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ABSTRACT 

The Unmanned Aerial Vehicles (UAV) technology has evolved exponentially in recent 

years. Smaller and less expensive devices allow a world of new applications in different areas, 

but as this progress can be beneficial, the use of UAVs with malicious intentions also poses a 

threat. UAVs can carry weapons or explosives and access restricted zones passing undetected, 

representing a real threat for civilians and institutions. Acoustic detection in combination with 

machine learning models emerges as a viable solution since, despite its limitations related with 

environmental noise, it has provided promising results on classifying UAV sounds, it is 

adaptable to multiple environments, and especially, it can be a cost-effective solution, 

something much needed in the counter UAV market with high projections for the coming years. 

The problem addressed by this project is the need for a real-world adaptable solution which 

can show that an array of acoustic sensors can be implemented for the detection and localization 

of UAVs with minimal cost and competitive performance. 

  In this research, a low-cost acoustic detection system that can detect, in real time, about 

the presence and direction of arrival of a UAV approaching a target was engineered and 

validated. The model developed includes an array of acoustic sensors remotely connected to a 

central server, which uses the sound signals to estimate the direction of arrival of the UAV. 

This model works with a single microphone per node which calculates the position based on 

the acoustic intensity change produced by the UAV, reducing the implementation costs and 

being able to work asynchronously. The development of the project included collecting data 

from UAVs flying both indoors and outdoors, and a performance analysis under realistic 

conditions.  

The results demonstrated that the solution provides real time UAV detection and 

localization information to protect a target from an attacking UAV, and that it can be applied 

in real world scenarios.  
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CHAPTER 1: PURPOSE & PROBLEM 

1.1 Introduction 

It is common knowledge that Unmanned Aerial Vehicles (UAVs) represent a threat in 

battlefields nowadays, but they can also put institutions’ and civilian’s safety at risk [1]. This 

problem has aroused the attention of researchers who have dedicated multiple studies to the 

quest of detecting potentially malicious drones.  

Visual, acoustic, radar, and radio-frequency solutions have been proposed, some of 

them with promising results, but with limitations [2]. Sound recognition solutions stand out 

between the other mentioned approaches because it is a potentially cost-effective approach [3], 

which can be implemented with limited computational resources [4], executed in real time [5] 

and provide accurate results [4]–[7].  

Detecting an attacking UAV is the first step in the mitigation scenario. To implement 

counter measures, the position of the attacking drone relative to the protected target is key. For 

that reason, this work focuses on the design and implementation of a system that can identify 

the direction of arrival of a UAV relative to a protected target. A low-cost implementation 

which works in real time is the goal of this project. 

1.2 The Problem 

Unmanned Aerial Vehicles (UAVs) have certainly become a trending topic in the latest 

years [8]. Their growth in popularity can be attributed to the multiple potential applications of 

this technology. From commercial uses to homeland security, the range of possibilities is wide, 

but as it can be useful, it also represents a potential threat. As the technology evolves, drones 

are becoming cheaper and smaller each year, and they can carry larger payloads. This poses a 

risk for civilians and institutions, as it becomes easier for UAVs to invade restricted air space 

passing undetected [9], [10], or to carry potentially harmful payloads, as weapons or explosives 

[11], [12]. This is one of the main motivations behind the fast and accurate detection of these 

threats becoming the center of several studies. 

Multiple works have addressed promising results on the detection of UAVs [2]. Either 

using visual, acoustic, radar, or radio-frequency technologies, each research area has its merits, 

but they all have their limitations too. Image and lidar recognition devices have problems when 

the visibility is reduced (e.g., by fog, light, crowds, etc.), sound recognition devices when 



 

 

13 

situated on noisy environments, radars when the object has small radar cross sections (RCS), 

and radio-frequency devices when trying to identify autonomous flying drones that do not emit 

identifiable frequencies [2]. 

Despite their limitations related to the presence of noise, sound recognition solutions 

are a cost-effective approach [3], the sensors can be located far away from the target, and by 

pre-processing the training data and using machine learning or deep learning algorithms, 

authors have achieved good results in the differentiation between UAV signals and other 

sounds [13], [14]. But these good results are not exempt from questioning. The lack of public 

available datasets, the diverse and unclear experimental conditions, and the scarce amount of 

civilian studies which actually use microphone arrays for detection and localization [2], make 

it difficult to execute a proper comparative analysis, and even more challenging to replicate the 

results for real world applications.  

Even if a system can detect the presence of a malicious UAV, in order to implement 

counter measures needed to protect a given target, first the UAV must be located. The problem 

addressed is the need for real world adaptable solutions which demonstrate that an array of 

acoustic sensors can be used to detect and estimate the direction of arrival of potentially 

harmful drones under realistic environmental conditions, with minimal cost and competitive 

performance. 

1.3 Significance 

The significant threat UAVs represent has been demonstrated in multiple occasions by 

incidents of alarming risk, as the case of a domestic UAV landing on the United States White 

House [9], or the attacks to German chancellor Angela Merkel [15] and Venezuelan president 

Nicolás Maduro [12]. Situations like these have led to an exponential increment on “anti-

drone” technology investment, which is projected to reach a market size of $2.315 billon USD 

by the year 2025  [16], thus it is key to reduce the costs of these technologies without sacrificing 

effectiveness. 

Sound recognition solutions are expected to be cost-effective [3], and they can 

potentially provide effective results [13], [14], but for a solution like this to be released and 

marketed as a usable product, first a replicable proof of concept implementation must be 

delivered, hence the significance of implementing and testing a model under real world 

conditions. Based on this, the key indicators of the significance of this study  are its relative 

implementation cost and performance benchmarks (response time, accuracy, false alarm rate, 
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classification error, precision, F1-score, etc.) compared with other existing solutions, plus the 

feasibility of packaging the solution as a replicable and marketable product, to profit from the 

potential business opportunity. 

1.4 The Purpose 

The purpose is to develop and validate a low-cost acoustic detection system to alert in 

real time about the position and direction of arrival of a potentially harmful UAV, relative to a 

target. The project includes the development of an interconnected array of acoustic detectors 

which use machine learning classification to recognize the presence of a potentially harmful 

UAV and estimate its direction of arrival. 

The significance of this proposal is given by the need to demonstrate the feasibility of 

a real-world UAV acoustic location implementation. As an emerging area of research, most of 

the evidence of success on acoustic detection is experimental, moreover, most related works 

are more focused on the detection and classification of drones rather than in their localization 

[2], and those works who focus on locating UAVs tend to increase the costs by using several 

microphones [6], [17], or are tied to a specific environment [4], [5]. Implementing a low-cost 

real-world model which demonstrates the effectiveness of acoustic detection using machine 

learning is relevant because it is the kickoff for the mass replication, marketing, and usage of 

UAV acoustic detection systems. This need is clear when analyzing the rising amount of 

investment on anti-drone solutions. In 2018 the anti-drone market size value was USD 576.7 

million [18]. Reports indicate that the market size will continue to grow at a Compound Annual 

Growth Rate (CAGR) of between 24.04% [16] and 29.9% [19], it means it is expected to reach 

a market size of around USD 2.3 billion by the year 2025 [16], or even more [19]. Acoustic 

detection being a low-cost solution [3] can help reduce the costs significantly, generating a 

profitable business opportunity. 

1.5 Research Questions and Deliverables 

This project is based on the idea that acoustic detection is an effective solution for UAV 

threat localization, moreover, that a low-cost implementation is feasible by using an array of 

interconnected acoustic sensors running machine learning classification algorithms. Based on 

this, the following research questions (RQ) arise: 

• RQ-1: How accurate, precise, and cost-effective is the proposed model for 

locating potentially harmful UAVs in real time? 



 

 

15 

• RQ-2: What error level can be achieved on the identification of position and 

direction of arrival of a UAV using an array of acoustic sensors? 

• RQ-3: What is the response time that can be achieved on UAV detection 

using an array of acoustic sensors running machine learning algorithms?  

• RQ-4: What is the minimum cost an acoustic detection and location system 

can achieve while keeping an acceptable performance? 

Based on the research questions, the deliverables of this project are: 

• A working acoustic sensing device which records signals and sends them to a 

central server to be processed.  

• The software installed in a central server to process sound signals, calculate the 

results related to UAV threat and visualize them in real time. 

• The network protocols to communicate components. 

• A performance and cost analysis of the proposed model using different 

configurations.  

1.6 Assumptions 

• There will be just one UAV flying at a time.  

• The UAV does not implement any detection prevention measures. 

• The target to be protected will not be moving. 

1.7 Delimitations 

This project addresses the presence of a potential threat (UAV) and a possible range for 

its direction of arrival relative to a target. The following items are off the limits of what is going 

to be delivered and will not be considered: 

• Proposing counter measures to stop the attacking UAV. 

• Identifying all types of drones. 

• Effectiveness under different environmental conditions. 

• Physical phenomena such as the Doppler effect. 
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1.8 Limitations 

• Results may vary if a drone emits a frequency that is too different from the samples 

used for training and testing, although literature says they should not [6]. 

• The solution may not work if the environment noise overwhelms the drone sound. 

• The weather or other environmental noise can have an impact on the effectiveness 

of the solution.  

• The model will be implemented using low-cost computational devices, this can have 

an impact on the computational time, thus in the response time.  

• The connectivity range between nodes can be limited by the networking hardware 

used. 

• The range of detection can be limited by the types of microphones used. 

• The accuracy of the results can be limited by the recording quality of the 

microphones used.  

1.9 Definitions 

• Unmanned Aerial Vehicle, UAV or Drone: “An aircraft that is operated from a distance, 

without a person being present on it” [20]. 

• Machine Learning: “Machine Learning is the science (and art) of programming 

computers so they can learn from data” [21, p. 10] 

• Acoustic sensor: An electronic device that can record sound signals (Operational 

Definition). 

• Node: An element within the network model which includes an acoustic sensor and the 

means to process the sound signal and communicate the results (Operational 

Definition). 

• Target: An element in the model that is the aim of an attacking UAV (Operational 

Definition). 

• Real-time: A period of time that is considered enough to take an immediate response 

action (Operational Definition).  

• Payload: “Goods that a vehicle is carrying or can carry” [22]. 

• UAV Detection System: A system that aims to identify if a UAV is present within a 

given range (Operational Definition). 
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• Acoustic/Sound Detection System: A UAV Detection System that uses sound signals 

as the main input (Operational Definition). 

• Detection Prevention Measure: Any measure implemented with the goal of having a 

drone passed undetected (Operational Definition).  

1.10 Summary 

The problem as identified at this moment is that UAVs represent a threat for civilians’ 

and institutions’ safety, for that reason a detection and location, cost-effective system that 

works in real time is needed. The significance of this problem was demonstrated by several 

example situations where UAVs jeopardized the safety of civilians and institutions, and the 

assumption that under current market trends, the presence of UAVs will increase over the 

coming years.  

Acoustic detection models using machine learning classification algorithms are deemed 

as a possible low-cost solution to detect the presence of an attacking UAV and to identify its 

possible position and direction of arrival, relative to the target that needs to be protected. A 

cost-effective real time implementation under this approach is the purpose of the current 

project, the importance of this is given by the market trends on anti-drone technology which 

mark an exponential increase for the coming years. 

To address the mentioned purpose, a proof-of-concept implementation, which meets the 

mentioned requirements was developed and tested. This project answers questions related with 

the performance and feasibility of the approach and delivers working interconnected acoustic 

sensing devices and the associated software to alert in real time about a potential threat.  

In the following chapters, a literature review about the concepts under which this project 

is based will be presented to construct the reliability of the study, and the methodology to 

achieve the proposed goals will be explained, including the details about the testing and 

evaluation process that validates the proposed model. 
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CHAPTER 2: REVIEW OF THE LITERATURE 

2.1 Introduction 

The research problem, as perceived at this stage, is that UAVs represent a potential safety 

problem for civilians and institutions as they can access restricted zones and carry potentially 

harmful payloads. A real time model for detecting these flying objects is key, and acoustic 

detection models using machine learning techniques emerge as viable solutions. Moreover, 

UAV detection systems are generally deployed to protect a target, so locating the attacking 

UAV is essential to implement counter measures. A proof-of-concept low-cost implementation 

for UAV detection and location using an array of acoustic sensors, which implement machine 

learning algorithms to classify them, is needed in order to demonstrate that this technology can 

meet the requirements and confirm its viability, in that way, this approach could be widely 

implemented in real world scenarios. 

Concepts relevant to this study are: 

- Unmanned Aerial Vehicle, UAV, or Drone: An autonomous flying object. It can represent 

a threat to civilians and institutions safety.  

- Acoustic sensors: Microphone devices that can capture sound signals. A set of these 

elements form an array of acoustic sensors.  

- Machine Learning: algorithms that generate a classification or prediction model based on 

training data. Neural Networks or Deep Learning algorithms are encompassed in this term. 

- Sound Classification: Method that uses a classification algorithm to classify sound signals. 

2.2 Search methodology 

To start with the literature search, IEEE Xplore and Scopus were identified as the most 

promising library databases. IEEE Xplore provides “full text access to the world's highest 

quality technical literature in electrical engineering, computer science, and electronics” [23]. 

Scopus is the “largest abstract and citation database of peer-reviewed research literature” [23]. 

Both include articles from conferences, journals, magazines, and standards. 

Considering the problem statement, a graphic sketch that illustrates the relationships 

between important concepts is presented in Figure 1. These concepts are then grouped and 

organized on a Venn Diagram on Figure 2. Using this as a basis, an initial search strategy was 

proposed. It includes five search terms with Boolean logic, which can be visualized on Figure 

2 as S#1 to S#5. The period was restricted to 2017 – 2020 to find just the most recent works on 
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the area. On IEEE Xplore database, the search (Table 1) resulted to be effective, finding a total 

of 55 articles deemed useful, from which 48 were found using the search term A1 

(corresponding to S#1 in Figure 2). Search term A4 had to be restricted to only journals and 

magazines because it returned too many results to be analyzed. The same applies to search term 

A5, but the word “threat” was removed instead. The search in Scopus database (Table 2) 

provided similar results, with a total of 39 articles deemed useful, from which 37 correspond 

to search term B1. Searches B4 and B5 could not be analyzed because they provided too many 

results.   

 

 

Figure 1. Concept Map that illustrates the relationships among key concepts
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Figure 2. Venn Diagram that illustrates the relationships among key concepts  
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Table 1. Database A (IEEE Xplore) results – October 27, 2020 

 

S# Search Term(s) Period Filter Hits Repeated Useful 

A1 

(Sound OR Acoustic) AND 

(Recognition OR Detection 

OR Classification OR 

Localization) AND 

(“Unmanned Aerial Vehicles” 

OR UAV OR Drones OR 

Threat) 

2017 - 2020 - 158 0 48 

A2 

(“Unmanned Aerial Vehicles” 

OR UAV OR Drones OR 

Threat) AND (“Machine 

Learning”) AND 

(Recognition OR Detection 

OR Classification OR 

Localization) AND "Real 

Time" 

2017 - 2020 - 155 3 3 

A3 

(“Unmanned Aerial Vehicles” 

OR UAV OR Drones OR 

Threat) AND (Sound OR 

Acoustic) AND (Vector OR 

Position OR Location) 

2017 - 2020 - 83 54 2 

A4 

(“Unmanned Aerial Vehicles” 

OR UAV OR Drones OR 

Threat) AND (Vector OR 

Position OR Location) AND 

"Real Time" 

2017 - 2020 

Journals 

& 

Magazines 

133 8 0 

A5 

(“Unmanned Aerial Vehicles” 

OR UAV OR Drones OR 

Threat) AND (Recognition 

OR Detection OR 

Classification OR 

Localization) AND "Real 

Time" 

2017 - 2021 - 126 43 2 
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Table 2. Database B (Scopus) results – October 28, 2020 

 

Based on the experience from previously mentioned searches, search term S#1 

outperforms all the other terms. Most of the deemed useful articles found using other search 

terms are already included by S#1, as the number of repeated articles show. To continue the 

search, only S#1 search term was used to search on seven more databases (Tables 3-9). From 

those, Web of Science provided the most significant amount of new useful articles, including 

S# Search Term(s) Period Filter Hits Repeated Useful 

B1 

(Sound OR Acoustic) AND 

(Recognition OR Detection 

OR Classification OR 

Localization) AND 

(“Unmanned Aerial 

Vehicles” OR UAV OR 

Drones OR Threat) 

2017 - 2020 - 279 61 37 

B2 

(“Unmanned Aerial 

Vehicles” OR UAV OR 

Drones OR Threat) AND 

(“Machine Learning”) 

AND (Recognition OR 

Detection OR 

Classification OR 

Localization) AND "Real 

Time" 

2017 - 2020 - 251 57 0 

B3 

(“Unmanned Aerial 

Vehicles” OR UAV OR 

Drones OR Threat) AND 

(Sound OR Acoustic) AND 

(Vector OR Position OR 

Location) 

2017 - 2020 - 286 105 2 

B4 

(“Unmanned Aerial 

Vehicles” OR UAV OR 

Drones OR Threat) AND 

(Vector OR Position OR 

Location) AND "Real 

Time" 

2017 - 2020 - 1257 - - 

B5 

(“Unmanned Aerial 

Vehicles” OR UAV OR 

Drones OR Threat) AND 

(Recognition OR Detection 

OR Classification OR 

Localization) AND "Real 

Time" 

2017 - 2021 - 1425 - - 
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17 patents that will result useful to analyze. A search for theses and dissertations was also 

carried out on “ABI Inform Collection” (Table 9) and “Purdue University Graduate School” 

database (Table 8), providing 3 useful theses.  

Table 3. Database C (Web of Science) results – October 29, 2020 

Table 4. Database D (Engineering Village) results – October 29, 2020 

Table 5. Database E (ProQuest) results – October 29, 2020 

Table 6. Database F (Knovel) results – October 29, 2020 

S# Search Term(s) Period Filter Hits Repeated Useful 

C1 

TS=(Sound OR Acoustic) 

AND TS=(Recognition OR 

Detection OR Classification 

OR Localization) AND 

TS=(“Unmanned Aerial 

Vehicles” OR UAV OR 

Drones) 

2017 - 2020 - 309 90 24 

S# Search Term(s) Period Filter Hits Repeated Useful 

D1 

(Sound OR Acoustic) AND 

(Recognition OR Detection 

OR Classification OR 

Localization) AND 

(“Unmanned Aerial Vehicles” 

OR UAV OR Drones) 

2017 - 2020 
NOT 

IEEE 
248 149 5 

S# Search Term(s) Period Filter Hits Repeated Useful 

E1 

(Sound OR Acoustic) AND 

(Recognition OR Detection 

OR Classification OR 

Localization) AND 

(“Unmanned Aerial Vehicles” 

OR UAV OR Drones) 

2017 - 2020 

-Scholarly 

Journals 

- UAV 

(Subject) 

276 19 4 

S# Search Term(s) Period Filter Hits Repeated Useful 

F1 

(Sound OR Acoustic) AND 

(Recognition OR Detection 

OR Classification OR 

Localization) AND 

(“Unmanned Aerial Vehicles” 

OR UAV OR Drones) 

- - 30 0 0 
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Table 7. Database G (Techstreet Enterprise) results – October 29, 2020 

Table 8. Database H (Purdue University Graduate School) results – November 09, 2020 

Table 9. Database J (ABI Inform Collection) results – November 09, 2020 

 

The final count of articles deemed useful to analyze is 130. 63 articles are conference 

papers, 47 are journal or magazine articles, 3 are theses, and 17 are patents. The articles were 

then classified based on the main topic they can provide information about during the literature 

review (Table 10). Although many could belong to more than one category, they were put only 

on their most prominent category. It is worth mention that methods other than acoustic 

detection were deemed useful to gain context, but they were not the main focus of this search, 

for that reason there are many less articles found on those topics than in acoustic detection.  

