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ABSTRACT

Millimeter-wave communications use narrow beams to overcome the enormous signal

attenuation. Such narrow-beam communication demands precise beam-alignment between

transmitter and receiver and may entail huge overhead, especially in high mobility scenarios.

Moreover, detection of the optimal beam is challenging in the presence of beam imperfec-

tions and system noise. This thesis addresses the challenges in the design of beam-training

and data-communication by proposing various schemes that exploit different timescales. On

a short timescale, we leverage the feedback from the receiver to efficiently perform beam-

training and data-communication. To this end, we have worked in three different areas.

In the first research direction, we design an optimal interactive beam-training and data-

communication protocol, with the goal of minimizing power consumption under a minimum

rate constraint. The optimality of a fixed-length beam-training phase followed by a data-

communication phase is proved under the assumption of perfect binary feedback. In the

second research direction, we propose a coded energy-efficient beam-training scheme, ro-

bust against the feedback/detection errors. In the third research direction, we investigate

the design of the beam-training in the presence of uncertainty due to noise and beam im-

perfections. Based on the bounding of value-function, the second-best preference policy is

proposed, which achieves a promising exploration-exploitation tradeoff. On the other hand,

on longer timescales, we exploit the mobility and blockage dynamics and beam-training feed-

back to design throughput-efficient beam-training and data-communication. We propose a

point-based value iteration (PBVI) algorithm to determine an approximately optimal policy.

However, the design relies on the a-priori knowledge of the state dynamics, which may not

be available in practice. To address this, we propose a dual timescale approach, where on the

long timescale, a recurrent deep variational autoencoder (R-VAE) uses noisy beam-training

observations to learn a probabilistic model of system dynamics; on the short timescale, an

adaptive beam-training procedure is optimized using PBVI based on beam-training feedback

and a probabilistic knowledge of the UE’s position provided by the R-VAE. In turn, the ob-

servations collected during the beam-training procedure are used to refine the R-VAE via

stochastic gradient descent in a continuous process of learning and adaptation.
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1. INTRODUCTION

Mobile traffic has witnessed tremendous growth over the last decade, 18-folds over the past

five years alone, and is expected to grow with a compound annual growth rate of 47% from

2016 to 2021 [ 1 ]. This rapid increase poses a severe burden to current systems operating

below 6 GHz, due to limited bandwidth availability. Millimeter-wave (mm-wave) is emerging

as a promising solution to enable multi-Gbps communication, thanks to abundant bandwidth

availability [ 2 ]. However, high isotropic path loss and sensitivity to blockages pose challenges

in supporting high capacity and mobility [ 3 ]. To overcome the path loss, mm-wave systems

will thus leverage narrow beams by using large antenna arrays at both base stations (BSs)

and user-ends (UEs).

Nonetheless, narrow transmission and reception beams are susceptible to frequent loss

of alignment, due to mobility or blockage, which necessitate the use of beam-alignment

protocols. Maintaining beam alignment between transmitter and receiver can be challenging,

especially in mobile scenarios, and may entail significant overhead, thus potentially offsetting

the benefits of mm-wave directionality. Therefore, it is imperative to design schemes to

mitigate its overhead. This thesis addresses the challenges in the design of beam-alignment

by proposing various schemes that exploit different timescales.

On short timescales, we leverage the feedback from the receiver to efficiently perform

beam alignment and data communication. To this end, we have worked in three differ-

ent areas: energy-efficient interactive beam-alignment [  4 ] (Chapter  2 ), coded energy-efficient

beam-alignment [ 5 ] (Chapter  3 ), second-best beam-alignment via Bayesian Multi-armed ban-

dits [  6 ] (Chapter  4 ).

In Chapter  2 , we investigate the design of an optimal interactive beam-alignment and

data communication protocol, with the goal of minimizing power consumption under a min-

imum rate constraint. The base station (BS) selects beam alignment or data communication

and the beam parameters, based on feedback from the user equipment (UE). Based on the

sectored antenna model and uniform prior on the angles of departure and arrival (AoD/AoA),

the optimality of a fixed-length beam-training phase followed by a data-communication phase

is demonstrated. Moreover, a decoupled fractional beam-alignment method is shown to be

13



optimal, which decouples over time the alignment of AoD and AoA, and iteratively scans a

fraction of their region of uncertainty. A heuristic policy is proposed for non-uniform prior

on AoD/AoA, with provable performance guarantees, and it is shown that the uniform prior

is the worst-case scenario. The performance degradation due to detection errors is studied

analytically and via simulation.

In Chapter  3 , we investigate the design of a coded energy-efficient beam-alignment

scheme, robust against detection errors. Specifically, the beam-alignment sequence is de-

signed such that the error-free feedback sequences are generated from a codebook with the

desired error correction capabilities. Therefore, in the presence of detection errors, the error-

free feedback sequences can be recovered with high probability. The assignment of beams to

codewords is designed to optimize energy efficiency, and a water-filling solution is proved.

In Chapter  4 , a beam-alignment scheme is proposed based on Bayesian multi-armed

bandits, with the goal to maximize the alignment probability and the data-communication

throughput. A Bayesian approach is proposed, by considering the state as a posterior distri-

bution over AoA and AoD given the history of feedback signaling and of beam pairs scanned

by the base-station (BS) and the user-end (UE). A simplified sufficient statistic for optimal

control is identified, in the form of preference of BS-UE beam pairs. By bounding a value

function, the second-best preference policy is formulated, which strikes an optimal balance

between exploration and exploitation by selecting the beam pair with the current second-best

preference. Through Monte-Carlo simulation with analog beamforming, the superior perfor-

mance of the second-best preference policy is demonstrated in comparison to existing schemes

based on first-best preference, linear Thompson sampling, and upper confidence bounds.

On longer timescales, we exploit the mobility and blockage dynamics to design through-

put efficient beam-alignment design. In Chapter  5 (previously published in [ 7 ]), we investi-

gate the design of joint beam-alignment, data communication and handover. In the proposed

scenario, two base stations use beam training to establish a mm-wave directive link towards

a user end moving along a road. At each time, the serving BS decides to either perform

beam training, data communication, or handover. Our goal is to maximize the average

number of successfully transmitted bits subject to an average power constraint. The beam

training, data communication, and handover strategies are jointly optimized by casting the
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optimization problem as a partially observable Markov decision process, where the system

state corresponds to the index of beam sectors where UE is located, the blockage variables,

and the index of the serving BS. To address the high dimensionality of the problem, an

approximate dynamic programming algorithm based on PERSEUS [ 8 ] is developed, where

we optimize both the primal and dual function simultaneously. The numerical results show

that the optimal policy based on the above optimization provides performance very close to

the upper-bound. Motivated by the structure of the optimal policy, we propose two simple

heuristic policies, namely finite-state-machine-based heuristic (FSM-HEU) and belief-based-

heuristic (B-HEU) policies, which compared to the optimal design, incur lower computation

cost and shows comparable performance. We compare the proposed policies to a baseline

policy referred to as the conventional heuristic (C-HEU) policy.

In Chapter  6 of this dissertation, we propose a dual timescale beam-training and data-

transmission approach: on a large timescale, a recurrent deep variational autoencoder (R-

VAE) uses noisy beam-training observations to learn a probabilistic model of user mobil-

ity dynamics; on a short timescale, an adaptive beam-training procedure is optimized us-

ing point-based value iteration (PBVI) based on beam-training feedback and a probabilistic

knowledge of the UE’s position provided by the R-VAE. In turn, the observations collected

during the beam-training procedure are used to refine the R-VAE via stochastic gradient

descent in a continuous process of learning and adaptation.

The proposed beam-alignment schemes are outlined as follows.

1.1 Energy-Efficient Interactive Beam Alignment for Millimeter-Wave Net-
works

Millimeter-wave communications use narrow beams to overcome the huge path loss. This

demands precise beam-alignment between transmitter and receiver and may entail huge

overhead, especially in mobile environments. To address this challenge, in our previous work

[ 9 ]–[ 12 ], we address the optimal design of beam-alignment protocols. In [  9 ], we optimize

the trade-off between data communication and beam-sweeping, under the assumption of an

exhaustive search method, in a mobile scenario where the BS widens its beam to mitigate

the uncertainty on the UE position. In [  10 ], [ 11 ], we design a throughput-optimal beam-
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alignment scheme for one and two UEs, respectively, and we prove the optimality of a

bisection search. However, the model therein does not consider the energy cost of beam-

training, which may be significant when targeting high detection accuracy. It is noteworthy

that, if the energy consumption of beam-training is small, bisection search is the best policy

since it is the fastest way to reduce the uncertainty region of the angles of arrival (AoA)

and departure (AoD). For this reason, it has been employed in previous works related to

multi-resolution codebook design, such as [ 13 ]. In [ 12 ], [ 14 ], we incorporate the energy cost

of beam-training, and prove the optimality of a fractional search method. Yet, in [  9 ]–[ 12 ],

optimal design is carried out under restrictive assumptions that the UE receives isotropically,

and that the duration of beam-training is fixed. In practice, the BS may switch to data

transmission upon finding a strong beam, as in [ 15 ], and both BS and UE may use narrow

beams to fully leverage the beamforming gain.

To the best of our knowledge, the optimization of interactive beam-alignment, jointly at

both BS and UE, is still an open problem. Therefore, in Chapter  2 (previously published in

[ 4 ]), we consider a more flexible model than our previous papers [ 9 ]–[ 12 ], by allowing dynamic

switching between beam-training and data-communication and joint optimization over BS-

UE beams, BS transmission power, and rate. Indeed, we prove that a fixed-length beam-

training scheme followed by data communication is optimal, and we prove the optimality of a

decoupled fractional search method, which decouples over time the alignment of AoD and AoA

and iteratively scans a fraction of their region of uncertainty. Using Monte-Carlo simulation

with analog beams, we demonstrate superior performance, with up to 4dB, 7.5dB, and 14dB

power gains over the state-of-the-art bisection method [ 13 ], conventional exhaustive, and

interactive exhaustive search policies, respectively. Compared to our recent paper [  14 ], the

system model adopted in Chapter  2 is more realistic since it captures the effects of fading

and resulting outages, non-uniform priors on AoD/AoA, and detection errors. Additionally,

the model in [ 14 ] is restricted to a two-phase protocol with deterministic beam-training

duration. In Chapter  2 , we show that this is indeed optimal. Beam-alignment has been a

subject of intense research due to its importance in mm-wave communications. The research

in this area can be categorized into beam-sweeping [ 9 ]–[ 13 ], [ 16 ]–[ 18 ], data-assisted schemes

[ 19 ]–[ 22 ], and AoD/AoA estimation [ 23 ], [ 24 ]. The simplest and yet most popular beam-
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sweeping scheme is exhaustive search [ 16 ], which sequentially scans through all possible BS-

UE beam pairs and selects the one with maximum signal power. A version of this scheme

has been adopted in existing mm-wave standards including IEEE 802.15.3c [ 25 ] and IEEE

802.11ad [ 26 ]. An interactive version of exhaustive search has been proposed in [ 15 ], wherein

the beam-training phase is terminated once the power of the received beacon is above a

certain threshold. The second popular scheme is iterative search [ 17 ], where scanning is

first performed using wider beams followed by refinement using narrow beams. A variant of

iterative search is studied in [ 27 ], where the beam sequence is chosen adaptively from a pre-

designed multi-resolution codebook. However, this codebook is designed independently of

the beam-alignment protocol, thereby potentially resulting in suboptimal design. In [ 18 ], the

authors consider the design of a beamforming vector sequence based on a partially observable

(PO-) Markov decision processes (MDPs). However, POMDPs are generally not amenable

to closed-form solutions, and have high complexity. To reduce the computational overhead,

the authors focus on a greedy algorithm, which yields a sub-optimal policy.

Data-aided schemes utilize the information from sensors to aid beam-alignment and re-

duce the beam-sweeping cost (e.g., from radar [ 19 ], lower frequencies [ 20 ], position informa-

tion [  21 ], [ 22 ]). AoD/AoA estimation schemes leverage the sparsity of mm-wave channels

and include compressive sensing schemes [  23 ] or approximate maximum likelihood estima-

tors [ 24 ]. In [ 28 ], the authors compare different schemes and conclude that the performance

of beam-sweeping is comparable with the best performing estimation schemes based on

compressed sensing. Yet, beam-sweeping has the added advantage of low complexity over

compressed sensing schemes, which often involve solving complex optimization problems and

is more amenable to analytical insights on the beam-alignment process. For these reasons,

in Chapter  2 , we focus on beam-sweeping and derive insights on its optimal design.

All of the aforementioned schemes choose the beam-training beams from pre-designed

codebooks, use heuristic protocols, or are not amenable to analytical insights. By choosing

the beams from a restricted beam-space or a predetermined protocol, optimality may not

be achieved. Moreover, all of these papers do not consider the energy and/or time overhead

of beam-training as part of their design. In this work, we address these open challenges by
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optimizing the beam-alignment protocol to maximize the communication performance.

Our Contributions: Our contributions are summarized as follows:

1. Based on a MDP formulation, under the sectored antenna model [ 29 ], uniform AoD/AoA

prior, and small detection error assumptions, we prove the optimality of a fixed-length

two-phase protocol, with a beam-training phase of fixed duration followed by a data

communication phase. We provide an algorithm to compute the optimal duration.

2. We prove the optimality of a decoupled fractional search method, which scans a fixed

fraction of the region of uncertainty of the AoD/AoA in each beam-training slot. More-

over, the beam refinements over the AoD and AoA dimensions are decoupled over time,

thus proving the sub-optimality of exhaustive search methods.

3. Inspired by the decoupled fractional search method, we propose a heuristic scheme for

the case of non-uniform prior on AoD/AoA with provable performance and prove that

the uniform prior is indeed the worst-case scenario.

4. We analyze the effect of detection errors on the performance of the proposed protocol.

5. We evaluate its performance via simulation using analog beams, and demonstrate up to

4dB, 7.5dB, and 14dB power gains compared to the state-of-the-art bisection scheme

[ 13 ], conventional and interactive exhaustive search policies, respectively. Remarkably,

the sectored model provides valuable insights for beam-alignment design.

1.2 Coded Energy-Efficient Beam-Alignment

Existing beam alignment techniques such as [ 9 ], [ 10 ], [ 12 ], [ 14 ]–[ 16 ], [ 30 ], are designed

based on the assumption that no detection errors occur in the beam-training. However,

the performance may deteriorate due to mis-detection and false-alarm errors, causing a loss

of alignment during the communication phase. Therefore, it is of great interest to design

beam-alignment algorithms robust to detection errors and, at the same time, energy-efficient.

Motivated by these observations, in Chapter  3 (previously published in [  5 ]), we consider

the design of an energy-efficient beam-alignment protocol robust to detection errors. To do
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so, we restrict the solution space for the beams such that the error-free feedback sequence

can only be generated from a codebook with error correction capabilities. Thus, if detection

errors occur, the error-free feedback sequence may still be recovered with high probabil-

ity by leveraging the structure of the error correction code. We pose the beam-alignment

problem as a convex optimization problem to minimize the average power consumption and

provide its closed-form solution that resembles a ”water-filling” over the beamwidths of the

beam-training beam patterns. The numerical results depict the superior performance of the

proposed coded technique, with up to 4dB and 8dB gains over exhaustive and uncoded beam-

alignment schemes, respectively. Open- and closed-loop error control sounding schemes have

been studied in [ 31 ], but with no consideration on energy-efficient design. To the best of our

knowledge, [ 5 ] (Chapter  3 is the first to propose a coded beam-alignment scheme, which is

both energy-efficient and robust to detection errors.)

In [ 32 ], beam-alignment is treated as a beam discovery problem in which locating beams

with strong path reflectors is analogous to locating errors in a linear block code. Unlike [ 32 ],

we use error correction to correct errors during the beam-training procedure, rather than to

detect strong signal clusters. Unlike [ 10 ], [  12 ], [ 14 ] which rely on continuous feedback from

UEs to BS, we consider a scheme where the feedback is generated only at the end of the

beam-training phase, which scales well to multiuser scenarios.

1.3 Second-best Beam-Alignment via Bayesian Multi-Armed Bandits

Noise and beam imperfections can cause the beam training feedback errors. In the

presence of the feedback errors, the detection of the optimal beam becomes challenging.

The case of erroneous or noisy feedback is considered in recent work [ 33 ], [ 34 ], and our

work [ 5 ]. A coded beam-alignment scheme is proposed in [ 5 ] to correct these errors, but

with no consideration of feedback to improve beam-selection. A multi-armed bandit (MAB)

formulation based on upper confidence bound (UCB) is proposed in [  33 ], by selecting the

beam based on the empirical SNR distribution. A hierarchical beam-alignment scheme based

on posterior matching is proposed in [ 34 ]: therein, a first-best policy is formulated, which

selects the most likely beam pair based on the posterior distribution on the AoA-AoD pair.
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However, as we will see numerically, both UCB and first-best policies are prone to errors due

to under-exploration of the beam space.

In Chapter  4 (previously published in [ 6 ]), we propose a beam-alignment design with

the goal to maximize the alignment probability and the average throughput during the data

communication phase. We pose the problem as a MDP, where the beam pair is chosen based

upon the belief over the AoA-AoD pair, given the history of scanned beams and the received

signal power. We identify a simplified sufficient statistic in the form of preference of the AoA-

AoD beam pairs. We derive lower and upper bounds to the value function, based on which

we propose a heuristic policy that selects the beam pair with the second-best preference.

We show numerically that this policy strikes a favorable trade-off between exploration and

exploitation: instead of greedily choosing the beam corresponding to the most likely AoA-

AoD pair (first-best [ 34 ]), it chooses the second most likely one, leading to better exploration;

at the same time, it avoids wasting precious resources to scan unlikely beam pairs, leading

to better exploitation than other MAB techniques, such as linear Thompson sampling (LTS)

[ 35 ] and UCB [  33 ]. The proposed second-best scheme is shown to outperform first-best

[ 34 ], LTS-based [  35 ] and UCB-based [ 33 ] schemes by up to 7%, 10% and 30% in alignment

probability, respectively.

1.4 Mobility and Blockage aware Communications in Millimeter-Wave Vehic-
ular Networks

Mobility can thus be a source of severe overhead and performance degradation. Never-

theless, mobility induces temporal correlation in the communication beams and in blockage

events. In Chapter  5 (previously published in [ 7 ]), we design adaptive strategies for beam-

training, data transmission and handover, that exploit these temporal correlations to reduce

the beam-training overhead and optimally trade-off throughput and power consumption.

Our design allows to: 1) predict future beam-pointing directions and narrow down the beam

search procedure to few likely beams, thus avoiding the enormous cost of exhaustive search;

2) more efficiently detect blockage and perform handover in response to it; 3) dynamically

adjust the duration of the data communication phase based on predicted beam coherence

times. However, two key questions arise: How do we leverage the system dynamics to opti-
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mize the communication performance? How much do we gain by doing so? To address these

questions, in Chapter  5 we envision the use of adaptive communication strategies and their

formulation via partially observable (PO) Markov decision processes (MDPs) to optimize

the decision-making process under uncertainty in the state of the system [ 36 ].

In the proposed scenario, two base stations (BSs) on both sides of a road link serve a

user equipment (UE) moving along it. At any time, the UE is associated with one of the

two BSs (the serving BS). To enable directional data transmission (DT), the serving BS

performs beam-training (BT); to compensate for blockage, it performs handover (HO) of

the data traffic to the backup BS on the opposite side of the road link. The goal is to design

the BT/DT/HO strategy so as to maximize the throughput delivered to the UE, subject to

an average power constraint. Mobility induces dynamics in the communication beams and

in blockage events; we show that these dynamics can be captured by a probabilistic state

transition model, which can be learned from interactions with the UE. However, the system

state is not directly observable due to noise, beam imperfections, and detection errors; we

thus formulate the optimization of the decision-making process as a constrained POMDP, and

develop an approximate constrained point-based value iteration (C-PBVI) method to meet the

average power constraint requirement: compared with PERSEUS [ 37 ], originally proposed

for unconstrained problems, C-PBVI allows to simultaneously optimize the primal and dual

functions by decoupling the hyperplanes associated to reward and cost. We demonstrate

its convergence numerically. Our numerical evaluations reveal a good match between the

analysis based on a sectored antenna model with Markovian state transitions, and a more

realistic scenario with analog beamforming and Gauss-Markov mobility, hence demonstrating

the effectiveness of our proposed scenario in more realistic settings: simulations based on a

2D mobility model and 3D analog beamforming on both BSs and UE equipped with uniform

planar arrays (UPA), demonstrate that C-PBVI performs near optimally, and outperforms a

baseline scheme with periodic beam-training by up to 38% in spectral efficiency. Motivated

by its structure, we design two heuristic policies with lower computational cost – belief-based

and finite-state-machine-based heuristics – and show numerically that they incur a small 4%

and 15% degradation in spectral efficiency compared to C-PBVI, respectively. Finally, we

demonstrate numerically the effect of mobility and multiple users on the performance, based
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on the statistical blockage model developed in [  38 ]: the proposed low-complexity belief-based

and finite-state-machine-based schemes achieve 50% and 25% higher spectral efficiency than

the baseline scheme, respectively, demonstrating their robustness in mobile and dense user

scenarios.

Related Work: Beam-training design for mm-wave systems has been an area of exten-

sive research in the past decade; various approaches have been proposed, such as beam sweep-

ing [ 39 ], estimation of angles of arrival (AoA) and of departure (AoD) [ 24 ], and data-assisted

schemes [ 22 ]. Despite their simplicity, the overhead of these algorithms may offset the ben-

efits of beamforming in highly mobile environments [ 40 ]. While wider beams require less

beam-training, they result in a lower beamforming gain, hence a smaller achievable capacity.

Contextual information, such as GPS readings of vehicles [ 22 ], may alleviate this overhead,

but it does not eliminate the need for beam-training due to noise and inaccuracies in GPS

acquisition. Thus, the design of schemes that alleviate the beam-training overhead is of great

importance.

In most of the aforementioned works, a priori information on the vehicle’s mobility as well

as blockage dynamics is not leveraged in the design of communication protocols. In contrast,

we contend and demonstrate numerically that learning and exploiting such information via

adaptive communications can greatly improve the performance of mm-wave networks [ 41 ]. In

our previous work [ 39 ], we bridged this gap by leveraging worst-case mobility information

to design beam-sweeping and data communication schemes; in [ 42 ], we designed adaptive

strategies for BT/DT that leverage a Markovian mobility model via POMDPs, but with no

consideration of blockage (hence no handover).

A distinctive feature of the mm-wave channel is its highly dynamic link quality, due to the

occurrence of blockages on very short time-scales [  43 ]. In this respect, handover represents a

fundamental functionality to preserve communication in the event of link obstruction; how-

ever, it is challenging to implement it in mm-wave networks, since the mm-wave link quality

needs to be accurately tracked and blockages need to be quickly detected – a difficult task to

accomplish using highly directional communications. Therefore, MDP-based handoff strate-

gies proposed for sub-5GHz systems cannot be readily applied [ 44 ], [  45 ]. In Chapter  5 , we
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develop feedback-based techniques to quickly detect blockages, and enable a fully-automatic

and data-driven optimization of the handover strategy via POMDPs.

Recent work [ 4 ], [ 6 ], [ 34 ], [ 46 ], [ 47 ] that applies machine learning to mm-wave networks

reveal a growing interest in the design of schemes that exploit side information to enhance the

overall network performance. For example, [  46 ] develops a coordinated beamforming tech-

nique using a combination of deep learning and ray-tracing, and demonstrates its ability to

efficiently adapt to changing environments. More recent solutions are based on multi-armed

bandit, by leveraging contextual information to reduce the training overhead as in [  47 ], or

the beam alignment feedback to improve the beam search as in [  4 ], [ 6 ], [ 34 ]. However, no

handover strategies are considered in these works, resulting in limited ability to combat

blockage. In addition, these works neglect the impact of realistic mobility and blockage pro-

cesses on the performance. Compared to this line of works, in Chapter  5 we design adaptive

communication strategies that leverage learned statistical information on the mobility and

blockage processes in the selection of BT/DT/HO actions, with the goal to optimize the

average long-term communication performance of the system. Our proposed approach is in

contrast to strategies that either use non-adaptive algorithms [ 46 ], lack a handover mecha-

nism [  4 ], [  6 ], [  34 ], [  47 ], or assume a non realistic mobility pattern in their design.

Our Contributions:

• We define a POMDP framework to optimize the BT/DT/HO strategy in a mm-wave

vehicular network, subject to 2D mobility of the UE and time-varying blockage, with the

goal to maximize throughput subject to an average power constraint;

• We propose a novel feedback mechanism for BT, which reports the ID of the strongest

BS-UE beam pair if the received power is above a threshold (a design parameter), other-

wise it reports ∅ to indicate mis-alignment or blockage. We analyze its detection perfor-

mance in closed form;

• To address the complexity of POMDPs, we design C-PBVI, a constrained point-based

value iteration method. In order to incorporate the average power constraint, we extend

PERSEUS [ 37 ], originally designed for unconstrained POMDPs, via a Lagrangian for-

mulation, the separation of hyperplanes for reward-to-go and cost-to-go functions, and a
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dual optimization step to solve the constrained problem. We demonstrate its convergence

numerically;

• Inspired by the C-PBVI policy, we propose two heuristic schemes that trade complexity

with sub-optimality, namely belief-based (B-HEU) and finite-state-machine-based (FSM-

HEU) heuristic policies. We analyze the performance of FSM-HEU in closed form.

1.5 Learning and Adaptation in Millimeter-Wave Communications via Deep
Variational Autoencoders and POMDPs

Maintaining beam alignment, especially in highly mobile V2X communication scenarios,

is extremely challenging: traditional beam-alignment schemes such as the exhaustive search

method [ 48 ] suffer from severe beam-training overhead, increased communication delay, and

degraded throughput performance.

To achieve efficient design, adaptive beam-training schemes have been proposed in the

literature [  4 ], [  7 ], [  34 ], [  41 ], [  42 ], that leverage information on the mobility of the UE and

beam-training feedback to minimize the beam-training overhead. In one of our recent works

[ 7 ], we showed that statistical knowledge of the UE’s mobility dynamics may be carefully

exploited to reduce the beam-training overhead and achieve high spectral efficiency, even

in highly mobile V2X scenarios. However, the design in [ 7 ] relies on a priori statistical

knowledge of the mobility dynamics, which may not be available in practice, hence need to

be estimated from noisy observations. Then, a key question arises: How to jointly estimate

mobility dynamics from noisy observations and leverage them to optimize the beam-training

and data communication decisions?

To address this challenge, in Chapter  6 , we consider a mm-wave vehicular communication

scenario, where a UE moves along a road according to an unknown mobility model and is

served by a roadside BS. The UE and the BS are both equipped with large antenna arrays

and use 3D beamforming to enable directional communication. The mobility of the UE and

of the surrounding environment induce dynamics in the strongest beam pair that maximizes

the beamforming gain; these unknown dynamics need to be learned to enable efficient beam-

training. To this end, we propose a learning and adaptation framework that exploits two
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timescales: on the long timescale (of the order of several hundreds of frames), the BS uses

noisy signal quality measurements to learn the strongest beam pair dynamics induced by the

UE’s and environment’s mobility, using a recurrent deep variational auto-encoder (R-VAE)

[ 49 ]; the learned model is then used on the short timescale (one frame duration) to design

adaptive beam-training schemes that leverage the probabilistic knowledge of the strongest

beam pair provided by the R-VAE and beam-training feedback. In turn, beam-training

observations are used to refine the R-VAE via stochastic gradient descent in a continuous

process of learning and adaptation.

By approximating the beamforming gain via the sectored antenna model, we formulate

the decision-making process over the short-timescale as a POMDP and propose a PBVI

method to design an approximately optimal policy, which provides the rule to select the

actions based on the belief (probability distribution over the optimal BS-UE beam pair

given the history of actions taken so far and associated observations) and beam-training

feedback. We compare the estimation performance of R-VAE with that based on the Baum-

Welch algorithm [ 50 ], and a naive approach, which ignores the noise in the observations.

Through numerical evaluations using 3D analog beamforming, we show that the R-VAE

reduces the average Kullback-Leibler (KL) divergence between the ground-truth Markovian

and the estimated mobility model by 92% and 86% with respect to the naive approach

and the Baum-Welch algorithms, respectively. Moreover, when used in conjunction with

the PBVI-based adaptive beam-training policy, the proposed dual timescale approach yields

near-optimal spectral efficiency, comparable to a genie-aided scheme with knowledge of the

ground-truth mobility model and noiseless feedback, and improves the spectral efficiency

by 12.6% and 8% with respect to the naive approach and the Baum-Welch algorithms,

respectively.

Finally, to trade computational complexity with accuracy, we propose a policy for the

short timescale by reducing the POMDP to an MDP that operates under the assumption of

error-free beam-training feedback. For example, the total time taken to optimize the policy

and execute 1000 episodes is 4.7 times lower for the proposed MDP-based policy compared to

the PBVI-based policy, while achieving spectral efficiency close to the latter in low feedback

error regimes. These policies are compared to a policy that scans exhaustively over the
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dominant beam pairs, demonstrating a spectral efficiency gain of 46% (PBVI-based) and

37% (MDP-based). Through Monte-Carlo simulation, we show a perfect match between

the actual system using analog 3D beamforming and 2D UE’s mobility and the abstracted

analytical model based on a Markovian approximation of the mobility and a sectored model

of the beamforming gain.

Related Work: The beam-alignment problem has been a topic of intensive research

in the last decade, and can be categorized into beam sweeping [ 39 ], estimation of AoA and

AoD [ 24 ], and contextual-information-aided schemes [ 19 ], [ 22 ], [ 51 ]. Despite their simplicity,

these schemes do not incorporate mobility dynamics as part of their design, leading to

a large beam-training overhead in high mobility [ 40 ]. Some recent papers use contextual

information, such as GPS coordinates of the UE, [  22 ], onboard sensors’ data [  19 ], sub-6HGz

channel estimates [ 51 ] to reduce the beam-training overhead. In [  22 ], [ 52 ], the BS uses a

data-base of past measurements and the associated UE locations to predict the dominant

beamforming directions via inverse fingerprinting. Similarly, [ 19 ] proposes a beam-alignment

scheme using the onboard radar’s signals. Additionally, in [ 51 ], the proposed method uses

the sub-6GHz channel measurements to predict the mm-wave channel. In [ 52 ], a noisy tensor

completion-based beam-training scheme is proposed, where the received power is predicted

across a BS coverage area by using beam-training measurements on a subset of positions and

beams. Although contextual information may reduce some beam-training overhead, beam-

training is still required [ 22 ], [ 52 ], due to noise and inaccuracies in contextual information

acquisition. Moreover, a UE may decide not to share contextual information due to privacy

concerns. Therefore, contextual-information-agnostic efficient beam-training schemes are

required for these scenarios.

Adaptive beam-training solutions, including machine learning-based, have been proposed

in some recent works [ 4 ], [ 6 ], [ 34 ], [ 46 ], [ 47 ], [ 53 ], [ 54 ]. These works exploit side-information

and/or beam-training feedback to reduce the beam-training overhead. Deep learning-based

solutions have been proposed in [ 46 ], [ 53 ], [ 54 ]. For instance, [ 46 ] uses the received sounding

signal from multiple surrounding BSs to predict the optimal beam via a deep learning frame-

work. In [ 53 ], a convolutional neural network-based compressive sensing solution is proposed,

trained based on simulated channels and then used to make beam predictions using only a
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few measurements. Similarly, [ 54 ] proposes a deep-learning assisted beam-alignment, which

predicts the optimal BS and beam, given the UE’s position. Reinforcement learning-based

beam-alignment schemes have been proposed in [  4 ], [  6 ], [  34 ], [ 47 ]. In [  47 ], the beam-alignment

problem is posed as a contextual bandit problem, using the UE’s location information as the

context. In our previous works [ 4 ] and [ 6 ], we proposed to use the beam-training feedback

to design optimal beam-training strategies under the assumption of error-free and erroneous

beam-training feedback, respectively. In [  34 ], a hierarchical search, exploiting the beam-

training feedback is proposed. In the aforementioned works, the mobility dynamics of the

UE are not leveraged in the beam-alignment protocol design, leading to a large beam-training

overhead in high mobility [ 40 ].

Compared to the aforementioned works, in our recent work [ 7 ] we showed that by ex-

ploiting the mobility dynamics via a POMDP, the spectral efficiency of V2X communication

could be greatly improved over conventional schemes, such as exhaustive search. Yet, [  7 ]

assumes a priori knowledge of the statistical mobility model of the UE, which needs to be

learned in practice. Since the infinite-horizon POMDP in [  7 ] depends on the unknown mo-

bility dynamics and incurs a large optimization cost, the scheme therein is not amenable to

simultaneous estimation of mobility and optimization of POMDP policy. In contrast to [ 7 ],

herein, we decouple the beam-alignment design and mobility estimation by proposing a dual

timescale approach in which the training of the mobility learning framework is carried on the

long-timescale, interleaved with the execution of the policy in the short timescale: in the long

timescale, a stochastic model of beam dynamics is learned, which provides side information

(in the form of a prior belief) to optimize the beam-alignment policy in the short timescale; on

the other hand, in the short timescale (one frame duration), the beam-alignment procedure

is optimized using the prior belief provided by the mobility learning framework, agnostic to

beam dynamics. Since learning of the mobility model is decoupled from the beam-alignment

policy optimization, learning and adaptation can be done concurrently, in contrast to [ 7 ].

Moreover, by aiming to maximize frame throughput, the short-timescale policy optimization

favors accurate detection of the optimal BS-UE’s beam pair, hence improving the ability to

predict optimal beam association for the next frames, and indirectly maximizing throughput

in the long timescale.

27



Contributions: In a nutshell, the contributions of Chapter  6 are summarized as follows:

1. We propose a dual timescale approach in which the dynamics of the strongest beam

pairs are learned over the long timescale, and then exploited over the short timescale

to optimize the beam-training procedure;

2. We propose an R-VAE-based mobility learning framework to learn the dynamics of the

strongest beam pairs over the long timescale, trained via stochastic gradient descent

using beam-training observations;

3. We formulate a POMDP framework to optimize the decision-making process of beam-

training and data transmission in the short-timescale, which uses the prior belief of

the strongest beam pair provided by the R-VAE and beam-training feedback to max-

imize the average throughput. To solve the POMDP, we propose a linear time PBVI

algorithm to find the approximately optimal policy;

4. For the special case of error-free feedback, we show that the POMDP can be reduced

to a MDP with states as belief supports. Through structural properties of the MDP,

we reveal that it is optimal to scan the most likely beams only, which enables a fur-

ther reduction of state dimensionality. We propose a low-complexity value iteration

algorithm that exploits the state-space reduction, and we demonstrate near-optimal

performance in regimes with low feedback error rates.

1.6 Outline

The rest of this thesis is organized as follows. In Chapter  2 , we present the energy-

efficient interactive beam-alignment. In Chapter  3 , we present the coded energy-efficient

beam-alignment. In Chapter  4 , we present the second-best beam-alignment via Bayesian

multi-armed bandits. In Chapter  5 , we present mobility and blockage aware communications

in millimeter-wave vehicular networks. In Chapter  6 , we present the recurrent variation

autoencoder aided beam-training design. Finally, the thesis is concluded in Chapter  7 .
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2. ENERGY-EFFICIENT INTERACTIVE BEAM ALIGNMENT

FOR MILLIMETER-WAVE NETWORKS

  This chapter investigates the design of an optimal interactive beam-alignment and data

communication protocol, with the goal of minimizing power consumption under a minimum

rate constraint. The base-station selects beam-alignment or data communication and the

beam parameters, based on feedback from the user-end. Based on the sectored antenna model

and uniform prior on the angles of departure and arrival (AoD/AoA), the optimality of a

fixed-length beam-alignment phase followed by a data-communication phase is demonstrated.

Moreover, a decoupled fractional beam-alignment method is shown to be optimal, which

decouples over time the alignment of AoD and AoA, and iteratively scans a fraction of their

region of uncertainty. A heuristic policy is proposed for non-uniform prior on AoD/AoA,

with provable performance guarantees, and it is shown that the uniform prior is the worst-

case scenario. The performance degradation due to detection errors is studied analytically

and via simulation. The numerical results with analog beams depict up to 4dB, 7.5dB, and

14dB gains over a state-of-the-art bisection method, conventional and interactive exhaustive

search policies, respectively, and demonstrate that the sectored model provides valuable

insights for beam-alignment design.

2.1 System Model

We consider a downlink scenario in a mm-wave cellular system with one base-station (BS)

and one mobile user (UE) at distance d from the BS, both equipped with uniform linear arrays

(ULAs) with Mt and Mr antennas, respectively, depicted in Fig.  2.1 . Communication occurs

over frames of fixed duration Tfr, each composed of N slots indexed by I≡{0, 1, . . . , N−1} of

duration T=Tfr/N , each carrying S symbols of duration Tsy=T/S. Let s be the transmitted

symbol, with E[|s|2]=1. Then, the signal received at the UE is

y =
√
PcHr Hcts+ cHr w, (2.1)

 ↑ A version of this chapter was previously published by IEEE Transactions Wireless Communication [ 4 ][DOI:
10.1109/TWC.2018.2885041]
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Figure 2.1. Actual beam pattern G(cx, θx) generated using the algorithm
in [ 27 ] with Mt=Mr=128 antennas. (solid lines) versus sectored model
G(Bx, θx) (dashed lines) [ 29 ], on a linear scale. Sidelobes are not visible due to
their small magnitude.

where P is the average transmit power of the BS; H∈CMr×Mt is the channel matrix; ct∈CMt

is the BS beam-forming vector; cr∈CMr is the UE combining vector; w ∼ CN (0, N0WtotI)

is additive white Gaussian noise (AWGN). The symbols N0 and Wtot denote the one-sided

power spectral density of AWGN and the system bandwidth, respectively. By assuming

analog beam-forming at both BS and UE, ct and cr satisfy the unit norm constraints ‖ct‖2
2=

‖cr‖2
2= 1. The channel matrix H follows the extended Saleh-Valenzuela geometric model

[ 55 ],

H =
√
MtMr

K

K∑
`=1

h` dr(θr,`)dHt (θt,`), (2.2)

where h` ∈ C, θt,` and θr,` denote the small scale fading coefficient, AoD and AoA of the

`th cluster, respectively. The terms dr(θr,`)∈CMr and dt(θt,`)∈CMt are the UE and BS array

response vectors, respectively. For ULAs, θt,` (respectively, θr,`) is the angle formed between
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the outgoing (incoming) rays of the lth channel cluster and the perpendicular to the BS

(UE) antenna array, as represented in Fig.  2.1 , so that

dx(θx) = 1√
Mx

[
1, ej

2πdx
λ

sin θx , . . . , ej(Mx−1) 2πdx
λ

sin θx
]>
,

where x ∈ {t, r}, dt and dr are the antenna spacing of the BS and UE arrays, respectively, λ

is the wavelength of the carrier signal. In ( 2.2 ), K ≥ rank(H) is the total number of clusters.

Note that H has low-rank if K � min{Mt,Mr}. In this chapter, we assume that there is

a single dominant cluster (K=1). This assumption has been adopted in several previous

works (e.g., see [ 56 ], [ 57 ]), and is motivated by channel measurements and modeling works

such as [  2 ], where it is shown that, in dense urban environments, with high probability the

mm-wave channel exhibits only one or two clusters, with the dominant one containing most

of the signal energy. While our analysis is based on a single cluster model, in Sec.  2.7 we

demonstrate by simulation that the proposed scheme is robust also against multiple clusters.

For the single cluster model, we obtain

H =
√
MtMrh dr(θr)dHt (θt), (2.3)

where E[|h|2] = 1/`(d), `(d) denotes the path loss between BS and UE as a function of

distance d, and θ = (θt, θr) is the single-cluster AoD/AoA pair. We assume that θ has prior

joint distribution f0(θ) with support supp(f0)=Ut,0 × Ur,0, which reflects the availability of

prior AoD/AoA information acquired from previous beam-alignment phases, or based on

geometric constraints (e.g., presence of buildings blocking the signal in certain directions).

