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ABSTRACT

This dissertation develops an exclusive workflow driven by data analytics algorithms, to

support the optimization of the economic performance of an Integrated Energy System (IES).

The objective of this research is to determine the optimum mix of capacities from a set of

different energy producers (e.g., nuclear, coal, gas, wind, and solar). The main contribution

of this dissertation addresses several major challenges in current optimization methods of

the energy portfolios in IES. First, the feasibility of generating the synthetic time series

of the periodic peak data. Second, the computational burden of conventional stochastic

optimization of the energy portfolio, associated with the need for repeated executions of

system models. Third, the inadequacies of previous studies about the comparisons of the

impact of the economic parameters.

Several algorithmic developments are proposed to tackle these challenges. A stochastic-based

optimizer, which employs Gaussian Process modeling, is developed. The optimizer requires

a large number of samples for its training, with each sample consisting of a time series

describing the electricity demand or other operational and economic profiles for multiple

types of energy producers. These samples are synthetically generated using a reduced order

modeling algorithm that reads limited set of historical data, such as demand and weather

data from past years. To construct the Reduced Order Models (ROMs), several data analysis

methods are used, such as the Auto Regressive Moving Average (ARMA), the Fourier series

decomposition, the peak detection algorithm, etc. The purpose of using these algorithms

is to detrend the data and extract features that can be used to produce synthetic time

histories that maintain the statistical characteristics of the original limited historical data.

The optimization cost function is based on an economic model that assesses the effective cost

of energy based on two figures of merit (FOM), the specific cash flow stream for each energy

producer and the total Net Present Value (NPV). The Screening Curve Method (SCM)

is employed to get the initial estimate of the optimal capacity. Results obtained from a

model-based optimization of the Gaussian Process are evaluated using an exhaustive Monte

Carlo search.
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The workflow has been implemented inside the Idaho National Laboratory’s Risk Analysis

and Virtual Environment (RAVEN) framework. The proposed workflow can provide a

comprehensive, efficient, and scientifically dependable strategy to support the decision-making

in the electricity market and to help energy distributors develop a better understanding of

the performance of IES.
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1. INTRODUCTION

1.1 Overview and the Motivation

To establish the optimized energy generation and utilization configurations, the US

Department of Energy (DOE) Office of Nuclear Energy (NE) program on Integrated Energy

Systems (IES) was established. This program is aiming to adopt innovative solutions to

system integration and process design [S. M. Bragg-Sitton et al.,  2016 ], i.e., to increase

the utilization of resources, energy efficiency, and system reliability. The IES also takes

into account all available energy sources to optimize its benefits while minimizing its less

desirable qualities, such systems will be distinct from those use less primary energy sources

[S. M. Bragg-Sitton et al.,  2020 ].

According to the U.S. Energy Information Administration’s (EIA) Annual Energy Outlook

2019 (AEO2019) report [EIA,  2019 ], in 2016 natural gas replaced coal as the most commonly

used fuel in the United States to generate electricity, and it is projected to remain the leading

source of electricity.

On the other hand, traditional baseload production has been experiencing a severe

downturn in the energy market as Variable Renewable Energy (VRE) sources are benefiting

from their low marginal cost. Around two-thirds of overall U.S. capacity growth came from

wind and solar, according to [Koebrich et al.,  2019 ], in 2017, US wind capacity increased by

more than 8.3%, while solar capacity increased by 26% compared to 2016, accounting for

more than 54% of newly installed renewable electricity capacity in 2017. Figure  1.1 shows

the U.S. renewable electricity nameplate from 2007 to 2017 [Koebrich et al.,  2019 ]. This

growing penetration of renewable energies will have unexpected impacts on the economic

feasibility of traditional baseload technologies in the US.

The first impact is on the price of electricity. When renewable energy production is

higher than demand, the price could be negative [Starn,  2018 ]. The increased penetration

of variable renewable energy systems enhances the need for flexible generation. This brings

another impact to the traditional baseload energy producers, they must either limit their

production or waste power.

14



Figure 1.1. U.S. renewable electricity nameplate capacity by source

To maintain economic competitiveness in this changing market, many US nuclear power

plants are now beginning to assess the technical and economic feasibility of redirecting

surplus energy to other services [DOE,  2015 ]. Several studies show that supporting current

nuclear plants is cost-effective in minimizing CO2 pollution, however, nuclear zero-emission

combustion is not respected by deregulated markets. It is also reported that the energy

market has decreased nuclear plant income from energy purchases while also raising operational

and maintenance costs [Lilly,  2017 ]. Another study also highlights that two-thirds of the US

nuclear capability is unprofitable and one-fifth is likely to retire early, with the inexpensive

gas being a key catalyst for nuclear productivity failure. The premature closures of some

nuclear power plants are motivated by these economic difficulties driven by both the growing

renewable and low-cost natural gas in the US [Haratyk,  2017 ].

Moreover, the increasing penetration of renewable energies expands the net load volatility,

where the net load is the difference between the total electric demand and the renewable

portion. That volatility must be balanced by other sources. Traditional energy producers

have started to meet the evolving grid conditions by varying their production. Growing

fluctuations in net load have been shown to require generator flexibility on all time scales and

various spatial scales [James et al.,  2015 ]. A new type of energy system is needed to minimize

the overall system cost, and maximize the usage of different resources to increase the system

15



reliability. This system also needs to contain an “advanced economic dispatch” operating

mode which can prevent the situation when the baseload plant needs to sell electricity at

a loss. It is also required to take into account many sources of uncertainties, including

the uncertainty of the weather, the seasonal fluctuations in electricity demand, and the

uncertainty of the economic policy, etc.

1.2 Challenges and Objectives

There are many challenges commonly experienced by grid energy system analysts. First,

assessing the relative costs of generating plants utilizing different technologies is a complex

matter. It has become increasingly complex to select an appropriate energy portfolio, because

it is not straightforward how utilizing one energy option may affect other energy options.

Decision-makers need methods and tools for evaluating whether an energy portfolio will lead

to reliable service at reasonable rates and follow the CO2 emission regulations.

Besides, there are new problems that arise in determining the value of different components

in an energy portfolio. For instance, the cost of building and operating VRE sources is

relatively low. However, the availability of VRE is highly time-dependent, and the available

hour-to-hour or day-to-day VRE quantity is rather difficult to predict given its sensitivity to

climate conditions. The unreliable VRE supply will decrease the reliability of the electricity

grid and end up adding the cost of the installation of flexible energy producers. This implies

the need to obtain a holistic understanding of the value of various components in an energy

portfolio.

Some commercial software can be used to optimize a mixed-energy production portfolio.

However, the large volume of data input and long computing times add complexity to

end-users. To combat these challenges, the Idaho National Laboratory (INL)’s RAVEN

framework and its two RAVEN plugins have been employed, namely HERON (Holistic

Energy Resource Optimization Network) [P. W. Talbot, Rabiti, et al.,  2020 ] and TEAL

(Tool for Economic AnaLysis) [Alfonsi et al.,  2020 ].

HERON plugin was recently developed for performing technoeconomic analysis and

optimization of grid-energy systems. There are two features of HERON [P. W. Talbot,

McDowell, et al.,  2020 ]. The first feature is to enable automatic templating input scripts of
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RAVEN, which helps end-users to understand the workflow of RAVEN in a more straightforward

way, especially the users in the energy system. The second feature is to offer an algorithm

designed for solving the energy-dispatch optimization problem. Several models need to be

specified when using HERON, such as the electricity demand model, the energy production

model, the reduced order model of time histories, and the economic model, etc.

In tandem with HERON, another plugin called TEAL is used to deploy the economic

analysis. The module is able to compute several economic metrics including the Net Present

Value (NPV), the Internal Rate of Return (IRR), etc.

These two RAVEN plugins have been used to develop and implement a theoretical basis

for the IES techno-economic analysis. This analysis evaluates the technological and economic

efficiencies of a process, product, or service. It typically incorporates process modeling,

engineering design, and economic assessment, see references [Epiney et al.,  2016 ; Epiney

et al.,  2017 ; Epiney et al.,  2020 ; Epiney et al.,  2018 ; Frick et al.,  2019 ; Rabiti et al.,  2017 ].

These past works however have relied on restrictive workflows, focusing on the analysis of

numerous generation scenarios, requiring complex operations that are not computationally

efficient. It is also not easily accessible to end-users, limiting their use to the advanced

RAVEN users.

Based on the challenges discussed above, a new simplified optimization workflow for

the energy portfolio focusing on single-resource is required. Specifically, the goal of the

optimization is to minimize the overall cost of energy production, and meet the energy

demand taking into account the seasonal demand variations, the associated uncertainties, as

well as the techno-economic factors such as discount rate, depreciation rate, inflation, and

taxes, etc.

To achieve the goal, this dissertation seeks to develop a new optimization workflow that

delivers reasonable optimization results in a computationally efficient manner. It aims to

provide a demonstration of the optimization process utilizing HERON and TEAL to optimize

the size of installed capacities for different energy-producing units in an IES, including

both renewable and conventional baseload energy producers. The optimization employs

reduced order models (ROM) to generate synthetic profiles. Different features and detrending

algorithms were employed in building the ROM to ensure all synthetic profiles are consistent
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with the historical data. This dissertation also sets out to systematically investigate these

detrending algorithms and gives suggestions on the algorithm selection of the ROM model.

In addition, the data sources for building the energy generation models and economic models,

are reviewed to ensure the consistency of the calculation. Another objective of this study

is to build a workflow that employs a limited set of samples without analysis of numerous

generation scenarios to reduce the computational burden.

1.3 Calculation Flow and Organization

The organization of the dissertation is presented as follows.

Chapter  2 provides a literature review of several approaches related to the optimization

problems. Specifically, there are three related problems: 1) Given a fixed load profile of

the year, how to get the best energy portfolio at least-cost? 2) Given the limited historical

time series, how to include different scenarios in the analysis and extend the sample size?

3) What are the common optimization approaches to tackle the problem of energy portfolio

selection?

Regarding the first problem, Chapter  2 provides a review of the screening curves method

(SCM), which is a methodology that estimates the least-cost energy portfolio in the electricity

market. With regards to the second problem, this chapter reviews the data mining techniques

of time series to expand the sample size of the historical time series data. It includes time

series representation and time series data mining tasks. Last, a literature review of typical

optimization methods in is discussed in the last section to help get a better understanding

of the economic optimization of the energy portfolio.

Chapter  3 to Chapter  5 describe an overall workflow of the optimization process in this

dissertation. An illustration for the workflow can be found in Figure  1.2 . The workflow may

be divided into three steps:

1. Import available historical data, build the energy demand and generation models;

2. Generate synthetic time series in RAVEN, build the energy dispatch model in HERON,

and the economic models in TEAL;

3. Employ a Gaussian-Process-based model to optimize the overall cost for energy production.
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Figure 1.2. Calculation flow

Chapter  3 presents the details in the first step of the workflow, which discusses the

model construction and the data collection. In this step, the collected data should cover

the electricity demand and the renewable energy sources, namely, the load profile, the price

profile, the wind speed history, the solar Global Horizontal Irradiance (GHI), and the air

temperature. With regard to the model construction, as listed in Figure  1.3 , there are

two models: the energy demand model, and the energy generation model. The energy

demand model uses the historical electricity demand data as a training set to create a ROM

representing the basis for generating synthetic time series for HERON economic evaluation.

The energy generation model uses the mixed-energy production portfolio and the renewable

energy sources as the inputs to calculate the energy produced by each unit. All the models

from the first step can be found in the upper-middle section in Figure  1.2 .
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Figure 1.3. Step 1 - data collection and model construction

Chapter  4 discusses the various procedures supporting the second step of the workflow.

Specifically, it discusses three key functionalities that are automated by HERON and RAVEN,

including the generation of synthetic time series in RAVEN to expand the sample size of the

optimization inputs; the construction of the energy dispatch model to meet the electricity

demand; the cost evaluation of an energy portfolio to determine the least-cost solution of

the optimization.

Section  4.1 discusses the synthetic time series generation. It is employed to expand the

sample size in our system to ensure the robustness of the optimization results. The idea

is to construct Reduced Order Model (ROM) which duplicates the trends and respects the

statistical properties identified in the available historical records. Several types of historical

data are included in this dissertation. See Figure  1.4 , for different historical data, the training
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process to construct ROM varies. The training process may contain several sub-steps,

including segmentation and clustering, Fourier detrending, Auto Regressive Moving Average

(ARMA), and peak detection. Fourier detrending is used to capture the seasonal trend,

and ARMA model is employed to describe the stationary residual of the detrended time

series. However, if the historical data contains a periodic peak time series, there will be an

ill-posed overfitting problem. Thus, the detection of peaks in time series is an essential step

for synthetic time series generation. The synthetic time series trained from this step are

shown in a blue dashed line box in Figure  1.2 .

Section  4.2 discusses the energy dispatch model. It is designed to ensure that the total

energy generated by the various types of energy producers meets the demand at the lowest

possible cost. Energy generated from the first step of the workflow will be used to determine

the electricity for each energy producer. This means a strategy that dispatches the maximum

amount of energy from the unit with the lowest marginal cost first, before dispatching energy

from other units with higher marginal cost. The marginal cost should contain the variable
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operation and maintenance cost, as well as the fuel cost. If the marginal cost for producing

the electricity in one type of component is relatively low, then this energy unit should

dispatch the electricity as much as possible. As shown in the upper right section of Figure

 1.2 , load profile and generated energy are different from each year and each sample of the

synthetic histories, which gives various results of how much electricity each unit produces.

Since the model is stochastic, it is suggested to run multiple samples to get the statistical

information with more confidence.
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Figure 1.5. Step 2 - energy dispatch model workflow

Section  4.3 discusses the economic model, along with the discounted cash flow techniques.

The Net Present Value (NPV) of cash flows over a 60-years operational horizon will be

considered as our economic metric for the total cost. The TEAL plugin will be used to

calculate the metric. The capacity set of the energy units, and the dispatched electricity

calculated from the dispatch model, are the inputs of the economic model. The capacity set

defines the cost based on capacities, such as the construction and fixed maintenance. The

dispatched electricity defines the variable cost that based on the electricity production, such

as the cost of fuel. See the lower part of Figure  1.2 , capacity set and dispatched electricity

are both connected to the total cost.

Chapter  5 discusses how the values of the installed capacities for the various energy units

are optimized to obtain the best NPV value for the IES system. It combines two different

methods, the SCM and the Gaussian Process regression, as shown in the left part of Figure

 1.2 . The screening curve method provides initial estimates of the optimal capacities assuming

a one-year operational horizon, and the Gaussian Process model allows one to estimate the

NPV for a given set of capacities without redoing the synthetic time series generation and the
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TEAL calculations. A comparison of the original and the new workflow is shown in Figure

 1.6 . The original workflow needs five capacities as the optimization inputs, and uses the

synthetic time series as the samples for the inner stochastic optimization inputs. However,

this new workflow uses only two capacities from wind and solar as the optimization inputs.

Instead of the synthetic time series, the historical data will be used to generate the SCM

results and the total cost. It maintains reasonable accuracy while significantly reducing

computation time.

Chapter  6 demonstrate the applicability of the developed optimization workflow going

through all the various steps discussed earlier, including the generation of synthetic time

series, application of the SCM, and finally the training of the Gaussian Process model.

Various economic assumptions and the results of the suggested energy portfolios are discussed

as well.

Finally, Chapter  7 summarizes the works and offers suggestions for future research.
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2. LITERATURE REVIEW

This chapter presents a literature review of the methodologies that are usually employed

in the optimization of the economic performance of an IES, discussing their advantages

and limitations. Although there are extensive previous works related to the optimization

problem, three main research areas are selected for our discussion, regarding three problems.

The first problem is how to get the best energy portfolio at least-cost, that is, the

electricity generating planning problem. The Screening Curves Method (SCM) is discussed

in the following section to solve this problem, it is a methodology that estimates the least-cost

energy portfolio in the electricity market. The second problem is how to demonstrate the

viability of a mixed energy generation and extend the sample size of the historical data. To

include different scenarios, the samples in the analysis should not be limited to the historical

time series only. For this problem, a wide range of data mining techniques in time series

analysis is investigated. The existing literature is extensive and focuses particularly on how

to represent the information from the time series. A literature review of each technique

is presented in this chapter. The last problem is how to search for the optimal solution.

The research literature on the common optimization approaches is reviewed regarding this

problem.

2.1 Electricity Generating Planning and Screening Curve Method

Electricity generating planning problem requires the creation of an ideal long-term strategy

to fit generation capability subject to different economic and technological requirements.

Typically, in a highly restricted and unpredictable setting, it involves solving a large-scale,

non-linear, discrete, and dynamic optimization problem. Common electricity-generating

planning techniques have emphasized pursuing a least-cost strategy. The Screening Curve

Method (SCM), first introduced in [Phillips,  1969 ] is a model that measures the least-cost

combination of capacities, i.e., the optimal energy portfolio, based on a single year operational

horizon. It provides a simple and convenient approach for finding an initial set of estimates

for the baseload capacities.

A typical SCM curve and its two combined curves are shown in Figure  2.1 .
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Figure 2.1. Screening curve method illustration
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Figure  2.1 shows an example of SCM. In SCM, the annual total cost for each unit is

represented as a function of the firing hour, i.e., the number of hours in which the energy

needs to be dispatched by the unit. It combines two curves, the first is called the load

duration curve (LDC), representing the dispatched load as a function of the firing hours.

This curve demonstrates the usage and demand of the generating capacities. It may be

thought of as a cumulative density function with the axes reversing their roles. This implies

that the y-axis assumes the role of the independent variable for which the PDF is constructed,

and the x-axis represents the frequency, that is the number of hours the load is dispatched.

For very high load, the corresponding frequency is very low, denoting peak times for the

load which does not happen often. However, for very low values of the dispatched load, the

frequency is very high denoting the baseload required throughout the year.

The second curve is the generation cost curve, relating to the total annual cost and the

firing hour. The y-axis is the total annual cost of the power plant, the intercept of this

curve implies the fixed cost of operating the plant and the slope represents the variable cost.

