
ACCELERATED IN-SITU WORKFLOW OF
MEMORY-AWARE LATTICE BOLTZMANN SIMULATION

AND ANALYSIS
by

Yuankun Fu

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Department of Computer Science

West Lafayette, Indiana

May 2021

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Fengguang Song, Co-Chair

Department of Computer and Information Science

Dr. Zhiyuan Li, Co-Chair

Department of Computer Science

Dr. Yao Liang

Department of Computer and Information Science

Dr. Xavier Michel Tricoche

Department of Computer Science

Approved by:

Dr. Kihong Park

2

This dissertation is dedicated to my parents who gave me the most solid support and a

dream that I can pursue with my passion and endeavor.

3

ACKNOWLEDGMENTS

First and foremost, I would like to express my sincere appreciation for my major academic

advisor, Professor Fengguang Song for his expert advice, valuable guidance, and kind support

during my Ph.D. journey at Purdue University. He has taught me, both consciously and

unconsciously, how solid research is done. I would like to thank my co-chair, Professor

Zhiyuan Li, for his valuable guidance and suggestions. Besides, I want to thank Professor

Luoding Zhu, for his guidance and support to lead me into the area of numerical analysis

and computational fluid dynamics. With their help and advice, I have learned a lot and

accomplished more than I could have imagined. Moreover, I want to thank my committee

members, Professor Yao Liang and Professor Xavier Tricoche for serving as my committee

members for their feedback and great help in my studies. This dissertation is based upon

research supported by the National Science Foundation (NSF) Award No. 1522554 and Award

No. 1835817.

I also would like to thank my lab mate, Feng Li, to give me generous help to design

the in-situ workflow benchmark and the 2D sequential memory-aware LBM. I also want to

thank another lab mate, Weijian Zheng, for his help and support in both life and academic

aspects.

Finally, I would like to express special thank to my parents, Qihong Zang and Shaojun

Fu, and families for their love, support and gracious understanding. It is difficult to imagine

how I could have done this without them.

4

TABLE OF CONTENTS

 LIST OF TABLES . 9

 LIST OF FIGURES . 10

 ABBREVIATIONS . 15

 ABSTRACT . 16

 1 INTRODUCTION . 18

 1.1 Motivation and Objectives . 18

 1.2 Research Challenges . 21

 1.3 Research Overview . 24

 1.3.1 Accelerating the massively parallel in-situ workflow 24

 1.3.2 Accelerating the lattice Boltzmann method 25

 1.4 Contributions . 27

 1.5 Dissertation Organization . 28

 2 BACKGROUND . 30

 2.1 Overview of In-situ Processing . 30

 2.1.1 Categories of In Situ Systems . 30

 2.1.2 State-of-the-art In-Situ Systems . 32

 2.2 Overview of Computational Fluid Dynamics 35

 2.2.1 Computational Fluid Dynamics . 36

 2.2.2 Continuum Governing Equations . 37

 Dimensionless number . 38

 2.2.3 Existing Numerical Methods for Fluid Dynamics 39

 Conventional CFD Methods . 40

 Particle-Based Methods . 42

 3 PERFORMANCE ANALYSIS OF WORKFLOWS WITH STATE-OF-THE-ART

IN-SITU SYSTEMS . 45

5

 3.1 In-Situ Workflow Benchmark Setup . 45

 3.2 Experimental Evaluation . 48

 3.2.1 Performance Analysis of In-Situ Workflow Experiments 49

 4 ZIPPER IN-SITU SYSTEM . 54

 4.1 Design and Implementation . 54

 4.1.1 System Overview . 55

 4.1.2 Implementation . 57

 4.1.3 Optimization of Concurrent Message and File Data Transfers 60

 Summary of Zipper’s features . 63

 4.1.4 Performance Model . 63

 4.2 Related Work . 67

 4.3 Experimental Evaluation . 68

 4.3.1 Evaluation of the Performance Model 69

 4.3.2 Effect of the Concurrent Message and File Transfer Optimization . . 71

 Why the concurrent optimization can improve performance? 74

 4.3.3 Scalability Performance . 77

 The CFD application . 78

 The LAMMPS application . 81

 5 2D PARALLEL MEMORY-AWARE LBM ON MANYCORE SYSTEMS 83

 5.1 Background of Lattice Boltzmann Method 84

 5.1.1 The Lattice Boltzmann Equation . 84

 5.1.2 LBM Pros & Cons . 85

 5.2 Baseline 2D LBM Algorithms . 86

 5.2.1 2D Original LBM . 87

 5.2.2 2D Fuse LBM . 88

 5.2.3 2D Fuse Tile LBM . 88

 5.3 Roofline Analysis of 2D Baseline LBM Algorithms 89

 5.3.1 Brief Introduction of Roofline Model 89

 5.3.2 Roofline Analysis of Three 2D LBM algorithms 92

6

 5.4 Related Works . 96

 5.4.1 Optimization of Data Storage and Streaming Patterns 96

 5.4.2 Difference with Wavefront Related Algorithms 98

 5.4.3 Difference with Cache Oblivious Algorithms 99

 5.4.4 State-of-the-art CFD and LBM Software Packages 99

 5.5 Two-step Memory-aware LBM Algorithm . 101

 5.5.1 Sequential Two-step Memory-aware LBM 101

 5.5.2 Special Handling of Boundary Conditions 104

 5.5.3 Parallel Two-step Memory-aware LBM Algorithm 106

 Handling Thread Safety on Intersection Lines 110

 5.6 k-step Memory-aware LBM Algorithm . 111

 5.6.1 Sequential k-step Memory-aware LBM Algorithm 111

 5.6.2 Parallel k-step Memory-aware LBM Algorithm 114

 5.6.3 Special Handling of Boundary Conditions 122

 5.7 Analysis of the 2D LBM Algorithms . 124

 5.7.1 Data Reuse in Original LBM & Fuse LBM 125

 5.7.2 Data Reuse in k-step Memory-aware LBM 126

 5.8 Experimental Evaluation . 127

 5.8.1 Experiment Setup . 130

 5.8.2 Sequential Experiments and Performance Analysis 130

 Performance Analysis of Sequential LBM Experiments 133

 5.8.3 Strong Scalability and Performance Analysis 136

 Performance Analysis of Parallel LBM Experiments 144

 5.8.4 Visualization . 145

 6 3D PARALLEL MEMORY-AWARE LBM ON MANYCORE SYSTEMS 147

 6.1 Introduction . 148

 6.2 Baseline 3D LBM Algorithm . 148

 6.2.1 3D Fuse Swap Prism LBM Algorithm 153

 6.3 Sequential 3D Memory-aware LBM Algorithms 157

7

 6.3.1 Sequential 3D Prism Memory-aware LBM Algorithm 160

 6.4 Parallel 3D Memory-aware LBM . 161

 6.4.1 Handle Thread Safety on Intersection Layers 166

 6.5 Experimental Evaluation . 167

 6.5.1 Experiment Setup and Verification 167

 6.5.2 Performance Analysis of Sequential 3D Memory-aware LBM 167

 6.5.3 Performance of Parallel 3D Memory-aware LBM 173

 7 SUMMARY & FUTURE WORK . 180

 REFERENCES . 182

 A Zipper Interfaces . 194

 A.1 Producer Module Interface . 194

 A.2 Consumer Module Interface . 195

 VITA . 196

 PUBLICATIONS . 197

8

LIST OF TABLES

 2.1 Types of existing in-situ systems using four axes. 36

 3.1 Experimental setup of the in-situ workflow benchmark. 46

 3.2 Configurations of different in-situ systems. 47

 4.1 Description of the applications used in the experiments. 69

 5.1 Seven LBM algorithms discussed in this chapter. Each algorithm has its sequen-
tial version and parallel version. 84

 5.2 Details of the experimental platforms. 128

 5.3 Memory allocation size for each square lattice in the sequential experiments. . . 131

 5.4 Point information of each algorithm on the Roofline Fig. 5.25 135

 5.5 Memory Access pattern analysis of the innermost loop within each sequential
algorithm on a 1024× 1024 square lattice on a Bridges Haswell node. 135

 5.6 Memory consumption for each 2D lattice in the parallel experiments on a Bridges
Haswell node. 139

 5.7 Memory consumption for each 2D lattice in the parallel experiments on a Stampede2
SKX node. 139

 5.8 Memory consumption for each 2D lattice in the parallel experiments on a Stampede2
KNL node. 141

 5.9 Point information of each algorithm on the Roofline Fig. 5.30 144

 6.1 Four LBM algorithms discussed in this chapter. Each algorithm has its sequential
version and parallel version. 147

 6.2 Memory allocation size for each 3D cube lattice in the sequential experiments. 168

 6.3 Allocated memory of cubes and speedup in the strong scalability experiments on a
Haswell node. 173

 6.4 Equivalent input used by 2-step prism LBM when the input of Palabos LBM solvers is
a cube with L = 840 on a Haswell node. 173

 6.5 Allocated memory of cubes in the strong scalability experiments on a Skylake node. . 175

 6.6 Equivalent input used by the 2-step prism LBM when Fuse prism LBM is given
a 960× 960× 960 cube on a Skylake node. 175

 6.7 Allocated memory size of cubes on a KNL node. 178

 6.8 Equivalent input used by 2-step prism LBM when the Fuse prism LBM is given a
680× 680× 680 cube on a Knight Landing node. 178

9

LIST OF FIGURES

 3.1 Our workflow implementations can overlap simulation and analysis using I/O
transport libraries. In this example, we assume data analysis is faster than sim-
ulation for each time step. 47

 3.2 Performance of the CFD workflow application using 7 different I/O transport
libraries, in comparison with the simulation time and analysis time. 48

 3.3 A trace of native DIMES with a snapshot of 2 seconds. 50

 3.4 Comparison between running CFD simulations only and running Flexpath based
workflows. This figure shows a snapshot of 3 seconds. 52

 3.5 Comparison between running CFD simulations only and running Decaf-based
workflows. This figure shows a snapshot of 0.9 seconds. 53

 4.1 The Zipper runtime system. 55

 4.2 The architecture of the Zipper workflow framework to integrate a parallel simu-
lation application with a parallel analysis application. 57

 4.3 The producer runtime module. 58

 4.4 The consumer runtime module. 59

 4.5 The concurrent data transfer method can reduce the data transfer time by con-
verting a portion of message passing time to certain overlapped parallel file I/O
time. 61

 4.6 Non-integrated design (upper) vs. integrated design (lower). In the (lower) in-
tegrated design, at any time, four stages (C, O, I, and A) are working on four
distinct data blocks. The four data blocks could be sequentially dependent, but
can still be processed in parallel due to the data pipelining parallelism. 64

 4.7 The Zipper performance model in No Preserve mode when using the concurrent
data transfer method. 65

 4.8 The Zipper performance model in Preserve mode when using the concurrent data
transfer method. 66

 4.9 Time breakdown of the execution time for three different synthetic applications
in the No Preserve mode. 71

 4.10 Time breakdown of the execution time for three different synthetic applications
in the Preserve mode. 71

 4.11 Effect of the concurrent data transfer optimization using different numbers of
cores on three synthetic applications. 73

10

 4.12 Network Congestion of the concurrent data transfer optimization using different
numbers of cores on three synthetic applications. XmitWait counts the number
of occurrences when any virtual lane had data but was unable to transmit. . . . 76

 4.13 Scalability performance of the CFD workflows using MPI-IO, Flexpath, Decaf, and
Zipper, respectively. 78

 4.14 Trace comparison between Zipper and Decaf for the CFD application on 204 cores.
This figure shows a snapshot of 1.3 seconds when using 204 cores, which is taken from
the experiment shown in Fig. 4.13 . 80

 4.15 Scalability performance of the LAMMPS workflows using MPI-IO, Flexpath, Decaf,
and Zipper, respectively. 81

 4.16 Trace comparison between Zipper and Decaf for the LAMMPS application on 13,056
cores. This figure shows a snapshot of 9.1 seconds when using 13,056 cores, which is
taken from the experiment shown in Fig. 4.15 . 82

 5.1 D2Q9 velocity sets for each lattice cell. 86

 5.2 Standard DRAM Roofline model. 90

 5.3 Hierarchical Roofline model [118]. An application’s achieved performance and AI
at each memory level of the machine. 91

 5.4 Time and data transfer among each memory level of Original LBM. “Self” means
not including functions called in the current loop or function. The columns of
“Self Memory”, “Self L2”, “Self L3” , and “Self DRAM” collect the data transfer
between CPU and L1 cache, L1 and L2 cache, L2 and L3 cache, L3 cache and
DRAM, respectively. 93

 5.5 Sequential performance of the Original LBM on a square lattice with L = 1024 . 94

 5.6 Callstacks Roofline comparison of the Original, Fuse, and Fuse tile LBM on a 2D
square lattice with edge size L = 1024. 95

 5.7 Sequential memory-aware algorithm. Note that the horizontal direction in this figure
is the channel’s width (Y axis in Fig. 5.23), while the vertical direction is the chan-
nel’s length (X axis in Fig. 5.23). This notation will be used in the later algorithm
illustration diagram. (a) Initialization. (b) First collision and streaming on (1, 1).
(c) First collision and streaming on (1, 2). (d) Continue computing the first collision
and streaming through (2, 1). (e) First collision and streaming on (2, 2) and fulfill the
data dependency of (1, 1) to compute the second collision and streaming. (f) Second
collision and streaming on (1, 1). 102

 5.8 Four boundary conditions used in the LBM simulation. 105

11

 5.9 Handle the right outlet BC. When Alg. 6 reaches innerX = lx, the orange domain has
completed two-step computation. We use two extra arrays to store the density ρ of
cells at column lx−1 and lx−2 after the first fused computation but before the second
fused computation, so that the right outlet BC at the time step t + 1 can be correctly
handled. 105

 5.10 Parallel two-step memory-aware algorithm in Y-X axis. (a) Initialization. (b∼c) First
computation on the “intersection” (row 3 & 6) at time step t. (d∼e) First computation
on row 1 and 3 at time step t. (f) First computation on the leftmost cell on row 2
and 5. (g) When thread 0 and 1 complete the first computation on (2, 2) and (5, 2)
respectively, the buf2 in (1, 1) and (4, 1) fulfill the data dependency for the second
computation at time step t + 1. (h) Second fused computation on (1, 1) and (4, 1).
(i∼j) Do the first computation on row 2 and 5, meanwhile do the second computation
on row 1 and 4. (k) Second computation on the “intersection” (row 3 & 6). 107

 5.11 Partition of a 2D lattice by parallel memory-aware LBM. 108

 5.12 Handle the intersection line. To keep thread safety, the second computation on row 4
should be delayed after the first computation on row 3, and the second computation
on row 3 should also be delayed after the first computation on row 4. 110

 5.13 Sequential k-step memory-aware algorithm. (k=3) (a) Initialization. (b) First compu-
tation on line 1. (c) First computation on (2, 1). (d) First computation on (2, 2). The
data dependency of (1, 1) is fulfilled to compute the second computation. (e) Second
computation on (1, 1). (f) First computation on line 2. Second computation on line
1. (g ∼ j) First computation on line 3. Second computation on line 2. (k) Second
computation on (2, 2). The data dependency of (1, 1) is fulfilled to compute the third
computation. (l) Third computation on (1, 1). 112

 5.14 A 10× 4 lattice is distributed to 2 threads. (a) Each thread owns a 5× 4 sub-lattice.
(b) Pre-processing intersection area: thread 1 computes the data domain from row 4
to 7; thread 0 computes the bottom 2 rows (row 1 & 2) and top 2 rows (row 9 & 10). 115

 5.15 Legend used to describe parallel k-step memory-aware LBM. 116

 5.16 Stage I (preparation): handle the intersection. 117

 5.17 Stage II: main computation in each thread’s sub-lattice. 119

 5.17 Continued. 120

 5.18 Zero gradient BC data dependency in k-step memory-aware LBM (k=3). 124

 5.19 The Original LBM has 8 buf2 reuses per cell (in the grey region) during the streaming
stage, while the Fuse LBM has 9 data reuses per cell (including 1 buf1 reuse). 125

 5.20 The two-step memory-aware LBM has 19 data reuses per two cells in two time
steps. 126

 5.21 The three-step memory-aware LBM has 29 per three cells in three time steps. . 127

12

 5.22 On-chip Interconnect of CPUs used in experiments. 129

 5.23 A steady Poiseuille fluid flowing around a cylinder in a 2D channel. 130

 5.24 Sequential performance using seven LBM algorithms on three Intel CPUs. . . . 131

 5.25 DRAM roofline comparison for the 7 sequential LBM algorithms with L = 1024 on a
Haswell node. . 134

 5.26 Haswell Strong Scalability performance. 137

 5.26 Continued. 138

 5.27 Skylake Strong Scalability performance. 140

 5.27 continued. 141

 5.28 Knight Landing Strong Scalability performance. 142

 5.28 Continued. 143

 5.30 DRAM Roofline comparison for the 7 parallel LBM algorithms with 28 threads on the
14336× 14336 square lattice on a Haswell node. 144

 5.31 Vorticity plot of flow past a cylinder, a Karman vortex street is generated 146

 6.1 The D3Q19 velocity sets of each cell in 3D LBM. 149

 6.2 Two operations used in sequential 3D Fuse swap LBM. 150

 6.3 Big picture of 3D Fuse swap LBM. 150

 6.4 Swap Stream on (x, y, z) and (x− 1, y, z) along with the first and tenth directions. 152

 6.5 Planar slice when cutting Fig. 6.2a (swap stream operation) along Y-Z plane. . . 154

 6.6 Prism traversal with four layers when tile = 4. 154

 6.7 Fuse swap prism traversal on a 4× 16× 16 cuboid block. 156

 6.8 3D sequential two-step memory-aware LBM on a 4× 4× 4 cube lattice. 158

 6.9 Partition of a 3D cuboid domain by n threads. 162

 6.10 3D parallel two-step memory-aware LBM on a 8× 4× 4 cuboid. 163

 6.11 Handle thread safety on intersection layers. To keep thread safety: (1) the first
swap_stream on layer 5 during stage II should be delayed after the first revert on layer
4 during stage I; (2) during stage II, the second swap_stream on layer 6 should be de-
layed after the second revert on layer 5. (3) during stage III, the second swap_stream

on layer 5 should be delayed after the second swap_stream on layer 4 during stage II. 166

 6.12 3D lid-driven cavity benchmark: the top lid moves with a constant velocity v. . 168

 6.13 Sequential performance using four LBM algorithms on three types of CPUs. . . 169

 6.14 Memory used and free on two sockets of a Haswell node. 171

13

 6.15 Memory free and usage on two sockets of a Skylake node. 172

 6.16 Haswell Strong Scalability performance. “2-step prism eqv” = Parallel 3D memory-
aware LBM takes the equivalent input of cubes. 174

 6.16 Continued. 175

 6.17 Skylake Strong Scalability performance. “2-step prism eqv” = Parallel 3D memory-
aware LBM takes the equivalent input of cubes. 176

 6.18 Knight Landing scalability performance. “2-step prism eqv” = Parallel 3D memory-
aware LBM takes the equivalent input of cubes. 177

 6.18 Continued. 178

 A.1 Use the Zipper Producer Module to integrate with a simulation application. 194

 A.2 Use the Zipper consumer module to integrate with an analysis application. 195

14

ABBREVIATIONS

AI Arithmetic Intensity

BC Boundary condition

BGK Bhatnagar-Gross-Krook

CARM Cache-aware Roofline Model

CFD Computational fluid dynamics

CHA Cache/Home Agent

CPU Central Processing Unit

HPC High-performance computing

LB(M/E) Lattice Boltzmann (method/equation)

DdQq q velocities per cell in d-Dimension

MCDRAM Multi-Channel DRAM

MD Molecular dynamics

MPI Message-passing interface

NS(E) Navier-Stokes (equations)

PCIe Peripheral Component Interconnect express

QPI Intel QuickPath Interconnect

15

ABSTRACT

As high performance computing systems are advancing from petascale to exascale, scien-

tific workflows to integrate simulation and visualization/analysis are a key factor to influence

scientific campaigns. As one of the campaigns to study fluid behaviors, computational fluid

dynamics (CFD) simulations have progressed rapidly in the past several decades, and revo-

lutionized our lives in many fields. Lattice Boltzmann method (LBM) is an evolving CFD

approach to significantly reducing the complexity of the conventional CFD methods, and

can simulate complex fluid flow phenomena with cheaper computational cost. This research

focuses on accelerating the workflow of LBM simulation and data analysis.

I start my research on how to effectively integrate each component of a workflow at

extreme scales. Firstly, we design an in-situ workflow benchmark that integrates seven

state-of-the-art in-situ workflow systems with three synthetic applications, two real-world

CFD applications, and corresponding data analysis. Then detailed performance analysis

using visualized tracing shows that even the fastest existing workflow system still has 42%

overhead. Then, I develop a novel minimized end-to-end workflow system, Zipper, which

combines the fine-grain task parallelism of full asynchrony and pipelining. Meanwhile, I

design a novel concurrent data transfer optimization method, which employs a multi-threaded

work-stealing algorithm to transfer data using both channels of network and parallel file

system. It significantly reduces the data transfer time by up to 32%, especially when the

simulation application is stalled. Then investigation on the speedup using OmniPath network

tools shows that the network congestion has been alleviated by up to 80%. At last, the

scalability of the Zipper system has been verified by a performance model and various large-

scale workflow experiments on two HPC systems using up to 13,056 cores. Zipper is the

fastest workflow system and outperforms the second-fastest by up to 2.2 times.

After minimizing the end-to-end time of the LBM workflow, I began to accelerate the

memory-bound LBM algorithms. We first design novel parallel 2D memory-aware LBM

algorithms. Then I extend to design 3D memory-aware LBM that combine features of

single-copy distribution, single sweep, swap algorithm, prism traversal, and merging multiple

temporal time steps. Strong scalability experiments on three HPC systems show that 2D and

16

3D memory-aware LBM algorithms outperform the existing fastest LBM by up to 4 times and

1.9 times, respectively. The speedup reasons are illustrated by theoretical algorithm analysis.

