
SOFTWARE SYSTEMS FOR LARGE-SCALE
RETROSPECTIVE VIDEO ANALYTICS

by

Tiantu Xu

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

School of Electrical and Computer Engineering

West Lafayette, Indiana

May 2021

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Felix Xiaozhu Lin, Chair

School of Electrical and Computer Engineering

Dr. Saurabh Bagchi

School of Electrical and Computer Engineering

Dr. Y. Charlie Hu

School of Electrical and Computer Engineering

Dr. Xiangyu Zhang

Department of Computer Science

Approved by:

Dr. Dimitrios Peroulis

2

This thesis is dedicated to my parents and my fiancée.

3

ACKNOWLEDGMENTS

I want to thank my Ph.D. advisor Prof. Felix Xiaozhu Lin for his patience, encour-

agement, and guidance in the past five years, which always helped me out whenever I got

stuck. I am indebted to Prof. Lin for the precious opportunity he offered to me to conduct

computer systems research when I was a student with no related background.

I want to thank Prof. Saurabh Bagchi, Prof. Y. Charlie Hu, and Prof. Xiangyu Zhang

for serving on my Ph.D. advisory committee and providing me with insightful comments on

my research.

I enjoy working with my colleagues at Crossroads Systems Exploration Lab (XSEL):

Hongyu Miao, Liwei Guo, Heejin Park, and Shuang Zhai. I will miss the days hanging out

and moments of inspiring discussions with all of you.

I am grateful for the collaborations with Mengwei Xu, Xuanzhe Liu, Yunxin Liu, Gang

Huang, Guohui Wang, Humphrey Shi, Yang Fu, Kaiwen Shen, and Luis Fernando Materon

Botelho. Their expertise, hard work, and insightful suggestions on my research are invaluable

to me.

Finally, I want to thank my parents, Xiangyang Xu and Yuan Lin, and my fiancée Yinong

Zhou, for their love and unconditional support.

4

TABLE OF CONTENTS

LIST OF TABLES . 10

LIST OF FIGURES . 11

ABSTRACT . 14

1 INTRODUCTION . 16

1.1 Supporting video storage for cost-efficient retrospective video analytics . . . 17

1.2 Supporting exploratory video queries on low-cost wireless cameras 20

1.3 Supporting object re-identification under city-scale camera deployments . . . 24

2 SUMMARY . 29

3 VSTORE: A DATA STORE FOR ANALYTICS ON LARGE VIDEOS 31

3.1 Background & motivations . 31

3.1.1 Retrospective video analytics . 31

3.1.2 System model . 31

3.1.3 Video format knobs . 33

3.1.4 Knob impacts . 35

3.2 A case for a new video store . 37

3.2.1 The configuration problem . 37

3.2.2 Inadequacy of existing video stores 39

3.3 The VStore design . 40

3.3.1 Overview . 40

5

3.3.2 Configuring consumption formats . 42

3.3.3 Configuring storage formats . 44

3.3.4 Planning age-based data erosion . 46

3.4 Implementation . 49

3.5 Evaluation . 49

3.5.1 Methodology . 50

3.5.2 End-to-end results . 51

3.5.3 Adapting to resource budgets . 55

3.5.4 Configuration overhead . 56

3.6 Discussion . 59

3.7 Related work . 60

3.8 Conclusions . 62

4 DIVA: SUPPORTING EXPLORATORYVIDEOQUERIES ON ZERO-STREAMING

CAMERAS . 63

4.1 Background & motivations . 63

4.1.1 Cold videos are already pervasive . 63

4.1.2 Target queries and their execution 63

4.1.3 A case for zero streaming . 64

4.2 Overview . 65

4.3 Landmark design . 68

6

4.4 Online operator upgrade . 70

4.4.1 The rationale . 70

4.4.2 Multipass, multi-operator execution 72

4.5 Query execution planning . 73

4.5.1 Executing Retrieval queries . 73

4.5.2 Executing Tagging queries . 75

4.5.3 Executing Counting queries . 75

4.6 Implementation and methodology . 76

4.7 Evaluation . 79

4.7.1 End-to-end performance . 79

4.7.2 Validation of query execution design 83

4.8 Related work . 86

4.9 Conclusions . 87

5 CLIQUE: SPATIOTEMPORAL OBJECT RE-IDENTIFICATION AT THE CITY

SCALE . 88

5.1 Background & motivations . 88

5.1.1 System model . 88

5.1.2 Challenge 1: Algorithm limitations 89

5.1.3 Challenge 2: Numerous cameras & videos 90

5.1.4 Why is prior work inadequate . 91

7

5.2 Clique overview . 92

5.3 Clustering unreliable bounding boxes . 94

5.4 Incremental search in spatiotemporal cells 96

5.4.1 Assessing cell promises . 96

5.4.2 Prioritizing cells in search . 97

5.4.3 The search process . 99

5.5 Optimizations . 100

5.5.1 Optimizations with extra knowledge 100

5.5.2 Utilizing cheap vision operators . 101

5.6 Evaluation . 102

5.6.1 Methodology . 103

5.6.2 End-to-end performance . 105

5.6.3 Validation of key designs . 106

5.6.4 Comparisons to alternative designs 108

5.6.5 Sensitivity to parameters and inputs 110

5.6.6 Delay reduction by processing at ingestion 111

5.6.7 Impact of optimizations . 112

5.6.8 Impact of cheaper vision operators 113

5.7 Related work . 115

5.8 Conclusions . 116

8

6 CONCLUSIONS AND FUTURE DIRECTIONS 117

6.1 Conclusions . 117

6.2 Future directions . 117

REFERENCES . 119

VITA . 140

9

LIST OF TABLES

3.1 Knobs and their values considered in this work. Total: 7 knobs and 15K possible
combinations of values. Note: no video quality and coding knobs for RAW. . . . 34

3.2 The library of operators in the current VStore. 40

3.3 A sample configuration of video formats automatically derived by VStore. . . . 51

3.4 In response to ingestion budget drop, VStore tunes coding and coalesces formats
to stay under the budget with increase in storage cost. Changed knobs shown in
red. 55

4.1 Cheap µSD cards on cameras retain long videos for humans to review [128] or
for machines to analyze [15]. . 65

4.2 A summary of supported queries. T is the queried video timespan; C is the
queried object class. . 66

4.3 15 videos used for test. Each video: 720P at 1FPS lasting 48 hours. Column 1:
video type. T – traffic; O/I – outdoor/indoor surveillance; W – wildlife. 77

4.4 Experiment configurations. 78

4.5 DIVA’s performance (speedup) with various bandwidths. Numbers: min/me-
dian/max of times (×) of query delay reduction compared to baselines (rows).
Averaged on all videos and 9 bandwidths in 0.1MB/s–10MB/s. 81

5.1 The augmented video dataset used in evaluation. 104

10

LIST OF FIGURES

1.1 The design space of existing video software systems [6], [8], [9], [11]–[15]. . . 17

1.2 The VStore architecture, showing the video data path and backward deriva-
tion of configuration. 18

1.3 Overview of DIVA. 22

1.4 The classic pipeline for object ReID, formulated as image retrieval. 24

3.1 Video queries as operator cascades [8], [64]. 32

3.2 Impacts of coding knobs. Video: 100 seconds from tucson. See Section 3.5

for dataset and test hardware. . 35

3.3 Fidelity knobs have high, complex impacts on costs of multiple components
(normalized on each axis) and operator accuracy (annotated in legends). Each
plot: one knob changing; all others fixed. See Section 3.5 for methodology. . 36

3.4 Disparate costs of fidelity options A–C, despite all leading to operator accu-
racy ≈ 0.8. Operator: License. Cost normalized on each axis. See Section 3.5

for methodology. . 37

3.5 Video retrieval could bottleneck consumption. This is exemplified by the de-
coding speed vs. consumption speed comparisons for two different operators.
(a) Operator: License. Consumption can be faster than decoding (speed
shown as the dashed line), if the on-disk video is stored with the richest fi-
delity as ingested. Yet, consumption is still slower than decoding video of the
same fidelity (white columns). (b) Operator: Motion. Consumption is faster
than decoding, even if the on-disk video is of the same fidelity as consumed.
Operator accuracy annotated on the top. See Section 3.5 for test hardware. 38

3.6 VStore derives the configuration of video formats. Example consumption/re-
trieval speed is shown. 41

3.7 Search in a set of 2D spaces for a fidelity option with accuracy ≥ 0.8 and max
consumption speed (i.e., min consumption cost). 43

3.8 Iterative coalescing of storage formats. 45

3.9 Data erosion decays operator speed and keeps storage cost under budget.
Small cells: video segments. . 47

3.10 End-to-end result of VStore. 53

3.11 Transcoding cost does not scale up with the number of operators. Operator
sequence follows Table 3.2 . 56

3.12 Age-based decay in operator speed (a) and reducing storage cost (b) to respect
storage budget. 57

11

3.13 Time spent on deriving consumption formats. Numbers of profiling runs are
annotated above columns. Each required profiling runs on a 10-second video
segment. VStore reduces overhead by 5× in total. 58

4.1 The workflow of DIVA’s query execution. 67

4.2 Class spatial skews in videos. In (a) Banff: 80% and 100% of cars appear in
regions that are only 19% and 57% of the whole frame, respectively. 68

4.3 Class spatial distribution can be estimated from sparse frames sampled over
long video footage. Among the three heatmaps: while sparse sampling over
short footage (left) significantly differs from dense sampling of long footage
(right), sparse sampling of long footage (middle) is almost equivalent to Video:
Tucson (see Table 4.3). 68

4.4 On-camera operators benefit from long-term video knowledge substantially.
Each marker: an operator. For querying buses on video Banff (see Table 4.3). 69

4.5 Three alternative executions of a Retrieval query, showing multipass rank-
ing (bottom) outperforms running individual rankers alone (top two). Each
row: snapshots of the upload queue at three different moments. In a queue:
ranking/uploading frames from left to right. 71

4.6 Cheap/expensive camera operators excel at different query stages. Each sub-
figure: two alternative executions of the same query, showing query progress
(bars) and the corresponding operator’s progress (arrows). 72

4.7 On Retrieval and Tagging queries, DIVA shows good performance and out-
performs the alternatives. x-axis for all: query delay (secs). y-axis for (a): %
of retrieved instances; for (b): refinement level (1/N frames). 79

4.8 On Counting queries, DIVA shows good performance and outperforms the
alternatives. Legend: see Figure 4.7 . x-axis for all: query delay (secs). y-axis
for left plots: count; for top two right plots: ground truth for avg/median
queries; for bottom right plot: % of max value. 80

4.9 DIVA significantly reduces network traffic compared to “all streaming”. Re-
sults averaged over all videos. . 82

4.10 DIVA’s both key techniques – optimization with long-term video knowledge
(opt) and operator upgrade (upgrade), contribute to performance significantly. 83

4.11 Validation of landmark design. In (a)/(b)/(c): Left – Retrieval on Chaweng;
Right – Tagging on JacksonH. . 84

12

5.1 Examples of unreliable bounding boxes. (Left) an image of vehicle A, whose
feature is the input. (Top) a histogram of distances between the input and
other features of A. (Bottom) a histogram of distances between the input and
features of B, a confusing vehicle. All features are 1×1024 vectors extracted
by ResNet-152. Euclidean distances with L-2 norm [51] are used. Video clips:
4.7/4.9 sec for vehicle A/B from CityFlow [37]. 89

5.2 An overview of Clique. * = a starter camera. 93

5.3 Clustering of bounding boxes tolerates low frame rates. Y-axis: the per-
centage of bounding boxes correctly attributed to respective objects. Object
tracking implemented in OpenCV 3.4.4. Videos from CityFlow [37]. 96

5.4 Augmenting real-world city videos [37] as our test dataset: duplicating the
original epoch; erasing random vehicles from each epoch; erasing the target
vehicle from all but the original epoch. 103

5.5 Query-by-query comparison between Clique and the alternatives, broken down
by per-query comparison outcomes. Numbers on bottom: accuracy goals;
(X/Y): X = number of queries that Clique reached the accuracy; Y = total
query count. 105

5.6 The CDF of query delays by Clique and the alternatives. (X/Y): X = the
number of queries on which all the versions reach the accuracy goal; Y = total
query count. 107

5.7 The CDF of query delays by Clique, ReXCam-ST, and PROVID-ST. (X/Y):
X = the number of queries on which all the versions reach the accuracy goal;
Y = total query count. 109

5.8 A comparison between Clique’s choices of starter cameras and random choices.
(X/Y) in (a): X = number of queries that Clique reached the accuracy; Y =
total query count. 110

5.9 Query delays with N cameras per geo-group pre-processed at ingestion time.
In case N exceeds the total cameras of a geo-group, all the cameras are pre-
processed. (X/Y): X = number of queries on which all versions reach the
accuracy goal; Y = the total query count. Y-axis in logscale. 111

5.10 Delay CDFs of Clique augmented to exploit camera orientation knowledge.
(X/Y): X = number of queries that Clique reached the accuracy; Y = total
query count. 113

5.11 The average delay to reach 0.99 under different pre-processing budgets during
ingestion. (X/Y): X = starter cameras covered; Y = total number of locations.
X > Y means covering more than one starter cameras per location. 114

13

ABSTRACT

Pervasive cameras are generating videos at an unprecedented pace, making videos the

new frontier of big data. As the processors, e.g., CPU/GPU, become increasingly powerful,

the cloud and edge nodes can generate useful insights from colossal video data. However,

as the research in computer vision (CV) develops vigorously, the system area has been a

blind spot in CV research. With colossal video data generated from cameras every day and

limited compute resource budgets, how to design software systems to generate insights from

video data efficiently?

Designing cost-efficient video analytics software systems is challenged by the expensive

computation of vision operators, the colossal data volume, and the precious wireless band-

width of surveillance cameras. To address above challenges, three software systems are

proposed in this thesis. For the first system, we present VStore, a data store that supports

fast, resource-efficient analytics over large archival videos. VStore manages video ingestion,

storage, retrieval, and consumption and controls video formats through backward derivation

of configuration: in the opposite direction along the video data path, VStore passes the

video quantity and quality expected by analytics backward to retrieval, to storage, and to

ingestion. VStore derives an optimal set of video formats, optimizes for different resources

in a progressive manner, and runs queries as fast as 362× of video realtime. For the sec-

ond system, we present a camera/cloud runtime called DIVA that supports querying cold

videos distributed on low-cost wireless cameras. DIVA is built upon a novel zero-streaming

paradigm: to save wireless bandwidth, when capturing video frames, a camera builds sparse

yet accurate landmark frames without uploading any video data; when executing a query,

a camera processes frames in multiple passes with increasingly more expensive operators.

On diverse queries over 15 videos, DIVA runs at more than 100× realtime and outperforms

competitive alternatives remarkably. For the third system, we present Clique, a practical ob-

ject re-identification (ReID) engine that builds upon two unconventional techniques. First,

Clique assesses target occurrences by clustering unreliable object features extracted by ReID

algorithms, with each cluster representing the general impression of a distinct object to be

matched against the input. Second, to search across camera videos, Clique samples cameras

14

to maximize the spatiotemporal coverage and incrementally adds cameras for processing on

demand. Through evaluation on 25 hours of traffic videos from 25 cameras, Clique reaches

a high recall at 5 of 0.87 across 70 queries and runs at 830× of video realtime in achieving

high accuracy.

15

1. INTRODUCTION

Video has become the new frontier for big data as pervasive cameras produce videos every

day. Over the past 10 years, the annual shipments of surveillance cameras grow by 10×, to

130M per year [1]. Many campuses are reported to run more than 200 cameras 24×7 [2].

A survey of 61 organizations shows that from 2015 to 2018, the average number of cameras

has increased by almost 70%, from 2,900 to 4,900 [3]. In such deployment, a single camera

produces as much as tens of GB encoded video footage per day (720P at 30 fps). Such

volume of video footage is infeasible for a human to consume who typically watches videos

at 30-60 fps.

Offloading video consumption to machines is a promising solution. With the advance of

deep learning [4] since 2015, deep neural networks (DNNs) have become a promising video

consumer, offering a wide spectrum of vision operators with different functions under various

consumption speeds. By fully utilizing DNNs, machines are able to generate useful insights

from video footage captured by surveillance cameras. For example, to trace the cause of

recent frequent congestion on a high way, a city planner queries cameras on nearby local

roads, requesting car counts seen on these local roads; to investigate a crime happened last

night, a police officer queries corresponding camera video footage to identify any human in

blue shirts. To speed up video queries, a video query is typically executed as a cascade

of vision operators [5]–[9], which enables answering video queries from hour-long videos in

seconds.

Video analytics is expensive. A $4000 GPU is often required to generate useful insights

from the videos. State-of-the-art object detectors, e.g., YOLOv3 [10] only runs at 20 fps.

On the contrary, storage devices are cheap, e.g., a 5-TB hard drive that costs only $200 can

store a few months of videos. Retrospective analytics, which stores the the video data to the

disks and only retrieve them on demand when the user queries, is more cost-efficient.

Retrospective analytics offers several key advantages that live analytics lacks. (i) Analyz-

ing many video streams in real time is expensive, e.g., running DNNs over live videos 24×7.

It also requires a deployment of always-on network configuration. (ii) Query types may only

become known after the video capture [7]. (iii) At query time, users may interactively revise

16

Retrospective
Query

Streaming while capturing?

Real-time
Query

NoScope, Focus

Reducto FilterForward
Vigil Glimpse

Higher
network cost

Higher
compute cost Live analytics

AllZero

VideoStorm Chameleon

Archive on the cloud

Figure 1.1. The design space of existing video software systems [6], [8], [9], [11]–[15].

their query types or parameters [16], which may not be foreseen at ingestion time. (iv) In

many applications, only a small fraction of the video will be eventually queried [17], making

live analytics an overkill.

As shown in Figure 1.1 , most existing video systems focus on real-time video analytics.

This thesis explores the retrospective video analytics and adds new points to the design

space. The remainder of this thesis is structured as follows: in Chapter 3 , we will present

VStore1
 [18], a data store that supports fast, resource-efficient video analytics, which man-

ages video ingestion, storage, retrieval, and consumption through automatic configuration of

video formats; in Chapter 4 , we will present DIVA2
 [19], a query engine that supports query-

ing low-cost wireless cameras with limited compute and network resources; in Chapter 5 , we

will present Clique [20], an object ReID query engine that supports efficient spatiotemporal

queries on city-scale camera deployments.

Ethical considerations In this thesis, all visual data used is from the public domain.

No information traceable to human individuals is collected or analyzed.

1.1 Supporting video storage for cost-efficient retrospective video analytics

As recent query engines [7], [8] assume all input data as raw frames present in memory,

there lacks a video store that manages large videos for analytics. The data store should

orchestrate four major stages on the video data path: ingestion, storage, retrieval, and
1↑ A version of this work was previously published in Proceedings of the Fourteenth EuroSys Conference,
2019 (EuroSys ’19). https://doi.org/10.1145/3302424.3303971

2↑ A version of this work is pending publication in USENIX Annual Technical Conference, 2021 (ATC ’21)

17

https://doi.org/10.1145/3302424.3303971

Ingestion Storage Retrieval Consume

f c f

Transcoder
bw

Disk
space

Decoder/
disk bw

CPU/GPU
cycles

Video
Data

Fidelity Coding Fidelity

Backward derivation of configuration

Operator
@ accuracy

Figure 1.2. The VStore architecture, showing the video data path and back-
ward derivation of configuration.

consumption, as shown in Figure 1.2 . The four stages demand multiple hardware resources,

including encoder/decoder bandwidth, disk space, and CPU/GPU cycles for query execution.

The resource demands are high, thanks to large video data. Demands for different resource

types may conflict. Towards optimizing these stages for resource efficiency, classic video

databases are inadequate [21]: they were designed for human consumers watching videos at

1×–2× speed of video realtime; they are incapable of serving some algorithmic consumers,

i.e., operators, processing videos at more than 1000× video realtime. Shifting part of the

query to ingestion [15] has important limitations and does not obviate the need for such a

video store.

Towards designing a video store, we advocate for taking a key opportunity: as video flows

through its data path, the store should control video formats (fidelity and coding) through

extensive video parameters called knobs. These knobs have significant impacts on resource

costs and analytics accuracy, opening a rich space of trade-offs.

We present VStore, a system managing large videos for retrospective analytics. The

primary feature of VStore is its automatic configuration of video formats. As video streams

arrive, VStore saves multiple video versions and judiciously sets their storage formats; in

response to queries, VStore retrieves stored video versions and converts them into consump-

tion formats catering to the executed operators. Through configuring video formats, VStore

ensures operators to meet their desired accuracies at high speed; it prevents video retrieval

from bottlenecking consumption; it ensures resource consumption to respect budgets.

18

To decide video formats, VStore is challenged by i) an enormous combinatorial space of

video knobs; ii) complex impacts of these knobs and high profiling costs; iii) optimizing for

multiple resource types. These challenges were unaddressed: while classic video databases

may save video contents in multiple formats, their format choices are oblivious to analytics

and often ad hoc [21]; while existing query engines recognize the significance of video for-

mats [6], [7], [9] and optimize them for query execution, they omit video coding, storage,

and retrieval, which are all crucial to retrospective analytics.

To address these challenges, our key idea behind VStore is backward derivation, shown

in Figure 1.2 . In the opposite direction of the video data path, VStore passes the desired

data quantity and quality from algorithmic consumers backward to retrieval, to storage,

and to ingestion. In this process, VStore optimizes for different resources in a progressive

manner; it elastically trades off among them to respect resource budgets. More specifically,

i) from operators and their desired accuracies, VStore derives video formats for fastest data

consumption, for which it effectively searches in a high-dimensional parameter space with

video-specific heuristics; ii) from the consumption formats, VStore derives video formats

for storage, for which it systematically coalesces video formats to optimize for ingestion

and storage costs; iii) from the storage formats, VStore derives a data erosion plan, which

gradually deletes aging video data, trading off analytics speed for lower storage cost.

Through evaluation with two real-world queries over six video datasets, we demonstrate

that VStore is capable of deriving large, complex configuration with hundreds of knobs over

tens of video formats, which are infeasible for humans to tune. Following the configuration,

VStore stores multiple formats for each video footage. To serve queries, it streams video

data (encoded or raw) from disks through decoder to operators, running queries as fast as

362× of video realtime. As users lower the target query accuracy, VStore elastically scales

down the costs by switching operators to cheaper video formats, accelerating the query by

two orders of magnitude. This query speed is 150× higher compared to systems that lack

automatic configuration of video formats. VStore reduces the total configuration overhead

by 5×.

We have made the following contributions in VStore.

19

• We make a case for a new video store for serving retrospective analytics over large

videos. We formulate the design problem and experimentally explore the design space.

• To design such a video store, we identify the configuration of video formats as the

central concern. We present a novel approach called backward derivation. With this

approach, we contribute new techniques for searching large spaces of video knobs, for

coalescing stored video formats, and for eroding aging video data.

• We report VStore, a concrete implementation of our design. Our evaluation shows

promising results. VStore is the first holistic system that manages the full video

lifecycle optimized for retrospective analytics, to our knowledge.

1.2 Supporting exploratory video queries on low-cost wireless cameras

Four recent trends motivate DIVA.

(1) Low-cost, wireless cameras grow fast. As key complements to high-end cameras, low-

cost cameras (<$40) are increasingly pervasive [22]–[24]. These cameras often have limited

compute resources yet spacious storage. Being wireless, these cameras are meant to be

installed by individuals or small businesses with ease just as other wireless sensors.

(2) Most videos are cold. Users typically deploy cameras for capturing excessive videos,

despite knowing most videos will never be queried. This is because interesting events are

often unforeseeable, e.g., car accidents; the need for examining such events emerges well after

the fact. Section 4.1.1 presents a 6-month study of real-world camera deployment, where

only <0.005% of captured videos is eventually queried.

(3) Transmitting cold videos wastes wireless bandwidth. Cold videos should never contend

with human users for network bandwidth. If streaming video in real-time, a single camera

generates traffic at 0.2–0.4 MB/s (720P at 1–30 FPS); with multiple cameras on one network,

their always-on streams easily consume most, if not all, bandwidth of consumer WiFi, which

is 0.2–3 MB/s (median: 0.99) in a recent global survey [25] and less than 1.5 MB/s in an

academic study [26]. A dedicated network for cameras is expensive, as network monetary

cost exceeds camera cost in three months [27].

20

(4) Camera storage can retain videos long enough. A cheap camera can already store

videos for weeks or months. Such retention periods already satisfy many video scenarios [28],

[29]. In fact, legal regulations often prevent retention longer than a few months, mandating

video deletion for privacy [30], [31]. Existing security measures can assure security of on-

camera videos. Section 4.1.3 will provide evidence in detail.

Zero streaming How to analyze cold videos produced by many low-cost cameras? We

advocate for a system model dubbed “zero streaming”. (1) Cameras continuously capture

videos to their local storage without uploading any. (2) Only in response to a retrospective

query, the cloud reaches out to the queried camera, coordinating with it to process the queried

video. (3) While the video is being processed, the system presents users with inexact yet

useful results; it continuously refines the results until query completion [32]. In this way, a

user may explore videos through interactive queries, e.g., aborting an ongoing query based

on inexact results and issuing a new query with revised parameters [16], [33]. Zero streaming

has rich use cases. For example, to understand how recent visitors impact bobcat activities,

a ranger queries all the park’s cameras, requesting time ranges where the cameras capture

bobcats.

Zero streaming suits resource-frugal cameras in large deployment. When capturing

videos, cameras require no network or external compute resources. Only to process a query,

the cameras require network, e.g., long-range wireless [34], and cloud compute resources,

e.g., GPU. Zero streaming adds a new point to the design space of video analytics shown in

Figure 1.1 . It facilitates retrospective, exploratory analytics, a key complement to real-time

event detection and low-delay video retrieval [6], [9], [11], [15]. The latter demands higher

compute or network resources per camera and hence suits fewer cameras on hot locations,

e.g., building entrances.

DIVA To support querying zero-streaming cameras, we present a camera/cloud runtime

called DIVA. As shown in Figure 1.3 , a camera captures video to local storage; it deletes

videos after their maximum retention period. In response to a query, the camera works in

conjunction with the cloud: the camera runs operators, implemented as lightweight neural

nets (NNs), to rank or filter frames; the cloud runs full-fledged object detection to validate

21

(a) Capture Time

Expensive
obj detector

Landmarks

(b) Query Time

Online op upgrade

Lightweight
& fast op

Video

Refining

Camera Camera Cloud

Res

Expensive
obj detector

Figure 1.3. Overview of DIVA.

results uploaded from the camera. DIVA thus does not sacrifice query accuracy, ensuring it

as high as that of object detection by the cloud.

The major challenges to DIVA are two. (1) During video capture: how should cameras

best use limited resources for future queries? (2) To execute a query: how should the

cloud and the camera orchestrate to deliver useful results rapidly? Existing techniques

are inadequate. Recent systems pre-process (“index”) video frames as capturing them [15]

and answer queries based on indexes only. Yet, as we will show in the Section 4.7 , low-

cost cameras can hardly build quality indexes in real-time. Many systems process video

frames in a streaming fashion [12]–[14], [35], [36], which however miss key opportunities in

retrospective queries.

To this end, DIVA has two unconventional designs.

• During video capture: building sparse but sure landmarks to distill long-

term knowledge (Figure 1.3 (a)) To optimize future queries, our key insight is that

accurate knowledge on a sparse sample of frames is much more useful than inaccurate

knowledge on all frames. This is opposite to existing designs that detect objects with

low accuracy on all/most frames as capturing them [12], [15]. On a small sample of

captured video frames dubbed landmarks, the camera runs generic, expensive object

detection, e.g., the YOLOv3 [10]. Constrained by the camera hardware, landmarks are

sparse in time, e.g., 1 in every 30 seconds; yet, with high-accuracy object labels, they

provide reliable spatial distributions of various objects over long-term videos. High

accuracy is crucial, as we will validate through evaluation in Section 4.7.2 . DIVA

22

uses landmarks for optimizing queries: it prioritizes processing of frame regions with

object skewness learned from landmarks; it bootstraps operators with landmarks as

training samples. Landmarks only capture a small fraction of object instances; those

uncaptured do not affect correctness/accuracy (Section 4.3).

• To execute queries: multipass processing with online operator upgrade (Fig-

ure 1.3 (b)) To process large videos, our key insight is to refine query results in multiple

passes, each pass with a more expensive/accurate operator. Unlike prior systems pro-

cessing all frames in one pass and delivering results in one shot [7], [8], [12], multipass

processing produce useful results during query execution, enabling users to explore

videos effectively. To do so, DIVA’s cloud trains operators with diverse accuracy/costs.

Throughout query execution, the cloud keeps pushing new operators to the camera,

picking the next operator based on query progress, network conditions, and operator

accuracy. The early operators quickly explore the frames for inexact answers while

later operators slowly exploit for more exact answers.

On 720-hour videos in total from 15 different scenes, DIVA runs queries at more than

100× video realtime on average, with typical wireless conditions and low-cost hardware.

DIVA returns results quickly: compared to executing a query to completion, DIVA takes

one order of magnitude shorter time to return half of the result frames. Compared to

competitive alternatives, DIVA speeds up queries by at least 4×.

We have made the following contributions in DIVA.

• Zero streaming, a new model for low-cost cameras to operate on frugal networks while

answering video queries.

• Two novel techniques for querying zero-streaming cameras: optimizing queries with

accurate knowledge from sparse frame samples rather than inaccurate knowledge on

all frames; processing frames in multiple passes with operators continuously picked

during a query, rather than one-pass processing with operators decided ahead of a

query.

23

Detect objects
from queried
videos

Extract
features

An image of
target

f1 = [-,-,-]

…

fN = [-,-,-]

Ftarget = [-,-,-]

Compare
Similarity

User

Ranked results

… 1

Extract
input

feature

2

3

4

…A repo of city videos

Figure 1.4. The classic pipeline for object ReID, formulated as image retrieval.

• DIVA, a concrete implementation that runs queries at more than 100× realtime with

uncompromised query accuracy.

1.3 Supporting object re-identification under city-scale camera deployments

City-scale camera deployment As video intelligence advances and camera cost drops,

city cameras expand fast. Strategically deployed near key locations, such as highway en-

trances or road intersections, multiple cameras (reported to be 2–5 per location [37], [38])

offer complementary, often overlapped viewpoints of scenes.

Object ReID on city videos A key application of city cameras is object re-identification

(ReID): given an input image of an object X, searching for occurrences of X in a video

repository. ReID has been an important computer vision task, seeing popular use cases such

as crime investigation and traffic planning [38]–[40]. Many ReID algorithms are proposed

recently, fueled by neural networks [41]–[48]. Object ReID over city videos is typically

“finding a needle in haystack”. The queried videos are long and produced by many cameras;

the videos may not contain the input image, or any images from the camera that produced

the input image (called the origin camera); the occurrences of target object can be rare and

transient. For instance, in a popular dataset of city traffic videos [37], 99% of vehicles only

appear for less than 10 seconds.

24

The common pipeline structure for ReID is shown in Figure 1.4 : 1 given an input

image of target object X, the pipeline extracts its feature, e.g., using ResNet-152 [49] to

extract a 1024-dimension vector [46], [47]; 2 from the queried videos, the pipeline detects

all bounding boxes belonging to the same class as X, e.g., using YOLO [50]; 3 the pipeline

extracts features of all detected bounding boxes; 4 it calculates pairwise similarities be-

tween X and the bounding boxes. The similarity is often measured as feature distance [51],

where a shorter distance suggests a higher similarity between X and a bounding box. Of the

four stages, stage 2 and 3 are most expensive. For instance, calculating feature distances in

stage 4 is three orders of magnitude faster than extracting the features in stage 3. The cost

of stage 2 and 3 further grows with the amount of videos. This pipeline structure is widely

used, e.g., by almost all participants in popular vehicle ReID challenges [46], [47], [52].

Proliferating ReID algorithms call for a practical ReID system. Our driving use case is

vehicle ReID, where personal identifiable information such as license plates are intention-

ally removed for privacy [37]. Vehicle ReID is considered one of the most important ReID

problems [40]. The techniques are likely transferable to other object classes.

To design a robust and efficient system for ReID, we have to address two challenges.

First, modern ReID algorithms are not always reliable. By its definition in computer vision,

ReID focuses on differentiating numerous objects of the same class, e.g., cars. In real-world

videos, however, many objects of the same class exhibit minor visual differences; yet bounding

boxes of the same object – captured by the same or different cameras – may appear quite

different. As we will show in in Section 5.1 , even sophisticated feature extractors may deem

bounding boxes of different objects more similar than bounding boxes of the same object.

Second, the number of cameras and the volume of videos are colossal. With 2-5 cameras per

intersection [37], [38] and 60–500 intersections per square mile in urban areas [53], a query

covering a few square miles would need to process a few hundred, if not a few thousand,

cameras. Furthermore, modern ReID pipelines have an insatiable need for resources. For

example, Titan V, a ∼$3,000 modern GPU, runs YOLO [54], [55] for detecting bounding

boxes at only 40 FPS. The GPU running ResNet-152 extracts ∼80 features per second.

To process city videos from one square mile in a day, we estimate at least several hundred

GPU hours are needed. This cost quickly becomes prohibitive as camera deployment and

25

query scope expands. Resorting to cheap vision algorithms, e.g., smaller neural networks or

SIFT, is unlikely to help: they are much more susceptible to subtle visual differences and

disturbance, making ReID results even less usable.

Principles While prior research formulates ReID as image retrieval queries, i.e., to find

every bounding box of a target object X [46], [47], [56], [57], we treat ReID as spatiotemporal

queries, which search for what users care about: the times and locations in which object

X appeared. This gives opportunities to overcome the accuracy limitation on individual

bounding boxes, and to quickly emit times and locations before processing all bounding

boxes in the queried videos. We address the multitude of city cameras by renewing a wisdom

in video analytics: resource/quality tradeoffs [6], [8], [9], [15], [18]. Prior video systems often

target fewer cameras, making such tradeoffs within a video stream, e.g., by tuning frame

resolutions, rates, and cropping factors. On city-scale videos, however, processing more

cameras is almost always favorable than processing more pixels from each camera. This is

because: (1) cameras in different locations provide extensive spatial coverage; (2) cameras

in the same location provide complementary viewpoints. Both factors benefit ReID queries

more than video quality. To this end, we prioritize increasing camera coverage over increasing

video quality, e.g., frame rate and resolution.

