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ABSTRACT

In this thesis, we explore different methods to enhance the safety and robustness for

autonomous systems. We achieve this goal using concepts and tools from reachability analysis

and control barrier functions. We first take on a multi-player reach-avoid game that involves

two teams of players with competing objectives, namely the attackers and the defenders.

We analyze the problem and solve the game from the attackers’ perspectives via a moving

horizon approach. The resulting solution provides a safety guarantee that allows attackers

to reach their goals while avoiding all defenders.

Next, we approach the problem of target re-association after long-term occlusion using

concepts from reachability as well as Bayesian inference. Here, we set out to find the proba-

bility identity matrix that associates the identities of targets before and after an occlusion.

The solution of this problem can be used in conjunction with existing state-of-the-art trackers

to enhance their robustness.

Finally, we turn our attention to a different method for providing safety guarantees,

namely control barrier functions. Since the existence of a control barrier function implies

the safety of a control system, we propose a framework to learn such function from a given

user-specified safety requirement. The learned CBF can be applied on top of an existing

nominal controller to provide safety guarantees for systems.
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1. INTRODUCTION

In the past, performance has been the main emphasis when designing a controller and it

can be argued that system safety did not receive as much attention as it deserves. With

autonomous systems gaining ever more attention and acceptance, the safety aspect of a

control system has been brought to the foreground. As we achieve higher and higher levels of

autonomy, we will naturally begin to contemplate about the reliability of these autonomous

systems, especially when they are capable of endangering the society and mankind. By

completely eliminating human intervention, the responsibility of making sure systems do

not cause dangers or be in an undesirable state now falls on the shoulders of the autonomous

systems themselves. Since many autonomous systems operate in safety critical environments

(rocket launches, air-traffic control, etc), it is now as important to ensure system safety as,

if not more, to ensure the objective is achieved efficiently.

While many systems do have basic mechanisms or algorithms to avoid danger, more often

than not there are no guarantees provided to certify the safety of the system. Moreover,

different kinds of uncertainty and disturbance that exist in reality might overwhelm these

algorithms and we might end up in a situation where it is too late to remedy. Furthermore, for

applications that involve human-robot collaboration, not only do the robots have to complete

the mission efficiently, but they must also avoid hindering the human from performing their

own tasks. The above issues introduce complexity and uncertainty and makes the jobs of

control engineers and system designers even more difficult than they already are.

Consider self-driving cars such as a Tesla car for instance. The vehicle must possess very

robust avoidance systems and can be proved to be able to avoid pedestrians on the road.

Beside that, it should always navigate at a speed such that, if a reckless pedestrian runs

in front of it, there is enough ”reaction” time to perform avoidance maneuvers. Obviously,

the vehicle must also not go too slow or else it will be deemed inefficient in terms of ”goal

reaching”.

Looking at the literature, the notions of safety and performance have often been treated

separately; controllers that are concerned with one often neglects the other. One of the

difficulties lies in that there is usually an inevitable trade-off between safety and performance.
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It is not uncommon that the two aspects even directly contradicts each other. Take driving

for example: the faster you drive, the less time it takes to get to the destination, but the

more accident-prone you become. Depending on the application, such trade-off between

safety and optimality will be different; the safety requirement for a home-cleaning Roomba

is obviously much lower than that of an auto-pilot system for a Boeing 747. This means

there is no right answer for ”how much” safety we want in a system. However, for safety

critical systems, we do know that safety must always come before performance, that is, we

are only interested in optimality once safety is guaranteed. The above discussion inspires

us to investigate how one can achieve a formal certification for safety and how we can do

so without steering too far away from the mission objective. In this thesis, we set out to

explore the questions: 1.) How can one provide safety guarantees for autonomous systems

and 2.) how does one do so in a way that minimize the impact on performance?

1.1 Motivation

To address the first question, it is important that we account for these disturbances and

perhaps consider the worst-case scenario when designing systems for safety critical appli-

cations. We turn our attention to the notion of ”prevention” in hope of finding ways to

provide such guarantees. The intuition is: if we can understand what states can lead to

danger, then by avoiding these states in the first place we can guarantee the system never

end up in undesired situation. This idea aligns with the essence of reachability analysis and

hence we will be exploring methods derived from the corresponding theoretical results. At

a high level, reachability tells us how ”far” the system can reach given the dynamics and

feasible control. Applying this backward (computing backward reachable set) can help iden-

tify the states that will potentially lead to the danger zone, which is essential for designing

preventive measures.

First, we will be analyzing safety in the context of collision avoidance — more specifically,

a multi-player reach-avoid game. We believe this kind of games is worth investigating since

it involve elements such as complex dynamics and worst-case disturbances. By studying this

12



through the lens of game theory, we hope to gain better insight to situations and applications

that involve dealing with conscious enemies with different degrees of hostility.

In addition, we also demonstrate how reachability can also be used in target re-association

application. We show that by understanding system limits we can increase the accuracy of

prediction and hence make target association more robust. This in turns means we can

retain more historical information about the target and therefore are able to perform better

analysis on it.

To answer the second question, we shift the focus to another idea called control barrier

function. Control barrier function is similar to reachability analysis in that it can help

provide formal safety guarantees for control systems. On the other hand, while it is unclear

how to incorporate performance measure in the reachability framework, this can be relatively

easily done via an optimization framework and control barrier functions. However, finding or

constructing such control barrier function is not a trivial task and, as far as we are concerned,

there are no systematic approach to do so due to its application-specific nature. This is even

harder to achieve when input/actuator constraints are involve, as will be explained in section

4. We therefore see the need to develop a learning framework for control barrier functions.

1.2 Background and Related Literature

In this section, we discuss several important concepts that will be used throughout the

thesis and review the related literature. The goal here is to understand the state-of-the-art

in each area as well as the advantages and disadvantages of common methods used by other

researchers. This will also help elucidate our motivations for the work done in this thesis.

1.2.1 Reachability Analysis

Hamilton-Jacobi reachability analysis is an important tool for verifying different complex

autonomous systems. As a formal verification method, reachability analysis provide guaran-

tees on different aspects such as safety and performance. This kind of analysis has several

advantages over method that relies on simulations, especially when we are dealing with safety

critical systems. First, reachability analysis considers all possible system behaviors, which

13



can be difficult (and exhausting) to do via simulations. Second, even if we can simulate all

sorts of behaviors, real systems often involve model uncertainties and disturbances which

cannot be accounted for in simulations. Reachability, on the other hand, has been shown

to successfully account for worst-case disturbance through a differential game approach. By

considering the worst-case scenario, one can guarantee the safety of the system as long as the

disturbance does not exceed the predetermined bound. Lastly, by computing and visualizing

the forward or backward reachable sets, system designers may gain better insight to the

complex system.

There are multiple approaches for computing reachable sets [ 1 ][ 2 ][ 3 ][ 4 ]. In this thesis,

we will mainly be discussing reachable sets in the context of the level-set approach [ 1 ].

In reachability analysis, we are often interested finding the set of states that can lead to

some target states, namely the backward reachable set. These target states can be the

dangerous states (for avoidance) or goal states (for goal-reaching) depending on the context.

For instance, imagine a vehicle is trying to avoid collision; the target set (of states) can be

the unsafe states (collision) and the backward reachable set represents the potentially unsafe

states.

It is typical in reachability analysis to formulate the system we are analyzing into a

two-player differential game, where one player represents the system input and the other

represents the disturbance or an opposing agent. Consider a system that involves two players

and its dynamics follows the ordinary differential equation

ẋ(τ) = f(x(τ)), a(τ), b(τ)), τ ∈ [t, 0], a(τ) ∈ A, b(τ) ∈ B (1.1)

where a(τ) and b(τ) are the control inputs of Player 1 and Player 2, respectively. x ∈ Rn is

the system state and a(·) and b(·) are taken from a set of measurable functions, e.g.,

a(·) ∈ A(t) = {φ : [t, 0] → A : φ(·) is measurable}

b(·) ∈ B(t) = {φ : [t, 0] → B : φ(·) is measurable}.

14



where A ⊂ Rnu and B ⊂ Rnd are compact sets and t is negative definite. Then let us define

the solution trajectories that begins at x at time t as ζ(τ ;x, t, a(·), b(·)) : [t, 0] → Rn. Lastly,

we denote the target set of interest L0.

Now, recall that we want to find the backward reachable set (of states). We further

assume this is some sort of avoidance application where Player 1 wish to drive the system

away from the target set while Player two wants to drive the system towards the target set.

The BRS is then given as

L(t) = {x : ∃γ(t) ∈ Γ(t),∀a(·) ∈ A, ζ(0;x, t, a(·), γ[a](·)) ∈ L0} (1.2)

where Γ(·) is the set of feasible control strategies that Player 2 can use.

We note that Γ(·) actually refers to a type of strategies known as non-anticipative strate-

gies. This is typically defined as

γ ∈ Γ(t) := {β : A(t) → B(t)|a(r) = â(r)∀r ∈ [t, τ ] ⇒ β[a](r) = β[â](r)∀r ∈ [t, s]}.

Basically, this means Player 2 is not allowed to react to Player 1’s action based on Player

1’s input at future time, e.g., a(τ)ifτ > r. In general, such non-anticipative strategy is

suitable for reachability analysis since it gives an instantaneous advantage to Player 2 (our

disturbance); this allow it to react Player 1’s input decision with the best ”counter-measures”.

This aligns with the idea of accounting for worst-case scenario in reachability theory.

It is important note that to obtain the BRS described in (1.2) we must solve a ”game of

kind” instead of a ”game of degree”. A ”game of kind” consist of a boolean outcome; in this

case, whether the target set is reached after a given period. However, traditional differential

games are solved using optimal control (OC) techniques and are considered as ”game of

degree”. This is where the level set method comes into picture: it effectively transforms a

”game of kind” into a ”game of degree” so we can solve it using traditional OC methods.

Before we explain the level set approach, let us first briefly discuss how differential games

are solved in the OC context.
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As in most optimal control problem we begin with a cost function

J(x, a(·), b(·), t) =
∫ 0

t
g(x(τ), a(τ), b(τ), τ) dτ + h(x(0)) (1.3)

where g(x) is the running cost and h(x) is the final cost. We assume Player 1 attempts to

maximize this function and Player 2 wishes to minimize it. Recall that Player 2 has a slight

advantage in terms of information pattern, therefore the lower value of the game is given as

V (x, a(·), b(·), t) = min
Γ[a](·)

max
a(·)

∫ 0

t
g(x(τ), a(τ), b(τ), τ) dτ + h(x(0)). (1.4)

By applying dynamic programming principle the above equation can be formulate into

the Hamilton-Jacobi-Isaacs (HJI) equation below

0 = ∂V

∂t
+ max

a
min

b
[g(x, a, b) + ∂V

∂x
· f(x, a, b)] , V (x, 0) = h(x), (1.5)

where the second term is known as the Hamiltonian H(t, x,∇x) = maxa minb [g(x, a, b) +
∂V
∂x

· f(x, a, b)]. The optimal control input for Player 1 and 2 can simply be obtained as

a∗(x, t) = argmax
a∈A

min
b∈B

g(x, a, b, t) + ∂V

∂x
· f(x, a, b) (1.6)

b∗(x, t) = argmin
b∈B

g(x, a, b, t) + ∂V

∂x
· f(x, a, b) (1.7)

Now, let us finally take a look at how the level set approach transform our ”game of

kind” into a ”game of degree”. It turns out, as described in [  1 ], we can ”encode” the boolean

outcome by removing the running cost and chose the final cost ”smartly”. For instance in our

collision avoidance example, we can choose the final cost to be the distance to the collision

set at the terminal time T . This can be done through constructing a Lipschitz function l(x)

such that the target set coincides with the zero-sublevel set of this l(x). Then, once we obtain

the value function by solving the HJI PDE, the zero sublevel set of the value function is then

the backward reachable set [  5 ]. The BRS found represents the set of states from which the

disturbance has a control sequence to drive the system in to the target set (collision). This

means if we avoid this BRS in the first place, we can guarantee safety.
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Apart from the backward reachable set discussed above, one can also compute the forward

reachable set (FRS) using similar approach. Contrary to the BRS, the FRS represent the

set of states that the system can reach from a given initial set, after a certain period. This

is formally given as

F(t) = {x̂ : ∃γ ∈ Γ(t),∀a(·) ∈ A, ζ(t;x, 0, a(·), γ[a](·)) = x̂, x ∈ L0}, t > 0 (1.8)

In [  6 ], a toolbox is developed using the approach described above. This toolbox allows

us to compute solutions for HJ-PDEs and hence obtain reachable sets for different systems.