We assume that h and θ do not change over a frame, whose duration Tfr is chosen based upon

the channel and beam coherence times Tc and Tb (time duration over which the AoD/AoA

do not change appreciably) to satisfy this property. In [ 58 ], it has been reported that Tc�Tb.

In the numerical values given below, Tb∼100Tc. Therefore, by choosing Tfr≤Tc, we ensure

that the variations in h and θ over the frame duration Tfr are small and can be ignored. For

example, using the relationships of Tc and Tb in [  58 ], we obtain Tc'10[ms] and Tb'1[s] for a

UE velocity of 100[km/h]. In our numerical evaluations, we will therefore use Tfr=10[ms]. It is
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noteworthy that this assumption has also been used extensively in previous beam-alignment

works, such as [ 23 ], [  24 ], [  56 ].

We assume that blockage occurs at longer time-scales than the frame duration, deter-

mined by the geometry of the environment and mobility of users, hence we neglect blockage

dynamics within a frame duration [ 59 ]. By replacing (  2.3 ) into ( 2.1 ), and defining the BS

and UE beam-forming gains Gx(cx, θx) = Mx|dHx (θx)cx|2, x ∈ {t, r}, we get

y = h
√
PGt(ct, θt) ·Gr(cr, θr)ejΨ(θ)s+ ŵ, (2.4)

where ŵ,cHr w ∼ CN (0, N0Wtot) is the noise component and Ψ(θ) = 6 dHt (θt)ct− 6 dHr (θr)cr

is the phase.

In this chapter, we use the sectored antenna model [ 29 ] to approximate the BS and UE

beam-forming gains [ 60 ], represented in Fig.  2.1 . Under this model,

Gx(cx, θx) ≈ Gx(Bx, θx) = 2π
|Bx|

χBx (θx) , x ∈ {t, r}, (2.5)

where Bt ⊆ (−π/2, π/2] is the range of AoD covered by ct, Br ⊆ (−π/2, π/2] is the range

of AoA covered by cr, χA(θ) is the indicator function of the event θ ∈ A, and |A|=
∫
A dθ is

the measure of the set A. Hereafter, the two sets Bt and Br will be referred to as BS and

UE beams, respectively. Additionally, we define Bk = Bt,k × Br,k as the 2-dimensional (2D)

AoD/AoA support defined by the BS-UE beams. Note that the sectored model is used as an

abstraction of the real model, which applies a precoding vector ct at the transmitter and a

beamforming vector cr at the receiver. This abstraction, shown in Fig.  2.1 , is adopted since

direct optimization of ct and cr is not analytically tractable, due to the high dimensionality of

the problem. In Sec.  2.7 we show via Monte-Carlo simulation that, by appropriate design of

ct and cr to approximate the sectored model, our scheme attains near-optimal performance,

and outperforms a state-of-the-art bisection search scheme [ 13 ]; thus, the sectored antenna
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model provides a valuable abstraction for practical design. Following the sectored antenna

model, we obtain the received signal by replacing Gx(cx, θx) with Gx(Bx, θx) in ( 2.4 ), yielding

y = h
√
PGt(Bt, θt) ·Gr(Br, θr)ejΨ(θ)s+ ŵ. (2.6)

Although the analysis in this chapter is presented for ULAs (2D beamforming), the proposed

scheme can be extended to the case of uniform planar arrays with 3D beamforming, by

interpreting θx, x ∈ {t, r} as a vector denoting the azimuth and elevation pair in (−π/2, π/2]2

and the beam Bx ⊆ (−π/2, π/2]2. For notational convenience and ease of exposition, in this

chapter we focus on the 2D beamforming case (also adopted in, e.g., [ 13 ], [  23 ], [  27 ], [  28 ]).

The entire frame duration is split into two, possibly interleaved phases: a beam-alignment

phase, whose goal is to detect the best beam to be used in the data communication phase.

To this end, we partition the slots I in each frame into the indices in the set Is, reserved for

beam-alignment, and those in the set Id, reserved for data communication, where Is∩Id=∅

and Is∪Id=I. The optimal frame partition and duration of beam-alignment are part of our

design. In the sequel, we describe the operations performed in the beam-alignment and data

communication slots, and characterize their energy consumption.

Beam-Alignment: At the beginning of each slot k∈Is, the BS sends a beacon signal s of

duration TB<T using the transmit beam Bt,k with power Pk, 

1
 and the UE receives the signal

using the receive beam Br,k. Note that Bk=Bt,k×Br,k and Pk are design parameters. If the UE

detects the beacon (i.e., the AoD/AoA θ is in Bk, or a false-alarm occurs, see [ 60 ]), then, in

the remaining portion of the slot of duration T−TB, it transmits an acknowledgment (ACK)

packet to the BS, denoted as Ck=ACK. Otherwise (the UE does not detect the beacon due

to either mis-alignment or misdetection error), it transmits Ck=NACK. We assume that the

ACK/NACK signal Ck is received perfectly and within the end of the slot by the BS (for

instance, by using a conventional microwave technology as a control channel [ 62 ]).
1

 ↑ In practice, there are limits on how small the beacon duration can be made, due to peak power constraints
[ 61 ], beacon synchronization errors [ 3 ], and auto-correlation properties of the beacon sequence [ 3 ].

33



As a result of ( 2.6 ), the UE attempts to detect the beam, and generates the ACK/NACK

signal based on the following hypothesis testing problem,

H1 : yk=
√
N0Wtotνkhe

jΨk(θ)s+ŵk, (alignment, θ∈Bk) (2.7)

H0 : yk=ŵk, (misalignment, θ /∈Bk) (2.8)

where yk is the received signal, s is the transmitted symbol sequence, ŵk ∼ CN (0, N0WtotI)

is the AWGN vector, and νk is related to the beam-forming gain in slot k,

νk = (2π)2Pk
N0Wtot |Bk|

. (2.9)

The optimal detector depends on the availability of prior information on h. We assume that

an estimate of the channel gain γ=|h|2 is available at the BS and UE at the beginning of each

frame, denoted as γ̂=|ĥ|2, where ĥ=h+ e and e∼CN (0, σ2
e ) denotes the estimation noise. A

Neyman-Pearson threshold detector is optimal in this case,

|sHyk|2

N0Wtot‖s‖2
2

H0
≶
H1

τth. (2.10)

The detector’s threshold τth and the transmission power Pk are designed based on the channel

gain estimate γ̂, so as to satisfy constraints on the false-alarm and misdetection probabilities,

pfa, pmd ≤ pe. We now compute these probabilities under the simplifying assumption that ĥ

and e are independent, so that h|ĥ ∼ CN (ĥ, σ2
e ). Let zk , sHyk√

N0Wtot‖s‖2
, so that |zk|2 is the

decision variable. We observe that

zk =


√
νkhe

jΨk(θ)‖s‖2+ sHŵk√
N0Wtot‖s‖2

, if H1 is true;
sHŵk√

N0Wtot‖s‖2
, if H0 is true.
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Since ĥ and ŵk are independent and h = ĥ− e, we obtain

f(zk|ĥ,H1,θ) = CN
(√

νkĥe
jΨk(θ)‖s‖2, 1+νk‖s‖2

2σ
2
e

)
, (2.11)

f(zk|ĥ,H0) = CN (0, 1) , (2.12)

so that [|zk|2|ĥ,H0] ∼ Exponential(1), and the false-alarm probability can be expressed as

pfa(τth) , P
(
|zk|2> τth|ĥ,H0

)
= exp (−τth) . (2.13)

Similarly, the misdetection probability is found to be

pmd(νk, τth, γ̂) , P
(
|zk|2< τth|ĥ,H1

)
= 1−Q1


√√√√ 2γ̂νk‖s‖2

2
1 + νk‖s‖2

2σ
2
e
,

√
2τth

1 + νk‖s‖2
2σ

2
e

 ,
(2.14)

where Q1(·) is the first-order Marcum’s Q function [ 63 ]. In fact, zk|(ĥ,H1) is complex Gaus-

sian as in ( 2.11 ), so that, given (γ̂,H1), 2|zk|2
1+νk‖s‖22σ2

e
follows non-central chi-square distribution

with 2 degrees of freedom and non-centrality parameter 2νkγ̂‖s‖22
1+νk‖s‖22σ2

e
.

Herein, we design τth and Pk to achieve pfa, pmd ≤ pe. To satisfy pfa(τth) ≤ pe we need

τth ≥ − ln (pe) . (2.15)

Since Q1(a, b) is an increasing function of a≥0 and a decreasing function of b≥0, it follows

that pmd(νk, τth) is a decreasing function of νk≥0 and an increasing function of τth≥0. Then,

to guarantee pmd(νk, τth, γ̂)≤pe, (  2.15 ) should be satisfied with equality to attain the smallest

pmd; additionally, there exists ν∗>0, determined as the unique solution of pmd(ν∗, τth, γ̂)=pe

and independent of the beam shape Bk, such that pmd(νk, τth, γ̂)≤pe iff (if and only if) νk≥ν∗.

35



Then, using ( 2.9 ) and letting Ek,PkTsy‖s‖2
2 be the energy incurred for the transmission of

the beacon s in slot k, Ek should satisfy

Ek ≥ φs(pe) |Bk| , (2.16)

where φs(pe),N0Wtotν
∗Tsy‖s‖2

2/(2π)2 (2.17)

is the energy/rad2 required to achieve false-alarm and misdetection probabilities equal to pe.

Note that false-alarm and misdetection errors are deleterious to performance, since they

result in mis-alignment and outages during data transmission. Therefore, they should be

minimized. For this reason, in the first part of this chapter we assume that pe�1, and

neglect the impact of these errors on beam-alignment. Thus, we let Ek≥φs |Bk| be the

energy required in each beam-alignment slot to guarantee detection with high probability,

where φs is computed under some small pe � 1. We will consider the impact of these errors

in Sec.  2.6 . 

2
 

Data Communication: In the communication slots indexed by k ∈Id, the BS uses Bt,k,

rate Rk, and transmit power Pk, while the UE processes the received signal using the beam

Br,k. Therefore, letting γ = |h|2 and νk as in ( 2.9 ). the instantaneous SNR can be expressed

as

SNRk = γPkGt(Bt,k, θt)Gr(Br,k, θr)
N0Wtot

= νkγχBt,k(θt)χBr,k(θr). (2.18)

Outage occurs if Wtot log2(1+SNRk)<Rk due to either mis-alignment between transmitter

and receiver, or low channel gain γ. The probability of this event, pout, can be inferred

from the posterior probability distribution of the AoD/AoA pair θ and the channel gain γ,
2

 ↑ The design of beam-alignment schemes robust to errors when pe 6� 1 has been considered in [ 5 ]. Its
analysis is outside the scope of this chapter.
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given its estimate γ̂, and the history of BS-UE beams and feedback until slot k, denoted as

Hk , {(B0, C0), . . . , (Bk−1, Ck−1)}. Thus, pout , P(Wtot log2(1+SNRk) < Rk|γ̂,Hk), yielding

pout
(a)= P

(
SNRk < 2

Rk
Wtot − 1|γ̂,θ ∈ Bk

)
P(θ ∈ Bk|Hk) + P(θ 6∈ Bk|Hk)

(b)= 1− F̄γ

2
Rk
Wtot − 1
νk

∣∣∣∣γ̂
P(θ ∈ Bk|Hk), (2.19)

where (a) follows from the law of total probability and P(θ∈Bk|Hk) denotes the probability

of correct beam-alignment; (b) follows by substituting F̄γ(x|γ̂),P(γ≥x|γ̂) into (a), given as

F̄γ(x|γ̂) = Q1

(√
2γ̂/σ2

e ,
√

2x/σ2
e

)
. (2.20)

Herein, we use the notion of ε-outage capacity to design Rk, defined as the largest trans-

mission rate such that pout≤ε, for a target outage probability ε<1. This can be expressed

as

Cε(Pk,Bk|Hk, γ̂) , Wtot log2

(
1 + νkF̄

−1
γ

(
1− ε

P(θ∈Bk|Hk)

∣∣∣∣∣ γ̂
))

, (2.21)

where F̄−1
γ (·|γ̂) denotes the inverse posterior CCDF of γ, conditional on γ̂. In other words, if

Rk≤Cε(Pk,Bk|Hk, γ̂), then the transmission is successful with probability at least 1−ε, and

the average rate is at least (1−ε)Rk. Note that, in order to achieve the target pout≤ε, the

probability of correct beam-alignment must satisfy P(θ∈Bk|Hk)≥1−ε. This can be achieved

with a proper choice of Bk, as discussed next.

Since the ACK/NACK feedback after data communication is generated by higher layers

(e.g., network or transport layer), we do not use it to improve beam-alignment. We define

Ck=NULL, ∀k∈Id, to distinguish it from the ACK/NACK feedback signal in the beam-

alignment slots.
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2.2 Problem Formulation

In this section, we formulate the optimization problem, and characterize it as a Markov

decision process (MDP). The goal is to minimize the power consumption at the BS over a

frame duration, while achieving the quality of service (QoS) requirements of the UE (rate

and delay). Therefore, the objective function of the following optimization problem captures

the beam-alignment and data communication energy costs; the QoS requirements are spec-

ified in the constraints through a rate requirement Rmin of the UE along with an outage

probability of ε; additionally, the frame duration Tfr represents a delay guarantee on data

transmission. The design variables in slot k are denoted by the 4-tuple ak = (ξk, Pk,Bk, Rk),

where ξk corresponds to the decision of whether to perform beam-alignment (ξk=1) or data

communication (ξk=0); we let Rk=0 for beam-alignment slots (ξk = 1). With this choice of

ak, we aim to optimally select the beam-alignment slots Is and data communication slots Id.

If a slots is selected for beam-alignment (ξk = 1), we aim to optimize the associated power

Pk and 2D beam Bk. Likewise, if a slot is selected for data communication (ξk = 0), we aim

to optimize the associated power Pk, data rate Rk, and 2D beam Bk. Mathematically, the

optimization problem is stated as

P1 : P̄ , min
a0,...,aN−1

1
Tfr

E
[
N−1∑
k=0

Ek

∣∣∣∣f0

]
(2.22)

s.t. ak=(ξk, Pk,Bk, Rk),∀k,

Bk=Bt,k×Br,k ⊆
[
−π2 ,

π

2

]2
,∀k, (2.23)

Ek ≥ φs|Bk|, ∀k ∈ Is, (2.24)
1
N

∑
k

Rk≥Rmin, Rk≤Cε(Pk,Bk|Hk, γ̂),∀k∈Id, (2.25)

Pk = Ek/[ξkTB + (1− ξk)T ], ∀k, (2.26)

where f0 in ( 2.22 ) denotes the prior belief over θ; ( 2.23 ) defines the 2D beam Bk; ( 2.24 ) gives

the energy consumption in the beam-alignment slots; (  2.25 ) ensures the rate requirement

Rmin over the frame, and that Rk is within the ε-outage capacity, see (  2.21 ); (  2.26 ) gives the
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relation between energy and power. 

3
 Since the cost is the average BS power consumption,

the inequality constraints (  2.24 )-( 2.25 ) must be tight, i.e., we replace them with

Ek = ξkφs |Bk|+ (1− ξk)
ψd(Rk) |Bk|

F̄−1
γ

(
1−ε

P(θ∈Bk|Hk) |γ̂
) , (2.27)

1
N

∑
k

Rk = Rmin, (2.28)

where ( 2.27 ) when ξk=0 is obtained by inverting ( 2.25 ) via ( 2.21 ) and ( 2.9 ) (with equality)

to find Pk and Ek = PkT , and we have defined the energy/rad2 required to achieve the rate

R

ψd(R) , (2π)−2N0WtotT (2
R

Wtot − 1).

Hereafter, we exclude Pk from the design space, since it is uniquely defined by the set of

equality constraints ( 2.26 )-( 2.27 ). Thus, we simplify the design variable to ak = (ξk,Bk, Rk).

We pose P1 as an MDP [  64 ] over the time horizon I. The state at the start of slot k is

(fk, Dk), where fk is the probability distribution over the AoD/AoA pair θ, given the history

Hk up to slot k, denoted as belief ; Dk is the backlog (untransmitted data bits). Initially, f0

is the prior belief and D0,RminTfr. Given (fk, Dk), the BS and UE select ak= (ξk,Bk, Rk). 

4
 

Then, the UE generates the feedback signal: if ξk=0 (data communication), then Ck=NULL;

if ξk=1 (beam-alignment), then Ck=ACK if θ∈Bk, with probability

P(Ck = ACK|fk, ak) =
∫
Bk
fk(θ)dθ, (2.29)

and Ck=NACK otherwise. Upon receiving Ck, the new backlog in slot k + 1 becomes 

5
 

Dk+1 = max{Dk −RkT, 0}, (2.30)

and the new belief fk+1 is computed via Bayes’ rule, as given in the following lemma.

3
 ↑ Data communication takes the entire slot, whereas beam-alignment occurs over a portion TB < T of the

slot to allow for the time to receive the ACK/NACK feedback from the receiver.
4

 ↑ Since feedback is error-free, both BS and UE have the same information to generate the action ak and
their beams.
5

 ↑ If Dk+1 ≤ 0, all bits have been transmitted.

39



Lemma 2.1. Let f0 be the prior belief on θ with support supp(f0) = U0. Then,

fk(θ) = f0(θ)∫
Uk f0(θ̃)dθ̃

χUk(θ), (2.31)

where Uk , supp(fk) is updated recursively as

Uk+1 =


Uk ∩ Bk, k ∈ Is, Ck = ACK

Uk \ Bk, k ∈ Is, Ck = NACK

Uk, k ∈ Id.

(2.32)

Proof. The proof follows by induction using Bayes’ rule. In fact, if Ck=ACK in a beam-

alignment slot, then it can be inferred that θ∈Uk∩Bk; otherwise (Ck=NACK) the UE lies

outside Bk, but within the support of fk, i.e., θ∈Uk\Bk. In the data communication slots, no

feedback is generated, hence fk+1=fk and Uk+1=Uk. A detailed proof is given in Appendix

 8.A .

Lemma  2.1 implies that Uk is a sufficient statistic for decision making in slot k, and is

updated recursively via ( 2.32 ). Accordingly, the state space is defined as

S ≡ {(U , D) : U ⊆ U0, 0 ≤ D ≤ D0}. (2.33)

Given the data backlog Dk=D, the action space is expressed as 

6
 

A(D) ≡
{

(0,B, R) : B ≡ Bt × Br ⊆
[
−π2 ,

π

2

]2
, 0<R≤D/T

}

∪
{

(1,B, 0) : B ≡ Bt × Br ⊆
[
−π2 ,

π

2

]2
}
. (2.34)

Given (Uk, Dk) ∈ S, the action ak∈A(Dk) is chosen based on policy µk, which determines the

BS-UE beam Bk and whether to perform beam-alignment (ξk=1, Rk=0) or data communica-

tion (ξk=0, Rk>0), with energy cost Ek given by ( 2.27 ). With this notation, we can express
6

 ↑ Note that, for a data communication action (0,B, R), we assume that R > 0; in fact, data communication
with zero rate is equivalent to a beam-alignment action (1, ∅, 0) with empty beam.
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the problem P1 as that of finding the policy µ∗ which minimizes the power consumption

under rate requirement and outage probability constraints,

P2 : P̄ , min
µ

1
Tfr

Eµ
[
N−1∑
k=0

c(ak;Uk, Dk)
∣∣∣∣U0, D0, f0

]
,

s.t. Dk+1 = Dk − TRk,∀k ∈ I, DN = 0, (2.35)

where we have defined the cost per stage in state (Uk, Dk) under action ak as

c(ak;Uk, Dk)=
ξkφs+ (1−ξk)ψd(Rk)

F̄−1
γ

(
1−ε

P(θ∈Bk|Uk) |γ̂
)
 |Bk| , (2.36)

and we used the sufficient statistic (Lemma  2.1 ) to express P(θ∈Bk|Hk)=P(θ∈Bk|Uk) in

( 2.27 ). P2 can be solved via dynamic programming (DP): the value function in state (Uk, Dk)

under action ak∈A(Dk), Vk(ak;Uk, Dk), and the optimal value function, V ∗k (Uk, Dk), are

expressed as

Vk(ak;Uk, Dk) = c(ak;Uk, Dk) + E
[
V ∗k+1(Uk+1, Dk+1)

∣∣∣∣Uk, Dk; ak
]
,

V ∗k (Uk, Dk) = min
ak∈A(Dk)

Vk(ak;Uk, Dk), (2.37)

where the minimum is attained by the optimal policy. To enforce DN=0, we initialize it as

V ∗N(UN , DN) =


0, DN = 0

∞, DN > 0.
(2.38)

Further analysis is not doable for a generic prior f0. To unveil structural properties, we

proceed as follows:

1. We optimize over the extended action space

Aext(D) ≡
{

(0,B, R) : B ⊆
[
−π2 ,

π

2

]2
, 0 < R ≤ D/T

}
∪
{

(1,B, 0) : B ⊆
[
−π2 ,

π

2

]2
}
,

(2.39)
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obtained by removing the ”rectangular beam” constraint B≡Bt×Br in ( 2.34 ). Thus,

B ∈ Aext(D) can be any subset of [− π/2, π/2]2, not restricted to a “rectangular” shape

B ≡ Bt,k×Br,k. By optimizing over an extended action space, a lower bound to the value

function is obtained, denoted as V̂ ∗k (Uk, Dk) ≤ V ∗k (Uk, Dk), possibly not achievable by a

”rectangular” beam.

2. In Sec.  2.3 , we find structural properties under such extended action space, for the case

of a uniform belief f0. In this setting, we prove the optimality of a fractional search

method, which selects Bk as Bk ⊆ U with |Bk|= ρk|Uk| (beam-alignment) or |Bk|= ϑ|Uk|

(data communication), for appropriate fractional parameters ρk and ϑ; additionally, we

prove the optimality of a deterministic duration of the beam-alignment phase (Theorems

 2.1 and  2.3 ).

3. In Sec.  2.4 , we prove that such lower bound is indeed achievable by a decoupled frac-

tional search method, which decouples the BS and UE beam-alignment over time using

rectangular beams, hence it is optimal.

4. In Sec.  2.5 , we use these results to design a heuristic policy with performance guarantees

for the case of non-uniform prior f0, and show that the uniform prior is the worst case.

2.3 Uniform Prior

We denote the beam B taking value from the extended action space Aext(D) as ”2D

beam”, to distinguish it from B∈A(D), that obeys a ”rectangular” constraint. Additionally,

since the goal is to minimize the energy consumption, we restrict B⊆U during data commu-

nication and B⊂U during beam-alignment, yielding the following extended action space in

state (U , D): 

7
 

Aext(U , D) ≡{(0,B, R) : B ⊆ U , 0 < R ≤ D/T} ∪ {(1,B, 0) : B ⊂ U} . (2.40)

7
 ↑ In fact, the AoD/AoA lie within the belief support Uk; projecting a ”2D beam” outside of Uk is subop-

timal, since it yields an unnecessary energy cost. Additionally, choosing Bk=Uk during beam-alignment is
suboptimal, since it triggers an ACK with probability one, which is uninformative; we thus restrict Bk ⊂ Uk.
A formal proof is provided in Appendix  8.B .

42



In this section, we consider the independent uniform prior on θ = (θt, θr), i.e.,

f0(θ) = fr,0(θr) · ft,0(θt), fx,0(θx) =
χUx,0(θx)
|Ux,0|

. (2.41)

From Lemma  2.1 , it directly follows that fk is uniform in its support Uk, and the state

transition probabilities from state (Uk, Dk) under the beam-alignment action (1,Bk, 0) ∈

Aext(U , D), given in ( 2.29 ) for the general case, can be specialized as Dk+1 = Dk and

Uk+1 =


Bk, w.p. |Bk||Uk| ,

Uk \ Bk, w.p. 1− |Bk||Uk| ,
(2.42)

where “w.p.” abbreviates “with probability”. On the other hand, under the data communi-

cation action (0,Bk, Rk), the new state becomes Uk+1 = Uk, and Dk+1 = Dk −RkT .

In order to determine the optimal policy with extended action set, we proceed as follows:

1. In Sec.  2.3.1 , we find the structure of the optimal data communication beam, as a

function of the transmit rate Rk and support Uk, and investigate its energy cost;

2. Next, in Sec.  2.3.2 , we prove that it is suboptimal to perform beam-alignment after

data communication within the frame. Instead, it is convenient to narrow down the

beam as much as possible via beam-alignment, to achieve the most energy-efficient data

communication;

3. Finally, in Sec.  2.3.3 , we investigate the structure of the value function, to prove the

optimality of a fixed-length beam-alignment and of a fractional-search method.

2.3.1 Optimal data communication beam

In the following theorem, we find the optimal 2D beam for data communication.

Theorem 2.1. In any communication slot k ∈ Id, the 2D beam Bk is optimal iff

Bk ⊆ Uk |Bk| = ϑ |Uk| , (2.43)
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where ϑ = (1− ε)/q∗, with q∗ = arg maxq∈[1−ε,1] qF̄
−1
γ (q|γ̂).

Proof. The proof is provided in Appendix  8.C .

The significance of this result is that the optimal beam in the data communication phase

is a fraction ϑ of the region of uncertainty Uk, with ϑ reflecting the desired outage constraint.

By substituting ( 2.43 ) into (  2.36 ), and letting

φd(R, ε) ,
ψd(R)(1− ε)
q∗F̄−1

γ (q∗|γ̂)
(2.44)

be the energy/rad2 to achieve transmission rate R with outage probability ε, the cost per

stage of a data communication action with beam given by Theorem  2.1 can be expressed as

c(ak;Uk, Dk) = φd(Rk, ε) |Uk| . (2.45)

2.3.2 Beam-alignment before data communication is optimal

In Theorem  2.2 , we prove that it is suboptimal to precede data communication to beam-

alignment. Instead, it is more energy efficient to narrow down the beam as much as possible

via beam-alignment, before switching to data communication.

Theorem 2.2. Let µ be a policy and {(Uk, Dk), k ∈ I} be a realization of the state process

under µ such that ∃j : ξj(Uj, Dj) = 0 and ξj+1(Uj+1, Dj+1) = 1 (beam-alignment is followed

by data communication, for some slot j). Then, µ is suboptimal.

Proof. The theorem is proved in two parts using contradiction. The first part deals with the

case when a data communication slot is followed by a beam-alignment slot having non-zero

beam-width. The second part deals with the case when a data communication slot is followed

by a beam-alignment slot having zero beam-width. Let µ be a policy such that, for some

state (Uj, Dj) and slot index j, µj(Uj, Dj) = (0,Bj, Rj), satisfying the conditions of Theorem

 2.1 (data communication action); thus, the state at j + 1 is (Uj+1, Dj+1) = (Uj, Dj − TRj).

Further, assume that, in this state, µj+1(Uj, Dj−TRj) = (1,Bj+1, 0) (beam-alignment), with

Bj+1 ⊂ Uj (strict subset, see ( 2.40 )), so that the state in slot j+ 2 is either (Bj+1, Dj −TRj)
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with probability |Bj+1| /|Uj| (ACK), or (Uj \Bj+1, Dj−TRj) otherwise (NACK). This policy

follows beam-alignment to data communication, and we want to prove that it is suboptimal.

We use ( 2.37 ) to get the cost-to-go function in slot j under policy µ as

V µ
j (Uj, Dj) = φd(Rj, ε) |Uj|+ V µ

j+1(Uj, Dj − TRj)

= φd(Rj, ε) |Uj|+ φs |Bj+1|+
|Bj+1|
|Uj|

V µ
j+2(Bj+1, Dj − TRj)

+ |Uj \ Bj+1|
|Uj|

V µ
j+2(Uj \ Bj+1, Dj − TRj). (2.46)

We consider the two cases |Bj+1|>0 and |Bj+1|=0 separately. In both cases, we will construct

a new policy µ̃ and compare the cost-to-go function at j under the two policies µ and µ̃.

|Bj+1|> 0: We define µ̃ as being equal to µ except for the following: µ̃j(Uj, Dj)=(1,Bj+1, 0),

so that µ̃ executes the beam-alignment action in slot j, instead of j+1. It follows that

V µ̃
j (Uj, Dj) =φs |Bj+1|+

|Bj+1|
|Uj|

V µ̃
j+1(Bj+1, Dj) + |Uj \ Bj+1|

|Uj|
V µ̃
j+1(Uj \ Bj+1, Dj). (2.47)

Furthermore, we design µ̃ such that µ̃j+1(Bj+1, Dj) = (0, B̃′j+1, Rj) and µ̃j+1(Uj \Bj+1, Dj) =

(0, B̃′′j+1, Rj), so that µ̃ executes the data communication action in slot j + 1, instead of

j, with beams B̃′j+1 and B̃′′j+1 satisfying the conditions of Theorem  2.1 . It follows that

the system moves from state (Bj+1, Dj) to (Bj+1, Dj − TRj), and from (Uj \ Bj+1, Dj) to

(Uj \ Bj+1, Dj − TRj) under policy µ̃, yielding

V µ̃
j+1(Bj+1, Dj)

(a)= φd(Rj, ε) |Bj+1|+ V µ̃
j+2(Bj+1, Dj − TRj),

V µ̃
j+1(Uj \ Bj+1, Dj)

(b)= φd(Rj, ε) |Uj \ Bj+1|+ V µ̃
j+2(Uj \ Bj+1, Dj − TRj). (2.48)

By substituting ( 2.48 )-(a),(b) into ( 2.47 ), and using the fact that µ̃k and µk are identical for

k ≥ j + 2 (hence V µ̃
j+2 = V µ

j+2), it follows that

V µ̃
j (Uj, Dj)− V µ

j (Uj, Dj)
(a)= −φd(Rj, ε)2

|Bj+1| |Uj \ Bj+1|
|Uj|

(b)
< 0, (2.49)

where (a) follows from |Uj \ Bj+1| = |Uj|− |Bj+1|; (b) follows from |Bj+1| > 0 and Bj+1 ⊂ Uj.
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|Bj+1| = 0 : In this case, we design µ̃ equal to µ except for the following: µ̃j(Uj, Dj) =

(0, B̃′j, Rj/2), with B̃′j satisfying the conditions of Theorem  2.1 , so that state (Uj, Dj) tran-

sitions to state (Uj, Dj − TRj/2). Moreover µ̃j+1(Uj, Dj − TRj/2) = (0, B̃′′j , Rj/2), with B̃′′j
satisfying the conditions of Theorem  2.1 , so that the system moves to state (Uj, Dj − TRj)

in slot j + 2. Under this new policy, the BS performs data communication in both slots,

with rate Rj/2. Thus, the cost-to-go function under µ̃ in slot j is given as

V µ̃
j (Uj, Dj) = φd

(
Rj

2 , ε
)
|Uj|+ V µ̂

j+1

(
Uj, Dj − T

Rj

2

)
= 2φd

(
Rj

2 , ε
)
|Uj|+ V µ̂

j+2 (Uj, Dj − TRj) . (2.50)

By comparing ( 2.50 ) and ( 2.46 ) and using the fact that µ and µ̃ are identical for k ≥ j + 2,

we get

V µ̃
j (Uj, Dj)− V µ

j (Uj, Dj)
(a)=
[
2φd

(
Rj

2 , ε
)
− φd (Rj, ε)

]
|Uj|

(b)
< 0, (2.51)

where (a) follows from |Bj+1|=0; (b) follows from the strict convexity of φd (R, ε) over R>0,

implying that 2φd
(
Rj
2 , ε

)
<φd (Rj, ε). ( 2.49 ) and ( 2.51 ) imply that µ does not satisfy Bell-

man’s optimality equation, hence it is suboptimal, yielding a contradiction. The theorem is

proved.

From Theorem  2.2 , we infer that:

Corollary 2.1. Under an optimal policy µ∗, the frame can be split into a beam-alignment

phase, followed by a data communication phase until the end of the frame. The duration

L∗∈I of beam-alignment is, possibly, a random variable, function of the realization of the

beam-alignment process.

To capture this phase transition, we introduce the state variable ∇∈{BA,DC}, denoting

that the system is operating in the beam-alignment phase (∇=BA) or switched to data

communication (∇=DC). The extended state is denoted as (Uk, Dk,∇k), with the following

46



DP updates. If ∇k=DC, then the system remains in the data communication phase until

the end of the frame, and ∇j=DC,∀j ≥ k, yielding

V̂ ∗k (Uk, Dk,DC) = min
0<R≤Dk/T

{
φd(R, ε) |Uk|+ V̂ ∗k+1(Uk+1, Dk − TR,DC)

}
. (2.52)

Using the convexity of φd(R, ε) with respect to R, it is straightforward to prove the following.

Lemma 2.2. V̂ ∗k (Uk, Dk,DC) = (N − k)φd
(

Dk
T (N−k) , ε

)
|Uk| .

That is, it is optimal to transmit with constant rate Dk
T (N−k) in the remaining (N − k)

slots until the end of the frame. On the other hand, if ∇k = BA, then ∇j = BA, ∀j ≤ k and

Dk = D0, since no data has been transmitted yet. Then,

V̂ ∗k (Uk, D0,BA) = min
{

(N − k)φd
(
NRmin

N − k
, ε
)
|Uk| ,

min
Bk⊂Uk

φs |Bk|+
|Bk|
|Uk|

V̂ ∗k+1(Bk, D0,BA) +
(

1− |Bk|
|Uk|

)
V̂ ∗k+1(Uk \ Bk, D0,BA)

}
,

(2.53)

where the outer minimization reflects an optimization over the actions ”switch to data com-

munication in slot k with rate Rk = NRmin
N−k ,” or ”perform beam-alignment.” The inner mini-

mization represents an optimization over the 2D beam Bk used for beam-alignment.

2.3.3 Optimality of deterministic beam-alignment duration with fractional-search
method

It is important to observe that the proposed protocol is interactive, so that the duration of

the beam-alignment phase, L∗ ∈ I, is possibly a random variable, function of the realization

of the beam-alignment process. For example, if it occurs that the AoD/AoA is identified with

high accuracy, the BS may decide to switch to data communication to achieve energy-efficient

transmissions until the end of the frame. Although it may seem intuitive that L∗ should

indeed be random, in this section we will show that, instead, L∗ is deterministic. Additionally,

we prove the optimality of a fractional search method, which dictates the optimal beam

design.
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To unveil these structural properties, we define v∗k(Uk) ,
V̂ ∗k (Uk,D0,BA)

|Uk|
. Then, (  2.53 ) yields

v∗k(Uk) = min
{

(N − k)φd
(
NRmin

N − k
, ε
)
, min
ρ∈[0,1)

φsρ+ ρ2v∗k+1(Bt,k) + (1− ρ)2v∗k+1(Uk \ Bk)
}
,

(2.54)

where v∗N(UN)=∞ and we used ρ in place of |Bk||Uk| , with ρ<1 since Bk⊂Uk. Using this fact, we

find that v∗N−1(UN−1)=φd (NRmin, ε) is independent of UN−1. By induction on k, it is then

straightforward to see that v∗k(Uk) is independent of Uk,∀k. We thus let v∗k,v∗k(Uk), ∀Uk to

capture this independence, which is then defined recursively as

v∗k = min
{

(N − k)φd
(
NRmin

N − k
, ε
)
, min
ρ∈[0,1)

φsρ+
[
ρ2 + (1− ρ)2

]
v∗k+1

}
. (2.55)

The value of ρ achieving the minimum in ( 2.55 ) is ρk = |Bk|
|Uk|

= 1
2

(
1− φs

2v∗
k+1

)+
, yielding

v∗k= min
{

(N−k)φd
(
NRmin

N−k
, ε
)

︸ ︷︷ ︸
Γk (data communication)

, v∗k+1−
[(2v∗k+1−φs)+]2

8v∗k+1︸ ︷︷ ︸
Λk (beam-alignment)

}
.

From this decomposition, we infer important properties:

1. Given v∗k, the original value function is obtained as V̂ ∗k (Uk, D0,BA) = v∗k |Uk|. If, at time

k, Γk < Λk, then it is optimal to switch to data communication in the remaining N − k

slots, with constant rate NRmin
N−k .

2. Otherwise, it is optimal to perform beam-alignment, with beam Bk ⊂ Uk, |Bk| = ρk |Uk|.

3. Finally, since the time to switch to data communication is solely based on {v∗k}, but not

on Uk, it follows that fixed-length beam-alignment is optimal, with duration

L∗ = min {k : Γk < Λk} . (2.56)

These structural results are detailed in the following theorem.
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Theorem 2.3. Let

Lmin= arg min
L∈{0,...,N−1}

{
L : (N−L)φd

(
NRmin

N − L
, ε
)
>
φs
2

}
(2.57)

and, for Lmin ≤ L < N ,


v

(L)
L = (N − L)φd

(
NRmin
N−L , ε

)
,

v
(L)
k = v

(L)
k+1 −

(2v(L)
k+1−φs)

2

8v(L)
k+1

, k < L.
(2.58)

Then, the beam-alignment phase has deterministic duration

L∗ = arg min
L∈{0}∪{Lmin,...,N−1}

v
(L)
0 . (2.59)

For 0≤k<L∗ (beam-alignment phase), Bk is optimal iff

Bk ⊂ Uk, |Bk| = ρk |Uk| , (2.60)

where ρk is the fractional search parameter, defined as


ρL∗−1 = 1

2 −
φs

4(N−L∗)φd(NRmin
N−L∗ ,ε)

,

ρk = 1−ρk+1
1−2ρ2

k+1
ρk+1, k < L∗ − 1.

(2.61)

Moreover, ρk ∈ (0, 1/2), strictly increasing in k. For k ≥ L∗, the data communication phase

occurs with rate NRmin
N−L∗ , and 2D beam given by Theorem  2.1 .

Proof. Since the optimal duration of the beam-alignment phase is deterministic, as previously

discussed, we consider a fixed beam-alignment duration L, and then optimize over L to
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achieve minimum energy consumption. Let L ∈ I. Then, the DP updates are obtained by

adapting ( 2.55 ) to this case (so that the outer minimization disappears for k < L), yielding



v
(L)
L = (N − L)φd

(
NRmin
N−L , ε

)
,

v
(L)
k = gk(ρk), k < L, where

gk(ρ) , φsρ+
[
ρ2 + (1− ρ)2

]
v

(L)
k+1,

ρk = arg minρ∈[0,1] gk(ρ) = 1
2

(
1− φs

2v(L)
k+1

)+
.

(2.62)

Since the goal is to minimize the energy consumption, the optimal L is obtained by solving

L∗= arg minL v(L)
0 . We now prove that 0 < L < Lmin is suboptimal, so that this optimization

can be restricted to L ∈ {0} ∪ {Lmin, · · · , N − 1}, as in ( 2.59 ). Let 0 < L < Lmin, so that

v
(L)
L ≤ φs/2, as can be seen from the definition of Lmin in ( 2.57 ). Note that v(L)

k is a non-

decreasing function of k. In fact, v(L)
k ≤ gk(0) = v

(L)
k+1. Then, it follows that v(L)

k ≤ φs/2,∀k,

hence ρk = 0,∀k, yielding v(L)
0 = v

(L)
L by induction. However, v(L)

L is an increasing function of

L (it is more energy efficient to spread transmissions over a longer interval), hence v(L)
0 > v

(0)
0

and such L is suboptimal. This proves that any 0 < L < Lmin is suboptimal.

