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PREFACE

The thesis is greatly influenced by the work of Fargues-Fontaine, Scholze, and Fargues-

Scholze. It was in the fall of 2018, after coming back from the summer school on ‘Groupes

algébriques et géométrisation du programme de Langlands’ at Lyon, I found out there is

a simple way to characterize whether an admissible modification of vector bundles with

GK-action is isomorphic to the ones constructed in the book of Fargues-Fontaine from p-

adic Hodge theory. At almost the same time, I read a preprint of Sean Howe where he

defined the terminology of arithmetic Hodge-Tate GK-modules. Then I had the vague idea

that Fargues-Fontaine’s construction could help study the GK-actions on arithmetic Breuil-

Kisin-Fragues modules which defined from arithmetic Hodge-Tate modules of Sean Howe via

Fargues’ classification theorem. The same fall, my advisor Tong Liu told me that something I

study is related to a question of Toby Gee on Breuil-Kisin-Fargues GK-modules with descents

with respect to different uniformizer and Kummer towers. A similar type of question has

also been answered by Tong Liu using (ϕ, Ĝ)-modules.

Most of the results on Breuil-Kisin-Fargues modules of the paper were finished in 2019,

but I was struggled to find a pleasing application to it. In the beginning, I tried to use

the tool I developed to study representations of finite E-height. However, one night in the

summer of 2019 during the summer school on Serre conjectures and the p-adic Langlands

program in Padova, I found out a critical step that I was using is not correct. At the same

time, the conjecture I was working on got proved. So things have to start over.

Later in 2019, the paper of Emerton-Gee on moduli stacks of crystalline representations

came out, and I find my theory has a nice explanation of some of their results, and the first

version of the thesis was done at that time. In 2020, I tried the second time on the problem

on representations of finite E-height based a conjecture of Kedlaya-Liu, but later I found

out the conjecture of Kedlaya-Liu is not correct and was able to find a counterexample of it.

It was finally, by the end of 2020, I found out a application of my theory to the p-adic

monodromy theorem inspired by a question during an online talk I give in Shen Zhen. And

this is how the main body of the thesis comes from.
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I have seen this theory has connections to many new results in the p-adic Hodge theory

these years, and I hope it will show its importance in the future.
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ABSTRACT

Let K be a discrete valuation field with perfect residue field, we study the functor from

weakly admissible filtered (ϕ, N, GK)-modules over K to the isogeny category of Breuil-

Kisin-Fargues GK-modules. This functor is the composition of a functor defined by Fargues-

Fontaine from weakly admissible filtered (ϕ, N, GK)-modules to GK-equivariant modifica-

tions of vector bundles over the Fargues-Fontaine curve XF F , with the functor of Fargues-

Scholze that between the category of admissible modifications of vector bundles over XF F

and the isogeny category of Breuil-Kisin-Fargues modules. We characterize the essential

image of this functor and give two applications of our result. First, we give a new way of

viewing the p-adic monodromy theorem of p-adic Galois representations. Also we show our

theory provides a universal theory that enable us to compare many integral p-adic Hodge

theories at the Ainf level.
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1. INTRODUCTION

1.1 Review of the work of Fargues-Fontaine and Fargues-Scholze

Fargues and Fontaine in [  18 ] construct a complete abstract curve XF F , the Fargues-

Fontaine curve (constructed using the perfectoid field C[
p and p-adic field Qp). For any p-adic

field K, they show OX = OXF F
carries an action of GK , and they define OX-representations

of GK as vector bundles over XF F that carries a continuous OX-semilinear action of GK .

They can show OX-representations of GK can help study p-adic representations of GK in

many aspects. For example, Fargues-Fontaine show there is a nice slope theory on XF F , and

prove that the category of OX-representations such that the underlying vector bundles over

XF F are semistable of slope 0 is equivalence to the category of p-adic Galois representations.

Moreover, they give an explicit construction of slope 0 OX-representations from weakly

admissible filtered (ϕ, N)-modules D over K. Their construction is that: first using D

and the (ϕ, N)-structure, they construct an OX-representation E(D, ϕ, N) of GK whose

underlying vector bundle is not semistable in general, then using the filtration structure of

DK , they constructed a GK-equivariant modification E(D, ϕ, N, Fil•) of E(D, ϕ, N) along a

closed point called∞ on XF F . They can show if D is weakly admissible, then E(D, ϕ, N, Fil•)

is of slope 0, and the Qp-representation corresponds to E(D, ϕ, N, Fil•) is nothing but the log-

crystalline representation corresponding to the data (D, ϕ, N, Fil•). Using this construction,

they give new proofs of some important theorems in p-adic Hodge theory, for instance, the

result that weakly admissible implies admissible, and also the p-adic monodromy theorem

of p-adic Galois representations.

The scheme XF F also plays a role in Scholze’s work. In his Berkeley lecture on p-adic

geometry[ 28 ], Scholze defined a mixed characteristic analog of shtukas with legs. To be more

precise, he introduced the functor Spd(Zp) which plays a similar role of a proper smooth

curve in the equal characteristic story, and for any perfectoid space S in characteristic p,

he was able to define shtukas over S with legs. If we restrict us to the case that when

S = Spa(C) is just a point, with C = C[
p the tilt of the complete algebraic closure of K, and

assume there is just one leg at the point corresponds to the untilt Cp, then he can realize

shtukas over S as (admissible) modifications of vector bundles over XF F along ∞. Here ∞
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is the same closed point on XF F as we mentioned in the work of Fargues-Fontaine. Fargues-

Scholze also show that those shtukas can be realized using some commutative algebra data,

called finite free Breuil-Kisin-Fargues modules, which are modules over Ainf = W (OC) with

some additional structures.

1.2 Arithmetic Breuil-Kisin-Fargues modules and essential images of Fargues-
Fontaine-Scholze functor

If we combine the construction of Fargues and Fontaine of modifications of vector bundles

over XF F from log-crystalline representations and the work of Fargues and Scholze that

relates modifications of vector bundles over XF F with local shtukas and Breuil-Kisin-Fargues

modules, one can expect that if starting with a weakly admissible filtered (ϕ, N)-module over

K, one can produce a finite free Breuil-Kisin-Fargues module (actually only up to isogeny

if we do not specify an integral structure of the log-crystalline representation) using the

admissible modification constructed by Fargues-Fontaine. Moreover, since the modification is

GK-equivariant and all the correspondences of Fargues-Scholze we mentioned are functorial,

we have the Breuil-Kisin-Fargues module produced in this way carries a semilinear GK-action

that commutes with all other structures of it. In this paper, we will study this and call it

the Fargues-Fontaine-Scholze functor. And we have the following result.

Theorem 1.2.1. (Theorem  4.1.3 ) The Fargues-Fontaine-Scholze functor

ηF F S : MFwa
K (ϕ, N, GK)→ BKF(GK)◦

is fully faithful.

Here BKF(GK)◦ is the isogeny category of Breuil-Kisin-Fargues GK-modules(cf. Defi-

nition  4.0.1 ) and MFwa
K (ϕ, N, GK) is the category of weakly admissible filtered (ϕ, N, GK)-

modules over K. We will see in the isogeny category, every Breuil-Kisin-Fargues module is

isomorphic to a finite free Breuil-Kisin-Fargues module(cf. Remark  3.2.3 ), so we make the

following definition:
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Definition 1.2.2. A finite free Breuil-Kisin-Fargues GK-module is called arithmetic if, up

to isogeny, it is in the essential image of the Fargues-Fontaine-Scholze functor ηF F S.

The first result of this paper is that we have a characterization arithmetic Breuil-Kisin-

Fargues modules. Moreover, we can also characterize the essential image of ηF F S on the

subcategory MFwa
K (ϕ, N) (resp. MFwa

K,ϕ) of weakly admissible filtered (ϕ, N)-modules (resp.

weakly admissible filtered ϕ-modules). Recall that for a Breuil-Kisin-Fargues module Minf

it admits a de Rham realization Minf
Cp

= Minf ⊗Ainf ,θOCp and a crystalline realization Minf
K̆

=

Minf ⊗Ainf K̆ where K̆ = W (k)[ 1
p
]. We also define B = Ainf [ 1

p
]/p after the work of Fargues-

Fontaine, here p = {[$]a |$ ∈ mC , a ∈ Ainf [ 1
p
]}.

Theorem 1.2.3. (Theorem  4.2.1 ) Assume the p-adic monodromy theorem for p-adic Galois

representations, then we have:

(1) A Breuil-Kisin-Fargues GK-module Minf is arithmetic if and only if Minf
Cp

[ 1
p
] as a

Cp-representation of GK is Cp-admissible, i.e., it is Hodge-Tate with only 0 weight.

(2) The isogeny class of a Breuil-Kisin-Fargues GK-module Minf is in the essential image

of MFwa
K (ϕ, N) if and only if Minf is arithmetic and there is a GK fixed basis inside

Minf
K̆

.

(3) The isogeny class of a Breuil-Kisin-Fargues GK-module Minf is in the essential image

of MFwa
K,ϕ if and only if (Minf ⊗ B)GK as a K0-vector space has dimension equal to

the rank of Minf .

Remark 1.2.4.

(1) The p-adic monodromy theorem for p-adic Galois representations is required in (1)

of the above theorem, more explicitly, we are using the fact that MFwa
K (ϕ, N, GK)

is equivalent to the category of Qp-representations of GK that are de Rham. We

emphasize this in the statement of this theorem since we will show later in this paper

that given a finite free Breuil-Kisin-Fargues GK-module that satisfies (1) in the above

theorem, we are able to associate it with a weakly admissible filtered (ϕ, N, GK)-

module, this gives another way of proving the p-adic monodromy theorem.

13



(2) The terminology of being arithmetic was first introduced in the work of Howe in [ 20 ,

§4] using Hodge-Tate modules, we can show our definition are the same by (1).

There is also an integral version of the above theorem.

Theorem 1.2.5. (Theorem  4.2.9 ) Assume the p-adic monodromy theorem for p-adic Galois

representations, and let RepdR
Zp

(GK) (resp. Replcr
Zp

(GK), resp. Repcris
Zp

(GK)) be the category

of de Rham (resp. log-crystalline, resp. crystalline) representations of GK over Zp-lattices,

then

(1) There is an equivalence of RepdR
Zp

(GK) with the category of arithmetic Breuil-Kisin-

Fargues GK-modules.

(2) The essential image of Replcr
Zp

(GK) of the functor in (1) are the arithmetic Breuil-

Kisin-Fargues modules such that there is a GK fixed basis inside Minf
K̆

.

(3) The essential image of Repcris
Zp

(GK) of the functor in (1) are Breuil-Kisin-Fargues

GK-modules such that (Minf⊗B)GK as a K0-vector space has dimension equal to the

rank of Minf .

Remark 1.2.6.

(1) Using unramified descent(cf. Lemma  1.6.2 ), one can show in Theorem  1.2.3 and

Theorem  1.2.5 one can replace GK by IK and K0 by K̆ in the statement.

(2) From the work of [  6 ], we know there is a large class of Breuil-Kisin-Fargues GK-

modules comes from geometry: start with a proper smooth formal scheme X over

OK , and let X be its base change to OCp . Then there is a Ainf-cohomology theory

attached to X which is functorial in X, so all the Ainf-cohomology groups H i
Ainf

(X)

carry natural semi-linear GK-actions that commute with all other structures. If we

take the maximal free quotients of the cohomology groups, then they are all arithmetic

automatically from the étale-de Rham comparison theorem. So being arithmetic is

the same as asking an abstract finite free Breuil-Kisin-Fargues GK-module to satisfy

14



étale-de Rham comparison theorem. We also have [  6 , Theorem 14.1] shows that there

is a canonical isomorphism

H i
crys(XOCp /p/Acris)[

1
p

] ∼= H i
crys(Xk/W (k))⊗W (k) B+

cris,

and we will see this is equivalent to condition (3) in Theorem  1.2.5 .

(3) From Theorem  1.2.5 , it is natural to ask if we can compare our theory of arithmetic

BKF modules with other theories in integral p-adic Hodge theory. In Section  6 ,

we will compare our theory with Breuil-Kisin theory (cf. [  21 ]) and Liu’s theory of

(ϕ, Ĝ)-modules theory (cf. [  25 ]) and a recent theory of Breuil-Kisin GK-modules of

Gao (cf. [  19 ]). In the work of Liu and Gao, they both need an input of Kisin’s theory,

which relies on a choice of Kummer tower K∞ over K, however, it was observed in

[ 26 ] and [  16 ] that there should be some compatibility of Kisin’s theory for different

choices of Kummer towers over K for log-crystalline representations. We will see in

§  6.3 , our theory of arithmetic BKF modules will give a very nice explanation of such

phenomena.

(4) In the work of Bhatt-Morrow-Scholze[ 7 ] and Bhatt-Scholze[ 8 ], they show that the

above Ainf-cohomology theory descent to a Breuil-Kisin cohomology theory. We will

explore the relation of our crystalline condition (3) in Theorem  1.2.3 with the pris-

matic condition of Bhatt-Scholze in future work.
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The Idea of proof. We use the following famous picture of Spa(Ainf) of Scholze:

xCp defined by ξ = 0

xét the étale realization T (Minf)

xcris

xk

ϕAinf

p = 0

[$] = 0

The fiber Minf ⊗ Cp

Spa(Ainf)

By Fargues’ classification theorem (cf. Theorem  3.2.9 ) of Breuil-Kisin-Fargues modules,

we have in our definition of arithmetic Breuil-Kisin-Fargues modules one just need to de-

termine the GK-action on Minf at xét and xCp , however, if we want to look closer to see

which weakly admissible filtered (ϕ, N, GK)-modules corresponds to Minf , the information

is actually at xcris. And the method to see how does the GK-action expand from the two

points xét and xCp is to use Fargues-Fontaine’s ηF F and translate their result in terms of

ϕ-modules over certain subspaces of Spa(Ainf).

1.3 p-adic monodromy theorem as the inverse of Fargues-Fontaine-Scholze func-
tor

Let Minf be an arithmetic Breuil-Kisin-Fargues GK-module, then if one assume the p-

adic monodromy theorem for p-adic Galois representations, then we have seen the isogeny

class of Minf corresponds to a weakly admissible filtered (ϕ, N, GK)-module over K via the

Fargues-Fontaine-Scholze functor. We will show there is an inverse theorem in the following

sense:

Theorem 1.3.1. (Theorem  5.1.15 , p-adic monodromy theorem for arithmetic BKF modules)

Let BKFa(GK) be the subcategory of Breuil-Kisin-Fargues GK-modules that consists of

Minf ∈ BKF(GK) satisfying that Minf
Cp

as a representation of GK is Cp-admissible, i.e.

16



arithmetic Breuil-Kisin-Fargues GK-modules, and let BKFa(GK)◦ be its isogeny category,

then there is a functor

ωF F S : BKFa(GK)◦ →MFwa
K (ϕ, N, GK)

which is the quasi-inverse of ηF F S.

More explicitly, given Minf in BKFa(GK), let D = Minf
K̆

, we will show using the GK-

action on Minf we can restore the filtered (ϕ, N, GK)-module structure on for D. We will show

our p-adic monodromy theorem for arithmetic Breuil-Kisin-Fargues modules is equivalent to

the p-adic monodromy theorem for p-adic Galois representations, that is every de Rham

representation is potentially log-crystalline.

Remark 1.3.2.

(1) Comparing to the existing proofs of p-adic monodromy theorem for p-adic Galois

representations, c.f. [  5 ] [ 12 ] and [ 18 ], our proof is not completely new, actually in the

construction of the monodromy operator N in our Proposition  5.1.10 is relied on [  12 ,

Proposition 10.11] which is also used as a key step of the proof p-adic monodromy

theorem in [ 12 ] and [ 18 ].

(2) Even the proof is not completely new, we will explain why it is very natural to relate

the p-adic monodromy theorem with Breuil-Kisin-Fargues modules. In particular, we

will see in §  5.1.17 that ωF F S can be viewed as “K-rational version” of Scholze’s “?”

functor considered in [ 28 ].

1.4 Comparisons of different integral p-adic Hodge theory

We will prove a rigidity result of arithmetic Breuil-Kisin-Fargues GK-modules.

Lemma 1.4.1. (Lemma  5.1.16 ) For any two arithmetic Breuil-Kisin-Fargues GK-modules

Minf
1 and Minf

2 , if T (Minf
1 ) ' T (Minf

2 ), then Minf
1 'Minf

2 .