This curve determines the total cost of the plant, which is operated at a fixed dispatched

value. The maximum value is reached if the dispatch occurs for all the hours in the year. In

the generation cost curves, the annualized cost for each energy producer includes annualized

overnight capital cost (Capex) and fixed operation and maintenance cost (FOM) per MW

capacity per year, variable operation and maintenance cost (VOM) and fuel cost (VFOM)

per MW electricity generated per hour. Thus total annualized cost for any type of energy

producer can be written as:

Cost = Capex+ FOM + (V OM + V FOM) · T (2.1)

where T is the production hours (firing hours) for the given energy producer. For different

types of power plants, all types of costs will vary, so only the best combination of the different

power plants can provide the least cost results. Since all types of energy producers can be

summarized in equation  2.1 , a comparison of different energy producers’ costs can be shown

on a generation cost curve. The lower envelope curve (tracing the lowest intercept of any

vertical line) represents the least-cost solution for a constant number of firing hours. The
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points on the horizontal axis at which the three curves intersect can be used to determine

the best unit for a given number of firing hours. Finally, the bottom graph shows the SCM

curve which is used to determine the optimal mix of capacities considering the variations in

the load-firing-hours relationship. Similar to the previous figure, the lower envelope curve

determines the best mix of capacities

Traditional SCM is used to decide the capacity planning problems with baseload energy

producers only. [Stoughton et al.,  1980 ] modified the SCM to account for capacity constraints

on existing units. SCM cannot optimize the installed capacity of renewable energy because

the marginal cost of renewable energy is low (i.e., renewable energy must be dispatched

whenever available). Also, SCM cannot be easily fitted in multiple energy markets, such

as the hydrogen market which is required in some IESs. Despite these limitations, SCM

provides a simple and a convenient approach for finding an initial set of estimates for the

baseload capacities.

As variable renewable energy capacity grows dramatically in recent decades, [Lamont,

 2008 ] has used SCM to explore the economic penetration and system-wide consequences of

VRE into the optimum capability combination. As acknowledged by [Nicolosi and Fürsch,

 2009 ], other contributions were introduced by [Billinton et al.,  2009 ] and [Troy et al.,  2010 ],

their studies use the SCM to demonstrate that unstable wind energy production would

create a constantly fluctuating curve of the demand, so the price of power becomes more

unpredictable, which leads to a longer-term rise in the traditional power market’s peak

capacity and lower average energy usage. [Traber and Kemfert,  2011 ] construct a model that

involves constraints and costs for ramping to investigate the impact of VRE on the utilization

of thermal power plants and the market prices. [Batlle and Rodilla,  2013 ] further develops

the conventional screening curve method to add up a simplified representation of start-up

costs, considers the operating option of running each energy producers with a limitation on

the minimum production, the model shows less flexible VRE units are less economical when

fully inflexible units increased in a context with larger VRE penetration. [Zhang et al.,  2015 ]

further measures the opportunity cost of the unit which operates at minimum production,

helps to determine the optimal operation time of running at minimum production for each

unit.
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2.2 Data Mining of Time Series

When solving the optimization of the economic performance of an IES, the techno-economic

analysis requires access to representative time series data for the load, demand, and other

operational and economic indicators, e.g., pricing data and weather data, etc. However,

the time series data are often scarce, only limited to few past years. Also, the data exhibit

variations on different time scales, a direct result of the seasonal usage changes. Therefore, it

is important to have many representative samples of these time series to ensure the robustness

of the optimization results. To achieve that, the data mining technique of time series analysis

is reviewed in this section.

In the last decade, data mining technique of time series has significantly increased, with

its benefits of reliability and security for complex engineering systems. The main problem

in the sense of time series data mining is how to represent the information from the time

series.

The process of data mining is to find discrepancies, patterns, and correlations to predict

results in large amounts of data. Advances in power and speed in computational processing

have made it possible for us to efficiently and automated data analysis beyond manual,

repetitive, and time-consuming practices. There is a long history in the process of searching

through data to find obscure relations and help predict patterns. The data mining technique

is evolving increasingly to further balance the unlimited potential and cost-effectiveness of

Big Data, greater scope for meaningful insight comes from more complex data.

Prediction and description are the two major objectives of data mining in practice

[Fayyad et al.,  1996 ]. Prediction requires the use of certain variables or fields in the database

to forecast unknown or future values from certain interests, while the description is based on

the discovery of intelligible trends that characterize the information. The relative importance

of prediction and clarification differs for specific applications of data mining.

Time series representation focuses on how to represent the information from the time

series. This desertion reviews the indexing and segmentation techniques, indexing is to find

the most similar time series while giving the similarity measure, segmentation evaluates the
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time-series segment boundaries and describes the complex properties associated with each

segment.

Time series data mining involves several common tasks: clustering, classification, outlier

detection, and summarizing. Clustering is a common task seeking to find patterns in the

time series data to help classify them into distinct groups, based on the statistical features of

each group. Classification, on the other hand, is assigning the time series data to predefined

classes or categories. Outlier detection is the task of identifying unexpected anomalies in

the data. Summarizing is to create an approximation of the data while preserving its unique

characteristics. All of the specific applications and tasks discussed above are reviewed in the

following sections.

2.2.1 Time Series Representation

Time series data is a sequence of observations collected by time-repeated measurements.

Unlike other types of data, time series should not be treated as an independent numerical

data point, it is often regarded as a whole set based on its numerical and continuous existence.

Besides its large data scale and high dimensionality, it is also constantly updating. The basic

problem with time series data mining is how the time series data is described, and how can

we reduce the dimension of the data.

Indexing for Similarity Queries

Time series indexing might be the most common task in time series mining. It is the

problem of finding the most similar time series in a large database while giving a query time

series and similarity measure.

The literature on time series indexing and representation has highlighted several techniques

to reduce the high dimensionality of the data and keep it the resolution.

Awareness of time series indexing is not recent, having possibly first been described in

[Åström,  1969 ]. A simple Gauss-Markov process is analyzed, by assuming the time series is

conducted at equal sampling rates, and it collects the time series data points in those equal

length windows, without further processing. It is suggested that the ideal window length
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is essential in this method. A great deal of previous research into time series indexing has

focused on solving the ’Curse of dimensionality’, usually fixed-length sequences with a few

transform coefficients are mapped to points in another low-dimensional Euclidean space, and

then use different techniques to reduce the dimension and reproduce those points.

[Guttman,  1984 ] introducing R-tree method for indexing for spatial searching, which

well suits data objects of non-zero size located in multi-dimensional space. Various studies

have assessed the efficacy of R-tree towards the time series data, using this approach,

researchers have been able to update and reorganize the data including [Sellis et al.,  1987 ]

and [Manolopoulos et al.,  2010 ].

While most research on time series indexing has been focusing on ”exact” queries, [Agrawal,

Faloutsos, et al.,  1993 ] argues that similarity-based queries are far more effective, and

therefore better adapted to the developing nature of the enhanced databases. They consider

using the Discrete Fourier Transform (DFT) to convert time series from the time domain into

the frequency domain. Then just index the most important frequencies and remove all other

frequencies. Those frequencies can avoid the dimensionality problem by accepting a few

errors because a large collection of the representing sequences shows strong amplitudes for

the first few frequencies. [Goldin and Kanellakis,  1995 ] further specify the constraints of the

method and extend the distance metric used in DFT. [Rafiei and Mendelzon,  1997 ] combines

the R-tree and DFT in time series indexing. R-tree is employed to test the similarity queries

efficiently, and use DFT as the basis for similarity queries on multidimensional time series

data. Results show that this combined method shows more competitive than sequential

scanning to exact match queries with the index.

There is a consensus among data scientists that DFT might be the most popular approach

when dealing with time series indexing. Some other commonly used techniques include Fast

map, discrete wavelet transform (DWT), Piecewise Constant models (PAA), discrete cosine

transform (DCT), Adaptive Piecewise Constant Approximation (APCA) and arbitrary Lp

norms DWT,are proposed in several studies [Faloutsos et al.,  1997 ; Faloutsos and Lin,  1995 ;

Keogh, Chakrabarti, et al.,  2001 ; Li et al.,  1996 ; Oppenheim,  1999 ; Yi and Faloutsos,  2000 ].

While several symbolic techniques of time series indexing have been developed in the last

decades, they all undergo different types of defects. It has been suggested that dimensionality
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is not effectively reduced in symbolic representation, and the similarity measures defined

on original data correlates poorly from the one symbolic representation. Also, most of

the techniques motioned above need access to all the data before the transformation. In

2003, [Lin et al.,  2003 ] invented Symbolic Aggregate approXimation (SAX), which allows a

distance measure that lower bounds a distance measure defined on the original time series,

which requires less storage space from other well-known techniques. Overall, we cannot easily

use an arbitrary compression algorithm in choosing a dimensional reduction method while

indexing the time series. The precision of the indexing depends highly on the consistency of

the approximation in the reduced dimensional space [T.-c. Fu,  2011 ].

Table 2.1. Overview of similarity measure

Distance
name Definition Domain Reference

Taxicab
distance dcab(p,q) = ‖p− q‖1 = ∑n

i=1 |pi − qi| Time Mískiewicz,
 2008 

Euclidean
distance dE(p,q) =

√∑n
i=1(pi − qi)2 Time

Agrawal,
Faloutsos,
et al.,  1993 

Minkowski
distance dM ink(p,q) = (∑n

i=1 |pi − qi|r)
1
r Time

Yi and
Faloutsos,

 2000 

Mahalanobis
distance

dMah(p,q) =√
(pi − qi)Tcov(p, q)−1 (pi − qi

) Time Singhal and
Seborg,  2005 

Pearson
correlation
coefficient

dcorr(p,q) = cov(p,q)
σpσq

Time Podobnik and
Stanley,  2008 

fast Fourier
transform
distance

dFFT (p,q) =√∑m
k=0 (Apk − A

q
k)

2 +∑m
k=1 (φpk − φ

q
k)

2 Transformed Chan and Fu,
 1999 

discrete
Fourier

transform
distance

dxi(p,q) = 3
√∑m

k=1

(
αref
k − αk

)2
+√∑m

k=1

(
θref
k − θk

)2
Transformed Evans and

Geerken,  2006 

Notice that all the techniques discussed above need similarity measures for the transformed

representation system. It has been used as an absolute criterion to conclude the relationship
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between different time series, besides, it was also employed as a relative criterion to provide

cluster metrics. There are several time series similarities defined in different methods.

Therefore, the literature includes a wide variety of techniques for determining the similarities.

The majority of research interest in time series similarity measure use different distance in

time and transformed domain. Table  2.1 list some popular distance measurements and their

definition, combined with the domain used. Before selecting a proper distance, it is necessary

to understand the dynamics of the specific properties of the time series including the mean

level, shifting rate, noise level, amplitude, and phase.

Segmentation

Time series segmentation refers to the process of splitting a time-series into segments. A

time-series can be interpreted as a sequence of independent segments, each with its own

properties. Often time-series segmentation, the objective is to evaluate the time-series

segment boundaries and describe the complex properties associated with each segment.

Since the 1990s much of the literature emphasizes the time series segmentation can be

treated as a discretization problem, and also some prepossessing steps for other time series

analysis. It has two general approaches. The first involves searching for time-series shift

points or change points: one can specify a section boundary if there is a clear change in the

signal average. It attempts to pursue only adjustments in a small time window. The second

method contains the assumption that each segment in the time-series is created by a system

with different parameters and minor fluctuations, the most possible segment positions, and

system parameters explaining them. This method is often employed on the whole time-series.

[Box and Jenkins,  1976 ] discussed mathematical models and techniques for evaluating

discrete time series, and provide methodology applications, including the auto-regressive

integrated moving average (ARIMA) models and various extensions of these models. The

segmentation on time-series is not trivial. Based on the stationarity assumption, one needs to

specify a relatively narrow interval, where their characteristics are calculated to ensure most

time transitions are not within the observation window. Another typical solution includes

fixing the number of change-points, defining their locations, and finally find functions to

match the intervals between those change-points. However the stationary assumption might
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not be true for most of the real-world data, and narrow observation windows show significant

variance for the predicted parameters. Much of the previous research on time series segmentation

has been exploratory. [Duncan and Bryant,  1996 ] use dynamic programming to identify

change points in the retail sales data and fit with a different order of models. [Fancourt and

Principe,  1998 ] combine the mixture of experts (MOE) model with a Principal Component

Analysis (PCA) method when selecting the duration of the observation window. It generates

an input-dependent PCA algorithm for locally stationary time series. Results showed that

each PCA expert finds the eigenvectors of each stationery section, and the posterior probabilities

represent an accurate segmentation of the input.

[Das et al.,  1998 ] then provide a segmentation method which is similar to the Vector

Quantization (VQ) method [Gersho and Gray,  1992 ] for data compression in signal processing.

In VQ, only centroid indices must be transmitted, allowing for signal compression at the

expense of fidelity. However, in comparison to traditional databases of discrete objects,

time series data is continuous and more “smooth”. This method used a sequence and a

window width, transform a series into a set of sub-sequence and represent each timepiece

as a “shape”, then discover rules in the series. While employing this method, whenever the

system senses certain rules, systems analysts should evaluate and interpret the rules. It is

also required the analysts to performed the algorithm many times, to discover algorithms

with various parameter configurations. Since multiple runs provide different perspectives of

the data set. Such that, a small window may generate rules detailing short-term patterns,

while a large window can build rules that provide a more general view of the data set. To

overcome those advantages, many studies have come up with other segmentation methods.

Different theories exist in the literature regarding the criteria that can be used to decide

if time series can be segmented into regions. [Oliver et al.,  1998 ] comparing a set of criteria,

such as Akaike information criterion (AIC), Bayesian information criterion (BIC), Minimum

Message Length (MML), and Minimum Description Length (MDL). It suggests that the

MML criterion is preferred because the average Kullback-Liebler distance between a fitted

distribution and true distribution was much smaller than other criteria. [Guralnik and

Srivastava,  1999 ] using a likelihood criterion to decide whether the segment can be further

divided, the algorithms are able to handle data sets with noise by detecting changing points
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in the data. It is also discussed in this study that the segmentation problem should be

defined as batch and incremental, while batch algorithm can get the entire data set, the

incremental algorithm collects new data points one by one. [Fitzgibbon et al.,  2002 ] used

Minimum Message Length approximation D (MMLD), to choose a region R of the parameter

space, further improves the Taylor expansion approximation of [Oliver et al.,  1998 ]’s work

of MLD, and avoids the issue of constructing a full code book entailing an enumeration of

the data and parameter space. [Wang and Willett,  2004 ] present a standard segmentation

and classification method, it applies piecewise generalized likelihood ratio (GLR), refines the

results forward and backward. The computing burden is remarkably small, because it does

not need the same statistics for all data, but only needs density function (PDF) of those

metrics under their own assumed model.

[Keogh, Chu, et al.,  2001 ] gives an exclusive review of a segmentation algorithm and

uses a piecewise linear representation to solve the segmentation problem. In this study, a

combined method called Sliding Window and Bottom-up (SWAB) algorithm is employed. It

takes only a small constant amount of memory and time, scales linearly to the size of the

data set, and delivers high-quality data approximations.

In comparison to previous techniques, [Kohlmorgen et al.,  2000 ] proposed annealed

competition of experts method which allows a seamless transformation between successive

modes. these technique does not require prior knowledge the data, are useful in studying

non-static dynamic structures of time series that abound in other applications. A time series

segmentation method based on a specialized binary tree representation scheme is proposed

in [T.-c. Fu et al.,  2006 ], this representation scheme is designed for its specific habits for

financial time series.

2.2.2 Time Series Data Mining Tasks

Clustering and Pattern Discovery

Time series clustering is a common task seeking to find patterns in the training data to

help classify them into distinct groups, based on which synthetic data have generated that

respect the statistical features of each group. This work relies on the so-called unsupervised
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learning algorithm which does not require labels, i.e., supervision, to identify the best

grouping of the data. Clusters are created by grouping objects that have maximum similarity

to other objects within the group and minimum similarity to objects in other groups. It is

a viable approach to data analysis because it can define the structure in unlabeled data set

and also works as a pre-processing step for other data mining activities. For example, it

contributes to the detection of significant trends. Those trends would lead to other research

interests, such as pattern recognition, indexing, classification, outlier detection.

Characterized by its numerical and continuous nature, time series clustering is a complex

and challenging task. There are three basic type time series clustering problems currently

being reviewed in literature [Keogh and Lin,  2005 ]:

1. Raw data clustering: Using raw data in high dimensional space as the input of clustering,

either in the time or transferred domain, the whole set of data or sub-sequence.

[Košmelj and Batagelj,  1990 ] first proposed a general model for the clustering process

as an optimization problem. They first developed a general model incorporating the

dissimilarity between trajectories. Then developed a compound interest model to

estimate linear time-dependent weights. Ward criterion function is used to search

for the best cluster results, this method can only handle equal length time series.

[Golay et al.,  1998 ] uses fuzzy C-means algorithm on equal length time series. They

suggest using the correlation coefficient as the distance measure, however, the optimum

number of clusters is not defined. [Van Wijk and Van Selow,  1999 ] suggests to use

hierarchical clustering method. They take an application of daily power demand, find

similar daily patterns, then collect them into plots with the corresponding days in the

calendar. [Kumar et al.,  2002 ] also use hierarchical clustering method for grouping

the seasoning trends. [Abonyi et al.,  2005 ] proposed a clustering algorithm to support

contiguous clusters in time, which can further detect shifts in multivariate time series

hidden structure

2. Feature clustering: Using the feature extracted from raw data for clustering, usually

application dependent. [Wilpon and Rabiner,  1985 ] shows a study in isolated word

recognition systems. they create an automated clustering technique without human
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interference, called UWA (unsupervised without averaging) algorithm. It can cluster

the word patterns based on the k-mean method, so no specific cluster parameters

need to be set up such as the vocabulary type and population size. [Goutte et al.,

 1999 ] uses cross-correlation function as a feature space to performs clustering for fMRI

time series. Two methods are used, K-Means and Hierarchical clustering. While

hierarchical clustering chooses the number of clusters according to the within-class

variance, K-Means will use this number as an input to the algorithm. [T.-c. Fu et al.,

 2001 ] employs a self-organized map (SOM) on stock market data due to its clustering

efficiency. SOM sets the data topologically to perform the clustering, so segmentation

is needed to pre-process the data. Since the computational time will grow exponentially

by increasing the pattern data points, they use perceptually important points (PIP)

to replace the segmentation point. [Vlachos et al.,  2003 ] creates Interactive K-Means

method. The algorithm operates by firstly using a course Haar wavelet representation

to perform the K-Means clustering, then refine the resolution and the center of the

cluster to do a finer cluster algorithm inside the cluster itself.

3. Model clustering: Using the model or by probability distributions of the time series

as the input for clustering. [Piccolo,  1990 ] fit a large number of time series into

autoregressive integrated moving-average (ARIMA) model, then cluster on the models

to select a small set of representative models. They construct a distance metric between

the ARIMA model. The distance metric made it possible for the comparison between

the models with zero-order. [Kalpakis et al.,  2001 ] uses the Partitioning Around

Medoids (PAM) clustering method on the ARIMA model, the Euclidean distance

between the linear predictive coding spectrum is used as a dissimilarity measure in

the cluster. Because linear predictive coding only needs fewer coefficients than DFT

and DWT. similar approach can be found in [Maharaj,  2000 ]. [Ramoni et al.,

 2002 ] maps time series into Markov chains, then clusters similar Markov chains to

discover the most probable set. To boost efficiency, the approach uses an entropy-based

heuristic search technique. [Xiong and Yeung,  2002 ] research the clustering of time

series patterns that could have various lengths. They suggest using mixtures of the
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Table 2.2. Overview of clustering methods.