Experimental roofline charts on modern CPU architectures show that memory-aware LBM

algorithms can improve the arithmetic intensity (AI) of the fastest existing LBM by up to

4.6 times.

17

1. INTRODUCTION

1.1 Motivation and Objectives

As high performance computing (HPC) systems are advancing from petascale to exascale,

scientific workflows, composed of coupled simulations along with analytics or visualization

components, will facilitate scientific communities to explore the extreme-scale computational

tasks in multi-disciplines (e.g., climate, nuclear energy, cosmology, astrophysics, chemical

sciences and those proposed by the US Exascale Computing Program (ECP) [1]). By the year

2030, it is projected that high-fidelity computational fluid dynamic (CFD) simulations (to

solve the problems, e.g., aerodynamics, climate, marine, energy transformation, gas turbines,

combustion, the spread of COVID-19, 3D printing, etc.) will be at the grid resolution of 100’s

of millions of points with a large ensemble of parameter variations [2]. The fine resolution and

transient nature of these simulations will generate the entire volumetric solution dataset of

100’s of terabytes or even petabytes [3], [4]. However, the computation-I/O gap on leadership-

class systems becomes even larger. For example, the peak CPU performance is at least five

orders of magnitude faster than the I/O bandwidth on the world’s fastest supercomputer

Fugaku in the top500 list of 2020 [5].

1
 Thus, moving the data between the simulation and

analysis components of scientific workflows becomes a serious bottleneck.

For decades, the dominant paradigm is the “post hoc” workflow, i.e., writing the whole

dataset to persistent file system, then later reading them for post analysis/visualization.

Although the post hoc paradigm is easier for human interaction and exploratory investigation,

there are several critical constraints. Firstly, the primary issue is performance, i.e., the low

I/O throughput and massive data movement across networks can become a bottleneck in

the overall scientific workflow [7], [8]. The second issue is capacity, i.e., storing the total

dataset can easily exceed the available storage space. Thirdly, it is unnecessary to store

huge amounts of whole datasets, which slows down some scientific discovery campaigns. For

example, only features of interest (e.g., shocks or vortices, which reside mainly on the wet

surfaces of the objects being studied [7]), or rare events detection – used in deep learning,
1

 ↑ Fugaku’s peak LINPACK benchmark performance is 0.442 exaFlops, total memory bandwidth is 163 PB/s,
Tofu-D 6D Torus network bandwidth is 6.49 PB/s. Its single node contains local L1 NVMe storage and PCIe
Gen3 x16 I/O with 100 Gbps I/O network endpoint into Lustre [6].

18

graph analysis, or experimental data analysis – need to be saved to storage. The fourth issue

is economics, i.e., moving data around disks and I/O fabric is expensive in terms of energy

and money.

To address these issues, the in-situ workflow has been studied over the past three decades.

The word in-situ originates from Latin, and means “on-site”, or “in-place”. The in-situ

workflow literally means analyzing or visualizing data as data is generated [9]. This term

evolves as the in-situ research goes on, and recently a group of over fifty experts convened

to standardize its definition [9], which is followed in this dissertation. We define the in-

situ workflow as a workflow whose tasks are coupled by exchanging data over the memory,

storage hierarchy, or network in the same HPC system during the same scheduled execution

of a job [10], [11].

2
 Thus, it includes both on-node proximity (i.e., tasks performed only

in the same node of the compute resources [12], alias names are synchronization or co-

processing [13], [14]) , and off-node proximity (i.e., offloading computations to a set of

secondary resources using asynchronous data transfers [15], [16], alias names are in-transit

or data staging). There are several advantages to use in-situ workflows. The first point is

the I/O cost savings, where data is analyzed/visualized while being generated, without first

storing in a file system. The second point is higher fidelity and accuracy, which leads to better

science. Since in-situ workflows could perform fine temporal sampling of transient analysis

without throttled by I/O , the post hoc workflow has to use coarse temporal sampling to avoid

the excessive I/O cost. The third point is the economical availability to use all computing

resources on the same site for both simulation and visualization/analysis routines without

moving to another site. Above all, it is more appealing to use in-situ workflows to combine

the exascale simulation with big data analysis to create a virtuous cycle to amplify their

collective effects [17]–[20].

However, it is exceedingly challenging to build high performance in-situ workflows at

extreme scales, which motivates the first objective of my Ph.D. research — accelerating

massively parallel in-situ workflows of simulation with big data analysis. Several

basic questions are still hard to answer: Did any unusual phenomena happen or not during
2

 ↑ Conversely, a distributed workflow is one whose tasks are more loosely coupled through files, and executed
on geographically distributed clusters, clouds, grids, etc. [10].

19

the workflow? When and where did they occur? Will they affect the original performance of

the simulation or analysis application if not using the workflow method? How to circumvent

the bottlenecks to achieve optimal workflow performance?

On the other hand, computational fluid dynamics (CFD) simulations emerged five decades

ago and have been paced by advances in the HPC systems [21]. They revolutionized the

design process in various scientific, engineering, industrial, medical fields, etc. For example,

CFD is the main tool for preliminary aerodynamic design and is supported with wind tunnel

testing. Other applications include the design of Formula 1 racing cars, red blood cell flow in

the vessels of the heart, etc. Currently, we can use Reynolds averaged Navier-Stokes (RANS)

solvers to calculate the steady viscous flow from low speed to transonic and supersonic flow,

but they are not able to reliably predict for turbulent-separated flows [22].

Lattice Boltzmann method (LBM) is a young and evolving CFD approach to solving

these problems since the late 1980s. It originates from a mesoscale description of the fluid,

can integrate physical terms of molecule interaction, and apply to complex geometries and

flows. Solving isothermal and weakly compressible flows can be relatively difficult for Navier-

Stokes equations [23]

3
 , but is simple for LBM. Later, many collision models for LBM are

proposed to improve its stability to the second order of numerical accuracy when simulating

high Reynolds number flows [25]. Now exascale LBM has shed light on its capability to solve

future CFD problems. For the large eddy simulation (LES, e.g., a full-powered aircraft con-

figuration across full flight envelopes

4
), LES-based LBM models have shown their strengths

to simulate thermal and compressible flows in transonic and supersonic regimes [22], [25]–

[29]. At moderate Reynolds regimes, exascale hemodynamics with LBM can advance pre-

cision medicine by simulating a full heartbeat at the red-blood cell resolution in about half

an hour [26]. At particle regimes, LBM potentially promotes medical therapies against

neurological diseases by millisecond simulations of protein dynamics within the cell [26].

However, it is also challenging to achieve high performance for exascale LBM simulations,

which motivates the second objective of my Ph.D. research — accelerating the LBM
3

 ↑ On May 24, 2000, Clay Mathematics Institute proposed seven millennium problems (e.g., Riemann Hy-
pothesis, P vs NP Problem, etc). The Navier–Stokes existence and smoothness problem is one of them [24].
4

 ↑ This is the first of the four grand challenges proposed by the NASA CFD Vision 2030 Study [2]

20

algorithm. This is because LBM is a heavily data-intensive and notoriously memory-

bound algorithm [30]. LBM simulation can be generally viewed as an iterative collision-

streaming cycle. The collision step is purely local computation at each lattice node and

can be adapted to different collision models according to stability and applied circumstances

(incompressible/compressible). The streaming step requires intensive data exchange among

neighboring lattice nodes. Thus, how to efficiently improve the memory access pattern and

the arithmetic intensity (AI) of LBM will be the key to accelerate LBM algorithms.

1.2 Research Challenges

Scientific workflow research can be generally divided into two categories: in-situ work-

flow and distributed workflow. For the existing distributed workflow solutions, such as

Swift/T [31], Tigres [32], Kepler[33], Pegasus [34], Vistrails [35], Galaxy [36], Taverna [37],

etc. , they target high productivity and have been widely used in different scientific domains.

They provide orchestrating, executing, and monitoring coarse-grain steps in a workflow. Each

step runs an application program or cloud/web service [10], [38]. However, those participant

steps are often loosely coupled such that the resultant workflows have higher latencies (i.e.,

milliseconds or much more) than the MPI-based HPC applications (i.e., microseconds).

To achieve higher performance within an HPC system, in-situ systems have been de-

veloped to reduce the I/O bottleneck by many researchers (e.g., MPI-IO [39], ADIOS [40],

DataSpaces [41], FlexPath [42], Decaf [11], etc). As for the first objective to accelerate the

performance of in-situ workflows, there are several challenges to solve:

1. “Benchmarks and community data sets” is one of the six research challenges for future

scientific workflows [10]. To the best of our knowledge, there exists no such in-situ

workflow benchmark available to compare the performance of different in-situ systems

in scientific workflow communities. Due to different design purposes, hardware config-

urations, software stacks, and HPC system environment compatibility, it is nontrivial

to design such benchmarks to integrate simulation and analysis with those existing

in-situ systems to make workflow function properly and then evaluate fairly their best

achievable performance with appropriate configurations.

21

2. What could be the minimum end-to-end time-to-solution for an in-situ workflow of

simulation with analysis applications? How to achieve it?

3. Simulation and data analysis applications work as an interactive producer-consumer

system, thus how can we reduce the simulation stall time if the analysis is slow?

4. How can we reduce the I/O or data transfer time between simulation and analysis

applications?

As for the second objective to accelerate the LBM algorithm, due to the iterative nature of

LBM to reach convergence, publications have mainly focused on improving the performance

of the collision-streaming cycle within one iterative time step. For instance, a few LBM

algorithms (e.g., as swap [43], shift [44], AA-pattern [45], esoteric twist [46], etc.) retain a

single copy of the particle distribution, and optimize the memory access pattern in the LBM

streaming kernel, but each of the algorithms needs to follow a set of constraints (e.g., swap

requires predefined order of discrete cell velocities, etc.) Some work replaces distribution

representation with moment representation to further reduce the storage cost [30]. Some

work explores spatial locality techniques (e.g., loop fusion, loop tiling, loop skewing, etc.),

but produces limited improvement [47]. Some hides the inter-process communication cost

on multicore accelerators [48], and achieve large-scale parallelization on HPC systems [49]

and GPUs [50].

Although the LBM community has achieved fruitful results, we find that the existing

techniques show that the state-of-the-art performance of LBM is still under the memory-

bound ceilings in the Roofline model [30]. To further improve the performance of LBM, a

novel design of LBM is necessary to improve its Arithmetic Intensity (AI) and eventually

alleviate its memory-bound limitation.

Our intuition is to increase data reuse across multiple time steps of collision-streaming

cycles. There exists research using wavefront parallelism to merge multiple time steps, but

they enforce frequent synchronization among threads in every time step [47], [51]. Instead,

we aim to achieve higher performance by minimizing synchronization costs. We decompose

the simulation domain to each thread with as much data as possible, but how to handle

22

the intersection or overlapping area involves uneasy issues, especially when merging multiple

time steps. Thus, we start by exploring the effectiveness of our intuition on 2D cases with the

sequential and parallel versions, and then extend them to the more complicated 3D cases.

However, there exist nontrivial challenges related to both thread safety and performance

efficiency.

1. For the 2D sequential LBM, how to arrange the memory access pattern to correctly

merge multiple time steps of the collision and streaming in a tile of the simulation

domain, meanwhile to keep the data integrity and dependency among multiple time

steps, to handle the boundary conditions correctly, and without involving extra data

storage?

2. For the parallel 2D LBM, how to handle the lattice points on the intersection area

between different threads? How to minimize synchronization cost? And how to justify

the parallel performance improvement?

3. For the 3D sequential LBM, as the geometry changes from O(n2) to O(n3), data storage

has increased by an order of magnitude, and data dependency of lattice model becomes

more complicated (from D2Q9 to D3Q19 or D3Q27). We need to consider the huge

increase of data storage and use the existing data storage optimization for LBM (e.g.,

swap algorithm, etc). Although these methods have the advantage to reduce the total

storage cost by half, they also require to follow specific traversal orders (e.g., instead

of streaming standard total populations of each cell, swap algorithm streams only half

of the populations to the nearest neighbors). Based on this condition, how can we

still combine the idea of merging multiple time steps with these existing methods and

utilizing the spatial and temporal locality?

4. For the parallel 3D LBM, how to handle the intersection layers among threads correctly

and efficiently? How to reduce synchronization cost in parallel?

23

1.3 Research Overview

1.3.1 Accelerating the massively parallel in-situ workflow

To achieve the first objective of my Ph.D. research, I start by designing an in-situ work-

flow benchmark using the latest high-level I/O libraries and in-situ systems (e.g., MPI-

IO [39], ADIOS [52], DataSpaces [41], DIMES [53], Flexpath [42] and Decaf [11]) to “glue”

simulation and analysis applications. The benchmark has developed seven different in-situ

workflow implementations to combine a LBM simulation with a turbulence flow analysis ap-

plication. Each workflow implementation employs a different I/O transport method. From

the experimental results in Chap. 3 , we can conclude that these workflows’ end-to-end time

is significantly larger than the essential simulation or analysis time. More detailed perfor-

mance analysis identifies a set of performance inefficiencies, such as synchronization with

data staging servers, coarse-grain critical sections, interlock and barriers between applica-

tions, network bandwidth contention, and application stalls.

Instead of only concentrating on the workflow’s data transfer cost, my second step is

to design a novel in-situ system, Zipper, to focus on optimizing the end-to-end workflow’s

time-to-solution. Its design inspiration originates from an in-situ workflow performance

model, which estimates an in-situ workflow’s time-to-solution, and guide improvement on

the most time-consuming component to achieve the minimal end-to-end time of a workflow.

Specifically, Zipper uses the parallelism of fine-grain tasks, pipelining and asynchrony to

tightly integrate simulation and analysis applications. To overcome the above inefficiencies

incurred by the existing in-situ systems, Zipper is driven by data availability, and has no

data staging server cost and no artifactual data dependency (e.g., barriers) between tasks.

Moreover, Zipper can transport simulation output by two concurrent channels: low-latency

HPC network and file-based deep memory storage (e.g., NVME, local storage, parallel file

system, etc.). At last, it supports two common scientific discovery scenarios: 1) Users can use

the Preserve mode to store the intermediate simulation results, which can be used to verify

the correctness of the simulation, or for post exploratory investigation; 2) Users can use the

NoPreserve mode to discard the intermediate simulation output and the analysed data to

speedup the discovery workflow circle. Chap. 4 introduces the design details of Zipper.

24

Then my third step is to conduct workflow experiments to assess the performance of

Zipper and compare it with existing in-situ systems on two HPC systems. We started with

two groups of synthetic experiments: the first group validates whether Zipper conforms

to the analytical performance model; the second group confirms that the concurrent dual-

channel data transfer optimization method can reduce data transfer time and the simulation

application stall time, followed with the investigation on the speedup reason using network

congestion analysis. Next, we evaluate the scalability performance of Zipper using two real-

world applications: the LBM simulation is coupled with an online statistical turbulence

analysis, and the LAMMPS simulation is coupled with the Mean-Squared Displacement

(MSD) data analysis. Based on the experimental results, Zipper workflow can outperform

the existing fastest state-of-the-art in-situ systems by up to 2.2 times on 13,056 cores. At

last, the performance benefits have been studied and analysed by collecting and comparing

different workflow implementations’ traces.

1.3.2 Accelerating the lattice Boltzmann method

To achieve the second objective of my Ph.D. research, I start by accelerating LBM in

2D cases. The Roofline performance model is an emerging visual performance analysis tool

to offer insight for applications on multicore architectures. I firstly use it to evaluate the

sequential performance of the Original LBM algorithms and two other LBM algorithms,

i.e., Fuse LBM (only using loop fusion) and Fuse tile LBM (combining loop fusion and

loop tiling). We observe that the streaming step in the three LBM algorithms suffers low

arithmetic intensity, spends the longest proportion of total running time, and is bounded by

the DRAM bandwidth ceiling. This discovery motivates us to target improving the memory

access pattern by merging multiple time steps of collision-streaming cycles to explore the

temporal locality.

We start by designing the 2D sequential memory-aware LBM algorithm which merges two

time steps of collision-streaming cycles, and then study handling various boundary conditions

(BCs) under this new computation pattern, since BCs are fundamental to maintain the

accuracy of LBM stable. Then to alleviate the synchronization cost incurred by the wavefront

25

algorithms used by existing research, I design the 2D parallel memory-aware LBM, which

targets that each thread computes more time steps within each local data domain and reduces

the synchronization costs. Then I discuss how to handle the intersection area among threads

to keep thread safety. Next, I design the sequential and parallel memory-aware LBM in 2D

cases to merge three or more time steps of collision-streaming cycles. To analyse the potential

performance gain, we compare the amount of data usage in these new LBM algorithms. At

last, three groups of experiments are conducted on three different manycore architectures.

The first group evaluates the sequential performance of seven LBM algorithms (i.e., three

baseline LBM algorithms and four new ones), followed by Roofline analysis. We observe that

the two-step tile LBM is the best and outperforms the state-of-the-art Fuse LBM by up to

30% on a Haswell CPU and 20% on a Skylake CPU. The second group compares the strong

scalability performance of seven parallel LBM algorithms. We find that the k-step parallel

memory-aware LBM is the best and can outperform the Fuse LBM by up to 4.4 times on

the Haswell node with 28 cores, 5 times on the Skylake node with 48 cores, and 2.6 times

on the Knight Landing node with 68 cores. Roofline analysis is used again to investigate

the performance gain. The third group uses Paraview [54] and Catalyst [14] to visualize the

data generated by our new algorithms, which validate the simulation results.

My next step is to extend to the 3D cases with the idea of merging multiple time steps

to accelerate LBM. Both sequential and parallel memory-aware 3D LBM algorithms are

designed to merge two time steps of LBM collision-streaming cycles. Besides, together with

swap and prism traversal, I reduce the storage cost from two copies of the particle distribution

data per fluid lattice to one copy. Besides, I study how to handle the intersection planes

between threads in parallel within 3D. At last, I conduct three groups of experiments on

three different manycore architectures. The first group evaluates the sequential performance

of three 3D LBM algorithms under the Palabos LBM framework. The sequential experiment

shows that the two-step prism LBM outperforms the state-of-the-art Fuse prism LBM by

up to 19% on a Haswell CPU and 15% on a Skylake CPU. The second group evaluates the

strong scalability performance of the 3D LBM by two subgroup experiments: equivalent

input and identical input. Based on the scalability experiments using the equivalent input,

the two-step prism memory-aware LBM outperforms the Fuse prism LBM by up to 89% on

26

a Haswell node with 28 cores, 85% on a Skylake node with 48 cores, and 39% on a KNL

node with 68 cores.

1.4 Contributions

This dissertation is mostly drawn from prior works which have been peer-reviewed and

published in high-quality HPC and CFD conferences. Our in-situ workflow research appeared

at [55]–[57], the 2D memory aware LBM research appeared at [58] and the 3D memory aware

LBM research is being reviewed. To the best of our knowledge, this dissertation makes the

following contributions:

1. Design an in-situ workflow benchmark in the scientific workflow community. It

integrates seven state-of-the-art in-situ systems with two real-world CFD simulations

and corresponding data analyses. Then detailed performance analysis via visual trac-

ing shows that even the fastest existing in-situ system still has 42% overhead, due

to synchronization with staging servers, coarse-grain critical sections, interlock and

barriers between applications, network bandwidth contention, and application stalls.

2. Develop a novel minimized end-to-end in-situ system, Zipper, and propose an in-

situ workflow performance model. Zipper utilizes both hybrid proximity, combines the

fine-grain task parallelism of fully asynchrony and pipeline, and supports Preserve and

No-Preserve mode. Scalability workflow experiments on two HPC systems using up

to 13,056 cores show that Zipper is the fastest, and outperforms the second fastest by

up to 2.2 times.

3. Design a novel concurrent data transfer optimization method, which is embed-

ded in the Zipper in-situ workflow. It employs a multi-threaded work-stealing algorithm

to transfer data using both channels of network and deep memory hierarchy (burst

buffer, NVMe, local storage, parallel file system, etc.). When the method combines

network and parallel file system, it significantly reduces the data transfer time by up

to 32%, therefore reducing the simulation stall frequency. Then investigation on the

27

speedup using OmniPath network tools shows that the network congestion has been

alleviated by up to 80%.

4. Design novel sequential/parallel 2D & 3D memory-aware LBM algorithms to

accelerate LBM algorithms efficiently. It combines both spatial and temporal locality

(merging multiple time steps of computation). Specifically, we reduce half of the stor-

age cost in 3D cases. Strong scalability experiments on three manycore architectures

show that 2D & 3D memory-aware LBM outperforms the existing fastest LBM by up

to 5 times and 89%, respectively.

5. Explain the speedup reason using both theoretical algorithm analysis and Roofline

performance model. The 2D memory-aware LBM can improve the arithmetic intensity

(AI) of the Fuse tile LBM by up to 4.6 times.

1.5 Dissertation Organization

The rest of this dissertation is organized as follows.

Chap. 2 introduces the background of in-situ and CFD research. It gives a brief in-

troduction of in-situ history and concepts, and summarizes different state-of-the-art in-situ

systems. Then various numerical methods of fluid dynamics are compared and introduced.

Chap. 3 designs the in-situ workflow benchmark, compares different in-situ workflows’

performance, and then investigates their inefficiencies and bottlenecks.

Chap. 4 presents the Zipper and proposes an in-situ workflow performance model. The

implementation details of Zipper and the concurrent dual-channel data transfer optimization

method are described. Then we run experiments and evaluate the performance using the

existing in-situ systems and Zipper.

Chap. 5 designs the 2D sequential and parallel k-step memory-aware LBM algorithms,

and compares their results with the existing LBM algorithms.

Chap. 6 moves forward to extend the idea to design the 3D sequential and parallel k-step

memory-aware LBM algorithms, and compares their performance with the existing 3D LBM

algorithms.

28

Chap. 7 summarizes the dissertation and presents the future work.

