
CYBER-PHYSICAL ANALYSIS AND HARDENING OF
ROBOTIC AERIAL VEHICLE CONTROLLERS

by

Taegyu Kim

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

School of Electrical and Computer Engineering

West Lafayette, Indiana

May 2021



THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Dongyan Xu, Chair

Department of Computer Science

Dr. Dave (Jing) Tian

Department of Computer Science

Dr. Xiaojun Lin

Department of Electrical and Computer Engineering

Dr. Xiangyu Zhang

Department of Computer Science

Dr. Vijay Raghunathan

Department of Electrical and Computer Engineering

Approved by:

Dr. Dimitrios Peroulis

2



To my parents and my sister

3



ACKNOWLEDGMENTS

First of all, I would like to thank my advisor, Professor Dongyan Xu. His guidance played

a significant role in establishing me as a researcher. When I was a first-year Ph.D. student

who does not much knowledge of security research, he believed that I would grow as a mature

researcher. Hence, he has taught how to initiate research ideas based on small observations

from day-to-day discussions, how to lead a novel project, and how to deliver research ideas to

readers and audiences. As a result of his sincere advice and guidance, I successfully published

meaningful papers which are recognized by top-tier security researchers.

I would also like to express my great thanks to Professor Dave (Jing) Tian. Professor

Tian has broadened my view on systems and presentation with his experience and insights as

my co-advisor. Furthermore, he provided his brilliant insights and feedback on my research

ideas and thoroughly edited my manuscripts with late-night teamwork. Finally, I learned

how to make my research ideas more persuasive from day-to-day discussions. Thanks to his

advice, I could learn how to research system security projects.

I have been fortunate to work with many excellent senior researchers during my Ph.D.

study. To solidify this work, I have gotten a lot of help from Rohit Bhatia, Antonio Bianchi,

Berkay Celik, Xinyan Deng, Sriharsha Etigowni, Fan Fei, James Goppert, Chung Hwan

Kim, Kyungtae Kim, Yonghwi Kwon, Vireshwar Kumar, Byoungyoung Lee, Yuhong Nan,

Junghwan Rhee, Brendan Saltaformaggio, Zhan Tu, and Xiangyu Zhang. They shared

their research experience and insights. Also, they helped me do experiments and edit my

manuscripts to strengthen my work. Thank you very much for spending time and working

with me.

I have worked with many colleagues and junior researchers during my Ph.D. study. I

have gotten a lot of help from Abdulellah Alsaheel, Aolin Ding, Yuseok Jeon, Arslan Khan,

Hyungsub Kim, Hui Peng, and Gregory Walkup. Thanks to spending time with them, I

could enjoy my Ph.D. study. Furthermore, I fortunately worked with Jizhou Chen, Sungwoo

Kim, William Wang, and Gisu Yeo. Thanks to them, I could get help for my research

projects. Because I could enjoy mentoring them, I was sure that I want to join the academic

4



institute. I will miss the time with everyone for research, and I hope they will enjoy their

future Ph.D. study.

Many people helped me on my journey to completing this work. My parents, Byungok

Kim and Myungsuk Yoon, have supported me with their hearts without any doubt of com-

pleting my Ph.D. study. Thanks to their unconditional support, I successfully completed my

Ph.D. journey. I would like to thank my sister, Jinah Kim. At the beginning of my Ph.D.

study, she gave me a lot of help to settle at Purdue. I would also like to thank my friends

of Jinwoong Ju, Hyungjong Koh, Sungmin Lee, Yeonho Lee, Jaekyun Nam, Jihoon Kim,

Myungseok Kim, Woohyun Kim, and Kyuhoon Sung as my closest friends while spending a

happy and memorable time with me.

Finally, I would like to thank my plan of study committee members for participating in

my preliminary and final exams. I deeply appreciate their reasonable criticism and insightful

suggestions for my dissertation.

This work was supported in part by ONR under Grants N00014-17-1-2045 and N00014-

20-1-2128. Any opinions, findings, and conclusions in this paper are those of the authors

and do not necessarily reflect the views of the ONR.

5



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 FROM CONTROL MODEL TO PROGRAM: INVESTIGATING ROBOTIC AERIAL

VEHICLE ACCIDENTS WITH MAYDAY . . . . . . . . . . . . . . . . . . . . . . 20

2.1 Background and Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Mayday Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Control-Guided Control Program Analysis and Instrumentation . . . . . . . 27

2.4.1 Control Variable Dependency Graph . . . . . . . . . . . . . . . . . . 28

2.4.2 Mapping CVDG to Control Program . . . . . . . . . . . . . . . . . . 29

2.4.3 Control Program Instrumentation . . . . . . . . . . . . . . . . . . . . 30

2.5 Post-Accident Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.1 Control-Level Investigation . . . . . . . . . . . . . . . . . . . . . . . 31

Initial Digressing Controller Identification . . . . . . . . . . . . . . . 31

CVDG-Level Corruption Path Inference . . . . . . . . . . . . . . . . 33

2.5.2 Program-Level Investigation . . . . . . . . . . . . . . . . . . . . . . . 36

Transition to Program-Level Investigation . . . . . . . . . . . . . . . 36

6



CVDG-Guided Program Trace Analysis . . . . . . . . . . . . . . . . 36

2.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.7.1 Effectiveness of Accident Investigation . . . . . . . . . . . . . . . . . 39

Case Study: “Unexpected Crash after Turn” . . . . . . . . . . . . . . 46

Case Study: “‘Frozen’ Velocity after Slowdown” . . . . . . . . . . . . 48

2.7.2 Scope Reduction for Bug Localization . . . . . . . . . . . . . . . . . 50

2.7.3 Run-time, Storage and Energy Overhead . . . . . . . . . . . . . . . . 51

2.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3 RVFUZZER: FINDING INPUT VALIDATION BUGS IN ROBOTIC VEHICLES

THROUGH CONTROL-GUIDED TESTING . . . . . . . . . . . . . . . . . . . . 56

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Attack Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 RVFuzzer Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.2 Control Instability Detector . . . . . . . . . . . . . . . . . . . . . . . 61

3.3.3 Control-Guided Input Mutator . . . . . . . . . . . . . . . . . . . . . 63

Control Parameter Mutation Space . . . . . . . . . . . . . . . . . . . 63

Feedback-Driven Parameter Input Mutator . . . . . . . . . . . . . . 64

Environmental Factors . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7



3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4.1 Thresholds for Controller State Deviation . . . . . . . . . . . . . . . 71

3.4.2 Physical Impacts Caused by Cyber-Physical Bug Exploitation . . . . 71

3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.5.1 Finding Cyber-Physical Bugs . . . . . . . . . . . . . . . . . . . . . . 73

Classification of Cyber-Physical Bugs . . . . . . . . . . . . . . . . . . 74

3.5.2 Detection of Cyber-Physical Bugs . . . . . . . . . . . . . . . . . . . . 76

3.5.3 Impact of Cyber-Physical Bugs . . . . . . . . . . . . . . . . . . . . . 77

3.5.4 Effectiveness of Input Mutation . . . . . . . . . . . . . . . . . . . . . 78

Control Parameter Mutation . . . . . . . . . . . . . . . . . . . . . . 79

Environmental Factor Mutation . . . . . . . . . . . . . . . . . . . . . 80

3.5.5 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4 DISPATCH: CONTROLLER SEMANTICS IDENTIFICATION AND INSTRU-

MENTATION FRAMEWORK FOR ROBOTIC AERIAL VEHICLE FIRMWARE 89

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2 Motivation and Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.3.1 Mathematical Controller Function Candidate Identification . . . . . . 97

4.3.2 Mathematical Controller Variable Identification . . . . . . . . . . . . 97

8



4.3.3 Controller-Semantic Patch Location Identification . . . . . . . . . . . 99

4.3.4 Patch Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.5.1 Controller Identification/Decompilation Accuracy . . . . . . . . . . . 109

4.5.2 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Case Study I: Patching a cyber-physical bug unique to a certain RAV

control model . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Case Study II: Limiting flight distance to prevent communication loss 113

4.5.3 Performance Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.1 Postmortem Robotic Aerial Vehicle Investigation . . . . . . . . . . . . . . . 121

5.2 Program-Level Root Cause Analysis . . . . . . . . . . . . . . . . . . . . . . 121

5.3 Feedback-directed Testing and Fuzzing . . . . . . . . . . . . . . . . . . . . . 122

5.4 Disassembly and Function Identification . . . . . . . . . . . . . . . . . . . . 123

5.5 Binary Rewriter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.6 Run-time Control Semantics-Driven RAV Protection . . . . . . . . . . . . . 124

5.7 Defense against Cyber-Physical Bugs . . . . . . . . . . . . . . . . . . . . . . 125

6 FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

9



6.1 Robotic Aerial Vehicle Security and Safety with AI . . . . . . . . . . . . . . 126

6.2 Robotic Aerial Vehicle Swarm Security and Safety . . . . . . . . . . . . . . . 127

6.3 Smart Things Security and Safety . . . . . . . . . . . . . . . . . . . . . . . . 127

7 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

10



LIST OF TABLES

2.1 Four types of CVDG-level corruption paths. . . . . . . . . . . . . . . . . . . . . 36

2.2 List of accident cases caused by cyber-physical bugs. . . . . . . . . . . . . . . . 41

2.3 Investigation results of accident cases in Table  2.2 . SLoC: Source lines of code.  . 43

2.4 Bug detection capability comparison results. 3: bug triggered and located in
source code, ∆: bug triggered and faulty input constructed, and 7: bug not
detected.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5 Logging overhead breakdown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1 List of threshold values for each controller state. . . . . . . . . . . . . . . . . . . 72

3.2 Cyber-physical bugs in ArduPilot and the implications of the attacks exploiting
them (C: Crash; D: Deviation from trajectory; U: Unstable movement; S: “Stuck”
in certain location or speed). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3 Cyber-physical bugs in PX4 and implications of attacks exploiting them. . . . . 74

3.4 Summary of cyber-physical bugs found by RVFuzzer (RIB and RSB denote the
number of range implementation and range specification bugs, respectively). . . 76

4.1 Lines of codes for DisPatch’s analysis modules. . . . . . . . . . . . . . . . . . 108

4.2 Accuracy of the mathematical PID controller function identification of the copter,
helicopter, plane, and submarine models in each of three steps. Ctrl.: Controller
functions, SS: Static and Symbolic, FP: False positive rate. . . . . . . . . . . . . 110

4.3 The semantics of mathematical PID controller functions and their controller vari-
ables for all of the four control models. Their semantic identification rates of both
functions and variables are 100% accurate Ctrl.: Controller function, 3: semantic
of a controller used, CV: controller variable. . . . . . . . . . . . . . . . . . . . . 111

4.4 Space overhead introduced by DisPatch. We instrumented all of the identified
controllers in our four different RAV control models. . . . . . . . . . . . . . . . 116

11



LIST OF FIGURES

2.1 An RAV’s six degrees of freedom (6DoF). . . . . . . . . . . . . . . . . . . . 21

2.2 Dependencies of an RAV’s Six degrees of freedom (6DoF) cascading controllers. 21

2.3 Primitive controllers in x-axis cascading controller. . . . . . . . . . . . . . . 21

2.4 Motivating example flight. An RAV first flies to the north east with 60 cm/s
(only in east, 30 cm/s) and then flies to east with 60 cm/s speed. . . . . . . 24

2.5 Controller states with and without the x-axis velocity parameter manipula-
tion. The control loop iterates at a 10 Hz interval. . . . . . . . . . . . . . . . 25

2.6 Mayday Framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.7 Control Variable Dependency Graph (CVDG). . . . . . . . . . . . . . . . . . 27

2.8 Summary of CVDG-level corruption paths according to different corruption
types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.9 An example showing the working of Algorithm  2 . . . . . . . . . . . . . . . . 38

2.10 Case 1: History of x-axis velocity and acceleration controllers – the former is
the initial digressing controller. . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.11 Case 5: History of x-axis velocity and acceleration controllers – the former is
the initial digressing controller. . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.12 Number of basic blocks reported by the baseline investigation method and by
Mayday. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.13 Run-time overhead of Mayday: average execution time of soft real-time tasks
with and without Mayday in log scale. While Mayday introduces run-time
overhead, it still meets the real-time requirement without missing deadlines. 51

3.1 Overview of RVFuzzer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2 Invalid control parameter ranges discovered by RVFuzzer, normalized to the
specified value ranges (1: One-dimensional mutation, M : Multi-dimensional
mutation). Percentage of invalid ranges (%) within the specified value ranges
are noted at the top of the bars.  

1
  . . . . . . . . . . . . . . . . . . . . . . . . 79

3.3 Normalized invalid ranges within the specified value ranges under different
wind conditions (N: No wind, M: Medium wind, S: Strong wind). . . . . . . 81

3.4 Illustration of Case Study I: An RAV cannot recover its normal speed for the
segment from Waypoint 2 to Waypoint 3. . . . . . . . . . . . . . . . . . . . . 83

3.5 Illustration of Case Study II: The attack launched at Waypoint 2 causes an
RAV to oscillate due to failing control of the pitch angle. . . . . . . . . . . . 85

12



3.6 Illustration of Case Study III: An RAV fails to complete a simple mission
from Waypoint 1 to Waypoint 4 due to the impact of environmental factors. 86

4.1 An example implication of x, y-axis velocity PID parameter configuration
on the octacopter and hexacopter running on the identical copter firmware.
Only hexacopter starts to show controller anomaly at Waypoint 2 within a
few seconds after Waypoint 2 arrival. . . . . . . . . . . . . . . . . . . . . . . 91

4.2 The necessity of identifying semantics of controller functions to solve Chal-
lenge 1 and 2. Given the binary, we show three example results: (1) an
example of disassembly result, (2) an example of generic controller identi-
fication, and (3) patch payload and location determination by identifying
semantics of controller functions. . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3 The architecture of DisPatch. . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4 Controller semantic matching and variable identification. . . . . . . . . . . . 98

4.5 Visualized controller dependencies inspired by CVDG  Figure 2.7 and depen-
dencies of 6DoF cascading controller structures  Figure 2.2 . . . . . . . . . . . 100

4.6 EBNF of DisPatch patch expression grammar. . . . . . . . . . . . . . . . . 105

4.7 An example of an instrumented callsite-aware code payload to check the value
range of P parameters of roll and pitch angular controllers. . . . . . . . . . . 106

4.8 Case 1: The implications of manipulating P, I, and D of the x, y-axis velocity
controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.9 An example of the protection logics for PSC_VELXY_P, PSC_VELXY_I, PSC_VELXY_D,
and PSC_POSXY_P parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.10 Case 2: Safe flight region enforcement by limiting the reference values of x,
y-axis position controllers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.11 An example of the restriction logics for references of x, y, z-axis position
controllers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.12 Run-time overhead of the copter firmware all of whose identified controller
variables are instrumented: Average execution time of 48 soft real-time tasks
in log scale with and without DisPatch’s patch. Both unpatched and patched
firmware meet the soft real-time deadlines except for the one_hz_loop task. 117

4.13 Run-time overhead of the helicopter firmware all of whose identified con-
troller variables are instrumented: Average execution time of 49 soft real-time
tasks in log scale with and without DisPatch’s patch. Both unpatched and
patched firmware meet the soft real-time deadlines except for the ten_hz_logging_loop
task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

13



4.14 Run-time overhead of the plane firmware all of whose identified controller vari-
ables are instrumented: Average execution time of 50 soft real-time tasks in
log scale with and without DisPatch’s patch. Both unpatched and patched
firmware meet the soft real-time deadlines except for the update_logging1
task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.15 Run-time overhead of the submarine firmware all of whose identified controller
variables are instrumented: Average task execution time of 24 soft real-time
tasks in log scale with and without DisPatch’s patch. Both unpatched and
patched firmware meet the soft real-time deadlines. . . . . . . . . . . . . . . 119

14



ABSTRACT

Robotic aerial vehicles (RAVs) have been increasingly deployed in various areas (e.g.,

commercial, military, scientific, and entertainment). However, RAVs’ security and safety

issues could not only arise from either of the “cyber” domain (e.g., control software) and

“physical” domain (e.g., vehicle control model) but also stem in their interplay. Unfortu-

nately, existing work had focused mainly on either the “cyber-centric” or “control-centric”

approaches. However, such a single-domain focus could overlook the security threats caused

by the interplay between the cyber and physical domains.

In this thesis, we present cyber-physical analysis and hardening to secure RAV controllers.

Through a combination of program analysis and vehicle control modeling, we first developed

novel techniques to (1) connect both cyber and physical domains and then (2) analyze

individual domains and their interplay. Specifically, we describe how to detect bugs after

RAV accidents using provenance (Mayday), how to proactively find bugs using fuzzing

(RVFuzzer), and how to patch vulnerable firmware using binary patching (DisPatch). As

a result, we have found 91 new bugs in modern RAV control programs, and their developers

confirmed 32 cases and patch 11 cases.
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1. INTRODUCTION

Robotic aerial vehicles (RAVs), such as commodity drones, are cyber-physical systems which

are widely deployed for autonomous transportation. Each RAV is typically equipped with a

computing board with control hardware (e.g., micro-controller) and software (e.g., real-time

control program). The on-board control program continuously senses the vehicle’s physical

state (e.g., position and velocity) and actuates the motors to control the vehicle’s movement

and accomplish a given mission. RAVs have been being increasingly utilized for various

applications in commercial, industrial, entertainment, and law enforcement domains. For

instance, logistics companies (e.g., USPS, DHL, and Amazon) have introduced drone delivery

services to meet the rapidly growing demand in e-commerce [1 ]–[4 ].

With their increasing adoption in real-world applications, RAVs are facing threats of

cyber and cyber-physical attacks that exploit their wide attack surfaces. More specifically,

an RAV’s attack surface spans multiple aspects, such as (1) physical vulnerabilities of its

sensors that enable external sensor spoofing attacks [5 ]–[7 ]; (2) traditional “syntactic” bugs

in its control program (e.g., memory corruption bugs) that enable remote or trojaned exploits

[8 ]–[11 ]; and (3) cyber-physical bugs in its control program that enable attacks via remote

control commands. In the prior art, while there have been extensive research efforts in

defending RAVs against attacks that exploit (1) and (2) [10 ], [12 ]–[17 ], attacks exploiting (3)

have not received sufficient attention. Hence, the RAV’s attack surface with respect to (1)

and (2) is expected to get smaller, which may prompt attackers to increasingly look at the

cyber-physical bugs for new exploits.

In this thesis, we secure RAV control programs by focusing on an important type of

cyber-physical bugs. A cyber-physical bug involves an incorrect or missing validity check on

a control parameter-change or mission-change input in the “cyber” domain. Such input is

provided to the control program via a remote control command, which could trigger RAV

controller malfunction. Consequently, such controller malfunction leads to physical impacts

on the vehicle (i.e., in the “physical” domain), such as mission disruption, vehicle instability,

or even vehicle damage/crash. To prevent such destructive interplay between the “cyber” and

16



“physical” components caused by cyber-physical bugs, we need to have dedicated frameworks

to discover and patch cyber-physical bugs.

However, such security analysis and hardening are challenging because cyber-physical

bugs are largely orthogonal to the traditional “syntactic” bugs (e.g., buffer overflow and

use-after-free bugs). Hence, they cannot be detected and hardened by existing software

techniques. The fundamental reason why existing techniques are not applicable is that they

perform security analysis of cyber and physical domains independently. Such “independent”

analysis may miss critical hints/traces in finding cyber-physical bugs because their impacts

and their root causes (i.e., cyber-physical bugs) appear in the cyber and physical domains, re-

spectively. Therefore, there is a pressing need to efficiently and accurately find and eliminate

cyber-physical bugs by simultaneously considering various components in both domains.

To overcome the aforementioned challenges, we design the cross-domain “cyber-physical”

analysis and hardening frameworks based on the following three key techniques. First, we

developed the control instability detector to detect controller anomaly that can be developed

into destructive physical impacts (e.g., vehicle crashes) caused by cyber-physical bugs. Next,

we developed the mapping graph to bridge the control model abstracting vehicle dynamics

(e.g., physical model and motor power) in the “physical” domain and control program (run-

ning control algorithms) in the “cyber” domain. Finally, we developed the cross-domain ana-

lyzer to identify key controller components and cyber-physical bugs. Those three techniques

enable to track from the detected controller anomaly in the “physical” domain, through the

mapping graph, to cyber-physical bugs and related controller components in the “cyber”

domain.

Based on our aforementioned key techniques, we propose the following three cyber-

physical analysis and hardening systems: (1) Mayday [18 ] for attack investigation for cyber-

physical bugs, (2) RVFuzzer [19 ] for cyber-physical bug discovery, and (3) DisPatch [20 ]

for controller-semantic-aware decompiling and patching the controller components in the

binary control program. We present the details of these systems as follows.

• Mayday is an attack investigation framework to reactively locate the root cause

in the program domain. For that, there are two key challenges in evidence and
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methodology: (1) Current RV’ flight log only records high-level vehicle control

states and events, without recording control program execution; and (2) The

capability of “connecting the dots” – from controller anomaly to program variable

corruption to program bug location – is lacking. To address these challenges,

Mayday maps a control model to a control program (source code) to enable (1)

in-flight logging of control program execution and (2) traceback of a root cause

based on control and program-level logs. We have applied Mayday to ArduPilot

to investigate ten RAV accidents caused by real ArduPilot bugs. We also found

four recently patched bugs still vulnerable, and all of them have been confirmed

by the ArduPilot team. This demonstrates that Mayday is able to pinpoint

the root cause of these accidents within the program with high accuracy and

minimum run-time and storage overhead.

• RVFuzzer is a fuzzing framework to proactively find cyber-physical bugs in

RAV control programs through control-guided input mutation. Furthermore,

RVFuzzer runs on a physical simulator without requiring source code. Hence,

RVFuzzer overcomes the limitations of Mayday which can reactively locate

cyber-physical bugs and require source code and physical RAV accidents. To

realize such functionality, RVFuzzer is designed to satisfy the two design re-

quirements as follows: (1) how to detect the cyber-physical bugs, and (2) how

to improve the fuzzing throughput. To satisfy design requirement (1), we ob-

served that exploiting cyber-physical bugs leads to controller anomaly at the

end. Therefore, I developed a control instability detector based on control model

properties. To satisfy design requirement (1), we created a new fuzzing input

mutation scheme to reduce large fuzzing input space (e.g., ArduPilot has hun-

dreds of tunable control parameters). Specifically, this newly developed scheme

focuses on mutating control parameters based on control theoretical properties.

In our evaluation of RVFuzzer on two popular RAV control programs, a total

of 89 cyber-physical bugs are found, with 87 of them being zero-day bugs. So
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far, 28 of our found cyber-physical bugs have been confirmed, and 11 of them

have been patched by the RAV software developers.

• DisPatch is a controller-semantic-aware disassembling and hardening system

for the binary control program. The RAV software developers design RAV soft-

ware to support hundreds of physical RAV models (e.g., weight) with various

hardware components (e.g., sensors and actuators). Since each physical model is

vulnerable to specific cyber-physical bugs, we must apply model-specific patches

dedicated to the specific physical model. However, for patching such specific

cyber-physical bugs, we need to first semantically identify the location of the

target controller in the binary code without the knowledge of control-semantics.

To solve this problem, we propose DisPatch which incorporates model-specific

patches to the given firmware and physical control model. First, DisPatch re-

quires two inputs: (1) locations of commonly used controller codes which match

with the mathematical model [21 ], and (2) model-specific controller structures to

identify controllers’ inter-dependencies. Then, DisPatch discovers the seman-

tic roles of respective controllers by identifying dependencies between controllers

and matching them with the target theoretical control model. We expect that

DisPatch will provide a mitigation framework against cyber-physical bugs in-

cluding those that are identified by RVFuzzer and Mayday.

We structure the rest of this thesis as follows: Section 2 illustrates the methods em-

ployed in Mayday to perform attack investigation caused by cyber-physical bugs; Section 3 

describes the techniques utilized in RVFuzzer to discover cyber-physical bugs; Section 4 

illustrates the RAV binary firmware decompiling and patching techniques to protect against

the attacks caused by cyber-physical bugs; Section 5 summarizes the related work; Section 6 

describes our future research agenda; Section 7 concludes this dissertation.
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2. FROM CONTROL MODEL TO PROGRAM:

INVESTIGATING ROBOTIC AERIAL VEHICLE ACCIDENTS

WITH MAYDAY

Our initial research is started to investigate why and how RAV physically crashes in order to

prevent attackers from exploiting the same cyber-physical bugs in the future. As described in

my previous work (BlueBox [13 ]), we have observed that cyber-physical bugs eventually lead

to controller anomaly; hence, they can be detected with the help of control theory. Researchers

in the physical domain developed a “physical-centric” root cause investigation tool with the

logging of a vehicle’s control states. However, “physical-centric” analysis tools cannot find a

physical crash root cause hidden in the control program. This is because control-level logs

do not contain any information to inspect control program execution in detail. To the best

of my knowledge, no existing work can trace an RAV crash’s root cause from “physical” to

“cyber” domain. In this chapter, we present Mayday [18 ] which supports the cross-domain

investigation by connecting the dots from controller anomaly to program variable corruption

to program bug locations.

2.1 Background and Models

RAV Control Model. Mayday is driven by the RAV control model, which encompasses

(1) vehicle dynamics, (2) controller organization, and (3) control algorithm. For vehicle

dynamics, an RAV stabilizes movements along the six degrees of freedom (6DoF) such as

the x, y, z-axes and the rotation around them, namely roll, pitch, and yaw as described in

Figure 2.1  . Each of the 6DoF is controlled by one cascading controller, with dependencies

shown in Figure 2.2 .

Inside each 6DoF controller, a cascade of primitive controllers controls the position, ve-

locity, and acceleration of that “degree”, respectively. The control variables of these primitive

controllers have dependencies induced by physical laws. Figure 2.3  shows such dependencies

using the x-axis controller as an example. For the x-axis position controller (c1(t), left-most),

xx(t) is the vehicle state (i.e., position). rx(t) is the reference which indicates the desired
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Figure 2.1. An RAV’s six degrees of freedom (6DoF).
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Figure 2.2. Dependencies of an RAV’s Six degrees of freedom (6DoF) cas-
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Figure 2.3. Primitive controllers in x-axis cascading controller.

position. ex(t) = rx(t)−xx(t) is the error, namely difference between the state and reference.

Intuitively, the goal of the controller is to minimize ex(t).

Similarly, the velocity and acceleration primitive controllers have their own sets of control

variables: ẋx(t), ṙx(t), ėx(t) for x-axis velocity; and ẍx(t), r̈x(t), ëx(t) for acceleration (the

“dot” symbol denotes differentiation). The three primitive controllers work in a cascade:

the output (reference) of one controller becomes the input of its immediate downstream

controller. Each controller also accepts other inputs, such as flight mission and control

parameters. The output of a cascading controller (e.g., ox(t)) can be either a motor throttle

value or a reference input for another 6DoF controller (e.g., from the x-axis controller to the

roll angle controller).
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RAV Control Program. The RAV control program implements the RAV control model.

It accepts two types of input: (1) sensor data that measure vehicle states and (2) operator

commands from ground control (GCS). GCS commands are typically issued to set/reset

flight missions (e.g., destination and velocity) and control parameters (e.g., control gain).

The control program runs periodically to execute the multiple controllers. For auditing and

troubleshooting, most RAV control programs record controller states (e.g., vehicle state and

reference) and events (e.g., sensor and GCS input) in each control loop iteration and store

them in on-board persistent storage.