Cluster
Models

Method
name

Parameters Cluster Size Geometry
(metric used)

Centroid
based

K-Means number of
clusters

general, even distances
between points

Message
passing
based

Affinity
propagation

damping,
sample
preference

many, uneven nearest-neighbor
graph distance

Segmentation
based

spectral
clustering

number of
clusters

few, even nearest-neighbor
graph distance

Connectivity
based

Ward
hierarchical
clustering

number of
clusters

many,
connectivity

distances
between points

Density
based

DBSCAN,
OPTICS

neighborhood
size

general, uneven distances
between
nearest points

Distribution
based

Mean-shift,
Gaussian
mixture

bandwidth many, uneven distances
between points

ARMA model, establish an expectation-maximization algorithm instead of using the

maximum likelihood estimation. The computational efficiency is further improved,

however, clustering performance can also degrade when clusters are close.

Since the understanding of what constitutes a cluster differs significantly, various algorithms

can be given [Estivill-Castro,  2002 ]. Some detailed surveys can be found in [Liao,  2005 ] and

[Aghabozorgi et al.,  2015 ]. An overview of the clustering method used in RAVEN is archived

in Table  2.2 ]

Classification

Statistical classification is the problem of determining the category of the unlabeled

time series, based on known training sets [Alpaydin,  2009 ]. This can be categorized into

supervised learning, as a set of correctly identified training observations is available [Ripley,

 2007 ]. Examples of classification in the nuclear industry are using latent semantic analysis

(LSA) to provide semantic classification in nuclear fuel cycle [Vatsavai et al.,  2010 ]. Time
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series classification is a common task recently [Kadous and Sammut,  2005 ]. There is a large

volume of published studies describing the importance of the time series clustering problem.

Popular algorithm including: weighted dynamic time warping (WDTW), move–split–merge

(MSM), Bag of SFA symbols (BOSS), time series forest (TSF), Learned pattern similarity

(LPS), elastic ensemble (EE), shapelet transform (ST), collective of transformation-based

ensembles (COTE), and time series bag of features (TSBF)

Comparisons between algorithms have been challenging in previous studies because different

programming languages were used over wide varieties of data. [Bagnall et al.,  2017 ] made

it possible to compare different classification algorithms. Popular approaches including,

13 algorithms that are using nearest neighbor classification (NN) with time-domain distance

function, 6 algorithms are using a derivative-based distance function. Others using shapelet-based,

interval-based, dictionary-based, auto-correlation based and ensemble-based. They create a

classification archive with 85 data sets. The archive offers to test 18 different classification

algorithms. The results suggest COTE is overall a better algorithm from other methods,

however, based on different problems, the other types of methods might be ideally suited.

[Geurts,  2001 ] allow machine learning classifiers to handle data from time series. They

recommended a strategy to identify patterns and combining them which later benefit the

classification problems in time series. [Fawaz et al.,  2019 ] suggests using Deep Neural

Networks (DNNs) to perform the clustering task. They offer an overview of deep learning

implementations in many time series domains.

Outlier Detection

Outlier detection is intended to classify certain objects in a database that are abnormal,

unusual, distinct from most data, and therefore suspect as a result of contamination [Zimek

and Schubert,  2017 ]. Outlier detection on time series plays an important part in ensuring

data accuracy and defending from hostile attackers. Outlier detection, also refer as novelty

detection, anomaly detection, noise detection, deviation detection, or exception mining [Hodge

and Austin,  2004 ], may be categorized into three fundamental approaches [Chandola et al.,

 2009 ]: unsupervised clustering, supervised classification, and a semi-supervised detection.

Unsupervised clustering determines outliers without previous information, it assumes that
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errors that fit least from ’normal’ data and are therefore identified as outliers. Diagnosis

and accommodation [Rousseeuw and Leroy,  2005 ] are two common approaches used in

unsupervised clustering, diagnosis identifies the outliers and removes them, accommodation

employs a robust classification keeps the outliers, and generates a distribution model best

suited to the system. Non-robust methods [Torr and Murray,  1993 ] are also employed in

data containing fewer outliers.

Multiple outlier detection techniques are proposed: K-nearest neighbor [Keller et al.,

 1985 , Probabilistic Local Outlier Factor (PLOF) [Kriegel, Kröger, Schubert, et al.,  2009 ], and

Isolation Forest (iForest) [Liu et al.,  2008 ] are all density-based techniques. These methods

ranking points by distance or density, have better computational complexity, however, may

lead in the absence of dimensionality to unexpected efficiencies and qualitative costs. While

distribution based methods [Yamanishi and Takeuchi,  2001 ]. [Yamanishi et al.,  2004 ] use

a standard distribution to fit the data set. Those methods also assume the underlying

distribution as a prior knowledge, which may not remain adequate in reality. Subspace-based

methods [Agrawal et al.,  1998 ] [Kriegel, Kröger, and Zimek,  2009 ] are mainly used in high

dimensional but limited amounts of data. Present approaches suffer from scalability, usage

limits, and accuracy.

Other methods such as depth-based methods [Ruts and Rousseeuw,  1996 ] organizing data

via peeling depth find outliers with shallow values. Cluster-based methods [He et al.,  2003 ]

identifying the physical significance in the synthetic data set, while fuzzy logic-based outliers

detection is focused on software-defined networks [Dotcenko et al.,  2014 ].

Other tasks

Summarization includes methods to find a compact representation of the data set. The

goal here is to take an information source, extract content from it, and create an approximation

that retains its essential features, and present the most important content in a condensed

form and in a manner sensitive [Mani,  2001 ]. Statistical measurements such as mean and

standard deviation are all examples of summarization in scientific calculations, newspaper

headlines are summaries of a story, etc. Application of summarization came from all fields,

traditional data set such at the calculation data inputs, outputs, or other types of data objects
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including document, image, videos. Extraction and abstraction are two basic approaches in

summarization. Extraction basically clones material considered the system’s most important

data into a description, while abstraction can condense information more intensely by including

paraphrasing part of the source. Studies on summarization in time series have focused on

two perspectives, one is determining the special patterns in data sets, the other one is

presenting time series in another way, such as the word summarization and visualization.

[Boyd,  1998 ] combine knowledge-based signal processing and natural language processing

together to produce automated descriptions of time-series data. Through continuous wavelet

transform, the descriptions are based on short and long-term data patterns. They compare

the work with experts, it is shown that most of the normal trends can be described however,

experts will give more insights on the special days and the volatility. [Guimarães et al.,

 2001 ] present an approach to discovering temporal patterns in multivariate time series and

translate them into a linguistic knowledge representation, this approach solves the knowledge

acquisition problem in summarization. The key concept is to add several abstraction layers

to define temporal trends. [Sripada et al.,  2003 ] develop technology to generate textual

summaries of weather forecasts, sensor readings, and intensive care data. In the first step,

they need to select the major patterns in communication. They use pragmatics theory to

improve the effective communication of summarization.

Dependency modeling is rule-based machine learning methods that attempt to discover

and identify the significant dependencies between variables [Piatetsky-Shapiro,  1991 ]. Based

on the association rules discovered in databases [Agrawal, Imieliński, et al.,  1993 ], it can give

decisions about marketing with high confidence, which benefits the market basket analysis.

In our case, we are discovering the dependencies in weather data and to provide credible

samples. Two levels of dependency models are the structural level and quantitative level,

the formal level specifies locally dependent variables while the quantitative level specifies the

strengths of the dependencies.

Forecasting or prediction is another significant task, this task involves fitting statistical

models to make predictions of time series. These models may be as plain as extrapolating past

patterns into the future or as complex as Autoregressive integrated moving average models.

Most time series prediction algorithms include regression analysis. It uses proven data point
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in time series to forecast future values. The linear regression model is the most common

regression model in time series analysis, it is a linear approach to modeling the relationship

between a dependent variable and or independent variables. Multiple linear regression

is employed for more than one independent variable [Freedman,  2009 ], while multivariate

regression is used for predicting multiple correlated dependent variables [Rencher and Christensen,

 2012 ]. The joint distribution of the response and explanatory variables is assumed to

be Gaussian in earlier work, however, the assumption is later updated as the conditional

distribution of the response variable is Gaussian [Fisher,  1922 ]. New approaches were

developed for different types of independent variables and dependent variables, such as

correlated time series. For approximating complex engineering analyses [Clarke et al.,

 2004 ], support vector regression [Vapnik et al.,  1997 ] has been developed to reduce the

computational expense of computer-based analysis and simulation codes.

2.3 Optimization in Classification and Common Approaches

An optimization is an important tool in decision science and in the analysis of physical

systems [Nocedal and Wright,  2006 ]. The objective can be any kind of response that be

represented by a single number, such as energy, time, cost, profit, or any combination of

any quantities. Variables are certain characteristics of the optimization system, the goal

here is to find values of the variables that satisfy the constraints and optimize the objective.

Discrete optimization usually refers to problems with a solution in a finite set, continuous

optimization seeks a solution from an infinite set of vectors with real components. This type

of optimization is generally easier to solve since the function is smooth in particular points,

which can make it possible to deduce information on the point close to the solution.

Optimization problems can also be classified by the smoothness function and constraints,

variables size. Numerous functional implementations introduce unconstrained optimization

problems. If variables have inherent restrictions, it is sometimes safe to ignore them and

conclude that they have no impact on the desired solution. Unconstrained problems can

also be thought of as reformulated constrained optimization problems in which the limits

are replaced by penalty words in the objective function that discourage constraint breaches.

Constraint-based optimization problems arise where models have clear parameter constraints.
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Linear programming is a common approach used in energy portfolio optimization. It

requires all the constraints and the objective function and are linear, in natural physical

sciences and engineering, nonlinear programming problems with at least some non-linear

features are increasingly commonly used [Luenberger, Ye, et al.,  1984 ]. The iterative approaches

used to solve non-linear programming problems vary according to whether Hessians, gradients,

or functional values are evaluated [Walia,  2017 ]. Derivative-free optimization uses only

criterion values to look for the solution: criterion derivatives are not necessary, while gradient

and Hessian are hard to acquire, such as a black box problem. The first-order optimization

minimizes or maximizes a loss function using its gradient values.

The gradient descent method is the most popular first-order optimization algorithm, this

method evaluates the first-order derivative at a particular point and indicates whether the

function is decreases or increases at this point, it simply provides a line that is tangent on

its error surface [Evans,  2017 ]. Second-order optimization uses Hessian, which is a matrix

of second-order partial derivatives to minimize or maximize the loss function. This method

provides a quadratic surface that touches the curvature of the Error Surface [Mason et al.,

 2000 ]. Second-order optimization is not wildly used as other methods due to the expensive

computational costs.

In some applications, unlike the condition of deterministic optimization problems, the

model can not be fully specified as it is dependent on unknown quantities at the time

of the formulation. This feature is shared by several models of economic and financial

planning, it could be based on the future behavior of the economy. However, one can still

provide an estimation of those unknown quantities with some degree of confidence, stochastic

optimization algorithms use these uncertainty quantification techniques to develop solutions

that maximize the model’s expected performance. When the parameters are uncertain but lie

in possible values, the goal for optimization practitioners, researchers, or decision-makers is

to find a solution that is feasible for all such situations. Stochastic programming benefits from

the understanding of probability distributions for the data [Shapiro et al.,  2009 ], [Wallace

and Ziemba,  2005 ].
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Kriegel, H.-P., Kröger, P., Schubert, E., & Zimek, A. (2009). Loop: Local outlier probabilities.

Proceedings of the 18th ACM conference on Information and knowledge management,

1649–1652.

49
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Mískiewicz, J. (2008). Globalization—entropy unification through the theil index. Physica

A: Statistical Mechanics and its Applications, 387 (26), 6595–6604.

Nicolosi, M., & Fürsch, M. (2009). The impact of an increasing share of res-e on the

conventional power market—the example of germany. Zeitschrift für Energiewirtschaft,

33 (3), 246–254.

50



Nocedal, J., & Wright, S. (2006). Numerical optimization. Springer Science & Business Media.

Oliver, J. J., Baxter, R. A., & Wallace, C. S. (1998). Minimum message length segmentation.

Pacific-Asia Conference on Knowledge Discovery and Data Mining, 222–233.

Oppenheim, A. V. (1999). Discrete-time signal processing. Pearson Education India.

Phillips, D. (1969). A mathematical model for determining generation plant mix. Proceeding

of the Third Power Systems Computation Conference.

Piatetsky-Shapiro, G. (1991). Discovery, analysis, and presentation of strong rules. Knowledge

discovery in databases, 229–238.

Piccolo, D. (1990). A distance measure for classifying arima models. Journal of Time Series

Analysis, 11 (2), 153–164.

Podobnik, B., & Stanley, H. E. (2008). Detrended cross-correlation analysis: A new method

for analyzing two nonstationary time series. Physical review letters, 100 (8), 084102.

Rafiei, D., & Mendelzon, A. (1997). Similarity-based queries for time series data. Proceedings

of the 1997 ACM SIGMOD international conference on Management of data, 13–25.

Ramoni, M., Sebastiani, P., & Cohen, P. (2002). Bayesian clustering by dynamics. Machine

learning, 47 (1), 91–121.

Rencher, A. C., & Christensen, W. F. (2012). Chapter 10, multivariate regression–section

10.1, introduction. Methods of Multivariate Analysis, Wiley Series in Probability and

Statistics, 709, 19.

Ripley, B. D. (2007). Pattern recognition and neural networks. Cambridge university press.

Rousseeuw, P. J., & Leroy, A. M. (2005). Robust regression and outlier detection (Vol. 589).

John wiley & sons.

Ruts, I., & Rousseeuw, P. J. (1996). Computing depth contours of bivariate point clouds.

Computational Statistics & Data Analysis, 23 (1), 153–168.

Sellis, T., Roussopoulos, N., & Faloutsos, C. (1987). The r+-tree: A dynamic index for

multi-dimensional objects. (tech. rep.).
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3. MODEL CONSTRUCTION AND DATA COLLECTION

In this Chapter, model construction and the corresponding data collection are discussed.

Two models are discussed specifically: the energy demand model and the energy generation

model. These models represent the basis for generating synthetic time series for HERON

economic evaluation.

The energy demand model collects the electricity demand based on 2007–2013 historical

load data in the state of Texas. The load history is used as the electricity demand in the

grid system. Since the IES portfolio includes renewables (e.g., solar and wind units) as well

as baseload generators (e.g., nuclear, natural gas, and coal units). So the energy generation

model includes the renewable energy generation model and the conventional baseload energy

generation model. Wind and solar energy are employed as renewable energy sources in the

system. The conventional baseload energy model includes nuclear, coal, and gas. There are

5 energy producers constructed in this study, Table  3.1 shows the plant characteristics for

each energy producer.

Table 3.1. Plant characteristics
Energy Unit Plant characteristics

Wind Onshore Wind (WN)
Solar Utility-Scale Photo-voltaic (PV)

Nuclear Advanced Nuclear (AN)
Coal Ultra-Supercritical Coal(USC)

Natural Gas Combustion Turbine (CT)

The wind energy generation model uses the wind speed and wind capacity as the inputs to

calculate the electricity generation from the onshore wind farm. The solar energy generation

model uses the global horizontal irradiance (GHI), air temperature, and solar capacity

as the inputs to calculate the electricity generation from utility-scale photo-voltaic. The

conventional baseload energy model uses only the capacity as the input to calculate the

energy. There are five time series need to be collected in the model construction: load

profile, price profile, wind speed, solar GHI, and air temperature
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3.1 Energy Demand Model

Energy demand data source is shown in Table  3.2 

Table 3.2. Data source of energy demands
Energy Demand Unit Data from ERCOT
Electricity load MWh Hourly Load Data in Texas 2007 to 2013
Electricity price $/MWh DAM electric settlement point price of hub Houston

3.1.1 Electricity Load

The electricity load data are collected from the Electric Reliability Council of Texas

(ERCOT). ERCOT operates 75% of Texas’ deregulated market, and oversees the scheduling

of an electricity grid for 90% of the load in Texas. There is a pubic section that contains

data about the grid and key measurements of its operation on their website [ERCOT,

 2020 ]. For the years 1995 to 2016 historical records on hourly loads by ERCOT control

area are accessible, except for 2001, in which no data are available. The details could indeed

differentiate between reports. Since ERCOT was split into 11 weather zones before April

2003, the load data were reported accordingly. After April 2003, ERCOT change from 11

divisions into 8 weather zones, see Figure  3.1 . Weather zones reflect an area with similar

climate characteristics.

The newest ERCOT Long-Term Hourly Peak Demand and Energy Forecast (LTDEF)

[ERCOT,  2019 ] provides details on the process, estimates, and data used to construct the

forecast for the ERCOT region. This forecast is based on a series of economic theories

defining the hourly load as a function of the number of premises in different consumer groups,

weather variables, and calendar variables. Each weather zone has 2 or 3 weather stations to

reflect each zone’s specific weather and load characteristics, different load forecasting models

were established for each weather zone.

Historically, from 2010 to 2019, summer peak demand has risen at 1.4% average annual

growth rate (AAGR), and total energy for each year has increased by 2.1%. [ERCOT,  2019 ]

indicates that the peak demand will be rising at 1.6%, and annual energy will be increased
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Figure 3.1. ERCOT weather zone since April 2003

by 2.3% from 2020 to 2029. There are six main factors of forecast uncertainty: weather,

economics, energy efficiency, demand response, on-site distributed generation, and electric

vehicles.

Total load data from the year 2007 to 2013 for 7 years from 13 weather zones of Texas

are collected as a training set. Price for the electricity data is also collected as an optional

correlation variable for the load. The training set is used for feature extraction to generate

the ROMs. Several features are extracted, such as the mean and standard deviation of

the demand, the Fourier parameters, etc. Details on the synthetic time series generation

algorithms are discussed in Chapter. 4 . All the weather zones are collected for future calculations.

For stochastic optimization calculations, the one-year ROM is used to generate the

synthetic load samples for 60 years, assumed to represent the projected time horizon for

the optimization calculations. The samples represent 60 years of operation, with each year

emulating the behavior of a single year as obtained from the historical data. HERON allows

for capacity expansion over time, i.e., to accommodate projected yearly energy demand
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Figure 3.2. Electricity load and price in 2013

increases. For Net Present Value (NPV) calculations, it is a common practice to perform

the initial scoping analysis with no expansion. The 60-years projected period allows one to
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take into account the impact on the time-value of money and depreciation costs on the NPV

calculations.