29

2. BACKGROUND

In this chapter, Sect. 2.1 gives an overview of in-situ research, i.e., its concept, history,

categories, followed by a summary of existing in-situ workflow systems. Sect. 2.2 gives an

overview of the basic theory of fluid dynamics and existing various numerical methods. Then

since fluid can be also viewed by either a continuum or particle description, we separately

introduce numerical methods under each scope. Both sections are backgrounds that motivate

my Ph.D. research.

2.1 Overview of In-situ Processing

The idea and history of performance analysis, producing images without first outputting

data to storage, dates back to the 1960s. The NCAR Graphics Library [59] which con-

tains a group of subroutines for producing images/plots is one of the “in situ methods and

infrastructure” in the early time and is still used today.

However, due to the exascale computing-I/O gap, in-situ research has advanced and many

in-situ systems are developed separately from the storage and visualization communities.

Understanding their difference and features will be the key to help scientists choose the most

appropriate to speed up their scientific discovery.

2.1.1 Categories of In Situ Systems

The in-situ terminology team [9] proposed six axes to categorize them, but we can distill

them into four axes from end users’ perspective as follows.

1. Proximity: how close the simulation are to the analysis/visualization. We can further

divide the proximity into two sub-categories: On Node vs Off Node, i.e. whether

the analysis/visualization share the same resources on the node of simulation or not. In

some in-situ systems, visualization/analysis directly accesses the memory of simulation

on the same resources, thereby the advance of the simulation and visualization/anal-

ysis is alternated on these resources. Aliases of on-node proximity are time division,

coprocessing, or direct access. On the other hand, visualization/analysis on distinct

30

resources uses indirect access to the simulation by the network, burst buffer, local file

system, or specific connections (e.g., PCI , NVLink, etc.). Aliases of Off Node prox-

imity are space division or indirect access. Some systems allow in-situ routines to be

broken down into separate pieces and deployed onto both compute nodes and staging

nodes, i.e., Hybrid.

2. Access: Deep Copy vs Shallow Copy. Deep Copy makes a copy of the simulation

data, and can prevent the simulation stall if in-situ routines are slow. Shallow Copy

can save memory space and adapt data to simulation routine by adding extra data

representation. But it may stall the simulation, if in-situ routines haven’t finished

using the simulation data.

3. Integration Type: how the simulation code is integrated to the analysis/visualization

code. Under this axis, we can further distinguish by whether the simulation code

knows the API of the integration. The majority of in situ systems use Application-

Aware mode (e.g., dedicated API or multipurpose API). On the other hand, some new

research uses Application-Unaware mode to integrate simulation and analysis e.g.,

interposition (i.e., using dynamically-loaded library to replace the expected routines

by the custom in situ routines), inspection (i.e., inspecting memory to deduce data

patterns and attach in-situ functions).

4. Operation Controls: the (interactive vs automatic) schemes for choosing the ex-

ecuted operations during run-time. Some in-situ systems let users interactively change

operations (human-in-the-loop), while others fix the operations at the beginning and

refuse users to change during execution.

The first axis can be used to distinguish different in-situ systems in most cases. Both On

Node and Off Node have potential benefits and pitfalls.

On Node (time division) has less costs of synchronization and data transfer. Since it

can directly access the memory space of simulation, Deep copy and Shallow copy can be

used. But since it shares the same resources of simulation, the performance of simulation

can be influenced. Also since it alternates the execution of resources between simulation

31

and in-situ routines, we cannot concurrently execute both of them to achieve seamless in-

tegration. Moreover, the data decomposition used in simulation can be unfavorable for

analysis/visualization (e.g., handling ghost layer data, which is more easily addressed by Off

Node mode).

Off Node (space division) can offload the in-situ routines to specific resources to help

both the efficient execution of the simulation and in-situ processing. However, it may incur

over-subscription if configured poorly. A solution can be the dynamic management of in-

situ system resources at run time. Besides, the cost synchronization and data transfer may

involve more infrastructure and potential overhead. At last, in-situ routines under Off Node

mode can also possibly block the simulation if they run slowly due to insufficient resources.

2.1.2 State-of-the-art In-Situ Systems

In this section, we briefly introduce several state-of-the-art in-situ systems as follows.

1. Paraview/Catalyst [14] and VisIt/Libsim [60] were both developed firstly as post

hoc tools by the visualization communities around 2000. Now, they also support On

Node in-situ processing. Paraview/Catalyst defines an interface between simulation

and visualization applications, which requires users to implement three subroutines:

initialize, coprocess, and finalize. The co-process subroutine is responsible for con-

verting raw simulation data to ready-to-visualize data, and computing visualization

functions in each time step. Similar functions are also provided by VisIt/LibSim.

Both of them support shallow-copy, and allow human-in-the-loop control. Besides, the

shared HDF5 virtual file layer can be used to support Off node mode, when running

the simulation and the ParaView servers in separate jobs to read and write data [61].

2. Damaris [12] is originally designed as a middleware to support I/O operations for Cat-

alyst and VisIt. Damaris uses an XML-based system to describe the data movement

and control of in-situ routines. It splits the global MPI communicator of a simula-

tion to dedicated cores (On Node) or nodes (Off Node) in order to run the analysis

concurrently with the application.

32

3. SCIRun [62] is another On Node in-situ framework. It uses a dataflow model to

support interaction with a simulation application at run time. It also uses Shallow

copy by incorporating templates to adapt to the simulation code at compile time.

This allowed SCIRun to minimize its memory footprints.

4. GLEAN [13] uses an interposition interface aiming for minimal modifications to in-

tegrate in situ code with the simulation code. It is implemented in C++ leveraging

MPI, pthreads, and higher-level I/O libraries such as MPI-IO, Parallel-netCDF [63] or

HDF5 [61]. The simulation can call GLEAN’s I/O libraries to move data to storage

or staging servers. In-situ analysis routines can be either On Node or Off Node. Then

GLEAN uses higher level I/O libraries to output data from staging servers to storage

asynchronously.

5. MPI-IO is a parallel low-level I/O library that allows multiple processes of an MPI

application to write or read parts of a shared common file [39], [64]. It can map

I/O reads and writes to message-passing sends and receives to improve the I/O per-

formance. But in-situ processing with MPI-IO is a bespoken approach that requires

users to manually write specific code to integrate with producers and inform consumers

when new data is available on the storage. MPI-IO workflow can be either On Node

or Off Node by users’ choice.

6. The Adaptable I/O System (ADIOS) [40], [52] was developed by the storage com-

munities as a high-level data processing library for storage, staging, compression, and

reduction of data. It uses an XML file or a multi-purpose API to describe data by

a prior generalization. This API can also integrate with a range of in-situ systems,

e.g., DataSpaces [41], DIMES[53], and Flexpath [42] to stage data, or Ascent [65],

VisIt [60], and ParaView [14] for analysis/ visualization. But there is a performance

cost due to the over-generalization of the interface. Due to its flexibility, users could

use ADIOS to be On Node or Off Node as their own choice.

7. DataSpaces offers a distributed shared-memory space across a number of central data

staging servers [41], [66]. Each participant application has its own failure domain by

33

launching separate mpirun or aprun commands, and then connects to the data staging

server via a publisher/subscriber interface (put and get). DataSpaces indexes data

based on a space-filling curve. Data are then distributed among data servers based

on their index. The distributed index is used both for pushing data into DataSpaces

and for retrieving data efficiently from it using one-sided RDMA communications.

Reader-writer locks are provided to coordinate accesses to shared data among different

applications.

8. DIstributed MEmory Space (DIMES) [53] is an successor of DataSpaces. DIMES uses

DART [67], a set of RDMA communication primitives, to asynchronously transfer data.

Instead of exchanging data from the central data servers as Dataspaces does, DIMES

uses a peer-to-peer (P2P) model, and stores data to RDMA memory buffers located in

the producers’ nodes directly (On Node), and then consumers read data directly from

the producers’ memory (Off Node). Before establishing P2P connections, producers

need to communicate with the central metadata staging servers which manages the

location (index) of data. Locking schemes are required to keep the data consistency.

9. Stacker [68] is another extension of DataSpaces. It utilizes emerging storage archi-

tectures (e.g., deep memory hierarchies and burst buffers) as data staging solutions.

It also can handle application-aware data movement by application hints and machine

learning methods.

10. Flexpath [42] (former named FlexIO [69]) is a data transport method based on

EVPath [70] in ADIOS. It uses a publisher/subscriber paradigm and leverages both

RDMA and IP-based networking protocols (TCP, reliable UDP, multicast, etc.). With

Flexpath, different software components can be connected by event channels and

source-to-sink event communications at runtime to perform Hybrid in-situ process

sing. Each publisher or subscriber is executed as an independent application by run-

ning mpirun or aprun. Hence, Flexpath has multiple failure domains. To transfer

data, a publisher uses an output epoch (i.e., open, write, close) to save data to its

34

buffer. Later on, a subscriber sends to each of the event publishers a fetch message to

request its desired data.

11. Decaf [11] is a dataflow system for parallel communication of participant applications

in workflows. It can be regarded as a “coupling service”, which allows users to describe

nodes and links as serial entities while Decaf takes care of their parallelism. It provides

a simple put/get API that utilizes MPI, and can implement a workflow system by using

a Python API. Different from the above DataSpaces, DIMES and Flexpath, Decaf

creates a single MPI_Comm_World for all the participant applications. Data coupling

between applications is defined during the compile time. Also, it requires existing

MPI-based programs to replace their MPI_COMM_WORLD by the communicator

provided by Decaf. Therefore, there is a single failure domain in Decaf workflows.

Tab. 2.1 summarizes the in-situ systems using the aforementioned four axes. There are

other in-situ systems summarized in [9], [71], and readers who have interest can explore

more. Although there exist many in-situ systems, one may ask: which one has the best

performance? Do they integrate each component of a workflow efficiently and seamlessly?

Chap. 3 will answer the questions by building a benchmark to compare the performance when

using some of the above in-situ systems.

2.2 Overview of Computational Fluid Dynamics

This section gives an overview of the basic theory of fluid dynamics and existing various

numerical methods. A substance exists in three primary phases: solid, liquid, and gas. A

substance in the liquid or gas phase (including plasma) is referred to as a fluid. Fluid has

the following three features: 1) continually deforms under stresses, 2) resists deformations

only lightly because of viscosity, and 3) can adopt the shape of any container into which it

flows.

Mechanics is categorized into statics and dynamics, which handles stationary and moving

objects under the influence of forces, respectively. Thus, fluid dynamics (FD) is the study of

fluids in motion under forces. More specifically, hydrodynamics is the study of the motion of

the incompressible or isochoric fluid. The material density of the fluid is constant within a

35

Table 2.1. Types of existing in-situ systems using four axes.

Name Proximity Access Integration Type Operation Control
Paraview/Catalyst On Node SC D-API Interactive/Batch
VisIt/Libsim On Node SC D-API Interactive/Batch
SCIRun On Node SC/DC D-API Interactive/Batch
GLEAN On Node SC/DC Interposition Batch
Damaris On/Off Node SC/DC D-API Interactive/Batch
ADIOS On/Off Node SC/DC MP-API Interactive/Batch
Dataspaces On/Off Node DC MP-API Batch
DIMES Hybrid DC MP-API Batch
Stacker On Node DC MP-API Batch
Flexpath Hybrid DC D-API Batch
Decaf Hybrid DC D-API Batch

SC = Shallow Copy; DC = Deep Copy
D-API = Dedicated API; MP-API = Multi-Purpose API

fluid parcel, such as liquids, especially water, or gases at low speeds. Through fluid dynamics,

we understand how objects interact with the media they are immersed in. Fluid dynamics

is everywhere in science (e.g., physics, biology and medicine, chemistry, geology, etc.) and

engineering (e.g., mechanical, civil, household, etc.).

2.2.1 Computational Fluid Dynamics

Generally, there are three analysis methods to study fluid dynamics.

The first is the analytical method, in which people basically use paper and pen to figure out

a group of generalized equations. However, it only works for simple and limited geometries,

and is not feasible for solving the non-linearity of FD equations and boundary conditions of

complex shapes.

The second is the experimental method, in which people build facilities in a lab to measure

and monitor the experimental results. This method is accurate but limited to experimental

scale and expensive to build specialized facilities. Besides, its main objective is to test what

we knew, but not to explore new possibilities.

The third is the computational method, namely Computational Fluid Dynamics (CFD).

It can be just as accurate as the experimental method and give more information cheaper.

36

According to viewing fluid as continuum model or particle model, many numerical methods

are developed to solve FD equations, which are briefly introduced in Sect. 2.2.3 . However,

they can be difficult to implement and to parallelize using exascale computing, and it is

generally agreed that there is no one method better than the others. More details about

each method and background are presented in [72].

2.2.2 Continuum Governing Equations

From the perspective of macroscopic phenomena of fluid, people can consider fluid as a

continuum model. We need to follow three conservation equations of mass, momentum, and

energy.

The first Continuity Equation follows the conservation of mass. The mass of a fluid

element with density ρ and volume V0 is
∫

V0
ρdV . The fluid flow with velocity u into or out

of the volume V0 results in the change of the mass of the fluid element per unit time, Due

to the conservation of mass, together with the divergence theorem, we have the following

equation:
∂ρ

∂t
+∇ · (ρu) = 0 (2.1)

The second equation is the Navier-Stocks Equation (NSE, 1822), which follows the

conservation of momentum. The flow of momentum into or out of the fluid volume V0,

changes of pressure p, and external forces F can result in the change of net momentum. For

the incompressible flow (constant ρ), NSE can be written in its most common form:

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p + η∆u + F, (2.2)

Here, p is pressure, η is viscosity, ∆ = ∇ · ∇ = ∂2

∂xβ∂xβ
is Laplace operator, and F is

the external body force. The NSE has the following features: non-linearity, simultaneous

(i.e., velocity has 3 components in 3D case), extremely complicated math, and no general

analytical solution existed.

Moreover, since there are five unknown variables (density ρ, velocity (ux, uy, uz), and

pressure p), the above system of two equations has not been closed yet.

37

Thus, we need to introduce the third equation, State Equation, which follows the

conservation of energy and the state principle of equilibrium thermodynamics [73]. It adds

the thermodynamic state variables (e.g., pressure p, density ρ, temperature T , internal energy

e, and entropy s) to the above system of equations.

p

p0
=
(

ρ

ρ0

)γ

e
(s−s0)

cV (2.3)

Here, cV is the heat capacities at constant volume, cp is the constant pressure, and γ is

their ratio.

cV =
(

∂e
∂T

)
V

, cp =
(

∂(e + p/ρ)
∂T

)
p

, γ = cp

cV

(2.4)

With suitable approximations, such as p0, ρ0, and s0 at some constant reference state, we

can simplify equation(2.3) as follows:

p = p0

(
ρ

ρ0

)γ

(2.5)

Dimensionless number

Dimensionless numbers in fluid mechanics are used to describe ratios of the relative

magnitude of fluid and physical system characteristics, such as density, viscosity, speed of

sound, flow speed, etc. They play an important role in analyzing the behavior of fluids.

The first is the Reynolds number. l is the macroscopic length scale, e.g., flow move

from one site to another. u is the flow velocity, and ν is viscosity. Thus, the shortest

time scale is either tconv ∼ `/u or tdiff ∼ `2/ν in the advective (inertial) regime or diffusive

(viscous) regime, respectively. The ratio between tconv and tdiff is Reynolds number :

Re = tdiff

tconv

= u ∗ l

v
(2.6)

For the “thick” fluid (e.g., honey), it has low Re and easily forms laminar (steady) flow,

which typically is seen in areas such as microfluidics, biophysics, and others. Conversely, for

38

the “thin” fluid (e.g., water), it has higher Re and easily forms the turbulent flow, which is

widely used in aerodynamics, nuclear weapons, and other applications.

The second is the Mach number, which is the ratio between the acoustic time scale

tsound and advective time scale tconv:

Ma = tsound

tconv

= u

cs

(2.7)

The speed of compression waves transfer in the fluid is determined by tsound ∼ l/cs, where cs

is the speed of sound in the fluid. When the acoustic time scale tsound of the fluid is faster

than the advective time scale tconv, we can assume that the fluid has a similar behavior as

an incompressible fluid with Ma ≤ 0.1.

The third is the Knudsen number, which defines the ratio between the mean free path

lmfp

1
 and the macroscopic length scale l within which flow occurs.

Kn = lmfp

l
= α

Ma

Re
(2.8)

If 0.1 < Kn < 1, hydrodynamic flows fall into this category and can be solved by Navier-

Stokes equations. For Kn ≥ 1, microscale and nanoscale flows are valid, and we use particle-

based methods (kinetic theory description), which are introduced in Sect. 2.2.3 .

2.2.3 Existing Numerical Methods for Fluid Dynamics

The analytical solutions to the continuum governing equations in Sect. 2.2.2 can only

apply to simple geometries, but they are difficult or impossible to be found due to the

non-linearity and the boundary conditions (BCs) for complex shapes. We can numerically

convert them into a system of partial differential equations (PDE), then computationally

and iterative solve them until their convergence is ensured.

Macroscale methods are general methods to solve PDE by directly discretizing the

macroscale fluid equations with minor adaptions, e.g., Finite Difference Method (FDM),

Finite Volume Method (FVM, 1980), and Finite Element Method (FEM, 1956). Others are
1

 ↑ The average distance traveled by a molecule to collide with another molecule.

39

particle-based methods to describe fluid at microscale or mesoscale, in which a particle can

be viewed as an atom, a molecule, a cluster of molecules, or a portion of the macroscale

fluid, etc. Microscale methods include Molecular dynamics (MD). Mesosale methods include

Lattice Gas Models (LGA), Lattice Boltzmann Method (LBM, 1988), Dissipative Particle

Dynamics (DPD, 1992), Multi-particle Collision Dynamics (MPC, 1999), Direct Simulation

Monte Carlo (DSMC, the 1960s), Smoothed-Particle Hydrodynamics (SPH, 1970).

Conventional CFD Methods

There are three conventional CFD methods (i.e., Finite Difference Method, Finite Vol-

ume Method, and Finite Element Method) to directly solve the coupled system of fluid

dynamics equations introduced in Sect. 2.2.2 . But they use different discrete approximation

methods, i.e., how to represent the unknown variables (e.g., velocity u and pressure p) by

spatial derivatives throughout the entire simulation domain. The process of discretization

can be viewed as the matrix equation Ax = b, where A is a sparse matrix, x is the vector

of unknown discretized variables, and b is the source terms and influence of boundary con-

ditions. Finding the solution of the matrix equation either by inverting A or some efficient

method is the key to them. In this section, we briefly introduce the fundamentals of the

above methods.

Finite Difference Method (FDM)

Finite Difference Method divides the simulation domain into a regular square/cube grid

of nodes, and uses “finite differences” of λj to approximate the derivatives of λ. To find

them, we consider Taylor expansion of λ(x) about xj:

λ (xj + n∆x) = λ (xj) + (n∆x)∂λ (xj)
∂x

+ (n∆x)2

2
∂2λ (xj)

∂x2 + . . . (2.9)

Then, forward difference, central difference, and backward difference can be derived to ap-

proximate for the first-order derivative as follows:

∂λ

∂x

∣∣∣∣∣
xj

≈ λj+1 − λj

∆x
,

∂λ

∂x

∣∣∣∣∣
xj

≈ λj+1 − λj−1

2∆x
,

∂λ

∂x

∣∣∣∣∣
xj

≈ λj − λj−1

∆x
. (2.10)

40

Next, FDM can use any of them to describe the derivatives in fluid dynamics equations.

FDM has the following advantages and disadvantages. It is simple in principle and can

achieve second or higher-order accuracy. Besides, it can be used explicitly or implicitly

in time. However, it cannot handle complex geometric flexibility on irregular grids, and

is not perfectly conservative for quantities, e.g., mass, momentum, and energy, due to the

truncation error of Taylor expansion [74]. Moreover, it belongs to the advective FD schemes,

thereby has false diffusion issue [75]. At last, it also needs special methods to handle the

checkboard instabilities [72].

Finite Volume Method (FVM)

Finite Volume Method is mainly used to solve conservation equations of mass, momentum,

etc. It divides the simulated domain V into smaller volumes Vi, then uses divergence

theorem to transform volume integrals to surface integrals, . FVM can handle complex

geometries with different sizes and shapes. Typical software using FVM are OpenFoam [76],

Ansys Fluent [77], Ansys CFX [78], Starccm+ [79], etc.

FVM has the following advantages and disadvantages. It is simple to implement and

fast, and has a second or higher-order accuracy when using linear interpolation. Besides,

it can be explicitly solved in time. However, the reconstruction for complex geometries by

appropriate grids adds complexity. Besides, higher-order FVM is not straightforward to

handle 3D irregular grids [74]. At last, FVM also suffers from checkboard instabilities.

Finite Element Method (FEM)

Finite Element Method solves PDE by the weak form integral, i.e., it multiplies the original

PDE with a weight function w(x) and integrates the product through the simulation domain.

In particular, FEM uses space discretization to divide the simulation domain into smaller,

simpler parts, i.e., finite elements λi. Then FEM interpolates λi with basis functions φi(x),

which determines the order of accuracy of FEM. FEM is successful in solid structure analysis,

e.g., commercial software COMSOL [80].

FEM has the following advantages and disadvantages. It has high-order accuracy, and ap-

ply to complex unstructured geometries. However, it is an implicit method in time. Besides,

it is not strictly conservative by default like FVM. Moreover, when compared with FDM

41

and FVM, it adds complexity due to the integrals over unstructured grids. The checkboard

instabilities may also appear and needs special handling.

Summary of conventional CFD methods

The three conventional CFD methods belong to generic numerical methods to solve the

fluid continuum governing equations by approximating the derivatives in the PDEs. They

describe fluid properties (e.g., velocity and pressure) by values in continuous fields of cells

throughout the domain, but interpret them in different ways: the continuous field of FDM,

FVM and FEM is defined on a square/cube grid of cells, the average of the fluid variables in a

small volume around the cell, and an interpolation of the cell values, respectively. Due to the

non-linearity, simultaneity, and the implicit pressure term in the incompressible NS equation,

these methods will introduce complex iterative methods (e.g., SIMPLE, SIMPLER [81], etc.).