S# Search Term(s) Period Filter Hits Repeated Useful 

G1 

(Sound OR Acoustic) AND 

(Recognition OR Detection 

OR Classification OR 

Localization) AND 

(“Unmanned Aerial 

Vehicles” OR UAV OR 

Drones) 

- - 5 0 0 

S# Search Term(s) Period Filter Hits Repeated Useful 

G1 

(Sound OR Acoustic) 

AND (Recognition 

OR Detection OR 

Classification OR 

Localization) AND 

(“Unmanned Aerial 

Vehicles” OR UAV 

OR Drones) 

- 

- Dissertations & 

Theses  

- Categories: Computer 

Engineering, Applied 

Computer Science, 

Computer System 

Security, AI and Image 

Processing, 

Autonomous Vehicles 

275 0 3 

S# Search Term(s) Period Filter Hits Repeated Useful 

G1 

(Sound OR Acoustic) 

AND (Recognition OR 

Detection OR 

Classification OR 

Localization) AND 

(“Unmanned Aerial 

Vehicles” OR UAV OR 

Drones) 

2010-2020 
Dissertations 

& Theses 
64 0 0 
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Table 10. Article classification 

2.3 Literature summary pertaining to the problem 

Unmanned aerial vehicles have exponentially gained popularity over the recent years. With 

an annual growth of  66.8%, the global shipments of this technology are expected to reach 2.4 

million units by 2023 [24]. 

The reduction on UAV costs has made them available for more people in more application 

areas. This democratization of the access to UAVs brings benefits to society when used 

responsibly, but as with any technology, it can also represent a threat if used with malicious 

intentions. On civil scenarios, UAVs have been used by burglars to make reconnaissance and 

target homes [25], to smuggle drugs into prisons [26], and more. Battlefields are probably the 

terrain where malicious drones are more widely used. Terrorists can use them to carry weapons 

or explosives, representing a serious threat to infantry [11], [27]. But that is not the only threat 

to homeland security, drone attacks to important government heads [12], [15] and UAV access 

to restricted zones [9], [10] have also raised the alarms and made evident the need to detect and 

locate potentially harmful UAVs. 

Topic Count Detail 

Acoustic Detection 
40 Articles focused on detection of UAVs using sound 

signals 

Drone 

Classification 

7 Articles focused on classifying UAV sound 

Drone Localization 12 Articles that use acoustic detection to locate UAVs 

Multi Method 

Detection 

7 Articles that use more than one method to detect 

UAVs 

Radar Detection 11 Articles focused on detection of UAVs using radars 

Radio-Frequency 

Detection 

8 Articles focused on detection of UAVs based on 

radiofrequency 

Review 
11 Articles which review existing literature and 

methods 

Sound 

Analysis/Processing 

7 Articles focused on the analysis or processing of 

sound signals 

Use Acoustic 

Sensor Array 

16 Articles that use acoustic detection and mention the 

implementation of an array of acoustic sensors. 

Visual Detection 
11 Articles focused on detection of UAVs using image 

detection or laser beams. 
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2.3.1 UAV Detection 

UAV detection has become the focus of many studies which have approached the 

problem in different ways. Detecting the presence of a UAV can be a challenging task due to 

the small size and small speed and altitude at which some drones can fly [6]. This section 

focuses on the different approaches to UAV detection, each one with their benefits and 

limitations.  

2.3.1.1 Radar Detection 

Radar devices “radiate electromagnetic energy and detect the echo returned from 

reflecting objects (target)” [28, p. 1.1]. Based on the echo returned, radars collect information 

about the position and nature of the target. The capacity of these devices to detect an object is 

highly conditioned by the target’s Radar Cross-Section (RCS), an attribute of objects that 

describes the intensity of the echo they return when exposed to an electromagnetic wave, and 

which depends on the physical attributes of the object, such as composition, size, shape, 

radiation, and polarization, among others [28, p. 11.2-11.18] 

The detection of drones and especially micro-drones represents a challenge for radars 

since they can have a small RCS, and they can fly at low altitudes [29]. Despite this limitation, 

multiple articles have approached the problem of detecting and classifying UAVs by using 

radar recognition and have provided good results [2], even claiming that this approach has 

proven to be viable [30]. 

In [31] authors addressed the issue that it is not viable to implement a continuous 

transmission radar system since it would mean a high operational cost, and it raises concerns 

to human safety due to possible excess of radiation, so they proposed a passive radar alternative 

and tested it with favorable results. 

In [32] the study takes the approach of a binary classification between drones and birds. 

Since these animals share similar RCS and motion patterns with UAVs, they tend to confuse 

radars. With a simple KNN approach, they obtained accuracy results close to 100% for close 

range tests (0.3-0.4 km).  

A more detailed approach is taken in [33] where authors used radars to detect if a drone 

was carrying a payload. They classified in a close range of 60m if drones were carrying 

payloads of 0g, 200g and 500g, and got accuracy results above 90% using a Naive Bayes 

algorithm. 
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Even though UAV radar detection studies have provided promising results, they still 

show important limitations. A lot of the work on the topic which presumes positive results, can 

be considered as just experimental, and in some cases the experimental conditions seem 

limited, i.e., the experiments were performed at low altitudes or with limited ranges [2]. 

Summarizing, it is not possible to state that this technology has overcome its limitations related 

with UAVs’ low altitude flight, slow speed, small size, and small RCS, although it may do it 

in the future. 

2.3.1.2 Radio-Frequency Detection 

 UAVs are usually remotely commanded using a Radiofrequency (RF) signal, so by 

capturing those command signals, or any RF signals emitted/received by the drone, it is 

possible to detect and track UAVs, this is the basic concept behind UAV RF detection [2]. 

 In [34] a hash fingerprint and a distance-based support vector data description (SVDD) 

algorithm are used on the detection of UAVs. Using this method and a small number of 

elements in the training set, authors were able to recognize UAV signals in the 2.4GHz 

frequency band, obtaining good results on an indoor environment, although the system 

performance deteriorates as the noise increases.  

 In [35] a non-line-of-sight (NLOS) RF solution is proposed with low-cost hardware. 

Authors state that the NLOS condition generates an amplifying effect on the RF signatures 

produced by UAV’s movement, so they captured the features from NLOS RF signals using a 

deep learning model (i.e. an LSTM network), and then they implemented a binary classification 

using Support Vector Machines (SVM). They were able to detect UAVs with an accuracy rate 

of 96% on NLOS scenarios, and 98.4% on line-of-sight (LOS) scenarios. 

 In [36] a model using Auxiliary Classifier Wasserstein Generative Adversarial 

Networks (AC-WGANs) is proposed. They use a Universal Software Radio Peripheral (USRP) 

oscilloscope and an antenna to collect UAVs’ signals and environmental RF noise, which are 

used to train their AC-WGANs model. They achieved a classification rate around 95% on 

indoor environment test. Even augmenting the noise ratio the results were still promising, but 

in the outdoor environment experiment the model did not perform as good, and quickly 

deteriorates with the distance.   

 It can be concluded that RF detection techniques have shown promising results, but 

they still show limitations. The results deteriorate quickly with the presence of environment 

noise and when increasing the distance. Another important drawback is that despite most 
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drones are remotely commanded, there exist UAVs that fly autonomously by presetting the 

flight path or using preprogrammed GPS, limiting RF detection systems possibilities since no 

RF signals are exchanged [2]. 

2.3.1.3 Visual Detection 

Visual detection is the use of image or video data and computer vision techniques to 

detect UAVs [2]. Some of the advantages of using visual detection methods are its medium 

detection range, good localization perspectives and the easy interpretation of data by humans, 

unlike other methods which require an expert eye to interpret the data. In addition, visual data 

provides more information about the object, like the model, dimensions and if it is carrying 

payload [37]. 

Some of the challenges of visual detection methods are that it is difficult to detect drones 

at high speeds in real time, and that UAVs’ shapes can be confused with other flying objects, 

like planes or birds. For that reason in [37] the problem is divided in two sections, first they 

focus on the detection of moving objects, then they try to classify the object between drone, 

bird or background. For the detection of moving objects, they used a method called “two-points 

background subtraction algorithm”, in which the pixels that change their value from one frame 

to the next one are analyzed. For the classification part, they used a Convolutional Neural 

Network (CNN) algorithm, achieving an F1-Score of 0.742 overall. The main limitation found 

on this implementation was that moving backgrounds heavily affect their performance. 

In [38] an implementation consisting of two cameras is considered. First, a static wide-

angle camera is used to make a primary flying object detection and tracking in a long range of 

up to ~1km, then the objects that are deemed suspicious due to visual and motion signatures 

are further analyzed with a narrow-angle RGB camera. Both cameras are installed in a rotating 

turret, and both detection processes are done together overlaying the frames coming from both 

cameras and implementing a “You Only Look Once (YOLO)” deep learning algorithm. They 

achieved to reduce false alarms almost to 0, although this method fails to detect some positive 

cases, with a 0.91 true positive rate, which is less than other methods mentioned in the paper. 

In [39] the focus is put on the distinction between UAVs and aircrafts for the 

implementation of a UAV detection system in airports. The basis of this design is that UAVs 

have different motion patterns, so curvature and turn based features are extracted to train a 

binary classification algorithm. Even using a simple K-Nearest Neighbor (KNN) algorithm, 



 

 

29 

this work achieved an accuracy of around 90%. Of course, this implementation is quite limited 

since it only differentiates the flight patterns of UAVs and aircrafts.    

Regarding the drawbacks of image detection, it can be mentioned that the accuracy of 

these methods is heavily correlated with image quality, which means that an image detection 

implementation would require high quality cameras and more computational time, meaning an 

increment on costs [1]. Another drawback is that image detection performs poorly when the 

visibility is low due to time and weather [2], [37]. Thermal cameras are an alternative to bypass 

this limitation, however they represent an increase in costs and they still have some problems 

on humid environments [37]. 

On the task of tracking UAVs, optical sensors can spot and trace drones, but having an 

accurate estimation of the actual spatial velocity and position in real time is a complex task [6].  

2.3.1.4 Lidar Detection 

Another line-of-sight approach for UAV detection is the use of lidars. Although it bears 

some similarities with visual detection, lidar implementations provide some advantages. Since 

it is not affected by a moving or noisy background, it still works on dark environments, and the 

position of an object is known as soon as it is detected [40].  

Talking about the drawbacks, lidars are still limited by the line of sight, meaning that 

fog, rain, or other environmental obstructions may add noise. Lidars are also quite expensive 

devices, so a cost-effective implementation is hard to implement [41]. A particular difficulty 

on UAV detection is that UAVs have a small laser radar cross-section (LRCS), representing a 

real challenge for this method [40].   

In [40] and [41] authors implement tracking systems using lidars to detect the position 

of UAVs, but both achieved mixed results, and how to distinguish UAVs from other flying 

objects is not so clear. There exist also a patent which uses a lidar to track UAVs’ position [42], 

but again, the detection part of the process lacks of clarity. It can be concluded that this 

technology is just in its initial steps, better results may be found in future works.  

2.3.1.5 Acoustic Detection 

Acoustic detection is a prominent area within UAV detection.  The method is based on the 

idea that UAVs emit different noises (propeller blades, engine, wind, etc.), among which 

propeller blades is the one that stands out the most and can be detected [43].  
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Figure 3. [6] shows the sound signal emitted by a UAV in the frequency and time spectrum. 

Fig. 3 (b) and Fig. 3 (d) show in different colors the different spectrum amplitudes of the signal. 

Matching them with the harmonics shown in Fig. 3 (a) and Fig. 3 (b), it is visible that what 

marks the difference between UAVs’ sound signal and noise is the presence of harmonics, they 

are the main features to be detected by an acoustic detection technique.   

 

 

Figure 3. “Time-Frequency analysis of the drone’s signals and background noise”[6, p. 2733] 

There are several reasons for using this approach. Acoustic sensors can be placed at any 

distance from the target so UAVs can be detected at wider ranges, and acoustic sensors can 

also detect a threat at any angle [4]. Price is also a significant factor since an array of acoustic 

sensors could be a low-cost solution, although it depends on the quality of the microphones 

used [44].  

Multiple authors have provided promising results when it comes to UAV Detection using 

acoustic sensors [4]–[7], [45], but acoustic detection comes with some shortcomings as well. 

The detection rate can be affected by several factors, including “the sensitivities of 

microphones, surrounding noise, the distances between the drone and the arrays” [6, p. 2736]. 

The model proposed in [14], for example, failed when the environmental noise (originated by 

planes in this case) dominated the UAV sound. 

The success in this detection method has even led to the publication of a few patents. Some 

examples include a method for distinguishing drone sound from other sounds by producing 

two sets of feature vectors [46], and a method that uses both sound and shape information to 

identify low-altitude UAVs [47]. 
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2.3.1.6 Payload Detection 

UAVs are widely used with recreational purposes, which means that not every time a UAV 

is detected it poses a threat, especially on civil scenarios. A prominent research area 

encompassed within UAV detection is the classification of drones carrying payload, because a 

payload could potentially be weapons or explosives. Acoustic detection appears as a possible 

solution for this problem since adding payload to a drone increments its mass, altering its 

acoustic signature [7]. 

The goal in [7] was to classify drones between “loaded”, “unloaded” and “noise”, using 

CNN algorithms. Authors managed to achieve 99.5% of accuracy on their tests, although it is 

mentioned that the response time may be large, making it non-viable for real time 

implementations. 

In [48] the approach was to separate the problem into two binary classifications. One 

classifier was trained to detect if a sound came from a loaded Phantom 2 drone, and the other 

if the sound was an unloaded Phantom 2 drone. Both classifiers were Convolutional Neural 

Networks (CNN), and the final prediction is taken using a voting system between the results 

provided by the two classifiers. Using this method, a composite accuracy of 99.92% was 

achieved. One thing to mention is that, as proposed in this paper, the model must be trained 

again for each new UAV model that it wants to support. 

In conclusion, although there is still work to be done on the generalizability and real time 

processing of acoustic methods for payload detection, it is a promising research area.   

2.4 Literature summary pertaining to the purpose & its significance 

In the current study, the focus is put on identifying in real time the position of a UAV by 

using acoustic sensors, specifically on the angle and direction of arrival of the drone relative to 

a target.  

Implementing a solution that uses acoustic sensors could bring significant benefits. As 

previously stated, acoustic detection is a potentially low-cost approach to UAV detection if 

microphones are properly chosen. An inexpensive application using acoustic sensors was 

demonstrated in [3]. Another benefit of acoustic detection is the reduction on computational 

resources it requires [4], making it not only cheaper to implement, but also reducing the 

response time of classification algorithms, making it more suitable for real time requirements. 

Having a low-cost implementation for UAV detection and localization is key under the 

current market context, where the investment on anti-drone technologies is expected to take 
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$2.315 billion USD of the market size by the year 2025 [16], with some predictions going even 

further, saying it will have a Compound Annual Growth Rate (CAGR) of 29.9%, reaching $4.5 

billion USD by the year 2026 [19]. Having the anti-drone product with the most competitive 

costs and best results will be the challenge of many companies in the near future. 

2.4.1 UAV Localization 

Detecting the presence of UAVs is a challenging task, but the speed and direction of arrival 

of a drone are even more complex to calculate [5]. Despite that, some works have made 

progress on the localization and tracking of UAVs in real time.  

One approach to UAV localization is to turn the problem into a binary classification, and 

find the position based on the presence or absence of a UAV in a zone. Authors in [4] managed 

to trace the trajectory of the UAV by plotting the presence of drone sounds over time. In [5] 

authors used a single node, consisting of two acoustic sensors with 10m of separation, to 

estimate the direction of arrival (DOA) of a UAV. The implementation consisted of separating 

a field into different sections and using CNN and CRNN algorithms to predict if a drone is 

present in each section. They achieved an accuracy of 97.6% with an inference time of 0.429 

seconds, demonstrating that a real time implementation is possible. A disadvantage of their 

approach is that the arrangement of acoustic sensors is tied to that specific configuration for 

any future implementations. 

Another approach to find the UAV direction of arrival is the use of beamforming. 

Beamforming is a signal processing technique which uses propagating wave fields to estimate 

the direction of arrival of a radio or acoustic signal, by filtering the signals with overlapping 

frequency content that come from different locations [49]. A method like this is used in [17] 

where they used the delay between the channels on the recordings to find the angle of arrival 

of the sound. They then needed to confirm the nature of the object, so they focalized the 

recording on that direction and applied a binary classification to identify if the object was a 

UAV or not. Authors mention that low elevation angle and multi-source are problems that need 

to be solved in the future. Beamforming technique has even been used in a patent of 2018 to 

determine the location of a drone by its sound [50]. 

A method similar to beamforming was used in [6]. This method uses a Time Delay of 

Arrival (TDOA) algorithm to avoid the problem of multipath effect. Authors mention that in a 

TDOA analysis, multiple peaks can appear, leading to wrong localization results, so they 

implemented a Bayesian framework, a method that iteratively predicts the state of a parameter 
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based on the current status of the system and historical estimated states. They mention they 

could achieve an estimation error below 5 meters on 90% of the times.  

2.5 Literature summary pertaining to the methodology 

2.5.1 Feature Extraction 

Sound signals need to be transformed from the frequency domain, as captured by an 

acoustic sensor, to digital information that can be interpreted by a learning algorithm. This 

means that the signal must be preprocessed, and features need to be extracted from it before 

being used in a training or prediction process.  

The first step is determining the time length that each sample will have. Short time samples 

are more sensitive to noise [7], while long time samples take more time to process and can 

reduce the response time to a potential threat. In [5] it is mentioned that length an accuracy are 

not linearly related, but a strong correlation exists between them. Another sampling technique 

to gather more information and increase precision is to overlap the sequences, as in [17] where 

they propose a 50% of overlapping. 

When dealing with sound frequencies, it is found that high frequencies tend to have smaller 

magnitudes than low frequencies, for that reason a pre-emphasis filter is usually applied to have 

a relatively constant frequency response among different frequency bands [7]. Formula 1 is a 

commonly applied formula for pre-emphasis filter [7] where 𝛼 is the filter coefficient, 𝑥 is the 

input signal and 𝑦 is the filtered signal. Both 𝑥 and 𝑦 are in the time domain.  

 

𝑦(𝑡) = 𝑥(𝑡) − 𝛼𝑥(𝑡 − 1) 

Formula 1. Pre-emphasis filter 

 

As previously mentioned, what makes the UAV sound distinguishable are its harmonics. 

Three typical methods to extract features from the harmonics are the Short-Time Fourier 

Transform (STFT), Filter Banks, and Mel-Frequency Cepstral Coefficients (MFCC). 

STFT is a Fourier related transform used to obtain local properties of a frequency (𝑓), in 

particular, “to obtain some ‘local frequency spectrum’, 𝑓 is restricted to an interval and the 

Fourier transform of this restriction is taken” [51, p. 37], meaning that a signal is divided in 

short segments to compute the Fourier transform of each of those short segments. This feature 

extraction technique was used in many successful implementations [4], [6]. 
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 Filter banks are “an array of band-pass filters that separates the input signal into multiple 

components, each one carrying a single frequency sub-band of the original signal” [52, p. 2]. 