In classical integral p-adic Hodge theory has many results that show Rep∗
Zp

(GK) for

∗ ∈ {cris, lcr, dR} are equivalent to ϕ-modules or (ϕ, GK)-modules over subrings of Ainf . For

17



example, there are theory of Wach modules (cf. [ 4 ]), Kisin-Ren’s theory (cf. [  23 ]), Kisin

modules (cf. [  21 ]), (ϕ, Ĝ)-modules (cf. [  25 ]), and Breuil-Kisin GK-modules (cf. [  19 ]). We

will show those ϕ-modules or (ϕ, GK)-modules after a suitable base change to Ainf , give

rise to arithmetic Breuil-Kisin-Fargues, and the rigidity result in Lemma  1.4.1 allows us to

compare those theories at Ainf-level. Questions of this kind was firstly considered in [  26 ],

and recently also in [  16 ] that discusses about the compatibility of Kisin’s theory for different

choices of uniformizers and Kummer towers for log-crystalline representations.

1.5 Structure of the paper

In Chapter  2 , we will review the theory of Fargues-Fontaine curve and the construc-

tion of GK-equivariant modifications of vector bundles over XF F from weakly admissible

filtered (ϕ, N, GK)-modules. In Chapter  3 , we will review various theories of ϕ-modules and

their relations with vector bundles over the Fargues-Fontaine curve. Then we will review

Fargues’s classification theory for Breuil-Kisin-Fargues modules and the relation of isogeny

classes of Breuil-Kisin-Fargues modules and admissible modifications of vector bundles. In

Chapter  4 , we will define the Fargues-Fontaine-Scholze functor ηF F S from MFwa
K (ϕ, N, GK)

to the isogeny category of Breuil-Kisin-Fargues GK-modules and prove our main result on

characterization of the essential images of ηF F S on MFwa
K (ϕ, N, GK) and on some typical

subcategories of MFwa
K (ϕ, N, GK). In Chapter  5 , we will give our first application to prove

the p-adic monodromy theorem of p-adic Galois representations, and we will discuss the rela-

tion of p-adic monodromy theorem and Scholze’s ‘?’ functor. In Chapter  6 , we will apply our

theory to show the compatibility of many existing theories in integral p-adic Hodge theory.

1.6 Notions and conventions

Throughout this paper, k will be a perfect field in characteristic p. Let K0 = W (k)[ 1
p
]

and OK0 = W (k). Let K be a totally ramified finite extension of K0, write OK as the

ring of integers of K and let $ be a uniformizer. Let K̆ = W (k)[ 1
p
] and define IK be the

inertia group inside GK . By a compatible system of pn-th roots of $, we mean a sequence
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of elements {$n}n≥0 in K with $0 = $ and $p
n+1 = $n for all n. We normalize the p-adic

valuation on K by vK(p) = 1.

Define Cp as the p-adic completion of K, there is a unique valuation v = vCp on Cp

extending the p-adic valuation on K. Let OCp = {x ∈ Cp|v(x) ≥ 0} and let mCp = {x ∈

Cp|v(x) > 0}. We will have OCp/mCp = k.

Let C = C[
p be the tilt of Cp, then by the theory of perfectoid fields, C is algebraically

closed of characteristic p, and complete with respect to a nonarchimedean norm. Let OC be

the ring of the integers of C, then OC = O[
Cp

= lim←−x 7→xp
OCp . C is also a nonarchimedean

field, we will denote the valuation by vC and normalize it by vC(x) = vCp(x0) for x =

(x0, x1, . . .) ∈ lim←−x 7→xp
OCp . We will also write it by v if there is no confusion. We define

mC = {x ∈ C | vC(x) > 0}. Define Ainf = W (OC), there is a Frobenius ϕAinf acts on Ainf .

Ainf is equipped with a surjection θ : Ainf → OCp satisfies θ([x]) = x0 for x = (x0, x1, . . .) ∈

lim←−x 7→xp
OCp . We will have the kernel of θ is principal and let ξ be a generator of Ker(θ). We

will write ξ̃ = ϕ(ξ) following the notation used in [ 6 ]. There is a GK-action on Ainf from its

action on OC , one can show θ is GK-equivariant.

1.6.1 Notion MFK(ϕ, N, GK)

A filtered (ϕ, N)-module over K is a finite dimensional K0-vector space D equipped with

two maps

ϕ, N : D → D

such that

(1) ϕ is semi-linear with respect to the Frobenius ϕK0 ;

(2) N is K0-linear;

(3) Nϕ = pϕN .

And a decreasing, separated and exhaustive filtration on the K-vector space DK = K⊗K0 D.

Let L be a finite Galois extension of K and let L0 = W (kL)[ 1
p
]. A filtered (ϕ, N, Gal(L/K))-

module over K is a filtered (ϕ, N)-module D over L together with a semilinear action of

Gal(L/K) on the L0-vector space D, such that:
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(1) The action is semilinear with respect to the action of Gal(L/K) on L0 via Gal(L/K) �

Gal(kL/k) = Gal(L0/K0).

(2) The semilinear action of Gal(L/K) commutes with ϕ and N .

(3) The filtration on D⊗L0 L is stable under the diagonal action of Gal(L/K) on D⊗L0 L,

i.e., it defines a filtration on DK := (D ⊗L0 L)GK .

If L′ is another finite Galois extension of K containing L, then one can show there is a fully

faithful embedding of the category of filtered (ϕ, N, Gal(L/K))-modules into the category of

filtered (ϕ, N, Gal(L′/K))-modules. One defines the category of filtered (ϕ, N, GK)-modules

MFK(ϕ, N, GK)

to be the limit of filtered (ϕ, N, Gal(L/K))-modules over all finite Galois extensions L of K.

Let K̆ = W (k)[ 1
p
], and IK = GalK̆ . For any D ∈MFK(ϕ, N, GK) that is define over L,

we let D = D⊗L0 K̆, then we have there is a continuous semilinear action of GK on D such

that IK acts on D with open kernel. We will have the inverse of this is also true:

Lemma 1.6.2. For a finite-dimensional K̆ vector space D with a continuous semilinear

action of GK such that the action is trivial when restricting to an open subgroup H of IK,

we will have

D = (D)GL ⊗L0 K̆

for a finite extension L of K. Moreover, L can be chosen to be a totally ramified extension

of K, i.e., we can assume L0 = K0.

Proof. We can not apply Galois descent directly in this case. We give a sketch of the proof.

First since the action is continuous and W (k) is DVR, so fix a lattice Λ inside D, we have

Λ is P stable for an open subgroup P of GK . Moreover, since GK is compact, a standard

trick will imply that there is GK stable lattice Λ0 in D. Let Λ0 = Λ0 mod p. Let L be

the corresponding totally ramified extension of K̆, using Krasner’s lemma, we can always

choose a uniformizer $ of L such that $ is algebraic over K and defines a totally ramified

extension L of K. We have GL acts on Λ0 via GL � Gk, and the k vector space Λ0 is with

20



the discrete topology. So we can apply Galois descent to the Gk semilinear action on Λ0 and

use the exact sequence

0→ Λ0
p−→ Λ0 → Λ0 → 0

one can argue via successive approximation by lifting to show ΛGL
0 is of full rank, inverting

p one get

D = (D)GL ⊗L0 K̆.

For details of the last part of the proof, one can refer to Lemma 3.2.6 of [ 9 ].

By the above lemma, for any D ∈MFK(ϕ, N, GK) we can always assume the underlying

ϕ-module is defined over K̆ and equipped with a continuous semilinear GK-action such that

the restricted action on IK has an open kernel. We will use this fact later in this paper.

1.6.3 Notion MFwa
K (ϕ, N, GK)

We will let MFwa
K (ϕ, N, GK) be the subcategory of MFK(ϕ, N, GK) consisting of weakly

admissible objects. And we define its subcategory MFwa
K (ϕ, N) (resp. MFwa

K,ϕ) which is the

category of weakly admissible filtered (ϕ, N)-modules (ϕ-modules).

1.6.4 Notion Linearization

Let R be a ring equipped with an endomorphism ϕ, for a R-module M , we write ϕ∗M

to be M ⊗R,ϕ R.

1.6.5 Conventions for semistable and log-crystalline

In this paper, we will use the notion of log-crystalline representations instead of semistable

representations to make a difference to the semistability of vector bundles over complete

regular curves.
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1.6.6 Conventions for Hodge-Tate weights

We will use covariant functors when relate étale ϕ-modules and Galois representation, so

we will assume the cyclotomic character has Hodge-Tate weight −1.

1.6.7 Conventions for modifications of vector bundles

We will see in our definition of modifications of vector bundles, we always mean the

modification is admissible, i.e., a modifications such that the first vector bundle is semistable

of slope 0.
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2. FARGUES-FONTAINE CURVE AND THE

FARGUES-FONTAINE FUNCTOR

In this chapter, we will first review the construction and properties of the Fargues-Fontaine

curve over the perfectoid field C, and then we will recall the Fargues-Fontaine functor from

MFwa
K (ϕ, N, GK) to the category of GK-equivariant modifications of vector bundles over the

Fargues-Fontaine curve.

2.1 The p-adic fundamental curve of Fargues and Fontaine

Recall C is the tilt of Cp, to define the Fargues-Fontaine curve over C, we first review

some basic period rings of Fontaine.

Let Ainf = W (OC) and recall there is a canonical surjection

θ : Ainf → OCp

such that θ([x]) = x0 for x = (xi) ∈ lim←−x 7→xp
OCp . Let ξ be a generator of Ker(θ). Let

B+
dR = lim←−n

Ainf [ 1
p
]/(ξnAinf [ 1

p
]) and recall the topology on B+

dR is the weak topology. And

BdR = B+
dR[1

ξ
] equipped with a Z-filtration Filn BdR = ξnB+

dR. Also recall that Acris is defined

as the p-completed PD envelope of Ainf → OCp . Let B+
cris = Acris[ 1

p
]. Acris and B+

cris can be

regarded as subrings of BdR, and recall the element t = log[ε] ∈ Fil1 BdR is well-defined

where ε = (ζi)i ∈ C is defined by a compatible system of pn-th roots of units with ζ0 = 1.

Let Bcris = B+
cris[1

t
]. Let $ = ($i) ∈ C defined by a compatible system of pn-th roots of $

with $0 = $ a unifromizer of OK . Then

log[$] :=
∑
i≥1

−(1− [$]/$)i

i

is well-defined in Fil1 BdR and we define B+
st = B+

cris[log[$]] and Bst = Bcris[log[$]] with the

unique Bcris-derivation determined by N(log[$]) = 1.

Remark 2.1.1. Here we use the convention that N(log[$]) = 1 as [  18 , §10.3.2] when they

define N on Blog, this is also compatible with the convention used in [  22 ]. We will use this fact
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when we compare our theory of arithmetic Breuil-Kisin-Fargues modules and Breuil-Kisin

theory.

Remark 2.1.2. When we discuss potentially log-crystalline representations, there will be

an issue of change of field, we might need to consider log[$L] where {$L} is defined by a

compatible system of pn-th roots of a uniformizer $L of a finite extension L of K. We can

always choose $L = $e mod p for some e ∈ N, and we know $L ∈ C only depends on the

classes of $L,n mod p, so we can always choose $L = $e. So in particular log[$L] = e log[$]

and they will define the same subring Bst inside BdR.

For every subring A of BdR, define Filn A = A ∩ Filn BdR for all n ∈ Z. Recall that the

Frobenius ϕ on Ainf extensions to Acris, B+
cris, Bcris and Bst. We define Be = Bϕ=1

cris , we have

Lemma 2.1.3. The inclusion Be → BdR induces an exact sequence

0→ Qp → Be → BdR/B+
dR → 0.

Moreover, one has Be is actually a PID, and this is actually one of the motivations to

define the Fargues-Fontaine curve. For the story behind this, one can refer to [  13 ].

For the Fargues-Fontaine curve XF F := XC,Qp (here we use the notion in [  18 , Definition

6.5.1.], where they construct Fargues-Fontaine curves XF,E for pairs (F, E) where F is any

perfectoid field in characteristic p and E is a discrete valuation field), an abstract definition

of XF F is that XF F is a scheme fits into the following Cartesian diagram

XF F Spec(Be)

Spec(B+
dR) Spec(BdR)

p (2.1.3.1)

In particular, we have XF F = Spec(Be)
∐{∞} such that XF F,∞ = B+

dR. Fargues-Fontaine

give an explicit construction

XF F = Proj⊕i≥0(B+
cris)ϕ=pi

.
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Recall t = log[ε] satisfies ϕ(t) = pt, so it is a section of O(1). Fargues-Fontaine showed that

t has a unique zero ∞ ∈ XF F , then we summarize some of the main results in [ 18 ]:

Theorem 2.1.4. The pointed scheme (XF F ,∞) fits into the diagram  2.1.3.1 , and we have:

(1) XF F is a regular noetherian scheme of Krull dimension 1, or an abstract regular

curve in the sense of Fargues and Fontaine.

(2) Xe = XF F\{∞} is an affine scheme Spec(Be).

(3) Vector bundles E over XF F are equivalence to B-pairs (Me, M+
dR, ι), where Me =

Γ(Xe, E) is a finite projective module over Be, M+
dR is a finite free module over B+

dR,

and ι is an isomorphism of Me and M+
dR over BdR. And the functor is given by

E 7→ (Γ(Spec(Be), E), E∞, ι).

One advantage of having an explicit definition of XF F is that one can have the following

construction of vector bundles from isocrystals.

Theorem 2.1.5. (Theorem 8.2.10 in [ 18 ]) Let (D, ϕ) be an isocrystal over k, then (D, ϕ)

defines a vector bundle E(D, ϕ) over XF F which is associated with the graded module

⊕n≥0(D ⊗K̆ B+
cris)ϕ=pn

.

Moreover, this functor induces a bijection of isomorphism classes.

Definition 2.1.6.

(1) Let E be a vector bundle over XF F , assume E ∼= E(D, ϕ) under the above theorem, let

the multi-set {−λi} be the slope of (D, ϕ) under the Dieudonné-Manin classification

theorem, we define the slope of E to be the multi-set {λi}.

(2) E is called semistable of slope λ if and only if E corresponds a semisimple isocrystal

of slope −λ. Rank 1 vector bundle of slope n is denoted by O(n) which corresponds

to (K̆, p−nϕK̆).

25



(3) Let BunXF F
be the category of vector bundles over XF F and let Bunλ

XF F
be the

subcategory of semistable vector bundles of slope λ.

A consequence of Theorem  2.1.5 is

Corollary 2.1.7.

(1) The category of isocrystals semisimple of slope −λ is equivalent to Bunλ
XF F

.

(2) In particular, when λ = 0, the category of finite-dimensional Qp-vector spaces is

equivalent to Bun0
XF F

, and the functor is given by

V → V ⊗Qp OX

with quasi inverse

E → H0(XF F , E).

Proof. This is [ 18 , Theorem 9.2.2].

Definition 2.1.8. Let M odifXF F
be the category of triples (E0, E1, ι) ∈M odifXF F

, where

• E0 ∈ Bun0
XF F

;

• E1 ∈ BunXF F
;

• ι : E0|XF F −{∞}
∼−→ E1|XF F −{∞}.

We will also denote this by E0 99K E1 if no confusion arises.

Lemma 2.1.9. M odifXF F
is equivalent to the category of pairs (V, Ξ), where

• V is a finite dimensional vector space over Qp;

• Ξ ∈ V ⊗Qp BdR is a B+
dR-lattice.

Proof. By (3) in Theorem  2.1.4 , use the B-pair description of vector bundles over XF F ,

we have for E0 99K E1 ∈ M odifXF F
, then E0 and E1 have the same Be-part, so the mod-

ification can can be determined by (E0, Ξ) where Ξ = E1,∞ is the B+
dR part of E1. Now

by Corollary  2.1.7 , this is the same as (V, Ξ) as in the statement of this lemma if we let

V = H0(XF F , E0).
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2.2 p-adic representations and modifications of vector bundles on the curve

We have OX = OXF F
has a continuous action of GK via its action on B+

cris, and ∞ is

fixed by GK .

Definition 2.2.1.