They also add complexities to handle the flows in complex shapes, checkerboard instabilities,

etc.

Particle-Based Methods

Instead of viewing fluid at the macroscopic scale and direct discretization on the con-

tinuum governing equations, this section briefly presents several particle-based methods to

view the fluid at the microscopic or the mesoscopic scale.

Molecular Dynamics

Molecular dynamics (MD) uses atoms or molecules to track the position of particles, which

interact by inter-molecular forces fij(t). It follows the Newton’s second law and integrator

algorithms (e.g., Verlet algorithm [82]). MD is mainly used to simulate microscale phenom-

ena, e.g., phase changes, protein folding, chemical reactions, etc. However, since it tracks

every individual molecule, e.g., a single gram of water contains 1022 molecules, it is far too

detailed to be used for macroscopic phenomena.

Lattice Gas Automata (LGA)

As the predecessor of LBM, Lattice gas automata (LGA) [83] is first designed in 1973 as a

simple 2D gas dynamics model with 4 velocity directions ci, and is developed later with 6

velocity directions to simulate fluids in 1986 [84]. LGA introduces the occupations number ni

42

(Boolean variables), and the concept of collision and streaming. During the collision step,

particles distribution is redistributed by the conservation of mass and momentum. During

the streaming step, particles move to a neighboring position.

The advantage of LGA is that its collision doesn’t have the round-off error, and can be

massively paralleled However, the occupations number is a Boolean number, representing

that the presence of a particle there or not there, respectively. Thus, it has statistical noise

and fluctuates strongly with a large number of time steps computations.

Lattice Boltzmann Method (LBM)

Lattice Boltzmann method (LBM, 1988) [72] is a relatively modern method and historically

emerged from LGA in the 1980s. LBM eliminates LGA’s statistical noise, and can be derived

from the kinetic theory of gases. It is now proven to be of particular interest to CFD

communities. More details about the theoretical fundamentals of LBM are described in

Sect. 5.1 .

1. LBM easily accommodates complex physics and boundary conditions (BC), so that it

can also be widely used in multi-phase flow, multi-component flows , and reactive and

suspension flows.

2. LBM is easy to parallelize to utilize current and future architectures, since its heaviest

computation is local.

3. LBM has a strong physical basis since it originates from the Boltzmann equation. Since

Boltzmann equation can represent non-hydrodynamic fluids with large molecular mean

free paths, LBM can cover more physical phenomena than Navier-Stokes solvers.

4. LBM is simple and efficient to implement. LBM is an explicit scheme, involves cheaper

computational cost [85], and takes out the advection operator.

5. LBM can handle transport phenomena (e.g., diffusion, temperature transport, etc.).

However, LBM has a drawback: it is a memory-bound algorithm. The common LBM

implementation requires two copies of probability distribution function stored in the

memory to prevent memory overwrite during collision and streaming cycles, which requires

43

18 and 38 double floating point variables per lattice cell in D2Q9 and D3Q19 model, respec-

tively. This design requires more memory storage than the Navier-Stokes methods. And this

motivates our second goal is to design the memory-aware LBM in Chap. 5 and Chap. 6 .

Dissipative Particle Dynamics (DPD)

Dissipative Particle Dynamics (DPD, 1992) [86] is a young mesoscopic MD approach using

Lagrangian approach instead of grids. DPD uses conservative, dissipative, and random forces

to describe the interaction among clusters of particles. DPD usually applies to complex hy-

drodynamic fluids at the mesoscale, e.g., multiphase flows in complex geometries, suspended

biological cells or polymers, etc. But since it requires careful selection of a large number

of parameters (e.g., radial weight functions), the emergent hydrodynamic behavior can be

influenced [72].

Direct Simulation Monte Carlo (DSMC)

Direct Simulation Monte Carlo (DSMC, the 1960s) [87] primarily solves high Knudsen num-

ber flows with a large lmfp, e.g., dilute gases. It randomly selects pairs of statistically

representative particles to collide on a collision model. However, its statistical error is in-

versely proportional to the number N of simulation particles, thereby its main drawback is

the high computational cost.

Multi-particle Collision Dynamics (MPC)

Multi-particle Collision Dynamics (MPC, 1999) [88] is a modification of DSMC and usually

applies to situation with a small lmfp. It considers hydrodynamics and thermal fluctuation

naturally. Besides, it is simple and easy to parallelize, and widely used in colloids, polymers,

etc. But it is not simple in BCs for pressure, and not well controlled on the no-slip boundary.

Smoothed-Particle Hydrodynamics (SPH)

Smoothed-Particle Hydrodynamics (SPH, the 1970s) [89] is an interpolation sch111111111eme

using overlapping blobs (SPH particles) that influence their vicinity. It follows the conser-

vation of mass and momentum. However, SPH has issues with handling BCs, accuracy, and

its mathematical proof of numerical consistency with hydrodynamics equations [72].

Summary of Particle-based CFD Methods

Particle-based methods represent fluid by atoms, molecules, clusters of molecules, etc. They

vary a lot and have their own difficulties and specific applied domains.

44

3. PERFORMANCE ANALYSIS OF WORKFLOWS WITH

STATE-OF-THE-ART IN-SITU SYSTEMS

A version of this chapter has been published in HPDC ’18, Proceedings of the 27th Inter-
national Symposium on High-Performance Parallel and Distributed Computing doi.org/10.
1145/3208040.3208049 .

This chapter presents an in-situ workflow benchmark that uses seven state-of-the-art in-

situ systems or libraries to integrate simulation applications with analysis applications.

1

Then we compare their performance and use tracing tools to investigate the inefficiencies

hidden in these in-situ workflows.

3.1 In-Situ Workflow Benchmark Setup

We use seven in-situ systems to build in-situ workflows, i.e., MPI-IO, ADIOS/DataS-

paces, ADIOS/Flexpath, ADIOS/DIMES, native DataSpaces, native DIMES, and Decaf.

The “ADIOS/name” indicates that we use ADIOS’s interface and the specific data trans-

port method of name. Otherwise, we call it a “native” method when using the intrinsic

in-situ systems directly.

The workflow’s producers use a parallel Lattice Boltzmann method (LBM) based CFD

application, which simulates a flow in 3D channel iteratively in time steps. The simulation

output is then transferred to the workflow’s consumers, which run a parallel n− th moment

turbulence data analysis application [90].

The workflow experiments are performed on the Bridges system at the Pittsburgh Su-

percomputing Center. There are 752 regular compute nodes on Bridges, and each node has

two Intel Haswell 3.3 GHz 14-core CPUs and 128GB memory. All nodes are connected with

the Intel Omni-Path network, and use the Lustre parallel file system. More detailed system

information is provided in Sect. 4.3 .

Tab. 3.1 presents the experimental setup information of the workflow experiments. We

launch 256 simulation processes on 16 nodes to start a CFD simulation with an input of

16384×64×256 channel and running 100 time steps. Thus each simulation process gets the
1

 ↑ The design of the in-situ benchmark is a joint work with Feng Li.

45

doi.org/10.1145/3208040.3208049
doi.org/10.1145/3208040.3208049

Table 3.1. Experimental setup of the in-situ workflow benchmark.

Global input size of 3D grid 16384× 64× 256 (64× 64× 256 per process)

#Simulation processes 256 processes on 16 nodes

#Analysis processes 128 processes on 8 nodes

Compute node information Each node has 28 cores, 128GB of memory

#Data staging processes DataSpaces: 32 server processes on 8 nodes
DIMES: 32 server processes on 8 nodes

Decaf: 64 Decaf-link processes on 8 nodes

#Time steps in the simulation 100 (every time step require a data analysis)

The n-th moment turbulence analysis n=4

Total amount of data moved 400GB

subgrid 3D grid of 64× 64× 256 and generates 16 MB data in each time step.

2
 Therefore,

for the global grid, all 256 simulation processes generate 40GB data in each time step, and

400 GB in 100 time steps. Then, the generated “source data” in each time step is sent to

128 analysis processes on 8 nodes, which means each analysis process receives data from two

simulation processes, and executes the fourth-moment turbulence analysis. For DataSpaces

and DIMES related experiments, 32 additional data server processes on 8 nodes are used.

For the Decaf experiment, 64 link processes on 8 nodes are also in use.

All of our workflow implementations have been designed to overlap simulation with anal-

ysis time steps to obtain the best performance. For instance, Fig. 3.1 illustrates how our

workflow implementation can hide the analysis time when the simulation time is greater

than the analysis time. A similar figure can also be drawn when the analysis time is greater

than the simulation time. By using such a software design, either the simulation time or the

analysis time can be totally hidden from the workflow execution time.

Tab. 3.2 particularly lists the software versions and configuration options that are used to

install and build the tested benchmark. On Bridges, all the software and libraries are built
2

 ↑ Fore each fluid point, two velocities with the double-precision floating-point value on the X-axis and Y-axis
are stored. Thus, in each time step, each process generates 64× 64× 256× 8B × 2 = 16MB data per step.
The reason that we don’t store the velocities in Z-axis is that they are nearly 0 and changes little due to the
property of the incompressible fluid.

46

Step 1 Step 2 Step 3 Step 4 Step 5

Simulation

Analysis

…

…

Step n

Figure 3.1. Our workflow implementations can overlap simulation and anal-
ysis using I/O transport libraries. In this example, we assume data analysis is
faster than simulation for each time step.

Table 3.2. Configurations of different in-situ systems.

Software Tested Version Build Configura-
tions

Runtime Configu-
rations

ADIOS/DataSpaces
and ADIOS/DIMES

DataSpaces 1.6.2,
ADIOS: 1.13

Default ADIOS auto-
config script

lock_type=1,
hash_version=2

Native DataSpaces
and Native DIMES DataSpaces 1.6.2

–with-ib-interface=ib0,
–with-dimes-rdma-
buffer-size=1024

lock_type=2,
hash_version=2

ADIOS/MPI-IO ADIOS 1.13 Default ADIOS auto-
config script

xml: type=“MPI”,
without time aggre-
gation

Flexpath EVPath, ADIOS
1.13

perl chaos_boot-
strap.pl adios-1.13

CMTrans-
port=socket,
CM_Interface=ib0

Decaf

 https://bitbucket.
org/tpeterka1/
decaf , Git commit
version used:
637eb58

mpi_transport=on redist=“count”

with gcc 4.8.5 and the Intel MPI library (2017 Update 3).

3
 ADIOS 1.13 is used to combine

with the in-situ (data staging) software. Furthermore, we perform large scale experiments

using the MPI-IO, Flexpath and Decaf libraries on 13,056 cores as shown in Sect. 4.3.3 (cf.

Fig. 4.13 and 4.15).
3

 ↑ The Bridges system’s default Intel compiler and default Intel MPI library is not used due to DataSpaces’s
compatibility issues.

47

https://bitbucket.org/tpeterka1/decaf
https://bitbucket.org/tpeterka1/decaf
https://bitbucket.org/tpeterka1/decaf

3.2 Experimental Evaluation

0

50

100

150

200

250

300

350

400

E
n

d
 t

o
 E

n
d

 T
im

e
(s

ec
o

n
d

s)

176.9

157.2

281.6

96.1 83.4

140.9

104.9

39.2 48.4

Figure 3.2. Performance of the CFD workflow application using 7 different
I/O transport libraries, in comparison with the simulation time and analysis
time.

Fig. 3.2 shows the various end-to-end time of the CFD workflow experiments using dif-

ferent I/O libraries. The two green columns bounded by the rightmost block are the time

when we running the LBM CFD simulation application alone and the analysis application

alone. Among all workflows, Decaf achieves the best end-to-end time of 83.4s, followed by

ADIOS/Flexpath of 96.1s. Then, the four workflow experiments using the I/O transport

libraries (i.e., ADIOS/{MPI-IO, DataSpaces, DIMES, Flexpath}) combined with ADIOS.

Although MPI-IO is the highly optimized file-based I/O method and also the most mature

transport method provided by ADIOS, MPI-IO performs the worst among workflow experi-

ments: it gives the longest and most variational end-to-end time. This is anticipated because

MPI-IO writes data to a file system, which is also shared by many other users. However,

MPI-IO in the fastest case can surprisingly achieve a performance that is comparable to the

data staging methods (e.g., ADIOS/DataSpaces). Compared to the other three data staging

methods with ADIOS (i.e., DataSpaces, DIMES, Flexpath), ADIOS/Flexpath achieves the

48

best end-to-end time of 96.1s, the ADIOS/DIMES ranks second place with 157.2s, and the

ADIOS/Data ranks the third place with 176.9s.

To investigate the problem of DataSpaces, we turn to the native DataSpaces and DIMES

libraries. As a result, the native libraries give a 1.3X speedup for DataSpaces, and a 1.5X

speedup for DIMES. The speedup reasons are as follows. Because ADIOS introduces a uni-

form interface for all transport methods including file-based and staging methods, users can

switch to different I/O methods easily. However, to achieve this goal, low-level details in

certain transport methods have to be hidden in this common interface, since configurations

for one method might not be available in the other methods. For instance, native DataS-

paces provides a customized lightweight lock strategy to enforce synchronizations among

applications (e.g., dspaces_lock_on_write), but the native lock strategy is not exposed by

the ADIOS interface and not supported by other methods (e.g., Flexpath). The native

DataSpaces and DIMES workflow implementations take advantage of the multiple native

locks, so that simulation processes can have finer control of locks, and continuously send

multiple versions of data to staging servers with less interruption. By tuning the version and

lock configurations in the native DataSpaces and DIMES (cf. Sect. 3.2.1), a separate 30%

and 50% speedup is achieved in the end-to-end time, compared with the general interface

provided by ADIOS.

3.2.1 Performance Analysis of In-Situ Workflow Experiments

Based on the results in Fig. 3.2 , we can find there is still a big gap in the end-to-end time

between those staging methods and the case of running simulation alone. For example, the

best experimental result using Decaf workflow in Fig. 3.2 show that the workflow execution

time is 2.3X slower than the simulation-alone time, and 1.72X slower than the analysis-alone

time. This implies that the performance of the simulation application has been considerably

dragged down by using the combined simulation and analysis workflow model. This is not

what workflow designers expected, since they expect the simulation application and analysis

application are combined as seamlessly as possible, so that the total end-to-end time should

be either simulation time or analysis time at the best case. To investigate why and where the

49

performance is lost, We use TAU [91] and Intel Trace Analyzer and Collector (ITAC [92])

to collect traces of each workflow experiment. Here we only show the trace analysis results

for the three fastest methods (i.e., the native DIMES, Flexpath, and Decaf) to reveal their

major performance inefficiencies.

lock_on_write CFD 1 stepCFD 1 step

STCL UD

MPI_Barrier

PUT

lock_on_write

MPI_Barrierunlock_on_write

Figure 3.3. A trace of native DIMES with a snapshot of 2 seconds.

Fig. 3.3 shows the trace for the native DIMES workflow during two consecutive time steps

of CFD simulation. All 100 time steps have a similar performance pattern, we only display

a snapshot to show details. Since the CFD simulation application launches 256 processes, to

view the problem clearly, we zoom in on the first 16 simulation processes, and the other 240

processes synchronize at the same time frame in each time step. Within each CFD step, there

are three phases marked with yellow blocks: collision (CL), streaming(ST), and updating

local population (UD). There is a fourth “boundary condition” phase, but it is not shown

in the trace, since it is a very short period compared with the other three phases. In the

DIMES workflow, the simulation application needs to synchronize between metadata servers

and computing processes, and then inserts results into the DIMES buffer. This insertion is

marked with the blue blocks “PUT”, and then discharged by “unlock_on_write”. Notice

that there is a lengthy “lock” period (lock_on_write), when each simulation process is

performing data insertions. The lock period happens when the sender tries to insert data

into DIMES, while the receiver (analysis process) has not fetched previous data yet. As a

50

result, simulation is stalled with MPI_Barrier, and the stall time is almost equal to the time

to execute one time step of CFD simulation.

The DIMES implementation is presented as follows: it uses the type-2 customized lock of

DIMES, which is a collective lock and enforces strict synchronization between producers and

consumers. To better overlap simulation with data analysis, and efficiently utilize the RDMA

memory in DIMES, the DIMES workflow uses multiple locks. We use (step % num_slots)

as the lock name so that we keep reusing a circular queue of multiple locks with a fixed size

of num_slots, where step is the time step index of the CFD simulation, and num_slots is

the number of slots the CFD simulation can use to buffer its output data in a FIFO manner.

When the analysis application is slower, the simulation application will be stalled in order

to make sure the previous data are not overwritten. This explains why the simulation

application stall time (MPI_Barrier) in Fig. 3.3 is almost equal to one step of simulation

time. Therefore, the end-to-end workflow time nearly doubles.

4

Next, Fig. 3.4 presents the trace of the Flexpath-based workflow implementation using

TAU with a snapshot during three seconds for two different cases: 1) running simulation

alone, and 2) running the Flexpath workflow. The orange stripes represent the time to

execute the MPI_Sendrecv function, which performs the inter-process communication in

the streaming (ST) phase of the LBM CFD simulation. We can see that after combining

the Flexpath data staging method, the MPI_Sendrecv time in the LBM CFD simulation

takes much longer, which results in the increased end-to-end time of workflow. Because both

LBM’s streaming computation and Flexpath’s event channel involve intensive communica-

tions among different processes, Flexpath’s data-staging operations will compete with the

CFD simulation’s MPI communication. In particular, when staging a large slab of simulation

data (e.g., 16 MB per time step per process in this workflow experiment), the chances to

have communication interference are much higher. However, we don’t see such intrusion in

DIMES because the data access pattern: instead of routing data immediately after a com-
4

 ↑ DIMES workflow implementation can be further optimized by using an additional thread in the consumer
application to fetch a newer version of data while the main thread is analyzing the data of previous time
steps. But this requires additional modification and instrumentation when comparing to other methods.

51

CFD-only

Flexpath

1 step1 step1 step1 step 1 step 1 step 1 step

CFD 1 stepCFD 1 step CFD 1 step CFD 1 step

MPI_Sendrecv

MPI_Sendrecv

Figure 3.4. Comparison between running CFD simulations only and running
Flexpath based workflows. This figure shows a snapshot of 3 seconds.

putation step, DIMES only buffers data in a sender’s local memory, and the transmission

won’t start until a receiver issues a “get” command.

Finally, we compare the fastest workflow implementation using the Decaf method to the

experiment that runs simulation only. We are not able to use TAU for the tracing purpose,

because the latest TAU library (version 2.27) cannot filter out the huge number of inline

Boost serialization function calls made by Decaf. The inline function calls make the trace

files too large to generate. To circumvent the tracing problem, we manually instrument

the workflow source code, and use the Intel Trace Analyzer and Collector (ITAC) to collect

execution traces.

Fig. 3.5 shows the two traces for CFD simulation only, and Decaf-based workflow, respec-

tively. In the trace snapshot of CFD simulation only, CFD simulation itself can execute 3

time steps during 0.9 seconds. By contrast, in the lower Decaf-based workflow trace, there

is an additional PUT function invoked by simulation processes to transfer output data to

64 Decaf-link processes. We can first observe that the PUT function utilizes a collective

52

CFD-only

Decaf

CFD 1 step CFD 1 stepCFD 1 step

CFD 1 stepStallsCFD 1 step

STCL UD

PUT

ST UDCL

MPI_WaitallMPI_Sendrecv

MPI_Sendrecv

Figure 3.5. Comparison between running CFD simulations only and running
Decaf-based workflows. This figure shows a snapshot of 0.9 seconds.

“MPI_Waitall” function (marked with red blocks) and cause all simulation processes to

stall. This is because Decaf has to make sure data is safely stored in the link processes

before it can proceed to the next step. Besides, we observe that the “MPI_Sendrecv” time

in the streaming (ST) phase increases significantly once Decaf is added to the workflow.

This indicates that using Decaf also has affected the MPI communication performance of

the original LBM CFD simulation application.

53

4. ZIPPER IN-SITU SYSTEM

A portion of this chapter was previously published in HPDC’18, Proceedings of the 27th
International Symposium on High-Performance Parallel and Distributed Computing [55]

 doi.org/10.1145/3208040.3208049 and ICCS’16, International Conference on Computational
Science [56] doi.org/10.1016/j.procs.2016.05.297

This chapter will first introduce the design and implementation of the Zipper runtime

system in Sect. 4.1 , and then the related work of in-situ or data staging libraries in Sect. 4.2 ,

and evaluate the experimental results among Zipper and other libraries in Sect. 4.3 .

4.1 Design and Implementation

From the performance analysis of workflow experiments in Chap. 3 , we can find several

performance issues and optimization opportunities:

1. The cost of locking service and the staging-server access including the server query

and data transfer can be reduced or removed (e.g., DataSpaces and DIMES have such

a cost).

2. The enforced global barriers, which are used by all simulation processes to insert

(write) data to data staging processes, and are also used by all analysis processes to

retrieve (read) from data staging processes, can be reduced or removed (e.g., Decaf

and Flexpath have such barriers).

3. The I/O data transfer time from simulation to analysis processes between consecutive

simulation steps can be decreased or potentially hidden by the computation time of

the simulation, if an early-start fine-grain pipelining approach is used (e.g., I will

increase the degree of task-level parallelism and use pipelining to overlap all simulation,

analysis, and I/O tasks).

4. To interfere less with the simulation’s communication, instead of transfer a burst of

large data block (e.g., Decaf and Flexpath have experienced increased MPI communi-

cation time in the simulation application), asynchronous fine-grain-block data transfer

can be used, so that we can have more balanced network traffic.

54

doi.org/10.1145/3208040.3208049
doi.org/10.1016/j.procs.2016.05.297

The rest of this section will introduce a new runtime system called Zipper to improve

the above identified performance inefficiencies.