We now prove the updates for L ≥ Lmin, i.e., v(L)
L > φs/2. By induction, we have that

v
(L)
k > φs/2, ∀k. In fact, this condition trivially holds for k = L, by hypothesis. Now, assume

v
(L)
k+1 > φs/2 for some k < L. Then, v(L)

k = minρ∈[0,1] gk(ρ), minimized at ρk = 1
2

(
1− φs

2v(L)
k+1

)
,

so that v(L)
k = gk(ρk), yielding ( 2.58 ). This recursion is an increasing function of v(L)

k+1,

yielding v
(L)
k > φs/2, thus proving the induction. It follows that ρk = 1

2

(
1− φs

2v(L)
k+1

)
,∀k,

yielding the recursion given by ( 2.58 ). The fractional search parameter ρk is finally obtained

by substituting v(L)
k+1 = φs

2(1−2ρk) into the recursion ( 2.58 ) to find a recursive expression of ρk
from ρk+1, yielding ( 2.61 ). These fractional values are used to obtain Bk in ( 2.60 ).

To conclude, we show by induction that ρk∈(0, 1/2), strictly increasing in k. This is true

for k=L−1 since ρL−1∈(0, 1/2). Assume that ρk+1∈(0, 1/2), for some k≤L−2. Then, by

inspection of (  2.61 ), it follows that 0<ρk<ρk+1 < 1/2. The theorem is thus proved.
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2.4 Decoupled BS and UE Beam-Alignment

In the previous section, we proved the optimality of a fractional search method, based on

an extended action space that uses the 2D beam Bk∈[−π/2, π/2]2, which may take any shape.

However, actual beams should satisfy the rectangular constraint Bk=Bt,k×Br,k, and therefore,

it is not immediate to see that the optimal scheme outlined in Theorem  2.3 is attainable in

practice. Indeed, in this section we prove that there exists a feasible beam design attaining

optimality. The proposed beam design decouples over time the beam-alignment of the AoD

at the BS (BS beam-alignment) and of the AoA at the UE (UE beam-alignment). To explain

this approach, we define the support of the marginal belief with respect to θx, x∈{t, r} as

Ux,k ≡ supp(fx,k). In BS beam-alignment, indicated with βk=1, the 2D beam is chosen as

Bk=Bt,k×Ur,k, where Bt,k⊂Ut,k, so that the BS can better estimate the support of the AoD,

whereas the UE receives over the entire support of the AoA. On the other hand, in UE beam-

alignment, indicated with βk=2, the 2D beam is chosen as Bk=Ut,k×Br,k, where Br,k⊂Ur,k,

so that the UE can better estimate the support of the AoA, whereas the BS transmits over

the entire support of the AoD. We now define a policy µ that uses this principle, and then

prove its optimality.

Definition 2.1 (Decoupled fractional search policy). Let L∗, ϑ, {ρk:k=0, . . . , L∗−1} as in

Theorems  2.1 ,  2.3 . In slots k=L∗, . . . , N , data communication occurs with rate Rk=NRmin
N−L∗

and beams

Bt,k ⊆ Ut,k, Br,k ⊆ Ur,k, |Bt,k| |Br,k| = ϑ |Ut,k| |Ur,k| . (2.63)

In slots k=0, 1, . . . , L∗, βk∈{1, 2} is chosen arbitrarily and beam-alignment occurs with beams


Bt,k ⊂ Ut,k, Br,k = Ur,k, |Bt,k| = ρk |Ut,k| , if βk=1

Bt,k = Ut,k, Br,k ⊂ Ur,k, |Br,k| = ρk |Ur,k| , if βk=2.
(2.64)
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Theorem 2.4. The decoupled fractional search policy is optimal, with minimum power con-

sumption

P̄u = v
(L∗)
0
Tfr
|U0| . (2.65)

Proof. The proof is provided in Appendix  8.E .

The intuition behind this result is that, by decoupling the beam-alignment of the AoD

and AoA over time, the proposed method maintains a rectangular support Uk = Ut,k × Ur,k,

so that no loss of optimality is incurred by using a rectangular beam Bk = Bt,k × Br,k.

Additionally, we can infer that the exhaustive search method is suboptimal, since it searches

over the AoD/AoA space in an exhaustive manner, rather than by decoupling this search

over time.

2.5 Non-Uniform Prior

In this section, we investigate the case of non-uniform prior f0. We use the previous

analysis to design a heuristic scheme with performance guarantees. We consider the decou-

pled fractional search policy (Definition  2.1 ), with the following additional constraints: in

the beam-alignment phase k < L∗, if β∗k = 1 (BS beam-alignment), then

B∗t,k= arg max
Bt,k⊂Ut,k

∫
Bt,k

ft,k(θt)dθt, s.t. |Bt,k| = ρk |Ut,k| ; (2.66)

if β∗k = 2 (UE beam-alignment), then

B∗r,k= arg max
Br,k⊂Ur,k

∫
Br,k

fr,k(θr)dθr, s.t. |Br,k| = ρk |Ur,k| . (2.67)

Hence, the probability of ACK can be bounded as

Case β∗k = 1:
∫
B∗t,k

ft,k(θt)dθt ≥
|B∗t,k|
|Ut,k|

Case β∗k = 2:
∫
B∗r,k

fr,k(θr)dθr ≥
|B∗r,k|
|Ur,k|

 = ρk. (2.68)

52



In other words, such choice of the BS-UE beam maximizes the probability of successful beam-

detection, so that the resulting probability of ACK is at least as good as in the uniform case.

Similarly, in the data communication phase k ≥ L∗, the BS transmits with rate Rk =
NRmin
N−L∗ , and the beams are chosen as in Definition  2.1 , with the additional constraint

(B∗t,k,B∗r,k) = arg max
Bt,k×Br,k⊆Uk

∫
Bt,k×Br,k

fk(θ)dθ, s.t. |Bt,k| |Bt,k| = ϑ|Ut,k| |Ur,k|. (2.69)

Under this choice, the energy consumption per data communication slot is obtained from

( 2.36 ),

Ek = ψd(Rk)
|Bk|

F̄−1
γ

(
1−ε

P(θ∈Bk|Uk)

) (2.70)

(a)
≤ ψd(Rk)

|Bk|
F̄−1
γ

(
(1−ε)|Uk|
|Bk|

) (b)= φd(Rk, ε) |Uk| , (2.71)

where (a) follows from P(θ∈Bk|Uk)≥|Bk|/|Uk|, and (b) from |Bt,k| |Br,k| = ϑ |Ut,k| |Ur,k|, and

from ( 2.44 ) with ϑ = (1− ε)/q∗ (Theorem  2.1 ). This result implies that data communication

is more energy efficient than in the uniform case, see ( 2.45 ). These observations suggest that

the uniform prior yields the worst performance, as confirmed by the following theorem.

Theorem 2.5. The minimum power consumption for the non-uniform prior is upper bounded

by P̄nu ≤ P̄u, with equality when f0 is uniform.

Proof. We denote the value function of the non-uniform case under such policy as Vnu,k(Uk, Dk).

Additionally, we let P̄nu be the corresponding minimum power consumption, solution of prob-

lem P2 in ( 2.35 ), to distinguish it from the minimum power consumption in the uniform case,

given by ( 2.65 ). For k = L∗ (data communication begins), ( 2.70 ) implies that

Vnu,k(Uk, D0) ≤ (N − L∗)φd
(
NRmin

N − L∗
, ε
)
|Uk| . (2.72)
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For k < L∗ (beam-alignment phase), it can be expressed as

Vnu,k(Uk, D0)=φs |B∗k|+
∫
B∗
k

fk(θ)dθVnu,k+1(B∗k, D0) +
(

1−
∫
B∗
k

fk(θ)dθ
)
Vnu,k+1(Uk \ B∗k, D0),

(2.73)

where B∗k is given by (  2.66 ) or ( 2.67 ). The minimum power consumption is given by

P̄nu=Vnu,0(U0, D0)/Tfr, so that P̄nu ≤ P̄u is equivalent to Vnu,k(Uk, Dk)≤v(L∗)
k |Uk| when k=0.

We prove this inequality for general k by induction. The induction hypothesis holds for

k=L∗, see (  2.72 ) with v
(L∗)
L∗ given in ( 2.58 ). Assume it holds for k + 1, where k ≤ L∗ − 1.

Then, ( 2.73 ) can be expressed as

Vnu,k(Uk, D0) ≤ φs |B∗k|+
∫
B∗
k

fk(θ)dθv(L∗)
k+1 |B∗k|+

(
1−

∫
B∗
k

fk(θ)dθ
)
v

(L∗)
k+1 |Uk \ B∗k|

(a)=
[
φsρk + v

(L∗)
k+1

(
1− 2ρk + 2ρ2

k

)]
|Uk| −

(∫
B∗
k

fk(θ)dθ − ρk
)
v

(L∗)
k+1 |Uk| (1− 2ρk) ,

where (a) follows from (  2.66 )-( 2.67 ) and |Uk \ B∗k| = |Uk| − |B∗k|. Finally, the bound ( 2.68 )

yields

Vnu,k(Uk, D0) ≤
[
φsρk + v

(L∗)
k+1

(
1− 2ρk + 2ρ2

k

)]
|Uk| = v

(L∗)
k |Uk| ,

where the last equality is obtained by using the recursion ( 2.58 ) and the fact that ρk =
1
2 −

φs

4v(L∗)
k+1

(see proof of Theorem  2.3 ). This proves the induction step. Clearly, equality is

attained in the uniform case. The theorem is thus proved.

This result is in line with the fact that one can leverage the structure of the joint dis-

tribution over θ to improve the beam-alignment algorithm. However, for the first time to

the best of our knowledge, this result provides a heuristic scheme with provable performance

guarantees.
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2.6 Impact of False-alarm and Misdetection

In this section, we analyze the impact of false-alarm and misdetection on the performance

of the decoupled fractional search policy (Definition  2.1 ). For simplicity, we focus only on

the uniform prior case. Under false-alarm and misdetection, the MDP introduced in Sec.

 2.2 does not follow the Markov property. To overcome this problem, we augment it with

the state variable ek ∈ {0, 1}, with ek = 0 iff no errors have been introduced up to slot

k. Note that, if errors have been introduced (ek = 1), then necessarily θ /∈ Uk, so that

we can write ek = 1 − χ(θ ∈ Uk). It should be noted that ek is not observable in reality

and is considered for the purpose of analysis only (indeed, the policy under analysis does

not use such information). We thus define the state as (Uk, ek), 

8
 and study the transition

probabilities during the beam-alignment phase k < L∗. From state (Uk, 0) (no errors have

been introduced), the transitions are

(Uk+1, ek+1) =



(Bk, 0), w.p. ρk(1− pmd)

(Bk, 1), w.p. (1− ρk) pfa

(Uk \ Bk, 0), w.p. (1− ρk) (1− pfa)

(Uk \ Bk, 1), w.p. ρk pmd,

(2.74)

where pfa and pmd denote the false-alarm and misdetection probabilities, respectively. In

fact, if no errors occur, then θ∈Bk with probability |Bk|
|Uk|

=ρk and θ /∈Bk otherwise, yielding

the first and third cases; if a false-alarm or misdetection error is introduced, then the BS

infers incorrectly that θ∈Bk (second case) or θ /∈Bk (fourth case), respectively, and the new

state becomes ek+1=1. Once errors have been introduced (state (Uk, 1)), it follows that

θ /∈Bk, so that Uk+1=Bk iff a false-alarm error occurs, and the transitions are

(Uk+1, ek+1) =


(Bk, 1), w.p. pfa

(Uk \ Bk, 1), w.p. 1− pfa.

(2.75)

8
 ↑ The backlog Dk is removed from the state space, since no data is transmitted during the beam-alignment

phase.
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The average throughput and power are given by

T̄err = E [(1− eL∗)(1− ε)Rmin|U0, e0 = 0] ,

P̄err = 1
Tfr

E
[
φs

L∗−1∑
k=0

ρk |Uk|+ (N − L∗)φd
(
NRmin

N − L∗
, ε
)
|UL∗|

∣∣∣∣U0, e0 = 0
]
. (2.76)

In fact, a rate equal to Rmin is sustained if: (1) no outage occurs in the data communication

phase, with probability 1− ε; (2) no errors occur during the beam-alignment phase, eL∗ = 0.

The analysis of the underlying Markov chain {(Uk, ek), k≥0} yields the following theorem.

Theorem 2.6. Under the decoupled fractional search policy,

T̄err=(1−ε)Rmin

L∗−1∏
k=0

[
(1−ρk) (1−pfa)+ρk(1−pmd)

]
, (2.77)

P̄err = P̄u + h0 + u0

Tfr
|U0| , (2.78)

where P̄u in ( 2.65 ) is the error-free case, and we have defined hL∗=uL∗=0 and, for k<L∗,

hk = φs
ρk − pfa

2 + [ρkpfa + (1− ρk) (1− pfa)]hk+1, (2.79)

uk =
[
ρ2
k(1−pmd)+ (1−ρk)2 (1−pfa)

]
uk+1 − (1−pfa−pmd)ρk

[
φs
2 +hk+1 (1−2ρk)

]
. (2.80)

Proof. The proof is provided in Appendix  8.E .

2.7 Numerical Results

In this section, we demonstrate the performance of the proposed decoupled fractional

search (DFS) scheme and compare it with the bisection search algorithm developed in [ 13 ]

and two variants of exhaustive search. In the bisection algorithm [ 13 ] (BiS), in each beam-

alignment slot the uncertainty region is divided into two regions of equal width, scanned in

sequence by the BS by transmitting beacons corresponding to each region. Then, the UE

compares the signal power (the strongest indicating alignment) and transmits the feedback

to the BS. Since in each beam-alignment slot two sectors are scanned (each of duration TB),

the total duration of the beam-alignment phase is (2TB +TF )L [s], where TF is the feedback
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Figure 2.2. Spectral efficiency versus beam-alignment error probability pe for DFS.

time. In conventional exhaustive search (CES), the BS-UE scan exhaustively the entire beam

space. In the BS beam-alignment sub-phase, the BS searches over N (BS)
B beams covering the

AoD space, while the UE receives isotropically; in the second UE beam-alignment sub-

phase, the BS transmits using the best beam found in the first sub-phase, whereas the UE

searches exhaustively over N (UE)
B beams covering the AoA space. Since the UE reports the

best beam at the end of each sub-phase, the total duration of the beam-alignment phase

is [N (BS)
B + N

(UE)
B ]TB + 2TF . On the other hand, in the interactive exhaustive search (IES)

method, the UE reports the feedback at the end of each beam-alignment slot, and each

beam-alignment sub-phase terminates upon receiving an ACK from the UE. Since the BS

awaits for feedback at the end of each beam, the duration of the beam-alignment phase is

(TB + TF )[N̂ (BS)
B + N̂

(UE)
B ], where N̂B ≤ NB is the number of beams scanned until receiving

an ACK; assuming the AoD/AoA is uniformly distributed over the beam space, the expected

duration of the beam-alignment phase is then 1
2(TB + TF )

[
N

(BS)
B +N

(UE)
B + 2

]
.

We use the following parameters: [carrier frequency]= 30GHz, d = 10m, [path loss

exponent]= 2, Tfr=20ms, TB=50µs, TF=50µs, |U0|=[π]2, N0= − 173dBm, Wtot=500MHz,

Mt=Mr=128.
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Figure 2.3. Spectral efficiency versus average power consumption.

In Fig.  2.2 , we depict the average power vs the probability of false-alarm and misdetection

pe for different values of the spectral efficiency using expressions ( 2.77 ) and ( 2.78 ). We use

ε = 0.01, and consider Rayleigh fading with no CSI at BS, corresponding to h∼CN (0, 1/`(d))

with ĥ=0 and σ2
e=1/`(d). We restrict the optimization of L over L∈{0, . . . , Lmax}, to capture

a maximum resolution constraint for the antenna array, where we chose Lmax = 14. From the

figure, we observe that, for a given pe, as the spectral efficiency increases so does the average

power consumption due to increase in the energy cost of data communication. Moreover,

the figure reveals that, for a given value of spectral efficiency, there exists an optimal range

of pe, where power consumption is minimized. The performance degrades for pe above the

optimal range due to false-alarm and misdetection errors during beam-alignment, causing

outage in data communication; similarly, it degrades for pe below the optimal range due to

an increased power consumption of beam-alignment.

In Fig.  2.3 , we plot the results of a Monte-Carlo simulation with analog beams generated

using the algorithm in [ 27 ]. In this case, we obtain φs= − 94dBm with pfa=pmd=10−5. For

BiS and DFS we set Lmax = 10 to capture a maximum resolution constraint for the antenna

array; for the exhaustive search methods, we choose N (BS)
B = N

(UE)
B =32. The performance

gap between the analytical and the simulation-based curves for DFS is attributed to the fact
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Figure 2.4. Performance degradation with multi-cluster channel (K = 2).

that the beams used in the simulation have non-zero side-lobe gain and non-uniform main-

lobe gain, as opposed to the ”sectored” beams used in the analytical model. This results

in false-alarm, misdetection errors, and leakage, which lead to some performance degrada-

tion. However, the simulation is in line with the analytical curve, and exhibits superior

performance compared to the other schemes, thus demonstrating that the analysis using the

sectored gain model provides useful insights for practical design. For instance, to achieve a

spectral efficiency of 15bps/Hz, BiS [ 13 ] requires 4dB more average power than DFS, mainly

due to the time and energy overhead of scanning two sectors in each beam-alignment slot,

whereas IES and CES require 7.5dB and 14dB more power, respectively. The performance

degradation of IES and CES is due to the exhaustive search of the best sector, which de-

mands a huge time overhead. Indeed, IES outperforms CES since it stops beam-alignment

once a strong beam is detected.

So far in our analysis, we assumed a channel with a single cluster of rays, see (  2.3 ). In

Fig.  2.4 , we depict the performance of DFS and BiS [  13 ] in a multi-cluster channel (K = 2

in ( 2.2 )), with the weakest cluster having a fraction % of the total energy, 0 ≤ % ≤ 0.1. It can

be seen that the performance of both DFS and BiS degrade as % increases, since a portion

of the energy is lost in the weaker cluster, and the algorithms may misdetect the weaker
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cluster instead of the strongest one. For example, for spectral efficiency of 15bps/Hz, both

schemes exhibit ∼ 2dB and ∼ 5dB performance loss at % = 5% and % = 10%, respectively,

compared to % = 0 (single cluster). However, DFS consistently outperforms BiS, with a

gain of ∼ 3.5dB. This evaluation demonstrates the robustness of the proposed algorithm in

multi-cluster scenarios.
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3. CODED ENERGY-EFFICIENT BEAM-ALIGNMENT

s   This chapter proposes a coded energy-efficient beam-alignment scheme, robust against

detection errors. Specifically, the beam-alignment sequence is designed such that the error-

free feedback sequences are generated from a codebook with the desired error correction

capabilities. Therefore, in the presence of detection errors, the error-free feedback sequences

can be recovered with high probability. The assignment of beams to codewords is designed to

optimize energy efficiency, and a water-filling solution is proved. The numerical results with

analog beams depict up to 4dB and 8dB gains over exhaustive and uncoded beam-alignment

schemes, respectively.

3.1 System Model

We consider a mm-wave cellular network with a single base-station (BS) and M user-ends

(UEs) denoted as UEi, i = 1, 2, . . . ,M , in a downlink scenario. UEi is at distance di ≤ dmax

from BS, where dmax > 0 is the coverage radius of the BS. We assume that there is a single

strongest path between the BS and each UEi, whose angle of departure (AoD) and angle

of arrival (AoA) are denoted by θt,i∼U [ − π/2, π/2] and θr,i∼U [ − π/2, π/2], respectively.

U [a, b] denotes the uniform distribution over the interval [a, b]. We use the sectored antenna

model to approximate the beam patterns of the BS and UEs [  29 ]. Under such model, the

beamforming gain is characterized by the angular support of the BS and UE beams, denoted

as Bt,k⊆[− π/2, π/2] and Br,k⊆[− π/2, π/2], respectively, and is given by

G(Bk,θi) = (2π)2

|Bk|
χ(θi ∈ Bk), (3.1)

where Bk ≡ Bt,k × Br,k and θi , (θt,i, θr,i); χ(θ ∈ A) is the indicator function of the set A,

and |A| ,
∫
A dθ is its Lebesgue measure. In other words, if the AoD/AoA θ lies in the beam

 ↑ A version of this chapter was previously published by Allerton 2018
[ 5 ][DOI:10.1109/ALLERTON.2018.8635944]
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BLB1 d1

Beam Alignment Feedback Data Communication

Figure 3.1. Timing Diagram.

support Bk of the BS and UE, then the signal is received with gain (2π)2

|Bk|
; otherwise, only

noise is received. The received signal at UEi can thus be expressed as

y
(i)
k = h

(i)
k

√
PkG(Bk,θi)sk + n(i)

k , (3.2)

where k is the slot index, sk is the transmitted sequence, Pk is the transmission power of the

BS, h(i)
k is the complex channel gain between the BS and UEi, and nk,i ∼ CN (0, N0WtotI)

is complex additive white Gaussian noise (AWGN). The quantity N0 denotes the one-sided

power spectral density of the AWGN channel and Wtot is the system bandwidth. We assume

Rayleigh fading channels h(i)
k ∼ CN (0, 1/`(di)),∀i, k, independent across UEs and i.i.d over

slots, where `(di) is the path loss between the BS and UEi.

We consider a time-slotted system where the frame duration Tfr[s] is divided into three

phases: beam-alignment, feedback and data communication, of duration Ts, Tfb and Td, re-

spectively, with Ts+Tfb+Td=Tfr, as depicted in Fig.  3.1 . Data transmission is orthogonalized

across users according to a TDMA strategy. We now describe these phases in more detail.

Beam-Alignment Protocol: The beam-alignment phase, of duration Ts, is divided

into L slots, each of duration T = Ts/L, indexed by the set Is = {1, . . . , L}. In each beam-

alignment slot, the BS sends a pilot sequence sk using the sequence of beams {Bt,k, k=1, . . . , L}.

Simultaneously, each UE receives using the sequence of beams {Br,k, k=1, . . . , L}. In each
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beam-alignment slot, UEi tests whether θi∈Bk (alignment) or θi /∈Bk (mis-alignment). This

can be expressed as the following hypothesis testing problem:

H1 : y(i)
k = h

(i)
k

√√√√(2π)2Pk
|Bk|

sk + n(i)
k , (alignment), (3.3)

H0 : y(i)
k = n

(i)
k , (mis-alignment).

Under no CSI (h(i)
k unknown), the optimal Neyman-Pearson detector for the above binary

problem is the threshold detector

|sHk y
(i)
k |2

N0Wtot‖sk‖2
2

H0
≶
H1

τth. (3.4)

If UEi infers that H1 is true, then it generates u(i)
k =1, otherwise u(i)

k =0. Each UE generates

its detection sequence ui , (u(i)
1 , u

(i)
2 , . . . , u

(i)
L ) ∈ {0, 1}L with the above detector. This is

used to infer the AoD/AoA θi, and to design the beams for the data communication phase,

as detailed below.

Let ci , (c(i)
1 , c

(i)
2 , . . . , c

(i)
L ) with c

(i)
k = χ(θi ∈ Bk) (3.5)

denote the error-free detection sequence. The detected ui may incur mis-detection (u(i)
k =0

but c(i)
k =1) or false-alarm errors (u(i)

k =1 but c(i)
k =0) , with probabilities (these can be obtained

from the signal model (  3.3 ))

pmd,i=1− exp
(
− τth |Bk|N0Wtot`(di)
|Bk|N0Wtot`(di) + Pk(2π)2‖sk‖2

2

)
, (3.6)

pfa,i = exp (−τth) . (3.7)
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The BS transmission power Pk and detector threshold τth are designed to guarantee maximum

error probabilities pmd,i, pfa,i ≤ pe across users (this can be achieved via appropriate beam

design, see [ 60 ]), which yields

τth = − ln(pe), (3.8)

Pk≥
N0Wtot`(di)
(2π)2‖sk‖2

2

[
ln(pe)

ln(1− pe)
−1
]
|Bk|, ∀i∈{1, . . . ,M}.

Equivalently, we can express the energy Ek,TsyPk‖sk‖2 as

Ek ≥ φs |Bk| (3.9)

where Tsy is the symbol duration; φs is the energy/rad2 to guarantee the required detection

performance among all UEs,

φs ,
N0WtotTsy

(2π)2

[
ln(pe)

ln(1− pe)
− 1

]
· `(dmax). (3.10)

In the rest of the chapter, we enforce equality in ( 3.9 ) for the purpose of energy-efficient beam-

alignment design, and assume that pmd,i = pfa,i = pe,∀i. Note that this is the worst-case

scenario; in fact, in practice, an UE closer to the BS may experience a lower mis-detection

probability pmd,i < pe as a result of `(di) < `(dmax), see ( 3.6 ).

With this notation, we write the detection sequence as

ui , ci ⊕ ei, (3.11)

where ⊕ denotes entry-wise modulo 2 addition, and ei ∈ {0, 1}L is the beam-alignment

error sequence of UEi. Due to the i.i.d. Rayleigh fading assumption and to the fact that

false-alarm and misdetection errors occur with probability pmd,i = pfa,i = pe, independently
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across slots, it follows that ei is independent of ci, and that errors are i.i.d. across UEs and

slots, with probability mass function (pmf)

p(ei) = pW (ei)
e (1− pe)L−W (ei), (3.12)

where W (d),∑L
k=1 dk is the Hamming weight of d∈{0, 1}L.

We now design a coded beam-alignment strategy, robust to detection errors. If UEi was

provided with the error-free detection sequence ci, it could infer the support of θi relative

to the beam sequence {Bk, k=1, . . . , L} to be

θi ∈ Uci , ∩Lk=1B
c
(i)
k
k , (3.13)

where we have defined

Bck =


Bk c = 1,

[− π
2 ,

π
2 ]2 \ Bk c = 0.

(3.14)

In fact, c(i)
k =1⇔ θi ∈ Bk and c(i)

k =0⇔ θi ∈ [− π
2 ,

π
2 ]2 \ Bk, yielding ( 3.13 ) when considering

the entire sequence ci. We let C be the set of all possible error-free detection sequences with

non-empty beam support, i.e.

C , {c ∈ {0, 1}L : Uc 6= ∅}, (3.15)

and G be the corresponding beam-support,

G , {Uc : c ∈ C}. (3.16)

Note that (C,G) are uniquely defined by the beam sequence {Bk, k=1, . . . , L}. Likewise,

{Bk, k=1, . . . , L} is uniquely defined by a specific choice of (C,G), as can be seen by letting

Bk ≡ ∪c∈C:ck=1Uc, Uc ∈ G. (3.17)

65



Therefore, the problem of finding the optimal beam sequence, {Bk, k = 1, . . . , L} is equivalent

to that of finding the sets C and G. However, a joint optimization over C and G is intractable

due to the combinatorial nature of the problem and lack of convexity. Therefore, we resort

to selecting C and G independently, where C is chosen from a predefined codebook with the

desired error correction capability and G is designed to optimize energy efficiency.

Error Correction and Scheduling : One way to choose C would be as all possible

binary sequences of length L, C≡{0, 1}L. However, a single error during the beam-alignment

phase would result in an incorrect selection of the communication beam. For instance, in

the case L=3, if the error-free codeword is ci=[1, 1, 1] (and thus θi∈U[1,1,1]) but UEi detects

ui=[1, 0, 1], then it will incorrectly infer that θi∈U[1,0,1], resulting in outage in the data

communication phase.

In order to compensate for detection errors, we endow C with error correction capabilities

up to ε errors, e.g., using Hamming codes. Therefore, at the end of the beam-alignment

phase, each UE applies the decoding function f : {0, 1}L→C to the detection sequence ui.

In this chapter, we use the minimum Hamming distance criterion to design f(·), i.e.,

f(u) , arg min
c∈C
‖u− c‖2

2. (3.18)

After decoding, each UE feeds back to the BS the ID of its corrected sequence ĉi ,

f(ui), ∀i ∈ {1, 2, . . . ,M}. We assume that the feedback signals are received without er-

rors at the BS, which thus infers that

θi ∈ Uf(ui), (3.19)

where Ud is defined in ( 3.13 ). Given f(ui), the BS allocates the communication resources

(τi,Bd,i, Pi, Ri) to UEi during the data communication phase, denoting the allocated time,

BS transmission power and rate, and communication beam. In this chapter, we assume a
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TDMA strategy, i.e., τi = Td/M , ∀i ∈ {1, 2, . . . ,M}. The beam pair Bd,i ≡ Bd
t,i × Bd

r,i is

chosen as

Bd,i ≡ Bd(ui) = Uf(ui). (3.20)

Note that, due to the error correction capability endowed in the design of C, if less than (or

equal to) ε errors have been introduced in the beam-alignment phase, then f(ui) = ci, and

thus correct alignment is achieved in the data communication phase (Bd,i ≡ Uci); otherwise,

if f(ui) 6= ci, then the data communication beam is not aligned with the AoD/AoA, and

outage occurs (Bd,i ∩ Uci ≡ ∅). The resulting mis-alignment probability of UEi can then be

bounded as

pma,i(Bd)≤P(W (ei) > ε)=
L∑

l=ε+1

 L

l

 ple(1−pe)L−l, (3.21)

as per the error model ( 3.12 ). Note that this is a function of φs via ( 3.10 ), duration L of beam-

alignment and number of correctable errors ε (i.e., choice of the error correction codebook

C). However, it is independent of the beam-alignment sequence Bk, k∈Is. Therefore, the

optimization over φs, L, C and Bk, k∈Is can be decoupled: φs, L, C can be chosen to achieve

a target mis-alignment performance pma,i ≤ pmax
ma ,∀i, whereas Bk, k∈Is is optimized to achieve

energy-efficient design. This optimization is developed in the next section.

Data Communication: In the data communication phase, the BS transmits to UEi

in the assigned TDMA slot using power Pi and rate Ri. These are designed to satisfy a

maximum outage probability pout(Pi, Ri) ≤ ρ, with no CSI at the transmitter (h(i)
k unknown

at BS), and a minimum rate constraint Rmin,i of UEi over the frame. In case of mis-alignment,

data communication is in outage, see (  3.21 ). We now consider the case of alignment, i.e.,

f(ui)=ci and θi∈Bd(ui). In this case, the instantaneous signal-to-noise ratio (SNR) during

the data communication slots associated with UEi is

SNR(i)
k = (2π)2γ

(i)
k Pi

N0Wtot|Bd(ui)|
, (3.22)
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where γ(i)
k ,|h(i)

k |2. The outage probability is then given by

pout(Pi, Ri) = P(Wtot log2(1 + SNR(i)
k ) ≤ Ri|ui)

= 1− exp
(
−(2

Ri
Wtot − 1)`(di)N0Wtot

Pi(2π)2 |Bd(ui)|
)
.

To meet the minimum rate constraint of UEi over the frame, we enforce Ri = Tfr
τi
Rmin,i. To

enforce pout(Pi, Ri) ≤ ρ, 

1
 we find the power Pi and the energy Ei , Piτi as

Ei = φd,i|Bd(ui)|, (3.23)

where φd,i is the minimum energy/rad2 required to meet the rate requirement of UEi with

outage probability ρ, given by

φd,i ,
τi`(di)N0Wtot

[
2
TfrRmin,i
τiWtot − 1

]
(2π)2 ln(1/(1− ρ)) . (3.24)

3.2 Optimization Problem

The optimum beam-alignment design seeks to minimize the average power consumption

P̄avg(B) of the BS, over the beam-sequence B={Bk, k ∈ Is} in the beam-alignment phase,

i.e.,

P1 : B∗ = arg min
B
P̄avg(B), (3.25)

where, using ( 3.9 ) and ( 3.23 ), P̄avg(B) is given by

P̄avg(B) = 1
Tfr

E
[
L∑
k=1

φs |Bk|+
M∑
i=1

φd,i |Bd(ui)|
]
, (3.26)

with Bd(ui) given by (  3.20 ). The expectation is over the detected and error-free sequences

{(ui, ci), i = 1, . . . ,M}.
1

 ↑ Note that the overall outage probability including mis-alignment is given by pmax
ma + (1− pmax

ma )ρ.
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Using ( 3.17 ) and ( 3.20 ), we can express the beam-alignment and data communication

beams as

Bk = ∪d∈C:dk=1Ud, Bd(ui) = Uf(ui). (3.27)

In fact, Uĉi represents the estimated support of the AoD/AoA of UEi, when it detects the

error corrected sequence ĉi=f(ui). Note that {Ud : d∈C} forms a partition of the AoD/AoA

space [ − π/2, π/2]2. In fact, using ( 3.13 ), the fact that ∩Lk=1B
dk
k ≡ ∅,∀d /∈ C, and the set

definition ( 3.14 ), we can show that

∪d∈C Ud ≡ ∪d∈{0,1}L ∩Lk=1 B
dk
k = [− π/2, π/2]2, (3.28)

Ud1 ∩ Ud2 ≡ ∩Lk=1[Bd1,k
k ∩ Bd2,k

k ] ≡ ∅, ∀d1 6= d2. (3.29)

Therefore, letting ωd , |Ud| be the beamwidth of the sector Ud and using ( 3.27 ), we can

rewrite the average power as

P̄avg(ω)= 1
Tfr

E
[

L∑
k=1

φs |∪d∈C:dk=1Ud|

+
M∑
i=1

φd,i
{
|Uci |χ(W (ei)≤ε) +

∣∣∣Uf(ci⊕ei)

∣∣∣χ(W (ei)>ε)
}]

(a)= 1
Tfr

E
[

L∑
k=1

φs
∑

d∈C:dk=1
ωd

+
M∑
i=1

φd,i
{
ωciχ(W (ei) ≤ ε) + ωf(ci⊕ei)χ(W (ei) > ε)

}]
,

where in (a) we used the facts that {Uc:c∈{0, 1}L} is a partition of [ − π/2, π/2)2 and

that, if fewer than ε errors occur in the beam-alignment phase, then the support of θi is

detected correctly. Note that, since the AoD/AoA pair θi is uniformly distributed in the

space [− π/2, π/2)2, the probability of occurrence of the error-free sequence ci=x is

P(ci = x) = P(θi ∈ ∩Lk=1B
xk
k ) = P(θi ∈ Ux) = ωx

π2 , (3.30)
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while the error sequence ei,∀ei ∈ {0, 1}L follows the pmf p(ei) given in ( 3.12 ). This leads to

P̄avg(ω) = 1
Tfr

[
φs
∑
d∈C

W (d)ωd (3.31)

+ Mφ̄d
π2

∑
c∈C

{
ω2
c P(W (e) ≤ ε) +

∑
e∈{0,1}L:W (e)>ε

ωf(c⊕e)ωcp(e)
}]
,

where we used the fact that

L∑
k=1

∑
d∈C:dk=1

ωd =
∑
d∈C

L∑
k=1

χ(dk = 1)ωd =
∑
d∈C

W (d)ωd,

and we have defined φ̄d , 1
M

∑M
i=1 φd,i. Thus, the optimization problem P1 can be restated

as that of optimizing the ”beamwidths” ωd,d ∈ C. The sequence of beams with desired

beamwidth solution of this optimization problem can then be obtained via ( 3.27 ), where

|Ud| = ωd. Note that ωd , |Ud| needs to satisfy the constraint ∑d∈C ωd = π2, since {Ud,d ∈

C} is a partition of [− π/2, π/2]2.

However, it can be shown that the cost function P̄avg(ω) is non-convex with respect to

ω, due to the quadratic terms ωf(c⊕e)ωc appearing in ( 3.31 ). In order to overcome this

limitation, we propose to upper bound ( 3.31 ) by a convex function. To determine this upper

bound, note that the partition constraint ∑d∈C ωd = (2π)2 and ωd ≥ 0,∀d ∈ C imply that

ωf(c⊕e) ≤ π2. Thus, we upper bound ( 3.31 ) as

P̄avg(ω) ≤ 1
Tfr

[
φs
∑
d∈C

W (d)ωd (3.32)

+Mφ̄d
π2

∑
c∈C

{
P(W (e)≤ε)(ω2

c − π2ωc)+π2ωc
}]

, P̂avg(ω).

Note that, if the probability of incurring more than ε errors is made sufficiently small (by

appropriately choosing the error correction code C), say P(W (e) > ε) ≤ δ � 1, then we can

bound the gap P̂avg(ω)− P̄avg(ω) by

0 ≤ P̂avg(ω)− P̄avg(ω) ≤ Mφ̄dπ
2

Tfr
δ, (3.33)
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Thus, we consider the minimization of the upper bound P̂avg(ω) instead of the original

function P̄avg(ω), yielding the optimization problem

P2 : ω∗ = arg min
ω≥0

P̂avg(ω) s.t.
∑
d∈C

ωd = π2, (3.34)

We now study the optimization problem P2. Note that this is a convex quadratic problem

with respect to ωc : d ∈ C. The dual function associated with P2 is given by

g(µ) = min
ω≥0

P̂avg(ω)− µ
∑
d∈C

ωd − π2

 ,
whose minimizer yields the ”water-filling” solution

ω∗d = π2φs

2P(W (e) ≤ ε)Mφ̄d

[
λ−W (d)

]+
. (3.35)

The dual variable λ is chosen so as to satisfy the constraint

∑
d∈C

ω∗d = π2, (3.36)

or equivalently, as the unique solver of

h(λ) = φs

2P(W (e) ≤ ε)Mφ̄d

L∑
w=0

nw [λ− w]+ = 1, (3.37)

where nw,
∑
c∈C χ (W (c)=w) is the number of codewords in the codebook C with Hamming

weight equal to w.

The optimal dual variable λ∗ can be found using the bisection method over the interval

[λmin, λmax]. In fact, h(λ) is a non-decreasing function of λ > 0, with h(0) = 0 and, using

the fact that [λ− w]+ ≤ λ, we find that

h(λ) ≤ φs

2P(W (e) ≤ ε)Mφ̄d
λ|C|,
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where |C| is the cardinality of C, hence λ∗≥2Mφ̄dP (W (e)≤ε)
|C|φs . Moreover, by denoting W ,

1
|C|
∑L
w=0 nww as the average weight of the codewords in C, we observe that

L∑
w=0

nw [λ− w] = [λ−W ]|C|≤ 2Mφ̄dP (W (e) ≤ ε)
φs

h(λ),

thus implying the following upper and lower bounds to λ∗,

λmin ,
2Mφ̄dP (W (e) ≤ ε)

|C|φs
≤λ∗≤λmin+W , λmax.

3.3 Numerical Results

In this section, we compare the performance of the proposed scheme with other schemes.

We use Monte-Carlo simulation with 105 iterations for each simulation point. The common

simulation parameters used are as follows: Tfr=20ms, T=10µs, [Number of BS antennas]=64,

[Number of UE antennas] = 1, [BS-UE separation]=10m, N0= − 173dBm, Wtot=500MHz,

[carrier frequency]=30GHz, φs=6dBm, and ρ=10−3. Moreover, we use the beamforming al-

gorithm in [ 65 ] to generate the beamforming codebook. With these values, we have observed

numerically that the probability of detection errors is in the range pe∈[0.1, 0.3], due not only

to noise and the Rayleigh fading channel, but also to sidelobes, which are not accounted for

in the hypothesis testing problem ( 3.3 ). Thus, we set pe=0.3 to capture this more realistic

scenario.

In Fig.  3.2 , we depict the spectral efficiency (Throughput/Wtot) versus the average power

consumption. The curves correspond to three different choices of the codebook C: the

Hamming codebook C=(7, 4), representing the proposed coded energy-efficient scheme, with

error correction capability up to ε=1 errors; C={[I]:,i, i=1, . . . , L}, representing the exhaus-

tive search scheme, where [I]:,i denotes the ith column of the L× L identity matrix I; and

C = {0, 1}L, representing the scheme with no error correction capabilities (uncoded). We use

L=16 for the exhaustive search scheme, and L=7 for the coded and uncoded schemes. In the

figure, we observe that the proposed scheme using (7,4) Hamming codebook outperforms the

other two schemes, thanks to its error correction capabilities, with a performance gain up to
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Figure 3.2. Spectral Efficiency versus average power consumption.

