
ACCESSING CEREBRAL HEMODYNAMIC WITH MULTIMODAL 

IMAGING 

by 

Ho-Ching Yang 

 

A Dissertation 

Submitted to the Faculty of Purdue University 

In Partial Fulfillment of the Requirements for the degree of 

 

Doctor of Philosophy 

 

 

Weldon School of Biomedical Engineering 

West Lafayette, Indiana 

May 2021 

  



 

 

2 

THE PURDUE UNIVERSITY GRADUATE SCHOOL 

STATEMENT OF COMMITTEE APPROVAL 

Dr. Yunjie Tong, Chair 

Weldon School of Biomedical Engineering 

Dr. Yu-Chein Wu 

Indiana University School of Medicine 

Dr. Joseph Rispoli 

Weldon School of Biomedical Engineering 

Dr. Joaquín Goñi Cortés 

Weldon School of Biomedical Engineering and School of Industrial Engineering 

 

Approved by: 

Dr. George R. Wodicka 

 

 



 

 

3 

In the hopes that this work may in some way contribute to future exploration of brain diseases, 

which cannot be prevented or treated. 
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ABSTRACT 

The human brain is sensitive to stimuli from the outside world. Those stimuli could induce 

physiological and neuronal reactions in the brain (e.g. neuron firing and blood flow changes). 

Those reactions can be measured by several neuroimaging modalities and recorded as 

physiological and neuronal signals. Interestingly, current studies tend to remove the physiological 

signal from the brain (e.g., respiration) to focus on the neuronal signal. However, physiological 

signals in the brain contain some useful information. For example, previous research showed that 

the averaged signal in the brain, which was commonly removed as physiological noise, can track 

cerebral blood flow (CBF). Also, by giving physiological stimuli, we can expose hidden deficits 

in the brain in some cases. Therefore, understanding both physiological signals in the brain and 

physiological effects on the brain is important. The goal of my study is to investigate physiological 

signal characterizes various physiological stimuli in the brain using multimodal imaging. 

Functional magnetic resonance imaging (fMRI) and near-infrared spectroscopy (NIRS) were 

applied in the following studies. In the first study, the physiological parameters were exploited 

from fMRI scans, which were recorded after a person drinking coffee. The results derived from 

fMRI scans illustrated that caffeine decreases the blood vessels' size and increased the blood flow 

speed in blood vessels in the brain. In the second study, vasoactive stress tests (i.e., hypercapnia, 

the elevated partial pressure of arterial CO2 (PaCO2)) were introduced as a dominant physiological 

stimulus (caused an increase of CBF) and measured by fMRI and NIRS concurrently. The results 

indicated that the cerebral and extracerebral reactivity to elevated PaCO2 depended on the rate of 

the CO2 increase. Later, my third study comparing hyperoxia (elevated partial pressure of arterial 

O2 (PaO2)) and hypercapnia effects on the brain measured by fMRI and NIRS. Since NIRS 

measured both oxy- and deoxy- hemoglobin concentrations, NIRS signals have advantages to 

differentiate hypercapnia and hyperoxia effects on the brain compared to fMRI. To further 

understand physiological signals in the brain, coupling between hemodynamic and the inflow 

effect of CSF dynamic was investigated using fMRI in my fourth study. 
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 BACKGROUND 

The human brain is sensitive to stimuli from the outside world (e.g., visual, auditory gas, 

drug stimuli) [1-4]. Those stimuli could have both physiological and neuronal effects on the brain 

and are crucial for brain health. Those brain reactions to those stimuli can be recorded as 

physiological and neuronal signals using several neuroimaging modalities. For example, propofol, 

an anesthetic drug used to induce anesthesia (reduced consciousness), can decrease cerebral blood 

flow [5, 6]. Under the administration of propofol, the changing brain networks (signals correlations 

in the brain) were significantly correlated with regional CBF changes under anesthesia by propofol 

[7]. Interestingly, current studies tend to treat physiological signals (e.g., respiration, heartbeat) as 

noise and remove them from the brain to focus on neuronal signals [8-12]. For example, the global 

signal (mean time series calculated within the brain) is removed as a preprocessing step since it is 

contributed by various noise components [13, 14]. However, a previous study found that there was 

some useful physiological information can be extracted from those physiological noises. [15-18]. 

For example, a previous study showed that the low-frequency oscillations (LFOs, 0.1-0.01Hz) 

propagated through the brain like the cerebral circulatory system [15]. Moreover, the following 

study demonstrated that the patterns of propagating LFOs represent cerebral blood flow, which 

was validated by dynamic susceptibility contrast (DSC) magnetic resonance imaging (MRI) scans 

(i.e., bolus tracking) [18]. Furthermore, by giving physiological stimuli, we can expose hidden 

deficits in the brain. For example, a previous study showed regions with brain diseases can be 

detected by CO2-induced cerebral blood flow increases [19]. Therefore, it is important to 

understand those physiological signals and their effects on the brain. To fulfill this goal, my studies 

focus on the physiological stimuli that can induce a physiological effect on the brain and detect 

those effects by motional modalities. 
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 STUDY 1 

This chapter is reproduced with copyright permission from Journal of neuroscience research, 

2019. 97(4): p. 456-466. doi: 10.1002/jnr.24360 [20]. 

2.1 Introduction 

Blood-oxygen-level-dependent (BOLD) contrast in functional MRI (fMRI) has been widely 

applied to investigate brain activity [21, 22]. However, BOLD fMRI does not measure neuronal 

activation directly. It reflects neuronal activation through neurovascular coupling. In addition to 

neuronal activity, physiological processes which make alterations in cerebral blood flow (CBF), 

cerebral blood volume (CBV), and cerebral blood oxygen consumption (CMRO2) can also affect 

BOLD signals [23-25]. Thus, some features of BOLD signals can be used to assess systemic 

physiology. This additional physiological information does not require extra scans. More 

importantly, it can offer concurrent and complement physiological information to neuronal 

activation. The combined information can shed light on the interactions between neuronal 

activation and non-neuronal physiological processes.  

Among all the features of resting-state (RS) BOLD signals, it has been demonstrated that the 

time delay and amplitude of low-frequency fluctuations (ALFFs) can be used to assess the cerebral 

blood velocity and cerebral blood density respectively [15, 26]. In RS BOLD signals, systemic 

low-frequency oscillations (sLFOs) are the physiological RS BOLD signals with the frequency 

range from 0.01 to 0.1Hz, which overlaps with the frequency range of RS BOLD signals (i.e. 

neuronal). However, the RS BOLD signals are more regional, leading to different RS networks 

with corresponding RS BOLD signals. On the other hand, sLFOs were traveling global signals 

with likely extracerebral origins [27], which might be related to CO2 fluctuation in the blood, 

vasomotion, Mayer wave, etc [11, 28, 29]. The reason that they are called “systemic” is that the 

same sLFOs, which are found in RS BOLD signals in the brain (especially large veins), can be 

detected concurrently by optical method at peripheral sites (fingertip and toe) as slow changes in 

oxy- and deoxyhemoglobin concentration with time delays [30]. This study demonstrated that the 

sLFO is a blood-borne oscillation that travels to various parts of the body with blood. Recently, 

we were able to identify these sLFOs in large arteries and veins (i.e. the internal carotid artery 
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(ICA), superior sagittal sinus (SSS), and internal jugular vein) in the neck from the resting state 

(RS) Myconnectome data [31]. Time delays of approximately 7 seconds were found between these 

two highly correlated signals, which is consistent with the cerebral circulation time (CCT) 

normally measured by ultrasound [32]. Another feature is ALFFs (i.e. standard deviation (SD)), 

which also provide physiological cerebral vascular properties, such as cerebral blood volume, 

vascular density, etc. The ALFFs have been shown to contain a vascular component related to the 

hypercapnic index [33]. Vigneau-Roy et al. 2014 illustrated that the ALFFs of RS BOLD signals 

were related to vascular density [26]. The LFO amplitude has also been used to indicate 

vasoconstriction [34]. 

Caffeine, as an adenosine A2 receptor antagonist, has both neuronal and cerebral vascular 

effects. For neuronal effects, it is well-known that caffeine can increase the alertness level [35]. It 

has also been found that brain response to visual stimulation is faster after ingestion of caffeine 

[36-38]. Many studies on caffeine effects in the brain focus on these neuronal activities, e.g. 

investigating brain network connectivity [34, 39, 40]. However, caffeine also has profound 

vascular effects. After 250 mg caffeine intake, the resulting vasoconstriction can decrease the 

Cerebral BF by about 27% [41-43]. These global vascular effects can also alter brain activity. So 

far, few functional MRI (fMRI) studies have sought to understand caffeine’s vascular effect on 

resting-state (RS) fMRI, and more importantly, understand the interaction with neuronal 

activations.  In this work, we will study the vascular effects of caffeine by accessing 1) blood 

arrival time, 2) cerebral circulation time (CCT), and 3) blood density in RS fMRI scans. The results 

will be compared with those from brain network analyses (published separately) and paint a 

thorough picture of the effects of caffeine. 

2.2 Method 

2.2.1 Data selection 

The publicly available Myconnectome dataset (http://myconnectome.org/wp) was chosen 

to investigate the cerebral vascular effects of caffeine. This dataset is about a two-year study of an 

individual subject (Male, aged 45). There are several advantages to using this dataset: (1) the 

Myconnectome dataset recruited only one single subject, which eliminates between-subject 

variation. (2) The data contains 90 high-quality resting-state fMRI scans, with an equal number of 
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caffeinated scans (scans were taken 90 minutes after caffeine ingestion) and un-caffeinated scans 

(i.e. 45 each). (3) Structural images included T1 and T2 weighted scans with high spatial resolution, 

which made the identification of large blood vessels (arteries and veins) easier. 

2.2.2 Image acquisition 

Detailed scan parameters can be found in Poldrack et. al 2015. In short, most of the 10-

minute resting-state fMRI scans with eyes closed were acquired using multi-band EPI sequence  

(TR=1.16 s, TE=30 ms, flip angle=63 degrees (the Ernst angle for the grey matter), voxel size=2.4 

× 2.4 × 2 mm, distance factor=20(percentage sign), 68 slices, oriented 30 degrees back from 

AC/PC, 96 × 96 matrices, 230 mm FOV, MB factor=4, 10:00 scan length) [44]. 

2.2.3 Data processing 

Figure 2-1 shows the flow chart of data processing. Data were processed using FSL (FMRIB 

Expert Analysis Tool, v6.01, http://www.fmrib.ox.ac.uk/fsl, Oxford University, UK [45]) and a 

locally developed program (MATLAB 2017a, The MathWorks Inc., Natick, MA, 2000). RS fMRI 

scans were preprocessed with the following steps recommended by Power et al., 2014. This 

included: 1) motion correction (FSL mcflirt), 2) linear detrending (MATLAB detrend; 'linear'), 3) 

Nuisance signals removal (six motion parameters and their derivatives estimated by mcflirt) using 

a general linear model (FSL fsl_glm), 4) spatial smoothing with a Full-Width Half-Maximum of 

5mm isotropic Gaussian kernel [14].  

 

Figure 2-1 Data processing flowchart. The flowchart presents the procedure of data processing. First, 90 resting‐state 

scans were sorted into caffeinated and uncaffeinated groups. Second, vascular information was extracted from scans 

separately, which included (a) Time delays between systemic low‐frequency oscillations (sLFOs, 0.01–0.1 Hz) of the 

superior sagittal sinus (SSS) and brain voxels, (b) Cerebral circulation time (CCT) was measured by time delay 

between sLFOs of SSS and internal carotid artery (ICA), (c) LFOs amplitude in brain voxels were measured. Lastly, 

the above vascular effect of caffeine was compared with the neuronal effect of caffeine from previous research [20]. 
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2.2.4 Vascular measures 

We assessed the caffeinated/uncaffeinated difference in the following parameters: 1) CCT 

from the time delays between sLFOs in fMRI signals from ICA and SSS; 2) delay maps (i.e. 

cerebral blood arrival map) obtained by calculating the voxel-wise time delays between sLFOs in 

fMRI signals from each voxel and SSS; 3) cerebral blood density from the voxel-wise SDs of LFO 

in fMRI signals. Lastly, we compared our results with previous research of RS network 

connectivity on the same dataset [44]. 