(1) Let BunX(GK) be the category of GK-equivariant vector bundles over XF F such

that the GK-semilinear action is continuous. Here the notion of continuity can be

interpreted using the B-pair description of vector bundles over XF F (c.f. (3) in The-

orem  2.1.4 ). That is continuity is the same as the Be and B+
dR parts of the vector

bundle both carry a continuous semilinear action of GK . Objects in BunX(GK) are

also called OX-representations of GK .

(2) Let M odifX(GK) be the category of GK-equivariant modifications of vector bundles,

i.e. triples (E0, E1, ι) ∈ M odifXF F
such that both E0, E1 ∈ BunX(GK) and ι is GK-

equivariant.

Here is another interpretation of the GK-action using cocycles, cf. [ 18 , Proposition 9.1.5].

Lemma 2.2.2. Fix E ∈ BunXF F
, given a GK-equivariant structure on E is the same as

choosing a continuous 1-cocycles f = (fg)g ∈ Z1(GK , Aut(E)). And the isomorphic classes

of GK-equivariant structure on E is bijective to H1(GK , Aut(E)).

Definition 2.2.3. [ 18 , Definition 9.1.6] Given E ∈ BunX(GK) and a continuous 1-cocycles

a = (ag)g inside Z1(GK , Aut(E)). And let f = (fg)g ∈ Z1(GK , Aut(E)) be a cocylce rep-

resents the GK-equivariant structure on E , and let [f ] ∈ H1(GK , Aut(E)) be it cohomology

class. Then one can show ag ◦ [fg] is a well-defined element in H1(GK , Aut(E)) and we will

define the corresponded OX-representation by a∧E ∈ BunX(GK), i.e., it is the vector bundle

with the same underlying OX-structure as E and the GK-equivariant structure is defined by

ag ◦ [fg] via Lemma  2.2.2 .

In the rest of this section, we review Fargues-Fontaine’s functor

ηF F : MFwa
K (ϕ, N, GK)→M odifX(GK).
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The main reference is [ 18 , §10.3.2]. Keep the notions as in Theorem  2.1.5 .

2.2.4 Construction of E(D, ϕ, N, GK)

Let D be a filtered (ϕ, N, GK)-module, recall as we have mentioned in Lemma  1.6.2 , the

underlying ϕ-module (D, ϕ) can always be treated as an isocrystal over k, and let

E(D, ϕ) = ˜⊕n≥0(D ⊗K̆ B+
cris)ϕ=pn

be the vector bundle over XF F corresponds to (D, ϕ) under the equivalence in Theorem  2.1.5 .

We have the GK-action on D defines a continuous GK-action on E(D, ϕ) via the diagonal

action on D ⊗K̆ B+
cris and we use E(D, ϕ, GK) to refer this OX-representation.

Note that this construction is functorial, so the relation Nϕ = pϕN tells that N defines

a GK-equivariant map

N : E(D, ϕ, GK)→ E(D, pϕ, GK) = E(D, ϕ, GK)⊗OX
O(−1).

Recall we define log[$] := log( [$]
$

) and t = log[ε] inside B+
dR. For every g ∈ GK , let

log$,g = g(log[$]) − log[$]. We will have log$,g = log([εcg ]) = cgt for a 1-cocycle c = (cg)g

valued in Q×
p , so log$,g is inside (B+

cris)ϕ=p, i.e. log$,g defines a morphism from O(−1) to O.

So we know the composition:

βg : E(D, ϕ) E(D, ϕ)⊗O(−1) E(D, ϕ)⊗OX
OX = E(D, ϕ)N

Id⊗log$,g

defines an element in End(E(D, ϕ)). Moreover, since log$,g is a Qp multiple of t, so (log$,g)g

defines an element in Z1(GK , (B+
cris)ϕ=p), so β = (βg)g defined as above is an element in

Z1(GK , End(E(D, ϕ))), and by the nilpotence of N , we have the image of β lies in the

nilpotent elements of End(E(D, ϕ)). So we can define

α = (αg)g = (− exp(βg))g ∈ Z1(GK , Aut(E(D, ϕ))). (2.2.4.1)
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Fargues-Fontaine define a new GK-action on the vector bundle E(D, ϕ) by twisting, we let

E(D, ϕ, N, GK) = α ∧ E(D, ϕ, GK).

i.e., E(D, ϕ, N, GK) is isomorphic to E(D, ϕ) as vector bundle, and the GK-action is given

by twisting the GK-action of E(D, ϕ, GK) with the 1-cocycle α(cf. Definition  2.2.3 ).

There is another way of thinking about this new action.

Lemma 2.2.5. Let D be a (ϕ, N)-module. There is an ϕ-equivariant isomorphic

D ⊗K̆ B+
cris

∼−→ (D ⊗K̆ B+
st)N=0

y 7→ ŷ :=
∑
i≥0

(−1)i

i! N i(v)⊗ log([$])i,

for every y ∈ D and extends linearly to D ⊗K̆ B+
cris.

Proof. Here we will use a similar computation in [  25 , §7.2]. Write X = log([$]) and γi(X) =
Xi

i! . We have N(γi(X)) = γi−1(X) by our convention N(X) = 1. And we have

N(ŷ) =
∑
i≥0

(−1)i(N i+1(v)⊗ γi(X) + N i(v)⊗ γi−1(X)) = 0

i.e., ŷ ∈ (D⊗K̆ B+
st)N=0. A direct computation also shows that y → ŷ is ϕ-equivariant. And

we define

D̂ = {v̂ | v ∈ D}.

One can check D̂ has a structure of isocrystal over k via

K̆ ↪−→ (B+
st)N=0 ↪−→ B+

st

and it is isomorphic to D. Moreover via B+
cris = (B+

st)N=0 ↪−→ B+
st , one have (D⊗K̆ B+

st)N=0 is

a B+
cris-module which is isomorphic to D̂ ⊗K̆ B+

cris.

If D ∈ MFK(ϕ, N, GK), given D ⊗ B+
st the diagonal action of GK , then we can view

D ⊗B+
cris as a GK-stable subspace of D ⊗B+

st via the the above lemma.
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Lemma 2.2.6. With the notions in Lemma  2.2.5 , we have GK acts on (D ⊗K̆ B+
st)N=0 by

g(ŷ) = exp(− log$,g N))(ĝ(y)).

Proof. We can write ŷ = exp(− log([$])N)(y) for y ∈ D. Use the fact that the GK-action

commutes with N , we have

g(ŷ) = g(exp(− log([$])N)(y))

= exp(−g(log([$]))N)(g(y))

= exp((− log$,g− log([$]))N)(g(y))

= exp(− log$,g N) exp((− log([$])N)(g(y))

= exp(− log$,g N)(ĝ(y)).

In terms of vector bundles, the map y 7→ ŷ in Lemma  2.2.5 defines an isomorphism of

graded modules:

ĥ : ⊕i≥0(D ⊗B+
cris)ϕ=pi ∼−→ ⊕i≥0(D ⊗B+

st)N=0,ϕ=pi
,

So it defines an automorphism ĥE of E = E(D). Given ⊕i≥0(D⊗B+
st)N=0,ϕ=pi the GK-action

defined in Lemma  2.2.6 , and Lemma  2.2.6 implies this action, in terms of cocylces, is given

by

(αg ◦ ĥE ◦ fg ◦ ĥ−1
E )g,

where (fg)g is a coclyce defines the GK-structure of E(D, ϕ, GK) and αg is defined in  2.2.4.1 .

In other words, this action is exactly α ∧ E(D, ϕ, GK) by Definition  2.2.3 .

2.2.7 Be and B+
dR-representations of GK

From (3) in Theorem  2.1.4 , one can also describe an OX-representation in term of B-

pairs, we want to note that the terminology of B-pairs was first appeared in the work of

Berger [ 3 ].

30



Proposition 2.2.8. An OX-representation E is equivalence to a GK-representation on a

B-pair (Me, M+
dR, ι). Here Me = Γ(Xe, E) (resp. M+

dR) is a finite free Be-module (resp. B+
dR-

module) with a continuous GK-semilinear action, and ι is a GK-equivariant isomorphism of

Me and M+
dR over BdR.

We want to describe E(D, ϕ, N, GK) in terms of B-pairs. For the B+
dR part, we want to

mention the following results. They play a critical role in our theory.

Definition 2.2.9. A BdR(resp. B+
dR)-representation of GK is a finite free BdR (resp. B+

dR)

module together with a continuous GK-semilinear action. We say a BdR (resp. B+
dR)-

representation W of GK is flat (resp. generically flat) if dimK(W GK ) = dimBdR W (resp.

dimK(W [1
t
]GK ) = dimBdR W [1

t
]).

Proposition 2.2.10.

(1) − ⊗K BdR induces an equivalence of finite dimensional K vector space and flat

BdR-representations of GK , and the quasi-inverse is given by W 7→ W GK .

(2) (V, Fil• V ) 7→ Fil0(V ⊗K BdR) induces an equivalence of filtered K vector spaces

and generically flat B+
dR-representations of GK , and the quasi-inverse is given by

W 7→ (W [1
t
]GK , (t•W )GK ).

(3) A rank d B+
dR-representation W of GK is generically flat if and only if there exist

(a1, . . . , ad) ∈ Zd such that

W ' ⊕d
i=1t

aiB+
dR.

Proof. This is §10.4 [ 18 ].

We also make the following definition of B+
dR-flat representations. They are one of the

key ingredients in our theory.

Definition 2.2.11. A B+
dR-representation W of GK of rank d is flat if there is a GK-

equivariant isomorphism

W ' ⊕d
i=1B

+
dR.
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Proposition 2.2.12.

(1) The B+
dR-representation W of GK is B+

dR-flat if and only if W ⊗B+
dR

Cp as a Cp-

representation is Cp-admissible, i.e., it is Hodge-Tate with all weight equal to 0.

(2) There is an equivalence of B+
dR-flat representations of GK and finite dimensional

K-vector space, and the functor is given by W 7→ (W [1
t
])GK with quasi-inverse given

by V 7→ V ⊗K B+
dR.

Proof. For (1), the author’s proof first appeared in [  16 , Proposition F.13.]. Assume that

W ⊗B+
dR

Cp has a GK-stable basis, we need to construct a GK-stable basis of W . Recall that

B+
dR has the weak topology such that the quotients B+

dR/(ξn) ' Cn
p are equipped with the

p-adic topology, so we will argue via constructing a successive lifting of GK-fixed basis {e(n)
i }

of W/tiW satisfying e(n)
i = e(n+1)

i mod (ξn) for all n ≥ 1.

For n = 1, this is given by the assumption. And assume we have already constructed

{e(n−1)
i }, we choose an arbitrary lifting {ẽ(n)

i } of {e(n−1)
i } to W ⊗B+

dR
B+

dR/(ξn). For g ∈ GK ,

assume g acts by

g.(ẽ(n)
1 , ẽ(n)

2 , ..., ẽ(n)
d ) = (ẽ(n)

1 , ẽ(n)
2 , ..., ẽ(n)

d ).A(n)
g

we have the following diagram:

g.(ẽ(n)
1 , ẽ(n)

2 , ..., ẽ(n)
d ) (ẽ(n)

1 , ẽ(n)
2 , ..., ẽ(n)

d )A(n)
g

g.(e(n−1)
1 , e(n−1)

2 , ..., e(n−1)
d ) (e(n−1)

1 , e(n−1)
2 , ..., e(n−1)

d )

mod (ξn−1) mod (ξn−1)

Let d = rank(M), we have A(n)
g is a d × d matrix with coefficients in B+

dR/(ξn) satisfies

A(n)
g ≡ Id mod (ξn−1). Recall, t is also a generator of (ξ) in B+

dR, so one can write

A(n)
g = Id + tn−1B(n)

g

for some B(n)
g ∈ Md(B+

dR/(ξn)) and this expression is uniquely determined by the class of

B(n)
g in Md(B+

dR/(ξ)).
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The map g 7→ A(n)
g defines a 1-cocycle of GK in GLd(B+

dR/(ξn)). And by a simple

computation, we will have B
(n)
hg = B

(n)
h + χn−1(h)h(B(n)

g ), i.e., the map g 7→ B(n)
g defines a

1-cocycle of GK in Md(B+
dR/(ξ)(n−1)), that is, a 1-cocycle of GK in Md×d(Cp(n−1)). Since

n > 1 by our assumption, by Tate-Sen, we have such a 1-cocycle is a 1-coboundary, i.e.,

there is a α(n) ∈Md(Cp) such that B(n)
g = χn−1(g)g(α(n))− α(n).

Then let (e(n)
1 , e(n)

2 , ..., e(n)
d ) = (ẽ(n)

1 , ẽ(n)
2 , ..., ẽ(n))(Id − tn−1α(n)), we have:

g.(e(n)
1 , ..., e(n)

d ) = (ẽ(n)
1 , ..., ẽ(n)

d )(Id + tn−1B(n)
g )g.(Id − tn−1α(n))

= (ẽ(n)
1 , ..., ẽ(n)

d )(Id + tn−1B(n)
g − g.tn−1g.(α(n)))

= (ẽ(n)
1 , ..., ẽ(n)

d )(Id + tn−1(χn−1(g)g(α(n))− α(n))− χn−1(g)tn−1g.(α(n)))

= (ẽ(n)
1 , ..., ẽ(n)

d )(Id − tn−1α(n))

and satisfies e(n−1)
i ≡ e(n)

i mod (ξn−1).

For (2), it is a consequence of (2) in Proposition  2.2.10 .

Remark 2.2.13.

(1) Given a p-adic de Rham representations V of GK , there are two ways to assign a

GK-stable B+
dR-lattice in V ⊗Qp BdR. Using (2) of Proposition  2.2.10 , we know there

is a lattice Ξ0 that corresponds to DdR(V ) with the Hodge filtration. On the other

hand, we can also give DdR(V ) the trivial filtration, and produce another GK-stable

lattice Ξ1 = DdR(V )⊗K B+
dR.

(2) B+
dR is not (Qp, GK)-regular since tB+

dR is GK-stable but t is not a unit. However

one can define for a Qp-representation V it is called B+
dR-admissible if the following

holds

(V ⊗Qp B+
dR)GK ⊗K B+

dR
∼−→ V ⊗K B+

dR.

Then one can show by Proposition  2.2.10 , B+
dR-admissibility is equivalent to BdR-

admissibility plus the condition that the Hodge-Tate weights are non-negative (one

can also refer to [  9 , Exercise 15.5.5]). In [ 16 , Proposition F.13.], the proof actually

shows that the representation T is B+
dR-admissibility, and that is the reason why they
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require the Frobenius on Breuil-Kisin-Fargues modules is an endomorphism. We will

come back to this issue.

Recall the following result of Berger on Be-representations and (ϕ, N)-modules.

Proposition 2.2.14. [ 18 , p. 10.3.20] There are functors

Dlog : RepBe(GK) −→ (ϕ, N)-modules

M 7→ (M ⊗Be Bst)GK

and

Vlog : (ϕ, N)-modules −→ RepBe(GK)

D 7→ (D ⊗K̆ Bst)ϕ=1,N=0

We have Id ∼−→ Dlog ◦ Vlog, and Vlog ◦Dlog(M) = M if and only if M is in the essential image

of Vlog. Similar result holds when replacing (ϕ, N)-modules by ϕ-modules and Bst by Bcris.

2.2.15 B-pairs for E(D, ϕ, N, GK) and E(D, ϕ, N, Fil•, GK)

Fargues-Fontaine give a nice description of the OX-representation E(D, ϕ, N, GK) in

terms of B-pair.

Proposition 2.2.16. Let (Me, M+
dR, ι) be the GK-representation on a B-pair corresponds

to the OX-representation E(D, ϕ, N, GK), then

Me
∼−→ Vlog(D) = (D ⊗K̆ Bst)ϕ=1,N=0

and

M+
dR

∼−→ DK ⊗K B+
dR

as GK-modules. Here D ⊗K̆ Bst is given by the diagonal action of GK and DK = (D ⊗K̆

BdR)GK .
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Proof. For the Be part, it follows from [  18 , §10.3.5]. For the B+
dR part, one can follow the

argument of [  18 , Proposition 10.3.18]. Or we can use Proposition  2.2.12 , it is equivalence to

show it is B+
dR-flat. But the latter can be easily seen from the fact

exp(− log$,g N) ≡ 1 mod Ker(θ)

since log$,g = cgt is a multiply of t.

Now let us construct a modification of E(D, ϕ, N, Fil•, GK). By Proposition  2.2.10 a

filtration on DK = (D ⊗K̆ BdR)GK is equivalent to a GK stable B+
dR lattice in D ⊗K̆ BdR.

