the Jacobian

	Training with BReg
	Optimization Perspective and Connections to Other Work
	Linear Model Example: Not a Shrinkage Penalty
	Connections to Existing Methods
	Projections and BReg

	Experiments
	BReg Training in Permutation-Sensitive and Permutation-Invariant Tasks
	Permutation-Invariant Task: Predict the Maximum
	Permutation-Sensitive Task: ``First Large''
	Summary

	Variance Reduction and Latent Regularization
	Adding Random Noise to Latent Quantities
	Variance Reduction

	SUMMARY AND DIRECTIONS FOR FUTURE WORK
	REFERENCES
	APPENDIX
	Technical Details and Examples
	Permutation Matrices
	Vec Operation
	Graphs
	Sequences

	Bipartite Graphs
	Additional Details for Backpropagation through the Jacobian

	MPGNN for Molecular GNN
	More Experimental Setup
	Integer Sequences
	CSL Graphs
	Molecules
	Vertex Classification
	BReg in PS and PI Tasks

	Proofs
	Doubly-Stochastic Matrices