2.2.5 Cerebral circulation 

To calculate the delays of the sLFOs between ICA and SSS in caffeinated and uncaffeinated 

scans, we applied the same method in Tong et al. 2018 to extract the fMRI signals in these large 

blood vessels. In short, left and right ICAs and SSS were identified from structural images (T1- 

and T2- weighted images) [31]. Time series within these identified blood vessels were extracted 

and averaged (FSL fslmeants) from the RS fMRI (after registering high-resolution vessel masks 

onto the low-resolution fMRI images). To calculate the time delays between the sLFOs of two 

vessels, we conducted the following steps. 1) A band-pass zero-lag Butterworth filter (0.01-0.1Hz) 

was applied to the time series from SSS, global signal (GS), and ICA to extract the sLFOs, which 

were then oversampled to increase the temporal resolution (from 1.16s to 0.116 s). 2) The principal 

component analysis was then applied to the signals from left and right ICAs to obtain the principal 

signal of the low-frequency component to improve the signal-to-noise ratio. 3) Time delays 

between the sLFOs from GS, ICA, and SSS were calculated using cross-correlation (xcorr in 

Matlab), which found the absolute maximum cross-correlation coefficient (MCCC) between the 

signals within a ±15s window. The MCCC threshold was set at 0.28, which was the significance 

threshold based on previous research [27]. In addition, voxel-wise delay maps were generated 

based on the method developed previously [46]. In short, the time delay between every voxel’s RS 

BOLD signal and the SSS signal was calculated to represent the blood arrival time at that voxel. 

The delays calculated between large vessels, as well as the whole brain delay maps, were later 

compared between caffeinated and uncaffeinated scans to expose the caffeine effects on the 

circulation. 
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2.2.6 Cerebral blood density (volume) 

Previous research reported that the ALFFs in the RS BOLD signal was positively correlated 

with blood density in the voxel [26]. Here, we calculated the SD in RS BOLD signal to represent 

the cerebral blood density (volume). Voxel-wise SD maps were calculated with the following steps:  

First, a band-pass zero-lag Butterworth filter (0.01-0.1Hz) was applied to the time series of each 

voxel in the brain. Second, SDs of the low-frequency time series were calculated in each voxel. 

Finally, the SD differences (in percentage) between caffeinated and uncaffeinated scans were 

obtained by subtraction. 

2.2.7 Statistical analysis 

The distribution differences of time delays between GS, ICA, and SSS in caffeinated and 

uncaffeinated scans were tested by the Kolmogorov–Smirnov test [47]. 

To assess the statistical significance of the difference between caffeinated and uncaffeinated 

scans, we conducted the randomization procedure. In detail, 90 delay maps (or SD maps) were 

randomly placed into two groups (45 each). Each group would have roughly the same numbers of 

caffeinated scans as well as uncaffeinated scans. The averaged delay maps (or SD maps) were 

calculated from each group and the subtraction between these two groups was obtained. Since 

there is no difference in the subtraction (because equal numbers of caffeinated and uncaffeinated 

scans are included in each group), the subtraction result should be close to 0 and its distribution 

could be used to extract the threshold of the null hypothesis to assess the real effect. The processes 

of generating random groups and the subtraction between these groups were repeated for 10000 

trials. The threshold was selected as P < 0.01 or P > 0.99 (P indicated the probability of having 

spurious results), from the averaged distribution of the subtractions.  

2.3 Results 

2.3.1 Comparison of caffeinated and uncaffeinated results 

Cerebral circulation time (CCT) difference 

Figure 2-2 shows the time delay differences between SSS and GS, GS and ICA, ICA and GS. 

Time delays are significantly shorter between SSS and ICA in the caffeinated scans (5.03±0.617s) 

than those from the uncaffeinated scans (5.96±0.659s) (p < 0.001), indicating the shorter CCTs in 
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caffeinated scans. This result is consistent with the following observations: 1) time delays are 

significantly shorter between SSS and GS in the caffeinated scans (2.15±0.237s) than the 

uncaffeinated scans (2.74±0.303s) (p < 0.001). 2)  time delays are significantly shorter between 

GS and ICA in caffeinated scans (2.87±0.767s) than uncaffeinated scans (3.38±0.783s) (p < 0.05). 

 

Figure 2-2 Comparison of time delay distribution between 45 caffeinated RS scans (brown) and 45 uncaffeinated RS 

scans (gray). Time delays were calculated between (a) superior sagittal sinus (SSS) and global signal (GS), (b) GS 

and internal carotid artery (ICA), and (c) SSS and ICA. Results with absolute maximum cross‐correlation coefficients 

less than 0.28 were excluded to avoid spurious correlations. Time delay distributions between caffeinated and 

uncaffeinated scans were compared by Kolmogorov–Smirnov test [20]. 

Delay map difference 

Figure 2-3 (a) shows the average delay map from 90 RS scans (from a single subject). It 

demonstrates that the delay map calculated from this data largely matches the cerebral blood 

circulation. Red indicates the early arrival of the sLFOs (i.e. blood), while blue denotes late arrival. 

Since the voxel-wise delay value was calculated between the sLFO from each voxel and the SSS, 

the arrival times were relevant to that of SSS. Figure 2-3 (a) shows that the brain is dominated by 

“Blue”, indicating that blood reached most of the voxels before it arrived at SSS (which is expected, 

as the SSS is a major blood drainage vessel from the brain). Interestingly, the ICAs were 

automatically identified as the regions where blood arrives very early (see the arrows in figure 2-

3 (a)). This phenomenon confirmed that sLFOs indeed were “pumped” into the brain through 

arteries, such as ICAs. A detailed discussion about the sLFOs in ICA can be found in our previous 

publication [31]. The fact that the delay map can automatically locate ICA out of RS fMRI data 

with correct delay values showed the robustness of the sLFO in fMRI signal as well as our method. 

Delay map difference obtained by subtracting the delay map of 45 caffeinated scans from that of 

45 uncaffeinated scans is shown in figure 2-3 (b). It shows that the subtracting result of the delay 
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maps is dominated by “Red”, indicating that blood flow speed increased in most of the brain 

regions under the effect of caffeine. 

 

Figure 2-3 Delay maps. (a) Averaged delay map from 90 RS scans. Time delays were calculated between sLFOs of 

SSS and all the voxels in the brain. The blue color showed the later arrival time of blood and the blue-lightblue color 

showed earlier arrival time regarding SSS. (b) The difference between caffeinated and uncaffeinated delay maps. Red-

yellow color showed time delays between the voxels and SSS were shorter in the caffeinated scans than the 

uncaffeinated scans [20]. 

 

Figure 2-4 (a) shows the distribution of randomized subtraction (from 10000 random 

combinations) in blue and the real caffeinated vs. uncaffeinated subtraction in red (see 2.4.3). From 

the distribution of randomized subtraction in figure 2-4 (a), we found the results were clustered 

tightly around 0, which was expected due to no caffeine effects in the randomized data. However, 

the distribution of real caffeinated vs. uncaffeinated subtraction was much broader. This further 

indicates that the differences calculated between caffeinated and uncaffeinated scans are 

significant. We obtained the thresholds on delay differences to be > 0.037s or < -0.042s (P < 0.01), 

which were used on figure 2-5 (a) and the upper panel of figure 2-8 to produce statistically 

significant delay maps differences.  
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Figure 2-4 Time delay difference and SD difference. Original results of time delay difference (a) and SD difference 
(b) between caffeinated and uncaffeinated scans were presented as red distribution. Randomization results of time 

delay difference (a) and SD difference (b) between caffeinated and uncaffeinated scans were presented as blue 

distribution [20]. 

 

 

Figure 2-5 Delay maps and SD maps differences using different threshold method. (a) Thresholded (from 

randomization) subtraction of delay map (caffeinated – uncaffeinated). (b) Thresholded (from randomization) SD 

percentage difference ((caffeinated – uncaffeinated) / caffeinated) [20]. 

Standard deviation difference 

Figure 2-6 (a) shows that voxels with higher LFO amplitude (i.e. SD) in yellow, projected 

onto the subject’s own structural scan (T2-weighted image). The yellow regions overlapped 

precisely with the visible blood vessels (marked by squares in T2-weighted image figure 2-6 (b)). 

This is in accordance with the findings in Vigneau-Roy et al. 2014, which reported that the ALFFs 

of RS BOLD signal was positively correlated with blood density in the voxel [26]. 
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Figure 2-6 SD map and blood vessel identified in T2- weighted image. Upper panel: Averaged SD map from 90 RS 

scans. Lower panel: T2‐ weighted image. Brain region with high systemic low‐frequency oscillation amplitude 

matched the locations of big blood vessels (marked by squares in (b)) [20]. 

 

We used this feature to assess blood vessel changes due to the caffeine effect. The 

rows/columns of voxels (shown by arrows) in figure 2-7 (a1-a2) pass through areas with high 

blood density (or large blood vessels). The corresponding profile (of RS BOLD signals’ SDs along 

the white arrow) is shown in figure 2-7 (b1-b2), which presented the averaged results of 

uncaffeinated scans and caffeinated scans. From figure 2-7 (a1-a2), visible decreases in the yellow 

pattern were found in caffeinated results, which is confirmed by figure 2-7 (b1-b2). It shows the 

intensity profile of the SDs of LFOs was “constricted” and decreased after coffee. This observation 

could be interpreted as vasoconstriction due to the caffeine. To assess the vessel constriction effect 

in the whole brain, we compared the SD difference in percentage ((caffeinate – 

uncaffeinated)/(caffeinated)) between caffeinated and uncaffeinated scans. To assess the result 

from the statistical point of view, we also conducted the “randomization” procedure used before, 

with similar findings (shown in figure 2-4 (b)). The distribution of real caffeinated vs. 

uncaffeinated subtraction was much broader than the results from randomized subtractions, 

indicating the difference calculated between caffeinated vs. uncaffeinated is not spurious but 

robust. We obtained the thresholds on percentage SD difference to be > 1.01% or < -0.12% (P < 

0.01), which were applied on figure 2-5 (b) and the lower panel of figure 2-8 to produce the map 

of statistically significant SD differences.  
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Figure 2-7 averaged SD maps and SD intensity profiles. (a1–2) show the average SD maps of caffeinated and 

uncaffeinated scans at different MNI coordinates. (b1–2) were SD intensity profiles, which reflected the corresponding 

SD values along the white arrow in both averaged uncaffeinated (gray) and caffeinated scans (brown) from (a1–2), 

respectively [20]. 

2.3.2 Neuronal and vascular effects 

As we know, caffeine has both vascular and neural effects. It is of great interest to understand 

the spatial correlation between vascular and neuronal effect (from previous studies). In detail, we 

conducted the following steps: First, significant whole-brain time delay differences (Figure 2-5 (a)) 

and SD percentage differences (Figure 2-5 (b)) were parcellated according to nine functionally 

coherent RS networks [48]. These well-known RS networks have been studied with the 

Myconnectome dataset previously to assess the neuronal effect of caffeine [44, 49]. Subsequently, 

the average of time delay differences and SD percentage differences were obtained from each 

network.  The results were shown in figure 2-8. Negative values of the blue boxplot indicated 

shorter time delays, while negative values of the red boxplot showed a smaller vessel size after 

caffeine intake. 

In figure 2-8, significantly shorter time delays and smaller SDs can be found in all nine RS 

networks in caffeinated scans. The top four RS networks with the highest time delay differences 

(i.e. auditory, somatomotor, visual and, ventral attention networks), are also the top four networks 

with the highest SD percentage differences. Moreover, we found high linear correlations between 

relative fluctuations (represented by black dotted linked by solid lines in figure 2-8.) in averaged 

differences of time delays and SDs among different networks (r= 0.6, p= 0.09, high p-value 
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reflected few data points). This feature indicates that network-specific flow velocity changes are 

well correlated with the vessel size changes under the influence of caffeine.  