Fargues-Fontaine define the OX-representation E(D, ϕ, N, Fil•, GK) by letting:

E(D, ϕ, N, Fil•, GK)|XF F \∞ = E(D, ϕ, N, GK)|XF F \∞

and

E(D, ϕ, N, Fil•, GK)∞ = Fil0(DK ⊗K BdR).

To show E(D, ϕ, N, Fil•, GK) 99K E(D, ϕ, N, GK) defines a GK-equivariant modification, it

remains to show the admissibility, i.e., E(D, ϕ, N, Fil•, GK) is semistable of slope 0. This

follows from the Proposition below, which is one of the key result of Fargues-Fontaine ex-

plaining the relation of weakly admissibility and the slope of vector bundles.

Proposition 2.2.17. The filtered (ϕ, N, GK)-module D is weakly admissible if and only if

E(D, ϕ, N, Fil•, GK) is semistable of slope 0. Moreover, let V be the potentially log-crystalline

representation of GK corresponding to D, then there is a GK-equivariant isomorphism

V = H0(XF F , E(D, ϕ, N, Fil•, GK)),

where V is the potentially log-crystalline representation corresponding to the data (D, ϕ, N, Fil•, GK).

Proof. For the first part, it is stated in [  18 , §10.5.3, Remark 10.5.8] for filtered ϕ-modules,

and for filtered (ϕ, N)-modules, it is [  13 , Proposition 5.6]. For the second part of the proof, let

V be the potentially log-crystalline representation corresponding to (D, ϕ, N, Fil•, GK) and
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let EV = V ⊗Qp OX be the corresponding slope 0 OX-representation of GK . It is equivalent

to show

EV = E(D, ϕ, N, Fil•, GK)

and we can prove it by comparing the B-pairs of E(D, ϕ, N, Fil•, GK) and EV by of Propo-

sition  2.2.8 . While we have the Be-part of the OX-representation E(D, ϕ, N, Fil•, GK) is the

same as the Be-part of the OX-representation E(D, ϕ, N, GK) by construction, and which is

equal to

Vlog(D) = (D ⊗Bst)ϕ=1, N=0

by Proposition  2.2.16 . The B+
dR-part of E(D, ϕ, N, Fil•, GK) is the B+

dR-representation

Fil0(DK ⊗K BdR)

by definition.

On the other hand, the B-pair correspond to EV is

(V ⊗Qp Be, V ⊗Qp B+
dR).

Since V is potentially log-crystalline, so we have V ⊗Qp Be is potentially log-crystalline as a

Be-representation in the sense that there is a GK-equivariant isomorphism

V ⊗Qp Be =
((

(V ⊗Qp Be)⊗Be Bst
)GL ⊗L0 Bst

)ϕ=1, N=0

for a finite Galois extension L of K by Proposition 10.3.20 of [ 18 ], and ((V ⊗Qp Be) ⊗Be

Bst
)GL ' D as (ϕ, N, GK)-modules. For the B+

dR-part, since V is de Rham, so the B+
dR-

representation V ⊗Qp B+
dR is generically flat, so Proposition  2.2.10 shows that there is a

GK-equivariant isomorphism

V ⊗Qp B+
dR = Fil0(DdR(V )⊗K BdR).
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2.2.18 The Fargues-Fontaine functor

Definition 2.2.19. We define

ηF F : MFwa
K (ϕ, N, GK) −→ M odifX(GK)

D 7→ E(D, ϕ, N, Fil•, GK) 99K E(D, ϕ, N, GK).

Let’s show ηF F is fully faithful.

Lemma 2.2.20. M odifX(GK) is equivalent to the category of pairs (V, Ξ) where V is a

representation of GK over a Qp-vector space and Ξ is a GK stable B+
dR-lattice in V ⊗Qp B+

dR.

Proof. Directly from Lemma  2.1.9 .

Theorem 2.2.21. ηF F is fully faithful, and the essential image of ηF F in terms of (V, Ξ)

such that V is a de Rham representation of GK and Ξ is a B+
dR stable lattice in V ⊗ BdR

such that as B+
dR-representations of GK , it is flat.

Proof. Using Lemma  2.2.20 and Proposition  2.2.8 , we can write down ηF F in terms of (V, Ξ)-

pairs:

η̃F F : MFwa
K (ϕ, N, GK) −→ {(V, Ξ)}

D 7→ (V (D), DdR(V (D))⊗K B+
dR)

where V (D) is the potentially log-crystalline representation of GK corresponds to D. So it

is obvious that ηF F is fully faithful and the essential image lies inside the category defined

in the theorem.

And if a pair (V, Ξ) such that V is a de Rham representation of GK and Ξ a flat B+
dR-

representations of GK inside V ⊗BdR, then by the equivalence in Proposition  2.2.10 , we will

have Ξ = DdR(V ) ⊗K B+
dR, by the p-adic monodromy theorem of p-adic Galois representa-

tions, we have V is potentially log-crystalline, so corresponds to some D ∈MFK(ϕ, N, GK).

And again by the computations in Proposition  2.2.17 , we have the the B-pair corresponds

to ηF F (D) is (V, Ξ).
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3. Φ-MODULES AND BREUIL-KISIN-FARGUES MODULES

This chapter will discuss ϕ-modules over various base rings and their relation with vector

bundles over XF F . And we will also discuss Breuil-Kisin-Fargues modules and recall their

relations with modifications of vector bundles over the Fargues-Fontaine curve.

3.1 ϕ-modules and vector bundles

Recall we have the rings in characteristic p: k, k, OC , and C on which the Frobenius

endomorphism is defined. Moreover, since we have

OC = lim←−
x→xp

OK/p = lim←−
x→xp

OK0
/p.

So there is a canonical map k → OC comes from k ' OK0/p→ OK0
/p which has a uniquely

lifting to a section k → OC of OC → k by étaleness. This defines a canonical ϕ-equivariant

section

W (k)→ Ainf .

Let’s recall the following constructions of rings with ϕ-endomorphisms, the main reference

of this part is [ 18 , §11]. Define B+ = ∩nϕn(B+
cris) and let B be the completion of Bb :=

Ainf [ 1
[$] ,

1
p
] with respect to {|·|ρ}ρ∈(0,1), here for ρ ∈ (0, 1), define

|
∑

i�−∞
[xi]pi|ρ = sup{|xi|ρi}

where ∑
i�−∞[xi]pi ∈ Bb. For ρ ∈ (0, 1), let B+

ρ be the completion of Ainf [ 1
p
] with respect

to |·|ρ, then B+ = ∩ρ∈(0,1)B
+
ρ and B+ ↪−→ B. Consider the ideal p = ∪n(ϕ−n[$]) ⊂ Ainf [ 1

p
]

where $ is any pseudo uniformizer in C, and define p̃ = pB+, we will have Ainf [ 1
p
] → B+

induces an isomorphism Ainf [ 1
p
]/p = B+/p̃ by [ 18 , p. 11.1.1], and let B denote this quotient.

Then we have B is a local domain with maximal ideal mB := W (mC)[ 1
p
]/p and residue field

K̆. Let’s recall the following properties of B+:

Example 3.1.1. For ρ ∈ (0, 1), we have B+
ρ = Âinf [ [a]

p
][ 1

p
], where |a| = ρ and the completion

is for the (p, [$])-adic topology for any $ ∈ mC , but we have [a] is divisible by p in Âinf [ [a]
p

],
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so the topology is the same as the p-adic topology. In particular, we have Âinf [ [a]
p

] is also

completed under the [$]-adic topology.

Definition 3.1.2. Let R be a ring that is equipped with a Frobenius endomorphism ϕ, a

ϕ-module over R is a finite projective module M together with

ϕ∗M := M ⊗R,ϕ R
∼−→M.

And we use ϕ-ModR to denote the category of ϕ-modules over R. For a ϕ-module M , we

define its global section H0(M) by

H0(M) = Mϕ=1.

Proposition 3.1.3.

(1) M 7→M ⊗B+ B induces an equivalence of ϕ-ModB+ and ϕ-ModB.

(2) For (d, h) ∈ N×N>0 with (h, d) = 1, and R ∈ {K̆, B, B+, B+
cris, B}, let R( d

h
) be the ϕ-

module free on the bases {ei}h−1
i=0 and ϕ(ei) = ei+1 for i ∈ [0, h−2] and ϕ(eh−1) = pde0.

Then any M ∈ ϕ-ModR is a direct sum of R( d
h
) over pairs (d, h).

(3) By (2), for any M ∈ ϕ-ModB+ (resp. MB ∈ ϕ-ModB), let M̆ = M ⊗B+ K̆ (resp.

M̆ = MB⊗BK̆), then there is a ϕ-equivariant section s : M̆ →M (resp. s : M̆ →MB)

reducing to the identity over K̆.

Proof. This is [ 18 , Theorem 11.1.7].

Lemma 3.1.4.

(1) For all h ∈ N>0 and d ∈ Z, the natural maps between B, B+, B+
cris and B induces

Bϕh=pd = (B+)ϕh=pd = (B+
cris)ϕh=pd = B

ϕh=pd

.

(2) If d < 0, then we will have

Bϕh=pd = 0.
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Proof. (2) is from [  18 , Proposition 4.1.2]. For (1), in loc.cit., they show Bϕh=pd = (B+)ϕh=pd

and (B+)ϕh=pd = B
ϕh=pd

when d > 0. We give a different approach to prove this for all d.

Let R( d
h
) be as in (2) in in Proposition  3.1.3 and for R ∈ {B, B+, B, B+

cris}, we have

Rϕh=pd = Homϕ(R(d

h
), R).

Since the categories of ϕ-modules over R are all equivalent to each other by [ 18 , §11.1]. So

the above Hom are all equal with each other.

Proposition 3.1.5. Let M+ ∈ ϕ-ModB+ and define M = M+ ⊗B+ B (resp. Mcris =

M+ ⊗B+ B+
cris, resp. MB = M+ ⊗B+ B). Then we have for all h ∈ N>0 and d ∈ Z.

(M+)ϕh=pd = Mϕh=pd = (Mcris)ϕh=pd = Mϕh=pd

B
.

Proof. Use the same trick as in Lemma  3.1.4 , we have Mϕh=pd = Homϕ(B( d
h
), M), and

similar formula for M+ Mcris, and MB. So the fully faithfulness of the base change functors

implies the result.

Theorem 3.1.6. [ 18 ] Let the category ϕ-ModB+ , ϕ-ModB, ϕ-ModB+
cris

, and ϕ-ModB are all

equivalent to the category of BunXF F
. And one direction of the functor is

(M, ϕ) 7→ E(M) = ˜⊕n≥0Mϕ=pn

for (M, ϕ) ∈ ϕ-ModB+ (resp. ϕ-ModB, resp. ϕ-ModB+
cris

, resp. ϕ-ModB).

Proof. The equivalence of ϕ-ModB+ , ϕ-ModB and BunXF F
is from [ 18 , §11.4]. And M 7→

M ⊗B+ B+
cris induces an equivalence of ϕ-ModB+ and ϕ-ModB+

cris
and with quasi-inverse

functor given by M 7→ ∩nϕn(M). The equivalence of ϕ-ModB+ and ϕ-ModB was mentioned

in [ 18 , §11].

For the last statement for the consistency of the functor from different ϕ-modules to

BunXF F
, first we have by [ 18 , Theorem 11.1.9]. The functor

(M, ϕ) 7→ ˜⊕n≥0Mϕ=pn
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induces an equivalence of ϕ-ModB+ and BunXF F
. We want to emphasize that for M+, M ,

Mcris, and MB are as in Proposition  3.1.5 , we have

(M+)ϕ=pn 'Mϕ=pn ' (Mcris)ϕ=pn 'Mϕ=pn

B

for all n, so define same graded modules. And this is precisely what we have proved in

Proposition  3.1.5 .

Definition 3.1.7. With the notions in Proposition  3.1.3 , and let λ = d
h
. We define the

category ϕ-Modλ
R of semisimple ϕ-modules of slope λ over R to be the subcategory of ϕ-ModR

consisting M that is finite a direct sum of R(λ).

From Theorem  3.1.6 and Corollary  2.1.7 , we have the following lemma:

Lemma 3.1.8. For R ∈ {K̆, B, B+, B+
cris, B}, ϕ-Modλ

R are canonically equivalent to each

other under the natural base changes. And they are all equivalent to the category of vector

bundles semistable of slope −λ over XF F .

In particular, let M ∈ ϕ-Modλ
R with R ∈ {B, B+, B+

cris, B} and let MK̆ be its base change

to K̆, then there is a canonical ϕ-equivariant section s : MK̆ → M that reduces to identity

over K̆.

The ring B plays an important role in our theory, so we give a brief discussion of it here.

Definition 3.1.9. Let B+
(1,1] = ∪ρ∈(0,1)B

+
ρ , and define p1 = pB+

(1,1] and m1 = W (mC)B+
(1,1]. It

is easy to see from Example  3.1.1 that B+
(1,1]/p1 = B and B+

(1,1]/m1 = K̆. This B+
(1,1] carries

a Frobenius endomorphism induces from the Frobenius endomorphisms on B+
ρ , so we can

define ϕ-ModB+
(1,1]

. We give B+
(1,1] the final topology induced by the inclusions B+

ρ → B+
(1,1].

Lemma 3.1.10. The bases change functor along the natural map B+ → B+
(1,1] induces an

equivalence of ϕ-ModB+ and ϕ-ModB+
(1,1]

.

Proof. The proof is similar to [  28 , Proposition 12.3.5]. Let (M, ϕM) ∈ ϕ-ModB+
(1,1]

, then there

is ρ ∈ (0, 1), such that (M, ϕM) is defined over B+
ρ . Then we can use the fact ϕ : B+

ρ
∼−→ B+

ρp

to extend this ϕ-module over B+
ρ to a ϕ-module over B+ using ϕM .
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Lemma 3.1.11. We have (B+
(1,1], p1) is a henselian pair in the sense of [ 31 ,  Tag 09XI ].

Proof. Here we are using Gabber’s definition of henselian pair following [ 31 ,  Tag 09XI  ], we

will show:

p1 is contained in the Jacobson radical of B+
(1,1] and every monic polynomial f(T ) ∈ B+

(1,1][T ]

of the form

f(T ) = T n(T − 1) + anT n + . . . + a1T + a0

with an, . . . , a0 ∈ p1 and n ≥ 1 has a root in 1 + p1.

Let x ∈ p1 and b ∈ B+
(1,1], then xb = [$] y

pn for a pseudo uniformizer $ ∈ mC and y ∈

Âinf [ [a]
p

] from the discussion in Example  3.1.4 . Then we have y
pn is inside ̂

Ainf [ [a]
pn+1 ] = Âinf [ [ã]

p
].

Since Âinf [ [ã]
p

] is [$]-adically complete, so 1 + xb is a unit, in particular, x is in the Jacobson

radical of B+
(1,1].

Similarly, for the monic polynomial

f(T ) = T n(T − 1) + anT n + . . . + a1T + a0

we can find $0, a0 ∈ mC such that ai ∈ [$0]Âinf [ [a0]
p

] for all i. Again, using the fact that

Âinf [ [a0]
p

] is [$0]-adically complete. We have the pair (Âinf [ [a0]
p

], [$0]) is henselian by [  31 ,  Tag

0ALJ ]. So f(T ) has a root in 1 + [$0]Âinf [ [a0]
p

] ⊂ 1 + p1.

Corollary 3.1.12. The reduction from B+
(1,1] to B induces an equivalence of ϕ-ModB+

(1,1]
and

ϕ-ModB.

Proof. This is from of [ 2 , Lemma 4.1.26]. First we want to point out the prove of Lemma

4.1.26 in loc.cit. does not use the prism structure in their statement. To apply their lemma,

we just need to show ϕ is topologically nilpotent on p1. For x ∈ p1, x = [$] a
pn for some

$ ∈ mC and a ∈ B+
ρ satisfies |a|ρ ≤ 1, so

|ϕn([$] a

pn
)|ρ = 1

pn
|[$]pn|ρ|ϕn(a)|ρ

converge to 0.
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Remark 3.1.13. The above argument gives an different proof of (1) in Proposition  3.1.3 by

Lemma  3.1.10 .