We make minimum, qualitative assumptions on camera deployment. Quantitative de-

ployment knowledge, e.g., camera orientations and correlations, used to enable optimizations

within smaller camera networks [56]. For emerging city-scale cameras, however, it is unclear

if there exists a generic, quantitative deployment model. Minimizing assumptions allow a

generic system design, which, as we will demonstrate, serves as the basis for deployment-

specific optimizations.

Clique We present a ReID engine called Clique. Catering to spatiotemporal queries,

Clique organizes all videos in a repository as spatiotemporal cells, where a cell <L, T>

contains video clips captured by all cameras near a geo-location L during a time period T .

Clique answers a query for target object X with a short list of spatiotemporal cells, ranked

by their promises of containing X; each returned cell is accompanied by video clips, with

annotations of the likely bounding boxes of X. As executing a query, Clique keeps updating

26

the rank based on new results from video processing. The user reviews returned cells and

makes the final decision.

We design and evaluate Clique as a recall-oriented system [58]: it seeks to find all positive

cells (which are rare) and rank them to the top. As such, Clique minimizes human efforts

in analyzing videos; it does not seek to replace humans, whose knowledge cannot (yet)

be substituted by algorithms on real-world videos. This goal is shared by existing recall-

oriented systems, e.g., for legal documents or patents search [59], [60], where final decisions

from humans are indispensable.

Clique have two key designs. First, we clusters unreliable bounding boxes to approximate

distinct objects from sparse videos. Our insight is: how is an object perceived by a camera

is heavily impacted by (1) the camera’s posture, including position and orientation; (2)

transient disturbance, such as occlusion and background clutter. These impacts sometimes

overshadow the object’s characteristics, e.g., shape and color. To counter the two impacts,

Clique matches the origin camera’s posture: it samples diverse co-located cameras in hope of

finding ones with postures similar to the input. Clique mitigates the disturbance: it clusters

similar bounding boxes captured by a camera during a period of time. Each resultant cluster

thus represents the camera’s general “impression” of a distinct object. Clique estimates the

occurrence of X based on the similarity between the input image and distinct objects as

represented by clusters. Clustering has been a classic algorithm in data processing [61]–

[63] especially in vision [15]; Clique is novel in applying it to ReID, deriving robust query

answers from unreliable bounding box features. Clustering suits our principle of prioritizing

camera coverage, as it tolerates low frame rate on each camera. Second, Clique searches

incrementally in spatiotemporal cells. The key is the camera sampling strategy: to avoid

redundant video contents as much as possible while exploiting diverse camera postures as

needed. Clique navigates its resource spending towards cells where new discovery of target

occurrences is most likely. To do this, Clique starts a query with a minimum number of

cameras to quickly estimate promises of all cells; it processes videos from additional cameras

for undecided cells; it iteratively assesses cell promises and re-ranks all cells for subsequent

search.

27

We implement Clique and evaluate it on a video dataset of 25 hours of videos from 25

cameras. On 70 queries with different target objects, Clique on average delivers a high recall

at 5 of 0.87; it reaches high an accuracy goal of 0.99 in 108.5 seconds on average, at the speed

of 830× of video realtime. Compared to alternative designs, Clique reduces query delays by

up to 6.5×. We further evaluate deployment-specific optimizations.

We made the following contributions in Clique.

• Towards a practical ReID system, we advocate a new approach: focusing on finding

relevant spatiotemporal cells rather than individual object instances.

• We present to cluster unreliable bounding boxes as approximations of distinct objects,

which effectively overcomes limitation in ReID algorithm accuracy.

• We present incremental search in cells. This minimizes redundant processing while

exploiting diverse camera viewpoints, which reduces the ReID compute cost.

• We report Clique, a ReID system that works on large video repositories.

28

2. SUMMARY

This thesis presents three software systems, i.e., VStore, DIVA, and Clique, that support

efficient large-scale retrospective video analytics.

The primary feature of VStore is its automatic configuration of video formats. As video

streams arrive, VStore saves multiple video versions and judiciously sets their storage for-

mats; in response to queries, VStore retrieves stored video versions and converts them into

consumption formats catering to the executed operators. Through configuring video formats,

VStore ensures operators to meet their desired accuracy levels at high speed; it prevents video

retrieval from bottlenecking consumption; it ensures resource consumption to respect bud-

gets. To decide video formats, VStore is challenged by an enormous combinatorial space

of video knobs, complex impacts of these knobs and high profiling costs, and the optimiza-

tion for multiple resource types. The key idea behind VStore is backward derivation: in

the opposite direction of the video data path, VStore passes the desired data quantity and

quality from algorithmic consumers backward to retrieval, to storage, and to ingestion. In

this process, VStore optimizes for different resources in a progressive manner; it elastically

trades off among them to respect resource budgets. VStore runs queries as fast as 362× of

video realtime.

DIVA is an analytics engine for querying cold videos on remote low-cost wireless cameras.

It is built upon a novel system model called “zero streaming” that shifts most compute from

capture time to query time. At capture time, DIVA builds sparse but sure landmarks. At

query time, the camera works in conjunction with the cloud: the camera runs operators,

implemented as lightweight neural nets (NNs), to rank or filter frames; the cloud runs full-

fledged object detection to validate results uploaded from the camera. DIVA thus does not

sacrifice query accuracy, ensuring it as high as that of object detection by the cloud. In

this way, a user may explore videos through interactive queries, e.g., aborting an ongoing

query based on inexact results and issuing a new query with revised parameters [16], [33].

Our evaluation of three types of queries shows that DIVA can run at more than 100× video

realtime under typical wireless network and camera hardware.

29

Clique is a practical object ReID engine that answers spatiotemporal queries. Clique

organizes all videos in a repository as spatiotemporal cells, where a cell <L, T> contains

video clips captured by all cameras near a geo-location L during a time period T . Clique

answers a query for target object X with a short list of spatiotemporal cells, ranked by their

promises of containing X; each returned cell is accompanied by video clips, with annotations

of the likely bounding boxes of X. When executing a query, Clique keeps updating the rank

based on new results from video processing. The user reviews returned cells and makes the

final decision. Clique is built upon two unconventional designs. First, Clique approximates

each distinct object by clustering fuzzy object features emitted by ReID algorithms before

matching with the input image containing the target object. Second, to search in colossal

video data, Clique samples cameras to maximize the spatiotemporal coverage and incremen-

tally searches in additional cameras on demand. On 25 hours of city videos spanning 25

cameras, Clique on average reached an recall at 5 of 0.87 and runs at 830× video real time

in achieving high accuracy.

30

3. VSTORE: A DATA STORE FOR ANALYTICS ON LARGE

VIDEOS

3.1 Background & motivations

3.1.1 Retrospective video analytics

Query & operators A video query is typically executed as a cascade of operators. As

shown in Figure 3.1 , early operators scan most of the queried video time span at low cost.

They activate late operators over a small fraction of video for deeper analysis. Operators

consume raw video frames. Of a cascade, the execution costs of operators can differ by

three orders of magnitude [8]; they also prefer different input video formats, catering to their

internal algorithms.

Accuracy/cost trade-offs in operators An operator’s output quality is characterized

by accuracy, i.e., how close the output is to the ground truth. We use a popular accuracy

metric called F1 score: the harmonic mean of precision and recall [6]. At runtime, an

operator’s target accuracy is set in queries [6], [7], [9]. VStore seeks to provision minimum

resources for operators to achieve the target accuracy.

3.1.2 System model

We consider a video store running on one or a few commodity servers. Incoming video

data flows through the following major system components. We assume a pre-defined library

of operators, the number of which can be substantial; each operator may run at a pre-defined

set of accuracy levels. By combining the existing operators at different accuracy levels, a

variety of queries can be assembled. We will discuss how operator addition/deletion may be

handled in Section 3.6 .

• Ingestion: Video streams continuously arrive. In this work, we consider the input

rate of incoming video as given. The ingestion optionally converts the video formats,

e.g., by resizing frames. It saves the ingested videos either as encoded videos (through

transcoding) or as raw frames. The ingestion throughput is bound by transcoding

31

Motion
detector
[Motion]

License
plate detector

[License]
OCR

Frame diff
detector
[Diff]

Specialized
neural net
[S-NN]

Full
neural net

[NN]

(b) Vehicle license plate recognition.
Motion filters frames w/ little
motion; License spots plate regions
for OCR to recognize characters

(a) Car detector. Diff filters out
similar frames; S-NN rapidly
detects part of cars; NN
analyzes remaining frames

Figure 3.1. Video queries as operator cascades [8], [64].

bandwidth, typically one order of magnitude lower than disk bandwidth. This paper

will present more experimental results on ingestion.

• Storage: Like other time-series data stores [65], videos have age-based values. A store

typically holds video footage for a user-defined lifespan [66]. In queries, users often

show higher interest in more recent videos.

• Retrieval: In response to operator execution, the store retrieves video data from

disks, optionally converts the data format for the operators, and supplies the resultant

frames.

If the on-disk videos are encoded, the store must decode them before supplying. Data

retrieval may be bound by decoding or disk read speed. Since the decoding throughput

(often tens of MB/sec) is far below disk throughput (at least hundreds of MB/sec),

the disk only becomes the bottleneck in loading raw frames.

• Consumption: The store supplies video data to consumers, i.e., operators spending

GPU/CPU cycles to consume data.

Figure 1.2 summarizes the resource cost of the components above. The retrieval/con-

sumption costs are reciprocal to data retrieval/consumption speed, respectively. The operator

runs at the speed of retrieval or consumption, whichever is lower. To quantify operator speed,

we adopt as the metric the ratio between video duration and video processing delay. For

instance, if a 1-second video is processed in 1 ms, the speed is 1000× realtime.

Key opportunity: controlling video formats As video data flows through, a video

store is at liberty to control the video formats. This is shown in Figure 1.2 . At the ingestion,

32

the system decides fidelity and coding for each stored video version; at the data retrieval,

the system decides the fidelity for each raw frame sequence supplied to consumers.

Running operators at ingestion is not a panacea. Recent work runs early-stage operators

at ingestion to save executions of expensive operators at query time [15]. This approach has

important limitations.

• It bakes query types in the ingestion. Video queries and operators are increasingly

rich [67]–[71]; one operator (e.g., neural networks) may be instantiated with different

parameters depending on training data [33]. Running all possible early operators at

ingestion is therefore expensive.

• It bakes specific accuracy/cost trade-offs in the ingestion. Yet, users at query time often

know better trade-offs, based on domain knowledge and interactive exploration [7], [16].

• It prepays computation cost for all ingested videos. In many scenarios such as surveil-

lance, only a small fraction of ingested video is eventually queried [2], [33]. As a result,

most operator execution at ingestion is in vain.

In comparison, by preparing data for queries, a video store supports richer query types,

incurs lower ingestion cost, and allows flexible query-time trade-offs. Section 3.6 will provide

further discussion.

3.1.3 Video format knobs

The video format is controlled by a set of parameters, or knobs. Table 3.1 summarizes

the knobs considered in this work, chosen due to their high resource impacts.

Fidelity knobs For video data, encoded or raw, fidelity knobs dictate i) the quantity

of visual information, e.g., frame sampling which decides the frame rate; ii) the quality of

visual information, which is subject to the loss due to video compression. Each fidelity knob

has a finite set of possible values. A combination of knob values constitutes a fidelity option

f . All possible fidelity options constitute a fidelity space F.

“Richer-than” order Among all possible values of one fidelity knob, one may establish a

richer-than order (e.g., 720p is richer than 180p). Among fidelity options, one may establish

33

Table 3.1. Knobs and their values considered in this work. Total: 7 knobs
and 15K possible combinations of values. Note: no video quality and coding
knobs for RAW.

Fidelity knob Values Coding knob Values
Img. quality worst, bad, good, best * Speed step slowest, slow, med,

fast, fastest** Crop factor 50%, 75%, 100%
Resolution 60x60 …720p (total 10) KFrame int. 5,10,50,100,250

Fr. sampling 1/30, 1/5, 1/2, 2/3, 1 Bypass Y or N (Y=raw)
Equivalent FFmpeg options:
* CRF = 50, 40, 23, 0 **preset = veryslow, medium, veryfast, superfast, ultrafast

a partial order of richer-than: option X is richer than option Y if and only if X has the

same or richer values on all knobs and richer values on at least one knob. The richer-than

order does not exist in all pairs of fidelity options, e.g., between good-50%-720p-1/2 and

bad-100%-540p-1. One can degrade fidelity X to get fidelity Y only if X is richer than Y.

Coding Knobs Coding reduces raw video size by up to two orders of magnitude [72].

Coding knobs control encoding/decoding speed and the encoded video size. Orthogonal to

video fidelity, coding knobs provide valuable trade-offs among the costs of ingestion, storage,

and retrieval. These trade-offs do not affect consumer behaviors – an operator’s accuracy

and consumption cost.

While a modern encoder may expose tens of coding knobs (e.g., around 50 for x264),

we pick three for their high impacts and ease of interpretation. Table 3.1 summarizes these

knobs and Figure 3.2 shows their impacts. Speed step accelerates encoding/decoding at the

expense of increased video size. As shown in Figure 3.2 (a), it can lead up to 40× difference

in encoding speed and up to 2.5× difference in storage space. Keyframe interval: An

encoded video stream is a sequence of chunks (also called “group of pictures” [73]): beginning

with a key frame, a chunk is the smallest data unit that can be decoded independently. The

keyframe interval offers the opportunity to accelerate decoding if the consumers only sample

to consume a fraction of frames. If the frame sampling interval N is larger than the keyframe

interval M , the decoder can skip N/M chunks between two adjacent sampled frames without

decoding these chunks. In the example in Figure 3.2 (b), smaller keyframe intervals increase

34

250 100 50 5
0

40x

80x

120x

160x

200x

0

20

40

60

80

Decode Spd (Op frame sampling: 1/250)

Decode Spd (Op frame sampling: 1)

Video size

Keyframe interval

V
id

e
o

 s
iz

e
 (

M
B

)

1 2 5
0

20x

40x

60x

80x

0

10

20

30

40

50

Encode speed

Decode Speed

Video size

Speed step

C
o

d
in

g
 S

p
e

e
d

 (
x

re
a

lt
m

e
)

(a) Coding can be speeded

up at the expense of

increased video size

b) Smaller intervals allows to skip more frames

in decoding, if operators only sample a

fracton of decoded frames to consume.

Note: encoding speed mostly una2ected

.

Figure 3.2. Impacts of coding knobs. Video: 100 seconds from tucson. See
Section 3.5 for dataset and test hardware.

decoding speed by up to 6× at the expense of larger encoded videos. Coding bypass: The

ingestion may save incoming videos as raw frames on disks. The resultant extremely low

retrieval cost is desirable to some fast consumers.

A combination of coding knob values is a coding option c. All possible coding options

constitute a coding space C.

3.1.4 Knob impacts

As illustrated in Figure 1.2 : for on-disk videos, fidelity and coding knobs jointly impact

the costs of ingestion, storage, and retrieval; for in-memory videos to be consumed by op-

erators, fidelity knobs impact the consumption cost and the consuming operator’s accuracy.

We have a few observations. First, fidelity knobs enable rich cost/accuracy trade-offs. As

shown in Figure 3.3 , one may reduce resource costs by up to 50% with minor (5%) accuracy

loss. Second, the knobs enable rich trade-offs among resource types. This is exemplified in

Figure 3.4 : although three video fidelity options all lead to similar operator accuracy (0.8),

there is no single most resource-efficient one, e.g., fidelity B incurs the lowest consumption

cost, but the high storage cost due to its high image quality. Third, each knob has signifi-

cant impacts. Take Figure 3.3 (b) as an example: one step change to image quality reduces

35

Ingestion

Storage

Retrieval

Consumption

1/30 (F1 = 0.85)
1/2 (F1 = 0.96)
1 (F1 = 1.0)

Ingestion

Storage

Retrieval

Consumption

Worst (F1 = 0.20)
Bad (F1 = 0.85)
Good (F1 = 0.95)

Ingestion

Storage

Retrieval

Consumption

1/30 (F1 = 0.65)
1/2 (F1 = 0.94)
1 (F1 = 1)

(c) Frame sampling (op: specialized NN) (d) Frame sampling (op: NN)

(a) Crop factor (op: motion detector) (b) Image quality (op: license plate detector)

Ingestion

Storage

Retrieval

Consumption

50% (F1 = 0.8)
75% (F1 = 0.94)
100% (F1 = 0.99)

Figure 3.3. Fidelity knobs have high, complex impacts on costs of multiple
components (normalized on each axis) and operator accuracy (annotated in
legends). Each plot: one knob changing; all others fixed. See Section 3.5 for
methodology.

accuracy from 0.95 to 0.85, the storage cost by 5×, and the ingestion cost by 40%. Fourth,

omitting knobs misses valuable trade-offs. For instance, to achieve high accuracy of 0.9, the

license detector would incur 60% more consumption cost when the image quality of its input

video changes from “good” to “bad”. This is because the operator must consume higher

quantity of data to compensate for the lower quality. Yet, storing all videos with “good”

quality requires 5× storage space. Unfortunately, most prior video analytics systems fix the

image quality knob at the default value.

The quantitative impacts are complex. i) The knob/cost relations are difficult to capture

in analytical models [9]. ii) The quantitative relations vary across operators and across

video contents [6]. This is exemplified by Figure 3.3 (c) and (d) that show the same knob’s

different impacts on two operators. iii) One knob’s impact depends on the values of other

knobs. Take the license detector as an example: as image quality worsens, the operator’s

accuracy becomes more sensitive to resolution changes. With “good” image quality, lowering

image resolution from 720p to 540p slightly reduces the accuracy, from 0.83 to 0.81; with

“bad” image quality, the same resolution reduction significantly reduces the accuracy, from

36

Ingestion

Storage

Retrieval

Consumption

(C) Good-75%-100p-1/2

(B) Best-100%-100p-1/30
(A) Bad-100%-100p-2/3

[Quality-Crop-Res-Sample]

Fixed coding knobs:
250-med

Figure 3.4. Disparate costs of fidelity options A–C, despite all leading to
operator accuracy ≈ 0.8. Operator: License. Cost normalized on each axis.
See Section 3.5 for methodology.

0.76 to 0.52. While prior work assumes that certain knobs have independent impacts on

accuracy [6], our observation shows that dependency exists among a larger set of knobs.

Summary & discussion Controlling video formats is central to a video store design.

The store should actively manage fidelity and coding throughout the video data path. To

characterize knob impacts, the store needs regular profiling. Some video analytics systems

recognize the significance of video formats [6], [7], [9]. However, they focus on optimizing

query execution yet omitting other resources, such as storage, which is critical to retrospective

analytics. They are mostly limited to only two fidelity knobs (resolution and sampling rate)

while omitting others, especially coding. As we will show, a synergy between fidelity and

coding knobs is vital.

3.2 A case for a new video store

We set to design a video store that automatically creates and manages video formats in

order to satisfy algorithmic video consumers with high resource efficiency.

3.2.1 The configuration problem

The store must determine a global set of video formats as follows.

• Storage format: the system may save one ingested stream in multiple versions, each

characterized by a fidelity option f and a coding option c. We refer to SF〈f, c〉 as a

storage format.

37

1x

10x

100x

1000x

Sp
ee

d
(x

 v
id

eo
 ti

m
e)

Consumption Decode

0.53 0.63 0.95

Good-75%
-540-1/6

Bad-100%
-540-1/6

Good-100%
-540-1

1x

10x

100x

1000x

10000x
0.90 0.99

Best-100%
-180-1

Bad-50%
-180-1/6

Richer Fidelities Richer Fidelities

Accuracy

23x

(a) (b)

Figure 3.5. Video retrieval could bottleneck consumption. This is exemplified
by the decoding speed vs. consumption speed comparisons for two different
operators. (a) Operator: License. Consumption can be faster than decoding
(speed shown as the dashed line), if the on-disk video is stored with the richest
fidelity as ingested. Yet, consumption is still slower than decoding video of the
same fidelity (white columns). (b) Operator: Motion. Consumption is faster
than decoding, even if the on-disk video is of the same fidelity as consumed.
Operator accuracy annotated on the top. See Section 3.5 for test hardware.

• Consumption format: the system supplies raw frame sequences to different oper-

ators running at a variety of accuracy levels, i.e., consumers. The format of each

raw frame sequence is characterized by a fidelity option f . We refer to CF〈f〉 as a

consumption format.

We refer to the global set of video formats as the store’s configuration of video formats.

Configuration requirements These formats should jointly meet the following require-

ments:

R1. Satisfiable fidelity To supply frames in a consumption format CF〈f〉, the system

must retrieve video in storage format SF〈f, c〉, where f is richer than or the same as f .

R2. Adequate retrieving speed Video retrieval should not slow down frame con-

sumption. Figure 3.5 show two cases where the slowdown happens. a) For fast operators

sparsely sampling video data, decoding may not be fast enough if the on-disk video is in

the original format as it is ingested (e.g., 720p at 30 fps as from a surveillance camera).

These consumers benefit from storage formats that are cheaper to decode, e.g., with reduced

fidelity. b) For some operators quickly scanning frames looking for simple visual features,

38

even the storage format that is cheapest to decode (i.e., f’ is the same as f; cheapest coding

option) is too slow. These consumers benefit from retrieving raw frames from disks.

R3. Consolidating storage formats Each stored video version incurs ingestion and

storage costs. The system should exploit a key opportunity: creating one storage format for

supplying data to multiple consumers, as long as satisfiable fidelity and adequate retrieving

speed are ensured.

R4. Operating under resource budgets The store should keep the space cost by all

videos under the available disk space. It should keep the ingestion cost for creating all video

versions under the system’s transcoding bandwidth.

3.2.2 Inadequacy of existing video stores

Computer vision research typically assumes all the input data present in memory as raw

frames, which does not hold for retrospective analytics over large videos: a server with 100

GB DRAM holds no more than two hours of raw frames even in low fidelity (e.g., 360p at 30

fps). Most video stores choose video formats in ad hoc manners without optimizing for ana-

lytics [74]. On one extreme, many save videos in one unified format (e.g., the richest fidelity

expected by all operators). This minimizes storage and ingestion costs while incurring high

retrieval cost. As a result, data retrieval may bottleneck operators. On the other extreme,

one may incarnate all the storage formats with the fidelity exactly matching consumer ex-

pectations. This misses the opportunities for consolidating storage formats and will lead to

excessive storage and ingestion costs. We will evaluate these two alternatives in Section 3.5 .

Layered encoding cannot simplify the problem. Layered encoding promises space effi-

ciency: it stores one video’s multiple fidelity options as complementary layers [75]. However,

layered encoding has important caveats. i) Each additional layer has non-trivial storage

overhead (sometimes 40%–100%) [76] which may result in storage space waste compared to

consolidated storage formats. ii) Decoding is complex and slow, due to the combination

of layers and random disk access in reading the layers. iii) Invented two decades ago, its

adoption and coding performance are yet to be seen. Even if it is eventually adopted and

proven desirable, it would make the configuration more complex.

39

Table 3.2. The library of operators in the current VStore.

Op Description
Diff Difference detector that detects frame differences [8]
S-NN Specialized NN to detect a specific object [8]
NN Generic Neural Networks, e.g., YOLO [50]
Motion Motion detector using background subtraction [64]
License License plate detector [64]
OCR Optical character recognition [64]
Opflow Optical flows for tracking object movements [77]
Color Detector for contents of a specific color [7]
Contour Detector for contour boundaries [78]

3.3 The VStore design

3.3.1 Overview

VStore runs on one or over a few commodity servers. It depends on existing query ex-

ecutors, e.g., OpenALPR, and a pre-defined library of operators. From the executor, VStore

expects an interface for executing individual operators for profiling, and a manifest specifying

a set of option accuracies for each operator. Table 3.2 listed 9 operators that are supported

by the current VStore prototype. VStore tracks the whole set of 〈operator, accuracy〉 tuples

as consumers.

Operation During operation, VStore periodically updates its video format configuration.

For each ingested video stream, it periodically profiles operators and encoding/decoding,

e.g., on a 10-second clip per hour. VStore splits and saves video footage in segments, which

are 8-second video clips in our implementation. VStore retrieves or deletes each segment

independently.

Challenges The major challenges are in configuration. i) Exhaustive search is infeasible.

A configuration consists of a set of consumption formats from the 4D space F and a set of

storage formats from the 7D space F×C. In our prototype, the total possible global config-

urations are 2415150. Exhaustive profiling is expensive, as will be discussed in Section 3.3.2

iii) Optimizing for multiple resource types further complicates the problem.

40

Consumption
formats

Erosion plan

<fidelity>

Storage
formats

<fidelity, coding>
<motion,0.95> 10x
<motion, 0.7> 100x

…
<OCR, 0.95> 5x
<OCR, 0.90> 10x

…
<NN, 0.95> 4x
<NN, 0.80> 20x

10x
20x

100x
200x

Video
consumers

<operator, accuracy>
12

3

Backward derivation of configuration

Video data path

Data
flows

Storage ?< budget

No
Yes: Done

Figure 3.6. VStore derives the configuration of video formats. Example
consumption/retrieval speed is shown.

These challenges were unaddressed. Some video query engines seek to ease configuration

and profiling (challenge i and ii), but are limited to a few knobs [6], [9]. For the extensive

set of knobs we consider, some of their assumptions, e.g., knob independence, do not hold.

They optimize for one resource type – GPU cycles for queries, without accounting for other

critical resources, e.g., storage (challenge 3).

Mechanism overview – backward derivation VStore derives the configuration back-

wards, in the direction opposite to the video data flow – from sinks, to retrieval, and to

ingestion/storage. This is shown in Figure 3.6 1 – 3 . In this backward derivation, VStore

optimizes for different resources in a progressive manner.

1 Section 3.3.2 : From all given consumers, VStore derives video consumption formats. Each

consumer consumes, i.e., subscribes to, a specific consumption format. In this step, VStore

optimizes data consumption speed.

2 Section 3.3.3 : From the consumption formats, VStore derives storage formats. Each con-

sumption format subscribes to one storage format (along the reversed directions of dashed

arrows in Figure 3.6). The chosen storage formats ensure i) satisfiable fidelity: a storage

format SF has richer fidelity than any of its downstream consumption formats (CFs); ii) ad-

equate retrieval speed: the retrieval speed of SF should exceed the speed of any downstream

41

consumer (following the dashed arrows in Figure 3.6). In this step, VStore optimizes for

storage cost and keeps ingestion cost under budget.

3 Section 3.3.4 : From all the derived storage formats, VStore derives a data erosion plan,

gradually deleting aging video. In this step, VStore reduces storage cost to be under budget.

Limitations VStore treats individual consumers as independent without considering

their dependencies in query cascades. If consumer A always precedes B in all possible

cascades, the speed of A and B should be considered in conjunction. This requires VStore

to model all possible cascades, which we consider as future work. VStore does not manage

algorithmic knobs internal to operators [6], [9]; doing so would allow new, useful trade-offs

for consumption but not for ingestion, storage, or retrieval.

3.3.2 Configuring consumption formats

Objective For each consumer 〈op, accuracy〉, the system decides a consumption for-

mat 〈f0〉 for the frames supplied to op. By consuming the frames, op should achieve the

target accuracy while consuming data at the highest speed, i.e., with a minimum con-

sumption cost. The primary overhead comes from operator profiling. Recall the relation

f → 〈consumption cost, accuracy〉 has to be profiled per operator regularly. For each profil-

ing, the store prepares sample frames in fidelity f, runs an operator over them, and measures

the accuracy and consumption speed. If the store profiles all the operators over all the fi-

delity options, the total number of required profiling runs, even for our small library of 9

operators is 2.7K. The total profiling time will be long, as we will show in the evaluation.

Key ideas VStore explores the fidelity space efficiently and only profiles a small subset

of fidelity options. It works based on two key observations. O1. Monotonic impacts In-

crease in any fidelity knob leads to non-decreasing change in consumption cost and operator

accuracy – richer fidelity will neither reduce cost nor accuracy. This is exemplified in Fig-

ure 3.3 showing the impact of changes to individual knobs. O2. Image quality does not

impact consumption cost. Unlike other fidelity knobs controlling data quantity, image

quality often does not affect operator workload and thus the consumption cost, as shown in

Figure 3.3 (b).

42

0.37
(11k x)

0.52
(7k x)

0.58
(5k x)

0.63
(2k x)

0.73
(300x)

0.50
(2k x)

0.54
(1k x)

0.65
(900x)

0.74
(468x)

0.85
(60x)

0.57
(760x)

0.58
(452x)

0.80
(300x)

0.87
(156x)

0.95
(20x)

0.57
(253x)

0.59
(339x)

0.81
(225x)

0.97
(117x)

0.98
(15x)

0.59
(380x)

0.60
(226x)

0.85
(150x)

0.99
(78x)

1
(10x)

Resolution

F
ra

m
e

S
am

pl
in

g
R

at
e

60x60 100x100 200x200 400x400 600x600

1/30

1/6

1/2

2/3

1

Crop
factor

Each cell:
Accuracy
Consumption speed
unit: x realtime

Dark shade: profiled

Light shade: profiled;
accuracy too low

Unshaded: profiling avoided
Numbers for illustration only

Figure 3.7. Search in a set of 2D spaces for a fidelity option with accuracy
≥ 0.8 and max consumption speed (i.e., min consumption cost).

We next sketch our algorithm deciding the consumption format for the consumer 〈op,

accuracy-t〉: the algorithm aims finding f0 that leads to accuracy higher than accuracy-t

(i.e., adequate accuracy) with the lowest consumption cost.

Partitioning the 4D space i) Given that image quality does not impact consumption

cost (O2), VStore starts by temporarily fixing the image quality knob at its highest value.

ii) In the remaining 3D space (crop factor × resolution × sampling rate), VStore searches for

fidelity f0 that leads to adequate accuracy and the lowest consumption cost. iii) As shown in

Figure 3.7 , VStore partitions the 3D space into a set of 2D spaces for search. To minimize the

number of 2D spaces under search, VStore partitions along the shortest dimension, chosen as

the crop factor which often has few possible values (3 in our implementation). iv) The fidelity

f0 found from the 3D space already leads to adequate accuracy with the lowest consumption

cost. While lowering the image quality of f0 does not reduce the consumption cost, VStore

still keeps doing so until the resultant accuracy becomes the minimum adequacy. It then

selects the knob values as f0. This reduces other costs (e.g., storage) opportunistically.

Efficient exploration of a 2D space The kernel of the above algorithm is to search

each 2D space (resolution × sampling rate), as illustrated in Figure 3.7 . In each 2D space,

VStore looks for an accuracy boundary. As shown as shaded cells in the figure, the accuracy

boundary splits the space into two regions: all points on the left have inadequate accuracies,

43

while all on the right have adequate accuracies. To identify the boundary, VStore leverages

the fact that accuracy is monotonic along each dimension (O1). As shown in Figure 3.7 ,

it starts from the top-right point and explores to the bottom and to the left. VStore only

profiles the fidelity options on the boundary. It dismisses points on the left due to inadequate

accuracies. It dismisses any point X on the right because X has fidelity richer than one

boundary point Y; therefore, X incurs no less consumption cost than Y.

This exploration is inspired by a well known algorithm in searching in a monotone 2D

array [79]. However, our problem is different: f0 has to offer both adequate accuracy and

lowest consumption cost. Therefore, VStore has to explore the entire accuracy boundary:

its cannot stop at the point where the minimum accuracy is found, which may not result in

the lowest consumption cost.

Cost & further optimization Each consumer requires profiling runs as many as

O((Nsample + Nres) ∗ Ncrop + Nquality), where Nx is the number of values for knob x. This

is much lower than exhaustive search which requires (NsampleNresNcropNquality) runs. Fur-

thermore, in profiling for the same operator’s different accuracies, VStore memoizes profiling

results. Our evaluation will show that profiling all accuracies of one operator is still cheaper

than exhaustively profiling the operator over the entire fidelity space.

What if a higher dimensional fidelity space? The above algorithm searches in

the 4D space of the four fidelity knobs we consider. One may consider additional fidelity

knobs (e.g., color channel). To search in such a space, we expect partitioning the space

along shorter dimensions to still be helpful; furthermore, the exploration of 2D space can

be generalized for higher dimensional spaces, by retrofitting selection in a high-dimensional

monotonic array [79], [80].

3.3.3 Configuring storage formats

Objective For the chosen consumption formats and their downstream consumers, VStore

determines the storage formats with satisfiable fidelity and adequate retrieval speed.

Enumeration is unaffordable One may consider enumerating all possible ways to

partition the set of consumption formats (CFs), and determining a common storage format

44

Consumption
formats (CF)

<f1>

<f2>

<f3>

<f4>

<f5>

<fg,cg>

<f1,c1>

<f2,c2>

<f3,c3>

<f4,c4>

<f5,c5>

Ingestion Storage

Storage formats (SF)

Ingestion

Storage
Ingestion
?< budget

ingestion
< budget

…

…

No

Yes: Done

Figure 3.8. Iterative coalescing of storage formats.

for each subset of CFs. This enumeration is very expensive: the number of possible ways to

partition a CF set is 4×106 for 12 CFs, and 4×1017 for the 24 CFs in our implementation [81],

[82].

Algorithm sketch VStore coalesces the set of storage formats iteratively. Show on the

right side of Figure 3.8 , VStore starts from a full set of storage formats (SFs), each catering

to a CF with identical fidelity. In addition, VStore creates a golden storage format SFg

<fg,cg>: fg is the knob-wise maximum fidelity of all CFs; cg is the slowest coding option

incurring the lowest storage cost. The golden SF is vital to data erosion to be discussed in

Section 3.3.4 . All these SFs participate in coalescing.

How to coalesce a pair? VStore runs multiple rounds of pairwise coalescing. To

coalesce SF0〈f0,c0〉 and SF1〈f1,c1〉 into SF2〈f2,c2〉, VStore picks f2 to be the knob-wise

maximum of f0 and f1 for satisfiable fidelity. Such coalescing impacts resource costs in three

ways. i) It reduces the ingestion cost as the video versions are fewer. ii) It may increase the

retrieval cost, as SF2 with richer fidelity tends to be slower to decode than SF0/SF1. VStore

therefore picks a cheaper coding option (c2) for SF2, so that decoding SF2 is fast enough for

all previous consumers of SF0/SF1. Even if the cheapest coding option is not fast enough,

VStore bypasses coding and stores raw frames for SF2. iii) The cheaper coding in turn may

increase storage cost.