Trust Model and Assumptions. Mayday is subject to the following assumptions:

(1) We assume the soundness of the underlying RAV control model. (2) We assume that

the RAV control program already generates high-level control log, which at least includes

each primitive controller’s reference, state and input. This is confirmed by popular RAV

control programs ArduPilot [22 ], PX4 [23 ] and Paparazzi [24 ]. (3) We assume the integrity

of logs and log generation logic in the control program, which can be enforced by existing

code and data integrity techniques [25 ]–[27 ]. After a crash, we assume that the logs are

fully recoverable from the vehicle’s “black box”. (4) We assume the control flow integrity

of control program execution. Hence traditional program vulnerabilities/exploits, such as

buffer overflow, memory corruption, and return-oriented programming, are outside the scope

of Mayday. There exists a wide range of software security techniques to defend against such

attacks [10 ], [28 ]–[30 ].

Soundness of Control Model. To justify Assumption (1) of the trust model, we show

that the underlying RAV control model adopted by ArduPilot is theoretically sound. For

the model’s vehicle dynamics, prior work [13 ] has analytically proved its correctness by mod-

eling a standard rigid body system using Newton-Euler equations. For the model’s control

algorithm and controller organization, every primitive controller (e.g., those in Figure 2.3 )

instantiates the classic PID (proportional-integral-derivative) algorithm; whereas all the con-

trollers are organized in a dependency graph (CVDG, to be presented in Section 2.4.1 ), which

reflects the classic RAV controller organization for controlling the vehicle’s 6DoF.
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Based on the sound control model elements, the model’s stability has been proved in

prior work [31 ]. Furthermore, the control model – by design – tolerates vehicle dynamics

changes (e.g., payload change) and disturbances (e.g., strong wind) to a bounded extent. We

note that Mayday investigates accidents/attacks when the vehicle is operating within such

bounds; and the triggering of the cyber-physical bug will make an originally sound control

model unsound, by corrupting its control/mission parameter(s), leading to instability of the

system. Finally, theoretical soundness of the RAV control model is also testified to by its

wide adoption by RAV vendors such as 3D Robotics, jDrone, and AgEagle for millions of

robotic vehicles [32 ].

Threat and Safety Model. Mayday addresses safety and security threats faced by

RAVs, with a focus on finding cyber-physical bugs in RAV control programs after accidents.

These accidents may be caused by either safety issues (e.g., buggy control code execution or

operator errors) or attacks (e.g., deliberate negligence or exploitation by a malicious insider).

We assume that attackers know the existence of a cyber-physical bug and its triggering con-

dition. Then, an attacker may (1) continue to launch flight missions under the bug-triggering

condition (e.g., strong wind) or (2) adjust vehicle control/mission parameters to create the

bug-triggering condition (demonstrated in [19 ]). Action (1) requires the operator to simply

“do nothing”; whereas action (2) will only leave a minimum bug-triggering footprint which

could gradually corrupt controller states over a long period of time (Section 2.2 ). Such small

footprint and long “trigger-to-impact” time gap make investigation harder. Furthermore,

attacks exploiting cyber-physical bugs do not require code injection, sensor/GPS spoofing,

or blatantly self-sabotaging commands. As such, the security threat posed by cyber-physical

bugs is real to RAV operations and “exploit-worthy” to adversaries. All accident cases in

our evaluation (Section 2.7 ) can happen in either accidental (i.e., safety) or malicious (e.g.,

security) context, reflecting the broad applicability of Mayday for RAV safety and security.

Meanwhile, accidents caused by either physical failures/attacks or generic software bugs

are out of scope, as they have been addressed by existing efforts. For example, built-in logs

can provide information for investigating either suspicious operator commands or physical

attacks/accidents [33 ]–[35 ], without cross-layer (i.e., from control model to program) anal-
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Figure 2.4. Motivating example flight. An RAV first flies to the north east
with 60 cm/s (only in east, 30 cm/s) and then flies to east with 60 cm/s speed.

ysis (Section 2.8 ); and there has been a large body of solutions targeting generic software

vulnerabilities [36 ]–[43 ].

Finally, we note that there are multiple possible root causes to check after an RAV

accident (e.g., software bugs, mechanical issues, and human operator factors). Mayday,

which specializes in cyber-physical bugs, is only one of multiple investigation tools (e.g.,

those for physical attacks) to enable a thorough, multi-aspect investigation.

2.2 Motivating Example

Modern control programs are robust systems that operate while addressing and minimiz-

ing the impact of not only various physical non-deterministic factors (e.g., inertia and noise)

but also controller anomaly and security attacks [44 ]–[46 ]. However, we have found that such

robustness is not enough to tackle all safety and security issues. Specifically, combined im-

pacts of (i) operational inputs (e.g., mission, parameter changes) with (ii) particular altered

physical conditions may go beyond the protection capability of a control system, which is an

implication of a cyber-physical bug. As a result, such impact starts to appear in a control

variable of an exploited controller and will be propagated to its dependent controllers and

can be signified over the multiple control loop iterations. To illustrate this, we introduce the

following intuitive motivating accident case (more cases are discussed in Section 2.7 ) only

with high-level control logs recorded by a built-in flight recorder.
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(d) Acceleration with a bug.

Figure 2.5. Controller states with and without the x-axis velocity parameter
manipulation. The control loop iterates at a 10 Hz interval.

In this example, we assume that our target RAV loads an item to deliver (as performed

by real RAVs [3 ], [4 ], [47 ]) and flies to the north east with 60 cm/s (only in east, 30 cm/s)

as described in Figure 2.4 . At Iteration 4,850, the RAV operator increases Parameter P of

x-axis velocity controller to make up for the weight gain. In the next 80 iterations of the

control loop, the RAV continues to operate normally (i.e., the x-axis controller maintains a

stable state). At a scheduled turn (i.e., flying east in Figure 2.4 ), the RAV is supposed to

drastically decrease its x-axis velocity and to exhibit a behavior similar to that of the velocity

and acceleration references depicted in Figure 2.5a and Figure 2.5b , respectively. However,

at the junction, the changed parameter P unexpectedly leads to a corrupt state; the x-axis

velocity started showing digression (Figure 2.5c ) and generating a corrupt x-axis acceleration

reference. Consequently, the RAV completely failed to stabilize, ultimately resulting in a

crash due to intensified digression over the multiple control loop iterations. We note that

our example case is realistic because this accident can be triggered via a remote operational

interface (e.g., MAVLink [48 ]).
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Figure 2.6. Mayday Framework.

Unfortunately, to answer “why did my drone crash” in this case, the existing flight

status logging is not sufficient for root cause analysis. Unlike control-level investigation

based on built-in flight control data logging, there is no evidence available for program-level

investigation. While investigators may be able to identify a malicious command by cross-

checking the command logs recorded by the GCS and by the on-board logging function, such

a method cannot investigate (1) accidents caused by malicious or vulnerable commands that

are indeed issued from the GCS (e.g., by an insider threat) or (2) accidents not triggered by

external commands (e.g., divide-by-zero). Most importantly, such a method cannot pinpoint

the root cause of the accident. In other words, observing the RAV controller anomaly does

not reveal what is wrong inside the control program. We need to bridge the semantic gap

between the safety/security impacts in the control (physical) domain and the root causes in

the program (cyber) domain.

2.3 Mayday Framework

Mayday spans different phases of an RAV’s life cycle, shown in Figure 2.6  . In the offline

phase, Mayday defines a formal description of the RAV control model, and uses it to enable

CVDG-guided program-level logging during the control program execution via automatic

instrumentation (Section 2.4 ). Then the RAV goes back into service with the instrumented

control program, which will generate both control- and program-level logs during flights.

In the case of an accident or attack, Mayday retrieves the logs and performs a two-stage

forensic analysis, including control- and program-level investigations (Section 2.5 ). The
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Figure 2.7. Control Variable Dependency Graph (CVDG).

investigations will lead to the localization of the cyber-physical bug in the control program

– the root cause of the crash.

2.4 Control-Guided Control Program Analysis and Instrumentation

This offline phase of Mayday formalizes a generic RAV control model using a Control

Variable Dependency Graph (CVDG) (Section 2.4.1 ), which will guide the analysis (Section

2.4.2 ) and instrumentation (Section 2.4.3 ) of the control program, in preparation for the

run-time program execution logging and the post-accident investigation (Section 2.5 ).
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2.4.1 Control Variable Dependency Graph

Mayday is guided by the RAV’s control model, with dependencies among controllers

and control variables and execution paths. To capture such dependencies, we define the

Control Variable Dependency Graph (CVDG) which acts as a mapping graph between a

control model to a control program. Figure 2.7  shows a generic CVDG that applies to a

wide range of RAVs, such as rigid-body trirotors, quadrotors, and hexarotors. The CVDG

captures generic dependencies among the 6DoF controllers without assuming any specific

control algorithm. Inside each controller, there is a cascade of three primitive controllers

that control the position, velocity, and acceleration for that DoF, respectively. Each node in

the CVDG represents a control variable or a controller input. Each control variable represents

a vehicle state (e.g., xx, ẋx, or ẍx), reference (e.g., rx, ṙx, or r̈x), or control parameters (e.g.,

kx, k̇x or k̈x). The controller accepts three types of input S, M , and P : S represents inputs

from various sensors, which will become vehicle state after pre-processing (e.g., filtering); M

and P represent mission plan and control parameter inputs, respectively. Each directed edge

in the CVDG indicates a dependency between its two nodes. For example, the edge from ṙx

to r̈x in the x-axis controller indicates that r̈x depends on ṙx.

Inter-Controller Relation. We also define the “parent-child” relation between two

controllers with edge(s) between them. More specifically, if primitive controller C’s reference

is the output of controller C, then C and C have a parent-child relation. Within a 6DoF

cascading controller, the state of a child controller (e.g., x-axis acceleration) is the derivative

of its parent controller (e.g., x-axis velocity). The relation between 6DoF controllers is more

complicated. For example, the roll angle (φ) controller has three parent controllers (i.e., yaw

(ψ), x, and y acceleration controllers). Mathematically, the input of the roll angle controller

is determined by the outputs of its three parent controllers as: φ = atan((−ẍsin(ψ) +

ÿcos(ψ))/g) (Figure 2.7 , g is the standard gravity).
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2.4.2 Mapping CVDG to Control Program

Mapping CVDG Nodes to Program Variables. We now establish a concrete mapping

between the CVDG and the control program that implements it. First, we map the CVDG

nodes (control variables) to the corresponding control program variables, which are either

global or heap-allocated. For most CVDG control variables, the control program’s existing

logging functions directly access and log the corresponding program variables. For certain

CVDG variables, we need to look deeper. For example, the x-, y-, and z-axis velocity

states are retrieved via function calls. To handle such cases, we perform backtracking on

LLVM bitcodes (i.e., the intermediate representation (IR) of the Low Level Virtual Machine

(LLVM)): Starting from the logged (local) variable in a logging function, we backtrack to

variables whose values are passed (without processing) to the logged variable. Among those,

we select the first non-local variable (e.g., a class member variable) as the corresponding

program variable.

Mapping CVDG Edges to Program Code. Next Mayday analyzes the control

program to map each CVDG edge to the portion of control program codes that implement

the data flow between the two nodes (variables) on the edge. For each edge, Mayday

conservatively identifies all possible program paths that induce data flows between the source

node and sink node.

Our analysis is performed by Algorithm 1 at LLVM bitcode level. It is inter-procedural

and considers pointer aliases of the control variables as well as other intermediate variables for

completeness. It first performs a path-insensitive and flow-sensitive points-to analysis [49 ] to

identify all aliases of the control variables (Line 2-3). For each alias identified, the algorithm

performs backward slicing [50 ] to identify the program code that may influence the value of

the control variable (Line 4, 10-23). As a result, each slice contains all the instructions that

directly read or write the control variable and those that indirectly affect its value through

some intermediate variables. Since the intermediate variables may have aliases not covered

in the previous steps, Algorithm 1 recursively performs both points-to analysis and backward

slicing on those variables to identify additional instructions that may affect the value of the

control variable (Line 16-22). As new intermediate variables may be found in the identified
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Algorithm 1 Mapping CVDG edges to program code.
Input: Control variable set in the CVDG (CV )
Output: Mapping control variables to backward sliced instructions (M)
1: Initialize M . Our algorithm entry point
2: for cvi ∈ CV do . Backward slicing for each CV
3: P V ← Points-toAnalysis(cvi)
4: S ← BackwardSlicingVarSet(P V ) . Backward slicing for aliases of cvi
5: N ← GetAffectingNodes(S) . Get CVDG nodes connected to cvi
6: for ni ∈ N do
7: e← GetEdge(cvi, ni) . Get a CVDG edge connecting between cvi and another CVDG node
8: M [e]← GetInstsForEdge(e, S) . Mapping instructions to each edge
9: return M
10: function BackwardSlicingVarSet(SV ) . This function is called recursively
11: V ← SV
12: S ← ∅ . Backward slicing set for the given variable set
13: for vi ∈ SV do
14: S ← BackwardSlicingOneVar(vi)
15: S ← S ∪ S . Add new slicing results for each vi
16: V ← GetAffectingVars(S)− V . Get newly found variables
17: V ← V ∪ V
18: for vi ∈ V do . Perform recursive slicing on new variables
19: P V ← Points-toAnalysis(vi)
20: S ← BackwardSlicingVarSet(P V ) . Recursive slicing
21: V ← V ∪GetAffectingVars(S)
22: S ← S ∪ S . Add new slicing results for each vi
23: return S

slices during a recursion, this process will continue until no more affecting variable or alias

exists.

In the final step, Algorithm 1 goes through the identified program code paths for each

CVDG edge and reports only those that begin and end – respectively – with the source and

sink variables on the CVDG edge (Line 5-8).

2.4.3 Control Program Instrumentation

With the mapping from control model to program (CVDG nodes → variables; edges

→ code), Mayday now instruments the control program for logging the execution of the

CVDG-mapped portion of the program, which bridges the semantic gap between control-

level incidents and program-level root cause analysis. To achieve this, Mayday instruments

LLVM bitcodes by inserting program-level logging functions at entries of basic blocks selected

from the CVDG-mapped portion of the control program, and adds control loop iteration

number into a logging function.

Efficient Logging of Program Execution. A key requirement of control program

execution logging is high (time and space) efficiency. Mayday meets this requirement via
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two methods. The first method is selective basic block logging. Mayday only instruments the

basic blocks of the CVDG-mapped program code. For example, in ArduPilot, the CVDG-

mapped basic blocks are about 40.08% of all basic blocks. The second method is execution

path encoding, which involves inserting logging functions at proper locations to record encoded

program execution paths. We adopt Ball-Larus (BL) algorithm [51 ] – an efficient execution

path profiling technique with path encoding. Under BL algorithm, each execution path is

associated with a path ID, which efficiently represents its multiple basic blocks in the order

of their execution.

Temporal Log Alignment. To temporally align the control log and the added program

execution log, Mayday generates control loop iteration numbers (plus timestamps) at run-

time and tags them to both control and program execution logs. Such alignment enables

temporal navigation of log analysis during a post-accident investigation.

2.5 Post-Accident Investigation

After control-guided program analysis and instrumentation, the subject RAV will be back

in service and start generating both control- and program-level logs during its missions. In

the case of an accident, the logs will be recovered and analyzed by Mayday in a two-stage

investigation to reveal the accident’s root cause.

2.5.1 Control-Level Investigation

The control-level investigation has two main steps: (1) identify which controller, among

all the primitive controllers in the CVDG, was the first to go wrong during the accident

(Section 2.5.1 ); (2) infer the possible sequence of control variable corruption, represented as

a corruption path in the CVDG, that led to that controller’s malfunction.

Initial Digressing Controller Identification

During an RAV accident, multiple controllers in the CVDG may go awry, which leads to

the operation anomaly of the vehicle. However, because of the inter-dependency of controllers
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(defined in the CVDG), there must exist one controller that is initially malfunctioning,

whereas the others are causally affected and go awry later following the inter-dependency

and control feedback loop. To uncover the root cause of the accident, it is necessary to

identify the first malfunctioning controller, as well as the time when the malfunction started.

More formally, the malfunction of a controller manifests itself in two perceivable ways [19 ]:

(1) non-transient digression between the control state and reference and (2) non-transient

digression between the control reference and mission input. (1) means that the real state of

the vehicle cannot “track” (i.e., converge to) the reference (i.e., desired state) generated by

the controller; whereas (2) means that the reference cannot approach the target state set for

the flight mission. As such, we call the first controller that exhibited (1) or (2) the initial

digressing controller ; and we call the time when the digression started the initial digressing

time.

To identify the initial digressing controller and time, Mayday examines the control

log. Similar to [19 ], a sliding window-based digression check is performed on each primitive

controller (1) between state and reference and (2) between reference and mission input.

Unlike the previous work, Mayday uses the Integral Absolute Error (IAE) formula [52 ] in a

distinct way to identify the initial digression in a reverse temporal order (details are discussed

in the next paragraph). By performing the digression check with the sliding window from the

crash point backward, we identify the first digression window (hence time) of that controller,

from which the digression persists toward the end of the log. The controller with the earliest

first-digression window is the initial digressing controller.

Parameters for Digression Determination. We used threshold (Thr) and time

window (w) (refer to the IAE formula [52 ] and Equation 2.1 ) for both initial digression

determination 2.5.1 and state consistency check in Section 2.5.1 . For the selection of reason-

able Thr and w, we used the three-sigma rule [53 ] with fifty different experimental missions

for 6DoF, similar to the previous work [19 ]. Compared to w in the previous work, we used

much smaller windows to detect the more accurate time when the initial digression occurred.

Specifically, we used 0.5 seconds for the x-, y-axis controllers, z-axis position, acceleration
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controllers, and yaw and yaw rate controllers. In addition, we used 0.25 seconds for the z-axis

velocity controller, and roll and roll rate controllers, and pitch and pitch rate controllers.

CVDG-Level Corruption Path Inference

Given the initial digressing controller and the pair of digressing variables (i.e., “state and

reference” or “reference and mission input”), Mayday will infer the sequence of operations

on relevant control variables that had caused the initial digression. Such inference is guided

by the CVDG model and the operation sequence of digression-inducing variables is called

CVDG-level corruption path, represented by a directed path in the CVDG.

We first define several terms. Each primitive controller has three inputs: sensor input

S, flight mission M , and control parameter P , with M and P coming from ground control

(GCS). xI , rI , and kI denote the control state, reference, and parameter (a vector) of the

initial digressing controller – denoted as CI . xc, rc, and kc denote the control state, refer-

ence, and parameter of CI ’s child (i.e., immediate downstream) controller – denoted as Cc,

respectively. Now we present the inference of CVDG-level corruption path as summarized

in Figure 2.8 .

If the initial digression is between xI and rI , we can infer that xI failed to track rI .

There are three possible causes for this, which correspond to different CVDG-level corruption

paths:

• Type I: xI was corrupted “locally” during the sensor input data processing (e.g.,

filtering). In the CVDG, such corruption corresponds to path S → xI → rc as

described in Figure 2.8a .

• Type II: xI was corrupted indirectly via the control feedback loop. In this case,

the control parameter kI was first corrupted via GCS input (e.g., a parameter-

changing command), which then corrupted rc, the output of CI . In Cc’s effort

to track the corrupted rc, it generated the corrupted reference for its own child

controller, and so on so forth. Finally, the RAV motors physically changed the

vehicle’s state, leading to the anomalous change of xI . In the CVDG, such

corruption corresponds to path P → kI → rc as described in Figure 2.8b .
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Figure 2.8. Summary of CVDG-level corruption paths according to different
corruption types.

• Type III: xI was similarly (to Type II) corrupted via the control feedback loop,

due to the corruption of rc. Unlike Type II, rc’s corruption was not triggered by

external input. Instead, it was caused by some execution anomaly along CVDG

edge xI → rc or rI → rc as described in Figure 2.8c .

We point out that, between xI and rI , rI cannot be initially corrupted by CI ’s parent

(upstream) controller. This can be proved by contradiction based on the CVDG model: If

rI were initially corrupted by its parent controller Cp, the corruption would have happened

before CI ’s initial digression. However, without CI ’s digression, Cp would not be triggered

by the control feedback loop to generate a corrupted rI , unless CI experienced a digression

itself. But that would contradict with the fact that CI is the first digressing controller.
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To determine if an accident is caused by Type I or II/III corruption path, Mayday

needs to check if xI is corrupted locally or indirectly. This is done by checking the state

consistency between CI and Cc (i.e., between xI and xc). Intuitively, the state consistency

is an indication that Cc makes control decisions following the “guidance” – either right or

wrong – of CI ; and the observation of Cc is consistent – according to physics laws – with that

of CI . For example, if CI is a velocity controller and Cc is an acceleration controller, then xI

(velocity) is consistent with xc (acceleration), provided that the observed velocity xI closely

matches the velocity computed using the actual acceleration xc (via integration) in each

iteration. Since xc did not digress from rc when xI digressed from rI (by CI ’s definition), if

xI and xc are consistent, then we can infer that xI is not locally corrupted and the CVDG-

level path for xI ’s corruption should be of Type II or III. Otherwise, the corruption path for

xI ’s corruption should be of Type I.

If the initial digression is between rI and mission input M (Type IV), we can infer

that a mission input (e.g., a GCS command to change trajectory or velocity) must have

led to the change of rI ; and the new rI value made CI malfunction. In the CVDG, the

corruption of rI happened on path M → rI , as described in Figure 2.8d . Similar to Types

I-III, we can prove that the parent controller of CI cannot initially corrupt rI .

Since xI and xc are not directly comparable, we leverage the following equation to define

state consistency:

err(CI , Cc) =
∫ t+wI

t |xI(s+ wc) − xI(s) −
∫ s+wc

s λ(xc(v))dv|ds
wI

(2.1)

In summary, Table 2.1  shows all four types of CVDG-level corruption paths and their

determination conditions, to be applied during the investigation. Notice that the four types

fully cover the CVDG edges in the initial digressing controller.
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Table 2.1. Four types of CVDG-level corruption paths.

Type
Initial Digressing

Variables

xI and xc

Consistent?

Initially Corrupted

Variable

CVDG-Level

Corruption Path

I Between rI and xI No xI S → xI → rc

II Between rI and xI Yes kI P → kI → rc

III Between rI and xI Yes rc xI → rc; rI → rc

IV Between M and rI Yes rI M → rI

2.5.2 Program-Level Investigation

The control-level investigation generates two outputs: (1) the initial digressing controller

(and time) and (2) the CVDG-level corruption path that had led to the digression. With

these outputs, Mayday transitions to its program-level investigation, analyzing a narrowed-

down scope of the control program execution log. The final result of this investigation is a

small subset of control program code (in basic blocks) where the bug causing the accident

can be located.

Transition to Program-Level Investigation

Mayday first makes the following preparations: (1) mapping the control variables on the

CVDG-level corruption path to program variables, based on the control model → program

mapping established during the offline analysis (Section 2.4 ); (2) locating the program trace

for the initial digressing iteration – recall that the log has been indexed by control loop

iteration number – as the starting point for (backward) log analysis; and (3) restoring the

LLVM instruction trace from the encoded log for LLVM bitcode-level data flow analysis.

CVDG-Guided Program Trace Analysis

Mayday first identifies the data flows of program-level variable corruptions representing

the CVDG-level corruption path. It runs Algorithm 2 to identify such data flows, starting

from the initial digressing iteration and going backward. There are four inputs to Algorithm

2 : (1) the restored LLVM bitcode-level program trace, indexed by control loop iteration
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Algorithm 2 Identification of basic blocks implementing a CVDG-level corruption path.
Input: CVDG (G), decoded program execution logs (L), CVDG-level corruption path (Pcvdg), control loop iteration with
initial digression (idigress)
Output: A set of basic blocks of the program-level corruption paths
1: Pprog ← Backtrack(Pcvdg , 0, idigress) . Get program-level data flows
2: itrigger ← Pprog .istart . Control loop iteration with the triggering input
3: while itrigger ≤ idigress do . Find additional data flows
4: idigress ← Pprog .iend − 1
5: Pprog ← Pprog ∪ Backtrack(Pcvdg , itrigger, idigress)
6: return GetBB(Pprog)
7: function Backtrack(Pcvdg , istart, iend)
8: Pprog ← ∅
9: for e ∈ Pcvdg do
10: Pprog ← Pprog ∪ BacktrackSrcSink(e.src, e.sink, istart, iend)
11: return Pprog

12: function BacktrackSrcSink(src, sink, istart, iend)
13: if src = sink then
14: return ∅
15: Pprog ← ∅
16: for i ∈ {iend...istart} do . Backtrack the executed paths at every iteration
17: Pi ← G.GetDataFlowPaths(L[i], src, sink) . Between source and sink
18: for p ∈ Pi do
19: for sinkp ∈ p.sinks do . Consider intermediate variables
20: Pprog ← Pprog ∪ BacktrackSrcSink(src, sinkp, istart, i)
21: return Pprog

number; (2) the initial digressing iteration number (idigress); (3) the source and sink program

variables that correspond to the start and ending nodes on the CVDG-level corruption path;
1

 (4) the mapping between instructions in the trace and the program basic blocks they belong

to. The output of Algorithm 2 is a small subset of control program basic blocks that may

have been involved in the CVDG-level corruption path.

To explain Algorithm 2 , we show a simple example in Figure 2.9 : The initial digressing

controller is the x-axis velocity controller, and the CVDG-level corruption path is P →

k̇x → r̈x. The initial digressing time is Iteration 4930. P , k̇x, and r̈x are mapped to program

variables (msg, _pi_vel_xy._kp, and _accel_target.x). Algorithm 2 starts from the sink

variable (_accel_target.x) in Iteration idigress (4930) and finds a variable-corruption data

flow from source variable msg, through intermediate variable _pi_vel_xy._kp (Line 1, 7-21),

to sink variable _accel_target.x. Data flows that go through the intermediate variables

(e.g., _pi_vel_xy._kp) are reconstructed using the additional sink information (Line 19-20).

This information is retrieved via backward slicing (Line 17) as described in Section 2.4.2 .

In Figure 2.9  , the data flow is P4850 → k̇x,4850 → V4,4850 → V8,4929 → r̈x,4930, which realizes
1↑ For a Type II CVDG-level path (Table 2.1  ), we also identify the program variable that corresponds to the
intermediate node kI on path P → kI → rc.
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Figure 2.9. An example showing the working of Algorithm 2 .

CVDG-level path P → k̇x → r̈x. In particular, Iteration 4850 is the starting iteration of

control variable corruption with the triggering input (P ). We denote this iteration as itrigger.

After identifying the latest (relative to idigress) program-level variable corruption data

flow, Algorithm 2 will continue to identify all earlier data flows that reflect the same CVDG-

level corruption path between Iterations itrigger and idigress (Line 3-5, 7-21). In Figure 2.9  ,

such an earlier data flow is P4850 → k̇x,4850 → V4,4850 → V8,4851 → r̈x,4852. We point out that,

different from traditional program analysis, Mayday needs to capture the influence on the

corrupted control variable (r̈x) in multiple control loop iterations towards (and including)

idigress. This is because, in a control system, each update to that variable may contribute to

the final digression of the controller – either directly or via the control feedback loop – and

hence should be held accountable.

Once Algorithm 2 finds all the data flows of program-level variable corruption, it can

identify the corresponding basic blocks that implement each of the corrupting data flows

(Line 6). In most cases, the multiple data flows will be mapped to the same set of program

basic blocks, because of the iterative nature of control program execution. For example,

the two corruption data flows in Figure 2.9  share the common segment V4 → V8 → r̈x

implemented by the same set of basic blocks. This helps keep the number of basic blocks

reported by Algorithm 2 small, making it easy for investigators to examine the source code

of those basic blocks to finally pinpoint the bug that caused the accident.
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2.6 Implementation

We have implemented Mayday for an IRIS+ quadrotor with a Raspberry Pi 3 Model

B (RPi) [54 ] as the main processor board powered by a 1.2 GHz 64 bit quadcore ARM

Cortex-A53 CPU with 1 GB SDRAM. Attached to the RPi are a Navio2 sensor board and

a 64 GB SD card. The sensor board has a number of sensors (GPS, gyroscope, barometer,

etc.) and is equipped with four actuators and a telemetry radio signal receiver. The control

program is the popular ArduPilot 3.4 on Linux 4.9.45, with the main control loop running

at a default frequency of 400 Hz.