Remark 3.1.14. Let’s also gives a geometric interpretation of the ring B. Recall we have

the following picture

xCp

xét

xcris = xB

xk

ϕ

p = 0

[p] = 0
Y = Spa(Ainf)\{xk}

κ

∞

1

0

Here Y is defined by the locus in Spa(Ainf) such that p(x) 6= 0 or [p](x) 6= 0, there is

a continuous map κ : Y → [0,∞] given by the relative position of x to [p] and p. And

for x ∈ Y , κ(x) = ∞ implies x factor through Ainf → Ainf [ 1
p
] → Ainf [ 1

p
]/p = B. Here

Ainf → Ainf [ 1
p
] comes from the condition p(x) 6= 0 (since we require [p](x) = 0) and p is

the ideal subject to the condition {[p](x) = 0}. In particular, xcris in this picture should

be considered not just a point but the space B. The space B is actually very huge in the

sense that it has infinite Krull dimension (cf. [ 24 ]). Moreover, one can show there is an

uncountable chain of prime ideals inside B that is fixed by ϕ (cf. [  15 ]).

We will see ϕ-modules over B plays an important role when studying the crystalline

Galois representations.

3.2 Breuil-Kisin-Fargues modules and modifications of vector bundles

In this section, we will review the theory of Breuil-Kisin-Fargues modules and their

relation with admissible modifications of vector bundles over XF F . The main reference of

this section is [ 6 ] and [ 1 ].
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Definition 3.2.1.

(1) A Breuil-Kisin-Fargues module is a finite presented module Minf over Ainf with an

isomorphism

ϕMinf : Minf ⊗Ainf ,ϕ Ainf [
1
ξ̃

] 'Minf [1
ξ̃

]

such that Minf [ 1
p
] is a finite free Ainf [ 1

p
]-module. Recall here ξ̃ = ϕ(ξ) as we defined

in §  2.1 .

(2) A Breuil-Kisin-Fargues module is a finite free if the underlying module is finite free

over Ainf . In this paper, we define BKF to be the category of finite free Breuil-

Kisin-Fargues modules. And we let BKF◦ to be the isogeny category of BKF. We

will also use BKF modules to refer objects in BKF.

(3) A Breuil-Kisin-Fargues module Minf is called effective if ϕMinf (Minf ⊗Ainf ,ϕ Ainf) ⊂

Minf .

Example 3.2.2. There are free rank 1 Breuil-Kisin-Fargues modules Ainf{n} defined for all

n ∈ Z(cf. [  6 , Example 4.24]). Just note in this paper, our Ainf{1} is the Ainf{−1} in [  6 ,

Example 4.24] due to our conventions on Hodge-Tate weights  1.6.6 , by this convention we

will have Ainf{n}⊗Ainf B = B(n) defined in (2) Proposition  3.1.3 . For any Minf ∈ BKF, we

define

Minf{n} = Minf ⊗Ainf Ainf{n}.

It can be shown that Minf{n} is effective for n� 0(cf. [  14 , §2.3.6.]).

Remark 3.2.3. In the proof of [  1 , Lemma 3.9], any Breuil-Kisin-Fargues module is isogeny

to a finite free one. In particular, we have BKF◦ is also the isogeny category of all Breuil-

Kisin-Fargues modules.

Definition 3.2.4. Let HTZp be the category of pairs (T, Ξ), where T is a finite free Zp-

lattice and Ξ is a B+
dR-lattice in T ⊗Zp BdR. And let HT be the isogeny category of HTZp ,

i.e., HT consists of pairs (V, Ξ) where V is a finite Qp-vector space and Ξ is a B+
dR-lattice in

V ⊗Qp BdR.
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Definition 3.2.5. Given Minf ∈ BKF, we define:

(1) T (Minf) = (Minf ⊗Ainf W (C))ϕ=1;

(2) V (Minf) = (Minf ⊗Ainf W (C))ϕ=1[ 1
p
];

(3) Minf
Cp

= Minf ⊗Ainf ,θ Cp;

(4) Minf
cris = Minf ⊗Ainf B+

cris;

(5) Minf
K̆

= Minf ⊗Ainf W (k)[ 1
p
].

Remark 3.2.6. It is easy to see that V (Minf), Minf
Cp

, Minf
cris and Minf

K̆
are well-defined on the

isogeny classes of BKF modules.

Lemma 3.2.7. For Minf ∈ BKF, we have (T (Minf),Minf ⊗Ainf B+
dR) ∈ HTZp.

Proof. By [  6 , Lemma 4.26], T (Minf) is a Zp-lattice of the same rank equal to Minf , and

T (Minf)⊗Zp BdR = Minf ⊗BdR, so (T (Minf),Minf ⊗Ainf B+
dR) ∈ HT.

Lemma 3.2.8. For Minf ∈ BKF, we have Minf
cris ∈ ϕ-ModB+

cris

Proof. It is enough to show ξ̃ is a unit in B+
cris. There are many way to see this, for readers

familiar with the language of δ-rings [ 8 ], we give a short proof as follow, we have Acris =

Ainf{ ξ̃
p
}∧

δ , and both ξ̃ and p are distinguished, so ξ̃
p

is a unit in Acris.

Theorem 3.2.9. (Fargues’ classification theorem, cf. [  6 , Theorem 4.28]) The functor

Minf 7→ (T (Minf),Minf ⊗Ainf B+
dR)

induces an equivalence of BKF and HTZp .

Corollary 3.2.10. There is an equivalence of M odifXF F
and BKF◦.

Proof. By Lemma  2.1.9 and Theorem  3.2.9 , both category are equivalent to HT.

Remark 3.2.11. One can regard a modification E0 99K E1 as a modification of E0 by a

B+
dR-lattice at a formal neighborhood at ∞, and this gives the equivalence in Lemma  2.1.9 .

On the other hand, one can also view it as a modification of E1 by a lattice in E1,∞⊗B+
dR

BdR.

And this gives the following result.
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Proposition 3.2.12. The functor

Minf → (Minf
cris, V (Minf)⊗Qp B+

dR).

defines a fully faithfully functor from BKF◦ to {(MB+
cris

, Ξ)}, where the latter is the category

consisting of pairs (MB+
cris

, Ξ), with MB+
cris
∈ ϕ-ModB+

cris
and Ξ is a B+

dR lattice in M⊗B+
cris

BdR.

Proof. If Minf corresponds to E0 99K E1, then if one carefully tracks the functor defined by

Scholze in [  28 , Theorem 14.1.1], one has E1 corresponds to the ϕ-module Minf
cris. And we have

E0 is a semistable slope 0 vector bundle with global section equals to V (Minf), in particular,

the B+
dR-lattice defined by E0,∞ is V (Minf) ⊗Qp B+

dR. By the B-pair description of vector

bundles over XF F we have the functor is fully faithful.

We also want to discuss about sections to the natural reduction of Minf to Minf ⊗Ainf K̆.

Lemma 3.2.13. For Minf ∈ BKF, let Mcris = Minf ⊗ B+
cris, and MB = Minf ⊗Ainf B. For

any perfect subfield l ⊂ k and let L0 = W (l)[ 1
p
]. For any ϕ-stable L0-vector space V ⊂ MB

such that V ⊗L0 B = MB, there is an unique ϕ-equivariant section s : V →MB+
cris

such that

modulo pB+
cris we get identity on V .

Proof. The proof is combination of [  10 , Lemma 4.5.6] and [  17 , Proposition 4.26]. Since

we will use the formula of the section s, let us give an explicit construction of the section

following the idea in loc.cit..

First, we can always reduce to the case that Minf is effective, since we can always twist

Minf by Ainf{n} and V by L0(n) simultaneously by some n � 0 to ensure that Minf and

V being effective by Example  3.2.2 . So we can assume there is a ϕ-stable OL0-lattice Λ

inside V . Since we have Minf
K̆

= (Λ ⊗OL0
B) ⊗B K̆, we can view Λ as a sub-ϕ-module of

Minf [ 1
p
]⊗Ainf [ 1

p
] B.

Let {ei}d
i=1 be a basis of Λ and choose an arbitrary lifting {e1, . . . , ed} as a basis of

Minf⊗Ainf Ainf [ 1
p
], we can always replace {ei}d

i=1 by {pkei}d
i=1 and {e1, . . . , ed} by {pke1, . . . , pked}

to ensure {e1, . . . , ed} is inside Minf . We define A0 ∈Md(OL0) ⊂ B be the matrix defined by

ϕ(e1, . . . , ed) = (e1, . . . , ed)A0.
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let A ∈Md(Ainf) be the matrix defined by

ϕ(e1, . . . , ed) = (e1, . . . , ed)A.

Then to find s it is enough to find Y ∈Md(B+
cris) such that Y ≡ I mod p and

Y A0 = Aϕ(Y ),

and the section is defined by

s(e1, . . . , ed) = (e1, . . . , ed)Y.

For n ∈ N>0, define

Yn = Aϕ(A) · · ·ϕn−1(A)ϕn−1(A−1
0 ) · · ·ϕ(A−1

0 )A−1
0 .

It is enough to show Yn converges to Y ∈ Md(B+
cris). Since we have A ≡ A0 mod p and

there is a ∈ N such that A−1
0 ∈ 1

pa Md(OL0), we have there is a B0 ∈ Md(OL0) such that

AB0 = paI + [$]Z, where $ is a pseudo uniformizer in C and Z ∈Md(Ainf). We will have

Yn − Yn−1 = Aϕ(A) · · ·ϕn−2(A) [$]p(n−1)

pan−a
ϕn−1(Z)ϕn−2(B0) · · ·ϕ(B0)B0.

It is easy to show that [$]p(n−1)

pan−a converge to 0 in B+
cris (actually in B+). So we have Yn

converges to some Y . The uniqueness is also the same as in [  10 , Lemma 4.5.6] and we skip

it here.

Apply the above lemma to the case l = k, i.e., L0 = K̆, we have the following Corollary

on the section s define in (3) of Proposition  3.1.3 .

Corollary 3.2.14. For Minf ∈ BKF, let Mcris = Minf ⊗ B+
cris, MB = Minf ⊗Ainf B, and

Minf
K̆

= Minf ⊗Ainf K̆. For any section

s : Minf
K̆
→MB
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reducing to the identity over K̆. There is a unique section

s : MK̆ →Mcris

such that reducing pB+
cris is identify to s.

Proof. Just apply Lemma  3.2.13 to s(MK̆).

There is a definition related to the above results.

Definition 3.2.15. (Rigidifications c.f. [  1 ]) For any Minf ∈ BKF define Minf
cris = Minf ⊗Ainf

B+
cris, Minf

B
= Minf ⊗Ainf B, and Minf

K̆
= Minf ⊗Ainf K̆. A rigidification of Minf over B+

cris (resp.

B) is a ϕ-equivariant section

s : Minf
K̆
→Mcris (resp. s : Minf

K̆
→MB)

reducing to the identity over K̆.

By Corollary  3.2.14 , we have.

Corollary 3.2.16. For any Minf ∈ BKF, a rigidification of Minf over B is the same as a

rigidification over B+
cris.
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4. FARGUES-FONTAINE-SCHOLZE FUNCTOR AND

ARITHMETIC BREUIL-KISIN-FARGUES MODULES

Definition 4.0.1. Let BKF(GK) be the category of finite free Breuil-Kisin-Fargues GK-

modules consists of Breuil-Kisin-Fargues module equipped with a continuous semilinear GK-

action that commutes with ϕMinf . And let BKF(GK)◦ be the corresponded isogeny category.

One easily deduce the following “GK-version” of the Fargues’ classification theorem.

Proposition 4.0.2. There is an equivalence of M odifX(GK) and BKF(GK)◦.

Definition 4.0.3. We define the Fargues-Fontaine-Scholze functor

ηF F S : MFwa
K (ϕ, N, GK)→ BKF(GK)◦

to be the composition of the Fargues-Fontaine functor ηF F with the functor in Proposi-

tion  4.0.2 .

In this chapter, we will show the essential image of ηF F S is characterized by what we

call arithmatic Breuil-Kisin-Fargues GK-modules; moreover, we will also characterize the

essential images corresponds to the subcategory MFwa
K (ϕ, N) (resp. MFwa

K,ϕ).

4.1 Arithmetic Breuil-Kisin-Fargues GK modules

Definition 4.1.1. Let Minf ∈ BKF(GK), Minf is called arithmetic if and only if Minf
Cp

as a

Cp-representation of GK is Cp-admissible, i.e., it is Hodge-Tate with only 0 weight. We let

BKFa(GK) to be the category of arithmetic Breuil-Kisin-Fargues modules, and BKFa(GK)◦

be the corresponded isogeny category.

Remark 4.1.2. The condition of being arithmetic is well defined on the isogeny class of

Minf .

Theorem 4.1.3. The Fargues-Fontaine-Scholze functor is fully faithful. The essential image

of ηF F S consists of arithmetic Breuil-Kisin-Fargues modules.
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Proof. The fully faithfulness comes from the fully faithfullness of ηF F and the equivalence in

Proposition  4.0.2 . By Theorem  2.2.21 , we know the essential image of ηF F consist of Hodge-

Tate modules (V, Ξ) such that V is a de Rham representation and Ξ = DdR(V ) ⊗Qp B+
dR.

So it is enough to show that if Minf is an arithmetic Breuil-Kisin-Fargues GK-modules, then

V = V (Minf) is de Rham and

Minf ⊗B+
dR

∼−→ DdR(V )⊗Qp B+
dR.

First, we have Minf
Cp

being Cp-admissible, is equivalent to Minf ⊗Ainf B+
dR is B+

dR-flat by

Proposition  2.2.12 . In particular, Minf ⊗Ainf B+
dR is generically flat, that is V ⊗Qp BdR '

Minf ⊗Ainf BdR is BdR-flat, in other word, V is de Rham. By (2) in Proposition  2.2.12 ,

Minf ⊗Ainf B+
dR corresponds to DdR(V ) = (V ⊗BdR)GK with the trivial filtration, so we have

Minf ⊗Ainf B+
dR ' DdR(V )⊗K B+

dR.

Remark 4.1.4.

(1) In [  16 ], the definition of BKF modules is slightly different from our definition. They

use ξ instead of ξ̃ in the definition. So the our definition is differed by a Frobenius

twist. Moreover, they require the ϕinf
M is an endomorphism on Minf this will result in

the Hodge-Tate weights of T (Minf) being non-negative.

(2) In [ 16 , Propostion F.13], they actually show that T is B+
dR-admissible in the sense

of (2) in Remark  2.2.13 , which requires the non-negativity of Hodge-Tate weights of

T (Minf).

Remark 4.1.5. As we have mentioned in Remark  2.2.13 , for a de Rham representation T ,

a natural way to define a GK-stable B+
dR-lattice in DdR(T )⊗K BdR is given by

Ξ = Fil0(DdR(T )⊗K BdR).
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Here if we give DdR(T ) the Hodge filtration, we get a lattice Ξ0 and if we give DdR(T ) the

trivial filtration, we let Ξ1 the the resulting lattice. One can check the pair (T, Ξ0) corre-

sponds to the trivial BKF GK-module T ⊗Zp Ainf and (T, Ξ1) corresponds to the arithmetic

Breuil-Kisin-Fargues modules in Theorem  4.1.3 .

4.2 Conditions for log-crystalline and crystalline representations.

Let MFwa
K (ϕ, N) (resp. MFwa

K,ϕ) be the subcategory of MFwa
K (ϕ, N, GK) consists of

weakly admissible filtered (ϕ, N)-modules (resp. weakly admissible filtered ϕ-modules). In

this section, we will characterize of the essential image of ηF F S of MFwa
K (ϕ, N) and MFwa

K,ϕ.

Theorem 4.2.1.

(1) An arithmetic Breuil-Kisin-Fargues GK-module Minf is in the essential image of

MFwa
K (ϕ, N) if and only if there is a GK-fixed basis inside Minf

K̆
.

(1’) An arithmetic Breuil-Kisin-Fargues GK-module Minf is in the essential image of

MFwa
K (ϕ, N) if and only if the initial group IK acts trivially on Minf

K̆
[ 1

p
].

(2) A Breuil-Kisin-Fargues GK-module Minf is in the essential image of MFwa
K,ϕ if and

only if (Minf ⊗B)GK as a K0-vector space has dimension equal to the rank of Minf .

(2’) A Breuil-Kisin-Fargues GK-module Minf is in the essential image of MFwa
K,ϕ if and

only if (Minf ⊗B)IK as a K̆-vector space has dimension equal to the rank of Minf .