How to select the coalescing pair? Recall that the goal of coalescing is to bring the

ingestion cost under the budget. We explore two alternative approaches.

45

• Distance-based selection. As this is seemingly a hierarchical clustering problem,

one may coalesce formats based on their similarity, for which a common metric is

Euclidean distance. To do so, one may normalize the values of each knob and coalesce

the pair of two formats that have the shortest distance among all the remaining pairs.

• Heuristic-based selection. We use the following heuristics: first harvesting “free”

coalescing opportunities, and then coalescing at the expense of storage. Figure 3.8

illustrates this process. From the right to the left, VStore first picks up the pairs that

can be coalesced to reduce ingestion cost without increasing storage cost. Once VStore

finds out coalescing any remaining pair would increase storage cost, VStore checks if

the current total ingestion cost is under budget. If not, VStore attempts to pick up

cheaper coding options and continues to coalesce at the expense of increased storage

cost, until the ingestion cost drops below the budget.

Overhead analysis The primary overhead comes from profiling. Being simple, distance-

based selection incurs lower overhead: for each round, it only profiles the ingestion cost of

the coalesced SF. Given that VStore coalesces at most N rounds (N being the number of

CFs), the total profiling runs are min(O(N), |F × C|).

By comparison, heuristic-based selection tests all possible pairs among the remaining SFs

in each round; for each pair, VStore profiles a video sample with the would-be coalesced SF,

measuring decoding speed and the video sample size. The total profiling runs are min(O(N3),

|F×C|). In our implementation, N is 24 and |F×C| is 15K. Fortunately, by memoizing the

previously profiled SFs in the same configuration process, VStore can significantly reduce

the profiling runs, as we will evaluate in the evaluation. Furthermore, we will show that

heuristic-based selection produces much more compact SFs.

3.3.4 Planning age-based data erosion

Objective In previous steps, VStore plans multiple storage formats of the same content

catering to a wide range of consumers. In the last step, VStore reduces the total space cost

to be below the system budget.

46

1

Pmin

MaxMin Video Age
Ov

er
al

l P
er

fo
rm

an
ce

(All deleted)

Day 1

SF1 SF2

SF3 Day 7 Day 10

Golden

P(x)=(1-Pmin)x-k+Pmin

Figure 3.9. Data erosion decays operator speed and keeps storage cost under
budget. Small cells: video segments.

Our insight is as follows. As video content ages, the system may slowly give up some

of the formats, freeing space by relaxing the requirement for adequate retrieving speed on

aged data (Section sec:case, R2). We made the following choices. i) Gracefully degrading

consumption speed. VStore controls the rate of decay in speed instead of in storage

space, as operator speed is directly perceived by users. ii) Low aging cost. VStore avoids

transcoding aged videos which compete for encoder with ingestion. It hence creates no new

storage formats for aging. iii) Never breaks fidelity satisfiability. VStore identifies some

video versions as fallback data sources for others, ensuring all consumers to achieve their

desired accuracies as long as the videos are still in lifespan.

Data erosion plan VStore plans erosion at the granularity of video ages. Recall that

VStore saves video as segments on disks (each segment contains 8-second video in our im-

plementation). As shown in Figure 3.9 , for each age (e.g., per day) and for each storage

format, the plan dictates the percentage of deleted segments, which accumulate over ages.

How to identify fallback video formats? VStore organizes all the storage formats

of one configuration in a tree, where the edges capture richer-than relations between the

storage formats, as shown in Figure 3.9 . Consumers, in an attempt to access any deleted

segments of a child format, fall back to the parent format (or even higher-level ancestors).

Since the parent format offers richer fidelity, the consumers are guaranteed to meet their

accuracies; yet, the parent’s retrieval speed may be inadequate to the consumers (e.g., due

to costlier decoding), thus decaying the consumers’ effective speed. If a consumer has to

consume a fraction p of segments from the parent format, on which the effective speed is

47

only a fraction α of its original speed with no eroded data, the consumer’s relative speed

is defined as the ratio between its decayed speed to its original, given by α/((1 − p)α + p).

VStore never erodes the golden format at the root node; with its fidelity richer than any

other format, the golden format serves as the ultimate fallback for all consumers.

How to quantify the overall speed decay? Eroding one storage format may decay

the speeds of multiple consumers to various degrees, necessitating a global metric for cap-

turing the overall consumer speed. Our rationale is for all consumers to fairly experience the

speed decay. Following the principle of max-min fairness [83], we therefore define the overall

speed as the minimum relative speed of all the consumers. By this definition, the overall

speed P is also relative, in the range of (0,1]. P is 1 when the video content is the youngest

and all the versions are intact; it reaches the minimum Pmin when all but the golden format

are deleted.

How to set overall speed target for each age? We follow the power law function,

which gives gentle decay rate and has been used on time-series data [65]. In the function

P (x) = (1 − Pmin)x−k + Pmin, x is the video age. When x = 1 (youngest video), P is 1 (the

maximum overall speed); as x grows, P approaches Pmin. Given a decay factor k (we will

show how to find a value below), VStore uses the function to set the target overall speed for

each age in the video lifespan.

How to plan data erosion for each age? For gentle speed decay, VStore always

deletes from the storage format that would result in the minimum overall speed reduction.

In the spirit of max-min fairness, VStore essentially spreads the speed decay evenly among

consumers.

VStore therefore plans erosion by resembling a fair scheduler [84]. For each video age,

i) VStore identifies the consumer Q that currently has the lowest relative speed; ii) VStore

examines all SFs in the “richer-than” tree, finding the one that has the least impact on the

speed of Q; iii) VStore plans to delete a fraction of segments from the found format, so that

another consumer R’s relative speeds drops below Q’s. VStore repeats this process until the

overall speed drops below the target of this age.

Summary VStore generates an erosion plan by testing different values for the decay

factor k. It finds the lowest k (most gentle decay) that brings down the total storage cost

48

accumulated over all video ages under budget. For each tested k, VStore generates a tentative

plan: it sets speed targets for each video age based on the power law, plans data erosion for

each age, sums up the storage cost across ages, and checks if the storage cost falls below the

budget. As higher k always leads to lower total storage cost, VStore uses binary search to

quickly find a suitable k.

3.4 Implementation

We built VStore in C++ and Python with 10K SLoC. Running its configuration engine,

VStore orchestrates several major components.

Coding and storage backend: VStore invokes FFmpeg, a popular software suite for

coding tasks. VStore’s ingestion uses the libx264 software encoder; it creates one FFmpeg

instance to transcode each ingested stream. Its retrieval invokes NVIDIA’s NVDEC decoder

for efficiency. VStore invokes LMDB, a key-value store [85], as its storage backend. VStore

stores 8-second video segments in LMDB. We choose LMDB as it well supports MB-size

values.

Ported query engines: We ported two query engines to VStore. We modify both

engines so they retrieve data from VStore and provide interfaces for VStore’s profiling.

OpenALPR [64] recognizes vehicle license plates. Its operators build on OpenCV and run

on CPU. To scale up, we create a scheduler that manages multiple OpenALPR contexts and

dispatches video segments. NoScope [8] is a recent research engine. It combines operators

that execute at various speeds and invoke deep NN. It invokes TensorFlow [86] as the NN

framework, which runs on GPU.

Operator lib: The two query engines provide 6 operators as shown in Figure 3.1 . In

particular, S-NN uses a very shallow AlexNet [87] produced by NoScope’s model search and

NN uses YOLOv2 [50].

3.5 Evaluation

We answer the following questions in evaluation:

§3.5.2 : Does VStore provide good end-to-end results?

49

§3.5.3 : Does VStore adapt configurations to resource budgets?

§3.5.4 : Does VStore incur low overhead in configuration?

3.5.1 Methodology

Video Datasets We carried out our evaluation on six videos, extensively used as bench-

marks in prior work [6]–[8], [15]. We include videos from both dash cameras (which contain

high motion) and surveillance cameras that capture traffic from heavy to light. The videos

are: jackson, from a surveillance camera at Jackson Town Square; miami, from a surveil-

lance camera at Miami Beach crosswalk; tucson: from a surveillance camera at Tucson 4-th

Avenue. dashcam, from a dash camera when driving in a parking lot; park, from a stationary

surveillance camera in a parking lot; airport, from a surveillance camera at JAC parking lot.

The ingestion formats of all videos are 720p at 30 fps encoded in H.264.

VStore setup We, as the system administrator, declare a set of accuracy levels {0.95,

0.9, 0.8, 0.7} for each operator. These accuracies are typical in prior work [6]. In determining

F1 scores for accuracy, we treat as the ground truth when the operator consumes videos in

the ingestion format, i.e., highest fidelity. In our evaluation, we run the two queries as

illustrated in Figure 3.1 : Query A (Diff + S-NN + NN) and query B (Motion + License +

OCR). In running the queries, we, as the users, select specific accuracy levels for the operators

of the query. In running queries, we, as the users, specify different accuracy levels for the

constituting operators. We run query A on the first three videos and B on the remainder, as

how these queries are benchmarked in prior work [8], [64]. To derive consumption formats,

VStore profiles the two sets of operators on jackson and dashcam, respectively. Each profiled

sample is a 10-second clip, a typical length used in prior work [6]. VStore derives a unified

set of storage formats for all operators and videos.

Hardware environment We test VStore on a 56-core Xeon E7-4830v4 machine with

260 GB DRAM, 4×1TB 10K RPM SAS 12Gbps HDDs in RAID 5, and a NVIDIA Quadro

P6000 GPU. By their implementation, the operators from ALPR run on the CPU; we limit

them to use up to 40 cores for ensuring the query speed comparable to commodity multi-core

servers. The operators from NoScope run on the GPU.

50

Table 3.3. A sample configuration of video formats automatically derived by VStore.

Diff S-NN NN Motion License OCR

F1=0.95 best-100p-2/3-75%
SF3 3211x

best-200p-1-50%
SF3 600x

good-600p-2/3-100%
SFg 4x

bad-144p-1/30-75%
SF3 25134x

best-540p-1-100%
SFg 10x

best-720p-1/2-100%
SFg 11x

F1=0.90 best-60p-2/3-75%
SF3 4587x

best-200p-1/2-75%
SF3 1630x

good-600p-2/3-75%
SFg 5x

bad-180p-1/30-50%
SF3 26117x

best-540p-1/2-100%
SFg 20x

best-540p-1/2-100%
SFg 13x

F1=0.80 best-200p-1/30-100%
SF3 30585x

best-200p-1/2-50%
SF3 3680x

good-400p-1/30-100%
SF2 120x

bad-180p-1/30-50%
SF3 26117x

good-540p-1/6-100%
SF1 62x

best-540p-1/30-100%
SF2 165x

F1=0.70 best-60p-1/30-75%
SF3 34132x

best-200p-1/6-75%
SF3 8102x

good-400p-1/30-75%
SF2 134x

bad-180p-1/30-50%
SF3 26117x

good-540p-1/30-75%
SF2 314x

good-540p-1/30-100%
SF2 165x

Storage Formats (SFs)

SFg best-720p-1-100%
250-slowest 1393KB 23x

SF1 good-540p-1/6-100%
250-slowest 409KB 178x

SF2 best-540p-1/30-100%
10-fast 92KB 331x

SF3 best-200p-1-100%
RAW 1843KB1 1137-34132x2

(a): All consumption formats for all operators (columns) at different accuracy levels (rows). Total 21 unique.
Each cell shows: fidelity, subscribed storage format and consumption speed.

(b): All storage formats. Each cell shows: fidelity, coding (kFrameInt-SpeedStep), coalesced video size (per sec), and retrieval speed.
1. RAW frames are in YUV420p pixel format.
2. RAW frames can be sampled individually from disk, thus the range of retrieval speed.

Note: Above tables show an example of derived CFs and SFs. Operators in Query A (Diff + S-NN + NN) are profiled on jackson, and operators in Query B
(Motion + License + OCR) are profiled on dashcam. CFs and SFs might differ across different videos.

SF

(a) Consumption Formats (CF) (b) Storage Formats (SF)

3.5.2 End-to-end results

Configuration by VStore VStore automatically configuring video formats based on its

profiling. Table 3.3 shows a snapshot of configuration, including the whole set of consumption

formats (CFs) and storage formats (SFs). For all the 24 consumers (6 operators at 4 accuracy

levels), VStore generates 21 unique CFs, as shown in Table 3.3 (a). The configuration has

109 knobs over all 21 CFs (84 knobs) and 4 SFs (25 knobs), with each knob having up to

10 possible values. Manually finding the optimal combination would be infeasible, which

warrants VStore’s automatic configuration. In each column (a specific operator), although

the knob values tend to decrease as accuracy drops, the trend is complex and can be non-

monotone. For instance, in column Diff, from F1=0.9 to 0.8, VStore advises to decrease

sampling rate, while increase the resolution and crop factor. This reflects the complex

impacts of knobs as stated in Section 3.1.4 . We also note that VStore chooses extremely low

fidelity for Motion at all accuracies ≤ 0.9. It suggests that Motion can benefit from an even

larger fidelity space with even cheaper fidelity options.

From the CFs, VStore derives 4 SFs, including one golden format (SFg), as listed in

Table 3.3 (b). Note that we, as the system admin, has not yet imposed any budget on

ingestion cost. Therefore, VStore by design chooses the set of SFs that minimize the total

storage cost (Section 3.3.3). The CF table on the left tags each CF with the SF that

each CF subscribes to. As shown, the CFs and SFs jointly meet the design requirements

51

R1–R3 in Section 3.3.3 : each SF has fidelity richer than/equal to what its downstream CFs

demand; the SF’s retrieval speed is always faster than the downstream’s consumption speed.

Looking closer at the SFs: SFg mostly caters to consumers demanding high accuracies but low

consumption speeds; SF3, stored as low-fidelity raw frames, caters to high-speed consumers

demanding low image resolutions; between SFg and SF3, SF1 and SF2 fill in the wide gaps

of fidelity and costs. Again, it is difficult to manually determine such a complementary set

of SFs without VStore’s configuration.

Alternative configurations We next quantitatively contrast VStore with the following

alternative configurations:

• 1→1 stores videos in the golden format (SFg in Table 3.3). All consumers consume

videos in this golden format. This resembles a video database oblivious to algorithmic

consumers.

• 1→N stores videos in the golden format SFg. All consumers consume video in the

CFs determined by VStore. This is equivalent to VStore configuring video formats

for consumption but not for storage. The system, therefore, has to decode the golden

format and convert it to various CFs.

• N→N stores videos in 21 SFs, one for each unique CF. This is equivalent to VStore

giving up its coalescing of SFs.

Query speed As shown in Figure 3.10 (a), VStore achieves good query speed overall,

up to 362× realtime. VStore’s speed is incomparable with performance reported for ret-

rospective analytics engines [7], [8]: while VStore streams video data (raw/encoded) from

disks through decoder to operators, the latter were tested with all input data preloaded as

raw frames in memory. VStore offers flexible accuracy/cost trade-offs: for queries with lower

target accuracies, VStore accelerates query speed by up to 150×. This is because VStore

elastically scales down the costs: according to the lower accuracies, it switches the operators

to CFs that incur lower consumption cost; the CFs subscribe to SFs that incur lower retrieval

cost.

52

jackson

1x

10x

100x

1000x

1
0.
95 0.
9

0.
8

miami
1

0.
95 0.
9

0.
8

tucson

1
0.
95 0.
9

0.
8

dashcam

1
0.
95 0.
9

0.
8

park

1
0.
95 0.
9

0.
8

airport

1
0.
95 0.
9

0.
8

1à1 VStore1àN

Qu
er

y
sp

ee
d

(x
 re

al
tim

e)

(a) Query speeds (y-axis; logarithmic scale) as functions of target
operator accuracy (x-axis). Query A on left 3 videos; query B on right
3 videos. By avoiding video retrieval bottleneck, VStore significantly
outperforms others. In this work, we assume the ingestion format is
the ground truth (accuracy = 1). Note that N→N is omitted since
the speed is the same as VStore.

0

400

800

1200

jackson miami tucson dashcam park airport

GB
/d

ay

1-->1 & 1-->N
Vstore
N-->N

15

10

5

0

M
B/

s

2.6TB/day

(b) Storage cost per video stream, measured as the growth rate of
newly stored video size as ingestion goes on. VStore’s coalsecing of
SFs substantially reduces storage cost.

0

1000

2000

3000

jackson miami tucson dashcam park airport

1-->1 & 1-->N
VStore
N-->N

CP
U

Ut
ili

za
tio

n
(%

)

(c) Ingestion cost per video stream, as required CPU usage for
transcoding the stream into storage formats. VStore’s SF coalescing
substantially reduces ingestion cost. Note that this shows VStore’s
worst-case ingestion cost with no ingestion budget specified; see Ta-
ble 3.4 for more.

Figure 3.10. End-to-end result of VStore.

53

Figure 3.10 (a) also shows the query speed under alternative configurations. 1→1 achieves

the best accuracy (treated as the ground truth) as it consumes video in the full fidelity as

ingested. However, it cannot exploit accuracy/cost trade-offs, offering a fixed operating

point. By contrast, VStore offers extensive trade-offs and speeds up queries by two orders

of magnitude.

1→N customizes consumption formats for consumers while only storing the golden for-

mat. Although it minimizes the consumption costs for consumers, it essentially caps the

effective speed of all consumers at the speed of decoding the golden format, which is about

23× of realtime. The bottlenecks are more serious for lower accuracy levels (e.g., 0.8) where

many consumers are capable of consuming data as fast as tens of thousand times of realtime,

as shown in Table 3.3 (a). As a result, VStore outperforms 1→N by 3×-16×, demonstrating

the necessity of the SF set.

Storage cost Figure 3.10 (b) compares the storage costs. Among all, N→N incurs the

highest costs, because it stores 21 video versions in total. For dashcam, a video stream with

intensive motion which makes video coding less effective, the storage cost reaches as high as

2.6 TB/day, filling a 10TB hard drive in four days. In comparison, VStore consolidates the

storage formats effectively and therefore reduces the storage cost by 2×-5×. 1→1 and 1→N

require the lowest storage space as they only save one video version per ingestion stream;

yet, they suffer from high retrieval cost and low query speed.

Ingestion cost Figure 3.10 (c) demonstrates that VStore substantially reduces ingestion

cost through consolidation of storage formats. Note that it shows VStore’s worst-case inges-

tion cost. As stated earlier, in the end-to-end experiment with no ingestion budget imposed,

VStore, therefore, reduces the ingestion cost without any increase in the storage cost. As we

will show next, once an ingestion budget is given, VStore can keep the ingestion cost much

lower than the worst case with only a minor increase in storage cost.

Overall, on most videos VStore requires around 9 cores to ingest one video stream,

transcoding it into the 4 SFs in real time (30 fps). Ingesting dashcam is much more expensive,

as the video contains intensive motion. VStore’s cost is 30%–50% lower than N→N, which

must transcode each stream to 21 SFs. 1→1 and 1→N incur the lowest ingestion cost as

54

Table 3.4. In response to ingestion budget drop, VStore tunes coding and coa-
lesces formats to stay under the budget with increase in storage cost. Changed
knobs shown in red.

Cores for ingest >=7 6 3 2 1
St

o
r.

MB/sec 3.039 3.042 3.094 3.273 3.561
GB/day 250.4 250.7 254.9 269.7 293.4

St
o

ra
ge

Fm
ts

SFg 250-slowest 250-slowest 250-slow 250-med 250-fast

SF1 250-slowest 250-slow 250-slow 250-med 250-fast

SF2 10-fast 10-fast 10-fast 10-fast 250-fast

SF3 RAW RAW RAW RAW RAW

Coding option: “Keyframe Interval” - “SpeedStep”

Budget Reduces

they only transcode the ingestion stream to the golden format, yet at the expense of costly

retrieval and slow query speed.

3.5.3 Adapting to resource budgets

Ingestion budget VStore elastically adapts its configuration with respect to the inges-

tion budget. To impose budget, we, as the system admin, cap the number of CPU cores

available to one FFmpeg that transcodes each ingested stream. In response to the reduced

budget, VStore gently trades off storage for ingestion. Table 3.4 shows that as the ingestion

budget drops, VStore incrementally tunes up the coding speed (i.e., cheaper coding) for indi-

vidual SFs. As a trade-off, the storage cost slowly increases by 17%. During this process, the

increasingly cheaper coding overprovisions the retrieval speed to consumers and therefore

will never fail the latter’s requirements. Note that at this point, the total ingestion output

throughput is still less than 3.6 MB/s; even the system ingests 56 streams with its 56 cores

concurrently, the required disk throughput 200 MB/s is still far below that of a commodity

HDD array (1 GB/s in our platform).

We also find out that SFs as well as the ingestion cost quickly plateaus as VStore’s library

includes more operators. Figure 3.11 shows how the ingestion cost increases as operators are

sequentially added, following the order listed in Table 3.2 , to VStore’s library. The ingestion

55

0

200

400

600

800

0 1 2 3 4 5 6 7 8 9

CP
U
Ut
ili
za
tio

n
(%

)
Number of Operators

Figure 3.11. Transcoding cost does not scale up with the number of opera-
tors. Operator sequence follows Table 3.2 .

cost stabilizes as the number of operators exceeds 5, as additional operators share existing

SFs.

Storage budget VStore’s data erosion effectively respects the storage budget with gentle

speed decay. To test VStore’s erosion planning, we, as system admin, set the video lifespan

to 10 days; we then specify different storage budgets.

With all 4 SFs listed in Table 3.3 (b), 10-day video stream will take up 5 TB of disk space.

If we specify a budget above 5 TB, VStore will determine not to decay (k=0), shown as the

flat line in Figure 3.12 (a). Further reducing the storage budget prompts data erosion. With

a 4 TB budget, VStore decays the overall operator speed (defined in Section 3.3.4) following

a power law function (k=1). As we further reduce the budget, VStore plans more aggressive

decays to respect the budget. Figure 3.12 (b) shows how VStore erodes individual storage

formats under a specific budget. On day 1 (youngest), all 4 SFs are intact. As the video

ages, VStore first deletes segments from SF1 and SF2 that have lower impacts on the overall

speed. For segments older than 5 days, VStore deletes all the data in SF1-3, while keeping

the golden format intact (not shown).

3.5.4 Configuration overhead

VStore incurs moderate configuration overhead, thanks to our techniques in Section 3.3.2

and Section 3.3.3 . Overall, one complete configuration (including all required profiling) takes

56

0
0.2
0.4
0.6
0.8
1

1 2 3 4 5 6 7 8 9 10
Ov

er
al

l R
el

at
. S

pe
ed

Video Age / Day

2TB (k=5) 3.5TB (k=3)
4TB (k=1) 5TB (k=0)

0

20

0

200

1 3 5 7 9

0

400
Total

Video Age / Day Re
sid

ua
l V

id
eo

 S
ize

 /
GB

(a) Operator speed decays as the video ages. For lower storage
budget, VStore chooses more aggressive decay (higher k).

(b) Storage cost decreases as the video ages. Storage budget
set to 2TB. 3 stored versions and the total size are shown. The
total size further includes the golden format (not shown),
which is not eroded by design.

SF2

SF1 SF3

0

80

1 3 5 7 9

Figure 3.12. Age-based decay in operator speed (a) and reducing storage
cost (b) to respect storage budget.

around 500 seconds, suggesting the store can afford one configuration process in about every

1 hour online.

Configuring consumption formats Figure 3.13 shows the overhead in determining

consumption formats. Compared to exhaustive profiling of all fidelity options, VStore reduces

the number of profiling runs by 9×–15× and the total profiling delay by 5×, from 2000

seconds to 400 seconds. We notice that the License operator is slow, contributing more than

75% of total delay, likely due to its CPU-based implementation.

Configuring storage formats We have validated that VStore is able to find resource-

efficient storage formats as exhaustive enumeration does.

Heuristic-based selection: We first test heuristic-based selection for producing SFs

(Section 3.3.3). We compare it to exhaustive enumeration, on deriving SFs from the 12 CFs

57

0

500

1000

License OCR NN
0

200

400

Motion
0
2
4
6

Diff S-NN

Exhaustive VStore

Ti
m
e
(s
) 300

19
9

100
19 180

180

22 22

300

22

180

Figure 3.13. Time spent on deriving consumption formats. Numbers of
profiling runs are annotated above columns. Each required profiling runs on a
10-second video segment. VStore reduces overhead by 5× in total.

used in query B; we cannot afford more CFs would which make exhaustive enumeration

very slow. Both methods result in identical storage formats, validating VStore’s rationale

behind coalescing. Yet, VStore’s overhead (37 seconds) is 2 orders of magnitude lower than

enumeration (5548 seconds).

To derive the storage formats from all the 21 unique consumption formats in our evalu-

ation, VStore incurs moderate absolute overhead (less than 1 min) too. Throughout the 17

rounds of coalescing, it only profiles 475 (3%) storage formats out of all 15K possible ones.

We observed that its memorization is effective: despite 5525 storage formats are examined

as possible coalescing outcomes, 92% of them have been memoized before and thus requires

no new profiling.

Distance-base selection: We then test the other strategy. We use Euclidean distance

as the similarity metric. The configuration takes only 18 seconds, 2× shorter than the

heuristic-based selection mentioned above. This is because calculating the distances requires

no expensive profiling as heuristic-based selection does.

Comparison of resultant SFs: The two strategies also derive very different SF sets:

while the SFs derived by heuristic-based selection is close to optimal as shown above, the SFs

derived by distance-based selection incur 2.2× higher storage cost. This is because the latter

strategy, while simple, overlooks the fact that different knobs have complex and varying

resource impacts (Section 3.1.4), which cannot be simply normalized across knobs.

58

3.6 Discussion

Adapting to changes in operators and hardware VStore works with any possible

queries composed by operators/accuracies pre-defined in its library (Section 3.1.2). If users

add a new operator (or a new accuracy level), VStore would need to profile the new operator

and derive corresponding CFs for it. If users change the platform hardware (e.g., adding a

new GPU), VStore would need to re-profile all existing operators. Conceptually, this also

triggers an update to the SFs. Since transcoding existing on-disk videos is expensive, VStore

only applies the updated SFs to forthcoming videos; for existing videos, VStore makes each

new CF subscribe to the cheapest existing SF with satisfiable fidelity (Section 3.2.1). As

a result, on existing videos, operators run with designated accuracies, albeit slower than

optimal. As this portion of videos age and retire, operators run at optimal speed on all

videos.

Qualitative comparison against Focus [15] As stated in Section 3.1.2 , Focus by

design is limited to fixed query pipelines – object detection consisting of one cheap neural

network (NN) and one full NN. This contrasts with VStore which supports diverse queries.

Nevertheless, we compare their resource costs on such an object detection pipeline.

Ingestion cost. VStore continuously runs transcoding. As already shown in Fig-

ure 3.11 , the transcoding cost quickly plateaus as the number of operators grows. While the

current VStore prototype runs transcoding on CPU for development ease, low-cost hardware

transcoder is pervasive: recent work showcases a transcoder farm of $20 Raspberry Pis, with

each device transcoding 4 video streams in real time (720×480 at 30 fps) [88], [89]. We,

therefore, estimate the hardware cost for each video ingestion to be less than a few dozen

dollars.

By comparison, at ingestion time, Focus continuously runs the cheap NN on GPU. On a

high-end GPU (Tesla P100, ∼$4,000), the cheap NN is reported to run at 1.92K fps; assuming

perfect scalability, this GPU supports up to 60 video streams. The hardware investment for

ingesting each video stream is around $60, which is 2×-3× higher than VStore. If the ingested

streams are fewer (e.g., several or a few dozen as typical for a small deployment), the GPU

is underutilized, which further increases per-stream investment. Running the ingestion on

59

public cloud helps little: Amazon EC2’s single-GPU instance (P3) costs nearly $17.5K per

year [90].

Query cost. At query time, VStore would run the cheap NN on all frames and the full

NN on the frames selected by the cheap NN. By comparison, Focus only runs the full NN

on the frames selected by the cheap NN (it already runs the cheap NN at ingestion). The

comparison between VStore’s query cost and that of Focus depends on two factors: (i) the

frame selectivity f and (ii) the ratio α between the full NN speed and the cheap NN speed.

Therefore, the ratio between VStore’s query delay and that of Focus is given by r = 1+α/f .

With the NNs used by Focus, α = 1/48 [15].

When the frame selectivity is low, e.g., the queried objects are sparse in the video,

VStore’s query delay is significantly longer (e.g., when f = 1%, r = 3). However, as the

selectivity increases, the query delay difference between VStore and Focus quickly diminishes,

e.g., when f = 10%, r = 1.2; when f = 50%, r = 1.04. Furthermore, as the speed gap

between the two NNs enlarges, e.g., with an even cheaper NN, the query delay difference

quickly diminishes as well.

3.7 Related work

Optimizing video analytics Catering to retrospective video analytics, BlazeIt [7] pro-

poses a query model and corresponding execution techniques [7]. NoScope [8] reduces

query cost with cheap early filters before expensive NN. To run NNs on mobile devices,

MCDNN [91] trades off between accuracy and resource constraints by model compression.

Optimizing live video analytics For distributed, live video analytics, VideoStorm [9]

and VideoEdge [92] search for best knobs and query placements over clusters to meet ac-

curacy/delay requirements. For live video analytics on the edge, LAVEA[35] and Vigil [13]

partitions analytics pipelines between the edge and the cloud. Jain et al. [57] optimize video

analytics over multiple cameras through cross-camera correlations. Pakha et al. [93] co-tune

network protocols with video analytics objectives, e.g., accuracy. However, all the systems

are incapable of optimizing ingestion, storage, retrieval, and consumption in conjunction.

60

Video/image storage Facebook’s Haystack [94] accelerates photo access through meta-

data lookups in main memory. Intel’s VDMS [95], [96] accelerates image data access through

a combination of graph-based metadata and array-based images backed by TileDB [97]. They

focus on images rather than videos. Targeting NN training, NVIDIA’s Video Loader [98] (a

wrapper over NVDEC and FFmpeg) optimizes random loads of encoded video frames. To

support video analytics at scale, Scanner [99] organizes video collections and raster data as ta-

bles in a data store and executes costly pixel-level computations in parallel. All these systems

are short on controlling visual data formats according to analytics. NVIDIA DeepStream

SDK [100] supports video frames flow from GPU’s built-in decoders to stream processors

without leaving the GPU. It reduces memory move, but no fundamental change in trade-offs

between retrieval and consumption.

Time-series database Recent time-series data stores co-design storage format with

queries [65], [101]. However, the data format/schema (timestamped sensor readings), the

operators (e.g., aggregation), and the analytics structure (no cascade) are different from

video analytics. While some databases [102], [103] provide benefits on data aging or frequent

queries, they could not make storage decisions based on video queries as they are oblivious

to the analytics.

Multi-query optimization Relational databases [104] and streaming databases [105],

[106] enable sharing data and computation across queries with techniques such as scan shar-

ing [107]–[109]. By doing so, they reduce data move in memory hierarchy and coalesce

computation across queries. VStore, in a similar fashion, support data sharing among multi-

ple possible queries, albeit at configuration time instead of at run time. By doing so, VStore

coalesces data demands across queries/operators and hence reduces the ingestion and stor-

age cost. Through load shedding [110]–[112], streaming databases trade accuracy for lower

resource consumption; VStore makes similar trade-offs for vision operators.

Video systems for human consumers Many multimedia server systems in 90’s stored

videos on disk arrays in multiple resolutions or in complementary layers, in order serve

human clients [113], [114]. Since then, Kang et al. [21] optimizes placement of on-disk video

layers in order to reduce disk seek. Oh et al. [115] segments videos into shots, which are

easier for humans to browse and search. Recently, SVE [116] is a distributed service for

61

fast transcoding of uploaded videos in data centers. ExCamera [73] uses Amazon lambda

function for parallel video transcoding. These systems were not designed for, and therefore

are oblivious to, algorithmic consumers. They cannot automatically control video formats

for video analytics.

3.8 Conclusions

VStore automatically configures video format knobs for retrospective video analytics.

It addresses the challenges by the huge combinatorial space of knobs, the complex knobs

impacts, and high profiling cost. VStore explores a key idea called backward derivation of

configuration: the video store passes the video quantity and quality desired by analytics

backward to retrieval, to storage, and to ingestion. VStore automatically derives complex

configurations. It runs queries as fast as up to 362× of video realtime.

62

4. DIVA: SUPPORTING EXPLORATORY VIDEO QUERIES

ON ZERO-STREAMING CAMERAS

4.1 Background & motivations

4.1.1 Cold videos are already pervasive

Case study: Cold videos in real-world deployment We conduct an IRB-approved

study examining existing camera deployment on a campus. Spanning 1 mi2, the campus

hosts tens of thousands of employees and operates more than 1,000 cameras. All captured

videos are stored for a few months for retrospective queries before deletion. The camera de-

ployment supports AI-based queries, e.g., object detection, not traceable to unique persons,

and reviews by human analysts. We analyzed system logs spanning six continuous months:

in over 3,000,000 hours of videos (5.4 PB) have been captured, only <0.005% video data

from <2% cameras are queried.

Why are most videos cold? (1) Interesting video events are both unpredictable (thus

the need for capturing excessive videos) and sparse (thus low chances for footage being

queried). For example, severe traffic breakdown contributes to less than 5% of the time per

day [117]; Foreign Intelligence Surveillance Court only reviewed a tiny fraction of video for

terrorism events [118]. (2) Analyzing videos is expensive: it still requires a GPU of a few

thousand dollars for high-accuracy object detection over a video stream [8]. (3) In years to

come, cheap cameras will produce more videos.

4.1.2 Target queries and their execution

We target ad-hoc queries [8], [13], [15], [18]. The query parameters, including object

classes, video timespans, and expected accuracies, are specified at query time rather than

video capture time. Such queries are known for flexibility.

High-accuracy object detection is essential Object detection is the core of ad-hoc

queries [7]. Minor accuracy loss in object detection may result in substantial loss in query

performance, as we will demonstrate in Section 4.7 . While NNs significantly advance object

detection, new models with higher accuracy demand much more compute. For instance,

63

compared to YOLOv3 (2018) [10], CornerNet (2019) [119] improves Average Precision by

28% while being 5× more expensive.