This feature extraction technique is inspired in the way the human auditory system processes 

audio signals [53], and it is an intermediate step on the calculation of MFCCs.  

MFCCs are short-term spectral based features which can represent sounds’ amplitude in a 

compact form, and for that reason it is a popular method for speech recognition [54]. Using 

MFCC can reduce the size of the data, making computation faster. In [7] it is mentioned that it 

can help reduce the size of the data to 1/90.  

Although MFCC is more widely used for audio classification tasks, authors in [4] found 

that STFT is better than MFCC for UAV distinction, because “both wind and UAV have 

stronger amplitude on lower frequency bands” and “MFCC contains more dense information 

of sounds as it represents sounds with several coefficients, while STFT is relatively an 

intermediate feature” [4, p. 497].   

A normalization function can be applied at different points during signal processing. In [7] 

the normalization function is applied on the input data to “find an optimization point quickly 

for the gradient descent method” and to “perform adequate learning instantaneously by 

eliminating the small learning rate set disadvantage” [7, p. 863]. In [4] it is mentioned that the 

signals should be normalized, but a scaling normalization, which is “a technique to divide the 

signals by the maximum value of the total audio file” [4, p. 498], is not possible because in 

real-time environments the maximum value changes as new signals are captured.   

2.5.2 Machine Learning algorithms 

On the detection and classification of UAVs using sound recognition, different machine 

learning algorithms have been used, some of them providing good results, as will be discussed 

below. 

Plot image machine learning algorithms (PIL) were trained with pre-recorded UAV sounds 

obtaining an accuracy of 83% on binary classification in [1], although authors mention that PIL 

algorithms require large data sets to get accurate results. 

K-Nearest Neighbors (KNN) is one of the simplest machine learning algorithms, for that 

reason it is also so popular. It was implemented in [1] with pre-recorded UAV sounds, 

obtaining 61% of accuracy on a binary classification, a poor performance if compared with 

other algorithms in this review. Authors in [1] mention that although fast and simple, KNN is 
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“not capable of building the hierarchies of internal representations likely necessary to support 

proper classification of similar, yet distinct, target” [1, p. 4]. 

Support Vector Machines (SVM) are used in [4] with data collected in person using an 

array of acoustic sensors. For a binary classification (drone vs noise), an F-1 Score of between 

0.779 to 0.787 was obtained. In [17] an SVM and a semi-supervised One Class SVM (OC-

SVM) are used, on a binary classification as well. They achieved an accuracy of 99.5% and 

95.6% respectively, meaning that OC-SVM is not an improvement on traditional SVM. 

Convolutional Neural Networks (CNN) is arguably the most popular machine learning 

algorithm nowadays. It is used for binary classification in [5] and it resulted in an accuracy 

between 92.88% and 98.23%. A variant of CNNs are Convolutional Recurrent Neural 

Networks (CRNN), and they were implemented in [5] as well, obtaining even better results 

(between 95.43% and 97.6%) 

More complex implementations like ensembles of different machine learning algorithms or 

neural networks with several layers may provide better results, but they also imply a significant 

increase on computational costs. For example, a ResNet-50 Convolutional Neural Network 

(CNN) was implemented for binary classification in [5] providing more accurate results 

(98.47%) than a simpler CNN implementation (97.6%), but it took around 16 times longer to 

predict the results. 

Another approach to improve detection performance is detection fusion, meaning the use 

of several microphones to individually detect the presence of UAVs, and then fusing all 

individual results in one consensual prediction. An approach like this was used in [6] where 

they used 8 microphones, each one running an SVM algorithm to detect the presence of a UAV, 

then the predictions were prioritized and fused using a weigh vector, obtaining an almost 

perfect detection rate, with a false alarm rate of 6.44% in the worst case scenario. The 

disadvantage of this method is that having 8 detectors at the same time represents 8 times more 

hardware needed, increasing the costs.    

It is worth mentioning that although some results are really promising, the characteristics 

of the training data (features, number of samples, parameters, amount of noise, etc.) are not 

always deeply described, so implementing the same methods may not provide the same results.   

2.5.3 System Design 

For the experiment setup, the acoustic sensors can be arranged in multiple ways. Angle, 

range, alignment, number of nodes, number of microphones per node, and height of the 
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acoustic sensors are some of the variables to take into consideration, and these configurations 

can have an impact on the results.  

 In [4], six acoustic sensors were configured surrounding the target, the angle and range 

between acoustic sensors and the target were changed in each of the four experiments as shown 

in Figure 4. 

 

 

Figure 4. “Experimental Configurations” [4, p. 495] 

Each node can have a different setup as well. In [5] for example, each node consists of two 

acoustic sensors with 10 meters of separation between each other, each of them with stereotype 

input, but which can record as a single channel. Having multiple microphones per node is 

necessary for using methods like beamforming or TDOA since the angle of arrival is calculated 

based on the difference between the signal recorded by each sensor [6], [17]. But having more 

sensors also means a higher cost and is an additional computational challenge to process the 

signals together.  

The connection between elements is another aspect to consider. The fastest way to connect 

devices seems to be through an optic fiber as in [6], but having the devices connected through 

a wire reduces the flexibility of the design. A more flexible approach is networking the devices 

using a wireless communication as described in [4]. 
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2.5.4 Evaluation 

During evaluation, there are some factors that can affect the outcome of the model 

implemented and must be considered. Microphone sensitivity, microphone quality, 

surrounding noise, and distance between nodes or to the attacking UAV are some examples. 

The quality of a recording, is positively correlated with the accuracy of a sound 

classification model, so results can change based on the quality of the sample used for training 

and testing [4]. 

Noise is probably the main difficulty for acoustic detection method as previously stated, so 

measuring the signal-to-noise ratio (SNR) could be helpful to understand the impact it is having 

on the evaluation. In [6] the SNR is measured by collecting surrounding noise for a long period 

of time in a specific surveillance region, then the collected noise was divided in several 

segments and “the average spectrum of the stationary noise” [6, p. 2736] was obtained. It is 

worth mentioning that collecting noise only from one place could be helpful to provide better 

results on that specific setup, but it would reduce the adaptability of the model to other 

scenarios. 

Different UAVs have been used to test the results in the literature review. DJI Phantom 1 

[1], DJI Phantom 2 [1], [5], [7], DJI Phantom 3 [6], [55], or Parrot AR Drone 2.0 [4] are some 

examples of drones used, but since the acoustic signal frequency emitted by most amateur 

drones are close to 200 Hz, using different types of drones should not affect the validity of the 

experimental results too much [6]. 

Finally, regarding statistic measures to evaluate system performance, the most frequently 

used are accuracy [5], [6], [45], F1-Score [4], false alarm rate [6], [34], inference time [5], 

confusion matrices [17], [36] and classification error [17], among others. 

2.6 Summary 

In the current review of the literature, some examples of the misuse of UAV technology 

were presented. They emphasize the need for a real time implementation that detects and 

identifies the direction of arrival of an attacking UAV. 

Some approaches to UAV detection were presented as well, including radar detection, 

radio-frequency detection, visual detection, lidar detection and acoustic detection, and the 

virtues and limitations of each method were explained. The possibility and importance of 

identifying if a drone carries payload was introduced as well.  
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 As this work focuses on acoustic detection and finding the direction and angle of arrival 

of an attacking UAV relative to a target, the significance of using acoustic detection was 

explained, and some works which attempt to locate UAVs were presented. Among the possible 

techniques to be used, studies using beamforming, TDOA and binary classification were 

explored. 

 Finally, different methodologies to process acoustic signals, extract features, implement 

classification algorithms, deploy the system, and evaluate the results, were mentioned. In the 

following section, the decision over which methodologies are used in the current project is 

explained.   
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CHAPTER 3: METHODOLOGY 

3.1 Introduction 

The recent advances on UAV technology have led to the democratization and 

exponential market growth of these devices [24]. Widely used for recreational purposes, UAVs 

allow several possible applications, but as they can be used for humans’ benefit, they also pose 

a threat, as now it is possible to load them with explosives or weapons [11], [12]. Acoustic 

sensors combined with machine learning classification algorithms emerge as a possibility for 

the quick detection of UAVs [13], [56], but detecting the presence of an attacking UAV is just 

the first step. For an “anti-drone” system to be implemented, there is also the need to locate the 

UAV threat. The problem addressed by this study is the need for an effective low-cost UAV 

detection and localization system which works in real time, with replicable results, to 

demonstrate that an array of acoustic sensors is a viable solution. 

The specific purpose of this project is to engineer and validate a model that combines 

an interconnected array of acoustic sensors with machine learning algorithms to alert in real 

time about the presence, position, and direction of arrival of a potentially harmful UAV in 

relationship with a target that needs to be protected. The significance of this project is given by 

the impact a cost-effective and performant solution for UAV threats would have in an “anti-

drone” market which is expected to have a huge expansion in the coming years [18], [19]. 

This chapter explains the methodology used during the proposed developmental 

research and provides an in-depth description of the solution’s design. 

3.2 Research Approach and Scope 

The type of research conducted in this project is a developmental research. The product 

developed is a system which can detect the presence of an approaching UAV, calculate its 

direction of arrival relative to a target (specifically a range for the position of the UAV when 

it passes through a microphone array barrier), and alert in real time about this information. The 

scope of this project included the development and configuration of: 

• A set of electronic devices with acoustic sensors and networking capabilities to sense 

the sound produced by a UAV and communicate to a central server. 
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• The software, installed in a central server, necessary to classify between background 

noise and UAV sound, to calculate the tentative direction of arrival of the UAV, and to 

visualize these data. 

• The network protocols to communicate between the components in the system. 

The experiments include testing four different types of UAVs both indoors and outdoors. 

This is expected to be representative of the entire population of amateur drones because the 

type of UAV should not be a high impact factor to the results of this research due that most 

amateur drones emit frequencies close to 200Hz [8]. 

3.3 System Design 

The main criteria for designing the system were to reduce the costs (price of all the 

components in the system) and response time (time that passes between when the UAV enters 

the restricted zone and when the system displays the alert) as much as possible, without 

sacrificing too much accuracy. These criteria are considered because the alert must be produced 

in real time to provide useful information to protect a target, and because the model needs to 

be cheap to be widely used in the market. 

The developed system design consists of three main parts: an array of acoustic sensors, 

a central server, and the network connection between them. The design of this system including 

the mentioned elements is shown in Figure 5.  
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Figure 5. System Design. 

The acoustic sensors are designed to be positioned as a defensive barrier between the 

target and external UAV threats in a way that, when a drone passes between the acoustic 

sensors, it is recognized as a threat and its position relative to the two closest microphones is 

predicted based on the difference in sound intensity it produces. The details about this 

implementation will be explained in the following sections. 

3.3.1 Acoustic Sensors 

Each node is composed of a single-board computer with integrated networking 

capability to connect to a standard Wi-Fi network, and a single generic microphone connected 

to it. This project was tested using a Raspberry Pi [57] 3 Model B V1.2, but any single-board 

computer with Wi-Fi connectivity and which runs Python 3.7 or superior should be able to run 

the solution with similar results. The system is designed to work with any generic microphone 

as well.   

As mentioned, the project runs on Python 3.7. When started, it records a sound sample 

of a fixed duration (which can be configured), then that sample is processed to get either an 

STFT, Filter Banks or MFCC transformation result. This transformed recording and its 
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metadata are sent to the central server in real time to execute the computations needed. This 

process is executed in an infinite loop until it is stopped. 

Regarding the metadata included in the mentioned transmission, it includes sound 

intensity, range of detection and geographic position of the acoustic sensor.  Range of detection 

and geographic position are passed by parameters while setting up the node, but the sound 

intensity of the recording is calculated as the Root Mean Square (RMS) of the signal. For the 

purpose of this project, intensity is defined as how big the amplitude of the sound signal is, that 

is the reason for choosing RMS, it is a simple and fast-to-calculate representation of the mean 

amplitude of the sound wave. 

It is worth mentioning that the recorded sample can be stored in the local memory of 

the single-board computer to be used for future analysis or for training classification 

algorithms, which is the process explained in section 3.3.2.1. 

3.3.1.1 Sound Processing  

 Each recording captured by the acoustic sensor is stored in an array in memory which 

contains the sound signal. The sample rate is set at the default value of 44100 Hz, and all 

recorded sounds are signals with two channels (stereo). As each file has a different length, the 

sound signals are separated into chunks of a fixed length. Short time samples are more sensitive 

to noise [7] and long time samples take more time to process, reducing the possibilities for a 

real time response, so a balance had to be found running different tests. A pre-emphasis filter 

is applied to have a relatively constant frequency response among different frequency bands 

[7] using Formula 1 (see section 2.5.1). The frequencies in a signal may vary over time, so to 

get a more representative depiction of the signal when applying Fourier transform later, the 

signal is separated in short time frames of 25 ms with a 10 ms stride (15 ms overlap). To reduce 

spectral leakage, a hamming window [58] is applied over each of the mentioned frames. The 

next step is to transform the signal into the frequency spectrum, to do that, a Short-Time 

Fourier-Transform (STFT) [59] is calculated for each short-frame. Finally Filter Banks and 

Mel-frequency Cepstral Coefficients (MFCCs) are computed. The features are sent in an array 

to be processed by the central server, and they are the input for machine learning classifiers as 

well (see section 3.3.2.1). It is considered that Short Time Fourier Transform (STFT) features 

are better than Mel Frequency Cepstral Coefficients (MFCC) [4], either way, the three feature 

extraction methods (STFT, Filter Banks and MFCC) are evaluated during experimentation (see 

chapter 4). A flow chart of this sound transformation process is shown in Figure 6. 
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Figure 6: Sound Transformation process 

 The general structure for this transformation from signal to STFT, Filter Banks or MFCC, 

the values for the parameters used and the captions of the signal at its different stages included 

in Figure 6 were extracted from [60] and tested with success in previous unpublished works, 

for that reason they were chosen for this project.  

 This sound processing could have been done on the server side, an option that makes sense 

if expecting the processing to be as fast as possible, but experiments done in the lab have shown 

that this process is not very computationally expensive. Even cheap nodes as the mentioned 

Raspberry Pi 3 (which is not the latest model) can handle the computational requirements of 

this process in real time. This approach, which can be related with the Edge Computing [61] 

approach, has the main advantage on this project of reducing considerably the network traffic, 

at the same time that it relieves the central server from all the computational responsibility, 

allowing it to scale considerably more, that is to say, it is expected to work properly even with 

a high number of nodes. 

3.3.2 Central Server 

The central server oversees processing the sound signals sent by the acoustic sensors in 

real time, predicting the position of the UAV threat based on the parameters received, and 

displaying and logging the alerts. The central server receives sound features from each signal 

sample previously processed by the acoustic sensor nodes, and implements machine learning 
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algorithms to identify the presence of a UAV, similar to what was shown in previous studies 

[1], [4], [17]. It also integrates all the metadata sent by the acoustic nodes (intensity of the 

signal, node position and detection range), in that way, it can estimate a range for the UAV 

position. 

3.3.2.1 Classifier Training 

The module that trains classification algorithms is run separately from the normal 

execution flow of the system. It takes sound sample files in “.wav” format as an input, it applies 

the sound processing described on section 3.3.1.1 which generates features in either STFT, 

Filter Banks or MFCC form, and it uses them to feed different classification algorithms. An 

80% of the samples are used for training and the remaining 20% for testing, and they are split 

using a Stratified Shuffle Split [62] with no re-shuffling (n_splits = 1). 

The classification module is prepared to run most of the machine learning algorithms 

available on the scikit-learn library [63] by just passing the name of the algorithm as a 

parameter. The options implemented are: (1) k-Nearest Neighbor, (2) Linear Models 

Classification, (3) Linear Models Multiclass Classification, (4) Decision Trees, (5) Random 

Forests, (6) Gradient Boosted Regression Trees, (7) Kernelized Support Vector Machines and 

(8) Neural Networks (Multi-layer Perceptron), (9) Stochastic Gradient Descent (SGD), (10) 

Gaussian Process Classification (GPC) and (11) Gaussian Naive Bayes (GNB). Even though 

the system is prepared to work with any of the mentioned classification algorithms, the analysis 

of each one of them escapes the scope of this project, so only GNB, SVM and Neural Networks 

are analyzed. The reason for using SVM and Neural Networks (MLP) is because of their 

simplicity and promising results in previous studies [2], [5], [7], [56], while the reason to use 

GNB is because it is fast on training and prediction, and has shown good results in previous 

unpublished studies. 

The classification executed is a binary classification, between “uav” or “noise”, but the 

system can train models with multiple classes by configuring a CSV file that contains the list 

of WAV files and their corresponding label. 

Once the execution has finished, the system prints a performance report of the resulting 

model over the test data, and stores such model for its future use in a pickle file [64]. 
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3.3.2.2 UAV Detection 

 When the system starts, it loads a pre-existing machine learning model stored in a pickle 

file. Each set of sound features received from the acoustic sensors are processed by this model 

which labels the sample either as a “uav” or a “noise”.  

The general test scenario is that the sample received has the exact length allowed by the 

model, so there would be one prediction for each sample, but there is a second test scenario 

considered which is that the sample is a fixed number of times longer than what a model allows. 

This scenario is handled with a voting method in which the predicted value needs to represent 

a certain percentage of the total predictions to be labeled as positive. For example, if a sample 

of 2.5 seconds is provided to a model trained to handle samples of 0.5 seconds, there will be 5 

predictions for that single sample, if 3 of them are labeled as “UAV” and 2 of them are labeled 

as “noise”, with a criterion of “more than 50%” of the total samples, the result will be that the 

2.5 seconds sample is labeled as “UAV” since it represents a 60% of the total samples. This 

feature is especially useful to avoid false positives as will be shown on Chapter 4. 

 Finally, all the meta data received from the acoustic sensor is stored on an in-memory 

dictionary where the status of each one is maintained and updated each time a new prediction 

is generated. If the prediction is a “uav”, an alert flag is set for that acoustic sensor.  

3.3.2.3 Position Prediction 

Once all acoustic sensors have been updated, and if any of them is flagged with an alert, 

then it is time to predict the position of potential threats. 

Some methods, like beamforming [49], use the time delay of arrival (TDOA) to 

calculate the position of a UAV, and they need either a very synchronized clock in each node, 

or at least 2 acoustic sensors per node (or even more if they want to provide better accuracy), 

not to mention the complex calculations to estimate the position. In this case the approach is 

simpler, it is designed to have only one microphone per node and to work asynchronously. The 

solution predicts a range for the UAV position, which is calculated using the intensity of the 

signal, and the position and range of the acoustic sensor. When a UAV approaches a covered 

zone and two acoustic sensors detect it, there is only a limited area where both sensors have 

coverage, so the UAV should be either located between them or approaching on that direction. 

Using the intensity of the signal it is possible to reduce the range even more. The advantage of 

using this approach is a reduction on computational cost and time. Since calculating the TDOA 

is not necessary, the computation is simpler, and by using a single microphone, the hardware 
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requirements are lower, hence less expensive. An extra advantage is that it can work 

asynchronously as previously mentioned, simplifying any implementation and maintenance.  