Remark 4.2.2. In Theorem  4.2.1 , we have (1) and (1′) (resp. (2) and (2′)) are equivalent

due to unramified descent(cf. proof in Lemma  1.6.2 ). Or this is from the well-known fact

that a p-adic representation of GK is crystalline (resp. log-crystalline) if and only if when

restricted on IK it is crystalline (resp. log-crystalline).

For (2) in Theorem  4.2.1 , we need the following lemma.

Lemma 4.2.3. Taking the GK-invariant of the exact sequence

0→ p→ Ainf [
1
p

]→ B → 0,
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We will have K0 ↪−→ B
GK . Let B

GK

fin be the sub-algebra consists of v ∈ B
GK such that

{ϕn(v)}n≥0 generates a finite dimensional K0 vector space. We have B
GK

fin = K0.

Proof. We have Ainf [ 1
p
]GK = K0, i.e., Ainf [ 1

p
]GK = W (k)[ 1

p
]GK . By the Teichmüller expansion

of elements in p, we will have

pGK = p ∩W (k)[1
p

]GK = 0.

So we have K0 ↪−→ B
GK .

Now B
GK

fin decomposes into isocrystals over k, in particular, it decomposes into subspace

(Bϕh=pd

)GK for pairs (h, d) with d ∈ Z and h ∈ N>0. Then by Lemma  3.1.4 , we have

(Bϕh=pd

) = (B+
cris)ϕh=pd

,

which is also GK-equivariant so the result follows from (B+
cris)GK = K0.

Remark 4.2.4. We don’t know whether B
GK = K0 at this time, but as in the statement of

(2) in Theorem  4.2.1 , (Minf ⊗B)GK can be always viewed as a module over B
GK

fin = K0.

Proof. (of (1’) Theorem  4.2.1 ) If (the isogeny class of) an arithemtic BKF GK-modules Minf

corresponds to D ∈MFwa
K (ϕ, N, GK) that also corresponds to a GK-equivariant modification

E0 99K E1, then the recall that as in §2.2, we show the GK-action on E1 is given by α ∧

E(D, ϕ, GK)). And recall α corresponds to the cocycle

(exp(− log$,g))g. (4.2.4.1)

On the other hand, we know by Proposition  3.2.12 , E1 corresponds to Minf
cris. So there is a

GK-equivariant isomorphism

D = (D ⊗B+
cris)⊗B+

cris
K̆ = Minf ⊗Ainf K̆
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and D ∈ MFwa
K (ϕ, N) if and only if IK acts trivially on D. So by equation  4.2.4.1 , it is

enough to show

exp(− log$,g N)) ≡ 1 mod W (m[)B+
cris.

Recall we have log$,g is a multiple of t, so the result follows from t ∈ W (m[)B+
cris, which is

directly from the definition of t.

Remark 4.2.5. If we assume an arithmetic BKF GK-module Minf satisfies the condition

(2) in Theorem  4.2.1 , then a similar argument will show that Minf corresponds to an ob-

ject in MFwa
K,ϕ. However, we will prove something more substantial, i.e., condition (2) in

Theorem  4.2.1 implies Minf being arithmetic!

Lemma 4.2.6. For Minf ∈ BKF(GK), let Mcris = Minf ⊗ B+
cris, and MB = Minf ⊗Ainf B.

Let L0 = W (l)[ 1
p
] with k ⊂ l ⊂ k. For any ϕ-stable L0-vector space V ⊂ MB such that

V ⊗L0 B = MB. Assume V is also GK-stable, then the ϕ-equivariant section s : V → Mcris

defined in Lemma  3.2.13 is GK-equivariant.

Proof. This is a slight generalization of [  27 , Lemma 3.15]. We use the same reduction as in

Lemma  3.2.13 and keep the notions. Fix g ∈ GK and let D ∈ Md(Ainf) and D0 ∈ Md(OL0)

be the matrix defined by

g(e1, . . . , ed) = (e1, . . . , ed)D0

and

g(e1, . . . , ed) = (e1, . . . , ed)D.

We have D −D0 = [$]W with pseudo uniformizer $ ∈ C and W ∈ Md(Ainf). It is enough

to check

Dg(Y ) = Y D0

Since the GK-action commutes with ϕ, we will have

Dg(A) = Aϕ(D) and D0g(A0) = A0ϕ(D0).
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For n ∈ N>0, we have

Dg(Yn) = Dg(Aϕ(A) · · ·ϕn−1(A)ϕn−1(A−1
0 ) · · ·ϕ(A−1

0 )A−1
0 )

= Dg(A)g(ϕ(A)) · · · g(ϕn−1(A))g(ϕn−1(A−1
0 )) · · · g(ϕ(A−1

0 ))g(A−1
0 )

= Aϕ(A) · · ·ϕn−1(A)ϕn(D)g(ϕn−1(A−1
0 )) · · · g(ϕ(A−1

0 ))g(A−1
0 )

= Aϕ(A) · · ·ϕn−1(A)ϕn(D0 + [$]W )g(ϕn−1(A−1
0 )) · · · g(ϕ(A−1

0 ))g(A−1
0 )

= Aϕ(A) · · ·ϕn−1(A)g(ϕn−1(A−1
0 )) · · · g(ϕ(A−1

0 ))g(A−1
0 )D0

+[$]pn

pna
Aϕ(A) · · ·ϕn−1(A)ϕn(W )g(ϕn−1(B0)) · · · g(ϕ(B0))g(B0).

And the result follows from that [$]pn

pna converges to 0 in B+.

Proof. (of (2) in Theorem  4.2.1 ) By Lemma  4.2.6 , we have the GK-invariant section inside

(Minf ⊗ B)GK lifts to a GK-invariant section inside Minf ⊗ B+
cris, so (3) implies there is a

GK-fixed basis inside Minf ⊗B+
cris. Base change along θ : B+

cris → Cp, we have Minf ⊗Cp has

a GK-invariant basis, i.e., Minf is arithmetic.

Now as in Remark  4.2.5 , the rest is similar to the proof of (1). We give another way

of proving by showing the Be-part of E1 in the GK-equivariant modification E0 99K E1

corresponds to Minf is crystalline in the sense that it is equal to Vlog(D) for some ϕ-module

D under the functor Vlog we defined in Proposition  2.2.14 , see also Definition 10.2.13 in

[ 18 ] for the notion of Be-representations being crystalline. We have the Be-representation

corresponds to E1 is

Me = (Minf ⊗Bcris)ϕ=1.

And by Proposition 10.2.12, loc.cit., it is crystalline if and only if

dimK0(Me ⊗Be Bcris)GK = rankAinfM
inf .

But we have D = (Minf ⊗B)GK ⊂ (Me ⊗Be Bcris)GK , so Me is crystalline.

On the other hand, from the construction of the Fargues-Fontaine functor, when N = 0,

we have a GK-equivariant isomorphism Minf
cris ' D ⊗ B+

cris and D ⊗ B+
cris is equipped with
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the diagonal action. When Minf corresponds to a crystalline representation, D = Dcris has

a K0-basis fixed by GK .

Remark 4.2.7. A key idea of Berger’s Be-representation theory is that for anOX-representation

E of GK , its Be part will determine the (ϕ, N)-module structure. This translates into to our

theory says that for arithmetic Breuil-Kisin-Fargues modules Minf , GK-action on Minf⊗B+
cris

determines the (ϕ, N)-module structure, in particular, it tells p-adic Hodge property of

T (Minf) being log-crystalline or crystalline.

Remark 4.2.8. Since T (Minf) being log-crystalline or crystalline is just determined by

V (Minf), it is easy to deduce the following “integral version” of Theorem  4.2.1 .

Theorem 4.2.9. Let RepdR
Zp

(GK) (resp. Replcr
Zp

(GK), resp. Repcris
Zp

(GK)) be the category of

de Rham (resp. log-crystalline, resp. crystalline) representations of GK over a Zp lattice,

then

(1) There is a equivalence of RepdR
Zp

(GK) with the category of arithmetic BKF GK-

modules.

(2) The essential image of Replcr
Zp

(GK) of the functor in (1) are the arithmetic BKF

modules such that there is a GK-fixed basis in Minf
K̆

.

(2’) The essential image of Replcr
Zp

(GK) of the functor in (1) are the arithmetic BKF

modules such that the IK-action on Minf
K̆

is trivial.

(3) The essential image of Repcris
Zp

(GK) of the functor in (1) are BKF GK-modules such

that (Minf ⊗B)GK as a K0-vector space has dimension equal to the rank of Minf .

(3’) The essential image of Repcris
Zp

(GK) of the functor in (1) are BKF GK-modules such

that (Minf ⊗B)IK as a K̆-vector space has dimension equal to the rank of Minf .
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5. THE INVERSE OF FARGUES-FONTAINE-SCHOLZE

FUNCTOR

When we prove Theorem  2.2.21 , we need to use the p-adic monodromy theorem for p-adic

Galois representations, i.e., we use the fact that for any de Rham representation of GK , it

corresponds to an object in MFwa
K (ϕ, N, GK). We have the following diagram:

RepdR
Zp

(GK) HTdR
Zp

(GK) BKFa(GK)

Repp-lcr
Zp

(GK)

monodromy thm

∼ ∼

Here RepdR
Zp

(GK) (resp. Repp-lcr
Zp

(GK)) is the category of de Rham representations (resp.

potential log-crystalline representations) of GK over a Zp-lattice, we let HTdR
Zp

(GK) be the

category of pairs (T, Ξ) such that T ∈ RepdR
Zp

(GK), and Ξ is a GK-stable B+
dR-lattice in

T ⊗BdR which is also B+
dR-flat. The equivalence of RepdR

Zp
(GK) and HTdR

Zp
(GK) is given by

T 7→ (T, DdR(T )⊗K B+
dR).

And the equivalence of HTdR
Zp

(GK) and BKFa(GK) is by Theorem  4.2.9 . In this chapter,

we will construct the functor

BKFa(GK)→MFwa
K (ϕ, N, GK)

which will induce a functor on isogeny classes

ωF F S : BKFa(GK)◦ →MFwa
K (ϕ, N, GK)

which will be shown to be the inverse of the Fargues-Fontaine-Scholze functor ηF F S.
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5.1 p-adic monodromy theorem for arithmetic BKF GK-modules

For Minf ∈ BKFa(GK), let D = D(Minf) = Minf ⊗Ainf K̆ with the induced ϕ-structure.

As we have discussed in Lemma  1.6.2 , unramified descent enables us to assume K0 = K̆. In

this section, we will endow D a filtered (ϕ, N, GK)-module structure and prove it is weakly

admissible.

5.1.1 Finiteness of the GK-action

We first show the IK-action on D has an open kernel. We will first prove it in the

semisimple case:

Corollary 5.1.2. (to Lemma  3.1.8 ) let (M, ϕM) ∈ ϕ-Modλ
R with R ∈ {B, B+, B+

cris, B} and

let MK̆ be its base change to K̆, assume M equipped with a semilinear action of GK commutes

with ϕM , then the a canonical ϕ-equivariant section s : MK̆ →M defined in Lemma  3.1.8 is

also GK-equivariant.

Lemma 5.1.3. Let (M, ϕM) ∈ ϕ-Modλ
R with R ∈ {B, B+, B+

cris} and let MK̆ be its base

change to K̆, assume M equipped with a semilinear action of GK commutes with ϕM , also

assume that MCp := M ⊗R,θ Cp as a representation of GK is Cp admissible. Then the

GK-action on MK̆ is potentially unramified, i.e., the IK-action on Minf
K̆

has an open kernel.

Proof. Let D = HomK̆(K̆(λ), MK̆), we will have D is a ϕ-module over K̆ with the ϕ-structure

given by ϕ(f) = ϕ◦f ◦ϕ−1. Define W = H0(D) = Homϕ(K̆(λ), MK̆). Under the equivalence

in Corollary  2.1.7 and use the fact that D ' MK̆ ⊗K̆ K̆(−λ), we have D corresponds to a

slope 0 vector bundle

D := HomOX
(O(−λ), E(M)) ' E(M)⊗OX

O(λ),

here we use Hom to denote the the sheaf Hom and E(M) is the vector bundle corresponds to

M . By (2) of Corollary  2.1.7 , the global section of D is W and D is canonically isomorphic

to W ⊗Qp OX . Under this isomorphism, we will have

W ⊗Qp Cp ' D ⊗OX
Cp ' HomOX

(O(−λ), E(M))∞ ⊗ Cp ' HomCp(O(−λ)Cp , E(M)Cp)
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here O(−λ)Cp and E(M)Cp are their fibers over ∞. So by Corollary  5.1.2 , we have there is

a IK-equivariant isomorphism

W ⊗Qp Cp ' HomCp(R(λ)⊗R Cp, MCp)

where R(λ)⊗R Cp has the trivial IK-action. Then W as IK-representation is Cp-admissible

by the assumption that MCp is Cp-admissible. Using a Theorem of Sen [ 30 ], one has IK acts

via a finite quotient on W .

On the other hand, MK̆ is a finite direct sum of K̆(λ), and there is an equivalence of

the category of ϕ-Modλ
K̆ and VectDλ

, where VectDλ
is the category of finite free modules

over Dλ := Endϕ(K̆(λ), K̆(λ)). And the functors are given by E 7→ Homϕ(K̆(λ), E) and

V 7→ V ⊗Dλ
K̆(λ). In particular, MK̆ is canonically isomorphic to W ⊗Dλ

K̆(λ), so the

IK-action on MK̆ also has an open kernel.

Now let (M, ϕM) ∈ ϕ-ModR with R ∈ {B, B+, B+
cris, B}, assume M equipped with a

semilinear action of GK commutes with ϕM . First, we have a decomposition of ϕ-module:

M ' ⊕n
i=1M(λi)

for semisimple submodules M(λi). We assume λi+1 > λi for all i, and choose a bases {ei}d
i=1

of M such that

(1) ei is in s(MK̆(λa)) for some λa appear in the slope of MK̆ , and s is given in Corol-

lary  4.2.6 .

(2) If i > j and ei ∈M(λa), ej ∈M(λb), then λa ≥ λb.

For g ∈ GK , and let Ag ∈Md(R) be the matrix defined by

g(e1, . . . , ed) = (e1, . . . , ed)Ag.
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Lemma 5.1.4. Under the assumptions of the basis {ei}d
i=1 as above, we will have Ag is an

upper triangle block matrix of the form

Ag =


∗ H0(R(λ2 − λ1)) H0(R(λ3 − λ1)) . . . H0(R(λn − λ1))

0 ∗ H0(R(λ3 − λ2)) . . . H0(R(λn − λ2))
... ... ... ... . . .


where the blocks are define by the decomposition M ' ⊕n

i M(λi). In particular, if we define

a flag

0 = M0 ⊂M1 ⊂ · · · ⊂Mn = M

by Mm = ⊕m
i=1M(λi) for m ∈ [1, n], and M0 = 0. Then the GK-action stabilize this flag.

Proof. For (i, j) with i, j ∈ [1, n], then the block at the entry (i, j) defines a ϕ-equivariant

map from M(λi) to M(λj). So we have its must have entries in Homϕ(M(λi), M(λj)). Using

the fact Homϕ(R(λ), R(µ)) is some copies of H0(R(µ − λ)), then the result follows from

H0(R(λ)) = Rϕh=pd 6= 0 if and only if λ ≥ 0.

Now let Minf be an arithmetic Breuil-Kisin-Fargues GK-modules, and let Minf
cris = Minf ⊗

B+
cris. Then we have by the above lemma, we have the {Minf

cris,i} inside Minf
cris = Minf ⊗ B+

cris

is stabilized by GK and satisfies Minf
cris,i+1/M

inf
cris,i is semisimple for all i. Also we have that

Hodge-Tate representations with weight 0 are stable under taking subquotients. So we can

prove by induction using Lemma  5.1.3 and the fact H0(K̆(λ)) = 0 when λ 6= 0, that we

have:

Proposition 5.1.5. Let Minf be an arithmetic Breuil-Kisin-Fargues GK-modules, and let

Minf
K̆

= Minf ⊗Ainf K̆, then the IK-action on Minf
K̆

has an open kernel.