4.1.1 System Overview

From the design view of Zipper system design, both simulation and analysis applications

are executed in parallel and located on different compute nodes of an HPC system or cloud

system, without data staging servers on extra compute nodes. For instance, m compute nodes

are used to execute the simulation application with M processes, and n compute nodes are

used to execute the data analysis application with N processes simultaneously. There are

two reasons to separate them. 1) simulation and analysis applications may have different

resource requirements and scaling capabilities, we had better not let them interfere with

each other, especially for large-scale scientific applications, which might be compute-bound,

memory-bound, or communication-bound. 2) multiple failure domains can be supported if

separated, since the failure of the simulation or analysis application may not interfere with

the others.

Simulation
Application

Analysis
Application

Zipper Runtime System

High-level I/O and Communication Lib

Parallel File System and Network

buffering, pipelining, scheduling
concurrent message&file data transfers

Combined Execution of
Simulation with Analysis

Figure 4.1. The Zipper runtime system.

55

Fig. 4.1 conceptually shows that the Zipper runtime system is located below the applica-

tion layer, and above the high-level I/O and communication libraries. The Zipper runtime

system itself has two strata: 1) The upper stratum provides the functions of buffering data

in memory, pipelining data blocks from simulation to analysis applications, and scheduling

data transfer operations and data analysis tasks; 2) The lower stratum is an optimization

layer, which can transport computed results by two concurrent channels: low-latency HPC

network and file-based parallel file system.

Zipper library has two separate parts, and each part is embedded at the node of simulation

or analysis processes. It will first slice the large source data into fine-grain blocks, and then

asynchronously transfer them using both network and file I/O to the analysis application.

As a result, the simulation application can push the generated source data to the analysis

application continuously and seamlessly. Therefore, the analysis application is driven by

data-availability, i.e., whenever a new data block arrives, it can be immediately read and

processed.

Fig. 4.2 presents the architecture of the Zipper. Thus, simulation processes write source

data to Zipper, while analysis processes input (read) data from Zipper. The interface pro-

vided by the Zipper runtime is simple: Zipper.write(block_id, void* data, block_size)

and Zipper.read(block_id, void* data, block_size). Simulation processes call the

Zipper.write() method to pass the generated source data to the Producer Runtime Module.

The producer runtime module is multi-threaded and provides the essential functionalities of

buffer management, asynchronous I/O, data prefetching, communication with consumers,

and the concurrent data transport optimization (cf. Sect. 4.1.3). On the other side, each

analysis process works as a consumer and calls Zipper.read() to interact with its Consumer

Runtime Module to retrieve, analysis and optionally store data constantly. Both producer and

consumer runtime modules can utilize the low-latency HPC network and high-performance

parallel file system (e.g., Lustre) to transport and store computed results.

The Zipper runtime system offers two modes to users: Preserve mode and No Preserve

mode. A user may choose the Preserve mode to keep the computed results for future analysis,

validation, and verification. On the other hand, one may also choose the No Preserve mode

56

Zipper in-situ workflow

Simulation process M

Zipper producer
runtime module

Zipper consumer
runtime module

Analysis process N

high performance file I/O

Producer
Buffers

Consumer
Buffers

low-latency network

Zipper.read(blk_id, void* blk,
blk_size)

Zipper.wirte(blk_id, void* blk,
blk_size)

Figure 4.2. The architecture of the Zipper workflow framework to integrate
a parallel simulation application with a parallel analysis application.

to save time and storage space without writing the output data to the file system, and only

perform faster online experiments.

4.1.2 Implementation

Fig. 4.3 presents the producer runtime module, whose function is buffer management,

asynchronous I/O, data prefetching, communication with consumers, and the concurrent

data transport optimization. It consists of a producer ring buffer, a sender thread, and a

writer thread. The sender thread is responsible for sending data blocks to the consumer

processes via the HPC network. The writer thread is responsible for storing computed

results in a parallel file system. More specifically, when the simulation application calls the

Zipper.write() and passes the source data into the prodcuer module, the data will be sliced

into fine-grain data blocks with a user-defined block_size, packed with a blkid at the time

step t, and inserted into the producer buffer. Once completing the insertion, the simulation

process can return back to its computation. Note that each data block can also be packed

with all the necessary information to support the analysis later performed in the analysis

application, e.g., the simulation process ID that sends the block, the coordinates of each

data point, etc. Next, the sender thread will fetch a data block from the producer buffer,

57

and check whether there are blocks stored on disks by reading an array of “block IDs on

disk”.

1. If no blocks have stored on disk by the writer thread, the sender thread will form a

“pure data” message directly send it through HPC network to the statically mapped

analysis process.

2. If some blocks are fetched by the writer thread and have completely stored on disk

during the period when the sender thread is sending the messages or fetching a new

data block, the sender thread will smartly detect and append the on-disk block IDs to

form a mixed message, and then send it to the analysis process.

3. If the producer buffer is empty and some data had been stored to disk (e.g., at the

last step of simulation), the sender thread will form an “on-disk block IDs” message

through HPC network the analysis process.

The reason to bring in the writer thread is that when the analysis application is slower than

the simulation, the simulation application will not be blocked or stalled since the writer

thread is also moving data to the parallel file system. In Sect. 4.1.3 , we will describe how the

writer thread can help the sender thread to increase data transfer rate by using a concurrent

dual data-path method.

Producer
Bu�er

data messages

se
nder t

hrd

writer thrd

mixed messaeges
blkid, data blkids on disk

Paralle �le system
{ block IDs on disk }

HPC
Network

Zipper.write()

Figure 4.3. The producer runtime module.

58

Fig. 4.4 presents the consumer runtime module, which consists of a consumer buffer, a

receiver thread, a reader thread, and an output thread. For the receiver thread, it will

perform three different actions according to the message type:

1. If the receiver thread gets a mixed message from the HPC network, and parses it into

a data block and a list of block IDs. The data block will be picked up and directly

inserted into the consumer buffer, while the block IDs will be copied to an array of

“block IDs on disk”.

2. If the receiver thread gets a “pure data” message, it will directly be inserted into the

consumer buffer.

3. If the receiver thread gets an “on-disk block IDs” message, it will copy the block IDs

to the “block IDs on disk” array.

According to the block IDs in the array, the reader thread will read the blocks from the

parallel file system one by one, pack an additional flag on_disk = true, and then insert them

into the consumer buffer. Whenever a data block is in the consumer buffer, it will be pushed

to the analysis process by Zipper.read(). Since each data block contains all the necessary

data, the analysis process can apply appropriate data analysis to it, and then mark it with

the flag is_analyzed=true.

Consumcer
Bu�er

re
ad

er t
hrd

receiver thrd mixed messaeges
blkid,data blkids on disk

Paralle �le system

{ block IDs on disk }

HPC
Network

Zipper.read()

output th
rd

(1)

(2)

(3)

Figure 4.4. The consumer runtime module.

59

The output thread in Fig. 4.4 is dedicated to supporting the Preserve mode, when users

need not only to analyze the computed results, but also to preserve (store) the original source

data from simulation processes for future analysis. The output thread constantly fetches data

blocks in the consumer buffer, which have been analyzed by the consumer process. 1) If the

fetched data block has a flag of on_disk = false, the output thread will store the data block

to the file system. After storing the block, it sets the block’s flag to on_disk = true. 2) If the

fetched data block has a flag of on_disk = true, the output thread does nothing and fetches

the next data block. A data block in the consumer buffer can be freed from the system only

if the block has been both analyzed by the analysis process and stored in the file system by

the output thread. To free a data block from the system, we utilize two flags of on_disk

and is_analyzed associated with each block. When both on_disk = true and is_analyzed

= true, Zipper.free() can be called by the analysis process, so that the data block will be

released by the Zipper runtime system. Note that the output thread will not be created by

Zipper in the No Preserve mode.

4.1.3 Optimization of Concurrent Message and File Data Transfers

The Zipper runtime system utilizes two data transport paths: 1) message passing via

a low-latency HPC network, and 2) parallel I/O via a parallel file system. The reason to

use the parallel file system is that to mainly alleviate the simulation stall issue. In the

case of without using it, when the analysis application is relatively complex and slow, or

users choose the Preserve mode to store data into the parallel file system, a data block that

reaches the analysis node will take longer time to be consumed, thus the producer buffer at

the simulation node will be full, then the simulation application will be blocked to progress.

This is especially common when the simulation application is data-intensive (e.g., CFD

simulation). The large-scale scientific application could generate huge data in every time

step, e.g., the experiment in Sect. 3.2 generates 400GB in 100 time steps. Therefore, when

the producer buffer nearly reaches a “threshold”, if a writer thread helps to continually fetch

data blocks from the producer buffer and store them into the parallel file system, the producer

60

buffer will not be full to stall the simulation. Thus, the simulation can be interrupted much

less frequently than the state-of-the-art data staging libraries that only uses HPC network.

On the other hand, using two data paths has the potential to increase the data transfer

rate if a portion of the data movement work is offloaded to parallel file I/O. Fig. 4.5 explains

how the concurrent transfer optimization works. The top part presents that all data blocks

are only transferred by the network. The bottom part shows that most blocks are transferred

by the network while a portion of blocks is transferred by parallel file I/O. Considering that

emerging HPC systems will deploy much faster non-volatile memory (NVM) technologies

and separate I/O networks among I/O servers, the Zipper workflow on future HPC systems

will benefit more from this optimization.

…

…
w r w r w r w r

Simulation

Simulation

Analysis

Analysis

1. Data blocks sent via network

2. Data blocks sent via network and file I/O

Figure 4.5. The concurrent data transfer method can reduce the data transfer
time by converting a portion of message passing time to certain overlapped
parallel file I/O time.

The concurrent data transfer optimization method implementation also uses the work-

stealing algorithm, which allows data blocks to be transferred through the parallel file system

path only when it is necessary. The writer thread in the producer runtime module will do

this job as a helper. When detecting the producer buffer is almost full (defined by a “high

water mark” threshold), the writer thread will fetch a data block from the buffer and write it

to the file system. Algorithm 1 shows the pseudocode of the writer thread. This strategy can

automatically adapt to either the message-passing-only method or the mixed network&file-

IO method depending on how full or empty the producer buffer is. For example, if the buffer

is constantly near-empty, Zipper will always choose the fastest HPC network to send data to

61

Algorithm 1 Writer Thread Work-stealing Algorithm
1: while true do
2: block ← StealBlock(ProducerBuffer)
3: store the block to the parallel file system
4: place the block’s ID into the in-memory data structure of block IDs on disk
5: end

6: function StealBlock(ProducerBuffer)
7: while true do
8: acquire the lock of ProducerBuffer
9: if number of Blocks in ProducerBuffer > Threshold then
10: fetch the address of the first block in ProducerBuffer
11: release the lock of ProducerBuffer
12: return the address of the block
13: else
14: wait on a condition variable and release the lock
15: /* Note: the generator thread that produces fine-grain data blocks will signal the condition

variable when number of Blocks in ProducerBuffer > Threshold. */

the analysis application (Sect. 11 shows the experiments and effect of using the concurrent

data transfer optimization).

To monitor network traffic and verify the speedup reason by using the concurrent data

transfer optimization method, hardware performance counters can be used. If an HPC sys-

tem has two separate networks (i.e., one for message passing and the other for I/O traffic),

the concurrent data transfer optimization can be expected to increase the data transfer rate.

If an HPC system does not have a separate interconnect network and I/O network (such

as the Bridges HPC and the Stampede2 HPC in Sect. 4.3), the concurrent data transfer

optimization may not be able to achieve its potential best benefits. However, a significant

speedup can still be observed on the two HPC (detailed experiments are shown in Sect. 4.3).

The reason is briefly explained as follows. Because most interconnect networks (e.g., Infini-

Band and Omni Path Architecture (OPA)) have network congestion control mechanisms,

when many simulation processes simultaneously attempt to transfer data to many analysis

processes, network congestion control in network switches will play a key role in the commu-

nication performance. The concurrent data transfer optimization method is more efficient

in working with the congestion control mechanism because the dual paths allow messages

62

(i.e., the data blocks) to arrive at the receiver side out of order when using different network

paths, and to take advantage of multiple network links/switches for improved bandwidth.

In-depth network performance analysis will be presented in Sect. 11 .

Summary of Zipper’s features

1. Zipper uses fine-grain data blocks to create a higher degree of task parallelism which

accelerates the pipeline execution. All the other data-staging workflow systems transfer

one huge data block during each time step.

2. Zipper does not impose strict barriers between time steps, and deploys a data-flow-

driven approach to minimizing application stalls. The other workflow systems often

force the insertion of strict writer-reader interlocks and collective global operations

(e.g., MPI_wait_wall, global locks).

3. The overhead of the data staging server is not involved, which is different from DataS-

paces, DIMES and Decaf.

4. Zipper provides multiple failure domains (similar to DataSpaces, DIMES, and Flex-

path, but Decaf doesn’t support them).

5. Zipper supports both Preserve mode and No-Preserve mode, and introduces a concur-

rent data transfer optimization, which is based on an adaptive work-stealing algorithm.

4.1.4 Performance Model

To evaluate the efficiency of Zipper theoretically, we use a simplified analytical perfor-

mance model to estimate the workflow end-to-end time. The performance model uses the

following notation. All the simulation processes use totally P processor cores, and all the

analysis processes use totally Q processor cores. Given that the total data generated by the

simulation during all time steps is D and each fine-grain data block size is B, there will be

nb = D
B

blocks requiring transmission.

1

1
 ↑ Block size between 1MB and 8MB is used in the later experiments.

63

To keep the performance model simple, each simulation processor core computes nb

P

blocks, and each analysis processor core analyses nb

Q
blocks. However, the model can be

also adapted to support load imbalance situations by considering the specific process with

the maximum workload. The performance model is based on the time spent on each data

block. Since the workflow uses the pipelining parallelism to couple simulation and analysis

applications, a whole source block in one time step will go through 4 different stages in

the non-integrated design (upper) of Fig. 4.6 : Simulation (compute) → Transfer data blocks

(including output and input) → Analyze .

Compute (C) Output (O) Input (I) Analysis (A)

C I AO
C

C
C

C
C

O
O

O
O

O

I
I

I
I

I
C O I

A
A

A
A

A
A

n ops

n ops

Time

Data
blocks

1
2
3
4
5
6
7

Figure 4.6. Non-integrated design (upper) vs. integrated design (lower).
In the (lower) integrated design, at any time, four stages (C, O, I, and A)
are working on four distinct data blocks. The four data blocks could be se-
quentially dependent, but can still be processed in parallel due to the data
pipelining parallelism.

In the Zipper workflow, let tcomp, ttransfer, and tanaly denote the time on a fine-grain data

block to perform simulation (computation), transfer, and analyze, respectively. Thus, the

parallel computation time is Tcomp = tcomp × nb

P
, and the parallel analysis time is Tanalysis =

tanaly × nb

Q
. Because each pipeline stage works independently from other stages, the end-to-

end time-to-solution Tt2s can be expressed as follows:

Tt2s = max(Tcomp, Ttransfer, Tanalysis) (4.1)

64

This formula is under the assumption that the number of data blocks is much larger than the

number of pipeline stages so that the pipeline startup time and drainage time can be ignored.

The simplified Tt2s formula can be easily derived from the integrated design (lower) of Fig. 4.6 :

different stages are overlapped such that the end-to-end time is almost equal to the time of

the slowest stage. Based on the model, if the simulation application and analysis application

are scalable, the Zipper workflow can scale well accordingly. Note that the data transfer

time Ttransfer can be controlled by the frequency of outputting the simulation data (e.g., one

data output per k time steps) to reduce the I/O time. Therefore, if every stage is seamlessly

combined , the performance model shows the end-to-end time should be theoretically equal

to the time of one stage. Sect. 4.3 performs a variety of experiments to verify the model.

C m A rw
C m A

C A
rwC A

C m A
rwC A

C m A
rwC A

Concurrent Data Transfer

Message Passing File I/O

Figure 4.7. The Zipper performance model in No Preserve mode when using
the concurrent data transfer method.

Furthermore, the more detailed performance model for Zipper in the No Preserve and

Preserve can be derived when using the concurrent data transfer method. In the No Preserve

mode, as shown in Fig. 4.7 , suppose p% of blocks are transferred through files (disk write

w and read r on the upper right), meanwhile (1 − p%) of blocks are transferred through

messages (m on the upper left). Let tmsg, twr, trd denote the time to transfer a block by us-

ing networks, and a pair of file writing and reading, respectively. Then, the message passing

time is Tmsg = tmsg × nb

P
× (1− p%), disk write time is Twr = twr × nb

P
× p%, and disk read

65

time is Trd = trd × nb

Q
× p%. Thus, the time-to-solution for the No Preserve pipeline can be

expressed as follows:

T NoP reserve
t2s = max(Tcomp, Tmsg, Twr, Trd, Tanaly). (4.2)

If p% = 0%, the two terms Twr and Trd can be ignored from the above formula, indicating

the message passing only method is used.

C m A
w

C m A
w

r AC w
r AC w

C m A
w
r AC w

C m A
w
r AC w

Concurrent Data Transfer

Message Passing File I/O

Figure 4.8. The Zipper performance model in Preserve mode when using the
concurrent data transfer method.

Fig. 4.8 shows the Zipper performance model in Preserve mode when using the concurrent

data transfer method. Since the Preserve mode requires the additional operation of storing

the intermediate data to disks, we let Tanaly_wr denote the time to store data in the analysis

processes, Tanaly_wr = twr × nb

Q
× (1 − p%). The time-to-solution in the Preserve mode can

be extended as follows:

T P reserve
t2s = max(Tcomp, Tmsg, Tanaly_wr, Twr, Trd, Tanaly) (4.3)

Here, Tmsg and Tanaly_wr are proportional to (1− p%), and Twr, Trd are proportional to p%

of all the blocks.

66

Notice that T P reserve
t2s is more generic than the model of T No P reserve

t2s , since by turning off

the function of storing data to disks in analysis processes, T P reserve
t2s will become the same as

T No P reserve
t2s .

4.2 Related Work

As an alternative to in-situ approaches, data staging approaches can enable co-analysis

pipelines by using a loosely coupled integration model. ADIOS [40], PreDatA [93], GLEAN

[13], DataStager [15], DataSpaces [41], DIMES [53], and Flexpath [42] leverage advanced

I/O infrastructure to reduce the I/O cost. In particular, PreDatA [93] realizes in-transit

data processing on a data flow. It moves data from compute nodes to staging nodes through

two passes: the first pass of sending data-fetch requests to the staging nodes, followed by

the second pass of pulling packed data chunks from the compute nodes. We use a single

pass to move data to the analysis processes rapidly. DataSpaces [41] and DIMES [53] allow

different applications to store data into and extract data from dedicated servers (or metadata

servers) simultaneously. Our Zipper system does not use dedicated servers and has no

accompanying server access overhead. Sun et al. [94] use DataSpaces and asynchronous

coupling of workflows as a use case to develop scheduling policies for placing data to different

staging cores. GLEAN [13] and DataStager [15] deploy a data staging service on analysis

nodes of a cluster to support in-situ processing. FlexIO [69] uses local memory and RDMA

to support co-analysis either on the same compute nodes or on different staging nodes. Our

research shares the data-staging philosophy of these libraries (e.g., data coupling at runtime

and multiple failure domains), but uses fine-grain data blocks, asynchronous task parallelism,

and holistic end-to-end level pipelining to minimize application idle time, reduce network

contention, and overlap all workflow stages (i.e., simulation, data write, data read, and data

analysis).

Our concurrent data transfer optimization method improves the communication through-

put by taking advantage of the network congestion control and multiple switches and links.

Our deployed network congestion measurement is inspired by the work of Alali et al. [95],

which conducts a study to understand whether network congestion occurs on production

67

HPC systems. There are also studies that investigate how to use Quality of Service (QoS)

mechanisms to enhance communication. Reinemo et al. compare a list of QoS capabilities

on InfiniBand, Advanced Switching, and Ethernet [96]. Gonsiorowski et al. create a model

to analyze the use of QoS lanes to reduce the impact of the RAID rebuild traffic by assign-

ing different traffic quotas to read, write, and rebuild operations. [97]. Kim et al. design

an OpenSM (Open SubnetManager) based scheme to adjust the QoS level dynamically by

considering the estimated bandwidth and requirement to increase the overall bandwidth of

multiple concurrent traffic [98].

Workflow systems such as Pegasus [34], Kepler [33], Taverna [37], and Condor/DAGMan

[99] use files to communicate data and target coarse job-level meta-scheduling.

Decaf [11] is a workflow middleware that uses multiple overlapping MPI communicators

and a special staging area called “link” to transfer data between a producer and a consumer.

The communication among Decaf producer, link, and consumer are inter-locked, and all

data must arrive in the link before they can be forwarded to the next application. Also,

slower consumers will block the producers from running. Swift/T [31] uses a Swift-Turbine

compiler to translate a Swift program to an ADLB [100] MPI program, and executes it with

a master-worker model. Differently, we target fine-grain tasks and asynchronous computing,

and use data-staging to minimize the workflow latency.

4.3 Experimental Evaluation

This section designs experiments to evaluate the Zipper runtime system by the per-

formance model, the effect of Zipper’s concurrent message and file transfer optimization

method, and comparing the scalability performance between the Zipper and other state-of-

the-art data staging libraries. The first two experiments are conducted on Bridges, and the

third experiment is on Stampede2.

The Bridges system in the Pittsburgh Supercomputer Center (briefly mentioned in Sect. 3.2)

contains 752 regular compute nodes, 42 large shared-memory nodes (3TB memory each), and

4 extreme shared-memory nodes (12TB memory each). Each regular compute node has 28

Intel Haswell cores on 2 sockets and 128GB DRAM. The Bridges system deploys a 100

68

Gbps Intel Omni-Path Architecture, which connects all compute nodes with a 10PB high

performance Lustre parallel file system Pylon5.