Talking about the details of how the mentioned approach was implemented for this 

project, the core element to consider is the “intensity” of the signal received by each 

microphone compared with the others. The term “intensity” for this project refers to the 

amplitude of the signal and must not be confused with “Sound Intensity” which refers to the 

rate of energy that flows across a unit area. This intensity is calculated as the RMS of the signal 

(as mentioned in section 3.3.1), but this intensity is not considered in absolute terms, it is 

relative to the environmental noise already existing. Whenever a UAV approaches a node, it 

produces a change in the amplitude of the signal recorded by the microphone, so what is 

relevant in this case is the magnitude of that change, not the absolute value of the signal 

amplitude. To calculate this, the new intensity received is compared with the median value of 

the last 50 intensities of signals considered as “noise”, in this way, the change in intensity 

produced by the UAV is obtained, which for the purpose of this project will be called “intensity 

change”. Figure 7 graphically explains this calculation. 

 

 

Figure 7: Intensity Change Example 

The proposed solution only considers a threat relative to two acoustic sensors, that 

means that if three acoustic sensors detect a threat, only the two with the higher intensity change 

will be considered. This situation should not happen normally since the acoustic sensors are 

designed to be positioned within a distance equivalent to the maximum range they can cover, 

so the coverage of three acoustic sensors should not overlap normally.  
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Having two acoustic sensors “A” and “B”, the predicted position is calculated using a 

proportion between the intensity change in “B” and the whole intensity change A + B, so the 

calculation for that proportion is:  

 

𝑝𝑟𝑜𝑝𝐴,𝐵 =  
𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝐶ℎ𝑎𝑛𝑔𝑒𝐵

𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝐶ℎ𝑎𝑛𝑔𝑒𝐴 + 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝐶ℎ𝑎𝑛𝑔𝑒𝐵
 

Formula 2. Intensity change proportion. 

 

The predicted latitude and longitude are calculated based on the mentioned proportion: 

 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝐿𝑎𝑡𝐴,𝐵 = 𝑙𝑎𝑡𝐴 + (𝑙𝑎𝑡𝐵 − 𝑙𝑎𝑡𝐴) ∗ 𝑝𝑟𝑜𝑝𝐴,𝐵 

Formula 3. Predicted latitude for two acoustic sensors. 

 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝐿𝑜𝑛𝐴,𝐵 = 𝑙𝑜𝑛𝐴 + (𝑙𝑜𝑛𝐵 − 𝑙𝑜𝑛𝐴) ∗ 𝑝𝑟𝑜𝑝𝐴,𝐵 

Formula 4. Predicted longitude for two acoustic sensors. 

 

 Finally, the predicted latitude and longitude are logged and displayed for the user. The 

UAV is expected to approach in a direction contained between the predicted latitude and 

longitude ± an error range which is based on the range of the acoustic sensor. The value for 

this range of error will be discussed in chapter 4. 

3.3.2.4 Visualization 

 As previously mentioned, the predictions obtained are logged for deeper analysis, but 

visual information is provided to the user as well in the form of a webpage which displays in 

real time what is the expected direction of arrival of the UAV. Figures 6 and 7 show how the 

system displays the presence or absence of UAV threats. 
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Figure 8: System Screenshot with no UAV detected 

 

 

Figure 9: System Screenshot a UAV detected 

 The web page was developed in plain JavaScript. It displays markers generated using 

Leaflet [65] over a Mapbox map [66]. The markers are updated in real time by listening to 

events in a pipeline implemented with the event streaming platform Apache Kafka [67], which 

is fed by the system implemented in Python. The relevance of using Apache Kafka is that it 

provides a high throughput “with latencies as low as 2ms” [67], meaning that the result can be 

shown in real time and that the visualization delay is almost imperceptible. 

3.3.3 Network Configuration 

Regarding the connection between acoustic sensors and the central server, a previous 

work [68] has used a local area network (LAN), implementing an access point with Wi-Fi 

connection and devices using a single-band on 2.4 GHz with the protocol IEEE 802.11 b/g/n. 
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The same approach has been taken for this project, connecting the nodes to the same Wi-Fi 

network, and connecting between each other via HTTP requests. The reason for using this 

approach is that it provided good results in the mentioned previous work, and that the other 

option would be a wired connection using optic fiber like in [6], but this approach is harder to 

setup and reduces the possibility to adapt the system to different environments. 

Regarding implementation specifications, the position of the access point is irrelevant 

as long as every node has good quality connection to it, both the personal computer used as a 

central server and the Raspberry Pi nodes have built-in networking capabilities, and the HTTP 

configuration is setup for the project using Flask library in Python [69]. 

3.4 Development 

As previously mentioned, there are three basic components that have been developed: the 

acoustic sensing devices, the software for the central server, and the network protocols to 

connect them. 

Although no formal development methodology (i.e. Extreme Programming, Scrum, 

Lean, etc.) was used, some tools and concepts from these were. The development process 

consisted of a flexible iterative prototyping approach with incremental development, in which 

each element is tested and validated in the lab, and changes are made based on the feedback 

provided by the research project committee. An approach resembling a Kanban board [70] for 

tracking pending tasks in the project was used as well.  

 

3.5 Data Collection 

The data collection process carried out can be divided in three phases: lab data (phase 1), 

training data (phase 2), and performance data (phase 3).  

The first phase was executed with the purpose of generating a bank of acoustic signals 

to train a testing version of the machine learning algorithm and help the development of a 

prototype. The samples consist of sound recordings of two small UAVs flying indoors.  

The second phase was executed for training the working version of the system with real 

world data, so the samples belong to two commercial models of UAVs being flown outdoors 

with natural noises and voices on the background. These UAVs were flown both unloaded and 

carrying a payload, to replicate real world scenarios.  
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The third phase is for evaluating the performance of the final model, so the conditions 

are similar to phase 2, but this time the system was fully functional and different performance 

indicators were registered for deeper analysis.  

The details about the data collection process and its corresponding analysis are described 

in chapter 4. 

3.6 Evaluation  

The data collected during phases 1 and 2 were used for training and fine tuning the machine 

learning model, and for designing and validating the position estimation algorithm. Accuracy, 

precision, recall and F1-Score are the metrics used to evaluate the prototype at this stage. 

The final evaluation is based on the data collected during phase 3. The metrics used to 

evaluate the effectiveness of the proposed solution are: 

• False Positives and True Positives: the proportion of false positives and true positives 

was calculated considering if the UAV was flying when a prediction was generated.  

• Mean Response Time: the mean time between when a UAV crossed a certain position 

and when the prediction was logged by the system. 

• Root Mean Squared Error: the root mean of the squared errors (or the mean of the 

absolute values for the errors) between the position predicted by the system and the 

actual position of the UAV at that given time. 

• Cost summary: an analysis of the costs of the system components against the protection 

it can potentially provide. 

Referring to research questions (section 1.5), each of the mentioned metrics help answer 

them in the following way: 

• RQ-1: Accuracy, precision, cost summary. 

• RQ-2: Root mean squared error. 

• RQ-3: Mean response time. 

• RQ-4: Accuracy, precision, false positives rate, true positives rate, mean response 

time and root mean squared error associated with the cost summary.  
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3.7 Reliability and Validity 

The main instrument for reliability of the measures is a “Test-Retest Method” [71, p. 

224]. The final evaluation test (data collection phase 3) was executed repeatedly and under 

different conditions, in that way, a correlation between experimental results can be calculated.  

About validity, content validity is constructed by using the same measuring and statistical 

methods that are the state of the art and are repeatedly used throughout the literature, while 

criterion validity is ensured by statistical analysis, in this case, it is expected that results on 

scenarios where the UAV is absent should be significantly different from scenarios where the 

UAV is present. 

3.8 Summary 

This chapter defined a scope for the project, which is the development and configuration 

of three main components: a set of acoustic devices, a central server that computes and displays 

the results, and the network to connect these components. The design for each of these 

components, and the development methodology for the whole project was explained as well. 

The data collection process was divided in three phases, the first and second ones 

producing data to develop and internally validate the necessary software, and the third one to 

evaluate if the project meets its goals. The criterion for the success of the project was settled to 

be the minimization of costs and response time while keeping an acceptable performance, and 

the specific metrics to evaluate this performance were settled to be accuracy, precision, false 

alarm rate, true positive rate, mean response time and mean squared error.   
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CHAPTER 4: EXPERIMENTS AND DATA ANALYSIS 

4.1 Introduction 

In chapter 3 the resulting design of the solution was explained, but to reach that point, 

several steps were taken. In the current chapter, the process to arrive to that final design is 

explained in chronological order, including the failures and successes that forged the way there.  

The goal of the project is to provide good UAV detection and localization results, in real 

time, and with the cheapest possible components, so all the efforts and decisions taken point 

towards that goal. 

The experiments that shaped the project include flying UAVs both indoors at a lab, and 

outdoors at a park under realistic conditions. Both tests served to find a strong machine learning 

model, while keeping the implementation simple. Outdoor tests served to test the performance 

of the solution as well. All the results for these experiments and the deductions taken at each 

step are explained in the following chapter.  

4.2 Equipment 

For the current project, each node consists of a single board computer and a microphone 

connected to it. The single Board computers are Raspberry Pi 3 Model B V1.2 (Figure 10), 

with a market price of less than 45 USD [72], and the microphones are USB “Zaffiro” (Figure 

11) with 2,2 KΩ of impedance, -58 dB ± 3 dB of sensitivity and 30Hz to 16000Hz of response 

frequency, with a market price of less than 30 USD [73]. The Raspberry Pi were powered using 

a generic USB Power Bank and the USB ports of two laptops, but any clean power source (a 

power source that does not introduce noise) is a viable option. The total cost for each node is 

as low at 75 USD for any person, but for a company the price can significantly be reduced. It 

is worth mentioning that these are not minimal requirements, less expensive equipment could 

also provide a solution with the same effectiveness level.  
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Figure 10: Raspberry Pi 3 Model B V1.2 

 

Figure 11: Microphone Zaffiro 

Regarding the UAVs to be flown, for indoor tests this project used a small sized UAV Syma 

X20P (Figure 12) and a medium sized Syma X5UW (Figure 13), while for outdoor tests the 

models used were DJI Phantom 4 (Figure 14) and EVO 2 Pro (Figure 15). 

 

 

Figure 12: Syma X20P 
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Figure 13: Syma X5UW 

 

Figure 14: DJI Phantom 4 

 

Figure 15: EVO 2 Pro 

About the computer that worked as a central server, it was a Laptop Dell Inspiron 15 3000 

Series with a processor Intel(R) Core(TM) i5-5200U CPU @ 2.20GHz, 8GB of DDR3 RAM 
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memory and a graphic card NVIDIA GeForce 820M. For training the Machine Learning 

algorithms, this same computer was used on initial stages, but then a more powerful computer 

was used to save time. The other computer used was a Dell Alienware M17 R3 with a processor 

Intel Core i7-10750H (6-Core, 12MB Cache, up to 5.0GHz w/ Turbo Boost 2.0), 16GB of 

DDR4 RAM Memory, and a graphic card NVIDIA(R) GeForce RTX(TM)2070 8GB GDDR6. 

4.3 Phase 1: Lab Data 

4.3.1 Initial approaches. 

To better understand and justify the model proposed on Chapter 3, first there is need to 

explain the initial ideas and approaches taken, including those discarded.  

Based on the literature reviewed on Chapter 2, it is possible to assume as a fact the 

feasibility of identifying UAVs with the help of machine learning algorithms and sound 

recognition techniques, so the main challenge for this project was to find a localization model 

that complements the mentioned method. 

The first approach to locate a UAV was to use the Time Delay of Arrival (TDOA) 

which was successfully used in previous studies [6]. The general idea to make it perform fast 

enough to provide real time results with limited equipment was to apply some sort of data 

reduction on the signal the microphone records. With this idea in mind, a simple code for 

finding the lag between two signals by using cross correlation was implemented. The 

microphones were put at around 5 meters apart from each other and a sound sample of 3 

seconds was recorded. The timestamp at which the microphones started recording the sample 

was used to fix the time difference between them, since they were not fully synchronized. The 

delay between microphones calculated using cross correlation and fixing with the timestamp 

approach was of 0.118492 seconds, which at a speed of 343.21 m/s (the speed of light) gives a 

separation of 40.66m, which is clearly not accurate. The conclusion for this experiment is that, 

to have an accurate estimation, either both clocks should be perfectly synchronized, or both 

microphones should be connected to the same computer sharing the same clock, which is not 

viable in an asynchronous and single-microphone-per-node implementation like the one 

desired. The main problem with synchronism is that it is hard to maintain and scale if several 

nodes are desired. Other factors that seem to have an impact on the accuracy of this approach 

are the quality of the signal, the sample rate, the distance, and the noise. This does not mean 

that TDOA is not a valid approach, in fact under the right conditions it could be the approach 
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which provides the best precision on acoustic localization, the problem is that due to the 

mentioned constraints it is not the right fit for the current project. 

Another approach that was shortly analyzed was to predict the location based on which 

node detects the UAV first, but since the UAVs start their recording at different times, this is 

not an accurate estimator, the problem is asynchronism again. 

In this way, after analyzing the problem thoroughly, the idea of a prediction based on 

the sound level or intensity of the sound appeared. The basis of this idea is that when a 

microphone records and detects a UAV, this UAV produces a change in the intensity of the 

signal perceived by the microphone. If the UAV is closer to the microphone, then the sound is 

louder, and the change perceived by the microphone is bigger. Given two microphones with 

similar characteristics, the one that perceives a bigger change in intensity should have the UAV 

closer to it, so by a simple proportion analysis, it should be possible to estimate a range for the 

position of the UAV relative to the mentioned microphones. This approach probably has a 

bigger error range than other approaches like TDOA, but it is also easier to implement 

asynchronously and more robust, so it was considered that this is the approach that fits the 

project better.  

4.3.2 Indoor UAV Tests 

 After defining the localization method, indoor tests started with two models of UAVs 

(Syma X20P and Syma X5UW), with the goal of defining the detection algorithm.  

 First, samples of background noise and a Syma X20P flying indoors were collected. 

The samples were collected using the system as designed for final implementation, which 

means a Raspberry Pi with a microphone connected to it. The samples consisted of a 10 second 

recording in “.wav” format. Each sample was manually checked to confirm that none of them 

were incorrectly labeled and to remove sounds like the UAV landing or crashing. A total of 

364 background noise and 92 Syma X20P 10-second samples were recorded. 

Some electromagnetic noise was perceived in the recordings, the strength of this noise 

was different in each microphone but constant on the same microphone for all recordings, so it 

can be attributed to the microphone and not the system. The samples were kept with this noise 

since both UAV and background samples had them.  

 One of the criteria to follow throughout this project is time response reduction, so the 

first algorithm used was GNB, since it is the fastest one from the three to be analyzed (GNB, 

SVM and Neural Networks), and the feature type used was MFCC since it is the one that 
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provides the most data compression. For this case and all future cases, 80% of the data is used 

for training and 20% for testing with a stratified shuffle split. These tests resulted in 3 classifiers 

trained, with samples of 0.5, 1 and 1.5 seconds (10 seconds samples are split in smaller short 

time samples). Table 11 shows the results for this configuration. With an accuracy of up to 

98.72% on the test set, the results are promising for an initial test. It is possible to observe that 

the accuracy increases as the sample size increases, which is expected. The short time samples 

do not show bad results either. 

Table 11: Results for GNB with MFCC (Syma X20P1 vs Background noise) 

 

 At this point it was noticed that even microphones of the same model show different 

mean amplitudes on average, causing the predictions to be closer to one microphone even when 

the UAV is not. This could be due to the electromagnetic noise previously mentioned or 

because the microphones have different gain. To solve the problem, the RMS amplitude of the 

last 50 recordings is stored for each microphone, then every new RMS amplitude labeled as 

“UAV” is compared with the median of these last 50 noises for each specific microphone, in 

that way, even if the microphone has different internal noise or different gain, the results reflect 

the change in the intensity more evenly. Median was chosen over average because it is resistant 

to outliers, such as sudden environment noises like cars, screams, etc. It was observed through 

the UI of the system that this change had a big positive impact on UAV localization.  

  To expand the previous model, 73 samples of a medium sized UAV (Syma X5UW) 

were collected using the same criteria and methodology used previously. The new 10-second 

samples were added to the existing ones, and a new model was trained. Table 12 shows the 

results for this model. Accuracy was reduced when the new UAV sound was added, but results 

are still good with up to 91.81% of accuracy on the test set, meaning that the approach works 

for more than one type of UAV. One thing to observe is that the difference in accuracy between 

models of different sample size was reduced.  

Sample 

Size 

Accuracy 

Train 

Accuracy 

Test 

Noise UAV 

Precision Recall 
F1-

Score 
Precision Recall 

F1-

Score 

0.5 sec 0.9667 0.9501 0.97 0.96 0.97 0.86 0.89 0.88 

1 sec 0.9704 0.9572 0.98 0.97 0.97 0.89 0.90 0.89 

1.5 sec 0.9977 0.9872 0.99 0.99 0.99 0.97 0.96 0.97 
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Table 12: Results for GNB with MFCC (Syma X20P1 and Syma X5UW1 vs Background 

noise) 

 

 Continuing with the construction of the model, it was noticed that some voices were 

considered positive by the model, so 77 voice sound samples were added to the collection. 

Adding these voice samples reduced the accuracy considerably as can be seen in Table 13. 

  As the results were not good enough, it was time to explore other options for the model 

design. Filter Banks and STFT models were trained at this point. Initial results in Tables 14 

and 15 show that accuracy improves using Filter Banks rather than MFCC or STFT, with an 

accuracy of up to 94.55% on the test set. 

These test results also inverted the relationship between accuracy and sample size, probably 

because short samples have less change over time and provide more amount of data (each 10-

second sample generates 20 0.5-second samples but only 6 1.5-second samples). Using short 

time samples could provide more accuracy, but it also generates a lot more “false positives” as 

it was observed through the system’s UI. 

Table 13: Results for GNB with MFCC (Syma X20P1 and Syma X5UW1 vs Background 

noise and voices) 

 

Sample 

Size 

Accuracy 

Train 

Accuracy 

Test 

Noise UAV 

Precision Recall 
F1-

Score 
Precision Recall 

F1-

Score 

0.5 sec 0.9109 0.8993 0.91 0.95 0.93 0.88 0.78 0.83 

1 sec 0.9177 0.8932 0.90 0.95 0.92 0.87 0.77 0.82 

1.5 sec 0.9508 0.9181 0.92 0.96 0.94 0.91 0.82 0.86 

Sample 

Size 

Accuracy 

Train 

Accuracy 

Test 

Noise UAV 

Precision Recall 
F1-

Score 
Precision Recall 

F1-

Score 

0.5 sec 0.9277 0.9096 0.95 0.93 0.94 0.82 0.86 0.84 

1 sec 0.9028 0.8712 0.94 0.88 0.91 0.72 0.86 0.78 

1.5 sec 0.8810 0.8132 0.89 0.84 0.87 0.64 0.73 0.68 
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Table 14: Results for GNB with Filter Banks (Syma X20P1 and Syma X5UW1 vs 

Background noise and voices) 

Table 15: Results for GNB with STFT (Syma X20P1 and Syma X5UW1 vs Background 

noise and voices) 

 

 As the performance of the model decreased, more data was collected to analyze if by 

doing that it was possible to improve the model performance in a significant way, especially to 

try to reduce the number of false positives perceived through the UI. 160 samples of the Syma 

X20P1 and 156 samples of the Syma X5UW were added to the ones already in the collection 

for a total of 481 UAV samples and 441 noises (background and voices). 