Interestingly, Poldrack et al. found significantly lower connectivity within and between 

somatomotor, dorsal attention, and visual networks in caffeinated scans. Moreover, similar 

decreasing connectivity was found within the motor cortex after caffeine intake [34]. These RS 

networks (i.e. motor, visual) with decreasing connectivity were the same networks that have the 

largest time delays and SDs changes after caffeine intake (except dorsal attention network). It 

shows that caffeine has profound vascular effects (e.g. vessel constriction) in the brain regions 

where neuronal connectivities were also weakened. This is the first study to expose simultaneously 

the vascular and neuronal effect of a drug from the same resting-state fMRI data. The interaction 

between regional perfusion and neuronal activity, exposed by the method, is crucial for the 

understanding of the effects of drugs, brain diseases, etc. More qualitative studies of large 

populations are needed to fully explore the effects. 

 

Figure 2-8 Vascular effect of caffeine on 9 RS networks.  The significant time delay differences (upper blue panel) 

and SD differences (lower red panel) between caffeinated and uncaffeinated scans were showed for 9 RS networks. 

(DMN: default mode network, VIS: visual network, FP: frontoparietal network, DA: dorsal attention network, VA: 

ventral attention network, SAL: salience network, CO: cingulo‐opercular network, SM: somatomotor network, AUD: 

auditory network) [20]. 
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2.4 Discussion 

2.4.1 Caffeinated scans gave the faster speed of blood flow 

Figure 2-2 showed statistically significant shorter time delays of sLFOs between SSS and 

ICA, in caffeinated scans than in uncaffeinated scans (~0.9s), which could be interpreted as 

decreases of CCTs. However, studies from positron emission tomography (PET) and arterial spin 

labeling (ASL) reported that decreasing CBF was detected after caffeine ingestion [34, 42, 50, 51]. 

Decreasing CBF would, on the surface, seem to imply an increase of the CCT. This seems to 

contradict the finding in this study. One possible explanation may lay in the fact that CCT is not 

necessarily inversely correlated with CBF. CCT reflects the time for a bolus or red blood cells to 

travel from the ICA to the SSS (speed). However, CBF is measured in the amount of blood (ml) 

passing through a certain mass of tissue (100g) in unit time (e.g. min). If vessel size stays the same, 

an increase in CBF will decrease CCT. However, in the situation of caffeine, pressure-induced by 

vessels constriction (coupled with elevated cerebral blood [52]) leads to the increased blood flow 

speed (see section 4.2 in the discussion). However, the effects of vessel constriction on CBF are 

twofold: 1) elevated blood speed will increase CBF; 2) vessel constriction will decrease CBF. 

Since the latter effect is dominant (~r2, r is vessel diameter), vessel constriction will lead to a 

decrease in CBF. This model explains how caffeine-related vessel constriction can increase the 

blood flow speed inside the vessels, (leading to shorter CCT) while decreasing the CBF. 

Nevertheless, a caffeine study using transcranial Doppler to measure the velocity of the middle 

cerebral artery (MCA) after 250mg of caffeine ingestion showed a significant reduction of the 

velocity by 13% and reduction of MCA diameter by 4.3% [53]. This does not contradict our model 

(see in next paragraph) since the RS BOLD signals we studied (e.g. SSS and global mean) are 

mostly vein signals. The perfusion parameters we derived, including time delay and SD, are 

biased/more sensitive towards the venules and veins. Therefore, we think the velocity change and 

vessel constriction measured by RS BOLD signals mostly happen in the capillary, venules, and 

veins (see discussion in 4.3).  

Delay map differences between uncaffeinated scans and caffeinated scans are shown in 

figure 2-5 (a). The regions in blue-light blue are the areas where the time delays are shortened 

referred to as SSS (i.e. increase cerebral blood flow speed). Figure 2-5 (a) showed that in most of 

the brain the cerebral blood flow speed did increase mildly (within 1s) after caffeine intake. 

However, there are also regions where CBF speed is reduced (red-yellow regions: longer time 
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delays referred to SSS, especially in figure 2-5 (a)). These regions are concentrated in the lower 

part of the brain overlapping with MCA. This observation matched the previous publication of 

transcranial doppler studies of caffeine [53]. 

2.4.2 Caffeinated scans have lower LFO amplitude 

It has been known that areas of high SDs in RS fMRI correspond very well with large vessels 

in the flow-weighted image [54]. It was even suggested to use these SD maps to identify the 

location of large vessels. A recent study has investigated the link between regional variations of 

vascular density (VAD) and the ALFFs of RS BOLD signals. They found a positive correlation 

between the VAD (from the venous vascular tree in susceptibility-weighted imaging) and the 

ALFFs. These findings were similar to the results shown in figure 2-6. As result, vessel 

constriction will decrease the VAD signal, which results in smaller ALFFs. We can see in figure 

2-7 that the SD profile curves are narrower and shorter in the caffeinated scans, which indicated 

that the effect of caffeine is largely vessel constriction. This is more obvious in the case of large 

veins. In the top left graphs of figure 2-7, SSS were identified with RS BOLD signals of high SD. 

Its diameter became smaller after caffeine intake. The profile curves (shown on the right) 

confirmed the observation, which was consistent with the previous findings of the reduction of 

BOLD amplitude after caffeine intake [34, 55]). Moreover, a similar effect was also found in the 

global LFO [51]. To validate the global effect of caffeine, the SD of global LFO was also 

calculated in this study. The result indicated that the SDs of LFOs were significantly larger in 

uncaffeinated scans than in caffeinated states (p<0.001), which was consistent with previous 

findings [51]. 

The whole-brain SD difference between uncaffeinated scans and caffeinated scans was 

shown in figure 2-5 (b). Red-yellow regions indicated the vessel constriction after caffeine intake, 

while the blue-light-blue regions showed the opposite effects. We can see that vessel constrictions 

are commonly found in the regions of high blood density (e.g. gray matter), while the opposite 

was found in the white matter and lower part of the brain. Our results are consistent with previous 

ASL findings, which reported that decreasing CBF was widespread in the grey matter after caffeine 

intake [56, 57]. Compared to the delay map difference shown in figure 2-5 (a), we found that the 

regions of vessel constriction after caffeine intake overlap largely with the regions where the blood 
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flow speed increases. This result is consistent with our model proposed in 2.4.1. In 2.4.3, we will 

further discuss the spatial correlations of these two vascular effects. 

2.4.3 Possible confounds 

In this study, we want to understand the effects of caffeine on vasculature. However, they 

are three limitations. First, our study was on a single subject. The studies with more subjects are 

needed to validate the findings. Second, in the original Myconnectome study, for the scans that 

subject drank the coffee previously, he also had breakfast. For those scans the subject did not drink 

coffee, the subject did not have breakfast (for the reason of blood draw). Therefore, there is a risk 

that our results are confounded with the effect of food intake. These confounding effects include 

calorie intake, salt intake, etc. However, it was found that food intake made no significant changes 

in arterial blood pressure, CBF, or cerebral oxygen consumption [58]. Thus, we believe that our 

findings were largely caused by the vasoconstriction effect of caffeine. In our future studies, we 

will eliminate these confounding effects. 

A second confound is that the subject reported that there was a 90-minute lapse (from the private 

email exchange with the author) between the coffee-drinking and the scan. This might be 

considered too long for the caffeine effect to be sustained. However, researchers have found that 

profound caffeine effects are still detectable 90 minutes after caffeine intake [41]. 

Finally, the amount of caffeine intake before caffeinated scans was 2 shots of espresso (from 

the private email exchange with the author). According to previous research, 2 shots of espresso 

contain roughly 140 mg caffeine [59]. We were concerned about the moderate amount (~140 mg) 

of caffeine consumed in this study. However, other studies have shown that relative MR flow 

signals decreases were similar between 100 mg and 200 mg caffeine intake [60]. Therefore, we 

believe that the main effect we studied is from caffeine. 

2.5 Conclusion 

To the best of our knowledge, this is the first study using dynamic features of sLFOs to 

extract physiological perfusion information from RS fMRI drug studies (i.e. caffeine). We have 

illustrated that caffeine decreases the vessel size (i.e. the lower dynamic SD of LFO) and increased 

the blood flow speed in those vessels (i.e. the shorter time delays), using only fMRI data. These 
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findings were supported by the spatial overlapping of these two vasoconstriction effects of caffeine.  

Furthermore, we found these vascular effects are also spatially correlated with the neuronal effect 

of caffeine obtained from previous studies. In conclusion, we demonstrate that vascular features 

can be extracted from fMRI data which may offer valuable complementary information to the 

neuronal activation. This is extremely useful in drug studies, where vascular and neuronal effects 

are intertwined, and understanding the individual effect as well as the interactions is crucial. In the 

future, we will apply our method to assess the vascular information from drug-related fMRI studies 

and compared it with the neuronal activations quantitatively. 
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 STUDY 2 

This chapter is reproduced with copyright permission from Journal of Biophotonics, 2020. 

13(11): p. e202000173. doi: 10.1002/jbio.202000173 [61]. 

3.1 Introduction 

Additional to caffeine, hypercapnia, a condition where CO2 is elevated, is known to cause a 

global increase in CBF due to the potent effect of CO2 as a vasodilator [62]. Vasoactive stress tests 

(i.e. hypercapnia, elevated partial pressure of arterial CO2 (PaCO2)) are widely used in imaging 

studies to expose hidden brain perfusion deficits by increasing cerebral blood flow (CBF) [23, 63, 

64]. Increasing PaCO2 decreases pH and relaxes vascular smooth muscle cells in arteries, 

ultimately leading to an increase in CBF [65, 66]. The end-tidal CO2 (PETCO2: the concentration 

of CO2 at the end of exhaled breath) is commonly used as a surrogate signal for PaCO2 [23, 63, 

64, 67, 68]. 

There are two common methods used to induce hypercapnia. The first method is CO2 

inhalation, which requires a subject to wear a breathing mask that is connected to a system that 

controls the mixture and flow rates of gases (e.g. O2, N2, and CO2) [69, 70]. This method can either 

deliver a fixed concentration of CO2 or target a subject-specific PETCO2 level for a period of time 

(~120 seconds) [23, 71-73]. Because this method allows subjects to inhale CO2 passively, it is 

coined CO2 inhalation or CI. Second, the breath-holding (BH) task requires subjects to hold their 

breath for short periods of time (~20 seconds). This method also results in an increase in PETCO2 

and a subsequent increase in CBF [74, 75]. The BH task is a simpler means to induce hypercapnia 

compared to the CI task since it does not require additional specialized equipment. 

Near-infrared spectroscopy (NIRS) is a non-invasive optical device that has been widely 

used to investigate concentrations of oxyhemoglobin (∆[HbO]) and deoxyhemoglobin (∆[Hb]) at 

the surface of the cortex, thereby providing measurements of cerebral blood flow (CBF), volume, 

and oxygenation changes [76-79]. Compared to functional magnetic resonance imaging (fMRI), 

NIRS is a low-cost, portable technology for studying brain function and physiology [78]. There 

are several benefits of using NIRS. For example, NIRS can provide real-time measurements (e.g. 
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football field) and bedside measurements (immobile people), as chronic brain damage has 

prompted concern for contact sport athletes [80-84]. 

Recently, some studies have used NIRS to study hypercapnia under the CI and BH tasks [85-

91]. However, results from CI tasks have been inconsistent; this may be due to physiological noise 

coming from the skin and skull [92-94]. For example, two studies reported that NIRS signals 

correlated well with PETCO2 under the CI task [85, 90], but other studies found that NIRS signals 

were not sensitive to PETCO2 under the CI task [87-89]. The goals of this study were to better 

understand NIRS signals during different hypercapnia tasks and develop a robust and independent 

NIRS protocol to assess brain reaction to vasostimulus. The NIRS signals (∆[HbO]and ∆[Hb]) and 

fMRI blood oxygenation level-dependent (BOLD) signals were compared for consistency with the 

goal of validating NIRS as a portable fMRI proxy. 

3.2 Materials and Methods 

3.2.1 Protocol 

This study was approved by Purdue University Institutional Review Board. Informed consent 

was obtained from all subjects. Ten healthy subjects (4 female, 6 male, age range 19-33, mean age 

23 years) were recruited for several hypercapnia tasks measured by NIRS and fMRI concurrently 

(Figure 3-1 (a-f)). 
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Figure 3-1 Experimental design and setup. Schematic of (a) Configuration of the NIRS channels on the head. (b) 

Experimental setup of the concurrent fMRI/NIRS experiments (c) the sharp-CI, (d) the long-ramped CI, (e) the BH, 

and (f) the short-ramped CI tasks [61]. 