An simple simulation of the classical game of two identical vehicles is recreated using such

toolbox and shown in Fig.  1.1 .

(a) (b) (c)

Figure 1.1. Game of two identical vehicles: blue and red arrows indicate
instantaneous control input of the evader and pursuer, respectively. Dashed
line is a 2D slice of the backward reachable set.

This example is essentially a pursuer-evader game. As long as the red pursuer begins

outside of the backward reachable set (dashed line), the blue evader can always find a control

to avoid it. This kind of game is a special kind of zero-sum differential game [ 7 ]. Indeed, many

applications that involve reachability analysis are done by posing the problem in the form

of a differential game [ 8 ][ 9 ]. The application of reachability spans multiple different areas.

For instance, reachability analysis has been used extensively to ensure the safety of aerial

systems [  10 ][ 11 ][ 12 ][ 13 ][ 14 ], umanned ground vehicles (UGV) [  15 ][ 16 ][ 17 ], and human-robot

interaction [ 18 ][ 19 ][ 19 ], just to name a few.
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Any methods comes with a drawback and level-set approach is no exception. Although it

possess many advantages as discussed above, the level set approach has a major limitation:

the curse of dimensionality. Since the level-set approach requires discretizing the state-space

into a grid and numerically compute the value function, the method scales exponentially with

the number of dimensions. This means applying it to high-dimensional system is impractical

and therefore most work in the current literature only involve applications with dimensions

less than five. Intuitively, this makes sense because reachability analysis considers all possible

system behaviors (although in a smart way) and solving Hamiltonian-Jacobi PDE’s, so a

relatively large computational cost is in a sense inevitable.

However, there are different methods developed to address this issue. One method is to

decompose high dimensional systems into sub-systems to allow for fast and exact computa-

tion of BRS in lower dimensional subspaces [ 20 ][ 21 ][ 22 ]. A similar approach that simplifies

system dynamics by treating certain states as disturbances make it flexible to trade of be-

tween computational cost and accuracy is proposed in [ 23 ]. Finally, many work has gone

into approximating such reachable sets via different representations such as polytopic ap-

proximation [ 24 ] and ellipsoidal techniques [ 25 ].

1.2.2 Control Barrier Functions

In the previous section we talked about how reachability can be used to warrant the safety

of a control system. We now turn our attention to another popular class of methods for

providing safety guarantees, namely control barrier functions (CBFs). This class of methods

has recently gained popularity can be attributed to the increased interest in autonomous

systems, for which safety is obviously a critical aspect. In addition, the recent re-formulation

of control barrier function has demonstrated its resemblance to control Lyapunov functions.

In fact, many techniques involving Lyapunov functions used in stability analysis can be

applied to address system safety.

In the framework of control barrier functions, the safety of a system is translated and

expressed through the notion of invariant sets. At a high level, given a set of safe states and

define the unsafe states to be its compliment, the safety of the system is guaranteed if we can
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always find a way to remain in the safe set. Before we give the formal definition of control

barrier function, we first take a brief look at what a barrier function is. Barrier function

is developed based on the necessary and sufficient conditions for set invariance given by

Nagumo. Nagumo’s theorem states that: given a dynamical system ẋ = f(x), where x ∈ Rn,

and let the safe set C be the zero super-level set of a smooth function h : Rn 7→ R, e.g.,

C = {x ∈ Rn|h(x) ≥ 0}, and ∂h
∂x

6= 0∀x ∈ ∂C, then the necessary and sufficient conditions for

set invariance is:

C is invariant ⇔ ∂h

∂x
≥ 0 ∀x ∈ ∂C

Intuitively, this condition ensures the vector field of the points on the boundary of the set

are pointing ”inwards”, hence preventing any trajectory from ”escaping” the set. In [13] the

authors combined Lyapunov functions with barrier functions to create a ”barrier-Lyapunov

function” B(x), which can be used to ensure the invariance of a set through enforcing the

condition Ḃ(x) ≤ 0 ∀x ∈ C.

Note that the above formulation does not involve any control inputs. In [ 26 ][ 27 ], the

authors consider control systems of the form ẋ = f(x) + g(x)u, where u ∈ U ∈ Rm and in

[ 28 ] the definition of controlled barrier function was defined. Naturally, the invariant set now

becomes controlled invariant set: the set of states at which there exist a controller that can

control the system to stay in such set. This definition of control barrier function satisfies:

∃u s.t. ḣ(x, u) ≥ 0 ∀x ∈ C ⇒ C is invariant

While the above definition of CBF can ensure safety through set invariance, it is overly

restrictive and the corresponding conditions can be difficult to satisfy. This is because the

condition essentially ensures every sublevel set of the safe set invariant. For this reason,

a more relaxed definition of CBF is recently developed [20][21] and the new sufficient and

necessary condition for set invariance is:

∃u s.t. ḣ(x, u) ≥ −α(h(x)) ∀x ∈ C ⇔ C is invariant
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where α(·) is an extended class K function. Note that this is a less restrictive condition since

it allows ḣ(x) ≤ 0 for h(x) ≥ 0.

Now let us formally state the definition of control barrier functions that will be used in

this thesis and state a few important related theorems. Consider a safe set C ⊂ D defined

to be the zero-superlevel set of a continuous differentiable function h : D ⊂ Rn ⇒ R, e.g.,

C = {x ∈ Rn|h(x) ≥ 0}, (1.9)

∂C = {x ∈ Rn|h(x) = 0}, (1.10)

Int(C) = {x ∈ Rn|h(x) > 0}. (1.11)

Also assume that we have a nonlinear control affine system with the dynamics

ẋ = f(x) + g(x)u(x). (1.12)

Then, we say h(x) is a control barrier function if there exist an extended class K∞ function

α such that

Lfh(x) + Lgh(x)u ≥ −α(h(x)) (1.13)

for all x ∈ D. Note Lfh(x) and Lgh(x) are Lie-derivative of h(x), e.g., Lfh(x) = ∂h(x)
∂x

f(x)

and Lgh(x) = ∂h(x)
∂x

g(x). Importantly, the existence of such control barrier function h(x)

implies the forward invariance of set C and hence the safety of the system (4). Moreover,

the set C is also asymptotically stable in the domain D. This means even if the system

accidentally leaves the set C and enters D\C, there exist a controller that brings the system

back to C.

Now, define the set of all control that can render C forward invariant as

Ucbf (x) = {u ∈ U ∈ Rm : Lfh(x) + Lgh(x)u ≥ −α(h(x))}. (1.14)

As seen above, control barrier functions give the necessary and sufficient conditions for

safety. With this established, we would like to know how one can apply these results when

designing controllers for safety critical systems. The state-of-the-art approach is to use an
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optimization based controller with constraints that reflects the safety conditions provided

by the CBF. In particular, the framework assumes we have access to a nominal controller

ũ that does not guarantee safety and attempts to find a safe control input u ∈ Ucbf that is

most similar to the ũ:

u(x) = argmax
u∈Rm

1
2‖ũ(x) − u‖2

s.t. Lfh(x) + Lgh(x)u ≥ −α(h(x))

Note this optimization yields a minimally invasive controller with respect to the nominal

controller since it simply projects the nominal input to the safe input space Ucbf . This has

the advantage of not deviating too much from the original controller and retains a certain

extent of performance guarantee. This framework is referred to as the CBF-QP since it

involves a quadratic programming problem and has constraints derived from the control

barrier function.

1.2.3 Conclusion

In summary, we wish to leverage ideas from the above areas to help analyze the safety

aspect of autonomous systems. Moreover, we propose several methods to enhance system

safety that are certifiable using tools and theories derived in these fields. We hope that

methods developed in this thesis will provide an incremental improvement along the direction

of developing systems that are both safe and efficient. We see this as an important mean of

creating a world filled with highly autonomous robots.
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1.3 Contributions

The main contributions of this work are:

• An iterative algorithm to solve a multi-player reach-avoid game problem with

safety guarantee from the perspectives of attackers.

• A method to perform target re-association after long-term occlusion via a

combination of tools from reachability analysis and Bayesian inference.

• A general framework and analysis on learning control barrier functions from

user-specify safety requirements for systems with control input constraints.
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2. MULTIPLAYER REACH-AVOID GAME IN DYNAMIC

ENVIRONMENT

2.1 Introduction

With the increasing acceptance of using fully autonomous system in areas traditionally

handled by human, applications such as autonomous driving and drone deliveries are drawing

ever more attention. Safe motion planning is obviously an important problem that must be

addressed in order for these systems to fully function.

Reachability analysis is a powerful tool to analyze a collection of system trajectories

at the same time, and enable one to identify states that adhere to constraints despite dis-

turbances, hence safety guarantees are provided by employing reachability analysis. In [ 1 ],

a differential game between two Dubins vehicles was posed using a closed-loop formula-

tion and a backward reachable set was obtained by solving a Hamilton-Jacobi-Isaacs PDE.

The idea of safe motion planning also plays a significant role in more complex applications

such as reach-avoid games and pursuit-evasion games [ 29 ],[ 30 ],[ 31 ]. A reach-avoid game is

a game in which an attacker wishes to reach the target region while avoiding a defender

with opposite objective, namely to capture or delay the attacker from winning [  32 ] (see sec-

tion  2.2 for precise definition). The possibilities of having time-varying dynamics, targets,

and constraints in a reach-avoid differential game are addressed by modifying the HJI PDE

into a double-variational inequality [  32 ] or using a single-variational inequality but requires

the state-space to be augmented with an additional time dimension [  33 ]. In [ 34 ], [ 35 ] the

approach was extended to solve a Capture-the-flag game that involves multiple complex,

competing objectives. The game was solved as a zero-sum differential game and reachability

analysis was used to compute winning regions for each player. The solution to this kind of

formulation is minimum time-to-reach functions, which have been proven to be equivalent to

the viscosity solution to a HJB equation [  36 ], and can be obtained using level set methods,

as shown in [ 6 ].

However, the speed of solving such HJ equations is constrained by the infamous ”curse of

dimensionality”; as the number of dimensions increases, the computation complexity scales

in an exponential fashion. This leads to the idea of posing the reach-avoid game as an open-
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loop formulation, which allows one to retreat to solving only low dimensional HJB equations

for players individually instead of a HJI equation for the joint system [  37 ]. However, the

solution (path) found using this method is very conservative to towards attackers and the

method can become impractical when the number of defenders increases or for certain initial

configurations where defenders are placed between attackers and the goal.

Reach-avoid games with multiple players have also been studied. However, additional

vehicles means additional dimensions, so most work involving multi-agent do not solve the

problem in the joint configuration space containing states of all agents [ 38 ],[ 39 ],[ 40 ]. Instead,

different heuristics or schemes are used to circumvent the computation limitation; agents’

motions are planned sequentially based on a predetermined priority in [ 41 ], and a maximum

matching approach is taken to determine pairwise outcomes between agents in [ 42 ]. In

this paper, we extend the work in [ 37 ] and set out to find a control sequence that allows

each attacking agent to reach the target amidst environment changes, motion from other

attackers, and disturbance from defenders.