4dB over exhaustive and 8dB over the uncoded scheme. Surprisingly, the exhaustive scheme

exhibits superior performance compared to the uncoded scheme, despite its more significant

time overhead (L=16 vs L=7). This can be attributed to the fact that the codewords in

the exhaustive codebook exhibit a minimum Hamming distance of 2, whereas the uncoded

codebook exhibits minimum Hamming distance equal to 1, and is thus more susceptible to

detection errors during the beam-alignment phase.
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4. SECOND-BEST BEAM-ALIGNMENT VIA BAYESIAN

MULTI-ARMED BANDITS

  In this chapter, a beam-alignment scheme is proposed based on Bayesian multi-armed

bandits, with the goal to maximize the alignment probability and the data-communication

throughput. A Bayesian approach is proposed, by considering the state as a posterior dis-

tribution over angles of arrival (AoA) and of departure (AoD), given the history of feedback

signaling and of beam pairs scanned by the base-station (BS) and the user-end (UE). A sim-

plified sufficient statistic for optimal control is identified, in the form of preference of BS-UE

beam pairs. By bounding a value function, the second-best preference policy is formulated,

which strikes an optimal balance between exploration and exploitation by selecting the beam

pair with the current second-best preference. Through Monte-Carlo simulation with analog

beamforming, the superior performance of the second-best preference policy is demonstrated

in comparison to existing schemes based on first-best preference, linear Thompson sampling,

and upper confidence bounds, with up to 7%, 10% and 30% improvements in alignment

probability, respectively.

4.1 System Model

We consider a downlink scenario with one BS and one UE, as depicted in Fig.  4.1 . Time

is divided into frames of duration Tfr=TsN , each with N slots of duration Ts. The frame is

partitioned into two phases: a beam-alignment phase of duration LTs (L<N slots), followed

by a downlink data communication phase, of duration (N−L)Ts. Each beam-alignment slot

is further partitioned into a pilot transmission phase, of duration Tpt, followed by a feedback

phase, of duration Tfb, with Ts=Tpt+Tfb. These are detailed next.

The BS and UE are equipped with uniform linear arrays (ULAs) with Mt and Mr antenna

elements, respectively, and use analog beamforming. The signal received at the UE is

zk =
√
Ptx,ku

H
k Hkvks+wk, ∀k ∈ {0, 1, . . . , N − 1}, (4.1)

 ↑ A version of this chapter was previously published by IEEE Globecom 2019
[ 6 ][DOI:10.1109/GLOBECOM38437.2019.9013578]
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Scatterer

Figure 4.1. System model; Mt = Mr = 128; beamforming algorithm in [ 27 ].

where Ptx,k is the average transmit power of the BS; s ∈ CS is the transmitted signal

with S symbols with E [‖s‖2
2] = S; Hk∈CMr×Mt is the channel matrix; vk∈CMt is the

BS beamforming vector with ‖vk‖2
2= 1; uk∈CMr is the UE combining vector with ‖uk‖2

2=

1; wk∼CN (0, N0WtotI) is additive white Gaussian noise (AWGN), with one-sided power

spectral density N0 and system bandwidth Wtot.

Channel Model: We use the extended Saleh-Valenzuela geometric model with a single-

cluster [  55 ], as adopted in several previous works (e.g., see [  4 ], [ 56 ], [ 57 ]). In fact, typical

mm-wave channels have been shown to exhibit one dominant cluster containing most of the

signal energy [ 66 ]. The single-cluster channel is modeled as

Hk = αkar(θr,k)aHt (θt,k), (4.2)

where θk,(θr,k, θt,k)∈[ − π
2 ,

π
2 ]2 is the angle of arrival (AoA) and angle of departure (AoD)

pair associated to the dominant cluster, with complex fading gain αk; ar and at are the UE

and BS array response vectors, respectively, defined as

ax(θx)= 1√
Mx

[
1, ej

2πdx
λ

ψx , · · · , ej(Mx−1) 2πdx
λ

ψx
]>
, x∈{t, r},
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where ψx= sin θx, dx is the antenna spacing, λ=c/fc is the wavelength at carrier frequency

fc, c denotes the speed of light. We assume that during the duration of one frame Tfr, θk
remains unchanged, θk=θ, and αk are i.i.d. Reyleigh fading in each slot with distribution

αk∼CN (0, `(d)−1), where `(d) is the path loss at distance d from the BS. In fact, the AoA-

AoD pair change much slower than the channel gain [ 58 ].

Codebook structure: In slot k, the BS uses the beamforming vector vk∈V and the UE

uses the combining vector uk∈U , from the codebooks V and U , respectively. We assume

a sectored model [ 4 ], in which the AoA and AoD spaces are partitioned into sectors of

equal beamwidth (as shown in Fig.  4.1 for the case of four sectors, this model approximates

well analog beamforming). Accordingly, let Br(u)⊆[− π
2 ,

π
2 ] and Bt(v)⊆[− π

2 ,
π
2 ] denote the

AoA and AoD supports of the UE combiner and BS beamformer vectors u∈U and v∈V ,

respectively, with equal beamwidth |Br(u)|= π
|U| ,∀u∈U and |Bt(v)|= π

|V| , ∀v∈V , where |B|

denotes the measure |B|,
∫
B dx. We define B(u,v),Br(u)×Bt(v) as the joint AoA-AoD

support of (u,v). We assume that the angular supports are mutually orthogonal and form a

partition of the entire AoA-AoD space [− π
2 ,

π
2 ]2, i.e., B(u,v)∩B(ũ, ṽ)=∅,∀(u,v) 6=(ũ, ṽ) and

∪u∈UBr(u)= ∪v∈V Bt(v)=[ − π
2 ,

π
2 ]. Let (u(i),v(i)), i ∈ I,{1, 2, . . . , |U||V|} be any ordering

of combining and beamforming vectors, and B(i) , B(u(i),v(i)) be their support. Let Ak∈I

be the beam index of the combining and beamforming vectors scanned in slot k, so that

(uk,vk)=(u(Ak),v(Ak)). Let X be a discrete random variable denoting the index of the

support that the AoA-AoD pair θ of the channel belongs to, so that θ∈B(X). Then, from

( 4.1 )-( 4.2 ), the received signal can be expressed as 

1
 

zk ≈
√
Ptx,kαk

[
(
√
G−√g)δ[Ak, X]+√g

]
s+wk, (4.3)

where δ[ · ] is the Kronecker’s delta function, equal to 1 if alignment is achieved (Ak=X),

equal to 0 otherwise (Ak 6=X); G and g are, respectively, the main and side lobe gains of the

sectored model, expressed as

G = min
(θr,θt)∈B(u(i),v(i))

|ar(θr)Hu(i)|2|aHt (θt)v(i)|2, ∀i,

1
 ↑ The phase of uH

k ar(θr)aH
t (θt)vk is incorporated into αk.
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g = max
(θr,θt) 6∈B(u(i),v(i))

|ar(θr)Hu(i)|2|aHt (θt)v(i)|2, ∀i.

In the following, we describe the beam-alignment and data communication procedures.

Beam-Alignment: In each slot k of the beam-alignment phase, the BS transmits a pilot

sequence s using the beam index Ak, with transmit power Ptx,k=Pba. Upon receiving zk
(based on the combining vector with index Ak), the UE uses a matched filter to compute

the signal strength and sends the normalized received power feedback signal Yk back to the

BS, of the form

Yk = |sHzk|2

‖s‖2N0Wtot(1 + Λg) , (4.4)

where Λ, Pba‖s‖2
N0Wtot`(d) is the pre-beamforming receive SNR during beam-alignment. Then, the

probability density function (pdf) of Yk conditional on (X,Ak)=(x, as) is given by

f(Yk=y|X=x;Ak=as)=
[
νe−νy

]δ[as,x]
[e−y]1−δ[as,x], (4.5)

where 1/ν is the mean signal power in case of alignment, with

ν ,
1 + gΛ
1 +GΛ . (4.6)

The BS uses a Bayesian approach to select Ak: starting from H0,∅ and given the history of

feedback and scanned beam indices Hk,{(Aj, Yj)}k−1
j=0 , the next beam index Ak is selected.

This procedure continues until the end of the beam-alignment phase.

Data communication: Upon completion of the beam-alignment phase, given the history

of feedback and actions HL, the BS selects the data communication parameters: beam index

for data communication Ad∈I, transmission power Pd∈[0, Pmax], and data rate Rd≥0. These

parameters are used until the end of the data communication phase.
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Let b0[x] be the prior belief over X=x (or equivalently over θ∈B(x)) available at the begin-

ning of the beam-alignment phase. We define the expected rate during the communication

phase (normalized by the frame duration), as

R̄(Ad, Pd, Rd|b0,HL)

,
Tfr − LTs

Tfr
P
(
X = Ad

∣∣∣b0,HL

)
R̂(Rd, Pd), (4.7)

where we have defined

R̂(Rd, Pd),RdP
[
Rd≤Wtot log2

(
1 + |αk|

2PdG

N0Wtot

)]
. (4.8)

The probability term in ( 4.7 ) is the probability of achieving correct alignment, given the prior

b0 and the history HL of feedback and actions during the beam-alignment phase, whereas the

probability term in ( 4.8 ) denotes the probability of non-outage with respect to the realization

of the fading process (i.i.d. over time), given that correct alignment has been achieved (we

assume that mis-alignment yields outage with probability one, since g � G).

4.2 Problem Formulation and Solution

We now formulate the beam-alignment and data communication problem in the context

of a decision process. We define a policy µ, part of our design, which operates as follows. At

time k during beam-alignment, given the history of feedback and actions Hk, the BS selects

the beam-alignment action Ak=as∈I with probability µk(as|Hk); given HL, the BS selects

the data communication parameters as (Ad, Pd, Rd) = µd(HL). The goal is to design µ so as

to maximize the expected communication rate, i.e.,

P0: max
µ

Eµ
[
R̄(Ad, Pd, Rd|b0,HL)|b0

]
,
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where the expectation Eµ is conditional on the prior belief b0 and on the policy µ being

executed during beam-alignment and data communication. Note that, using ( 4.7 ), we can

rewrite the optimization problem as

P1: max
µ

Eµ
[
P
(
X = Ad

∣∣∣b0,HL

)∣∣∣∣∣b0

]
Tfr − LTs

Tfr
max

Rd≥0,0≤Pd≤Pmax
R̂(Rd, Pd),

i.e., the problem can be decomposed into the following two independent problems: 1) find

the optimal rate and power (R∗d, P ∗d ) that maximize the expected rate in the communication

phase, conditional on correct alignment being achieved (X=Ad); 2) find the optimal beam-

alignment policy and the beam index for communication Ad so as to maximize the probability

of correct alignment. The first problem can be solved efficiently by maximizing ( 4.8 ). In the

sequel, we consider the latter problem.

Let bk[x],P(X = x|Hk, b0) be the belief over X=x given the history of actions and

feedback and prior belief b0. It serves as a sufficient statistic for optimal control for problem

P1. In the following lemma, we present an equivalent simplified sufficient statistic along

with its dynamics.

Lemma 4.1. Let m0[x], ln b0[x] denote the prior preference of X = x. Given the action

and feedback pair (Ak, Yk), the belief at k + 1 is updated as

bk+1[x] = exp{mk+1[x]}∑
l∈I exp{mk+1[l]} , (4.9)

where

mk+1[x] = mk[x] + J(Yk)δ[Ak, x], ∀x ∈ I, (4.10)

and we have defined

J(y) , (1− ν)y + ln ν. (4.11)
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Proof. Given the belief bk and (Ak, Yk) = (as, y), we have

bk+1[x] (a)= P(X = x|Hk+1)
(b)
∝ f(Yk = y|X = x,Ak = as,Hk) P(X = x|Ak = as,Hk)
(c)= f(Yk = y|X = x,Ak = as)bk[x]
(d)= [ν exp {−νy}]δ[as,x] [ exp{−y}]1−δ[as,x]bk[x]
(e)= exp {−y + J(y)δ[as, x]} bk[x], (4.12)

where (a) follows from the definition of belief; (b) follows from Bayes’ rule and ∝ denotes

proportionality up to a normalization factor independent of x; (c) follows from the facts that

Yk is independent of history Hk given (X,Ak), and X is independent of action Ak given Hk,

and by the definition of belief bk; (d-e) follow by substitution of the pdf of Yk given in ( 4.5 )

and by definition of J(y). We prove the lemma using induction. The lemma holds for b0 by

definition of m0. Let 0 ≤ k ≤ L−1 and bk be given by (  4.9 ), then using ( 4.12 )(e) normalized

to sum to one, we get

bk+1[x] = exp {J(y)δ[as, x]} exp(mk[x]}∑
l∈I exp {J(y)δ[as, l]} exp{mk[l]}

= exp{mk+1[x]}∑
l∈I exp{mk+1[l]} , (4.13)

where mk+1[x] is given by ( 4.10 ).

Let mk , [mk[1], . . .mk[|I|]. Then, the previous lemma demonstrates that mk is a

sufficient statistic for control decisions, since it is sufficient for computing the belief bk at

time k. Therefore, µ can be expressed as Ak = µk(mk), ∀0 ≤ k ≤ L, which maps the

current preference vector mk to beam index Ak ∈ I. This result makes it possible to achieve

an efficient implementation, since the belief can be updated according to simple preference

update rules as in (  4.10 ), rather than via complex Bayesian belief updates. In the subsequent

analysis, we will use mk rather than bk as the state.
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4.2.1 MDP Formulation

Thanks to the identification of the sufficient statistic mk, we model the optimization

problem P1 as a Markov decision process (MDP) and optimize the decision variables to

maximize the alignment probability in the data-communication phase. The MPD is a 5-

tuple 〈T ,S, I, f(mk+1|mk, ak), rk(mk, ak), ∀k∈T 〉, with elements described as follows.

Time Horizon: given as T ={0, 1, . . . , L} where TBA≡T \{L} denote the slot indices asso-

ciated with the beam-alignment phase, whereas at k=L, the communication parameters are

selected and used until the end of the frame.

State space: given as S = R|I|, i.e., all possible values of preference vectors mk.

Action space: the set containing all the beam indices, I.

State transition distribution: Given state mk = m and action Ak = as used in the kth

stage of the beam-alignment phase, the feedback Yk = y is generated with pdf

f(y|m, as) ,
∑
x∈I

f(Yk = y|X = x,Ak = as)bk[x] (4.14)

= exp{m[as]}∑
l∈I exp{m[l]}νe

−νy +
[
1− exp{m[as]}∑

l∈I exp{m[l]}

]
e−y,

leading to the new state

mk+1 = m+ J(y)δ[as], (4.15)

where δ[as]=[δ[as, x]]∀x∈I is the vector with entries δ[as, x].

Reward function: the reward is the probability of choosing a beam index such that Ad = X

in the data communication phase, so that correct alignment is achieved, yielding

rk(m, a) =


0, k ∈ TBA,

exp{m[a]}∑
l∈I exp{m[l]} , k = L.

(4.16)

We now formulate the value function iteration for the MDP.
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4.2.2 Value Function

The value function under the optimal policy is given as

V ∗k (m) = max
as∈I

qk(m, as), (4.17)

where qk is the Q-function under the state-action pair (m, a), defined recursively as

qL(m, Ad) = rL(m, Ad) = exp{m[Ad]}∑
l∈I exp{m[l]} ,

and for k ∈ TBA, using ( 4.14 ),

qk(m, as)=
∫
R|I|

V ∗k+1(m′)f(mk+1=m′|mk=m, Ak=as)dm′

=
∫ ∞

0
V ∗k+1(m+ J(y)δ[as])f(y|m, as)dy. (4.18)

This yields the optimal value function in the data communication phase, by choosing the

beam index with maximum preference Ad
∗ = arg maxAd∈Im[Ad],

V ∗L (m) = max
Ad∈I

qL(m, Ad) = exp{m[Ad
∗]}∑

l∈I exp{m[l]} . (4.19)

In the beam-alignment phase (k ∈ TBA), combining ( 4.17 ) and ( 4.18 ), we obtain itera-

tively the value function as

V ∗k (m) = max
as∈I

∫ ∞
0

V ∗k+1(m+ J(y)δ[as])f(y|m, as)dy.

In the following theorem, whose proof is provided in the Appendix, we unveil structural

properties of V ∗k (m). We find a lower-bound and an upper-bound to the Q-function and

show that these bounds are optimized by a policy which, in each stage of the beam-alignment

phase, selects the beam index with the second-best preference. This result will be the basis

for our proposed policy evaluated numerically in Sec.  4.3 .
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Theorem 4.1. For k ∈ TBA, the Q-function is bounded as

qk(m, as)≥qLBk (m, as),
1∑

l∈I exp{m[l]}

[
ξ(as;m) (4.20)

+ exp
{

minxi 6=xj m[xi]−νm[xj]
1− ν

}
h(ν)g(ν)−[g(ν)]L−k

1− g(ν)

]
,

qk(m, as)≤qUBk (m, as),
[1 + h(ν)]L−k−1∑
l∈I exp{m[l]}ξ(as;m), (4.21)

where we have defined

ξ(as;m) ,



exp{m[as]}, if maxâ6=as m[â]−m[as]< ln ν,

exp{maxâ6=as m[â]}

+h(ν) exp
{
m[as]−νmaxâ6=as m[â]

1−ν

}
, otherwise,

(4.22)

where

h(ν) , exp
{

ν

1− ν ln ν
}
− exp

{
ln ν

1− ν

}
> 0, (4.23)

g(ν) , exp
{

ln ν
1− ν

}[
1

ν + 1 −
ln ν

1− ν

]
> 0. (4.24)

Let x[1], x[2], . . . , x[|I|] be an ordering of beam indices in decreasing order of preference,

i.e., m[x[1]] ≥ m[x[2]] ≥ · · · ,m[x[|I|]], then the optimal value function is bounded as

V ∗k (m) ≥ max
as∈I

qLBk (m, as) = qLBk (m, x[2]), ∀k∈TBA, (4.25)

V ∗k (m) ≤ max
as∈I

qUBk (m, as) = qUBk (m, x[2]), ∀k∈TBA, (4.26)

with the maximizer of qUBk and qLBk given by the second-best beam index x[2].

Proof. The proof is provided in the Appendix  8.F .

As a result of this Theorem, both the upper and lower bounds of the Q-function are

maximized by the second-best beam index policy, which selects the beam index with the
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Figure 4.2. Alignment Probability vs Λ; L = 32 (beam-alignment takes 16%
of frame duration).

second-best preference during the beam-alignment phase. This policy will be evaluated

numerically in the next section, against other MAB-based schemes proposed in the literature.

4.3 Numerical Results

In this section, we evaluate the performance of the second-best beam index selection

scheme (as=x[2]) with analog beamforming, and compare it with three other schemes. The

first one is based on LTS, a popular MAB scheme [ 35 ]. In LTS, at each slot the ac-

tion is chosen according to the belief distribution, i.e., as∼b[x]. The second scheme is

based on scanning the most-likely beam index (as=x[1]) as proposed in [  34 ] (first-best).

The third scheme is based on UCB as proposed in [ 33 ]. We evaluate the performance

of these three schemes in terms of the probability of alignment and spectral efficiency

using Monte-Carlo simulation with 105 iterations for each simulated point, with parame-

ters as follows: Mt=128, Mr=1, N0=−174dBm/Hz, Wtot=200MHz, Tfr=20ms, Ts=0.1ms,

fc=30GHz, d=10m, [path loss exponent]=2. The BS uses Mt=128 antennas and partitions

the AoD space into 32 sectors, each with a beamwidth of π/32rad and with uniform prior

b0[x] = 1/32, ∀x ∈ I; the UE is isotropic, hence it uses Mr=1 antenna with a single

sector. We use the beamforming design proposed in [ 27 ] for ULAs with antenna spacing
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Figure 4.3. Spectral efficiency vs fraction of Tfr used for BA LTs/Tfr.

dt=λ/2. With this configuration, the main-lobe and side-lobe gains are best approximated

by G ≈ 14dB, g ≈ −11dB.

In Fig.  4.2 , we depict the probability of alignment achieved by the aforementioned schemes

versus the pre-beamforming SNR Λ. It can be observed that second-best has better per-

formance than the other three schemes, with up to 7%, 10%, and 30% performance gains

compared to first-best, LTS-based and UCB-based schemes. The performance gain of second-

best is attributed to a better exploration-exploitation trade-off. The first-best scheme suffers

from poor exploration since it ”greedily” chooses the beam index most likely to succeed, but

fails to test other beams that may be under-explored, and is thus prone to make alignment

errors. On the other hand, LTS-based scheme suffers from poor exploitation since it may scan

least likely beams. The proposed second-best scheme, on the other hand, strikes a favorable

trade-off between exploration and exploitation: instead of greedily choosing the most likely

beam, it chooses the second most likely one, leading to better exploration than first-best;

simultaneously, by not choosing beam pairs that are unlikely to succeed, it leads to a bet-

ter exploitation compared to the LTS-based and UCB-based schemes. Finally, compared to

UCB, second-best is better tailored to the structure of the model, since it aims to maximize

the alignment probability at the end of the beam-alignment phase (see ( 4.16 )), rather than

the surrogate metric of UCB – the cumulative SNR accrued during beam-alignment.
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In Fig.  4.3 , we depict the spectral efficiency against the fraction of Tfr used for BA

LTs/Tfr. We fix the SNR for beam-alignment as Λ = 0dB and the data-communication

power as P ∗d =22dBm. Similar to Fig.  4.2 , second-best outperforms the three other schemes,

owing to improved alignment. The spectral efficiency is maximized at a unique maximizer

L∗: it increases initially with L≤L∗ as the beam-alignment probability improves with L.

However, as L increases beyond L∗, this gain is offset by the increased overhead and reduced

duration of the data communication phase.
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5. MOBILITY AND BLOCKAGE-AWARE

COMMUNICATIONS IN MILLIMETER-WAVE VEHICULAR

NETWORKS

  Mobility may degrade the performance of next-generation vehicular networks operating at

the millimeter-wave spectrum: frequent mis-alignment and blockages require repeated beam-

training and handover, with enormous overhead. Nevertheless, mobility induces temporal

correlations in the communication beams and in blockage events. In this chapter, an adaptive

design is proposed, that learns and exploits these temporal correlations to reduce the beam-

training overhead and make handover decisions. At each time-slot, the serving base station

(BS) decides to perform either beam-training, data communication, or handover, under

uncertainty in the system state. The decision problem is cast as a partially observable Markov

decision process, with the goal to maximize the throughput delivered to the user, under an

average power constraint. To address the high-dimensional optimization, an approximate

constrained point-based value iteration (C-PBVI) method is developed, which simultaneously

optimizes the primal and dual functions to meet the power constraint. Numerical results

demonstrate a good match between the analysis and a simulation based on 2D mobility and

3D analog beamforming via uniform planar arrays at both BSs and UE, and reveal that

C-PBVI performs near-optimally, and outperforms a baseline scheme with periodic beam-

training by 38% in spectral efficiency. Motivated by the structure of C-PBVI, two heuristics

are proposed, that trade complexity with sub-optimality, and achieve only 4% and 15% loss

in spectral efficiency. Finally, the effect of mobility and multiple users on blockage dynamics

is evaluated numerically, demonstrating superior performance over the baseline scheme.

5.1 System Model

We consider the scenario of Fig.  5.1 , where multiple base stations (BSs) serve user equip-

ments (UEs) moving along a road. At any time, each UE is associated with one BS –

the serving BS. Each UE and the serving BS use beamforming with large antenna arrays

 ↑ A version of this chapter was previously published by IEEE Transactions on Vehicular Technology [ 7 ], [ 67 ]
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Figure 5.1. A cell deployment with BSs on both side of the road.

to achieve directional data transmission (DT); they use beam-training (BT) to maintain

alignment. The communication links are subject to time-varying blockages, which cause the

signal quality to drop abruptly and DT to fail. As soon as the serving BS detects blockage,

it may decide to perform handover (HO) to the BS on the other side of the road, which then

continues the process of BT/DT/HO, until either another blockage event is detected, or the

UE exits the coverage area of the two BSs.

In this work, we focus on a specific segment of the road link covered by a pair of BSs and a

single UE,  

1
 as depicted in the framed area of Fig.  5.1 . Within this segment, the BT/DT/HO

process continues until the UE exits the coverage region of the two BSs, denoted by the area

X ⊂ R2. In this context, we investigate the design of the BT/DT/HO strategy during a

transmission episode, defined as the time interval between the two instants when the UE

enters and exits the coverage area of the two BSs. The goal is to maximize the average

throughput delivered to the UE subject to an average power constraint. Note that, when

the episode terminates, the UE enters the coverage area of another pair of BSs, and the same

analysis may be applied to each segment traversed.
1

 ↑ The proposed system model and techniques can be applied to a multi-user scenario by partitioning the
BS resources using orthogonal frequency division multiple access (OFDMA) and multiple RF chains or time
division duplexing (TDD)[ 68 ].
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Time is discretized into time-slots of duration ∆t, corresponding to the transmission of

a beacon signal during BT or of a data fragment during DT. Next, we describe the signal,

channel and UE mobility and blockage dynamics models used throughout the paper.

5.1.1 Signal and Channel Models

Let I ∈ {0, 1} , I denote the index of the serving BS at time k. Let xk∈CL be the

transmitted signal with E[‖xk‖2
2]=L, where L denotes the number of symbols transmitted.

The received signal at the UE is expressed as

yk =
√
PkfHk H(I)

k ckxk + wk, (5.1)

where Pk is the average transmit power of the serving BS I; ck∈CM
(I)
tx ×1 and fk∈CMrx×1

are unit-norm beamforming vectors with M
(I)
tx and Mrx antenna elements at BS I and the

reference UE, respectively; H(I)
k ∈CMrx×M(I)

tx is the channel matrix; wk∼CN (0, σ2
wI) with

σ2
w=(1 + F )N0Wtot is additive white Gaussian noise, N0 is the noise power spectral den-

sity, Wtot is the signal bandwidth, F is the receiver noise figure.

In this chapter, we model H(I)
k as a single line of sight (LOS) path with binary blockage

[ 59 ] and diffuse multipath [ 69 ],

H(I)
k =

√
M

(I)
tx MrxB

(I)
k h

(I)
k drx(θ(I)(Xk))d(I)

tx (φ(I)(Xk))H︸ ︷︷ ︸
H(I)
k,LOS

+
NDIF∑
l=1

√
M

(I)
tx Mrxh̃

(I)
k,ldrx(θ̃(I)

k,l )d
(I)
tx (φ̃(I)

k,l )H︸ ︷︷ ︸
H(I)
k,DIF

,

where B
(I)
k ∈{0, 1} denotes the binary blockage variable of BS I, equal to 1 if the LOS

path is unobstructed, equal to 0 otherwise; d(I)
tx (φ)∈CM

(I)
tx and drx(θ) ∈ CMrx are the unit-

norm array response vectors of BS I and UE, as a function of the AoD φ and AoA θ

(note that these include both azimuth and elevation information for UPAs); φ(I)(Xk) and

θ(I)(Xk) are the AoD and AoA of the LOS path with respect to BS I and the UE in posi-
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tion Xk ∈ X ; 

2
 h

(I)
k ∼CN (0, σ2

h,I) is the complex channel gain of the LOS component, i.i.d.

over slots, with σ2
h,I=1/`(dI(Xk)); `(dI(Xk)) = (4πdI(Xk)/λc)2 denotes the pathloss as func-

tion of the BS I-UE distance dI(Xk); λc=c/fc is the wavelength. Finally, H(I)
k,DIF denotes

the channel corresponding to diffuse multipath components with coefficients h̃k,l, AoD φ̃
(I)
k,l

and AoA θ̃
(I)
k,l ; we model H(I)

k,DIF as zero-mean complex Gaussian, with i.i.d. entries (over

time and over antennas), each with variance σ2
DIF,I . These components have been shown

to be much weaker than the LOS path (up to 100× weaker at a BS-UE distance of only

10 meters [ 59 ]), so that σ2
DIF,I�σ2

h,I . Then, letting G
(I)
tx (ck, x)=M (I)

tx |d
(I)
tx (φ(I)(x))Hck|2

and Grx(fk, x)=Mrx|drx(θI(x))Hfk|2 be the beamforming gains of the serving BS I and UE,

respectively, with respect to the LOS path, and Θk=6 d(I)
tx (φ(I)(Xk))Hck + 6 fHk drx(θ(I)(Xk))

be the unknown phase of the overall gain, the signal received at the UE can be expressed as

yk=
√
Pk

[
B

(I)
k h

(I)
k

√
G

(I)
tx (ck, Xk)Grx(fk, Xk)ejΘk+Ω(I)

k

]
xk + wk, (5.2)

where Ω(I)
k , fHk H(I)

k,DIFck ∼ CN (0, σ2
DIF,I) is the contribution due to the diffuse multipath

channel components. The SNR averaged over the fading coefficients is then given as

SNRk=
Pk
σ2
w

B(I)
k

G
(I)
tx (ck, Xk)Grx(fk, Xk)

`(dI(Xk))
+ σ2

DIF,I

 . (5.3)

5.1.2 Codebook Structure

Each BS has a codebook of beamformers to cover the intended coverage region X on

the road. The beamforming codebook of BS I is denoted by CI,{cI,1, . . . , cI,|CI |}. The UE

uses the codebook F,{f1, . . . , f|F|}. Let VI,CI × F denote the joint codebook containing

all possible beamforming codeword pairs of BS I and UE. We index these codeword pairs by

the beam pair index (BPI), with values in S̄I , {1, 2, . . . , |CI ||F|}; let (c(j)
I , f (j)

I ) be the jth

such pair, with j∈S̄I . With this definition, note that, if the UE is in position Xk=x and is
2

 ↑ Note that the AoA θ(I)(Xk) should also depend on the angle of rotation (azimuth and elevation) of the
antenna array of the UE; herein, we assume that it only depends on the UE position Xk. This is a good
approximation in vehicular networks, where the antenna array may be mounted on the rooftop of the vehicle;
the more general case with non-fixed array orientation can be addressed by including the angle of rotation
information in the AoA, which may be estimated using a gyroscope sensor [ 70 ].
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being served by BS I, then the maximum beamforming gain is achieved with the strongest

BPI (SBPI), which also yields the maximum SNR in ( 5.3 ), defined as

s∗I(x) , arg max
j∈S̄I

G
(I)
tx (c(j)

I , x)Grx(f (j)
I , x). (5.4)

Let SI , {s∗I(x) : x ∈ X} ⊆ S̄I be the set of SBPIs across all possible UE positions. Note

that this set can be constructed over time utilizing the feedback from the UE and excluding

the BPIs that do not yield significant signal power [ 22 ]. It follows that the directional com-

munication between BS I and UE can be achieved by restricting the choice of beamforming

codewords to the optimal set SI , since any other beam pair achieves lower SNR. This can

be obtained using a coordinated beamforming strategy where, before start of BT or DT, the

serving BS I and UE coordinate to select a subset of BPIs from the set SI to be scanned

synchronously during BT or used for DT, as explained in Section  5.1.5 .

5.1.3 Mobility and Blockage Dynamics

Note that, to achieve directional communication, the pair of BS I and UE should detect

the SBPI s∗I(Xk) via beam-training – a source of severe overhead; the mobility of the UE along

the road induces temporally correlated dynamics on the SBPI s∗I(Xk), which may be exploited

to reduce the training overhead via POMDPs. Similarly, the blockage state exhibits temporal

and spatial correlations, which can be exploited to efficiently detect/predict blockages and

perform HO if needed. To define such POMDP model, we now define a Markov model

on the SBPI and blockage states, induced by the UE mobility. Let Sk = (s∗0(Xk), s∗1(Xk))

be the pair of SBPIs at both BSs, taking values from S , {(s∗0(x), s∗1(x)) : x ∈ X}. Let

Bk , (B(0)
k , B

(1)
k ) ∈ {0, 1}2 be the pair of binary blockage states with B

(I)
k denoting the
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blockage with respect to BS I. Then, the one-step transition probability of (Sk, Bk) is

expressed as

Ps′b′|sb , P(Sk+1 = s′, Bk+1 = b′|Sk = s, Bk = b) (5.5)

=P(Sk+1=s′|Sk=s)︸ ︷︷ ︸
Ss′|s

P(Bk+1=b′|Bk=b, Sk=s, Sk+1=s′)︸ ︷︷ ︸
Bb′|bss′

.

Here, it is assumed that the next SBPI Sk+1 is independent of the current blockage state

Bk, given the current beam index pair Sk (indeed, the dynamics of SBPI depend solely on

UE mobility). Note that ∑s′,b′ Ps′b′|sb ≤ 1, since the UE might exit the coverage area of

the two BSs. In practice, ( 5.5 ) can be estimated based on estimated time-series of SBPI

and blockage pairs, {(ŝk, b̂k, ŝk+1, b̂k+1), k ∈ Tsound}, which in turn may be acquired at times

k ∈ Tsound via exhaustive search beam-training methods. Based on these time-series, the

BSs can estimate the transition probabilities in ( 5.5 ) as

Ŝs′|s =
∑
k∈Tsound χ(ŝk = s, ŝk+1 = s′)∑

k∈Tsound χ(ŝk = s) , (5.6)

B̂b′|bss′=
∑
k∈Tsound χ(ŝk=s, B̂k=b, ŝk+1=s′, B̂k+1=b′)∑

k∈Tsound χ(ŝk=s, B̂k=b, ŝk+1=s′)
, (5.7)

where χ(·) is the indicator function. Note that the estimates Ŝs′|s and B̂b′|bss′ can be improved

over time as more samples of (ŝk, b̂k, ŝk+1, b̂k+1) become available. This approach does not

require a dedicated learning phase; instead, estimated time-series can be collected based

on beam-training and data communication feedback, so that the estimation overhead is

minimal. Following their updates, the proposed policies can be updated accordingly. As

more and more samples are collected, the estimation accuracy improves, leading to policies

that more optimally leverage the mobility and blockage dynamics within the environment,

yielding a more efficient use of resources.
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5.1.4 Sectored antenna model

In this chapter, we use the sectored antenna model to approximate the beamforming

gain, as also used in [  4 ], [ 41 ]. As we will show in Section  5.5 , when coupled with an ap-

propriate design of the BSs beamforming codebooks CI , I ∈ I and of the UE beamforming

codebook F [ 27 ], the sectored model provides an accurate and analytically tractable ap-

proximation of the actual beamforming gain. Consider the BPI j ∈ SI and let G(I)(j, x) ,

G
(I)
tx (c(j)

I , x)G(I)
rx (f (j)

I , x) be the overall gain between BS I and UE position x, under the beam-

forming codeword pair (c(j)
I , f (j)

I ). Under the sectored model, if the UE is aligned with BS I

under the BPI j, i.e., its position x is such that the SBPI s∗I(x) = j, then the aligned gain

satisfies G(I)(j, x)�1 with gain-to-pathloss ratio G(I)(j, x)/`(d(I)(x)) ≈ Υ(j)
I ,∀x :j=s∗I(x).

On the other hand, if the UE is mis-aligned with BS I under the BPI j, i.e., s∗I(x) 6= j, then

the mis-aligned beamforming gain of BPI j ∈ SI is such that G(I)(j, x)≈g(I)
j �1,∀x :j 6=s∗I(x)

(i.e., it is small and equal to the sidelobe gain g
(I)
j for all positions x such that j is not

the SBPI). Based on this model, we now derive expressions for the transmission power to

achieve a target SNR at the receiver. We denote the case with the aligned beam pair and no

blockage (j = s∗I(x) and bI=1) as “active SBPI” and the complementary case of blockage or

UE in the sidelobe (j 6= s∗I(x) or bI=0) as “inactive SBPI”. In the case of active SBPI, from

( 5.3 ) we have

SNRact=
P

(I)
j

σ2
w

[
Υ(I)
j +σ2

DIF,I

]
⇔P (I)

j = σ2
wSNRact

Υ(I)
j +σ2

DIF,I
, (5.8)

which yields the transmission power to achieve a target SNR equal to SNRact in case of

active SBPI. In the case of inactive SBPI, we can express the SNR in ( 5.3 ) using ( 5.8 ) as

SNRiact =
P

(I)
j

σ2
w

[
B(I)G

(I)(j, x)
`(dI(x)) +σ2

DIF,I

]

=
[
B(I)G

(I)(j, x)
`(dI(x)) +σ2

DIF,I

]
SNRact

Υ(I)
j + σ2

DIF,I
. (5.9)

Note that, to help the BS detect the inactive SBPI condition, this value of SNR should be

as small as possible; for this reason, we determine the worst case SNR under inactive SBPI
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by maximizing ( 5.9 ) over all possible blockage states B(I)∈{0, 1}, mis-aligned beam j and

UE position x∈X , as

SNRiact

≤max
x∈X

max
j∈SI\{s∗I (x)}

[
B(I)G

(I)(j, x)
`(dI(x)) +σ2

DIF,I

]
SNRact

Υ(I)
j +σ2

DIF,I

, ρISNRact. (5.10)

In other words, to achieve a target SNRact within the mainlobe, the BS should transmit with

power given by ( 5.8 ); however, if the signal is blocked or the UE receives on the sidelobe

(or both), the associated worst-case SNR is ρISNRact. 

3
 In this case, data transmission is

in outage since ρI � 1 (numerically, we found ρI = −15dB, ∀I based on the setup of

Section  5.5 ).

5.1.5 Beam-Training (BT) and Data Transmission (DT)

We now introduce the BT and DT operations.

BT phase: At the start of a BT phase, the serving BS I selects a set of BPIs SBT⊆SI
over which the beacons xk are sent, and a target SNR SNRBT. The beacon transmission is

done in sequence over |SBT| time-slots, using one slot for each BPI j∈SBT, with the serving

BS transmitting using the beamforming vector c(j)
I , and the UE synchronously receiving

using the combining vector f (j)
I . Therefore, the duration of the BT phase is TBT,|SBT|+1,

including the last slot for feedback signaling from the UE to the BS. Let i ∈ {0, . . ., TBT−2}

be the ith time-slot of the BT phase, and ji ∈ SBT be the BPI scanned by the BS I and UE

in this slot. The UE processes the received signal yk+i with a matched filter,

Γji ,
|xHk+iyk+i|2

(1 + F )N0Wtot‖xk+i‖2
2
. (5.11)

3
 ↑ For the sake of analytical tractability, ρI (found by maximizing over j 6= s∗I(x)) is the worst case over

the BPI j ∈ SI . The model can be generalized to express the dependence of ρI on j, leading to a more
complicated BT feedback analysis, possibly not in closed form.
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Upon collecting the sequence {Γj,∀j ∈ SBT}, the UE generates the feedback signal

Y =


j∗ , arg maxj∈SBT Γj, maxj∈SBT Γj > η

(I)
BT,

∅, maxj∈SBT Γj ≤ η
(I)
BT.

(5.12)

In other words, if all the matched filter outputs are smaller than η
(I)
BT, Y=∅ indicates that

no beam pair is deemed sufficient for data transmission, either due to blockage (B(I)
k =0), or

the UE receiving on the sidelobes of the BPIs j ∈ SBT. Otherwise, Y=j∗ indicates the index

of the strongest BPI detected.

We now perform a probabilistic analysis of feedback. To this end, let SI=s∗I(Xk) and

BI=B(I)
k be the SBPI and blockage state under BS I at the beginning of the BT phase.

We assume that these state variables do not change during the transmission of the beacon

sequences, i.e., s∗I(Xk+i)=SI and B(I)
k+i=BI , ∀i∈{0, . . ., TBT−2}. This is a reasonable assump-

tion, since the duration of the BT phase (×0.1ms) is typically much shorter than the time

required by the UE to change beam (×100ms) or the time-scales of blockage (×100ms).

With this assumption, given the state (SI , BI) of BS I during BT, the signal sequence

{Γj,∀j∈SBT} is independent across j, due to the i.i.d. nature of h(I)
k+i, Ω(I)

k+i and wk+i. In

addition, in case of active SBPI (SI=j and BI=1), by using (  5.2 ) and ( 5.8 ), Γj has expo-

nential distribution with mean 1+SNRBTL, Γj∼E(1+SNRBTL); otherwise (inactive SBPI,

SI 6=j or BI=0) Γj∼E(1+ρISNRBTL). It follows that


ΣI,1 , P(Γj≤η(I)

BT|SI = j, BI = 1) = 1− e
−η(I)

BT
1+SNRBTL ,

ΣI,0 , P(Γj≤η(I)
BT|SI 6= j or BI = 0)=1−e

−η(I)
BT

1+ρISNRBTL .