3.2.2 Near-infrared Spectroscopy 

The CW NIRS system (NIRScoutXP NIRx Medizintechnik GmbH; Berlin, Germany) and 

MRI-compatible NIRS probes with 10 m long optical fibers were used to measure ∆[HbO] and 

∆[Hb]. This system uses laser sources, each combining two wavelengths (785 nm and 830 nm). 

The source-detector distance was 3 cm. Vascular reactions to hypercapnia were recorded from the 

prefrontal region of the brain. Due to the limited space in MRI head coil, 17 NIRS channels (7 

sources and 7 detectors) were deployed with a sampling rate of 7.8125 Hz (Figure. 3-1 (a)). 
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3.2.3 MRI 

Functional MRI data were obtained using a 3T GE Discovery MR750 MR scanner (GE 

Electric; Milwaukee, WI, USA) and a 32-channel receiver head coil (Nova Medical, Inc.; 

Wilmington, MA, USA). The MRI scans were acquired using a multiband echo-planar imaging 

sequence (FOV = 216 mm, acquisition matrix = 72 × 72, 60 slices, voxel size = 3 × 3 × 3 mm3, 

TR/TE = 1000/30 ms, flip angle = 50°, hyperband acceleration factor = 4, phase acceleration factor 

= 1). 

3.2.4 Sharp-CO2 inhalation (Sharp-CI) task 

For the sharp-CI task, varying CO2 concentrations were supplied to each subject, through a 

sealed mask, by a computerized gas delivery system (RespirActTM, Thornhill Research Inc. 

Toronto, Canada) (Figure 3-1 (b)) [69]. PETCO2 and PETO2 were controlled and measured 

throughout the experiment. All subjects took part in pre-testing outside the MRI to ensure they 

were capable and comfortable performing the sharp-CI task. The pre-testing consisted of 1) a 

measurement of each subject’s baseline PETCO2, and 2) a short version of the sharp-CI task. The 

full task consisted of five two-minute blocks (Figure 3-1 (c)). The 1st, 3rd and 5th blocks were rest 

blocks where subjects inhaled normal air. The 2nd and 4th blocks were hypercapnia blocks where 

subjects inhaled air with sharply elevated CO2 concentration that led to an increase of 10 mmHg 

above each subject’s PETCO2 baseline within one or two breaths. The PETCO2 was then maintained 

at a high level for 2 minutes (Figure 3-1 (c)) [95]. 

3.2.5 Other induced-hypercapnia tasks 

To further explain inconsistencies between the NIRS and fMRI signals under the sharp-CI 

task (Figs. 2 and 3), we conducted three additional concurrent-fMRI/NIRS experiments on 4 out 

of the original 10 subjects (2 male, 2 female, age range 20-29, mean age 22 years, subgroup). 

These additional experiments (i.e., long-ramped CI, BH, and short-ramped CI tasks) examined the 

effects of the rate of hypercapnia inducement on NIRS and fMRI data. 

First, the sharp-CI task was modified to incorporate the long-ramped increase in PETCO2, 

called the long-ramped CI task (as shown in figure 3-1 (d)) [90]. In short, during the hypercapnia 
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blocks, the PETCO2 was slowly ramped up to 10 mmHg above the subject’s baseline within 75 

seconds and then maintained at that level for 105 seconds. 

Second, the BH task was adopted from a widely used paradigm [96]. It consisted of 6 BH 

epochs (Figure 3-1 (e)); each epoch had 18 seconds of paced breathing (3 repetitions of a 3 second 

inhale followed by a 3 second exhale), followed by 20 seconds of BH, and then 15 seconds of 

normal breathing (total time = 5 minutes 18 seconds). To acquire consistent results from the BH 

task across all subjects, a gentle exhale was required before the BH [96]. An open-source package 

from PsychoPy was compiled to provide instructions to subjects and control procedures (i.e. paced 

breathing, BH, and normal breathing) [97]. 

Lastly, a short-ramped PETCO2 was designed (Figure 3-1 (f)) to simulate the BH task via 

PETCO2 control. In short, the short-ramped CI paradigm began with 18 seconds of rest followed 

by six blocks of alternating hypercapnia sections. The first hypercapnia section slowly ramped the 

subject’s PETCO2 to 10 mmHg above their baseline within 20 seconds, and the second section 

consisted of normal breathing for 33 seconds. The 10 mmHg increase of PETCO2 was selected 

based on a study by Tancredi et al. (2013) which demonstrated that the PETCO2 elevation after a 

20 second BH was close to 10 mmHg [98]. 

3.2.6 Data analysis 

All NIRS data were processed using the nirsLAB analysis package (v2016.05, NIRx Medical 

Technologies, LLC.; Los Angeles, USA) [99] and MATLAB (MATLAB 2018b, The MathWorks 

Inc., Natick, MA, 2000). NIRS signals with bad signal quality were eliminated (i.e. signals with 

no visible heartbeat signal). For the BH and short-ramped CI task, NIRS signals from those six 

cycles were parsed and aligned to calculate the folding-average result [32]. 

All MR data were processed using FSL (FMRIB Expert Analysis Tool, v6.01; Oxford 

University, UK [45]) and MATLAB. The fMRI BOLD signals acquired during the CI and BH 

tasks were preprocessed with the following steps recommended by Power et al. (2014): 1) motion 

correction (FSL mcflirt) and 2) spatial smoothing with a full width at half maximum (FWHM) of 

5 mm isotropic Gaussian kernel [14]. For comparison with NIRS data, the percent change of 

averaged BOLD signal (Δ𝐵𝑂𝐿𝐷̅̅ ̅̅ ̅̅ ̅̅ %) from the prefrontal region was calculated to represent the 

intracerebral signal in the brain. In short, a prefrontal ROI was created on the standard structural 

brain and then warped onto each subject’s fMRI space to extract the corresponding temporal fMRI 
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signals [100]. Lastly, the time series of BOLD signals from all the voxels were averaged (FSL 

fslmeants). 

For the sharp-CI and long-ramped CI task, a zero-delay lowpass filter (0.1 Hz, 3th order) was 

used to extract the low-frequency signals (ΔPETCO2, Δ𝐵𝑂𝐿𝐷̅̅ ̅̅ ̅̅ ̅̅ %, ∆[HbO], and ∆[Hb]), since both 

tasks contain low-frequency components (< 0.005 Hz). For BH, and short-ramped CI tasks, a zero-

delay bandpass filter (0.01-0.1 Hz, 3th order) was used to extract the low-frequency signals. 

To visualize the group result from each experiment averaged signals (signals obtained from 

fMRI/NIRS) from each subject were first normalized (subtracted by mean and divided by standard 

deviation) and then averaged by the number of subjects in the group. 

To calculate the correlation between signals (NIRS signals, Δ𝐵𝑂𝐿𝐷̅̅ ̅̅ ̅̅ ̅̅ %, and ΔPETCO2), cross-

correlation (MATLAB xcorr, lag range = ± 45 seconds) was performed, knowing time delays 

might exist among these signals. For statistical analysis, the maximum cross-correlation 

coefficients (MCCCs) were converted into Z-values using Fisher’s Z-transformation [101, 102]. 

Then, a one-sample 𝑡 test against zero was applied on the correlation Z-values. The significance 

level was set at 𝑝<0.05, which was corrected for multiple comparisons using the false discovery 

rate (FDR) criterion [103]. For the additional induced-hypercapnia tasks (4 subjects), the 𝑝-value 

was not corrected for multiple comparisons due to the small sample size. 

Movies were created to reflect the spatio-temporal changes of NIRS signals, ΔPETCO2, and 

especially the regional ΔBOLD̅̅ ̅̅ ̅̅ ̅̅ % under hypercapnia tasks. Tasks included the sharp-CI task (one 

example with high correlations between ΔBOLD̅̅ ̅̅ ̅̅ ̅̅ %, ΔPETCO2, and NIRS signals and another 

example with low correlations), the breath-holding task, and the long-ramped CI task. 

3.3 Materials and Methods 

3.3.1 Sharp-CI results 

Consistent Δ𝐵𝑂𝐿𝐷̅̅ ̅̅ ̅̅ ̅̅ % were found across all subjects under the sharp-CI task, which were 

highly correlated to the waveform of ΔPETCO2 (r = 0.89 ± 0.07, 𝑝 <  10−7 ). However, 

inconsistent NIRS signals were found across subjects. For example, averaged NIRS signals had 

much lower correlation values, and larger standard deviations, when ΔPETCO2 was increased 

sharply (∆[HbO]: r = 0.45 ± 0.44, 𝑝 <  10−3; ∆[Hb]: r = -0.69 ± 0.20, 𝑝 <  10−4). 
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More importantly, averaged NIRS signals showed low correlation with Δ𝐵𝑂𝐿𝐷̅̅ ̅̅ ̅̅ ̅̅ % (∆[HbO]: 

r = 0.43 ± 0.28, 𝑝 <  10−3; ∆[Hb]: r = -0.51 ± 0.32, 𝑝 <  10−3). In fact, correlations between 

Δ𝐵𝑂𝐿𝐷̅̅ ̅̅ ̅̅ ̅̅ % and NIRS signals were low in most of the channels (Figure 3-2) and the lowest averaged 

MCCC between Δ𝐵𝑂𝐿𝐷̅̅ ̅̅ ̅̅ ̅̅ % and ∆[HbO] was 0.14. Also, the averaged MCCCs were spatially 

different. To highlight NIRS signal inconsistencies, two subjects are discussed in detail. 

 

Figure 3-2 Averaged MCCC from each channel under the sharp-CI task. Averaged MCCC from each channel under 

the sharp-CI task between Δ𝐵𝑂𝐿𝐷̅̅ ̅̅ ̅̅ ̅̅ % and (a) ∆[HbO], (b) ∆[Hb]. Crosses in the channel indicate a 𝑝-value larger than 

0.05 under the FDR-criterion [61]. 

 

 

Figure 3-3 inconsistent NIRS signal during the sharp-CI task. Results showing inconsistencies in NIRS signals during 

the sharp-CI task from two example subjects in (a) and (b). The signals of ΔPETCO2, Δ𝐵𝑂𝐿𝐷̅̅ ̅̅ ̅̅ ̅̅ %, ∆[HbO], and ∆[Hb] 
are shown in the colors of black, purple, red, and blue respectively. The averaged results of ∆[HbO] and ∆[Hb]are 

shown at the bottom right of (a) and (b) in red boxes [61]. 
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The results from the sharp-CI task observed from subject 1 presented good signal correlations 

between Δ𝐵𝑂𝐿𝐷̅̅ ̅̅ ̅̅ ̅̅ %, ΔPETCO2, and NIRS signals (Figure 3-3 (a)). Under the sharp-CI task, Δ𝐵𝑂𝐿𝐷̅̅ ̅̅ ̅̅ ̅̅ % 

was highly correlated with ΔPETCO2 (r = 0.86) (Figure 3-3 (a)), indicating a fast-vascular reaction 

in the brain. Additionally, although MCCCs between NIRS signals and Δ𝐵𝑂𝐿𝐷̅̅ ̅̅ ̅̅ ̅̅ % were not low 

(∆[HbO]: r = 0.63 ± 0.12, 𝑝 <  10−9; ∆[Hb]: r = -0.57 ± 0.13, 𝑝 <  10−9), most ∆[HbO]/∆[Hb] 

signals responded slowly to the sharp increase of ΔPETCO2. Moreover, ∆[HbO] signals (e.g., CH16) 

continued to increase the following cessation of the hypercapnic block and it took a full two 

minutes to decrease during the resting block. 

In another subject (e.g., subject 2), NIRS signals did not correlate well with Δ𝐵𝑂𝐿𝐷̅̅ ̅̅ ̅̅ ̅̅ % 

(Figure 3-3 (b), ∆[HbO]: r = 0.08 ± 0.20, 𝑝 >  0.05; ∆[Hb]: Z = -0.08 ± 0.17, 𝑝 >  0.05), and 

didn’t appear to react to the sharp-increase in ΔPETCO2. Further, the ∆[HbO]  signals, which 

showed good signal quality and consistency among channels, hardly changed during the first 

hypercapnic block but instead increased during the resting block. Interestingly, Δ𝐵𝑂𝐿𝐷̅̅ ̅̅ ̅̅ ̅̅ % for this 

subject increased sharply with a sharp increase in ΔPETCO2 (Z = 0.94), as seen with subject 1 

(Figure 3-3 (a)). 