2.1.1 Information Pattern

Since the actions of the agent can affect those of the opposing agents, the value of the

game is affected by the order of control and the information pattern chosen. Therefore, it is

important to define the information pattern of the game in order to avoid indefinite second-

guessing between agents [  43 ]. There are four basic types of information patterns, namely

open-loop, state-feedback, non-anticipative strategies, and anticipative strategies [  1 ]. Open-

loop strategy is when both agents choose their entire sequences of control inputs u(t) and d(t)

for all t in [0,tf ], without knowledge of each other’s control. State-feedback strategy refers

to when both agents pick their control inputs based on knowledge of the current state of the

joint system trajectory. Non-anticipative strategy means agent B not only has access to the

current state of both agents, but also the current input of the opposing agent. This gives a

slight advantage to agent B and the solution, if found, is conservative towards agent A. Note

that agent B must declare its strategy in advance before agent A selects its current input,

so agent A is able to determine B’s response to any input choice of its own. In anticipative
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strategy, agent B has full knowledge of A’s control sequence for t ∈ [0, tf ]. This gives the

most advantage to agent B and essentially causes agent A to run open-loop.

2.2 Problem Formulation

In this section we extend the two-player open-loop game in [ 37 ] to a game between two

teams with competing objectives. Consider a reach-avoid game with two teams of players

with opposite objectives, namely the attackers and the defenders. Let A = {a1, ..., an} denote

a team of n attackers and B = {b1, ..., bm} denote a team of m defenders. The attackers’

winning objective is to reach the goal without being captured by the defenders, and the

defenders’ objective is to collide into the attackers or delay them from reaching their goal

indefinitely.

We also do not assume that the obstacles move in a predictable manner and allow emer-

gence of previously unseen obstacles. In particular, we are interested in finding the minimum-

time path for each attacker to reach their goal while avoiding capture by any defender as

well as collision between attackers.

The game is being played out in an open region Ω ⊂ R2, which represents a set of points

agents are allowed to occupy. Obstacles are denoted as ΩC and are points that agents may not

occupy. The goal region for attacker ai is denoted by closed target set τi ⊂ Ω. The attackers

are modeled using the Dubin’s car model, and the state of a single attacker ai is represented

by Xai = [xai, θai]T ∈ Ω × [0, 2π), where xai = [pxai , pyai ] and θai are the planar positions and

heading of attacker ai, respectively. We also assume defenders are point vehicles free to move

in any directions to reflect the fact that we have little information about their dynamics, e.g.

defender bj’s state is Xbj = [xbj]T = [pxbj , pybj ]T ∈ Ω. The dynamics are then

Ẋai = fai(Xai(t), ui(t)) =


va cos θai

va sin θai

ui

 , ui ∈ U (2.1)

Ẋbj(t) = fbj(Xbj(t), dj(t)) = vbdj(t), dj ∈ D (2.2)
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where va, vb, ui, dj are the speed and individual control inputs of attackers and defenders

respectively. We let the sets of admissible control U = [umin umax] and D be a set of all unit

vectors in R2. Both fai, fbj are assumed to be uniformly continuous, bounded, and Lipschitz

continuous.

2.2.1 Multi-player Open-Loop Game Formulation

By extending the open-loop formulation proposed in [ 37 ] we describe the cost function

of the game between each attacker ai and all defenders as time-to-reach function

Ji(x0, ui, ddd) = inf{t|xai(t) = τi, xai(s) 6= xbj(s),

j = 1, ...,m, ∀s ≤ t}
(2.3)

where ddd denotes a collection of all defenders’ inputs {d1, ..., dm}.

In an open-loop game, the attacker picks its entire control sequence at t = 0, with the

assumption that the defender will defend with its optimal strategy for all t ≥ 0. This is the

most conservative information pattern towards attackers and it yields an upper bound of

the value function, namely the upper value of the game [ 37 ]. This upper value for a game

between attacker ai and a team of defenders B = {b1, ..., bm} is defined as

vi(x0) = inf
u∈U

sup
d∈D

Ji(x0, ui, ddd) (2.4)

A safe path (and its corresponding control sequence) is said to be found if such upper value

is finite, e.g. agent ai can reach τi in finite time. Even if the upper value vi(x0) = ∞, it only

guarantees an existence of controls for defenders to cause a collision if all defenders in the

team act optimally. In reality, some defenders might not actually take the optimal actions

for various reasons, which means attacker ai still has a chance to reach its goal. Furthermore,

collision-free control sequences for attackers might still be found using a less conservative

information pattern, such as non-anticipative feedback strategy.

Similar to [ 37 ], we say a point y ∈ Ω is i-safe-reachable if it can be reached by ai

within finite time t and no capture by any defender can happen before time t, or formally
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{y|∃ui, t ≥ 0, xai(t) = y, xai(s) 6= xbj(s), j = 1, ...,m, ∀s ≤ t}. The trajectory xai(·) is referred

to as i-safe-reachable path. With this, the collection of i-safe-reachable points for ai is known

as the i-safe-reachable set,

Si = {y ∈ Ω | y is a i-safe-reachable point}

The minimum time-to-reach function for an attacker ai, ϕi : Ω → R can now be defined as

ϕi(y) = min{t |xai(t) = y, xai(s) ∈ Si,∀s ≤ t}. (2.5)

The minimum time-to-reach function for a defender bj, ψj : Ω → R is defined as

ψj(y) = min{t |xbj(t) = y, xbj(s) ∈ Ω,∀s ≤ t}. (2.6)

According to [ 37 ] (Theorem 1), the upper value function for ai is proven to be:

vi(x0) = min{ϕi(y) | y ∈ τi}

Note that so far game domain is represented as a static environment Ω and no changes

in the environment have been considered. Since these changes, such as the movement of

obstacles, can be random, we cannot model them during the planning stage and must act on a

sense-and-react basis. In addition, we assume each agent is able to obtain an updated map of

the environment at a fixed frequency from sensor updates. To accommodate the assumptions

above, we denote the dynamic domain as Ω(kT ), where T is the sensing interval. We use

ΩkT to denote Ω(kT ) in the rest of this paper for simplicity. The problem of interest

is to find the minimum-time optimal path for each attacker ai to reach its target τi while

guaranteeing xai(s) 6= xbj(s),∀j = 1, ...,m, ∀s ≤ tf (hence collision avoidance), under a

dynamic environment ΩkT .

The minimum time-to-reach function is known to be equivalent to the viscosity solution

to a particular Hamilton-Jacobi-Bellman (HJB) equation [  44 ]. We use ϕi,k(y) to denote the
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minimum time-to-reach function for ai at time-step k. Note that the definition of ϕi,k(y) in

( 2.5 ) satisfies the below HJB equation

− min
ui∈U

{∇ϕi,k(y) · fa((y, θ), u)} = 1,∀y ∈ SSSi,k\{x0
ai} (2.7)

where the boundary conditions are

ϕi,k(xa
0
i ) = 0, (2.8)

ϕi,k(y) = ∞, y ∈ ΩkT \SSSi,k (2.9)

where SSSi,k is the intersection of safe sets of ai relative to all bj’s, SSSi = Si1 ∩ ... ∩ Sim, at

timestep k. The second boundary conditions reflects that the minimum time-to-reach of a

point not belong in SSSi,k is infinity since there exist a defender who can reach such point before

ai. The solution to our problem then essentially translates to solving equations (  2.7 )-( 2.9 )

at each timestep k. Once ϕi,k(y) is known, the optimal path at timestep k is obtained by

following the gradient of ϕi,k(y).

2.3 Methodology

If we replace the anisotropic dynamics 

1
 in (  2.7 ) with isotropic dynamics (e.g. f̃a(y, û)),

then equation (  2.7 )-( 2.9 ) can be solved by a slight modification of the modified Fast Marching

Method (FMM) in [  37 ]. By solving this equation for each attacker against all m defenders

and taking the intersection of m safe sets, we can obtain the solution for the multi-player

open-loop game from attackers’ perspectives. This process is repeated at every time-step

after new measurements of the environment is received. However, we note that simply

repeating the algorithm in [  37 ] k times does not completely solve our problem and there

are several issues that must be addressed. First, we must account for the practical non-

holonomic constraints (e.g. minimum turn-radius) for the attackers since FMM assumes an
1

 ↑ anisotropic dynamics is when the vehicle motion depends not only on the positions, but also the direc-
tion/heading.
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isotropic dynamic. Second, when multiple agents are involved, collision avoidance needs to

be enforced not only between attackers and defenders, but also among attackers. To address

these issues, we incorporate a virtual obstacle method and the idea of forward reachable set

into the iterative framework, as discussed in this section.

2.3.1 Modified Fast Marching Method for Multi-Agent Game

FMM was originally proposed to address the problem of wavefront propagation and solve

the Eikonal equation [ 45 ]:

1 = F (x)|∇T (x)| (2.10)

where F (x) is the propagation speed and T (x) is the time-to-reach function. Note that ( 2.10 )

has the same form as (  2.7 ) and if we let F (x) equal the isotropic dynamics f̃a(y, û)), then

T (x) is exactly the minimum time-to-reach function ϕ(x) for attackers in (  2.7 ). Hence, we

use ϕ(x) in place of T (x) when describing the FMM scheme below.

To solve this continuous problem numerically, one must do so on a discretized domain

(grid). We first give a few definition of the labels used to categorize the points on the grid.

Alive-points whose ϕ values have been computed. Trial-the point currently being processed.

Near-points that are in neighborhood of the Trial point. Far-all points that are not within

Trial’s neighborhood. We now describe the procedure of the corresponding numerical scheme.

To initialize, a starting point (u, v) on the grid is initiated as ϕ(u, v) = 0, indicating the

time-to-reach of this point is zero. We then tag this point as Alive, and the points one grid

point away as Near. All other points are tagged as far. Then we compute the value of all

Near points using the following finite difference approximation of the Eikonal equation

F (xu,v)
h

[(ϕu,v −min{ϕu±1,v, ϕu,v})2+

(ϕu,v −min{ϕu,v±1, ϕu,v})2]1/2 = 1
(2.11)

where h is the grid resolution. The solution ϕ∗(u, v) can then be obtained by solving equation

( 2.11 ).
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The rest of the algorithm follows the following loop:

1. Set the values of all Far point as ∞

2. Set Trial to be the point in Near with the smallest value

3. Add Trial point to Alive list and remove it from Near

4. Set all the neighbors of the Trial point to be Near (if the points are not Alive). If any

of such neighboring points is in Far we remove it from the Far list

5. Compute the values of all new Near points via solving the quadratic equation ( 2.11 ).

6. Repeat steps 2-5 until all points are Alive.

Note that to obtain the safe set Si, the authors in [  37 ] modified the algorithm by adding

an intermediate step after step 3:

3.5) if at Trial point ϕi(u, v) > min
j

{ψj(u, v)}, set ϕi(u, v) = ∞.

This modification is based on the fact that if the time-to-reach for attacker ai is greater

than the minimum of time-to-reach of all defenders bj=1,...,j=m, then such point should not

belong to the safe set Si. Fig.  2.1 shows a simple illustration of resulting safe path and safe

set computed using such method in MATLAB [ 46 ].

2.3.2 The Virtual Obstacles Approach

Now we further modified the algorithm to incorporate for turning radius constraints

imposed on attackers. Similar to [  47 ], we place virtual obstacles around the vehicle to create

an effect of having a minimum turning radius. This idea is similar to the way configuration

space deals with dynamic constraints, but we only need to do so locally. For example, in

the case of a Dubin’s car with the constraint of max. turning rate umax on a 2-D plane, we

place two circular obstacles with radii of 1
umax

beside the vehicle, as well as one behind it to

prevent any reverse motion, as shown in Fig.  2.2 . Such virtual obstacles cause the FMM

method to generate a path whose segment over next time-step respects the turning radius,

hence satisfying the constraints locally. As this process is repeated at every time-step due
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Figure 2.1. Solution of open-loop game via FMM[  46 ]: Magenta triangle =
defender initial state, green triangle = attacker initial state, black rectangle =
obstacle, red area = attacker’s safe set S.