For Mayday’s control program analysis (Section 2.4.2 ), we leverage the SVF 1.4 static

analysis tool [49 ] for the points-to analysis. We modified SVF to support our inter-procedural

backward slicing and control program instrumentation on LLVM 4.0. Mayday’s control-

and program-level investigation functions (Section 2.5 ) are implemented in Python 2.7.6.

The entire Mayday system contains 10,239 lines of C++ code and 7,574 lines of Python

code.

2.7 Evaluation

We evaluate Mayday’s effectiveness with respect to RAV accident investigation (Sec-

tion 2.7.1 ) and bug localization (Section 2.7.2 ); and Mayday’s efficiency with respect to

run-time, storage, and energy overhead (Section 2.7.3 ).

2.7.1 Effectiveness of Accident Investigation

Summary of Cases. We investigated 10 RAV accidents based on real cyber-physical bugs

in ArduPilot 3.4. Table 2.2  summarizes the nature of the 10 accidents, with respect to cat-

egorization, physical impact, triggering condition, nature of control program bug, patching

status, and vulnerability status. We chose these cases by the following criteria: (1) their root

causes are real cyber-physical bugs; (2) the specific nature of the bugs should be represen-

tative (e.g., invalid control/mission parameter values, integer overflow, and divide-by-zero);
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(3) the initial digressing controllers in these cases should cover all six degrees of 6DoF; and

(4) the CVDG corruption paths in these cases should show diversity.

Specifically, Cases 1-4 are caused by controller parameter corruption, which corresponds

to Type II CVDG-level path in Table 2.1 (Section 2.5.1 ) and results in unrecoverable vehicle

instability, deviation, or even crashes. Cases 5-7 are caused by corruption of flight missions

(e.g., location, velocity), which corresponds to Type IV CVDG-level path in Table 2.1 . Cases

8-10 are caused by data (e.g., sensor or GCS input) processing errors such as divide-by-zero,

which corresponds to either Type I (Case 10) or Type II (Cases 8-9) CVDG-level path in

Table 2.1 .

The root causes of these accidents are real cyber-physical bugs that exist in ArduPilot

3.4 or earlier. The ones in Cases 5-10 are known bugs that have since been patched; whereas

the bugs in Cases 1-4 still exist in the later version of ArduPilot 3.5. Our code review shows

that the patches for those four bugs only fix the RAV’s pre-flight parameter-check code,

but not the in-flight parameter adjustment code. We alerted the ArduPilot team that the

bugs in Cases 1-4 are not fully patched. Their reply was that, the four bugs were recently

reported and confirmed along with other “invalid parameter range check” bugs. However, if

ArduPilot fixes every parameter check, the firmware size may not fit in the memory of some

resource-constrained micro-controllers supported by ArduPilot 2
 .

The “Patch Commit Number” column in Table 2.2 shows the patch commit numbers for

all cases. Detailed ArduPilot bug-patching history, including the code snippets involved, can

be accessed at: https://github.com/ArduPilot/ardupilot/commit/[commit number].

Note that these accidents are not easy to reproduce or investigate. Their occurrences

depend on vehicle-, control-, and program-level conditions. For example, the control pro-

gram bugs may be triggered only when the vehicle takes a certain trajectory (Cases 1-4)

and/or accepts a certain controller parameter or flight mission (Cases 1-9). Or they can only

be triggered by a certain environment factor (e.g., wind speed in Case 10). Such accidents

abound in real-world RAV operations [48 ]. Due to their hazardous nature and in compliance

with safety regulations, we run these realistic accidents using a software-in-the-loop (SITL)

RAV simulator [55 ], with a real control program and logs but simulated vehicle and exter-
2↑ https://github.com/ArduPilot/ardupilot/issues/12121 
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Table 2.2. List of accident cases caused by cyber-physical bugs.
Case
ID Category Impact Condition Root Cause (Bug)

Patch
Commit
Number

Still Vulnerable
in ArduPilot 3.5

and up?

1

Controller
Parameter
Corruption

Extreme
vehicle

instability or
fly off course

Command
& turn

No range check of
kP parameter for x,
y-axis velocity con-
trollers

9f1414a∗ Yes

2

Extreme
vehicle

instability
or crash

Command
& altitude

change

No range check of
kP parameter for z-
axis velocity con-
troller

9f1414a∗ Yes

3

Extreme
vehicle

instability
or crash

Command
& turn

No range check of
kP parameter
for roll angular con-
troller

9f1414a∗ Yes

4

Extreme
vehicle

instability
or crash

Command
& turn

No range check of
kP parameter for
pitch angular con-
troller

9f1414a∗ Yes

5

Flight
Mission

Corruption

Crash
after slow
movement

Command
& speed
change

Wrong variable
name leading to
out-of-range x,
y-axis velocity

e80328d No

6
Moving to
an invalid
location

Command

Wrong waypoint
computation based
on non-existent
coordinate

9739859 No

7 Crash Command

Invalid type-casting
of z-axis location
causing an integer
overflow

756d564 No

8

Data
Processing

Error

Crash Command

Missing divided-by-
zero check of kP pa-
rameter for z-axis
position controller

c2a290b No

9 Crash Command

Missing divided-by-
zero check of kP pa-
rameter for x, y-axis
position controllers

c03e506 No

10 Crash
Weak
or no
wind

Missing divided-by-
zero check in angu-
lar calculation

29da80d No

∗ The bug is partially patched by ArduPilot developers and still vulnerable.

nal environment. Widely used in drone industry, the SITL simulator provides high-fidelity

simulation of the vehicle as well as the physical environment it operates in (including aero-

dynamics and disturbances). We leverage MAVLink [48 ] to trigger cyber-physical bugs by
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issuing GCS commands to adjust control/mission parameters. MAVLink is able to commu-

nicate with both real and simulated RAVs.

Investigation Results. Table 2.3 presents the results of our investigations using

Mayday. For each case, Mayday first performs the control-level investigation, which iden-

tifies the initial digressing controller and infers the CVDG-level corruption path(s) by ana-

lyzing the control-level log. Mayday then performs then program-level investigation, which

identifies the portion of control program code that implements the CVDG-level paths. We

clarify that the final output of Mayday is not the specific buggy line of code per se. Instead,

it is a small subset of program code (basic blocks) which the investigator will further inspect

to pinpoint and confirm the bug.

Control-Level Investigation. The 2nd and 3rd columns of Table 2.3  show the initial

digressing controller and the CVDG-level corruption path identified in each case, respectively.

The 4th column shows the number of control loop iterations (duration) between the initial

corruption of the control variable and the initial occurrence of controller digression. For

Cases 1-7, that duration can be arbitrarily long. More specifically, the initial corruption of a

control variable on the CVDG-level path may happen first in just a few iterations (e.g., 8 in

Case 1). But the controller’s initial digression could happen an arbitrary number of iterations

later, depending on the timing of the vehicle’s operation that “sets off” the digression (e.g.,

a turn or a change of altitude). Such “low-and-slow” nature of accidents makes it harder to

connect their symptoms to causes and highlights the usefulness of Mayday.

Program-Level Investigation. The 5th and 6th columns of Table 2.3  show respectively

the number of control program basic blocks and lines of source code identified by Mayday

for each case. Notice that the numbers are fairly small (from 7 to 50 basic blocks, or 22 to

137 lines of code), indicating a low-effort manual program inspection. We confirm that the

actual bug behind each case is indeed located in the code identified by Mayday.

Bug Detection Capability Comparison. We have also conducted a comparative

evaluation with (1) two off-the-shelf bug-finding tools: Cppcheck 1.9 [56 ] and Coverity [57 ],

and (2) RVFuzzer [19 ], to detect the bugs behind the 10 accident cases. We used the most

recent stable version of Cppcheck with all its available analysis options to leverage Cppcheck’s
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Table 2.3. Investigation results of accident cases in Table 2.2 . SLoC: Source lines of code.

Case
ID

Control-Level Investigation Program-Level
Investigation

Initial
Digressing
Controller

CVDG-Level
Corruption Path

# of Iterations from
Initial Corruption to

Initial Digression

# of
Basic
Blocks

SLoC Bug
Found?

1 x, y-axis
Velocity P → k̇xy → r̈xy ≥ 4 34 89 3

2 z-axis
Velocity P → k̇z → r̈z ≥ 4 32 85 3

3 Roll
Angle P → kroll → ṙroll ≥ 4 50 121 3

4 Pitch
Angle P → kpitch → ṙpitch ≥ 4 50 121 3

5 x, y-axis
Velocity M → ṙxy ≥ 4 12 44 3

6 x, y-axis
Position M → rxy ≥ 4 48 137 3

7 z-axis
Position M → rz ≥ 4 48 135 3

8 z-axis
Position P → kz → ṙz 4 9 30 3

9 x, y-axis
Position P → kxy → ṙxy 4 41 94 3

10 Roll, Pitch,
Yaw Angle S → xrpy → ṙrpy 1 7 22 3

full capability. For Coverity, we used its online service version. For RVFuzzer, we used its

latest version. The results are shown in Table 2.4 .

Comparison with Cppcheck and Coverity Neither Cppcheck nor Coverity reported any of

the bugs behind the 10 cases. For Cases 1-6, without knowledge about the control model, it

is impossible for Cppcheck and Coverity to check the validity of control/mission parameter

input, or to determine if the RAV controller state – manifested by program state – is seman-

tically valid or corrupted. For Case 7, the overflow of an integer program variable was not

detected by either Cppcheck or Coverity. This was also confirmed by a Cppcheck developer3
 .

For Cases 8-10, accurate detection of divide-by-zero bugs is hard for static analysis-based

tools such as Cppcheck and Coverity. Without a concrete execution confirming a divide-

by-zero instance, they cannot detect such bugs with low false positive and false negative

rates.
3↑ https://sourceforge.net/p/cppcheck/discussion/development/thread/eed7d492df 
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Table 2.4. Bug detection capability comparison results. 3: bug triggered
and located in source code, ∆: bug triggered and faulty input constructed,
and 7: bug not detected.

Case Nature of Bug Mayday Cppcheck Coverity RVFuzzer
ID [56 ] [57 ] [19 ]

1 Missing controller
3 7 7 ∆parameter range check

2 Missing controller
3 7 7 ∆parameter range check

3 Missing controller
3 7 7 ∆parameter range check

4 Missing controller
3 7 7 ∆parameter range check

5 Comparison with
3 7 7 ∆a wrong variable

6
Wrong waypoint

3 7 7 7∗computation based on
non-existent coordinate

7 Integer overflow on
3 7 7 ∆a mission variable

8 Divide-by-zero caused by
3 7 7 ∆invalid controller parameter

9 Divide-by-zero caused by
3 7 7 ∆invalid controller parameter

10
(Probabilistic)

3 7 7 7Divide-by-zero caused
by sensor input

∗ The bug cannot be triggered under the default configuration of RVFuzzer.
However, it can be triggered if RVFuzzer’s flight simulation is re-configured.

Our comparison results highlight the key differences between Mayday and the off-the-

shelf bug-finding tools. First, Mayday complements the generic tools by serving as a spe-

cialized tool (i.e., for RAV control programs) for uncovering cyber-physical bugs that cause

controller anomalies, instead of “syntactic” bugs that cause generic symptoms such as mem-

ory corruption and CFI violation. Second, unlike program debuggers, Mayday debugs

an entire cyber-physical system based on both control- and program-level traces. Third,

Mayday’s bug localization is guided by the RAV control model and its mapping to the

control code; whereas off-the-shelf debuggers are without such domain-specific knowledge.

Even if a static analysis tool is aware of value ranges of control parameters, Mayday

is still necessary because (1) there is no existing static analysis tool that comes with or

generates a parameter-range specification; (2) static analysis is prone to high false pos-

itives/negatives when detecting divide-by-zero bugs (Cases 8-10); and (3) static analysis
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cannot detect semantic bugs such as a wrong variable-name (Case 5), due to unawareness of

control semantics. Mayday, based on actual RAV control program runs, overcomes these

limitations.

Comparison with RVFuzzer Among the 10 cases, RVFuzzer was able to trigger eight cases

caused by GCS input validation bugs (i.e., lack of valid range check for run-time-adjustable

control or mission parameters, as defined in [19 ]). RVFuzzer did not trigger Cases 6 and

10 for different reasons: (1) For Case 6, the reason is insufficient flight simulation time

under RVFuzzer’s default configuration. In this case, given an invalid input, RVFuzzer’s

simulation run terminated before controller anomaly could occur. However, RVFuzzer would

have detected the bug in Case 6, if the simulation had run longer (for hours instead of

minutes by default) for each input value. We note that RVFuzzer limits the simulation

time to achieve high fuzzing throughput; and Case 6 manifests the trade-off between fuzzing

coverage and throughput. (2) Case 10 cannot be detected by RVFuzzer because the bug is

not a GCS input validation bug. Instead, it is triggered probabilistically by the wind speed

sensor input.

In addition to Cases 6 and 10, we have found another interesting bug that RVFuzzer

cannot detect: PSC_ACC_XY_FILT is a runtime-adjustable control parameter (which smooths

the change in x, y-axis acceleration reference), with a default value of 2.0. During fuzzing, no

controller anomaly is observed, when the value of PSC_ACC_XY_FILT is set to 2.0 and when

the value is set to 0. Following its fuzzing space reduction heuristic, RVFuzzer will not test

any other value between 0.0 and 2.0, assuming that [0, 2.0] is a safe range. But in fact, a

positive value close to 0.0 (e.g., 0.0001) for PSC_ACC_XY_FILT will lead to controller anomaly

and hence be missed by RVFuzzer. This bug can be demonstrated with a concrete attack,

which can be investigated by Mayday similar to Cases 1-4 with a Type II CVDG-level

corruption path.

More fundamentally, Mayday and RVFuzzer differ in two aspects: (1) Mayday reac-

tively performs investigation to localize the bug in the source code that had led to an acci-

dent. Mayday involves CVDG-guided source code analysis and instrumentation to bridge

the RAV control model and control program. RVFuzzer proactively discovers vulnerable
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Figure 2.10. Case 1: History of x-axis velocity and acceleration controllers
– the former is the initial digressing controller.

inputs that cause controller anomalies, by treating the control binary code as a blackbox.

(2) RVFuzzer automatically mutates values of control parameters that can be dynamically

adjusted via GCS commands, to uncover vulnerable value ranges of those control parameters

– namely input validation bugs. On the other hand, Mayday aims to trace back and pin-

point cyber-physical bugs, which include not only input validation bugs (e.g., Cases 1-4) but

also other types of bugs such as flight mission corruption (e.g., Cases 6) and data processing

error (e.g., Case 10).

Finally, our comparison between Mayday and RVFuzzer suggests an integration op-

portunity: Given an RAV control program (with both source and binary), we can first

apply RVFuzzer to construct a concrete attack/accident – instead of waiting for one to hap-

pen – that indicates the existence of a vulnerable control/mission parameter. We then use

Mayday to reproduce the accident/attack with the same malicious input, collect the control

and program logs, and locate and patch the bug at the source code level. We can perform

such integrated “fuzzing – debugging – patching” workflow for the eight cases detected by

RVFuzzer.

Case Study: “Unexpected Crash after Turn”

We now present the investigations of Cases 1 and 5 as detailed case studies. In Case

1, the quadrotor’s mission was to first stop at waypoint A to pick up a package, then fly

straight north (along the y-axis) to waypoint B, where it would make a 90-degree turn to
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1 void GCS_MAVLINK: : handle_param_set ( . . // Parameter update
2 . . .
3 //No range check
4 vp−>s e t _ f l o a t ( packet . param_value , var_type ) ;
5 Vector2 f AC_PI_2D : : get_p ( ) const{
6 . . .
7 return ( _input ∗ _kp) ; // No range check
8 void AC_PosControl : : rate_to_accel_xy ( . . . // C o n t r o l l e r
9 . . .

10 // Access parameter _kp
11 vel_xy_p = _pi_vel_xy . get_p ( ) ; // No range check

Listing 2.1 Cyber-physical bug behind Case 1. The range check patch can be
applied in Line 7.

fly east (along the x-axis) to the destination. After the pickup, to maintain the y-axis speed

(5 m/s) with the increased payload, the operator issued a parameter-changing command via

GCS to increase the kP parameter, shared by both x- and y-axis velocity controllers. The

flight from A to B was normal. Unexpectedly, when the vehicle made the scheduled turn at

B, it became very unstable and soon lost control and crashed.

Mayday first performs the control-level investigation. By analyzing the control-level log,

Mayday finds that the initial digressing controllers are the x- and y-axis velocity controllers,

both with digression between the vehicle velocity state (ẋxy) and reference (ṙxy) starting at

around Iteration 23267 (after the scheduled turn at Iteration 20858). Figure 2.10a  shows

the x-axis velocity state and reference. 4
 Next, Mayday checks their child controllers (i.e.,

the x, y-axis acceleration controllers) and confirms that the child controllers did not exhibit

any digression (i.e., ẍxy always tracked r̈xy), even after the velocity controllers’ digression.

Figure 2.10b  shows the x-axis acceleration state and reference. Based on Table 2.1  , Mayday

infers that the CVDG-level corruption path is P → k̇xy → r̈xy (Type II).

Mayday then performs the program-level investigation. It runs Algorithm 2 on the

program execution log, starting from Iteration 23267 and going backward, to find data flows

that correspond to the CVDG-level corruption path. The multiple data flows found by the

algorithm reveal that they all started from the parameter-changing GCS command (P ),

which led to the modification of kP (which is part of k̇xy) during Iteration 13938 – much
4↑ Those for y-axis velocity are omitted to avoid duplication.
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earlier than the digression (23267). kP remained unchanged after Iteration 13938. Finally,

Mayday maps the data flows to 34 basic blocks, among which we (as investigator) find the

actual bug.

Listing 2.1 shows the code snippets with the bug. When a parameter-changing command

is received, set_and_save saves the new parameter value. The value is later retrieved by

get_p, when rate_to_accel_xy is called by the x, y-axis velocity controller. The code

indicates that the controller would accept any kP value from the GCS without a range

check! (A range check should be added at Line 7.) The relevant log also shows that, despite

the improper kP value, the vehicle remained stable from A to B. This is because the x-

and y-axis velocity controllers are not sensitive to kP under constant speed with negligible

instantaneous error (i.e., ṙxy − ẋxy). However, when the vehicle turned 90 degrees, the x-axis

velocity had to increase from 0 m/s to 5 m/s (and the opposite for y-axis velocity) and the

impact of kP manifested itself during the acceleration/deceleration.

Case Study: “‘Frozen’ Velocity after Slowdown”

While Case 1 was caused by corruption of control parameters (Type II), Case 5 was

triggered by corruption of flight mission (Type IV). We note that this case was first discussed

by [19 ] as an attack scenario; and the corresponding vulnerability was found but without exact

reasoning of the root cause (bug) at source code level. Here, we demonstrate how Mayday

can locate the bug via post-accident/attack investigation.

In Case 5, the quadrotor flew east-bound (along the x-axis) at a velocity of 2 m/s. During

one segment of the flight, the vehicle is supposed to take aerial survey video of a specific

landscape (e.g., an archaeology site) hence the operator issued a mission-changing command

to reduce the vehicle speed to 15 cm/s so that the on-board camera could capture detailed,

slow-progressing view of the landscape. After the video-shooting operation, the vehicle was

supposed to resume the 2 m/s cruising velocity. However, it seemed to get “stuck” in the 15

cm/s velocity and did not respond to any velocity-changing command from the operator.

Mayday first performs the control-level investigation. From the control-level log, it

finds that the initial digressing controller is the x-axis velocity controller, with the digression
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Figure 2.11. Case 5: History of x-axis velocity and acceleration controllers
– the former is the initial digressing controller.

1 c l a s s AC_PosControl {
2 pub l i c :
3 f loat get_max_speed_xy ( ) const { return _speed_cms ; }
4 . . .
5 void AC_WPNav: : set_speed_xy ( f loat speed_cms ) {
6 // range check new t a r g e t speed
7 − i f ( _pos_control . get_max_speed_xy ( ) >=
8 − WPNAV_WP_SPEED_MIN) { // Buggy code
9 + i f ( speed_cms >= WPNAV_WP_SPEED_MIN) { // Patched code

10 _pos_control . set_max_speed_xy (_wp_speed_cms) ;
11 // f l a g t h a t wp l e a s h must be r e c a l c u l a t e d
12 _f lags . recalc_wp_leash = true ;

Listing 2.2 Cyber-physical bug behind Case 5.

between the velocity reference ṙx and the operator-set velocity (which is part of mission

M), starting from Iteration 23629 (Fig 2.11a ). Different from Case 1, there is no digression

between the x-axis velocity state (ẋx) and reference (ṙx), hence the vehicle did not lose

control during the entire flight, despite the “frozen” speed. Mayday also confirms that

the child controller (i.e., the x-axis acceleration controller) did not exhibit any digression

(Fig 2.11b ). In other words, both velocity and acceleration states correctly tracked their

respective references and hence are consistent. Based on Table 2.1 , Mayday infers that the

CVDG-level corruption path is M → ṙx (Type IV).

Next, Mayday performs the program-level investigation. Starting from the program

execution log at Iteration 23629 and moving backward. Algorithm 2 finds the data flow that

corresponds to the CVDG-level corruption path: It started from the velocity-changing (from
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2 m/s to 15 cm/s) command at Iteration 17736, which led to the modification of x-axis

velocity reference (ṙx) at Iteration 17742. Mayday reports 12 basic blocks that may be

involved in the data flow.

From the 12 basic blocks, we pinpoint the bug as shown in Listing 2.2 . The code intends to

enforce a minimum mission velocity (WPNAV_WP_SPEED_MIN, which is 20 cm/s in ArduPilot)

through a range check on the flight mission velocity input (speed_cms) (Line 9, which is the

patch). But the code, by mistake, compares the minimum mission velocity with the current

velocity _pos_control.get_max_speed_xy(), not with the set velocity speed_cms (Line

7)! This bug caused the control program to accept the 15cm/s velocity, which is lower than

the minimum mission velocity. Even worse, after this velocity change, the x-axis velocity

controller will refuse to accept any other velocity change, because the result of the (buggy)

comparison will always be FALSE. The 12 basic blocks identified by Mayday cover the

buggy statement with the wrong variable name, which RVFuzzer [19 ] cannot report.

2.7.2 Scope Reduction for Bug Localization

As shown in Section 2.7.1 , Mayday can significantly narrow down the scope of control

program code for manual inspection to pinpoint a bug, thanks to 1) control model (CVDG)-

guided corruption inference and 2) program execution logging. In this section, we define

and implement a baseline investigation method without adopting these two ideas. We then

compare Mayday with the baseline, with respect to the number of basic blocks they identify

for bug localization.

The baseline model only analyzes the control program source code and control-level log.

To its favor, we assume that the baseline method is able to identify at least one corrupted

control variable based on the control-level log. From the corrupted variable, it performs

static analysis (i.e., point-to analysis and backward slicing) to identify the corresponding

basic blocks that implement the slice. Figure 2.12 shows, in log scale, the number of basic

blocks reported by the baseline method for each of the 10 cases in Section 2.7.1 , comparing

with Mayday. For each case, the baseline method reports thousands of basic blocks for

bug localization; whereas Mayday reports tens of them. This comparison highlights the
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Figure 2.13. Run-time overhead of Mayday: average execution time of
soft real-time tasks with and without Mayday in log scale. While Mayday
introduces run-time overhead, it still meets the real-time requirement without
missing deadlines.

benefit (and novelty) of Mayday’s control model guidance and program-level logging, which

mitigates the long-existing problem of state explosion [41 ], [58 ] faced by generic program

attack provenance.

2.7.3 Run-time, Storage and Energy Overhead

By identifying the basic blocks that implement the data flows in the CVDG (Section

2.4.3 ), we instrumented and logged 40.08% of the basic blocks in ArduPilot, introducing

run-time, storage, and energy overheads. We measure these overheads using a real quadrotor

RAV.
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Run-time Overhead. We measure the execution time of the 40 soft real-time tasks in

ArduPilot during 30-minute flights with twenty random and different flight operations, with

and without Mayday. The execution frequencies of the ArduPilot tasks vary, from 0.1 Hz

to 400 Hz. The results are shown in Figure 2.13 , with each task’s average execution time

and its soft real-time deadline (defined in ArduPilot) in log scale.

The results show that Mayday does increase the task execution time. Relative to the

execution time without Mayday, the increase ranges from 8% to 170% However, comparing

to the soft real-time deadline of each task, the increase (i.e., the increment/deadline ratio)

is small, ranging from 0.02% to 14.0% and averaging at 3.32%. As expected, our selective

instrumentation method tends to impose higher overhead on functions that frequently access

control variables (e.g., update_GPS and run_nav_updates) and lower overhead on functions

that do not.

We further breakdown the logging overhead between log generation (e.g., program path

encoding) and I/O (writing to SD card), as shown in Table 2.5 . With a 400 Hz control loop

frequency, Mayday’s logging takes 7.6% of the time in one iteration – 190.72 µs in total.

We note that such run-time fine-grain program tracing is feasible, thanks to the intrinsically

low control frequency of cyber-physical systems, relative to that of their controller CPUs.

Table 2.5. Logging overhead breakdown.
Average Latency / Iteration (µs) Breakdown (%)

Log generation 37.22 19.71

Log I/O 153.5 81.29

Logging total 190.72 100

Storage Overhead. We measure Mayday’s log data generation rate and volume during

the 30-minute experiment. The average log generation rate is 742.8 KB/s: 15.4 KB/s for

ArduPilot’s existing vehicle control log and 717.4 KB/s for our program execution log. The

total log volume is no more than 1.3 GB in 30 minutes, which is the typical maximum flight

time for many commodity RAVs, such as Navio2, DJI Phantom 4 and Parrot Bebop2. Such
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a volume can be easily accommodated by lightweight commodity storage devices (e.g., our

64 GB SD card).

Battery Consumption. Mayday consumes fairly small amount of battery power,

compared with the RAV motors. Our quadrotor is equipped with four motors whose total

power consumption is approximately 147.5-177.5 Watts [59 ] excluding the computing board’s

power consumption (2.5 Watts). According to specifications, our sensor board consumes no

more than 0.65 Watt [60 ], and its main processor board consumes a maximum of 5.0 Watts

(less than 3.69% of the overall power consumption), with other attached devices (e.g., SD

card) powered via the main processor board [61 ]. Mayday’s power consumption is covered

by the main processor board and therefore an even smaller fraction of the overall power

consumption.

2.8 Discussion

Code and Log Protection. We assume code integrity after instrumentation, log integrity,

and log recover-ability in Mayday. To achieve code integrity, we can apply content-based

integrity checking [25 ], [26 ] via remote attestation [62 ], [63 ]. We can also apply disk content

integrity techniques [27 ] for log integrity. To recover from log corruption, special file system

techniques (e.g., journaling file systems [64 ]) may be applied.

To protect kernel and flight data recording (FDR) modules at run-time, we could apply

kernel hardening (e.g., SecVisor [65 ], NICKLE [66 ], and nested kernel [67 ]) and persistent

data protection (e.g., InkTag [68 ]) techniques. However, many of those techniques are not

suitable for resource-constrained RAV micro-controller platforms. Fortunately, there exist

lightweight memory isolation techniques [10 ], [11 ], [69 ] that can protect security-critical mod-

ules (e.g., kernel and FDR) with low overhead. In particular, MINION [10 ] can be readily

deployed with ArduPilot for memory access protection, even on low-end micro-controllers

with only an MPU (memory protection unit). Additionally, we could consider Date Execu-

tion Prevention (DEP) [30 ] for thwarting code injection.