3.3.2 Additional induced-hypercapnia tasks 

The ΔPETCO2, Δ𝐵𝑂𝐿𝐷̅̅ ̅̅ ̅̅ ̅̅ % and NIRS signals under the BH task, long-ramped CI, short-

ramped CI, and sharp-CI task from 4 selected subjects were also averaged (Figure 3-4). In all tasks, 

Δ𝐵𝑂𝐿𝐷̅̅ ̅̅ ̅̅ ̅̅ % signals were highly correlated with ΔPETCO2 (r > 0.78, p < 0.05), indicating robust and 

fast cerebral reactivity. However, there were profound differences in NIRS signals: 

1. Sharp-CI task results from these 4 subjects were also included for ease of comparison. 

Under the sharp-CI task (Figure 3-4 (a)), the MCCCs between NIRS signals and Δ𝐵𝑂𝐿𝐷̅̅ ̅̅ ̅̅ ̅̅ % 

was relatively low (∆[HbO]: r=0.47 ± 0.55, 𝑝 < 0.05; ∆[Hb]: r = -0.32 ± 0.45, 𝑝 > 0.1) 

with large standard deviations and long delays.  These results are in line with the rest of 

the subjects discussed in section 3.3.1. 

2. Under the BH task (Figure 3-4 (b)), both ∆[HbO]  and ∆[Hb]  signals were highly 

correlated with Δ𝐵𝑂𝐿𝐷̅̅ ̅̅ ̅̅ ̅̅ % (∆[HbO]: r = 0.77 ± 0.1, 𝑝 < 0.005; ∆[Hb]: r = -0.58 ± 0.11, 

𝑝 < 0.005). 
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3. Under the long-ramped CI task (Figure 3-4 (c)), both ∆[HbO] and ∆[Hb] signals were 

highly correlated with Δ𝐵𝑂𝐿𝐷̅̅ ̅̅ ̅̅ ̅̅ % (∆[HbO]: r = 0.68 ± 0.06, 𝑝 < 10−3; ∆[Hb]: r = -0.62 

± 0.15, 𝑝 < 0.005). 

4. Under the short-ramped CI task (Figure 3-4 (d)), relatively low MCCCs were found 

between NIRS signals and Δ𝐵𝑂𝐿𝐷̅̅ ̅̅ ̅̅ ̅̅ % (∆[HbO]: r = 0.49±0.29, 𝑝 < 0.05; ∆[Hb]: r = -

0.50 ±0.34, 𝑝 < 0.05). Furthermore, the standard deviations across NIRS results were 

large. 

 

Figure 3-4 The fMRI and NIRS results from different hypercapnia tasks. The fMRI and NIRS results from the (a) 

sharp-CI tasks, (b) BH, (c) long-ramped CI, and (d) short-ramped CI. The shaded areas indicate the targeted ΔPETCO2 

in each task. The averaged ΔPETCO2, Δ𝐵𝑂𝐿𝐷̅̅ ̅̅ ̅̅ ̅̅ % (normalized), ∆[HbO], and ∆[Hb] signals are shown in columns 1-4, 

respectively [61]. 
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The averaged MCCC between Δ𝐵𝑂𝐿𝐷̅̅ ̅̅ ̅̅ ̅̅ % and NIRS signals of each channel and all tasks for 

the subgroup of 4 subjects were calculated (Figure 3-5). ∆[HbO]  and ∆[Hb]  signals were 

significantly correlated with Δ𝐵𝑂𝐿𝐷̅̅ ̅̅ ̅̅ ̅̅ % for most channels in the BH, long-ramped CI, and short-

ramped CI task (Figure 3-5 (a-c)). In contrast, figure 3-5 (d) shows that under the sharp-CI task, 

47% of the ∆[HbO] signals and 82% of the ∆[Hb] signals were not significantly correlated with 

Δ𝐵𝑂𝐿𝐷̅̅ ̅̅ ̅̅ ̅̅ %.  

 

Figure 3-5 Averaged MCCCs between fMRI and NIRS signals. Averaged MCCCs between Δ𝐵𝑂𝐿𝐷̅̅ ̅̅ ̅̅ ̅̅ % and ∆[HbO] 
(∆[Hb]) signals are shown in column 1 (2). The corresponding tasks are sharp-CI (a), BH (b), long-ramped CI (c), 

short-ramped CI (d). Crosses in the channel indicate a 𝑝-value larger than 0.05 under one-sample t-test [61]. 

 

Figure 3-6 illustrates three snapshots from one subject’s long-ramped CI task movie. By 

mapping the spatio-temporal patterns of ΔBOLD̅̅ ̅̅ ̅̅ ̅̅ % in the brain under hypercapnia tasks, we found 

that brain reactions to CO2 are highly spatial-specific. As result, NIRS signals under hypercapnia 

are likely to be spatial-specific as well. Moreover, it was found that the ΔBOLD̅̅ ̅̅ ̅̅ ̅̅ % signal from the 

superficial layer of the prefrontal region (black squares in Figure 3-6) reacted slower to CO2 when 

compared to the deeper layer. This observation indicated that it was incorrect to claim that NIRS 
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signals reflect brain responses from all layers of the prefrontal cortex. Even without physiological 

noise from the skin and skull, NIRS may only measure responses in the superficial layer of the 

brain, which, based on our results, lagged the response from the deeper layer. 

  

Figure 3-6 The fMRI movie snapshots from one subject under the long-ramped CI task. Three snapshots were captured 

at (1) rising phase (2) plateau, and (3) falling phase of ∆𝑃𝐸𝑇𝐶𝑂2 in the long-ramped CI task. During each time point, 

real-time (a) ΔPETCO2 and (b) Δ𝐵𝑂𝐿𝐷̅̅ ̅̅ ̅̅ ̅̅ % (normalized) signals are displayed. Also, Δ𝐵𝑂𝐿𝐷̅̅ ̅̅ ̅̅ ̅̅ % (normalized) maps (red-

yellow refers to positive percent changes and blue-light blue refers to negative percent changes) in (c) sagittal, (d) 

coronal, and (e) axial views are shown. The shaded areas indicate the targeted ΔPETCO2 during the task. The black 

square in every (c) and (e) panel indicate the region of the prefrontal cortex (PFC) [61]. 
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3.4 Discussion 

The goal of this study was to better understand NIRS signals under induced-hypercapnia and 

establish and optimize a corresponding protocol so NIRS can be used in lieu of fMRI as an 

alternative, portable, methodology to acquire critical brain perfusion parameters (e.g. CVR). 

3.4.1 NIRS signals under sharp-CI task 

In the sharp-CI task (i.e., sharp increases in ΔPETCO2), the Δ𝐵𝑂𝐿𝐷̅̅ ̅̅ ̅̅ ̅̅ %s from all subjects were 

highly correlated with the waveform of ΔPETCO2. However, NIRS reactions to the sharp increases 

in ΔPETCO2 were unpredictable and highly heterogeneous both temporally and spatially. The 

difference between the Δ𝐵𝑂𝐿𝐷̅̅ ̅̅ ̅̅ ̅̅ % and NIRS signals relate to the fact that NIRS signals are sensitive 

to blood flow and volume changes in both the extracerebral and cerebral layers, while Δ𝐵𝑂𝐿𝐷̅̅ ̅̅ ̅̅ ̅̅ % 

reflects these changes in the cerebrum only [104, 105]. 

Another possible explanation for the difference between Δ𝐵𝑂𝐿𝐷̅̅ ̅̅ ̅̅ ̅̅ % and NIRS signals may 

be related to layer-specific differences in vascular reactions following exposure to sharp increases 

in PETCO2. In fact, cerebrovascular responses are controlled by an autoregulation system [106], 

while extracerebral reactions are not [107]. A previous study found that the velocity of blood flow 

increased more in the cerebral circulation (about 54% increase in the internal carotid artery) than 

in the extracerebral circulation (about 5% increase in the external carotid artery) under a CI task 

(6% CO2) [108]. Similar results were also found in another study, in which greater blood flow was 

observed in the middle cerebral artery (cerebral) compared to the brachial artery (extracerebral) 

[109]. These findings suggest that the cerebral vascular reaction is more sensitive to PETCO2 

elevation than the extracerebral and peripheral vascular reactions. This makes sense, intuitively, 

given the criticality of brain homeostasis. In detail, blood flow would be dramatically prioritized 

to the brain when PETCO2 increases sharply, leading to a quick reaction observed in cerebral blood 

flow (observed by BOLD fMRI). In contrast, blood flow to the extracerebral layer could be 

dramatically compromised, leading to long delays, gradual increases, or sometimes, unpredictable 

changes in the extracerebral circulation (observed by NIRS). 

The degree of the effect is dependent upon each individual’s physiology (e.g., sensitivity to 

elevated PETCO2, speed of blood flow adjustment, etc.) which could explain the highly varied 

NIRS results between subjects during the sharp-CI task. Based on these arguments, it is 
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hypothesized that the cerebral and extracerebral vascular reactions could be more easily 

synchronized when the PETCO2 increase is not sharp, but instead slow and gradual. This gradual 

increase in PETCO2 would provide adequate time for the carotid artery to meet the increasing 

demands for both cerebral and extracerebral circulation, leading to consistent NIRS signals that 

would correlate better to fMRI signals. 

3.4.2 Validations 

To test the hypothesis, we conducted three additional induced-hypercapnia tasks. Under the 

long-ramped CI task, Δ𝐵𝑂𝐿𝐷̅̅ ̅̅ ̅̅ ̅̅ % and NIRS signals correlated well and showed slow and gradual 

increases (decreased ∆[Hb] signals), as suggested (Figure 3-4 (b)). Furthermore, it is reasonable 

to assume that PETCO2 increases gradually during the BH period due to continuous and stable 

physiological demand and lack of air exchange. The post-exhale BH protocol used in the study 

[96] would raise PETCO2 almost immediately (compared to BH after inhalation), but slowly. If the 

PETCO2 increased slowly during the BH protocol, based on our hypothesis, the cerebral and 

extracerebral circulations should react almost simultaneously. This is exactly what was observed 

(Figure 3-4 (a)). NIRS and Δ𝐵𝑂𝐿𝐷̅̅ ̅̅ ̅̅ ̅̅ % signals correlated well and showed gradual increases during 

the BH. The results are consistent with those from previous fMRI studies [86, 91, 110]. 

Additionally, under the long-ramped CI, most of the NIRS signals had slower responses 

compared to the BOLD fMRI signal, which was also observed in a previous vasostimulus study 

(CI task) [90]. However, the observations were different from the concurrent studies on the 

functional/cognitive tasks (e.g. finger tapping task, go/no go task), which showed that the NIRS 

(∆ [HbO]) reacted faster and had shorter time-to-peaks than BOLD fMRI signals [92, 111, 112]. 

The observed differences are caused by varying brain reactions to neuronal and physiological 

stimuli. First, the NIRS/fMRI signal from the cognitive task results from neurovascular coupling, 

which is regional, while the signal in vasostimulus task results from the vasodilatory effect of CO2, 

which is global (including skin and skull). Secondly, cognitive activation is instantaneous, while 

elevated CO2 must be carried by the blood and may reach different brain regions with varying time 

delays. Thirdly, different brain regions react differently to arriving CO2 based on the local 

hemodynamic response function, which can lead to further delays. In figure 3-6, we observed that 

the Δ𝐵𝑂𝐿𝐷̅̅ ̅̅ ̅̅ ̅̅ % response to CO2 was significantly lagged at the superficial layer of the prefrontal 

cortex when compared to deeper cortical layers. Since the NIRS probe was placed over the 



 

 

42 

prefrontal area, the lagged signal could be captured by the NIRS probe, thus resulting in observed 

delays. 