Figure 2.2. Virtual obstacle method for Dubins car model with minimum
turn radius on 2D plane.

to the nature of our iterative scheme (elaborated below), the entire path executed by the

vehicle will satisfy the constraints. We note that this approach is particularly suitable to

our real-time algorithm since it introduces little computation burden.

2.3.3 Forward Reachable Set for Inter-Attacker Collisions

In multi-agent scenarios, it is necessary to also address inter-attacker collision. To do

this we exploit the idea of forward reachable set (FRS). In reachability analysis, the FRS

of a system is the set of states that can be reached from the initial state after time tf .

Computing the FRS can be, however, a computationally expensive process, and using the

full FRS in avoidance application is often too conservative for the planner since it considers

every possible states reachable within the planning horizon. Nevertheless, this is useful to
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our application since we are only interested in the FRS of one time step, e.g. tf = T (T is

sensing interval). By planning around the T -FRS of the other attacker we ensure no inter-

attacker collision can happen. We also note that the FRS can be computed offline given the

attackers’ dynamics.

2.3.4 Replanning via Iterative Open-Loop Formulation

In this section, we discuss the considerations for extending the open-loop reach-avoid

game in [ 37 ] to an iterative open-loop formulation. This new formulation is in between

the open-loop strategy and continuous state-feedback strategy, which yields a good balance

between optimality and computation complexity. Furthermore, changes in both the environ-

ment and objectives of the defender can be addressed through its iterative nature.

Instead of computing the safe time-optimal path only once at the beginning of the game,

we compute this path at every sampling instance k using the current state (e.g. most recent

positions of the defender, obstacles, and other attackers) as the initial condition. Upon

obtaining the solution, we only execute the control sequence for a sample period T and

discard rest. This process is repeated until agent ai reaches τi, in an MPC-like fashion. This

iterative approach implicitly addresses the issues of both unpredictable moving obstacles

and defenders. Further, this allows us to find paths that do not exist initially and only

open up as the environment changes. Due to the re-planning nature of our method, the

path ultimately executed can significantly deviate from the initial planned path. Note that

if an attacker begins in a losing configuration, a safe path will not be found until either

the defender deviates from its optimal trajectory or the environment changes. The iterative

scheme is summarized in Algorithm  1 .

2.4 Simulation Results

This section presents several simulations demonstrating the validity of our iterative

scheme in both single and multi-agent settings.
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Algorithm 1: Multi-agent Collision Avoidance via Iterative Open Loop Formula-
tion.

Result: Iterative method for Reach-Avoid Game
/* Start algorithm */
for k = 1, ..., Ns (sampling time-steps) do

/* at every fixed time-interval */
Record the current locations of obstacles and defenders
for i = 1, ..., Na(number of attacker) do

/* check where other attackers are */
Record current states of attackers j = 1...Na, j 6= i
Augment other attackers with precomputed FRS
Apply virtual obstacle method to attacker ai
Compute ϕi for attacker ai using modified FMM and determine Si,k
if the goal is not in the safe set Si,k of ai then

/* attacker cannot win unless defenders act sub-optimally */
Set temporary goal for ai to be the point in Si,k with the lowest
time-to-reach value from the actual goal

end
Extract optimal path sequence from calculated ϕi
Update state of ai for 1 sampling period T

end
end
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2.4.1 Replanning Around Unexpected Obstacles

First we demonstrate the replanning ability of the proposed algorithm in an environment

with unpredictable obstacles. Fig.  2.3 shows the vehicle navigating to goal while encoun-

tering a unplanned obstacle. The vehicle is able to update the path as soon as the obstacle

appears and successfully reach its goal.

(a) (b)

(c) (d)

Figure 2.3. Vehicle avoids unexpected obstacles via re-planning
.

2.4.2 Differences Between Initial and Executed Path

Fig.  2.4 shows a comparison between the planned path and the actual path executed by

the vehicle. As we already know, the vehicle must re-plan to avoid the unexpected obstacle,

so the two paths differ significantly in such area. In addition, the vehicle discovers a shorter

path by making a U-turn near the start; such path was infeasible initially due to constraints

but opens up as the vehicle moves upward. We also observe that the executed path is a lot

smoother compared to the initial path. This is because the virtual obstacle method ensures

the trajectory of the vehicle satisfies the dynamic constraints. We note that the initial path
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Figure 2.4. Comparison between actual and initial paths.

contains unrealistic sharp turns and attempts to make the vehicle stay as close to the walls

as possible since the constraints are not imposed globally.

2.4.3 Multi-agent Scenario

We also extend our algorithm to a multi-agent setting that involve several attackers.

We simulate two scenarios, one with two attackers and one defender, the other with three

attackers and two defenders. The first scenario is depicted in Fig.  2.5 , where attackers a1

and a2 begin on the left and right side, respectively. The objective of the attackers is to

reach their goals on the other side while avoiding the defender in the middle. Fig.  2.5a 

shows the values of the minimum time-to-reach function ϕi(y) across the domain, with blue

as the lowest and red as the highest value. The dark regions represent obstacles and points

that are reachable by defenders before attackers (hence unsafe region Ω \ S). The safe path

is computed via a simple gradient descent method.

Note that in Fig.  2.5a (bottom figure), the goal location is contained within the unsafe

region, meaning that if the defender takes optimal action against attacker 2 (in this case the

optimal action is to race to the goal and wait for attacker 2), then there does not exist a safe

path for attacker 2 to reach the goal. The goal is contained within the safe set from attacker

1’s perspective, so a1 has a way to reach the goal regardless of what the defender does. In
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Fig.  2.5b , we let the defender pursue attacker a1 by trying to intercept it at a point along

its path (cyan). Although this is near-optimal in terms of pursuing a1, it is sub-optimal in

terms of defending against a2. This leads to the goal location eventually ’leaving’ the unsafe

set for a2 and become contained within attacker 2’s safe set, creating a path that leads to

the goal safely. Indeed, we can see that a1 is forced to follow the initial path as the defender

blocks the gap for a long enough duration before trying to intercept it (first row). However,

since the goal was contained in a1’s safe set, the defender cannot win against a1 no matter

how hard it tries. The black arrows in Fig.  2.5b indicate the actions of the defender. As

time evolves the defender moves away from the gap, causing a new path to be found (Fig.

 2.5b third column) for attacker a2. Because of such action from the defender, attacker 2 is

able to take a more direct path compared to what’s planned initially; the unsafe set for a2 is

receding away from the direct path to goal. Fig.  2.5c compares the initial paths (cyan) and

actual paths (black) of two attackers. We also want to point out that under certain situations

the open-loop solution is equivalent to the solution given by state-feedback formulation and

the control of the defender is irrelevant [ 48 ].

Fig.  2.6a - 2.6c show a second simulation illustrating that our formulation can handle

situations with multiple attackers and multiple defenders. In particular, we want to highlight

two points in this example. First, we demonstrate how inter-attacker collision is avoided.

Secondly, we show how the outcome of the game can change as a result of sub-optimal actions

of players. Here the attackers start at the end of the ”tunnels” and want to reach the goals on

the opposite side of their initial positions on the domain. Attacker a1 (left side) has its goal

located on the top right area, a2’s goal is on the bottom left, and a3’s goal is directly below

it. Two defenders’ initial positions are set such that the attackers are force to go through

the gap between tunnels (d1 at bottom-left and d2 at top-right). Initially, both attacker a1

and a2’s goal are not in their respective safe set, so they can only navigate to temporary

goals at best. Note that this means a1 and a2 are expected to lose the game against d2 and

d1, respectively, given optimal play. Under this situation, a game of degree is being played

between attackers and defenders and the value function is the terminal distance between the

attacker and its corresponding goal [  49 ]. Therefore, the aforementioned temporary goal for

each attacker is set to minimize such distance. Again, the defenders here attempt to pursue
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the attackers instead of racing to the goal, which are sub-optimal but reasonable actions

to take in reality as they may not have full knowledge of the goal locations. These actions

opens up paths for the initially doomed attackers and changes the game’s outcome. With

the path to each goal eventually found, one challenge remains for the attacking team; the

attackers must still avoid other attackers since they are forced to move towards the common

area at the center. By employing the FRS method discussed above, we successfully prevent

inter-attacker collision, as shown in Fig.  2.6b - 2.6c . Fig.  2.7a - 2.7c show the comparison

between the initial and final paths taken by the attackers. Note that in Fig.  2.7c attacker

a3 is forced to a go-around maneuver in the center to prevent collision with a2.

(a) (b) (c)

Figure 2.5. Multi-agent scenario with two attackers and single defender:
(a) initial configuration of agents (green circle=attacker start point, blue cir-
cle=defender start point, red triangle=attacker goal) and time-to-reach value
map. (b) Positions of agents over time (Left to right) and evolution of safe
set (red region) from attacker a1 and a2’s perspectives (top and bottom row
respectively). Green triangle = goal, blue circle = defender, yellow triangle =
attacker. (c) Comparison of executed path and initial path for both attackers
(black=actual, cyan=initial).

2.4.4 Comparison with Existing Methods

Our iterative open-loop formulation takes a middle-ground between the open-loop for-

mulation (where solution only depends on initial conditions) and the state-feedback/non-
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(a) (b) (c)

Figure 2.6. Multi-agent scenario with three attackers and two defenders:
(Left to right) positions of agents over time (Green triangle=goal, blue cir-
cle=defender, yellow triangles=attacker). Only the safe set from attacker a2’s
perspective is shown.

(a) (b) (c)

Figure 2.7. Comparison between initial and executed paths for attackers a1,
a2, and a3 (respectively shown in (a), (b), and (c)).

anticipative information pattern (where the decision of defender depends on instantaneous

input of attackers). The resulting path obtained is less conservative than that of the open-

loop formulation, and is less computation intensive compared to the non-anticipative strat-

egy. Further, the extent of conservativeness can be adjusted through changing the update

interval. Our method can also handle different dynamic constraints, as long as the shape

of corresponding virtual obstacles can be computed analytically. In terms of scalability, the

iterative scheme has advantage over the other two strategies as additional agents can be in-
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troduced without much extra computation load. Although the normal open-loop formulation

can technically be applied to settings with more agents, the over-conservative nature of the

formulation may quickly prevent us from finding feasible paths, even when such paths exist.

The non-anticipative strategy requires solving a high-dimensional HJI PDE, so introducing

more agents is not practical.

2.5 Conclusion

In this work, an iterative safe motion planning algorithm is presented and is shown to

work well in hostile, uncertain environments via simulations. We extend the open-loop for-

mulation of a reach-avoid game in [  37 ] to an MPC-like scheme, in which the FMM generated

path is recomputed after every time-step. We also propose a way to allow FMM to work with

non-holonomic vehicles and ensures the resulting path satisfies the constraints of a Dubins

car. In addition, we address the problem of inter-attacker collision via the use of forward

reachable set. We show that the algorithm generate feasible paths that are less conservative

than that of the open-loop formulation under multi-agent settings. More importantly, this

iterative framework allows the outcome of the game to be changed when optimal play from

any side does not take place. In the future, we could assign a probability of each defender

being a direct threat to each attacker, with the assumption that each defender can only

be a threat to one attacker at any instant. This could further reduce the conservativeness

(towards attackers) of the solution and help discover even more efficient paths. Alternative

methods to address motion constraints such as the modified gradient control law in [  50 ] could

work well with the current framework. Lastly, incorporating cooperation [  51 ],[ 52 ] into such

reach-avoid game (for both attackers and defenders) is also a very interesting future research

direction.
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3. TARGET REASSOCIATION AFTER LONG-TERM

OCCLUSION VIA REACHABILITY AND BAYESIAN

INFERENCE

3.1 Introduction

With the increasing popularity of autonomous robotic systems in areas ranging from

autonomous driving in urban areas to military defense, the development of a robust track-

ing system is more important than ever. The Multi-target Target Tracking (MTT) es-

timates the location and the number of targets in noisy observations. The traditional

method such as nearest neighbor filter (NNF)[  53 ], joint probabilistic data association filter

(JPDAF)[ 54 ][ 55 ][ 56 ], and multiple hypothesis tracking (MHT)[ 57 ][ 58 ] utilize a measurement-

to-track association approach, to track multiple targets. The idea is assigning one measure-

ment to one trajectory at each time step to map the multiple target tracking into single

target tracking.