3.1.2 Price

A time series of the Day-Ahead Market (DAM) electric price is obtained as a typical

periodic peak training data in this work. Note that we only use price in our study as an

optional history, which means that, it is not considered to be the main factor of calculating

the real cost or profit, but the price reflects the history of the electricity demand. The reason

is that the DAM electric price provides a platform in the energy market to decrease the risk

of price volatility in real-time. By simulate DAM and generate synthetic time series of the

DAM, one could simplify the complex viability of the energy mix in the energy market and

provide a suitable analysis.

Figure  3.2 shows the electricity load and the price in 2013, we can see that the price is

under 100 $/MWh most of the time. In winter, the price is usually under 50 $/MWh, but in

summer the price rises around 100 $/MWh. However, the price shows a periodic peak every

day, and the peak amplitude may rise up to 500 $/MWh in summer 2013.

3.2 Energy Generation Model

This section discusses the various energy generation models employed as the basis for the

synthetic histories for the different types of energy producers. Weather data as the input of

the energy generation model is shown in Table  3.3 

Table 3.3. Data source of weather profiles
Weather Profile Unit Data Source

Wind Speed m/s NREL (WIND) Toolkit
Solar GHI W/m2 NREL NSRDB PSM(v3)

Air Temperature C◦ NREL (WIND) Toolkit
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3.2.1 Wind Energy

The wind energy generation model uses the wind speed and the wind capacity to calculate

the wind energy generation. To perform wind integration, comprehensive wind power production

data at different sites should be included. It helps to model how the power system can

effectively function in high-penetration scenarios.

The regional wind speed will be used as an input to the analysis. It should represent

realistically the ramping characteristics, the spatial and time correlation, and the capacity

factor of the wind farm. According to a study for wind generation forecast, core relevant

variables are wind speed and direction [Castronuovo et al.,  2014 ]. The measurement taken

at heights nearest to the wind turbines is significantly more relevant than those at other

heights. Obtaining the wind speed data at various heights is critical for determining turbine

effectiveness.

NREL Highly Scalable Data Service (HSDS) provides Wind speed in their data sets.

There are 2 data sets provided for public use, National Solar Radiation Database (NSRDB),

and Wind Integration National Dataset (WIND) ToolkitDraxl et al.,  2015 . The NSRDB is

a serially complete set of U.S. meteorological and solar irradiance data set for 1998-2017.

It has an average resource resolution of 30 minutes over surface cells of 0.038 degrees in

latitude and longitude. Wind Direction and wind Speed are two variables we can collect

from the set. However, this data set does not contain any information that can illustrate the

heights of the wind measurement. WIND Toolkit, on the other hand, is the largest publicly

accessible meteorological data set for grid integration. Wind speed at the wanted location

has measurement at different heights, including 10m up to 200m. However, it only contains

7 years of data from the year 2007 to 2013. The time frame covered by these data set is

reasonably recent. The corresponding historical load profile needs to be in the same selected

years, so that wind power and load profile can represent the same weather trends. Both

load profile and weather data are highly affected by local weather conditions. Therefore,

it is important to prepare the data in the same spatial and temporal resolutions to ensure

consistency of the raw data.
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Figure 3.3. Histogram of wind speed at different height for year 2007

Figure  3.3 shows 3 histograms that represent wind speed hourly measurement taken

at 3 different heights in 2007 in Houston. The graph shows that measurements taken at

160m have a wider distribution, occurring at a maximum wind speed of 16m/s, while the

measurements at 80m have a maximum wind speed of 14m/s.

Wind speed and correlated weather data demonstration for the synthetic time-series

generation can be found in several studies [J. Chen and Rabiti,  2017 ] [Talbot et al.,  2020 ].

In this work, segmentation, cluster, Fourier detrending, and ARMA modeling are used.

Please refer to Chapter  4 for a detailed method on detrending and synthetic time-series

generation.

A power curve model is used to correlate the wind speed to generated energy. A wind

turbine’s power curve is a graph showing how high the turbine’s electricity output would

be at varying wind speeds. It can also be used to forecast, monitor, and optimize wind

farm output. Although each wind turbine has a characteristic power curve, and it can be

categorized in parametric and non-parametric models, almost all power curves illustrate
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three signature velocities: cut-in speed, rated speed, cut-out speed. Cut-in speed is the

speed at which the turbine starts to produce electricity. Rated speed is the speed at which

the wind turbine hits the turbine’s full capacity. Cut-out speed is the wind speed at which

the wind turbine shuts down to prevent the generator from exceeding the damaging level.

The wind power curve is adapted from [Lydia et al.,  2013 ], it is a cubic power model

with turbine height at 80m:

Pwind =


0 U ≤ 2 m/s or U ≥ 18 m/s

c · U3 2 m/s < U ≤ 8 m/s

Pr 8 m/s ≤ U < 18 m/s

(3.1)

c = 1
2ηmaxρπR2 (3.2)

where the power curve coefficient c is 39.06 kg/m, calculated in Eq.( 3.2 ). The ηmax, ρ

and R are the conversion efficiency (0.5926), density of the air (1.17682 g/m3) and the radius

of the rotor, respectively. The turbine capacity is Pr = 20 kW, cut in speed uc = 2 m/s,

rated speed ur = 8 m/s, and cut out speed us = 18 m/s.

Figure  3.4 shows the chosen power curve and the frequency distribution of wind speed

for 2007. The figure shows that the turbine runs at its capacity around 11% of the time,

representing the area under the tail part of the distribution above a wind speed of 8m/s.

Also, the figure shows that the turbine is inactive at low wind speed around 12% of the time,

representing the area under the distribution below a wind speed of 2m/s. This illustrates the

fact that, alongside the complexities of wind forecasting, physical operating characteristics

also add another source of uncertainty to wind energy production. Note that the wind

speed is not steady over the one-hour period and that the speed changes rapidly with high

frequency. The hourly measurement of the speed is used as the average speed over this

period. One could even argue that the hourly wind speed may not be the average for that

hour at all; however, these short-term fluctuations will not be considered in the current work.

This is because our main focus is on the total cost of a combined IES portfolio rather than

on the reliability of energy production.
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Figure 3.4. Power curve and the frequency distribution for year 2007

With the wind capacity Cwind fixed, Cwind
Pr

is the effective number of turbines, and the

corresponding total energy is given by:

Ewind = Pwind ·
Cwind

Pr
(3.3)

3.2.2 Solar Energy

Solar photovoltaic devices, turning sunlight into electricity, are employed as the basis

for modeling solar energy generation. Solar power performance depends on the incoming

radiation and the properties of the solar panel. Photovoltaic capacity is growing nowadays.

Most major research on power grids shows solar expansion substantially, it is also tested

that power grid frequently find their interconnection queues full of solar projects and new

announcements [Rhodes,  2020 ]. For productive usage, maintenance of the energy grid, and

solar power trading, the prediction of solar energy is very important. Because solar energy
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generation is related to air temperature and solar irradiation, and solar irradiation greatly

influences the air temperature, the problem of solar energy prediction is closely related to

the problem of weather forecasting.

As mentioned in the wind energy model section, NSRDB and WIND Toolkit can both

be considered as the raw data source of solar Global Horizontal Irradiation(GHI) and air

temperature. Irradiance values have been truncated to integer precision in both databases,

since WIND Toolkit does not have a detailed illustration of the scaling of the data, NSRDB

would be more suited for the solar-related data source. Besides NSRDB also contains

variables such as cloud type, solar zenith angle, surface albedo, which can be applied in

correlated time series generation for solar data. [Hansen et al.,  2015 ] compared NSRDB

GHI to ground measurements, and claimed that NSRDB has a bias of overestimating the

GHI by 5% for many years and in several locations. During the winter months, when snow

covering NSRDB underestimates about 3%. However, we will still use NSRDB as the solar

GHI source, while the scaled temperature in NSRDB will remove the precision we required in

our study, WIND toolkit is considered as the temperature source. To keep the consistency,

solar data is from 2007 to 2013.

Figure  3.5 shows a merged plot for the air temperature and solar GHI in 2013, followed

by 2 typical zoom-in views over the summer and winter. Analysis of the correlations between

these two variables provides insight into the amount of energy generation. For example, in

the summer, the middle graph in Figure  3.5 , when there is a peak in the GHI value, there is a

corresponding close-by peak in the air temperature. In the winter, however, this correlation

is not as strong, resulting in different amounts of energy generation. Compare the differences

between GHI peaks and air temperature peak in the bottom graph of Figure  3.5 .

Another observation is captured by Figure  3.6 which logs, in the form of a histogram,

the number of hours/day with non-zero GHI values. Results indicate that in 2013 more than

350 days the GHI value is non-zero from 9:00 to 18:00, confirming the fact that solar energy

provides consistent generation throughout the year.

Solar irradiation and air temperature forecasting can be modeled using Geographical

Information Systems (GIS), artificial intelligence, and numerical weather forecast (NWP)

models. In this study, we are using the synthetic time-series generation with methods:
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Figure 3.5. Temperature and solar GHI for year 2013
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Figure 3.6. Histogram of hours when sun is shining form year 2013

zero-filter, segmentation, cluster, Fourier detrending, and ARMA. Please refer to Chapter  4 

for a detailed method on detrending and synthetic time-series generation. It is more useful

for us to employ the synthetic time-series as a long-term forecast since we are more interested

in the mean solar energy decennially or annually in economic analysis.

The photovoltaic cell is employed as our solar energy model, to transfer the solar irradiation

and the air temperature into energy. The photovoltaic cell is the basic building block of

solar electricity. When light hits the photovoltaic cell’s semiconducting material it generates

electricity. The PV can operate at the highest power point for high energy transmission

efficiency [S. Chen et al.,  2011 ]. Solar power generation is adapted from [Nguyen and Le,

 2014 ; Tao et al.,  2010 ; Xiao et al.,  2006 ]:

Psolar = η · S · Φ · (1− 0.005 (T − 25)) (3.4)
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η and Φ are the conversion coefficient (%) and the solar GHI value (kW/m2) respectively.

The S is the exposure area, and T is the air temperature in Celsius. Notice the negative

coefficient for the air temperature which, as discussed earlier, has a negative impact on

energy generation. At noon when the beams of the sun are perpendicular to the receiving

surface, it is likely to receive a large value of GHI which increases the solar energy generation.

However, at night, the light intensity effectively falls to zero, there will be no solar energy

production.

With the solar capacity Csolar fixed, Csolar
Max(Psolar)

is the total number of the photovoltaic

cells, and the total solar energy is calculated by:

Esolar = Psolar ·
Csolar

max(Psolar)
(3.5)

3.2.3 Conventional Baseload

The conventional baseload energy producers considered in our study are natural gas,

coal, and nuclear energy. They are modeled using two GE LM6000 combustion turbines,

an ultra-supercritical coal without carbon capture and sequestration, and two AP1000 type

nuclear reactor, as shown in Table  3.1 .

The combustion turbine model is adopted from Cost,  2020 with a nominal output of

100MW electricity in a simple-cycle configuration. Each turbine is fitted with an evaporative

inlet cooler to lower the inlet air temperature necessary for improving performance in the

summer. The natural gas plant model is based on two aeroderivative dual-fuel combustion

turbines, each with 53.7MW power, resulting in a net output of 105.1MW after deducing

the internal auxiliary power.

For coal, an ultra-supercritical coal model is employed, adopted from a report by the

global carbon capture and sequestration institute [Irlam,  2017 ]. Although the carbon capture

and sequestration technology is favorable for reducing the carbon footprint, its associated

cost is high as compared to the other energy producers, which resulted in the carbon

technology being excluded for the cases studied using the developed workflow. Given that our

focus is on the development of the workflow, a standard ultra-supercritical coal technology
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with a nominal output of 550 MW is employed instead, i.e., without carbon capture and

sequestration.

For nuclear, advanced nuclear technology is adapted from [EON,  2018 ] which is based on

the cost estimation of eight companies that have advanced nuclear power plant technology

with a capacity greater than 250 MW. Advanced nuclear technologies reflect an evolutionary

transition from traditional reactors in terms of safety and non-proliferation, and it has a

significant role in utility-scale power generation. The cost estimations from some advanced

reactor companies all suggest a lower cost than the conventional capital cost of nuclear plants.

All conventional baseload producers are assumed to operate at full capacity, so conventional

baseload energies can be calculated as:

Ebaseload = Ecapacity (3.6)
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4. HERON AUTOMATED FUNCTIONALITIES

This chapter discusses the second step of the optimization workflow. Specifically, it discusses

three key functionalities that are automated by HERON and RAVEN; first, the generation

of synthetic data; second, the construction of the energy dispatch model; and last, the cost

evaluation of a given mixed-energy production portfolio, respectively discussed in the next

three sections.

As the limitation of the load and weather profile we are using synthetic time series to

estimate our system, as shown in Figure  4.1 , limited data can be trained into different

types of models and using those reduced order models to generate numerical samples for

stochastic optimization. The training method including the segmentation and clustering,

the distribution preservation, the peak detection, the zero-filter, the Fourier detrending, and

the ARMA model. Time series deconstruction in this study is composed of three parts: a

periodic peak signal, a superposition of seasonal signals, as well as some statistical bias or

’noise’. Fourier process is often been used to capture the seasonal signal, however, if the peak

signal is not removed from the data, it will lead to an ill-posed overfitting problem. Thus,

the detection of peaks in signals is an essential step for synthetic time series generation.

Window threshold techniques are developed in this thesis to capture the peak signal. An

example of synthetic history generation to build a surrogate model is provided in Chapter.  6 .

The construction of the energy dispatch model needs to consider the marginal cost for

each energy producer. This model is used to make sure the production can fit the demand and

should be able to make sure a lower cost, given the uncertainty of electricity load and prices,

and the availability of VRE resources. Heuristic Energy Resource Optimization Network

(HERON) was developed as the RAVEN plugin to provide dispatch optimization algorithms

for techno-economic analysis.

The economic model is built by using discount cash flow technologies. Cost assessment

could include all costs, from original investment to facility reconstruction, general labor,

parts and supplies, inspection, and electronic hardware and software.
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Figure 4.1. Synthetic time series generation process

4.1 Synthetic Time Series Generation using RAVEN

Any techno-economic analysis requires access to representative time series data for the

load, demand, and other operational and economic indicators, e.g., pricing data and weather

data, etc. If there are infinite records of these historical data, they would be directly used

to guide the optimization search. However, in reality, the data are often scarce, only limited

to few past years. Also, the data exhibit variations on short, i.e., hourly, intermediate, i.e.,

daily and weekly, and longer time scale, i.e., monthly and quarterly, a direct result of the

seasonal usage changes. Therefore, it is important to have many representative samples

of these time series to ensure the robustness of the optimization results. To achieve that,

the developed workflow relies on the concept of synthetic time series generation. The idea

is to construct a reduced order model (ROM) which duplicates the trends (via a process

called detrending) and respects the statistical properties identified in the available historical
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records (via a process called segmentation and clustering). The historical data are in effect

employed as training data for the ROM model to produce the synthetic time series data.

Thus, hereinafter the historical data will be referred to as the training data, to distinguish

them from the synthetic data generated by the ROM model.

The subsections below provide a brief description of the key ROM algorithms used for

generating the synthetic data, as implemented in RAVEN [Chen and Rabiti,  2017 ; Talbot

et al.,  2020 ], also shown as a flow chart in Figure  4.2 . Depending on the type of time series,

different ROM algorithms are employed to construct the synthetic time series data, e.g., an

ARMA Fourier ROM is used for load profile synthesis, an ARMA Fourier Peak-based model

is used for price profile, etc.

4.1.1 Segmentation and Clustering

Figure 4.2. Clustered electricity load in 2012
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Segmentation and clustering are used to define the structure of the time series in the

training data. They can also work as pre-processing steps for other detrending algorithms,

and contribute to the detection of significant trends in the training data.

Time series segmentation refers to the process of splitting a time-series into segments,

defined by tm. A time-series can be interpreted as a sequence of independent segments of

equal length, tm, each with its own statistical properties. The objective is to evaluate the

time-series segment boundaries and describe the complex properties associated with each

segment. Different theories exist in the literature regarding the criteria that can be used to

decide if time series can be segmented into regionsKeogh et al.,  2001 .

Time-series clustering is a common task seeking to find patterns in the training data to

help classify them into distinct groups, based on which synthetic data are generated that

respect the statistical features of each group. This work relies on the so-called unsupervised

learning algorithm which does not require labels (i.e., supervision) to identify the best

grouping of the data. For more details on the difference between supervised and unsupervised

learning, the reader may consult any standard machine-learning textbookTheodoridis and

Koutroumbas,  2009 .

The workflow has tested several potential segmentation and clustering settings, all focused

on comparing the performance using different segment lengths, e.g., day, week, month,

quarter, and other fractions or multiples thereof.

Taking the electricity demand in 2012 in the Texas North Central Hub as an example,

the historical load data is shown in Figure  4.2 . A segmentation process employing a 1-day

segment produces 365 segments. These sets are then clustered into 15 smaller sets via a

K-means clustering algorithm. A representative result using this segmentation and clustering

process is shown in the subplots, with different colors denoting different clusters.

4.1.2 Fourier

A Fourier detrending algorithm is used to capture the seasonality in the training data.

After the segmentation process, the segmented time series can be decomposed into Fourier

oscillatory components. It can be defined as:
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Ft =
k∑

i=1
[ak sin(2πtk) + bk cos(2πtk)] (4.1)

where tk are user-defined time periods and the coefficients ak and bk are estimated using

least-squares linear regression. Note that the time periods tk could, in general, be longer

or shorter than the length of the segment, defined by tm. Next, the fitted Fourier trend

is removed from the training time series data, and the residual part is converted into a

stationary time series, suitable for ARMA modeling. This is achieved by first converting the

residual into a standard normal distribution using a nonlinear transformation, as follows:

yt = Φ−1[f(xt − Ft)] (4.2)

where f is a general non-parametric transformation of the residual xt−Ft, Φ is a standard

normal distribution CDF, and yt is the transformed residual time series, to be fitted to an

ARMA model.

4.1.3 ARMA

Autoregressive Moving Average (ARMA) model is employed to analyze the transformed

time series residuals. This model is used to describe weakly stationary stochastic time series

in terms of two polynomials. The first one is the Auto-Regressive (AR) model given as:

yt =
p∑

i=1
φiyt−i + εt (4.3)

where y is obtained from the Fourier detrending and transformation as described above,

p is the number of AR lag terms, φ are the ARMA parameters, and ε is assumed to be

random Gaussian noise.

After adding Moving Average (MA), the ARMA model can be described as:

xt =
p∑

i=1
φixt−i + εt +

q∑
j=1

θjεt−j (4.4)
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where q is the number of terms in the moving average and θ are the weight parameters

of the moving average lag term. Next, a least-squares minimization procedure is used to

estimate the best values for the φ and θ parameters.