Lastly, the short-ramped CI task was introduced to simulate the BH task (validating the 

gradual increase of PETCO2 during the BH). The NIRS signal (∆[HbO], (Figure 3-4 (c)) was 

expected to be similar to the signal obtained from the BH task (Figure 3-4 (a)). The results 

demonstrated that the NIRS signal does change according to the task (Figure 3-4 (c)), albeit with 

much more noise than that of BH task-related signals (Figure 3-4 (a)). The main reason could be 

that subjects had to physically breathe in order to reach the PETCO2 level during the short-ramped 

CI task, while during the BH, no breathing was required. As result, NIRS signals in the short-

ramped CI task may have been influenced by the side effects of respiration, such as motion and 

other related physiological processes. To remove the noise, a folding average of the NIRS signals 

(Figure 3-7) was calculated. The averaged NIRS epoch signals from the short-ramped CI task 

(Figure 3-7 (a)) and BH (Figure 3-7 (b)) were similar, and both were highly correlated with 

averaged Δ𝐵𝑂𝐿𝐷̅̅ ̅̅ ̅̅ ̅̅ % signals. The delay observed in the data from the short-ramped CI task may 

have been due to the time lag for the inhaled CO2 to reach the brain. 

 

Figure 3-7 Group folding average of signals from the (a) BH and (b) short-ramped CI task. The results of Δ𝐵𝑂𝐿𝐷̅̅ ̅̅ ̅̅ ̅̅ %  
(normalized), ∆[HbO], and ∆[Hb] are showed in columns 1-3, respectively. The time ranged from 0 to 20 second 

indicates the periods of BH/ramped-increased ΔPETCO2 [61]. 
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3.4.3 Limitations 

This study provides possible physiological explanations for the discrepancies observed 

between BH- and CI-related NIRS signals; however, several limitations exist. First, the source-

detector distance was about 3 cm, which is commonly used in NIRS studies [88, 89]. However, 

other studies used longer source-detector distances (≥4 cm) and were, therefore, less prone to 

signals from the extracerebral layers and; consequently, these studies demonstrated more robust 

and consistent NIRS results [85, 88, 90]. Secondly, during the BH period, it was difficult to assess 

PETCO2 changes (i.e. there was no exhaled breath to measure). Third, the NIRS probe was placed 

over the prefrontal region, which is a popular region of interest since there is little-to-no hair.  

However, this study found that hemodynamic responses under hypercapnia tasks are highly 

spatial-specific. Thus, whole-brain measurements using NIRS channels may be required to capture 

region-specific reactions to hypercapnia tasks. Lastly, future studies should incorporate measuring 

PETCO2 changes that occur during the BH task. For example, previous studies required subjects to 

perform a forced exhalation at the end of each BH period – this could be incorporated in future 

studies [98, 110]. 

3.5 Conclusion 

In summary, the presented study, together with previous studies, support the hypothesis that 

cerebral and extracerebral reactivity to elevated PETCO2 is similar when the increase of PETCO2 is 

gradual and is different when the increase of PETCO2 is sharp. Further, it demonstrated that NIRS 

can be deployed as an alternative low-cost, real-time, and non-invasive methodology for reliably 

measuring the cerebrovascular reaction given the correct vasoactive stress tests (e.g. long-ramped 

CI and BH task). This would benefit a large population who require timely (e.g. athletes) and/or 

on-site (e.g. infants or patients with immobility) measurements of cerebral reactivity. 
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 STUDY 3 

4.1 Introduction 

The glymphatic system plays an important role in the clearance of metabolic waste products 

in the extracellular interstitial space [113, 114] and the distribution of homeostasis-sustaining 

compounds (e.g., glucose) in the brain [115]. Recent advancements of the glymphatic system 

highlight its role in the development of neurodegenerative diseases. Unlike blood flow, which is 

driven by the heart pumping, CSF does not appear to have an engine to generate flow. Thus, CSF 

flow has been assumed to be mostly facilitated by the mechanisms associated with vessel wall 

movement (blood flow), including vasomotion [116, 117], pulsation [118], and/or inspiratory 

thoracic pressure changes [119, 120].  

Several magnetic resonance imaging (MRI) techniques have been used to investigate CSF 

flow in the brain, including 1) phase-contrast imaging [121]; 2) velocity density imaging [122]; 3) 

time-spatial labeling inversion pulse imaging [123]; and 4) 4D flow MRI [124]. These imaging 

techniques were often used to detect the direction of CSF motion within a single cardiac/respiration 

cycle. However, they cannot reveal real-time CSF flow over a longer period or bulk flow. 

Recently, Fultz et al used fast Echo-planar imaging (EPI) sequence (TR<400ms) to study 

bulk CSF flow [125]. They ingeniously placed the edge of the imaging volume (the first slice) at 

the fourth ventricle, which allows them to measure the flow of CSF using the inflow effect [126] 

in the fMRI signal (rather than blood-oxygen-level-dependent (BOLD) contrast). They discovered 

a coherent pattern of oscillating electrophysiological, hemodynamic, and CSF dynamics that 

appears during non–rapid eye movement (NREM) sleep. Their results suggested the coupling 

between CSF inflow and the hemodynamic signal is related to waste clearance from the brain 

during sleep. While still a qualitative approach to the measurement of CSF flux, the advantages of 

the fast EPI approach are obvious. First, the fast EPI sequence is widely available, and the data 

processing is straightforward. Second, through simultaneous recording, coupling between brain 

hemodynamics and CSF flow, which is crucial in understanding the fundamental driving 

mechanism of CSF flow, can be examined. In this case, hemodynamics and CSF flow can be 

assessed by BOLD and in-flow contrast of fMRI respectively. 
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While effective and innovative, the study by Fultz et al. raises several scientific questions. 

First, they reported correlations between the derivative of the averaged fMRI signal in gray matter 

with CSF inflow signal; however, no detailed mechanistic explanation was given. Second, similar 

coupling was not fully explored during the awake state. Last, due to the limitation of the scan 

parameters, their method could only assess the inflow of CSF to the brain, but not the outflow from 

the fourth ventricle (i.e., to the neck). The difference between these two bulk flow rates would be 

indicative of the overall CSF flux. 

This study was designed to address these questions. First, we proposed a simple mechanical 

model to explain the relationships between CSF movement and hemodynamic fluctuations in fMRI 

signal. Second, we investigated the coupling between brain hemodynamics and CSF flow during 

the awake state by an fMRI scan. Last, an additional fMRI scan was employed to assess CSF 

outflow and compare it with brain hemodynamics. 

4.2 Materials and Methods 

4.2.1 Model 

The brain is in a rigid container. As a result, the volumes of the constituents (blood, CSF, 

and brain parenchyma) consistently fluctuate to maintain the total volume needed for proper 

internal pressure—i.e., the Monro-Kellie doctrine [127]. According to this doctrine, the transfer of 

movements from the arterial walls into the surrounding tissue will eventually cause CSF flow into 

and out of the spinal canal [128-130]. Multiple mechanisms cause arterial wall oscillations at 

various frequencies, such as cardiac pulsation (~1Hz) and vasomotion (<0.1Hz). They have all 

been shown to produce the flow of CSF [116-120]. However, how to interpret the coupling 

between hemodynamic and CSF flow changes using fMRI signal is still not clear. 

Here, we offer a general model that explains the coupling between these fMRI signals 

(hemodynamic and CSF flow changes). The model is based on the hypothesis that the 

accumulative effects of vessel dilations and contractions (pulsation, vasomotion) will exert force 

on the walls of ventricles, especially the lateral ventricles (no blood vessel in the ventricles), 

forcing CSF in and out of the fourth ventricle at the bottom (see figure 4-1). In this model, the 

global mean of fMRI signals (GMS) is used as a surrogate signal to indirectly assess the 

accumulative effects of vessel dilations and contractions in the brain [20, 26]. In figure 4-1, we 
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simulated volume changes in blood vessels and their consequential CSF flow observed at the 

fourth ventricle. In detail, the blood-rich region will expand because of vessel dilation. This will 

compress the volume of the lateral ventricle, forcing CSF out of the brain. The reverse happens 

when the vessels contract. However, the key point here is that CSF flow only happens at the 

transitions, during which the cerebral blood volume (CBV) changes (as shown by the arrows in 

figure 4-1). When CBV is stabilized, no force is exerted on the ventricular wall, thus no flow of 

CSF. Therefore, the model predicts CSF outflow at the fourth ventricle during CBV transition 

from low to high and CSF inflow during CBV transition from high to low. Since GMS of fMRI 

roughly represents CBV in the brain, the transitions are accurately captured by the derivative of 

GMS (
𝑑

𝑑𝑡
 (GMS)), not GMS itself. 

Based on this model, we have several predictions (Figure 4-1): 1) CSF inflow signal should 

be negatively correlated with 
𝑑

𝑑𝑡
 (GMS); 2) since CBV change in the brain is the cause of CSF flow 

and the brain is not a rigid body, the CSF inflow signal should lag behind 
𝑑

𝑑𝑡
 (GMS); 3) CSF 

outflow signal (towards the neck) should be positively correlated with 
𝑑

𝑑𝑡
 (GMS) and lag behind 

𝑑

𝑑𝑡
 

(GMS) for the same reason as in (2). To assess these predictions, we have conducted the following 

studies using specially designed scan locations and sequences. 
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Figure 4-1 The brain model and its corresponding fMRI signals measured at the fourth ventricle and brain (GMS). (a) 

The model illustrates the temporal changes in vessel volume with the corresponding effects on the lateral ventricle 

shape and CSF flow at the fourth ventricle. Blue circles show periods of vessel volume change (i.e., transition). Arrows 

in the blue circles point to the direction of vessel wall movement. (b) Corresponding signals and their derivatives are 

observed at the fourth ventricle, brain (GMS). The flow signal is from the inflow (‘time of flight’) effect. The brain 

fMRI signal is from the BOLD effect. 

4.2.2 Experimental Design 

Structure Scans 

This study was approved by the Purdue University Institutional Review Board. Informed 

consent was obtained from all participants. Ten healthy individuals (5 female, 5 male, age range 

23-30 years) were recruited. MRI data were obtained using a 3T SIEMENS MRI scanner 

(Magnetom Prisma, Siemens Medical Solutions, Erlangen, Germany) and a 64-channel head coil. 

Each participant has one T1-weighted, one T2-weighted, and two functional scans. For T1-

weighted scans, multiplanar rapidly acquired gradient-echo (MPRAGE) structural images were 
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acquired with the following parameters (TR/TE: 2300/2.26 ms, 192 slices per slab, flip angle: 8 

deg, resolution: 1.0mm × 1.0mm × 1.0mm). Parameters for T2-weighted scans were as follows 

(TR/TE: 2800/409 ms, 208 slices per slab, resolution: 0.8mm × 0.8mm × 0.7mm). Since this 

study has two fast EPI MRI scans covering the head and neck respectively (Figure 4-2), long T1-

w and T2-w images covering the head and neck were taken. 

EPI Scans 

The functional resting state (RS) scans were acquired using a multiband echo-planar imaging 

sequence (FOV = 230 mm, acquisition matrix = 92 × 92, 48 slices, voxel size = 2.5 × 2.5 × 2.5 

mm3, TR/TE = 440/30.6 ms, echo-spacing=0.51 ms, flip angle = 35°, hyperband acceleration 

factor = 8, multi-slice mode: interleaved). Participants were instructed to stay awake during the 

RS scans. CSF inflow captured by fast EPI sequence was discussed in detail in Fultz et al [125]. 

In short, as fresh fluid particles (not experienced radiofrequency pulses) move into the imaging 

volume, they induce higher signal intensity (i.e., inflow effect). To capture the inflow effect in 

both directions in the fourth ventricle, two 5-minute RS scans with different regions of interest 

were included. Both scans are positioned with the edge of the volume placed at bottom of the 

fourth ventricle (see figure 4-2 (a,b)), with one scan extending upward toward the top of the head 

(i.e., brain scan) and another scan extending downward into the neck (i.e., neck scan). As result, 

CSF inflow to the brain can be assessed by the brain scan, while CSF outflow from the brain can 

be assessed by the neck scan (i.e., considered as “inflow” to the scan volume that is the neck), 

under the assumption that flow sensitivity in the opposite directions can be ignored due to steady-

state excitation in those slices either above or below the slice of interest. The slice of interest, at 

the fourth ventricle, was consistently acquired firstly in the TR. 