Low-cost cameras cannot answer queries without cloud Cameras in real-world

deployment are reported to be resource-constrained [11]. Low-cost cameras (<$40) have

wimpy cores, e.g., Cortex-A9 cores for YI Home Camera [23] and MIPS32 cores for Wyze-

Cam [22]; their DRAM is no more than a few GBs [120], [121]. In recent benchmarks,

they run state-of-the-art object detection at 0.1 FPS [122], [123], incapable of keeping up

with video capture at 1–30 FPS [8], [15]. NN accelerators still cannot run high-accuracy

object detection fast enough at low enough monetary cost, e.g., Intel’s Movidius ($70) runs

YOLOv3 at no faster than 0.5 FPS. We expect that the resource gap between high-accuracy

object detection and low-cost camera continues to exist in the future.

4.1.3 A case for zero streaming

Streaming cold videos wastes bandwidth As discussed in Section 1.2 , cameras are

cheap while wireless spectrum is precious. Deploying streaming cameras on a shared network

incurs poor experience [124], [125] and draws researcher attention [12], [13]. Dedicated

networks are costly [27] and thus only suit a small number of cameras in critical locations.

While wireless bandwidth grows, consumer demand grows even faster, e.g., 20× for VR/AR

and 10× for gaming [126]. Cold video traffic should not contend with consumers for network

bandwidth.

Streaming optimizations cannot offset the waste One may reduce FPS or resolu-

tion of streamed videos. Even if users tolerate the resultant lower query accuracy, the saved

bandwidth is incomparable to the waste on overwhelmingly streamed cold videos, as we will

experimentally show (Section 4.7). On-camera “early filters” [11], [12], [14] are still subop-

timal when querying massive cold videos. (1) Without knowing query objects/parameters

at video capture time, a camera may run a generic filter, e.g., discarding no-motion frames;

it still streams substantial survival frames (e.g., consider a street-view camera). As stated

above, most of these frames will remain cold and hence wasted. (2) The camera may run a

64

Table 4.1. Cheap µSD cards on cameras retain long videos for humans to
review [128] or for machines to analyze [15].

Size Yr.2017 Yr.2020 720p@30FPS 720p@1FPS
128GB $45 $17 ∼11 days ∼3 weeks
256GB $150 $28 ∼3 weeks ∼6 weeks

large set of specific filters covering all possible query objects/parameters. Even if possible,

this incurs a much higher compute cost to camera.

Edge processing does not justify streaming Cameras may stream to edge servers.

Yet, streaming hundreds if not thousands of always-on, cold video streams, even if possible

on certain wireless infrastructures, still wastes precious wireless spectrum at the edge [127].

Furthermore, deploying and managing video edge servers can be challenging and costly in

many scenarios, such as construction sites and remote farms.

Camera can retain videos long enough Table 4.1 shows the price of µSD cards

has been dropped by 2.6×–5.4× in the past few years. Cameras can retain videos for

several weeks and for several months soon. Such retention periods are adequate for most

retrospective query scenarios, in which videos are stored from a few weeks to a few months

based on legal regulations [28]–[31] and best practice. For privacy, many regulations prohibit

video retention longer than a few months and mandate deletion afterwards [30], [31].

Our model & design scope To harness cold videos, we advocate for zero streaming.

We focus on cold videos being queried for the first time and querying individual cameras. We

intend our design to form the basis of future enhancement, e.g., caching for repetitive queries,

exploiting past queries for refinement [129], and exploiting cross-camera topology [56]. We

address limited compute resource on cameras [121] and limited network bandwidth [26]. We

do not consider the cloud as a limiting factor, assuming it runs fast enough to process frames

uploaded from cameras.

4.2 Overview

Query types Concerning a specific camera, an ad-hoc query (T , C) covers a video times-

pan T , typically hours or days, and an object class C as detectable by modern NNs, e.g., any

65

Table 4.2. A summary of supported queries. T is the queried video timespan;
C is the queried object class.

Type & Semantics Execution User’s view of query results Performance Metrics

Retrieval.
Get positive video frames (i.e.,
containing C) within T

Camera: multipass ranking of frames
Uploaded: ranked frames
Cloud: object detection for identifying true positives

• Positive frames being uploaded;

• Estimated % of positives retrieved

The rate of the user receiving
positive frames

Tagging.
Get time ranges from T that
contain C

Camera: multipass filtering of frames
Uploaded: unresolved frames; tags of resolved frames
Cloud: object detection to tag unresolved frames

• A video timeline with pos/neg ranges;

• Tagging resolution, i.e., 1 in every N
adjacent frames tagged

The refining rate of tagging
resolution seen by the user

Counting.
Get max/mean/median count
of C across all frames in T

Camera: multipass ranking (max) or random sampling
(mean/median) of frames
Uploaded: ranked or sampled frames
Cloud: object detection to count objects

• Running counts that converge to ground
truth;

• % of frames processed;

• Estimated time to complete the query

The rate of running counts
converging to ground truth

of the 80 classes of YOLOv3 [10]. As summarized in Table 4.2 , DIVA supports three query

types: Retrieval, e.g., “retrieve all images that contain buses from yesterday”; Tagging,

e.g., “return all time ranges when any deer shows up in the past week”, in which the time

ranges are returned as metadata but not images; Counting, e.g., “return the maximum

number of cars that ever appear in any frame today”.

System components DIVA spans a camera and the cloud. Between them, the network

connection is only provisioned at query time. To execute a query, a camera runs lightweight

NNs, or operators, to filter or rank the queried frames for upload. On the uploaded frames,

the cloud runs generic, high-accuracy object detection and materializes query results. Ta-

ble 4.2 summarizes executions for different queries:

• The camera executes rankers for Retrieval and max Count queries. A ranker scores

frames; a higher score suggests that a frame is more likely to contain any object of

interest (for Retrieval) or a large count of such objects (for max Count).

• The camera executes filters for Tagging queries. A filter scores frames; it resolves

any frame scored below/above two pre-defined thresholds as negative/positive, and

deems other frames as unresolved. For each resolved frame, the camera uploads a

positive/negative tag; the camera either uploads unresolved frames for the cloud to

decide or defer them to more accurate filters on camera in subsequent passes.

Query execution Upon receiving a query, the cloud retrieves all landmarks in queried

video as low-resolution thumbnails, e.g., 100×100, with object labels and bounding boxes

(Figure 4.1 1). The cloud uses landmarks: (1) to estimate object spatial distribution,

66

Cloud detects objs
& op training

Query
start

cloud

camera
Time

Op1
frames

Op2
frames

Bootstrap

Op1 runs Op2 runs

Query
abort

2

1 3 6

4 5
Op

upgrade

Continuous refinement of results

Landmarks

7

Figure 4.1. The workflow of DIVA’s query execution.

e.g., “90% queried objects appear in a 100×100 region on the top-right”, which is crucial to

query optimization (Section 4.3); (2) as the initial training samples for bootstrapping

a family of camera operators (2). The camera filters/ranks frames and uploads the ranked

or surviving frames (3). The cloud processes the uploaded frames and emits results, e.g.,

positive frames. It trains operators for higher accuracy (4). Observing resource conditions

and positive ratios in uploaded frames, the cloud upgrades the operator on camera (5).

With the upgraded operator, the camera continues to process remaining frames (6). Step

(4)–(6) repeat until query abort or completion. Throughout the query, the cloud keeps

refining the results presented to the user (7).

Notable designs (1) The camera processes frames in multiple passes, one operator in

each pass. (2) The camera processes and uploads frames asynchronously. For instance, when

the camera finishes ranking 100 out of total 1,000 frames, it may have uploaded the top 50

of the 100 ranked frames. This is opposed to common ranking which holds off frame upload

until all the frames are ranked [130]–[132]. (3) The processing/upload asynchrony facilitates

video exploration: it amortizes query delay over many installments of results; it pipelines

query execution with user thinking [33]. Table 4.2 summarizes a user’s view of query results

and the performance metrics. While such online query processing has been known [133],

[134], we are the first applying it to visual data.

Limitations DIVA is not designed for several cases and may underperform: querying

very short video ranges, e.g., minutes, for which simply uploading all queried frames may

67

Persons

80%

100%

Cars

100%
80% Cars

100%
Persons
100%

(a) Banff (b) Boathouse (c) Chaweng

Figure 4.2. Class spatial skews in videos. In (a) Banff: 80% and 100% of cars
appear in regions that are only 19% and 57% of the whole frame, respectively.

Persons
(2 hrs @ 0.01FPS)

Persons
(20 hrs @ 0.01FPS)

Persons
(48 hrs @ 1FPS)

Figure 4.3. Class spatial distribution can be estimated from sparse frames
sampled over long video footage. Among the three heatmaps: while sparse
sampling over short footage (left) significantly differs from dense sampling
of long footage (right), sparse sampling of long footage (middle) is almost
equivalent to Video: Tucson (see Table 4.3).

suffice without operators; querying non-stationary cameras for which landmarks may not

yield accurate object distribution.

4.3 Landmark design

Surveillance cameras have a unique opportunity: to learn object class distribution from

weeks of videos. We focus on spatial skews: objects of a given class are likely to concentrate

on certain small regions on video frames. In examples of Figure 4.2 (a)-(b), most cars appear

near a stop sign; most persons appear in a shop’s aisle. To our knowledge, such long-term

skews are untapped in prior computer vision work, which focused on minute-long videos [5],

[56], [92], [135], [136].

We have three key observations. (1) One object class may exhibit different skews in differ-

ent videos (Figure 4.2 (a)-(c)); different classes may exhibit different skews in the same video

(Figure 4.2 (c)). (2) The skews are pervasive: surveillance cameras cover long time spans

and a wide field of view, where objects are small; in the view, objects are subject to social

constraints, e.g., buses stop at traffic lights, or physical constraints, e.g., humans appear on

68

Pareto
frontier

Operator upgrade
direction

w/ knowledge

w/o knowledge

Figure 4.4. On-camera operators benefit from long-term video knowledge
substantially. Each marker: an operator. For querying buses on video Banff
(see Table 4.3).

the floor. (3) The skews can be learned through sparse frame samples, as exemplified by

Figure 4.3 .

To exploit such an opportunity, DIVA makes the following design choices. (1) High-

accuracy object detection: at capture time, the camera runs an object detector with the

highest accuracy as allowed by the camera’s hardware, mostly memory capacity. This is

because camera operators crucially depend on the correctness of landmarks, i.e., the object

labels and bounding boxes. We will validate this experimentally (Section 4.7.2). (2) Sparse

sampling at regular intervals: to accommodate slow object detection on cameras, the

camera creates landmarks at long intervals, e.g., 1 in every 30 seconds in our prototype

(Section 4.7). Sparse sampling is proven valid for estimating statistics of low-frequency sig-

nals [137], e.g., object occurrence in videos in our case. We will validate this (Section 4.7.2);

without assuming a priori of object distribution, regular sampling ensures unbiased estima-

tion of the distribution [138]. Given a priori, cameras may sample at corresponding random

intervals for unbiased estimation.

Key idea: exploiting spatial skews for performance The cloud learns the object

class distribution from landmarks of the queried video timespan. It generates a heatmap for

spatial distribution (Figure 4.2). Based on the heatmap, the cloud produces camera operators

consuming frame regions of different locations and sizes. Take Figure 4.2 (a) as an example: a

69

filter may consume bottom halves of all frames and accordingly filter frames with no cars; for

Figure 4.2 (b), a ranker may consume a smaller bounding box where 80% persons appear and

rank frames based on their likelihood of containing more persons. Figure 4.4 shows that, by

zooming into smaller regions, operators run faster and deliver higher accuracy. By varying

input region locations/sizes, DIVA produces a set of operators with diverse costs/accuracies.

By controlling the execution order of operators, DIVA processes “popular” frame regions

prior to “unpopular” regions. DIVA never omits any region when it executes a query to

completion to guarantee correctness.

What happens to instances uncaptured by landmarks? Sparse by design, land-

marks are not meant to capture all object instances; instead, they are used as inexact

estimators and initial training samples. Reducing landmarks will degrade query speed, as

we will experimentally quantify in Section 4.7.2 . Doing so, however, does not affect query

correctness or accuracy: the instances uncaptured by landmarks will be eventually processed

by DIVA as a query goes on.

4.4 Online operator upgrade

4.4.1 The rationale

Three factors determine a query’s execution speed:

1. Pending workloads: the difficulty of the frames to be processed, i.e., how likely will the

frame be mis-filtered or mis-ranked on camera.

2. Camera operators: cheap operators spend less time on each frame but are more likely

to mis-filter/mis-rank frames, especially difficult frames. This is shown in Figure 4.4 .

3. Network condition: the available uplink bandwidth.

The three factors interplay as follows.

• Queries executed with on-camera rankers A camera ranks and uploads frames

asynchronously (Section 4.2). The key is to maximize the rate of true positive frames

arriving at the cloud, for which the system must balance ranking speed/accuracy with

70

Time

Already done!

ECHEAP

EEXP

Multi
pass

2 3

Expensive ranking
& uploading…

All done

Expensive ranking
& uploading…

Cheap ranking
& uploading…

Uploading…

1
Uploading…

4

5

Uploaded Uploaded Uploaded

True Positive True Negative UnrankedFrames

Expensive ranking
& uploading…

Cheap ranking
& uploading…

Figure 4.5. Three alternative executions of a Retrieval query, showing mul-
tipass ranking (bottom) outperforms running individual rankers alone (top
two). Each row: snapshots of the upload queue at three different moments.
In a queue: ranking/uploading frames from left to right.

upload bandwidth. (1) When the camera runs a cheaper ranker, it ranks frames at

a much higher rate than uploading the frames; as a result, the cloud receives frames

hastily selected from a wide video timespan. (2) When the camera runs an expensive

ranker, the cloud receives frames selected deliberately from a narrow timespan. (3) The

camera should never run rankers slower than upload, which is as bad as uploading un-

ranked frames. As an example, ECHEAP and EEXP on the top of Figure 4.5 compare two

possible executions of the same query, running cheap/expensive rankers respectively.

Shortly after the query starts (1), ECHEAP swiftly explores more frames on camera;

it outperforms EEXP by discovering and returning more true positive frames. As both

executions proceed to harder frames (2), ECHEAP makes more mistakes in ranking; it

uploads an increasingly large ratio of negatives which wastes the execution time. By

contrast, EEXP ranks frames slower yet with much fewer mistakes, hence uploading

fewer negatives. It eventually returns all positives earlier than ECHEAP (3).

The microbenchmark in Figure 4.6 (a) offers quantitative evidence. E1 spends less

time (0.7×) in returning the first 90% positives, but more time (1.7×) in returning

99% positives. Furthermore, lower upload bandwidth favors a more expensive ranker,

71

0 200 400 600

Cheap filtering

50% 80% 90% 99%

0 100 200 300 400 500

Op2

Op1
Cheap ranking

50% 80% 90% 99%

(a) Retrieval (b) Tagging

Time
/secs

Query progress

E1

E2
Expensive ranking Expensive filtering

Time
/secs

Figure 4.6. Cheap/expensive camera operators excel at different query
stages. Each subfigure: two alternative executions of the same query, showing
query progress (bars) and the corresponding operator’s progress (arrows).

as the uploaded frames would contain a higher ratio of positives, better utilizing the

precious bandwidth.

• Queries executed with on-camera filters The key is to maximize the rate of

resolving frames on camera. Cheap filters excel on easy frames, resolving these frames

fast with confidence. They are incapable on difficult frames, wasting time on attempt-

ing frames without much success in resolving. They would underperform expensive

filters that spend more time per frame yet being able to resolve more frames.

The benchmark in Figure 4.6 (b) shows two executions with cheap/expensive filters.

Early in the query, E1 makes faster progress as the camera quickly resolves 50% of the

frames (4× less time than E2). Later in the execution, E1 lags behind as the camera

cannot resolve the remaining frames and must upload them. By contrast, E2 resolves

82% of frames on camera and only uploads the remaining 18%. As a result, E2 takes

1.3× less time in completing 90% and 99% of the query.

Summary & implications It is crucial for DIVA to pick operators with optimal cost/ac-

curacy at query time. The choice not only varies across queries but also varies throughout

a query’s execution: easy frames are processed early, leaving increasingly difficult frames

that call for more expensive operators. DIVA should monitor pending frame difficulty and

network bandwidth and upgrade operators accordingly.

4.4.2 Multipass, multi-operator execution

DIVA manages operators with the following techniques.

72

• A camera processes frames iteratively with multiple operators.

• The cloud progressively updates operators on camera, from cheaper ones to more

expensive ones, as the direction shown in Figure 4.4 . In picking operators, the cloud

dynamically adapts operator speed to frame upload speed.

• The cloud uses frames received in early execution stages to train operators for later

stages; as the latter operators are more expensive, they require more training samples.

Multipass ranking This is exemplified by the bottom execution in Figure 4.5 . The

camera first runs a cheap ranker, moving positives towards the front of the upload queue

(4). Subsequently, the camera runs an expensive ranker, continuously reordering unsent

frames in a smaller scope (5). Throughout the query, the camera first quickly uploads easy

frames that are quickly ranked and slows down to vet difficult frames with expensive/accurate

ranking. Notably, the cheaper ranker roughly prioritizes the frames as input for the expensive

ranker, ensuring the efficacy of the expensive ranker. In actual query executions, a camera

switches among 4–8 operators (Section 4.7).

Multipass filtering The camera sifts undecided, unsent frames in multiple passes, each

with a more expensive filter over a sample of the remaining frames. Throughout one query,

early, cheaper filters quickly filter easier frames, leaving more difficult frames for subsequent

filters to resolve.

4.5 Query execution planning

DIVA plans a concrete query execution by (1) the camera’s policy for selecting frames to

process; (2) the cloud’s policy for upgrading on-camera operators. We now discuss them.

4.5.1 Executing Retrieval queries

Policy for selecting frames To execute the initial operator, the camera prioritizes

fixed-length video spans (e.g., 1 hour) likely rich in positive frames, estimated based on

landmark frames. In executing subsequent operators, the camera processes frames in their

existing ranking as decided by earlier operators, as described in Section 4.4 . The camera

73

gives opportunities to frames never ranked by prior operators, interleaving their processing

with ranked frames with mediocre scores (0.5).

Policy for operator upgrade As discussed in Section 4.2 , DIVA switches from cheap

operators to expensive ones, and matches operator speed to frame upload rate. To capture

an operator op’s relative speed to upload, it uses one simple metric: the ratio between the

two speeds, i.e., fop = FPSop/FPSnet. Operators with higher fop tend to rapidly explore

frames while others tend to exploit slowly. The operator speed FPSop is profiled offline. (1)

Selecting the initial operator In general, DIVA should fully utilize the upload bandwidth

with positive frames. As positive frames are scattered in the queried video initially, the

camera should explore all frames sufficiently fast. Otherwise, it would either starve the

uplink or knowingly upload negative frames. Based on this idea, the cloud picks the most

accurate operator from the ones that are fast enough, i.e., fop × Rpos > 1, where Rpos is the

ratio of positives in the queried video, estimated from landmarks. (2) When to upgrade:

current operator losing its vigor The cloud upgrades operators either when the current

operator finishes processing all frames, or the cloud observes a continuous quality decline in

recently uploaded frames, an indicator of the current operator’s incapability. To decide the

latter, DIVA employs a rule: the positive ratio in recently uploaded frames are k× (default:

5) lower than the frames uploaded at the beginning; (3) Selecting the next operator:

slow down exponentially Since the initial operator promotes many positives towards

the front of the upload queue, subsequent operators, scanning from the queue front, likely

operate on a larger fraction of positives. Accordingly, the cloud picks the most accurate

operator among much slower ones, s.t. fop(i+1) > α × fop(i), where α controls speed decay in

subsequent operators. A larger α leads to more aggressive upgrade: losing more speed for

higher accuracy. In the current prototype, we empirically choose α = 0.5. Since f is relative

to FPSnet measured at every upgrade, the upgrade adapts to network bandwidth change

during a query.

74

4.5.2 Executing Tagging queries

Recall that for Tagging, a camera runs multipass filtering; the objective of each pass is

to tag, as positive (P) or negative (N), at least one frame from every K adjacent frames. We

call K the group size; DIVA pre-defines a sequence of group sizes as refinement levels, e.g.,

K = 30, 10, ..., 1. As in prior work [7], [8], [15], the user specifies tolerable error as part of

her query, e.g., 1% false negative and 1% false positive; DIVA trains filters with thresholds

to meet the accuracy.

Policy for selecting frames The goal is to quickly tag easy frames in individual groups

while balancing the workloads of on-camera processing and frame upload. An operator op

works in two stages of each pass. i) Rapid attempting. op scans all the groups; it attempts

one frame per group; if it succeeds, it moves to the next group; it adds undecidable frames

(U) to the upload queue. ii) Work stealing. op steals work from the end of upload queue.

For an undecidable frame f belonging to a group g, op attempts other untagged frames in

g; once it succeeds, it removes f from the upload queue as f no longer needs tagging in the

current pass. After one pass, the camera switches to the next refinement level (e.g., 10 →

5). It keeps all the tagging results (P ,N ,U) while cancels all pending uploads. It re-runs the

frame scheduling algorithm until it meets the finest refinement level or query terminated.

Policy for operator upgrade Given an operator op and γop, the ratio of frames it

can successfully tag, DIVA measures op’s efficiency by its effective tagging rate, FPSop ×

γop + FPSnet, as a sum of op’s successful tagging rate and the uploading rate. As part of

operator training, the cloud estimates γop for all the candidate operators by testing them on

all landmarks (early in query) and uploaded frames (later in query). To select every operator,

initial or subsequent, the cloud picks the candidate with the highest effective tagging rate.

The cloud upgrades operators either when the current operator has attempted all remaining

frames or another candidate having an effective tagging rate β× or higher (default value 2).

4.5.3 Executing Counting queries

Max Count: Policy for selecting frames To execute the initial operator, the camera

randomly selects frames to process, avoiding the worst cases that the max resides at the

75

end of the query range. For subsequent operators, the camera processes frames in existing

ranking decided by earlier operators.

Max Count: Policy for operator upgrade As the camera runs rankers, the policy is

similar to that for Retrieval with a subtle yet essential difference. To determine whether the

current operator shall be replaced, the cloud must assess the quality of recently uploaded

frames. While for Retrieval, DIVA conveniently measures the quality as the ratio of positive

frames, the metric does not apply to max Count, which seeks to discover higher scored frames.

Hence, DIVA adopts the Manhattan distance as a quality metric among the permutations

from the ranking of the uploaded frames (as produced by the on-camera operator) and the

ranking that is re-computed by the cloud object detector. A higher metric indicates worse

quality hence more urgency for the upgrade.

Average/Median Count: no on-camera operators After the initial upload of land-

marks, the camera randomly samples frames in queried videos and uploads them for the

cloud to refine the average/median statistics. To avoid any sampling bias, the camera does

not prioritize frames; it instead relies on the Law of Large Numbers (LLN) to approach the

average/median ground truth through continuous sampling.

4.6 Implementation and methodology

Operators We architect on-camera operators as variants of AlexNet [87]. We vary the

number of convolutional layers (2–5), convolution kernel sizes (8/16/32), the last dense layer’s

size (16/32/64); and the input image size (25×25/50×50/100×100). We empirically select

40 operators to be trained by DIVA online; we have attempted more but see diminishing

returns. These operators require small training samples (e.g., 10K images) and run fast on

camera.

Background subtraction filters static frames at low overhead [15]. DIVA employs a

standard technique [139]: during video capture, a camera detects frames that have little

motion (< 1% foreground mask) and omits them in query execution. On our camera hard-

ware (Table 4.4), background subtraction is affordable in real time during capture. For fair

comparisons, we augment all baselines with background subtraction.

76

Table 4.3. 15 videos used for test. Each video: 720P at 1FPS lasting 48
hours. Column 1: video type. T – traffic; O/I – outdoor/indoor surveillance;
W – wildlife.

Name Object Description

T

JacksonH [140] car A busy intersection in Jackson Hole, WY
JacksonT [141] car A night street in Jackson Hole, WY
Banff [142] bus A cross-road in Banff, Alberta, Canada
Mierlo [143] truck A rail crossing in Netherlands
Miami [144] car A cross-road in Miami Beach, FL
Ashland [145] train A level crossing in Ashland, VA
Shibuya [146] bus An intersection in Shibuya, Japan

O

Chaweng [147] bicycle Absolut Ice Bar (outside) in Thailand
Lausanne [148] car A pedestrian plaza in Lausanne, Switzerland
Venice [149] person A waterfront walkway in Venice, Italy
Oxford [150] bus A street beside Oxford Martin school, UK
Whitebay [151] person A beach in Virgin Islands

I CoralReef [152] person An aquarium video from CA
BoatHouse [153] person A retail store from Jackson Hole, WY

W Eagle [154] eagle A tree with an eagle nest in FL

Videos & Queries We test on 15 videos captured from 15 live camera feeds (Table 4.3).

Each video lasts continuous 48 hours. We preprocess all videos to be 720P at 1 FPS,

consistent with prior work [15]. We test Retrieval/Tagging/Counting queries on 6/6/3 videos.

We intentionally choose videos with disparate characteristics and hence different degrees of

difficulty. For each video, we pick a representative object class to query; across videos, these

classes are diverse. For Tagging, we set query error to be < 1% FN/FP as prior work did [8].

Noting that the query “accuracy” is already implied in the query process, e.g., the fraction

of positive frames retrieved.

Test platform & parameters As summarized in Table 4.4 (a), we test on embedded

hardware similar to low-cost cameras [120], [121]. We use Rpi3 as the default camera hard-

ware and report its measurement unless stated otherwise. During query execution, both

devices set up a network connection with 1MB/s default bandwidth to emulate typical WiFi

condition [26]. Note that this network bandwidth is not meant for streaming; it is only for

a camera while the camera is being queried. We run YOLOv3 as the high-accuracy object

77

Table 4.4. Experiment configurations.

(a) Hardware platforms.

Cameras
Rpi3 (default): Raspberry Pi 3 ($35). 4xCortex-A53, 1GB DRAM

Odroid: XU4 ($49) 4xCortexA15 & 4xCortexA7, 2GB DRAM

CloudServer 2x Intel Xeon E5-2640v4, 128GB DRAM GPU: Nvidia Titan V

(b) DIVA and the baselines. The table summarizes their executions for capture and query. NNs:
Yv3 – YOLOv3, high accuracy (mAP=57.9); YTiny – YOLOv3-tiny, low accuracy (mAP=33.1).

Cam:Landmarks Cam:Query Cloud:Query
ClondOnly – Only upload frames
OptOp Yv3 every 30 secs Run one optimal op Yv3 on all
PreIndexAll YTiny every sec Parse YTiny result uploaded frames
DIVA Yv3 every 30 secs Multi passes & ops

detector on camera and cloud (Table 4.4 (b)). We will study alternative models, landmarks,

and resources in Section 4.7.2 .

Baselines As summarized in Table 4.4 (b), we compare DIVA with three alternative

designs augmented with background subtraction and only process/transmit non-static video

frames.

• CloudOnly: a naive design that uploads all queried frames at query time for the cloud

to process.

• OptOp: in the spirit of NoScope [8], the camera runs only one ranker/filter specialized

for a given query, selected by a cost model for minimizing full-query delay. To make

OptOp competitive, we augment it with landmark Compared to DIVA, OptOp’s key

differences are the lack of operator upgrade and the lack of operator optimization by

long-term video knowledge.

• PreIndexAll: in the spirit of Focus [15], the camera runs a cheap yet generic object

detector on all frames. We pick YOLOv3-tiny (much cheaper than YOLOv3) as the

detector affordable by Rpi3 in real time (1 FPS). The detector plays the same role as

an operator in DIVA, except that it runs at capture time: for Retrieval and Counting,

78

99%
90%
80%
50%

Ours OptOp PreIndexAll CloudOnly Operator upgrade

(a
)R

et
rie

va
l

1/10
1/5
1/3
1/2

1/1

(b
)T
ag
gi
ng

1/30

BoatHouse

Figure 4.7. On Retrieval and Tagging queries, DIVA shows good performance
and outperforms the alternatives. x-axis for all: query delay (secs). y-axis for
(a): % of retrieved instances; for (b): refinement level (1/N frames).

the detector’s output scores are used to prioritize frames to upload at query time; for

Tagging, the output is used to filter the frames that have enough confidence. Compared

to DIVA, PreIndexAll’s key differences are: it answers queries solely based on the

indexes built at capture time; it requires no operator training or processing actual

images at query time.

4.7 Evaluation

4.7.1 End-to-end performance

Full query delay is measured as: Retrieval – the time to receive 99% positive frames

as in prior work [15]; Tagging – the time taken to tag every frame; Counting – the time to

reach the ground truth (max) or converge within 1% error of the ground truth (avg/median).

Overall, DIVA delivers good performance and outperforms the baselines significantly.

• Retrieval (Figure 4.7 (a)). On videos each lasting 48 hours, DIVA spends ∼1,900 sec-

onds on average, i.e., 89× of video realtime. On average, DIVA’s delay is 3.8×, 3.1×,

and 2.0× shorter than CloudOnly, PreIndexAll, and OptOp, respectively.

• Tagging (Figure 4.7 (b)). DIVA spends ∼581 seconds on average (297× realtime). This

delay is 16.0×, 2.1×, and 4.3× shorter than CloudOnly, PreIndexAll, and OptOp,

respectively.

• Counting (Figure 4.8). DIVA’s average/median take several seconds to converge. For

average Count, DIVA’s delay is 65.1× and up to three orders of magnitude shorter

79

Co
un

t

Figure 4.8. On Counting queries, DIVA shows good performance and out-
performs the alternatives. Legend: see Figure 4.7 . x-axis for all: query delay
(secs). y-axis for left plots: count; for top two right plots: ground truth for
avg/median queries; for bottom right plot: % of max value.

than CloudOnly and PreIndexAll. For median Count, DIVA’s delay is 68.3× shorter

than the others. For max Count, DIVA spends 34 seconds on average (635× realtime),

which is 5.8×, 5.0×, and 1.3× shorter than CloudOnly, PreIndexAll, and OptOp.

Query progress DIVA makes much faster progress in most time of query execution. It

always outperforms CloudOnly and OptOp during Retrieval/Tagging (Figure 4.7). It always

outperforms alternatives in median/average count (Figure 4.8).

Why DIVA outperforms the alternatives? The alternatives suffer from the follow-

ing.

• Inaccurate indexes. PreIndexAll resorts to inaccurate indexes (YOLOv3-tiny) built

at capture time. Misled by them, Retrieval and Tagging upload too much garbage;

Counting includes significant errors in the initial estimation, slowing down convergence.

• Lack of long-term knowledge. OptOp’s operators are either slower or less accurate than

DIVA, as illustrated in Figure 4.4 .

80

Table 4.5. DIVA’s performance (speedup) with various bandwidths. Num-
bers: min/median/max of times (×) of query delay reduction compared to
baselines (rows). Averaged on all videos and 9 bandwidths in 0.1MB/s–
10MB/s.

 Retrieval Tagging Count/Max Count/Avg&Med

CloudOnly 4.5/14.9/52.2 3.61/3.9/5.1 2.8/21.1/42.5 6.9/83.4/439.2

OptOp 2.2/4.1/4.9 2.0/2.3/2.6 1.2/1.5/2.1 6.9/83.4/439.2*

PreIndexAll 1.9/3.8/11.6 3.2/3.6/4.9 1.2/8.9/18.2 2.5/14.0/41.3
*: Fall back to CloudOnly as the camera does not execute NN for these query types

• One operator does not fit an entire query. Optimal at some point (e.g., 99% Retrieval),

the operator runs too slow on easy frames which could have been done by cheaper

operators.

Why DIVA underperforms (occasionally)? On short occasions, DIVA may under-

perform PreIndexAll at early query stages, e.g., BoatHouse in Figure 4.7 . Reasons: (1)

PreIndexAll’s inaccurate indexes may be correct on easy frames; (2) PreIndexAll does not

pay for operator bootstrapping as DIVA. Nevertheless, PreIndexAll’s advantage is tran-

sient. As easy frames are exhausted, indexes make more mistakes on the remaining frames

and hence slow down the query.

Can DIVA outperform under different network bandwidths at query time?

Table 4.5 summarizes DIVA’s query delays at 9 bandwidths evenly spaced in [0.1 MB/s,

10 MB/s] which cover typical WiFi bandwidths [25]. We have observed that: on lower

bandwidths, DIVA’s advantages over baselines are more significant; at high bandwidths,

DIVA’s advantages are still substantial (>2× in most cases) yet less pronounced. The

limitation is not in DIVA’s design but rather its current NNs: we find it difficult to train

operators that are both fast enough to keep up with higher upload bandwidth and accurate

enough to increase the uploaded positive ratio proportionally.

vs. “all streaming”: network bandwidth saving Compared to streaming all videos

(720P 1FPS) at capture time, DIVA saves traffic significantly, as shown in Figure 4.9 . When

only as few as 0.005% of video is queried as in our case study (Section 4.1), the saving is

over three orders of magnitude. Even if all captured videos are queried, DIVA saves more

than 10×, as its on-camera operators skip uploading many frames. Among the bandwidth

81

10x

100x

1000x

10000x

0 50 100

Retrieval

Tagging

Fraction of Queried Video (%)

R
ed

u
ce

d
 T

ra
ff

ic
 (

lo
g)

Figure 4.9. DIVA significantly reduces network traffic compared to “all
streaming”. Results averaged over all videos.

reduction brought by DIVA, only less than 30% attributes to the background subtraction

technique. It shows that the disadvantage of “all streaming” is fundamental: streaming

optimizations may help save the bandwidth (upmost several times [18]) but cannot offset

the waste, as discussed in Section 4.1.3 .

DIVA vs. “all streaming”: query speed As “all streaming” uploads all videos to

the cloud before a query starts, the query speed is bound by cloud GPUs but not network

bandwidth. With our default experiment setting (1 GPU and 1MB/s network bandwidth),

“all streaming” still runs queries much slower than zero streaming. Adding more cloud GPUs

will eventually make “all streaming” run faster than DIVA.