The Stampede2 system in the Texas Advanced Computing Center entered full production

in August 2017. It has 4,200 Knights Landing (KNL) nodes. Each KNL node has 68 cores

on one socket, 16GB of MCDRAM (Multichannel DRAM), and 96GB DRAM. Stampede2

also deploys an Intel Omni-Path Architecture and has a 30PB Lustre parallel file system.

The experiments performed in this section are three synthetic applications that are used

to verify the accuracy of the Zipper analytical mode and evaluate the effectiveness of Zipper’s

concurrent data transfer method, and two real-world scientific computing applications which

are used to compare the real workflow performance between Zipper and other libraries .

Their description is presented in Tab. 4.1 .

Table 4.1. Description of the applications used in the experiments.

Workflow Simulation Data analysis

Synthetic O(n) To emulate T (n) = O(n) linear
algorithms

Standard variance computa-
tion

Synthetic O(n log n)
To emulate T (n) = O(n log n)
such as divide & conquer algo-
rithms

Standard variance computa-
tion

Synthetic O(n3/2)
To emulate T (n) = O(n3/2) al-
gorithms such as matrix com-
putations

Standard variance computa-
tion

CFD application
Use the Lattice Boltzmann
method to compute 3D chan-
nel flows

Turbulence analysis

LAMMPS application
Use LAMMPS to compute 3D
Lennard-Jones atoms melt dy-
namics

Atoms movement statistics

4.3.1 Evaluation of the Performance Model

The performance model described in Sect. 4.1.4 shows that the Zipper workflow can ideally

achieve the end-to-end time to solution T_t2s = max(Tcomp, Ttransfer, Tanalysis). The first

69

group of experiments is intended to verify whether the performance model conforms to the

actual Zipper workflow’s performance. The experiments were performed on Bridges with 784

simulation process using 1,568 CPU cores, and 392 analysis processes using 784 CPU cores

in both No Preserve and Preserve modes. In these experiments, a total amount of 3,136GB

of data are transferred from simulation to analysis.

Fig. 4.9 shows the No Preserve mode’s time breakdown for six synthetic workflows,

which use the O(n), O(n log n), and O(n3/2) applications listed in Tab. 4.1 with 1MB and

8MB block sizes. In each synthetic workflow, each data block is analyzed and its standard

variance is reduced to one double-precision floating point value. For each block size (i.e., 1MB

and 8MB), we measure the total time in three separate stages, i.e., simulation (blue), data

transfer (orange), analysis (yellow), and then the workflow’s end-to-end time (green). Let’s

first look at the left group with 1MB block size, as the application’s time complexity T(n)

increases from O(n) to O(n3/2), the simulation time (blue) on each data block becomes longer

from 2.1s to 64s. Thus, the dominant stage switches from data transfer time (orange) in the

O(n) workflow to the simulation time (blue) in the O(n3/2) workflow. However, regardless of

the distinct time complexity in each synthetic application, the workflow’s end-to-end time is

always close to the maximum stage time, which empirically validates the performance model.

The same phenomena can be found at the right group of three workflow experiments with

8MB block size.

Next, the experiments using the Preserve mode with the same configurations are per-

formed. Fig. 4.10 shows the corresponding time breakdown and total time. An extra column

of store data (dark red) is added. These experiments show that the end-to-end workflow time

is almost equal to the time spent on storing computed results to the file system. Since all

784 simulation processes generate a total amount of 3,136 GB of data, storing data to the

parallel file system takes the longest time.

Moreover, we evaluate the performance model with two real-world applications of CFD

and LAMMPS. Their results are shown together with the weak-scalability experiment (cf.

Sect. 4.3.3). For the CFD and LAMMPS applications, the Zipper workflow end-to-end time

is nearly the same as the dominant simulation time.

70

2.1

22.2

64.0

1.8

34.6

99.1

38.2 38.2

14.9

37.9 37.9

3.1

23.6 23.2
28.9

22.2
30.5

20.5

40.7 41.6

69.8

38.8 38.7

99.1

0

20

40

60

80

100

120

1MB (O(n)) 1MB (O(nlgn)) 1MB (O(n3/2)) 8MB (O(n)) 8MB (O(nlgn)) 8MB (O(n3/2))

T
im

e
(s

)

Block size (Synthetic application's time complexity)

Simulation Data Transfer Analysis End-to-end time

Figure 4.9. Time breakdown of the execution time for three different syn-
thetic applications in the No Preserve mode.

2.2

22.5

58.7

1.8

31.7

108.5

46.9 48.7
58.1

68.8

35.7

5.1

131.3 135.7 133.8
139.9 139.0 134.6

23.7 27.7 22.9

37.5

21.9 23.9

139.0 140.4 141.8 144.8 144.1 139.6

0

50

100

150

200

1MB (O(n)) 1MB (O(nlgn)) 1MB (O(n3/2)) 8MB (O(n)) 8MB (O(nlgn)) 8MB (O(n3/2))

T
im

e
(s

)

Block size (Synthetic application's time complexity)

Simulation Data Transfer Store data Analysis End-to-end time

Figure 4.10. Time breakdown of the execution time for three different syn-
thetic applications in the Preserve mode.

4.3.2 Effect of the Concurrent Message and File Transfer Optimization

The second experiment evaluates the effect of using the concurrent message and file data

transfer optimization method in the Zipper runtime system.

2
 Since the motivation to design

the concurrent method is to alleviate the simulation stall issue and achieve faster data transfer

time, We first compare the simulation wallclock time when using the message-only method
2

 ↑ In the later description, we use the term “concurrent method” for short.

71

and concurrent method, and then investigate the speedup reason behind it. We perform the

weak scale Zipper workflow experiments in the No Preserve mode on Bridges, and uses the

three synthetic applications in Tab. 4.1 . The reasons are as follows: 1) The reason to test only

in the No Preserve mode is that if testing with the Preserve mode, the workflow with the

message-passing-only method uses the N analysis process to store data, while the concurrent

method will utilize both M simulation processes and the N analysis process to store data,

although the concurrent method is much faster than the message-passing-only method, this

is not a fair comparison. But the No Preserve mode only considers the data transfer and

doesn’t require storing data at all, thus it doesn’t have an unfair issue. 2) Because the three

applications with different time complexities can generate data blocks from fast to slow, we

can see when the Zipper workflow can benefit from the concurrent method, and when it

becomes the pure message-passing-only method. Each simulation process uses two physical

cores and generates total 4GB data, thus 14 processes are located on a compute node. Same

configuration for analysis processes. The largest scale is the workflow of 784 simulation

processes transferring data to 392 analysis processes, which uses 2352 cores on 84 compute

nodes and generates 3,136 GB data.

The applications’ source code is instrumented by timers to measure the time spent on

the two parallel threads of each simulation process: the computation thread and the sender

thread. Since the computation thread will be either computing simulations or stalled due

to a full producer buffer, its measured time breakdown is shown as a column with stacked

simulation (blue) and stall (red) in Fig. 4.11). Similarly, the sender thread will be either

sending messages or waiting for new data, and its measured time is shown as a column

with stacked data transfer (green) and stall (red). As seen in Fig. 4.11 , the weak scaling

experiments increase the number of CPU cores from 84 to 2,352. For a specific number of

cores, we compare the workflow that uses the message-passing-only method to the workflow

that uses the concurrent message&file transfer optimization. Given n cores, there is a group

of four columns in the figure. The left two columns show the workflow performance of

the message-passing-only implementation, and the right two columns show the workflow

performance of the concurrent transfer optimization.

72

84 168 336 588 1176 2352
0

10

20

30

40

50

60

70

Number of cores

S
im

u
la

ti
o

n
 w

al
l

cl
o

ck
 t

im
e

(s
) Simulation

Stall
Data Transfer

Sim using MPI

Sim using Concr. Opt.

Sender thread

Comp. thread

(a) O(n) application.

84 168 336 588 1176 2352
0

10

20

30

40

50

60

70

Number of cores

S
im

u
la

ti
o

n
 w

al
l

cl
o

ck
 t

im
e

(s
) Simulation

Stall
Data Transfer

Sim using MPI

Sim using Concr. Opt.

(b) O(n log n) application.

84 168 336 588 1176 2352
0

10

20

30

40

50

60

Number of cores

S
im

u
la

ti
o

n
 w

al
l

cl
o

ck
 t

im
e

(s
) Simulation

Stall
Data Transfer Sim using MPI

Sim using Concr. Opt.

(c) O(n3/2) application.

Figure 4.11. Effect of the concurrent data transfer optimization using differ-
ent numbers of cores on three synthetic applications.

In Fig. 4.11 .a for the O(n) application, from 84 to 2352 cores, the simulation application’s

wallclock time has been reduced by 32.4%, 26.3%, 29.2%, 16.1%, 29.4%, and 20.2% when

using the concurrent method, respectively. This improvement is mainly due to the reduced

stall time. For this O(n) application, the measured average of each process’s computation

time is 1.7s, thus the data generation rate from each compute node is 4 GB/process ×

14 processes/node ÷ 1.7s = 56GB/s, while the point-to-point network bandwidth for each

port on the compute node is 10.2GB/s. As a result, the sender thread cannot move data out

in time, therefore the producer buffer becomes full and the simulation thread is blocked. In

this case, the work-stealing writer thread detects that the threshold is reached and starts to

steal blocks (stolen 47% ∼ 62.4% of total blocks) in the above cases.

In Fig. 4.11 .b for the O(n log n) application, the concurrent transfer optimization has

reduced the simulation stall time and data transfer time by 8.1%, 14.2%, 21.7%, and 22.5%,

73

from 336 to 2352 cores, respectively. The work-stealing doesn’t improve the two smaller-

scale cases of using 84 and 168 cores, because the producer buffer is mostly empty and thus

there are no blocks to steal during the execution. But later using more than 336 cores, more

nodes, more switches, and longer routing distance are involved, thus network switches result

in longer network latency, so that the data transfer time starts to dominates the workflow.

Fig. 4.11 .c shows the time for the computation-intensive O(n3/2) application. Since this

application has the slowest data generation rate and longer computation time than the

network data transfer, the producer buffer is almost always empty such that the work-stealing

in the writer thread is never activated. In this case, the concurrent transfer optimization

falls back to the message-passing method.

Based on the performance results in Fig. 4.11 , we can find that the concurrent optimiza-

tion method is always as good or better than the message-passing-only method. The reason

is that the concurrent optimization deploys an adaptive stealing-based approach such that

it lends a hand only if there exist appropriate opportunities to steal. If there is no stealing

opportunity, its performance will be the same as the original performance.

Why the concurrent optimization can improve performance?

The HPC system of Bridges uses the Intel Omni Path Architecture (OPA) network,

where each compute node is connected to a leaf edge switch (42 ports, max bandwidth 12.5

GB/s/port). Then all leaf switches are connected through a set of core edge switches [101].

3
 At first glance, it seems impossible to gain any benefit by using the concurrent method

because there is only one link from a compute node to one port of a leaf switch.

To dig into the reason, we use the PAPI network component [102] and OPA network

analysis tools to measure network related performance events. Specifically, the performance

counters of XmitData, XmitPkts, RcvData, RcvPkts, and XmitWait are measured when

comparing the message-passing only method and the concurrent method. Since users do
3

 ↑ There is a single OPA card per compute node. A parallel job sharing the nodes on a single OPA switch
enjoys the full OPA bandwidth. Beyond a switch, the effective bandwidth decreases by an empirical factor
of 7.

74

not have privileges to access the counters on switches, we can only collect the performance

counters on the network adapter on each compute node.

Among all the network events, we find that the XmitWait counter shows the biggest

difference between using the message-passing only method and using the concurrent method.

The XmitWait counter is used to count the number of events (in FLIT

4
) when any virtual

lane had data but was unable to transmit [103], for reasons such as no transmission credits

available, or the link was busy sending non-data packets. Therefore, this counter is often

used to measure the extent of network congestion [95].

We use the Linux command “opapmaquery -o getportstatus” to collect the values of

the counters on each compute node periodically. Whenever 10% of the total number of

blocks are generated, the sender thread will query the counters and calculate the difference

between the current query and the previous query. This measured difference indicates how

many messages are attempted to send out but rejected due to the network congestion control

mechanism. The larger the XmitWait value is, the more times the network adapter is unable

to transmit, and the more congested the network is.

We use the measured XmitWait counter to show the relationship between the degree of

network congestion and data transfer time. As shown in Fig. 4.12 .a dedicated for the O(n)

application, We observe that the counter of XmitWait using message-passing-only is larger

than that using the concurrent method by 80%, 21%, 13%, 13%, 13%, and 24% from 84 to

2,352 cores, respectively. This suggests that when we use the message-passing-only method,

more messages are not able to transmit than when we use the concurrent method. Since

XmitWait is an indication of the degree of network congestion, we can say that the concurrent

method has less serious congestion than the message-passing-only method. Also due to the

reduced network congestion, the concurrent method can send data more quickly and has a

shorter transfer time, which is confirmed by Fig. 4.11 .a correspondingly.

Measurement of the XmitWait counter for the O(n log n) application is shown in Fig. 4.12 .b.

On 84 and 168 cores, the XmitWait counter is less than 0.5 × 109, which implies light net-
4

 ↑ In Omni Path, the Link Transfer (LT) layer segments the end-to-end Fabric Packets (FPs) into 64 bit
Flow Control Digits (FLITs), and groups 16 FLITs into a Link Transfer Packet (LTP) to reliably transport
FP FLITs and control information on the link[101].

75

0.00E+00

2.00E+09

4.00E+09

6.00E+09

8.00E+09

84 168 336 588 1176 2352

X
m

it
W

ai
t

Number of cores

Message Passing

Concr. Opt.

(a) O(n) application.

0.00E+00

2.00E+09

4.00E+09

6.00E+09

8.00E+09

84 168 336 588 1176 2352

X
m

it
W

ai
t

Number of cores

Message Passing

Concr. Opt.

(b) O(n log n) application.

0.00E+00

2.00E+06

4.00E+06

6.00E+06

8.00E+06

1.00E+07

84 168 336 588 1176 2352

X
m

it
W

ai
t

Number of core

Message Passing

Concr. Opt.

(c) O(n3/2) application.

Figure 4.12. Network Congestion of the concurrent data transfer optimiza-
tion using different numbers of cores on three synthetic applications. XmitWait
counts the number of occurrences when any virtual lane had data but was un-
able to transmit.

work congestion and all data can be sent out rapidly without waiting. The other sign of

light network congestion is that the producer’s message buffer is almost empty all the time.

Therefore, the writer thread does not steal any data blocks so that the concurrent method

becomes the message-passing-only method. Hence, Fig. 4.11 .b shows equal data transfer

time on 84 and 168 cores. However, for larger scales starting from 336 cores, the XmitWait

counter rises up significantly (i.e., 3X ∼ 12X larger than that on 168 cores). This sug-

gests a higher degree of congestion, and the producer’s buffer becomes full and the writer

thread starts stealing and eases the congestion again. The reduced congestion also justifies

the shorter data transfer time by using the concurrent method from 588 to 2352 cores (see

Fig. 4.11 .b).

76

In Fig. 4.12 .c, for the slowest O(n3/2) producer application, the value of the XmitWait

counter is around 106 (i.e., three orders of magnitude less than the previous two applications).

The congestion degree is constantly low for all different numbers of cores, and the producer’s

buffer is almost empty such that the concurrent method becomes the message-passing-only

method. Therefore, the corresponding Fig. 4.11 .c shows that the message-passing-only and

concurrent methods have equal data transfer time.

4.3.3 Scalability Performance

The last experiment is to evaluate the scalability performance of the Zipper system. We

perform experiments with two real-world applications of CFD and LAMMPS on the larger

Stampede2 system, which allows up to 17,408 cores per job, while Bridges only allows 4,704

cores per job.

5

The CFD application uses the Lattice Boltzmann method to compute 3D simulations of

viscous incompressible fluid sliding down 3D hydrophobic microchannel walls [104], [105]. Its

corresponding analysis component computes the n-th moment of the velocity distribution:

E(u(x, t)n), where u(x, t) is the velocity at a spatial point x at time t. The statistics can

help scientists understand the properties of the turbulent flow with high Reynolds numbers.

When all n-th moments are available, the probability density function of u(x, t) can be

evaluated to give the complete information of the velocity fluctuation of a turbulent flow

[106], [107].

The LAMMPS application simulates clusters of Lennard-Jones atoms. We use the ap-

plication to study the melting process of materials from a low-energy solid structure at low

temperatures to a set of higher energy liquid structures at high temperatures. The Lennard-

Jones model is a mathematical model for approximating interactions between neutral atoms

or molecules. The counterpart data analysis application will compute MSD (mean squared

displacement). MSD calculates the deviation time between the position of a particle and a

reference position, in order to analyze the spatial extent of random motions.
5

 ↑ Stampede2 allows up to 256 nodes/job×68 cores/node = 17408coresjob Bridges allows up to 168 nodes/job∗
28 cores/node = 4704cores/job

77

Remark: The reason we choose the CFD and LAMMPS workflows to do experiments

is that simulation-time data analyses are common in scientific and engineering domains,

and achieving high performance is crucial to most domain scientists [108], [109]. The data

analysis application in our workflows receives data blocks and analyzes them accordingly,

followed by asynchronous reduction operations.

The CFD application

In the CFD workflow experiments, each simulation process is allocated with a fluid

subgrid of dimension 64 × 64 × 256. When doubling the numbers of CPU cores, the total

input size also doubles (i.e., weak scaling). Among the total number of cores, two-thirds of

the cores are used for CFD simulations and one-third is used for the n-th moment analysis.

0

100

200

300

400

500

600

204 408 816 1632 3264 6528 13056

E
n

d
-t

o
-e

n
d

 t
im

e
(s

)

Number of cores

MPI-IO

Flexpath

Decaf

Zipper

Simulation-only

1.7X1.4X

Figure 4.13. Scalability performance of the CFD workflows using MPI-IO, Flex-
path, Decaf, and Zipper, respectively.

Fig. 4.13 shows the end-to-end time using MPI-IO, Flexpath, Decaf, and Zipper, as well

as the simulation-only time in the No Preserve mode. On Stampede2, when the number

of compute nodes is larger than 8, DataSpaces and DIMES aborted with “rpc_bind_addr”

error in the DataSpaces/DIMES initialization function. The error is related to “an issue

related to OPA and KNL processors”, and has been confirmed by the DataSpaces team.

78

Hence, we could not test DataSpaces/DIMES on Stampede2. Nevertheless, the fastest library

is Decaf, which we choose to compare with Zipper.

Simulation-only time is the time spent only by the simulation program’s computational

kernels (excluding any I/O, idle time, and data staging related cost). It works as a lower

bound of the workflow end-to-end time. Fig. 4.13 shows that using MPI-IO is not scalable:

as the number of cores increases from 3264 to 13,056, larger MPI-IO experiments take too

long to finish. On the other hand, Flexpath and Decaf scale well from 204 cores to 3,264

cores. However, Flexpath and Decaf crashed with software faults on 6,528 and 13,056 cores.

In particular, Decaf has segmentation faults due to integer overflows. We have reported

the issue to Decaf developers and they have confirmed the error. Flexpath is terminated

by segmentation faults when the number of cores reaches 6,528. We have also reported the

problem to Flexpath developers.

In order to show complete experimental results for Flexpath and Decaf, let’s assume

that both methods have perfect scalability on 6,528 and 13,056 cores, and show their ideal

end-to-end time (denoted by dotted lines). As shown in Fig. 4.13 , Zipper’s end-to-end time

is almost equal to the simulation-only time, and is 11.5X faster than Flexpath, and 1.7X

faster than Decaf.

One might wonder why Flexpath is slow. We conducted a set of investigations to find out

the reason. Based on my experiments, Flexpath’s data transfer time becomes significantly

slower as we increase the number of processes per node (each process uses Flexpath to trans-

port data). We find that Flexpath does not have optimized support for multiple processes

per node. Flexpath utilizes a socket interface and all communications (even within the same

node) have to go through the socket interface. However, the communication between pro-

cesses on one node can use shared memory to achieve higher performance (e.g., MPI uses

this optimization). In order to show the ideal performance of Flexpath, We attempt one-

process-per-node to rerun the 204-core experiment (although wasting many cores on each

node). In the new experiment, Flexpath using 102 processes on 102 nodes (i.e., 6,936 cores)

only takes 46 seconds, but is still slower than Zipper using 102 processes on 3 nodes (i.e., 204

cores) by 16.8%. Besides using a smaller number of processes per node, another Flexpath

optimization is to use a “Master” process on each node to aggregate data from all processes

79

of the node to reduce the communication cost. However, this method requires significant

code modifications.

Zipper

Decaf

CFD 1 time step CFD 1 time step CFD 1 time step

CFD 1 time step CFD 1 time stepStalls Stalls

MPI_WaitallMPI_Sendrecv

MPI_Sendrecv

Figure 4.14. Trace comparison between Zipper and Decaf for the CFD application
on 204 cores. This figure shows a snapshot of 1.3 seconds when using 204 cores, which
is taken from the experiment shown in Fig. 4.13 .

In order to illustrate why Zipper is faster than Decaf, Fig. 4.14 shows that Zipper and

Decaf’s traces within a time interval of 1.3 seconds on 204 cores. To take the snapshot, we

zoom in the entire trace, and then cut out a trace segment of 1.3 seconds. Note that showing

the entire trace all at once will make the figure too dense to view any details. During the

same interval, Zipper is able to run three simulation steps, while Decaf is able to run two

steps with a significant amount of stall time. This speedup of 1.4X is almost the same as

the speedup shown in Fig. 4.13 on 204 cores.

The reason for the performance inefficiency is as follows (also reported in Chap. 3): 1)

Decaf has significant simulation stall time caused by MPI_Waitall, and 2) the simulations

80

application’s MPI_Sendrecv time becomes longer due to Decaf’s interference. Since Zipper

uses fine-grain data blocks and asynchronous pipelining data transfers, both the network

traffic interference and the collective MPI cost have been reduced.