5.1.6 Construction of the monodromy operator

In §  5.1.6 , we assume K0 = K̆. From §  5.1.1 , we know that if Minf is an arithmetic Breuil-

Kisin-Fargues GK-modules, then there is a finite extension L of K such that for any basis
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~e = {e1, . . . , ed} of Minf
cris comes from a basis of s(Minf

K0) satisfies the condition in Lemma  5.1.4 ,

GL acts on ~e via an upper triangle block matrix Ag = Ag,~e of the shape:


I H0(B+

cris(λ2 − λ1)) H0(B+
cris(λ3 − λ1)) . . . H0(B+

cris(λn − λ1))

0 I H0(B+
cris(λ3 − λ2)) . . . H0(B+

cris(λn − λ2))
... ... ... ... . . .

 .

Following mainly the idea in [  12 ] and also [  18 , Proposition 10.6.17], we make the following

definition.

Definition 5.1.7. For (h, d) ∈ N>0 × N with (h, d) = 1. Define

u : (B+
cris)ϕh=pd → Ch

p

by u 7→ (θ(u), θ(ϕ(u)), . . . , θ(ϕh−1(u))) and denote

H1
g (GK , (B+

cris)ϕh=pd) = ker(H1(GK , (B+
cris)ϕh=pd) u∗−→ H1(GK ,Ch

p)).

And recall the following proposition of Colmez.

Proposition 5.1.8. ([ 12 , Proposition 10.11] in the form of [  18 , Proposition 10.6.17]) When

K = K̆, for (h, d) ∈ N>0 × N with (h, d) = 1,

H1
g (GK , (B+

cris)ϕh=pd) 6= 0

if and only if h = d = 1, and

H1
g (GK , (B+

cris)ϕ=p) = Qp · log$,g

where the 1-cocycle log$,g is defined in §  2.1 by log$,g = g(log[$])− log[$].
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Definition 5.1.9. Fix a basis ~e0 = {ei} of s(Minf
K ) as in Lemma  5.1.4 , for any unipotent

matrix Y of the shape


I H0(B+

cris(λ2 − λ1)) H0(B+
cris(λ3 − λ1)) . . . H0(B+

cris(λn − λ1))

0 I H0(B+
cris(λ3 − λ2)) . . . H0(B+

cris(λn − λ2))
... ... ... ... . . .

 ,

we define ~eY = {ei · Y }. In other words, all basis of the flag {Mi} define in §  5.1.1 such that

it coincides with ~e0 on all semisimple quotient are of this form. We call basis of the form ~eY

an admissible base change of ~e0.

If ~e is an admissible base change of ~e0 defined by Y , then let Ag,~e be the matrix defined

by

g~e = ~eAg,~e,

therefore, Ag,~e = Y −1Ag,~e0g(Y ), in particular, use the fact if a ∈ H0(B+
cris(λ)) and b ∈

H0(B+
cris(µ)), then a · b ∈ H0(B+

cris(λ + µ)), we can check Ag,~e is unipotent of the shape


I H0(B+

cris(λ2 − λ1)) H0(B+
cris(λ3 − λ1)) . . . H0(B+

cris(λn − λ1))

0 I H0(B+
cris(λ3 − λ2)) . . . H0(B+

cris(λn − λ2))
... ... ... ... . . .


with the same blocking as Ag,~e0 . With these notions, we have the following construction of

monodromy operator:

Proposition 5.1.10. Let Minf be an arithmetic Breuil-Kisin-Fargues GK-modules, such that

GK acts trivially on Minf
K , fix a basis ~e0 of s(Minf

K ) as in Lemma  5.1.4 . For any admissible

base change ~e of ~e0, use the fact that GK acts on ~e via a unipotent matrix Ag,~e, Bg,~e = log Ag,~e

is well-defined and nilpotent. Then there is an admissible base change ~e of ~e0 such that

N = Bg,~e

− log$,g

is independent of the choice of g ∈ GK and defines a nilpotent matrix in Md(Qp).
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Proof. With the notation as in Lemma  5.1.4 , use the fact if a ∈ H0(B+
cris(λ)) and b ∈

H0(B+
cris(µ)), then a · b ∈ H0(B+

cris(λ + µ)), we will have Bg,~e is inside:


0 H0(B+

cris(λ2 − λ1)) H0(B+
cris(λ3 − λ1)) . . . H0(B+

cris(λn − λ1))

0 0 H0(B+
cris(λ3 − λ2)) . . . H0(B+

cris(λn − λ2))
... ... ... ... . . .

 .

And all matrix of such shape forms an abelian group P (in addition) which is isomorphic to

copies of H0(B+
cris(λi − λj)). Now since we have for h, g ∈ GK , we have

Agh,~e = Ag,~e g(Ah,~e).

Taking logarithm, we have

Bgh,~e = Bg,~e + g(Bh,~e).

In particular, we have g 7→ Bg,~e defines a cocycle with value in P . And if we have an

admissible base change~eY of~e by a unipotent matrix Y , let X = log Y , we have Bg,~eY
−Bg,~e =

−X +g(X). On contrast, if two 1-cocycles are cohomologous, i.e., Bg, ~e1−Bg, ~e2 = −X +g(X)

by some element X in P , in particular, X is nilpotent, and exp(X) defines an admissible

base change.

Similarly, let h be the least common multiple of the denominators of {λi − λj}i>j. And

we have a map

u = (θ, θ ◦ ϕ, . . . , θ ◦ ϕh−1) : P → P h
Cp

.

where PCp is the additive group defined by the block matrix


0 Cp Cp . . . Cp

0 0 Cp . . . Cp

... ... ... ... . . .

 .

and the blocking is the same as in the definition of P . We can repeat all discussions after

the base change under u, where we should get 1-cocycles from the Galois action. However,
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since Minf is arithmetic, so we have Bg,~e is trivial in H1(GK , PCp). Assume Bg,~eY
is 0 under

θ for the admissible base change ~eY of ~e. We have for all r ∈ Z, we have ϕr
Minf

cris
induces a

GK-equivariant isomorphism:

Minf
cris ⊗θ Cp 'Minf

cris ⊗θ◦ϕr Cp.

In particular, Bg,~eY
is also trivial under θ ◦ ϕr for all r ∈ Z, i.e., trivial in H1(GK , P h

Cp
).

Finally, we have P decompose into (B+
cris)

d
h for different (d, h) defined by {λi − λj}i>j.

Proposition  5.1.8 implies there is an admissible bases ~eY such that

N = Bg,~eY

− log$,g

is independent of the choice of g ∈ GK and defines a nilpotent matrix in Md(Qp).

Remark 5.1.11. We have when λi − λj = 1, we have the block of N at the (i, j)-entry

defines an element in Hom(MK̆(λj), MK̆(λi))ϕ=p−1 , on the other hand, Hom(MK̆(λj), MK̆(λi))

decomposes into direct sum of (K̆, p−1ϕK̆), so we have we can always make entry of N inside

Qp.

Remark 5.1.12. Compare to §  2.2 , For the OX-representation E(D, ϕ, N) defined by a

filtered (ϕ, N)-modules D, it corresponds to the ϕ-module D ⊗ B+
cris with the GK-action

given by

g(y) = exp(log$,g N)y.

So what we have done is just reverse engineering of on the construction of GK-action defined

in §  2.2 .

Remark 5.1.13. In Proposition  5.1.8 is key step in [  12 ] that Colmez developed to prove

the p-adic monodromy theorem. Also in [  18 ], Proposition  5.1.8 is also used to compare

extensions classes of OX-representations that are trivial at ∞ and (ϕ, N)-modules. Our

proof is motivated by their idea, while we could give a more explicit construct of the (ϕ, N)-

modules. We will apply this computation in a further work.
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5.1.14 The filtration structure and weakly admissibility

Let Minf be an arithmetic BKF GK-module, and define Minf
dR = Minf ⊗Ainf B+

dR. Then as

in Proposition  2.2.10 , the arithmetic condition is equivalent to Minf
dR as a B+

dR-representation

of GK is generically flat and

Minf
dR = (Minf

dR[1
t
])GK ⊗K B+

dR.

Recall we have the GK-equivariant section

s : D = Minf
K̆
→Minf

cris

So we have DK := (s(D) ⊗K̆ BdR)GK = (Minf
dR[1

t
])GK . By Proposition  2.2.10 , to define a

filtration on DK is the same as giving a GK-stable B+
dR-lattice in Minf

dR[1
t
]. And we just

choose the B+
dR-lattice T (Minf)⊗Zp B+

dR.

To check the filtered (ϕ, N, GK)-module D is weakly admissible, first we can restrict to

the open subgroup IL of IK that acts trivially on D, i.e., we can ignore the GK-action on D.

Let E0(D, ϕ, N, Fil•) 99K E1(D, ϕ, N) be the IL-equivariant modification of vector bundles

over XF F defined by D. It is enough to check E0(D, ϕ, N, Fil•) is of slope 0.

First as in Remark  5.1.12 , E1(D, ϕ, N) together with the IL-action is exactly corre-

sponds to the ϕ-module Minf
cris with the twisted GK-action. To check E0(D, ϕ, N, Fil•) 99K

E1(D, ϕ, N) corresponds to the isogeny class of Minf , by Proposition  3.2.12 . it is enough to

check

Minf ⊗B+
dR ' T (Minf)⊗B+

dR ' Fil0(DK ⊗BdR) ' E0,∞.

But this just follows from the definition of E0(D, ϕ, N, Fil•) in §  2.2 .
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By Proposition  2.2.14 and Remark  4.2.7 , the IL-action on Minf
K̆

is trivial implies T (Minf)

as a representation of IL is log-crystalline, i.e., T (Minf) is potentially log-crystalline as a

representation of GK . So we have completed the diagram:

RepdR
Zp

(GK) HTdR
Zp

(GK) BKFa(GK)

Repp-lcr
Zp

(GK)

∼ ∼

Minf 7→T (Minf)

Taking the isogeny categories in the above diagram, we have:

Theorem 5.1.15. There is a functor

ωF F S : BKFa(GK)◦ →MFwa
K (ϕ, N, GK)

given by Minf →Minf
K̆

and equips Minf
K̆

with the filtered (ϕ, N, GK)-modules structure con-

structed in §  5 . The existence of ωF F S implies the p-adic monodromy theorem for p-adic

Galois representations, i.e., all de Rham representations are potentially log-crystalline. And

we have ωF F S is a quasi-inverse of ηF F S.

Proof. The only thing left to prove is ηF F S◦ωF F S ' Id. And it is by the following lemma.

Lemma 5.1.16. (rigidity of arithmetic Breuil-Kisin-Fargues GK-modules) For any two

arithmetic Breuil-Kisin-Fargues GK-modules Minf
1 and Minf

2 , if T (Minf
1 ) ' T (Minf

2 ), then

Minf
1 'Minf

2 .

Proof. By Fargues classification theorem (cf. Theorem  3.2.9 ), it is enough to show there is

a GK-equivariant isomorphism

Minf
1 ⊗B+

dR 'Minf
2 ⊗B+

dR.

But we have known by definition, both Minf
1 ⊗B+

dR and Minf
2 ⊗B+

dR are B+
dR-flat representations

inside T (Minf
1 )⊗BdR, so both of them are isomorphic to DdR(T (Minf))⊗K B+

dR.
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5.1.17 Relation with Scholze’s ‘question mark functor’

In [ 28 ], Scholze wanted to have an explicit description of the ? functor in the following

diagram:

{ p-divisible groups over OCp} { (T, W )}

{ p-divisible groups over k} { Dieudonné modules}

∼

?

∼

Here {(T, W )} is the category consists of pairs (T, W ), where T is a finite free Zp-lattice and

W is a sub-Cp-space of T ⊗Zp Cp. And

{ p-divisible groups over OCp} → {(T, W )}

is given by G 7→ (TpG, LieG ⊗OCp
Cp(1)), which is an equivalence by [  29 ]. And the an-

swer to this question is that using the Fargues’ classification theorem of BKF modules, cf.

Theorem  3.2.9 , one can extend the diagram with

{ (T, W )} { minuscule BKF modules}

{ Dieudonné modules}

?

∼

Minf 7→Minf⊗Ainf W (k)

and “?” functor becomes a base-change functor of modules. We have a similar diagram for

the p-adic monodromy theorem:

RepdR
Qp

(GK) HTdR(GK)

MFwa
K (ϕ, N, GK)

p-adic monodromy theorem

∼
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Here HTdR(GK) is the category consists of pairs (V, Ξ), where V is p-adic de Rham repre-

sentation of GK and Ξ = DdR(T ) ⊗Qp B+
dR is a GK-stable B+

dR-lattice of T ⊗Zp BdR that is

flat as a B+
dR-representation. And the equivalence of RepQp

(GK) and HTdR(GK) is given by

V 7→ (V, DdR(V )⊗K B+
dR).

So if we try to play the same trick of Scholze, one can use Fargues’ classification theorem and

extends the diagram by adding the category of arithmetic Breuil-Kisin-Fargues modules:

RepdR
Qp

(GK) HTdR(GK) BKFa(GK)◦

MFwa
K (ϕ, N, GK)

∼ ∼

ωF F S

And we have shown in this chapter that ωF F S is a base change functor Minf → Minf
K̆

, then

upgrade Minf
K̆

with the “K-rational structure” of Minf , that is we give Minf
K̆

a structure of

weakly admissible filtered (ϕ, N, GK)-modules structure.

Remark 5.1.18. For a p-divisible group G over OK , and let Gk be its special fiber, the “?”

functor relates to

G 7→ D(Gk)[1
p

].

where D(Gk) is the (covariant) Dieudonné module of Gk, and is closely related to Grothendieck-

Messing period morphism defined by Rapoport-Zink. We know p-divisible groups G over OK

are equivalent to crystalline GK-representations over Zp lattice with Hodge-Tate weights in

[0, 1], so a more reasonable “higher weights” generalization of this is to consider only crys-

talline or potentially crystalline representations, i.e., we should use the diagram:

Repcris
Qp

(GK) BKFcris(GK)◦

MFwa
K,ϕ

∼

ωF F S
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where BKFcris(GK)◦ is the isogeny category of Breuil-Kisin-Fargues GK-modules satisfies

condition (2) in Theorem  4.2.1 . In terms of modification of vector bundles, BKFcris(GK)◦

corresponds to a GK-equivariant modification E0 99K E1 plus an trivialization of E1. We

recall that a trivialization is the same as a rigidification of the corresponded ϕ-module

defined in  3.2.15 , and we showed that it is the same as a rigidification over B.

In [  28 ], Scholze defines a moduli space Shtint
GLn,b,µ which is defined over K̆ for a finite

extension K of Qp, we will not recall the full definition but just mention that the C = C[
p

point of ShtGLn,b,µ parametrizes Breuil-Kisin-Fargues modules with conditions on the kernel

and cokernel of ϕinf
M defined by a cocharacter µ of GLn and a rigidification by an isocrystal

over Fp defined by b. We wonder if there is any applications of our result to study the

rational points under the Grothendieck-Messing period morphism of Scholze define in §23.3

of loc.cit.
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6. RELATIONS WITH WACH AND BREUIL-KISIN THEORY

In this section we will compare our theory with some other existing theories in integral p-

adic Hodge theory and prove certain compatibility results using the rigidity of arithmetic

Breuil-Kisin-Fargues modules (cf. Lemma  5.1.16 ).

6.1 Wach modules and crystalline representations

Throughout this section, we assume that K = K0 is unramified for simplicity. We will

discuss general K in Remark  6.1.5 . We will construct a functor from Wach modules over K

to BKFa(GK). First recall the definition of Wach modules after Berger. Let {εi}i≥0 be a

compatible system of pn-th roots of 1, i.e., ε0 = 1 and εp
i+1 = εi for all i. {εi}i≥0 defines an

element ε ∈ OC , let µ = [ε] − 1 ∈ Ainf . Let Sµ = W (k)[[µ]] as a subring of Ainf which is

stable under ϕ on Ainf . Let q = ϕ(µ)
µ
∈ Sµ. By [  6 , §3.3], we have q generates the kernel of

θ ◦ ϕ−1, i.e., we have (q) = (ξ̃) in Ainf . Let Kp∞ = ∪iK(εi), and let Γ = Gal(Kp∞/K), note

that Γ acts on Sµ.

Definition 6.1.1. A (finite free) Wach module M over K is a finite free Sµ module together

with

ϕMµ : Sµ ⊗ϕ,Sµ Mµ →Mµ

such that the cokernal is killed by a power of q. Mµ also equipped with a semilinear Γ-action

on Mµ commutes with ϕMµ , satisfies Γ acts trivially on Mµ := Mµ ⊗Sµ W (k).