Training & shipping operators For each query, DIVA trains ∼40 operators, of which

∼10 are on the Pareto frontier. The camera switches among 4–8 operators, which run at

diverse speeds (27×–1,000× realtime) and accuracies. DIVA chooses very different operators

for different queries. Training one operator typically takes 5–45 seconds on our test platform

and requires 5k frames (for bootstrapping) to 15k frames (for stable accuracy). Operators’

sizes range from 0.2–15 MB. Sending an operator takes less than ten seconds. Only the delay

in training and sending the first operator (≤ 40 seconds) adds to the query delay which is

included in Figure 4.7 –4.8 . Subsequent operators are trained and transmitted in parallel to

query execution. Their delays are hidden from users.

82

%
of
re
tri
ev
ed

in
st
an
ce
s

Query delay (secs)

R
ef
in
em
en
tl
ev
el

(1
/N
fra
m
es
)

Ours
w/o upgrade

w/o opt and upgrade
CloudOnly

Figure 4.10. DIVA’s both key techniques – optimization with long-term video
knowledge (opt) and operator upgrade (upgrade), contribute to performance
significantly.

4.7.2 Validation of query execution design

The experiments above show DIVA’s substantial advantage over OptOp, coming from a

combination of two techniques – optimizing queries with long-term video knowledge (“Long-

term opt”, Section 4.3) and operator upgrade (“Upgrade”, Section 4.4). We next break down

the advantage by incrementally disabling the two techniques in DIVA. Figure 4.10 shows the

results.

Both techniques contribute to significant performance. For instance, disabling

Upgrade increases the delay of retrieving 90% instances by 2× and that of tagging 1/1

frames by 2×-3×. Further disabling Long-term Opt increases the delay of Retrieval by 1.3×-

2.1× and that of tagging by 1.6×-3.1×. Both techniques disabled, DIVA still outperforms

CloudOnly with its single non-optimized operator.

Upgrade’s benefit is universal; Long-term opt’s benefit is more dependent on

queries, i.e., the skews of the queried object class in videos. For instance, DIVA’s benefit

is more pronounced on Chaweng, where small bicycles only appear in a region in 1/8 size

of the entire frame, than Ashland, where large trains take 4/5 of the frame. With stronger

83

60
337

284
123

446
647

0 500 1000

PreIndexAll+YTiny *
PreIndexAll+Yv2

Ours w/o LM
Ours + YTiny

Ours + Yv2
Ours + Yv3 *

Query speed (x realtime)

118
1652

378
240

875
1024

0 1000 2000
Query speed (x realtime)

* = default used in
end-to-end test

(a) DIVA’s performance degrades significantly with less ac-
curate landmarks (produced by Yv2 and YTiny), which can
be even worse than no landmarks at all (“w/o LM”).

10

100

1000

10000

0 100 200

Landmark interval / seconds

CloudOnly + LM

Ours

50

500

5000

0 100 200

Landmark interval / seconds

CloudOnly + LM

Ours

default: 1 in 30 seconds default: 1 in 30 seconds

Q
u

er
y

sp
ee

d
 (

x
re

al
ti

m
e)

(b) DIVA’s performance degrades slowly with sparser land-
marks. The y-axis is logarithmic.

0

500

1000

1500

0 50 100 150

BFLOP

rpi odroid

0

500

1000

1500

2000

0 50 100 150

BFLOP

rpi odroid

1 sec

10 secs

30 secs
1 sec

6 secs
20 secs

YTiny Yv2 Yv3 YTiny Yv2 Yv3

1 sec

1 sec

6 secs

20 secs

10 secs
30 secs

Q
u

er
y

sp
ee

d
 (

x
re

al
ti

m
e)

(c) On given camera hardware (Rpi3/Odroid), sparser yet
more accurate LMs always improve DIVA’s performance.
Landmark intervals annotated along curves.

Figure 4.11. Validation of landmark design. In (a)/(b)/(c): Left – Retrieval
on Chaweng; Right – Tagging on JacksonH.

skews in Chaweng, DIVA trains operators that are more accurate and run faster. This also

accounts for DIVA’s varying (yet substantial) advantages over the alternatives (Figure 4.7).

Next, we deviate from the default landmark parameters (Table 4.4) to validate the choice

of sparse-but-sure landmarks.

DIVA hinges on accurate landmarks. As shown in Figure 4.11 (a), modestly inac-

curate landmarks (as produced by YOLOv2; 48.1 mAP) increase delays for Q1/Q2 by 45%

84

and 17%. Even less accurate landmarks (by YOLOv3-tiny; 33.1 mAP) increase the delays

significantly by 5.3× and 4.3×. Perhaps surprisingly, such inaccurate landmarks can be

worse than no landmarks at all (“w/o LM” in Figure 4.11): when a query starts, a camera

randomly uploads unlabeled frames for the cloud to bootstrap operators.

Why inaccurate landmarks hurt so much? They (1) provide wrong training samples; (2)

lead to incorrect observation of spatial skews which further mislead frame cropping; and (3)

introduce large errors into initial statistics, making convergence harder.

DIVA tolerates longer landmark intervals. As shown in Figure 4.11 (b), DIVA’s

Retrieval and Tagging performance slowly degrade with longer intervals. Even with an in-

finite interval, i.e., “w/o LM” in Figure 4.11 (a), the slowdown is no more than 3×. On

Counting, the performance degradation is more pronounced: 5× longer intervals for around

15× slow down. Yet, such degradation is still much smaller than one from inaccurate land-

marks (two orders of magnitude). The reason is that, with longer LM intervals DIVA has to

upload additional frames in full resolution (∼10× larger than LMs) when a query starts for

bootstrapping operators; such a one-time cost, however, is amortized over the full query.

Create the most accurate landmarks possible Should a camera build denser yet

less accurate landmarks or sparser yet more accurate ones? Figure 4.11 (c) suggests the

latter is always preferred, because of DIVA’s high sensitivity to landmark accuracy and low

sensitivity to long landmark intervals.

DIVA on wimpy/brawny cameras DIVA suits wimpy cameras that can only generate

sparse landmarks. Some cameras may have DRAM smaller than a high-accuracy NN (e.g.,

∼1 GB for YOLOv3); fortunately, recent orthogonal efforts reduce NN sizes [155]. Wimpier

cameras will further disadvantage the alternatives, e.g., PreIndexAll will produce even less

accurate indexes. On higher-end cameras (a few hundred dollars each [156]) that DIVA is not

designed for, DIVA still shows benefits, albeit not as pronounced. High-end cameras can af-

ford more computation at capture time. i) They may run PreIndexAll with improved index

accuracy. In Figure 4.11 (a), running YOLOv2 on all captured frames (PreIndexAll+Yv2),

DIVA’s performance gain is 1.9× (left) or even 0.6× (right). ii) These cameras may generate

denser landmarks and rely on the cloud for the remaining frames. Figure 4.11 (b) shows,

with one landmark every 5 seconds, DIVA’s advantage is 1.5×.

85

4.8 Related work

Optimizing video analytics The CV community has studied video analytics for decades,

e.g., for online training [157], [158] and active learning [159]. They mostly focus on improving

analytics accuracy on short videos [5], [135], [136], [160]–[162] while missing opportunities

in exploiting long-term knowledge (Section 4.3). These techniques alone cannot address the

systems challenges we face, e.g., network limit or frame scheduling. A common theme of

recent work is to trade accuracy for lower cost: VStore [18] does so for video storage; Pakha

et al. [93] do so for network transport; Chameleon [6] and VideoStorm [9], [92] do so with

video formats. DIVA’s operators as well exploit accuracy/cost tradeoffs. Multiple systems

analyze archival videos on servers [7], [18], [99], [163], [164]. DIVA analyzes archival videos

on remote cameras and embraces new techniques. ML model cascade is commonly used for

processing a stream of frames [8], [165], [166]: in processing a frame, it keeps invoking a

more expensive operator if the current operator has insufficient confidence. This technique,

however, mismatches exploratory analytics, for which DIVA uses one operator to process

many frames in one pass and produces inexact yet useful results for all of them.

Edge video analytics To reduce cloud/edge traffic, computation is partitioned, e.g.,

between cloud/edge [12], [35], [167], edge/drone [168], and edge/camera [13]. Elf [169] ex-

ecutes counting queries completely on cameras. Most work targets live analytics, processes

frames in a streaming fashion and trains NNs ahead of time. DIVA spreads computation

between cloud/cameras but takes a disparate design point (zero streaming) that are inad-

equate in prior systems. CloudSeg [36] reduces network traffic by uploading low-resolution

frames and recovering them via super resolution. DIVA eliminates network traffic at capture

time at all.

Online Query Processing Dated back in the 90s, online query processing allows users

to see early results and control query execution [32], [170]. It is proven effective in large data

analytics, such as MapReduce [133]. DIVA retrofits the idea for video queries and accordingly

contributes new techniques, e.g., operator upgrade, to support the online fashion. DIVA

could borrow UI designs from existing online query engines.

86

WAN Analytics To query geo-distributed data, recent proposals range from query

placement to data placement [171]–[175]. JetStream [176] adjusts data quality to meet

network bandwidth; AWStream [177] facilitates apps to systematically trade-off analytics

accuracy for network bandwidth. Like them, DIVA adapts to network; unlike them, DIVA

does so by changing operator upgrade plan, a unique aspect in video analytics. DIVA targets

resource-constrained cameras, which are unaddressed in WAN analytics.

4.9 Conclusions

We propose zero streaming, shifting most compute from capture time to query time. We

build DIVA, an analytics engine for querying cold videos on remote, low-cost cameras. At

capture time, DIVA builds sparse but sure landmarks; at query time, it refines query results

by continuously updating on-camera operators. Our evaluation of three types of queries

shows that DIVA can run at more than 100× video realtime under typical wireless network

and camera hardware.

87

5. CLIQUE: SPATIOTEMPORAL OBJECT

RE-IDENTIFICATION AT THE CITY SCALE

5.1 Background & motivations

5.1.1 System model

Queries & videos We target retrospective queries: at the query time, all videos are

already stored in a central repository. We assume a large repository of videos from geo-

distributed cameras. Preprocessing at ingestion, i.e., as videos are being captured, is op-

tional, as permitted by compute resource. At ingestion time, the system knows the object

classes that may be queried, e.g., cars, humans, but not the input images of queries. How-

ever, ingestion preprocessing does not know about future queries and is agnostic to specific

queries.

A query includes an input image of the target object X and the scope of videos to be

queried; the query does not carry any metadata, e.g., a timestamp or the origin camera that

produced the input image. Following the norm in ReID research [42], [44]–[48], we do not

assume the video repository contains the input image; we do not assume any other images

from the origin camera is available.

Camera Deployments We make minimum, qualitative assumptions on camera deploy-

ment. The deployment covers multiple geo-locations. At each location, multiple cameras

are co-located as a geo-group. The query system knows which cameras are co-located, i.e.,

belonging to the same geo-group. Of the same geo-group and during a short period of time,

e.g., tens of seconds, cameras are likely (although not necessarily) to capture similar sets

of objects from different viewpoints. Such kind of deployment can be easily observed in

public dataset [37] and real-world applications [38], which we believe is the future trend of

surveillance camera deployment.

We do not assume that the query system knows quantitative camera postures and quanti-

tative correlations across camera geo-groups (e.g., “one object appearing in geo-group A has

50% chance to reappear in geo-group B within the next 10 minutes”). There is no sufficient

evidence showing such knowledge is standard in city camera deployment. As such, we design

88

Target: vehicle A
Cam 29

o

f
b

o
u

n
d

in
g

b
o

xe
s

o

f
b

o
u

n
d

in
g

b
o

xe
s

Distance to the input

The box w/
shortest distance

Vehicle A on Cam 30

Vehicle B on Cam 32

Cluster
centroid

Cluster
centroid

Figure 5.1. Examples of unreliable bounding boxes. (Left) an image of
vehicle A, whose feature is the input. (Top) a histogram of distances between
the input and other features of A. (Bottom) a histogram of distances between
the input and features of B, a confusing vehicle. All features are 1×1024
vectors extracted by ResNet-152. Euclidean distances with L-2 norm [51] are
used. Video clips: 4.7/4.9 sec for vehicle A/B from CityFlow [37].

a more generic system without such knowledge, and evaluate how the resultant system can

be augmented in case some knowledge, e.g., camera correlations and orientations, becomes

available (Section 5.6).

5.1.2 Challenge 1: Algorithm limitations

Observation: unreliable bounding boxes Figure 5.1 compares the features of a

target vehicle A and a confusing vehicle B. The features are extracted by ResNet-152, a

state-of-the-art neural network. Given an image of vehicle A: (1) ResNet-152 deems 10%

of B’s bounding boxes exhibit shorter feature distances than A’s, hence are more similar to

the input image, as compared to A’s other bounding boxes; (2) the bounding box closest to

the input image is from the confusing vehicle B but not A; (3) Bounding boxes of the same

vehicle show a high variation, as reflected by the wide range of the feature distances. The

above example of unreliable bounding boxes is not isolated: they are the major hurdle for

89

ReID accuracy, responsible for an average of 0.65 loss of accuracy in 20% of queries executed

by a baseline design (Section 5.6).

The causes Why unreliable bounding boxes? We explain the root cause with a simple

formula:

Cam′(X) = Cam(X) + N (5.1)

Equation 5.1 describes how Cam′(X), a camera’s actual observation of an object, is

formed. X is the object’s inherent characteristics, e.g., its color, shape, skeleton, and key

points. Two factors prevent a ReID system from directly learning X and matching it to the

input. First, a camera’s posture modulates X as Cam(X), i.e., the camera’s ideal observation

on X. Second, the ideal observation is susceptible to transient disturbances N, e.g., changes

in resolution and viewpoint as objects move, background clutter, and occlusion. The impacts

of camera postures and transient disturbances are strong, sometimes even stronger than the

impact of inherent characteristics X. We have observed a different camera viewpoint of the

same object resulting in 3× difference in feature distances. Hence, classic ReID pipelines

that aim at labeling each bounding box are in fact deciding on Cam′(X), which encodes

the camera posture and also the disturbances. The pipelines cannot achieve high accuracy

because it is difficult to model Cam() and N and eliminate their impacts accordingly.

5.1.3 Challenge 2: Numerous cameras & videos

Colossal data volume A city camera generates more than 6 GBs of videos daily

(720P at 1FPS). Estimated from recent reports on camera deployment in northern American

cities [37], [38], [53], the number of city cameras per square mile ranges from a few hundred

to a few thousand. A ReID query covering only a few square miles and one day of videos

will have to consume PBs of videos.

Expensive pipelines Extensive work has been proposed to use neural networks (NNs)

for ReID, advancing the accuracy steadily [178] on public datasets [179], [180]. For instance,

recent pipelines cascade multiple NNs, each detecting a separate set of vehicle attributes,

e.g., orientations and roof types. The additional NNs are reported to improve accuracy

90

(mAP) by 10% with up to 7× overhead [46], [181]. We estimate that they can run no more

than 15 FPS on a modern GPU.

Would cheaper features help? Cheaper NNs and vision primitives are unlikely reme-

dies. The former were used by many object detection systems to provide a middle ground

between high accuracy and low cost [8], [12], [15], [182]. On the much harder ReID tasks,

however, modern NNs simply do not offer surplus accuracy for systems to trade off. We

have tested RGB histogram [183] and SIFT [184], two cheap vision primitives for extracting

object features. RGB features are highly volatile to lighting conditions and background clut-

ter; SIFT yields poorer features compared to modern NNs, while not running significantly

faster than the latter. Prepending these primitives to a ReID pipeline are likely to hurt

performance.

5.1.4 Why is prior work inadequate

Computer vision research typically treats ReID as image retrieval [41], [46], [52],

[181]. Aiming at finding all bounding boxes of a target object, computer vision studies

typically focus on improving accuracy without considering query speed or efficiency much.

Yet, retrieving every bounding box would miss opportunities, as we will show, that can

provide useful spatiotemporal answers with much lower delays.

Existing ReID systems often consider smaller camera deployment and are evaluated

on such datasets, e.g., 8 cameras over a university campus [179]. Many core designs depend

on deployment-specific knowledge. For instance, ReXCam [56] searches in cameras among

which spatial correlations are both strong and known. Given an input image captured by a

known camera in the network, the system exploits camera correlation to find all images of the

object. ViTrack [185] models and then predicts object trajectories in answering ReID queries.

However, some assumptions (e.g., camera correlations) do not necessarily hold at the city

scale; some others (e.g., a known origin camera) restrict use cases and are incompatible with

the norm in ReID research [42], [44]–[48]. Without such strong assumptions, we intend our

base design to be generic, and can nevertheless optimize queries with additional information

as they become available (Section 5.6).

91

Spatiotemporal databases are designed for managing object trajectories, e.g., airplane

movements and human movement, and answering queries on them [186]–[190]. They ingest

structured data, e.g., sequences of time-location tuples as from GPS; they cannot ingest

unstructured video data and recognizes object occurrences as Clique does. The output of

our system can be the source of a spatiotemporal database.

5.2 Clique overview

Video ingestion At ingestion time, Clique optionally pre-processes videos from a small

number of cameras, as permitted by available compute resource. The pre-processing detects

objects of interesting classes (e.g., cars) and extracts their features; it is agnostic to spe-

cific queries. The pre-processing is elastic; Clique will run unfinished pre-processing at the

beginning of a query’s execution.

Clique runs profiling as it ingests videos, a common practice of video systems [15], [56],

[182]. It periodically samples videos from each camera to train several parameters used in

clustering bounding boxes and determining camera sampling order. We will discuss these

parameters in detail in Section 5.3 and 5.4 . The profiling is light, processing 30 seconds of

every 1-hour video and taking less than 10 seconds on a modern GPU.

Executing a query Clique organizes all the queried video footage by cells, each con-

sisting of video clips captured near a location during a fixed period, as shown in Figure 5.2 .

To execute a query, Clique searches in all cells iteratively; it adds cameras to each cell

for processing in an incremental fashion. It starts by sampling from all cells in the query

scope. The initial sampling is brief, as it only processes a small fraction of video footage

in each cell – from selected cameras (“starter cameras”) 1 . From the sampled video of a

cell, Clique detects distinct objects out of unreliable bounding boxes; it does so by clustering

features of bounding boxes by similarity. Clique treats each resultant cluster representing

a distinct object, where the cluster’s centroid is an approximation of the object’s feature

2 . Clique ranks all the cells by their promises, estimated from similarity between their

enclosed objects and the input image 3 . Clique emits the ranked cells as query results to

the user, who reviews the top ones 4 . Clique selects additional cameras for processing and

92

Location A
Cam A1

Cam A2*
Cam A3

A cell

Location B
Cam B1

Cam B2*
Location C

Cam C1*
Cam C2

Clusters of bounding boxes

Input image

Video footage

Cell Promise

Location C, 10:30:00 .95

…

Location B, 10:30:30 .90

Location A, 11:10:30 .80

…

10:30:00 10:30:30 10:31:00

Top k cells

Sample
additional
cameras

3

2

4

5

1

1

1

Figure 5.2. An overview of Clique. * = a starter camera.

uses the results to update the cell list continuously 5 . A query is terminated by the user

manually (e.g., when she is satisfied with results) or when Clique finishes processing videos

in all queried cells.

Limitations Clique inherits the statistical nature of its underpinning ReID algorithms,

notably the neural networks. While Clique empirically shows high confidence in its query

results, e.g., it finds all true cells in more than 70% of queries (Section 5.6), it, however, can-

not provide sound guarantee to do so. Similarly, although Clique’s accuracy often quickly

converges during query execution, there is no guarantee on the convergence rate, e.g., pro-

cessing 50% of videos to reach accuracy of 0.75. The hope is that users review the top k

cells for true results; they entrust Clique on the remaining, unreviewed videos, being com-

fortable with the level of confidence that Clique provides. However, in case they want to be

absolutely certain that no true cells are left out, they would need to inspect all the videos.

93

5.3 Clustering unreliable bounding boxes

A core mechanism of Clique is to recognize distinct objects from bounding boxes and

compare the recognized objects to the input image. It addresses two concerns:

• Working around unreliable features of bounding boxes resulted from the limitations of

ReID algorithms.

• Tolerating low frame rate, which allows Clique to sample more cameras, one of our

principles in Section 1.3 .

Observations on transient disturbance How to match an input image to numerous

unreliable bounding boxes, each encoding impacts of transient disturbance? The disturbance

is time-varying and its impacts can be either graduate or sudden. For example, as a vehicle

travels through a camera’s field of view, its bounding box may resize; its view angle may

change; occasionally, it may be occluded by a light pole; its background may be intruded by

another vehicle.

Key idea: clustering similar bounding boxes Disturbance to bounding box features

is difficult to model and eliminate in general. Yet, if we consider similar bounding boxes

in consecutive video frames, their distorted features due to graduate impacts are likely to

smooth out, and the outlier features due to sudden impacts can be removed from consider-

ation.

To this end, Clique clusters object features based on their similarities. The similarities,

for instance, can be measured by Euclidean distances across 1024-dimension feature vectors.

As a result, each cluster represents a camera’s general impression on a distinct object during

a given time window. The cluster’s centroid is an approximation of the camera’s ideal

observation of the object.

Clique’s use of clustering is novel, in that it overcomes the accuracy limitations on indi-

vidual bounding boxes. Notably, it differs from prior video systems [15] that cluster objects

for efficiency, e.g. to avoid processing similar objects in a cluster.

Figure 5.1 showcases why clustering is useful. Recall that this example shows the difficulty

in comparing an input image to individual bounding boxes (Section 5.1). However, once we

94

cluster the respective bounding boxes of the two vehicles, the centroids (distances as solid

vertical lines) are much more robust indicators of object similarity, suggesting that the

general impression of vehicle A is much closer to the input image.

In practice, we find simple clustering algorithms often suffice. Clique runs k-means clus-

tering [61] within each spatiotemporal cell. By minimizing the sum of intra-cluster variances

across all clusters, k-means thus effectively puts most visually similar objects in the same

cluster. k-means guarantees convergence to local optimum and is known robust to out-

liers [62]. We also tested other popular clustering methods, e.g., hierarchical clustering [63].

We find them less favorable than k-means, e.g., they often attribute bounding boxes of the

same object to separate clusters.

Predicting the number of distinct objects (k) As a prerequisite for applying k-

means in a video clip, Clique must specify k as the number of distinct objects in that video.

An accurate k is crucial to the clustering outcome.

Clique predicts k based on a simple intuition: of a given video scene, the distinct vehicle

number is correlated to the spatial density of bounding boxes. Therefore, Clique only needs

twofold information to predict k: (1) x1, the number of bounding boxes detected in the video

clip; (2) x2, the number of frames that contain non-zero objects. Such information is already

available from object detection, the ReID stage that precedes feature extraction described

in Section 1.3 . From x1 and x2, Clique further derives three variables as different orders of

the box/frame ratio: x3 = (x1/x2)2, x4 = (x1/x2), and x5 = (x2/x1).

We formulate classic kernel ridge regression [191]: k = ax + b. The model takes as an

input x = [x1, x2, x3, x4, x5] which consists of all aforementioned variables; its parameters

are a vector a and a scalar b. We instantiate one model for all the cells, for which we train

a and b offline in one shot on 30-second labeled videos from 25 cameras.

Tolerance of low frame rates k-means clustering is robust to low frame rates, suiting

our design principle stated in Section 1.3 . As a comparison, we have investigated object

tracking, another well-known approach to differentiating objects [192], [193]: first detecting

individual bounding boxes on all frames; then linking bounding boxes across consecutive

frames as distinct objects based on estimation of their motion trajectories. Yet, to estimate

trajectory with good accuracy, object tracking demands a much higher frame rate than

95

0%

20%

40%

60%

80%

100%

10 5 2.5 2 1 0.5

Clustering Tracking

Pe
rc

en
ta

ge
Frame Per Second (FPS)

Figure 5.3. Clustering of bounding boxes tolerates low frame rates. Y-axis:
the percentage of bounding boxes correctly attributed to respective objects.
Object tracking implemented in OpenCV 3.4.4. Videos from CityFlow [37].

clustering. Figure 5.3 shows an experiment: while both k-means and object tracking can

identify distinct objects well with high frame rates, e.g., 10 FPS, as the frame rate drops to

2.5 FPS or lower, object tracking quickly loses accuracy to be barely useful (∼ 0.6 with 0.5

FPS). By contrast, k-means still maintains a high accuracy over 90%. Object tracking also

suffers from other difficulties, e.g., differentiating multiple nearby objects following similar

trajectories [194], [195].

Increasing frame rate for clustering, on the other hand, leads to a diminishing return:

the accuracy improves by less than 3% by increasing from 1 to 10 FPS. This supports our

principle: prioritizing camera coverage over video quality.

5.4 Incremental search in spatiotemporal cells

Clique’s search mechanism addresses two design questions: (1) how likely does a cell

contain the target object; (2) for which cells Clique should process additional cameras. The

former question determines the order of Clique processing undecided cells and the order of

Clique presenting decided cells to users for review. The latter question guides Clique’s search

direction.

5.4.1 Assessing cell promises

Clique estimates how likely a cell contains the target object by promise. The rationale

is that a cell shows high promise as long as any object in this cell is highly similar to the

96

input image. Based on this rationale, we define the single-camera promise, psingle(R,C), as

the promise Clique would perceive in cell C by only processing a video clip from a camera R:

it is reciprocal to the smallest feature distance between the input and any centroid of object

clusters from the video. That is, psingle(R,C) = 1/min(dist(X, o)) where o ∈ objs and X is

the feature of target object. As Clique processes video clips from additional cameras for a

cell C, it estimates the cell’s overall promise, i.e., multi-camera promise, as the highest of

single-camera promises of C.

The promise metric reflects our intuition: a cell appears more promising to Clique (with

a higher multi-camera promise) as long as the cell has one strong champion camera (showing

high single-camera promise) than having multiple weak supporters (medium single-camera

promises).

5.4.2 Prioritizing cells in search

A cell’s promise reflects the single most similar object recognized in a cell. It, however, is

inadequate for Clique to decide whether a cell is worth further exploring, i.e., to process more

cameras for the cell. To do so, Clique needs to track the accumulated evidence discovered

in the cell and the accumulated search efforts spent on the cell so far. Neither is reflected

in the cell’s multi-camera promise. For instance, if Clique only stops processing additional

camera for cells with high enough promise, it may process too many cameras for cells where

no single object is highly similar to the input.

To this end, Clique puts all the cells in three categories:

• The green cells: Clique has collected enough evidences – though not necessarily all –

for them, and predicts them likely to contain the target object. Processing additional

cameras is unlikely to change this assessment.

• The red cells: Clique has collected enough evidences and predicts them unlikely to

contain the target object. Processing additional cameras is unlikely to change this

assessment.

97

• The gray cells: the existing evidences are insufficient. Processing one or a few cameras

will likely turn the cells to red or green. This is how a human analyst would make

up mind on a suspicious cell – by inspecting additional video footage from a different

camera viewpoint.

Search plan All cells will begin in gray. Clique navigates its search from the gray cells

(to resolve the undecided cells), to the green cells (to refine the order in which they will be

presented to the user), and then to the red cells (in the unlikely event of any true cells are

left out). Based on new processing results in a cell, Clique updates its category accordingly

as will be discussed below. Clique will exhaust processing cells in a category before moving

to the next category. In each category, it always processes the cell that has the highest

multi-camera promise.

Categorizing a cell with voting To determine the category for a cell C, Clique runs

a simple voting mechanism to incorporate observations of multiple cameras. The voting

mimics how humans would make decision out of a set of expert opinions. Clique quantizes

all single-camera promises with two thresholds, Phigh and Plow. To C, a camera with promise

p casts a high-confidence vote with a weight of 1 if p > Phigh; it casts a medium-confidence

vote with a weight of 1/k if Phigh < p < Phigh. The resultant vote count is more intuitive

and tunable than, e.g., a sum of numerical single-camera promises. By tuning k, we control

the relative weights of high/medium confidence votes. In the current implementation, we

sets k=2. That is, Clique moves a cell to the green as long as Clique has collected two

medium-confidence votes for it.

The threshold parameters Phigh and Plow hinge on the tradeoff between refining existing

results and exploring for new results. A lower Phigh would eagerly put cells in the green

category, postponing processing additional cameras for them until much later in the search

process. By comparison, a higher Phigh would be more reluctant in turning cells green; Clique

will only pause processing on them if evidence is strong.

Given that Clique is a recall-oriented system to minimize human effort, we set Phigh high

so that Clique continues spending resource on promising cells to refine their ranking. This is

because we expect users to only inspect the top few cells; it is thus vital to include true cells

98

in this small range. Based on the same rationale, we tune Plow to a low value to admit more

cells to the gray category. We set Phigh = 1/dshort, where 99% of the bounding boxes with

feature distance shorter than dshort belong to the same vehicle. We set Plow = 1/dlong, where

99% of the bounding boxes that belong to the same vehicle have feature distances shorter

than dlong. We will evaluate their sensitivity.

5.4.3 The search process

Stage 1: Initial sampling of cells Clique starts a query by sampling from all cells

and processing one camera for each.

Based on videos from the starter cameras, Clique recognizes distinct objects in each cell;

for each recognized object, Clique derives their cluster centroids. Clique may prioritize cells

if heuristics is available on which cells are more likely to contain the target object, e.g.,

from rush hours or busier traffic intersections. As Clique uses a low video frame rate (1

FPS) tolerable to the clustering algorithm (Section 5.3), it cover starter cameras from all

cells with the lowest total cost. As initial sampling is done without information of the input

image, it can be executed at the ingestion, as will be discussed below.

After processing the starter cameras for all cells in the query scope, Clique has the initial

categories of cells with cells in each category ranked by their promises.

Choosing starter cameras The choices matter as they set the initial direction for

search. Ideally, they should be the cameras most likely to have captured the target from a

viewpoint similar to the input image. In practice, one could exploit knowledge on camera

deployment to help pick starter cameras, e.g., by choosing the camera that has the most

similar viewpoint with the input image. Without assuming such a priori, our base design

follows simple heuristics: picking cameras that has the highest density of distinct objects.

The hope is that their chances of having captured the target are higher; if the target is

captured, even from a different viewpoint than the input, the resultant bounding boxes

would show a decent similarity to the input and thus a high promise to Clique. Clique

profiles each camera’s density of objects offline and picks the starter cameras ahead of query.

We evaluate sensitivity of starter camera choices in Section 5.6.5 .

99

Initial sampling at ingestion time Independent of input, the initial stage can be

executed before queries. Pre-processing at ingestion is optional and elastic. The number of

starter cameras Clique can process depends on resources, e.g., the number of GPUs owned

by Clique. Clique processes unprocessed starter cameras when a query starts, and caches

the results for subsequent queries on the same scope of videos (Section 5.5).

We also consider a situation of ample resources available to ingestion. Is it worth pre-

processing multiple starter cameras per geo-group? Our experiments, as will be shown in

Section 5.6 , suggest diminishing returns. This is because a small number of starter cameras

properly chosen can yield sufficiently accurate cell promises and the initial ranking.

Stage 2: Incremental search Based on initial sampling of starter cameras, Clique may

be undecided on putting on a cell in the green or red category: the starter may completely

miss the target vehicle; its viewpoint on the target vehicle may differ significantly from the

input image; or the starter may have just captured a different, but visually similar vehicle.

Specifically, Clique picks the next cell as follows: if the highest ranked gray cell that still

has unprocessed cameras, Clique processes one additional camera for it; if such gray cells are

already exhausted, Clique processes the highest ranked green cell that still has unprocessed

cameras; if no such cells, Clique moves to red cells, in hope of finding target object instances in

those cells missed out previously. After selecting the next cell and processing one additional

camera for it, Clique updates the cell’s category and re-rank the cells. The updated categories

and ranks will be Clique’s basis for picking the next cell.

5.5 Optimizations

5.5.1 Optimizations with extra knowledge

We present the following add-on optimizations. They are based on assumptions that we

intentionally left out from Clique’s base design. We will evaluate them in Section 5.6.7 .

Picking starter cameras based on posture similarity If the quantitative postures

of deployed cameras are known to Clique, e.g., as part of per camera metadata, Clique can

pick starter cameras as ones having the most similar postures to the origin camera. The

rationale is that if the target object is captured by starter cameras, a similar viewpoint will

100

boost the camera’s confidence. To do so, Clique needs to estimate the posture of origin

camera, which is different in each query. One one hand, Clique may rely on human analyst

to annotate the posture (one image per query); on the other hand, it may automate the

estimation with vision operators proposed by active vision research.

Sampling cameras with complementary postures In its base design, when Clique

samples a secondary (or subsequent) camera for a cell, it picks a random one from the same

geo-group. Such decisions can be more informed by camera postures. While still keeping

the choices of starter cameras, Clique picks the next camera as the one that offers the most

different viewpoint compared to the prior camera sampled for, i.e., the N-th camera is always

the camera that has the largest viewpoint difference with the (N-1)-th camera.

Reusing states of previous queries Clique speeds up a query’s execution by reusing

the states from prior queries on the same videos. These queries could be fully or partially

executed. Their states include all distinct objects and their features from the starter cameras,

and some of bounding boxes, distinct objects, and features from the remaining cameras. To

the end, Clique reuses the existing distinct objects as the “free” estimation of the initial cell

ranking; in incremental search, Clique may favor cameras for which partial results already

exist. We will evaluate the former idea experimentally.

5.5.2 Utilizing cheap vision operators

We present the following possible optimizations from cheaper vision operators. We will

evaluate them in Section 5.6.8 .

Using cheap operators during ingestion for early ranking Clique’s pre-processing

at video ingestion is elastic. As compute resources are precious for queries, Clique falls back

to cheaper operators when there aren’t sufficient resource for expensive feature extraction

during video ingestion. With cheaper features, Clique is able to derive a rough rank of spa-

tiotemporal cells given the input image to guide future incremental search in cells. Within

a wide spectrum of resource budgets, there are multiple choices of pre-process, e.g., process-

ing more starter cameras by cheaper operators or processing less starter cameras by more

expensive operators.