Log Volume Reduction. We assume that the subject RAV has enough storage space

to store logs in light-weight, low-cost devices such as commodity SD cards. However, future
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control programs may generate a larger volume of logs due to the complexity of their control

algorithms and the fact that Mayday must record fine-grain, reproducible program execu-

tion paths/traces. Existing techniques reduce log size by (1) compressing the entire log [36 ]

or (2) identifying and removing redundant log entries [43 ], [58 ]. Similar to (2), we plan to

leverage control- and program-level dependencies to further reduce the log volume.

Scope of Applicability. We clarify that, rather than being a generic bug-finding tool,

Mayday specializes in finding RAV cyber-physical bugs, which involve incomplete or incor-

rect implementation of the underlying control theoretical model. As acknowledged in Section

2.1 , there exist other types of vulnerabilities in RAV systems, such as traditional program

vulnerabilities and vulnerabilities in physical components (e.g., sensors). For physical at-

tacks (e.g., sensor and GPS spoofing), Mayday is fundamentally not suitable, as the root

cause of those attacks lies in the physical component (e.g., vulnerable sensing mechanism of

a gyroscope device [70 ]), not in the control program. Hence Mayday’s program execution

trace analysis would not be necessary for detecting or investigating physical attacks.

Fortunately, defenses against physical attacks exist and can be deployed alongside with

Mayday. Many sensor attacks can be detected by checking the RAV control log [33 ]

for anomaly and inconsistency among sensors [70 ]. Physical sensor spoofing attacks can

be detected by cross-checking the observed and expected controller states [12 ], [13 ]. GPS

spoofing attacks can be detected by commodity hardware (e.g., u-blox M8) and advanced

techniques [71 ], [72 ]. Jamming attacks can be defended against via existing solutions [73 ],

[74 ].

More Robust Control Models. We acknowledge that more robust control models are

technically possible and can make the RAV more tolerant of disturbances and changes. For

example, a “self-examining” control algorithm can be designed to dynamically compute and

verify the system’s stability properties, in response to every GCS command. As another

example, the PID control algorithm can be replaced by more advanced ones such as the

Linear-quadratic regulator controllers [46 ] to better mitigate disturbances. However, such

advanced control models are not yet widely adopted in commodity control programs (e.g.,

ArduPilot and PX4).
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More importantly, the program-level implementation of advanced control theoretical

models may still be buggy, due to programming errors (e.g., wrong variable names, missing

parameter range checks, etc.) that Mayday is tasked to find out. In other words, despite

increasing robustness of RAV control models, Mayday will continue to help debug their

implementation at the program level to avoid misuses or exploits.

55



3. RVFUZZER: FINDING INPUT VALIDATION BUGS IN

ROBOTIC VEHICLES THROUGH CONTROL-GUIDED

TESTING

Despite the new paradigm of “cyber-physical” crash investigation introduced by Mayday,

three open challenges remain. First, RAVs still have latent cyber-physical bugs since Mayday

can only reactively find vulnerabilities after RAV accidents. Second, Mayday requires source

code to (1) map the control model to the control program and (2) identify cyber-physical

bugs. However, we cannot guarantee that source code is always available if RAV programs

are legacy or closed-source programs. Finally, despite our purpose to discover cyber-physical

bugs, we may not want to crash physical RAVs due to safety and cost issues.

To solve the aforementioned problems for traditional programs, researchers on the cy-

ber side have developed black-box fuzzing techniques to hunt cyber-physical bugs without

source code proactively. Unfortunately, those fuzzing works have focused only on detecting

traditional “syntactic” bugs in the cyber domain. This is far from sufficient to detect cyber-

physical bugs without considering the “physical” aspect. In this chapter, we will present

RVFuzzer to bring the “cyber-physical” aspect to black-box fuzzing techniques for cyber-

physical bug discovery.

3.1 Background

RAV Control Model. The RAV control model is the generic theoretical underpinnings

that control the vehicle’s movements and operations during its missions (e.g., flying in a

trajectory with multiple waypoints). The RAV’s movements are along its six degrees of

freedom (6DoF), which include the x, y, and z-axes for movement and the roll, pitch, and

yaw for rotation (Figure 2.1  ). The control model consists of multiple controllers, each for a

specific degree of the 6DoF. For example, the x-axis controller is shown in Figure 2.3 .

Inside the x-axis controller, there are three primitive controllers in a cascade, which

are responsible for controlling the vehicle’s position, velocity, and acceleration along the

x-axis, respectively. Each primitive controller takes two state inputs: a reference state
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(r(t)) computed by its upstream primitive controller; and an vehicle state (x(t)) reported

by sensors. The goal of the controller is to keep the vehicle state close to the reference

state, via its core function of controller state stabilization. The output of the function is

the reference state for its downstream primitive controller. Each primitive controller has

multiple adjustable parameters and accepts high-level mission directives (e.g., change of

target location or speed).

Overall the RAV control model involves complex dependencies between the 6DoF con-

trollers, each having multiple parameters and accepting mission directives. Moreover, the

controllers, sensors, and the vehicle’s physical operations (e.g., those of motors) create a

feedback loop, which enables the periodic, iterative working of the controllers.

RAV Control Program. An RAV control program implements the RAV control model.

Correspondingly, it involves the following main modules: (1) a sensor module to collect

sensor inputs (e.g., from GPS, inertial measurement unit, etc.) for periodic vehicle state

observation, (2) a controller module to generate control output based on current mission,

reference state, and sensor input, and (3) a mission module to interpret mission directives

and execute them. These modules execute iteratively in the periodic control epochs.

During a flight, the RAV communicates with a ground control station (GCS), which may

issue a variety of GCS commands to the control program. Many of those commands allow

RAV operators to dynamically adjust the controller and mission parameters. We note that

such a dynamic parameter change may be necessary to improve vehicle control performance

(e.g., enhancing stability), in response to mission dynamics such as payload change and

non-trivial external disturbances.

In addition to the control and communication functions, most RAV control programs

have a runtime controller state logging function, for record-keeping and troubleshooting

purposes. Real-world commodity RAVs (e.g., Intel Aero [75 ], 3DR IRIS+ [76 ], and DJI drone

series [77 ]), as well as their simulators, log in-flight controller states in persistent storage.

RVFuzzer leverages such logs for automatic determination of controller malfunction.

Control Parameters. Because of the complexity and generality of RAV control model

and program, a large number (hundreds) of configurable parameters exist in the control
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program. Many of them are dynamically adjustable at run-time via the GCS command

interface. For example, in the ArduPilot software suite [22 ], there are 247 configurable

control parameters, including 111 parameters for the x-, y-axis controller, 119 for the z-axis

controller, 29 for the roll controller, 29 for the pitch controller, 30 for the yaw controller, 103

for motor control, and 40 for mission specification. We note that, while the total number

of the parameters is 247, some of the parameters are shared by multiple controllers. When

receiving a GCS command to adjust one of these parameters, the control program is supposed

to perform an input validity check to determine if the new value is within the safe range of

that parameter. Unfortunately, such a check may be missing or based on an erroneous value

range.

3.2 Attack Model

Attack Model and Assumptions. Attacks that exploit cyber-physical bugs are charac-

terized as follows: Knowing an adjustable control parameter with incorrect or missing range

check logic in the control program1
 , the attacker concocts and issues a seemingly innocent

– but actually malicious – parameter-change GCS command to the victim RAV. Without

correct input validation, the illegitimate parameter value will be accepted by the control

program and cause at least one of the RAV’s 6DoF controllers to malfunction – either im-

mediately or at a later juncture, inflicting physical impacts on the RV. When planning an

attack, the attacker may also opportunistically exploit a certain environmental condition

(e.g., strong wind) under which a parameter-change command would become dangerous.

For example, he/she might wait for the right wind condition (e.g., by following weather

forecast) to launch an attack with high success probability. Such a case will be presented in

Section 3.5.5 .

The attacker can be either an external attacker or an insider threat. In the case of

an external attacker, we assume that he/she is able to perform GCS spoofing to issue the

malicious command, which is justified by the known vulnerabilities in the wireless/radio

communication protocols between RAV and GCS [78 ]–[82 ]. In the case of an insider threat,
1↑ The attacker may acquire such knowledge via a program vetting tool (such as RVFuzzer).

58



we assume that the insider is a rogue RAV operator (not a developer), who does not have

access to control program source code and cannot update the control program firmware.

Attack Model Justifications. Our attack model is realistic (and attractive) to attack-

ers for the following reasons: (1) Such an attack incurs a very small footprint – just one

innocent-looking command, without requiring code injection/trojaning, memory corruption,

or sensor/GPS spoofing; (2) The attack can still be launched even after the control program

has been hardened against traditional software exploits [10 ], [30 ], [83 ], [84 ]; (3) The attack

looks like an innocent “accident” because the malicious parameter value passes the control

program’s validity check. In some cases (i.e., range specification bugs), it is even in the valid

range set in the control program’s specification.

Why would the attacker bother to manipulate control parameter values, instead of just

taking control of, or crashing the vehicle? A key observation provides the answer: If the

attacker is not aware of – and hence does not manipulate – illegitimate-but-accepted control

parameter values, it would actually not be easy to disrupt or crash an RAV with minimum

footprint2
 . This is because both the RAV control program and control model already achieve

a level of robustness for the RAV to resist being commanded into instability or danger: The

control program can identify and reject many illegitimate commands; and the control model

can filter or mitigate the impacts of some commands that escape the control program’s

check [44 ], [45 ]. Moreover, an internal attacker is also motivated to exploit illegitimate

control parameter values that are erroneously considered normal in the RAV’s specification

(i.e., range specification bugs), as the attacker could evade attack investigation by claiming

that he/she was following RAV control specification when issuing the command in question.

We do acknowledge that there exist scenarios where attackers can successfully launch

attacks without exploiting cyber-physical bugs. For example, an insider could hijack an

RAV by changing its trajectory, when working alone without a co-operator (who might

otherwise catch the attack in action).
2↑ The minimum footprint would help avoid detection before the attack succeeds.
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Figure 3.1. Overview of RVFuzzer.

3.3 RVFuzzer Design

In this section, we present the design of RVFuzzer. We first give an overview of

RVFuzzer’s architecture (Section 3.3.1 ) and then present detailed design of two key compo-

nents of RVFuzzer: (1) the control-guided instability detector that monitors the vehicle’s

controller state to detect controller malfunction (Section 3.3.2 ) and (2) the control-guided

input mutator that generates control program inputs for efficient program testing (Sec-

tion 3.3.3 ).

3.3.1 Overview

RVFuzzer is designed to (1) detect physical instability of the RAV during testing and

(2) generate test inputs iteratively to achieve high testing efficiency and coverage. Fig-

ure 3.1 presents an overview of RVFuzzer, which consists of four main components: a GCS

program, the subject control program, a simulator, and a control-guided tester – the core

component of RVFuzzer. The roles of the first three components are as follows: the GCS

software is responsible for issuing RAV control parameter-change commands; the subject

control program, as the testing target, controls the operations of the (simulated) RAV; and
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the simulator emulates the physical vehicle and its operating physical environment. We note

that (1) the GCS and RAV control programs are from real-world GCS and RAV; and (2)

our simulators [55 ], [85 ] are widely adopted for robotic vehicle design and testing.

RVFuzzer’s control-guided tester consists of two sub-modules: (1) control instability

detector and (2) control-guided input mutator. During testing, the control instability detec-

tor detects non-transient controller anomalies of the target RAV (e.g., crash and deviation),

as indication of control program execution anomaly caused by an cyber-physical bug. The

control-guided input mutator is a feedback-driven input mutator for efficient mutation of

control parameter and environmental factor values. Using the results of the control insta-

bility detector as feedback, the mutator adaptively mutates control parameter values via

a well-defined RAV control interface (i.e., GCS commands created and issued by the GCS

software). In addition, it mutates environmental factors (e.g., wind) by re-configuring the

simulator.

3.3.2 Control Instability Detector

The goal of the control instability detector is to continuously monitor RV controller state

to determine if a specific GCS command has induced non-transient controller anomaly. Such

a controller anomaly can be considered as an indication of an cyber-physical bug. We note

that cyber-physical bugs may not lead to program crash, a common indicator of traditional

bugs (e.g., memory corruption).

We first define a rule to detect controller anomalies, which is tailored for cyber-physical

bugs. We then describe the mechanism to monitor the RVFuzzer’s 6DoF controller states

for detecting such a controller anomaly.

Indication of Controller State Deviation Exploitation of an cyber-physical bug will

cause an RAV’s failure to stabilize its controller states and/or complete its mission. To

accurately detect bug-induced controller anomaly, RVFuzzer must be equipped with the

capability of controller state deviation detection. Among the possible controller anoma-

lies experienced by an RAV, there are two types of controller state deviation: (1) vehicle
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state deviation and (2) reference state deviation. Accordingly, we define a detection rule to

determine if one of the two types of controller state deviation has occurred.

The first type – vehicle state deviation – is the case where a controller (e.g., the primitive

x-axis velocity controller) fails to stabilize its vehicle state (x(t)) according to its reference

state (r(t)). In the theoretical control model, a controller always tries to keep x(t) close to

r(t) (Section 3.1 ). Consequently, if the difference between x(t) and r(t) keeps increasing and

exceeds a certain threshold, the vehicle state will be considered deviating from the reference

state. To quantify the vehicle state deviation, we leverage the integral absolute error (IAE)

formula [52 ] which is widely used as a stability metric in control systems.

deviation(t) =
∫ t+w

t

|r(s) − x(s)|
w

ds (3.1)

Given a time window w and starting from a certain time instance t, the formula quantifies the

level of deviation (deviation(t)). If deviation(t) is larger than a pre-determined threshold τ ,

our rule will determine that there is a controller state deviation starting at t. We will describe

how to experimentally determine w and τ for each 6DoF controller state in Appendix 3.4.1 .

The second type – reference state deviation – is the case where an RAV deviates from

its given mission. A controller is expected to adjust its reference state to track its mission.

If a controller fails to do that, it is considered malfunctioning. To detect such a deviation,

our rule will check whether the difference between the reference state and the mission target

becomes persistently greater than a threshold.

We note that our detection rule only considers non-transient controller state deviation.

An RV may experience transient controller state deviation during normal operation but can

effectively recover from it, thanks to the robustness features of the controllers such as the

extended Kalman filter [86 ]–[88 ].

Control Instability Detection We now apply our “vehicle-reference” and “reference-

mission” deviation determination rule to detect control instability. During a test mission,

the control program readily logs all its 6DoF controller states (Section 3.1 ). The log data

can be retrieved by the GCS software, which will then be accessed by the Control Instability

Detector and applied to the evaluation of the detection rule (Fig.3.1 ). Note that the controller
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states include those of the three primitive controllers (for position, velocity, and acceleration

control) inside each 6DoF controller; and each primitive controller logs its observed, reference

and mission states. As such, the Control Instability Detector can apply the detection rule

to detect controller state deviation at any primitive controller.

3.3.3 Control-Guided Input Mutator

A software testing system needs to judiciously generate program inputs to achieve high

bug coverage while reducing the number of the subject program’s test runs. In other words,

the set of generated testing inputs should be representative to produce the same or similar re-

sults when other untested inputs were provided to the program. We first define RVFuzzer’s

input mutation space (i.e., types and value ranges of dynamically adjustable control parame-

ters). We then describe our control-guided input mutation strategy to generate representative

testing inputs, with consideration of environmental factors that affect the RAV operation

and control.

Our input generation method considers both control parameters and environmental fac-

tors3
 . For control parameters, we first define their value mutation spaces. We then present

the feedback-driven input mutator which generates a reduced set of control parameter-change

test inputs. The mutator also mutates the external environmental factors and tests the con-

trol program under different combinations of input control parameter values and environment

factor values.

Control Parameter Mutation Space

The input mutation space of the subject control program consists of: (1) the list of

dynamically adjustable control parameters, (2) the range of all possible values for each

parameter, and (3) the default value of each parameter.

The list of control parameters is obtained from the specification of control program and

the GCS command interface. We note that this is public information even for a close-

source control program. The three most popular control software suites (i.e., ArduPilot [22 ],
3↑ Environmental factors are not program input but physical context in which the RAV operates.
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PX4 [23 ], and Paparazzi [24 ]) all support a common parameter tuning interface defined in

MAVLink [48 ], the de facto protocol for RAV-GCS communications.

The value ranges of control parameters can be decided (1) by the data type of the control

parameter and (2) by polling the control program itself. For a control parameter, its data

type generically sets its value range. For example, the range of a 32-bit integer parameter

is [ − 231, 231 − 1]. Interestingly, the ranges of many control parameters can be narrowed by

polling the control program. This can be done by first sending a parameter-change command

with a very large/small value; and then querying the actual value of that parameter, which

now becomes the maximum/minimum value of the parameter defined in the control program.

While the possibility of such a probe is specific to control program implementation, we do

observe such implementation logic in ArduPilot and PX4.

The mutator also selects a default value within the range of each control parameter. Such

a default value will be used in the input space search during mutation. We note that the

set of default values of control parameters is normally made available by RAV vendors (e.g.,

3DR, DJI, and Intel), as a guidance to RAV users when tuning the control parameters.

Feedback-Driven Parameter Input Mutator

RVFuzzer’s input mutator accepts two inputs: the control parameter mutation space

and the result of the Control Instability Detector from the previous run of the control

program. The output of the mutator is the testing input for the program’s next run. The

efficiency of the control program vetting process depends on how well the mutated inputs

are generated to trigger cyber-physical bugs without launching too many program test runs

with different inputs. To explain our mutation strategy and methods, we first introduce the

underlying intuition of our strategy and then describe our feedback-driven testing process

with two steps: one-dimensional mutation and multi-dimensional mutation.

Input Space Reduction Strategy. The purpose of RVFuzzer is to find vulnerable

– i.e., illegitimate but accepted – values for each dynamically adjustable control parameter.

However, it is infeasible to test all possible values of a parameter. To improving testing

efficiency, RVFuzzer must be able to selectively skip certain ranges of parameter values, if
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they lead to the same or similar outcome as the tested values. The value range-skipping idea

is feasible thanks to the following observation: When control instability starts to be observed

while increasing (decreasing) the value of a control parameter, further increase (decrease) of

the parameter value will only maintain or intensify the instability.

We note that the aforementioned observation is generally valid. More specifically, in a

control model, controllers and filters can be lumped together as part of its dynamics. Based

on Root Locus [89 ], the trajectory of the loci always follows some asymptote. Hence, the

change of a parameter will cause a monotonic change in stability. Sensor calibration can be

considered as a constant controller anomaly, which will cause system response to degrade

as the magnitude of the anomaly increases. Mission parameters will have different effects:

Some can be grouped as part of the dynamics based on Root Locus; Some others, such as

angle limitations, could cause an excessive response that introduces undesirable overshoot.

This can be viewed as an integral windup, with a larger limit causing a larger overshoot.

Based on this observation, we propose two features for the mutator. (1) It will report

valid/invalid value ranges — not individual values. Such a range will have a lower (minimum)

and upper (maximum) bound. Any parameter value outside the range will cause control

instability. (2) The mutator will be driven by feedback from the Control Instability Detector

(Section 3.3.2 ) to determine the next testing input. Such feedback-driven mutation will be

able to skip certain parameter value ranges for efficiency.

One-dimensional Mutation. In the first step of control software vetting, RVFuzzer’s

input mutator determines the valid/invalid range for each control parameter independently.

The mutator isolates the impact of the target parameter on the controller state deviation by

setting the values of all other parameters to their default values.

We present the one-dimensional mutation procedure in Algorithm 3 . For each target

control parameter, the mutator determines the upper and lower bounds of the valid value

range by utilizing a mutation-based binary search method. We elaborate the method (Al-

gorithm 3 ) to find the upper bound of the valid range as follows. We note that the mutator

follows a syntactically similar method to find the lower bound of the valid range.
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To find the upper bound, the mutator will iteratively launch test runs, using the binary

search method to set the next run’s input value and to update the working range. It will

set the initial min-limit of the working range as the default value of the target parameter;

the initial max-limit of the working range as the maximum possible value of the target

parameter; and the initial input value as the mid-point between the min-limit and max-limit

values. Thereafter, in each run, the mutator obtains the output of the Control Instability

Detector under the current input value, and updates the working range in the next run by

considering the following two cases based on the detector’s output (Line 14).

• Case 1 (Line 17-18): If the mutator observes that the current input value does

not cause any deviation, it skips the lower half of the working range in the next

run and sets the new min-limit as the current input value. This decision is justi-

fied by our earlier observation on the monotonic property of control instability.

For the next run, the mutator will again set the new input value as the mid-point

between min-limit and max-limit.

• Case 2 (Line 15-16): If the current input value leads to controller state deviation,

the mutator concludes that there are other values lower than the current input

value which can also cause deviation. Hence, for the next run, the mutator will

skip the upper half of the working range by setting max-limit as the current input

value and the new input value as the mid-point between min-limit and max-limit.

We highlight that, after each run, the mutator skips the values corresponding to one half

of the working range. This input space reduction strategy ensures that the mutator covers

all possible values of the target control parameter efficiently. After determining the working

range for the next run, the mutator sets the input value for the next run as the mid-point of

the new working range (Line 19), following the binary search method. The mutator continues

the (detector) feedback-driven search method, until the difference between the input values

in the current and the next runs is less than a pre-determined threshold M inDiff (Line

20). Finally, the mutator determines the valid value range and the corresponding vulnerable

value range (i.e., invalid range) for the target control parameter.
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Algorithm 3 One-dimensional Mutation.
Input: Input mission (M), input parameter (P ), test environmental factor (E), controller state deviation threshold set for
all primitive controllers (τ)
Output: An invalid range for a target parameter (R)
1: function OneDimensionalMutation(M , P , E, τ) . Main function
2: Initialize R
3: R.max← OneMutation(M, P, E, τ, U) . ’U’: Upper-bound search
4: R.min← OneMutation(M, P, E, τ, L) . ’L’: Lower-bound search
5: return R . Return an invalid range of one parameter
6: function OneMutation(M , P , E, τ, bound)
7: if bound = U then . ’U’ indicates an upper-bound search
8: {test, max-limit, min-limit} ← {(P.Max− P.Default)/2, P.Max, P.Default}
9: else . ’L’ indicates a lower-bound search
10: {test, max-limit, min-limit} ← {(P.Default− P.M in)/2, P.Default, P.M in}
11: M inDiff ← 0
12: do
13: test← test . Store the testing value before mutation
14: Dev ← RunAndDeviationCheck(M, P, test, E, τ)
15: if (bound = U and Dev = T rue) or (bound = L and Dev = F alse) then
16: max-limit← test . Change the testing range
17: else
18: min-limit← test . Change the testing range
19: test← (max-limit + min-limit)/2 . Mutate the testing value
20: while |test− test| > M inDiff . Check the exit condition
21: return GetInvalidRange(test, test, bound, Dev)

Multi-dimensional Mutation. RVFuzzer also performs a more advanced form of input

mutation: multi-dimensional mutation, which finds extra invalid parameter value ranges that

one-dimensional mutation may not find. Such extra invalid parameter values are introduced

because a target control parameter may have dependencies on other parameters. In other

words, different (non-default) setting of such other parameters may expand the invalid range

of the target parameter.

To test the impact of other parameters (Pothers), RVFuzzer performs the multi-dimensional

mutation for each target parameter (Ptarget) as described in Algorithm 4 . In this algorithm,

RVFuzzer utilizes the results from the one-dimensional mutation (Algorithm 3 ) of all con-

trol parameters (Pall) (i.e., the lower and upper bounds of their valid ranges). For the target

parameter, RVFuzzer sets the initial working range as its valid value range obtained from

one-dimensional mutation (Line 2). Thereafter, the mutation of the values of the other

parameters (Line 8-15) and the target parameter (Line 18-21) are performed recursively.

In each recursion, the value of each of the other parameters is mutated among only three

values: the default value, the lower bound of its valid value range and the corresponding

upper bound (Line 11). We note that setting the values of one/more of the other parame-
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Algorithm 4 Multi-dimensional Mutation.
Input: Input mission (M), target testing input parameter (Ptarget), a set of all input parameters including one-dimensional
search results (P Sall), test environmental factor (E), controller state deviation threshold set for all primitive controllers (τ)
Output: An invalid range for a target parameter (R)
1: function MultidimensionalMutation(M , Ptarget, E, P Sall, τ) . Main function
2: R← GetInvalidRange(Ptarget) . Results from the previous step
3: P Sothers ← P Sall − {Ptarget} . A set of other parameters except for Ptarget

4: P Smut ← ∅ . Initialize the mutated parameter set
5: R← DepMutation(M, Ptarget, E, P Sothers, P Smut, R, τ)
6: return R . Return a new invalid range
7: function DepMutation(M , Ptarget, E, P Sothers, P Smut, R, τ)
8: if P Sothers 6= ∅ then . Recursively mutate P Sothers

9: Pmut ← P Sothers.P op()
10: P Smut ← P Smut ∪ Pmut

11: for P V ∈ Pmut.M in, Pmut.Default, Pmut.max do
12: P Smut ← UpdateMutatedValue(P Smut, Pmut, P V )
13: R← DepMutation(M, Ptarget, E, P Sothers, P Smut, τ)
14: else . Update the invalid range of Ptarget if all of P Sothers are mutated
15: R← DepTest(M, Ptarget, E, P Smut, R, τ)
16: return R
17: function DepTest(M , Ptarget, E, P Smut, R, τ)
18: ParameterSet(P Smut) . Configure parameters with values of P Smut

19: Upper ← OneMutation(M, Ptarget, E, τ, U) . ’U’: Upper-bound search
20: Lower ← OneMutation(M, Ptarget, E, τ, L) . ’L’: Lower-bound search
21: return UpdateInvalidRange(R, Upper, Lower)

ters to their lower/upper bound values leads to an extreme scenario which can potentially

exacerbate the impact of the target parameter on the controller state deviation.

After setting the values of the other parameters (Line 18), the mutator follows a proce-

dure similar to the one-dimensional mutation. It employs the mutation-based binary search

method to determine and update the lower and upper bounds of the valid value range of the

target parameter (Line 20-21). The new (in)valid range is then updated (Line 21).

In essence, as RVFuzzer mutates the values of multiple control parameters together, it

can identify additional values of the target parameter that will cause controller state devi-

ation under specific value setting of the other parameters. If such invalid values lie outside

the one-dimensional invalid value range, the multi-dimensional mutation will conditionally

expand the invalid value range to include those values, subject to the setting of the other

parameters. As such, the result of the multi-dimensional mutation can be considered as an

incomplete set of constraints on the values of multiple control parameters.
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Environmental Factors

In real-world missions, the RAV interacts with the physical environment with external

factors such as physical obstacles and wind. Such factors influence RAV’s controller state

and performance. We note that an external factor (e.g., wind) could make an otherwise

valid parameter value cause controller state deviation. This means that such values can

be exploited by attackers. To detect such influence, RVFuzzer mutates and simulates the

impact of environmental factors along with multi-dimensional mutation of parameter values.

We categorize the environmental factors into two types: geography and disturbances.

Typical geographical factors of interest are obstacles encountered by an RAV during its

missions. The RAV will need to take actions to avoid such an obstacle. The actions may

entail changes in the parameter values to enable a change of trajectory. This may expand the

invalid range of the parameter values that will cause controller state deviation. To expose

such cyber-physical bugs, RVFuzzer defines and simulates RAV missions in which the RAV

needs to avoid obstacles via sudden, sharp trajectory changes. An attack case triggered by

obstacle avoidance will be presented in Section 3.5.5 .

External disturbances such as wind and turbulence may also disrupt the RAV’s operation.

RVFuzzer simulates the wind gusts and mutates the wind speed and direction based on

real-world wind conditions. Details of the wind factor setup are given in Section 3.5.4 . The

attack case presented in Section 3.5.5 also exploits the wind condition.

3.4 Implementation

To evaluate RVFuzzer experimentally, we have implemented a prototype of RVFuzzer.

The implementation details of its main components are described as follows.