4.2.3 Data analysis 

CSF flow signals 

All MR data were processed using FSL (FMRIB Expert Analysis Tool, v6.01; Oxford 

University, UK [45]) and MATLAB. For analysis of CSF flow dynamics, a voxel in the fourth 

ventricle in the edge slice of the EPI data was identified with help of the T1-weighted image 
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(registered onto the EPI data). The time series of the voxel was extracted to represent CSF flow. 

For CSF inflow, the signal was extracted from the bottom EPI slice of the head scan as shown in 

figure 4-2 (a, c). For CSF outflow, the signal was extracted from the top slice of the neck scan as 

shown in figure 4-2 (b, d). We hereafter refer to these two signals as “CSF inflow” and “CSF 

outflow”, even though they both stem from the inflow effect in fMRI. 

Preprocessing 

Since motion correction cannot be accurately performed on edge slices (given that tissue 

moves in and out of the imaging volume), only the slice-timing correction was performed prior to 

CSF flow signal extraction [125]. Then RS-fMRI data were preprocessed with the steps 

recommended by Power et al. [14]: 1) slice-timing correction (FSL slicetimer) 2) motion 

correction (FSL mcflirt) and 3) spatial smoothing with a full width at half maximum (FWHM) of 

5 mm isotropic Gaussian kernel. 

4.2.4 Data and statistical analysis 

Segmentation was performed on the structural image. Several masks were made to 

investigate the coupling between CSF inflow signal and fMRI signal from these segmentations 

(Figure 2 (e)). First, anatomical masks for gray matter, white matter, and CSF were made using an 

automated segmentation program (FSL fast) [131]. Second, we identified large veins in the neck 

(i.e., internal jugular veins (IJVs)) and made corresponding masks (Figure 2 (f)). In a previous RS 

fMRI study, we found consistent positive correlations (>0.8) between GMS of the brain and the 

fMRI signal from the IJVs [132]. Therefore, here we used the fMRI signal from the IJVs as a 

surrogate signal of GMS (of the brain) in the neck scan. Detailed information about IJV mask 

identification can be found in a previous publication [132]. 

After extraction, the fMRI signals, including CSF flow signals (fourth ventricle), GMS from 

gray matter, white matter, and CSF, and signals from big veins (IJV), were first linearly detrended, 

and then band-pass filtered (0.01 to 0.1 Hz) using a zero delay, fourth-order Butterworth filter to 

extract the low-frequency oscillations (LFO). Cross correlations (MATLAB xcorr, lag range =± 

45 seconds) were calculated between (1) 
𝑑

𝑑𝑡
(GMS) and CSF inflow signals, and (2) 

𝑑

𝑑𝑡
(IJV) and 

CSF outflow signals. The maximal cross-correlation coefficients (MCCC) and the corresponding 
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delays were calculated for all the research participants. One-sample t-test against mean value was 

applied on MCCCs and corresponding delays calculated between (1) 
𝑑

𝑑𝑡
 (GMS) and CSF inflow 

signals, and (2) 
𝑑

𝑑𝑡
 (IJV) and CSF outflow signals for all the research participants. Moreover, to 

assess the coupling between CSF inflow signal with the whole brain and understand any spatial 

relationship, CSF inflow signal was cross-correlated with 
𝑑

𝑑𝑡
(fMRI signal) for every voxel in the 

brain. The MCCC and delay maps were derived for each participant, and the average was also 

calculated. 

 

Figure 4-2 The scan designs and corresponding CSF flow signals. The scan volumes used in the brain scan (a) and the 

neck scan (b). In the brain scan (a), the signal detected at the first slice (green circle) represents CSF flow into the 

brain. In the neck scan (b), the signal detected at the first slice (green circle) represents CSF flow into the neck. The 

corresponding unfiltered, raw time series extracted from the green circles in (a) and (b), are shown in (c) and (d) 

respectively. They represent CSF flow signals to the brain (c) and to the neck (d). Both show large slow oscillations 

in addition to rapid oscillations due to cardiac pulsation. (e) Brain segmentation is used to identify gray matter, white 

matter, and CSF. (f) Blood vessel segmentation in the neck to identify internal jugular veins (IJV). 

4.3 Results 

4.3.1 CSF flow during wakefulness 

Figure 4-2 (e) shows an example CSF flow signal obtained from the brain scan. First, it 

shows that during an awake state, CSF inflow signal is clearly detectable. Second, CSF outflow 
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(Figure 4-2 (f)) was clearly captured in the neck scan, as predicted by the model, indicating that 

the low-frequency CSF flow is also bi-directional. Note that CSF flow signals are unidirectional 

in each scan, leading to a flat baseline after detrending (black lines in figure 4-2 (e) and (f)). This 

is because the signal originates from the inflow effect which is sensitive to CSF flow in one 

direction only (i.e., into the scan volume). When CSF flows in the opposite direction, there is no 

inflow signal enhancement (i.e., flat). Furthermore, from figure 4-2 (e, f), the area under CSF 

signal fluctuation curves should reflect the amount of CSF flowing in each direction during the 

period of the scan. 

4.3.2 CSF flow signal and 
𝒅

𝒅𝒕
(𝐆𝐌𝐒) 

Figure 4-3 displays example low-frequency data from one research participant. It shows 

𝑑

𝑑𝑡
(GMS) of the brain and CSF inflow signal in (a-c), and the same participant’s 

𝑑

𝑑𝑡
(IJV) and CSF 

outflow in (d-f). As mentioned, when describing the model, 
𝑑

𝑑𝑡
(GMS) is sensitive to the transitions 

of CBV in the brain, where a larger signal indicates a faster transition. During these transition 

times, CSF was forced to flow in and out of the brain (through the fourth ventricle). Specifically, 

positive signals in 
𝑑

𝑑𝑡
(GMS) related to CSF outflow, while negative signals in 

𝑑

𝑑𝑡
(GMS) related to 

CSF inflow. As shown in figure 4-3, CSF inflow signal matched the lower part of 
𝑑

𝑑𝑡
(GMS) in (b) 

(CSF inflow signal was flipped for demonstration; MCCC= -0.75), while CSF outflow signal 

matched the upper part of 
𝑑

𝑑𝑡
(IJV)  in (e) (MCCC=0.83). Note that, here we used 

𝑑

𝑑𝑡
(IJV)  to 

represent 
𝑑

𝑑𝑡
(GMS). Thus, CSF outflow signal matched the upper part of 

𝑑

𝑑𝑡
(GMS). Moreover, this 

result also indicated that 
𝑑

𝑑𝑡
(GMS), unlike CSF flow signal that can only report the flow in one 

direction, is able to reflect CSF flow in both directions. Last, from the delays, CSF inflow lagged 

𝑑

𝑑𝑡
(GMS) by about 2.2s (Figure 4-3 (c)). This delay was predicted by the model, indicating CBV 

changes are likely the “cause” for CSF flow, though maybe not the only one. Similar results in 

delay were also shown in figure 4-3 (f). However, CSF outflow signal is leading 
𝑑

𝑑𝑡
(IJV) signal by 

about 2.2 s. From previous studies, the fMRI signal of IJV lags GMS by about 4 seconds [132]. 
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After the adjustment for this delay, CSF outflow signal should still be lagging the true 
𝑑

𝑑𝑡
(GMS)—

i.e., the brain signal—by about 2 seconds, which is consistent with the findings in figure 4-3 (a-c). 

 

Figure 4-3 The relationships between GMS of the brain, CSF inflow signal (a-c), averaged IJV signal and CSF outflow 

signal (d-f) from the same research participant. (a) Time series of GMS in purple and its derivatives (
𝑑

𝑑𝑡
 (GMS)) in red. 

(b) Time series of filtered 
𝑑

𝑑𝑡
 (GMS) in red with the negative raw CSF inflow signal in blue. It shows CSF inflow 

signal matches the lower part of filtered 
𝑑

𝑑𝑡
 (GMS). (c) Cross-correlation between filtered 

𝑑

𝑑𝑡
 (GMS) and CSF inflow 

shows the 
𝑑

𝑑𝑡
 (GMS) is ahead of CSF inflow signal with high MCCC (-0.75). (d) Time series of IJV signal in purple 

and the derivative of IJV (
𝑑

𝑑𝑡
 (IJV)) in red. (e) The time series of filtered 

𝑑

𝑑𝑡
 (IJV) in red and CSF outflow signal in 

blue. It shows CSF outflow signal matches the top part of filtered 
𝑑

𝑑𝑡
 (IJV). (f) Cross-correlation between filtered 

𝑑

𝑑𝑡
 

(IJV) and CSF outflow signal shows 
𝑑

𝑑𝑡
 (IJV) is a little behind of CSF outflow signal with high MCCC. GMS: global 

mean signal. MCCC: maximum cross-correlation coefficient. IJV: internal jugular vein task. 

 

Figure 4-4 (a) shows the individual and average results of MCCCs and delay calculated 

between 
𝑑

𝑑𝑡
(GMS) and CSF inflow signal from the brain scans. Here 

𝑑

𝑑𝑡
(GMS) was calculated from 

the gray matter, white matter, and CSF-region in the brain. The MCCCs from all the participants 

are high for all the tissue types (MCCC for gray matter: -0.76±0.07; for white matter: -0.69±0.10; 

and for CSF: -0.76±0.07 (p<10−8  for all)). The corresponding delays are around -2s—i.e., 

𝑑

𝑑𝑡
(GMS) signal is leading CSF inflow signal. Among the three tissue types, 

𝑑

𝑑𝑡
(GMS) from gray 

matter, white matter, and CSF-region led CSF inflow by 2.2±0.55s, 2.02±0.69s, and 1.36±0.60s 

(p<10−4 for all), respectively. Figure 4-4 (b) shows the average results of MCCCs and delays 

calculated between 
𝑑

𝑑𝑡
(IJV) and CSF outflow signal. The averaged MCCC is 0.64±0.30s (p<10−4) 

with an averaged delay of 0.66±3.39s (p>0.05). As we mentioned previously, after adjustment for 
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the delay between fMRI signal of IJV and GMS (~4s), CSF outflow signal should lag the brain 

signal (
𝑑

𝑑𝑡
(GMS)) by about 2s [18]. 

 

Figure 4-4 The summary of the cross-correlations between CSF inflow signal and 
𝑑

𝑑𝑡
 (GMS) from different regions of 

interest (ROIs). (a) MCCCs and delays between CSF inflow signal and 
𝑑

𝑑𝑡
 (gray matter), 

𝑑

𝑑𝑡
 (white matter),  

𝑑

𝑑𝑡
 (CSF) 

in each participant and the averaged result from all participants. All the 
𝑑

𝑑𝑡
 (GMS) in different ROIs are temporally 

ahead of CSF inflow signal with high negative MCCCs. (b) Averaged MCCCs and delays between CSF outflow signal 

and 
𝑑

𝑑𝑡
 (IJV). All but one have high positive MCCCs and positive delays. GMS: global mean signal. MCCC: maximum 

cross-correlation coefficient. IJV: internal jugular vein. 
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4.3.3 Spatial-temporal information of the coupling of CSF inflow with the brain signal 

Figure 4-5 shows the averaged MCCCs and delay maps derived from the voxel-wise cross-

correlation between CSF inflow signal and 
𝑑

𝑑𝑡
(fMRI signal). Negative MCCCs were found in most 

of the tissue-containing voxels with distributions shown in figure 4-5 (a). Regions with the highest 

negative MCCCs are found in the gray matter, especially in high blood density regions such as the 

visual cortex. It is worth noting that the positive correlations (shown in blue) were found in the 

voxels next to the lateral ventricles (Figure 4-5 (a,b)), likely due to partial volume effects. 

Negative delays were found in most of the voxels with distributions shown in figure 4-5 (f). 

Negative delays indicate that 
𝑑

𝑑𝑡
(fMRI signal)  is leading CSF inflow signal. This result is 

consistent with the findings in figures 4-3 and 4-4. As we consider the changes in CBV as a cause 

for “pressure waves”, the delay map then represents the propagation of these waves in the brain. 