101

Using cheaper operators as early filters Cheap vision operators are widely used in

prior systems [5], [8], [15], [91] at early stages to reduce query workloads by only focusing

on relevant video footage/objects. To fully utilize cheaper operators, Clique could first

extract cheap object features, pre-cluster those cheaper features, remove vehicle instances

from those unpromising clusters that have a low p, and only extract expensive features on

the rest of vehicle instances. As some clusters are removed by cheap filters in earlier stage,

Clique adjusts k accordingly to the number of surviving clusters. However, clustering cannot

effectively work on mixed features from different vision operators. For example, features from

RGB histogram and ResNet-152 have different dimensions; even with the same dimension,

e.g., ResNet-50 and ResNet-152, the feature representations from different operators still

have different nature. Thus, cheap operators can act as early stage filters by removing

unpromising object instances to reduce the effort of later expensive operators; they cannot

replace the effort of expensive operators by splitting the workload across different vehicle

bounding boxes.

Directly replacing expensive operators We also study Clique’s behavior by directly

replacing expensive vision operator with cheaper ones.

5.6 Evaluation

We answer the following questions in evaluation:

§5.6.2 Can Clique achieve good accuracy with low delays?

§5.6.3 Are the key designs useful?

§5.6.4 Does Clique outperform prior alternative designs?

§5.6.5 How is Clique sensitive to its parameters and query inputs?

§5.6.6 How beneficial is processing at ingestion time?

§5.6.7 How effective are Clique’s add-on optimizations?

§5.6.8 How does the utilization of cheaper vision operators impact Clique’s performance?

102

Loc A
Cam A1

Cam A2

Cam A3

… …

1 hour

Loc B
Cam B1

Cam B2

… …

…

Epoch i
(original)

Epoch i -1
(duplicated & post-processed)

Epoch i +1
(duplicated & post-processed)

Occurrence of the target vehicle Occurrences of other vehicles

Figure 5.4. Augmenting real-world city videos [37] as our test dataset: du-
plicating the original epoch; erasing random vehicles from each epoch; erasing
the target vehicle from all but the original epoch.

5.6.1 Methodology

Video Dataset An ideal video dataset for benchmarking Clique would: (1) consist of

long videos produced by many cameras; (2) come from real-world deployment and capture

spatiotemporal patterns of vehicles; (3) have vehicle labels as the ground truth for accu-

racy evaluation. Real-world videos are preferred over simulators, e.g., VisualRoad [196]:

while simulators can generate long traffic animations with multiple viewpoints, the resultant

bounding boxes are ultimately based on vehicle motions and camera postures specified by

us; it is unclear how well they reflect ReID in the real world, e.g., rarity of target objects,

diverse cameras, and transient disturbance.

Unaware of such datasets in public, we use CityFlow [37] published by NVIDIA for use

in the AI City Challenge 2019. The dataset consists of 5 scenarios, from which we select the

largest one (scenario 4). The scenario consists of 25 cameras at 7 traffic intersections (hence

7 geo-groups) of a northern American city. The scenario includes 30 minutes of videos,

capturing 17,302 vehicle bounding boxes belonging to 70 distinct vehicles. We downsample

videos to 1 FPS, a low frame rate adopted in prior video systems [8], [15], [18].

We overcome a key shortcoming of the CityFlow dataset: all videos are short, each lasting

around 30 seconds on a camera. We therefore augment the dataset to extend video length. To

do so, we make sure to: (1) preserve the vehicle spatiotemporal patterns, within and across

camera geo-groups; (2) keep the bounding boxes of target vehicles rare. Our augmenting

103

Table 5.1. The augmented video dataset used in evaluation.

of all cameras 25 Total video length 25 hours
of geo-groups 7 # of distinct vehicles 70
of total cells 3000 # of all bounding boxes ~1M
Time duration of a cell 30 secs

procedure is shown in Figure 5.4 . First, we extend each camera’s video by duplicating the

original video clip as many “epochs”. Each epoch embraces videos clips from all cameras;

within one epoch, the original spatiotemporal patterns are preserved. Second, we remove a

random fraction (0–1) of vehicles from each epoch, erasing their bounding boxes from all the

video clips in that epoch. This diversifies the augmented videos over time, preventing them

from becoming repeated loops of the original clips.

We further ensure that target objects are difficult to find throughout all videos. For a

query with an input image of target X, we exclude the origin camera from the query scope; we

erase all X’s bounding boxes from duplicated epochs while only keeping ones in the original

epoch.

The final videos used in evaluation are summarized in Table 5.1 . It span 25 hours of

videos, one hour per camera. Together, the videos consist of 3000 cells, each lasting 30

seconds; the videos include more than 1 million bounding boxes. Given a query, only 243

(0.02% of all) bounding boxes on average belong to the target vehicle, and 1.6 (0.5% of all)

cells on average contain the target.

Query setup We test Clique on 70 queries, each for one distinct vehicle in the video

dataset. A query contains one vehicle image randomly selected from all bounding boxes

of the vehicle in the dataset. We then exclude the origin camera from the query scope.

As described in Section 5.2 , a query carries no metadata, e.g., the timestamp or the origin

camera of the input image, as opposed to prior work [56], [57].

Environment Clique runs on a 12-core Xeon E5-2620 v3 workstation with a NVIDIA

Titan V GPU. Clique runs YOLO [50] to detect vehicles and ResNet-152 [49] to extract

features. We train ResNet-152 on images from 329 different vehicles from 34,760 images

from CityFlow [37] and Cars [197] dataset, with all vehicles used in the evaluation excluded.

104

%
 o

f
Q

u
e

ri
e

s

(c) Ours vs NoSampleCluster(b) Ours vs NoSample(a) Ours vs NoCluster

Both achieve accuracy;
ours has higher delay

Both achieve accuracy;
both have same delay

Ours achieves accuracy;
alternative does not

Both achieve accuracy;
ours has lower delay

0.25

(65/70)

0.50

(64/70)

0.75

(50/70)

0.99

(50/70)

0%

20%

40%

60%

80%

0.25

(65/70)

0.50

(64/70)

0.75

(50/70)

0.99

(50/70)
0.25

(65/70)

0.50

(64/70)

0.75

(50/70)

0.99

(50/70)
Accuracy

Worse Tied Better

Figure 5.5. Query-by-query comparison between Clique and the alternatives,
broken down by per-query comparison outcomes. Numbers on bottom: accu-
racy goals; (X/Y): X = number of queries that Clique reached the accuracy;
Y = total query count.

Accuracy Metric We evaluate query accuracy with recall at k, i.e., the fraction of

all true cells (i.e. containing the target object) that have been included in Clique’s top k

output cells. Recall at k is commonly used for measuring accuracy of recall-oriented retrieval

focusing on rare positives [59], [60]. By setting k as low as 5, the resultant metric (recall

at 5) measures the usefulness of query results when used with low human efforts, i.e. when

a user reviews the top 5 cells returned by Clique. A high value of recall at 5 means that

Clique successfully returns most if not all true cells to the user, since the true cells of most

queries (> 98% in our dataset) are fewer than 5.

Speed metric As Clique keeps refining the rank of cells, we report the times since a

query’s start until the output accuracy reaches a set of accuracy goals: 0.25, 0.50, 0.75, and

0.99.

5.6.2 End-to-end performance

Accuracy Clique achieves high accuracy for most queries. All 70 queries achieve an

average recall at 5 of 0.87. Among them, 64 queries (91%) meet or exceed an accuracy of

0.50; 50 queries (70%) meet or exceed an accuracy of 0.99. Besides, all 70 queries achieve

an average recall at 10 of 0.91. Among them, 69 queries (99%) meet or exceed an accuracy

of 0.50; 58 queries (83%) meet or exceed an accuracy of 0.99. Such accuracy is higher

105

than what can be achieved on individual bounding boxes, as will be shown in Section 5.3 .

This validates our clustering approach: Clique can make robust decisions on cells based on

unreliable bounding boxes.

We manually inspect the six queries where accuracy is low (< 0.5), attributing the root

cause as the limitation of today’s feature extractors. For instance, for a query with input

vehicle 262, it is challenging even for humans to associate the input image with all the 30

true bounding boxes; not surprisingly, their features show long distances to the input.

Delays Clique achieves accuracy goals with moderate delays. In querying 25 hours of

videos on our single-GPU machine, Clique takes 59.5 seconds on average (stddev: 156.2,

90% percentile: 457.5) to reach an accuracy of 0.50, and 108.5 seconds on average (stddev:

194.9, 90% percentile: 488.0) to reach 0.99. Roughly, this speed is 830× of video realtime,

i.e., 4.3 seconds to perform ReID on each hour of videos.

5.6.3 Validation of key designs

Alternatives We compare Clique to the following alternatives.

• NoCluster : Clustering is turned off. The alternative ranks a cell based on the minimum

pairwise distance between the input image and bounding boxes in the cell. With the

rank, it searches in cells by sampling from cameras as Clique does.

• NoSample: Camera sampling is turned off. The alternative randomly picks starter

cameras for each camera group. It clusters bounding boxes and ranks cells accordingly,

just as Clique does. Unlike Clique which adds one camera to a cell and updates the cell

rank, the alternative processes all cameras (in random order) for a cell before updating

the rank.

• NoSampleCluster : Both clustering and sampling are off. The alterative ranks a cell

based on the minimum distance between the input image and bounding boxes; it

processes all cameras for a cell before updating the cell rank.

Figure 5.5 summarizes Clique’s competitiveness against the alternatives. On most queries,

Clique outperforms the alternatives, either reaching higher accuracy or the same accuracy

106

(a) Delay to reach accuracy 0.5
(56/70)

(b) Delay to reach accuracy 0.99
(36/70)

CD
F

Sec Sec

Figure 5.6. The CDF of query delays by Clique and the alternatives. (X/Y):
X = the number of queries on which all the versions reach the accuracy goal;
Y = total query count.

in lower delays. Only on a small fraction of queries Clique shows longer delays; Clique never

fails to reach accuracy goals attainable to the alternatives.

Clustering improves query accuracy Clique’s eventual accuracy, i.e., the accuracy

after processing all videos, reaches 0.87 averaged on all queries, while the alternatives (No-

Cluster and NoSampleCluster) reach 0.74 on average. The per-query accuracy gain is 0.13

on average (stddev: 0.28). Among all queries, Clique’s eventual accuracy is higher on 14 out

of all 70 queries; on the remaining queries Clique’s accuracy ties with the above alternatives

(mostly with short delays, see below) and is never lower. Clustering is vital in two ways: (1)

it is robustness against outlier bounding boxes and strong disturbance, the key to achieve

high accuracy goals such as 0.99; (2) based on clustering, Clique’s initial cell ranking is more

accurate, ensuring speedy search.

Camera sampling reduces query delays We zoom in the queries and accuracy goals

attainable to Clique and all the alternatives. Figure 5.6 shows the delay CDFs. With

accuracy goals of 0.50 and 0.99, Clique’s delays are 2.9× and 1.7× shorter than NoCluster

on average, 4.5× and 3.3× shorter than NoSample on average, and 6.5× and 3.9× shorter

than NoSampleCluster on average. The alternatives suffer from poor starter cameras which

in turn result in poor initial cell ranking.

107

5.6.4 Comparisons to alternative designs

We compare Clique with two prior solutions [56], [198] by borrowing their key ideas and

adapt them to answer spatiotemporal vehicle ReID queries.

• ReXCam-ST: Utilizing spatiotemporal correlations: ReXCam-ST is augmented

by ReXCam’s [56] spatiotemporal correlation model across cameras and answers spa-

tiotemporal queries by ranking the cells accordingly. To do so, ReXCam-ST profiles

the spatial correlation, i.e., the portion of overlapped objects across different cameras,

and the temporal correlation, i.e., the time difference in which an object is likely to

reappear in other cameras. At ingestion time, ReXCam-ST randomly processes one

starter camera from each location and derives a rough rank as Clique performs. At

query time, since ReXCam assumes known knowledge of target vehicle’s location/time

information while Clique does not, ReXCam-ST identifies the current top cell as the

starting point, and visits correlated cameras and time ranges to update the rank of

cells accordingly.

• PROVID-ST: Exploiting spatiotemporal constraints: PROVID-ST borrows the

idea from classic vehicle ReID pipelines [198], [199] that re-ranks the bounding boxes

with spatiotemporal constraints, which verifies the possibility of whether a vehicle is

possible to reappear in another location/time given the knowledge of its appearance in

the current location/time. To compare with this line of work, we exploit the spatiotem-

poral similarity model proposed in PROVID [198] to answer spatiotemporal queries and

re-rank the cells based on the spatiotemporal similarity. As computer vision pipelines

typically assume no priority of processing all bounding boxes, PROVID-ST randomly

processes the video footage from all cameras and time ranges. The calculation of

PROVID’s spatiotemporal similarity is shown in Equation 5.2 : |Di −Dj| stands for the

physical distance between cell i and j; Dmax stands for the farthest distance between

all camera groups; |Ti − Tj| stands for the time difference between cell i and j; Tmax

108

(a) Delay to reach accuracy 0.5
(60/70)

(b) Delay to reach accuracy 0.99
(44/70)

C
D
F

Sec Sec

Figure 5.7. The CDF of query delays by Clique, ReXCam-ST, and PROVID-
ST. (X/Y): X = the number of queries on which all the versions reach the
accuracy goal; Y = total query count.

stands for the entire query time frame. A smaller s refers to a higher spatiotemporal

similarity.

s = |Di − Dj|
Dmax

× |Ti − Tj|
Tmax

(5.2)

To re-rank the spatiotemporal cells, we adjust promise p to be p′ = p/s. As Clique

does not assume any prior spatiotemporal information on the input image, to re-rank

a cell i, the similarity s is derived against an average cell j averaged across all existing

green cells.

Comparison results As shown in Figure 5.7 , Clique outperforms ReXCam-ST and

PROVID-ST. With accuracy goals of 0.50 and 0.99, Clique’s average delays are 38.3% and

32.7% shorter than ReXCam-ST, and 4.0× and 2.8× shorter than PROVID-ST, respectively.

ReXCam-ST sometimes outperforms Clique as it can effectively narrow down the search

scope into a short time range without processing unnecessary cells. Compared with Clique,

PROVID-ST’s average accuracy drops by 13.8%, as the spatiotemporal similarity model

proposed by PROVID [198] sometimes overlooks those cases when vehicles travel a long

distance within a long time range, which typically end up with a low s based on Equation 5.2 .

109

De
la

y
(S

ec
)

(b) Starter cameras having captured
or missed the target object.

(a) Delay in reaching accuracy
goal; averaged over queries.

%
 o

f s
ta

rt
er

 c
am

s

0
50

100
150
200
250

0.50 0.99

Ours Random

0%

50%

100%

Ours Random

Missed Captured

Accuracy
goals (64/70) (50/70)

Figure 5.8. A comparison between Clique’s choices of starter cameras and
random choices. (X/Y) in (a): X = number of queries that Clique reached the
accuracy; Y = total query count.

5.6.5 Sensitivity to parameters and inputs

Choices of starter cameras matter While not affecting a query’s eventual accuracy,

the choice of starter cameras has a high impact on query delays. This is because the choice

affects the initial rank of cells. As shown in Figure 5.8 (a), with starter cameras randomly

picked, the average query delays grow by 1.5× and 3.9× to meet accuracy goals of 0.50 and

0.99, respectively. Figure 5.8 (b) shows the cause: a substantial fraction of random starter

cameras miss the target vehicle they should have captured (i.e., the target captured by other

camera in the same geo-group), missing opportunity in optimizing the initial ranking of cells.

With good choices of starter cameras, as shown in Figure 5.6 , about 80% and 60% of queries

can directly reach 0.50 and 0.99 without sampling additional cameras.

Moderate sensitivity to input images Clique shows resilience to different input

images from our dataset. First, we replace the randomly selected input images with another

random batch selected from the dataset. As a result, Clique sees an average of 0.04 difference

in accuracy (stddev: 0.24); it sees delay differences of 7.7 seconds (11.7%) and 13.4 seconds

(12.5%) for 0.50 and 0.99, respectively. Second, we test “easier” input images by including

the camera that produced the input image in a query’s scope, while still excluding the input

image from the scope. As such, the query scope now has a camera with a viewpoint identical

to the input image. Clique a sees moderate benefit: 0.05 higher accuracy on average (std:

0.15), 23.0% and 12.1% reduction in delays, and 1% less processed videos on average. We

110

D
el

ay
 (s

ec
) i

n
lo

gs
ca

le

1

200

0 1 2 3 4
1

200

0 1 2 3 4
N N

(a) Accuracy goal = 0.50
(56/70)

(b) Accuracy goal = 0.99
(36/70)

Ours NoClusterSample NoSample NoCluster

Figure 5.9. Query delays with N cameras per geo-group pre-processed at
ingestion time. In case N exceeds the total cameras of a geo-group, all the
cameras are pre-processed. (X/Y): X = number of queries on which all versions
reach the accuracy goal; Y = the total query count. Y-axis in logscale.

attribute the results to our dataset characteristics: (1) Camera redundancy: given any input

image, there are likely cameras offering similar viewpoints. (2) Decent image quality. Were

the input images in poorer quality, e.g., with large occlusion or low resolution, they may

confuse the neural networks used in Clique, resulting in lower accuracy overall.

Low sensitivity to thresholds We learn Phigh and Plow via offline profiling using the

original video clips. As the thresholds determine when to pause sampling cameras, their

values may affect query delays but not the eventual accuracy. With methods described in

(Section 5.4), we determine the default values as Phigh=1/dshort=1/0.73 and Plow = 1/dlong =

1/0.91. We test Clique by deviating from such default values, i.e., dshort ±0.1 and dlong ±0.1.

Across all 70 queries, the query delays only vary by less than 10% on average. The new

thresholds increase delays on more than 90% of the queries (average increase: 2.4 seconds);

and reduce delays on the remaining (average reduction: 7.2 seconds). Based on the minor

variation, we conclude that the default parameters are adequate; the benefit from fine tuning

thresholds for individual queries are marginal.

5.6.6 Delay reduction by processing at ingestion

Figure 5.9 shows average query delays with a variety of N, the number of starter cameras

per geo-group pre-processed at ingestion time. With N exceeding 4 (not shown in the Figure),

111

Clique extracts all object features in real time, leaving only feature matching (negligible

overhead) to query time.

The results support lightweight preprocessing at ingestion. (1) Pre-processing starter

cameras reduces query delays substantially. Comparing to no pre-processing at all, pre-

processing one starter camera per group reduces query delays by around 4×. (2) Pre-

processing more than 1 starter camera per geo-group yields diminishing returns, no more

than 25% delay reduction. (3) With the same pre-processing at ingestion time, Clique

delivers much lower delays than the alternatives.

5.6.7 Impact of optimizations

We evaluate the deployment-dependent optimizations mentioned in Section 5.5.1 .

Picking starter cameras based on orientations We estimate deployed camera ori-

entations from the map provided by CityFlow [37] and use human-labeled viewpoints for

input images of queries, minimizing inaccurate viewpoints. Overall, this optimization tends

to benefit queries used to be slow, as shown in Figure 5.10 . On the queries used to have

≥70% percentile delays, Clique sees on average 5.8× and 2× lower delays in reaching accu-

racy of 0.50 and 0.99, respectively. For the remaining 70% queries, the delay reduction is

negligible as most queries converge based on starter cameras. The reason is that a signifi-

cant better viewpoints from manually picked starter cameras have little impact on current

well-performed queries, but on those queries that used to suffers from bad indexes. Besides,

by replacing starter cameras that used to have a decent viewpoint, the initial rank of spa-

tiotemporal cells typically does not have sharp changes, so the query delay will not differ

(those <70% percentile).

Sampling cameras by complementary orientations With camera orientations of

the dataset, Clique sees 4.6% and 2.0% reduction in delays to reach accuracy of 0.50 and

0.99, respectively. We identify two reasons for the minor benefit: co-located cameras are

providing complementary viewpoints, and picking any of them is likely to help the search to

similar degrees; the cameras with orientations opposed to the starter cameras can be inferior

112

Delay (sec)
Accuracy goal = 0.50 (64/70)

Delay (sec)
Accuracy goal = 0.99 (50/70)

C
D

F

Our base design

Our base design w/ cam orientation

Our base design

Our base design w/ cam orientation

Figure 5.10. Delay CDFs of Clique augmented to exploit camera orientation
knowledge. (X/Y): X = number of queries that Clique reached the accuracy;
Y = total query count.

choices, e.g. capturing much fewer bounding boxes (and hence less likely the target object)

than average cameras.

Reusing states of previous queries Clique can effectively speed up a new query

by reusing intermediate state of previous queries. To show this, we test ten query pairs

<Qold, Qnew> on two accuracy goals of 0.50 and 0.99. The input images are randomly

picked, and are different within each pair. Within each pair: we run Qold, terminates it

once reaching the accuracy goal, and run Qold with the query state left from Qold. Between

pairs, we cleanse any query state. With Qold reaching accuracy of 0.50 (i.e., a “brief” query),

the delays for Qnew to reach accuracy of 0.50 and 0.99 are reduced by 86.2% and 76.8%,

respectively. With Qold reaching accuracy of 0.99 (i.e., a “thorough” query), the delays for

Qnew are reduced by 86.2% and 78.1%, respectively.

5.6.8 Impact of cheaper vision operators

We test the designs that utilize cheaper vision operators mentioned in Section 5.5.2 with

two extreme yet representative cheap vision operators, i.e., RGB histogram (a color filter)

and ResNet-50 (an effective yet less reliable NN than ResNet-152). For Clique, we only

consider global features rather than local features [184], as local features are typically used

to perform pairwise matching between two images rather than clustering, and it is hard to

concatenate multiple local features capturing diverse object details to a single global feature.

113

Resource budget (GPU time (s)) at video ingestion
Av
g
de
la
y
(s
)t
o
re
ac
h
0.
99 2/7 4/7

7/7
11/72/7 3/7

4/7
5/7

6/7

7/7 8/7 9/7

1/7

2/7
3/7 4/7

5/7
6/7

7/7

Figure 5.11. The average delay to reach 0.99 under different pre-processing
budgets during ingestion. (X/Y): X = starter cameras covered; Y = total
number of locations. X > Y means covering more than one starter cameras
per location.

Using cheap operators during ingestion for early ranking Utilizing cheaper op-

erators during video ingestion for early ranking is not substantially effective. As shown in

Figure 5.11 , the X-axis represents the spectrum of GPU time budget for pre-process: covering

only one starter camera in all locations to one starter camera in each location (by YOLOv3

and ResNet-152). Under the same amount of resource budget, when Clique can afford cov-

ering substantial amount of locations by cheaper vision operators like RGB histogram or

ResNet-50, Clique sees monotonic shorter delays. After covering all locations, adding more

starter cameras in each location shows diminishing return, as shown by the green dashed line

(RGB histogram) and the blue dotted line (ResNet-50). However, cheaper vision operators

never beats ResNet-152 in the wide spectrum of ingestion budgets, and the results imply

that investing resources in more expensive vision operators is always more rewarding.

Using cheap operators as early filters Cheap early filters results in lower accuracy

and longer delays. By pre-clustering rough color histograms by RGB histogram, Clique

only runs ResNet-152 on surviving vehicle instances, and the query accuracy drops 21%,

while in the meantime incurs 3.4× and 2.7× longer delay to reach an accuracy of 0.50 and

0.99. Though significantly faster, color histograms are not reliable and many true vehicle

instances are falsely removed after the pre-clustering. By pre-clustering more reliable features

extracted by ResNet-50, the query accuracy drops 12%, while in the meantime incurs 2.7×

and 2.5× longer delays to reach an accuracy of 0.50 and 0.99. Though deriving more reliable

114

features, ResNet-50 incurs non-negligible query delay as it is not significantly faster than

ResNet-152.

Directly replacing expensive operators Cheap operators are less effective in ReID

tasks. By replacing ResNet-152 with rough color filters like RGB histogram, Clique is unable

to conduct effective vehicle re-identification, and the accuracy drops to nearly 0. By replacing

ResNet-152 with another effective yet a little bit cheaper operator, ResNet-50, the accuracy

drops 3.2%, and the delays to reach accuracy of 0.99 increased by 10%, as the the features

are less reliable and thus Clique’s dynamic rank of cells are less accurate to guide incremental

searches.

5.7 Related work

We discuss related work not covered previously.

Optimizing video analytics Besides ReXCam [56] and ViTrack [185] discussed earlier,

to reduce multi-camera inference cost, Caesar [200] encodes object activity correlation across

cameras; Optasia [201] shares common work modules and parallelizes query plans; Jiang et

al. [202] initiate an abstraction of camera clusters to enable resource/data sharing among

cameras. There has been many works proposed to optimize video analytics with operator

cascades [5], [8], [15], [91], and format tuning to trade accuracy for cost-efficiency [6], [9], [18],

[92], [93]. Focus [15] saves cost by pre-processing videos with cheap NNs at ingestion. No-

tably, it clusters object features to avoid redundant comparisons with target objects. Clique

uses clustering in a different way: to smooth out transient disturbances for higher ReID ac-

curacy. Extensive works are proposed to exploit collaborations between cloud and edge [12],

[35], [167], [203], [204]; cloud/edge and mobile devices [14], [205]; cloud and cameras [19];

edge and cameras [11], [13]; and edge and drones [168]. Elf [182] imposes energy planning

for counting queries on resource-frugal cameras. None above was designed for ReID queries

over city-scale cameras.

Information Retrieval Recall-oriented retrievals, e.g., legal or patent search, is a group

of tasks to find all relevant documents and a bad ranking typically incurs significant search

efforts from domain experts [59], [60], [206]. As objects are rare in ReID tasks and typically

115

requires domain knowledge in crime investigation/smart traffic planning, we position Clique

to solve recall-oriented tasks, i.e., requiring all true cell to be retrieved, and adopt the metric

of recall for evaluation.

5.8 Conclusions

We built Clique, a practical object ReID engine that answers spatiotemporal queries.

Clique is built upon two unconventional techniques. First, Clique approximates distinct

objects by clustering unreliable object features emitted by ReID algorithms before matching

with the input image. Second, to search in colossal video data, Clique samples cameras

to maximize the spatiotemporal coverage and incrementally adds additional cameras on

demand. On 25 hours of city videos spanning 25 cameras, Clique on average reached an

accuracy of 0.87 and runs at 830× video real time in achieving high accuracy.

116

6. CONCLUSIONS AND FUTURE DIRECTIONS

6.1 Conclusions

To support cost-efficient video analytics given colossal video footage generated every

day, three software systems are proposed in this thesis. Fist, we propose VStore that auto-

matically configures video format knobs for retrospective video analytics. VStore explores

backward derivation of configuration: it passes the certain video formats desired by analytics

backward to retrieval, to storage, and to ingestion. It runs queries at up to 362× of video

realtime. Second, we propose DIVA, an analytics engine for querying cold videos on remote,

low-cost cameras. At capture time, DIVA builds sparse but accurate landmarks; at query

time, it refines query results by continuously updating on-camera vision operators. DIVA

effectively answers three types of queries at more than 100× video realtime under typical

wireless network and camera hardware. Third, we propose Clique, a practical object ReID

engine that answers spatiotemporal object re-identification queries from city-scale cameras.

Before matching with the input image, Clique approximates distinct objects by clustering

fuzzy object features emitted by ReID algorithms. To search in colossal video data, Clique

samples cameras from different locations to maximize the spatiotemporal coverage and incre-

mentally searches in additional cameras on demand. Clique on average reached an accuracy

of 0.87 and runs at 830× video real time on 25 hours of city videos spanning 25 cameras.

6.2 Future directions

Supporting more diverse video analytics tasks VStore is one step away from ex-

tending itself to support more diverse video analytics tasks. Possible extension could include:

(1) supporting more model cascades like vehicle ReID pipelines [46], [181] that typically in-

volve vehicle metadata (e.g., color, make, etc.) classifications before general feature compar-

isons; (2) supporting object detection/recognition in volumetric videos that detects/classifies

objects from 3D video space, which may raise new challenges by adding new types of knobs

(e.g., depth information) to the existing fidelity space.

117

Reducing the scale of camera deployments Deploying multiple cameras per inter-

section consumes huge human labor, requires high maintenance cost, and raises high privacy

concerns. A direction worth exploring is to find a solution that reduces the number of

cameras while in the meantime does not sacrifice any query accuracy. Pan-tilt-zoom (PTZ)

cameras might be a perfect match. State-of-the-art PTZ cameras have a rotation speed of up

to 360◦ per second, which can effectively capture vehicles from different view angles without

losing track of vehicles. In this case, rather than exploring multiple cameras per location

incrementally to find vehicle instances with a similar viewpoint with the input image, Clique

could directly compare vehicle instances captured from various view angles from a single

camera.

118

REFERENCES

[1] IHS, Top video surveillance trends for 2018, 2018.

[2] Seagate, Video surveillance trends report, https ://www.seagate .com/files/www-
content/solutions-content/surveillance-security-video-analytics/en-us/docs/video-
surveillance-trends-report.pdf , 2017.

[3] International trends in video surveillance, https://cms.uitp.org/wp/wp-content/
uploads/2020/06/18-07Statistics-Brief-Videosurveillance-web.pdf , 2018.

[4] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553,
pp. 436–444, 2015. doi: 10.1038/nature14539 . [Online]. Available: https://doi.org/
10.1038/nature14539 .

[5] H. Shen, S. Han, M. Philipose, and A. Krishnamurthy, “Fast video classification via
adaptive cascading of deep models,” in The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Jul. 2017.

[6] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica, “Chameleon: Scalable
adaptation of video analytics,” in Proceedings of the 2018 Conference of the ACM Spe-
cial Interest Group on Data Communication, ser. SIGCOMM ’18, Budapest, Hungary:
ACM, 2018, pp. 253–266, isbn: 978-1-4503-5567-4. doi: 10.1145/3230543.3230574 .
[Online]. Available: http://doi.acm.org/10.1145/3230543.3230574 .

[7] D. Kang, P. Bailis, and M. Zaharia, “Blazeit: Optimizing declarative aggregation and
limit queries for neural network-based video analytics,” Proc. VLDB Endow., vol. 13,
no. 4, pp. 533–546, Dec. 2019, issn: 2150-8097. doi: 10 . 14778/3372716 .3372725 .
[Online]. Available: https://doi.org/10.14778/3372716.3372725 .

[8] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia, “Noscope: Optimizing
neural network queries over video at scale,” Proc. VLDB Endow., vol. 10, no. 11,
pp. 1586–1597, Aug. 2017, issn: 2150-8097. doi: 10.14778/3137628.3137664 . [Online].
Available: https://doi.org/10.14778/3137628.3137664 .

[9] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and M. J. Freed-
man, “Live video analytics at scale with approximation and delay-tolerance,” in 14th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 17),
Boston, MA: USENIX Association, 2017, pp. 377–392, isbn: 978-1-931971-37-9. [On-
line]. Available: https : //www.usenix . org/conference/nsdi17/ technical - sessions/
presentation/zhang .

[10] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv preprint
arXiv:1804.02767, 2018.

119

https://www.seagate.com/files/www-content/solutions-content/surveillance-security-video-analytics/en-us/docs/video-surveillance-trends-report.pdf
https://www.seagate.com/files/www-content/solutions-content/surveillance-security-video-analytics/en-us/docs/video-surveillance-trends-report.pdf
https://www.seagate.com/files/www-content/solutions-content/surveillance-security-video-analytics/en-us/docs/video-surveillance-trends-report.pdf
https://cms.uitp.org/wp/wp-content/uploads/2020/06/18-07Statistics-Brief-Videosurveillance-web.pdf
https://cms.uitp.org/wp/wp-content/uploads/2020/06/18-07Statistics-Brief-Videosurveillance-web.pdf
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1145/3230543.3230574
http://doi.acm.org/10.1145/3230543.3230574
https://doi.org/10.14778/3372716.3372725
https://doi.org/10.14778/3372716.3372725
https://doi.org/10.14778/3137628.3137664
https://doi.org/10.14778/3137628.3137664
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/zhang
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/zhang

[11] Y. Li, A. Padmanabhan, P. Zhao, Y. Wang, G. H. Xu, and R. Netravali, “Reducto:
On-camera filtering for resource-efficient real-time video analytics,” in Proceedings of
the Annual Conference of the ACM Special Interest Group on Data Communication
on the Applications, Technologies, Architectures, and Protocols for Computer Com-
munication, ser. SIGCOMM ’20, Virtual Event, USA: Association for Computing
Machinery, 2020, pp. 359–376, isbn: 9781450379557. doi: 10.1145/3387514.3405874 .
[Online]. Available: https://doi.org/10.1145/3387514.3405874 .

[12] C. Canel, T. Kim, G. Zhou, C. Li, H. Lim, D. G. Andersen, M. Kaminsky, and S. R.
Dulloor, “Scaling video analytics on constrained edge nodes,” in Proceedings of the
2nd SysML Conference, Palo Alto, California, USA, 2019.

[13] T. Zhang, A. Chowdhery, P. (Bahl, K. Jamieson, and S. Banerjee, “The design and
implementation of a wireless video surveillance system,” in Proceedings of the 21st An-
nual International Conference on Mobile Computing and Networking, ser. MobiCom
’15, Paris, France: ACM, 2015, pp. 426–438, isbn: 978-1-4503-3619-2. doi: 10.1145/
2789168.2790123 . [Online]. Available: http://doi.acm.org/10.1145/2789168.2790123 .

[14] T. Y.-H. Chen, L. Ravindranath, S. Deng, P. Bahl, and H. Balakrishnan, “Glimpse:
Continuous, real-time object recognition on mobile devices,” in Proceedings of the
13th ACM Conference on Embedded Networked Sensor Systems, ser. SenSys ’15,
Seoul, South Korea: Association for Computing Machinery, 2015, pp. 155–168, isbn:
9781450336314. doi: 10.1145/2809695.2809711 . [Online]. Available: https://doi.org/
10.1145/2809695.2809711 .

[15] K. Hsieh, G. Ananthanarayanan, P. Bodik, S. Venkataraman, P. Bahl, M. Philipose,
P. B. Gibbons, and O. Mutlu, “Focus: Querying large video datasets with low latency
and low cost,” in 13th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 18), Carlsbad, CA: USENIX Association, 2018. [Online]. Available:
https://www.usenix.org/conference/osdi18/presentation/hsieh .

[16] Z. Feng, J. Wang, J. Harkes, P. Pillai, and M. Satyanarayanan, “Eva: An efficient
system for exploratory video analysis,” SysML, 2018.