Recently, the probability hypothesis density (PHD) filter [  59 ][ 60 ] has been proposed as

an alternative for MTT. It is a practical solution for Bayesian multi-target filter which

propagates the first order moment of the multi-target posterior as an approximation of the

full multi-target posterior density. The Gaussian Mixture PHD (GM-PHD) filter [ 61 ][ 62 ] has

been proposed as an implementation of the PHD filter which provides a close form solution.

PHD filter estimates the number and the state of the target simultaneously without doing

measurement-to-track association. However, data association is an essential subproblem that

influences the robustness of a tracking algorithm. Therefore, there exist some approaches to

provide identity management method for completing target association between each time

step, while some employs a penalization scheme whenever a target is prone to violate the

one-to-one assumption [ 63 ].

Consider a tracking failure example, where the system has lost track of one or more targets

for a prolonged period of time due to occlusion. Many works have been developed regarding

the problem of tracking under momentary (partial/total) occlusion, where a target might be

blocked by an obstacle in the scene. Han et al. [ 64 ] use the Kanade-Lucas-Tomasi (KLT)
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features as the representation of objects and propose a trajectory estimation algorithm with

a weighting function of tracked features as long as the object is not fully occluded. Shu et

al. [ 65 ] uses the part-based model. It is highly discriminative and robust against appearance

changes and occlusions but failed in full occlusion. However, these methods do not consider

possible subsequent missed detection which may occur due to occlusion (e.g. obstacles in

the environment). Such limitations caught our attention and motivates us to develop the

work below.

To the best of our knowledge, very little work has considered an occlusion period long

enough for targets to significantly change their trajectories for inter-target avoidance or

changes in objective. In this work, we set out to find a method that, given the disappear-

ance locations and reappearance locations, correctly reassociate the targets to their original

identities after they have been redetected. We envision that this proposed method can be

integrated with an existing tracking algorithm (such as the GM-PHD filter) to improve its

robustness as well as accuracy under prolonged occlusions.

The main contribution of this work is twofold. First, we formulate the problem of target

identification under occlusion into a reachability problem. Second, we solve the problem

of estimating the probability of identity via our approach inspired by [ 66 ] that combines

Bayesian inference and forward reachable sets (FRSs). Bayesian inference will be used along

with measurements of state trajectory and dynamic model to compute the posterior distri-

bution over a set of feasible control inputs. We wish to obtain a probability associated with

each discrete ui ∈ [uminumax] of the target at the instant before occlusion takes place. This

result should assign the highest probability to the most likely ui based on the previously

observed behavior. Reachability analysis is then used to determine all the possible reachable

states of the target at a future time. In particular, a FRS is computed for every discretized

ui using the level set methods, with the initial set set as the state at which the target dis-

appears. Finally we query the re-appearance state and flag all the FRSs that contain such

state and record the corresponding ui’s that gave rise to these FRSs. The probability of

identity can then be estimated by summing of all the probabilities that correspond to the

flagged ui’s.
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Note that our method was initially designed to be used in a post-processing step since

it requires knowledge of both disappearance locations and reappearance locations of all

targets, as well as the periods of disappearance. However, since most computation can be

done in advanced and calculating the probability of identities only requires a look-up on the

reachable set, the proposed method can be run near real-time and provide results shortly

after all targets re-appeared. Again, we hope this will help enhance the performance of the

tracker and reduce the odds of having to create new tracks.

3.2 Problem Formulation

Consider arbitrary number of targets moving around in the surveillance area. These

targets are presented by a discrete-time dynamical model, which is chosen to be a Dubins

model in our experiment. The constant velocity Dubins model treats each vehicle as a

particle with state variables (x, y, θ), where (x, y) represent the center of the mass of the

vehicle, and θ is the angle between the velocity vector and x-axis. The control input u

represents the rate of change of angular speed. The inputs are bounded by a minimum and

a maximum value, represented as u ∈ [umin, umax]. Our dynamic model for the system is

then given by

x(t+ h) = x(t) + hv cos(θ(t)) (3.1)

y(t+ h) = y(t) + hv sin(θ(t)) (3.2)

θ(t+ h) = θ(t) + hu(t). (3.3)

We also consider a stochastic disturbance www as an exogenous input drawn from a known

distribution W to simulate the noisy measurements. Our discrete time dynamical model is

then

xxx(k + 1) := f(xxx(k),uuu(k)) +www(k) (3.4)

where xxx ∈ Rn denotes the system states and uuu ∈ Rm denotes control inputs. We assume that

the state variables xxx(t) are given at each time step in the form of noisy measurements. We
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also assumed thatwww(t) is bounded by an interval [wmin, wmax]. By truncating the distribution

W , we get the a θ confidence interval for a fixed θ, such as 0.99.

We note that the inputs uuu(t) at each time step cannot be directly measured and therefore

must be inferred. Another assumption regarding the control is that we assume the control

input gradually changes within a reasonable range [umin, umax] between subsequent time

steps. This can be represented by the following equation:

uuu(t+ h) = uuu(t) + ε[uuumin,uuumax]. (3.5)

This indicates that uuu(t) evolves over time with reasonable turning rate and inline with the

practical situation for a vehicle. Here, the parameter ε ∈ [0, 1]. This is also meant to capture

the same effect as transition ε, which is used in updating the posterior at time t into the

prior at time t+ h.

In our example scenario in Fig.  3.1 , three targets are moving around with respect to the

constant velocity Dubins model. When a target passes behind the obstacle for a prolonged

period of time we say an occlusion is taking place. This means no measurement are being

received at all during this period. In a general tracking algorithm and literature this is

known as lost track. Even though the target reappears after several seconds, it will just be

considered as a new target and a new track is formed. What we want to do is to assign

the probabilistic values for the identities of the occluded targets between disappearing and

reappearing point.
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Figure 3.1. Problem Scenario

Below is a summary of the major assumptions we make in this work:

• Vehicle model with state variables xxx, inputs uuu and exogenous inputs www. We assume

that the state variables xxx are known at each time step through noisy measurements

with known error distributions, but the inputs uuu(t) are not measured. At the same

time, we assume the exogenous disturbance is drawn from a known distribution (W).

• State measurements are received at some fixed time step. h > 0.

• The control input uuu evolves randomly within a bounded set.

Given this information, at some time instant t0, when occlusion starts, we wish to know

the distribution of possible states xxx(t0 + Nh) for some time horizon N > 0 (Occlusion

period). More specifically, our problem of interest is to estimate the probability that an

object emerging from occlusion corresponds to the original object of interest, i.e,

P (xxx(t0 +Nh) = xxxout,i). (3.6)
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Additionally, we wish to compute a ”probability identity matrix” that summarizes the iden-

tity relationship among targets.

3.3 Methodology

At a high level, our approach is as follows: we first discretize the set of admissible control

input and estimate the probability distribution over these inputs at xxx(t0); this can be done

via standard Bayesian inference. We then compute the reachable sets by propagating states

forward using each discretized input as a starting input; this is done via the level set approach

[ 1 ] and the Level Set toolbox [  6 ] with some minor modifications. Finally we identify the FRSs

that contain the out-state and compute the identity probabilities by summing up the control

input probabilities with which these reachable sets are associated.

3.3.1 Control Input Estimation Via Bayesian Inference

In this section we talk about how Bayesian inference is used to computed the distribution

over UUU at t0. At a high level the process is as follows: First assume a prior distribution over UUU

before any measurements are taken. Then compute the posterior distribution using incoming

measurement xxx(t) and update the prior P (uuu(t−h)) into posterior P (uuu(t−h)|xxx(t)) via Bayes

rule. Finally we update the posterior P (uuu(t − h)|xxx(t)) into a new prior P (uuu(t)) for next

iteration. This process is repeated until the prior at t0 is obtained.

Calculating posterior P (uuu(t− h)|xxx(t))

We approximate the set of support UUU for the posterior by selecting finitely many grid

points uuu0,uuu1,uuu2, . . . ,uuuK−1 for some number K. Then associated posterior probabilities for

input uuu’s can be represented as

(uuu0, p0), (uuu1, p1), . . . , (uuuK−1, pK−1) (3.7)
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where, p0, p1, . . . are the associated probabilities and ∑K−1
i=0 pi = 1. We have the un-normalized

posterior likelihood

Λ (uuu(k − 1) = uuuj|xxx(t)) = P (xxx(t)|uuu(t− h))P (uuu(t− h)). (3.8)

Hence, we have, the posterior probability

P (uuu(t− h) = uuuj|xxx(t)) = Λ(uuu(t− h)) = uuuj|xxx(t))∑
j Λ(uuu(t− h)) = uuuj|xxx(t)) (3.9)

where P (xxx(t)|uuu(t−h)) is computed directly from the model, the measurements xxx(t−h) and

xxx(t) (and the randomness comes from www ∼ W). The next section describes the process of

computing the likelihood term in  3.8 .

Computing the likelihood P (xxx(t)|uuu(t− h))

The likelihood P (xxx(t)|uuu(t− h)) can be written as

P (xxx(t)|uuu(t− h)) = P (f(xxx(t− h),uuu(t− h)) +www(t− h)|uuu(t− h)) (3.10)

where xxx(t−h) is also known. Probability of arriving at a particular xxx(t) from given xxx(t−h)

via a uuu(t− h) can be perceived as the probability of the noise www being equal to

xxx(t) − f(xxx(t− h),uuu(t− h)). Then the likelihood can be written as

P (xxx(t)|uuu(t− h)) = P (www = xxx(t) − f(xxx(t− h),uuu(t− h))|uuu(t− h),xxx(t− h),xxx(t)). (3.11)

Let www(t) be bounded by [ −wwwδ,wwwδ], where wwwδ is obtained by truncating the distribution W

using a confidence interval (e.g., δ = 0.99):

∴ xxxactual ∈ [xxx−wwwδ,xxx+wwwδ]. (3.12)
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Therefore, the likelihood now becomes

P (xxx(t)|uuu(t− h)) =

P (www ∈ [min(xxx(t) − f(xxx(t− h),uuu(t− h))),max(xxx(t) − f(xxx(t− h),uuu(t− h)))])
(3.13)

and in the case of constant velocity Dubins’ car model, the likelihood can be written as:

P (xxx(t)|uuu(t− h))

= P (www ∈ [min(xxx(t) − f(xxx(t− h),uuu(t− h))),max(xxx(t) − f(xxx(t− h),uuu(t− h)))])

= P (www ∈ [min(θ(t) − θ(t− h) − uuu(t− h)h)),max(θ(t) − θ(t− h) − uuu(t− h)h))])

= P (www ∈ [(θ(t) −wwwδ − (θ(t− h) +wwwδ) − uuu(t− h)h))

, (θ(t) +wwwδ − (θ(t− h) −wwwδ) − uuu(t− h)h))])

= P (www ∈ [(θ(t) − θ(t− h) − uuu(t− h) − 2wwwδ), (θ(t) − θ(t− h) − uuu(t− h) + 2wwwδ)])
(3.14)

where the distribution of www is known so the above probability can be computed.

Update posterior at (t− h) to prior at t

Recall we assumed that the inputs change by a an incremental amount at each step.