Now, let us consider separately the two events {SI /∈ SBT} ∪ {BI = 0} (“inactive SBPI in

SBT”) and {SI ∈ SBT} ∩ {BI = 1} (“active SBPI SI ∈ SBT”). In case of inactive SBPI in
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SBT, the probability of generating the feedback signal Y = ∅ (i.e., of correctly detecting

inactive SBPI within the SBT scanned in the BT phase) is

P(Y = ∅|inactive SBPI in SBT) =
∏

j∈SBT

P(Γj ≤ η
(I)
BT|SI 6= j or BI = 0) = Σ|SBT|

I,0 , (5.13)

since Y=∅ is equivalent to Γj ≤ η
(I)
BT,∀j ∈ SBT, and Γj are independent across j, conditional

on (SI , BI). Similarly, in case of active SBPI SI ∈ SBT, the probability of incorrectly

detecting inactive SBPI is

P(Y = ∅|active SBPI SI ∈ SBT)

= P(Γj≤η(I)
BT|SI=j, BI=1)

∏
j∈SBT\{SI}

P(Γj≤η(I)
BT|SI 6=j, BI=1)

= ΣI,1Σ|SBT|−1
I,0 , (5.14)

since SI is the SBPI, implying ΓsI ∼ E(1 + SNRBTL).

In case of inactive SBPI in SBT, the probability of generating the feedback signal j∗ ∈ SBT

(i.e., of incorrectly detecting an active SBPI) is

P(Y = j∗|inactive SBPI in SBT) = 1
|SBT|

[
1−P(Y=∅|inactive SBPI in SBT)

]
=

1−Σ|SBT|
0,I

|SBT|
;

(5.15)

in fact, Γj are i.i.d. across beams, conditional on inactive SBPI, so that incorrect detections

are uniform across the feedback outcomes j∗ ∈ SBT.

Instead, in case of active SBPI SI ∈ SBT, we need to further distinguish between the two
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cases j∗ = SI (the SBPI is detected correctly) and j∗ ∈ SBT\{SI} (incorrect detection). The

probability of correctly detecting the SBPI is found as

P(Y = SI |active SBPI SI ∈ SBT)

=P(ΓSI>η
(I)
BT,ΓSI>Γj, ∀j∈SBT\{SI}|active SBPI SI∈SBT)

=
∫ ∞
η

(I)
BT

[
f(ΓSI = τ |active SBPI SI ∈ SBT)

∏
j∈SBT\{SI}

P(Γj < τ |SI 6= j, BI = 1)
]
dτ

=
∫ ∞
η

(I)
BT

[ 1
1 + SNRBTL

exp
{
− τ

1 + SNRBTL

}(
1− exp

{
− τ

1 + ρISNRBTL

})|SBT|−1]
dτ

=
|SBT|−1∑
n=0

 |SBT|−1

n

 (−1)n(1−ΣI,1)(1−ΣI,0)n

1+ 1+SNRBTL
1+ρISNRBTL

n
, (5.16)

where in the first step we used the definition of Y=SI , i.e., ΓSI must be greater than the

threshold η(I)
BT, and all other Γj must be smaller than ΓSI ; in the last step, we used Newton’s

binomial theorem to solve the integral. Finally, the probability of incorrectly detecting the

SBPI, j∗ ∈ SBT\{SI} is

P(Y = j∗|active SBPI SI ∈ SBT)= 1
|SBT|−1

[
1−

∑
y∈{SI ,∅}

P(Y=y|active SBPI SI∈SBT)
]

(5.17)

since, similarly to ( 5.15 ), erroneous detections are uniform across the remaining |SBT|−1

beams.

Since Y=∅ represents the fact that the inactive SBPI condition has been detected, we

choose η
(I)
BT so that the misdetection and false alarm probabilities are both equal to δBT,

yielding from (  5.14 )-( 5.15 ) (over all j∈SBT),

δ
(I)
BT = 1−Σ|SBT|

I,0 = ΣI,1Σ|SBT|−1
I,0 . (5.18)

For a given SNRBT and |SBT|, the value of η(I)
BT and the corresponding δ

(I)
BT can be found

numerically using the bisection method, since the left- and right- hand sides of ( 5.18 ) are

decreasing and increasing functions of η(I)
BT, respectively.

97



DT phase: At the start of the DT phase, the BS I chooses a BPI j∈SI used for

data transmission, along with the duration TDT of the DT frame, the target average SNR

at the receiver SNRDT, and a target transmission rate R̄DT; the last slot is used for the

feedback signal from the UE to the BS, as described below. We assume that a fixed fraction

κ∈(0, 1) out of L symbols in each slot is used for channel estimation. Consider slot t ∈

{k, . . . , k + TDT − 2} of data communication; then, if s∗I(Xt) 6=j or B(I)
t =0, i.e., the selected

BPI j is inactive, then the communication is in outage; otherwise (s∗I(Xt)=j and B(I)
t =1, i.e.,

the selected BPI j is an active SBPI) assuming that channel estimation errors are negligible

compared to the noise level (achieved with a sufficiently long pilot sequence κL), from the

signal model ( 5.2 ), we find that outage occurs if (note that E[|h(I)
t |2`(dI(Xt))] = 1)

Wtot log2(1 + |h(I)
t |2`(dI(Xt))SNRDT) < R̄DT, (5.19)

yielding the outage probability

POUT(R̄DT, SNRDT)=P
(
|h(I)
t |2`(dI(Xt))<

2R̄DT/Wtot−1
SNRDT

)
=1− exp

{
− 2R̄DT/Wtot − 1

SNRDT

}
. (5.20)

In this chapter, we design R̄DT based on the notion of ε−outage capacity, i.e., R̄DT is the

largest rate such that POUT(R̄DT, SNRDT) ≤ ε, for a target outage probability ε < 1. Impos-

ing ( 5.20 ) equal to ε, this can be expressed as

R̄DT=Cε(SNRDT)=Wtot log2 (1− SNRDT ln(1− ε)) . (5.21)

With this choice, the transmission is successful with probability 1− ε, and the average rate

(throughput) is

T (ε, SNRDT) , (1− κ)(1− ε)Cε(SNRDT), (5.22)
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where (1− κ) accounts for the channel estimation overhead. In what follows, we select ε to

maximize the throughput, yielding the optimal ε∗(SNRDT) at a given SNR SNRDT as the

unique fixed point of dT (ε, SNRDT)/dε = 0, or equivalently,

ln
(
1− SNRDT ln(1− ε)

)(
1− SNRDT ln(1− ε)

)
= SNRDT.

We denote the resulting throughput maximized over ε as T ∗(SNRDT) , T (ε∗(SNRDT), SNRDT).

We envision a mechanism in which the pilot signal transmitted in the last data transmis-

sion slot (at time t = k + TDT − 2) is used to generate the binary feedback signal

Y =


j, Γj > η

(I)
DT ,

∅, Γj ≤ η
(I)
DT ,

(5.23)

transmitted by the UE to the BS in the last slot of the DT phase (at time t = k+ TDT− 1).

As in ( 5.11 ) for the BT feedback, Y=j denotes active SBPI detected, whereas Y = ∅ denotes

inactive SBPI detection, due to either loss of alignment or blockage. Similarly to ( 5.11 ),

Γj ,
|x(p)H
k+TDT−2y

(p)
k+TDT−2|2

(1 + F )N0Wtot‖x(p)
k+TDT−2‖2

2

is based on the pilot signal x(p)
k+TDT−2 (of duration κL) and on the corresponding signal

y(p)
k+TDT−2 received on the second last slot of the DT phase. The distribution of the feedback

conditional on s∗I(Xt)=SI and B(I)
t =BI at the 2nd last slot (t=k+TDT−2) can be computed

as a special case of ( 5.14 ) and ( 5.15 ) with |SBT|= 1 (since in the DT phase only one beam j

is used for data transmission) and κL in place of L (since only κL symbols are used as pilot

signal), yielding the probability of incorrectly detecting an active SBPI as

P(Y=j|SI 6= j or BI = 0)= exp
{
− ηDT

1+ρIκSNRDTL

}
, (5.24)
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and that of incorrectly detecting j to be an inactive SBPI as

P(Y=∅|SI = j, BI = 1)=1− exp
{
− ηDT

1+κSNRDTL

}
. (5.25)

As in the BT phase, we choose η(I)
DT so that the probabilities of misdetection and false alarm

are both equal to δ(I)
DT, yielding

δ
(I)
DT= exp

{
−ηDT

1+ρIκSNRDTL

}
=1− exp

{ −ηDT
1+κSNRDTL

}
. (5.26)

5.2 POMDP Formulation

We now formulate the problem of optimizing the BT, DT and HO strategy as a con-

strained POMDP. In the following, we define the elements of this POMDP.

States: the state at time k is denoted by Zk. We introduce the state z̄ to characterize the

episode termination, so that Zk=z̄ if the UE exited the coverage area of the two BSs, i.e.,

Xk /∈X . Otherwise (Zk 6=z̄), we define the state as Zk,(Uk, Ik), where Ik∈I is the index of

the serving BS, Uk,(Sk, Bk) is the joint SBPI-blockage state, taking values from the set

U=S×{0, 1}2, Sk=(S(0)
k , S

(1)
k )∈S with S

(i)
k ,s∗i (Xk) is the SBPI at the current UE position

Xk, Bk=(B(0)
k , B

(1)
k ) is the blockage state of the two BSs. The overall state space, including

the absorbing z̄, is then Z=(U×I)∪{z̄}. Note that the position of the UE and the blockage

state cannot be directly observed, thereby making the state Uk unobservable. We model such

state uncertainty via a belief βk, representing the probability distribution of Uk, given the

information collected (actions selected and feedback) up to time k.

Actions: the serving BS can perform three actions: beam-training (BT), data transmission

(DT), or handover (HO). However, differently from standard POMDPs in which each action

takes one slot, in this chapter we generalize the model to actions taking multiple slots, as

explained next.

If action HO is chosen, the data plane is transferred to the other BS, which becomes the

serving one for the successive time-slots, until HO is chosen again or the episode terminates.
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HO requires THO time-slots to complete, due to the delay to coordinate the transfer of the

data traffic between the two BSs.

If actions BT is chosen, the serving BS I chooses the BPI set SBT⊆SI to scan and the

target SNR SNRBT. The transmission power is then found via ( 5.8 ), and the feedback error

probability δ
(I)
BT is found by solving ( 5.18 ). The action duration is TBT = |SBT|+1: |SBT|

slots for scanning the BPI set SBT, and one slot for the feedback back to the serving BS.

If action DT is chosen, then the serving BS I selects the BPI j∈SI to perform data

communication with the UE, along with the duration TDT≥2 of the data communication

session, and the target SNR SNRDT. The transmission power is then determined via ( 5.8 ),

and the transmission rate is given by ( 5.21 ) to achieve ε-outage capacity, so that the resulting

throughput (in case of LOS and correct alignment) is T ∗(SNRDT). The duration of the data

communication session TDT includes the second last slot for the feedback signal, which is

transmitted from the UE to the BS in the last slot. The feedback error probability δ
(I)
DT is

the unique fixed point of ( 5.26 ).

We represent compactly these actions as (c,Πc) ∈ AI , with action space AI , where c ∈

{BT,DT,HO} refers to the action class and Πc=(Sc, SNRc, Tc) specifies the corresponding

parameters: Sc ⊆ SI is a subset of BPIs of serving BS I, used during the action, SNRc is

the target SNR, so that the corresponding transmission power is given by ( 5.8 ), and Tc is

the action duration. For HO, we set SNRHO=0 and SHO=∅.

Observations: after selecting action Ak∈AI of duration T in slot k and executing it in state

uk∈U , the BS observes Yk+T taking value from the observation space Ȳ , Y∪{z̄}, where

Y , S1∪S2∪{∅}∪{z̄}. Yk+T=z̄ denotes that Zk = z̄, so that the UE exited the coverage

area of the two BSs and the episode terminates; otherwise, Yk+T denotes the feedback signal

after the action is completed, as described in (  5.12 ) and ( 5.23 ) for the BT and DT actions

(Yk=∅ under the HO action).

Transition and Observation probabilities: Let P(Zk+T = z′, Yk+T = y|Zk = z, Ak = a)

be the probability of moving from a non-absorbing state z = (u, I) ∈ Z \{z̄} to state z′ ∈ Z

and observing y ∈ Ȳ under action a ∈ AI of duration T . If the episode does not terminate

(Zk+T 6= z̄ and y 6= z̄), let Zk+T = (u′, I ′) be the next state. Note that the new serving BS

I ′ is a function I(a, I) of the chosen action: if a is the HO action then I ′ = I(a, I) = 1− I,
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otherwise I ′= I(a, I) = I. Using the law of conditional probability, the transition probability

is then expressed as

P(Zk+T=(u′, I ′), Yk+T=y|Zk=(u, I), Ak=a) (5.27)

= P(Uk+T=u′, Yk+T=y|Uk=u, Ik=I, Ak=a)χ(I ′=I(a, I)),

since (Uk+T , Yk+T ) is conditionally independent of Ik+T given (Uk, Ik, Ak). To characterize

the first term in ( 5.27 ), under the HO action a=(HO, ∅, 0, THO), of duration T=THO, the

observation signal is deterministically Yk+T=∅, yielding

P(Uk+T=(s′,b′),Yk+T=∅|Uk=(s,b),Ik=I, Ak=a) = Ps′b′|sb(T ), (5.28)

where Ps′b′|sb(T ) is the T steps transition probability from Uk=(s, b) to Uk+T=(s′, b′), found

recursively as Ps′b′|sb(T )=∑
s′′,b′′ Ps′b′|s′′b′′(T−1)Ps′′b′′|sb with Ps′b′|sb(1)=Ps′b′|sb. In other words,

the UE moves from s to s′ and the BSs’s blockage states move from b to b′, in T slots.

Under the BT action a=(BT,SBT, SNR, T ), of duration T=|SBT|+1, the observation sig-

nal is Yk+T = y ∈ SBT ∪ {∅} (see the BT signaling mechanism in Section  5.1 ). Therefore,

P
(
Uk+T = (s′, b′), Yk+T = y|Uk = (s, b), Ik = I, Ak = a

)
= P(Yk+T=y|SBT, S

(I)
k =sI , B(I)

k =bI , Ik=I)Ps′b′|sb(T ),

where P(Y=y|S, S(I)
k =sI , B(I)

k =bI , Ik=I) has been defined in ( 5.13 )-( 5.17 ) for the cases of

active SBPI {sI∈S} ∩ {bI = 1} and inactive SBPI {sI /∈S} ∪ {bI = 0}.

Finally, under the DT action a=(DT, {j}, SNR, T ), the observation signal is Yk+T=y ∈

{j, ∅} (see the DT signaling in Section  5.1 ). However, in this case the feedback signal is

generated based on the second last slot, i.e., it depends on the state Uk+T−2 at time k+T−2.

By marginalizing with respect to Sk+T−2=s′′ and Bk+T−2=b′′, we then obtain ( 5.29 ) given

at the top of page  103 . To explain it, note that: the system moves from (Sk, Bk)=(s, b) to

(Sk+T−2, Bk+T−2)=(s′′, b′′) in T−2 steps; then, the feedback signal Yk+T is generated with

distribution P(Yk+T=y|{j}, S(I)
k+T−2=s′′I , B

(I)
k+T−2=b′′I , Ik+T−2=I), given in (  5.24 ), ( 5.25 ) for the
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P
(
Uk+T = (s′, b′), Yk+T = y|Uk = (s, b), Ik = I, Ak = a

)
(5.29)

=
∑

s′′∈S,b′′∈{0,1}2
P
(
Uk+T=(s′, b′),Yk+T=y, Sk+T−2=s′′,Bk+T−2=b′′|Uk=(s, b), Ik = I, Ak = a

)
=

∑
s′′∈S,b′′∈{0,1}2

[
Ps′′b′′|sb(T − 2)P

(
Yk+T=y|{j}, S(I)

k+T−2=s′′I , B
(I)
k+T−2=b′′I , Ik+T−2=I

)
Ps′b′|s′′b′′(2)

]

cases of active or inactive SBPI in {j}; finally, in the remaining 2 steps ,the system moves

from (Sk+T−2, Bk+T−2)=(s′′, b′′) to (Sk+T , Bk+T )=(s′, b′).

The probability of terminating the episode (z′ = z̄ and y = z̄) is equivalent to the

probability of exiting the coverage area of the two BSs within T steps,

P(Zk+T=z̄, Yk+T=z̄|Zk = (u, I), Ak=a)=1−
∑

u′∈U ,y∈Y
P(Uk+T=u′, Yk+T = y|Uk=u, Ik=I,Ak=a)

since it is the complement event of ∪z∈Z\{z̄} ∪y∈Y {Zk = z, Yk+T = y}.

Costs and Rewards: for every state z = (u, I) ∈ Z \ {z̄} and action a, we let r(u, I, a)

and e(u, I, a) be the expected number of bits transmitted from the serving BS to the UE

and the expected energy cost, respectively. Under the HO and BT actions, we have that

r(u, I, a) = 0 (since no bits are transmitted during these actions). On the other hand, under

the DT action a = (DT, {j}, SNR, TDT) taken in slot k, the expected throughput in the tth

communication slot, t∈{0, . . . , TDT − 2}, is T ∗(SNR) as in ( 5.22 ), maximized over ε, if the

current state is such that S(I)
k+t=j and B(I)

k+t = 1 (i.e., j is an active SBPI); otherwise, outage

occurs and the expected throughput is zero. Therefore, we find that

r((s, b), I, (DT, {j}, SNR, TDT))

=T ∗(SNR)
TDT−2∑
t=0

P(S(I)
k+t=j, B

(I)
k+t=1|Sk=s, Bk=b)

=T ∗(SNR)
TDT−2∑
t=0

∑
(s′,b′)∈U

Ps′b′|sb(t)χ(s′I = j, b′I = 1). (5.30)
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The energy cost of a HO action is e(u, I, a)=0; that of DT or BT action a=(c,S, SNR, T )

is found from ( 5.8 ) as (note that T=|S|+1 for a BT action and |S|=1 for a DT action)

e(u, I, a) = (T − 1)∆t

|S|
∑
j∈S

σ2
w

Υj,I + σ2
DIF,I

SNR. (5.31)

Note that the last slot of the DT or BT phases is reserved to the feedback transmission, with

no energy cost for the BS.

Policy and Belief updates: Since the agent cannot directly observe the pairs of BPI S

and blockage B, we define the POMDP state as (β, I), where β denotes the belief, i.e., the

probability distribution over U=(S,B), given the information collected so far and I is the

index of the serving BS. The belief β takes values from belief space B,{β∈R|U| : β(u) ≥

0 ∀u∈U ,∑u∈U β(u) = 1}. Given (β, I), the serving BS selects an action a according to a

policy a = π(β, I), that is part of our design in Section  5.3 ; then, after executing the action

a and receiving the feedback signal y ∈ Y , the BS I updates the belief according to Bayes’

rule as

β′(u′)=P(u′ | y, a, β, I) =
∑
u∈U β(u)P(u′, y|u, I, a)∑

u∈U β(u)∑u′′∈U P(u′′, y|u, I, a) , (5.32)

with P(u′, y|u, I, a) given by ( 5.28 )-( 5.29 ), and the serving BS becomes I ′ = I(a, I). We

denote the function that maps the belief β, action a and observation y under the serving BS

I as β′ = BI(y,a,β). Note that Y=z̄ indicates episode termination.

5.3 Optimization Problem

Our goal is to determine a policy π (a map from beliefs to actions) maximizing the

expected throughput, under an average power constraint P̄avg, starting from an initial belief

β0=β∗0 and serving BS I0=I∗0 . From Little’s Theorem [ 71 ], the average rate and power

consumption can be expressed as

T̄ π ,
R̄π

tot

D̄tot
, P̄ π ,

Ēπ
tot

D̄tot
, (5.33)
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where R̄π
tot, Ēπ

tot are the total expected number of bits transmitted and energy cost during an

episode; D̄tot is the expected episode duration, which only depends on the mobility process

but is independent of the policy π. Therefore, we aim to solve

P1:

max
π

R̄π
tot,Eπ

[ ∞∑
n=0

r(utn , itn , atn)χ(Ztn 6=z̄)
∣∣∣β0=β∗0 , I0=I∗0

]
,

s.t.

Ēπ
tot,Eπ

[ ∞∑
n=0

e(utn ,itn ,atn)χ(Ztn 6=z̄)
∣∣∣β0=β∗0 ,I0=I∗0

]
≤Emax,

where Emax,D̄totP̄avg; tn is the time index of the n-th decision round, recursively computed

as tn+1=tn+Tn, where Tn is the duration (number of slots) of the action taken in the n-th

decision round and t0=0. We opt for a Lagrangian relaxation to handle the cost constraint,

and define Lλ(u, i, a) = r(u, i, a)−λe(u, i, a) for λ≥0. For a generic policy π, we define its

value function as 

4
 

V π
λ (β, I)=Eπ

[ ∞∑
n=0
Lλ(utn , itn , atn)χ(Ztn 6=z̄) | β0=β, I0=I

]
.

The goal is to determine the optimal policy π∗ which maximizes the value function, i.e.,

V ∗λ (β, I) , max
π

V π
λ (β, I). (5.34)

The optimal dual variable is then found via the dual problem

λ∗ = arg min
λ≥0

V ∗λ (β∗0 , I∗0 ) + λEmax. (5.35)

4
 ↑ Note that the convergence of this series is guaranteed by the presence of the absorbing state z̄.
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It is well known that the optimal value function for a given λ uniquely satisfies Bellman’s

optimality equation [  37 ] V ∗λ = Hλ[V ∗λ ], where we have defined the operator V̂ = Hλ[V ] as

V̂ (β, I)= max
a∈A

∑
u∈U

β(u)
[
Lλ(u, I, a)+

∑
(u′,y)∈U×Y

P(u′,y|u,I, a)V
(
BI(y,a,β),I(a, I)

)]
,∀(β, I)∈B×I.

The optimal value function V ∗λ can be arbitrarily well approximated via the value iteration

algorithm Vn+1=Hλ[Vn], where V0(β, I)=0,∀(β, I) ∈ B × I. Moreover, Vn is a piece-wise

linear and convex function [ 37 ], so that, at any stage of value iteration, it can be expressed

by a finite set of hyperplanes Q(I)
n ≡ {(α

(r)
n,I,`, α

(e)
n,I,`)}

N
(I)
n

`=1 of cardinality N (I)
n ,

Vn(β, I) = max
αI∈Q

(I)
n

〈β, α(r)
I − λα

(e)
I 〉, (5.36)

where 〈β, α〉 = ∑
u β(u)α(u) denotes inner product. Each hyperplane (α(r)

I , α
(e)
I ) ∈ Q(I)

n is

associated with an action aαI ∈ AI , so that the maximizing hyperplane α∗I in ( 5.36 ) defines

the policy πn(β, I) = aα∗I . Note that a distinguishing feature of our approach compared to

[ 37 ] is that we define distinct hyperplanes α(r)
I for the reward and α(c)

I for the cost; as we will

see later, this approach will be key to solving the dual optimization problem to optimize the

power constraint, since it allows to more efficiently track changes in the dual variable λ, as

part of the dual problem (  5.35 ), and to approximate the expected total reward and cost as

R̄n(β, I) = 〈β, α(r)∗
I 〉, Ēn(β, I) = 〈β, α(e)∗

I 〉,

where (α(r)∗
I , α

(e)∗
I ) = arg max

αI∈Q
(I)
n

〈β, α(r)
I − λα

(e)
I 〉. (5.37)

It can be shown (see for instance [ 36 ]) that the set of hyperplanes is updated recursively

as

Q(I)
n+1 ≡

{
(r(·, I, a), e(·, I, a)) +

∑
u′∈U ,y∈Y

P(u′, y|·, I, a)
(
α

(r)
I′,y(u′), α

(e)
I′,y(u′)

)
:

a∈AI , I ′ = I(a, I), [(α(r)
I′,y, α

(e)
I′,y)]∀y∈Y∈(Q(I′)

n )|Y|
}
, (5.38)
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so that the cardinality grows as N (I)
n+1 = |Q(I)

n+1|= O(|A||Y|n) – doubly exponentially with the

number of iterations.

For this reason, computing optimal planning solutions for POMDPs is an intractable

problem for any reasonably sized task. This calls for approximate solution techniques, e.g.,

PERSEUS [  37 ], which we introduce next.

PERSEUS [ 37 ] is an approximate PBVI algorithm for unconstrained POMDPs. Its key

idea is to define an approximate backup operator H̃λ[ ·] (in place of Hλ[ ·]), restricted to a dis-

crete subset of POMDP states in B̃0∪B̃1, where B̃I is discrete set of POMDP states with the

serving BS I, chosen as representative of the entire belief space B; in other words, for a given

value function Ṽn at stage n, PERSEUS builds a value function Ṽn+1=H̃[Ṽn] that improves

the value of all POMDP states (β, I) with β ∈ B̃I , without regard for the POMDP states out-

side of this discrete set, β /∈B̃I . For each I ∈ I, the goal of the algorithm is to provide a |B̃I |-

dimensional set of hyperplanes αI = (α(r)
I , α

(e)
I ) ∈QI and associated actions aαI . Given such

set, the value function at any other POMDP state, (β, I) is then approximated via ( 5.36 ) as

Ṽ (β, I)=〈β, α(r)∗
I −λα

(e)∗
I 〉, where α∗I=(α(r)∗

I , α(e)∗)= arg max(α(r)
I ,α(e))∈Q(I)〈β, α

(r)
I −λα

(e)
I 〉, which

defines an approximately optimal policy π(β, I)=aα∗I .

Key to the performance of PBVI is the design of B̃I , which should be representative of

the belief points encountered in the system dynamics. In the PBVI literature [  36 ], most of

the strategies to design B̃I focus on selecting reachable belief points, rather than covering

uniformly the entire belief simplex. We choose the beliefs in the following two steps. For each

I ∈ I, an initial belief set B(0)
I is selected deterministically to cover uniformly the belief space.

followed by expansion of {B(0)
I , I ∈ I} using the Stochastic simulation and exploratory action

(SSEA) algorithm [ 36 ] to yield the expanded belief points set {B̃I , I ∈ I}. After initializing

B(0)
I , given B(n)

I at iteration n, for each β ∈ B(n)
I , SSEA performs a one step forward simulation

with each action in the action set, thus producing new POMDP states {(βa, Ia),∀a ∈ AI}.

At this point, it computes the L1 distance between each new βa and its closest neighbor in

B(n)
Ia , and adds the point βa∗ to B(n)

Ia∗
if min

β∈B(n)
Ia∗
‖βa∗ − β‖1≥ min

β∈B(n)
Ia

‖βa − β‖1,∀a ∈ AI ,

so as to more widely cover the belief space. This expansion is performed multiple times to

obtain {B̃I , I ∈ I}.
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The approximate backup operation of PERSEUS is given by Algorithm  1 , which takes

as input the index of the serving BS I, the set of belief points B̃I associated with BS I,

the sets of hyperplanes {Q(i)
n , i ∈ I} and the corresponding actions, and outputs a new

set Q(I)
n+1 along with their corresponding actions. To do so: in line  4 , a belief is cho-

sen randomly from B̂I ; in lines  5 – 7 , the hyperplane associated with each action a ∈ A

is computed; in particular, line  6 computes the hyperplane associated with the future value

function Vn(BI(y, a, β), I(a, I)), for each possible observation y resulting in the belief up-

date BI(y, a, β); line  7 instead performs the backup operation to determine the new hy-

perplane of Vn+1(β, I) associated to action a; line 8 determines the optimal action that

maximizes the value function, so that lines  5 - 8 overall approximate the value iteration up-

date Vn+1(β, I) = maxa EU,Y |a,β,I [Lλ(U, I, a)+Vn(BI(Y, a, β), I(a, I))]; in lines  9 - 12 , the new

hyperplane and the associated action is added to the set Q(I)
n+1, but only if it yields an im-

provement in the value function Vn+1(β, I)>Ṽn(β, I); otherwise, the previous hyperplane is

used; finally, lines  13 - 14 update the set of un-improved POMDP states based on the newly

added hyperplane; only the belief points that have not been improved are part of the next

iterations of the algorithm, and the process continues until the set B̂I is empty. Overall,

the algorithm guarantees monotonic improvements of the value function in B̃I . Note that

PERSEUS can be executed in parallel by each serving BS, thereby reducing the computation

time.

The basic routine for C-PBVI is given in Algorithm  2 . However, differently from [ 37 ], we

also embed the dual optimization ( 5.35 ) by updating the dual variable λ in line 6. In line  4 ,

we perform one backup operation via PERSEUS (Algorithm  1 ); in line  5 , we compute the new

value function Vn+1(β, I) (based on the new hyperplane sets Q(I)
n+1); in line  6 , we compute

the approximate cost Ēn+1 starting from state (β∗0 , I∗0 ), based on the optimal hyperplane

α∗; this is used in line  7 to update the dual variable λ via projected subgradient descent,

with the goal to solve the dual problem ( 5.35 ) (note that Emax − Ēn+1 is a subgradient

of the dual function, see [ 72 ]): as a result, λn is decreased if the estimated cost Ēn+1 <

Emax, to promote throughput maximization over energy cost minimization, otherwise it is

increased; the algorithm continues until the KKT conditions are approximately satisfied [ 72 ],

i.e., maxI∈I maxβ∈B̃I |Vn+1(β, I)−Vn(β, I)|< εV (i.e., an approximately fixed point of Vn+1 =
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Algorithm 1: function PERSEUS
input : I, B̃I , {Q(i)

n }i∈I , {anαi , αi ∈ Q
(i)
n },∀i ∈ I, λ

1 Init: Ṽn+1(β, I)=−∞,∀β ∈ B̃I ; B̂I ≡ B̃I ; Q(I)
n+1 = ∅

2 Ṽn(β, I)← max
αI∈Q

(I)
n
〈β, α(r)

I − λα
(e)
I 〉, and maximizer (α(r)

β,I , α
(e)
β,I),∀β ∈ B̃I

3 while B̂I 6= ∅ do // Unimproved beliefs
4 Sample β from B̂I (e.g., uniformly)
5 for each action a do
6 I ′=I(a, I); α∗y,a= arg max

α∈Qn
〈BI(y,a,β), α(r)

I′ −λα
(e)
I′ 〉,∀y∈Y

7 α̂∗a=(r(·, I, a), e(·, I, a)) + ∑
u′,y

P(u′, y|·, I, a)(α∗(r)y,a (u′), α∗(e)y,a (u′))

8 Solve Vn+1(β, I)= maxa∈A〈β, α̂∗(r)a −λα̂∗(e)a 〉 and maximizing action a∗ and α̂=α̂∗a∗
9 if Vn+1(β, I) > Ṽn(β, I) then // α̂ improves value

10 Q(I)
n+1 ← Q

(I)
n+1 ∪ {α̂}; an+1

α̂ = a∗ // add α̂ to Q(I)
n+1 and define action

associated with α̂;
11 else // keep previous hyperplane αβ,I
12 α̂ = αβ,I ; Q(I)

n+1 ← Q
(I)
n+1 ∪ {α̂}; an+1

α̂ = anα̂

13 Ṽn+1(β̃,I)←max{〈β̃, α̂(r)−λα̂(e)〉,Ṽn+1(β̃,I)},∀β̃∈B̃I
14 B̂I←{β̃∈B̂I :Ṽn+1(β̃, I)<Ṽn(β̃, I)} // New set of unimproved beliefs

15 return Q(I)
n+1, {an+1

α ,∀α ∈ Q(I)
n+1} // new hyperplanes and associated actions

H̃[Vn] has been determined and PERSEUS converged), Ēn+1 ≤ Emax (primal feasibility

constraint satisfied) and λn|Ēn+1 − Emax|< εE (complementary slackness; note that dual

feasibility λn ≥ 0 is enforced automatically in line  7 ).

After returning the sets of hyperplanes {Q(I)
n+1}I∈I , the associated actions {an+1

α ,∀α ∈

Q(I)
n+1}, and the dual variable λn, the (approximately) optimal action to be selected when

operating under the state (β, I) can be computed as

π∗(β, I) = an+1
α∗ , where α∗ = arg max

α∈Q(I)
n+1

〈β, α(r) − λnα(e)〉,

along with the approximate expected reward and cost via ( 5.37 ).

In Fig.  5.2 , we plot a time-series of the following variables for a portion of an episode

executed under the C-PBVI policy (Algorithms  1 and  2 ) under the numerical setup of Sec-

tion  5.5 , with simulation parameters listed in Table  5.1 : serving BS index Ik, BPI S(Ik)
k
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Algorithm 2: Constrained point based value iteration (C-PBVI)
1 Init: beliefs {B̃i}i∈I ; hyperplanes Q(I)

0 = {(0,0)},∀I ∈ I; optimal actions
a0

(0,0) = HO; value function Vn+1(β, i)=0,∀β∈B̃i,∀i ∈ I; λ0 ≥ 0; stepsize
{γn = γ0/(n+ 1), n ≥ 0}

2 for n = 0, . . . do
3 for each I ∈ I do
4 (Q(I)

n+1, {an+1
α ,∀α ∈ Q(I)

n+1}) = PERSEUS(I, B̃I , {Q(I)
n }I∈I , {anα, α∈Q(I)

n }, λn)
5 Vn+1(β, I)= max

α∈Q(I)
n+1

〈β, α(r) − λnα(e)〉,∀β ∈ B̃I

6 Let Ēn+1 = 〈β∗0 , α
(e)∗
β0,I0〉, where α∗β0,I0= arg max

α∈Q
(I∗0 )
n+1

〈β∗0 , α(r) − λnα(e)〉

7 λn+1 = max{λn + γn(Ēn+1 − Emax), 0}
8 if maxI∈I maxβ∈B̃I |Vn+1(β, I)−Vn(β, I)|< εV , Ēn+1≤Emax and

λn|Ēn+1−Emax|<εE then
9 return {Q(I)

n+1}I∈I, {an+1
α ,∀α ∈ Q(I)

n+1}, λn

and blockage state B(Ik)
k of the serving BS Ik, the action class c∈{DT,BT,HO}, the BT

and DT feedbacks YBT and YDT as defined in ( 5.12 ) and ( 5.23 ). It can be observed in the

figure that, at 0.915s, 0.985s and 1.025s, NACKs (YDT = ∅) are received after executing the

DT action. After each one of these NACKs, the policy executes the BT action. If the BT

feedback YBT 6=∅, then DT is performed; otherwise, blockage is detected and the HO action

is executed.

It should be noted that, although Algorithm  2 returns an approximately optimal design,

it incurs substantial computational cost in POMDPs with large state and action spaces

(hence large number of representative belief points). To remedy this, in the subsequent

section we propose simple heuristic policies, inspired by the behavior of the C-PBVI policy

described earlier and depicted in Fig.  5.2 . These policies will be shown numerically to trade

complexity with sub-optimality and achieve satisfactory performance.

5.4 Heuristic Policies

In this section, we present two heuristic policies, namely a belief-based heuristic (B-

HEU) and a finite-state-machine (FSM)-based heuristic (FSM-HEU) and present closed-form
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Figure 5.2. Execution of policy π∗.

expressions for the performance of FSM-HEU. Similarly to C-PBVI, B-HEU needs to track

the belief β, whereas FSM-HEU is solely based on the current observation signal that defines

transitions in a FSM. For this reason, FSM-HEU has lower complexity than B-HEU, while

achieving only a small degradation in performance (see Section  5.5 ).

5.4.1 FSM-based Heuristic policy (FSM-HEU)

The key idea of FSM-HEU is that it selects actions based solely on a FSM, whose states

define the action to be selected, and whose transitions are defined by the observation signal,

as depicted in Fig.  5.3 and described next. In FSM-HEU, we consider the following actions:
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• the HO action Ak = (HO, ∅, 0, THO) of duration THO;

• the BT action Ak = (BT,SI , SNRBT, TBT) of duration TBT = |SI |+1; in other words, the

serving BS performs an exhaustive search over the entire set of SBPIs, with a fixed SNR

SNRBT (determined offline), followed by feedback;

• the |SI | DT actions (DT, j, SNRDT, TDT), where j ∈ SI ; in other words, the serving BS

performs DT with fixed SNR SNRDT and duration TDT (both determined offline).

For notational convenience, we compactly refer to these actions as HO, BT and (DT, j), j ∈

SI , respectively. Let Ak ∈ {BT,HO} ∪ {(DT, j) : j ∈ SI} be the selected action of the

serving BS I (the state of the FSM at time k), of duration T , and Yk+T be the observation

signal generated by such action, as described in Section  5.2 ; then, the FSM moves to state

Ak+T = AI(Ak, Yk+T ), which defines the next action Ak+T to be selected in the next decision

round. Note that AI defines transitions in the FSM, and the process continues until the

episode terminates.

Let us consider the transitions in the FSM, defined by the function AI , depicted in

Fig.  5.3 . If Ak=BT and the observation signal is Yk+T=j∈SI , then the BS detects the

strongest beam j; hence FSM-HEU switches to DT and uses the DT action Ak+T = (DT, j) =

AI(BT, j) of serving BS I in the next decision round, of duration TDT. On the other hand,

if the observation signal is Yk+T=∅, the BS detects blockage and performs HO to the non-

serving BS, so that the new action is Ak+T=HO=A(BT, ∅) of serving BS I.

If Ak=(DT, j) of serving BS I, i.e., the DT action is executed on beam j, of duration

TDT, and the signal Yk+T=j is observed, then the BS infers that the signal is still sufficiently

strong to continue DT on the same beam, and the same action Ak+T=(DT, j)=AI((DT, j), j)

of the serving BS I is selected again. Otherwise (Yk+T=∅), the BS detects a loss of alignment,

hence the BT action Ak+T=BT=AI((DT, j), ∅) of the serving BS I is executed next.

Finally, if Ak=HO of serving BS I (the HO action is chosen, with observation signal

Yk+T=∅), then the new serving BS I ′ = 1− I executes the BT action Ak+T=BT=AI(HO, ∅)

next. This procedure continues until the episode terminates.
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Figure 5.3. Evolution of the selected action Ak of the serving BS based
on the observation signal Yk+T . Black lines represent the transitions under
both FSM-HEU and baseline policies; blue lines represent transitions under
the FSM-HEU policy only; the red line represents the transition under the
baseline policy only.

The performance of FSM-HEU can be computed in closed form. In fact, Gk=(Uk, Ik, Ak),

i.e., the system state (Uk, Ik) and action Ak, form a Markov chain, taking values from the

state space

G ≡
⋃
I∈I
U × {I} × [{BT,HO} ∪ {(DT, j) : j ∈ SI}]. (5.39)

To see this, note that the observation Yk+T and next state (Uk+T , Ik+T ) (where T is the

duration of the selected action Ak) have joint distribution given by (  5.27 ), which solely

depends on Gk; then, in view of the FSM of Fig.  5.3 , Ak+T = A(Ak, Yk+T ) is a deterministic

function of Ak and Yk+T . The state transition probability is then obtained by computing

the marginal with respect to the observation signal Yk+T , yielding

P
(
G′k+T = (u′, I ′, a′)|Gk = (u, I, a)

)
=

∑
y∈Y:AI(a,y)=a′

[
P (Uk+T=u′, Yk+T=y|Uk=u, Ik = I, Ak=a)P(Ik+T = I ′|Ik = I, Ak=a)

]
.