Subject Control Programs. We choose the quadcopter as our subject vehicle as the

quadcopter operates in all of the 6DoF and it is one of the most widely adopted types of

RAVs [90 ]–[92 ]. We point out that the implementation of RVFuzzer is not specific to a

certain RAV type or model as RVFuzzer only needs the physical quantities (e.g., weight

and inertial parameters) and the corresponding simulator to support a vehicle. This means
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that RVFuzzer can be reconfigured to support other types of RAVs, such as hexacopters

and rovers.

We apply RVFuzzer to vet two control programs that both support the quadcopter:

ArduPilot 3.5 and PX4 1.8. The default vehicle control model supported by both programs

is that of the 3DR IRIS+ quadcopter [76 ]. All vetting experiments (on both ArduPilot and

PX4) are performed using a desktop PC with quad-core 3.4 GHz Intel Core i7 CPU and 32

GB RAM running Ubuntu 64-bit.

Simulator. To simulate the physical vehicle and environment, we utilized the APM

simulator [55 ] and Gazebo [85 ], [93 ] for ArduPilot and PX4, respectively. We note that

RVFuzzer’s control instability detection and input mutation functions can easily inter-

operate with these simulators via the interfaces between the simulators and the control and

GCS programs.

GCS Program. We used QGroundControl [94 ] and MAVProxy [95 ] as the ground control

station software for PX4 and ArduPilot, respectively.

Control-Guided Tester. The control-guided tester is the core component of RVFuzzer.

It is written in Python 2.7.6 with 5,722 lines of code. To implement the key functions

in RVFuzzer, we leveraged the Pymavlink library [96 ], which provides APIs to remotely

control the RV via the MAVLink communication protocol [48 ]. MAVLink is the de-facto

communication protocol for robotic vehicles, which is used not only by ArduPilot and PX4,

but also by other platforms such as Paparazzi [24 ], DJI [77 ], and LibrePilot [97 ]. MAVLink

supports a wide range of GCS commands (e.g., for mission assignment, run-time controller

state monitoring, and parameter checking and adjustment) that are leveraged and tested by

RVFuzzer.

To test the control performance of the subject vehicle, we adopted the AVC2013 [98 ]

mission which is an official mission provided by ArduPilot and used in autonomous vehicle

competitions to test the control and mission execution capabilities of RAVs. To improve the

testing efficiency of RVFuzzer, we adjusted that mission by removing the overlapping flight

courses, reducing the distance between each pair of waypoints, and increasing the vehicle’s

velocity.
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To classify and generate the bug discovery results, we leverage a list of dynamically

adjustable control parameters provided by ArduPilot and PX4 [99 ], [100 ]. Such a list is

usually provided in the Extensible Markup Language (XML) format in the source code and

can be easily parsed.

3.4.1 Thresholds for Controller State Deviation

We present how to determine the threshold values used by our control instability detector

to detect controller state deviation (Section 3.3.2 ). We use the thirty other experimental

missions in our experiments, similar to existing work [12 ]. Specifically, the thresholds are

determined by applying the three-sigma rule [53 ] on the top deviation values. For the time

window (w) in the IAE formula, we set it to the duration of each mission segment (i.e., flight

segment between two consecutive waypoints) within a mission. The list of the threshold

values that we use for each controller state is presented in Table 3.1 .

We note that we do not monitor controller state deviation in the second derivative states

of the 6DoF (i.e., acceleration of any of the 6DoF). This is because, if their vehicle states

are oscillating, they can potentially cause false positives. In fact, for the same reason, some

control programs do not control acceleration in some 6DoF controllers (e.g., ArduPilot does

not control the angular acceleration of roll, pitch, and yaw). However, RVFuzzer can

detect their controller state deviation via the indirect impacts on the dependent states. The

controller state deviation in the second derivative states are propagated to their integral

states (e.g., the first derivative states of the 6DoF), as their controls are intrinsically related.

3.4.2 Physical Impacts Caused by Cyber-Physical Bug Exploitation

We present more details about the cyber-physical bugs found by RVFuzzer and the

implications of the attacks that exploit them in Tables 3.2 (for ArduPilot) and Table 3.3 (for

PX4). The columns of each table shows: (1) the control program modules where the bugs

belong (Control Program Module), (2) the vulnerable control parameters (Parameter, i.e.,

with erroneous range specification or range implementation), and (3) the possible physical
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Table 3.1. List of threshold values for each controller state.
Control Program ArduPilot PX4

Latitude/Longitude
Position 11.62 m 10.08 m

Latitude/Longitude
Velocity 1.23 m/s 4.71 m/s

Altitude Position 2.06 m 3.43 m
Altitude Velocity 0.26 m/s 2.28 m/s

Roll 2.66 deg 5.56 deg
Roll Rate 2.83 deg/s 3.68 deg/s

Pitch 4.64 deg 18.66 deg
Pitch Rate 10.67 deg/s 15.35 deg/s

Yaw 4.13 deg 21.57 deg
Yaw Rate 16.24 deg/s 14.69 deg/s

impacts caused by the attacks exploiting the bugs (Physical Impacts). While the two tables

list a total of 63 parameters, some of the parameters are associated with both range imple-

mentation and specification bugs. This explains why the total number of bugs (89) is higher

than the number of vulnerable parameters.

Depending on the specific (malicious) value of the control parameter, the impact of an

attack may vary. Here the possible impacts are categorized into four types as shown in the

four sub-columns of the “Physical Impacts” column: “C” – vehicle crash; “D” – deviation

from trajectory; “U” – unstable vehicle movement; and “S” – vehicle getting “stuck” at a

certain location or speed. All of these impacts are non-transient and cannot be recovered by

the controllers.

3.5 Evaluation

We now present evaluation results from our experiments with the RVFuzzer prototype.

The three main questions that we want to answer are: (1) How effective is RVFuzzer at

finding cyber-physical bugs (Section 3.5.1 ); (2) How do different input mutation schemes

of RVFuzzer contribute to the discovery of cyber-physical bugs (Section 3.5.4 ); and (3)

How can RVFuzzer be applied to discover cyber-physical bugs that would otherwise be

exploited to launch stealthy attacks (Section 3.5.5 ).
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Table 3.2. Cyber-physical bugs in ArduPilot and the implications of the
attacks exploiting them (C: Crash; D: Deviation from trajectory; U: Unstable
movement; S: “Stuck” in certain location or speed).

Control Program Parameter Physical Impacts
Module C D U S

Controller

PSC_POSXY_P 3 3

PSC_VELXY_P 3 3 3

PSC_VELXY_I 3 3

PSC_POSZ_P 3

PSC_VELZ_P 3

PSC_ACCZ_P 3 3

PSC_ACCZ_I 3 3 3

PSC_ACCZ_D 3 3 3

ATC_ANG_RLL_P 3

ATC_RAT_RLL_I 3

ATC_RAT_RLL_IMAX 3 3

ATC_RAT_RLL_D 3

ATC_RAT_RLL_P 3 3

ATC_RAT_RLL_FF 3 3

ATC_ANG_PIT_P 3

ATC_RAT_PIT_P 3 3

ATC_RAT_PIT_I 3

ATC_RAT_PIT_IMAX 3

ATC_RAT_PIT_D 3 3

ATC_RAT_PIT_FF 3 3 3

ATC_ANG_YAW_P 3

ATC_SLEW_YAW 3

ATC_RAT_YAW_P 3

ATC_RAT_YAW_I 3

ATC_RAT_YAW_IMAX 3

ATC_RAT_YAW_D 3 3

ATC_RAT_YAW_FF 3 3

Sensor
INS_POS1_Z 3 3

INS_POS2_Z 3 3

INS_POS3_Z 3 3

Mission

WPNAV_SPEED 3

WPNAV_SPEED_UP 3

WPNAV_SPEED_DN 3

WPNAV_ACCEL 3 3

WPNAV_ACCEL_Z 3 3

ANGLE_MAX 3 3

3.5.1 Finding Cyber-Physical Bugs

We present a summary of the cyber-physical bugs discovered by RVFuzzer from

ArduPilot and PX4. These bugs are the result of a 8-day, non-stop testing session running

RVFuzzer on the two control programs.
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Table 3.3. Cyber-physical bugs in PX4 and implications of attacks exploiting them.
Control Program Parameter Physical Impacts

Module C D U S

Controller

MC_TPA_RATE_P 3 3

MC_PITCHRATE_FF 3 3 3

MC_PITCHRATE_MAX 3 3

MC_PITCHRATE_P 3 3 3

MC_PITCH_P 3 3 3 3

MC_ROLLRATE_FF 3 3 3

MC_ROLLRATE_MAX 3 3

MC_ROLLRATE_P 3 3 3

MC_ROLL_P 3 3 3

MC_YAWRATE_FF 3 3

MC_YAWRATE_P 3 3

MC_YAW_P 3 3

MIS_YAW_ERR 3

MPC_TILTMAX_AIR 3 3

MPC_THR_MAX 3 3 3

MPC_THR_MIN 3 3 3

MPC_XY_P 3 3 3

MPC_Z_P 3 3 3

MPC_XY_VEL_P 3 3 3 3

MPC_Z_VEL_P 3 3 3

Mission

MC_YAWRAUTO_MAX 3 3

MPC_XY_VEL_MAX 3 3

MPC_XY_CRUISE 3

MPC_Z_VEL_MAX_DN 3 3

MPC_Z_VEL_MAX_UP 3 3 3

MPC_TKO_SPEED 3

MPC_LAND_SPEED 3

Classification of Cyber-Physical Bugs

The validity of an input value of a control parameter is checked based on the specified

range that has been determined and documented by developers during the development of

the control program. Our subject control programs (ArduPilot and PX4) have the specified

ranges of all the control parameters publicly available on their developer community web-

sites [99 ], [100 ]. Leveraging these public range specifications, RVFuzzer found a number

of cyber-physical bugs through the 8-hour testing session. We classify these cyber-physical

bugs into two categories based on their root causes: range implementation bugs and range

specification bugs.

• Range Implementation Bugs Assuming that the specified valid range of

a control parameter is correct, any value outside the specified range should be

74



caught and rejected by the control program. If the implementation of the control

program fails to enforce that, an out-of-range parameter value may be maliciously

provided and accepted by the program, causing controller state deviations. This

is the nature of the range implementation bug which, based on our observation,

arises from a lack of or an incorrect implementation of range check logic in the

program. To discover range implementation bugs, RVFuzzer employs the one-

dimensional mutation strategy. It mutates the value of each target parameter

and issues the parameter-change GCS command with the mutated value to the

control program. If the Control Instability Detector reports a controller state

deviation, RVFuzzer will report a range implementation bug associated with

the target parameter.

• Range Specification Bugs Ideally, the specified valid range of a parameter

should correctly scope the value of the parameter. Unfortunately, this turns out

not always the case. To reveal such problems, RVFuzzer first performs one-

dimensional mutation and then performs multi-dimensional mutation on each

target parameter, determining its invalid value range that will cause controller

state deviation. We observe that for some control parameters, their valid value

ranges are erroneously specified by developers, allowing dangerous values in the

specified – and subsequently implemented – ranges. This is the nature of the

range specification bug. Based on our analysis, such bugs exist because a con-

trol program enforces a fixed valid value range for a control parameter, without

considering three critical factors: (1) the difference between hardware models

and configurations, (2) inter-dependencies between control parameters, and (3)

impact of environmental factors. RVFuzzer reveals that the range of the valid

input values of a target parameter tends to “shrink” under these factors, giving

rise to range specification bugs.
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Table 3.4. Summary of cyber-physical bugs found by RVFuzzer (RIB and
RSB denote the number of range implementation and range specification bugs,
respectively).

Module Sub-module ArduPilot PX4
RIB RSB RIB RSB

Controller

x, y-axis position 1 0 1 1
x, y-axis velocity 2 1 1 1
z-axis position 1 0 1 1
z-axis velocity 1 0 1 0

z-axis acceleration 3 0 0 0
Roll angle 1 0 1 1

Roll angular rate 5 0 3 3
Pitch angle 1 0 1 1

Pitch angular rate 5 0 3 3
Yaw angle 1 0 2 2

Yaw angular rate 6 0 3 3
Motor 0 0 3 3

Sensor Inertia sensor 3 3 0 0

Mission

x, y-axis velocity 1 1 2 0
z-axis velocity 2 0 4 0

z-axis acceleration 2 0 0 0
Roll, Pitch 1 1 1 1

Total - 36 6 27 20

3.5.2 Detection of Cyber-Physical Bugs

Table 3.4  summarizes the range implementation bugs (RIB) and range specification bugs

(RSB) discovered by RVFuzzer in ArduPilot and PX4. The detailed list of the 63 control

parameters that are affected by these bugs is presented in Appendix 3.4.2 . For coherent

presentation in Table 3.4  , the control parameters in each of the two control programs are

categorized into three modules (i.e., controller, sensor, and mission) and further into their

sub-modules. Table 3.4 shows that RVFuzzer detected a total of 89 cyber-physical bugs

(42 bugs in ArduPilot and 47 bugs in PX4). As a result, it turns out 87 cyber-physical

bugs are new. We note that some of the control parameters are associated with both range

implementation and the range specification bugs. Hence, the total number of cyber-physical

bugs (89) is higher than the total number of affected control parameters (63).

We highlight that only two of the 89 bugs discovered by RVFuzzer were detected

and correctly patched by the developers before we reported our results to them. Out of

the remaining 87 bugs, the developers have so far independently confirmed 28 bugs and
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patched 11 of them. The delayed response of the developers brings forth an important

point: Compared to the traditional “syntactic” bugs (e.g., buffer overflow), discovering,

validating and patching cyber-physical bugs require more time and effort. This is because

the exploitability of each cyber-physical bug must be fully verified under a spectrum of vehicle

configurations and operating environments. In such a scenario, RVFuzzer can be utilized

by developers as a helpful tool to automate the discovery and confirmation of cyber-physical

bugs.

3.5.3 Impact of Cyber-Physical Bugs

We now detail the physical impacts (on the vehicle’s operation) of the attacks that

exploit the bugs found by RVFuzzer. We consider four levels of physical impact: crash, tra-

jectory deviation, unstable movement, and frozen controller states. Appendix 3.4.2 presents

possible physical impact(s) of attacks that exploit each of the vulnerable control parame-

ters. Here, we summarize the results by analyzing the impact on the modules of the control

program. Specifically, we present the causality of the bugs in a bottom-up fashion and as-

sess its impact on the controller state deviation which is detected by RVFuzzer’s Control

Instability Detector.

Controller Module. Among the control parameters related to the controller mod-

ule, RVFuzzer discovered 27 range implementation bugs and 1 range specification bug

in ArduPilot, and 20 range implementation bugs and 19 range specification bugs in PX4

(Table 3.4  ). These bugs can be used to maliciously set invalid parameter values or exploit

environmental factors, which would directly affect the primitive controllers and corrupt the

controller states in the 6DoF. For example, if one of the control parameters related to the

z-axis velocity is set to a value in the invalid range due to an cyber-physical bug, the manip-

ulated parameter will corrupt the reference state of the (downstream) z-axis acceleration. As

a result, the z-axis acceleration controller will attempt to bring its vehicle state closer to the

corrupted reference state, which will cause control instability of the vehicle. Such instability

may eventually lead to a crash.
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Sensor Module. For this module, while RVFuzzer found 3 range implementation bugs

and 3 range specification bugs in ArduPilot, it did not find any cyber-physical bug in PX4

(Table 3.4 ). We note that the vulnerable control parameters of the sensor module are related

to either a sensor calibrator or a sensor filter for noise/disturbance. While the calibrator

compensates for manufacturing errors in sensors and adjusts the vehicle state accordingly,

the filter smooths out the sensor values and helps the controllers in robustly responding to

physical interactions [101 ]. Hence, if an invalid value is assigned to a control parameter

related to a sensor calibrator/filter due to an cyber-physical bug, the primitive controller

that consumes the sensor values will compute a corrupted vehicle state. Such corruption will

also propagate to its output reference state, and from there to other dependent primitive

controllers, leading to unstable movement of the vehicle.

Mission Module. For this module, RVFuzzer discovered 6 range implementation

bugs and 2 range specification bugs in ArduPilot, and 7 range implementation bugs and 1

range specification bug in PX4 (Table 3.4  ). Recall that this module is responsible for setting

the mission parameters (e.g., speed and tilting angles) which define or adjust the vehicle’s

mission. However, if a parameter related to the mission module is manipulated with an

invalid value by exploiting an cyber-physical bug, the corresponding controllers will generate

misguided reference states. Such mission corruption will mislead one or more of the 6DoF

controllers and prevent the vehicle from fulfilling its intended mission (e.g., not moving to

the intended destination or at the intended speed), even if the vehicle does not experience

any immediate danger.

3.5.4 Effectiveness of Input Mutation

RVFuzzer employs the control-guided input mutation strategy to generate control pa-

rameter value inputs and set environmental factors. We evaluate the effectiveness of this

mutation strategy in enabling efficient discovery of cyber-physical bugs.

78



0%

20%

40%

60%

80%

100%

Invalid Range Valid Range

P
S
C
_
V
E
L
X
Y
_
P

W
P
N

A
V
_
S
P
E
E
D

A
N

G
L
E
_
M

A
X

IN
S
_
P
O

S
1
_
Z

IN
S
_
P
O

S
2
_
Z

IN
S
_
P
O

S
3
_
Z

M
C
_
T
P
A
_
R
A
T
E
_
P

M
C
_
P
IT

C
H

R
A
T
E
_
F
F

M
C
_
P
IT

C
H

R
A
T
E
_
M

A
X

M
C
_
P
IT

C
H

R
A
T
E
_
P

M
C
_
R
O

L
L
R
A
T
E
_
F
F

M
C
_
R
O

L
L
R
A
T
E
_
M

A
X

M
C
_
R
O

L
L
R
A
T
E
_
P

M
C
_
R
O

L
L
_
P

M
C
_
P
IT

C
H

_
P

M
C
_
Y
A
W

R
A
T
E
_
F
F

M
C
_
Y
A
W

R
A
T
E
_
P

M
C
_
Y
A
W

R
A
U

T
O

_
M

A
X

M
C
_
Y
A
W

_
P

M
IS

_
Y
A
W

_
E
R
R

M
P
C
_
T
IL

T
M

A
X
_
A
IR

M
P
C
_
T
H

R
_
M

A
X

M
P
C
_
T
H

R
_
M

IN

M
P
C
_
X
Y
_
P

M
P
C
_
X
Y
_
V
E
L
_
M

A
X

M
P
C
_
Z
_
P

ArduPilot PX4

𝟏 𝑴

1
.7

%
1

.7
%

4
.0

%
4

.0
%

0
.0

%
0

.0
%

8
2

.5
%

8
3

.5
%

8
2

.5
%

8
3

.5
%

8
2

.5
%

8
3

.5
%

9
0

.0
%

9
0

.0
%

≈
1

0
0

.0
%

≈
1

0
0

.0
%

0
.4

%
8

8
.1

%

1
6

.7
%

3
3

.3
%

≈
1

0
0

.0
%

0
.1

%
8

7
.9

%

1
6

.7
%

3
3

.3
%

1
.7

%
5

1
.7

%

2
.5

%
5

2
.5

%

≈
1

0
0

.0
%

≈
1

0
0

.0
%

1
6

.7
%

1
6

.7
%

3
.1

%
3

.1
%

6
.0

%
6

.0
%

0
.1

%
0

.1
%

0
.4

%
0

.4
%

8
0

.0
%

8
0

.0
%

4
2

.1
%

4
2

.1
%

1
5

.0
%

1
5

.0
%

0
.5

%
0

.5
%

6
.7

%
6

.7
%

𝟏 𝑴 𝟏𝑴 𝟏𝑴 𝟏𝑴 𝟏𝑴 𝟏𝑴 𝟏𝑴 𝟏𝑴 𝟏𝑴 𝟏𝑴 𝟏𝑴 𝟏𝑴 𝟏𝑴 𝟏𝑴 𝟏𝑴 𝟏𝑴 𝟏𝑴 𝟏𝑴 𝟏𝑴 𝟏𝑴 𝟏𝑴 𝟏𝑴 𝟏𝑴 𝟏𝑴 𝟏𝑴

≈1
0

0
.0

%
Figure 3.2. Invalid control parameter ranges discovered by RVFuzzer, nor-
malized to the specified value ranges (1: One-dimensional mutation, M : Multi-
dimensional mutation). Percentage of invalid ranges (%) within the specified
value ranges are noted at the top of the bars. 5

 

Control Parameter Mutation

RVFuzzer discovers the range implementation bugs using the one-dimensional mutation

strategy which detects the erroneous implementation of the parameter’s range check logic.

Through the extensive black-box-based (i.e., without source code) testing of the control

parameters, RVFuzzer discovered a total of 63 range implementation bugs: 36 bugs in

ArduPilot and 27 bugs in PX4.

To detect the incorrectly specified ranges of the parameters and find the range specifica-

tion bugs, RVFuzzer employs one-dimensional mutation followed by the multi-dimensional

mutation strategy. We demonstrate the effectiveness of RVFuzzer’s mutation strategies

in discovering the range specification bugs in Figure 3.2  , which presents the valid and in-

valid value ranges (detected using one-dimensional and multi-dimensional mutation) for the

affected control parameters.

• One-dimensional Mutation RVFuzzer discovered a total of 26 range spec-

ification bugs using one-dimensional mutation: 6 bugs in ArduPilot and 20 bugs

in PX4 (Figure 3.2 ). For example, for parameter MC_TPA_RATE_P in PX4, the
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specified range was between 0 and 1, and the default value was 0. However,

RVFuzzer detected controller state deviations with values between 0.1 and 1,

and hence found 90% of the values in the specified range belonging to the invalid

range. We note that almost 100% of the values in the specified range of the

three parameters, MC_PITCHRATE_FF, MC_ROLLRATE_FF and MC_YAWRATE_FF, in

PX4 are invalid. This is because, while each of these parameters can be inde-

pendently configured with a wide range of input values, there is a smaller range

of values that are valid when the other parameters take their default values.

• Multi-dimensional Mutation Recall that the multi-dimensional mutation

further expands the invalid range of the target parameter to include the ad-

ditional values that cause controller state deviation under specific, non-default

settings of the other parameters. In Figure 3.2  , we observe that the multi-

dimensional mutation expands the invalid ranges of 10 out of 26 range specifi-

cation bugs found using one-dimensional mutation. For instance, RVFuzzer

found that the invalid range of the MC_ROLL_P parameter in PX4 was expanded

from 1.7% to 51.7% when multi-dimensional mutation was employed. We high-

light that for some parameters, RVFuzzer reported a significant increase of

invalid range with multi-dimensional mutation. In particular, compared to the

invalid ranges detected using one-dimensional mutation, the invalid ranges of the

MC_PITCHRATE_MAX and MC_ROLLRATE_MAX parameters in PX4 increased from

0.4% to 88.1% and from 0.1% to 87.9%, respectively. These results demonstrate

that the multi-dimensional mutation strategy can discover invalid values of con-

trol parameters with stronger awareness of the inter-parameter dependencies

(discussed further in Section 3.6 ).

Environmental Factor Mutation

RVFuzzer further found that the invalid ranges of some control parameters expand when

environmental conditions are taken into account. This is important because the developers

may not completely consider the impact of various environmental conditions when specifying
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Figure 3.3. Normalized invalid ranges within the specified value ranges under
different wind conditions (N: No wind, M: Medium wind, S: Strong wind).

the valid range of a parameter. Based on our observation, two factors may widen the

invalid ranges: (1) geographical factor and (2) external disturbance (e.g., strong wind), as

described in Section 3.3.3 . RVFuzzer found four cases which can be exploited with realistic

environmental factors.

We performed tests based on existing wind analysis statistics [102 ]–[104 ] and simulated

various wind conditions. The wind conditions were divided into three categories: no wind,

medium wind (with a horizontal wind component of 5 m/s or a vertical wind component of

1 m/s), and strong wind (with a horizontal wind component of 10 m/s or a vertical wind

component of 3 m/s). For each wind condition, the wind gust was simulated from 0 to 360

degrees with 30-degree increments. Simulations were also performed where the wind gust was

designed to come in at every 30-degree angle between the horizontal tests and the vertical

tests, such that the tested wind vectors approximately formed an ellipsoid. These wind

settings enrich our standard test mission (Section 3.4 ), which already reflects geographical

factors as it emulates flight paths with sharp turns for obstacle avoidance.

Figure 3.3 presents the impact of three different wind conditions on the four parameters

which cause controller state deviations. RVFuzzer discovered these four cyber-physical

bugs using multi-dimensional mutation over the four parameters. We observe that the impact

of environmental factors expands the invalid ranges of those parameters. In particular, when

the wind conditions were not considered, ANGLE_MAX did not have any invalid range under
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both one-dimensional and multi-dimensional mutations. However, with wind conditions,

RVFuzzer reveals that this parameter can be exploited when strong wind is present.

Such an cyber-physical bug is exploitable because a large angular change is required to

alter the direction of the vehicle. Specifically, if the maximum allowed angle or angular

speed is not large enough (even within the specified value ranges), the vehicle’s motors

cannot generate enough force to change the direction or resist the wind gusts. As a result,

the vehicle may fail to change its direction at sharp turns or it might drift in the wind’s

direction in the worst case.

We note that the results with environmental factor mutation may be affected by other

factors, such as the control model, configuration, and physical attributes (e.g., motor power

and the size of the vehicle). For example, if the vehicle is capable of turning with a larger

roll angle, has a smaller size, or has stronger motors, it may be able to resist wind gusts

when changing its flight direction. Hence, these conditions need to be tested by RVFuzzer

for each specific type of vehicle.

3.5.5 Case Studies

We present three representative case studies of cyber-physical bugs. We also discuss

how an attacker can exploit these bugs, and how RVFuzzer can proactively discover them.

The three cases cover different affected controllers, cause different impacts on the RAV,

and require different components of RVFuzzer’s testing techniques to detect. Specifically,

the bug discussed in Case I (Section 3.5.5 ) affects the x and y-axes controllers and causes

unrecoverable slowdown, but can be discovered by RVFuzzer using the one-dimensional

mutation technique. Case II (Section 3.5.5 ) presents a bug that affects the pitch controller,

leads to a crash, and can only be found via multi-dimensional mutation strategy. Finally,

the bug in Case III (Section 3.5.5 ) adversely affects the roll controller and causes significant

deviation from the assigned mission, but can be discovered by mutating an environmental

factor (wind force).
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1 #define WPNAV_WP_SPEED_MIN 100 // Buggy code 2
2 #define WPNAV_WP_SPEED_MIN 20 // Patched code 2
3 . . .
4 void AC_WPNav: : set_speed_xy ( f loat speed_cms ) {
5 − i f (_wp_speed_cms>=WPNAV_WP_SPEED_MIN) { // Buggy code 1
6 +i f ( speed_cms>=WPNAV_WP_SPEED_MIN) { // Patched code 1
7 _wp_speed_cms = speed_cms ;
8 _pos_control . set_speed_xy (_wp_speed_cms) ;
9 . . .

Listing 3.1 Cyber-physical bug case on x, y-axis mission velocity. The
parameter can be dynamically changed by either a mission speed-change
command or a speed parameter-change command.

: Waypoint N
: Mission Flight Route
: Actual Flight Route

N

3

Attacker
GCS

2

2. x, y-axis speed
= 0.2m/s1. x, y-axis speed

= 10m/s

1

Figure 3.4. Illustration of Case Study I: An RAV cannot recover its normal
speed for the segment from Waypoint 2 to Waypoint 3.

Case Study I: Bug Causing “Unrecoverable Vehicle Slowdown” Discovered by

One-Dimensional Mutation.

We consider an RAV that is assigned the mission of express package delivery (Figure 3.4  ).

Because of the urgency, the operator sets the RAV’s mission speed to 10 m/s at Waypoint 1.

During the mission, while the RAV slows down to make a turn at Waypoint 2, the attacker

sends a seemingly innocent, but malicious, command to the RAV to change its mission speed

to 0.2 m/s (the minimum specified speed is 0.2 m/s). After the turn, however, the operator

will not be able to resume the 10 m/s mission speed by issuing speed-change commands.