From figure 4-5 (d), we can see that they started from the precentral gyrus, and moved toward the 

regions surrounding the ventricles (red/yellow in figure 4-5 (d)). However, a few observations do 

not fit the proposed model. First, the voxels with the longest delays (red/yellow in figure 4-5 (d)), 

which cover much of the extended region from the ventricles into the white matter, do not overlap 

with the positively correlated voxels in figure 4-5 (a). Second, the delay values are positive, 

indicating they lag a few seconds after CSF inflow. Therefore, signals from these voxels still reflect 

CBV changes, but following CSF inflow, which might indicate there are secondary interactions 

between CSF inflow and white matter. 
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Figure 4-5 Group average of voxel-wise cross-correlation between 
𝑑

𝑑𝑡
 (fMRI signal) and CSF inflow signal. (a-b) 

Various views of whole-brain MCCCs show that most of the 
𝑑

𝑑𝑡
 (fMRI signal) in the brain were negatively (red-yellow) 

correlated with CSF inflow signal. (c) The distribution of MCCCs. (d-e) Various views of whole-brain delays show 

that most of the 
𝑑

𝑑𝑡
 (fMRI signal) is ahead of CSF inflow signal. (f) The distribution of the delays. MCCC: maximum 

cross-correlation coefficient. 

4.4 Discussion 

This study used a simple model to explain the correlation and delays between 
𝑑

𝑑𝑡
(GMS) of 

fMRI and CSF flow measured at the fourth ventricle. With both brain and neck scans, we validated 

that CSF flow at low frequencies was bi-directional and found that coupling between the brain 

hemodynamics and CSF flow exists for awake participants in the supine position. 
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Figure 4-6 (a) The model depicts the low-frequency (e.g., vasomotion) and high-frequency (heartbeat) vessel volume 

changes and their impacts on the fMRI, and CSF inflow signals. (b) CSF inflow signal (upper panel: raw data of CSF 

inflow; lower panel: high pass filtered CSF inflow (>0.6Hz) to extract the heartbeat signal). Three red circles represent 

big drops of CSF inflow, which indicate CSF outflow or no flow. In these periods, smaller amplitudes of heartbeat 

signals are found (pointed by red arrows). (c) High-frequency CSF inflow signal (>0.6Hz, blue) and heartbeat signal 

recovered from the brain data using “Happy” (Aslan et al., 2019). (d) Power spectrum (arbitrary unit) of CSF inflow 

signal (left) and power spectrum of heartbeat signal (right). These two panels show that 1) the heartbeat signal can be 

detected in CSF inflow signal, which matched that of the brain; 2) little or no delay was found in the heartbeat signal 

in the brain and that detected in CSF inflow.  

4.4.1 Possible driving forces for CSF flow 

Previous studies have proposed several driving forces for CSF flow, which included 1) 

cardiac pulsation [133], 2) vasomotion [117], and 3) respiration [120, 134]. Some studies 

demonstrate that pulsation is a driving force for CSF [114, 133, 135]. However, others studies used 

a mathematical model to argue that arteriolar pulsation alone is too weak to drive CSF circulation 

[136, 137]. 

Figure 4-6 (b) is example data of CSF inflow taken from one participant’s head scan. It 

compares the effect of pulsation and slow arteriolar oscillation on CSF inflow. The LFOs are 

dominant in the signal, and thus are the main contributor to CSF flow. This is further confirmed 

by the power spectrum of the signal (Figure 4-6 (d)), in which the heartbeat signal (~0.87Hz) is 

much smaller than that of LFOs. These LFO signals are associated with arteriolar slow oscillations, 

such as vasomotion created by rhythmic spontaneous contractions of vascular smooth muscle cells 

[117, 136, 138, 139]. On the same note, increased ultra-low frequency vasomotion (0.1 Hz) in 

arterioles was found to increase clearance rate from perivascular space [117]. 

To investigate the pulsatile CSF inflow and blood flow, we extracted the full cardiac 

pulsation waveform from the undersampled brain fMRI scan [140]. A section of the reconstructed 
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cardiac waveform is shown in figure 4-6 (c), together with the cardiac wave derived from CSF 

inflow signal by high-pass filtering (>0.6 Hz). These two signals match with no clear delays, likely 

because of the fast-traveling nature of cardiac pulsation. 

Based on these findings, we adapted the model in figure 4-1 by adding the pulsatile 

oscillations. Thus, the model included both pulsatile and slow arteriolar oscillations on the blood 

vessels (Figure 4-6 (a)), in which, the faster and smaller pulsatile changes were added to the slow, 

bigger low-frequency changes. From the model, we can see that 1) inflow will be continuous 

during the slow transition period (as marked in figure 4-6 (a)). 2) The pulsations during this period 

will modulate the inflow speed (not reverse flow direction), thus the full scale of the derivative 

pulsatile signal is “recorded” by the fMRI. However, for the pulsations happening outside this 

period, they induced CSF flow in both directions. Therefore, only a partial signal (positive 

derivative pulsatile signal) was “recorded”. This explained why the magnitudes of heartbeat-

related signals were bigger during the inflow period, and much smaller or invisible otherwise 

(circles in figure 4-6 (b)). 

In addition to pulsation and vasomotion, several lines of work showed that respiration is 

instrumental in driving CSF through the aqueduct by real-time phase-contrast MRI measurements 

[118-120, 134, 141]. Furthermore, Dreha-Kulaczewski et al. proposed that increased CSF flow 

from caudal to cranial during inspiration was considered compensation of venous blood leaving 

from the head due to lower intrathoracic pressure [120]. Based on this theory (i.e., pressure), CSF 

inflow and blood outflow (i.e., vein) should happen simultaneously. however, we can only measure 

the LFO of CSF outflow and fMRI signal in IJV simultaneously in the neck scan. There are no 

consistent delays found between these two signals, yet the delay between CSF outflow and 
𝑑

𝑑𝑡
(IJV) 

was about 0.66s (i.e., CSF leading 
𝑑

𝑑𝑡
(IJV)). This result may support the “top model” that the 

original “engine” for CSF flow is from above, i.e., cerebrovascular oscillation (see figure 4-4), 

instead of the lung. As we discuss in 4.3.2, cerebrovascular slow oscillations move with blood 

through the brain slowly (take a few seconds). The oscillations will compress and expand lateral 

ventricles, which leads to CSF flow observed at the fourth ventricle. The same oscillations will 

eventually move to the vein and be observed at IJVs. 

Our study focused on the LFO of the signal, not the respiration frequency. The natural 

breathing frequencies of our participants were from 0.2-0.4 Hz. Like cardiac pulsation, the power 



 

 

58 

of the respiration signal is much less than that of the LFOs, indicating that the arterial LFO is the 

dominant force in driving CSF flow, at least in resting-state without using any forced/paced 

breathing protocol. In addition, forced or paced breathing as used in Dreha-Kulaczewski’s study 

might invoke different physiological responses/mechanisms, other than the ones under regular 

breathing [120]. 

This study and previous research found CSF flowed in both directions through the fourth 

ventricle [121]. To roughly assess the net flow, we calculated the areas under 1) the CSF inflow 

(from brain scan, figure 4-7 (a) (red)) and 2) CSF outflow (from neck scan, figure 4-7 (a) (blue)) 

for each subject. The difference represents the net amount of CSF flow during the time of scan for 

each participant (figure 4-7 (b)). It is known that the CSF inflow and outflow were measured 

consecutively in two separated scans. Thus, the calculation of the net flow is not strictly accurate 

and should be treated as an estimate.  No consistent net flow direction was detected among 

participants, indicating the net flow was not substantial during the short scan time (i.e., # minutes). 

It is known that adult only secret 25 ml CSF/hour in the brain (mostly from the choroid plexuses 

of the lateral ventricles) [142]. The secretion creates a pressure that dictates the direction of CSF 

flow through the ventricular system to the subarachnoid space (net flow in one direction). However, 

due to the small amount, the net flow would be hard to detect during the short period of time with 

our imaging method. 

 

Figure 4-7 CSF net flow assessment. (a) Net flow measurements for CSF inflow (red) and outflow (blue) from one 

participant. (b) Net flow difference for all participants. 
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In summary, though our model explains the underlying mechanism between vessel volume 

dynamics and CSF flow, it does not discern the causes for the vessel dynamics. It is probable that 

multiple mechanisms contribute to facilitating CSF flow. 

4.4.2 Ventricular vs. perivascular effects 

Unlike fast traveling cardiac pulsation that reaches all the voxels in the brain at almost the 

same time, LFOs in BOLD fMRI (associated with vasomotion or arterial O2 and CO2 fluctuations) 

have been shown to propagate in the brain as the blood flow [18] and take up to 5s to transit the 

brain. The corresponding vessel dilation or pressure wave (
𝑑

𝑑𝑡
(fMRI signal)) is shown to have a 

clear spatial-temporal pattern in figure 4-5 (d), moving from an arterial-rich region to the white 

matter regions, then the vicinities of lateral ventricles in seconds. As a result, the ventricular wall 

might be compressed continuously and sequentially, not simultaneously as in the case of pulsation. 

This also explained the delay (1-2s) we observed in the LFO signals of CSF and 
𝑑

𝑑𝑡
(fMRI signal), 

while, not in the cardiac pulsation signals (Figure 4-6). 

It was evident that CSF tracers entered the parenchyma through a periarterial pathway and 

ex-vivo evidence showed that tracers rapidly exited the brain primarily along central deep veins 

and the lateral ventral caudal rhinal veins [113, 143]. This offers another pathway of CSF travel 

through perivascular structures. However, the fundamental driving force can still be arterial 

dilation and contraction. Instead of having an accumulative effect on the ventricles, the force will 

be exerted locally at the perivascular space. The exact pathways of CSF migration are not clear 

[138]. Nevertheless, the close underlying coupling between vessel volume changes and CSF flow 

could contribute to multiple pathways. 

4.4.3 Sleep vs. awake states 

Previous research documents increase in the cortical interstitial space by more than 60% 

during sleep when compared with an awake condition, resulting in efficient convective clearance 

of 𝛽-amyloid and other compounds [113]. This highly sleep-dependent clearance was observed in 

both human and mouse models [144, 145]. In our study, we demonstrated a strong coupling 

between brain hemodynamics and CSF movement in awake participants. It suggests that CSF 

(albeit not robust) is maintained during the waking hours. It would be of great interest to 
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understand the fundamental differences between sleep and the wakeful states, in terms of 

vasomotion, CSF flow, coupling, and overall efficiency of clearance of the inflammatory proteins 

and metabolites. 

4.4.4 Limitation and future studies 

There are several limitations to the study which we hope to address in future experiments. 

First, no respiration-related data was collected, including chest belt and PETCO2 measurements. 

These data can help us understand the physiological mechanisms of the LFOs in the fMRI. Second, 

we did not collect simultaneous EEG data. Thus, we could not confirm if the same neuro-vascular 

coupling as was demonstrated in the sleeping study, works in the wakeful state. Third, the net flow 

was not accurately assessed in this study. In future studies, we will incorporate respiration and 

EEG measurements. Moreover, we will compare the regular and forced breathing, to understand 

the differences in the underlying mechanisms. 

4.5 Conclusion 

A biomechanical model was proposed in this study to explain the delayed coupling between 

𝑑

𝑑𝑡
(GMS) and CSF flow. Two fMRI scans were conducted to validate our model and several 

predictions. We found 1) coupling existed between LFOs of 
𝑑

𝑑𝑡
(fMRI signal)  and CSF flow 

signals when participants were awake; 2) the LFOs of 
𝑑

𝑑𝑡
(GMS) occurred about 2.2 seconds earlier 

than those of CSF inflow; 3) CSF flow at the fourth ventricle is bi-directional by fMRI. Together, 

we conclude that the arterial LFO is the dominant force in driving CSF flow during wakefulness. 

These findings can help understand the mechanics of CSF flow and develop new interventions to 

increase the clearance rate in the brain, especially for patients with neurodegenerative diseases. 
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 CONCLUSION 

My work can be summarized in two folds. First, I studied physiological effects on brain 

using multimodel imagings. By using innovative methods on conventional imaging modality, 

vascular effects on the brain can be explored and used to be compared with neuronal finidng. 

Also, by having concurrent experiment using multiple imaging modalities, I was able to adjust 

original experimental design and translate the conventional measurement to a more portable, 

convenient measurement. Second, I established a model to interpret the interaction between 

cerebral physiological signal and its interaction with cerebrospinal fluid, another system which is 

highly related to the clearance of cerebral waste product. All my work have the potential to 

investigate drug effect on the brain and neurodegenerative diseases. 
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