And we have the following theorem of Berger.

Theorem 6.1.2. ([ 4 ]) There is an equivalence of GK-stable Zp-lattices in crystalline rep-

resentations with non-negative Hodge–Tate weights and the category of finite free Wach

modules. And satisfies if Mµ corresponds to a crystalline representation T , then

(Mµ ⊗Sµ W (C))ϕ=1 ' T.
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Remark 6.1.3. Here we use the covariant version of the theorem, note that we still get non-

negative Hodge–Tate weights, since in our convention  1.6.6 we let the cyclotomic character

to have Hodge-Tate weight −1.

If M is a Wach module, let define Minf
µ = Mµ ⊗Sµ Ainf , Minf

µ has a ϕ-structure defined

by ϕMµ ⊗ ϕAinf and a semilinear GK-action.

Lemma 6.1.4. Minf
µ with the GK-action defined as above is an arithmetic Breuil-Kisin-

Fargues GK-module, moreover, it is actually crystalline in the sense that it satisfies the

condition (3) in Theorem  4.2.9 .

Proof. Firstly, we have (q) = (ξ̃), so Minf
µ together with GK-action is a Breuil-Kisin-Fargues

GK-module. We claim (Minf
µ ⊗ B+

cris)GK has a basis over K0 of full rank. This is from the

fact there is a GK-invariant section of M inside Minf
µ ⊗B+

cris by [ 23 , Lemma 2.2.2].

Remark 6.1.5. In the proof of Lemma  6.1.4 , when K = K0, we should also have Minf
µ is

arithmetic for Kisin-Ren’s generalization of Wach modules (c.f. [ 23 ]), where the cyclotomic

tower is replaced by Lubin-Tate tower. For general ramified K, there should be a paralleled

theory for arithmetic Breuil-Kisin-Fargues GK-modules over Ainf,K := Ainf ⊗W (k) OK that

relates to modifications of vector bundles over the Fargues-Fontaine curve defined using

perfectoid field C and the field K (rather than Qp). We will discuss this in further work.

6.2 Kisin modules, (ϕ, Ĝ)-modules

For general ramified K. We will use ~$ := {$n} to denote a compatible system of

pn-th roots of a uniformizer $ of OK , i.e., $0 = $ and $i = $p
i+1 for all i. We define

K∞ = ∪∞
n=1K($n), we will also write it as K∞,~$ when we want to emphasize the choice of

~$. The compatible system {$n} also defines an element $ in OC . View S = W (k)[[u]]

as a sub-W (k)-algebra of Ainf determined by u 7→ [$]. We will also use S~$ to emphasize

the choice of ~$. One can check ϕAinf (u) = up, so in particular S in stable under ϕAinf , let

ϕS = ϕAinf |S. We also have GK∞ fix u so GK∞ acts trivially on S. Let E(u) ∈ W (k)[u] be a

minimal polynomial of $ over K0. Also let K∞,p∞ = ∪iK($i, εi), i.e., L is the normalization

of K∞, define Ĝ = Gal(K∞,p∞/K).
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Definition 6.2.1. A (finite free) Kisin module is finite free S module M together with

ϕM : S⊗ϕ,S M→M

such that the cokernel of ϕM is killed by a power of E(u).

One can check E(u) generates kernel of θ, i.e., (ξ) = (E(u)) in Ainf , so we have

Lemma 6.2.2. For a Kisin module M, M⊗S,ϕ Ainf is a Breuil-Kisin-Fargues module.

Let T be a log-crystalline representation of GK over Zp with non-negative Hodge-Tate

weights, then Kisin in [  21 ] can show T is of finite E(u)-height in the sense that there is Kisin

module

M ⊂ (T ⊗Zp W (C))GK∞

that is ϕ-stable and spans T ⊗Zp W (C) as a W (C)-module. This Kisin module is also

uniquely determined by T = (M⊗S W (C))ϕ=1 as a representation of GK∞ . So we can write

M = M(T ) and let Minf(T ) = M(T ) ⊗S,ϕ Ainf be the corresponded Breuil-Kisin-Fargues

module which carries a natural GK∞-semilinear action that commutes with ϕMinf . We claim

that there is a unique way to extend this to a GK-semilinear action so that Minf(T ) is an

arithmetic Breuil-Kisin-Fargues GK-module. Actually, we will prove a more general result for

T being potentially log-crystalline representation of GK over Zp with non-negative Hodge-

Tate weights, we choose any finite Galois extension L/K such that T |GL
is log-crystalline.

Then as we have discussed, TL := T |GL
is of finite E-height for a choice of pn-th roots of a

uniformizer $L of OL and let M(TL) (resp. Minf(TL)) be the corresponded Kisin module

(resp. Breuil-Kisin-Fargues module with GL∞-action).

Theorem 6.2.3. Up to isomorphic, there is a unique way to extends the GL∞-semilinear

action on Minf(T ) := Minf(TL) to an action of GK so that Minf(T ) is an arithmetic Breuil-

Kisin-Fargues GK-module and satisfies a GK-equivariant isomorphism

(Minf(T )⊗W (C))ϕ=1 = T.
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Proof. The proof is an explicit comparing the construction of Kisin module and our con-

struction of arithmetic Breuil-Kisin-Fargues modules. We need to compute (T, Ξ) and its

GL∞-action for Minf(TL).

We give a brief review of the construction of Kisin module from log-crystalline repre-

sentation: let T is a potentially log-crystalline representation of GK over Zp, L/K be a

finite Galois extension such that T |GL
becomes log-crystalline, and let L0 = W (kL)[ 1

p
] and

define D = (T ⊗Bst)GL as the filtered (ϕ, N, GK)-module associated with T ⊗Qp. Then we

obtain a filtered (ϕ, N)-module D over L or (D, ϕ, N, Fil•) by forgetting the GK-action. D

corresponds to the log-crystalline representation T ⊗Qp|GL
. Now let O be the ring of rigid

analytic functions over the open unit disc over L0 in the variable u. Let S = W (kL)[[u]],

then one has S[ 1
p
] ⊂ O and there is a ϕO extending ϕS. Fix ($L,n) any choice of compatible

system of pn-th roots of a uniformizer $L,0 of L, then one can easily show that the the

inclusion S[ 1
p
]→ Ainf [ 1

p
] with u 7→ [($L,n)] extends to an inclusion O → B+. Geometrically,

O (resp. B+) is the locus {p 6= 0} of Spa(S) (resp. Spa(Ainf)), and restrict the covering

map Spa(Ainf)→ Spa(S) to these loci will give O → B+.

Roughly speaking, Kisin defined the S module by descending a ϕ-module M(D) over

O using the theory of slope of Kedlaya. In particular, we have M ⊗ O = M(D). And a

theorem of Fontaine says that the ways of descentM(D) to M are canonically corresponded

with GL∞-stable Zp-lattices in T ⊗ Qp, where L∞ = ∪∞
n=1L($L,n). Then Kisin define M to

be the S-module descents M(D) using the lattice T |GL∞
. So we have

T (Minf(TL)) = (M⊗S W (C))ϕ=1 = T |GL∞
.

For Ξ = Minf(TL)⊗B+
dR, we need to review the construction ofM(D) we mentioned above.

For all n ∈ Z consider the composition:

θn : O B+ B+ Cp
ϕ−n

θ

and let xn be the closed points on the rigid open unit disc defined by θn. And define

Ost = O[lu], the O-algebra generated by lu = $L] inside B+
dR. And extend the ϕ-action
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to lu by ϕ(lu) = plu and define a O-derivation N on O+
st by letting N(lu) = 1. Given

(D, ϕ, N, Fil•), Kisin defines M(D) as certain modification of the vector bundle

(O[lu]⊗L0 D)N=0

over O along stalks at xn for n ≥ 0. However to compute Ξ, we only need to the stalk at

x−1. and there is a natural isomorphism[  21 , Proposition 1.2.8.]:

(O[lu]⊗L0 D)N=0 = (L0[lu]⊗L0 D)N=0 ⊗L0 O D ⊗L0 O.
η⊗id

This tells us Ξ = (M(D)⊗O B+)⊗B+,ϕ B+
dR is isomorphic to

(D ⊗L0,ϕ L0)⊗L0 B+
dR
∼= D ⊗L0 B+

dR

with GL∞ acts trivially on D by construction.

To finish the proof, we just need to show there is a unique way to extend the GL∞-

action on (TL∞ , D ⊗B+
dR) to GK such that on T it is the original potentially log-crystalline

representation, and on Ξ = D⊗B+
dR is B+

dR-flat. But we have if we want Ξ ∈ T ⊗BdR is GK

stable and flat, by Proposition  2.2.12 , it has to equal to

DdR(T )⊗K B+
dR = (D ⊗ L)GK ⊗B+

dR.

We also recall the following definition of (ϕ, Ĝ)-modules of Liu.

Definition 6.2.4. Let Modϕ,Ĝ

S,R̂
be the category of triples (M, ϕM, Ĝ) called (ϕ, Ĝ)-modules,

where

(1) (M, ϕM) is a Kisin module;

(2) Ĝ is a continuous R̂-semilinear R̂-action on M̂ := M⊗S,ϕ R̂;

(3) Ĝ commutes with ϕ
M̂

;
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(4) regarding M as a ϕ(S)-submodule of M̂, we have M ⊂ M̂Gal(K∞,p∞ /K∞);

(5) Ĝ acts trivially on M̂⊗
R̂

W (k).

Here R̂ is a subring of Ainf . We will not give the explicit definition of R̂, we just list two

properties we need in our applications:

(1) R̂ ⊂ A
GK∞,p∞
inf ;

(2) the image of R̂ ↪−→ Ainf
θ−→ is K.

The main result in [ 25 ] is

Theorem 6.2.5. There is an equivalence of log-crystalline representations of non-negative

Hodge-Tate weights with the category of (ϕ, Ĝ)-modules. And satisfies if (M, ϕM, Ĝ) corre-

sponds to a log-crystalline representation T , then

(M̂⊗S W (C))ϕ=1 ' T.

Lemma 6.2.6. (M, ϕM, Ĝ) be a (ϕ, Ĝ)-module, let Minf = M̂⊗
R̂

Ainf , then Minf is a Breuil-

Kisin-Fargues GK-module where the GK-action comes from the Ĝ-action on M̂, moreover,

Minf is arithmetic.

Proof. We have Minf = M̂⊗
R̂

Ainf = M⊗S,ϕ Ainf is a Breuil-Kisin-Fargues module. And we

have M̂⊗
R̂,θ

K is a K vector space and

Minf ⊗ Cp = (M̂⊗
R̂,θ

K)⊗K Cp.

Moreover, use the definition, we have M̂⊗
R̂,θ

K has a GK linear action and there is a basis

fixed by GK∞ coming from a basis of M. The result is from the following lemma on Kummer

theory and Galois descent.

Lemma 6.2.7. All closed normal subgroup of GK containing GK∞ are open.

Proof. This is from the fact K can only contain finitely mainly pn-th roots of 1.
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So now as we mentioned in the beginning of Chapter  6 , we have the following compat-

ibility results for Kisin modules defined using different choice of uniformizer and Kummer

tower, and the compatibility of Kisin modules, Wach modules and Kisin-Ren’s modules when

K = K0 and T is crystalline.

Theorem 6.2.8. Let T be a log-crystalline representations with non-negative Hodge-Tate

weights, for different choice of ~$, the arithmetic Breuil-Kisin-Fargues GK-modules Minf from

Lemma  6.2.6 are all isomorphic to the arithmetic Breuil-Kisin-Fargues modules Minf(T )

defined in Theorem  4.2.9 , in particular, they are all isomorphic to each other.

Moreover, if T is crystalline then Minf(T ) is isomorphic to the arithmetic Breuil-Kisin-

Fargues GK-modules defined from Wach modules as in Lemma  6.1.4 .

Remark 6.2.9. We want to note that the above result also been proved in [ 26 ].

6.3 Breuil-Kisin-Fargues GK-modules admit all descents

Definition 6.3.1. [ 16 , F.7. Definition] Let Minf be a Breuil-Kisin-Fargues GK-module.

Then we say that Minf admits all descents over K if the following conditions hold.

(1) For any choice $ of uniformaizer of OK and any compatible system ~$ = ($n)

of pn-th roots of $, there is a Breuil-Kisin module M~$ defined using ~$ such that

M~$ ⊗S,ϕ Ainf is isomorphic to Minf and M~$ is fixed by GK~$,∞ under the above

isomorphism, where K~$,∞ = ∪nK($n);

(2) M~$ ⊗S,ϕ (S/E(u~$)S) is independent of the choice of ~$ as a OK-submodule of

Minf ⊗Ainf OCp ;

(3) Let u~$ = [($n)], then M~$ ⊗S,ϕ (S/u~$S) is independent of the choice of ~$ as a

W (k)-submodule of Minf ⊗Ainf W (k).

Remark 6.3.2. Theorem  6.2.8 will implies if T is a log-crystalline representation of GK ,

and let Minf(T ) be arithmetic Breuil-Kisin-Fargues GK-module corresponds to T under

Theorem  4.2.9 , then Minf(T ) admits all descents over K.
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The following result is first proved by Gee-Liu in [ 16 ], which can be regarded as an inverse

of Theorem  6.2.8 .

Proposition 6.3.3. Let Minf be a Breuil-Kisin-Fargues GK-module, and assume Minf ad-

mits all descents over K, then Minf is arithmetic and satisfies the condition (2) in Theo-

rem  4.2.9 , i.e., the inertia subgroup IK of GK acts trivially on Minf = Minf ⊗Ainf W (k). In

particular, T (Minf) is log-crystalline.

Proof. The proof is bases on [  16 , F.15] on Kummer theory, which will implies the closed

subgroup generated by {K~$,∞}~$ is GK .

So (2) in Definition  6.3.1 will imply Minf⊗Cp has a GK fixed basis, i.e., Minf is arithmetic.

And (3) in Definition  6.3.1 will imply that Minf ⊗ K̆ also has a GK fixed basis, so the the

inertia subgroup IK acts trivially on on this basis.

Remark 6.3.4. In a recent work [  19 ], he was able to show that if an arithmetic Breuil-Kisin-

Fargues GK-module Minf admits one descent, that is for one choice of compatible system

~$ = ($n) of pn-th roots of a uniformizer $ of OK , there is a Breuil-Kisin module M~$

defined using ~$ such that M~$ ⊗S,ϕ Ainf is isomorphic to Minf and M~$ is fixed by GK~$,∞

under the above isomorphism, then Minf is arithmetic. Actually, his work corrects a mistake

in [  11 ] and shows that if a p-adic representation is of finite E-height, then the representation

is de Rham. We want to note this result is deep since for a representation with non-negative

Hodge-Tate weights is of finite E-height that defined by a Kisin module

M ↪−→ T ⊗Zp W (C)

then we don’t know a priori that M⊗S,ϕ Ainf ↪−→ T ⊗Zp W (C) is stable GK .

6.4 Crystalline condition

At last, we show how the ring B helps define a crystalline condition for arithmetic Breuil-

Kisin-Fargues GK-module Minf with descents to Kisin modules. We observe that for Kisin’s

S

S
ϕ−→ Ainf → B
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uniquely factor through S → W (k) since u ∈ p. So we slightly modify the (3) in Defini-

tion  6.3.1 

Definition 6.4.1. Let Minf be a Breuil-Kisin-Fargues GK-module, and Minf admits all

descents over K, we say it is crystalline if it also satisfies

(3’) Let u~$ = [($n)], then M~$ ⊗S,ϕ (S/u~$S) is independent of the choice of ~$ as a

W (k)-submodule of Minf ⊗Ainf B.

A straightforward consequence from (3) in Theorem  4.2.9 is

Proposition 6.4.2. Let Minf be a Breuil-Kisin-Fargues GK-module and assume Minf sat-

isfies (3) in Definition  6.4.1 , then Minf is arithmetic and satisfies the condition (3) in Theo-

rem  4.2.9 . In particular, T (Minf) is crystalline.

Remark 6.4.3. The crystalline conditions used in [ 16 ] and [  19 ] will automatically fit into

our Proposition  6.4.2 , for example, in [  16 ], we have for u = [$], gu− u ∈ p for all g ∈ GK .

Very recently, Bhatt-Scholze announced another crystalline condition using certain descent

conditions on prismatic site, we expect that will be also related to our condition using B.
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