This attack exploits an cyber-physical bug in ArduPilot, illustrated in Listing 3.1 .
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• Root Cause Listing 3.1 presents the code that runs in the RAV when it receives

a new speed-change input (denoted by speed_cms) during its mission. The speci-

fied minimum speed (in cm/s) is denoted by the WPNAV_WP_SPEED_MIN parameter

(Line 1). We note that the current mission speed (denoted by _wp_speed_cms)

is compared with the minimum mission speed (Line 5). This means that if (and

only if) the current mission speed is equal to or higher than the minimum mission

speed, it can be replaced by the new mission speed in the input command; If

the current mission speed is lower than the minimum mission speed, it cannot

be changed. Hence, this is the bug which can be exploited by the attacker, by

sending a speed-change command with a value lower than the minimum mission

speed while the current mission speed is higher than the minimum mission speed.

This bug has been patched recently by the developers by correcting the value of

the minimum mission speed (Line 2) and setting the comparison of the minimum

mission speed with the input speed (Line 6).

• Bug Discovery This bug was discovered by RVFuzzer while performing one-

dimensional mutation of the input mission speed parameter. For input mission

values above 1 m/s, the RAV successfully changed its current mission speed.

However, if the current mission speed dropped below 1 m/s, RVFuzzer can

no longer change the current mission speed by setting the input mission speed

parameter. The failure to change the current mission speed led to the incorrect

execution of the mission, resulting in controller state deviation, simulated and

detected by RVFuzzer. Hence, RVFuzzer reported this deviation-triggering

parameter as an cyber-physical bug, which is confirmed by the related source

code in Listing 3.1 (as ground truth of our evaluation).

Case Study II: Bug Causing “Oscillating Route and Crash” Discovered by Multi-

Dimensional Mutation.

We consider an RAV that is assigned the same mission as in Case Study I. As shown

in Figure 3.5 , at Waypoint 2 of the mission, the attacker sends a malicious command to

the RAV to change one of the four pitch control parameters: MC_PITCH_P, MC_PITCHRATE_P,
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1

: Waypoint N
: Mission Flight Route
: Actual Flight Route

N

3

Attacker

Manipulate Pitch 
parameter(s)

2

Figure 3.5. Illustration of Case Study II: The attack launched at Waypoint
2 causes an RAV to oscillate due to failing control of the pitch angle.

MC_PITCHRATE_P, and MC_PITCHRATE_FF. Because of the inter-dependency between these

parameters, such a malicious command, which looks innocent, can cause the RAV to fail to

stabilize its pitch angle, resulting in unrecoverable oscillation and deviation from its route.

• Root Cause The unrecoverable oscillation on the RAV’s route is caused

by the failure of its pitch controller to track the reference state of the pitch.

The pitch controller utilizes four inter-dependent parameters: the P control

gain of pitch angle (MC_PITCH_P), the P control gain of the pitch angular speed

(MC_PITCHRATE_P), the maximum pitch rate (MC_PITCHRATE_MAX), and the feed-

forward pitch rate (MC_PITCHRATE_FF). For example, a high value of MC_PITCHRATE_FF

helps track the reference state of the pitch when MC_PITCH_P is low. When both

MC_PITCHRATE_FF and MC_PITCH_P have high values, the RAV may perform

overly aggressive stabilization operations. In that case, a low value of the maxi-

mum pitch rate (MC_PITCHRATE_MAX) is desirable to mitigate the impact of such

operations.

We point out that such dependencies can be exploited by an attacker to affect the

RAV’s operations by corrupting the value of just one parameter. Let us assume

that the RAV is already configured with high values of MC_PITCHRATE_FF and

MC_PITCH_P. If the attacker sets MC_PITCHRATE_MAX to a high value, the pitch

controller will start to respond to the minuscule difference between the reference
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4

1 2

: Waypoint N
: Mission Flight Route
: Actual Flight Route

N

3

Figure 3.6. Illustration of Case Study III: An RAV fails to complete a simple
mission from Waypoint 1 to Waypoint 4 due to the impact of environmental
factors.

state and the vehicle state of the pitch angle with extreme sensitivity. As a

result, the RAV will not be able to strictly follow its flight path. We note that

this type of bug can only be discovered when the dependencies between multiple

parameters are considered in the test.

• Bug Discovery This bug was found by RVFuzzer while performing multi-

dimensional mutation (Algorithm 4 ) of the parameters related to the pitch con-

troller. RVFuzzer mutated the target parameter (MC_PITCHRATE_MAX), while

setting high values for MC_PITCH_P and MC_PITCHRATE_FF parameters. Unlike

the one-dimensional mutation, which determined the parameter’s valid range to

be between 6.7 and 1800, the multi-dimensional mutation determined that the

valid range of MC_PITCHRATE_MAX is to be between 6.7 and 220.1. RVFuzzer

detected and reported the expanded invalid range of MC_PITCHRATE_MAX as an

cyber-physical bug.

Case Study III: Bug Causing “Diverging Route” Discovered by Wind Force

Mutation.
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In this case study, we consider an RAV assigned a mission to deliver a food item to a

customer via the path presented in Figure 3.6  . The RAV is required to follow the path

around tall buildings on a windy day with the wind direction towards the west. Since the

item (e.g., soup) might spill if the RAV changes its attitude drastically, the operator tries

to prevent sudden changes in the roll angle by limiting the maximum angular-change speed

(MC_ROLLRATE_MAX) to a small value. When the vehicle is approaching Waypoint 2, the

attacker sends a command to set the maximum tilting angle (MPC_TILTMAX_AIR) to a low

value. We note that the RAV is supposed to make a 120-degree turn to avoid a tall building

at Waypoint 3. However, the RAV fails to make the correct turn at Waypoint 3 and hence

cannot reach the destination (Waypoint 4) after multiple attempts to correct the diverging

path. We note that the value of the maximum tilting/roll angle parameter is accepted by the

control program because it is within the specified valid range, yet the value causes controller

state deviation due to the strong wind condition.

• Root Cause There are three causes that induce the vehicle’s unexpected flight

path divergence: (1) the mission route with sharp turns, (2) the roll controller’s

parameter value that is not responsive enough to change the direction in time,

and (3) the strong wind that expands the invalid ranges of the roll controller’s

parameters. In this case study, the combination of these three factors disrupts

the vehicle’s maneuver and trajectory, resulting in a failed mission (and a hungry

customer).

• Bug Discovery RVFuzzer discovered this bug in PX4 by mutating the

wind condition during the AVC2013 mission (Section 3.4 ) which involves many

sharp turns of the vehicle. As the input values of the roll controller parameters

were mutated under a strong wind condition, RVFuzzer detected controller

state deviation between the reference state and the mission (Figure 3.3  ). Hence,

RVFuzzer reported this as an cyber-physical bug contingent upon the influence

of an external factor (wind).
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3.6 Discussion

Control Parameter Inter-dependencies. As revealed by multi-dimensional mutation,

the control parameters may have dependencies on one another. A specific value of one

parameter can increase or decrease the (in)valid value ranges of other parameters. The

ground truth on such inter-parameter dependencies can only be derived from full knowledge

about the underlying control model and the control program implementation, given the large

number of control variables (including hundreds of parameters), the wide ranges of their

values, and the influence from various environmental factors. As a result, it is challenging to

fully and accurately capture the control parameter inter-dependencies, with only the binary

of a control program. In this work, we consider the subject control program binary as a

black box and take a pragmatic approach by only revealing part of such inter-dependencies.

A more generic approach to control parameter dependency derivation – possibly based on

source code and a formal control model – is left as future work.

Standard Safety Testing and Certification. For the safety of avionics software for

airborne systems, there exist standard safety tests and software certifications such as DO-

178B/C [105 ] and ISO/IEC 15408 [106 ]. To the best of our knowledge, however, there has

been no standard safety testing framework created for RAVs. We believe that RVFuzzer’s

post-production, black-box-based (i.e., without source code) vetting will serve as a useful

complement to standardized safety testing during RAV design and production.
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4. DISPATCH: CONTROLLER SEMANTICS

IDENTIFICATION AND INSTRUMENTATION

FRAMEWORK FOR ROBOTIC AERIAL VEHICLE

FIRMWARE

Thanks to the successful cyber-physical bugs detection through RVFuzzer and Mayday,

we have reported a number of vulnerabilities to RAV control program developers. However,

if RAV users/operators want to patch the legacy RAVs or closed-source binary firmware,

there is a long-existing challenge: “How to patch the binary firmware without source code?”

Patching cyber-physical bugs requires a mapping between the control model and the control

(binary) firmware. Only with such a mapping, a binary patching framework can identify

and patch the key vulnerable control variables (e.g., a z-axis velocity gain or a current alti-

tude). However, there is no existing solution to identifying/locating controller components

for binary firmware patching. To overcome the aforementioned challenge, we introduce an

RAV binary firmware patching framework, DisPatch [20 ] in this chapter.

4.1 Background

RAV Control Model. DisPatch is a semantic decompiler and patch framework

guided by a generic RAV control model. In general, RAV control models consist of the three

following components: (1) sensor modules to measure the physical operations, (2) physical

models depending on a number of factors such as shape, weight, sizes and motor powers, and

(3) controller modules to actuate and adjust the propulsion engine. Components (1) and (2)

are quantified via physical specification (e.g., motor specification, and shape of RAVs) and

(3) are represented by control parameters (e.g., z-axis control gain) to properly adjust the

controller states (e.g., z-axis speed and position of an RAV).

During a flight, sensor modules (e.g., a GPS, and a gyroscope) measure the controller

states that are the physical movements along the six degrees of freedom (6DoF) as shown

in Figure 2.1  . These movements are continuously updated by the interaction between the

physical world and the RAV. The RAV is defined and quantified by the physical RAV control
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model. Such a physical model encompasses multiple factors adapted by developers according

to the environment factors and constraints. There are several templates of the RAV control

models such as copter, plane, submarine, and helicopter. Those template models can be

further customized, which introduces a variety of RAV control models. For example, a copter

model encompasses a tricopter, quadcopter, and hexacopter with different configurations

such as weight, propeller length, the number of motors, the combinations of motor rotation

directions.

To control a physical model and its interaction with the physical world measured by

the sensor modules, a controller algorithm works as the heart of the RAV control model

orchestrating the rest of all the components. Among the multiple controller algorithms,

the proportional-integral-derivative (PID) controller is the most commonly used one [107 ]–

[109 ]. Multiple PID controllers are customized and integrated according to the physical

specification of an RAV. To adapt the target RAV physical model, operators can configure

control parameters via the (remote) ground control station (GCS) interface.

PID Controllers For RAVs. PID controllers play a vital role to control the vehicle.

To guarantee stable physical operations, a set of PID controllers must be customized for

each type of RAV. Figure 2.1 shows that an RAV controls physical movements along the

6DoF. Each cascading controller is responsible for controlling each degree of freedom such as

the x-axis cascading controller as described in Figure 2.3 . Zooming in the x-axis cascading

controller, we can find three controllers (denoted as c1(t), c2(t), and c3(t)). Each of the

three controllers is a primitive controller, and respectively computes the position, velocity,

acceleration physical operations on the x-axis. Among primitive controllers, PID controllers

are widely used in RAVs [22 ], [23 ], [110 ], mathematically expressed as follows:

x(t) = P · e(t) + I ·
∫ t

0
e(x)dx+D · de(t)

dt + FF · r(t) (4.1)

e(t) = r(t) − x(t) (4.2)

In Equation 4.1 and 4.2 , x(t) denotes the vehicle state; r(t) denotes the reference indi-

cating the desired state; e(t) is thus the control error, which is the difference between the
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2 1

n Waypoint n
Flight route

(a) Stable flight with an octa-
copter.

2 1

n Waypoint n
Flight route

(b) Unstable flight with a hexacopter.

Figure 4.1. An example implication of x, y-axis velocity PID parameter
configuration on the octacopter and hexacopter running on the identical copter
firmware. Only hexacopter starts to show controller anomaly at Waypoint 2
within a few seconds after Waypoint 2 arrival.

vehicle state and the reference. In this mathematical expression, there are four predefined

parameters (P , I, D, and FF ) multiplying either e(t) or r(t). The values of those control

parameters are configured to properly control the target physical RAV model. Each con-

troller generates the output as the input of another component connected. If it is connected

to a primitive controller, x(t) and r(t) (generating e(t)) act as an input of another depen-

dent primitive controller. We call such dependencies as primitive controller dependencies.

Also, the output can be connected to a motor (e.g., oy(t)) as a motor throttle or an input

reference for another cascading controller (e.g., from the y-axis acceleration controller to the

pitch angular controller). Such a connection between cascading controllers creates data de-

pendencies in the RAV control model, which we call cascading controller dependencies. The

entire controller structure consisting of six cascading controllers with their dependencies is

described in Figure 2.2 and commonly used in RAVs [18 ].

4.2 Motivation and Threat Model

Control software developers have made RAVs more robust to overcome environmental

changes. The most common defense mechanism is a filtering approach such as extended

Kalman filter [44 ]–[46 ]. However, they are not designed for security or robust enough to

defend against cyber-physical attacks in the real world as demonstrated by the previous

research [18 ], [19 ]. As we mentioned earlier, the root cause of cyber-physical bugs within RAV

firmware is that control program developers try to generalize the firmware implementation
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To Determine Patch Location

Position_y_controller: 
VLDR    S1, [R0 + 0x148]
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Figure 4.2. The necessity of identifying semantics of controller functions to
solve Challenge 1 and 2. Given the binary, we show three example results:
(1) an example of disassembly result, (2) an example of generic controller
identification, and (3) patch payload and location determination by identifying
semantics of controller functions.

to support as many control models as possible thus leaving room for attack in the control

algorithm against specific RAV models, or that RAV operators need to replace a component

with a different hardware specification as the previous one thus invalidating the previous

setting of the control algorithm.

As an example, consider ArduPilot’s support for hexacopter and octacopter. Despite

their distinct differences in control models, they share the same control program code base

and parameter specification with the same control parameters and value ranges [99 ]. Simply

put, the RAV firmware is the exactly the same for hexacopter and octacopter in ArduPilot.

We set the P (PSC_VELXY_P), I (PSC_VELXY_I), and D (PSC_VELXY_D) parameters of x, y-

axis velocity controllers, and the P (PSC_POSXY_P) parameter of x, y-axis position controller

respectively as 6.0, 0.02, 0.01, and 2.0 while keeping others default. Note that those values

are valid according to the specification and they can be (remotely) set by either an attacker

or an operator [18 ], [19 ] supported by major RAV firmware [22 ], [23 ], [110 ]. We then launch

both the hexacopter and the octacopter to monitor the construction progress of a building.

E.g., the RAV should move from Waypoint 1 to 2 (to the west direction) as described

in Figure 4.1  , and monitor the construction progress at Waypoint 2 standing still in the air.

While the octacopter is able to finish the task accordingly, the hexacopter starts to show

severe and persistent controller anomaly after a few seconds leading to a crash in the end.
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The example above, in addition to typical unintentional incorrect implementation of the

control algorithms, highlights the prevalence of cyber-physical bugs within RAV firmware

implementations and the feasibility to exploit these bugs to attack RAVs. The appropriate

fix might be as simple as adding an extra line in the source file to rule out those parameter

values for the hexacopter if we have the source file. But the reality is that control program

developers would reject this patch because it breaks the generality of the implementation or

other RAV models1
 , and we still need to take care of all other binary-only RAV firmware

possibly stripped or running on the bare-metals. In this paper, we propose DisPatch,

a systematic patching framework for RAV firmware focusing on cyber-physical bugs, by

overcoming the challenges below:

Challenge 1: Identifying Different Variants of Controller Functions. We need to

not only simply disassemble the binary code (as shown in Figure 4.2  (1)) but also identify PID

controller functions from the binary code (as illustrated in Figure 4.2  (2)) as a first step before

we could patch cyber-physical bugs within RAV firmware. Specifically, some controllers

(1) do not have some of parameter variables if they are not needed (e.g., PID controller

implemented only with one P parameter) or (2) contain additional parameter components.

For (1), they are still mathematically valid PID controllers with some parameter value (e.g.,

I parameter) fixed at zero. For (2), some additional mechanisms or developer-customized

parameters can be added. Therefore, DisPatch should have robust algorithms to identify

PID controllers and their controller variables, decompiling the control algorithms.

Challenge 2: Finding Controller-Semantic Patch Locations. Given a high-level

patch, we need to determine where to apply the patch within the firmware. This requires

bridging the semantic gap between the abstract mathematical formulations and low-level

binary instructions. Specifically, DisPatch must be able to identify the patch location

and the semantics of each controller variable (e.g., z-axis velocity P parameter at address

0x7A22). In fact, PID controllers are generic mathematical controller models that can be

used to control any physical operations (e.g., any of 6DoF). In other words, even if we find

a specific mathematical controller variable (e.g., P control parameter), we cannot figure out
1↑ This is the link placeholder for developer’s feedback anonymized for double-blinded submission
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whether that is the z-axis velocity P parameter or roll angular P parameter. As a result, we

cannot apply the patch customized for controller variables with specific semantics to others

with different semantics but same names (as shown in Figure 4.2 (2)). Only after identifying

semantics of controller variables and functions (as described in Figure 4.2 (3)), we can apply

the controller-semantic patch to each controller components. -

Threat Model. We focus on cyber-physical bugs within RAV firmware that can be

abused by attackers using the existing works [18 ], [19 ] or mathematical tool [89 ] with physical

quantities of the target model. Considering the model-specific nature of RAVs, those threats

can be caused by (1) parameter manipulation from attackers (either insiders or outsiders),

and (2) physical specification change (e.g., RAV frame or weight changes). Insiders and

outsiders can exploit remote configuration interfaces [18 ], [19 ], [78 ]–[80 ] to trigger cyber-

physical bugs. Especially, insiders can manipulate control parameters whose impacts appear

only on the certain environmental condition (e.g., certain flight paths with sharp turns) as

shown in the previous works [18 ], [19 ]. Component replacement (e.g., RAV frame change

caused by its vendor change) can also lead to control model deviation thus introducing

additional cyber-physical bugs.

In this paper, we do not consider the orthogonal safety and security threats caused by

either physical attacks (e.g., sensor spoofing) or traditional software bug exploitation (e.g.,

buffer overflows). There are existing works for RAVs to defend against those attacks [10 ],

[12 ], [13 ], [29 ], [111 ]–[113 ].

4.3 Design

To patch cyber-physical bugs within RAV firmware, we propose DisPatch, an auto-

matic patching framework supporting a number of RAV control models. Overall, DisPatch

identifies not only PID controller functions but also their different variants (e.g., P, PID

FF controllers). It further decompiles these controller functions to recover the controller

variables and their control semantics (e.g., z-axis velocity P parameter or roll angular P

parameter). End users can write a patch in a high-level DSL, which will be mapped into

the corresponding controller functions variables and translated into binary-level instrumen-
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Figure 4.3. The architecture of DisPatch.

tation to fix the corresponding cyber-physical bugs. Figure 4.3  shows the general workflow

of DisPatch.

To perform those analyses and hardening steps, DisPatch takes the five following inputs:

(1) an (stripped) RAV firmware with the memory layout of the platform board, (2) controller

mathematical formulas (e.g., PID controller) used to control movements along the 6DoF, (3)

controller model specification including the target controller structure (e.g., dependencies

between controllers) and kinds of each controller (e.g., P or PID controller), (4) a signature

list of common mathematical functions (e.g., sin and cos), and (5) a control-semantic patch

written in the high-level DSL (e.g., enforcing values of controller variables to fall within the

safe ranges). DisPatch then performs the following procedures to apply the patch to the

input binary firmware.

1. Mathematical Function Candidate Identification (Section 4.3.1 ): DisPatch

starts with augmenting the binary firmware by annotating the memory layout,

disassembles the binary firmware, and extracts a candidate list of the mathemat-

ical controller function using both static analysis and symbolic taint analysis.

2. Mathematical Equation Based Controller Variable Identification (Sec-

tion 4.3.2 ): To recognize customized PID controllers and their controller vari-

ables (a.k.a. Challenge 1), DisPatch captures the mathematical operations
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of each candidate controller function using symbolic execution [114 ] and con-

verts the outcome into an abstract syntax tree (AST). DisPatch then compares

and matches the binary-derived ASTs with the domain knowledge-based AST

templates to partially decompile these controller functions. The combination of

symbolic execution techniques and mathematical expression templates ensures a

robust semantic-based identification of controller functions and controller vari-

ables (e.g., P parameter of a PID controller).

3. Controller-Semantic Patch Location Identification (Section 4.3.3 ): To

further recover the semantics of controller functions (a.k.a. Challenge 2), we

identify the semantics of controller variables (e.g., z-axis position or velocity

P parameter) by matching dependencies at program, control, and mathemati-

cal model levels. Specifically, DisPatch performs data flow analysis to iden-

tify the program-level dependencies between primitive and cascading controllers

guided by controller model domain knowledge, which contains a target controller

structure described in the controller model specification. DisPatch then anno-

tates every single controller variable by leveraging identified controller semantics

and mathematical meanings of controller variables in the previous step (Sec-

tion 4.3.2 ), achieving the semantic decompilation of these controller functions.

DisPatch identifies instructions within controller functions accessing those an-

notated controller variables to denote both (1) controller semantics and (2) ad-

dresses of instructions accessing those variables as patch locations.

4. Patch Generation (Section 4.3.4 ): With the knowledge of all the controller-

semantic patch locations, DisPatch accepts a control-semantic patch written in

a high-level DSL, finds the corresponding patch locations, translates and inject

the patch at the binary level, and finally emits the hardended RAV firmware.
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4.3.1 Mathematical Controller Function Candidate Identification

We identify the interested mathematical functions such as PID controllers within firmware

using static analysis, starting with augmenting the binary firmware with the memory layout

information of the target platform.

Firmware Augmentation. We first augment the binary firmware with its target board

information such as memory layout (i.e., code and data memory addresses) in order to disas-

semble it correctly. The target board information such as memory layout is publicly available

from the hardware board document such as system view description (SVD) file [115 ] writ-

ten in the parsable Extensible Markup Language (XML) format or board-specific firmware

development tools. Using this memory layout information, we augment binary firmware in

the executable file format (e.g., Executable and Linkable Format (ELF)) using elftools [116 ].

The augmented firmware provides the base for the following analysis.

Shortlisting Controller Function Candidates. To filter out the functions that are

not of our interests, we leverage the observation that controller functions using common

control algorithms heavily use arithmetic instructions. For that, we customize MISMO [21 ].

Using the reference binary, we analyze each function in the assembly format and extract the

features (e.g., number of floating point addition, subtraction, multiplication, and division

instructions). We then use the extracted features as a baseline to define filtering rules, e.g.,

specifying the minimum/maximum value of each floating point instruction and the combi-

nation of floating point instructions in a controller function, and build a binary similarity

checking tool to further prune the shortlisted functions.

4.3.2 Mathematical Controller Variable Identification

We compare the shortlisted functions after pruning against the mathematical function

derived from the domain knowledge to identify individual controller functions (e.g., PID con-

troller). We run symbolic execution [114 ] on the candidate functions and generate symbolic

expression for the output of each candidate function. We convert the symbolic expression

into an abstract syntax tree (AST), simplify the AST result, and compare with the AST
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(a) Symbolic expression-derived AST for PID controller
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(b) Domain knowledge-based AST template for PID controller

Figure 4.4. Controller semantic matching and variable identification.

templates of the mathematical functions from the domain knowledge to identify the exact

controller.

Once the exact controller function is identified, we compare the vertices of the AST

derived from the firmware with the domain knowledge-based AST templates to match the

controller variables (e.g., PID gains, control error). As shown in Figure 4.4 , we generated

the ASTs for the identified PID function (Figure 4.4a ) and the reference PID template

(Figure 4.4b  ). We determine the semantic variable names for essential parameters (e.g., P,

I, D gains) by comparing the subtree structures (e.g., number of child node) and individual

node contents in terms of arithmetic opcodes. In that way, we can find all of the PID

controllers and their variants.

We note that this process is built on top of MISMO [21 ] which can identify the PID

controllers and its components. Furthermore, we also customized MISMO on top of angr [114 ]

supporting symbolic taint analysis. This customization design enables DisPatch to find not

only PID controllers but also their variants (e.g., PI and PID FF controllers). However, we
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skipped describing the detailed customized design of MISMO because this is not part of this

dissertation.

4.3.3 Controller-Semantic Patch Location Identification

In this step, DisPatch decompiles controller functions and generates the patch location

by identifying the semantics of controller functions and variables. DisPatch takes four

inputs as shown in Figure 4.3  : (1) the target binary firmware augmented with the memory

layout (Section 4.3.1 ), (2) a controller model specification, (3) the list of common mathe-

matical functions, (4) the list of the identified controllers and mathematical meaning of their

controller variables (Section 4.3.2 ). We start with lifting the binary firmware to LLVM bit-

code, find controller models and dependencies from the controller model specification, detect

the program-level controller dependencies using data flow analysis, and annotate semantics

of controller variables by comparing program-level dependencies with the controller model

specification.

Annotated LLVM Bitcode Generation. DisPatch lifts the binary firmware aug-

mented with the memory layout information (Section 4.3.1 ) into LLVM bitcode. Simulta-

neously, we annotate the LLVM-level instructions and functions with the addresses (in the

binary firmware) of instructions, and tag them accordingly if they are common mathemati-

cal functions (e.g., sin, and cos) or controller functions and instructions accessing controller

variables. We will show the detailed procedures in Section 4.4 .

Controller Models and Dependencies. To identify the semantics of controllers,

we need to know the exact controller models and controller dependencies. To identify the

deployed controller models, DisPatch uses the domain knowledge described in the controller

model specification, which contains the list of configurable controller parameters commonly

available for operators [19 ], [99 ], [100 ], and tells the types of deployed variants of primitive

controllers, and the number of primitive controllers inside of each cascading controller. For

example, if there are a x-axis position P parameter, a x-axis velocity P parameter, and

x-axis acceleration P, I, and D controller parameters mentioned in the list, it means that

the x-axis cascading controller of the firmware has a P controller for the x-axis position,
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Figure 4.5. Visualized controller dependencies inspired by CVDG Figure 2.7 

and dependencies of 6DoF cascading controller structures Figure 2.2 .

another P controller for the velocity, and a PID controller for the acceleration. In terms of

the controller dependencies, we leverage the “control variable dependency graph (CVDG)”

[18 ], which defines both primitive and cascading controller dependencies between controllers

based on a generic RAV controller structure (Section 4.1 ).