[17] IHS, Top video surveillance trends for 2016, 2016.

[18] T. Xu, L. M. Botelho, and F. X. Lin, “Vstore: A data store for analytics on large
videos,” in Proceedings of the Fourteenth EuroSys Conference 2019, ser. EuroSys ’19,
Dresden, Germany: ACM, 2019, 16:1–16:17, isbn: 978-1-4503-6281-8. doi: 10.1145/
3302424.3303971 . [Online]. Available: http://doi.acm.org/10.1145/3302424.3303971 .

[19] M. Xu, T. Xu, Y. Liu, X. Liu, G. Huang, and F. X. Lin, “Supporting video queries
on zero-streaming cameras,” CoRR, vol. abs/1904.12342, 2019. arXiv: 1904.12342 .
[Online]. Available: http://arxiv.org/abs/1904.12342 .

120

https://doi.org/10.1145/3387514.3405874
https://doi.org/10.1145/3387514.3405874
https://doi.org/10.1145/2789168.2790123
https://doi.org/10.1145/2789168.2790123
http://doi.acm.org/10.1145/2789168.2790123
https://doi.org/10.1145/2809695.2809711
https://doi.org/10.1145/2809695.2809711
https://doi.org/10.1145/2809695.2809711
https://www.usenix.org/conference/osdi18/presentation/hsieh
https://doi.org/10.1145/3302424.3303971
https://doi.org/10.1145/3302424.3303971
http://doi.acm.org/10.1145/3302424.3303971
https://arxiv.org/abs/1904.12342
http://arxiv.org/abs/1904.12342

[20] T. Xu, K. Shen, Y. Fu, H. Shi, and F. X. Lin, Clique: Spatiotemporal object re-
identification at the city scale, 2020. arXiv: 2012.09329 [cs.DB] .

[21] S. Kang, S. Hong, and Y. Won, “Storage technique for real-time streaming of layered
video,” Multimedia Systems, vol. 15, no. 2, pp. 63–81, Apr. 2009, issn: 1432-1882. doi:
10.1007/s00530-008-0147-8 . [Online]. Available: https://doi.org/10.1007/s00530-008-
0147-8 .

[22] Wyze camera v2 1080p, https://www.wyze.com/product/wyze-cam-v2/ , 2019.

[23] Yi home camera, https ://www.amazon .com/YI-Security -Surveillance -Monitor -
Android/dp/B01CW4AR9K , 2019.

[24] Zosi camera, https://www.amazon.com/ZOSI-1280TVL-Security-Weatherproof-
Surveillance/dp/B01DF6LJZK , 2019.

[25] The state of wifi vs mobile network experience as 5g arrives, https://www.opensignal.
com/sites/opensignal-com/files/data/reports/global/data-2018-11/state_of_wifi_
vs_mobile_opensignal_201811.pdf , 2018.

[26] B. Han, F. Qian, L. Ji, and V. Gopalakrishnan, “Mp-dash: Adaptive video stream-
ing over preference-aware multipath,” in Proceedings of the 12th International on
Conference on Emerging Networking EXperiments and Technologies, ser. CoNEXT
’16, Irvine, California, USA: ACM, 2016, pp. 129–143, isbn: 978-1-4503-4292-6. doi:
10.1145/2999572.2999606 . [Online]. Available: http://doi.acm.org/10.1145/2999572.
2999606 .

[27] Comcast business internet data plan, https://www.business.org/services/internet/
comcast-business-internet-review/ , 2019.

[28] Tufts: Video security university policy, https://publicsafety.tufts.edu/policies/video-
security/ , 2014.

[29] Video surveillance laws: Video retention requirements by state, https://www.verkada.
com/blog/surveillance-laws-video-retention-requirements/ , 2018.

[30] New case law on retention periods for video surveillance at the workplace, https :
//www.twobirds.com/en/news/articles/2018/germany/new-case-law-on-retention-
periods-for-video-surveillance-at-the-workplace , 2018.

[31] The european data protection supervisor video-surveillance guidelines, https://edps.
europa.eu/sites/edp/files/publication/10-03-17_video-surveillance_guidelines_en.
pdf , 2010.

121

https://arxiv.org/abs/2012.09329
https://doi.org/10.1007/s00530-008-0147-8
https://doi.org/10.1007/s00530-008-0147-8
https://doi.org/10.1007/s00530-008-0147-8
https://www.wyze.com/product/wyze-cam-v2/
https://www.amazon.com/YI-Security-Surveillance-Monitor-Android/dp/B01CW4AR9K
https://www.amazon.com/YI-Security-Surveillance-Monitor-Android/dp/B01CW4AR9K
https://www.amazon.com/ZOSI-1280TVL-Security-Weatherproof-Surveillance/dp/B01DF6LJZK
https://www.amazon.com/ZOSI-1280TVL-Security-Weatherproof-Surveillance/dp/B01DF6LJZK
https://www.opensignal.com/sites/opensignal-com/files/data/reports/global/data-2018-11/state_of_wifi_vs_mobile_opensignal_201811.pdf
https://www.opensignal.com/sites/opensignal-com/files/data/reports/global/data-2018-11/state_of_wifi_vs_mobile_opensignal_201811.pdf
https://www.opensignal.com/sites/opensignal-com/files/data/reports/global/data-2018-11/state_of_wifi_vs_mobile_opensignal_201811.pdf
https://doi.org/10.1145/2999572.2999606
http://doi.acm.org/10.1145/2999572.2999606
http://doi.acm.org/10.1145/2999572.2999606
https://www.business.org/services/internet/comcast-business-internet-review/
https://www.business.org/services/internet/comcast-business-internet-review/
https://publicsafety.tufts.edu/policies/video-security/
https://publicsafety.tufts.edu/policies/video-security/
https://www.verkada.com/blog/surveillance-laws-video-retention-requirements/
https://www.verkada.com/blog/surveillance-laws-video-retention-requirements/
https://www.twobirds.com/en/news/articles/2018/germany/new-case-law-on-retention-periods-for-video-surveillance-at-the-workplace
https://www.twobirds.com/en/news/articles/2018/germany/new-case-law-on-retention-periods-for-video-surveillance-at-the-workplace
https://www.twobirds.com/en/news/articles/2018/germany/new-case-law-on-retention-periods-for-video-surveillance-at-the-workplace
https://edps.europa.eu/sites/edp/files/publication/10-03-17_video-surveillance_guidelines_en.pdf
https://edps.europa.eu/sites/edp/files/publication/10-03-17_video-surveillance_guidelines_en.pdf
https://edps.europa.eu/sites/edp/files/publication/10-03-17_video-surveillance_guidelines_en.pdf

[32] J. M. Hellerstein, P. J. Haas, and H. J. Wang, “Online aggregation,” in Proceedings of
the 1997 ACM SIGMOD International Conference on Management of Data, ser. SIG-
MOD ’97, Tucson, Arizona, USA: ACM, 1997, pp. 171–182, isbn: 0-89791-911-4. doi:
10.1145/253260.253291 . [Online]. Available: http://doi.acm.org/10.1145/253260.
253291 .

[33] Z. Feng, S. George, J. Harkes, P. Pillai, R. Klatzky, and M. Satyanarayanan, “Eu-
reka: Edge-based discovery of training data for machine learning,” IEEE Internet
Computing, vol. PP, pp. 1–1, Jan. 2019. doi: 10.1109/MIC.2019.2892941 .

[34] A. Augustin, J. Yi, T. Clausen, and W. Townsley, “A study of lora: Long range &
low power networks for the internet of things,” Sensors, vol. 16, no. 9, p. 1466, 2016.

[35] S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and Q. Li, “Lavea: Latency-aware video
analytics on edge computing platform,” in 2017 IEEE 37th International Conference
on Distributed Computing Systems (ICDCS), Jun. 2017, pp. 2573–2574. doi: 10.1109/
ICDCS.2017.182 .

[36] Y. Wang, W. Wang, J. Zhang, J. Jiang, and K. Chen, “Bridging the edge-cloud barrier
for real-time advanced vision analytics,” in 11th USENIX Workshop on Hot Topics
in Cloud Computing (HotCloud 19), 2019.

[37] Z. Tang, M. Naphade, M.-Y. Liu, X. Yang, S. Birchfield, S. Wang, R. Kumar, D.
Anastasiu, and J.-N. Hwang, “Cityflow: A city-scale benchmark for multi-target multi-
camera vehicle tracking and re-identification,” in The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Jun. 2019.

[38] Microsoft, Video analytics towards vision zero, 2019.

[39] X. Li and Z. Zhou, “Object re-identification based on deep learning,” in. Jun. 2019,
isbn: 978-1-78985-157-1. doi: 10.5772/intechopen.86564 .

[40] M. Naphade, R. Chellappa, D. Anastasiu, A. Sharma, M.-C. Chang, X. Yang, S.
Wang, Z. Tang, and L. Zheng, Ai city challenge, 2020. [Online]. Available: https :
//www.aicitychallenge.org/ .

[41] L. Zheng, Y. Yang, and A. G. Hauptmann, “Person re-identification: Past, present
and future,” CoRR, vol. abs/1610.02984, 2016. arXiv: 1610.02984 . [Online]. Available:
http://arxiv.org/abs/1610.02984 .

[42] Y. Sun, L. Zheng, Y. Yang, Q. Tian, and S. Wang, “Beyond part models: Person re-
trieval with refined part pooling (and a strong convolutional baseline),” in Proceedings
of the European Conference on Computer Vision (ECCV), Sep. 2018.

122

https://doi.org/10.1145/253260.253291
http://doi.acm.org/10.1145/253260.253291
http://doi.acm.org/10.1145/253260.253291
https://doi.org/10.1109/MIC.2019.2892941
https://doi.org/10.1109/ICDCS.2017.182
https://doi.org/10.1109/ICDCS.2017.182
https://doi.org/10.5772/intechopen.86564
https://www.aicitychallenge.org/
https://www.aicitychallenge.org/
https://arxiv.org/abs/1610.02984
http://arxiv.org/abs/1610.02984

[43] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian, “Scalable person re-
identification: A benchmark,” in 2015 IEEE International Conference on Computer
Vision (ICCV), 2015, pp. 1116–1124. doi: 10.1109/ICCV.2015.133 .

[44] Z. Zhong, L. Zheng, D. Cao, and S. Li, “Re-ranking person re-identification with
k-reciprocal encoding,” in 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017, pp. 3652–3661. doi: 10.1109/CVPR.2017.389 .

[45] Y. Fu, Y. Wei, Y. Zhou, H. Shi, G. Huang, X. Wang, Z. Yao, and T. Huang, “Hori-
zontal pyramid matching for person re-identification,” Proceedings of the AAAI Con-
ference on Artificial Intelligence, vol. 33, no. 01, pp. 8295–8302, Jul. 2019. doi:
10 . 1609/aaai . v33i01 . 33018295 . [Online]. Available: https : / /ojs . aaai . org/ index .
php/AAAI/article/view/4842 .

[46] X. Tan, Z. Wang, M. Jiang, X. Yang, J. Wang, Y. Gao, X. Su, X. Ye, Y. Yuan, D. He,
S. Wen, and E. Ding, “Multi-camera vehicle tracking and re-identification based on
visual and spatial-temporal features,” in The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) Workshops, Jun. 2019.

[47] T.-W. Huang, J. Cai, H. Yang, H.-M. Hsu, and J.-N. Hwang, “Multi-view vehicle
re-identification using temporal attention model and metadata re-ranking,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, Jun. 2019.

[48] Y. Fu, Y. Wei, G. Wang, Y. Zhou, H. Shi, and T. S. Huang, “Self-similarity grouping:
A simple unsupervised cross domain adaptation approach for person re-identification,”
in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV),
Oct. 2019.

[49] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2016, pp. 770–778.

[50] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-
time object detection,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Jun. 2016, pp. 779–788. doi: 10.1109/CVPR.2016.91 .

[51] W. MathWorld, L2 norm, https://mathworld.wolfram.com/L2-Norm.html, 2020.

[52] K. Lv, H. Du, Y. Hou, W. Deng, H. Sheng, J. Jiao, and L. Zheng, “Vehicle re-
identification with location and time stamps,” in Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR) Workshops, Jun. 2019.

123

https://doi.org/10.1109/ICCV.2015.133
https://doi.org/10.1109/CVPR.2017.389
https://doi.org/10.1609/aaai.v33i01.33018295
https://ojs.aaai.org/index.php/AAAI/article/view/4842
https://ojs.aaai.org/index.php/AAAI/article/view/4842
https://doi.org/10.1109/CVPR.2016.91

[53] C. for the New Urbanism, Street networks 101, https://www.cnu.org/our-projects/street-
networks/street-networks-101, 2020.

[54] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” in 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 6517–6525.
doi: 10.1109/CVPR.2017.690 .

[55] J. Redmon and A. Farhadi, Yolo: Real-time object detection, 2016. [Online]. Available:
https://pjreddie.com/darknet/yolov2/ .

[56] S. Jain, J. Jiang, Y. Shu, G. Ananthanarayanan, and J. Gonzalez, “Rexcam: Resource-
efficient, cross-camera video analytics at enterprise scale,” CoRR, vol. abs/1811.01268,
2018. arXiv: 1811.01268 . [Online]. Available: http://arxiv.org/abs/1811.01268 .

[57] S. Jain, G. Ananthanarayanan, J. Jiang, Y. Shu, and J. E. Gonzalez, “Scaling video
analytics systems to large camera deployments,” arXiv preprint arXiv:1809.02318,
2018.

[58] B. Audeh, P. Beaune, and M. Beigbeder, “Recall-oriented evaluation for information
retrieval systems,” in Multidisciplinary Information Retrieval, M. Lupu, E. Kanoulas,
and F. Loizides, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 29–32,
isbn: 978-3-642-41057-4.

[59] A. Arampatzis, J. Kamps, and S. Robertson, “Where to stop reading a ranked list?
threshold optimization using truncated score distributions,” in Proceedings of the 32nd
International ACM SIGIR Conference on Research and Development in Information
Retrieval, ser. SIGIR ’09, Boston, MA, USA: Association for Computing Machinery,
2009, pp. 524–531, isbn: 9781605584836. doi: 10.1145/1571941.1572031 . [Online].
Available: https://doi.org/10.1145/1571941.1572031 .

[60] D. Bahri, Y. Tay, C. Zheng, D. Metzler, and A. Tomkins, “Choppy: Cut transformer
for ranked list truncation,” in Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval, ser. SIGIR ’20,
Virtual Event, China: Association for Computing Machinery, 2020, pp. 1513–1516,
isbn: 9781450380164. doi: 10 . 1145 / 3397271 . 3401188 . [Online]. Available: https :
//doi.org/10.1145/3397271.3401188 .

[61] X. Jin and J. Han, “K-means clustering,” in Encyclopedia of Machine Learning, C.
Sammut and G. I. Webb, Eds. Boston, MA: Springer US, 2010, pp. 563–564, isbn:
978-0-387-30164-8. doi: 10.1007/978-0-387-30164-8_425 . [Online]. Available: https:
//doi.org/10.1007/978-0-387-30164-8_425 .

124

https://doi.org/10.1109/CVPR.2017.690
https://pjreddie.com/darknet/yolov2/
https://arxiv.org/abs/1811.01268
http://arxiv.org/abs/1811.01268
https://doi.org/10.1145/1571941.1572031
https://doi.org/10.1145/1571941.1572031
https://doi.org/10.1145/3397271.3401188
https://doi.org/10.1145/3397271.3401188
https://doi.org/10.1145/3397271.3401188
https://doi.org/10.1007/978-0-387-30164-8_425
https://doi.org/10.1007/978-0-387-30164-8_425
https://doi.org/10.1007/978-0-387-30164-8_425

[62] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and
A. Y. Wu, “An efficient k-means clustering algorithm: Analysis and implementation,”
vol. 24, no. 7, 2002, issn: 0162-8828. doi: 10.1109/TPAMI.2002.1017616 . [Online].
Available: https://doi.org/10.1109/TPAMI.2002.1017616 .

[63] S. C. Johnson, “Hierarchical clustering schemes,” Psychometrika, vol. 32, pp. 241–
254, 1967.

[64] OpenALPR Technology, Inc., Openalpr, https : //github . com/openalpr/openalpr ,
2018.

[65] N. Agrawal and A. Vulimiri, “Low-latency analytics on colossal data streams with
summarystore,” in Proceedings of the 26th Symposium on Operating Systems Prin-
ciples, ser. SOSP ’17, Shanghai, China: ACM, 2017, pp. 647–664, isbn: 978-1-4503-
5085-3. doi: 10.1145/3132747.3132758 . [Online]. Available: http://doi.acm.org/10.
1145/3132747.3132758 .

[66] . Oracle, Dramatically reduce the cost and complexity of video surveillance storage,
https://www.oracle.com/assets/wp-video-surveillance-storage-2288409.pdf , 2015.

[67] S. Modiri Assari, H. Idrees, and M. Shah, “Human re-identification in crowd videos
using personal, social and environmental constraints,” in Computer Vision – ECCV
2016, B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds., Cham: Springer International
Publishing, 2016, pp. 119–136, isbn: 978-3-319-46475-6.

[68] Y. Chen, X. Zhu, W. Zheng, and J. Lai, “Person re-identification by camera cor-
relation aware feature augmentation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 40, no. 2, pp. 392–408, Feb. 2018, issn: 0162-8828. doi:
10.1109/TPAMI.2017.2666805 .

[69] Y. Wu, J. Lim, and M.-H. Yang, “Online object tracking: A benchmark,” in Pro-
ceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition,
ser. CVPR ’13, Washington, DC, USA: IEEE Computer Society, 2013, pp. 2411–
2418, isbn: 978-0-7695-4989-7. doi: 10.1109/CVPR.2013.312 . [Online]. Available:
http://dx.doi.org/10.1109/CVPR.2013.312 .

[70] R. Girshick, “Fast r-cnn,” in Proceedings of the 2015 IEEE International Conference
on Computer Vision (ICCV), ser. ICCV ’15, Washington, DC, USA: IEEE Computer
Society, 2015, pp. 1440–1448, isbn: 978-1-4673-8391-2. doi: 10.1109/ICCV.2015.169 .
[Online]. Available: http://dx.doi.org/10.1109/ICCV.2015.169 .

125

https://doi.org/10.1109/TPAMI.2002.1017616
https://doi.org/10.1109/TPAMI.2002.1017616
https://github.com/openalpr/openalpr
https://doi.org/10.1145/3132747.3132758
http://doi.acm.org/10.1145/3132747.3132758
http://doi.acm.org/10.1145/3132747.3132758
https://www.oracle.com/assets/wp-video-surveillance-storage-2288409.pdf
https://doi.org/10.1109/TPAMI.2017.2666805
https://doi.org/10.1109/CVPR.2013.312
http://dx.doi.org/10.1109/CVPR.2013.312
https://doi.org/10.1109/ICCV.2015.169
http://dx.doi.org/10.1109/ICCV.2015.169

[71] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object
detection with region proposal networks,” in Proceedings of the 28th International
Conference on Neural Information Processing Systems - Volume 1, ser. NIPS’15,
Montreal, Canada: MIT Press, 2015, pp. 91–99. [Online]. Available: http://dl.acm.
org/citation.cfm?id=2969239.2969250 .

[72] C.-Y. Wu, M. Zaheer, H. Hu, R. Manmatha, A. J. Smola, and P. Krähenbühl, “Com-
pressed video action recognition,” in The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Jun. 2018.

[73] S. Fouladi, R. S. Wahby, B. Shacklett, K. V. Balasubramaniam, W. Zeng, R. Bhalerao,
A. Sivaraman, G. Porter, and K. Winstein, “Encoding, fast and slow: Low-latency
video processing using thousands of tiny threads,” in 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17), Boston, MA: USENIX
Association, 2017, pp. 363–376, isbn: 978-1-931971-37-9. [Online]. Available: https:
//www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi .

[74] Rollingdb storage library, https://github.com/openalpr/rollingdb , 2018.

[75] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hossfeld, and P. Tran-Gia, “A survey
on quality of experience of http adaptive streaming,” IEEE Communications Surveys
& Tutorials, vol. 17, no. 1, pp. 469–492, 2015.

[76] C. Kreuzberger, D. Posch, and H. Hellwagner, “A scalable video coding dataset and
toolchain for dynamic adaptive streaming over http,” in Proceedings of the 6th ACM
Multimedia Systems Conference, ser. MMSys ’15, Portland, Oregon: ACM, 2015,
pp. 213–218, isbn: 978-1-4503-3351-1. doi: 10.1145/2713168.2713193 . [Online]. Avail-
able: http://doi.acm.org/10.1145/2713168.2713193 .

[77] OpenCV, Optical flow, 2018.

[78] OpenCV, Contours, 2018.

[79] Y. Cheng, X. Sun, and Y. L. Yin, “Searching monotone multi-dimensional arrays,”
Discrete Mathematics, vol. 308, no. 11, pp. 2213–2221, 2008.

[80] N. Linial and M. Saks, “Searching ordered structures,” Journal of algorithms, vol. 6,
no. 1, pp. 86–103, 1985.

[81] E. T. Bell, “Exponential polynomials,” Annals of Mathematics, vol. 35, no. 2, pp. 258–
277, 1934, issn: 0003486X. [Online]. Available: http://www.jstor.org/stable/1968431 .

126

http://dl.acm.org/citation.cfm?id=2969239.2969250
http://dl.acm.org/citation.cfm?id=2969239.2969250
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi
https://github.com/openalpr/rollingdb
https://doi.org/10.1145/2713168.2713193
http://doi.acm.org/10.1145/2713168.2713193
http://www.jstor.org/stable/1968431

[82] E. T. Bell, “Exponential numbers,” The American Mathematical Monthly, vol. 41,
no. 7, pp. 411–419, 1934, issn: 00029890, 19300972. [Online]. Available: http://www.
jstor.org/stable/2300300 .

[83] D. Bertsekas and R. Gallager, Data Networks (2Nd Ed.) Upper Saddle River, NJ,
USA: Prentice-Hall, Inc., 1992, isbn: 0-13-200916-1.

[84] I. Molnár, [patch] modular scheduler core and completely fair scheduler, http://lwn.
net/Articles/230501/ , 2007.

[85] iMatix Corporation, Lightning memory-mapped database, https://symas.com/lmdb/ ,
2018.

[86] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray,
B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng,
“Tensorflow: A system for large-scale machine learning,” in 12th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI 16), Savannah, GA:
USENIX Association, 2016, pp. 265–283, isbn: 978-1-931971-33-1. [Online]. Available:
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi .

[87] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in Neural Information Processing Sys-
tems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds., Curran
Associates, Inc., 2012, pp. 1097–1105. [Online]. Available: http://papers .nips .cc/
paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf .

[88] P. Liu, J. Yoon, L. Johnson, and S. Banerjee, “Greening the video transcoding service
with low-cost hardware transcoders,” in 2016 USENIX Annual Technical Conference
(USENIX ATC 16), Denver, CO: USENIX Association, 2016, pp. 407–419, isbn:
978-1-931971-30-0. [Online]. Available: https://www.usenix.org/conference/atc16/
technical-sessions/presentation/liu .

[89] J. Yoon, P. Liu, and S. Banerjee, “Low-cost video transcoding at the wireless edge,”
in 2016 IEEE/ACM Symposium on Edge Computing (SEC), Oct. 2016, pp. 129–141.
doi: 10.1109/SEC.2016.8 .

[90] Amazon ec2 p3 instances, https://aws.amazon.com/ec2/instance-types/p3/ , 2018.

127

http://www.jstor.org/stable/2300300
http://www.jstor.org/stable/2300300
http://lwn.net/Articles/230501/
http://lwn.net/Articles/230501/
https://symas.com/lmdb/
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://www.usenix.org/conference/atc16/technical-sessions/presentation/liu
https://www.usenix.org/conference/atc16/technical-sessions/presentation/liu
https://doi.org/10.1109/SEC.2016.8
https://aws.amazon.com/ec2/instance-types/p3/

[91] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and A. Krishnamurthy,
“Mcdnn: An approximation-based execution framework for deep stream processing
under resource constraints,” in Proceedings of the 14th Annual International Con-
ference on Mobile Systems, Applications, and Services, ser. MobiSys ’16, Singapore,
Singapore: ACM, 2016, pp. 123–136, isbn: 978-1-4503-4269-8. doi: 10.1145/2906388.
2906396 . [Online]. Available: http://doi.acm.org/10.1145/2906388.2906396 .

[92] C.-C. Hung, G. Ananthanarayanan, P. Bodík, L. Golubchik, M. Yu, V. Bahl, and M.
Philipose, “Videoedge: Processing camera streams using hierarchical clusters,” Oct.
2018. [Online]. Available: https://www.microsoft.com/en-us/research/publication/
videoedge-processing-camera-streams-using-hierarchical-clusters/ .

[93] C. Pakha, A. Chowdhery, and J. Jiang, “Reinventing video streaming for distributed
vision analytics,” in 10th USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud 18), Boston, MA: USENIX Association, 2018. [Online]. Available: https:
//www.usenix.org/conference/hotcloud18/presentation/pakha .

[94] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel, “Finding a needle in haystack:
Facebook’s photo storage,” in Proceedings of the 9th USENIX Conference on Oper-
ating Systems Design and Implementation, ser. OSDI’10, Vancouver, BC, Canada:
USENIX Association, 2010, pp. 47–60. [Online]. Available: http : / / dl . acm . org /
citation.cfm?id=1924943.1924947 .

[95] V. Gupta-Cledat, L. Remis, and C. R. Strong, “Addressing the dark side of vision
research: Storage,” in 9th USENIX Workshop on Hot Topics in Storage and File
Systems (HotStorage 17), Santa Clara, CA: USENIX Association, 2017. [Online].
Available: https://www.usenix.org/conference/hotstorage17/program/presentation/
gupta-cledat .

[96] L. Remis, V. Gupta-Cledat, C. R. Strong, and M. IJzerman-Korevaar, “Vdms: An effi-
cient big-visual-data access for machine learning workloads,” CoRR, vol. abs/1810.11832,
2018.

[97] S. Papadopoulos, K. Datta, S. Madden, and T. Mattson, “The tiledb array data
storage manager,” Proc. VLDB Endow., vol. 10, no. 4, pp. 349–360, Nov. 2016, issn:
2150-8097. doi: 10.14778/3025111.3025117 . [Online]. Available: https://doi.org/10.
14778/3025111.3025117 .

[98] J. Casper, J. Barker, and B. Catanzaro, Nvvl: Nvidia video loader, https://github.
com/NVIDIA/nvvl , 2018.

128

https://doi.org/10.1145/2906388.2906396
https://doi.org/10.1145/2906388.2906396
http://doi.acm.org/10.1145/2906388.2906396
https://www.microsoft.com/en-us/research/publication/videoedge-processing-camera-streams-using-hierarchical-clusters/
https://www.microsoft.com/en-us/research/publication/videoedge-processing-camera-streams-using-hierarchical-clusters/
https://www.usenix.org/conference/hotcloud18/presentation/pakha
https://www.usenix.org/conference/hotcloud18/presentation/pakha
http://dl.acm.org/citation.cfm?id=1924943.1924947
http://dl.acm.org/citation.cfm?id=1924943.1924947
https://www.usenix.org/conference/hotstorage17/program/presentation/gupta-cledat
https://www.usenix.org/conference/hotstorage17/program/presentation/gupta-cledat
https://doi.org/10.14778/3025111.3025117
https://doi.org/10.14778/3025111.3025117
https://doi.org/10.14778/3025111.3025117
https://github.com/NVIDIA/nvvl
https://github.com/NVIDIA/nvvl

[99] A. Poms, W. Crichton, P. Hanrahan, and K. Fatahalian, “Scanner: Efficient video
analysis at scale,” ACM Trans. Graph., vol. 37, no. 4, 138:1–138:13, Jul. 2018, issn:
0730-0301. doi: 10.1145/3197517.3201394 . [Online]. Available: http://doi.acm.org/
10.1145/3197517.3201394 .

[100] Nvidia, https://developer.nvidia.com/deepstream-sdk , 2018.

[101] M. P. Andersen and D. E. Culler, “Btrdb: Optimizing storage system design for
timeseries processing,” in 14th USENIX Conference on File and Storage Technolo-
gies (FAST 16), Santa Clara, CA: USENIX Association, 2016, pp. 39–52, isbn: 978-
1-931971-28-7. [Online]. Available: https : / /www . usenix . org / conference / fast16 /
technical-sessions/presentation/andersen .

[102] V. Srinivasan, B. Bulkowski, W.-L. Chu, S. Sayyaparaju, A. Gooding, R. Iyer, A.
Shinde, and T. Lopatic, “Aerospike: Architecture of a real-time operational dbms,”
Proc. VLDB Endow., vol. 9, no. 13, pp. 1389–1400, Sep. 2016, issn: 2150-8097. doi:
10.14778/3007263.3007276 . [Online]. Available: http://dx.doi.org/10.14778/3007263.
3007276 .

[103] InfluxData, Influxdb, https://www.influxdata.com/ , 2018.

[104] T. K. Sellis, “Multiple-query optimization,” ACM Trans. Database Syst., vol. 13,
no. 1, pp. 23–52, Mar. 1988, issn: 0362-5915. doi: 10.1145/42201.42203 . [Online].
Available: http://doi.acm.org/10.1145/42201.42203 .

[105] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models and issues in
data stream systems,” in Proceedings of the Twenty-first ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, ser. PODS ’02, Madison,
Wisconsin: ACM, 2002, pp. 1–16, isbn: 1-58113-507-6. doi: 10.1145/543613.543615 .
[Online]. Available: http://doi.acm.org/10.1145/543613.543615 .

[106] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G. Manku, C.
Olston, J. Rosenstein, and R. Varma, “Query processing, resource management, and
approximation in a data stream management system,” in IN CIDR, 2003, pp. 245–
256.

[107] L. Qiao, V. Raman, F. Reiss, P. J. Haas, and G. M. Lohman, “Main-memory scan
sharing for multi-core cpus,” Proc. VLDB Endow., vol. 1, no. 1, pp. 610–621, Aug.
2008, issn: 2150-8097. doi: 10 .14778/1453856 .1453924 . [Online]. Available: http :
//dx.doi.org/10.14778/1453856.1453924 .

129

https://doi.org/10.1145/3197517.3201394
http://doi.acm.org/10.1145/3197517.3201394
http://doi.acm.org/10.1145/3197517.3201394
https://developer.nvidia.com/deepstream-sdk
https://www.usenix.org/conference/fast16/technical-sessions/presentation/andersen
https://www.usenix.org/conference/fast16/technical-sessions/presentation/andersen
https://doi.org/10.14778/3007263.3007276
http://dx.doi.org/10.14778/3007263.3007276
http://dx.doi.org/10.14778/3007263.3007276
https://www.influxdata.com/
https://doi.org/10.1145/42201.42203
http://doi.acm.org/10.1145/42201.42203
https://doi.org/10.1145/543613.543615
http://doi.acm.org/10.1145/543613.543615
https://doi.org/10.14778/1453856.1453924
http://dx.doi.org/10.14778/1453856.1453924
http://dx.doi.org/10.14778/1453856.1453924

[108] M. Zukowski, S. Héman, N. Nes, and P. Boncz, “Cooperative scans: Dynamic band-
width sharing in a dbms,” in Proceedings of the 33rd International Conference on
Very Large Data Bases, ser. VLDB ’07, Vienna, Austria: VLDB Endowment, 2007,
pp. 723–734, isbn: 978-1-59593-649-3. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1325851.1325934 .

[109] C. A. Lang, B. Bhattacharjee, T. Malkemus, S. Padmanabhan, and K. Wong, “In-
creasing buffer-locality for multiple relational table scans through grouping and throt-
tling,” in 2007 IEEE 23rd International Conference on Data Engineering, Apr. 2007,
pp. 1136–1145. doi: 10.1109/ICDE.2007.368972 .

[110] N. Tatbul, U. Çetintemel, S. Zdonik, M. Cherniack, and M. Stonebraker, “Load shed-
ding in a data stream manager,” in Proceedings of the 29th International Conference
on Very Large Data Bases - Volume 29, ser. VLDB ’03, Berlin, Germany: VLDB
Endowment, 2003, pp. 309–320, isbn: 0-12-722442-4. [Online]. Available: http://dl.
acm.org/citation.cfm?id=1315451.1315479 .

[111] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stone-
braker, N. Tatbul, and S. Zdonik, “Monitoring streams: A new class of data manage-
ment applications,” in Proceedings of the 28th International Conference on Very Large
Data Bases, ser. VLDB ’02, Hong Kong, China: VLDB Endowment, 2002, pp. 215–
226. [Online]. Available: http://dl.acm.org/citation.cfm?id=1287369.1287389 .

[112] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, M. Stone-
braker, N. Tatbul, and S. Zdonik, “Aurora: A new model and architecture for data
stream management,” The VLDB Journal, vol. 12, no. 2, pp. 120–139, Aug. 2003,
issn: 1066-8888. doi: 10.1007/s00778-003-0095-z . [Online]. Available: http://dx.doi.
org/10.1007/s00778-003-0095-z .

[113] K. Keeton and R. H. Katz, “Evaluating video layout strategies for a high-performance
storage server,” Multimedia Systems, vol. 3, no. 2, pp. 43–52, May 1995, issn: 1432-
1882. doi: 10 . 1007/BF01219800 . [Online]. Available: https : / /doi . org /10 . 1007/
BF01219800 .

[114] T.-c. Chiueh and R. H. Katz, “Multi-resolution video representation for parallel disk
arrays,” in Proceedings of the First ACM International Conference on Multimedia,
ser. MULTIMEDIA ’93, Anaheim, California, USA: ACM, 1993, pp. 401–409, isbn:
0-89791-596-8. doi: 10.1145/166266.168438 . [Online]. Available: http://doi.acm.org/
10.1145/166266.168438 .