4.1.4 Peak Treatment

Multiple different methods have been developed for peak detection; for example, wavelet

transforms, and window threshold techniques are widely used. Window threshold techniques

require a window length and the threshold value to be selected to apply the algorithm to the

signal. The implementation is proposed in RAVEN. It is a multi-step process that consists

of the peak window threshold treatment to accompany Fourier series decomposition and

Auto-Regressive Moving Average (ARMA).

There are some limitations for the analysis of the periodic peak signal inside the synthetic

data, such as the price data. The proposed Fourier-based detrending process assumes

seasonality that exhibits periodic pattern, with low amplitude and wide peaks, however

for sharp peaks with high amplitude, a different detrending process is needed, such as the

case with daily market price data. To address this need, a new peak detection algorithm is

developed to identify and remove the peak, ensuring they are not distorted by the Fourier

detrending process.

The peak detection algorithm may be abstracted as follows:

1. Let xt represent the given training time series data that contains the periodic peak

signal. Save the CDF of the training data xt as Φxt .

2. Perform Fourier detrending while limiting the choice of the time periods {ti}ki=1 to

those longer than segmentation length tm. This is done to ensure the peak is not

distorted by the high frequency Fourier modes, corresponding to the time periods that

are shorter than the segment length. Subtract the fitted Fourier modes to obtain the

residual {xt−F longer
t }, with the superscript denoting that only the longer time periods

are used in the detrending process.

3. Divided the residual term {xt−F longer
t } into M discrete segments of length tm, {xi}Mi=1.

For each xi, collect the peaks’ features: peaks’ amplitudes, relative location inside the
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user assigned windows, and the probability of the peaks’ existence, and remove the

identified peaks from the residual term. If a peak is found inside a window in the

segment, remove the corresponding window from the data.

4. Perform Fourier detrending using the shorter time periods, i.e., the ones that are shorter

than tm . Save the Fourier coefficients for all the segments.

5. Subtract the fitted Fourier trend from the residual calculated in step 2, to obtain a

new residual {xi − Ft,i}Mi=1.

6. Save the CDF of {xi − Ft,i}Mi=1 as Φxi , and convert it into a normal distribution, i.e.,

yi = Φ−1
normal[Φxi ]

7. Fit the ARMA model for each segment {yi}Mi=1, save the ARMA parameters for each

segment, p, q, φi for i = 1, ..., p and θj for j = 1, ..., q, serving as features for the

unsupervised clustering algorithm.

8. Generate N samples of the random Gaussian noise ({εt,i,j}Mi=1)Nj=1

9. Employ the fitted ARMA model to get N transformed normal data set ({yi}Mi=1)Nj=1,

and use inverse distribution function to generate the residuals ({xi − Ft,i}Mi=1)Nj=1.

10. Reconstruct the segments into full-length data, and add the Fourier signal.

11. Add the peaks’ signal to the reconstructed data.

All the steps above are automated, except step 3 which requires a trial and error approach

to determine the optimum size window for identifying the peaks. If a small window size is

employed, it may not be able to detect the peak, and if a wide window is used, the Fourier

detrending is expected to distort the shape of the peak, also not allowing its detection.

4.2 Energy Dispatch Model in HERON

An energy dispatch model is designed to ensure that the total energy generated by the

various types of energy producers meets the demand at the lowest possible cost.
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This means a strategy that dispatches the maximum amount of energy from the unit

with the lowest marginal cost first, before dispatching energy from other units with higher

marginal cost. For example, as shown in Figure  4.3 , nuclear is always dispatched first,

followed by coal, then gas, based on the marginal cost for energy production.

Electricity 
Dispatch

Gas

Coal

Nuclear

VRE

Load Profile Net load

Dispatch 
VRE

DM W/O
Nulcear

Dispatch 
Nuclear

Gas

Coal

Nuclear
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Coal
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Dispatch 
Coal

No demand
left

Dispatch 
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Figure 4.3. Dispatch logic of the electricity

The dispatching decisions are updated every hour and are based on the net load, i.e.,

the full load minus the load that can be assigned to renewable sources, e.g., wind and solar,

since their marginal cost is assumed to be zero. This assumes that all renewable energy will

be dispatched first to the grid before the baseload units. This assumes that there are no

penalties for overproduction by renewable sources. Marginal cost calculation is discussed in

Subsection. 4.3.2 .

To calculate the net load, the following process is adopted. Starting with a synthetic time

series for the load, the wind speed, solar GHI, and air temperature are employed to generate

synthetic energy generation models for the wind and solar units, which are subtracted from

the synthetic load, resulting in the net load, given by:

Netload = Load− Ew − Es

scaleCap = Cn + Cc + Cg
Max(Net load)

Cnew
n,c,g = Cold

n,c,g · scaleCap

En = min∼(Net load, Cn)

Ec = min∼(Net load− En, Cc)

Eg = min∼(Net load− En − Ec, Cg)

(4.5)
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The first equation above calculates the net load over the operational horizon, assumed

in our model to be 60 years. The scale factor adjusts the initial estimates of the baseload

capacities to ensure that the maximum load can be met at any time during the operational

horizon. So the total capacity from the non-renewable energy should always be the maximum

net load demand.

The min∼ operator is applied on an hourly basis. This implies that for each hour the

nuclear unit will be dispatched first since it has the lowest marginal cost for electricity

generation. If the nuclear unit produces more energy than the net load at any time, the

dispatched nuclear energy will be equal to the net load. If the net load is higher than the

nuclear capacity, then the coal unit is dispatched next following the same logic. If the net

load exceeds both the nuclear and coal capacities, then the gas unit is dispatched.

It is noteworthy to mention that dispatch models often allow with some failure probability,

e.g., 1 hour in a whole year, to meet the demand, however, this is not explored in the current

study.

4.3 Economic Model in TEAL

This section discusses the economic models employed to calculate the economic metric for

the IES system model, describing the installed capacities of the various energy producers.

The TEAL plugin (implemented under RAVEN) is employed to automate the cash flow

model calculations for the given IES model. The total cost of an IES energy portfolio is

considered to be the objective of the optimization.

Assessment of total cost might include a variety type of costs, relating to the original

investment, construction, facility renovation, general labor, parts and supplies, inspection,

electronic hardware and software, and technical assistance. With regard to the metric of the

total cost, traditionally, the Levelized Cost Of Electricity (LCOE) is a metric for forecasting

the quantity of capacity and generation. It enables the comparison across different energy

portfolios as one factor of the cost of electricity. Also, it covers all lifetime costs: initial

investment, operation and maintenance, cost of fuel, cost of capital, and end-of-life salvage

revenue/cost. Mathematically, LCOE may be described approximately as the net present
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value (NPV) of all costs over the lifetime divided by the electrical output of the energy

producers:

LCOE =
∑n
t=1

It+Mt+Ft
(1+r)t∑n

t=1
Et

(1+r)t
(4.6)

where It, Mt, Ft are the initial investment, operation and maintenance, and fuel expenditures

in the year t. Et is the electrical energy generated in year t. n is the expected lifetime of this

energy unit. r represents the discount rate which is the amount of interest as a percentage of

the balance at the end of the period. LCOE, however, is constrained by many inconveniences.

For example, in general, traditional methods of calculating LCOE ignores the time-related

effects of matching supply to demand. As the demand for energy shifts constantly, the system

of dispatch is neglected in the calculation, solar and wind energy are non-dispatchable due

to their fluctuating nature.

Moreover, given that LCOE investments are essentially the cost that has already been

incurred and cannot be recovered, the extra cost might not be taken into account. Some

VREs like wind and solar may result in additional costs associated with the need for storage

or backup [Joskow,  2011 ].

On the other hand, the proper competitiveness of all energy units is not shown in all the

energy units. For instance, consider nuclear energy production. It can only be benefited if

the full availability is provided, since the capital costs of nuclear plants are greater than those

for coal-fired plants and much greater than those for gas-fired plants. Also, simply looking

at the LCOE of one energy unit is insufficient to quantify the contribution of different units,

it cannot cover a long-term horizon. In this dissertation, we describe methods for combining

various costs by using the Net Present Value(NPV) as the metric for the total cost, and

demonstrates a cash flow model to calculate the cost, which inherits from RAVEN Tool for

Economic AnaLysis (TEAL) plugin for economic analysis.
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4.3.1 Economic Metric

This subsection describes the methods for combining various costs by using the Net

Present Value(NPV) – the metric for the total cost, and demonstrates a cash flow model to

calculate the cost.

The cash flow model is inherited from RAVEN Tool for Economic AnaLysis (TEAL)

plugin for economic analysis. Discounted cash flow techniques are used Higgins and Reimers,

 1995 to calculate how much it cost for our investment. Notice that, how much it cost in

the project in the future is decided by the amount of investments it makes now. To make

comprehensive business strategies, capital budgeting needs to be employed. Because money

has a time value, the money in the present is with the intention of receiving a benefit in the

future. The proposed investment needs to fulfill the demand in the most cost-effective way.

[Dieter, Schmidt, et al.,  2009 ] provide a realistic understanding of the engineering design

process for economic decision making, which contains more prescriptive guidance on how to

carry out the design. Discounted cash flow analysis is employed in this dissertation.

Discounted cash flow analysis is an important part of modern finance and even modern

industry. The approach is effective since our study involving costs that extend beyond the

current year. It requires three different steps:

• First step is calculating the real or virtual movement of money, called cash flows.

• Second step is summarizing the investment’s economic value into the economic merit.

• Last step is comparing the figure of merit with the current standard.

Cash Flow

Our study is based on estimates made over time in the future. This can be better

described as cash flows, which apply to potential transfers of money. Some cash inflow is

receipts from selling, reduction in operating expense, sale of used equipment, or tax savings.

Other cash outflows include the costs for the design and manufacture, the operational costs

of maintaining the facility, and the periodic maintenance costs.

The net cash flow is derived as:
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CFNet = CFin − CFout (4.7)

A dollar spent today is worth more than it in the future due to inflation and interest.

To retain access to money, one needs to pay interest. Financial transactions use compound

interest. If we borrow money present worth is P, the annual interest is r. In order to repay

the loan in full at the end of t years, the required payment should be:

Ft = P (1 + r)t (4.8)

where P denotes the present worth, F the future worth, r the annual discount rate, and

t the number of years. When interest is not paid out, it needs to apply to the future worth.

In the short term, it’s always more beneficial to incur costs now and carry profits in the long

term. From the compounding function Eq.  4.8 , we could also get the inverse function, which

is the present worth while giving the future worth, called discounting function:

P = Ft

(1 + r)t
(4.9)

Figure  4.4 shows a typical cash flow diagram of a 4-year project, cash flows take place

at different years throughout the project years. The X-axis indicates the time in year index,

and the y-axis represents cash flow. Cash inflows, seen above the x-axis are positive, while

cash outflows are below the x-axis. We would only expect the cash flows within a cycle to

occur at the end of each year for our study because it would be unreliable to locate each

cash flow precisely in future time.
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Figure 4.4. Cash flow diagram example
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There are 2 types of cash flows in the software, the first one is Capex, the other one is

Recurring.

Capex stands for capital expenditures, this type of cash flow will only be considered as

the overnight cost of the component at the beginning of the lifetime. For each component,

this cash flow is the total cash outflow for the overnight construction cost, which includes

costs at the designing stage, research, legal permitting, project management startup, and

commissioning costs. Capex cash flow should only be calculated at year 0, and the end of

the lifetime for each component if consider a rebuild.

Cash flow calculation in TEAL is given in Eq.  4.10 :

Ft = CFt = αt

(
drivert
ref

)X
(4.10)

where t is the year index. In TEAL, cash flow is calculated for each component. In our

study, the components are the energy producers. So t is ranging from the capital investment

(year 0) to the end of the lifetime of the component.

In Eq.  4.10 , αt is the actual unit price for ref unit. While drivert is the real building

unit. For example, capital cost for a 105MW aeroderivative combustion turbine gas plant

is 123,453,000$. If we are planing on build two gas plants, that makes the total building

capacity to be 210MW. αt in this case is 123,453,000$/105MW, ref is 105MW, drivert should

be 210MW. The exponent X is the economies of scale, it is an economic term that describes

a competitive advantage that large entities over small ones. So that the manufacturing cost

can be reduced when multiple the production. More productivity will result in fewer costs.

Recurring cash flow can be employed as the operation and maintenance (O&M) costs,

including the fixed O&M (FOM) costs, and the variable O&M costs. Fixed O&M costs

are the annual cost which does not vary with the electricity production. Variable O&M

(VOM) is the electricity generation-based costs that vary based on the amount of electricity

production. Unlike the Capex cash flow, Recurring cash flow should be considered for

every year except year 0. If the project length is longer than the lifetime of the component,

at the end of the component life time, both Capex cash flow and Recurring cash flow
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should be considered. See Figure  4.5 , which is a cash flow diagram of a component rebuild

for every 40 years.
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Figure 4.5. Cash flow diagram rebuild at year 40

For calculation the function is still Eq.  4.10 . When calculating FOM costs, take an

example of the 105MW aeroderivative combustion turbine gas plant again, if two gas plants

are installed in the system, the total capacity is 210MW. The subtotal FOM is 16.30

$/kW-year. For each cash flow of the year, the total time is one year, so the αt, in this

case, is 16.30 $/kW, ref is 1 kW, drivert should be 210,000kW. While calculating the VOM,

the cost for the gas turbine is 4.70 $/MWh. So the αt change into 4.70 $/MWh, ref is 1

MWh, drivert will depends on the total electricity generation for this year. However, the total

electricity generation can be only processed through the dispatch process in Chapter. 4.2 .

NPV

As mentioned in Eq. 4.8 , in compounding interest, we know the present value and seek

the future value. While in Eq. 4.9 , we know the future value and bring it back to the present,

evaluate how much it is. r in Eq. 4.8 is called the interest rate, and in Eq. 4.9 it changes

the name in to discount rate for semantic reasons. We would use the discounting function

to analyze the cost of the portfolio. Cash flows for the targeted year are employed as the

‘future cash flows’. They are inputs in the economic model to calculate the net present value

(NPV). The NPV is calculated as:

NPV =
N∑
t=0

CFt
(1 + r)t (4.11)
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The sum runs over the years from 0 to N . The net cash flows CFt are the sum of all

cash flows in year t. The N is set to 60 years in the current study. Table  4.1 shows the NPV

calculations for each year. It is assumed that the lifetime of the nuclear unit is 60 years,

40 years for gas and coal, 30 years for solar, and 20 years for wind. The economic model

assumes the current grid architecture is with no existing generators in place, so for year 0, all

plants will be constructed overnight. For the following years, the cash flow will be based on

the FOM cost and VOM cost for each plant. For every ‘building year’ of each energy unit,

the cash flow contains the Capex cash flow of the newly built cost and the recurring cash

flow for operation and maintenance cost at the end of the lifetime of this energy unit [Epiney

et al.,  2020 ]. Except for the nuclear plant, the wind unit will be rebuilt twice, and other

plants will be rebuilt once.

4.3.2 Economic Data Assumption

Discount Rate and Inflation

Discount rate plays an important part in our model. Discount rate for wind and solar is

ranging from 2% to 5% [Steffen,  2020 ] A study [Roques et al.,  2006 ] shows that the current

discount rate for carrying out nuclear plant building in the U.S. is greater than in other

countries. In France, the discount rate is around 8%, and in Japan, it is about 3%, while in

the US it is 12.5 percent. The difference in the discount rate is one of the key reasons why

nuclear power is less attractive in the US, while other countries are in the position to invest

in nuclear power. [Iurshina et al.,  2019 ] reports that the high discount rate for nuclear

in the US is one of the greatest problems of running nuclear power plants. Owing to the

high maintenance costs, nuclear power is less competitive than other plants, making it more

financially constrained.

The OECD Nuclear Energy Agency’s (NEA’s) survey in 2015 of 22 countries [Varro and

Ha,  2015 ] quote that energy projects are commonly assessed using discount rates of 3% (cost

of capital), 7% (deregulated market rate ), and 10% (high-risk investment). Nuclear energy

is more economical than natural gas and coal at a discount rate of 3%. However, nuclear

power’s expense grows dramatically as the discount rate rises. At a 7% discount rate the
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Table 4.1. Example cash flows for NPV calculation.
Technology Nuclear Coal Gas Wind Solar
LifeTime 60 40 40 20 30

Year
0 CFNuclear

0 CFCoal
0 CFGas

0 CFW ind
0 CF Solar

0
1 CFNuclear

1 CFCoal
1 CFGas

1 CFW ind
1 CF Solar

1
2 CFNuclear

2 CFCoal
2 CFGas

2 CFW ind
2 CF Solar

2
...
19 CFNuclear

19 CFCoal
19 CFGas

19 CFW ind
19 CF Solar

19
20 CFNuclear

20 CFCoal
20 CFGas

20 CFW ind
20 CF Solar

20
+CFW ind

0

21 CFNuclear
21 CFCoal

21 CFGas
21 CFW ind

1 CF Solar
21

22 CFNuclear
22 CFCoal

22 CFGas
22 CFW ind

2 CF Solar
22

...
29 CFNuclear

29 CFCoal
29 CFGas

29 CFW ind
9 CF Solar

29
30 CFNuclear

30 CFCoal
30 CFGas

30 CFW ind
10 CF Solar

30
+CF Solar

0

31 CFNuclear
31 CFCoal

31 CFGas
31 CFW ind

11 CF Solar
1

32 CFNuclear
32 CFCoal

32 CFGas
32 CFW ind

12 CF Solar
2

...
39 CFNuclear

39 CFCoal
39 CFGas

39 CFW ind
19 CF Solar

9
40 CFNuclear

40 CFCoal
40 CFGas

40 CFW ind
20 CF Solar

10
+CFCoal

0 +CFGas
0 +CFW ind

0

41 CFNuclear
41 CFCoal

1 CFGas
1 CFW ind

1 CF Solar
11

42 CFNuclear
42 CFCoal

2 CFGas
2 CFW ind

2 CF Solar
12

...
59 CFNuclear

59 CFCoal
19 CFGas

19 CFW ind
19 CF Solar

29
60 CFNuclear

60 CFCoal
20 CFGas

20 CFW ind
20 CF Solar

30
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median value for nuclear is equivalent to that of coal, but lower than that of gas, and at a

10 percent discount rate the median value for nuclear is the highest of all.

Note that discount prices would be higher as inflation would be considered. However, 0%

to 3% discount rates are used in this dissertation, because our goal is focused on comparing

the relative costs of different portfolios with different mixes of renewable and baseload units.

The higher the discount rate, the greater the uncertainty of the total cost. An uncertainty

analysis result will be shown in the results Chapter. The inflation rate is specified as 2% in

the model, and should only be used in the Tax savings.