Using the aforementioned domain knowledge, we can derive the controller dependency

model as shown in Figure 4.5 . Continuing on the x-axis example, its velocity primitive P con-

troller has a dependency with its acceleration primitive PID controller (i.e., Vel. Controller

→ Accel. Controller in the x-axis cascading controller). Figure 4.5  also reflects controller

variables (e.g., r for reference, P, I, D for controller parameters in Accel. Controller). We

note that we did not include the error and vehicle state (although they exist) to focus on the
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Algorithm 5 Semantics of Controller Variables Identification.
Input: Mathematical controller function data (Cmath), The list of the common mathematical functions (MF ), The list of
all the functions (F ), Controller model specification (CM)
Output: Semantics of controller variables (CV R)
1: function GetPrimitiveCtrlDeps(Cmath, T C, F, CM)
2: Initialize CD; . CD: Primitive controller dependencies
3: for c ∈ Cmath do . Check dependencies of mathematical controllers
4: d← GetDepFromCtrls(c, Cmath, F, CM)
5: CD[c]← GetClosestDepCtrl(c, d, T C, F, CM)
6: return CD
7: function GetCascadingCtrls(CD, CM, T C)
8: Initialize Ccc, chk; . Ccc: A set of cascanding controllers
9: for pc ∈ CD.keys do . Check every primitive controller (pc)
10: if pc /∈ chk then . Skip checked pc having a dependency with another pc
11: cc← RecursiveTrackDeps(pc, CD) . Track data flows
12: Ccc ← Ccc ∪GetEachCascadingCtrl(cc, CM, T C)
13: chk ← chk ∪GetPrimitiveCtrls(Ccc) . Marked checked pc

14: return Ccc

15: function AnnotateControllerVariableSemantics(Ccc, T, CM)
16: Initialize CV R;
17: for cc ∈ Ccc do . Check each cascading controller (cc)
18: cr ← GetCascadingSemantic(cc, T, CM)
19: for pc ∈ cc do . Get semantics of primitive controllers in cc
20: rctrl ← GetPrimitiveCtrlSemantic(pc, cr, CM)]
21: for cv ∈ pc do . Iterate each controller variable (cv) in pc
22: CV R[cv]← GetSemanticOfVar(cv, pc, CM)
23: return CV R
24: function IdentifySemantics(Cmath, MF, F, CM) . Main function
25: T ← GetTransFuncs(MF, F ) . T : Transition functions
26: CD ← GetPrimitiveCtrlDeps(Cmath, T, F, CM) . Ctrl: Controller
27: Ccc ← GetCascadingCtrls(CD, CM) . Ccc: Cascading controllers
28: CV R← AnnotateControllerVariableSemantics(Ccc, T, CM)
29: return CV R

controller model and dependency illustration. Finally, Figure 4.5  shows the dependencies

between those cascading controllers via transition functions (e.g., Pitch Transition).

Controller Dependency Analysis. To identify the primitive and cascading controller

dependencies in the LLVM bitcode, DisPatch performs inter-procedural data flow analysis

as shown in Line 1-14, 25-26 in Algorithm 5 while comparing those data flows with the

controller dependencies described in Figure 4.5 .

To identify the primitive controller dependency (described in Line 1-6, 26), DisPatch

first collects both input (i.e., error variable obtained by subtracting reference and vehicle

state variables) and output controller variables of each identified controller (stored in Cmath).

This is represented in any of “controller” boxes in Figure 4.5 . The result of primitive con-

troller dependencies will be stored in CD (Line 26). DisPatch then chooses one primitive

controller (Line 3), and performs data flow analysis in a backward manner from the chosen

primitive controller. Specifically, DisPatch backtracks the variable update operations (e.g.,
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multiplication) from an input variable of one controller to the output variables of any of the

controllers (Line 3-5).

Meanwhile, DisPatch considers two features: (1) primitive controller dependency struc-

ture in a cascading controller and (2) alias update data flows. For (1), DisPatch checks

(i) the number of primitive controllers (typically spanning from one to three in one of the

six cascading controllers), and (ii) the dependency orders of those controllers. For example,

as shown in the cascading controllers (e.g., for x-axis) in Figure 4.5  , a P controller usually

comes first (e.g., a position primitive controller) and a higher-order primitive controller (e.g.,

an acceleration primitive controller) typically comes later while having all of the P, I, and

D terms. We do not consider 6DoF transition functions that are used to identify cascading

controller dependency and will be described in more details (Line 5, 25).

To track alias update data flows, DisPatch keeps backtracking data flows from the

aliases of the variables found in load or store instructions (e.g., to access a heap or global

variable), To identify aliases, DisPatch performs inter-procedural context-sensitive points-

to analysis [49 ] in advance. However, this procedure may miss some aliases in practice due to

missing information from the compilation. To overcome this limitation, DisPatch collects

instructions accessing either a global or heap variable from this pointer with a certain offset

value, which is used as an alias identification key to heuristically identify alias memory

accesses if the point-to analysis misses them. During this step, DisPatch prioritizes the

data flows (only between the controller input and output) whose number of instructions is

the smallest (Line 5). The intuition is that each controller’s output is tightly coupled with

the input of the dependent controller, hence, light computation involved. For instance, an

output of a primitive controller is directly used as an input of its dependent controller in some

RAVs (e.g., from a z-axis position to z-axis velocity primitive controller). If the data flows

are complex, they may involve heavy computation that rarely happens in tightly coupled

primitive controller dependencies.

We can distinctly differentiate the cascading controller dependency (Line 7-14, 27) from

the primitive one because of the essential but unique computation to transit the degrees of

freedom (Line 25). Specifically, as we described in Figure 4.5  and Section 4.1 , the roll (φ)

and pitch (θ) angles must be converted from the x, y-axis and yaw (ψ) angular acceleration
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controllers with different formulas. Whereas, z-axis cascading controller does not have tran-

sition. Thus, we leverage this unique computation pattern (Line 12, 25) to distinguish all the

different cascading controllers (Line 9-13) by checking every identified primitive controller

dependency result (Line 9, 26) from the previous step (Line 1-6). For example, the input of

the roll and pitch angles are determined by the outputs of its x, y-axis and yaw controllers

as defined in Equation 4.3 and 4.4 .

φ = atan((−ẍsin(ψ) + ÿcos(ψ))/g) (4.3)

θ = −atan((ẍcos(ψ) + ÿsin(ψ))/g) (4.4)

In these equations, DisPatch can identify the transition computation by checking the

usage of sin, cos and atan functions (from the list of common mathematical functions)

and special constant such as g (the gravitational constant). DisPatch further identifies

the x, y-axis, and yaw and roll and pitch controller variables by checking the difference in

computation such as negation, sin and cos in both equations.

Semantic Annotation of Controller Functions and Variables. To achieve the se-

mantic decompilation of controller functions and variables (Line 15-21, 28), DisPatch first

identifies the possible semantics of the primitive controllers, through checking each identi-

fied cascading controller (cc of Ccc in Line 17). DisPatch then checks the program-level

primitive controller dependency orders of controller function variants (e.g., P controller →

P controller → PID FF controller) (Line 18), and checks whether there are the identical

dependency combinations specified in the controller model specification (Line 19-20). For

example, there are roll, pitch, yaw cascading controllers having the example ordered de-

pendency above in Figure 4.5  . Finally, DisPatch annotates each controller variable of

each primitive controller (Line 21-22, 28-29) such as the z-axis P parameter and the z-axis

reference variable.
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1 z−ax i s . pos . r e f := [ range , −50 .0~50 .0 ]
2 z−ax i s . v e l . p := [ range , 1 . 0 ~ 6 . 0 ]
3 ...
4 r o l l . v e l . f f := [ equal , v?=0.0−>v =1.0]

Listing 4.1 An example of an RAV control-semantic patch DSL following the
EBNF-based grammar. This DSL indicates DisPatch will instrument z-axis
position reference (Line 1), velocity P parameter (Line 2), and roll velocity
(i.e., roll rate) FF parameter (Line 4) with the given enforcement rule.

4.3.4 Patch Generation

RAV Control-Semantic Patch DSL. Instead of mandating end users to deal with

binary-level instrumentation directly, we design a high-level domain specific lanaguge (DSL)

for users writing control-semantic patches. We show the DSL grammar in Figure 4.6 .

Our DSL supports seven arithmetic operations to protect or regulate controller variables

in all of the controllers to control 6DoF. For example in Listing 4.1  , end users can write a

control-semantic patch following the “control variable := operation” pattern. Each control

variable is specified by (1) one of the 6DoFs (e.g., z-axis or roll), (2) primitive controller type

(e.g., position (pos), velocity (vel)), and (3) mathematical controller variable (e.g., P, I, D

parameter or reference). An operation could be any of the seven operations defined by our

DSL. In this example, DisPatch will add range check on the P parameter gain of a z-axis

velocity controller (denoted as z-axis.vel.p) with the value range from 1.0 to 5.6 (denoted

as [range, 1.0�5.6]) in Line 2. We also prevent a controller variable from being a certain

value such as [equal, v?=0.0→v==1.0] (Line 4). If the value (roll.vel.ff) is set to the

target value (e.g., 0.0) in the firmware, DisPatch will set that value into the desired value

(e.g., 1.0) according to the patch.

With the list of annotated semantics of controller variables retrieved from the previous

step (Section 4.3.3 ) and a control-semantic patch written in a high-level DSL, DisPatch is

able to apply the patch to the target binary firmware.

Binary Patching. Finally, DisPatch translates the control-semantic patch into the

corresponding binary-level patch. From the patch, DisPatch has the list of the controller

variables and controller codes accessing those variables (more details in Section 4.4 ). With
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〈cascading〉 ::= ‘x-axis’ | ‘y-axis’ | ‘z-axis’ | ‘xy-axis’
| ‘roll’ | ‘pitch’ | ‘yaw’;

〈primitive〉 ::= ‘pos’ | ‘vel’ | ‘acc’;

〈variable〉 ::= ‘p’ | ‘i’ | ‘d’ | ‘ff’ | ‘r’ | ‘e’ | ‘x’;

〈digit〉 ::= ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’;

〈float〉 ::= 〈digit〉, ‘.’, {〈digit〉};

〈less〉 ::= ‘less’, ‘v<’;

〈greater〉 ::= ‘greater’, ‘v>’;

〈less-equal〉 ::= ‘less-equal’, ‘v<=’;

〈greater-equal〉 ::= ‘greater-equal’, ‘v>=’;

〈comp〉 ::= 〈less〉 | 〈greater〉 | 〈less-equal〉 | 〈greater-equal〉, 〈float〉;

〈comp-default〉 ::= ‘equal’ | ‘not-equal’, ‘,’, ‘v?=’, 〈float〉, ‘->’, ‘v=’, 〈float〉;

〈range〉 ::= ‘range’, ‘,’ ‘v=’, 〈float〉, ‘~’, 〈float〉;

〈policy〉 ::= ‘[’, 〈range〉 | 〈comp〉 | 〈comp-default〉, ‘]’;

〈patch〉 ::= { 〈cascading〉, ’.’, 〈primitive〉, ’.’, 〈variable〉,
’:=’, 〈policy〉 };

Figure 4.6. EBNF of DisPatch patch expression grammar.

these information, DisPatch patches the binary firmware using the detour approach [117 ]

resilient to even partially incorrect disassembly results [117 ], [118 ]. One challenge is that

controller code can access controller variables with different semantics (e.g., P parameter

of either z-axis velocity or roll angular controller), and we will not know the semantics

of these variables passed by until we check the callsite of each controller function. Such

callsites can be differentiated from the different controller semantics (e.g., one controller

function can be called by either z-axis velocity or roll angular codes). If there is only one

callsite, DisPatch directly deploys the patch to the target controller variable. Otherwise,

DisPatch performs callsite-aware instrumentation to handle the multiple semantics of the

same controller variable.
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pitch_ctrl_func: 
…
0x1000   MOV    S0, S1    ; Pass error value (e(t))
0x1002   BL         get_p
0x1006   MOV    S18, S0 ; Get the output of controller
…

CallSiteCheck_func: 
0x4000   PUSH    registers
0x4004   CMP     LR     pitch_ctrl_func
0x4006   BEQ      RangeChk_pitch_func ; Jump if caller address matched
0x400A   CMP     LR     pitch_rate_func
0x400C   BEQ      RangeChk_roll_func ; Jump if caller address matched
…..
0x4050   POP      saved registers
0x4054   B           #detour_ret ; Back to detour_retroll_ctrl_func: 

…
0x2000   MOV    S0, S1    ; Pass error value (e(t))
0x2002   BL         get_p
0x2006   MOV    S18, S0 ; Get the output of controller
…

get_p_func: 
…
0x3000   VLDR    S1, [R0+#offset]  ; Load P parameter
detour_ret:
…
0x3100   BX  LR

RangeChk1_func:
0x5000   VLDR S1,  [R0+#offset]
0x5004   VCMP S1,  #max
0x5006   BLT        BB1 ; Max range check if S1 is “less than (=B’LT’)” #max.
0x500A   VMOV S1,  #max;
0x500C   VSTR     S1,  [R0+#offset] ; 
0x5010   B            detour_ret ; Back to detour_ret
BB1:
0x5014   VCMP S1, #min
0x5016   BGT       detour_ret; Min range check if S1 is “greater than (=B’GT’)” #min
0x501A   VMOV S1, #min
0x501E   VSTR      S1, [R0+#offset]
0x5022   POP       saved registers
0x5026   B            #detour_ret ; Back to detour_ret

B      CallSiteCheck_func

Figure 4.7. An example of an instrumented callsite-aware code payload to
check the value range of P parameters of roll and pitch angular controllers.

For callsite-aware instrumentation, DisPatch checks the callsite address via either a

return register or return address pointer stored in the stack, and places a trampoline to

distinguish different semantics of the target control variable when it is loaded. For in-

stance in Figure 4.7 , we assume that both roll_ctrl_func and pitch_ctrl_func will call

get_p_func to compute the PID controller output. P is loaded at the same code location

(VLDR at 0x3000) with different semantics depending on the caller. To apply the patch to the

P parameter, we replace the VLDR with the jump instruction to CallSiteCheck_func using

the detour-based approach, which checks for the callsite address. In our example, LR stores

the callsite address and it is checked at 0x4004 and 0x400A to determine the corresponding

patch to apply. As an example of taking the RangeChk1_func branch, once the patch (from

0x5000 to 0x5026) executed, we will move back to the next address of 0x3000 (i.e., the

replaced instruction address) in get_p_func to continue the normal execution.

106



4.4 Implementation

We modified RetDec [119 ] to tag binary instruction addresses in the firmware to their cor-

responding LLVM instructions in the LLVM debugging symbol format, as well as common

mathematical functions and identified controller functions and instructions accessing con-

troller variables identified in Section 4.3.2 into the corresponding LLVM objects. Common

mathematical functions (e.g., sin and cos) are well-defined transformation functions with

fixed inputs and outputs unlike PID controllers with variants. Hence, we use the signature-

based function matching technique [120 ] to identify those mathematical functions from the

binary firmware without missing any of them.

RetDec does not fully support argument and return variable identification, which can

cause DisPatch to miss inter-procedural data flows of controller dependencies. To com-

plement such missing information, DisPatch tracks read and write operations on variables

(e.g., registers or stack variable in the binary firmware) as typical binary analyses do [114 ],

[121 ], [122 ]. If either an argument of a caller or a return variable of a callee is read before

it is written, we consider such variables as passed from either a caller or callee. To reduce

false positives, we choose those argument/return registers and stack variables based on the

calling convention in the ARM architecture (e.g., the arguments and return values are held

in lower registers R0-R3).

We implement the mathematical controller function candidate identification (Section 4.3.1 )

as a plugin for IDA Pro 7.2 [121 ], and a symbolic taint analyzer with angr [114 ] using IDA

Pro as a disassembler and the function call tracing with gdb scripts to further shortlist can-

didate functions. We also implement a firmware augmentation script to add memory layout

information on a binary blob using elftools [116 ] We also use the symbolic execution en-

gine in angr to generate the symbolic expression for controller functions (Section 4.3.2 ) and

develop the semantic matching module to perform AST generation, simplification, mathe-

matical operator examination and merging. We use IDA Pro as a disassembler for this step.

We implement the controller-semantic patch location identification module (Section 4.3.3 )

on top of the SVF 1.8 static analysis tool [49 ] for points-to analysis with LLVM 9.0 [123 ].

Finally, we implemented our binary patching (Section 4.3.4 ) based on detour-based binary
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rewriting technique as a plugin for IDA Pro 7.2. The total LoC of our whole system is 9,832

lines of code (5,327 lines of C++ and 4,505 lines of Python). DisPatch consists of four

modules, and their lines of code is described in Table 4.1  . We also provide which tools are

used to developer our framework in the second column.

Table 4.1. Lines of codes for DisPatch’s analysis modules.
Module Used Tools Lines of Codes
Mathematical Function Candidate
Identification (Section 4.3.1 )

IDA Pro [121 ], elftools [116 ],
and angr [114 ] 1,823

Mathematical Equation Based Controller
Variable Identification (Section 4.3.2 ) IDA Pro [121 ], and angr [114 ] 1,425

Controller-Semantic Patch Location
Identification (Section 4.3.3 )

LLVM [123 ], SVF [49 ],
FLIRT [120 ], and RetDec [119 ] 5,327

Patch Generation (Section 4.3.4 ) IDA Pro [121 ] 1,245
Total - 9,832

4.5 Evaluation

We validate DisPatch on real-world RAV firmware to answer the following key questions:

• Q1: How accurate is the controller function and variable identification/decom-

pilation? (Section 4.5.1 )

• Q2: How practical is DisPatch for patching real-world cyber-physical bugs?

(Section 4.5.2 )

• Q3: How much overhead is imposed by the patch of DisPatch on RAV opera-

tions? (Section 4.5.3 )

Experimental Setup. We use ArduPilot 3.6 [22 ] based RAV firmware during the evalua-

tion because it is the most popular control software [32 ], [124 ], [125 ], adapted and customized

by many RAV venders [126 ] including BirdsEyeView, Walkera, and Traxxas [127 ]–[129 ], and

supports a variety of RAV control models such as copter, plane, helicopter and submarine

even with different physical quantities (e.g., RAV body size, weight and motor specification).

ArduPilot 3.6 adopts ChibiOS [130 ] as the default real-time operating system. Accordingly,
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vendors often customize ArduPilot and provide their own firmware (binary) download or

update services [131 ]–[133 ] for their products. We evaluate DisPatch using ArduPilot on

Pixhawk [134 ] as our target hardware board. This board is equipped with a 192KB SRAM,

a 2MB flash memory, and multiple sensors (a GPS, a magnetometer, an accelerometer, a

barometer, and a gyroscope). We use the black magic probe [135 ] to enable execution trac-

ing, retrieving, and firmware uploading/downloading to/from the Pixhawk board. Note that

all evaluations have been done on four different RAV control models: copter, helicopter,

plane, and submarine.

4.5.1 Controller Identification/Decompilation Accuracy

We had three steps to identify the mathematical controller functions: (1) mathematical

function candidate identification with static analysis (Section 4.3.1 ), (2) mathematical func-

tion candidate identification with static analysis and symbolic taint analysis (Section 4.3.1 ),

and (3) controller function recognition by checking AST similarities between a controller

function and a mathematical template (Section 4.3.2 ). We show the results for each step

in Table 4.2  . In fact, our target firmware does not contain a complete PID controller func-

tion. Instead, we found P controller functions, sub-controller functions of PID, and PID

FF controller functions as described in Table 4.2 .2  Here, we show on the copter, helicopter,

plane, and submarine models.

In Step (1) (denoted as static analysis in Table 4.2 ), DisPatch’s static analysis cannot

distinguish among P, D, FF controllers due to their similar mathematical instruction signa-

tures. Hence, DisPatch finds only 34-47 I and 27-34 non-I (i.e., P, D, FF) (sub-)controller

functions in this step. The total number of (sub-)controller function candidates are 61-81

functions. In Step (2) (denoted as SS analysis in Table 4.2 ), DisPatch intersects the static

analysis results with symbolic taint analysis results. Similar to Step (1), DisPatch still

cannot distinguish between P, I, and FF (sub-)controller functions. Thus, there are 5-8 I

and 13-16 non-I (sub-)controller functions. However, the number of candidates have sig-

nificantly reduced from 65.6% to 75.6% for three control models compared to Step (1). In
2↑ PID FF controller represents the PID controller with the feedforward term as well (FF in equation 4.1 in
Section 4.1 ).
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Table 4.2. Accuracy of the mathematical PID controller function identifica-
tion of the copter, helicopter, plane, and submarine models in each of three
steps. Ctrl.: Controller functions, SS: Static and Symbolic, FP: False positive
rate.

Model Processing Step # of P
Ctrl.

# of I
Ctrl.

# of D
Ctrl.

# of FF
Ctrl.

# of Total
Ctrl.

FP out of
Total Ctrl.

Copter

Static Analysis 30 47 30 30 77 87.0%
SS Analysis 14 5 14 14 19 47.4%

AST Semantic Matching 5 2 2 1 10 0.0%
Ground Truth 5 2 2 1 10 -

Helicopter

Static Analysis 31 47 31 31 78 87.2%
SS Analysis 13 6 13 13 19 47.4%

AST Semantic Matching 5 2 2 1 10 0.0%
Ground Truth 5 2 2 1 10 -

Plane

Static Analysis 34 47 34 34 81 87.7%
SS Analysis 13 8 13 13 21 52.4%

AST Semantic Matching 5 2 2 1 10 0.0%
Ground Truth 5 2 2 1 10 -

Submarine

Static Analysis 27 34 27 27 61 83.6%
SS Analysis 16 5 16 16 21 52.4%

AST Semantic Matching 5 2 2 1 10 0.0%
Ground Truth 5 2 2 1 10 -

Step (3) (denoted as AST semantic matching in Table 4.2  ), DisPatch now can distinguish

all of the different (sub-)controller candidate functions. In this step, DisPatch can find

P(5), I(2), D(2), and FF(1) (sub-)controller function candidates for all of the control models

These identified candidates are identical to the ground truth (number of controller functions

identified manually). As demonstrated, DisPatch’s incremental filtering gets more precise

in each of the following step, leading to the zero false alarm in the end.

Using the result of mathematical PID (sub-)controller identification, DisPatch identifies

controller-semantic patch locations (Section 4.3.3 ). Table 4.3  summarizes the results for (1)

which variant of PID controllers are used for each controller semantic (e.g., z-axis velocity),

and (2) the number of controller variables (including P, I, D, and FF control parameters,

the reference, error, and vehicle state) of different semantics of controllers (Section 4.1 ).

Specifically, in the case of the PID controllers, one PID controller is used to control z-axis

acceleration with P, I and D control parameters while having reference, error and vehicle

states. Hence, it has six controller variables. The other PID controller is customized to

control two dimensional (x, y-axis) accelerations having respectively one more reference,

error and vehicle states to control both x and y-axis simultaneously. Hence, it has nine con-
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Table 4.3. The semantics of mathematical PID controller functions and their
controller variables for all of the four control models. Their semantic identifica-
tion rates of both functions and variables are 100% accurate Ctrl.: Controller
function, 3: semantic of a controller used, CV: controller variable.
Controller Semantic P Ctrl. PID Ctrl. PID FF Ctrl. # of CVs

x, y-axis position 3 7
x, y-axis velocity 3 9
z-axis position 3 4
z-axis velocity 3 4

z-axis acceleration 3 6
Roll angle 3 4

Roll angular rate 3 7
Pitch angle 3 4

Pitch angular rate 3 7
Yaw angle 3 4

Yaw angular rate 3 7
Total # of CVs - - - 63

troller variables. As result, DisPatch finds total six P controllers, two PID controllers, and

three PID FF controllers. DisPatch identifies all of those controllers and 63 common PID

controller variables to be patched without missing any deployed controllers and controller

variables to control 6DoF.

4.5.2 Case Studies

We show how DisPatch could be used to patch real-world cyber-physical bugs within

RAV firmware with two case studies. In the consideration of safety regulations, we run

these long distance testing flights using a software-in-the-loop (SITL) simulator [55 ], which

has high accuracy and fidelity to emulate the physical world under the physics laws, hence

is commonly used in RAV testing by researchers [18 ], [19 ], [22 ], [23 ] and RAV development

companies [136 ]–[138 ]. Note that we tested our case studies on top of the real RAV firmware,

but simulated aerial vehicles and physical environment only to inspect the physical impacts

with and without the patches.
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Figure 4.8. Case 1: The implications of manipulating P, I, and D of the x,
y-axis velocity controller.

Case Study I: Patching a cyber-physical bug unique to a certain RAV control
model

Following up on the motivating example introduced in Section 4.2 , we show the con-

troller states of both the hexacopter and octacopter in Figure 4.8  . In this example, the

RAV is supposed to execute the moving command (i.e., moving in the west direction at a

15m/s) and hover at the destination. As shown in Figure 4.8b  , the octacopter flies stably,

while the hexacopter shows severe and persistent controller anomaly with the same control

parameter setting, as shown in Figure 4.8a . Specifically, from 10,655 Iterations (i.e., des-

tination arrival and hovering in the sky), both reference (ṙx(t)) and vehicle state (ẋx(t))

of the x, y-axis velocity controller cannot track with each other. We found that the RAV

firmware for the hexacopter and octacopter are identical while having the same loose check

for both the controller function and parameter specification for the following parameters:

the P (PSC_VELXY_P), I (PSC_VELXY_I), and D (PSC_VELXY_D) of the x, y-axis velocity con-

troller, and the P (PSC_POSXY_P) of the x, y-axis position controller. Therefore, we decided

to apply the patch specialized to the hexacopter model for the above four parameters to fix

this vulnerability.

To patch such a cyber-physical bug, we use (1) testing systems [19 ] or (2) mathematical

tool [89 ] to determine the proper parameter range tightly coupled with the RAV control

model. We write our control-semantic patch in the DSL shown in Listing 4.2 . For example,
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1 xy−ax i s . pos . p := [ range , 1 . 0 ~ 1 . 5 ]
2 xy−ax i s . v e l . p := [ range , 1 . 5 ~ 4 . 5 ]
3 xy−ax i s . v e l . i := [ range , 0 . 2 ~ 1 . 0 ]
4 xy−ax i s . v e l . d := [ range , 0 . 2 ~ 1 . 0 ]

Listing 4.2 An RAV control-semantic patch DSL for the Case Study I. Four
parameters are patched.

we decide to reduce the default value range of PSC_VELXY_P from 0.1 to 6.03
 to from 1.5 to

4.5 described as “xy-axis.vel.p :=[range, 1.5�4.5]”.

Given the patch, DisPatch first identifies the mathematical controller candidates by

intersecting the results of static analysis and symbolic execution (Section 4.3.1 ); it finalizes

the mathematical controllers and their mathematical expressions for each controller variable

(Section 4.3.2 ); DisPatch then identifies all of the semantics of the mathematical controllers

and their control parameters as we show in Table 4.3 of Section 4.5.1 .

Finally, DisPatch deploys the patch at the binary level as shown in Figure 4.9 , which

enforces range checks on the four control parameters in the different (sub-)controller func-

tions by making the firmware call the four protection functions (RangeCheck_Velxy_P,

RangeCheck_Velxy_I, RangeCheck_Velxy_D, and RangeCheck_Posxy_P). For example, DisPatch

reduces the value range of PSC_VELXY_P from 1.5 to 4.5 by making the firmware jump to the

RangeCheck_Velxy_P detour function. We later ran the patched firmware and confirmed

the stability of the hexacopter’s operation in run-time.

Case Study II: Limiting flight distance to prevent communication loss

Operators utilize a remote control system to control the RAV, and this communication

range is limited as illustrated in Figure 4.10  . WiFi is usually limited to approximately 50

meters and radio controllers support ranges of few kilometers.4  However, if a WiFi or radio

module has been replaced or an RAV encounters adversarial environments causing radio

communication range fluctuation and/or jamming attacks, it can result in unsafe states
3↑ Recommended in the official document [99 ].
4↑ The communication range of telemetry module such as FrSky DJT 2.4Ghz [139 ] spans from 1.5 to 2.5
kilometers.
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AC_PosControl::run_xy_controller: 
…
0x5C834    BL    AC_PosControl::sqrt_controller
…
0x5C874    BL    AC_PID_2D::get_p
…
0x5C89C    BL    AC_PID_2D::get_i
…
0x5C8B2    BL    AC_PID_2D::get_d
…

AC_PID_2D::get_p
…
0x5E390    VLDR    S0,   [R0-#0x30]    ; Load P parameter
0x5E394    BL         Vector2<float>::operator*
…

RangeCheck_Velxy_P:
0xF15B8   VLDR S0,  [R0-#0x30]  ; Load P parameter moved from “get_p”
0xF15BC   VCMP S0,  #4.5
0xF15BE   BLT        BB1 ; Max range check if S0 is “less than (=B’LT’)” 4.5.
0xF15C2   VMOV S0,  #4.5
0xF15C4   VSTR     S0,  [R0-#0x30] 
0xF15C8   B            #NextInst
BB1:
0xF15CC   VCMP S0, #1.5
0xF15CE   BGT       #NextInst; Min range check if S0 is “greater than (=B’GT’)” 1.5
0xF15D2   VMOV S0, #1.5
0xF15D4   VSTR      S0, [R0-#0x30]
0xF15D8   B            #NextInst

B      RangeCheck_Velxy_P

AC_PID_2D::get_i
…
0x5E3A6    VLDR    S0,    [R0+#0x4]     ; Load I parameter
0x5E3AA    VLDR    S16, =1.1921e-7
…

B      RangeCheck_Velxy_I

AC_PID_2D::get_d
…
0x5E518    VLDR    S15,   [R0+#0x8]    ; Load D parameter
0x5E51C    VLDR    S1,     [R0+#0x3C]
…

B RangeCheck_Velxy_D

Range_Check_Velxy_I:
0xF1614   VLDR S1,  [R0+#0x4]    ; Load I parameter moved from “get_i”
…..
0xF1634   B            #NextInst

Range_Check_Velxy_D:
0xF1658   VLDR S1,  [R0+#0x8]    ; Load D parameter moved from “get_d”
…
0xF1678   B            #NextInst

AC_PosControl::sqrt_controller:
…
0x5C72C    VABS    S15,   S0                   ; Load P parameter
0x5C730    VCMP  S15,   S14
…

B RangeCheck_Posxy_P
Range_Check_Posxy_P:
0xF16C8   VABS S15,  S0                ; Load P parameter from “sqrt_controller”
…
0xF16E0   B            #NextInst

Figure 4.9. An example of the protection logics for PSC_VELXY_P,
PSC_VELXY_I, PSC_VELXY_D, and PSC_POSXY_P parameters.