 With these new data, the Filter Banks models (Table 16) did not show much 

improvement, although they were still the most accurate ones. MFCC models (Table 17), on 

the other hand, showed a big progress, especially on 1.5 second samples. STFT models (Table 

18) surprisingly showed a reduction on their accuracy, although their F1-Score for UAV was 

better, meaning that the accuracy reduction could be due to it adapting better to UAV 

recognition. Despite the accuracy results improved in general, the false positives problem was 

not solved, still too many false positives could be observed through the UI. 

 

 

Sample 

Size 

Accuracy 

Train 

Accuracy 

Test 

Noise UAV 

Precision Recall 
F1-

Score 
Precision Recall 

F1-

Score 

0.5 sec 0.9458 0.9455 0.99 0.94 0.96 0.85 0.97 0.91 

1 sec 0.9490 0.9480 0.99 0.93 0.96 0.85 0.98 0.91 

1.5 sec 0.9525 0.9437 0.98 0.94 0.96 0.86 0.95 0.90 

Sample 

Size 

Accuracy 

Train 

Accuracy 

Test 

Noise UAV 

Precision Recall 
F1-

Score 
Precision Recall 

F1-

Score 

0.5 sec 0.8660 0.8527 0.84 0.99 0.91 0.95 0.48 0.64 

1 sec 0.8705 0.8705 0.85 0.99 0.92 0.96 0.55 0.70 

1.5 sec 0.8824 0.8791 0.87 0.98 0.92 0.94 0.60 0.73 
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Table 16: Results for GNB with Filter Banks (Syma X20P1 and Syma X5UW1 vs 

Background noise and voices – More Data) 

Table 17: Results for GNB with MFCC (Syma X20P1 and Syma X5UW1 vs Background 

noise and voices – More Data) 

Table 18: Results for GNB with STFT (Syma X20P1 and Syma X5UW1 vs Background 

noise and voices – More Data) 

 

  Since results with GNB are not good enough, especially considering the number of 

false positives it provides, it was time to try with more complex Machine Learning algorithms. 

SVM models were trained with the existing collection of samples, and it resulted in 

better accuracy results and a dramatical reduction of the false positives perceived through the 

UI. Using SVM, MFCC results (Table 19) improved from a maximum of 91.15% of accuracy 

Sample 

Size 

Accuracy 

Train 

Accuracy 

Test 

Noise UAV 

Precisi

on 
Recall 

F1-

Score 
Precision Recall 

F1-

Score 

0.5 sec 0.9554 0.9572 0.97 0.94 0.95 0.94 0.98 0.96 

1 sec 0.9532 0.9555 0.97 0.94 0.95 0.94 0.97 0.96 

1.5 sec 0.9516 0.9431 0.94 0.95 0.94 0.95 0.94 0.95 

Sample 

Size 

Accuracy 

Train 

Accuracy 

Test 

Noise UAV 

Precisi

on 
Recall 

F1-

Score 
Precision Recall 

F1-

Score 

0.5s 0.8898 0.8774 0.86 0.89 0.87 0.89 0.87 0.88 

1s 0.9162 0.8921 0.87 0.91 0.89 0.91 0.88 0.89 

1.5s 0.9451 0.9115 0.90 0.92 0.91 0.93 0.90 0.91 

Sample 

Size 

Accuracy 

Train 

Accuracy 

Test 

Noise UAV 

Precision Recall 
F1-

Score 
Precision Recall 

F1-

Score 

0.5s 0.7638 0.7611 0.67 0.99 0.80 0.99 0.55 0.71 

1s 0.7739 0.7711 0.68 0.99 0.81 0.99 0.57 0.72 

1.5s 0.7855 0.7777 0.69 0.98 0.81 0.98 0.59 0.73 
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in the test set to 95.81%, Filter Banks (Table 20) from 95.72% to 98.00%, and STFT (Table 

21) surprisingly reduced its accuracy from 77.77% to 73.04%, still being the worst feature type. 

 SVM with Filter Banks seemed like the best approach at this point, its only setback was 

that it takes considerably more time to train and predict results. It takes 0.17 seconds in average 

to generate a prediction, which is 8.5 times more than GNB (0.02 seconds), although it is still 

a good enough time anyways. Talking about training and prediction time, Filter Banks take 

more time than MFCC as well, which is expected since MFCC reduces data dimensionality. 

That same reason may be why Filter Banks work better than MFCC. Since MFCC compresses 

the information, some useful information for recognizing UAVs can get lost. 

 It is worth mentioning that unlike GNB, SVM was not used with the default 

configuration provided by scikit-learn library, the parameters used were C=1.3, kernel='rbf' 

and gamma='scale'. These parameters were used with success in previous unpublished works, 

so they were used again in this project. 

Table 19: Results for SVM with MFCC (Syma X20P1 and Syma X5UW1 vs Background 

noise and voices – More Data) 

 

 

 

Sample 

Size 

Accuracy 

Train 

Accuracy 

Test 

Noise UAV 

Precision Recall 
F1-

Score 
Precision Recall 

F1-

Score 

0.1s 0.9831 0.9366 0.96 0.90 0.93 0.92 0.97 0.94 

0.2s 0.9951 0.9537 0.98 0.92 0.95 0.93 0.98 0.96 

0.4s 0.9985 0.9581 0.98 0.93 0.96 0.94 0.98 0.96 

0.5s 0.9983 0.9544 0.97 0.93 0.95 0.94 0.98 0.96 

1s 0.9993 0.9425 0.96 0.91 0.94 0.92 0.97 0.95 

1.5s 1.0 0.9331 0.93 0.92 0.93 0.93 0.94 0.94 
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Table 20: Results for SVM with Filter Banks (Syma X20P1 and Syma X5UW1 vs 

Background noise and voices – More Data) 

Table 21: Results for SVM with STFT (Syma X20P1 and Syma X5UW1 vs Background 

noise and voices – More Data) 

 

Even though the application of SVM marked an improvement on the detection method and 

it reduced the number false positives, they are still observable in the logs. To solve this issue, 

a voting method was implemented. The voting method means that instead of providing an only 

prediction for a sample, many predictions are taken for shorter time sub-samples, and the final 

prediction is the one that represents a certain percentage of the total. For example, having a 

sample of 2 seconds, it is possible to get 5 sub-samples of 0.4 seconds, meaning 5 predictions. 

Sample 

Size 

Accuracy 

Train 

Accuracy 

Test 

Noise UAV 

Precision Recall 
F1-

Score 
Precision Recall 

F1-

Score 

0.1s 0.9954 0.9733 0.99 0.95 0.97 0.96 0.99 0.97 

0.2s 0.9976 0.9815 0.99 0.97 0.98 0.97 0.99 0.98 

0.4s 0.9984 0.9800 0.99 0.97 0.98 0.97 0.99 0.98 

0.5s 0.9986 0.9753 0.98 0.97 0.97 0.97 0.98 0.98 

1s 0.9986 0.9794 0.97 0.99 0.98 0.99 0.97 0.98 

1.5s 0.9989 0.9693 0.96 0.98 0.97 0.98 0.96 0.97 

Sample 

Size 

Accuracy 

Train 

Accuracy 

Test 

Noise UAV 

Precision Recall 
F1-

Score 
Precision Recall 

F1-

Score 

0.1s 0.7258 0.7257 0.64 1.0 0.78 1.0 0.47 0.64 

0.2s 0.7240 0.7304 0.64 1.0 0.78 1.0 0.49 0.65 

0.4s 0.7261 0.7161 0.63 1.0 0.77 1.0 0.46 0.63 

0.5s 0.7242 0.7210 0.63 1.0 0.77 1.0 0.47 0.64 

1s 0.7240 0.7147 0.63 1.0 0.77 1.0 0.45 0.62 

1.5s 0.7254 0.7019 0.62 0.99 0.76 0.98 0.44 0.60 



 

 

63 

If 3 of them are labeled as “UAV” and only 2 as “noise”, then under a simple majority criterion 

(>50%) the whole 2 second sample is labeled as “UAV”. This method was implemented at this 

point, and for that reason, now new models with 0.1, 0.2 and 0.4 second sample sizes were 

trained (Tables 19, 20 and 21). These shorter time samples showed good performance, with 

accuracy close or even better than the longer ones. About the purpose of reducing the false 

positive rate, shorter samples by their own generate more false positives than the long ones 

since even with better precision (less percentage of false positives), more samples generate 

more false positives in the total count, but if the shorter samples are combined with the 

mentioned voting method, results improve considerably. Using this approach, 1 second 

samples with 0.2 second sub-samples showed 0 false positives in the logs on indoor tests.  

Considering that the results for indoor flying UAVs are functional, it is time to test the 

model with real world data of outdoor flying UAVs.  

4.4 Phase 2: Training Data 

 For outdoor testing, the small Syma UAVs were replaced by a DJI Phantom 4 and an 

EVO 2 Pro as shown in section 4.2. UAV and environment noise samples were taken at 

McAllister Park, Lafayette, IN, 47904 (Figure 16). 

 

 

Figure 16: McAllister Park 

It is worth mentioning that the samples collected on the first visit to the park had to be 

discarded because of a strong electromagnetic noise on them. After some research back in the 

lab, the problem was traced back to the 12V Duracell battery and 500-Watt Energizer Power 
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Inverter (Figure 17) used to power the Raspberry Pi cards. It was observed that these generate 

a strong electromagnetic noise on the microphone that does not appear when connected to the 

wall at 120V as in the lab. To solve the issue, the power source was changed for a generic 

power bank for charging phones, and two laptops not connected to the Power Inverter, since 

even connecting the laptop to the Power Inverter and the Raspberry Pi to the laptop, generates 

this noise. 

 

 

Figure 17: Battery and Power Inverter used in failed tests. 

 

The final setup of the node including the Raspberry Pi, the microphone and the power bank 

is shown in Figure 18. It was positioned in a table at around 90cm of height from the floor.  

  

 

Figure 18: Acoustic Node final setup. 
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With this new setup, a new visit to McAllister park provided the samples required for 

training the model. Both mentioned UAV models were recorded flying, with and without a 

payload to have a wider spectrum of UAV sounds (Figures 19 and 20). The payload attached 

to the UAVs was a 500ml water bottle which weights around 500 gr.  

 

 

Figure 19: DJI Phantom 4 flying with payload 

 

Figure 20: EVO 2 Pro flying with payload 

Regarding background noise, the environment sound when the data was recorded 

included a strong bird’s noise, voices of the project participants talking, and just a few noises 

of cars and planes at the distance. These cars and planes noises may not be enough to train the 

model to ignore them. Wind conditions were low, so no wind other than the wind produced by 

the UAVs is perceptible in the recordings. Environment temperature was between 7° to 9° 

Celsius, with no rain. 

About details for the system setup, the central server (Figure 21) was the laptop Dell 

Inspiron 15 mentioned in section 4.2. “Acoustic Sensor 1” (AS1) was powered by the 
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previously mentioned power bank (Figure 18), “Acoustic Sensor 2” (AS2) was powered by the 

laptop working as a central server (Figure 21), and “Acoustic Sensor 3” (AS3) was powered 

by a laptop MacBook Pro. The Wi-Fi network was set up using a mobile device (Motorola G7 

Power) on Wi-Fi hotspot mode.  

 

 

Figure 21: Laptop used as the central server connected to Acoustic Sensor 2. 

After collecting the samples, they were manually labeled in the same way as with the 

indoors data. The samples collected on AS1 were very clear, the ones from AS2 had a small 

electromagnetic noise, and AS3 had a bit more of electromagnetic noise, but all recordings 

were good enough to work with them. The final number of 10-second samples available for 

training the model was as described on Table 22. 

Table 22: Final Number of samples collected outdoors by sample type. 

Sample Type Number of Samples Total Time 

Background noise 591 98.50 minutes 

Loaded DJI Phantom 4 343 57.16 minutes 

Unloaded DJI Phantom 4 302 50.33 minutes 

Loaded EVO 2 Pro 297 49.50 minutes 

Unloaded EVO 2 Pro 290 48.33 minutes 

Total 1823 303.83 minutes 

 

Having the database of samples labeled and cleaned, it is time to train the UAV 

classification models. From indoor tests it was observed that Filter Banks outperforms the other 

two feature types analyzed (STFT and MFCC), so from this point on, it was the only feature 

type used.  
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GNB (Table 23) and SVM (Table 24) models were trained with different sample sizes, 

and the first observation that can be made is that accuracy on the test set was reduced 

considerably from what was achieved during indoor tests for both cases. On GNB, the 

maximum accuracy went down from 95.72% to 84.09%, while SVM went from 98.15% to 

87.61%. The F1-Score of “noise” class was particularly affected, being reduced from values of 

0.94 and 0.98, to only between 0.48 to 0.78, meaning that these models find it hard to detect 

background noise, predicting most of the samples as UAV, which would generate a great 

number of false positives, one of the main problems throughout the whole project.  

Table 23: Results for GNB with Filter Banks (EVO 2 Pro and DJI Phantom 4 vs Background 

noise) 

Table 24: Results for SVM with Filter Banks (EVO 2 Pro and DJI Phantom 4 vs Background 

noise) 

 

Sample 

Size 

Accuracy 

Train 

Accuracy 

Test 

Noise UAV 

Precision Recall 
F1-

Score 
Precision Recall 

F1-

Score 

0.1s 0.7355 0.7337 0.65 0.38 0.48 0.75 0.90 0.82 

0.2s 0.7820 0.7824 0.78 0.46 0.58 0.78 0.94 0.85 

0.5s 0.8404 0.8409 0.84 0.63 0.72 0.84 0.94 0.89 

1s 0.7942 0.7770 0.60 0.95 0.73 0.97 0.69 0.81 

1.5s 0.6673 0.6673 0.49 0.95 0.65 0.96 0.53 0.68 

Sample 

Size 

Accuracy 

Train 

Accuracy 

Test 

Noise UAV 

Precision Recall 
F1-

Score 
Precision Recall 

F1-

Score 

0.1s 0.9737 0.8749 0.89 0.70 0.78 0.87 0.96 0.91 

0.2s 0.9860 0.8761 0.94 0.66 0.78 0.86 0.98 0.91 

0.5s 0.9844 0.8371 0.94 0.53 0.68 0.81 0.98 0.89 

1s 0.9907 0.8187 0.88 0.51 0.65 0.80 0.97 0.88 

1.5s 0.9963 0.8277 0.88 0.54 0.67 0.81 0.96 0.88 
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Since GNB and SVM models did not provide good enough results with outdoor data, a new 

model was tested. Neural Networks have consistently been depicted as the most promising 

model for UAV classification [7], [14], [48], [56], so it was the model chosen to continue 

working. It is not in the scope of the project to find the best neural network model to classify 

UAV sounds, so the simple Multi-layer Perceptron (MLP) classifier provided by scikit-learn 

library [74] was used, with “Random State” variable set to 0 and only testing the value of alpha, 

which as shown in Table 25 finds its ideal value when alpha = 0.1.  

MLP takes way less than SVM to train and performs better, with an accuracy of up to 

95.38% on the test set and an F1-Score of up to 0.93 for “noise” samples and 0.97 for “UAV”. 

Table 26 shows that short samples of 0.1 seconds perform better than the longer ones, again 

maybe the reason is that they provide more amount of data for training. This is the best model 

found for real world data, so it is the one to proceed with. 

Table 25: Results for MLP with Filter Banks on 0.1 second samples (EVO 2 Pro and DJI 

Phantom 4 vs Background noise) 

  

Alpha 
Accuracy 

Train 

Accuracy 

Test 

Noise UAV 

Precision Recall 
F1-

Score 
Precision Recall 

F1-

Score 

0.0001 0.9974 0.9472 0.94 0.90 0.92 0.95 0.97 0.96 

0.001 0.9961 0.9448 0.92 0.91 0.91 0.96 0.96 0.96 

0.01 0.9940 0.9436 0.92 0.90 0.91 0.95 0.96 0.96 

0.1 0.9887 0.9538 0.93 0.93 0.93 0.96 0.97 0.97 

1 0.9569 0.9346 0.94 0.85 0.89 0.93 0.97 0.95 
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Table 26: Results for MLP with Filter Banks and alpha = 0.1 (EVO 2 Pro and DJI Phantom 4 

vs Background noise) 

4.5 Phase 3: Performance Data 

For the final experiments, four tests were made. The first and second tests were to check 

the performance of the system on UAV detection, and the false positive ratio (which was a 

problem throughout the project), while the third and fourth tests were to analyze the 

performance of the position prediction algorithm, although the data generated by these last two 

were used as well for the same purposes as the first and second ones.  

The conditions explained in section 4.3 were repeated. A DJI Phantom 4 and an EVO 2 Pro 

were flown at McAllister park, with the same setup previously used. Samples of 1 second were 

recorded and processed using an MLP Neural Networks model trained with sample size of 0.1 

seconds, feature type being Filter Banks, and alpha being 0.1, since it is the best model until 

this moment. 1-second samples on a 0.1 second model means that for each sample, 10 

predictions are obtained. The approval criterion was set at 60% or more, meaning that at least 

6 predictions must be “UAV” for the recording to be labeled as a UAV. Even though the system 

was trained with the UAVs carrying and not carrying payload, for these performance tests the 

UAVs did not carry any payload. 

There are several variables which can affect a real-world test, but it is not viable to consider 

all of them in this project, that would add too much complexity to the experiment. For 

simplicity, these variables are documented but were not considered during the experiments: 

• Noise Level: during experiments, background noise was similar as described in 

section 4.3, that means low wind conditions, strong birds’ noise in the background, 

Alpha 
Accuracy 

Train 

Accuracy 

Test 

Noise UAV 

Precision Recall 
F1-

Score 
Precision Recall 

F1-

Score 

0.1s 0.9887 0.9538 0.93 0.93 0.93 0.96 0.97 0.97 

0.2s 0.9857 0.8664 0.79 0.79 0.79 0.90 0.90 0.90 

0.5s 1.000 0.8627 0.81 0.75 0.78 0.88 0.92 0.90 

1s 0.9998 0.8206 0.70 0.77 0.74 0.89 0.84 0.86 

1.5s 0.9978 0.8259 0.71 0.79 0.75 0.89 0.84 0.87 
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voices of the experiment supervisors talking, and just some noises of planes and 

cars at a distance.   

• UAV Speed: When the speed of the UAV changes, it produces a different sound. 

The speed of approach of the UAV was not considered nor measured in the 

experiment. Although it can be mentioned that the maximum speed of both DJI 

Phantom 4 and EVO 2 Pro is 20 m/s, this speed was never reached. As a reference, 

it can be estimated that the speed was somewhere between 10 m/s and 20 m/s, but 

it did not remain constant.  

• UAV Height: The UAV flying too low or too high can have an impact on the 

detection performance. The height of the UAV oscillated between 4 and 5 meters 

of height during the experiments.  

• Acoustic Sensor Height: The height of the acoustic sensor is another variable that 

can have an impact on the detection range. As the acoustic sensors were kept on a 

table, they were at around 90cm of height from the floor. 

 

Talking about the details of the experiment layout, the position of each element can be seen 

in Figure 22. The acoustic sensors (AS) are separated 19.2 meters between each other, with a 

position marker in the middle of them. This distance is an estimation of the maximum range at 

which it was observed that the UAV could be recognized, because as mentioned on section 

3.3.2.3, the sensors should be positioned at the maximum distance the microphones can cover, 

since at least two acoustic sensors have to recognize the UAV to predict a position between 

them.  

The system works with geographic coordinates, but to simplify the analysis, the positions 

were set from 0m (position of the AS1) to 38.4m (position of the AS3), from left to right.  