=
∑
y∈Y

P(u′, y|u, I, a)χ(I ′ = I(a, I))χ(a′ = AI(a, y)). (5.40)
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We remind that P(u′, y|u, I, a) is given by ( 5.28 )-( 5.29 ). Let R̄FSM
tot (g) and ĒFSM

tot (g) be the

total expected number of bits delivered and energy cost under FSM-HEU, starting from state

g. Then, with P(g′|g) defined in ( 5.40 ) and g = (u, I, a),

R̄FSM
tot (u,I,a) = r(u,I,a) +

∑
(u′,I′,a′)∈G

P(u′,I ′,a′|u,I,a)R̄FSM
tot (u′,I ′,a′),

ĒFSM
tot (u,I,a) = e(u,I,a) +

∑
(u′,I′,a′)∈G

P(u′,I ′,a′|u,I,a)ĒFSM
tot (u′,I ′,a′),

where r(·) and e(·) are given by ( 5.30 )-( 5.31 ). We can solve these equations in closed form,

yielding

R̄FSM
tot = (I−PFSM)−1r, ĒFSM

tot = (I−PFSM)−1e, (5.41)

where R̄FSM
tot =[R̄FSM

tot (g)]g∈G, ĒFSM
tot =[ĒFSM

tot (g)]g∈G, r=[r(g)]g∈G, e=[e(g)]g∈G, [PFSM]g,g′=P(g′|g).

5.4.2 Belief-based Heuristic policy (B-HEU)

Unlike FSM-HEU, this policy exploits the POMDP state (βk, Ik) in the decision-making

process. However, B-HEU selects actions in a heuristic fashion as described next, as opposed

to C-PBVI (Algorithm  1 ), which selects actions (approximately) optimally. The decision

making under B-HEU are depicted in the flow chart of Fig.  5.4 . To describe this policy,

let (β, I) be the current POMDP state. Let ΞI(j) be the marginal probability of the UE

occupying the jth BPI with no blockage under the serving BS I, defined as

ΞI(j) ,

∑
(s,b):(sI ,bI)=(j,1)

β(s, b)∑
j′∈SI

∑
(s,b):(sI ,bI)=(j′,1)

β(s, b) . (5.42)

Then, ΛI ,
∑
j∈SI

∑
(s,b):(sI ,bI)=(j,1)

β(s, b) can be interpreted as the probability of no blockage

under the serving BS I. Given these quantities, B-HEU operates as follows, with thresholds

η1, η2 and η3 determined offline: if ΛI < η1, then blockage is detected, hence the HO action is

selected; otherwise (ΛI ≥ η1), let ĵI = arg maxj∈SI ΞI(j) be the most likely BPI occupied by

the UE: if ΞI(ĵI) ≥ η2, i.e., the serving BS I is confident that the UE belongs to BPI ĵI ∈ SI
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Figure 5.4. Flow chart for B-HEU Policy.

and there is no blockage, then the BS performs DT over BPI ĵI , with SNR SNRDT and

duration TDT determined offline. Otherwise (ΛI ≥ η1 and ΞI(ĵI) < η2), the BS is uncertain

on the BPI of the UE, hence it performs BT over the smallest BPI set ŜBT with aggregate

probability greater or equal to η3, defined as

ŜBT , arg min
S⊆SI
|S| s.t.:

∑
j∈S

ΞI(j) ≥ η3. (5.43)

By doing so, it neglects the least likely set of beams whose aggregate probability is less than

η3.

After selecting the appropriate action based on the belief, the next serving BS with

index I ′ = I(a, I) collects the observation Yk+T and updates its belief using (  5.32 ). Note

that, unlike FSM-HEU which performs an exhaustive search during the BT phase, B-HEU

exploits the current belief β to perform BT only on the most likely beams, and therefore

reduces the BT overhead. However, it incurs higher complexity than FSM-HEU, since the

belief needs to be tracked.
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5.5 Numerical results

In this section, we perform numerical evaluations of the proposed policies. We compare

their performance with a baseline policy, which is the same as FSM-HEU except for one key

difference: after executing the DT action, it executes the BT action irrespective of the binary

feedback. In other words, AI((DT, j), Y )=BT,∀Y . Note that, if no blockage is detected, this

baseline mimics the periodic exhaustive search. Its performance can be analyzed in closed

form in a similar fashion as for FSM-HEU (see its FSM representation in Fig.  5.3 ).

The simulation parameters are listed in Table  5.1 . The BSs and UE are both equipped

with uniform planar arrays (deployed in the yz-plane) with M (I)
tx = M

(I)
tx,z×M

(I)
tx,y and Mrx =

Mrx,z ×Mrx,y antennas, respectively. The BS and UE codebooks are based on array steering

vectors, designed to provide coverage to a road segment of length 30m. For numerical

simulation, we adopt a blockage dynamic model independent of the UE location, and with

blockage states of the two BSs independent of each other. This models a worst-case scenario,

where the blockage states of two BSs are independent and they show no correlation with

the current and future UE position. In this case, the blockage transition probability can be

expressed as Bb′|bss′ = B(0)
b′0|b0

B(1)
b′1|b1

. The transition probabilities can be expressed in terms of

average blockage duration D
(I)
0 [s] and steady state blockage probability π(I)

0 as

B(I)
01 = ∆t

D
(I)
0
, B(I)

10 = π
(I)
0

1− π(I)
0

∆t

D
(I)
0
. (5.44)

Using the throughput and power metrics defined in ( 5.33 ), the average spectral efficiency

(bps/Hz) under policy π is expressed as T̄ π/Wtot . We choose the initial BS I = 1 and the

initial belief β∗0(u)=χ(u=u0), where u0=(s0, b0) with s0 denoting the first pair of BS-UE BPI

and b0 = (1, 1) denoting absence of blockage with respect to both BSs.

We define a 2D mobility model for a two lane straight highway with lane separation of

∆lane = 3.7m as depicted in Fig  5.1 . 

5
 The UE position along the road (y-axis) follows a

5
 ↑ The proposed system model and schemes can be used for multi-lane highway with any arbitrary road

shape.
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Table 5.1. Simulation parameters.
Parameter Symbol Value
Number of BS antennas M

(I)
tx 256 = (32× 8)

Number of UE antennas M
(I)
rx 32 = (8× 4)

Number of BS beam |CI | 8
Number of UE beams |F| 8
Slot duration ∆t 100µs
Distance of BS to Rd center D 22m
Lane separation ∆lane 3.5m
BS height hBS 10m
Bandwidth Wtot 100MHz
Carrier frequency fc 30GHz
Noise psd N0 −174dBm/Hz
Noise figure F 10dB
Sidelobe/mainlobe SNR ratio ρ -15dB
Fraction of DT slot for
channel estimation κ 0.01
HO delay THO 1 slot
DT duration TDT {20, 30, 40, 50} slots
Steady state blockage prob. π

(1)
0 , π

(2)
0 0.2

Avg blockage duration D
(1)
0 , D

(2)
0 200ms

UE average speed µv 30m/s
UE speed st. dev. σv 10
UE mobility memory param. γ 0.2
UE lane change prob. q1→2 = q2→1 0.01
Accuracy for Algorithm  2 εE , εV 0.01
B-HEU thresholds (η1, η2, η3) (0.1,0.8,0.60)

Gauss-Markov mobility model and it changes lanes on the road with probability ql→l′ . The

speed Vk and position Xy,k of the UE along the road (y-axis) follow the dynamics

 Vk = γVk−1 + (1− γ)µv + σv
√

1− γ2Ṽk−1,

Xy,k = Xy,k−1 + ∆tVk−1,
(5.45)

where, unless otherwise stated, µv = 30m/s is the average speed; σv = 10m/s is the standard

deviation of speed; γ = 0.2 is the memory parameter; Ṽk−1 ∼ N (0, 1), i.i.d. over slots.

Note that, under this model, the SBPI Sk = (s∗0(Xk), s∗1(Xk)) does not follow Markovian

dynamics, causing a mismatch between the analysis (based on the assumption of Markov

state dynamics) and actual state trajectories (which do not follow Markovian dynamics). In

addition, there is a mismatch between the sectored antenna model used in the analysis and

the actual beamforming gain, which depends on the beam design and the actual AoA and
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Figure 5.5. Convergence of C-PBVI Algorithm  2 .

AoD associated with the current UE position Xk (see ( 5.2 )). This mismatch might cause the

POMDP based policy to underperform. To evaluate the accuracy of our analysis under this

more realistic setting, in the simulations, we show the results corresponding to the analytical

model presented in the paper – where the transition model Ss′|s is estimated from simulations

of 10, 000 trajectories under the Gauss-Markov model ( 5.45 ), as described in Section  5.1.3 

– as well as the results obtained through Monte-Carlo simulation using the array steering

based analog beamforming and the Gauss-Markov mobility model: in this case, the position

Xk is generated as in ( 5.45 ); the beamforming gain is based on the AoA and AoD associated

with UE position Xk (see ( 5.2 )) rather than the sectored antenna approximation used in the

analytical model (see Section  5.1.4 ); the UE’s feedback signal Yk is generated as in (  5.12 );

the belief is then updated using ( 5.32 ); actions are selected according to the policy under

consideration – either based on the belief (C-PBVI and B-HEU policies) or feedback signaling

(FSM-HEU and baseline policies). Table  5.1 summarizes the numerical parameters.
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Figure 5.6. Average spectral efficiency versus average power consumption.
The continuous lines represent the analytical curves based on the sectored
model and synthetic mobility (generated based on the beam transition proba-
bility Sss′ , see Eq. ( 5.5 )), whereas the markers represent the simulation using
analog beamforming and actual mobility.

In Fig.  5.5 , we show the convergence of the C-PBVI Algorithm  2 , which optimizes both

the policy π and the dual variable λ to meet the power constraint P̄ π ≤ P̄avg. It can

be observed that the dual variable λ, expected spectral efficiency R̄n/D̄tot/Wtot, average

power Ēn/D̄tot and Lagrangian function [Vn(β0)+λnEmax]/D̄tot/Wtot converge, and Ēn/D̄tot

converges to the desired average power constraint P̄avg = 16dBm. In Fig.  5.6 , we depict

the average spectral efficiency versus the average power consumption. For the heuristic

policies, we set TDT=10 and SNRBT=SNRDT = SNRpreM
(I)
tx Mrx,∀I ∈ I, where SNRpre,

representing the minimum pre-beamforming SNR, is varied from −12dB to 18dB. 

6
 The

upper-bound shown in the figure is obtained by a genie-aided policy that always executes

DT with perfect knowledge of the state (u, I). It should be noted that this upper-bound is

loose since it is found by assuming perfect state knowledge. The C-PBVI policy π∗ yields the

best performance with negligible performance gap with respect to the upper-bound. It shows

a performance gain of up to 4%, 17% and 38% compared to B-HEU, FSM-HEU and baseline,
6

 ↑ M
(I)
tx Mrx is the peak beamforming gain for array steering based analog beamforming [ 73 ].
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respectively. It is also observed that B-HEU shows 12% performance gain over FSM-HEU.

On the other hand, the baseline scheme yields up to 24% and 15% degraded performance

compared to B-HEU and FSM-HEU, respectively: in fact, it neglects the DT feedback and

instead performs periodic BT, thus incurring significant overhead. We also observe that

the curves, obtained through the proposed analytical model, and the markers, representing

simulation points obtained considering analog beam design and Gauss Markov mobility,

closely match, thereby demonstrating the accuracy of our analysis in realistic settings.

In Fig.  5.7 , we plot the spectral efficiency versus the DT time duration TDT used in

B-HEU, FSM-HEU and baseline schemes. As observed previously, the C-PBVI policy out-

performs B-HEU and FSM-HEU, and all of them outperform the baseline scheme. B-HEU

achieves near-optimal performance with an optimized value of TDT' 70[slots] followed by

FSM-HEU which performs best with TDT' 40. Most remarkably, near-optimal performance

is achieved by B-HEU at a fraction of the complexity of C-PBVI. It is observed that the

spectral efficiency initially improves by increasing TDT due to reduced overhead of BT and

feedback time. However, after achieving a maximum value at an optimal TDT, the spectral

efficiency decreases as TDT is further increased. This is attributed to the fact that during

very large data transmission periods, loss of alignment and blockages are more likely to occur

before the serving BS is able to react to these events. It is also observed that the baseline

scheme achieves peak performance at a much higher value of TDT ' 125[slots]. In fact, since

baseline performs periodic BT, it incurs severe overhead, hence there is a stronger incentive

to reduce the overhead by extending the duration of DT, as opposed to B-HEU and FSM-

HEU which adapt the duration of DT based on the DT feedback signal. In Fig.  5.8 , we

evaluate the impact of mobility and multiple users on blockage dynamics, based on the prob-

abilistic model developed in [ 38 ]: this model defines a relationship between the dynamics of

the blockage process, the number of UEs in the coverage area and their average speed. In

fact, mobile UEs may cause time-varying obstructions of the signal (blockages) which may

severely degrade the performance of vehicular mm-wave systems, especially in dense and

highly-mobile scenarios. In the figure, we plot the total average spectral efficiency versus the

number of users and the mean UE speed. The system performance is evaluated via Monte-

Carlo simulation. Moreover, we assume that the proposed policies are executed in parallel
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Figure 5.7. Average spectral efficiency versus TDT; SNRpre = 18dB.

across multiple UEs, using OFDMA [  68 ] to orthogonalize their transmission resources. It can

be seen that, for all policies, the spectral efficiency decreases as the mean speed increases:

in fact, at higher speed, the UEs not only experience more frequent beam mis-alignments,

but also the frequency of occurrence of blockages is exacerbated. The spectral efficiency also

degrades as the number of UEs increases: in fact, nearby UEs contribute to creating ob-

structions and more frequent blockages, as well as a reduced time duration for the unblocked

intervals. As previously noted, B-HEU achieves the best performance, followed by FSM-HEU

and baseline. Most importantly, the two heuristics B-HEU and FSM-HEU achieve 50% and

25% higher spectral efficiency than the baseline scheme, respectively, demonstrating their

robustness in mobile and dense user scenarios.
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Figure 5.8. Total average spectral efficiency versus number of UEs for differ-
ent UE mean speed µv; σv = 10m/s, SNRpre = 18dB, TDT = 50.
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6. LEARNING AND ADAPTATION IN MILLIMETER-WAVE

COMMUNICATIONS VIA DEEP VARIATIONAL

AUTOENCODERS AND POMDPS

  

Millimeter-wave vehicular networks using narrow-beam communications incur enormous

beam-training overhead. To mitigate it, this chapter proposes a learning and adaptation

framework, in which the dynamics of the communication beams are learned and then ex-

ploited to design adaptive beam-training procedures. Specifically, a dual timescale approach

is proposed: on a long timescale, a recurrent deep variational autoencoder (R-VAE) uses

noisy beam-training observations to learn a probabilistic model of beam dynamics; on a

short timescale, an adaptive beam-training procedure is formulated as a partially observ-

able (PO-) Markov decision process (MDP), and optimized using point-based value iteration

(PBVI) by leveraging beam-training feedback and a probabilistic knowledge of the strongest

beam pair provided by the R-VAE. In turn, beam-training observations are used to refine

the R-VAE via stochastic gradient descent in a continuous process of learning and adap-

tation. It is shown that the proposed R-VAE mobility learning framework learns accurate

beam dynamics: it reduces the Kullback-Leibler divergence between the ground-truth and

the learned beam dynamics model by 86%, with respect to the Baum-Welch algorithm and

by 92% with respect to a naive mobility learning approach that neglects feedback errors.

The proposed dual timescale approach yields negligible loss of spectral efficiency with re-

spect to a genie-aided scheme that operates under error-free feedback and knowledge of the

ground-truth mobility model. Finally, a low-complexity policy is proposed by reducing the

POMDP to an MDP. It is shown that the PBVI-based and MDP-based policies yield a spec-

tral efficiency gain of up to 46% and 37%, respectively, over a policy that scans exhaustively

the likely beam pairs.

 ↑ A version of this chapter is pending publication in IEEE Transactions on Vehicular Technology.
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Figure 6.1. A mobile millimeter wave network.

6.1 System Model

We consider a mobile millimeter-wave network scenario as depicted in Fig.  6.1 . The UE

is moving on the road, covered by multiple roadside base-stations (BSs). At each time, the

UE is connected to one BS, referred to as the serving BS. The BS and UE both use 3D

beamforming with large antenna arrays to achieve highly directional communications. If the

UE exits its serving BS coverage area, a handover is performed to the next BS, at which

point the data/control planes are transferred to the next serving BS. In this chapter, we

restrict the beam alignment and communication design to the UE and its serving BS, as

depicted in the box in Fig.  6.1 .

We consider a time-slotted system: frames of duration Tframe are divided into K slots,

each of duration Tslot , Tframe/K. We assume Tframe ≤ Tb, where Tb is the beam coherence

time, i.e., the time duration over which the BS-UE beams remain aligned. For example,

using the analysis of [ 58 ], Tb'1[s] for a UE velocity of 100[km/h]. Each frame is split into a

beam-training (BT) phase of variable duration, followed by a data transmission (DT) phase

until the end of the frame, as shown in Fig.  6.2 .

The mobility of the UE and of the surrounding propagation environment induce mobility

in the optimal beams that should be used at the transmitter and receiver for data commu-

nication. Since Tframe ≤ Tb, the optimal beam pair is assumed to remain constant during

the entire frame duration, but may change across frames. The goal pursued in this chapter

is to learn these dynamics to enable predictions of the optimal beam pair and reduce the

beam-training overhead.
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Figure 6.2. Beam-training and data transmission phases. Short-timescale
interactions shown with solid arrows; long-timescale interactions are shown by
dashed arrows;

To achieve this goal, in this chapter we propose a learning and adaptation framework

based on a dual timescale approach, depicted as a block diagram in Fig.  6.2 : the short

timescale is the duration of one frame Tframe; the long-timescale refers to the duration of

time during which the UE stays within the BS coverage area, of the order of several hundred

frames. In the long-timescale, the mobility learning module aims to learn the dynamics of the

optimal beam pair induced by the mobility of the UE and of the propagation environment,

based on previous interactions with the UE, and with previous UEs. In the short timescale,

the goal is to maximize the throughput within the frame duration, by optimizing the BT and

DT strategy and by exploiting beam-training feedback as well as prior statistical information

on the optimal beam pair (prior belief) provided by the mobility learning module. To

achieve the desired goals of the dual timescale strategy, we make the following design choices,

depicted in Fig.  6.2 :

1. We model the dynamics of the strongest beam pair index (SBPI) as a Markov process.

The BS leverages the mobility model to provide side information at the start of each

frame, represented as a prior belief over SBPIs (a probability distribution over SBPIs).

2. We formulate a POMDP (Section  6.2 ) that leverages the prior belief to optimize the

decision-making process on the short-timescale, and propose a PBVI algorithm (Section

 6.2.1 ) to find the approximately optimal policy. The policy uses the prior belief over
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the SBPI and BT feedback received within the frame to adaptively select the BT and

DT actions on the short-timescale.

3. We develop an R-VAE-based framework (Section.  6.3 ) to learn the Markov SBPI model,

based on SNR observations acquired during previous interactions (see Fig.  6.2 ) and

collected in the observation buffer.

Next, we describe the signal and channel models.

6.1.1 Channel and Signal Model

Let x∈CLsy be the transmitted signal with E[‖x‖2
2]=Lsy, where Lsy denotes the number

of symbols transmitted. The signal received at the UE in frame t ∈ N and slot k ∈ K ,

{0, 1, . . . , K − 1} within the frame is expressed as

yt,k =
√
Pt,kfHt,kHt,kct,kx + wt,k, (6.1)

where Pt,k is the average transmit power of the BS; ct,k∈CMtx×1 and ft,k∈CMrx×1 are unit-

norm beamforming vectors at the BS and UE, with Mtx and Mrx antennas, respectively;

wt,k ∼ CN (0, σ2
wI) is the additive white Gaussian noise (AWGN), with variance σ2

w. In this

chapter, we adopt the diffused multipath channel model with one dominant line of sight

(LOS) path, used also in our previous work [  7 ], expressed as

Ht,k=
√
MtxMrxht,kdrx(θt)dtx(φt)H︸ ︷︷ ︸

Ht,k,LOS

+
NDIF∑
l=1

√
MtxMrxh̃t,k,ldrx(θ̃t,k,l)dtx(φ̃t,k,l)H︸ ︷︷ ︸

Ht,k,DIF

, (6.2)

where ht,k ∼ CN (0, σ2
h,t) is the complex gain of the LOS component, with σ2

h,t = 1/`t;

`t = [4π/λc]2d2
t is the path loss as a function of the UE-BS’s distance dt; θt and φt are

the angle of arrival (AoA) and of departure (AoD) of the LOS path (azimuth and elevation

angles), respectively. dtx(φ) and drx(θ) are the array response vectors of the BS and UE

antenna arrays, respectively; h̃t,k,l, θ̃t,k,l and φ̃t,k,l denote the complex channel gain, AoA

and AoD of the lth diffused multipath component, respectively. Note that dt, θt and φt may
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evolve across frames as a result of mobility of the UE and of the surrounding propagation

environment, however, they remain fixed during the frame duration, as subsumed by the

assumption Tframe ≤ Tb discussed earlier. On the other hand, ht,k is i.i.d over the frame

slots. We model Ht,k,DIF as zero mean Gaussian with i.i.d entries (over slot indices and

antenna elements), each with variance σ2
DIF. Experimental studies in [ 59 ] demonstrated that

the diffused multipath components are much weaker than the LOS path (up to 100× weaker

at a BS-UE distance of only 10 meters), so that σ2
DIF�σ2

h,t. Let `(x), φ(x) and θ(x) be the

pathloss, AoD and AoA of the LOS path when the UE is in position x ∈ X within the cov-

erage are X of the BS. Let Xt be the UE’s position in frame t, Gtx(c, x)=Mtx|dtx(φ(x))Hc|2

and Grx(f , x)=Mrx|drx(θ(x))Hf |2 be the beamforming gains of the BS and UE, respectively,

with respect to the LOS path, and Θt,k=6 dtx(φ(Xt))Hct,k + 6 fHt,kdrx(θ(Xt)) be the unknown

phase of the overall gain. Then, the received signal is expressed as

yt,k=
√
Pt,k

[
ht,k

√
Gtx(ct,k, Xt)Grx(ft,k, Xt)ejΘt,k+Ωt,k

]
xt,k + wt,k, (6.3)

where Ωt,k , fHt,kHt,k,DIFct,k ∼ CN (0, σ2
DIF) is the contribution due to the diffuse multipath

channel components. The SNR averaged over the fading coefficients is then given as

SNRt,k=
Pt,k
σ2
w

[
Gtx(ct,k, Xt)Grx(ft,k, Xt)

`(Xt)
+ σ2

DIF

]
. (6.4)

6.1.2 Codebook Structure

The BS and UE both use pre-designed analog beamforming codebooks, denoted by

C,{c1, . . . , c|C|} and F,{f1, . . . , f|F|}, respectively. Let V,C × F denote the joint code-

book containing all possible beamforming codeword pairs of the BS and UE. These are

indexed by the beam pair index (BPI), taking values from S , {1, 2, . . . , |C||F|}. We denote

the jth beam pair by (c(j), f (j)) ∈ V . Let G(j, x) , Gtx(c(j), x)Grx(f (j), x) be the beam-

forming gain achieved under the jth BPI with the UE in position x. Similarly to [ 7 ], we
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define the strongest BPI (SBPI) at a given UE’s position x as the one achieving maximum

beamforming gain,

s∗(x) , arg max
j∈S

G(j, x). (6.5)

It follows that the optimal beam pair that should be used in the tth frame to carry out the

data communication is the one indexed by s∗(Xt), based on the current UE’s position Xt.

6.1.3 Sectored Antenna Model

In this chapter, we use the sectored antenna model to approximate the beamforming

gain [  4 ], [ 7 ], [ 41 ], which provides an analytically tractable yet valuable approximation of

the actual beam pattern, as demonstrated in our numerical evaluations in Section  6.4 . We

partition the coverage region X into |S| regions {Xj, j ∈ S}, where Xj = {x ∈ X : s∗(x) = j}

is the set of positions (possibly, empty) in which the SBPI is j. We denote the condition

x ∈ Xj as the alignment condition along BPI j; conversely, we denote the condition x /∈ Xj as

the misalignment condition along BPI j. Consider the BPI j. Under the alignment condition

(i.e., x ∈ Xj), we approximate the SNR as

SNRalign=Pj
σ2
w

[
Υj+σ2

DIF

]
(6.6)

where Υj = minx∈Xj G(j, x)/`(x). Note that (  6.6 ) also gives the transmit power Pj required

to achieve a certain target SNR SNRalign along the BPI j, under the alignment condition.

On the other hand, under the misalignment condition x /∈ Xj, we model the mis-aligned

SNR as

SNRmisalign ≤ ρSNRalign, (6.7)

where ρ � 1 is the ratio of the worst-case misaligned SNR and aligned SNR. In this case,

data transmission is in outage since ρ� 1. Let St , s∗(Xt) denote the current SBPI. With

these definitions, the achieved SNR is only a function of whether the alignment is achieved
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or not with the current choice of the BPI j: if j = St is the selected BPI, then alignment

is achieved, and the received is SNR SNRalign; in contrast, if j 6= St, then misalignment is

achieved, and the received SNR is SNRmisalign.

6.1.4 Strongest Beam Pair Index Dynamics

The UE mobility along the road and/or temporal environment changes induce tempo-

rally correlated dynamics on the SBPI St, which can be exploited to reduce the training

overhead. We assume that the process {St, t ≥ 0} is stationary Markovian. We will demon-

strate numerically in Section  6.4 that this assumption yields a good approximation of non-

Markovian dynamics (for instance, a vehicle moving at constant speed along a road). Let

p(s′|s) , P(St+1=s′|St=s),∀s ∈ S,∀s′ ∈ S̄ be the one-frame transition probability from the

current SBPI s to the next SBPI s′. Here, S̄ , S ∪{s̄} includes the additional state s̄, which

indicates that the UE has moved out of the coverage area of the BS and can no longer be

served. In practice, the transition model p(·|·) is not known a-priori and has to be estimated

using the history of observation (BT/DT actions and their feedback) sent to the BS from the

UE. This represents a departure from our previous work [ 7 ], which assumed prior knowledge

of p(·|·).

A straightforward approach to estimate p(·|·) is to use the detected SBPI obtained during

the BT procedure (e.g., exhaustive search) to generate a sequence {(ŝt, ŝt+1), t ∈ Tsound} of

SBPIs’ transitions recored at time frames t ∈ Tsound. Then, p(·|·) may be estimated as

p̂(s′|s) =
∑
t∈Tsound 1[ŝt = s, ŝt+1 = s′]∑

t∈Tsound 1[ŝt = s] , ∀s ∈ S, s′ ∈ S̄, (6.8)

where 1[·] is the indicator function. However, transition models estimated with this approach,

which we term naive mobility learning, suffer from errors in the detected SBPI ŝt caused

by noise and beam imperfections. The design of estimation procedures that are robust

against measurement noise and beam imperfections is developed in Section  6.3 using a novel

technique based on recurrent variational auto-encoder (R-VAE).
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6.1.5 Beam-Training (BT) and Data Transmission (DT)

We now introduce the BT and DT operations. As shown in Fig.  6.2 , each frame comprises

a BT phase of variable duration and a DT phase for the remainder of the frame. In the

following, we outline the BT and DT phases and describe the feedback model.

BT phase: Within the BT phase, the BS selects and executes a sequence of BT actions.

For each BT action, a set of BPIs Ŝ⊆S is first chosen; then, a sequence of beacons x are sent

in sequence over |Ŝ| slots, using one slot for each BPI j∈Ŝ, during which the BS transmits

using the beamforming vector c(j), while the UE receives synchronously using the combining

vector f (j). After the sequence of beacons have been transmitted, an additional slot is used

for feedback from the UE back to the BS, so that the overall duration of the BT action Ŝ is

L,|Ŝ|+1. The feedback signal is generated as follows, similarly to [ 7 ]. Letting ij be the slot

index over which BPI j ∈ Ŝ is transmitted, the UE process the received signal yt,ij using a

matched filter as

Γ(j)
t ,

|xHyt,ij |2

σ2
w‖x‖2

2
, (6.9)

which represents an estimate of the SNR when BPI j is used.

Upon collecting the sequence {Γ(j)
t , ∀j ∈ Ŝ}, the UE detects the BPI with strongest signal

as

Y =


j∗ , arg maxj∈̂̂S Γ(j)

t , maxj∈Ŝ Γ(j)
t > η,

∅, maxj∈Ŝ Γ(j)
t ≤ η.

(6.10)

In other words, if all the SNR estimates are smaller than a threshold η, Y=∅ indicates that

no beam pair in Ŝ is aligned. Otherwise, Y=j∗ indicates the index of the SBPI detected.

The feedback signal is then sent back to the BS.

The probabilistic analysis of the BT feedback can be carried out as in [ 7 ], where closed-

form expressions of P(y|s, Ŝ) are derived. Herein, we briefly describe the BT feedback dis-

tribution, without providing explicit expressions. Let Ŝ be the BT action selected. Then,

when the BPI j ∈ Ŝ is scanned, the corresponding matched filter output Γ(j)
t has exponential
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distribution with mean 1 + SNRalign if St = j or 1 + SNRmisalign if St 6= j. The feedback

distribution P(Y = y|St = s, Ŝ) can then be derived in closed form [  7 ] for the two cases

St ∈ Ŝ or St /∈ Ŝ. In particular, for the case when St ∈ Ŝ, the closed-form expressions of

the probability of mis-detection P(Y = ∅|St = s, Ŝ, s ∈ S) , pmd(η, |Ŝ|, SNR) and the prob-

ability of correct detection P(Y = s|St = s, Ŝ, s ∈ S) , pcorrect(η, |Ŝ|, SNR) can be derived

in closed-form, each as function of threshold η, number of BPIs |Ŝ| and target SNR SNR.

Then, the probability of incorrect detection is computed by using the fact that incorrect

detection is i.i.d among |Ŝ|−1 BPIs in Ŝ \ {s}, as follows

P(Y ∈ Ŝ \ {s}|St = s, Ŝ, s ∈ S) , 1− pcorrect(η, |Ŝ|, SNR)− pmd(η, |Ŝ|, SNR)
|Ŝ|−1

(6.11)

On the other hand, for the mis-aligned case (St 6∈ Ŝ), the probability of making no false-

alarm P(Y = ∅|St = s, Ŝ, s 6∈ S) , 1 − pfa(η, |Ŝ|, SNR) can be computed in closed-form as

function of the threshold η, number of BPIs |Ŝ|, and target SNR SNR. Then, the probability

of making false alarm to any BPI in Ŝ is computed as

P(Y ∈ Ŝ|St = s, Ŝ, s 6∈ S) , pfa(η, |Ŝ|, SNR)
|Ŝ|

(6.12)

For any given target SNR SNR and number of SBPI scanned |Ŝ|, the threshold η is deter-

mined by enforcing the total false alarm probability equal to the total misdetection proba-

bility and solving for η, yielding

pmf(|Ŝ|, SNR) = pmd(η∗, |Ŝ|, SNR) = pfa(η∗, |Ŝ|, SNR), (6.13)

where η∗ is solution to pmd(η, |Ŝ|, SNR) = pfa(η, |Ŝ|, SNR). We omit the exact analysis of

the feedback due to space constraint and can be found in [ 7 ]. In the next section, we present

the POMDP, which exploits the feedback model.

DT phase: At the start of the DT phase, the BS chooses a BPI ŝDT. Data transmission

then occurs with a fixed rate R until the end of the frame, by having the BS transmit with
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beamforming vector c(ŝDT) and the UE receive with combining vector f (ŝDT). If St 6= ŝDT,

the selected BPI ŝDT is mis-aligned, resulting in communication outage; otherwise (St=ŝDT,

i.e., the selected BPI ŝDT is aligned) from the signal model (  6.3 ), we find that a successful

transmission occurs if

R < Wtot log2(1 + |ht,k|2`(Xt)SNRalign), (6.14)

where Wtot is the bandwidth. Then, using the fact that ht,k ∼ CN (0, σ2
h,t), the success

probability

Psucc=P
(
|ht,k|2`(Xt)>

2R/Wtot−1
SNRalign

)
=1− exp

{
− 2R/Wtot − 1

SNRalign

}
, (6.15)

and the expected throughput per slot R̄ = PsuccR.

6.2 Short Timescale: Adaptive BT via Point-based Value iteration

This section introduces the POMDP and proposes an efficient PBVI algorithm to deter-

mine an approximately optimal BT and DT policy within the frame duration. The individual

components of the POMDP are defined as follows.

Time horizon: K = {0, 1, . . . , K − 1} denotes the time horizon of the decision period,

corresponding to the frame duration (K slots per frame).

State space: the set of BPIs S; the state at frame t is the unobserved SBPI St ∈ S,

which remains constant during the frame duration, but may change from one frame to the

next according to the transition model p(·|·) (see Sec.  6.1.4 ).

Prior belief βt,0: the probability mass function of the SBPI St available at the beginning

of the frame, before BT is executed, so that βt,0(s) = P(St = s). The prior belief βt,0 is

provided by the mobility learning module discussed in Sec.  6.3 .

Action space: In slot k within the frame, the BS selects whether to perform BT or DT.

If DT is selected, then the BS also selects the BPI ŝDT ∈ S used for data communication

for the remainder of the frame; the DT action space is then ADT ≡ S. Otherwise (BT is

selected), the BS selects a set of BPIs Ŝ to scan; since the duration of this action is L,|Ŝ|+1,
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the selected action must be such that |Ŝ|≤ K − 1− k, so that the BT action space in slot k

is given by

ABT,k ≡ {Ŝ ⊆ S : |Ŝ|≤ K − 1− k}.

Note that if a DT action is selected, it is used until the end of the frame, so that the decision

period terminates; otherwise, when a BT action of duration L is chosen at time k, the next

decision is taken in the slot k + L.

Observation model: After taking a BT action Ŝ, the BS observes the feedback signal

Y , taking value from the observation space Y , Ŝ ∪ {∅} as described in Section  6.1.5 .

Reward: we measure the reward as the expected number of data communication bits

successfully delivered to the UE. Hence, under a BT action, no reward is accrued. On the

other hand, if the DT action ŝDT ∈ S is selected in slot k ∈ K, with St = s being the ground

truth SBPI, then the reward accrued is

rk(s, ŝDT) = (K − k)TslotR̄ · 1[s = ŝDT], (6.16)

i.e., it is zero if the SBPI is detected incorrectly (s 6= ŝDT), otherwise it is equal to the total

expected throughput delivered during the remaining frame duration K − k.

Belief Update: Since the SBPI S ∈ S is not observable, we use the belief β over S ∈ S

as a POMDP state. The belief is the probability distribution over s ∈ S, given the history

of actions and observations from the beginning of the current frame until the current slot.

Initially, βt,0 is the prior belief at the beginning of the frame, provided by the mobility

learning module. Let βt,k be the belief in slot k. This is updated whenever BT observations

are received. If a DT action is taken in slot k, then it is executed until the end of the frame,

so that a belief update is not required in this case and βt,` = βt,k, ∀` = k, . . . , K. Otherwise,

consider the BT action Ŝ of duration L taken in slot k. Since the corresponding feedback

signal is received at the end of slot k+L−1, no belief updates occur in slots k, . . . , k+L−1,
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hence βt,` = βt,k, ∀` = k, . . . , k + L − 1. Upon receiving the feedback signal Yk+L−1 = y at

the end of slot k + L− 1, the BS updates the belief in slot k + L based on Bayes’ rule as

βt,k+L(s) = βt,k+L−1(s)P(y|s, Ŝ)∑
j∈S βt,k+L−1(j)P(y|j, Ŝ)

, ∀s ∈ S, (6.17)

where P(y|s, Ŝ) is the feedback distribution given in Section  6.1.5 . We define the belief

update via the mapping B(β, y, Ŝ), so that βt,k+L = B(βt,k+L−1, Yk+L−1, Ŝ), expressed as the

function of the previous belief βt,k+L−1, feedback Yk+L−1 and BT action Ŝ. At the end of the

frame, with βt,K computed with the procedure described above, the prior belief for the next

frame can be computed by the mobility learning module using the learned transition model

p̂(·|·) as

βt+1,0(s′) =
∑
s∈S

p̂(s′|s)βt,K(s),∀s′ ∈ S, (6.18)

so that the POMDP optimization can be carried out in the next frame, and so on. Estimat-

ing the transition model p(·|·) accurately is critical to achieve good performance, as shown

numerically in Section  6.4 . In fact, a poor estimate of p̂(·|·) may lead to inaccurate predic-

tions of the SBPI, resulting in increased BT overhead and decreased spectral efficiency. To

address this challenge, in Section  6.3 , we will propose a state-of-art estimation of the mobility

model based on R-VAE. Policy: a mapping from the current belief βk to a BT or DT action.

We break the policy into two steps. First, given βk, the BS decides whether to perform BT

or DT based on the policy µk(βk), representing the probability of choosing DT in slot k. If

DT is selected, then the BS further selects the DT action ŝDT ∈ S according to a policy

∆k(βk), which is executed until the end of the frame; otherwise (BT selected, with proba-

bility 1− µk(βk)), the BS selects a BT training set according to the policy Σk(βk) ∈ ABT,k.

In this case, with L = |Σk(βk)|+1 being the BT action duration, the next action is chosen

in slot k + L, and so on until the end of the frame.
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6.2.1 Optimization Problem

In this section, we present the optimization problem and a computationally efficient value

iteration algorithm to solve the problem. We want to design a policy π = (µ,∆,Σ) which

dictates whether to perform BT or DT and, if BT is chosen, it selects the BT set, with the

goal to maximize the expected frame spectral efficiency. Let kDT ∈ {0, 1, . . . , K} be the slot

when the DT action ŝDT is selected (if no DT action is selected within the frame, we let

kDT = K). Then, the frame spectral efficiency is defined as

Tfr(St) = 1
TframeWtot

rkDT(St, ŝDT) = R̄

Wtot

(
1− kDT

K

)
· 1[St = ŝDT],

where 1 − kDT
K

represents the loss of efficiency due to the BT overhead. The optimization

problem is then stated as

P1: max
π

Eπ [Tfr(St)|βt,0] , (6.19)

where the expectation is conditional on the prior belief βt,0 under the sequence of actions

dictated by policy π = (µ,∆,Σ). This optimization can be carried out using the value

iteration algorithm [  36 ]. We define recursively the value function in slot k under belief βt,k
and policy π = (µ,∆,Σ) as V π

K(β) = 0 and, ∀k = 0, . . . , K − 1,

V π
k (β) = µk(β) R̄

Wtot

(
1− k

K

)
β(∆k(β)) (6.20)

+ [1− µk(β)]
∑
s∈S

β(s)
∑
y∈Y

P(y|s,Σk(β))V π
k+|Σk(β)|+1(B(β, y,Σk(β))). (6.21)

In fact, if a DT action is selected, with probability µk(β), then the reward is R̄
Wtot

(
1− k

K

)
until the end of the frame, as long as beam aligned is achieved, St = ∆k(β) with probability

β(∆k(β)). On the other hand, if a BT action is selected, with probability 1−µk(β), then the

BT set Σk(β) is chosen and no reward is collected; since this action has duration |Σk(β)|+1,

the future value function is taken at time k + |Σk(β)|+1, and the belief is updated based

on the observation collected using the mapping B. The optimal value function (V ∗k ) is
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obtained by maximizing with respect to the BT and DT actions, yielding V ∗K(β) = 0 and,

∀k = 0, . . . , K − 1,

V ∗k (β)= max
 R̄

Wtot

(
1− k

K

)
max
ŝDT

β(ŝDT), max
Ŝ∈ABT,k

∑
s∈S

β(s)
∑
y∈Y

P(y|s, Ŝ)V ∗
k+|Ŝ|+1(B(β, y, Ŝ))

,
(6.22)

yielding the optimal decision between DT or BT action (maximizer of the outer max), the

optimal DT action (maximizer of the first inner max) and the optimal BT set (maximizer of

the second inner max). Since the value function is piecewise linear [ 36 ], it can be expressed

using a finite set of |S|-dimensional hyperplanes Qk = {α(`)
k }

Mk
`=1 ⊂ R|S| of cardinality Mk:

V ∗k (β) = max
α∈Qk
〈β, α〉 (6.23)

where 〈β, α〉 = ∑
s∈S β(s)α(s). Since V ∗K(β) = 0, it follows that QK = {0} with cardinality

MK = 1 and, for k = 0, . . . , K − 1, the set of hyperplanes is recursively computed as [ 36 ]

Qk ≡ ∪|S|i=1

{
R̄

Wtot

(
1− k

K

)
ei
}⋃
∪Ŝ∈ABT,k

∑
y∈Y

P(y|·, Ŝ)� α(y) : [α(y)]y∈Y ∈ Q|Y|k+|Ŝ|+1

 ,
(6.24)

where ei is the vector with entries equal to zero except in position i where ei(s) = 1, and

c = a� b is the vector with entries c(i) = a(i)b(i), ∀i. Note that in ( 6.24 ), the hyperplane

of the form R̄
Wtot

(
1− k

K

)
ei correspond to DT action i ∈ ADT. On the other hand, the

hyperplanes of form ∑
y∈Y P(y|·, Ŝ)� α(y) correspond to BT action Ŝ ∈ ABT,k, where α(y) is

the hyperplane corresponding to the future action at the slot k + |Ŝ|+1.