Safe Flight Region

Figure 4.10. Case 2: Safe flight region enforcement by limiting the reference
values of x, y-axis position controllers.

leading to task abortion or even crash. To launch this attack, attackers can modify the flight

range by manipulating the allowed flight distance parameter (supported by advanced RAV

software such as ArduPilot) or changing the missions via the remote interface [18 ], [78 ]–

[80 ]. Therefore, operators would like to enforce static flight distance limitations to avoid
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1 x−ax i s . pos . r e f := [ range , −500.0~500.0 ]
2 y−ax i s . pos . r e f := [ range , −500.0~500.0 ]
3 z−ax i s . pos . r e f := [ range , −500.0~500.0 ]

Listing 4.3 An RAV control-semantic patch DSL for the Case Study II. Three
reference variables are patched.

AC_PosControl::run_xy_controller: 
…
0x5C9F6    VLDR  S13, [R4+#0xF4]; x-axis position reference
0x5C9FA    VLDR  S17, [R0+#0x4]
…
0x5CA0E VLDR  S13, [R4+#0xF8]; y-axis position reference
0x5CA12   FSUB   S13, S13, S17
…
0x5CA58    BL    AC_PosControl::sqrt_controller
…

RangeCheck_PosZ_Ref:
0xF18A8   VLDR S15,  [R4+#0xFC]  ; Load z-axis reference
0xF18AC   VCMP S15,  #500.0
0xF18AE   BLT        BB1 ; Max range check if S15 is “less than” 500.0.
0xF18B2   VMOV S15,  #500.0
0xF18B4   VSTR     S15,  [R4+#0xFC] ; 
0xF18B8   B            #NextInst
BB1:
0xF18BC   VCMP S15, #-500.0
0xF18BE   BGT       #NextInst; Min range check if S15 is “greater than” -500.0
0xF18C2   VMOV S15, #-500.0
0xF18C4   VSTR      S15, [S4+#0xFC]
0xF18C8   B            #NextInst

AC_PosControl::run_z_controller: 
…
0x5BB98    VLDR  S15, [R4+#0xFC]; z-axis position reference
0x5BB9C    LDRB  R3, [R4+#6]
…
0x5CA58    BL    AC_AttitudeControl::sqrt_controller
…

RangeCheck_PosY_Ref:
0xF18C8   VLDR S13,  [R4+#0xF8]  ; Load y-axis reference
…
0xF18E8   B            #NextInst

RangeCheck_PosX_Ref:
0xF1848   VLDR S13,  [R4+#0xF4]  ; Load x-axis reference
…
0xF1868   B           #NextInst

B  RangeCheck_PosZ_Ref

B  RangeCheck_PosX_Ref

B  RangeCheck_PosY_Ref

Figure 4.11. An example of the restriction logics for references of x, y, z-axis
position controllers.

such misbehaviors. With DisPatch, we could write a control-semantic patch as shown

in Listing 4.3 to limit the flight distance within 500 meters.

Throughout the controller variable identification steps, DisPatch needs to identify the

position reference variables in three axe (rx, ry, and rz). Then, we can limit those values with

the defined ranges (i.e., from -500.0 to 500.0) as described in the patch. Figure 4.11  shows how

DisPatch deploys the flight distance patch in x, y, z-axe by replacing their reference values

with B instructions jumping respectively to RangeCheck_PosX_Ref, RangeCheck_PosY_Ref,

and RangeCheck_PosZ_Ref, all of which enforce the 500-meter limitation. Similarly, we were

able to verify the 500-meter limitation enforced by the patch using our testing platform.
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4.5.3 Performance Overhead

To ensure that the patched firmware can still fit within the flash ROM, and does not

disturb the RAV’s real-time operations at run-time, we measure both the space and run-

time overhead caused by patching in worst case scenario, where we instrumented all of 63

controller variables we found in the firmware, and applied the min/max range checking patch

to each control variable using DisPatch since this kind of patch imposes the largest overhead

compared with other patches.

Space Overhead. We measured DisPatch’s space overhead on four different RAV

control models: copter, helicopter, plane, and submarine. The original firmware sizes of

these models are 949KB, 936KB, 936KB, and 822KB, respectively. Each firmware image

includes RTOS, control program codes, and read-only data (e.g., communication message

strings) that must be loaded into a non-volatile flash memory during the RAV’s boot up

time. We show the measured space overheads following the worse case scenario. The patch

increased the size of the firmware for different models to 954KB, 941KB, 941KB, and 827KB

respectively, with overheads of 0.55%, 0.56%, 0.56%, and 0.64% (i.e., on average 0.58%). This

space overhead is negligible and acceptable for real-world deployments, and our patched RAV

firmware can easily fit within the RAV’s size-constrained flash memory. We summarize the

space overheads in Table 4.4 .

Table 4.4. Space overhead introduced by DisPatch. We instrumented all of
the identified controllers in our four different RAV control models.

RAV
Control Model

Original
Firmware Size

Instrumented
Firmware Size Space Overhead

Copter 949KB 954KB 0.55%
Helicopter 936KB 941KB 0.56%
Plane 936KB 941KB 0.56%
Submarine 822KB 827KB 0.64%
Average 911KB 916KB 0.58%

Run-time Overhead. We measured the run-time overhead on the four RAV models. We

first measured the run-time overhead of 48 real-time tasks running within the firmware of the

copter model. The execution frequency of each real-time task ranges from 0.1Hz to 400Hz.
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Figure 4.12. Run-time overhead of the copter firmware all of whose identi-
fied controller variables are instrumented: Average execution time of 48 soft
real-time tasks in log scale with and without DisPatch’s patch. Both un-
patched and patched firmware meet the soft real-time deadlines except for the
one_hz_loop task.

Figure 4.12  summarizes the (1) execution time without patches, (2) execution time with

patches, and (3) soft real-time deadlines. Compared with the task execution time without

patches, we observe 1.46% run-time overhead on average ranging from -8.1% to 9.7% in the

copter model.5  

The deviations in run-time overhead occur more frequently on the tasks with small ex-

ecution time (e.g., 7.1 µs for update_optical_flow, and 7.1 µs for arm_motors_check on

unpatched firmware) since they are more sensitive to the patching overhead. Among all

the tasks, only one_hz_loop misses the soft real-time deadline. We found that task vio-

lates soft real-time deadline even without DisPatch’s patches. Among all the tasks, we

found that controller-related tasks such as update_altitude and run_nav_updates show

relatively higher run-time overhead with 6.8% and 8.7% respectively. The higher run-time

overhead is due to the presence of more number of controller variables which DisPatch

instrumented. Overall, we observe 1.48% run-time overhead on average ranging from 1.41%

to 1.55% on all of the four RAV control models with only one task violating the soft real-time

deadline even without our patches.

For the helicopter model, we can observe the 1.41% run-time overhead on average rang-

ing from -12.3% to 11.0% from 49 soft real-time tasks compared with the task execution

time without patches. Those fluctuations appear more frequently on the tasks with small
5↑ Note that non-deterministic inputs (e.g., GPS and GCS communication) cause fluctuation in run-time
overhead.
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Figure 4.13. Run-time overhead of the helicopter firmware all of whose iden-
tified controller variables are instrumented: Average execution time of 49 soft
real-time tasks in log scale with and without DisPatch’s patch. Both un-
patched and patched firmware meet the soft real-time deadlines except for the
ten_hz_logging_loop task.

execution time (e.g., 8.6 µs for arm_motors_check, and 6.0 µs for ekf_check on unpatched

firmware). Out of all of the tasks, only one task (ten_hz_logging_loop) misses the soft

real-time deadline violation. However, this violation happens even with the firmware without

patches. Out of tasks, we found that controller-related tasks (e.g., update_altitude and

run_nav_updates) shows relatively higher run-time overhead (respectively 7.6% and 8.1%).
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Figure 4.14. Run-time overhead of the plane firmware all of whose identi-
fied controller variables are instrumented: Average execution time of 50 soft
real-time tasks in log scale with and without DisPatch’s patch. Both un-
patched and patched firmware meet the soft real-time deadlines except for the
update_logging1 task.

For the plane model, we can observe the 1.55% run-time overhead on average ranging from

-11.4% to 9.7% from 50 soft real-times tasks of the plane firmware compared with the task

execution time without patches. Those fluctuations appear more frequently on the tasks with

small execution time (e.g., 3.6 µs for parachute_check, and 5.0 µs for ice_update on un-
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patched firmware). Out of all of the tasks, only one task (update_logging1) misses the soft

real-time deadline violation. However, this violation happens even with the firmware without

patches. Out of tasks, we found that controller-related tasks (e.g., adjust_altitude_target

and navigate) shows relatively higher run-time overhead (respectively 8.9% and 8.4%).
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Figure 4.15. Run-time overhead of the submarine firmware all of whose
identified controller variables are instrumented: Average task execution time
of 24 soft real-time tasks in log scale with and without DisPatch’s patch.
Both unpatched and patched firmware meet the soft real-time deadlines.

For the submarine model, we can observe the 1.49% run-time overhead on average rang-

ing from -9.6% to 8.5% from 24 soft real-times tasks of the submarine firmware compared

with the task execution time without patches. Those fluctuations appear more frequently

on the tasks with small execution time (e.g., 8.3 µs for read_rangefinder, and 8.9 µs for

AP_Mount::update on unpatched firmware). Out of all of the tasks, both patched and un-

patched firmware do not miss the soft real-time deadline violation. Out of tasks, we found

that controller-related tasks (e.g., update_altitude) shows relatively higher run-time over-

head (6.8%).

4.6 Discussion

Focused Control Variable Coverage. DisPatch focuses on critical PID controller

variables required for operation such as inputs, outputs and parameters. These controller

variables are the heart of the control system and applicable to any control system using PID

controllers. The non-critical variables such as logging switch are not covered. We can cover

additional mathematical components by adding their exact mathematical expressions to our

mathematical expression template.
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Generality of Primitive and Cascading Controller Dependencies. We inferred

the primitive and cascading control dependencies from the RAV control model (Section 4.1 ),

which are also shared by all the four control models that we tested. We also confirm that

these dependencies hold true for other control systems (e.g., PX4 [23 ] and Crazyflies [110 ]).

Although the internal details such as number, kind, and configuration of primitive controllers

may vary in different control software, on the control model level they can be generalized to

a generic controller dependency obtained from the control model (Section 4.1 ).

Multi-Architecture Support. Since the ARM architecture is the dominating in

RAVs [22 ], [23 ], [110 ], DisPatch mainly targets the ARM architecture,and does not sup-

port RAV firmware running on other architecture such as x86 [75 ] out-of-the-box. However,

our framework is built upon multi-architecture supported tools (e.g., angr and IDA Pro)

and works on architecture-agnostic intermediate languages (e.g., LLVM bitcode). Therefore,

DisPatch should be portable to other architectures with reasonable engineering effort.

Dynamically Generated, Obfuscated or Encrypted Firmware. We assume that

the firmware can be disassembled before our technique is applied. This means we could not

handle firmware whose actual binary instructions will only be available during the run-time

due to packing, obfuscation, or encryption. Fortunately, such encodings are not popular in

practice for RAV firmware [118 ], [140 ], [141 ] due to the limited computing resources available

on RAVs.

Automatic Peripheral Path Discovery for Controller Function Identification.

We assumed to have access to the locations of MMIO registers for sensors and actuators

from publicly available information in order to identify the paths between sensors and actu-

ators. Future work will leverage peripheral models [142 ], [143 ] to discover candidate MMIO

addresses for peripherals in combination with the target board information.
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5. RELATED WORK

5.1 Postmortem Robotic Aerial Vehicle Investigation

Mayday was inspired in part by the well-established aircraft accident investigation prac-

tices based on recorded flight data. We find it meaningful to establish a parallel practice

of recording RAV flight data, in preparation for in-depth investigation of RAV accidents.

Offline log analysis is an established method to investigate RAV operation problems. Based

on flight logs recorded, existing analysis tools [33 ]–[35 ] can visualize sensor inputs, motor

outputs, high-level controller states, and flight paths in the logs. The visualization helps

investigators find the vehicle’s physical and mechanical problems, such as sensor and mo-

tor failures and power problems. Some of these tools (e.g., LogAnalyzer [33 ]) also examine

the correctness of some of the high-level controller states based on simple range checks

(e.g., “from -45 to 45 degrees” for roll angle control), which can identify obvious problems

without in-depth analysis. DROP [34 ] detects injected malicious commands based on the

well-established DJI RAV framework. However, it focuses on finding a malicious command

that appears only at the GCS or on-board the RAV, without performing cross-layer (i.e.,

from control and program) analysis. In comparison, Mayday performs cross-domain trace-

back to RAV accident root causes by revealing the causality between physical impacts and

control program bugs.

5.2 Program-Level Root Cause Analysis

Many root cause analysis techniques based on execution logs have been proposed to

investigate program failures [37 ]–[40 ], security incidents [41 ]–[43 ], and for debugging [144 ]–

[146 ].

Several solutions leverage program instrumentation to generate execution logs [37 ], [144 ].

On the other hand, there is a large number of works that record OS events during run-time

and perform offline analyses to backtrack the provenance of Advanced Persistent Threat

(APT) attacks [41 ]–[43 ]. These works leverage program execution partitioning [41 ], [43 ]

and system event dependency models [41 ]–[43 ] to identify attack paths accurately in a large
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amount of log data from long-running systems. Another line of work records complete

or partial execution until a program crashes and analyzes the logs to diagnose the root

causes or reproduce the errors [37 ], [40 ]. Some of these works [38 ], [39 ] leverage hardware

assistance [147 ] to log fine-grain program execution with high efficiency. Guided by RAV

control model and control “model-to-program” mapping, Mayday achieves higher accuracy

and efficiency for control program debugging.

Some debugging techniques such as statistical debugging techniques [145 ], [146 ] work by

comparing the statistical code coverage patterns in “passing” and “failing” runs. However,

bugs in control systems do not always induce obvious code coverage difference due to the

iterative control-loop execution model, in which the same set of components (e.g., sensor

reading sampling and control output generation) is periodically executed, with or without

a controller digression. As such, for our target systems, they may not be as effective as for

non-control programs.

5.3 Feedback-directed Testing and Fuzzing

RVFuzzer is inspired by many existing feedback-driven testing/fuzzing systems for con-

ventional programs [148 ]–[162 ]. These solutions leverage different mutation strategies to in-

crease the coverage of testing/fuzzing. Several systems [148 ]–[151 ] mutate input values with

varying granularity (e.g., bit, byte-level) driven by the tested code’s coverage achieved during

each test run, using the code coverage as feedback. Another line of work [152 ], [153 ] adopts

a hybrid approach to increase code coverage using both dynamic and symbolic execution.

Finally, many efforts leverage taint analysis [154 ]–[158 ] or a combination of taint analysis

and symbolic execution [159 ]–[162 ] for high testing coverage. Such approaches mutate inputs

with awareness of the dependencies between program input and logic.

Testing techniques for conventional, non-cyber-physical programs rely on well-established

mechanisms for (1) bug detection and (2) input mutation. Specifically, these testing tech-

niques leverage generic, easy-to-detect symptoms of program failures (e.g., segmentation

faults) as an indication of a triggered bug and mutate program input following information

(e.g., code coverage) agnostic to domain semantics. Compared with conventional software

122



testing, RVFuzzer addresses new problems and opportunities when finding cyber-physical

bugs in RAV control. Many such bugs do not cause an immediate, easy-to-detect crash of

the control program, especially when running with an RAV simulator. Meanwhile, control-

theoretical properties offer hints to reduce the input value mutation space.

5.4 Disassembly and Function Identification

The capability of the traditional disassembly frameworks [121 ], [122 ], [163 ]–[166 ] can-

not identify the semantic meaning of functions (e.g., z-axis velocity controller function).

To identify a semantic meaning of a function, researchers have devised several approaches.

Some identify such semantics of functions using static analysis information such as binary

code signature pattern [120 ] or control flow graphs of functions [167 ]–[170 ]. Others take

dynamic analysis approaches to identify semantic behavior of functions by leveraging exe-

cution traces [171 ]–[173 ]. There have been several works leveraging machine learning tech-

niques [174 ]–[177 ]. However, none of them can find the target functions without reference

binary function patterns. In addition, those binary patterns can be fragile if controller

functions are customized.

There are three frameworks [12 ], [21 ], [178 ] targeting the controller function and variable

identification. Hongjun et al. claim that they identify the controller variables. However,

it cannot identify control parameters. Moreover, they leverage Valgrind [179 ] that requires

general-purpose operating systems such as Linux and cannot run on both RTOSes and

bare-metal firmware. ICSREF [178 ] identifies PID controllers using static binary signa-

tures. However, it cannot handle customized PID controllers because it targets only PID

controllers provided in libraries used only by specific industrial control system development

tools. MISMO [21 ] can identify PID controllers using mathematical expressions with dynamic

symbolic execution. However, MISMO is limited to finding only PID controller functions -

not all of the different variants of the PID controller functions (e.g., P or PID FF controllers).

Furthermore, it works only with x86 and PIN [180 ] which runs only on a general-purpose op-

erating system. More importantly, both ICSREF and MISMO are limited to locating generic
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PID controllers since they cannot identify their semantics (e.g., z-axis position controller)

other than generic mathematical PID controller models.

5.5 Binary Rewriter

There have been a large body of works to patch the binary programs in general [117 ],

[118 ], [179 ]–[187 ]. However, to patch the RAV binary programs, they fail to answer the

following fundamental questions: (i) where the patch has to be applied, (ii) what patch has

to be applied, and (iii) how easy it is for an operator to define and apply patches. In other

words, they are limited to memory bugs and fail to identify and rewrite patches for cyber-

physical bugs. They cannot patch RAV firmware without our controller-semantic patch

location identifier. Furthermore, our framework provides a controller-specific DSL capable

of patching semantic bugs in the controller functions and variables (e.g., z-axis velocity P

parameter) with ease on top of the existing binary rewriting technique.

5.6 Run-time Control Semantics-Driven RAV Protection

There exists a body of work from attacks during flights and missions [12 ]–[14 ]. Blue-

Box [13 ] detects abnormal behaviors of an RAV controller by running a shadow controller

in a separate microprocessor that monitors the correctness of the primary controller, based

on the same control model. CI [12 ] extracts control-level invariants of an RAV controller

to detect physical attacks. Similarly, Heredia et al. [14 ] propose using a fault detection and

isolation model extracted from a target RAV controller and enforces the model to detect

anomalies during flights.

Another line of work focuses on deriving finite state models to detect abnormal controller

behaviors [188 ], [189 ]. Orpheus [188 ] automatically derives state transition models using pro-

gram analysis for run-time anomaly detection. Bruids [189 ] relies on a manual specification

of RAV behaviors to derive a behavioral model to detect run-time anomalies.

Other approaches utilize machine learning techniques to derive benign behavioral models

of an RAV controller. Abbaspour et al. [190 ] apply adaptive neural network techniques

to detect fault data injection attacks during flight. Samy et al. [17 ] use neural network
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techniques to detect sensor faults. Two related efforts [15 ], [16 ] leverage a similar approach

but detect both sensor and actuator faults.

Complementing the prior efforts, our frameworks have the following features: (1) Mayday

is the control-model guided cyber-physical bug location system to reactively find cyber-

physical bugs after its exploitation happens, (2) RVFuzzer leverages the control model and

properties to proactively find cyber-physical bugs that may be exploited by RAV attack-

ers, and (3) DisPatch is the patching system to remove cyber-physical bugs after they are

identified.

5.7 Defense against Cyber-Physical Bugs

Researchers have proposed a large number of solutions defending against the safety and

security threats of RAVs. Some works apply filters such as the extended Kalman filters [44 ],

[45 ] or low pass filters [46 ]. However, their capability is limited to mitigating occasionally

missing or noisy sensor readings. Furthermore, they cannot handle threats that go beyond

their filtering capabilities as shown in the previous works [12 ], [18 ], [19 ], [191 ].

Several efforts leverage an RAV control model to monitor the controller state anomaly [12 ],

[13 ], [112 ], [191 ], [192 ]. Others leverage machine learning models to detect abnormal con-

troller states [16 ], [17 ], [193 ] or incorrect computer-vision-based navigation [194 ], [195 ]. How-

ever, those efforts are mostly limited to either detecting controller state anomaly rather than

controller state recovery [12 ], [13 ], [17 ], [192 ] or are targeting navigation systems [194 ], [195 ]A

few recent research work [112 ], [191 ], [193 ] can defend against controller anomaly. However,

they maintain the under-attack RAVs’ controller state safety for a very limited time or show

persistent controller anomaly; this makes RAVs vulnerable to sudden environmental changes

(e.g., wind gust).
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6. FUTURE WORK

My future research aims to tackle challenges in the security and safety of smart things and

robotic aerial vehicles. Smart things (e.g., smart manufacturing, smart home devices, RAVs,

and autonomous automotive) are physical objects connecting remotely with a wide range

of smart devices to work together. This research direction will promote interdisciplinary

collaboration with experts such as AI, control, and network experts to instantiate a new

research paradigm.

6.1 Robotic Aerial Vehicle Security and Safety with AI

Artificial Intelligence (AI) is increasingly applied to various RAVs, including monitoring,

testing, and navigating RAVs whose operations are determined by control software. In light

of their close interaction, I plan to improve the security and safety of AI, control theory,

and program techniques used in RAVs by complementing each other. For example, there is

a well-known type of cyber attacks called advanced persistent threat (APT) attacks (e.g.,

Stuxnet). Such attacks are hard to detect because they gradually compromise a target sys-

tem. Similarly, intelligent “cyber-physical” attackers will create APT-style stealthy attacks

(which gradually corrupt a vehicle’s control states). Unfortunately, the existing defense

mechanisms, including even my current research work [18 ], [19 ], may miss those stealthy

attacks. Hence, I plan to leverage AI models to prevent APT-style “cyber-physical” attacks

at an early stage before the disruptive physical impact appears. By training AI models with

various flight patterns, AI can derive a novel correlation between a vehicle’s control states

and sensors (e.g., a vehicle’s control state inference from camera vision and approaching

object detection from a pressure sensor). Such new findings can help detect stealthy attacks

that existing approaches have missed. I also plan to improve AI’s functionalities for RAVs by

leveraging control and program knowledge. Specifically, control and program knowledge can

help generate corner cases (e.g., fuzzing inputs (found by RVFuzzer [19 ]) making RAV con-

trollers cause controller anomaly) to enhance AI training efficiency and fix latent buggy AI

behavior. Such multi-disciplinary research will open new opportunities to collaborate with
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colleagues in AI, control, and programs to instantiate a new robotic aerial vehicle research

paradigm.

6.2 Robotic Aerial Vehicle Swarm Security and Safety

RAV swarms have recently attracted significant attention from various fields such as

military and urban applications (e.g., the drone show at the 2018 Winter Olympics). With

the advent of vehicle-to-vehicle (V2V) communication with 5G, this trend will be accelerated.

Considering the various applications of an RAV swarm and advances in communication

technologies, I plan to research securing a group of RAVs and V2V communication, which is

hard to be achieved by my previous work [10 ], [20 ] focusing on a single RAV’s security and

safety. One direction is that every RAV monitors the other RAVs in the swarm and fixes

security and safety issues. For instance, if an RAV’s sensor fails, adjacent RAVs can provide

correct sensor values. Besides, if an RAV cannot communicate with its control station,

a neighboring RAV fixes communication failure by acting as a communication repeater.

Furthermore, I plan to work on lightweight, secure communication while preserving the

real-time constraints. For example, network traffic reduction by de-duplicating messages in

an RAV swarm network and lightweight encryption using special hardware are promising

research directions.

6.3 Smart Things Security and Safety

The security and safety of emerging smart things have recently attracted significant at-

tention. To secure smart things, I plan to generalize my “cyber-physical” analysis techniques

(e.g., fuzzing and investigation). Specifically, smart things contain multiple controllers and

their interaction performing physical operations as defined in the control model. For ex-

ample, controllers in smart manufacturing systems (e.g., heating and molding metals) and

autonomous automotive (e.g., accelerating and braking movements) are responsible for ad-

justing physical operations based on the underlying control models. I plan to improve those

platforms’ security and safety by adapting my “cyber-physical” analysis (e.g., CPS fuzzing

and hardening) specialized to their respective control models.
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7. CONCLUSION

It is challenging to prevent RAV accidents caused by cyber-physical bugs because we should

secure RAVs considering the interplay between “cyber” and “physical” domains. However,

none of the existing work secures the interplay between “cyber” and “physical” domains

because they focus on only one of two domains. In this dissertation, we propose cyber-

physical analysis to prevent attacks caused by cyber-physical bugs. More specifically, using

program analysis and control modeling, I first developed novel techniques to (1) connect both

cyber and physical domains and then (2) analyze their interplay. Based on our approach, I

have developed Mayday for control program investigation, RVFuzzer for control program

fuzzing, DisPatch for control binary program patching. We summarize our three techniques

as follows.

• Mayday is a cross-domain RAV accident investigation tool that localizes program-

level root causes of accidents based on the RAV control model and enhanced

in-flight logs. Guided by a generic RAV control model (CVDG), Mayday se-

lectively instruments the control program to record its execution aligned with

existing control-level logs. Using the control- and program-level logs, Mayday

infers and maps the culprit control variable corruption from control domain to

program domain and localizes the bug within a very small control program frag-

ment.

• RVFuzzer is a control program testing system to proactively discover cyber-

physical bugs in a control program binary. RVFuzzer can reveal illegitimate-

yet-accepted value ranges of dynamically adjustable control parameters. Specif-

ically, RVFuzzer adaptively mutates the input control parameter values to de-

termine the (in)valid value ranges, driven by the detection of control state de-

viations in the simulated RAV. Furthermore, it considers the impact of external

factors by mutating their values and presence.

• DisPatch is the first end-to-end RAV firmware patching framework. DisPatch

allows end users to write human-readable patches and patch the cyber-physical
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bugs within firmware directly with reasonable flexibility, high accuracy, and neg-

ligible overhead. The generality design of RAV firmware is applicable to different

RAV models with different cyber-physical bugs that have been exploited to at-

tack RAVs.

As a result, our work has discovered 91 new cyber-physical bugs. Furthermore, 32 of

cyber-physical bugs were confirmed, and 11 of them were patched by ArduPilot and PX4

developers. We believe our techniques will contribute to securely and safely using RAVs.

This is because they cover the security aspects caused by the interplay between cyber and

physical domains, which cannot be covered only with existing work.
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