To align with this assumption, we use the ε-transition approach to update our posterior

distribution at the next time step. We also assume an original prior probability distribution

p0(uuu) is defined, which is independent of any measurement. This is typically the uniform

distribution over the chosen grid points. Then, we update the posterior to the new prior

using

P (uuu(t)) = (1 − ε)P (uuu(t− h)|xxx(t)) + εp0(uuu) (3.15)

where ε ∈ [0, 1]. This update rule indicates that there is a certain small part of the next

prior distribution is sampled from the original prior distribution chosen at the begining of

the simulation.
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3.3.2 Reachability Analysis

Reachability analysis, given the knowledge of dynamic model and constraints, allow us

to capture all the possible ways a system is allowed to evolve over time. This is particularly

useful for our problem as this alone can already help ruling out the infeasible reappearance

states for a particular disappearance state.

Optimal Control to Reachability

Conducting reachability analysis ultimately amounts to solving an optimal control prob-

lem. We briefly describes how one can formulate the optimal control problem into a reach-

ability problem, which can be solved using the level set approach [  1 ] and numerical scheme

[ 6 ].

To compute the FRS, we first define the set of initial states as implicit surface function

l(x). This can be done using sign-distance functions or a combination of sign-distance

functions. By setting this function as our final state cost and setting the running cost

as zero, we can obtain the forward reach set, formally defined as R(T ) = {xt : ∃u, s.t. ẋ =

f(x, u), x(0) ∈ L, x(s) = xt,∀s ≤ T} by solving maximization problem

max
u

J(x, t) = l(x(T ))

s.t. ẋ = f(x, u, t).
(3.16)

This maximization problem can be written as solving a initial value PDE with the cor-

responding boundary condition,

dV
dt

+ max
u

{∆V (x(t), t) · f(x, u)} = 0

V (x(T ), T ) = l(x(T )).
(3.17)

Using dynamic programming principle it can be shown that the value function V (x, t) is

the viscosity solution for the (  3.17 ). This viscosity solution can be solved using the level

set method and corresponding numerical scheme [  6 ]. If we define the initial set as a zero-
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sublevel of the Lipschitz function l(x), the FRS after time T is the zero sublevel set of the

value function.

For the above setup, the optimal control u∗ is obtained using the Minimum (Maximum)

principle by

H∗ = max
u

{∆V (x(t), t) · f(x, u)} ≥ H = ∆V (x(t), t) · f(x, u)}. (3.18)

The result shows that for a Dubins car model, the control is bang-bang. In particular

u∗ = umax ∗ sign(dV
dθ

). (3.19)

The optimal u is used to compute the optimal Hamiltonian numerically, which is crucial for

the computation of the value function in the level set scheme.

Set-valued reachability via level set methods

From the Bayesian method we obtain the probability for each discrete uuui ∈ UUU at t0 (time of

disappearance). We then generate a forward reach set for each uuui, from the disappear state.

The idea here is based on set-value reachability. Essentially we use the system’s forward

model to predict future states and inputs; instead of using the stochastic disturbance www

directly, the forward model uses set-valued to predict future states. Note that since we

have measurement error for all (x, y,θ) states, our initial state becomes an interval where

its width equals the measurement uncertainty. In 3 dimensional space, the initial set is a

cuboid. There is one more issue we must solve in order to compute the reach set for each uuui.

Due to the ε-transition rule for input u, the range will grow with time even when we pick

a single value uuui at t0. Fortunately, the control will remain bang-bang and we can simply

update the range at certain time intervals. We note that this will affects the computation of

optimal Hamiltonian as the control used is different.
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Querying the out-state

Since computing the aforementioned sets are computational expensive, we compute them

prior to the experiment in an offline manner. With the pre-computed reachable sets, we can

check if a given out-state of the target lies within the sets and determine whether it may

belong to an in-state. Since these reach sets are computed in a relative coordinates and

are invariant to rotation and translation, one can easily check if the relative state between

disappearance and reappearance lies are contained by the sets. Fig.  3.2 shows 15 reach sets

Ri corresponding to an input set discretized into 15 points. The black contours are just 2D

projections of the 3D sets and will not be actually used for our query process. Red asteroid

is the out-state being queried. Green dashed lines represent the 2-D slices of the forward sets

Ri that contains the out-state at that particular theta. We note that just because a state

lies within a set Ri’s 2D projection (black), it does not mean such state is contained within

the set as other states (e.g. theta) must also be considered. For instance, Fig.  3.3 shows

how an out-state (red asteroid) is in the 2D projection (black contour) of the reach set, but

in reality it sits outside the 3-D surface at θ = 2.65, as shown by the pink slice.

Figure 3.2. 2D projection of
15 forward reach sets (T = 10)

Figure 3.3. 3D reach set
with 2D projections
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3.3.3 Integrating Reachability with Bayesian Inference Results

Computing the Posterior Probabilities

Let, XN(uuu) be the FRS after N steps with given initial state and control inputs uuu. The

initial state xxx(t0) is known. Perform reachability analysis for every possible control input

uuui and get reach-sets XN(uuui), where: i = {1, 2, . . . , K − 1i}. XN(uuui) can be an interval,

zonotope, ellipsoid or a convex polyhedron, depending on the approach used. The reach-sets

are used to estimate reachable states. Then, the reachable states are used to compute the

posterior probability with xxxout ∈ xxx(t0 +Nh) for some target set Xu of interest. The posterior

probabilities are derived by

P (xxxout ∈ xxx(t0 +Nh)|xxx(t0), . . . ,xxx(0)) :=
∑
j∈J

pi (3.20)

where J is the set of indices J = {j ∈ {0, 1, 2, . . . , K − 1} and defined by

J = {j ∈ {0, 1, 2, . . . , K − 1}|XN(uuuj) ∩ xxxout 6= φ} (3.21)

Constructing Identity Probability Matrix

This approach gives the probability of identity of the exiting objects. The result can be

put in the from of a matrix. For example, in the case of 3 objects, the matrix is written as

I =


P (Out1 = In1) P (Out1 = In2) P (Out1 = In3)

P (Out2 = In1) P (Out2 = In2) P (Out2 = In3)

P (Out3 = In1) P (Out3 = In2) P (Out3 = In3)

 (3.22)

, which can be normalized in column direction to make it stochastic in the column direction.

ID(i, j) = P (Outi = Inj/Outk, k ∈ {1, 2, 3})

= P (Outi = Inj)∑
k∈{1,2,3} P (Outk = Inj)

= Ii,j∑
i Ii,j

(3.23)
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This idea is derived from the “Belief Matrix” from [ 67 ][ 67 ][ 68 ], which is defined as: “The

belief matrix is a matrix B, in which elements bij represent the probability of object j having

identity i. Belief matrix of the entire system is doubly-stochastic (i.e., each row sum and

column sum is 1)”. In our case the matrix can be stochastic in column direction alone.

3.4 Numerical Results

In simulation cases, the trajectories are generated by using (  3.1 ) with control inputs u

bounded in a range, which umin = −π/9 (rad/sec) and umax = π/9 (rad/sec). As u changes

over time, the change rate is defined by ε[umin, umax] with ε equals to 1/8. In order to generate

noisy measurements, we add disturbance w to the trajectory with distribution W having

mean equals to [0, 0, 0] and standard deviation equals to [0.01, 0.01, 0.001]. With constant

speed v equals to 2 (m/sec) and 18 (sec) of simulation time, we got 2 cases of trajectories.

The first and second case demonstrates how the probabilities from Bayesian inference and

reachability analysis can help us to obtain better result for identity association, respectively.

In each cases we know each target measurement xxx(t) at each time step and the every time

tin, time at which occlusion starts, and tout, time at which occlusion ends. Note that we only

know the candidate disappear duration for the targets but we do not know which duration

belongs to which target due to the identity issue yet to be solved.

Then proposed method is implemented into these cases and the following analysis are

based on these results. u is divided in to 15 intervals for computing the priors and calculating

reachability sets for the time t0.
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3.4.1 Scenario 1

In the first case, target 1 (blue) enters the occlusion area with a right-turning behavior

while target 2 (red) enters straight from the left without much steering, as shown in Fig.

 3.4 . Target 3 has a mirrored behavior as target 1. We show this example to demonstrate

how a more heavily biased distribution help generate the correct probability of identity.

Figure 3.4. Target trajectory with occlusion (scenario 1)

Prior probability of Control Inputs

From the trajectory before t0, we can compute the probability distribution of every

control inputs uuu(t0) for each target at t0, right before the target disappears. The results is

shown in Figure  3.5 . Due to the continuously right-turn motion prior to t0, target 1 has a

higher probability in negative u. Target 3 represent a mirrored behavior as target 1 in this

result. Obviously, target 2 keep moving one a straight line, so it has the highest probability

on control input around u = 0.
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Figure 3.5. Probability distribution over discrete input control (scenario 1)

Reachability Results

Fig.  3.6a shows the reach sets (dashed lines) computed for the out-state (reappearing

state) xout1 of target 1. The blue, red, green sets corresponds to the reach sets that contains

the xout1 computed from all the possible in-states x1(t0), x2(t0), and x3(t0) respectively.

Since we ought to build a belief matrix of identity association purpose, we must conduct

such look-up process for n2 times where n is the number of targets. During each look-up,

we slice the reachable set using the out-state’s orientation and time of dissappearance. In

Fig.  3.6a we can see there are four blue sets that contains xout1, six red sets and 5 green sets

that contains xout1. This means we have to add up 4,6,5 probability values from the prior

probability of u of x1, x2, and x3. However, even though there are less sets containing xout1

from xin1, the probabilities of the corresponding u’s are higher, causing the probability of

xout1 belonging to xin1 to be the highest of all three. This precisely demonstrates how having

an accurate prior distribution of u’s is crucial to the identity association problem. Fig.  3.6b 

is a trivial case showing that xout2 can only be reached from xin1, therefore assigning zero

probability for the other two, as shown in Fig.  3.7 .
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(a) Reachibility sets of each x(t0) and x1(tf ) (scenario 1) (b) Reachibility sets of each x(t0) and x2(tf ) (scenario 1)

Figure 3.6. Reachable Sets for Scenario 1

Identity Probability Matrices

Summing up the probability of each reachable set that can reach x(tf ) from x(t0), we

get the identity probability matrix in Fig.  3.7 . The results verify the idea of proposed

method. Target 1 has the probability of 0.8658, 0, and 0.1342 to emerged from the obstacle

at x1(tf ), x2(tf ), and x3(tf ), respectively. Indeed, it has the highest probability to emerged

from x1(tf ), which matches with the trajectory in Fig.  3.4 . Target 2 and target 3 also have

the similar results.

in1 in2 in3

out1 0.5444 0.3571 0.0775

out2 0 0.6298 0

out3 0.0844 0.4430 0.5238
(a) Un-normalized

in1 in2 in3

out1 0.8658 0.2497 0.1289

out2 0 0.4404 0

out3 0.1342 0.3098 0.8711
(b) Normalized

Figure 3.7. Identity probability matrix (scenario 1)
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From above matrices the identity association result is:

Out1 → In1 Out2 → In2 Out3 → In3

3.4.2 Scenario 2

In the second case, we show that our method can still provide a good result despite a

less informative prior distribution on the control uuui’s at t0. In cases where the probability of

identities are similar for two or more in-states given an out-state, reachability can be used

to eliminate unlikely options by looking at the result from other out-states.

Figure 3.8. Target trajectories with occlusion (scenario 2)

Prior probability of Control Inputs

For this scenario, control input changes over time, so the trajectory is no longer keep

turns in a single direction or move in a consistent straight line. From Fig.  3.8 , Target 1 first

does a period of left turn than change to right turn before it got occluded. Thus, as shown

in Fig.  3.9 , the peak of probability distribution of uuu locates near 0. We can also see that
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target 3 has highest probability of continue making a right turn since this is what it had

been doing prior to t0.

Figure 3.9. Probability distribution over discrete input control (scenario 2)

Reachibility Results

Again, we have overlaid the reach sets on the target trajectories in Fig.  3.6b and Fig.