Tax and Depreciation

It is necessary to consider taxes in our study. There are various forms of taxes that can

be discussed in the project. Income tax coming from profits is the chief type of tax. It

usually has the biggest impact on engineering budgeting. However, since our objective is to

calculate the cost, not the profit, we will only include property taxes. Property taxes do not

change by the profit, it is only based on the value of the property.

The property tax rate is assumed to be 20%, however, this number is not ‘fixed’.

Energy plant facility decreases in value over time through degradation or wear, decay.

This resulting in an economic loss because of technical advances, the worth reduction allowance

is referred to as depreciation. The depreciation of fixed assets has a major effect on the

amount of taxes that need to be collected. Taxable income becomes less than the actual

income because of depreciation. If the depreciation period is short, the depreciation effects

on the taxable income will be greater.

The Modified Accelerated Cost Recovery System (MACRS) is the current tax depreciation

system in the United States. [IRS,  2018 ] sets the recovery times for depreciation dependent

on life expectancy. For an electric utility, nuclear production plant includes assets used in

the nuclear power production and electricity for sale and related land improvements, the

recovery year is 15 years, while electric utility gas and coal plant are 20 years, wind and

solar are 5 years.
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Table 4.2. MACRS applicable percentage for property class
Recovery Year 5-Year 15-Year 20-Year

1 20 5 3.75
2 32 9.5 7.219
3 19.2 8.55 6.677
4 11.52 7.7 6.177
5 11.52 6.93 5.713
6 5.76 6.23 5.285
7 5.9 4.888
8 5.9 4.522
9 5.91 4.462
10 5.9 4.461
11 5.91 4.462
12 5.9 4.461
13 5.91 4.462
14 5.9 4.461
15 5.91 4.462
16 2.95 4.461
17 4.462
18 4.461
19 4.462
20 4.461
21 2.231

The annual depreciation is then computed using the relation:

Dt = qt · Capex (4.12)

for year t, the taxable income reduced Dt, the total tax then is reduced by the amount

of Dt · tax. The MACRS applicable percentage qt is shown in Table  4.2 . The present value

of depreciation is:

PV d =
N∑
t=0

Dt

(1 + r)t (4.13)

where N means the recovery year of the unit. So the tax adjustment can be described

as:

TaxAdj = 1− TR ∗ PV d
1− TR (4.14)
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where TR is the tax rate 20%, and the tax adjust NPV calculation is then:

NPV =
N∑
t=0

CFt ∗ TaxAdj
(1 + r)t (4.15)

Project Time and Life Time

The operational horizon is, in effect, employed as project time for the IES model. The

operational horizon will be referred to as the project time for the remainder of this dissertation.

The global project time is usually the least common multiple of the lifetime from all the

energy producers, so that all energy producers reach their end of life. Project length in

this report is set as the longest lifetime in the IES model, which is 60 (years) for nuclear.

As mention in the energy demand model, for Net Present Value (NPV) calculations, it is

common practice to perform the initial scoping analysis of the capacities with no expansion,

the electricity demand synthetic samples do not include a growth factor.

It is assumed that in the NPV calculation, the lifetime of the nuclear unit is 60 years, 40

years for gas and coal, 30 years for solar, and 20 years for wind [Cost,  2020 ]. However, since

the turbine used in the plant is the LM6000 aeroderivative gas turbine, there is no official

estimation of the lifetime yet. From other studies, gas plants and coal plants might have

a lifetime from 20 years to 50 years. Thus we only take 40 years in the cost reference to

consider rebuild, but not use the least common multiple of all the lifetime. See Table  4.1 for

the detailed rebuild years.

Cost Data

The economic model data source of the capital cost is collected from EIA’s 2020 Capital

Cost Estimates [Cost,  2020 ], and the GCCSI’s 2017 global status of CCS report [Irlam,  2017 ].

The detailed cost based on capacity can be found in Table  4.3 .

It is noteworthy to mention here that existing nuclear power plants are known to have

a very high capital cost as compared to coal and natural gas plants. Advance nuclear is

employed as the nuclear power model, however, they are far more complex and expensive

than traditional nuclear technology. Given the renewed interest in advanced nuclear power,
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Table 4.3. Estimates of power plant capital and operating costs
Capacity Capital Cost Fixed O&M

Unit [MW] [$/kW-year] [$/MW-year] [$/MW-year]
Nuclear (Advanced) 1000 3782 3.782E6 1.216E5

Nuclear (Conventional) 1000 6755 6.755E6 1.216E5
Coal 550 2180 2.180E6 2.610E4

Gas (CT) 105 1175 1.175E6 1.630E4
Wind 200 1265 1.265E6 2.634E4
Solar 150 1313 1.313E6 1.525E4

Nuclear (SMR) 300 2600 2.600E6 1.314E5
Gas (CC) 418 1084 1.084E6 1.410E4

studies have been conducted to compare their cost estimates to existing nuclear plants. A

survey of these studies indicates that the cost estimate of advanced nuclear plants is almost

half that of existing plants [EON,  2018 ]. The average capital cost of advanced nuclear

is 3,782$/kW-yr, which is much lower than the corresponding value for an existing plant

of 6755$/kW-yr. Recently, small modular reactors (SMRs) gain economic benefits from

their simpler design and standardization. ‘Nth-of-a-kind’ (NOAK) SMR with high capacity

factor yields appreciable cost savings and efficiency gains, the overnight cost can reduced

to 3000$/kW-yr in 2019. Newly BWRX-300 SMR designed by GE, estimated to have the

overnight cost of 2250$/kW-yr, for NOAK implementations. As an additional comparison

for the economic study with higher discount rates, this research includes the SMR nuclear

and replace the coal with natural gas Combined-Cycle (CC).

An important factor in comparing the various energy producers’ marginal cost is the cost

of fuel, as listed in Table  4.4 , the fuel cost is calculated based on the heat rate and the fuel cost

base on the thermal energy. Fuel prices are collected from the year 2012 to keep consistent

with our electricity and weather data. For nuclear, fuel price is a relatively small percentage

of the overall cost. The VOM cost can include fuel storage, plant decommissioning, and

waste disposal. The Marginal cost is the sum of fuel cost and VOM cost.
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Table 4.4. Estimates of cost of fuels for baseload energy producers
Heat Rate Fuel Cost Variable O&M Marginal Cost

Unit [(Btu/kWh)] [$/MMBtu] [$/MWh] [$/MWh] [$/MWh]
Nuclear 10608 0.73 7.61 2.37 9.98

Coal 7658 2.89 22.13 4.34 26.47
Gas 9124 3.42 31.20 4.70 35.90
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5. OPTIMIZATION SCHEME

This chapter discusses how the values for the installed capacities for the various energy units

are optimized to obtain the best NPV for the IES.

Traditionally, a typical workflow of the optimization in IES using HERON can be found

in Figure  5.1 from [Frick et al.,  2019 ]. This workflow has a general structure of two-loop

system. The outer loop optimizes the sizing of the capacities in an energy portfolio with

respect to the average total cost of the portfolio. The average total cost serving as the goal

function of the outer loop is calculated using the inner loop. The inner loop minimizes the

system’s total cost by optimizing the dispatch of fixed capacity units inside the portfolio,

for each hour of the project’s life. Per outer loop, the inner loop is repeated several times

to achieve a statistically converged value of the total cost. Every inner loop begins with a

new stochastic sampling of the synthetic time series. The inner loop returns statistics on

the total cost for a given portfolio as the result. The outer loop then uses feedback from the

inner loop to drive a stochastic gradient descent search for the least-cost result.
RAVEN Analysis Workflow

8

Synthetic 
time histories

Profitability 
Analysis

Optimal 
dispatch

Scholastic opt
or

Sensitivity analysis

Statistical
Treatment

Mean
Economic

Metric

New
Grid 

System

Figure 5.1. Typical stochastic technoeconomic optimization workflow using
HERON workflow by source
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In principle, this outer-inner cycle workflow can generate many synthetic samples as

shown earlier for a range of assumed capacities as described by the dispatch model, see

Eq.( 4.5 ), generating a dense cloud of NPVs, and picking the set of capacities giving the

best one. This approach, however, relies on collecting sufficient data to represent the

system behavior, is computationally infeasible. Instead, strategies are needed to enable

a computationally-efficient search for optimized capacities.

This dissertation proposes an optimization workflow that combines two different methods,

the screening curve method(SCM) and the Gaussian Process regression.

The new optimization workflow may be described as follows:

1. Generate an n ordered pair of wind and solar capacities Crenew = [Cs, Cw] using a

regular grid structure over a range of their possible/expected values.

2. Use the screening curve method to calculate the optimal baseload capacities Cbaseload =

[Cn, Cc, Cg] for the given n samples of wind and solar capacities in step 1.

3. Define the ith sample xi =[Cn, Cc, Cg, Cs, Cw] of the capacities.

4. For each sample xi, calculate the NPV cost f(xi) by invoking the whole calculation

process described before, including synthetic time histories generation, energy generation

model, energy demand model, energy dispatch model, and the economic model as

automated by HERON and TEAL.

5. Define the matrix of input capacities for all n samples X = [x1, x2, . . . , xn]T , and a

vector of the corresponding NPV values f(X) = [f(x1), f(x2), . . . , f(xn)]T .

6. Train the Gaussian Process model based on the input/output data in step 5, using

p(f(x∗)|f(X)) ∼ N(k(x∗,X)TK−1
XXf(X), k(x∗, x∗) + k(x∗,X)TK−1

XXk(x∗,X)), where x

represent capacities and f(X) represents the NPV.

7. Use the Gaussian Process model to find the capacities corresponding to the best NPV

value.
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8. To assess the accuracy of the Gaussian-Process-determined optimal values, generate

random m samples for the capacities, representing random perturbations within the

range defined in step 1, denoted by: x∗j =[C∗n, C∗c , C∗g , C∗s , C∗w].

9. Calculate the exact NPV values as done in step 4, and find the optimal capacities

corresponding to the best NPV value.

10. Compare the optimal capacities from step 7 and step 9.

This new workflow use only 2 capacities from wind and solar as the optimization inputs.

While the original optimization workflow in HERON needs 5 capacities as the optimization

inputs, and uses the synthetic time histories as the samples for the inner stochastic optimization

inputs. Instead of the synthetic time histories, historical data will be used to generate the

screening curve results and the total cost in the new workflow. It maintains reasonable

accuracy while significantly reducing computation time.

As a preliminary method, The screening curve method provides initial estimates of the

optimal capacities assuming a 1-year operational horizon by using only the training data

(historical data). The Gaussian Process model in this workflow allows one to estimate the

NPV for a given set of capacities without redoing the synthetic time histories generation and

the TEAL calculations.

Each of these two methods is described in a section below. The optimum solution of the

workflow is later validated by RAVEN’s own calculations.

5.1 Screening Curve Calculation

The screening Curve Method (SCM) is employed to find an estimate of the optimal

capacity values, serving as a starting point for the Gaussian Process-guided search. The SCM

was historically developed to choose an optimal energy portfolio to satisfy the electricity

demand [Phillips,  1969 ]. It is based on a single-year operational horizon which limits its

value for an IES. For example, SCM cannot optimize the installed capacity of renewable

energy because the marginal cost of renewable energy is so low (i.e., renewable energy

must be dispatched whenever available). Also, SCM cannot be easily fitted in multiple
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energy markets, such as the hydrogen market which is required in some IESs. Despite

these limitations, SCM provides a simple and convenient approach for finding an initial set

of estimates for the baseload capacities, which can be used as a starting point for a more

elaborate search using the developed Gaussian Process model. A detailed illustration of SCM

can be found in Zhang et al.,  2015 . It evaluates expense amounts for capital expenditure

and production costs for different energy producers.

Figure  5.2 is an example of a typical SCM curve. The top graph is the load duration

curve (LDC), representing the dispatched load as a function of the firing hours. LDC orders

the electricity demand decreasingly. The height of an LDC the demand for electricity while

the corresponding x-axis measures the number of hours the demand reaches in the target

year. The top red curve represents the nominal LDC based on the 2012 historical load data.

Given the assumed zero marginal cost for wind and solar, the LDC is adjusted to produce

the net LDC, which subtracts the load dispatched by wind and solar units. The remaining

calculations are based on the net LDC, shown in brown.

The generation cost curves relate the total annual cost and the firing hour. For each

unit, the cost includes Capex, FOM per MW capacity per year, VOM cost, and fuel cost

(VFOM) per MW electricity generated per hour. Thus, the total annualized cost of the

energy producer can be written as:

Cost = Capex+ FOM + (V OM + V FOM) · T (5.1)

where T counts the firing hours for the given unit. Since all types of energy producers

can be summarized in Eq.  5.1 , the lower envelope curve (tracing the lowest intercept of any

vertical line) represents the least-cost solution for a constant number of firing hours.

Note that the conventional SCM is based on 1-year data. It is necessary to consider the

rebuild and the discount rate. Thus, Eq.(  2.1 ) is replaced by Eq.(  5.2 ) [Vitina et al.,  2015 ].

A relatively small discount rate is considered (0∼3%) in this study. The annualized capital

and operating costs are shown in Table  5.1 

T = F ixedAnnualized +MarginalAnnualized · T (5.2)
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Figure 5.2. Screening curve for year 2012 with solar and wind capacity 8GW
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Table 5.1. The annualized capital and operating costs of power plants
discount rate F ixedAnnualized V ariableAnnualized

Unit % [$/MW] [$/MW]
Nuclear 0 184,673 9.98

Coal 0 98,767 26.47
Gas 0 55,467 35.90

Nuclear 1 154,172 7.48
Coal 1 80,292 19.83
Gas 1 44,949 26.90

Nuclear 2 133,505 5.78
Coal 2 67,909 15.34
Gas 2 37,896 20.80

Nuclear 3 119,141 4.60
Coal 3 59,510 12.21
Gas 3 33,105 16.56

The middle graph of Figure  5.2 demonstrates the case without the discount rate, whereby

the cost of nuclear is 184, 673 + 9.98 · T , the cost of coal 98, 767 + 26.47 · T , and the cost of

gas 55, 467 + 35.90 ·T . The lower envelope curve in this graph is the least-cost solution. The

points on the horizontal axis at which the three curves intersect can be used to determine the

best unit for a given number of firing hours. For example, the point of intersection between

the cost of gas and coal is 4952 firing hours, and 5210 firing hours between coal and nuclear.

This means if the firing hours are less than 4952, the least-cost technology is gas, and if the

firing hours are between 4952 and 5210, the least-cost technology is coal. Nuclear costs the

least if the firing hour is more than 5210.

Finally, the bottom graph shows the SCM curve which is used to determine the optimal

mix of capacities considering the variations in the load-firing-hours relationship. Similar to

the previous figure, the lower envelope curve determines the best mix of capacities. The first

29.0 GW of load are best dispatched by the nuclear unit, since they are dispatched for more

than 5210 firing hours. The next 1.2 GW is best dispatched by coal, and the last 32.9 GW

is best dispatched by natural gas.
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(a) Without discount rate.

(b) With 2%discount rate.

Figure 5.3. Comparison of the annualized SCM for 2012 with different discount rates

Figure  5.3 compares the annualized SCM with different discount rates. The percentage

labeled at the legend means the least cost energy portfolio of the net load. As the discount

rate rises, the portion of nuclear decreases, with the increase in the portion of gas and coal.

97



5.2 Regression

A flowchart of the regression approaches used in this workflow is shown in Figure  5.4 .

The inputs and outputs for each regression method are shown respectively.
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Figure 5.4. Optimization flowchart
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Regression is employed in our study to map one dependent variable (outcome) to a series

of further changing independent variables (predictors). Regression analysis is commonly

used for modeling and forecasting, where its application overlaps substantially with the field

of machine learning, while it can also avoid causal inference. It is widely used in finance,

investment, and other engineering analysis. This work proposes an optimization workflow

that contains several regression approaches, including linear regression, and the Alternative

Conditional Estimation (ACE), and the Gaussian Process regression. Linear regression is

employed to map the calculated conventional baseload capacity and the NPV value, as shown

in Figure  5.4 . ACE is used to search the mathematical relationship of the detrended residuals

and the original historical data. Gaussian Process model allows one to estimate the NPV

for a given set of capacities without redoing the synthetic time histories generation. Each of

these approaches is described in a sub-section below.

5.2.1 Linear Regression and ACE

Linear regression is the most common form of regression analysis, it is a linear approach

to modeling the relationship between a dependent variable and or independent variables. In

our context, this entails an initial training that uses the set of inputs, the baseload capacities,

and outputs, the NPV values, as discussed in step  4 of the optimization workflow.

The ACE algorithm is a data analytic approach that can search the analysis results

for mathematical relationships, parametric or nonparametric, that maximizes the mutual

information between the application response(s) and the experimental responses. In this

dissertation, ACE can be employed to study the impact of the clustering parameters on the

quality of the synthesized time series. Since ACE can maximize the correlation between the

detrended residual and the original raw data.

5.2.2 Gaussian Process Regression

Unlike classification, regression attempts to predict a continuous quantity. This section

talked about the Gaussian Process regression method. Gaussian Process modeling is a

well-established area in statistics; it represents a disciplined mathematical approach to build
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approximations for a process that is statistical in nature. Similar to surrogate modeling

techniques, it allows one to train a model based on an available set of input/output data,

which can be used later to make predictions. It may be described as a supervised non-parametric

regression technique. It is a stochastic process that generalizes a probability distribution to

functions. By focusing on Gaussian Process, computations needed for inference and learning

become relatively straightforward if one only needs prediction at a limited number of points.

Over the last 10 years, supervised learning problems in machine learning, which can be

thought of as learning a function from examples, can be cast directly into the Gaussian

Process system. Therefore, Gaussian Process has increased dramatically in popularity

in supervised learning applications. The Gaussian Process method defines a probability

distribution on a space of functions, and inference occurs directly in this function space. A

Gaussian Process is a collection of random variables, such that the finite number of random

variables have consistent Gaussian distributions [Rasmussen and Williams,  2006 ]. Gaussian

Process is non-parametric, a good visualization example of the Gaussian Process can be

found in [Görtler et al.,  2019 ].

A Gaussian Process can be thought of process where any finite subset of values or vectors

follows a Gaussian distribution over function space. Let X denote the input space and R

denote the output space.