The LAMMPS application

2.2X

0

200

400

600

800

1000

1200

204 408 816 1632 3264 6528 13056

E
n

d
-t

o
-e

n
d

 t
im

e
(s

)

Number of cores

MPI-IO

Flexpath

Decaf

Zipper

Simulation-only

Figure 4.15. Scalability performance of the LAMMPS workflows using MPI-IO,
Flexpath, Decaf, and Zipper, respectively.

Fig. 4.15 shows the experimental results for the LAMMPS workflow application. Again,

we perform weak scaling experiments. Fig. 4.15 shows that Flexpath scales well from 204

to 3,264 cores but is 7.1X slower than Zipper. Because the data size in LAMMPS does not

reach the integer limit, We am able to execute Decaf on 6,528 and 13,056 cores successfully

without integer overflows. From the figure, we can see that Decaf scales well from 204 to

1,632 cores, but becomes 128% slower from 1,632 to 6,528 cores. Eventually, its end-to-end

time increases by 177% from 6,528 to 13,056 cores.

To study why Decaf is 2.2X slower than Zipper in the largest experiment, We specifically

collect two very large traces for Decaf and Zipper using 13,056 cores, respectively. Visualizing

the large-scale trace itself requires us to use a dedicated compute node from the Stampede2

HPC system for 2 hours.

81

Zipper

Decaf

LAMMPS 1 step LAMMPS 1 step LAMMPS 1 stepLAMMPS 1 step

LAMMPS 1 step LAMMPS 1 stepStalls Stalls

Figure 4.16. Trace comparison between Zipper and Decaf for the LAMMPS
application on 13,056 cores. This figure shows a snapshot of 9.1 seconds when using
13,056 cores, which is taken from the experiment shown in Fig. 4.15 .

Fig. 4.16 shows a snapshot of the two traces in an interval of 9.1 seconds. During the

same time interval, LAMMPS using Zipper runs around 4.4 time steps. On the other hand,

LAMMPS using Decaf runs around 2 time steps. Notice that the Decaf trace has a significant

stall time at the end of each step. Also, the LAMMPS simulation time using Decaf becomes

much longer than that using Zipper. In this LAMMPS workflow experiment, each LAMMPS

process generates approximately 20MB of data in each time step. While Decaf directly sends

a message of 20MB to destination processes, Zipper divides the contiguous 20MB data into

many small blocks of size 1.2MB. Such an asynchronous fine-grain-block data transfer method

has managed to keep network traffic more balanced with lesser interference to the LAMMPS

simulation processes.

82

5. 2D PARALLEL MEMORY-AWARE LBM ON MANYCORE

SYSTEMS

A portion of this chapter was previously published in SBAC-PAD’18, 30th International
Symposium on Computer Architecture and High Performance Computing [58] doi.org/10.
1109/CAHPC.2018.8645909 .

Chap. 4 has designed the Zipper in-situ system, which can minimize the end-to-end time-

to-solution for in-situ workflows to be its longest stage, either simulation, data transfer,

or analysis. In particular, for simulation-bound Zipper workflows, if the simulation can be

accelerated by a factor, the time-to-solution of the whole workflow can potentially speed up

by the same factor. This inspires me to focus on the source of simulation-bound workflows,

i.e., simulation applications.

Sect. 2.2 has introduced the computational fluid dynamics (CFD) simulations, which have

revolutionized the design process in various scientific, engineering, industrial, and medical

fields. The current Reynolds averaged Navier-Stokes (RANS) methods can solve steady vis-

cous transonic and supersonic flows, but are not able to reliably predict turbulent separated

flows [21]. Lattice Boltzmann method (LBM) is a young and evolving approach to solving

these problems in the CFD community [25]. It originates from a mesoscale description of the

fluid, is based on the Boltzmann equation, and can integrate physical terms from molecule

interaction. Besides, many collision models for LBM have been developed to improve its

stability to the second order of numerical accuracy when simulating high Reynolds number

flows [25].

However, it is challenging to achieve high performance for LBM, since LBM has large

data storage costs and is highly memory-bound on current architectures [26]. In general,

this chapter discusses how to merge multiple collision-streaming cycles (or time steps) in

2D. Sect. 5.1 introduces LBM and its pros and cons. Then I briefly outline the Original

LBM algorithm in Sect. 5.2.1 and the Fuse LBM algorithm in Sect. 5.2.2 . Sect. 5.3 uses

the “Roofline” model to pinpoint the bottleneck of the two algorithms and introduces an

improvement algorithm, Fuse tile LBM. However, their parallel performances are hugely

bounded by memory accesses in current multi-core CPU architectures. To reduce the memory

83

doi.org/10.1109/CAHPC.2018.8645909
doi.org/10.1109/CAHPC.2018.8645909

bottleneck, the two-step and k-step memory-aware LBM algorithms are designed. Sect. 5.5

introduces how to merge “two” time steps sequentially and in parallel, how to handle the

boundary condition, and how to handle thread safety efficiently. Sect. 5.6 merges “three”

time steps sequentially and in parallel with optimization on handling boundary conditions.

A thorough performance evaluation and analysis of seven algorithms in Tab. 5.1 are given in

Sect. 5.8 .

Table 5.1. Seven LBM algorithms discussed in this chapter. Each algorithm
has its sequential version and parallel version.

Algorithms Description

Original LBM Standard LBM implementations with two copies of distribution and
two sweeps

Fuse LBM Use loop fusion
Fuse tile LBM Use loop fusion and loop tiling
2-step LBM Use loop fusion and merge two steps
2-step tile LBM Use loop fusion, loop tiling, and merge two steps
3-step LBM Use loop fusion and merge three steps
3-step tile LBM Use loop fusion, loop tiling, and merge three steps

5.1 Background of Lattice Boltzmann Method

Based on the Boltzmann equation, Lattice Boltzmann method (LBM) originates from a

mesoscale description of the fluid. It views the gas or fluid as clusters of small particles mov-

ing with random motions on a fixed Cartesian velocity lattice. Then these clusters exchange

momentum and energy through particle streaming and billiard-like particle collision.

5.1.1 The Lattice Boltzmann Equation

The central variable of LBM is the particle distribution function f(~x, ~ξ, t), which is a

generalization of density ρ, at the position ~x, and particle velocity ~ξ, and time frame t. The

Boltzmann equation describes the evolution of f(~x, ~ξ, t) in time:

∂f

∂t
+ ξβ

∂f

∂xβ

+ Fβ

ρ

∂f

∂ξβ

= Ω(f) (5.1)

84

Here, we use one generic index β = {x, y, z} to represent Boltzmann equation on three

directions of physical space. The first two terms in Equation (5.1) shows that the f(~x, ~ξ, t)

is advected with the velocity ~ξ, which is affected by the forces Fβ

ρ
∂f
∂ξβ

. The collision operator

Ω(f) works as the source term to locally redistribute f on the right of Equation (5.1).

While there exist various collision operators Ω(f) available, the simplest one that can be

used for Navier-Stokes simulations is the Bhatnagar-Gross-Krook (BGK) operator [110]:

Ω(f) = −1
τ

(f − f eq) (5.2)

The relaxation time constant τ determines the speed towards the equilibrium distribution

f eq and the transport coefficients such as viscosity and heat diffusivity.

By discretizing Equation (5.1) in time, physical space, and velocity space, we derive the

lattice Boltzmann equation with BGK operator as follows:

fi(~x + ~ξi∆t, t + ∆t) = fi(~x, t)− ∆t

τ
[fi(~x, t)− f eq

i (ρ(~x, t), ~u(~x, t))] (5.3)

where fi is the particle density distribution corresponding to the discrete velocity direction
~ξi, and ~x and ∆t are the discrete location and time, respectively. Besides, the macroscopic

density and the momentum density ρ~u can be derived by weighted summation as follows

[72]:

ρ(x, t) =
∑

i
fi(x, t), ρu(x, t) =

∑
i

ξifi(x, t) (5.4)

Fig. 5.1 presents the D2Q9 velocity vectors, which are widely used in 2D LBM simulations.

Each fluid cluster has eight neighbors, and it may move along 9 different directions including

staying at the center.

5.1.2 LBM Pros & Cons

Here is a summary of LBM’s pros and cons, and interested readers should refer to [72]

and [111].

85

𝛏1𝛏4

𝛏2

𝛏6

𝛏0

𝛏7𝛏5

𝛏3 𝛏1

Figure 5.1. D2Q9 velocity sets for each lattice cell.

In terms of simplicity and efficiency, LBM gains simplicity and scalability by allowing

artificial compressibility for solving the incompressible Navier-Stokes equation. Secondly, the

Poisson equation is not included. Thirdly, the most computations in the LBM are local in

each cells, thereby easy to design its parallel algorithms. However, LBM is memory-intensive

and time-dependent.

In terms of geometry, LBM can handle complex geometries (e.g., porous media [111]).

LBM also particularly works well with moving boundaries that conserve mass, such as soft

matter simulations [112].

In terms of thermal effects, LBM can mesoscopically incorporate Thermal fluctuations,

which are averaged out on the macroscale [113], [114].

In terms of multiphase and multicomponent flows, there exists a broad range of

LBM-based algorithms to simulate these flows in complex geometries [111].

At last, in terms of sound and compressibility, LBM can handle sound and flow

interaction simulations [115]. Besides, some cutting-edge research on LES-based LBMs and

Entropic LBMs (ELBMs) have shed light on simulating thermal and compressible flows in

transonic and supersonic regimes [22], [25]–[29].

5.2 Baseline 2D LBM Algorithms

This section introduces the baseline 2D LBM algorithm, i.e., Original LBM, and its two

improved versions, Fuse LBM and Fuse tile LBM. Next, I use roofline analysis to investigate

the inefficiencies that reside in the three algorithms.

86

5.2.1 2D Original LBM

The Original LBM follows Equation (5.3). Each cell owns two buffers (buf1 and buf2)

to store the particle distributions at the time step f(t) and f(t + 1), respectively. Alg. 2

presents the Original LBM running N time steps. Generally, in each time step t, it sweeps

over the entire simulation lattice twice. During the collision sweep, each cell uses a specific

collision model (e.g., single relax term, multiple relax terms, boundary conditions, etc.) to

calculate the “intermediate” particle distribution at the time step t. During the streaming

sweep, each cell copies the “intermediate” data to its own and 8 neighbors in the directions

of D2Q9 velocity sets. After a cell collects all the dependencies, it is ready to compute the

next time step t + 1. The streaming kernel can be viewed as a communication step and

exchange data buf1 and buf2 among its 8 neighbors.

Algorithm 2 Original LBM
1: //N: total time steps, lx: domain width, ly: domain length.
2: for iT = 0; iT < N; ++iT do
3: // Collision kernel
4: for iX = 1; iX ≤ lx; ++iX do
5: for iY = 1; iY ≤ ly; ++iY do
6: compute (iX, iY) collision using buf1
7: // Streaming kernel
8: for iX = 1; iX ≤ lx; ++iX do
9: for iY = 1; iY ≤ ly; ++iY do
10: // stream (iX, iY) buf1 to its own and 8 neighbors’ buf2
11: for iPop = 0; iPop < 9; ++iPop do
12: nextiX = iX + c[iPop][0];
13: nextiY = iY + c[iPop][1];
14: buf2[nextX][nextY].fPop[iPop] = buf1[iX][iY].fPop[iPop];
15: Swap buf1 and buf2

In the first collision kernel (lines 3∼6), a cell uses the particle distribution data in

buf1 to locally compute the collision, macroscopic attributes, and equilibrium state. Then

the “intermediate” state is stored back into the buf1. Once the collision kernel sweeps

the domain, the streaming kernel (lines 7∼10) starts. The “intermediate” data in buf1

of a cell now streams (copies) to buf2 of its own and its neighbors. Once the streaming

sweep completes, swapping buf1 and buf2 in line 11 is necessary before the next time step

87

t + 1. Since every cell’s buf1 and buf2 are referenced by two pointer variables

1
 , the swap

operation is O(1). For simplicity, we will use “stream (iX, iY)’s buf1 to its own and 8

neighbors’ buf2” to replace the fourth loop from line 11 to 14 in Alg. 2 . The referential

Original LBM is an ANSI C implementation from Palabos [116] which can be accessed at

 http://wiki.palabos.org/numerics:codes .

5.2.2 2D Fuse LBM

Algorithm 3 Fuse LBM
1: // Use loop fusion to combine collision and streaming in one sweep:
2: for iT = 0; iT < N; ++iT do
3: for iX = 1; iX ≤ lx; ++iX do
4: for iY = 1; iY ≤ ly; ++iY do
5: compute (iX, iY) collision using buf1
6: stream (iX, iY)’s buf1 to its own and 8 neighbors’ buf2
7: Swap buf1 and buf2

An improvement on the Original LBM is to use loop fusion (combining the collision

and streaming cycle) to increase data reuse [44], [117]. Instead of sweeping through the

whole lattice twice per time step, after calculating the distribution function values in buf1

in the collision operation, Fuse LBM immediately streams the “intermediate” data to the

neighbors’ buf2 (lines 5∼6). Besides, the Fuse LBM works as the “baseline” to compare with

later LBM algorithms, which adds more features, such as spatial tiling/blocking, temporal

locality, optimized traversing order, and so on.

5.2.3 2D Fuse Tile LBM

To improve the Fuse LBM’s data reuse, we can add the “loop tiling” feature as shown

in Alg. 4 , which traverses the 2D lattice tiles by tiles instead of lines by lines. Each tile is
1

 ↑ We allocate two pieces of continuous memory chunk (memChunk1 and memChunk2) for the whole lattice.
Thus, a cell at coordinate (iX, iY) has two copies of data: one at memChunk1[iX][iY], and the other at
memChunk2[iX][iY]. Before simulation starts, we assign two pointer variables buf1 and buf2 to memChunk1
and memChunk2. Thus the two copies of each cell can be accessed by buf1[iX][iY] and buf2[iX][iY],
respectively. Therefore„ swapping buf1 and buf2 after every time step in line 15 of Alg. 2 is just swapping
the values of two pointer variables.

88

http://wiki.palabos.org/numerics:codes

assumed to be small enough to fit into the last level cache to maximize data reuse. The

“MIN” (minimum) statements (lines∼5) ensure that the chosen “tile” does not access data

outside the domain boundary. Thus, users are allowed to select any non-negative “tile”

parameter to produce the best performance on their architectures.

Algorithm 4 Fuse Tile LBM
1: for iT = 0; iT < N; ++iT do
2: for outerX = 1; outerX ≤ lx; outerX += tile do
3: for outerY = 1; outerY ≤ ly ; outerY += tile do

// Use loop tiling to explore spatial locality:
4: for innerX = outerX; innerX ≤ MIN(outerX + tile - 1, lx); ++innerX do
5: for innerY = outerY; innerY ≤ MIN(outerY + tile - 1, ly); ++innerY do
6: compute (innerX, innerY) collision using buf1
7: stream (innerX, innerY)’s buf1 to its own and 8 neighbors’ buf2
8: Swap buf1 and buf2

5.3 Roofline Analysis of 2D Baseline LBM Algorithms

To investigate the performance of 2D baseline LBM algorithms, we use the Roofline

model [118] to provide insight into questions like: What the performance bottlenecks are,

and which kernels are worth addressing firstly? Why the bottlenecks exist? How much

potential performance can be improved?

5.3.1 Brief Introduction of Roofline Model

Fig. 5.2a presents the intuition of the standard Roofline model, which uses the bytes

that access the main memory after they have been filtered by the cache hierarchy. The

time-to-solution is limited by either time for floating-point computation (#FP ops) or data

movement (#Bytes moved to/from DRAM).

Time = max

 #FP ops / Peak GFLOP/s

Bytes / Peak GB/s
(5.5)

89

Compute

Perfect Cache

DRAM

GFLOP/s

DRAM GB/s

(a) Intuition.

Mem
ory

-B
ou

nd

At
ta

in
ab

le
 F

LO
P/

s

Peak GFLOP/S

Transition AI (Machine Balance) =
Peak GFLOP/s / Peak GB /s

Arithmetic Intensity (FLOP / Byte)

Compute Bound

Pea
k B

an
dw

idt
h G

B/s

(b) Roofline chart.

Figure 5.2. Standard DRAM Roofline model.

Next, we divide #FP ops on both sides of Eq.(5.5).

Time
FP ops

= max

 1/ Peak GFLOP/s

#Bytes / #FP ops / Peak GB/s
(5.6)

Then, we take the reciprocal of Eq.(5.6) and get the following equation.

#FP ops
Time

= min

 Peak GFLOP/s

(#FP ops / #Bytes) * Peak GB/s
(5.7)

Here, # FP ops / # Bytes is called Arithmetic Intensity (AI), which means # operations

per byte of DRAM traffic on a particular computer. This metric directly ties to the algorithm

and implementation of an application.

GFLOP/s = min

 Peak GFLOP/s

AI * Peak GB/s
(5.8)

Because logarithm function turns a multiplicative factor into a shift up (Y-axis intercept),

and an exponential into a multiplicative factor (slope), we take the same base of the logarithm

90

function on both sides of Equation (5.8) to turn it into straight lines, and get the most

information from the slope and intercept.

log(GFLOP/s) = min

 log(Peak GFLOP/s)

log(AI) + log(Peak GB/s)
(5.9)

Thus, the standard roofline chart is plotted on the log-log scale in Fig. 5.2b . The peak

bandwidth and peak GFLOP/s are the two “rooflines”. we can see that the slope of

log(AI) is 1, which indicates the angle of memory bandwidth roofline is 45 degrees, and

the log(P eakGB/s) is shown as the intercept of the Y-axis. Fig. 5.2b divides the locality

performance plane into five regions. Out of boundaries of the peak bandwidth and the peak

GFLOPS are unattainable performance. The purple transition of peak bandwidth and peak

GFLOPS is called machine balance. Memory-bound kernels are on the left of machine bal-

ance, while compute-bound kernels are on the right, e.g., the two green dots in the blue and

red region, respectively. The kernels that are far away from the two ceilings, e.g., the red

dot in Fig. 5.2b , generally perform poorly and need to be improved.

L2
 G

B/s

Peak FLOPS

L1
 G

B/s

Arithmetic Intensity (FLOP / Byte)

At
ta

in
ab

le
 F

LO
P/

s

L3
 G

B/s

DRAM G
B/s

Actual Performance
Performance
is bounded

by the
minimum of
all memory
subsystem

Figure 5.3. Hierarchical Roofline model [118]. An application’s achieved
performance and AI at each memory level of the machine.

“Hierarchical Roofline” model [118] in Fig. 5.3 adds not only computational peak (e.g.,

integer-based scalar, vector instructions, etc.) but also multi-level memory hierarchy (e.g.,

91

the data movement between CPU and L1 cache (CARM, Cache-Aware Roofline Model), L1

and L2 cache, L2 and LLC, and LLC and DRAM). Before collecting data on an application,

Intel Advisor runs benchmarks (e.g., STREAM[119], dgemm, etc.) to measure the hardware

limitations of the machine, and then plots the ceilings on the chart. We see that the AI

of an application can be represented by four dots according to four memory levels. The

performance of an application is bounded by the minimum of all memory subsystems. The

widely separated space between two dots of AI indicates high reuse in the faster memory

subsystem, while the narrow space indicates effectively low reuse. Moreover, the left to

right order (CARM, L2, L3, DRAM) might not be respected if an application has inefficient

memory accesses. For example, the CARM dot can be on the right side compared to the L2

dot. This can be due to a large amount of L1 misses, therefore the data transfer between

L1 and L2 increases. According to AI = #FPops/#Bytes, we have smaller L2 AI than

CARM AI. We will observe this phenomenon in the Original LBM, and their memory access

patterns are further investigated by using the Memory Access Pattern Analysis (MAP) tool

in Sect. 5.8.2 . The hierarchical Roofline model can be automatically collected and generated

by Intel Advisor [120].

5.3.2 Roofline Analysis of Three 2D LBM algorithms

This section evaluates the three 2D baseline LBM algorithms with the same simulation

domain of an 2D square lattice with edge size L = 1024 during 60 collision-streaming cy-

cles. Meanwhile, Intel Advisor is used to collect data and generate roofline charts. The

experiments are on a Bridges Haswell node, and its LLC is 33MB per socket. The memory

consumption of the input is 160MB

2
 , which exceeds the LLC size and will incur frequent

DRAM accesses. We use 30 time steps to warm up machines, and use the next 30 time steps

for measurement. Thus, the data transfer to sweep the 2D grid is 160MB ∗ 30 = 4.7GB.

Fig. 5.4 sorts the CPU time of each kernel in the Original LBM in descending order.

The “loop in propagate” kernel (the first row) with “self overall AI = 0.021” computes the
2

 ↑ Each lattice cell takes 80B, which consists of 9 double floating numbers for particle distribution and 1
pointer for the action function, e.g., BGK collision or boundary condition computation. Besides, each cell
has two copies of distribution, each point occupies 80B ∗ 2 = 160B. Thus 1024 × 1024 2D lattice takes up
160 MB.

92

20.0%
15.4%
3.4%

Figure 5.4. Time and data transfer among each memory level of Original
LBM. “Self” means not including functions called in the current loop or func-
tion. The columns of “Self Memory”, “Self L2”, “Self L3” , and “Self DRAM”
collect the data transfer between CPU and L1 cache, L1 and L2 cache, L2 and
L3 cache, L3 cache and DRAM, respectively.

streaming sweep. Its “Self CPU time” takes 61.2% of the total CPU time and ranks the most

time-consuming kernel. We find that “Self L2” of “loop in propagate” kernel is 17.5GB, and

is 3.9X of its 4.5GB “Self Memory”, which indicates that the Original LBM has huge L1

cache misses, mostly likely due to inefficient memory access patterns. We will see these

numbers again in the later Roofline chart. Note that the “loop in collide” (the fourth kernel)

also suffers a similar problem: 4GB self L2 > 1.3GB self L1. The “loop-in-bgk” spends 20%

of the total CPU time and is the second hotspot kernel. Since this kernel locally computes

the equilibrium states using the data in each cell, its “Self L2 , L3 and DRAM” are all zero.