 

 

Figure 22: Outdoor tests layout 
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4.5.1 UAV Detection Performance 

For the first two tests, the DJI Phantom 4 was flown around the nodes, with no particular 

pattern. The observer could see if it was being detected, and if the position shown through the 

UI was correct or if it was showing too many false positives. Every detection and position 

prediction were logged for their posterior analysis, and by hearing the recordings saved, it was 

possible to analyze exactly at what moments the UAV was flying. Since tests 3 and 4 also 

collected these data, they were considered in the analysis as well. Results for the four tests are 

shown in table 27. 

Table 27: UAV detection performance 

 Test 1 Test 2 Test 3 Test 4 Total 

UAV Type Phantom 4 Phantom 4 Phantom 4 Evo 2 - 

Avg Prediction Time 0.0029s 0.0038s 0.0057s 0.0034s - 

AS1 Samples 180 586 774 434 1974 

AS2 Samples 250 673 678 375 1976 

AS3 Samples 55 503 586 - 1144 

Total Samples 485 1762 2038 809 5094 

Total Positives 

(“UAV”) 
263 406 1039 385 2093 

Total Negatives 

(“noise”) 
222 1356 999 424 3001 

True Positives 242 309 1015 372 1938 

False Positives 21 97 24 13 155 

 

These results show that the average prediction time was between 0.0029 seconds and 

0.0057 seconds. The variance on the prediction time could have been caused by other processes 

running in the local server, but what is important to mention is that these values meet the “real 

time prediction” expectation that was settled. 

It can be observed that not all acoustic sensors recorded the same number of samples on 

each test scenario. There are multiple potential reasons for this to happen, but since AS2 is 

consistently the one that provides the most samples, this can be attributed either to the power 

source (Raspberry Pi works slower with lower voltage) or most probably to the proximity to 

the Wi-Fi hotspot, since AS2 was positioned in the same table as the phone generating the 

network.  
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For the way in which the system is designed, it was not possible to determine the number 

of false negatives and true negatives, which are necessary to calculate the true positive rate and 

false positive rate, but some conclusions can be made from the proportions. Being the number 

of false positives a constant problem throughout the project, having only 7.41% of false 

positives (155 over 2093 total positives) and 92.59% of true positives (1938 over 2093 total 

positives) is a promising result. Even this 7.41% could be improved since it was observed that 

most of the false positives happen over a reduced period, for example for test 1, 20 out of the 

21 false positives happen over a period of 64 seconds, meaning that something could have 

happened at that moment, like the sound of a plane or a car passing by, or the system not 

updating properly because of a bad network connection.  

 As mentioned, it is not possible to count the number of false negatives and true 

negatives, the reason for this that one microphone not identifying the UAV can be caused by 

different reasons, like the UAV being out of range for example, but for the periods the UAV 

was flying, an alert was sent each 1.1 seconds in average, meaning that the system was alerting 

about the presence of the UAV most of the time it was there, and the number of false negatives 

should be low. 

4.5.2 Position Prediction performance 

 As previously mentioned, the third and fourth tests were made for analyzing the 

performance of the position prediction algorithm. The third test was done using the DJI 

Phantom 4, while the fourth test was done using the EVO 2 Pro. Each of these tests could be 

split in two parts based on the flight pattern used: a perpendicular flight scenario and a 

horizontal flight scenario. 

In both the perpendicular and horizontal test scenarios, the flight of the UAV is not a perfect 

line, it can have a deviation which introduces some error to the sample. To log the time at 

which the UAV passes over an acoustic sensor or one of the middle points, the observer 

(positioned in the middle as Figure 22 shows) manually presses a button on the central server 

to log a timestamp of that exact moment. This approach was chosen because of its simplicity 

and the lack of resources for a more sophisticated implementation, but it is acknowledged that 

it introduces some error in the result since it is affected by the time of reaction of the observer 

and his sight perspective relative to the positions marked.   
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4.5.2.1 Perpendicular flight tests 

 The perpendicular flight test scenario consists of the UAV approaching in a direct line 

to one of the positions marked, passing forth and back on the same line as shown in Figure 23. 

The UAV starts at around 19.2m away from the target, but this is just an estimation, the distance 

is not precise in each test (for that reason the UAVs are not aligned in Figure 23).   

 

 

Figure 23: Outdoors perpendicular flight test scenario 

In Tables 28 and 30, the results are shown by “Closer Prediction Time”, which means that 

the log corresponds to the first log observed after the UAV passes over the position marked. 

Considering samples of 1 second plus the time the system takes to predict the result, which is 

below 0.01 seconds, the first log observed after the UAV passes over the position marked 

should be at least 1.01 seconds after, but this is not always the case. The reason for this is that 

the observer manually logs the time, so an error of ± 1 second can happen. If there was a delay 

on the network connection, it can affect the time as well.  

In Tables 29 and 31, the results are shown by “Closer Position”, meaning that the log 

corresponds to the one with the closer position to the position marked, under reasonable time 

conditions (less than 7 seconds). The closer position criterion can improve the accuracy of the 

results because maybe the system provided a correct prediction, but it did not log it on time for 

some external factor like the previously mentioned ones. 
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When running the tests with EVO 2 Pro, one of the nodes ran out of battery, so the AS3 

was removed. For that reason, Tables 30 and 31 do not refer to Acoustic Sensor 3. 

Table 28: DJI Phantom 4 position prediction results on perpendicular flight by closer 

prediction time. 

Position 
Real 

position 
Real time 

Closer 

Prediction Time 

Predicted 

Position 

Time 

differe

nce 

Position 

difference 

1 0.00m 16:20:59.15 16:21:00.33 0.00m 1.18s 0.00m 

1 0.00m 16:21:24.75 16:21:25.83 0.00m 1.08s 0.00m 

1 0.00m 16:22:23.17 16:22:24.04 0.00m 0.88s 0.00m 

1 0.00m 16:22:39.51 16:22:41.47 6.18m 1.96s 6.18m 

1 0.00m 16:22:53.66 16:22:55.47 0.00m 1.81s 0.00m 

1-2 9.60m 16:20:59.15 16:21:00.33 2.25m 1.18s -7.35m 

1-2 9.60m 16:21:24.75 16:21:25.85 1.36m 1.10s -8.24m 

1-2 9.60m 16:22:23.17 16:22:25.91 2.74m 2.74s -6.86m 

1-2 9.60m 16:22:39.51 16:22:41.47 6.18m 1.96s -3.42m 

1-2 9.60m 16:22:53.66 16:22:55.48 2.83m 1.81s -6.77m 

1-2 9.60m 16:23:38.71 16:23:39.82 8.04m 1.12s -1.56m 

2 19.20m 16:24:08.42 16:24:10.68 5.50m 2.26s -13.70m 

2 19.20m 16:24:24.84 16:24:26.63 2.25m 1.79s -16.95m 

2 19.20m 16:24:35.88 16:24:36.58 19.20m 0.70s 0.00m 

2 19.20m 16:24:48.66 16:24:50.53 8.11m 1.87s -11.09m 

2 19.20m 16:25:01.61 16:25:02.10 19.20m 0.50s 0.00m 

2-3 28.80m 16:25:30.36 16:25:31.99 19.20m 1.63s -9.60m 

2-3 28.80m 16:25:43.05 16:25:45.80 19.20m 2.75s -9.60m 

2-3 28.80m 16:26:00.13 16:26:02.91 19.20m 2.78s -9.60m 

2-3 28.80m 16:26:13.24 16:26:14.23 17.89m 0.98s -10.91m 

2-3 28.80m 16:26:26.76 16:26:27.64 19.62m 0.88s -9.18m 

3 38.40m 16:26:58.44 16:26:59.50 34.50m 1.07s -3.90m 

3 38.40m 16:27:10.63 16:27:12.63 30.68m 2.00s -7.72m 

3 38.40m 16:27:20.02 16:27:22.33 28.72m 2.31s -9.68m 

3 38.40m 16:27:32.38 16:27:33.00 34.22m 1.62s -4.18m 

3 38.40m 16:27:41.81 16:27:43.31 37.44m 1.49s -0.96m 
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Table 29: DJI Phantom 4 position prediction results on perpendicular flight by closer 

position. 

Position 
Real 

position 
Real time 

Closer 

position 

Time at closer 

position 

Time 

difference 

Position 

difference 

1 0.00m 16:20:59.15 0.00m 16:21:00.33 1.18s 0.00m 

1 0.00m 16:21:24.75 0.00m 16:21:25.83 1.08s 0.00m 

1 0.00m 16:22:23.17 0.00m 16:22:24.04 0.88s 0.00m 

1 0.00m 16:22:39.51 0.79m 16:22:43.53 4.01s 0.79m 

1 0.00m 16:22:53.66 0.00m 16:22:55.47 1.81s 0.00m 

1-2 9.60m 16:20:59.15 2.25m 16:21:00.33 1.18s -7.35m 

1-2 9.60m 16:21:24.75 7.62m 16:21:27.63 2.88s -1.98m 

1-2 9.60m 16:22:23.17 9.29m 16:22:27.77 4.60s -0.31m 

1-2 9.60m 16:22:39.51 6.18m 16:22:41.47 1.96s -3.42m 

1-2 9.60m 16:22:53.66 7.38m 16:22:57.21 3.55s -2.22m 

1-2 9.60m 16:23:38.71 8.04m 16:23:39.82 1.12s -1.56m 

2 19.20m 16:24:08.42 19.20m 16:24:12.40 3.98s 0.00m 

2 19.20m 16:24:24.84 10.18m 16:24:28.72 3.87s -9.02m 

2 19.20m 16:24:35.88 19.20m 16:24:36.58 0.70s 0.00m 

2 19.20m 16:24:48.66 19.20m 16:24:54.66 6.00s 0.00m 

2 19.20m 16:25:01.61 19.20m 16:25:02.10 0.50s 0.00m 

2-3 28.80m 16:25:30.36 23.39m 16:25:33.90 3.54s -5.41m 

2-3 28.80m 16:25:43.05 21.28m 16:25:49.82 6.77s -7.52m 

2-3 28.80m 16:26:00.13 19.20m 16:26:02.91 2.78s -9.60m 

2-3 28.80m 16:26:13.24 19.20m 16:26:17.80 4.56s -9.60m 

2-3 28.80m 16:26:26.76 19.62m 16:26:27.64 0.88s -9.18m 

3 38.40m 16:26:58.44 38.40m 16:27:03.39 4.95s 0.00m 

3 38.40m 16:27:10.63 30.68m 16:27:12.63 2.00s -7.72m 

3 38.40m 16:27:20.02 28.72m 16:27:22.33 2.31s -9.68m 

3 38.40m 16:27:32.38 34.22m 16:27:33.00 1.62s -4.18m 

3 38.40m 16:27:41.81 37.44m 16:27:43.31 1.49s -0.96m 
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Table 30: EVO 2 Pro position prediction results on perpendicular flight by closer prediction 

time. 

Position 
Real 

position 
Real time 

Closer 

Prediction 

Time 

Predicted 

Position 

Time 

differe

nce 

Position 

difference 

2 19.20m 16:53:45.99 16:53:46.57 19.20m 0.58s 0.00m 

2 19.20m 16:53:56.61 16:53:57.45 18.95m 0.84s -0.25m 

2 19.20m 16:54:16.48 16:54:17.32 19.20m 0.84s 0.00m 

2 19.20m 16:54:23.33 16:54:23.48 14.08m 0.14s -5.12m 

2 19.20m 16:54:38.70 16:54:41.35 19.20m 2.65s 0.00m 

2 19.20m 16:54:44.82 16:54:45.24 19.20m 0.42s 0.00m 

2 19.20m 16:55:00.56 16:55:03.54 19.20m 2.99s 0.00m 

2 19.20m 16:55:10.00 16:55:11.90 19.20m 0.91s 0.00m 

1-2 9.60m 16:55:40.91 16:55:42.09 6.47m 1.18s -3.13m 

1-2 9.60m 16:55:50.22 16:55:51.13 9.58m 0.91s -0.02m 

1-2 9.60m 16:56:07.78 16:56:11.70 9.42m 3.92s -0.18m 

1-2 9.60m 16:56:15.49 16:56:17.49 12.79m 2.00s 3.19m 

1-2 9.60m 16:56:31.30 16:56:32.85 12.37m 1.55s 2.77m 

1-2 9.60m 16:56:40.27 16:56:41.24 9.93m 0.96s 0.33m 

1-2 9.60m 16:56:50.82 16:56:51.00 0.00m 0.18s -9.60m 

1 0.00m 16:57:10.02 16:57:11.31 0.00m 1.29s 0.00m 

1 0.00m 16:57:20.40 16:57:24.03 0.00m 3.63s 0.00m 

1 0.00m 16:57:28.55 16:57:30.13 0.00m 1.58s 0.00m 

1 0.00m 16:57:37.32 16:57:40.34 0.00m 3.02s 0.00m 

1 0.00m 16:57:44.51 16:57:47.83 0.00m 3.33s 0.00m 

1 0.00m 16:58:01.44 16:58:02.99 0.00m 1.55s 0.00m 

1 0.00m 16:58:11.39 16:58:12.99 0.00m 1.60s 0.00m 

1 0.00m 16:58:31.49 16:58:32.08 0.00m 0.59s 0.00m 

1 0.00m 16:58:49.01 16:58:50.23 0.00m 1.22s 0.00m 

1 0.00m 16:59:06.10 16:59:07.14 0.00m 1.04s 0.00m 

 



 

 

77 

Table 31: EVO 2 Pro position prediction results on perpendicular flight by closer position. 

Position 
Real 

position 
Real time 

Closer 

position 

Time at closer 

position 

Time 

difference 

Position 

difference 

2 19.20m 16:53:45.99 19.20m 16:53:46.57 0.58s 0.0m 

2 19.20m 16:53:56.61 19.20m 16:53:58.13 1.53s 0.0m 

2 19.20m 16:54:16.48 19.20m 16:54:17.32 0.84s 0.0m 

2 19.20m 16:54:23.33 19.20m 16:54:27.87 4.53s 0.0m 

2 19.20m 16:54:38.70 19.20m 16:54:41.35 2.65s 0.00m 

2 19.20m 16:54:44.82 19.20m 16:54:45.24 0.42s 0.00m 

2 19.20m 16:55:00.56 19.20m 16:55:03.54 2.99s 0.00m 

2 19.20m 16:55:10.00 19.20m 16:55:11.90 0.91s 0.00m 

1-2 9.60m 16:55:40.91 10.69m 16:55:43.10 2.19s 1.09m 

1-2 9.60m 16:55:50.22 9.58m 16:55:51.13 0.91s -0.02m 

1-2 9.60m 16:56:07.78 9.42m 16:56:11.70 3.92s -0.18m 

1-2 9.60m 16:56:15.49 12.79m 16:56:17.49 2.00s 3.19m 

1-2 9.60m 16:56:31.30 12.37m 16:56:32.85 1.55s 2.77m 

1-2 9.60m 16:56:40.27 9.93m 16:56:41.24 0.96s 0.33m 

1-2 9.60m 16:56:50.82 8.94m 16:56:54.52 3.70s -0.66m 

1 0.00m 16:57:10.02 0.00m 16:57:11.31 1.29s 0.00m 

1 0.00m 16:57:20.40 0.00m 16:57:24.03 3.63s 0.00m 

1 0.00m 16:57:28.55 0.00m 16:57:30.13 1.58s 0.00m 

1 0.00m 16:57:37.32 0.00m 16:57:40.34 3.02s 0.00m 

1 0.00m 16:57:44.51 0.00m 16:57:47.83 3.33s 0.00m 

1 0.00m 16:58:01.44 0.00m 16:58:02.99 1.55s 0.00m 

1 0.00m 16:58:11.39 0.00m 16:58:12.99 1.60s 0.00m 

1 0.00m 16:58:31.49 0.00m 16:58:32.08 0.59s 0.00m 

1 0.00m 16:58:49.01 0.00m 16:58:50.23 1.22s 0.00m 

1 0.00m 16:59:06.10 0.00m 16:59:07.14 1.04s 0.00m 

 

 Table 32 shows statistics for all perpendicular flight scenarios. All position errors are 

calculated based on their absolute value, so they represent the Root Mean Squared Error 

(RMSE). It can also be observed that a distinction was made between the positions at acoustic 

sensors and the positions between them (“middles”). The reason for this is that the algorithm 

works with information of at least two acoustic sensors. If only one acoustic sensor detects a 
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UAV, then the system has no way to predict the position but to just set the acoustic sensor 

position as the predicted position. For that reason, the intermediate positions between acoustic 

sensors are more interesting, because an actual calculation is made. 

 Talking about specific results for the experiments made, it can be observed that the first 

prediction happens after 1.59 seconds in average for DJI Phantom 4, and 1.56 seconds for EVO 

2 Pro, which are results fast enough to consider them as real time predictions. Regarding 

precision, for DJI Phantom 4 the average error is 6.06m, but if the prediction time is delayed 

to 2.70 seconds, the error is reduced almost a half to 3.48m. For EVO 2 Pro, the results are 

even better, with an average error or 0.98m, and 0.33m if just waiting 0.38 seconds more 

(1.95s), meaning that EVO 2 Pro produces a more recognizable sound for the system. As 

mentioned, the positions between sensors are of particular interest, and the error range in those 

positions goes from 7.55m to just 1.18m. This difference can be attributed to AS3, since it is 

observed that it is consistently the node with the worst results, and when removed from the 

tests with the EVO 2 Pro, the error was reduced considerably. It can be assumed that AS3 was 

affected by some factor like internal or external noise, or network connectivity issues. As a 

conclusion for these experiments, the position errors show that, even though the method has 

room for improvement, the response time and the position error are good enough for practical 

applications. 

Table 32: Statistics for Perpendicular flight scenario 

 DJI Phantom 4 EVO 2 Pro 

 
By Closer 

Prediction Time 

By Closer 

Position 

By Closer 

Prediction Time 

By Closer 

Position 

Avg Time Difference 1.59s 2.70s 1.56s 1.94s 

Max Time Difference 2.78s 6.77s 3.92s 4.53s 

Avg Error 6.06m 3.48m 0.98m 0.33m 

Avg Error at AS1 1.24m 0.79m 0.00m 0.00m 

Avg Error at 1-2 5.70m 2.81m 2.75m 1.18m 

Avg Error at AS2 8.35m 1.80m 0.67m 0.00m 

Avg Error at 2-3 9.78m 8.26m - - 

Avg Error at AS3 5.29m 4.50m - - 

Avg Error Only AS 5.31m 2.16m 0.30m 0.00m 

Avg Error Only 

middles 
7.55m 5.29m 2.75m 1.18m 



 

 

 

4.5.2.1 Horizontal flight tests 

In the horizontal flight test scenario, the UAV flies over the nodes from left to right, and back from right to left, as shown in Figure 24. The 

purpose of this is that, since the system only calculates a position between nodes, this flight pattern can be particularly difficult for it to predict in 

real time, introducing more error than a perpendicular flight. 

 

 

 

 

Figure 24: Outdoors horizontal flight test scenario 

7
9
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Results by “Closer Prediction Time” are shown in Tables 33 and 35, and results by 

“Closer Position Time” are shown in Tables 34 and 36. The criteria and testing conditions for 

these are the same as explained in section 4.4.2.1. One detail to mention is that in these 

experiments, only the positions between acoustic sensors were considered, because those are 

the most relevant ones to evaluate the prediction algorithm. 