For inputs x = [x1, x2, . . . , xn]T , f : X → R is the function defined on X , and project to

output space. Note that, x can also be treated as n points of measurements. In our study,

xi is the capacities, f(xi) is the NPV of this capacity set.

f is a Gaussian Process if for all xi ∈ X , the output f(x) = [f(x1), f(x2), . . . , f(xn)]T is

Gaussian distributed with mean [µ(x1), µ(x2), . . . , µ(xn)]T , and the correlation between the

values of f at neighboring locations xi, xj can be written in covariance matrix Kxx:

Kxx =



k(x1, x1) k(x1, x2) . . . k(x1, xn)

k(x2, x1) k(x2, x2) . . . k(x2, xn)

. . . . . . . . . . . .

k(xn, x1) k(xn, x2) . . . k(xn, xn)


(5.3)
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Where mean function, µ(xi) is the mean of f(xi), and µ : X → R. The covariance matrix

Kxx, also called kernel matrix. Each element of the kernel matrix called the kernel function

k(xi, xj), which is the covariance between f(xi) and f(xj), and k : X ×X → R. It will allow

us to predict the most probable value at the new point. While the mean can be any value,

the kernel function must be symmetric and positive definite:

k(xi, xj) = k(xj, xi) ∀xi ∈ X (5.4)
n∑

i=1

n∑
j=1

cicjK(xi, xj) ≥ 0 ∀xi ∈ X , n ∈ N, ci ∈ R (5.5)

For a new point x∗, we want to predict f(x∗). This is equivalent to get the conditional

probability distribution of f(x∗)|f(x). Thus, we will need to know the joint distribution of

f(x∗) = [f(x∗), f(x1), f(x2), . . . , f(xn)]T , and the joint distribution of f(x).

It is difficult to define a fixed mean function, now assuming the prior mean function:

µ(xi) = 0 ∀xi. Then the joint distribution of [f(x∗), f(x1), f(x2), . . . , f(xn)]T is a Gaussian

distribution:



f(x∗)

f(x1)

. . .

f(xn)


∼ N





0

0

. . .

0


,



k(x∗, x∗) k(x∗, x1) k(x∗, x2) . . . k(x∗, xn)

k(x1, x∗) k(x1, x1) k(x1, x2) . . . k(x1, xn)

k(x2, x∗) k(x2, x1) k(x2, x2) . . . k(x2, xn)

. . . . . . . . . . . . . . .

k(xn, x∗) k(xn, x1) k(xn, x2) . . . k(xn, xn)




(5.6)

Let the new kernel function written short as:

Kx∗x∗ =

 k(x∗, x∗) k(x∗,x)T

k(x∗,x) Kxx


where
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k(x∗,x) =



k(x∗, x1)

k(x∗, x2)

. . .

k(x∗, xn)


Now using the conditioning rule (marginalisation property) we obtained that the posterior

for f(x∗) is also Gaussian:

f(x∗)|f(x) ∼ N( k(x∗,x)TK−1
xx f(x) , k(x∗, x∗) + k(x∗,x)TK−1

xx k(x∗,x) ) (5.7)

the mean E(f(x∗)|f(x)) of the posterior can be represented as a linear combination of

the kernel function values or the observed function values:

E(f(x∗)|f(x)) = k(x∗,x)TK−1
xx f(x)

=
n∑

i=1
αik(x∗, xi)

=
n∑

i=1
βif(xi)

(5.8)

for α = K−1
xx f(x), β = k(x∗,x)TK−1. This formation helps one to compute the likelihood

of f(x∗), but totally ignoring the f(x). Kernel function is the most important part of

Gaussian Process, it control the smoothness of the process. It is usually a function of the

distance between xi and xj. Chapter 4 of [Rasmussen and Williams,  2006 ] gives a detailed

example of how to choose the kernel parameter. Example of some kernel functions are given

below:

• Constant Kernel k(xi, xj) = C ∀xi

• White Kernel: k(xi, xj) = noise level if xi == xj else 0

• Squared Exponential (RBF) Kernel: k(xi, xj) = exp
(
−d(xi,xj)2

2l2
)

where d(·, ·) is the

Euclidean distance of xi, xj, l is the length scale parameter of the kernel,it describes how

quickly the correlation drops. Higher l gives a smooth function, while lower l results
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in a wiggly function. When xi and xj near each other, d is small, their covariance is

high, enforcing smoothness.

• Matérn Kernel: k(xi, xj) = 1
Γ(ν)2ν−1

√2ν
l
d(xi, xj)

νKν

√2ν
l
d(xi, xj)

,
• Rational quadratic kernel:k(xi, xj) =

(
1 + d(xi,xj)2

2αl2
)−α

• Exp-Sine-Squared kernel: k(xi, xj) = exp
(
−2 sin2(πd(xi,xj)/p)

l2

)
• Dot-Product kernel:k(xi, xj) = σ2

0 + xi · xj

More complicated kernels can be created from the base kernels by using sum, product

and exponential operators:

• Sum Kernel: ksum(xi, xj) = k1(xi, xj) + k2(xi, xj)

• Product Kernel: kproduct(xi, xj) = k1(xi, xj) ∗ k2(xi, xj)

• Exponentiation Kernel: kexp(xi, xj) = k(xi, xj)p
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6. RESULTS

6.1 Synthetic Time Series Generation

6.1.1 Synthetic Price Profile

This case illustrates the synthetic time series generation of price data, the process focuses

on the peak detection algorithm of the periodic peak signal. The typical price history of

the daily market obtained from ERCOT 2013 is selected. Settlement Point Prices (SPPs)

for Huston Hub day-ahead market(DAM) are shown in Figure  6.1a and Figure  6.1b . The

prices tend to have a direct correlation with overall energy supply and demand, when wind

and solar power decrease at mid-afternoon, the demand increases, and the prices seem to be

strongly peaked over this time windows. The data are highly unstable, often only lasting

few hours but can spike dramatically to an order of magnitude higher than the overall

price. This means traditional Fourier analysis fails to catch this periodic trend. Traditional

Fourier analysis was unable to deal with this discontinuous behavior nicely, since the number

of Fourier terms needed to accurately capture these periodic peaks grows dramatically with

the short period, and may lead to an overfitting result. Thus to say, peak signals must be

removed before the Fourier process.

In this example data, the strongest period of the peak is 24 hours, which can be easily

detected, since it’s on a daily basis. A peak should be discovered in each period at a window

of time. The window needs to be carefully selected in this process. Then the peak width and

threshold will be assigned in that window, the threshold is the minimum required height of

peaks. The width of the peak is assumed to be the same for all the peaks. A three hours’

window is assigned between 14 and 17 O’clock, and the peak width is 6 hours. This means

the periodic peak signal is 6 hours long, and appears every 24 hours. The summit of the

peak signal is always at 14 to 17 O’clock. Figure  6.1 shows the first step of the detection

process. The window is indicated using orange rectangle time slots.

The next step of finding the peak is to find all local maxima in the window. For the

assigned window, if a peak is identified, it would be indicated by an orange cross mark. By

simply comparing the neighboring values in all the signals inside the window, the peaks’

features will then be collected. The features are the amplitude, the location inside the
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(a) June 1st to June 14th.

(b) July 1st to July 14th.

Figure 6.1. DAM price of 2013 in summer

window, and the probability of occurring. These features are then clustered into smaller

sets via a K-means clustering algorithm to generate the price ROM, as mentioned in Figure

 4.1 . To perform synthetic time series generation for the prices, The amplitude and the

locations of each peak are sampled from the price ROM. The probability is beneficial to

form a Poisson distribution to guarantee that the peaks inside the regenerated samples will

appear consistent with the original data.

For example, the peak amplitude of July 12th is 150 $/MWh, and other peak amplitudes

from July 1st to July 14th are all lower than 75 $/MWh. Average prices of the day are

even lower. The probability of finding a peak inside the window is almost 1 in this example.

This means that the peak signal is supposed to occur every day while producing synthetic

price samples, and it is more likely to have a high amplitude peak on July 12th, and a lower

amplitude peak on other days of the week, or month.
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(a) June 1st to June 14th.

(b) July 1st to July 14th.

Figure 6.2. Comparison of the fitted Fourier signal with data after peak treatment

After all the useful peak features are collected, the peak signal identified by the peak

detection method needs to be removed to proceed with the later Fourier detrending. See

Figure  6.2 for the Fourier detrending results. The original signal is shown in a dashed orange

line, and the green line shows the best fit of the Fourier trend from the selected frequencies.

Note that, the signal without peaks has already divided into M discrete segments of length

24 hours.

The Fourier frequencies are chosen from a fast Fourier transform analysis of data that

shows patterns of one year, three months, one month, two weeks, one week, two days, one

day, and twelve hours. For each segment, save the Fourier coefficients for the clustering

algorithm.
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(a) June 1st to June 14th.

(b) July 1st to July 14th.

Figure 6.3. DAM price without peaks and Fourier signal

Next, the fitted Fourier trend is removed from the remaining data. The leftover data,

in effect, employed as the residual for the last detrending algorithm. The signal without

peaks and Fourier will be referred to as the residual for the remainder of this chapter, to

distinguish them from other signals. The residual needs to be converted into a stationary

time series, suitable for ARMA modeling. This is achieved by converting the residual into a

standard normal distribution using a nonlinear transformation in Eq. 4.2 .

See example in Figure  6.3a and Figure  6.3b , the residual of the price resulting in the blue

line seem to present as noises, the transformed ‘whitened’ residual in the red line shows a

similar trend with the residual. Also, the distribution of the residual is ranging from -15 to

15, but the distribution of the whitened residual is from -3 to 3 instead. For each segment,

save the ARMA parameters as features for the clustering algorithm.
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Figure 6.4. Original DAM price and 5 generated samples

Clustering on collected features in each segment is performed in the following step,

all features collected from previous processes will be counted as equally important on the

clustering process. The principle of clustering is to track identifying characteristics in each

section of the segmented ROMs and then to group the segmented ROMs with a comparable

representation.

Five synthetic samples are shown in Figure  6.4 in the yellow cloud for the DAM settlement

point prices in summer signals. The solid blue line in the foreground shown in the figure

is the original DAM price, X-axis has the date marked for every 2 weeks. The synthesized

price samples follow the same trend as the original data throughout the season, with high

amplitude peaks at the beginning of July and August.

The quantile-quantile plot between one synthetic sample and actual data is given in Figure

 6.5a , while Figure  6.5b compares the cumulative distribution function (CDF) of synthetic

scenario and actual database, both suggesting a suitable match between the synthetic samples

and original data.

Furthermore, to quantify the relationships between the synthetic samples and the original

data, several statistical properties of the samples are measured and compared to the original

data in Tables  6.1 , including the mean, standard deviation, Kurtosis, and skewness. The

statistical properties of the synthetic samples are calculated over 5 synthetic samples. The

mean and standard deviation of the samples are quite accurate comparing to the original
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(a) Qq plot of Original DAM 2013 (b) CDF of Original Price and the Sample

Figure 6.5. Statistical comparison of the sample and original data

data, the Kurtosis and skewness are less accurate, but within a small range around the

training data.

The results in the table confirm almost identical statistics properties between these two.

Note that during the summer months, the synthetic samples tend to show slightly more

variance than the original signal. The reason is that the preserved CDF occasionally saves

the unrealistic outliers in the signal, the regeneration procedure later suffers from the notable

variability brought from those outliers.

Table 6.1. Typical statistical characteristics.
Mean SD Kurtosis Skew

DAM price 32.30 18.73 33.15 3.93
Synthetic samples 32.29 18.76 34.06 3.98

6.1.2 Synthetic Load Profile

In Figure  6.6 , the synthetic samples of electricity load (demand) are shown in comparison

with the training data, the historical load from 2013. The solid blue line in the foreground

shown in the figure is the original load data, the synthetic samples are shown in a yellow

cloud.
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(a) June 1st to June 14th.

(b) July 1st to July 14th.

Figure 6.6. Original demand and 5 generated samples

Overall, the synthetic samples are consistent with the original data, but with minor

variation. In particular, the demand samples show less fluctuation in the morning and

afternoon but fluctuate significantly in the evening. This is because the peak demand in

the evening for the historical data shows randomness throughout the training period for

generating the load ROM, so the peaks of the demand synthetic samples have a significant

spread in the evening. For example, there is a difference of approximately 14 GW of the

peak demand between June 9th and June 13th, the peak demand can be as low as 45GW,

and as high as 59GW in the same week.

Figure  6.7 shows the histograms of the load for all the historical (training) data from 2007

to 2013. Peak demand was rising over the years, so did the total annual load. Notice from the

distribution, energy consumption has been increasing over the years but at different paces.

111



Figure 6.7. Histogram of hourly load of Texas

Figure  6.8 shows the histograms of the synthetic time histories with different training data.

Figure  6.8a collects 7 years of synthetic time histories for the load based on the 2012 training

data, representing the first 7 years from one synthetic sample. The samples are generated

from a trained ROM with each sample synthesizing 60 years’ worth of data. Figure  6.8b 

shows a similar histogram using 2013 training data. Note that, the histories are collected

from different years, but use only one year of raw data for training. Closer inspection of

the synthetic data generated from a single year of training data shows a little volatility from

year to year. The distributions, however, are different when the training is based on different

years (i.e., 2012 vs. 2013) as shown in the marked differences between Figure  6.8a and  6.8b .

The impact of these variations on the resulting energy portfolio will be discussed in the

following section. As mentioned in the energy demand model, for NPV calculations, it is

common practice to perform the initial scoping analysis with no expansion on electricity

demand.
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(a) trained by raw data year 2012.

(b) trained by raw data year 2013.

Figure 6.8. Histogram of synthetic load samples
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6.1.3 Synthetic Wind Profile

For weather profile and load training examples can be seen from previous works [ Chen

and Rabiti,  2017 ; Frick et al.,  2019 ; Talbot et al.,  2020 ]. An example of Speed is shown in

Figure  6.9 , the yellow line represents one of the synthetic samples generated by the trained

model. The synthetic samples of wind speed appear to have a different temporal profile from

the original data, this is because no significant daily or seasonal trend can be found from

the original wind speed signal.

(a) June 1st to June 14th.

(b) Nov 1st to Nov 14th.

Figure 6.9. Original wind speed and 5 generated samples
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6.1.4 Impact of Training Parameters

This subsection discusses the impact of the training parameters, including the correct

features for each historical data, the order of segmentation and Fourier detrending, and

the choice of segmentation length. The goal here is to compare the synthetic time series

samples for several training strategies. The constituent components of a synthetic time

series are essential for training the ROMs, so the training parameters must be carefully

chosen. Different training parameters can lead to different training strategies and results. A

trial and error approach is suggested to determine the optimum training parameters while

dealing with synthetic time series generation.

Features Selection

A stochastic representation of training data is provided by a single sample from each

clustered ROM. Different features and detrending algorithms were employed in the construction

of the ROM model to ensure all synthetic profiles are consistent with the historical data,

including Fourier, ARMA, and peak detection-based techniques.

Table 6.2. Cluster features for different historical data
Features Speed GHI Temperature Load Price
General

√ √ √ √ √

Correlated N/A N/A
√ √ √

Peak N/A N/A N/A N/A
√

Fourier Daily
√ √ √ √ √

Fourier Longer
√

N/A
√ √ √

ARMA
√ √ √ √ √

Table  6.2 lists the features for each type of data to perform ROM training, depending

on the type of time series (e.g., an ARMA Fourier ROM is used for load profile synthesis,

an ARMA Fourier Peak-based model is used for price profile). Since the ARMA model only

works with weakly stationary time series, the decision of which Fourier frequencies before

training the ARMA also has a big impact. Choosing too many sample frequencies can

cause an overfitting Fourier mode and make all samples identical, however, too few Fourier
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frequencies lead to unnecessary variance in the ARMA training. Usually, a Fast-Fourier-Transform

(FFT) was applied to the original data to find an optimal set of frequencies for the Fourier

detrending algorithm. FFT presents a collection of suggested periods of a strong trend of

the original data. All results from previous sections indicate that the presented ROM can

produce synthetic samples with almost identical statistical characteristics as the original

data.

Process Order of Segmentation and Fourier Detrending

The detrending process related to Fourier and segmentation consists of three major steps.

The first step performs Fourier detrending while limiting the choice of the time periods ti
to those longer than or equal to the segmentation length tm. This process will be named

‘pre-segmentation Fourier’ detrending for simplicity. The Fourier coefficients in this step

are not collected as features for ROM training. The next step divides the signal into M

segments, and last, perform further Fourier detrending with time periods ti that are shorter

than tm, refer as ‘post-segmentation Fourier’ detrending.

The order of training Fourier modes before or after segmentation is considered as one of

the major impacts for the ROM training. Many of the Fourier frequencies in the detrending

process are the natural shift points or change points of the time series data. Those shift

points are also important to the segmentation process, as the objective of the segmentation

is to evaluate the time-series segment boundaries and describe the complex properties in

each segment.

The 2012 solar GHI data and the synthetic samples are selected for this case to demonstrate

the impact of the training order. In order to quantify the distance between the CDF of the

sample and the original data, the Kolmogorov–Smirnov (KS) statistic of each sample is

calculated and compared with the original data. If the KS statistic is small or the p-value

is high, then the distributions of the sample and original data are very similar, if the KS

statistic is 0 then a perfect match is achieved.

Figure  6.10 to  6.12 show KS test results for the 2012 solar GHI and its 3 synthetic samples

with 3 different training strategies. tm is 1 day, and ti are respectively one year, three months,

one month, two weeks, one week, two days, one day, and twelve hours. Each figure contains
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two subplots, with the top subplot shows the KS statistic value of each month between the

original solar GHI and its synthetic sample, x-axis represents the corresponding month.

Figure 6.10. KS statistic of solar GHI with original training order

The original training strategy results are shown in Figure  6.10 . In this strategy, the

Fourier modes that have time periods longer than or equal to tm are trained in the ‘pre-segmentation

Fourier’ detrending process. And ‘post-segmentation Fourier’ detrending contains the Fourier

modes that have time periods shorter than tm. KS statistic of every month is greater than

0.15, and the maximum reaches 0.26 in February. The relatively smaller KS statistic appears

from May to August, indicating similar distributions are found in the samples over the

summer. The P-value of this test is almost zero which rejects the hypothesis that the sample

came from the same distribution as the original data.
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Figure 6.11. KS statistic of solar GHI with Fourier after segmentation

Figure  6.11 shows the KS statics of the second training strategy. This strategy is similar

to the original one, but only moves one Fourier mode from the ‘pre-segmentation Fourier’

detrending to the short ‘post-segmentation Fourier’ detrending. The time period of this

Fourier mode is equal to the segmentation length tm. So the Fourier coefficient of this mode

will be sent into the clustering process for ROM training. KS statistic is smaller than 0.15

most of the time, except for February, April, and August. The KS statistic values for each

month are similar to the other months, indicating similar distributions are found over the

year.

Figure  6.12 shows the KS statics of the third training strategy, which removes the

‘pre-segmentation Fourier’ detrending and assigns all the Fourier modes into ‘post-segmentation

Fourier’ detrending. This means all the Fourier coefficients are stored as features to train
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Figure 6.12. KS statistic of solar GHI with all after Fourier

the ROM. KS statistic is smaller than 0.15 all the time, indicating a similar distribution

between the sample and the original data. The KS statistic values are smaller in the winter

months and higher in the summer months.