 3.10b . In Fig.  3.6b we again see a trivial case showing that xout1 can only be reached from

xin1 given the exit orientation and exit time, so we can be very confident that xout1 belongs

to xin1. The more interesting case is shown in Fig.  3.10b where there are again more sets

that can reach xout2 from xin1 than from xin2. This time, however, the prior probability

distribution for control is very similar for x1 and x2, causing the identity probability of xout2

belonging to xin1 to be actually higher. By looking at this result solely, one might misidentify

target 2 to be target 1. However, if we look at the first row of identity matrix in Fig.  3.11 .

it is obvious that xin1 must lead to xout1. Therefore, by elimination we can know that xout2

actually belongs to xin2. This example demonstrates that our method can help identify

targets even under a less accurate (or noisy) prior distribution of control.
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(a) Reachibility sets of each x(t0) and x1(tf ) (scenario 2) (b) Reachibility sets of each x(t0) and x2(tf ) (scenario 2)

Figure 3.10. Reachable Sets for Scenario 2

Identity Probability Matrices

According to the result in previous part, we sum up all the probabilities and get the

identity probability matrices shown in Fig.  3.11 . For the in-states of target 2 and target

3, both of them are assigned to the correct emerged point x2(tf ) and x3(tf ), respectively.

However, for target 1, it has the higher probability, which is 0.7202, to emerged from occlu-

sion at x2(tf ) rather than x1(tf ). This is because the measurement x1(t0) of target 1 has an

angle ψ that is more likely to direct to x2(tf ). However, this problem can be solved through

elimination as mentioned above. In future work, we consider incorporating backward reach-

able sets in our proposed method, and we believe this ambiguous situation will be resolved

more elegantly.
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in1 in2 in3

out1 0.2202 0 0

out2 0.5667 0.2045 0

out3 0 0 0.1400
(a) Un-normalized

in1 in2 in3

out1 0.2798 0 0

out2 0.7202 1 0

out3 0 0 1
(b) Normalized

Figure 3.11. Identity probability matrix (scenario 2)

From above matrices the identity association result is:

Out1 → In1 Out2 → In2 Out3 → In3

3.5 Conclusion

The proposed method computes an upper bound on the probability of exited objects being

a particular target before occlusion using the reach-sets and Bayesian estimation of prior

probabilities of control input. We have implemented the method in MATLAB using ”Level

Set Tool Box” for reach set computation. Two cases were simulated and the corresponding

results were discussed. In the first case, we show how the probability distribution on the

control input can help us identify targets even when their exit location is more reachable

by other in-states. The second scenario demonstrates how our method can provide useful

result under situations where the prior distributed cannot be fully trusted. The identity

probability matrices for the 2 scenarios are obtained and the most probable identity of the

trajectory is in agreement with the actual ground truth.

3.5.1 Limitations of the Method

The results of above method are sub-optimal when the variance of the noise is comparable

to the change in state xxx caused by uuu in a time-step. The method heavily depends on the

boundedness in the evolution of control inputs (  3.5 ) with time which might not always be

guaranteed. We also note our assumption that the target will continue to maneuver in a way

similar to that exhibited before occlusion is a strong assumption and may not be practical.
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3.5.2 Possible Extensions

The above problem of finding probabilities of grid points of u can be posed as clustering

problem with discrete u’s as clusters following a discrete distribution and the parameters of

the distribution can be estimated using clustering algorithms like Expectation Maximization

(EM). Another direction of future work is that the above simulations using FRSs can be

augment with backward reachable set in similar fashion. This will potentially provide better

results as information after reappearance is also used.
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4. LEARNING CONTROL BARRIER FUNCTIONS WITH

POLYTOPIC APPROXIMATION

4.1 Introduction

Safety is one of the most crucial factors that must be addressed before deploying an

autonomous system into the real world. It is therefore necessary to integrate safety criteria

into controller design process to ensure no undesired events take place. For instance, safety

requirement must be enforced strictly for self-driving cars in order to keep humans unharmed.

Moreover, damages to the system itself as well as the environment should be avoided. For the

above reasons, designing a controller for safety-critical autonomous systems is a nontrivial

task.

Recently, control barrier functions (CBF) become a popular choice to enforce safety

on autonomous systems. Barrier function were originally developed to address the safety

requirements of a system [ 69 ][ 70 ][ 71 ]. This idea was extended to consider controls and the

notion of ”control barrier function” was formally defined in [ 28 ]. Recently the work in [ 72 ][ 73 ]

redefined the definition of control barrier functions (CBF) by extending Nagumo’s theorem

to the entire safe set (rather than just on the boundary). An important consequence is that

one can now construct safe controller using such CBF since it is now defined at all points

within the set. This is typically done through a min-norm controller that alters the nominal

control in a minimally invasive manner [  73 ]. In [  74 ][ 75 ][ 76 ], CBFs are applied to develop safe

controller for bipedal robots and enable them to walk on stepping stones. In automotive

applications, CBF has be used to provide guarantees on safety features such as lane-keeping

and adaptive cruise control [ 72 ][ 77 ][ 78 ]. Safety-critical controllers for aerial system such as

quadrotors have also been synthesize using CBFs [  79 ][ 80 ]. Experimental work has been done

to prove the effectiveness of using CBF to control non-statistically stable systems such as a

Segway in [  81 ]. The application of CBF also extends into multi-robot systems [  82 ][ 83 ][ 84 ][ 85 ],

where safe maneuvers and methods for motion coordination are developed.

It is evident that control barrier functions has a wide range of application and its ability

to provide provable safety guarantee is desirable. However, it is not clear how one can find
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such CBF and its corresponding safe set for an arbitrary control system. This can, in general,

be a difficult problem since CBF is very application-dependent.

Without knowing the algebraic form of the CBF, one cannot leverage the safety guar-

antee that provided by the CBF. There are several recent works investigated this problem

via learning. In [  86 ], a CBF is incrementally learned to cope with unmodel disturbance,

with a conservative CBF provided at the beginning of the learning process. Authors of [ 87 ]

introduce a neural-network-based approach to jointly learn the control policy along with

CBF and Lyapunov function. This approach requires prior knowledge of safe and unsafe

sets. [  88 ] proposed an optimization based approach to learning CBF from expert demon-

strations. The paper also proves the validity of the learned CBF under suitable assumptions

of smoothness on the underlying dynamics and the learned CBF, and under sufficiently fine

sampling. In [  89 ], the constraints of the workspace, i.e. the CBFs, are parameterized by

linear functions. The proposed approach incrementally updates the linear functions from

human demonstrations. In [ 90 ], with given safe and unsafe data, support vector machine is

used to learn a CBF. These aforementioned methods however generally neglect the control

constraints, and therefore the condition that requires the time derivative of CBF be negative

semi-definite can almost always be satisfied. In reality, this can be a problem since there

are actuator constraints and input bounds that limit the system. For this reason, one must

make an effort to ensure the input constraints do not conflict with the required conditon on

the time derivative of CBF. The authors of [ 91 ] consider the input constraint, however, they

assume a given control law, which is somewhat limited.

In [  87 ], [  90 ], the proposed methods rely on given classified data from safe set and unsafe

set. This is impractical as it is hard to select data in a set, i.e. the safe set, that has the

property of forward invariant. In this paper, we will select data from an allowable set defined

by some safety measure ρ(x). Such safety measure is tailored for different applications. The

allowable set is not necessarily forward invariant, therefore, in the context of CBF, it is not

safe. However, it is easy to generate, and the safe set defined by CBF will be a subset of the

allowable set.
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The main contribution of this work is an optimization framework for learning control

barrier functions from application specific safety measures ρ(x). We parameterize the learned

control barrier function using a collection of linear inequalities and the corresponding safe

invariant set is represented as the intersection of half spaces. We provide validation for the

learned control barrier function and perform a series of simulations to show the effectiveness

of our method.

4.2 Preliminary and Problem Formulations

4.2.1 System Dynamics

We consider a nonlinear affine control system of the form

ẋ = f(x) + g(x)u, (4.1)

where x ∈ X ⊆ Rn denotes the system states, with X as the system state space. The

control input u ∈ U ⊂ Rm is bounded by admissible set of input and here, we consider

U = {u|umin ≤ u ≤ umax}, where ≤ denotes entry-wise inequality. Let f : Rn → Rn and

g : Rn → Rn×m be locally Lipschitz functions, and denote I(x0) = [0, τmax) as the maximum

interval of existence on which x(t) is a unique solution to (  4.1 ) from the inital condtion

x(0) = x0 ∈ X .

4.2.2 Safety and Control Barrier Function

At a high level, our goal is to search for a control barrier function that can certify the

safety of a system. In fact, the existence of control barrier function implies the safety of

the control system [  73 ]. To do so, we must first define the notion of safety for a system. In

general, safety can be expressed in terms of set invariance.

Definition 4.2.1 (Invariant set [  92 ]). A set C is forward-invariant if for any initial state

x0 ∈ C, x(t) ∈ C ∀t ∈ I(x0). Then, the system (  4.1 ) is safe w.r.t. the set C if C is forward-

invariant [ 92 ].
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Simply put, if a system that start in a safe set C always remains within C, then the system

is considered safe. We can now formally state the definition of a control barrier function:

Definition 4.2.2 (Control barrier function [  92 ]). Consider the control system (  4.1 ), a set

of safe states Xs ⊆ X , and a set of unsafe states Xu = X \ Xs. A continuous differentiable

function h(x) is a control barrier function (CBF) if there exist an extended class K∞ function

α such that

h(x) ≤ 0 ∀x ∈ Xs (4.2)

h(x) > 0 ∀x ∈ Xu (4.3)

Lfh(x) + Lgh(x)u ≤ −α(h(x)) ∀x ∈ X . (4.4)

Note Lfh(x) and Lgh(x) are Lie-derivatives of h(x), e.g., Lfh(x) = ∂h(x)
∂x

f(x) and Lgh(x) =
∂h(x)

∂x
g(x). We also assume that ∂h(x)

∂x
6= 0. We highlight that condition (  4.4 ) is different from

the that stated in Nagumo’s theorem [  69 ] (which essentially states that ḣ(x) ≤ 0 on ∂Xs

is a necessary and sufficient condition for set invariance), but under mild conditions on the

set Xs, it is proven that conditions (  4.2 - 4.4 ) are also necessary and sufficient for forward

invariance [ 73 ] of Xs and hence guaranteeing the safety of the system ( 4.1 ).

4.2.3 Finding CBF for Input-Constrained Systems

Assumption 1. There exists a set of allowable states Xρ = {x ∈ X | ρ(x) ≤ 0}, which is

defined as the zero-sublevel set of some known safety measure ρ : X → R.

This is not a strong assumption since such safety measure is usually user-specified or can

be relatively easily obtained by inspecting the application.

Due to the input constraints considered, not all points in Xρ can always be rendered safe

and therefore one cannot say ρ is a control barrier function, that is, Xρ is not equivalent

to Xs. For example, if x ∈ ∂Xρ, there exist no u such that ḣ(x) ≤ 0 due to the finite
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control limit. Specifically, the introduction of input constraints may cause certain points in

the allowable set Xρ to lose property of forward invariance, e.g., the input that is required to

keep the system in the safe may lie outside of the input constraint and lead to an infeasible

problem. This motivates us to find a function such that all the states within its zero-sublevel

set can be rendered forward invariance with the given input constraint and is a strict subset

of the geometric safe set, i.e. satisfying Definition  4.2.2 . Once such function is found, we

can claim such function to be a valid control barrier function and the safe-invariant set is

indeed the zero-sublevel set of this function. We now formally state our problem statement.

Our problem of interest is to find a control barrier function h(x) with the consideration

of control input constraints, such that

• The safe set Xs is a strict subset of the set of the allowable states Xρ, i.e. Xs =

{x | h(x) < 0} ⊂ Xρ.

• Xs is the safe set with a substantially large volume 

1
 .