Table 33: DJI Phantom 4 position prediction results on horizontal flight by closer prediction 

time. 

Position 
Real 

position 
Real time 

Closer 

Prediction 

Time 

Predicted 

Position 

Time 

difference 

Position 

difference 

2-3 28.80m 16:33:00.05 16:33:01.21 19.20m 1.16s -9.60m 

1-2 9.60m 16:33:09.80 16:33:10.24 14.85m 0.44s 5.25m 

1-2 9.60m 16:33:19.60 16:33:20.84 0.64m 1.24s -8.96m 

2-3 28.80m 16:33:29.12 16:33:31.40 37.97m 2.27s 9.17m 

2-3 28.80m 16:33:39.79 16:33:40.69 29.55m 0.89s 0.75m 

1-2 9.60m 16:33:49.60 16:33:51.88 19.20m 2.28s 9.60m 

1-2 9.60m 16:34:00.44 16:34:01.72 9.85m 1.28s 0.25m 

2-3 28.80m 16:34:08.18 16:34:09.67 19.20m 1.49s -9.60m 

2-3 28.80m 16:34:15.49 16:34:17.40 24.70m 1.91s -4.10m 

1-2 9.60m 16:34:23.66 16:34:26.85 16.75m 3.19s 7.15m 

1-2 9.60m 16:34:35.82 16:34:36.99 3.12m 1.17s -6.48m 

2-3 28.80m 16:34:43.82 16:34:45.78 31.14m 1.96s 2.34m 

2-3 28.80m 16:34:59.28 16:35:00.11 36.71m 0.82s 7.91m 

1-2 9.6.m 16:35:12.27 16:35:13.16 11.05m 0.89s 1.45m 

1-2 9.60m 16:35:29.01 16:35:31.72 4.71m 2.71s -4.89m 

2-3 28.80m 16:35:36.26 16:35:38.19 35.89m 1.94s 7.09m 

2-3 28.80m 16:35:48.21 16:35:49.32 32.95m 1.10s 4.15m 

1-2 9.60m 16:35:56.78 16:35:57.95 11.00m 1.17s 1.40m 
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Table 34: DJI Phantom 4 position prediction results on horizontal flight by closer position. 

Position 
Real 

position 
Real time 

Closer 

position 

Time at closer 

position 

Time 

difference 

Position 

difference 

2-3 28.80m 16:33:00.05 19.2m 16:33:01.21 1.16s -9.60m 

1-2 9.60m 16:33:09.80 8.53m 16:33:11.76 1.96s -1.07m 

1-2 9.60m 16:33:19.60 14.45m 16:33:22.85 3.25s 4.85m 

2-3 28.80m 16:33:29.12 37.97m 16:33:31.40 2.27s 9.17m 

2-3 28.80m 16:33:39.79 29.55m 16:33:40.69 0.89s 0.75m 

1-2 9.60m 16:33:49.60 7.41m 16:33:52.60 3.00s -2.19m 

1-2 9.60m 16:34:00.44 9.85m 16:34:01.72 1.28s 0.25m 

2-3 28.80m 16:34:08.18 19.20m 16:34:09.67 1.49s -9.60m 

2-3 28.80m 16:34:15.49 24.70m 16:34:17.40 1.91s -4.10m 

1-2 9.60m 16:34:23.66 4.36m 16:34:27.06 3.40s -5.24m 

1-2 9.60m 16:34:35.82 3.12m 16:34:36.99 1.17s -6.48m 

2-3 28.80m 16:34:43.82 31.14m 16:34:45.78 1.96s 2.34m 

2-3 28.80m 16:34:59.28 30.55m 16:35:03.29 4.01s 1.75m 

1-2 9.60m 16:35:12.27 11.05m 16:35:13.16 0.89s 1.45m 

1-2 9.60m 16:35:29.01 4.71m 16:35:31.72 2.71s -4.89m 

2-3 28.80m 16:35:36.26 35.89m 16:35:38.19 1.94s 7.09m 

2-3 28.80m 16:35:48.21 32.95m 16:35:49.32 1.10s 4.15m 

1-2 9.60m 16:35:56.78 11.00m 16:35:57.95 1.17s 1.40m 
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Table 35: EVO 2 Pro position prediction results on horizontal flight by closer prediction time. 

Position 
Real 

position 
Real time 

Closer 

Prediction 

Time 

Predicted 

Position 

Time 

difference 

Position 

difference 

1-2 9.60m 17:02:13.18 17:02:14.68 7.69m 1.50s -1.91m 

1-2 9.60m 17:02:29.69 17:02:31.65 8.12m 1.96s -1.48m 

1-2 9.60m 17:02:50.01 17:02:51.13 10.1m 1.12s 0.50m 

1-2 9.60m 17:03:03.67 17:03:04.02 0.00m 0.35s -9.60m 

1-2 9.60m 17:03:29.25 17:03:30.43 11.36m 1.19s 1.76m 

1-2 9.60m 17:03:41.95 17:03:41.88 9.19m -0.07s -0.41m 

1-2 9.60m 17:04:06.68 17:04:07.48 18.68m 0.80s 9.08m 

1-2 9.60m 17:04:20.17 17:04:22.04 12.77m 1.87s 3.17m 

1-2 9.60m 17:04:53.01 17:04:54.74 2.11m 1.72s -7.49m 

1-2 9.60m 17:05:01.98 17:05:02.57 0.00m 0.59s -9.60m 

1-2 9.60m 17:05:21.33 17:05:23.58 0.00m 2.25s -9.60m 

1-2 9.60m 17:05:39.10 17:05:40.32 6.94m 1.22s -2.66m 

1-2 9.60m 17:06:01.65 17:06:02.48 17.26m 0.82s 7.66m 

1-2 9.60m 17:06:12.15 17:06:14.49 14.47m 2.34s 4.87m 

1-2 9.60m 17:06:27.12 17:06:29.53 18.66m 2.41s 9.06m 

1-2 9.60m 17:06:36.67 17:06:37.51 0.94m 0.84s -8.66m 
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Table 36: EVO 2 Pro position prediction results on horizontal flight by closer position. 

Position 
Real 

position 
Real time 

Closer 

position 

Time at closer 

position 

Time 

difference 

Position 

difference 

1-2 9.60m 17:02:13.18 7.69m 17:02:14.68 1.50s -1.91m 

1-2 9.60m 17:02:29.69 8.12m 17:02:31.65 1.96s -1.48m 

1-2 9.60m 17:02:50.01 10.01m 17:02:51.13 1.12s 0.41m 

1-2 9.60m 17:03:03.67 0.00m 17:03:04.02 0.35s -9.60m 

1-2 9.60m 17:03:29.25 11.36m 17:03:30.43 1.19s 1.76m 

1-2 9.60m 17:03:41.95 9.19m 17:03:41.88 -0.07s -0.41m 

1-2 9.60m 17:04:06.68 18.68m 17:04:07.48 0.80s 9.08m 

1-2 9.60m 17:04:20.17 12.77m 17:04:22.04 1.87s 3.17m 

1-2 9.60m 17:04:53.01 2.11m 17:04:54.74 1.72s -7.49m 

1-2 9.60m 17:05:01.98 10.64m 17:05:04.26 2.28s 1.04m 

1-2 9.60m 17:05:21.33 0.00m 17:05:23.58 2.25s -9.60m 

1-2 9.60m 17:05:39.10 6.94m 17:05:40.32 1.22s -2.66m 

1-2 9.60m 17:06:01.65 17.26m 17:06:02.48 0.82s 7.66m 

1-2 9.60m 17:06:12.15 7.47m 17:06:12.81 0.65s -2.13m 

1-2 9.60m 17:06:27.12 1.25m 17:06:29.59 2.47s -8.35m 

1-2 9.60m 17:06:36.67 11.31m 17:06:39.20 2.53s 1.71m 

 

Statistics for all horizontal flight scenarios are shown in Table 37. All errors are 

calculated based on their absolute value (RMSE) as explained in section 4.4.2.1.  

The results for horizontal flight scenarios are consistent with the ones observed in 

perpendicular flight scenarios. The average response time is in the range of 1.55 seconds to 

1.98 seconds, which is even better than with perpendicular flight. The overall position errors 

increased, but not as much as expected, which is a good sign. The biggest error difference is 

observed when flying the EVO 2 Pro at position 1-2, where the error increased from 1.18m-

2.75m to 4.28m-5.47m, more than the double of error, but still good enough results for a 

practical application.  

The most remarkable detail to mention from these experiments is that the flight pattern 

was always clearly visible through the UI and in the logs, demonstrating that the microphones 

can follow the path of the UAV with this approach. 
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Table 37: Statistics for horizontal flight scenario 

 DJI Phantom 4 EVO 2 Pro 

 

By Closer 

Prediction 

Time 

By Closer 

Position 

By Closer 

Prediction 

Time 

By Closer 

Position 

Avg Time Difference 1.55s 1.98s 1.31s 1.42s 

Max Time Difference 3.19s 4.01s 2.41s 2.53s 

Avg Error 5.56m 4.24m 5.47m 4.28m 

Avg Error at 1-2 5.04m 3.09m 5.47m 4.28m 

Avg Error at 2-3 6.08m 5.39m - - 

4.6 Summary 

In this chapter, the whole experimental process that resulted in the model proposed by 

this project was explained. This explanation included details about the equipment used, the 

initial approaches of the project, and the indoor and outdoor experiments performed. 

 A UAV classification model was proposed after finding the best elements to construct 

it. This model includes an MLP Neural Networks algorithm with parameter alpha = 0.01, Filter 

Banks as the feature type to extract from sound samples, and sound samples of 1 second split 

in sub samples of 0.1 seconds reconciled by a voting system with 60% acceptance criteria. This 

model showed an accuracy of 95.38% and an F1-Score of 0.93 on a test set conformed by 

outdoor UAV flying sound samples.  

The UAV position location algorithm developed was tested under realistic conditions as 

well. A DJI Phantom 4 and an EVO 2 Pro were flown with different flight patterns over the 

acoustic sensors, and the system reached a response time below 1.59 seconds on average, and 

a maximum average position error of 6.06m, but as good as 0.33m, depending on the case. 

These results are good enough to consider that the proposed solution meets the expectations of 

it being a real time UAV detection and localization system that provides practical information 

to protect a target from an attacking UAV.  
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CHAPTER 5: CONCLUSIONS, DISCUSSIONS & 

RECOMMENDATIONS 

5.1 Introduction 

The problem presented on this project was the need to find a real-world adaptable 

solution to demonstrate that an array of acoustic sensors can be used to detect and estimate the 

direction of arrival of potentially harmful UAVs under realistic environmental conditions, with 

minimal cost and competitive performance. The current chapter will explore if the problem 

was addressed, and if the research questions presented at the beginning of the project were 

answered. Conclusions will be made based on the results obtained during experimentation, and 

based on them, limitations of the project and possible improvements will be presented. 

5.2 Conclusions 

In the current project, a working model for UAV detection and localization using an 

interconnected array of acoustic sensors along with machine learning algorithms and sound 

recognition techniques was presented and tested outdoors, under real world environmental 

conditions and with different types of commercial UAVs. Based on this, it can be concluded 

that the problem initially proposed was addressed, but that a solution is delivered does not mean 

that the solution is effective, so it is time to analyze how effective this proposed solution is, 

which are the advantages and drawbacks of it, and what other conclusions can be taken from 

the results.  

As initially mentioned, the main criterion for the success of the project is that the cost 

and response time are minimized without sacrificing performance. To assess this, three 

elements have to be analyzed: cost, response time and performance. 

 In the proposed solution, each node consists of a Raspberry Pi (or any single board 

computer) and a microphone. The total cost per node, using the same equipment as in the 

experiments performed, is less than 75 USD, but these are not minimal requirements. 

Equipment with way less power than the ones used could provide results as effective as the 

ones obtained, and for a company the cost of these components could be significantly reduced. 

The experiments performed show that two nodes provide a coverage of at least 20m. For each 

20m of additional coverage needed, a new node must be added, so the cost increases linearly 

based on the coverage desired. The central server used was a laptop Dell Inspiron 15 Series 

3000, which at the time of this project is already far outdated, meaning that the computational 
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requirements for the central server are low, and the investment needed on this element of the 

solution is low as well. In conclusion, the hardware requirements of the solution are minimal, 

a single microphone and a processing unit with network connectivity per node should be 

enough to implement this solution, so the cost minimization goal was achieved. 

About response time, the MLP algorithm proposed for UAV classification provides a 

prediction in less than 0.0057 seconds on average. The performance results on outdoor tests 

flying two types of UAVs with different flight patterns show a response time below 1.59 

seconds on average for samples of 1 second, meaning the prediction is shown after 0.59 seconds 

that the recording was taken. These time results are enough to consider the model as a real time 

solution, so the response time goal was met as well. 

The third element to consider is performance. The UAV classification algorithm 

proposed achieves an accuracy of 95.38% and an F1-Score of 0.93 on a test set conformed by 

outdoor UAV sound samples. The model has minimal adjustments over the default MLP model 

provided by scikit-learn library, meaning that results are accurate enough even without a deep 

model analysis. About the error on direction of arrival prediction, a maximum average position 

error of 6.06m was obtained, but on certain scenarios it was as good as 0.33m. It was observed 

that if the waiting time is roughly doubled, the prediction error can be reduced to 3.48m on 

average, almost a half of the previous value. The solution is designed for direction of arrival 

prediction, this means the UAV transversally crossing the acoustic sensors barrier, but even 

with the UAV flying parallel to the acoustic sensors barrier, the results showed an average error 

between 4.24m and 5.56m depending on the test scenario. The conclusion is that, even though 

the position prediction results are not the best obtained in the research area, they are good 

enough for practical implementations, and they were achieved with minimal cost conditions, 

so the expectations for the project were met. 

Besides cost, response time and performance, other advantages of the proposed solution 

are that it is adaptable to any environment and implementation layout, this means that the nodes 

can be moved and positioned at will and the solution should still work, it is also an 

asynchronous solution, so there is no need to synchronize the clocks on each node, and in case 

that one of them stops working, the others would still provide protection. Finally, the solution 

is modular, so each component of it could be improved separately. 

About the limitations of the current solution, the presence of false positives was a 

constant problem during the whole project. Even though the number of false positives was 

reduced to 7.41% of the total positives, it is still a threat to the validity of the solution since 

they deviate the attention from real positive scenarios. Another limitation of the solution is the 
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position prediction error, which is good enough for the purposes of the project, but it may not 

be enough for other applications. The current solution is just an alert system, it should be 

complemented by a counterattack system to stop the UAV threat. 

To summarize and conclude, here are the answers the project provided for each one of 

the research questions initially proposed: 

• RQ1 - How accurate, precise, and cost-effective is the proposed model for 

locating potentially harmful UAVs in real time?: The model proposed has an 

accuracy of 95.38% and a precision of 0.93 for UAV detection. About location 

precision, the model showed a maximum average position error of 6.06m. 

Regarding cost effectiveness, the solution proposed minimizes the resources 

needed, and each node of the ones used for the experiments performed costs less 

than 75 USD. 

• RQ2 - What error level can be achieved on the identification of position and 

direction of arrival of a UAV using an array of acoustic sensors?: Even though 

the maximum position error obtained was 6.06m, lower errors can be obtained. 

A 0.33m position prediction error was achieved by waiting 4.53 seconds on 

average for a prediction. 

• RQ3 - What is the response time that can be achieved on UAV detection using an 

array of acoustic sensors running machine learning algorithms?: The system 

calculates a prediction in a maximum of 0.0057 seconds on average. Including 

the recording time of 1 second the system achieved to log a result on 1.59 seconds 

on average on its best test result. 

• RQ4 - What is the minimum cost an acoustic detection and location system can 

achieve while keeping an acceptable performance?: The nodes used for 

experimentation have a cost of less than 75 USD, but the cost can be reduced 

even more if using cheaper components or buying them in quantity. It is observed 

that the system could even work properly with components with less computing 

power.    

5.3 Discussion 

The project managed to accomplish the goals it had initially proposed, but there is still 

work to be done, considerations to be taken, and possible improvements to make.   
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The design of the solution is modular, so improvements could be made on every part of 

the solution: sound recording, sound transformation, machine learning algorithm, or position 

prediction algorithm. 

 Besides using more expensive better quality acoustic sensors, other improvements that 

could be made include the implementation of some noise removal technique for preprocessing 

the data, or the use of microphones with directional recording or other pickup patterns specific 

to the problem. With these changes the coverage could be improved to more than 20 meters. 

 During sound transformation, only a few parameters were tested, but fine-tuning sound 

transformation parameters for UAV detection could be the topic of an entire research. On the 

experiments performed, Filter Banks were the feature type that showed the best results, but it 

does not mean that MFCC or STFT cannot perform better under the right circumstances and 

with the right parameters. Even the current Filter Banks solution could be improved by tuning 

parameters such as the number and shape of filters. 

 About the machine learning algorithm used, it was out of scope to find the best existing 

learning algorithm for UAV detection, or tune its parameters to perfection, so a lot of work 

could be done here. In fact, related works have addressed better accuracy results with more 

complex models, like other neural network architectures or an ensemble of different machine 

learning models. Other ways of improving the machine learning algorithm include adding more 

data to the training database, recording background noise under different environmental 

conditions, and adding sounds of cars, planes or other elements which could be confused with 

UAVs. About the false positives problem observed during the whole project, the percentage 

needed for approval on the voting system implemented could be increased, which may increase 

the number of false negatives, but also would certainly reduce the number of false positives. 

  The position prediction algorithm has plenty of room for improvement as well. For 

practical reasons, RMS amplitude of the signal was used as a basis for sound “intensity” 

change, but other sound analysis methods could be used to improve precision, such as sound 

power, sound intensity (meaning the actual definition of “sound intensity”, which is the ratio 

of sound power by area), loudness units relative to full scale (LUFS) [75], and more. Another 

possible improvement to position prediction could be to add redundant nodes, in that way the 

system could have more protection against failures and higher accuracy. 

 Regarding the cost of the system, as previously mentioned, it could be reduced if using 

cheaper components with less computing power, even the central server could be replaced by 

another Raspberry Pi (or any alternative single board computer brand). 
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Finally, one important observation that is worth mentioning is that the results obtained 

during the experiments are coherent with the literature reviewed, and consistent on the 

progression of data, which enforces the reliability and validity of them. 

5.4 Recommendations 

One of the lessons learned from this project and which could help future researchers is 

that, before any field test, the exact data collection conditions should be replicated at the lab. It 

happened during this project that a whole batch of samples collected had to be discarded 

because the power source (a battery and a power inverter) introduced too much noise on the 

recordings. A noise-free power source is important to consider in any acoustic implementation, 

as well as removing any additional noise possible from the microphones. 

An approach that worked successfully during this project was to split the samples in 10 

second samples, which is easy to manage when they need to be cleaned and organized. 

Finally, the experiments performed do not allow to identify false negatives and true 

negatives, so some data analyses could not be made. This means that while thinking about the 

solution to be implemented, it is important to think in detail how it would be possible to 

evaluate it, and which metrics need to be taken. 

  



 

 

90 

REFERENCES 

[1] J. Kim, C. Park, J. Ahn, Y. Ko, J. Park, and J. C. Gallagher, “Real-time UAV sound 

detection and analysis system,” in 2017 IEEE Sensors Applications Symposium (SAS), 

Mar. 2017, pp. 1–5, doi: 10.1109/SAS.2017.7894058. 