On average, the third strategy is shown to have more similar synthetic samples from the

original training data. This removes the randomness required in the synthetic time series

generation, however, the original strategy with its least similar sample might lead to an

unrealistic scenario. The second strategy is suggested in this regard for training the solar

data.
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Segmentation Length

The choice of different segmentation also affects the quality of the synthetic samples,

because the residuals left from Fourier detrending are affected by the different choices

of segmentation length. As discussed in the previous section, the Fourier coefficients for

ROM training depend on the segmentation length, that is, only the Fourier coefficients

corresponding to the time periods that are shorter than the segment length can be treated

as the Fourier features for ROM training.

For demonstration, the first 120 hours of the 2012 load data is selected to show different

residuals detrending with the same Fourier frequencies but different segmentation lengths.

The original training strategy is employed.

Figure  6.13 shows the original data on the top subplot, and the signal left from the

pre-segmentation Fourier detrending with different segmentation lengths are shown in the

bottom subplot. See the orange line indicating the segmented on one day, a clear 12-hour

trend can be found in the signal, however, there is no clear trend for the signal segmented

on 12 hours and 6 hours.

Figure  6.14 further compares the residuals left from post-Fourier detrending. The blue

line is the signal left from the pre-segmentation Fourier, and the orange line represents the

fitted Fourier trend, indicating the post-segmentation Fourier detrending. The green line is

the residuals left from the detrending process. The residual will be further converted into a

standard normal distributed signal, to ensure it is a stationary time series and suitable for

ARMA modeling. So sufficient trend should have been captured through Fourier detrending

already.

In Figure  6.14a , the residual is distributed from -3 to 3, and the fitted Fourier trend

is smoother than others in this case. Most of the periodic signal has been removed by the

detrending, it appears that there might still be a 12-hour trend in the signal, given the shape

of the residuals.

The residual in Figure  6.14b on the other hand did not show any periodic trend. However,

the shape of the residual is less stable.
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The residual Figure  6.14c is distributed from -2.5 to 2.5, which is similar to the stationary

time series shape that ARMA required. From this data, we can see that 6 hours and 24

hours are ideal as the segmentation length for load ROM training.

Figure 6.13. Signal left from long Fourier detrending with different
segmentation length tm
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(a) tm = 24hr

(b) tm = 12hr

(c) tm = 6hr

Figure 6.14. Signal left from long Fourier detrending and short Fourier
detrending with different segmentation length
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6.2 Solution Explore Using Original Workflow

Figure 6.15. Solution space exploration

Figure  6.15 reports 5-dimensional results for the energy portfolio optimal solution exploration

using the original optimization workflow. Each plot is a heat map on a regular grid of ordered

pairs of capacities, showing the NPV results for the combined IES system. Where the major

axes are the gas and VRE capacity unit in MW, minor axes are coal and nuclear capacity

in MW. Gas capacity has a fixed set up from 5000 to 20000 MW, and VRE (sum capacity

from wind and solar) capacity is fixed with 2000,6000, and 1000 MW. The x-axis is the coal

capacity and the y axis is the nuclear capacity with a coarse mesh of 5000 MW, ranging

from 0 to 20000 MW.

The color map is based on the mean costs of a 60-year operational horizon, unit in dollars

from each inner run for the setup. The higher cost is shown in a deep red color. A clear

trend can be observed from the figure that, the optimal solution highly depends on the total
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setup. Thus, while the demand is can be satisfied, the energy unit should not overbuild. In

the energy portfolio solution space, it can be identified that the best profit would always lie

in a narrow space while the total capacity is around 20% over the maximum demand.

Also as discussed in  6.1.2 , the histories are collected from different years, but use only

one year of raw data for training. The synthetic sample generated from a single year of

training data shows a similar distribution, with a little volatility from year to year. These

variations result in different NPV values and affect the variation of the NPVs.

Figure  6.16 and  6.17 shown the NPV value calculated from the original optimization

workflow, with 1600 random sets of capacities from the outer loop, and different time series

in the inner loop.

The NPVs in the green band is calculated using the ‘repeated raw data’ in the inner loop.

This ‘repeated raw data’ is a 60-year time series that only contains a 1-year characteristic.

This is done by assuming each hour of every year is exactly the same. Since 7 years of

historical data is available, 7 samples can be constructed in this method. The orange band

represents the NPVs calculated from synthetic time series samples, with the same capacity

set in the outer loop. 96 samples are included, and every 48 samples are trained from

2012 and 2013. The blue band is the NPV values calculated from the ‘random raw data’.

Each ‘random raw data’ is a 60-year sample that randomly collects 1-year profile from the

historical data. 7 samples are assembled to keep consistency with the ‘repeated raw data’.

Figure  6.16 is the NPV values using a 2% discount rate. Figure  6.17 uses 5%. These

figures illustrate some of the main characteristics of the NPV calculation. The NPV values

calculated from synthetic data and ‘random raw data’ are very similar, but with a slight

difference in the mean value. The ‘repeated raw data’ have a greater spread of the NPV over

all time series. Both synthetics time series and the ‘random raw data’ have a similar spread

of NPV values.

None of the randomnesses of the synthetic samples were statistically significant, the

original workflow suffers from the complex setting of the inner loop calculation. This includes

the synthetic time series parameter, the dispatched penalty function if the demand can not

be fit.
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Figure 6.16. NPV spread of repeated raw data and random raw data with
discount rate 2%
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Figure 6.17. NPV spread of repeated raw data and random raw data with
discount rate 5%
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6.3 Training Data SCM Results

Figure  6.18 to  6.22 show the best cost results for the 2008 to 2013 training data using

the SCM with different economic set up.

These results are the initial estimates for the best energy portfolio. Each plot is a heat

map on a regular grid of ordered pairs of solar and wind capacities, showing the best NPV

results for the combined IES system. The x-axis is the solar capacity and the y axis is the

wind capacity with a coarse mesh of 500MW, ranging from 0 to 30GW.

Figure  6.18 uses the conventional nuclear (6755$/kW-year) without discount rate. In

2008, the lowest cost is 12.7 billion dollars, with solar and wind capacities as 10.5GW and

23 GW. This is the overall lowest cost for all 6 years with this set up. What stands out

in the figures is that the total cost is growing during those years, which is a result of the

growing load. Also, it is apparent from these graphs that, except for an outlier in 2009,

the best capacity for solar is in the range of 8 to 12.5GW, which is around 10% of the

overall IES portfolio. However, the best wind capacity is ranging from 3.5GW to 29GW,

which exhibits high volatility. The reason for this is discussed in the following subsection.

The differences between the best wind and solar capacity provide initial estimates about the

capacity effectiveness of renewable energy generation.

Figure  6.19 uses the advanced nuclear (3782$/kW-year) without discount rate. The

overall lowest cost is in 2008 as well. However, the best capacity for solar and wind are much

smaller than the conventional cost results. This is because advanced nuclear effectively

reduces the total conventional baseload capital cost. So it is less desirable to have too many

renewable capacities in the system.

Figure  6.20 uses the advanced nuclear (3782$/kW-year) with 1% discount rate. Comparing

Figure  6.20 and  6.19 , the best capacity for wind slightly increased for 2008, 2009 and 2011,

this is because the discount rate has a negative impact on reducing the total conventional

baseload capital cost. Figure  6.21 and  6.22 use the SMR nuclear cost (2600$/kW-year) with

1% and 3% discount rate respectively. With same discount rate and lower nuclear cost, the

best renewable capacities increase significantly for most of the years. With same nuclear cost,

higher discount rate does not yielding a significant increase on best renewable capacities.
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(a) Year 2008 (b) Year 2009.

(c) Year 2010. (d) Year 2011.

(e) Year 2012. (f) Year 2013.

Figure 6.18. Heat map of cost estimate from 2008 to 2013 conventional cost
6755$/kW-yr with no interest rate
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(a) Year 2008 (b) Year 2009.

(c) Year 2010. (d) Year 2011.

(e) Year 2012. (f) Year 2013.

Figure 6.19. Heat map of cost estimate from 2008 to 2013 using new cost
3782$/kW-yr without interest rate
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(a) Year 2008 (b) Year 2009.

(c) Year 2010. (d) Year 2011.

(e) Year 2012. (f) Year 2013.

Figure 6.20. Heat map of cost estimate from 2008 to 2013 using new cost
3782$/kW-yr with 1% interest rate
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(a) Year 2008 (b) Year 2009.

(c) Year 2010. (d) Year 2011.

(e) Year 2012. (f) Year 2013.

Figure 6.21. Heat map of cost estimate from 2008 to 2013 using SMR cost
2600$/kW-yr with 1% discount rate
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(a) Year 2008 (b) Year 2009.

(c) Year 2010. (d) Year 2011.

(e) Year 2012. (f) Year 2013.

Figure 6.22. Heat map of cost estimate from 2008 to 2013 using SMR cost
2600$/kW-yr with 3% discount rate
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6.4 Effective Renewable Relief for Baseload Generation

When combining renewable units with baseload units, it is always important to determine

if the increased penetration may have a positive impact on reducing the capital cost for the

baseload units (i.e., by providing some relief on their installed capacities). Figure  6.23 is

showing two examples of how much relief on the installed baseload capacities is possible with

different capacities of the solar units. The solid blue line shows the original load histories in

2007 as a function of time. The orange line is the solar energy produced, and the green line

is then the net load, which is the Load− Esolar.

(a) 7GW.

(b) 20GW.

Figure 6.23. Relief of load form solar.
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(a) 7GW.

(b) 20GW.

Figure 6.24. Relief of load from wind.

Figure  6.23 (a) installs 7GW of solar capacity, and Figure  6.23 (b) installs 20GW. The

dotted horizontal line in each graph is the maximum load and the maximum net load. The

difference between the horizontal lines shows the possible reduction in the maximum load to

be generated by the baseload units. This reduction (i.e., relief) can be potentially translated

into reduced capacities for the baseload units, resulting in capital cost reduction. Recall that

in the dispatched model, a scaling factor has been employed to ensure that the maximum

load can be met at any time during the operational horizon. So the maximum of the net
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load determines the total capacity of the baseload units, implying that any reduction in the

maximum net load will have a positive economic impact on the IES.

Results indicate that the 7GW solar installation gives a maximum relief of electricity

load approximately 3GW, while the 20GW installation gives a relief of 6GW, implying the

law of diminished return on investment.

Figure  6.24 is another example of how much baseload capacities can be reduced from

different capacities of the wind units. The blue line describes the 2009 loads, and the

orange line is the wind energy output, and the green line is then the net load, which is the

Load− Ewind.

Figure  6.24 (a) installs 7GW of wind capacity, and Figure  6.24 (b) installs 20GW. Similar

to Figure  6.23 , the difference between the horizontal dotted lines shows the possible reduction

in the maximum load to be generated by the baseload units. Results show that the 7GW

wind installation gives a maximum load relief of approximately 0.7GW, while the 20GW

installation gives a relief of 3GW.

The above results are further detailed in the two subplots of Figure  6.25 , which shows

the calculated relief for various combinations of solar and wind capacities. Subplot  6.25 (a)

fixes the wind capacity and varies the solar, and subplot  6.25 (b) does the opposite. Results

indicate that the solar units provide more relief compared to the wind. This is because the

energy generation model for the solar unit has a higher correlation with the demand profile,

whereas the wind shows more volatility, implying that the peak demand times may not line

up with peak production by the wind units.

Furthermore, analysis of the subplots in Figure  6.25 indicates that the initial relief

obtained with renewable penetration subsides with their increased capacities. The implication

is that wide penetration by renewable is expected to be very taxing in terms of the overall

capital cost for the IES. In Figure  6.25 (a), the green line which represents 2009 is an outlier

from other lines and the growing rate reduces dramatically around 2 to 3GW installation.

This result matches the observation from Figure  6.25 (b), which is the heat map of the least

cost using SCM in 2009. Because the effective relief of load for solar is low in 2009, so the

suggested best capacity for solar is 2.5GW, this value is relatively low as well. These trends

confirm the optimization results displayed in Figure  6.18 
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(a) Solar.

(b) Wind.

Figure 6.25. Relief of load covered by capital
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6.5 Impact of Economic Model Parameters

This subsection discusses the impact of changing one of the economic parameters, the

discount rate, on the optimized capacities. Sample results are shown in Table  6.3 . The goal

here is to compare the results for two scenarios, one with conventional nuclear reactors, and

one with advanced nuclear reactors.

Table 6.3. Portfolio calculation.
Current report Nuclear Coal Gas Wind Solar
2019 Energy Use 11.0 20.0 47.0 2.0 20.0
2020 Generating 5.1 14.5 52.8 4.5 23.3
Conventional cost 6755$/kW-yr
Gaussian Process 37.6 9.8 45.1 1.5 6.0
r = 0% 32.0 8.7 47.5 2.6 9.2
r = 1% 0 40 42.7 8.9 8.3
Advanced cost 3782$/kW-yr
Gaussian Process 38.5 2.1 45.8 8.5 5.1
r = 0% 38.0 1.7 43.0 9.0 8.3
r = 1% 35.3 2.7 44.1 8.9 8.9
r = 2% 31.7 4.5 46.6 6.4 10.8
r = 3% 20.8 8.8 50.8 1.8 17.7
SMR cost 2600$/kW-yr Gas(CC) Gas(CT) Wind Solar
Gaussian Process 30.4 16.3 29.3 1.9 22.2
r = 3% 34.0 18.0 30.3 3.4 14.4
r = 6% 16.1 31.1 32.6 3.5 16.7
r = 9% 0.0 53.4 37.7 5.0 3.9

If the conventional cost of nuclear 6755$/kW-yr is assumed, with a discount rate of 0,

the Gaussian Process regression result is consistent with the results of 300 synthetic history

samples of 60 years. However, nuclear power’s expense grows dramatically as the discount

rate rises. The portion of nuclear will be 0 if the discount rate is 1%. This is because

the cost of building nuclear overnight is front-loaded and will not be discounted during the

60-year time horizon. But the rebuild cost for other energy producers will be discounted,

see Eq.(  4.9 ), with the increase in the discount rate (r) and rebuild year(t), the rebuild cost

will decrease exponentially.
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If 3782$/kW-yr from EON,  2018 is used as the cost of nuclear, with a discount rate of 0,

RAVEN runs are still consistent with the Gaussian Process results since the changes of the

best energy portfolios are within 5%. With the increasing discount rate, capacity for nuclear

capacity is reducing, and solar capacity is increasing.

If 2600$/kW-yr from EON,  2018 is used as the cost of nuclear, the differences of the best

energy portfolios from RAVEN and the Gaussian Process results are still within 5%. With

the increase of discount rate from 3% to 9%, wind and gas capacities are growing, solar and

nuclear capacities are reducing. 9% discount rate result suggests that there should be no

nuclear installation.

Based on the December 2020 CDR report ERCOT,  2020 , wind penetration set a new

all-time record for ERCOT, and in 2021 the operational installed capacity in Texas will

have 51.0% natural gas, 24.8% wind, 13.4% coal, 4.9% nuclear, 3.8% solar, and 2.1% other

energy and storage. There was a significant difference between the 2021 installed capacity

and our results. Our study suggests more solar and nuclear capacity, but less wind capacity.

Because substantial growth in wind capacity might lead to the growth of the total cost or

the electricity outages.

6.6 Conclusion

This Chapter provides a detailed discussion on the results from the original optimization

workflow and the proposed workflow to assess the effective cost of energy, with different

costs data and discount rates. The proposed workflow, combines Gaussian process regression

and the screening curve method together as an adaptive model for the optimization of the

economic value of energy portfolios.

A new signal processing methodology generating time series with periodic peaks data

(synthetic price history) is also demonstrated in this chapter. The proposed model of

synthetic time series generation is based on segmentation, feature clustering, Fourier series,

and ARMA. The electricity load of Texas, wind speed, solar GHI, and air temperature in

Houston is collected from the year 2007 to 2013 as the original training data. The synthetic

data generation process has been explained. The same statistical characteristics are observed

on the synthetic samples. The choice of segmentation length and clustering parameters,
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p, and q in ARMA models are heavily impactable for the load data. Incorrect choice of

parameters leads to unrealistic sample generation, while exactly choosing will remove the

volatility for the data. Main concern for synthetic time series generation will be on how to

correctly identify the volatility for a different year.

These results provide some credence to the proposed methodology and will help guide

future developments. Thus optimization method as well as the solution space exploring,

cluster strategies are required to be investigated further in future work.
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7. SUMMARY

The objective supports one of the key goals for integrated energy systems focused on optimizing

the capacities in hybrid energy generation scenarios, and done in a computationally efficient

manner. The workflow integrates various key elements to ensure results that are consistent

with historical demand data and the energy generation as well as the economic models for

the various energy units. Recognizing that a brute force optimization relying on the analysis

of numerous generation scenarios is infeasible, this work builds a workflow that employs

a limited set of samples to train a Gaussian Process model, which is more amenable for

optimization. The construction of the Gaussian Process model is guided by the Screening

Curve Method, a well-proven methodology for portfolio optimization that was developed for

the electricity energy market in the 1960s.

The workflow utilized two key plugins in the RAVEN framework, namely HERON and

TEAL. HERON automates the energy dispatch calculations based on the given generation

model and demand profile, and TEAL is responsible for the economic calculations. Our

workflow has employed ROM models to generate synthetic profiles for the load and the

renewable energy generation models over a 60-year operational horizon. Different features

and detrending algorithms were employed in the construction of the ROM model to ensure

all synthetic profiles are consistent with the historical data, including Fourier, ARMA, and

peak detection-based techniques. The impacts of the clustering parameters on the quality

of the synthesized time series are also studied.

The optimization workflow has been employed to analyze a mixed energy generation

portfolio based on the 2007–2013 historical load data in the state of Texas. The IES portfolio

includes renewables (e.g., solar and wind units) as well as baseload generators (e.g., nuclear,

natural gas, and coal units). Results indicate that the solar wind portion is on the order of

10%, and the wind portion shows more volatility from 1 to 10%, nuclear is responsible for

approximately one-third of the portfolio, coal is on the order of 10%, and natural gas makes

up the rest.

Results also indicate that the increased penetration of renewable units is not expected to

produce a linear reduction in the IES cost, simply because the solar and wind energy profiles
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do not correlate well with the demand profile, with the solar showing better correlation than

wind. The overall implication however is that while the increased penetration of renewable

sources does indeed reduce the dispatching requirements on the baseload units, it does not

reduce the requirements on their capacities, implying that baseload units will have to operate

at lower capacity factors, often an undesirable mode of operation for baseload units.

Finally, future work will focus on developing energy generation models that account for

increased energy demand, as well as training synthetic time series using multi-year data.

Also other IES scenarios will be considered, including energy storage and process heat

applications.
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