130

http://dl.acm.org/citation.cfm?id=1325851.1325934
http://dl.acm.org/citation.cfm?id=1325851.1325934
https://doi.org/10.1109/ICDE.2007.368972
http://dl.acm.org/citation.cfm?id=1315451.1315479
http://dl.acm.org/citation.cfm?id=1315451.1315479
http://dl.acm.org/citation.cfm?id=1287369.1287389
https://doi.org/10.1007/s00778-003-0095-z
http://dx.doi.org/10.1007/s00778-003-0095-z
http://dx.doi.org/10.1007/s00778-003-0095-z
https://doi.org/10.1007/BF01219800
https://doi.org/10.1007/BF01219800
https://doi.org/10.1007/BF01219800
https://doi.org/10.1145/166266.168438
http://doi.acm.org/10.1145/166266.168438
http://doi.acm.org/10.1145/166266.168438

[115] J. Oh and K. A. Hua, “Efficient and cost-effective techniques for browsing and index-
ing large video databases,” in Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’00, Dallas, Texas, USA: ACM,
2000, pp. 415–426, isbn: 1-58113-217-4. doi: 10.1145/342009.335436 . [Online]. Avail-
able: http://doi.acm.org/10.1145/342009.335436 .

[116] Q. Huang, P. Ang, P. Knowles, T. Nykiel, I. Tverdokhlib, A. Yajurvedi, P. Dapolito
IV, X. Yan, M. Bykov, C. Liang, M. Talwar, A. Mathur, S. Kulkarni, M. Burke, and
W. Lloyd, “Sve: Distributed video processing at facebook scale,” in Proceedings of the
26th Symposium on Operating Systems Principles, ser. SOSP ’17, Shanghai, China:
ACM, 2017, pp. 87–103, isbn: 978-1-4503-5085-3. doi: 10.1145/3132747.3132775 .
[Online]. Available: http://doi.acm.org/10.1145/3132747.3132775 .

[117] H. Wang, K. Rudy, J. Li, and D. Ni, “Calculation of traffic flow breakdown proba-
bility to optimize link throughput,” Applied Mathematical Modelling, vol. 34, no. 11,
pp. 3376–3389, 2010, issn: 0307-904X. doi: https://doi.org/10.1016/j.apm.2010.
02 . 027 . [Online]. Available: http : / /www. sciencedirect . com/ science /article /pii /
S0307904X10000880 .

[118] S. William Saletan, The case for mass surveillance, https : / / www . delcotimes .
com/news / the - case - for -mass - surveillance / article_ 61a27a3c - 8e8b - 54e3 - b048 -
e44682b6a024.html , 2013.

[119] H. Law and J. Deng, “Cornernet: Detecting objects as paired keypoints,” International
Journal of Computer Vision (IJCV), Aug. 2019, issn: 1573-1405. doi: 10 . 1007 /
s11263-019-01204-1 . [Online]. Available: https://doi.org/10.1007/s11263-019-01204-
1 .

[120] Wyze camera specifications, https://www.wyze.com/wyze-cam/specs/ , 2019.

[121] Hisilicon ip camera specifications. http://www.hisilicon.com/en/Products/ProductList/
Surveillance , 2019.

[122] M. Liao, Benchmarking hardware for cnn inference in 2018, https://towardsdatascience.
com/benchmarking-hardware-for-cnn-inference-in-2018-1d58268de12a , 2018.

[123] Running yolo detection on raspberry pi. http://raspberrypi4u.blogspot.com/2018/
10/raspberry-pi-yolo-real-time-object.html , 2018.

[124] Wireless cameras slowing router too much, https ://community .netgear .com/t5/
Nighthawk-WiFi-Routers/Wireless-cameras-slowing-router-too-much/td-p/513047 ,
2015.

131

https://doi.org/10.1145/342009.335436
http://doi.acm.org/10.1145/342009.335436
https://doi.org/10.1145/3132747.3132775
http://doi.acm.org/10.1145/3132747.3132775
https://doi.org/https://doi.org/10.1016/j.apm.2010.02.027
https://doi.org/https://doi.org/10.1016/j.apm.2010.02.027
http://www.sciencedirect.com/science/article/pii/S0307904X10000880
http://www.sciencedirect.com/science/article/pii/S0307904X10000880
https://www.delcotimes.com/news/the-case-for-mass-surveillance/article_61a27a3c-8e8b-54e3-b048-e44682b6a024.html
https://www.delcotimes.com/news/the-case-for-mass-surveillance/article_61a27a3c-8e8b-54e3-b048-e44682b6a024.html
https://www.delcotimes.com/news/the-case-for-mass-surveillance/article_61a27a3c-8e8b-54e3-b048-e44682b6a024.html
https://doi.org/10.1007/s11263-019-01204-1
https://doi.org/10.1007/s11263-019-01204-1
https://doi.org/10.1007/s11263-019-01204-1
https://doi.org/10.1007/s11263-019-01204-1
https://www.wyze.com/wyze-cam/specs/
http://www.hisilicon.com/en/Products/ProductList/Surveillance
http://www.hisilicon.com/en/Products/ProductList/Surveillance
https://towardsdatascience.com/benchmarking-hardware-for-cnn-inference-in-2018-1d58268de12a
https://towardsdatascience.com/benchmarking-hardware-for-cnn-inference-in-2018-1d58268de12a
http://raspberrypi4u.blogspot.com/2018/10/raspberry-pi-yolo-real-time-object.html
http://raspberrypi4u.blogspot.com/2018/10/raspberry-pi-yolo-real-time-object.html
https://community.netgear.com/t5/Nighthawk-WiFi-Routers/Wireless-cameras-slowing-router-too-much/td-p/513047
https://community.netgear.com/t5/Nighthawk-WiFi-Routers/Wireless-cameras-slowing-router-too-much/td-p/513047

[125] Wifi cameras, https : / /www . security - camera - warehouse . com / ip - camera /wifi -
enabled/ , 2018.

[126] The zettabyte era: Trends and analysis, https://www.cisco.com/c/en/us/solutions/
collateral / service - provider / visual - networking - index - vni / vni - hyperconnectivity -
wp.html , 2017.

[127] NIST, The spectrum crunch, 2019. [Online]. Available: https://www.nist.gov/topics/
advanced-communications/spectrum-crunch .

[128] Understanding ip surveillance camera bandwidth, https://www.fortinet.com/content/
dam/fortinet/assets/white-papers/wp-ip-surveillance-camera.pdf , 2017.

[129] K. Chakrabarti, K. Porkaew, and S. Mehrotra, “Efficient query refinement in multi-
media databases,” in ICDE Conference, Poster paper, Jan. 2000. [Online]. Available:
https://www.microsoft.com/en-us/research/publication/efficient-query-refinement-
in-multimedia-databases/ .

[130] I. F. Ilyas, R. Shah, W. G. Aref, J. S. Vitter, and A. K. Elmagarmid, “Rank-aware
query optimization,” in Proceedings of the 2004 ACM SIGMOD international confer-
ence on Management of data (ICMD), 2004, pp. 203–214.

[131] C. Böhm, B. Braunmüller, F. Krebs, and H.-P. Kriegel, “Epsilon grid order: An
algorithm for the similarity join on massive high-dimensional data,” in ACM SIGMOD
Record, vol. 30, 2001, pp. 379–388.

[132] N. Koudas and K. C. Sevcik, “High dimensional similarity joins: Algorithms and
performance evaluation,” IEEE Transactions on Knowledge and Data Engineering
(TKDE), vol. 12, no. 1, pp. 3–18, 2000.

[133] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and R. Sears,
“Mapreduce online,” in Proceedings of the 7th USENIX Conference on Networked
Systems Design and Implementation, ser. NSDI’10, San Jose, California: USENIX
Association, 2010, pp. 21–21. [Online]. Available: http://dl.acm.org/citation.cfm?
id=1855711.1855732 .

[134] N. Pansare, V. R. Borkar, C. Jermaine, and T. Condie, “Online aggregation for large
mapreduce jobs,” Proceedings of the VLDB Endowment, vol. 4, no. 11, pp. 1135–1145,
2011.

[135] V. Saligrama and Z. Chen, “Video anomaly detection based on local statistical ag-
gregates,” 2012 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 2112–2119, 2012.

132

https://www.security-camera-warehouse.com/ip-camera/wifi-enabled/
https://www.security-camera-warehouse.com/ip-camera/wifi-enabled/
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.nist.gov/topics/advanced-communications/spectrum-crunch
https://www.nist.gov/topics/advanced-communications/spectrum-crunch
https://www.fortinet.com/content/dam/fortinet/assets/white-papers/wp-ip-surveillance-camera.pdf
https://www.fortinet.com/content/dam/fortinet/assets/white-papers/wp-ip-surveillance-camera.pdf
https://www.microsoft.com/en-us/research/publication/efficient-query-refinement-in-multimedia-databases/
https://www.microsoft.com/en-us/research/publication/efficient-query-refinement-in-multimedia-databases/
http://dl.acm.org/citation.cfm?id=1855711.1855732
http://dl.acm.org/citation.cfm?id=1855711.1855732

[136] X. Zhu, J. Dai, L. Yuan, and Y. Wei, “Towards high performance video object detec-
tion,” in CVPR, IEEE Computer Society, 2018, pp. 7210–7218.

[137] T. Blu, P. Dragotti, M. Vetterli, P. Marziliano, and L. Coulot, “Sparse sampling of
signal innovations,” IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 31–40, Mar.
2008, issn: 1053-5888. doi: 10.1109/MSP.2007.914998 .

[138] C. R. Shalizi, Advanced data analysis from an elementary point of view, http://www.
stat.cmu.edu/~cshalizi/ADAfaEPoV/ADAfaEPoV.pdf , 2019.

[139] Background subtraction, https://docs.opencv.org/3.4.0/db/d5c/tutorial_py_bg_
subtraction.html , 2019.

[140] Youtube live streaming: Jackson hole, https://youtu.be/2wnU2Kp7quQ , 2019.

[141] Youtube live streaming: Jackson town, https : / / www . youtube . com /watch ? v=
1EiC9bvVGnk , 2019.

[142] Youtube live streaming: Banff, https://youtu.be/9HwSNgcdQ7k , 2019.

[143] Youtube live streaming: Mierlo, https://www.youtube.com/watch?v=HbtBgxFkDHU ,
2019.

[144] Youtube live streaming: Miami, https://www.youtube.com/watch?v=0dctq-YjAdc ,
2019.

[145] Youtube live streaming: Ashland, https://www.youtube.com/watch?v=e47XhLmZhFk ,
2019.

[146] Youtube live streaming: Shibuya, https://youtu.be/PmrWwYTlAVQ , 2019.

[147] Youtube live streaming: Chaweng, https://www.youtube.com/watch?v=tihJ58_qiH0 ,
2019.

[148] Youtube live streaming: Lausanne, https://www.youtube.com/watch?v=7uF7DsUQ9vc ,
2019.

[149] Youtube live streaming: Venice, https://www.youtube.com/watch?v=JqUREqYduHw ,
2019.

[150] Youtube live streaming: Oxford, https://www.youtube.com/watch?v=St7aTfoIdYQ ,
2019.

133

https://doi.org/10.1109/MSP.2007.914998
http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/ADAfaEPoV.pdf
http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/ADAfaEPoV.pdf
https://docs.opencv.org/3.4.0/db/d5c/tutorial_py_bg_subtraction.html
https://docs.opencv.org/3.4.0/db/d5c/tutorial_py_bg_subtraction.html
https://youtu.be/2wnU2Kp7quQ
https://www.youtube.com/watch?v=1EiC9bvVGnk
https://www.youtube.com/watch?v=1EiC9bvVGnk
https://youtu.be/9HwSNgcdQ7k
https://www.youtube.com/watch?v=HbtBgxFkDHU
https://www.youtube.com/watch?v=0dctq-YjAdc
https://www.youtube.com/watch?v=e47XhLmZhFk
https://youtu.be/PmrWwYTlAVQ
https://www.youtube.com/watch?v=tihJ58_qiH0
https://www.youtube.com/watch?v=7uF7DsUQ9vc
https://www.youtube.com/watch?v=JqUREqYduHw
https://www.youtube.com/watch?v=St7aTfoIdYQ

[151] Youtube live streaming: Whitebay, https://www.youtube.com/watch?v=LXWVYoBluT4 ,
2019.

[152] Youtube live streaming: Coralreef, https://youtu.be/WYOe8SfQbac , 2019.

[153] Youtube live streaming: Boathouse, https://www.youtube.com/watch?v=TXw7CyY0TbU&
t=0s , 2019.

[154] Youtube live streaming: Eagle, https://www.youtube.com/watch?v=Q_OrM8o2k6I ,
2019.

[155] T. Jin and S. Hong, “Split-cnn: Splitting window-based operations in convolutional
neural networks for memory system optimization,” in Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2019, pp. 835–847.

[156] Build intelligent ideas with our platform for local ai, https://coral.withgoogle.com/ ,
2019.

[157] E. Teng, J. D. Falcão, and B. Iannucci, “Clickbait: Click-based accelerated incremental
training of convolutional neural networks,” CoRR, vol. abs/1709.05021, 2017. arXiv:
1709.05021 . [Online]. Available: http://arxiv.org/abs/1709.05021 .

[158] E. Teng, R. Huang, and B. Iannucci, “Clickbait-v2: Training an object detector in
real-time,” CoRR, vol. abs/1803.10358, 2018. arXiv: 1803.10358 . [Online]. Available:
http://arxiv.org/abs/1803.10358 .

[159] C. Käding, E. Rodner, A. Freytag, and J. Denzler, “Fine-tuning deep neural networks
in continuous learning scenarios,” in Computer Vision – ACCV 2016 Workshops, C.-S.
Chen, J. Lu, and K.-K. Ma, Eds., Cham: Springer International Publishing, 2017,
pp. 588–605, isbn: 978-3-319-54526-4.

[160] M. Liu and M. Zhu, “Mobile video object detection with temporally-aware feature
maps,” CVPR, 2018.

[161] K. Kang, W. Ouyang, H. Li, and X. Wang, “Object detection from video tubelets with
convolutional neural networks,” in 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Jun. 2016, pp. 817–825. doi: 10.1109/CVPR.2016.95 .

[162] B. Feng, K. Wan, S. Yang, and Y. Ding, “SECS: efficient deep stream processing via
class skew dichotomy,” CoRR, vol. abs/1809.06691, 2018. arXiv: 1809.06691 . [Online].
Available: http://arxiv.org/abs/1809.06691 .

134

https://www.youtube.com/watch?v=LXWVYoBluT4
https://youtu.be/WYOe8SfQbac
https://www.youtube.com/watch?v=TXw7CyY0TbU&t=0s
https://www.youtube.com/watch?v=TXw7CyY0TbU&t=0s
https://www.youtube.com/watch?v=Q_OrM8o2k6I
https://coral.withgoogle.com/
https://arxiv.org/abs/1709.05021
http://arxiv.org/abs/1709.05021
https://arxiv.org/abs/1803.10358
http://arxiv.org/abs/1803.10358
https://doi.org/10.1109/CVPR.2016.95
https://arxiv.org/abs/1809.06691
http://arxiv.org/abs/1809.06691

[163] S. Krishnan, A. Dziedzic, and A. J. Elmore, “Deeplens: Towards a visual data man-
agement system,” in CIDR 2019, 9th Biennial Conference on Innovative Data Sys-
tems Research, Asilomar, CA, USA, January 13-16, 2019, Online Proceedings, 2019.
[Online]. Available: http://cidrdb.org/cidr2019/papers/p40-krishnan-cidr19.pdf .

[164] H. Shen, L. Chen, Y. Jin, L. Zhao, B. Kong, M. Philipose, A. Krishnamurthy, and R.
Sundaram, “Nexus: A gpu cluster engine for accelerating dnn-based video analysis,”
in Proceedings of the 27th ACM Symposium on Operating Systems Principles (SOSP),
2019, pp. 322–337.

[165] P. Viola, M. Jones, et al., “Rapid object detection using a boosted cascade of simple
features,” Proceedings of the 2001 IEEE computer society conference on computer
vision and pattern recognition (CVPR), vol. 1, pp. 511–518, 2001.

[166] Z. Cai, M. Saberian, and N. Vasconcelos, “Learning complexity-aware cascades for
deep pedestrian detection,” in Proceedings of the IEEE International Conference on
Computer Vision (ICCV), 2015, pp. 3361–3369.

[167] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “Deepdecision: A mobile deep learning
framework for edge video analytics,” in IEEE INFOCOM 2018 - IEEE Conference
on Computer Communications, Apr. 2018, pp. 1421–1429. doi: 10.1109/INFOCOM.
2018.8485905 .

[168] J. Wang, Z. Feng, Z. Chen, S. George, M. Bala, P. Pillai, S. Yang, and M. Satya-
narayanan, “Bandwidth-efficient live video analytics for drones via edge computing,”
in 2018 IEEE/ACM Symposium on Edge Computing, SEC 2018, Seattle, WA, USA,
October 25-27, 2018, 2018, pp. 159–173. doi: 10.1109/SEC.2018.00019 . [Online].
Available: https://doi.org/10.1109/SEC.2018.00019 .

[169] M. Xu, X. Zhang, Y. Liu, G. Huang, X. Liu, and F. X. Lin, “Approximate query ser-
vice on autonomous iot cameras,” in Proceedings of the 18th International Conference
on Mobile Systems, Applications, and Services, 2020, pp. 191–205.

[170] J. M. Hellerstein, R. Avnur, A. Chou, C. Hidber, C. Olston, V. Raman, T. Roth, and
P. J. Haas, “Interactive data analysis: The control project,” Computer, vol. 32, no. 8,
pp. 51–59, Aug. 1999, issn: 0018-9162. doi: 10.1109/2.781635 .

[171] A. Vulimiri, C. Curino, P. B. Godfrey, T. Jungblut, K. Karanasos, J. Padhye, and
G. Varghese, “Wanalytics: Geo-distributed analytics for a data intensive world,” in
Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data, ser. SIGMOD ’15, Melbourne, Victoria, Australia: ACM, 2015, pp. 1087–
1092, isbn: 978-1-4503-2758-9. doi: 10.1145/2723372.2735365 . [Online]. Available:
http://doi.acm.org/10.1145/2723372.2735365 .

135

http://cidrdb.org/cidr2019/papers/p40-krishnan-cidr19.pdf
https://doi.org/10.1109/INFOCOM.2018.8485905
https://doi.org/10.1109/INFOCOM.2018.8485905
https://doi.org/10.1109/SEC.2018.00019
https://doi.org/10.1109/SEC.2018.00019
https://doi.org/10.1109/2.781635
https://doi.org/10.1145/2723372.2735365
http://doi.acm.org/10.1145/2723372.2735365

[172] A. Vulimiri, C. Curino, P. B. Godfrey, T. Jungblut, J. Padhye, and G. Varghese,
“Global analytics in the face of bandwidth and regulatory constraints,” in 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 15), Oakland,
CA: USENIX Association, 2015, pp. 323–336, isbn: 978-1-931971-218. [Online]. Avail-
able: https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/
vulimiri .

[173] R. Viswanathan, G. Ananthanarayanan, and A. Akella, “CLARINET: Wan-aware
optimization for analytics queries,” in 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), Savannah, GA: USENIX Association, 2016,
pp. 435–450, isbn: 978-1-931971-33-1. [Online]. Available: https://www.usenix.org/
conference/osdi16/technical-sessions/presentation/viswanathan .

[174] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella, P. Bahl, and I. Stoica,
“Low latency geo-distributed data analytics,” SIGCOMM Comput. Commun. Rev.,
vol. 45, no. 4, pp. 421–434, Aug. 2015, issn: 0146-4833. doi: 10.1145/2829988.2787505 .
[Online]. Available: http://doi.acm.org/10.1145/2829988.2787505 .

[175] H. Wang and B. Li, “Lube: Mitigating bottlenecks in wide area data analytics,” in
9th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 17), Santa
Clara, CA: USENIX Association, 2017. [Online]. Available: https://www.usenix.org/
conference/hotcloud17/program/presentation/wang .

[176] A. Rabkin, M. Arye, S. Sen, V. S. Pai, and M. J. Freedman, “Aggregation and degra-
dation in jetstream: Streaming analytics in the wide area,” in 11th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 14), Seattle, WA:
USENIX Association, 2014, pp. 275–288, isbn: 978-1-931971-09-6. [Online]. Available:
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/rabkin .

[177] B. Zhang, X. Jin, S. Ratnasamy, J. Wawrzynek, and E. A. Lee, “Awstream: Adaptive
wide-area streaming analytics,” in Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, ser. SIGCOMM ’18, Budapest, Hun-
gary: ACM, 2018, pp. 236–252, isbn: 978-1-4503-5567-4. doi: 10 . 1145 / 3230543 .
3230554 . [Online]. Available: http://doi.acm.org/10.1145/3230543.3230554 .

[178] P. with code, Person re-identification on dukemtmc-reid, 2020. [Online]. Available:
https://paperswithcode.com/sota/person-re-identification-on-dukemtmc-reid .

[179] M. Gou, S. Karanam, W. Liu, O. Camps, and R. J. Radke, “Dukemtmc4reid: A large-
scale multi-camera person re-identification dataset,” in 2017 IEEE Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), Jul. 2017, pp. 1425–
1434. doi: 10.1109/CVPRW.2017.185 .

136

https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/vulimiri
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/vulimiri
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/viswanathan
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/viswanathan
https://doi.org/10.1145/2829988.2787505
http://doi.acm.org/10.1145/2829988.2787505
https://www.usenix.org/conference/hotcloud17/program/presentation/wang
https://www.usenix.org/conference/hotcloud17/program/presentation/wang
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/rabkin
https://doi.org/10.1145/3230543.3230554
https://doi.org/10.1145/3230543.3230554
http://doi.acm.org/10.1145/3230543.3230554
https://paperswithcode.com/sota/person-re-identification-on-dukemtmc-reid
https://doi.org/10.1109/CVPRW.2017.185

[180] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian, “Scalable person re-
identification: A benchmark,” in 2015 IEEE International Conference on Computer
Vision (ICCV), 2015, pp. 1116–1124.

[181] D. Huang, V. Ramanathan, D. Mahajan, M. Paluri, L. Fei-Fei, and J. C. Niebles,
“What makes a video a video: Analyzing temporal information in video understanding
models and datasets,” in CVPR, IEEE Computer Society, 2018, pp. 7366–7375.

[182] M. Xu, X. Zhang, Y. Liu, G. Huang, X. Liu, and F. X. Lin, “Approximate query
service on autonomous iot cameras,” in Proceedings of the 18th International Con-
ference on Mobile Systems, Applications, and Services, ser. MobiSys ’20, Toronto,
Ontario, Canada: Association for Computing Machinery, 2020, pp. 191–205, isbn:
9781450379540. doi: 10.1145/3386901.3388948 . [Online]. Available: https://doi.org/
10.1145/3386901.3388948 .

[183] OpenCV, Histogram calculation, docs.opencv.org.

[184] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International
journal of computer vision, vol. 60, no. 2, pp. 91–110, 2004.

[185] L. Cheng and J. Wang, “Vitrack: Efficient tracking on the edge for commodity video
surveillance systems,” in IEEE INFOCOM 2018 - IEEE Conference on Computer
Communications, 2018, pp. 1052–1060. doi: 10.1109/INFOCOM.2018.8486353 .

[186] J. N. Hughes, A. Annex, C. N. Eichelberger, A. Fox, A. Hulbert, and M. Ronquest,
“GeoMesa: a distributed architecture for spatio-temporal fusion,” in Geospatial In-
formatics, Fusion, and Motion Video Analytics V, M. F. Pellechia, K. Palaniappan,
P. J. Doucette, S. L. Dockstader, G. Seetharaman, and P. B. Deignan, Eds., Inter-
national Society for Optics and Photonics, vol. 9473, SPIE, 2015, pp. 128–140. doi:
10.1117/12.2177233 . [Online]. Available: https://doi.org/10.1117/12.2177233 .

[187] M. Erwig, R. H. Güting, M. Schneider, and M. Vazirgiannis, “Spatio-temporal data
types: An approach to modeling and querying moving objects in databases,” Geoin-
formatica, vol. 3, no. 3, pp. 269–296, Sep. 1999, issn: 1384-6175. doi: 10.1023/A:
1009805532638 . [Online]. Available: https://doi.org/10.1023/A:1009805532638 .

[188] T. Abraham and J. Roddick, “Survey of spatio-temporal databases,” GeoInformatica,
vol. 3, pp. 61–99, 1999.

[189] N. Pant, M. Fouladgar, R. Elmasri, and K. Jitkajornwanich, “A survey of spatio-
temporal database research,” in Intelligent Information and Database Systems, N. T.
Nguyen, D. H. Hoang, T.-P. Hong, H. Pham, and B. Trawiński, Eds., Cham: Springer
International Publishing, 2018, pp. 115–126, isbn: 978-3-319-75420-8.

137

https://doi.org/10.1145/3386901.3388948
https://doi.org/10.1145/3386901.3388948
https://doi.org/10.1145/3386901.3388948
https://doi.org/10.1109/INFOCOM.2018.8486353
https://doi.org/10.1117/12.2177233
https://doi.org/10.1117/12.2177233
https://doi.org/10.1023/A:1009805532638
https://doi.org/10.1023/A:1009805532638
https://doi.org/10.1023/A:1009805532638

[190] K. Porkaew, I. Lazaridis, and S. Mehrotra, “Querying mobile objects in spatio-
temporal databases,” in Advances in Spatial and Temporal Databases, C. S. Jensen,
M. Schneider, B. Seeger, and V. J. Tsotras, Eds., Berlin, Heidelberg: Springer Berlin
Heidelberg, 2001, pp. 59–78, isbn: 978-3-540-47724-2.

[191] sklearn, Kernel ridge regression, 2020. [Online]. Available: https://scikit-learn.org/
stable/modules/kernel_ridge.html .

[192] Z. Zhu, Q. Wang, B. Li, W. Wu, J. Yan, and W. Hu, “Distractor-aware siamese
networks for visual object tracking,” in Proceedings of the European Conference on
Computer Vision (ECCV), Sep. 2018.

[193] B. Li, J. Yan, W. Wu, Z. Zhu, and X. Hu, “High performance visual tracking with
siamese region proposal network,” in 2018 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, 2018, pp. 8971–8980.

[194] “Deep learning in video multi-object tracking: A survey,” Neurocomputing, vol. 381,
pp. 61–88, 2020, issn: 0925-2312. doi: https://doi.org/10.1016/j.neucom.2019.11.023 .

[195] D. Shah, The surveillance phenomenon you must know about : Multi object tracking,
https://medium.com/visionwizard/object-tracking-675d7a33e687, 2020.

[196] B. Haynes, A. Mazumdar, M. Balazinska, L. Ceze, and A. Cheung, “Visual road: A
video data management benchmark,” in SIGMOD, 2019, pp. 972–987. doi: 10.1145/
3299869.3324955 .

[197] J. Krause, M. Stark, J. Deng, and L. Fei-Fei, “3d object representations for fine-
grained categorization,” ser. ICCVW ’13, USA: IEEE Computer Society, 2013, pp. 554–
561, isbn: 9781479930227. doi: 10.1109/ICCVW.2013.77 . [Online]. Available: https:
//doi.org/10.1109/ICCVW.2013.77 .

[198] X. Liu, W. Liu, T. Mei, and H. Ma, “Provid: Progressive and multimodal vehicle
reidentification for large-scale urban surveillance,” IEEE Transactions on Multimedia,
vol. 20, no. 3, pp. 645–658, 2018. doi: 10.1109/TMM.2017.2751966 .

[199] G. Wang, J. Lai, P. Huang, and X. Xie, “Spatial-temporal person re-identification,”
ArXiv, vol. abs/1812.03282, 2019.

[200] X. Liu, P. Ghosh, O. Ulutan, B. S. Manjunath, K. Chan, and R. Govindan, “Caesar:
Cross-camera complex activity recognition,” in Proceedings of the 17th Conference
on Embedded Networked Sensor Systems, ser. SenSys ’19, New York, New York: As-
sociation for Computing Machinery, 2019, pp. 232–244, isbn: 9781450369503. doi:
10.1145/3356250.3360041 . [Online]. Available: https://doi.org/10.1145/3356250.
3360041 .

138

https://scikit-learn.org/stable/modules/kernel_ridge.html
https://scikit-learn.org/stable/modules/kernel_ridge.html
https://doi.org/https://doi.org/10.1016/j.neucom.2019.11.023
https://doi.org/10.1145/3299869.3324955
https://doi.org/10.1145/3299869.3324955
https://doi.org/10.1109/ICCVW.2013.77
https://doi.org/10.1109/ICCVW.2013.77
https://doi.org/10.1109/ICCVW.2013.77
https://doi.org/10.1109/TMM.2017.2751966
https://doi.org/10.1145/3356250.3360041
https://doi.org/10.1145/3356250.3360041
https://doi.org/10.1145/3356250.3360041

[201] Y. Lu, A. Chowdhery, and S. Kandula, “Optasia: A relational platform for efficient
large-scale video analytics,” in Proceedings of the Seventh ACM Symposium on Cloud
Computing, ser. SoCC ’16, Santa Clara, CA, USA: Association for Computing Ma-
chinery, 2016, pp. 57–70, isbn: 9781450345255. doi: 10.1145/2987550.2987564 . [On-
line]. Available: https://doi.org/10.1145/2987550.2987564 .

[202] J. Jiang, Y. Zhou, G. Ananthanarayanan, Y. Shu, and A. A. Chien, “Networked
cameras are the new big data clusters,” in Proceedings of the 2019 Workshop on Hot
Topics in Video Analytics and Intelligent Edges, ser. HotEdgeVideo’19, Los Cabos,
Mexico: Association for Computing Machinery, 2019, pp. 1–7, isbn: 9781450369282.
doi: 10.1145/3349614.3356026 . [Online]. Available: https://doi.org/10.1145/3349614.
3356026 .

[203] P. Liu, B. Qi, and S. Banerjee, “Edgeeye: An edge service framework for real-time
intelligent video analytics,” in Proceedings of the 1st International Workshop on Edge
Systems, Analytics and Networking, ser. EdgeSys’18, Munich, Germany: ACM, 2018,
pp. 1–6, isbn: 978-1-4503-5837-8. doi: 10.1145/3213344.3213345 . [Online]. Available:
http://doi.acm.org/10.1145/3213344.3213345 .

[204] A. Ravindran and A. George, “An edge datastore architecture for latency-critical
distributed machine vision applications,” in USENIX Workshop on Hot Topics in Edge
Computing (HotEdge 18), Boston, MA: USENIX Association, Jul. 2018. [Online].
Available: https://www.usenix.org/conference/hotedge18/presentation/ravindran .

[205] U. Drolia, K. Guo, J. Tan, R. Gandhi, and P. Narasimhan, “Cachier: Edge-caching for
recognition applications,” in 2017 IEEE 37th International Conference on Distributed
Computing Systems (ICDCS), 2017, pp. 276–286. doi: 10.1109/ICDCS.2017.94 .

[206] W. Magdy and G. J. Jones, “Pres: A score metric for evaluating recall-oriented in-
formation retrieval applications,” in Proceedings of the 33rd International ACM SI-
GIR Conference on Research and Development in Information Retrieval, ser. SIGIR
’10, Geneva, Switzerland: Association for Computing Machinery, 2010, pp. 611–618,
isbn: 9781450301534. doi: 10 . 1145 / 1835449 . 1835551 . [Online]. Available: https :
//doi.org/10.1145/1835449.1835551 .

139

https://doi.org/10.1145/2987550.2987564
https://doi.org/10.1145/2987550.2987564
https://doi.org/10.1145/3349614.3356026
https://doi.org/10.1145/3349614.3356026
https://doi.org/10.1145/3349614.3356026
https://doi.org/10.1145/3213344.3213345
http://doi.acm.org/10.1145/3213344.3213345
https://www.usenix.org/conference/hotedge18/presentation/ravindran
https://doi.org/10.1109/ICDCS.2017.94
https://doi.org/10.1145/1835449.1835551
https://doi.org/10.1145/1835449.1835551
https://doi.org/10.1145/1835449.1835551

VITA

Tiantu Xu was born in Beijing, China. He received his bachelor’s degree (B.S.) in Applied

Physics from the University of Science and Technology of China (USTC) in 2016. In the

same year, he started to pursue his Ph.D. degree under the guidance of Prof. Felix Xiaozhu

Lin at the School of Electrical and Computer Engineering, Purdue University. His research

focuses on building software systems for large-scale retrospective video analytics related to

computer vision workloads.

140

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	Supporting video storage for cost-efficient retrospective video analytics
	Supporting exploratory video queries on low-cost wireless cameras
	Supporting object re-identification under city-scale camera deployments

	SUMMARY
	VSTORE: A DATA STORE FOR ANALYTICS ON LARGE VIDEOS
	Background & motivations
	Retrospective video analytics
	System model
	Video format knobs
	Knob impacts

	A case for a new video store
	The configuration problem
	Inadequacy of existing video stores

	The VStore design
	Overview
	Configuring consumption formats
	Configuring storage formats
	Planning age-based data erosion

	Implementation
	Evaluation
	Methodology
	End-to-end results
	Adapting to resource budgets
	Configuration overhead

	Discussion
	Related work
	Conclusions

	DIVA: SUPPORTING EXPLORATORY VIDEO QUERIES ON ZERO-STREAMING CAMERAS
	Background & motivations
	Cold videos are already pervasive
	Target queries and their execution
	A case for zero streaming

	Overview
	Landmark design
	Online operator upgrade
	The rationale
	Multipass, multi-operator execution

	Query execution planning
	Executing Retrieval queries
	Executing Tagging queries
	Executing Counting queries

	Implementation and methodology
	Evaluation
	End-to-end performance
	Validation of query execution design

	Related work
	Conclusions

	CLIQUE: SPATIOTEMPORAL OBJECT RE-IDENTIFICATION AT THE CITY SCALE
	Background & motivations
	System model
	Challenge 1: Algorithm limitations
	Challenge 2: Numerous cameras & videos
	Why is prior work inadequate

	Clique overview
	Clustering unreliable bounding boxes
	Incremental search in spatiotemporal cells
	Assessing cell promises
	Prioritizing cells in search
	The search process

	Optimizations
	Optimizations with extra knowledge
	Utilizing cheap vision operators

	Evaluation
	Methodology
	End-to-end performance
	Validation of key designs
	Comparisons to alternative designs
	Sensitivity to parameters and inputs
	Delay reduction by processing at ingestion
	Impact of optimizations
	Impact of cheaper vision operators

	Related work
	Conclusions

	CONCLUSIONS AND FUTURE DIRECTIONS
	Conclusions
	Future directions

	REFERENCES
	VITA