[2] B. Taha and A. Shoufan, “Machine Learning-Based Drone Detection and 

Classification: State-of-the-Art in Research,” IEEE Access, vol. 7, pp. 138669–138682, 

2019, doi: 10.1109/ACCESS.2019.2942944. 

[3] E. E. Case, A. M. Zelnio, and B. D. Rigling, “Low-Cost Acoustic Array for Small UAV 

Detection and Tracking,” in 2008 IEEE National Aerospace and Electronics 

Conference, Dayton, OH, Jul. 2008, pp. 110–113, doi: 

10.1109/NAECON.2008.4806528. 

[4] B. Yang, E. T. Matson, A. H. Smith, J. E. Dietz, and J. C. Gallagher, “UAV Detection 

System with Multiple Acoustic Nodes Using Machine Learning Models,” in 2019 Third 

IEEE International Conference on Robotic Computing (IRC), Naples, Italy, Feb. 2019, 

pp. 493–498, doi: 10.1109/IRC.2019.00103. 

[5] S. Seo, S. Yeo, H. Han, Y. Ko, K. E. Ho, and E. T. Matson, “Single Node Detection on 

Direction of Approach,” in 2020 IEEE International Instrumentation and Measurement 

Technology Conference (I2MTC), Dubrovnik, Croatia, May 2020, pp. 1–6, doi: 

10.1109/I2MTC43012.2020.9129016. 

[6] Z. Shi, X. Chang, C. Yang, Z. Wu, and J. Wu, “An Acoustic-Based Surveillance System 

for Amateur Drones Detection and Localization,” IEEE Trans. Veh. Technol., vol. 69, 

no. 3, pp. 2731–2739, Mar. 2020, doi: 10.1109/TVT.2020.2964110. 

[7] S. Li, H. Kim, S. Lee, J. C. Gallagher, D. Kim, S. Park, and E. T. Matson, 

“Convolutional Neural Networks for Analyzing Unmanned Aerial Vehicles Sound,” in 

2018 18th International Conference on Control, Automation and Systems (ICCAS), 

Oct. 2018, pp. 862–866. 

[8] “Drone market outlook: industry growth trends, market stats and forecast,” Business 

Insider, Mar. 03, 2020. 

[9] M. S. Schmidt and M. D. Shear, “A Drone, Too Small for Radar to Detect, Rattles the 

White House,” The New York Times, Jan. 26, 2015. 

[10] W. Ripley, “Drone found on Japanese Prime Minister’s rooftop,” CNN, Apr. 22, 2015. 

https://www.cnn.com/2015/04/22/asia/japan-prime-minister-rooftop-drone/index.html 

(accessed Nov. 06, 2020). 

[11] J. Warrick, “Use of weaponized drones by ISIS spurs terrorism fears,” Washington 

Post, Feb. 21, 2017. 

[12] C. Koettl and B. Marcolini, “A Closer Look at the Drone Attack on Maduro in 

Venezuela,” The New York Times, Aug. 10, 2018. 



 

 

91 

[13] A. Bernardini, F. Mangiatordi, E. Pallotti, and L. Capodiferro, “Drone detection by 

acoustic signature identification,” Electron. Imaging, vol. 2017, no. 10, pp. 60–64, Jan. 

2017, doi: 10.2352/ISSN.2470-1173.2017.10.IMAWM-168. 

[14] Y. Seo, B. Jang, and S. Im, “Drone Detection Using Convolutional Neural Networks 

with Acoustic STFT Features,” in 2018 15th IEEE International Conference on 

Advanced Video and Signal Based Surveillance (AVSS), Auckland, New Zealand, Nov. 

2018, pp. 1–6, doi: 10.1109/AVSS.2018.8639425. 

[15] T. B. Lee, “Watch the Pirate Party fly a drone in front of Germany’s chancellor,” 

Washington Post, Sep. 18, 2013. 

[16] “Anti-Drone Market Size to Reach USD 2.315 Billion by 2025 Valuates Reports,” 

Valuates Reports, May 22, 2020. 

[17] V. Baron, S. Bouley, M. Muschinowski, J. Mars, and B. Nicolas, “Drone localization 

and identification using an acoustic array and supervised learning,” in Artificial 

Intelligence and Machine Learning in Defense Applications, Strasbourg, France, Sep. 

2019, vol. 11169, p. 111690F, doi: 10.1117/12.2533039. 

[18] “Anti-drone Market Size & Share | Global Industry Report, 2019-2026,” May 2019. 

https://www.grandviewresearch.com/industry-analysis/anti-drone-market (accessed 

Oct. 12, 2020). 

[19] “Anti-drone Market Size Worth $4.5 Billion By 2026 | CAGR: 29.9%.” 

https://www.grandviewresearch.com/press-release/global-anti-drone-market (accessed 

Oct. 12, 2020). 

[20] “Meaning of UAV in English.” https://dictionary.cambridge.org/dictionary/english/uav 

(accessed Nov. 09, 2020). 

[21] A. Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow, 2nd 

Edition. O’Reilly Media, Inc., 2017. 

[22] “Meaning of Payload in English.” 

https://dictionary.cambridge.org/dictionary/english/payload (accessed Nov. 09, 2020). 

[23] “A-Z Databases: Engineering & Technology.” 

https://guides.lib.purdue.edu/az.php?s=71214 (accessed Nov. 01, 2020). 

[24] “Drone market outlook: industry growth trends, market stats and forecast,” Business 

Insider, Mar. 03, 2020. https://www.businessinsider.com/drone-industry-analysis-

market-trends-growth-forecasts (accessed Nov. 06, 2020). 

[25] P. Paganini, “Thieves are using commercial drones for burglaries,” Security Affairs, 

May 22, 2015. https://securityaffairs.co/wordpress/37050/cyber-crime/thieves-using-

commercial-drones.html (accessed Nov. 06, 2020). 

[26] “‘Well-organised’ gang flew drones carrying drugs into prisons,” BBC News, Aug. 30, 

2018. https://www.bbc.com/news/uk-england-45358876 (accessed Nov. 06, 2020). 



 

 

92 

[27] T. Cozzens, “Report predicts drone threats to infantry units,” GPS World, Mar. 13, 

2018. https://www.gpsworld.com/new-report-predicts-small-drone-threats-to-infantry-

units/ (accessed Nov. 06, 2020). 

[28] M. I. Skolnik, Ed., Radar handbook, 2nd ed. New York: McGraw-Hill, 1990. 

[29] İ. Güvenç, O. Ozdemir, Y. Yapici, H. Mehrpouyan, and D. Matolak, “Detection, 

localization, and tracking of unauthorized UAS and Jammers,” in 2017 IEEE/AIAA 36th 

Digital Avionics Systems Conference (DASC), Sep. 2017, pp. 1–10, doi: 

10.1109/DASC.2017.8102043. 

[30] J. Drozdowicz, M. Wielgo, P. Samczynski, K. Kulpa, J. Krzonkalla, M. Mordzonek, 

M. Bryl, and Z. Jakielaszek, “35 GHz FMCW drone detection system,” in 2016 17th 

International Radar Symposium (IRS), May 2016, pp. 1–4, doi: 

10.1109/IRS.2016.7497351. 

[31] Y. Liu, X. Wan, H. Tang, J. Yi, Y. Cheng, and X. Zhang, “Digital television based 

passive bistatic radar system for drone detection,” in 2017 IEEE Radar Conference 

(RadarConf), May 2017, pp. 1493–1497, doi: 10.1109/RADAR.2017.7944443. 

[32] B. Torvik, K. E. Olsen, and H. Griffiths, “Classification of Birds and UAVs Based on 

Radar Polarimetry,” IEEE Geosci. Remote Sens. Lett., vol. 13, no. 9, pp. 1305–1309, 

Sep. 2016, doi: 10.1109/LGRS.2016.2582538. 

[33] M. Ritchie, F. Fioranelli, H. Borrion, and H. Griffiths, “Classification of 

loaded/unloaded micro-drones using multistatic radar,” Electron. Lett., vol. 51, no. 22, 

pp. 1813–1815, Oct. 2015, doi: 10.1049/el.2015.3038. 

[34] Z. Shi, M. Huang, C. Zhao, L. Huang, X. Du, and Y. Zhao, “Detection of LSSUAV 

using hash fingerprint based SVDD,” in 2017 IEEE International Conference on 

Communications (ICC), Paris, France, May 2017, pp. 1–5, doi: 

10.1109/ICC.2017.7996844. 

[35] Y. Tian, L. Njilla, A. Raja, J. Yuan, S. Yu, A. Steinbacher, T. Tong, and J. Tinsley, 

“Cost-Effective NLOS Detection for Privacy Invasion Attacks by Consumer Drones,” 

in 2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC), San Diego, CA, 

USA, Sep. 2019, pp. 1–7, doi: 10.1109/DASC43569.2019.9081802. 

[36] C. Zhao, C. Chen, Z. Cai, M. Shi, X. Du, and M. Guizani, “Classification of Small 

UAVs Based on Auxiliary Classifier Wasserstein GANs,” in 2018 IEEE Global 

Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, Dec. 

2018, pp. 206–212, doi: 10.1109/GLOCOM.2018.8647973. 

[37] U. Seidaliyeva, D. Akhmetov, L. Ilipbayeva, and E. Matson, “Real-Time and Accurate 

Drone Detection in a Video with a Static Background,” Sensors, vol. 20, no. 14, p. 

3856, Jul. 2020, doi: 10.3390/s20143856. 

[38] E. Unlu, E. Zenou, N. Riviere, and P.-E. Dupouy, “Deep learning-based strategies for 

the detection and tracking of drones using several cameras,” IPSJ Trans. Comput. Vis. 

Appl., vol. 11, no. 1, p. 7, Jul. 2019, doi: 10.1186/s41074-019-0059-x. 



 

 

93 

[39] V. Thai, W. Zhong, T. Pham, S. Alam, and V. Duong, “Detection, Tracking and 

Classification of Aircraft and Drones in Digital Towers Using Machine Learning on 

Motion Patterns,” in 2019 Integrated Communications, Navigation and Surveillance 

Conference (ICNS), Herndon, VA, USA, Apr. 2019, pp. 1–8, doi: 

10.1109/ICNSURV.2019.8735240. 

[40] M. Hammer, M. Hebel, B. Borgmann, M. Laurenzis, and M. Arens, “Potential of lidar 

sensors for the detection of UAVs,” in Laser Radar Technology and Applications XXIII, 

Orlando, FL, United States, May 2018, vol. 10636, p. 1063605, doi: 

10.1117/12.2303949. 

[41] M. Salhi and N. Boudriga, “Multi-Array Spherical LIDAR System for Drone 

Detection,” in 2020 22nd International Conference on Transparent Optical Networks 

(ICTON), Bari, Italy, Jul. 2020, pp. 1–5, doi: 10.1109/ICTON51198.2020.9203381. 

[42] B. R. V. Voorst, “Counter drone system,” US20170261613A1, Sep. 14, 2017. 

[43] A. Sedunov, H. Salloum, A. Sutin, N. Sedunov, and S. Tsyuryupa, “UAV Passive 

Acoustic Detection,” in 2018 IEEE International Symposium on Technologies for 

Homeland Security (HST), Woburn, MA, USA, Oct. 2018, pp. 1–6, doi: 

10.1109/THS.2018.8574129. 

[44] I. Guvenc, F. Koohifar, S. Singh, M. L. Sichitiu, and D. Matolak, “Detection, Tracking, 

and Interdiction for Amateur Drones,” IEEE Commun. Mag., vol. 56, no. 4, pp. 75–81, 

Apr. 2018, doi: 10.1109/MCOM.2018.1700455. 

[45] M. Wakabayashi, H. G. Okuno, and M. Kumon, “Multiple Sound Source Position 

Estimation by Drone Audition Based on Data Association Between Sound Source 

Localization and Identification,” IEEE Robot. Autom. Lett., vol. 5, no. 2, pp. 782–789, 

Apr. 2020, doi: 10.1109/LRA.2020.2965417. 

[46] K. Chang, H. Yujing, and S. Lin, “Method for distinguishing acoustic of drone from 

e.g. sound of car, involves producing feature vector for combining first and second 

feature vectors and distinguishing acoustic signal according to unmanned aerial 

vehicle.” 

[47] W. Yoon S., S. Yin, and S. Un, “Method of identifying and neutralizing low-altitude 

unmanned aerial vehicle, involves comparing sound and shape information included in 

vehicle target image with prestored sound and shape information of each vehicle type.” 

[48] D. Lim, H. Kim, S. Hong, S. Lee, G. Kim, A. Snail, L. Gotwals, and J. C. Gallagher, 

“Practically Classifying Unmanned Aerial Vehicles Sound Using Convolutional Neural 

Networks,” in 2018 Second IEEE International Conference on Robotic Computing 

(IRC), Laguna Hills, CA, Feb. 2018, pp. 242–245, doi: 10.1109/IRC.2018.00051. 

[49] B. D. V. Veen and K. M. Buckley, “Beamforming: a versatile approach to spatial 

filtering,” IEEE ASSP Mag., vol. 5, no. 2, pp. 4–24, Apr. 1988, doi: 10.1109/53.665. 

[50] J. Franklin and B. Hearing, “Drone detection and classification with compensation for 

background clutter sources,” US10032464B2, Jul. 24, 2018. 

 



 

 

94 

[51] K. Gröchenig, Foundations of Time-Frequency Analysis. Birkhäuser Basel, 2001. 

[52] S. R. M. Penedo, M. L. Netto, and J. F. Justo, “Designing digital filter banks using 

wavelets,” EURASIP J. Adv. Signal Process., vol. 2019, no. 1, p. 33, Jul. 2019, doi: 

10.1186/s13634-019-0632-6. 

[53] S. Sarangi, M. Sahidullah, and G. Saha, “Optimization of data-driven filterbank for 

automatic speaker verification,” Digit. Signal Process., vol. 104, p. 102795, Sep. 2020, 

doi: 10.1016/j.dsp.2020.102795. 

[54] B. Logan, “Mel Frequency Cepstral Coefficients for Music Modeling,” presented at the 

1st Int. Symposium Music Information Retrieval, Plymouth, Massachusetts, Oct. 2000. 

[55] V. Oleynikov, O. Zubkov, V. Kartashov, I. Koryttsev, S. Sheiko, and S. Babkin, 

“Experimental Estimation of Direction Finding to Unmanned Air Vehicles Algorithms 

Efficiency by Their Acoustic Emission,” in 2019 IEEE International Scientific-

Practical Conference Problems of Infocommunications, Science and Technology (PIC 

S T), Kyiv, Ukraine, Oct. 2019, pp. 175–178, doi: 10.1109/PICST47496.2019.9061337. 

[56] Y. Seo, B. Jang, and S. Im, “Drone Detection Using Convolutional Neural Networks 

with Acoustic STFT Features,” in 2018 15th IEEE International Conference on 

Advanced Video and Signal Based Surveillance (AVSS), Auckland, New Zealand, Nov. 

2018, pp. 1–6, doi: 10.1109/AVSS.2018.8639425. 

[57] T. R. P. Foundation, “Teach, Learn, and Make with Raspberry Pi,” Raspberry Pi. 

https://www.raspberrypi.org/ (accessed Nov. 18, 2020). 

[58] P. Podder, T. Zaman Khan, M. Haque Khan, and M. Muktadir Rahman, “Comparative 

Performance Analysis of Hamming, Hanning and Blackman Window,” Int. J. Comput. 

Appl., vol. 96, no. 18, pp. 1–7, Jun. 2014, doi: 10.5120/16891-6927. 

[59] I. Kavalerov, S. Wisdom, H. Erdogan, B. Patton, K. Wilson, J. Le Roux, and J. R. 

Hershey, “Universal Sound Separation,” in 2019 IEEE Workshop on Applications of 

Signal Processing to Audio and Acoustics (WASPAA), Oct. 2019, pp. 175–179, doi: 

10.1109/WASPAA.2019.8937253. 

[60] H. Fayek, “Speech Processing for Machine Learning: Filter banks, Mel-Frequency 

Cepstral Coefficients (MFCCs) and What’s In-Between,” Haytham Fayek, Apr. 21, 

2016. https://haythamfayek.com/2016/04/21/speech-processing-for-machine-

learning.html (accessed Mar. 10, 2021). 

[61] E. H.-L. U. 27 Dec’18 2018-12-27T08:37:12+00:00, “What is Edge Computing: The 

Network Edge Explained,” Cloudwards, Dec. 31, 2018. 

https://www.cloudwards.net/what-is-edge-computing/ (accessed Mar. 10, 2021). 

[62] “sklearn.model_selection.StratifiedShuffleSplit — scikit-learn 0.24.1 documentation.” 

https://scikit-

learn.org/stable/modules/generated/sklearn.model_selection.StratifiedShuffleSplit.htm

l (accessed Mar. 11, 2021). 

[63] “scikit-learn: machine learning in Python — scikit-learn 0.23.2 documentation.” 

https://scikit-learn.org/stable/ (accessed Dec. 06, 2020). 



 

 

95 

[64] “pickle — Python object serialization — Python 3.9.2 documentation.” 

https://docs.python.org/3/library/pickle.html (accessed Mar. 11, 2021). 

[65] “Leaflet — an open-source JavaScript library for interactive maps.” 

https://leafletjs.com/ (accessed Mar. 22, 2021). 

[66] “Maps, geocoding, and navigation APIs & SDKs | Mapbox.” 

https://www.mapbox.com/ (accessed Mar. 22, 2021). 

[67] “Apache Kafka,” Apache Kafka. https://kafka.apache.org/ (accessed Mar. 22, 2021). 

[68] B. Yang, “UAV DETECTION SYSTEM WITH MULTIPLE ACOUSTIC NODES 

USING MACHINE LEARNING MODELS,” thesis, Purdue University Graduate 

School, 2019. 

[69] “Welcome to Flask — Flask Documentation (1.1.x).” 

https://flask.palletsprojects.com/en/1.1.x/ (accessed Mar. 22, 2021). 

[70] M. Rehkopf, “What is a Kanban Board?,” Atlassian. 

https://www.atlassian.com/agile/kanban/boards (accessed Nov. 19, 2020). 

[71] U. Sekaran and R. Bougie, Research Methods For Business: A Skill Building Approach, 

7th Edition. John Wiley & Sons, 2016. 

[72] “Amazon.com: Frambuesa Pi 3 Modelo B Junta: Computers & Accessories.” 

https://www.amazon.com/-/es/4328498196-Frambuesa-Pi-Modelo-

Junta/dp/B01LPLPBS8 (accessed Apr. 02, 2021). 

[73] “Amazon.com: Micrófono de ordenador, micrófono de PC Plug & Play Home Studio 

micrófono condensador para escritorio/portátil/portátil, grabación para YouTube, 

podcasting, juegos, chat en línea, negro...” https://www.amazon.com/-

/es/Micr%C3%B3fono-ordenador-condensador-escritorio-

podcasting/dp/B07BDFP6XC/ref=sr_1_2?dchild=1&m=A2US6ATHMB6XXW&qid

=1617371754&s=merchant-items&sr=1-2 (accessed Apr. 02, 2021). 

[74] “sklearn.neural_network.MLPClassifier — scikit-learn 0.24.1 documentation.” 

https://scikit-

learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html 

(accessed Mar. 30, 2021). 

[75] “LUFS: How To Measure Your Track’s Loudness in Mastering,” EDMProd, Jun. 02, 

2020. https://www.edmprod.com/lufs/ (accessed Apr. 02, 2021). 

 