Note that in exact value iteration, the cardinality of Qk, Mk is shown to grow doubly

exponentially with iteration k, i.e., Mk = O(|ADT|+(|ABT,k|)|Y|
K−k−1), thereby making it

computationally intractable to use for a reasonable size task. To address this computational

challenge, approximate value iteration techniques are proposed in the POMDP literature
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[ 36 ]. In the next subsection, we present one such approach, called point-based value iteration

(PBVI).

6.2.2 Point-Based Value Iteration

The key idea behind PBVI is to restrict the backup operation defined in ( 6.24 ) to a finite

set of belief points B̃, rather than the entire belief space, where B̃ is chosen as representative of

the entire belief-space B. 

1
 In other words, given the Ṽk+1, . . . , ṼK , the PBVI algorithm builds

an approximation Ṽk = H̃[Ṽk+1, . . . , ṼK ]. To achieve this, the PBVI algorithm recursively

constructs a set of hyperplanes Qk and the associated actions aα,∀α ∈ Qk, for each k ∈ K

through value iteration. Starting from QK = {0}, the set of hyperplanes is computed similar

to ( 6.24 ), with one key difference that hyperplanes are pruned since the PBVI is restricted

to the set B̃ only. To this end, the hyperplanes which maximize the value function for β ∈ B̃

are only included in hyperplane set Qk, ∀k. Given, this set of hyperplanes Qk, the value

function V ∗k (β),∀β ∈ B is approximated as

Ṽk(β) = max
α∈Qk
〈β, α〉, (6.25)

where 〈β, α〉 , ∑
s∈S = β(s)α(s) is the inner prod between β and α. The approximately

optimal policy is given as

π̃k(β) = aα∗
k
, α∗k = arg max

α∈Qk
〈β, α〉. (6.26)

In other words the policy π̃k chooses that action aα∗
k

associated with the hyperplane α∗k,

which maximizes the value function in ( 6.25 ).

The back operator of the PBVI is by Algorithm  3 , which takes as input k ∈ K and

the set of belief points B̃, and all previously computed sets of hyperplanes {Qk+1, . . . ,QK}

and returns the set of hyperplane Qk and the associated actions {a(k)
α : α ∈ Qk}. To this

end, for each belief β ∈ B̃, a hyperplane is computed in lines  3 – 12 . In particular, lines

 4 compute hyperplane corresponding to optimal DT action ∆∗ (computed in line  3 ). In
1

 ↑ B̃ is selected deterministically to uniformly cover the entire belief space.
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lines  5 – 7 , the BT hyperplane corresponding to the optimal BT action is computed. In

particular, line  5 computes hyperplane for future value function for each action Ŝ ∈ ABT,k

and each possible observation y ∈ Y ; line  6 performs the backup operation to determine the

hyperplane αŜ for each BT action Ŝ ∈ ABT,k; line  7 finds the optimal BT hyperplane α̂BT

for the belief β and the associated optimal BT action Σ∗. Line  8 determines the probability

of DT µ∗ = 1[〈β, α̂DT〉 ≥ 〈β, α̂BT〉]. In lines  9 – 12 , depending on µ∗, either the optimal DT

hyperplane or the optimal BT hyperplane is added to the set of hyperplane Qk. If µ∗ = 1

(DT is optimal) α̂DT is added to Qk; otherwise α̂BT is added to Qk. Note that at most

one hyperplane, which maximizes the value function for each β ∈ B̃ is added to the set of

hyperplane Qk. Therefore, unlike the exact value iteration, in the PBVI, the cardinality of a

set of hyperplanes |Qk|≤ |B̃| does not grow beyond |B̃|, yielding a linear-time value iteration

algorithm.

The overall PBVI algorithm is given in Algorithm  4 , which takes as input the discrete set

of belief points B̃, frame duration K [slots]. For each k ∈ K, it applies the backup operator

of the PBVI (Algorithm  3 ) to find the set of hyperplane Qk and action associated with each

hyperplane {a(k)
α : α ∈ Qk}. The algorithm terminates in K steps and returns the sets of

hyperplanes for each k ∈ K and associated actions.

6.2.3 Low-Complexity Policy Design

Although the PBVI algorithm finds an approximately optimal policy, it may incur a high

computational complexity, especially for high dimensional belief spaces. In this section, we

propose an MDP policy based on the assumption of error-free feedback to overcome this

computational challenge. This case can be cast as a special case of the POMDP, where the

BT observations have distribution

P(y|s, Ŝ) =


1[y = s], ∀s ∈ Ŝ

1[y = ∅], ∀s /∈ Ŝ.
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Algorithm 3: backup method
input : k, B̃, {Qk+1, . . . ,QK}

1 init: Qk = {}
2 for each β ∈ B̃ do
3 ∆∗ = arg maxi∈S〈β, αDT,i〉, where αDT,i , R̄

Wtot

(
1− k

K

)
ei,∀i ∈ S

4 α̂DT = αDT,∆∗

5 α′Ŝ,y = arg maxα∈Qk+La
〈B(β, y, Ŝ), α〉, ∀Ŝ ∈ ABT,k,∀y ∈ Y

6 αŜ = ∑
y∈Y P(y|·, Ŝ)� α′Ŝ,y,∀Ŝ ∈ ABT,k

7 Σ∗ = arg maxŜ∈ABT,k
〈β, αŜ〉, α̂BT = αΣ∗

8 µ∗ = 1[〈β, α̂DT〉 ≥ 〈β, α̂BT〉]
9 if µ∗ = 1 then

10 Qk ← Qk ∪ {α̂DT}
11 else
12 Qk ← Qk ∪ {α̂BT}

13 a
(k)
α̂ = (µ∗,∆∗,Σ∗)

14 return Qk, {a(k)
α : α ∈ Qk}

Algorithm 4: PBVI Algorithm
input : Belief set B̃, frame duration K

1 init: QK = {0}
2 for k = K − 1, . . . , 0 do
3 Qk, {a(k)

α : α ∈ Qk} = backup(k, B̃, {Qk+1, . . . , QK})
4 Ṽk(β) = maxα∈Qk β · α, ∀β ∈ B̃
5 return {Qk : k ∈ K}, {{a(k)

α : α ∈ Qk} : k ∈ K}

The belief update in ( 6.17 ) under the BT action Ŝ of duration L = |Ŝ|+1 is then specialized

as follows: under the observation y = ∅,

βk+L(s) = βk+L−1(s)∑
j /∈Ŝ βk+L−1(j)1[s /∈ Ŝ] (6.27)

and for y ∈ Ŝ as

βk+L(s) = 1[y = s]. (6.28)
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Since the short-timescale optimization is independent of frame index t, we drop the subscript

t for notational simplification. Under such belief updates, it can be shown that the belief

βk is expressed as a function B̂(β0,Uk) of the prior belief β0 and the support Uk of βk. This

function is defined as follows

βk(s) = β0(s)∑
j∈Uk β0(j)1[s ∈ Uk], ∀s ∈ S. (6.29)

For any BT action of length L ≥ 2 executed in slots k, . . . , k+L−1, since the corresponding

feedback signal is received at the end of slot k + L − 1, no support updates occur in slots

k, . . . , k + L − 1, hence U` = Uk, ∀` ∈ {k, . . . , k + L − 1}. The support is updated at the

start of slot k + L following the rule U(Uk+L−1, Ŝ, y), defined as

Uk+L , U(Uk+L−1, Ŝ, y) =


Uk+L−1 \ Ŝ, y = ∅

{s}, y = s.

(6.30)

Given the prior belief β0, the support Uk is sufficient statistics for the belief βk. Therefore,

we express the value function as a function of the support and the prior belief as follows.

For a given a given prior belief β0, let V̂β0,k(Uk) , KWtot
R̄

V ∗k (B̂(β0,Uk)) as the normalized

value function expressed as a function of the support Uk. Based on the support, the action-

space can also be refined as follows. It can be shown any BT action Ŝ 6⊂ Uk and any DT

action ŝDT 6∈ Uk are suboptimal. Therefore, by excluding these suboptimal actions from the

action-space, we redefine the BT and DT action-spaces as follows

ABT,k(U) ≡ {Ŝ ⊂ U : 1 ≤ |Ŝ|≤ K − k − 1}, ADT(U) ≡ U (6.31)

The value iteration algorithm in ( 6.22 ) can thus be specialized to

V̂β0,k(U) = max
{

(K − k)maxŝDT∈U β0(ŝDT)∑
j∈U β0(j) , max

Ŝ∈ABT,k(U)
V̂

(BT)
β0,k (U , Ŝ)

}
, (6.32)
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where the first term in ( 6.32 ) corresponds to reward if DT is performed and the second term

in ( 6.32 ) corresponds to expected value function if BT is performed (maximized over all BT

actions Ŝ ∈ ABT,k(U)). V̂
(BT)
β0,k (U , Ŝ) is the value function under BT action Ŝ ∈ ABT,k(U),

defined as

V̂
(BT)
β0,k (U , Ŝ) , E

[
V̂β0,k+|Ŝ|+1(U)|U , Ŝ

]
= 1∑

j∈U β0(j)

∑
s∈Ŝ

β0(s)V̂β0,k+|Ŝ|+1({s}) +
∑

s∈U\Ŝ

β0(s)V̂β0,k+|Ŝ|+1(U \ Ŝ)

 , (6.33)

where the first and second terms in ( 6.33 ) correspond to receiving Y = s ∈ Ŝ and Y = ∅,

respectively. Note that V̂β0,K(U) = 0,∀U ⊆ S trivially since the frame ends at k = K.

Moreover, for singleton support, no BT action is optimal, yielding V̂β0,k(U) = K − k,∀|U|=

1,∀k ∈ K.

6.2.4 Structural Properties and Value Iteration

This section presents the structural properties for the MDP and provides an optimal

value iteration to solve the MDP. In the following theorem, we prove that the optimal BT

action should scan the most likely BPI according to the belief. This result may not hold for

the POMDP since the uncertainty cannot be completely removed after scanning a beam.

Theorem 6.1. Let β0 be any prior belief with support U0 ⊆ S. Then, in each state U ⊆ U0,

the optimal BT action contains m most likely BPIs from U , given as

Ŝ[m] = arg max
Ŝ⊂U :|Ŝ|=m

∑
s∈Ŝ

β0(s), (6.34)

where m∗ is selected to maximize the BT value function, i.e.,

m∗ = arg max
m∈Mk(|U|)

V̂
(BT)
β0,k (U , Ŝ[m]), (6.35)

and Mk(|U|) , {1, . . . ,min{|U|−1, K − k − 1}} is the set of feasible number of BPIs. In

other words, the optimal BT action Ŝ∗ = Ŝ[m∗].
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Proof. The proof is provided in Appendix  8.G .

The above theorem implies that optimal BT is performed by scanning the m ∈Mk(|Uk|)

most likely BPIs from the support Uk based on the prior belief shape β0, where the optimal

m is chosen to maximize the BT value function. Therefore, we can restrict the action-space

for a given prior belief shape and support as

ABT,k(β0,U) =
Ŝ[m] : Ŝ[m] = arg max

Ŝ⊂U :|Ŝ|=m

∑
s∈Ŝ

β0(s),∀m ∈Mk(|U|)
 ,

ADT(β0,U) =
{
ŝDT : ŝDT = arg max

s∈U
β0(s)

}
(6.36)

Based upon the restricted action-space in ( 6.36 ), we can simplify the state-space. To this

end, we show that the state for a given prior belief can be represented by a 2D vector in the

following Corollary.

Corollary 6.1. Let β0 be prior belief with prior support U0 = {u0, . . . , u0 + w0 − 1} of

cardinality w0, so that β0(u0) ≥ β0(u0 + 1) ≥ · · · ≥ β0(u0 + w0 − 1) > 0. Then, under any

BT action BT, Ŝ[m] ∈ Aβ0,k(Uk), the support can be expressed as Uk = {uk, . . . , uk+wk−1},

where uk ∈ U0 is the most likely BPI (ML-BPI) in Uk and wk , |Uk|. After executing

Ŝ[m] ∈ ABT,k(β0,U) in slots k, . . . , k+L− 1, (uk, wk) is updated upon receiving the feedback

Yk+L−1 as follows:

(uk+L, wk+L) =


(uk+L−1 +m,u0 + w0 − uk+L−1 −m), Yk+L−1 = ∅

(s∗, 1), Yk+L−1 = s∗ ∈ Ŝ[m],
(6.37)

where (u`, w`) = (uk, wk),∀` ∈ {k, . . . , k + L− 1}.

Proof. The proof is provided in Appendix  8.H .

The above corollary implies that (uk, wk) are the sufficient statistics for Uk. Therefore,

the state-space can be reduced to

Z̃ = {(u,w) : u0 ≤ u ≤ u0 + w0 − 1, w ∈ {1, u0 − u+ w0}} , (6.38)
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and the action space can be expressed as a function of the simplified state definition, as

ABT,k(u,w) = {Ŝ[m] = {u, . . . , u+m− 1} : m ∈Mk(w)},ADT,k(u,w) = {u}

Then, the value function in ( 6.32 ) can be expressed as a function of (u,w) instead of U as

V̂β0,k(u,w) = max
{

(K − k) β0(u)∑u+w−1
j=u β0(j) , max

Ŝ[m]∈ABT,k(U)
V̂

(BT)
β0,k (u,w, Ŝ[m]),

}
(6.39)

where

V̂
(BT)
β0,k (u,w, Ŝ[m])

= 1∑u+w−1
j=u β0(j)

[
u+m−1∑
s=u

β0(s)V̂β0,k+m+1(s, 1)+
u0+w0−1∑
s=u+m

β0(s)V̂β0,k+m+1(u+m,u0+w0−u−m)
]
.

(6.40)

Finally, starting from Vβ0,K(U) = 0,∀U , the value function can be computed for each k using

backward induction of ( 6.39 ).

Both POMDP and MDP-based policies require the prior belief at the start of each frame

to select the first action. Until now, we assumed that an estimate of the mobility model to

compute the prior belief updates (see ( 6.18 )) is available. In the following section, we will

propose an R-VAE-based learning framework to obtain such an estimate.

6.3 Long Timescale: Mobility Learning via Recurrent Variational Autoencoders

In this section, we present the mobility learning module, aiming to learn a mobility model

based on past sequences of observations and actions. Let A0:T be a given encoded action

sequence of length T + 1, generated by following any arbitrary policy π, and o0:T be the

corresponding sequence of encoded observations. Note that At and ot encode all the BT

actions and observations of frame t, respectively. Let f(ot|St,At) be the known observation

model; Pψ(s0:T ) , β0,0(s0)∏T
t=1 pψ(st|st−1) be the joint probability of state sequence S0:T ,

where β0,0 is the prior belief over S0 at t = 0 and pψ(s′|s) is the unknown mobility model

parameterized by ψ. Then, we aim to learn a mobility model pψ(s′|s), which maximizes the

143



marginal likelihood of the observation and action sequences f(o0:T ,A0:T |β0,0, ψ), as stated in

the following optimization problem:

max
ψ

f(o0:T ,A0:T |β0,0, ψ) (a)= max
ψ

EPψ [f(o0:T ,A0:T |S0:T , β0,0)]

(b)= max
ψ

∑
s0:T

[
Pψ(s0:T )

T∏
t=0

f(ot|st,At)f (At | β0,0, o0:t−1,A0:t−1)
]
,

(6.41)

where the expectation in (a) is with respect to the unknown state sequence S0:T ∼ Pψ(s0:T );

(b) follows from using the following

f (o0:T ,A0:T | s0:T , β0,0) (c)=
T∏
t=0

f (ot,At | s0:T , β0,0, o0:t−1,A0:t−1)

(d)=
T∏
t=0

f (ot | st,At) f (At | s0:T , β0,0, o0:t−1,A0:t−1)

(e)=
T∏
t=0

f (ot | st,At) f (At | β0,0, o0:t−1,A0:t−1) , (6.42)

where (c) follows from the law of conditional probability; (d) follows from the fact that given

(St,At), ot is independent of (β0,0,A0:t−1, o0:t−1, s0:t−1); (e) follows from the fact that given

(β0,0, o0:t−1,A0:t−1), At is independent of s0:T since At is obtained from policy π, which de-

termines the actions based on history of actions and observations only. Notice that the term

f (At | β0,0, o0:t−1,A0:t−1) is a functional of the policy used and is independent of the mobility

model pψ(s′|s), and can be determined in closed form. However, the marginal likelihood is

intractable in general due to the lack of closed-form. In the latent variable learning litera-

ture, several approximate learning techniques [ 50 ], [ 74 ] are proposed to overcome this chal-

lenge, where a surrogate metric is used instead of the marginal likelihood. These techniques

include the expectation-maximization (EM)-based algorithms such as the Baum-Welch algo-

rithm [ 50 ], and variational techniques such as variational autoencoders [ 74 ]. The variational

techniques jointly learn a separate posterior and prior state transition model, whereas the

EM-based techniques perform an alternating optimization of a non-convex variational ob-

jective. Therefore, due to the joint optimization procedure, the variational techniques are
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expected to perform better than the EM-based techniques and will be adopted in this chap-

ter.

The variational autoencoder is one of the most powerful tools to learn latent variable

models [ 74 ]. The VAE comprises two coupled but independently parameterized models:

the encoder or inference model and the decoder or generative model. The encoder goal

is to provide the posterior distribution over the latent state variable conditioned on the

observations associated with the latent variable; the decoder measures the representation

quality of the latent state variable produced by the encoder via the observation model and the

prior distribution over the latent variable, thereby forcing the encoder to learn a meaningful

representation of the latent variable from the observations. The R-VAE is an extension

of the VAE for temporally correlated observations, such as the one obtained through the

sampling of POMDP following a policy [  49 ]. For this reason, we choose the R-VAE to learn

the mobility model from noisy observations.

The goal of R-VAE is to learn the SBPI transition probability p(st|st−1) , P(St =

st|St−1 = st−1),∀st−1 ∈ S, ∀st ∈ S̄. However, since St is not observable if St 6= s̄, it has to be

inferred based on the history of actions and observations up to frame t. Let S̃t denotes the

SBPI inferred from the action and observation history with its realization denoted by s̃t ∈ S̄.

In R-VAE setting, the latent variable S̃t is inferred by leveraging an encoder, which provides

the posterior transition model qν(s̃t|s̃t−1, ot,At) , P(S̃t = s̃t|S̃t−1, Ot = ot,At), parameterized

by ν. The decoder is composed of the prior transition model pψ(s̃t|s̃t−1), parameterized by ψ

and a known observation model f(ot|s̃t,At). 

2
 The goal of the encoder is of the inferring S̃t ∈ S̄

given S̃t−1 = s̃t−1, encoded actions At of the current frame t and their corresponding encoded

observations ot; the decoder provides the prior transition pψ(s̃t|s̃t−1) and measures the likeli-

hood of s̃t based on the a given observation ot under a given observation model f(ot|s̃t,At).

Let Pψ(s̃0:T ) , β0,0(s̃0)∏T
t=1 p(s̃t|s̃t−1) denotes the joint probability of S̃0:T based on prior

transition model pψ, where β0,0 is prior belief over S̃0. In R-VAE settings, the posterior dis-
2

 ↑ The observation models can also be learned under the R-VAE framework. However, enforcing a known
accurate observation model reduces the dimensionality of the search space leading to better learning. More-
over, it leads to learning a state representation by R-VAE, which can be easily interpreted in light of the
observation model [  74 ]. In this chapter, an accurate observation model is obtained based on the distribution
of the received signal based sectored antenna approximation.

145



tribution is approximated by Qν(s̃0:T |o0:T ,A0:T , β0,0) , βpost,0(s̃0)∏T
t=1 qν(s̃t|s̃t−1, ot,At) [  49 ],

where βpost,0 is the posterior belief over S̃o after observing o0, computed as

βpost,0(s̃0) = f(o0|s̃0,A0)β0,0(s̃0)∑
s̃∈S f(o0|s̃,A0)β0,0(s̃) (6.43)

Then, the encoder and decoder are jointly designed to maximize the evidence lower bound

(ELBO) for a given sequence of observation o0:T and A0:T [ 74 ], defined as

ELBO(ν, ψ, o0:T ,A0:T ) , EQν

[
log Pψ(S̃0:T )f(o0:T ,A0:T |S̃0:T , β0,0)

Qν(S̃0:T |o0:T ,A0:T , β0,0)

]
(a)
≤ log

(
EPψ

[
f(o0:T ,A0:T |S̃0:T , β0,0)

])
, log (f(o0:T ,A0:T |β0,0, ψ))

(6.44)

where (a) follows by using the Jensen’s inequality and the concavity of log(·) function.

Hence, the ELBO metric provides a tractable lower-bound to the log marginal likelihood

log(f(o0:T ,A0:T |β0,0, ψ)) (see (  6.41 )), which is intractable in general. Therefore, an increase in

the ELBO leads to a monotonic improvement in the marginal likelihood f(o0:T ,A0:T |β0,0, ψ).

For gradient-based learning, the ELBO metric in ( 6.44 ) is expressed in more tractable form

as follows:

ELBO(ν, ψ, o0:T ,A0:T ) = EQν

[
T∑
t=1

log f(ot|S̃t,At)− log qν(S̃t|S̃t−1, ot,At)
pψ(S̃t|S̃t−1)

]

+
T∑
t=0

log f (At | β0,0, o0:t−1,A0:t−1) + log f(o0|β0,0,A0), (6.45)

where we have used ( 6.42 ). Notice that the last term in ( 6.45 ) is equal to log f(o0|β0,0,A0) =

log (∑s̃∈S̄ f(o0|s̃,A0)β0,0(s̃)). Since the last two terms in (  6.45 ) are independent of the learn-

able parameters (ν, ψ), we neglect these two terms in the R-VAE’s training and train the

R-VAE based on the following modified ELBO

ÊLBO(ν, ψ, o1:T ,A1:T ) = EQν

[
T∑
t=1

log f(ot|S̃t,At)− log qν(S̃t|S̃t−1, ot,At)
pψ(S̃t|S̃t−1)

]
. (6.46)
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The overall design of the R-VAE is carried out by the maximization of the ELBO averaged

over N ≥ 1 episodes of form (o0:T ,A0:T , T ) as follows:

max
ν,ψ

ELBO(ν, ψ) = max
ν,ψ

1
N

N∑
n=1

ÊLBO(ν, ψ, o(n)
1:T (n) ,A

(n)
1:T (n)) (6.47)

We now provide the concrete details of the R-VAE framework.

6.3.1 R-VAE framework

Actions encoding and observation model: We now describe the how the observa-

tions and actions are encoded. For each BPI j ∈ S and for each frame t, let {Γ(j)
t,1 , . . . ,Γ

(j)
t,n

(t)
j

}

be the sequence of SNR measurements collected after execution all BT actions, where n(t)
j is

total number of times BPI j is scanned during all BT actions in frame t. Then, the BT ac-

tions of the frame t are encoded as tuple At , (n(t)
1 , . . . , n

(t)
|S|) containing the number of times

each beam is scanned during all BT actions in the frame t, which is a sufficient statistics for

the BT actions. For each frame t, the observation is denoted by ot , (o(t)
1 , . . . , o

(t)
|S|), where

o
(t)
j is the average SNR measurement corresponding BPI j, defined as

o
(t)
j =


1
n

(t)
j

∑n
(t)
j

i=1 Γ(j)
t,i , n

(t)
j ≥ 1

0, n
(t)
j = 0.

(6.48)

If s̃t 6= s̄, the observation o
(t)
j has the following distribution

f(o(t)
j = oj|S̃t = s, n

(t)
j = nj) =


njErlang(njoj|λs,j), nj ≥ 1

1[oj = 0], nj = 0
(6.49)

where Erlang(·|λ) is the probability density function (pdf) of the Erlang distribution with

rate parameter

λs,j = 1
1 + SNRρ1[s 6=j] , (6.50)
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Figure 6.3. VAE training framework.

where SNR is the target SNR Since {o(t)
j }j∈S are conditionally independent given S̃t and At,

the overall distribution of ot is given as

f
(
ot = (o1, · · · , o|S|)|S̃t = s,At = (n(t)

1 , . . . , n
(t)
|S|)
)

=
∏

j∈S:nj≥1
f(o(t)

j = oj|S̃t = s, n
(t)
j = nj), (6.51)

On the other hand if the UE exits the coverage area of the BS, ot = s̄ and At = 0 (since no

BT is performed), we enforce f(ot = s̄|s̃t = s̄,At) = 1.

Decoder: The decoder (generative model) models the observation distributions f(ot|s̃t,At)

and the transition distribution pψ(s̃t|s̃t−1), parametrized by ψ. Since neural networks are

universal function approximators and are well suited for gradient-based learning, we choose

pψ(s̃t|s̃t−1) to be a feedforward neural network with learnable parameters ψ.

Encoder: Like previous works [ 49 ], we choose qν(s̃t|s̃t−1, ot,At) to be a recurrent neural

network with weights and biases denoted by ν. The output of the neural network is produced

by the softmax activation. The encoder models the posterior transition from s̃t−1 to s̃t

after observing ot corresponding to At. Note that, if ot = s̄ (the UE has exited the BS’s

coverage), we enforce qν(s̃t = s̄|s̃t−1, ot = s̄,At)=1. On the other hand, if ot 6=s̄, we enforce

qν(s̃t=s̄|s̃t−1, ot=s̄,At)=0.

6.3.2 Optimization Algorithm

The VAE auto-encoder is trained using episodes, each of form en,(o(n)
0:T (n) ,A

(n)
0:T (n) , T

(n)),

where T (n) ≥ 1 denotes the total number of frames associated with the partial episode en.
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The calculation of gradient of the ELBO objective in ( 6.46 ) with respect to (ν, ψ) is not

tractable since the expectation therein is taken over the latent variables S̃0:T ∼ Qν , whose

joint distribution depends on ν. In the VAE literature, latent variable reparameterization

techniques are proposed to overcome this problem, where a stochastic gradient estimate of

the ELBO [ 74 ] is calculated. This is achieved by choosing a random variable Rt ∼ fR and

a differentialble function g(·, qν(·|s̃t−1, ot,At)) so that g(Rt, qν(·|s̃t−1, ot,At)) = S̃t. Then, ex-

pectation in ( 6.45 ) can be taken with respect to Rt instead of S̃t, which enables tractable

estimation of stochastic gradient estimates of the ELBO. We use Gumbel-softmax reparame-

terization technique (proposed in [ 75 ] for the non-recurrent VAE) to sample S̃t. To the best of

our knowledge, this is the first paper to adopt the Gumbel-softmax reparameterization with

R-VAE. The Gumbel-softmax provides a simple yet efficient way to draw samples from any

categorical distribution. We are interested in drawing samples from categorical distribution

qν . To this end, for each t ≤ T , we first draw rt , (rt,i)i∈S̄ , where rt,i ∼ Gumbel(0, 1),∀i ∈ S̄,

where Gumbel(0, 1) is standard Gumbel’s distribution. Given (s̃t−1, ot,At) and rt, the next

s̃t is generated as

s̃t = arg max
i∈S̄

[rt,i + log qν(s̃t = i|s̃t−1, ot,At)] , g(rt, qν(·|s̃t−1, ot,At)), (6.52)

However, arg max in ( 6.52 ) is not differentiable, thereby making it unsuitable for gradient-

based learning. Similar to [ 75 ], we adopt a hybrid strategy, where for forward-propagation,

we generate s̃t based on ( 6.52 ) and for gradient calcuation via back-propagation, we use a

differentiable approximation of ( 6.52 ) through the softmax function.

The overall training of R-VAE is shown in Fig.  6.3 . The algorithm to train the VAE is

given in Algorithm  5 . It takes as input the encoder qν and transition model pψ and batch

of episodes E =
{
en = (o(n)

0:T (n) ,A
(n)
0:T (n) , Tn) : n = 1, 2, . . . , |E|

}
; the algorithm returns the

encoder and transition model trained on the batch E . For each partial episode en ∈ E , Ntrg

trajectories of s̃0:T (n)−1 are generated. Final gradient estimate is obtained by averaging over

|E| episodes and Ntrg trajectories of s̃0:T (n)−1 for each episodes. For each episode en and each

trajectory `, in lines  4 , the s̃0 is generated based on posterior belief over s̃0. Then, s̃t is

sequentially generated in lines  6 – 7 by drawing rt,i ∼ Gumbel(0, 1)∀i ∈ S̄; in line  7 in line  6 ,
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Algorithm 5: train-vae
input : qν , pψ, E =

{
(o(n)

0:T (n) ,A
(n)
0:T (n) , Tn) : n = 1, 2, . . . , |E|

}
1 for each episode en ∈ E do
2 compute β̃post using (o(n)

0 ,A(n)
0 )

3 for ` = 1, . . . , Ntrg do
4 Sample s̃(n)

0 ∼ β̃post,0
5 for t = 1, 2, . . . , T do
6 Sample i.i.d rt = (rt,i)∈S̄ ∼ Gumbel(0, 1)
7 Generate one hot representation of s̃(n)

t as s̃(n)
t = g(rt, qν(·|s̃(n)

t−1, o
(n)
t ,A(n)

t ))

8 zn,`,t(ν, ψ) = log f(o(n)
t |s̃

(n)
t ,A(n)

t )− log qν(s̃(n)
t |s̃

(n)
t−1,o

(n)
t ,A(n)

t )
pψ(s̃(n)

t |s̃
(n)
t−1)

9 ÊLBOn,`(ν, ψ) = ∑T (n)

t=1 zn,`,t(ν, ψ)
10 compute sample gradient ∇ν,ψÊLBOn,`(ν, ψ) by back-propagation through

time

11 Compute batch gradient ĝ(ν, ψ) = 1
|E|Ntrg

∑|E|
n=1

∑Ntrg
`=1 ∇ν,ψÊLBOn,`(ν, ψ)

12 (ν, ψ)← (ν, ψ) + γĝ(ν, ψ)
13 return qν , pψ

followed by using ( 6.52 ) in  7 . In line  8 , we compute the partial ELBO for nth partial episode,

`th trajectory and tth frame; in line  9 , we compute the ELBO for nth partial episode and

`th trajectory; in line  10 , the gradient is calculated by using back propagation through time

(BPTT) for each en and `. After traversing through each episode e ∈ E and Ntrg trajectories

for each partial episode, in line  11 , the expected gradient estimate is obtained by averaging

over all partial episodes e ∈ E and Ntrg trajectories for each episode. Finally, the stochastic

gradient ascent with step-size γ, is performed in line  12 .

We can use the learned mobility model to perform the prior belief updates as follows.

Let (ν∗, ψ∗) denote the parameters of the encoder and decoder, respectively, after the ELBO

has converged. Then, the prior belief is computed as follows:

βt+1,0(s′) =
∑
s∈S

pψ∗(s′|s)βt,K(s), (6.53)

where βt,K(s) is the posterior belief at the end of the frame t.
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Table 6.1. Simulation parameters.
Parameter Symbol Value
Number of BS antennas Mtx 128 = (16× 8)
Number of UE antennas M

(I)
rx 32 = (8× 4)

Number of BS beam |C| 32
Number of UE beams |F| 16
Slot duration Tslot 400µs
Frame duration K 50 [slots]
Distance of BS to Rd center D 22m
Lane separation ∆lane 3.7m
BS height hBS 10m
Bandwidth Wtot 100MHz
Carrier frequency f 30GHz
Noise psd N0 −174dBm/Hz
Noise figure F 10dB
Sidelobe/mainlobe SNR ratio ρ -10dB
Fraction of DT slot for
channel estimation κ 0.01
UE average speed µv 30m/s
UE speed st. dev. σv 10
UE mobility memory param. γ 0.2
UE lane change prob. q1→2 = q2→1 0.01

6.4 Numerical Results

In this section, we present the numerical results illustrating the performance of the two

proposed policies, namely PBVI policy and MDP-based policy. The simulation setup is

described as follows.

6.4.1 Simulation Setup

We consider 2D mobility for a two-lane straight highway, similar to the one depicted in

Fig.  6.1 . The two-lane are separated by 3.7m. The UE changes the lanes with probability

ql→l = 0.01. The UE position along y-axis (along the direction of the road) evolves according

to a Gauss-Markov mobility process. The speed Vy,t and position Xy,t of the UE along the

road (y-axis) evolves as follows

 Vt = γVt−1 + (1− γ)µv + σv
√

1− γ2Ṽt−1,

Xy,t = Xy,t−1 + TframeVt−1,
(6.54)
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where, unless otherwise stated, µv = 30m/s is the average speed; σv = 10m/s is the standard

deviation of speed; γ = 0.2 is the memory parameter; Ṽt−1 ∼ N (0, 1), i.i.d. over slots.

The BS and UE use uniform planar arrays with analog 3D beamforming using codebooks

C and F , respectively with |C|= 32 and |F|= 16.

The encoder qφ and decoder pψ are both neural networks. In particular, the encoder is a

recurrent neural network with one fully-connected hidden layer having 100 units, each with

the relu (max(0, x)) activation function. A softmax layer produces the encoder’s output with

|S̄| output units. Similarly, the decoder is a fully-connected feed-forward neural network with

two hidden layers, each with 100 units and relu activation. Similar to the encoder, a softmax

layer produces the output of the decoder with |S̄| output units. We use the KL divergence

between the ground truth mobility model p∗(s′|s) (learned via error-free feedback) and the

learned mobility model p̂(s′|s) to measure the accuracy of the learned model. In particular,

we use KL divergence averaged over current SBPI s, defined as

KL(p∗‖p̂) , 1
|S|

∑
s∈S

∑
s′∈S̄

p∗(s′|s) log p
∗(s′|s)
p̂(s′|s) . (6.55)

We compare the two proposed policies (PBVI and MDP-based policies) with an exhaustive

search restricted to SBPIs (EXOS) [ 16 ]. We evaluate the performance of the policies through

the average spectral efficiency T̄ πtot [bp/s]. Using Little’s law, the average spectral under a

policy π is expressed as a function of the average number of bits successfully delivered to

the UE B̄π
tot and the average duration of UE stay in the BS coverage D̄tot[s] as

T̄ πtot = B̄π
tot

D̄totWtot
. (6.56)

The D̄tot is independent of policy and is a function of the ground truth mobility model p∗.

B̄π is expressed as

B̄π
tot , Ep∗

[ ∞∑
t=0

T πfr (St)1[St 6= s̄]
∣∣∣β0,0 = βinit

]
·WtotTframe, (6.57)
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Figure 6.4. The training progress of R-VAE; SNR = 20dB, ρ = −10dB.

where expectation is with respect to the ground truth mobility model p∗(s′|s) and βinit(s) ,

1[s = sinit] is a given prior belief at the start of frame t; sinit is initial state at t = 0. For the

simulations, we use the system parameters values given in Table  6.1 unless stated otherwise.

6.4.2 Performance Evaluation

In Fig.  6.4 , we show the training progress of R-VAE in terms of the average ELBO,

accuracy of the learned mobility model in terms of average KL divergence KL(p∗‖p̂) between

the ground truth mobility model p∗(s′|s) and the learned p̂(s′|s). We measure the overall

performance via the average spectral efficiency T̄ π and average BT overhead (percentage of

frame duration used for BT). We compare the accuracy of the mobility model learned using

the R-VAE with the accuracy of the mobility models learned using the naive approach (see

( 6.8 )) and the Baum-Welch algorithm. The actions and observations are obtained following

the PBVI-based policy (Algorithm  4 ). It can be seen that as training of R-VAE progresses,

the ELBO increases and KL(p∗‖p̂) decreases simultaneously, indicating an improvement in

the accuracy of the learned mobility model. Moreover, as the KL(p∗‖p̂) decreases, the

average spectral efficiency achieved under R-VAE increases and the BT overhead reduces.

The Baum-Welch and the naive approach converge faster than the R-VAE. However, despite

a more gradual initial decline in KL(p∗‖p̂) of the R-VAE compared to that of the other two

techniques, the R-VAE outperforms the other two techniques after the convergence. For
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Figure 6.5. Average spectral efficiency versus SNR; ρ = −10dB. Solid lines
correspond to the sectored antenna and Markovian mobility; markers corre-
spond to the simulation with the 3D analog beam-forming and the 2D Gauss-
Markov mobility.

instance, we can see that the R-VAE offers 92% and 86% reduction in KL(p∗‖p̂) compared

to the naive approach and the Baul-Welch algorithm, respectively. The improved accuracy

of mobility learning by R-VAE translates to spectral efficiency gain and reduction of the

BT overhead, as depicted in the figure. In particular, after the convergence, the R-VAE

outperforms the Baum-Welch algorithm and the naive approach with a spectral efficiency

gain of 8% and 12.6%, respectively. Similarly, after convergence, the R-VAE yields 43% and

60% reduced BT overhead compared to the Baum-Welch algorithm and the naive approach,

respectively. However, before the ELBO converges, the Baum-Welch performs the best,

followed by the naive approach. So, to achieve the best performance, we propose a hybrid

approach, where before the convergence of the ELBO for the R-VAE, Baum-Welch is used,

and the R-VAE is used after the ELBO has converged. Such a scheme is possible due to the

decoupling of policy design and mobility learning via the dual timescale approach. Because

of such a design, we can train multiple mobility models simultaneously and use prior belief

based on any one of the mobility models. The performance of the hybrid scheme is shown
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Figure 6.6. Average spectral efficiency versus ρ.

in the figure with the markers, where we depict its fastest convergence as well as its best

performance among all schemes.

In Fig.  6.5 , the spectral efficiency of the proposed policies is depicted. We also show

a spectral efficiency upper-bound, attained by a gene-aided policy using the error-free BT

feedback and the ground-truth mobility model. Note that this upper-bound is not attain-

able in practice because the feedback is erroneous due to noise and beam imperfections.

The solid lines represent the performance using the analytical model based on the sector

antenna gain and Markovian approximation of the non-Markovian Gauss-Markov mobility

of UE. The markers represent the performance evaluated using Monte-Carlo simulation with

the analog beamforming, and the non-Markovian Gauss-Markov mobility of the UE, where

each simulated point is obtained by the sample mean of 105 episodes. It can be seen that

both the analytical and simulated spectral efficiency values match, thereby verifying the ac-

curacy of the sectored antenna-based gain approximation and the Markovian approximation

of the Gauss-Markov mobility. For both PBVI and MDP-based policies, the R-VAE pro-

vides performance very close to the ground-truth mobility model. It can be observed that

the PBVI policy coupled with R-VAE yields the best performance very close to gene-aided
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Figure 6.7. Throughput vs the mean speed µv; SNR = 20dB, ρ = −10dB.

upper-bound. The PBVI policy outperforms the MDP-based policy (coupled with the R-

VAE) and EXOS policy, with spectral efficiency gains of up to 16% and 46%, respectively.