Remark 1. Note that it is important to distinguish between the allowable set defined by

safety measure ρ(x) and the safe set defined by control barrier function. These two sets are

not equivalent in all cases but the safe set is always a subset of the set set, e.g., Xs ⊂ Xρ.

4.3 Methodology

To make this problem tractable and to efficiently search for a valid control barrier func-

tion, we parameterize such function using polytopic approximation similar to [  89 ]. In par-

ticular, a collection of linear inequalities will be used to denote the control barrier function

and resulting safe set is represented as the intersection of safe half spaces. Safe half spaces

are defined by linear inequalities hi(x) = aT
i x + bi ≤ 0, with ai ∈ Rn, bi ∈ R; i = {1, · · · , L},

where L is the number of linear inequalities that are used to construct the safe set. The

CBF defined by the collection of linear inequalities can then be expressed by

hA,B(x) = Ax + B, (4.5)
1

 ↑ we do not claim the learned safe set has maximum volume, but we attempt to create a similar effect.

65



where

A =



aT
1

aT
2
...

aT
L


∈ RL×n, B =



b1

b2
...

bL


∈ RL, (4.6)

Here, the CBF should possess the same properties as mentioned in (  4.2 - 4.4 ), although we

note that the dimensions are different, where hA,B(x) ∈ RL.

To ensure the learned function is a valid CBF, it must satisfy properties stated in ( 4.2 - 4.4 ).

The condition (  4.4 ) requires ḣA,B(x) ≤ −α(h(x)),∀x ∈ X , meaning there is always a feasible

input that allows us to drive the system towards the interior of zero-sublevel of hA,B(x). In

our case, we relax such condition and only require that ḣA,B(x) ≤ −α(h(x)),∀x ∈ Xρ

We note that this not only ensures the invariance property of Xs but also makes it

asymptotically stable in Xρ. To achieve this, we propose a sampling-based optimization

approach. M and N are number of sample points generated from the interior of Xρ and the

boundary of the set, respectively. The optimization problem is set up as below:

min
A,B

N∑
j=1

max
ai,bi

(aT
i xj + bi),

s.t. min
u

(aT
i f(xk) + aT

i g(xk)u + α(aT
i xk + bi)) ≤ 0,

max
ai,bi

(aT
i xj + bi) ≥ 0,

(4.7)

The objective of this optimization problem is designed to create an effect similar to

that of maximizing the volume of the safe set, which is the zero sublevel set of the learned

CBF. xj denotes the sample points on the boundary of the set of allowable states, where

xj ∈ {x|ρ(x) = 0}, j = {1, ..., N}. To enlarge the learned safe set, we want to minimize the

distance between each boundary sample xj and the ’line’ aT
i xj + bi = 0 that is closest to

xj, for j = {1, ..., N}. If we limit the norm of the coefficients ai to be one, then the linear

equations (aT
i xj + bi) are essentially signed distance functions. Thus, if we assume that for

each point xj on the boundary, there exist at least one linear function to which the value of xj

66



Figure 4.1. Geometric meaning of our objective function

is positive (xj lies ’outside’ of this ’side’ of the polytope), then maxai,bi(aT
i xj+bi) corresponds

to such linear function. By minimizing the distance between the boundary sample and this

’edge’, the polytope is stretched as much as possible. Fig.  4.1 illustrates this idea. The

figure shows four linear functions and the shaded regions represent the positive half-spaces

w.r.t. each hi(x). Given a boundary sample xj (red point), we can see that h4 is the only

linear function to which the value of xj is positive, therefore maxai,bi(aT
i xj + bi) refers to the

distance between such ’edge’ and the sample point. In short, we are essentially minimizing

the the overall distance between the boundary of Xs and that of Xρ, therefore enlarging the

volume of Xs since Xρ is fixed.

The first constraint of the optimization problem is introduced in coherence with ( 4.4 ) to

ensure the forward invariance of the learned safe set. We sample the interior of the set of

allowable states and denote these interior samples as xk = {x|ρ(x) ≤ 0}. Input constraint

is considered, where u ∈ [umin,umax]. For each sample point, the time derivative of function

hA,B(x) must be smaller than a Class-K∞ function. To consider the bounded input, for

each point, umin and umax are substituted into the constraint (separately for each linear

function). The two resulting values from the constraint are compared, and if the smaller of

the two is negative-definite then the constraint is satisfied. The purpose of this constraint is
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to ensure the existence of an admissible input value that can render the safe set Xs forward

invariant.

The second constraint corresponds to ensuring that the safe set learned Xs is a strict

subset of the geometrical safe set Xρ, as shown in Fig.  4.2 . Similar to the objective function,

for each point on the boundary of Xρ, its value w.r.t the nearest linear function hi(x) should

be greater or equal to zero. Geometrically, this is equivalent to requiring for every boundary

sample there exist at least one hi(x) of which the sample lies on the positive half-space.

Moreover, this constraint means that the boundary of Xρ is not in the interior of the safe

set Xs. Thus, the learned Xs is always a strict subset of Xρ. Without this constraint, the

zero-sublevel set of learned function hA,B(x) may extend beyond Xρ, therefore violating our

requirements in section  4.2.3 and become what is depicted in Fig.  4.3 .

Figure 4.2. Illustration of CBF and the corresponding safe-invariant set
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Figure 4.3. Learned safe-invariant set with missing Type II constraint

To obtain a desirable solution, we restrict the norm of the coefficients in ai to be one,

as mentioned above. This is necessary for both ensuring the linear function hi is a signed

distance function and ensuring we do not get a trivial solution from the optimization. We

note that this norm equality constraint makes the problem non-convex and therefore difficult

to obtain a global minimum. To alleviate this, we feed in an initial condition that represent

a convex polytope with L faces.

4.4 Numerical Results

4.4.1 Learning Control Barrier Function from Allowable Set

To demonstrate the effectiveness of our method discussed in section III, we apply it to a

real system and show how the learned CBF can be used to keep the system from entering

undesired states. We consider the nonlinear Moore-Greitzer jet engine model in no-stall

mode used in [ 93 ] as our example. The dynamics of this system is given as

f(x) =

f1(x)

f2(x)

 =

x2 − 3
2x

2
1 − 1

2x
3
1

x1

 and g(x) =

 0

−1

 ,
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Figure 4.4. Vector field f(x) of the system: Xu are represented by the red
filled regions and the Xρ is the unfilled region

where x = [x1, x2]T represents our system states. Physically, x1 = 1−Φ and x2 = Ψ−ψ−2

are quantities proportional to the mass flow Φ and the pressure rise Ψ, respectively. Similar

to [  93 ], we consider the state-space of interest X = [ − 1, 3] × [ − 4, 4] and the unsafe region

Xu = [ − 1, 0] × [ − 4, 2.5] ∪ [ − 1, 3] × [2, 4]. The geometric safe set is then Xρ = X \ Xu.

The considered domain overlaid with the system’s vector field is depicted in Fig.  4.4 . Recall

that our goal is to learn a control barrier function such that it’s zero-sublevel set is a subset

of Xρ.

By applying the proposed optimization-based method, we are able to learn the control

barrier function in the form of a collection of linear functions. For sampling, we took N = 200

samples from the interior ofXρ andM = 200 samples on the boundary ∂Xρ. We set the input

constraint to be Ufeasible = [−9, 9] and we use F = 6 linear functions to perform our polytopic

approximation. The optimization problem is solved using the CasADi solver [cite] that uses

an interior point method. The linear functions learned are h1 = −0.75x1 − 0.66x2 − 1.68,

h2 = 0.95x1 − 0.32x2 − 2.36, h3 = 0.981x1 + 0.20x2 − 1.15, h4 = −0.28x1 + 0.96x2 − 1.26,
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h5 = −0.07x1 − 0.007x2 − 0.08, and h6 = −0.20x1 − 0.98x2 − 2.87. The corresponding

safe-invariant set is the intersection of half spaces of these linear functions, e.g.,

Xcbf =
6⋂

i=1
{x|hi(x) ≤ 0}.

4.4.2 Safe Control using Learned CBF

With the control barrier function obtained, we can now utilize the CBF-QP framework

to implement a safe controller with constraints derived from the learned CBF. We first

assume we have access to a nominal control input from a separate controller that does not

guarantee system safety and can drive the system to dangerous states (Xu for instance). This

controller can be a human controlling the system or an optimal controller that minimizes

certain objectives. The goal is then to alter the nominal input in an minimally invasive way

such that system safety is guaranteed [cite]. Below shows the CBF-QP framework

u(x) = argmin 1
2‖ũ(x) − u‖2 (4.8)

s.t. Af(x) + Ag(x)u ≤ −α(Ax+ b) (4.9)

umin ≤ u ≤ umax (4.10)

where A and b are as defined in  4.6 .

The learned safe invariant set is shown in Fig.  4.5 . The shaded region corresponds to the

half-space {x|hi(x) ≥ 0} and the unshaded region is the invariant set Xcbf . We can see that

Xcbf is a subset of Xρ and that Xcbf ∪ Xu = ∅. A nominal control unominal = −3 is applied

to the system starting at x0 = [0.5, 1]. The CBF-QP framework (  4.8 - 4.10 ) is then used to

obtain a safe control. The magenta line and the green line in Fig.  4.5 represents the system

trajectories with and without the CBF-QP, respectively. We note that the nominal input

drives the system into Xu since it does not concern about safety. On the other hand, the

controller from CBF-QP kept the sytem within Xcbf via a smooth constrained trajectory,
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hence rendering the set forward invariant. Fig.  4.6 denotes a similar case with system

beginning at the initial state x0 = [ − 0.5,−1.5].

Figure 4.5. Comparison of state trajectory with and without CBF safe controller.

Figure 4.6. Comparison of state trajectory with and without CBF safe controller.
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4.4.3 Effect of Input Constraints on Safe Set

Here, we elucidate how the bounds on control input of the system affects the control

barrier function learned and the corresponding safe set. Fig.  4.7 and  4.8 show different

safe sets learned using L = 6 linear functions and the input bounds umin/max equals to ±∞,

±9, and 0, respectively. In Fig.  4.7 , since the control is unbounded, this is equivalent to

not enforcing constraint (  4.9 ) in the optimization problem above. Recall that if the control

is unbounded, we said the condition (  4.4 ) can always be satisfied (if the system is control-

affine) by selecting a large magnitude input. We note in Fig.  4.7 the learned safe set does

not include the bottom left region and this can be attributed to the limited expressive power

of the polytopic representation. Comparing this with Fig.  4.8 , we can see the volume of the

safe set in Fig.  4.8 is significantly smaller due to the control bounds. The shaded region in

Fig.  4.8 can be interpreted as states that cannot be render forward invariant by any input

within the given bounds. Intuitively, these may be states that are too close to the unsafe

states and the input required to drive the system away from Xu is well beyond the system’s

physical limit.

Figure 4.7. Safe set learned using umin/max = ±∞
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Figure 4.8. Safe set learned using umin/max = ±9

4.5 Conclusion and Future Work

In this work, we propose a sampling-based optimization framework to learn a control

barrier function from an application-specific safety measure. We show that given a nonlinear

affine system with input constraints our method is able to learn a set of linear functions

and that the invariant set is indeed the intersection of half-spaces of these functions. We

demonstrate the validity of the approach through a min-norm safe controller in which the

constraints are derived using the learned CBF. There are multiple directions that we would

like to explore as future work. First, we wish to establish a formal proof that enable us

to claim our objective function is indeed maximizing the volume of the learned safe set.

Further, we would like to leverage the results in [  88 ] and use Lipschitz properties to prove

that, given the sampling is done at a fine enough resolution, if all states sampled satisfy

our constraints, then even states that are not sampled will also satisfy such constraints.

Another direction is to explore other representation such as sum-of-squares or ellipsoidal

approximation in hope to improve the expressive power. Finally, we believe this work can

be extended to a data-driven approach where we learn or correct the safe set in real-time as

measurements are received.
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