This is attributed to the enhanced robustness of the PBVI policy, incorporated via the BT

feedback distribution. On the other hand, the MDP-based policy shows a spectral efficiency

gain of 37% over the EXOS policy. This performance gain is because the MDP-based policy

can reduce the BT overhead by adaptively scanning a few most likely beam pairs based on

each frame’s prior belief and feedback.

In Fig.  6.6 , we depict the behavior of spectral efficiency as the aligned SNR-to-misaligned

SNR ratio ρ is varied. It can be noticed that the performance of the three policies degrades as

ρ increases since the errors in feedback become more frequent at higher ρ. Notably, the PBVI

policy’s performance degrades the least by an increase in ρ, whereas the EXOS’s performance

degrades the most by an increase in ρ. Moreover, at lower values of ρ, the MDP-based policy

performs very close to the PBVI policy. Furthermore, the total optimization and execution

time of MDP-based policy is 4.7 times smaller than the PBVI policy. Therefore, the MDP-

based policy offers a low-complexity alternative for the PBVI, having negligible performance

degradation when ρ is small.
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In Fig.  6.7 , we depict the average total data delivered to the UE successfully as a function

of mean speed µv. The total data delivered follows a monotonically decreasing trend with

the mean speed µv. This trend is attributed to the shorter average episode duration at the

higher speed and the exacerbated overhead of beam-training since SBPI prediction become

less and less accurate at higher speeds. As observed before, the PBVI policy outperforms

the MDP-based policy, and MDP policy outperforms the EXOS policy.
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7. CONCLUSION

Millimeter wave communications use large antenna arrays with narrow beams to overcome

the huge frequency-dependent path loss. However, the use of large antenna arrays with

beamforming demands precise beam-alignment between transmitter and receiver, and may

entail huge overhead, especially in highly mobile environments. This thesis addresses the

challenges in the design of beam-alignment and data transmission by proposing various

schemes that exploit different timescales.

In Chapter  2 , we have designed an optimal interactive beam-alignment scheme, with

the goal of minimizing power consumption under a rate constraint. For the case of per-

fect detection and uniform prior on AoD/AoA, we proved that the optimal beam-alignment

protocol has fixed beam-alignment duration, and that a decoupled fractional search method

is optimal. Inspired by this scheme, we have proposed a heuristic policy for the case of a

non-uniform prior, and showed that the uniform prior is the worst-case scenario. Further-

more, we have investigated the impact of beam-alignment errors on the average throughput

and power consumption. The numerical results depicted the superior performance of our

proposed scheme, with up to 4dB, 7.5dB, and 14dB gain compared to a state-of-the-art

bisection search, conventional exhaustive search and interactive exhaustive search policies,

respectively, and robustness against multi-cluster channels.

In Chapter  3 , we have designed a coded energy-efficient beam-alignment. The scheme

minimizes power consumption and uses an error correction code to recover from detection

errors introduced during beam-alignment. We compare our proposed scheme with energy-

efficient uncoded beam-alignment and exhaustive search, demonstrating its superior perfor-

mance.

In Chapter  4 , we have formulated the beam-alignment problem as a Bayesian multiarm

bandits problem. For the optimal control design, we have identified a simplified sufficient

statistic referred to as the preference of beam pairs. Based on the preference and bounding

of the value function, we have proposed a heuristic policy, which selects the beam pair with

the second best-preference to scan. We have shown numerically that the proposed scheme
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outperforms the first-best, linear Thompson samping, and upper confidence bound based

beam-alignment schemes proposed in the literature.

In Chapter  5 , we have investigated the design of beam-training/data-transmission/handover

strategies for mm-wave vehicular networks. The mobility and blockage dynamics have been

leveraged to obtain the approximately optimal policy via a partially observable Markov

decision process (POMDP) formulation and its solution via a point-based value iteration

(PBVI) algorithm based on PERSEUS [ 8 ]. Moreover, we have proposed two heuristic poli-

cies, namely adaptive heuristic (A-HEU) and belief-based heuristic (B-HEU), which provide

low computational alternatives to PBVI and exhibit performance comparable to the optimal

policy obtained via PBVI. We have also compared the performance of the proposed policies

to a baseline algorithm with periodic beam training. Our numerical results demonstrate

the importance of an adaptive design to tackle the highly dynamic environments caused by

mobility and blockages in vehicular networks. This is demonstrated by the superiority of the

PERSEUS-based and heuristic schemes compared to a baseline scheme with periodic beam

training (up to 2× improvement in spectral efficiency). Additionally, our results depict a

complexity-performance tradeoff: while the PERSEUS-based policy achieves near-optimal

performance, the heuristic schemes A-HEU and B-HEU achieve a small performance degra-

dation (∼ 10%), at a fraction of the computational cost of PERSEUS-based.

In Chapter  6 , we have proposed a dual timescale approach, which exploits mobility

dynamics to mitigate the beam-training overhead. We have developed a POMDP framework

for the short-timescale to design an approximately optimal policy. We have also designed

a recurrent variational autoencoder-based mobility learning framework, which uses noisy

observations collected under the policy to learn the Markovian dynamics of the UE mobility.

Our performance evaluation have demonstrated that the proposed policy, coupled with the

mobility learning framework, yields approximately optimal performance, showing spectral

efficiency gain of up to 46%, compared to an exhaustive search variant. We have also

demonstrated the superior learning performance of the mobility learning framework, yielding

spectral efficiency gains of 8% and 12.6%, compared to the Baum-Welch algorithm and a

naive mobility learning approach.
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8. APPENDICES

8.A Proof of Lemma  2.1 

Proof. We need the following lemma.

Lemma 8.1. Given fk, ak, Ck, the belief fk+1 is computed as

fk+1(θ) =



χBk (θ)∫
Bk

fk(θ̃)dθ̃fk(θ), k ∈ Is, Ck = ACK,

1−χBk (θ)
1−
∫
Bk

fk(θ̃)dθ̃fk(θ), k ∈ Is, Ck = NACK,

fk(θ), k ∈ Id, Ck = NULL.

(8.1)

Proof. We denote AoD/AoA random variables pair by Θ , (Θt,Θr) and its realization by

θ , (θt, θr). First note that for 0 ≤ k ≤ N − 1, we have

fk+1(θ) = f(Θ = θ|ak, Ck−1, Ck = ck)
(a)= P(Ck = ck|Ak, Ck−1,Θ = θ)f(Θ = θ|ak, Ck−1)∫ π

−π P(Ck = ck|Ak, Ck−1,Θ = θ̃)f(Θ = θ̃|ak, Ck−1)dθ̃
(b)= P(Ck = ck|ak,Θ = θ)fk(θ)∫ π

−π P(Ck = ck|ak,Θ = θ̃)fk(θ̃)dθ̃
(8.2)

where we have used Bayes’ rule in step (a); (b) is obtained by using the fact that, given

Θ = θ, Ck is a deterministic function of (ak,θ) , independent of ak−1, Ck−1; additionally, we

used the fact that fk(θ) = f(Θ = θ|ak, Ck−1) since Θ is independent of ak given (ak−1, C
k−1)

. Now consider the case k ∈ Is, i.e., ξk = 1 and Ck = ACK. Then, we can use ( 8.2 ) to get

fk+1(θ) = P(Ck = ACK|Bt,k,Br,k, ξk = 1,Θ = θ)fk(θ)∫ π
−π P(Ck = ACK|Bt,k,Br,k, ξk = 1,Θ = θ̃)fk(θ̃)dθ̃

= χBk(θ)∫
Bk fk(θ̃)dθ̃

fk(θ), (8.3)

where Bk , Bt,k × Br,k. Similarly, for k ∈ Is and Ck = NACK, ( 8.2 ) can be used to get

fk+1(θ) = 1− χBk(θ)
1−

∫
Bk fk(θ̃)dθ̃

fk(θ). (8.4)
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For k ∈ Id, P(Ck = NULL|Bt,k,Br,k, ξk = 0,Θ = θ) = 1. Therefore, we use (  8.2 ) to get

fk+1(θ) = fk(θ). (8.5)

Thus we have proved the Lemma.

We prove the lemma by induction. The hypothesis holds trivially for k = 0. Let us

assume that it holds in slot k ≥ 0, we show that it holds in slot k + 1 as well. First, let

us consider the case when k ∈ Is and Ck = ACK. By using ( 8.1 ) along with the induction

hypothesis, we get

fk+1(θ) = f0(θ)∫ π
−π χUk∩Bk(θ̃)f0(θ̃)dθ̃

χUk∩Bk(θ). (8.6)

By substituting Uk+1 ≡ Uk ∩ Bk, we get ( 2.31 ).

Next, we focus on the case when k ∈ Is and Ck = NACK. In this case, ( 8.1 ) yields

fk+1(θt, θr) = f0(θ)∫ π
−π χUk\Bk(θ̃)f0(θ̃)dθ̃

χUk\Bk(θ), (8.7)

where we used the fact that χ[−π,π]2\A(x) ≡ 1 − χA(x). By observing that Uk+1 ≡ Uk \ Bk,

we get the expression for fk+1(θ), as given in ( 2.31 ).

Finally, for k ∈ Id, ( 8.1 ) yields fk+1(θ) = fk(θ). Therefore, from the induction hypothesis

it follows that fk+1(θ) is given by ( 2.31 ) with Uk+1 = Uk. Hence, the lemma is proved.

8.B Supplementary Lemma  8.2 

Lemma 8.2. The optimal 2D beam satisfies


Bk ⊂ Uk,∀k ∈ Is

Bk ⊆ Uk,∀k ∈ Id.

(8.8)

Proof. We prove this lemma by contradiction. First, we consider the beam-alignment action

ak = (1,Bk, 0) such that Bk \ Uk 6= ∅, i.e., Bk has non-empty support outside of Uk. Let
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ãk = (1, B̃k, 0) be new beam-alignment action such that B̃k = Uk ∩Bk, i.e., B̃k is constructed

by restricting Bk within the belief support Uk. Using ( 2.37 ) , we get

V̂k(ak;Uk, Dk) =φs |Bk|+ P(Ck = ACK|Uk,Bk)V̂ ∗k+1(Uk ∩ Bk, Dk)

+ P(Ck = NACK|Uk,Bk)V̂ ∗k+1(Uk \ Bk, Dk). (8.9)

Using the fact that B̃k = Uk ∩Bk, hence Uk \Bk = Uk \ B̃k, it follows that P(Ck = c|Uk,Bk) =

P(Ck = c|Uk, B̃k), ∀c ∈ {ACK,NACK}. Therefore, we rewrite ( 8.9 ) as

V̂k(ak;Uk, Dk) = φs
∣∣∣B̃k∣∣∣+ φs |Uk \ Bk|

+ P(Ck = ACK|Uk, B̃k)V̂ ∗k+1(B̃k, Dk) + P(Ck = NACK|Uk, B̃k)V̂ ∗k+1(Uk \ B̃k, Dk)

> V̂k(ãk;Uk, Dk), (8.10)

where we have used |Uk \ Bk| > 0. Thus ak is suboptimal, implying that optimal beam-

alignment beam satisfy Bk ⊆ Uk. Now, let Bk = Uk, and consider a new action with beam

B̃k = ∅. Using a similar approach, it can be shown that Bk = Uk is suboptimal with respect

to B̃k, hence we must have Bk ⊂ Uk.

To prove the lemma for k ∈ Id, consider the action ak = (0,Bk, Rk) such that Bk \Uk 6= ∅.

Now consider a new action ãk = (0, B̃k, Rk) such that B̃k = Bk ∩Uk. It can be observed that

P(θ ∈ Bk|Uk) = P(θ ∈ B̃k|Uk). The cost-to-function for the action ak is given as

V̂k(ak;Uk, Dk) = ψd(Rk)
F̄−1
γ

(
1−ε

P(θ∈Bk|Uk) |γ̂
) |Bk|+ V̂ ∗k+1(Uk, Dk − TRk)

>
ψd(Rk)

F̄−1
γ

(
1−ε

P(θ∈B̃k|Uk) |γ̂
) ∣∣∣B̃k∣∣∣+ V̂ ∗k+1(Uk, Dk − TRk)

= V̂k(ãk;Uk, Dk),

hence we must have Bk ⊆ Uk. The lemma is thus proved.
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8.C Proof of Theorem  2.1 

Proof. For a data communication action ak∈Aext(U , D), the state transition is independent

of Bk since Uk+1=Uk and Dk+1=Dk−RkT . Hence, the optimal beam given Rk is obtained by

minimizing c(ak;Uk, Dk) in ( 2.36 ), yielding

c(ak;Uk, Dk)
(a)= ψd(Rk)

|Bk|
F̄−1
γ

(
(1−ε)|Uk|
|Bk|

|γ̂
)

(b)
≥ ψd(Rk)(1− ε) |Uk|

1
q∗F̄−1

γ (q∗|γ̂)
, (8.11)

where (a) follows from P(θ∈Bk|Uk, ak)= |Bk||Uk| , with q,(1−ε) |Uk||Bk|≤1 to enforce the ε-outage

constraint; (b) follows by maximizing qF̄−1
γ (q|γ̂) over q∈[1−ε, 1]. Equality holds in (b) if

|Bk|=ϑ |Uk|, with ϑ=(1−ε)/q∗ and q∗ as in the statement. The theorem is thus proved.

8.D Proof of Theorem  2.4 

Proof. Note that, if this policy satisfies Bk≡Bt,k×Br,k⊆Uk ≡ supp(fk), along with the ap-

propriate fractional values |Bk| /|Uk|, then it is optimal since it satisfies all the conditions of

Theorems  2.1 and  2.3 . We now verify these conditions. Since Bt,k ⊆ Ut,k and Br,k ⊆ Ur,k, it

is sufficient to prove that Ut,k×Ur,k ≡ Uk,∀k. Indeed, U0 ≡ Ut,0×Ur,0. By induction, assume

that Uk ≡ Ut,k × Ur,k. Then, for βk = 1 (a similar result holds for βk = 2), using ( 2.32 ) we

get

Uk+1 =


(Ut,k ∩ Bt,k)× Ur,k, if Ck = ACK,

(Ut,k \ Bt,k)× Ur,k, if Ck = NACK.
(8.12)

By letting Ur,k≡Ur,k−1, Ut,k≡Ut,k−1∩Bt,k−1 if Ck=ACK and Ut,k≡Ut,k−1\Bt,k−1 if Ck=NACK,

we obtain Uk≡Ut,k×Ur,k. This policy is then optimal. Finally, ( 2.65 ) is obtained by using

the relation between power consumption and value function. Thus, we have proved the

theorem.
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8.E Proof of Theorem  2.6 

Proof. We prove it by induction using the DP updates. Let T̄k(Uk, ek) be the throughput-to-go

function from state (Uk, ek) in slot k ≤ L∗. We prove by induction that

T̄k(Uk, ek) =(1− ek)(1− ε)Rmin

L∗−1∏
j=k

[(1− ρk) (1− pfa) + ρk(1− pmd)] . (8.13)

Then, ( 2.77 ) follows from T̄err=T̄0(U0, 0). The induction hypothesis holds at k=L∗, since

T̄L∗(UL∗ , eL∗) = (1−eL∗)(1−ε)Rmin, see ( 2.76 ). Now, assume it holds for some k+1 ≤ L∗.

Using the transition probabilities from state (Uk, 1) and the induction hypothesis, we obtain

T̄k(Uk, 1) = 0. Instead, from state (Uk, 0) we obtain

T̄k(Uk, 0) = ρk(1− pmd)T̄k+1(Bk, 0)

+ (1− ρk) (1− pfa)T̄k+1(Uk \ Bk, 0)

= (1− ε)Rmin

L∗−1∏
j=k

[
(1− ρk) (1− pfa) + ρk(1− pmd)

]
,

which readily follows by applying the induction hypothesis. The induction step is thus

proved.

Let Ēk(Uk, ek) be the energy-to-go from state (Uk, ek) in slot k≤L∗. We prove that

Ēk(Uk, ek) =
[
v

(L∗)
k + hk + uk(1− ek)

]
|Uk| . (8.14)

Then, ( 2.77 ) follows from P̄err = 1
Tfr
Ē0(U0, 0), and by noticing that v(L∗)

0 /Tfr is the power

consumption in the error-free case, given in Theorem  2.4 . The induction hypothesis holds

at k=L∗, since ĒL∗(UL∗ , eL∗)=(N −L∗)φd
(
NRmin
N−L∗ , ε

)
|UL∗| = v

(L∗)
L∗ + hL∗ + uL∗(1− eL∗), with

v
(L∗)
L∗ given by ( 2.58 ), hL∗ = uL∗ = 0, see ( 2.76 ). Now, assume it holds for some k + 1 ≤ L∗.
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Using the transition probabilities from state (Uk, ek), the induction hypothesis, and the fact

that |Bk| = ρk |Uk| and |Uk \ Bk| = (1− ρk) |Uk|, we obtain

Ēk(Uk, 1) = φsρk |Uk|+ pfaĒk+1(Bk, 1) + (1− pfa)Ēk+1(Uk \ Bk, 1)

=
{
φsρk+

(
v

(L∗)
k+1 +hk+1

)
[pfaρk+(1− pfa) (1− ρk)]

}
|Uk| ;

Ēk(Uk, 0) =φsρk |Uk|+ ρk(1− pmd)Ēk+1(Bk, 0) + (1− ρk) pfaĒk+1(Bk, 1)

+ (1− ρk) (1− pfa)Ēk+1(Uk \ Bk, 0) + ρkpmdĒk+1(Uk \ Bk, 1)

=
{
φsρk +

(
v

(L∗)
k+1 + hk+1 + uk+1

)[
ρ2
k(1− pmd) + (1− ρk)2 (1− pfa)

]
+
(
v

(L∗)
k+1 +hk+1

)
ρk (1− ρk) (pfa+pmd)

}
|Uk| .

The induction step Ēk(Uk, ek) = (v(L∗)
k + hk + uk(1 − ek)) |Uk| can be finally proved by

expressing v(L∗)
k = gk(ρk) and ρk = 1

2 −
φs

4v(L∗)
k+1

using ( 2.62 ), and using ( 2.79 )-( 2.80 ).

8.F Proof of Theorem  4.1 

Proof. We prove the theorem using induction. Notice that from the definition of Q-function

( 4.18 ) and the optimal value function expression ( 4.19 ) for k = L , we get

qL−1(m, as) =
∫ ∞

0

emaxâm′[â|m,as,y]∑
l∈I em

′[l|m,as,y]f(y|m, as)dy,

where we have defined the preference update ( 4.15 ) as

m′[x|m, as, y] = m[x] + J(y)δ[as, x].

Moreover, using (  4.14 ) and ( 4.11 ) we note that

∑
l∈I

em
′[l|m,as,y]=

∑
l∈I

em[l]+J(y)δ[as,l]=eyf(y|m,as)
∑
l∈I

em[l]. (8.15)
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This yields

qL−1(m, as)
(a)= 1∑

l∈I em[l]

∫ ∞
0
emaxâm[â]+J(y)δ[as,â]e−ydy

(b)= 1∑
l∈I em[l] ξ(as;m) (8.16)

where (b) follows by evaluating the integral in (a) for the two cases in ( 4.22 ), and noting that

it is given by ξ(as;m). Using Lemma  8.3 and ( 8.16 )(b), the optimal value function becomes

V ∗L−1(m) = 1∑
l∈I em[l]

[
em[x[1]] + h(ν)e

m[x[2]]−νm[x[1]]
1−ν

]
.

Thus, the theorem statement holds for k=L − 1 with equality. Assume it holds for k+1.

Using Lemma  8.3 , we can bound

max
â

ξ(â;m′[n|m, as, y]) ≥ exp{max
â

m′[â|m,as, y]}

+h(ν)e
minxi 6=xj m

′[xi|m,as,y]−νm′[xj |m,as,y]

1−ν .

Using ( 4.18 ), the induction hypothesis ( 4.25 ) for k+1 and the above bound, we obtain

qk(m, as)

≥
∫ ∞

0

{
emaxâm′[â|m,as,y]∑
l∈I em

′[l|m,as,y] + e

min
xi 6=xj

m′[xi|m,as,y]−νm′[xj |m,as,y]

1−ν∑
l∈I em

′[l|m,as,y]

× h(ν)1− [g(ν)]L−k−1

1− g(ν)

}
f(y|m, as) dy. (8.17)

Moreover, we note that

min
xi 6=xj

m′[xi|m, as, y]− νm′[xj|m, as, y]

≥ min
xi 6=xj

[m[xi]−νm[xj]]+ min
xi 6=xj

J(y){δ[as, xi]−νδ[as, xj]}

= min
xi 6=xj

[m[xi]− νm[xj]] + min{J(y),−νJ(y)}. (8.18)
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By substituting ( 8.18 ) and ( 8.15 ) into ( 8.17 ), yields

qk(m, as)≥
1∑

l∈I
em[l]

[∫ ∞
0
emaxâm[â]+J(y)δ[as,â]e−ydy

+e
minxi 6=xj m[xi]−νm[xj ]

1−ν

∫ ∞
0

e
min{J(y),−νJ(y)}

1−ν e−ydy

× h(ν)1− [g(ν)]L−k−1

1− g(ν)

]
. (8.19)

The first integral in (  8.19 ) is equal to ξ(as;m) and the second integral is found to be equal

to

∫ ∞
0

e
min{J(y),−νJ(y)}

1−ν e−ydy = e
ln ν
1−ν

[
1

ν+1−
ln ν
1−ν

]
= g(ν)>0.

Upon substituting these integrals into ( 8.19 ) yields the following lower-bound to the Q-

function,

qk(m, as)≥
ξ(as;m)+e

minxi 6=xjm[xi]−νm[xj ]

1−ν h(ν)g(ν)−[g(ν)]L−k
1−g(ν)∑

l∈I
em[l] ,

which proves the induction step (  4.20 ), and whose maximization (see Lemma  8.3 ) yields

( 4.25 ).

Similarly, using the induction hypothesis ( 4.26 ) for k + 1 and the upper-bound

max
â

ξ(â;m′[m, as, y]) ≤ (1 + h(ν) exp{max
â

m′[â|m,as, y],

we obtain the following upper-bound to the Q-function,

qk(m, as)≤
[1+h(ν)]L−k−1∑

l∈I em[l]

∫ ∞
0
emaxâm[â]+J(y)δ[as,â]e−ydy.

The integral above is equal to ξ(as;m), which proves the induction step (  4.21 ), hence

V ∗k (m)= max
as∈I

qk(m, as)≤
[1+h(ν)]L−k−1∑
l∈I em[l] max

as∈I
ξ(as;m). (8.20)
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Noting that maxas ξ(as;m) = ξ(x[2];m) (see Lemma  8.3 ), and upon substitution in ( 8.20 )

yields (  4.26 ).

Lemma 8.3. We have that arg maxas∈I ξ(as;m) = x[2] and

max
as∈I

ξ(as;m)=em[x[1]]+h(ν)e
m[x[2]]−νm[x[1]]

1−ν . (8.21)

Proof. To show that arg maxas∈I ξ(as;m) = x[2], we proceed as follows. Clearly, if as ∈

{x[2],x[3], . . . , x[|I|]}, then maxâ6=as m[â]−m[as] = m[x[1]]−m[as] ≥ 0 > ln(ν), hence

ξ(as;m)=em[x[1]]+h(ν)e
m[as]−νm[x[1]]

1−ν ,

maximized at as=x[2]. Therefore, we restrict as ∈ {x[1], x[2]} without loss in performance.

Next, we show that ξ(x[2];m) ≥ ξ(x[1];m). Let ∆,m[x[1]]−m[x[2]]. If ∆>− ln ν, then

ξ(x[1];m) = em[x[1]] and ξ(x[2];m) > ξ(x[1];m). Otherwise,

ξ(x[2];m)−ξ(x[1];m)∝ e∆−1
e

∆
1−ν−e−ν

∆
1−ν
−h(ν) , u(∆, ν).

Note that u(∆, ν) is decreasing in ∆∈(0,− ln ν], ∀ν∈(0, 1), minimized at ∆=− ln ν, yielding,

after algebraic steps,

ξ(x[2];m)−ξ(x[1];m)∝u(∆, ν) ≥ h(ν)
e−

1+ν
1−ν ln ν−1

> 0.

In both cases, maxas ξ(as) = ξ(x[2]). Upon substitution of as = x[2] in ( 4.22 ), yields (  8.21 ).
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8.G Proof of Theorem  6.1 

Proof. We will prove the theorem using induction. It can be easily verified that BT is

suboptimal for k ∈ {K − 1, K − 2} with the optimal value function given under DT action,

given as

V̂β0,k(U) = (K − k)maxŝDT∈U β0(ŝDT)∑
j∈U β0(j) , ∀k ∈ {K − 1, K − 2},U ⊆ S (8.22)

For k = K − 3, |Ŝ|≥ 2 is suboptimal since the V̂ (BT)
β0,K−3(U , Ŝ) = 0,∀|Ŝ|≥ 2. The BT value

function under the only feasible BT action Ŝ = {ŝ} is given as

V̂
(BT)
β0,K−3(U , {ŝ}) = 1∑

j∈U β0(j)

[
β0(ŝ) + max

ŝDT∈U\{ŝ}
β0(ŝDT)

]
(8.23)

≤ β0(1) + β0(2)∑
j∈U β0(j) , (8.24)

with equality if ŝ = arg maxs∈U β0(s), i.e., Ŝ∗ = Ŝ(1). Let the induction hypothesis hold

for all k ∈ {K − 1, K − 2, . . . , k0 + 1}, then we will show that it holds for k0 ≥ 0. To this

end, we will use a contradiction argument. Without loss of generality, let m ∈ Mk0(|U|)

be a constant and let U be ordered as U = {s1, s2, . . . , s|U|}, so that β0(s1) ≥ β0(sm+1) ≥

β0(sm+2) ≥ · · · ≥ β0(s|U|) and β0(s2), . . . , β0(sm) can follow any arbitrary order. Consider

two BT actions Ŝ0 = {s1, s2, s3, . . . , sm} ⊂ U and Ŝ1 = {s2, s3, . . . , sm, sm+1} ⊂ U . Note that

Ŝ0 is obtained by replacing the least likely BPI in Ŝ1 (sm+1) with the most likely beam in

U \ Ŝ1(s1). Let δ0 , K − k0 be the number of remaining slots in the frame. Then, the BT

value function under the BT action Ŝ0 is given as

V̂
(BT)
β0,k0 (U , Ŝ0)

= 1∑
j∈U β0(j)

[
m∑
i=1

β0(si)(δ0 −m− 1) + max
{

(δ0 −m− 1)β0(sm+1),

max
m′∈Mk0+m+1(|U|−m)

(δ0−m−m′−2)
m+m′∑
i=m+1

β0(si) +
 |U|∑
i=m+m′+1

β0(si)
 V̂β0,k0+m+m′+2(U [m′])

}]
,

(8.25)

169



where we have used the induction hypothesis for k = k0 +m+ 1 and value function update

( 6.32 ) and ( 6.33 ) and U [m′] , {m + m′ + 1, . . . , |U|} is support after performing the next

BT round with BPI Ŝ0[m′] ≡ {sm+1, . . . , sm+m′} and under Y = ∅. Under action Ŝ1, the BT

value function is given as

V̂
(BT)
β0,k0 (U , Ŝ1)

= 1∑
j∈U β0(j)

[
m+1∑
i=2

β0(si)(δ0 −m− 1) + max
{

(δ0 −m− 1)β0(s1),

max
m′∈Mk0+m+1(|U|−m)

(δ0−m−m′−2)
β0(s1)+

m+m′∑
i=m+2

β0(si)
+

|U|∑
i=m+m′+1

β0(si)V̂β0,k0+m+m′+2(U [m′])
}]
,

(8.26)

where we have used the induction hypothesis for k = k0 +m+ 1, where the BPIs in Ŝ1[m′] ≡

{s1, sm+2, . . . , sm+m′} are scanned in the next action if BT is selected. Using the above two

BT value functions, we get

V̂
(BT)
β0,k0 (U , Ŝ0)− V̂ (BT)

β0,k0 (U , Ŝ1)

∝ max
{

0, max
m′∈Mk0+m+1(|U|−m)

m+m′∑
i=m+2

β0(si)(δ0−m−m′−2)−(m′+1)β0(sm+1)

+
|U|∑

i=m+m′+1
β0(si)V̂β0,k0+m+m′+2(U [m′])

}

−max
{

0, max
m′∈Mk0+m+1(|U|−m)

m+m′∑
i=m+2

β0(si)(δ0−m−m′−2)−(m′+1)β0(s1)

+
|U|∑

i=m+m′+1
β0(si)V̂β0,k0+m+m′+2(U [m′])

}

≥ 0, (8.27)

since β0(s1) ≥ β0(sm+1). Therefore, the BT value function improves by using Ŝ0 instead of

Ŝ1, i.e., BT value function improves by replacing the least likely BPI from Ŝ1 with most-

likely BPI from remaining beam indices, U \ Ŝ1. Therefore, we can use the same argument

recursively to improve the value function by replacing least likely BPI in any BT BPI set Ŝ
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until no BPI is more-likely in U \ Ŝ than any BPI in Ŝ. Finally, the optimal m can be found

by solving

m∗ = arg max
m∈Mk(|U|)

V̂
(BT)
β0,k (U , Ŝ[m]) (8.28)

8.H Proof of Corollary  6.1 

Proof. We prove the Corollary by induction. The statement of Corollary holds for k = 0 by

definition of U0. Let the statement hold for k ≥ 0; then we will show that statement holds

for k+L. Since the statement holds for k+L− 1, the support is either Uk+L−1 = {uk+L−1}

or Uk = {uk+L−1, . . . , u0 +w0−1} with uk+L−1 < u0 +w0−1. In the case Uk+L−1 = {uk+L−1}

(singleton support), no BT action is feasible. In the second case, if (non-singleton Uk+L−1),

let Ŝk[m] ∈ Aβ0,k(Uk+L−1) be any BT action selected. Then, the support is updated following

( 6.30 ), yielding

Uk+L =


{uk+L−1 +m, . . . , u0 + w0 − 1}, Yk = ∅

{s∗}, Yk = s∗ ∈ Ŝk[m]
(8.29)

By letting uk+L = uk+L−1 + m and wk+L = u0 + w0 − uk+L if Yk = ∅ and uk+L = s∗ and

wk+L = 1 if Yk = s∗ ∈ Ŝk[m], we have shown the statement to hold for k + L.
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[53] Y. Wang, N. J. Myers, N. González-Prelcic, and R. W. H. J. au2, Deep learning-based
compressive beam alignment in mmwave vehicular systems, 2021. arXiv:  2103.00125
[eess.SP] .

[54] Y. Heng and J. G. Andrews, “Machine learning-assisted beam alignment for mmwave
systems,” in 2019 IEEE Global Communications Conference (GLOBECOM), 2019,
pp. 1–6. doi:  10.1109/GLOBECOM38437.2019.9013296 .

[55] A. A. M. Saleh and R. Valenzuela, “A statistical model for indoor multipath propaga-
tion,” IEEE Journal on Selected Areas in Communications, vol. 5, no. 2, pp. 128–137,
Feb. 1987, issn: 0733-8716. doi:  10.1109/JSAC.1987.1146527  .

[56] C. N. Barati, S. A. Hosseini, M. Mezzavilla, T. Korakis, S. S. Panwar, S. Rangan, and
M. Zorzi, “Initial Access in Millimeter Wave Cellular Systems,” IEEE Transactions on
Wireless Communications, vol. 15, no. 12, pp. 7926–7940, Dec. 2016, issn: 1536-1276.
doi:  10.1109/TWC.2016.2609384  .

[57] Y. Li, J. G. Andrews, F. Baccelli, T. D. Novlan, and C. J. Zhang, “Design and analysis
of initial access in millimeter wave cellular networks,” IEEE Transactions on Wireless
Communications, vol. 16, no. 10, pp. 6409–6425, Oct. 2017, issn: 1536-1276. doi:

 10.1109/TWC.2017.2723468  .

[58] V. Va, J. Choi, and R. W. Heath, “The impact of beamwidth on temporal channel
variation in vehicular channels and its implications,” IEEE Transactions on Vehicular
Technology, vol. 66, no. 6, pp. 5014–5029, Jun. 2017, issn: 0018-9545. doi:  10.1109/
TVT.2016.2622164 .

[59] M. Gapeyenko, A. Samuylov, M. Gerasimenko, D. Moltchanov, S. Singh, M. R. Ak-
deniz, E. Aryafar, N. Himayat, S. Andreev, and Y. Koucheryavy, “On the temporal
effects of mobile blockers in urban millimeter-wave cellular scenarios,” IEEE Trans-
actions on Vehicular Technology, vol. 66, no. 11, pp. 10 124–10 138, Nov. 2017, issn:
0018-9545. doi:  10.1109/TVT.2017.2754543 .

[60] M. Hussain, D. J. Love, and N. Michelusi, “Neyman-Pearson Codebook Design for
Beam Alignment in Millimeter-Wave Networks,” in the 1st ACM Workshop on Millimeter-
Wave Networks and Sensing Systems, ser. mmNets ’17, Snowbird, Utah, USA, 2017,
isbn: 978-1-4503-5143-0. doi:  10.1145/3130242.3130247 .

[61] C. E. Shannon, “A mathematical theory of communication,” Bell System Technical
Journal, vol. 37, 1948.

[62] S. Rangan, T. S. Rappaport, and E. Erkip, “Millimeter-wave cellular wireless networks:
Potentials and challenges,” Proceedings of the IEEE, vol. 102, no. 3, pp. 366–385, Mar.
2014, issn: 0018-9219. doi:  10.1109/JPROC.2014.2299397  .

177

https://arxiv.org/abs/2103.00125
https://arxiv.org/abs/2103.00125
https://doi.org/10.1109/GLOBECOM38437.2019.9013296
https://doi.org/10.1109/JSAC.1987.1146527
https://doi.org/10.1109/TWC.2016.2609384
https://doi.org/10.1109/TWC.2017.2723468
https://doi.org/10.1109/TVT.2016.2622164
https://doi.org/10.1109/TVT.2016.2622164
https://doi.org/10.1109/TVT.2017.2754543
https://doi.org/10.1145/3130242.3130247
https://doi.org/10.1109/JPROC.2014.2299397


[63] M. K. Simon, Probability Distributions Involving Gaussian Random Variables. Springer
Pr., 2002.

[64] D. P. Bertsekas, Dynamic programming and optimal control. Athena Scientific, 2005.

[65] J. Song, J. Choi, and D. J. Love, “Codebook design for hybrid beamforming in mil-
limeter wave systems,” in 2015 IEEE International Conference on Communications
(ICC), Jun. 2015, pp. 1298–1303.

[66] M. R. Akdeniz, Y. Liu, M. K. Samimi, S. Sun, S. Rangan, T. S. Rappaport, and
E. Erkip, “Millimeter wave channel modeling and cellular capacity evaluation,” IEEE
journal on selected areas in communications, vol. 32, no. 6, pp. 1164–1179, 2014.

[67] M. Hussain, M. Scalabrin, M. Rossi, and N. Michelusi, “Adaptive millimeter-wave
communications exploiting mobility and blockage dynamics,” in IEEE International
Conference on Communications (ICC), 2020, pp. 1–6.

[68] M. Baghani, S. Parsaeefard, M. Derakhshani, and W. Saad, “Dynamic non-orthogonal
multiple access and orthogonal multiple access in 5g wireless networks,” IEEE Trans-
actions on Communications, vol. 67, no. 9, pp. 6360–6373, 2019.

[69] N. Michelusi, U. Mitra, A. F. Molisch, and M. Zorzi, “Uwb sparse/diffuse channels, part
i: Channel models and bayesian estimators,” IEEE Transactions on Signal Processing,
vol. 60, no. 10, pp. 5307–5319, Oct. 2012. doi:  10.1109/TSP.2012.2205681 .

[70] D.-S. Shim, C.-K. Yang, J. Kim, J. Han, and Y. Cho, “Application of motion sensors for
beam-tracking of mobile stations in mmwave communication systems,” Sensors, vol. 14,
no. 10, pp. 19 622–19 638, Oct. 2014, issn: 1424-8220. doi:  10.3390/s141019622 .

[71] J. D. C. Little and S. Graves, “Little’s law,” in. Jul. 2008, pp. 81–100. doi:  10.1007/978-
0-387-73699-0 5 .

[72] S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge Univ. Pr., 2011.

[73] C. A. Balanis, Antenna theory: analysis and design. Wiley, 2016.

[74] D. P. Kingma and M. Welling, “An introduction to variational autoencoders,” Foun-
dations and Trends® in Machine Learning, vol. 12, no. 4, pp. 307–392, 2019, issn:
1935-8237. doi:  10.1561/2200000056 . [Online]. Available:  http://dx.doi.org/10.1561/
2200000056 .

[75] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with gumbel-softmax,”
in ICLR, 2017. [Online]. Available:  https://arxiv.org/abs/1611.01144  .

178

https://doi.org/10.1109/TSP.2012.2205681
https://doi.org/10.3390/s141019622
https://doi.org/10.1007/978-0-387-73699-0_5
https://doi.org/10.1007/978-0-387-73699-0_5
https://doi.org/10.1561/2200000056
http://dx.doi.org/10.1561/2200000056
http://dx.doi.org/10.1561/2200000056
https://arxiv.org/abs/1611.01144

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	Introduction
	Energy-Efficient Interactive Beam Alignment for Millimeter-Wave Networks
	Coded Energy-Efficient Beam-Alignment
	 Second-best Beam-Alignment via Bayesian Multi-Armed Bandits
	Mobility and Blockage aware Communications in Millimeter-Wave Vehicular Networks
	Learning and Adaptation in Millimeter-Wave Communications via Deep Variational Autoencoders and POMDPs
	Outline

	Energy-Efficient Interactive Beam Alignment for Millimeter-Wave Networks
	System Model 
	Problem Formulation
	Uniform Prior
	Optimal data communication beam
	Beam-alignment before data communication is optimal
	Optimality of deterministic beam-alignment duration with fractional-search method

	Decoupled BS and UE Beam-Alignment
	Non-Uniform Prior
	Impact of False-alarm and Misdetection
	Numerical Results

	Coded Energy-Efficient Beam-Alignment
	System Model
	Optimization Problem
	Numerical Results

	Second-best beam-alignment via Bayesian Multi-armed bandits
	System Model
	Problem Formulation and Solution
	MDP Formulation
	Value Function

	Numerical Results

	 Mobility and blockage-aware Communications in Millimeter-Wave Vehicular Networks
	System Model
	Signal and Channel Models
	Codebook Structure
	Mobility and Blockage Dynamics
	Sectored antenna model
	Beam-Training (BT) and Data Transmission (DT)

	POMDP Formulation
	Optimization Problem
	Heuristic Policies
	FSM-based Heuristic policy (FSM-HEU)
	Belief-based Heuristic policy (B-HEU)

	Numerical results

	Learning and Adaptation in Millimeter-Wave Communications via Deep Variational Autoencoders and POMDPs
	System Model
	Channel and Signal Model
	Codebook Structure
	Sectored Antenna Model
	Strongest Beam Pair Index Dynamics
	Beam-Training (BT) and Data Transmission (DT)

	Short Timescale: Adaptive BT via Point-based Value iteration
	Optimization Problem
	Point-Based Value Iteration
	Low-Complexity Policy Design
	Structural Properties and Value Iteration

	Long Timescale: Mobility Learning via Recurrent Variational Autoencoders
	R-VAE framework
	Optimization Algorithm

	Numerical Results
	Simulation Setup
	Performance Evaluation


	Conclusion
	Appendices
	Proof of Lemma 2.1
	Supplementary Lemma 8.2
	 Proof of Theorem 2.1
	Proof of Theorem 2.4
	Proof of Theorem 2.6
	Proof of Theorem 4.1
	Proof of Theorem 6.1
	Proof of Corollary 6.1

	REFERENCES