At last, the “bgk” kernel takes 15.4% of total CPU time and is the third hotspot kernel. It

updates the macroscopic value, e.g., density and velocity norm. Similar to “loop-in-bgk”, it

is bounded by L1 cache.

Fig. 5.5a shows the cache-aware Roofline model (CARM) of the Original LBM. Firstly,

the “+” mark shows the whole performance of the Original LBM. Secondly, the yellows dots

are the loops or functions in the Original LBM, and their size and color shows how many

portions of total running time they take. Small dots that spends less than 1% of the total

time are likely not worth optimization. The medium and yellow dots spend 1% ∼ 20%, while

large and red dots spend larger than 20% and are the best candidates for optimization. In

this example, the large red dot is the “loop in propagate”, while the yellow dots are “loop in

collide”, “bgk-macroscopic” and “loop in bgk”. Thirdly, Fig. 5.5b presents the Hierarchical

93

11.91

0.04

0.07
0.1

0.4

0.7
1

4

7

0.0054 0.01 0.04 0.07 0.1 0.4 0.7 1

Memory bound
Bound by compute
and memory roofs Co

DP Vector Add Peak: 11.91 GFLOPS
Integer Scalar Add Peak: 8.06 GINTOPS

L1 Bandwidth: 314.9 GB/sec

L3 Bandwidth: 31.85 GB/sec

DRAM Bandwidth: 9.63 GB/sec

L2 Bandwidth: 85.95 GB/sec

Scalar Add Peak: 3.28 GFLOPS

G
igaO

PS

OP/Byte (Arithmetic Intensity)

[loop in propagate]

[loop in collide]

bgk-Macroscopics [loop-in-bgk]

(a) Cache-aware Roofline model of loops and kernels in the Orig-
inal LBM.

0.04

0.07
0.1

0.4

0.7
1

4

7
10

0.0040.007 0.04 0.07 0.1 0.4 0.7 1 4 7 10

Memory bound
Bound by compute
and memory roofs Compute bound

L1 Bandwidth: 314.9 GB/se
c

L2 Bandwidth: 85.95 GB/se
c

L3 Bandwidth: 31.85 GB/se
c

DRAM Bandwidth: 9.63 GB/se
c

DP Vector Add Peak: 11.91 GFLOPS
Integer Scalar Add Peak: 8.06 GINTOPS

Scalar Add Peak: 3.28 GFLOPS

CARM (L1 + NTS)
4.53 GB

L2
17.568 GB

L3
15.618 GB

DRAM
8.085 GB

G
iga O

P S
OP/Byte (Arithmetic Intensity)

[loop in propagate]

[loop in collide]
bgk-Macroscopics

[loop-in-bgk]

(b) Hierarchical Roofline model of the “loop in propagate”. The
purple dot (DRAM AI) is closest to the DRAM roofline, which
indicates it is a DRAM-bound kernel.

Figure 5.5. Sequential performance of the Original LBM on a square lattice
with L = 1024 .

Roofline model of the “loop in propagate” kernel, which indicates that it is bounded by

DRAM, since the purple dot (DRAM AI) gives the minimum of GigaOPS and has the

closest distance to its memory ceiling when comparing with other memory levels. Due

to the memory bound feature, directly increasing parallelism on this kernel will not give

benefit. Thus, we need to increase its DRAM AI, normally by redesigning the algorithm,

e.g., increasing data reuse in the cache, ensuring memory affinity, restructuring loops for

more unit stride memory access, etc.

94

2

12

3

4

5

6

7

8
9

10

0.16 0.480.2 0.3 0.4

Scalar Add Peak: 3.27 GFLOPS

DRAM Bandwidth: 10.99 GB/sec

L3 Bandwidth: 32.98 GB/sec

Integer Scalar Add Peak: 8.06 GINTOPS

DP Vector Add Peak: 11.17 GFLOPS

G
igaO

PS

OP/Byte (Arithmetic Intensity)

Fuse Tile

Fuse

Original
L2 L1L3 DRAM

L1 L2

DRAM

L3

L1 L2 DRAML3

(a) Hierarchical Roofline model comparison.

2.1

12

2.5

4

5.5

7

8.5

10

0.3 0.50.35 0.4 0.45

Scalar Add Peak: 3.27 GFLOPSDRAM Bandwidth: 10.99 GB/sec

Integer Scalar Add Peak: 8.06 GINTOPS

L3 Bandwidth: 32.98 GB/sec DP Vector Add Peak: 11.17 GFLOPS

+38.27%

+25.15%

G
i gaO

PS

OP/Byte (Arithmetic Intensity)

Original

Fuse Tile

Fuse

(b) DRAM Roofline model comparison.

Figure 5.6. Callstacks Roofline comparison of the Original, Fuse, and Fuse
tile LBM on a 2D square lattice with edge size L = 1024.

Next, we compare the performance among the Original, Fuse, and Fuse tile LBM (tile =

256). Firstly, Fig. 5.6a shows that they are all bouned by DRAM, In particular, the Original

LBM is below the “Scalar Add Peak”, whereas the Fuse LBM and Fuse tile LBM are above

it and have higher GigaOPS. Secondly, the Original LBM’s L1 AI is on the right of its L2

AI, which indicates it has large L1 misses and flushes data to L2 and L3 cache, whereas Fuse

LBM and Fuse tile LBM don’t have the phenomenon. Thirdly, the AI of Fuse tile LBM’s L1,

L2, and DRAM is a little larger than its counterpart in Fuse LBM, but its L3 AI contains

a big increase. This indicates that the “loop tiling” technique used in Fuse tile LBM take

effects and optimizes the L2 memory access, so that Fuse tile LBM has less L2 misses, less

data transfer between L2 and L3 cache, thereby results in higher L3 AI. Fourthly, Fig. 5.6b

zooms in on the comparison of three algorithms using DRAM Roofline model, since they are

95

all bounded by DRAM. We see that both Fuse LBM and Fuse tile LBM are on the right

of Original LBM, and have 38% and 25% speedup, respectively. Although Fuse tile LBM

has used the “spatial” blocking, it is still under the DRAM ceiling. If we want to continue

improving its performance, “temporal” blocking to merge multiple time steps of computation

can be chosen to increase the data reuse in cache and improve the AI.

5.4 Related Works

5.4.1 Optimization of Data Storage and Streaming Patterns

The standard LBM implementation follows the particle distribution at lattice cell x and

time t with discrete velocities. The original LBM presented in Sect. 5.2.1 uses two copies

of the particle distribution per lattice cell and two distinct collision and streaming kernels,

which is also called “AB2k” or “ping-pong buffering”. Although the strategy doubles the

total memory allocation, it simplifies the streaming kernel to prevent overwritten issues,

as the distributions fk(t) and f out
k (t) are stored at source memory location buffer A, while

the distributions fk(t + 1) stored at destination memory location buffer B, then the two

buffers are alternated at each time-step. But since the collision and streaming kernels are

separated, there is no effective data reuse between them. The Fuse LBM (or “AB1k”)

presented in Sect. 5.2.1 improves performance by ‘fusing’ collision and streaming into a single

kernel, thereby allows for data reuse between the two kernels. Next, the Fuse tile LBM

continues to combine loop tiling with Fuse LBM, and benefits from the spatial locality. But

the two optimized methods still use two distribution copies.

Newer single kernels (e.g., swap [43], AA [45], shift [44], and esoteric twist [46], etc.) re-

tains only a single copy of the particle distribution and optimizes the data reuse in streaming

kernel, but each needs to follow some constraints.

The swap method [43], [121] observes that when a cell sends a population to its neighbors

during streaming, it also receives a population from the same neighbor. Thus, the two forth

and back copy operations between a cell and its neighbor in the streaming kernel can be fused

into a single value swap. As a result, the swap algorithm is in-place and doesn’t require the

second memory allocation. However, while combining swap with a fused collision-streaming

96

cycle, we must guarantee that the populations of the neighbor involved in the swap are

already in a post-collision state, in case of violating thread safety. A work around solution

is to adjust the traversal order of the simulation domain with a predefined order of discrete

cell velocities [121], [122].

The shift method [44], also known as compressed grid method, allocates an extra tempo-

rary space for one line (for 2D LBM) or one surface (for 3D LBM) which contains nearest-

neighbors. The shift method reuses the temporary space in streaming operation. This

method reduces the storage to q∗(Nd +Nd−1), but it requires diagonally alternating travers-

ing pattern in even and odd time steps to avoid violating data dependencies, which makes

the implementation complex. Besides, they don’t provide parallel implementation.

The AA method [45] offers a fused collision-streaming step and a single-memory imple-

mentation by storing data in different locations at two subsequent even and odd time steps.

At the even time step, we perform a single collision at t without streaming. At the odd

time step, there are three sequential operations: a Pull operation, a collision at t + 1, and

a Push operation. The Pull operation gathers the populations at t from the neighbor cells

to a local and temporary array for collision at t + 1. The Push operation eventually writes

the post-collision variables back to the same locations at the neighbors.

Similar to the swap method, the esoteric twist (ET) method [46] also observes the eso-

teric (unintuitive) pattern that the streaming step can be eliminated if the distributions are

written back in twisted (opposite) order compared to the reading before the collision. Similar

to AA, it can be implemented using odd and even steps but not necessarily. It requires a

structure of array (SoA) data layout for accessing the distributions. A node’s local distri-

butions are now inside a virtual cell that is shifted by half a lattice cell’s diameter in each

direction. Then distributions are read, collided, and written back to the opposite direction.

After each node has been updated, the pointers of opposing discrete velocity directions in

the control structure are exchanged. When combined with indirect addressing, it requires

fewer ghost nodes than the AA-pattern. Consequently, ET requires only a single read and

write operation for each datum in each time step and only a single place in main memory.

Vardhan et al. [30] and Argentini et al. [123] choose another path to reduce the memory

footprint by only storing macroscopic, moment-based data (density ρ, velocity u, and the

97

symmetric stress tensor Π) instead of distributions. Therefore, the moment representation

of Regularized LBM in [30] reduces the 19 distribution components of a single copy in 3D

to 10 moment variables. Since we cannot recompute moments of a cell until all adjacent

cells stream to its distribution, this method requires temporary layer storage and enforces

ordering layer by layer in 3D. Their implementation is in HARVEY[124] and adopts indirect

addressing to solve sparse simulation.

Although the above single kernels reduce to one distribution copy and even less, they

mainly focus on optimizing the memory access pattern within one time step, and haven’t

considered merging two or more time steps to further explore temporal data reuse together

with the spatial tiling or blocking. Our memory-aware LBM starts to explore the effectiveness

of the idea by using the two distribution copies in 2D, and then combine this idea with the

swap method to use one distribution copy in 3D.

5.4.2 Difference with Wavefront Related Algorithms

Wavefront algorithms are characterized by a dependency in the processing order of cells

within a spatial domain [125]. Each cell in a multidimensional spatial grid can only be pro-

cessed when previous cells in the direction of processing flow have been processed. Pipelined

wavefront parallelism generally groups many threads to compute on the same spatial domain.

Then successive wavefronts computation by each thread are executed in a shared last level

cache to reduce cache misses, thereby improving memory access performance. However, a

thread can only start computation on the domain of a time step after a previous thread

completes, and thus there exists intensive synchronization cost among threads in every time

step.

Song et al. present a shared-memory wavefront LBM only in 2D, and also utilizes loop

fusion, loop bump, loop skewing, and loop tiling [47]. To alleviate the implicit barriers

in wave-front parallelism, they propose a synchronization strategy based on the semaphore

operations of POST and WAIT. However, their thread synchronization costs in every time step

are still high when each thread is assigned a small sub-domain, they only achieve 10% parallel

performance speedup on average.

98

Habich et al. present a shared-memory wavefront LBM in 3D [126] to explore the tem-

poral locality, but they don’t combine spatial locality techniques, e.g. loop fusion or loop

blocking. Wellein et al. present a shared-memory pipelined wavefront parallelization ap-

proach combined with spatial blocking for the 3D Jacobi method, which is a 6-neighbors

stencil-based computation [51]. It has simpler dependencies than the 19 or 27 neighbors in

3D LBM. Besides, both these two work contain wavefront synchronization costs.

By contrast, our 2D and 3D memory-aware LBM do not use the wavefront parallelism,

but judiciously contains two or three light-weight synchronization barriers every two or

more collision-streaming cycles. In addition, we partition the simulation domain and assign

a local sub-domain to every thread, rather than all threads work on the same sub-domain in

wavefront parallelism. In each sub-domain, each thread in our algorithm computes multiple

time steps at once, rather than one thread computes one time step at a time in wavefront

parallelism. Each of our threads also utilizes tiling or prism techniques to optimize spatial

locality. This strategy in particular favors new manycore architecture designs, which tend

to have increasingly larger cache sizes on each core.

5.4.3 Difference with Cache Oblivious Algorithms

T.Zeiser et al. introduce a parallel cache-oblivious blocking algorithm (COLBA) [127]

for the LBM in 3D. COLBA is based on a cache-oblivious algorithm [128], and divides the

space-time domain using space cut and time cut, thus tries to remove the explicit dependency

on the cache size. However, it comes at the cost of irregular block access patterns, which

causes many cache misses and branch-prediction misses. Due to the recursive structure

of the algorithm, they also use an unconventional parallelism scheme to map the virtually

decomposed domain to a tree. This work is quite different from ours since it not only uses

the recursive method but also has irregular data accesses.

5.4.4 State-of-the-art CFD and LBM Software Packages

The Parallel Lattice Boltzmann Solver (Palabos) [116] is an MPI and C++ open-source

library for general-purpose CFD, and developed since 2010 as a research and engineering

99

tool. The library uses MPI and C++ templates to support a wide scope of collision models.

Palabos adopts a matrix-based array-of-structure (AOS) memory organization at the cell

level, so that the neighbors can be easily accessed by index arithmetics, but have a limitation

to regular and rectangular shapes. To overcome the drawback, the irregular shapes in Palabos

are decomposed into multiple blocks, which are simply smaller matrix pieces.

OpenLB [129] is a C++ LBM package and is the successor of the VLADYMIR [130]

library. Palabos developers broaden OpenLB to the simulation with coupled physics and

complex geometries. HemeLB [131] and the Palabos-based solver HemoCell [132] focus on

the field of computational biomedicine simulation.

Other packages adopt adjacent list data structure (indirect addressing), e.g. Musubi [133]

and waLBerla [134]. HARVEY [124] is designed for simulations in complex vascular geome-

tries. They are often used for simulating domains with sparse and irregular geometries, but

their cells require additional memory of pointers, and double the memory consumption in

the worst case.

Open Field of Operation And Manipulation (OpenFOAM) [76] is a C++ open-source

library released in December 2004 and widely used in the CFD community. Its original

development started in 1989 at Imperial College, London. It focuses on the unstructured

grid and uses pressure correction methods. OpenFoam provides utilities as functional tools to

pre/post-processing, e.g. blockMesh, sampling tool, and its solvers calculate the numerical

solution of PDEs. Since its theoretical background is the Finite Volume Method (FVM),

it doesn’t provide LBM implementation. In a finite scheme, functional values usually have

to be gathered in a finite neighborhood of a grid node, and the same data is required to

update several grid nodes. However, in LBM, the number of input variables of the local time

integration scheme equals the number of output variables, thus each input data is required

only once.

In this study, we choose the more widely-used matrix-based data structure in the LBM

community, and select the state-of-the-art Palabos library as the baseline, since Palabos

offers a broad modeling framework, targets applications with complex physics, and exhibits

solid computational performance.

100

5.5 Two-step Memory-aware LBM Algorithm

To further improve LBM performance, we aim to increase data reuse across two or mul-

tiple time steps of collision-streaming cycles in the sequential LBM, and then design its

parallel version. However, there are two main challenges:

1. For the 2D sequential LBM, how to correctly arrange the access pattern to merge two

time-steps of the collision and streaming cycle, meanwhile combining loop tiling, and

handling the boundary conditions?

2. For the parallel 2D LBM, how to keep thread safety on the intersection area between

different threads? How to minimize synchronization cost? And how to explain the

parallel performance improvement?

5.5.1 Sequential Two-step Memory-aware LBM

We start from the Fuse LBM presented in Sect. 5.2.2 , and explore data reuse across two

time steps. Assuming a block of cells fit in the last level cache, when traversing the domain

first from along Y-axis and then from bottom to top along X-axis, we observe that after

the first collision and streaming operation of a cell (ix, iy) at the time step t, its neighbor

(ix − 1, iy − 1) fulfills the data dependency and is ready for the collision at the time step

t + 1. Indeed, we can perform the second computation on (ix − 1, iy − 1) to increase the

cache reuse as long as the last level cache can hold all the data of one line of Y-axis. This

idea is essentially simple, which leads to the Alg. 5 .

3
 Note that we don’t need alternate buf1

and buf2 at the end of every two collision-streaming cycles.

Now we illustrate the 2D sequential two-step LBM Alg. 5 by an example of 3× 4 lattice

in Fig. 5.7 . To conform with Alg. 5 , the horizontal direction in Fig. 5.7 is defined as Y-axis,

while the vertical direction is X-axis. The later figures will follow this definition. Cells are

placed from the bottom left corner (1, 1) to top right corner (3, 4). The algorithm works as

follows.

1. Fig. 5.7 .a shows the initialization state of all cells at the current time step t.
3

 ↑ The design of sequential 2D memory-aware LBM is a joint work with Feng Li.

101

Algorithm 5 2D Sequential Two-step Memory-aware LBM
1: for iT=0; iT < N; iT += 2 do
2: for ix=1; ix ≤ lx; ix++ do
3: for iy=1; iy ≤ ly; iy++ do
4: /*First Fused Collision and Streaming*/
5: compute (ix, iy) collision using buf1
6: stream (ix, iy)’s buf1 to its own and 8 neighbors’ buf2
7: /*Second Fused Collision and Streaming*/
8: if ix>1 and iy>1 then
9: compute (ix-1, iy-1) collision using buf2
10: stream (ix-1, iy-1)’s buf2 to its own and 8 neighbors’ buf1
11: Compute the second fused collision and streaming on rightmost column lx.

(a) (b)

(f)

Fluid grid node

Boundary fluid grid node

#

Buf# Initialize

Buf# empty/flush

1st-time collision ()
and streaming

2nd-time collision ()
and streaming # Buf# updated by 1st streaming

Buf# updated by 2nd streaming

Buf# ready for 2nd collision

1

2

3

1 2 1 21 2 1 2

1 21 21 2 1 2

1 2 1 2 1 21 2

1 21 2 1 2

1 21 21 2 1 2

1 2 1 2 1 21 2

1 2

(c)

1 21 2

1 21 21 2 1 2

1 2 1 2 1 21 2

1 2 1 2

(d)

1

2

3

1 21 21 2

1 2 1 2 1 21 2

1 2 1 2 21

1 2

1 2

1 21 21

1 2 1 2 1 21 2

1 2 1 2 21

1 2

1 2

2

(e)

1 21 21

1 2 1 2 1 21 2

1 1 2 21

1 2

1 2

2

2

X (Length)

Y (Width)

Figure 5.7. Sequential memory-aware algorithm. Note that the horizontal di-
rection in this figure is the channel’s width (Y axis in Fig. 5.23), while the vertical
direction is the channel’s length (X axis in Fig. 5.23). This notation will be used
in the later algorithm illustration diagram. (a) Initialization. (b) First collision
and streaming on (1, 1). (c) First collision and streaming on (1, 2). (d) Continue
computing the first collision and streaming through (2, 1). (e) First collision and
streaming on (2, 2) and fulfill the data dependency of (1, 1) to compute the second
collision and streaming. (f) Second collision and streaming on (1, 1).

2. In Fig. 5.7 .b, we start computing the first fused collision and streaming on the cell (1, 1)

at the left corner. We use the data in buf1 to perform collision. Then in the streaming

operation, we propagate the data in the buf1 of cell (1, 1) to the buf2 of itself and

102

its neighbors. Thus, we change these buf2 to red, which indicates that these buf2 are

updated but still lack other dependent data to compute the collision at the time step

t + 1. Since buf1 of cell (1, 1) has been computed completely, we change it to white,

indicating that this buf1 is flushed and can be updated by the data at the time step

t + 1.

3. In Fig. 5.7 .c, we compute the cell (1, 2) by performing the fused collision and streaming

operation at the time step t.

4. After completion of computing the bottom row 1, we move up one row and compute

the first fused collision and streaming on cell (2, 1) on row 2 in Fig. 5.7 .d.

5. In Fig. 5.7 .e, we compute the first fused collision and streaming on cell (2, 2). Note

that after cell (2, 2)’s streaming phase, since the buf2 of cell (1, 1) has collected all the

particle distributions from its neighbors, the data dependency of buf2 in cell (1, 1) is

fulfilled and ready for computing the second collision in the time step t + 1. Thus we

change its buf2 to yellow, indicating that the data within the buffer is ready for the

second fused collision at the time step t + 1.

6. In Fig. 5.7 .f, we perform the second fused collision and streaming at the time step t + 1

on cell (1, 1) using buf2. After the streaming phase, since the buf1 of cell (1, 1) and its

neighbors are flushed previously, we can safely propagate and store the “intermediate”

data at the time step t+1 to those buf1. Thus we change these buf1 to green, indicating

that they store the data at the time step t + 1 but still lack other dependent data to

compute the collision at the time step t + 2.

Next, we can use the loop tiling to combine spatial and temporal cache blocking together,

which leads to Alg. 6 . The MIN statement again allows Alg. 6 to support any non-negative tile

size to choose the best tile according to different CPU’s cache size. Alg. 6 accesses the whole

2D lattice tiles by tiles using a constant stride, and then accesses cells in each tile line by

line using a unit stride. With such a memory access pattern and data reuse among multiple

time steps, the sequential two-step memory-aware LBM algorithm can improve performance

significantly.

103

Algorithm 6 2D Sequential Two-step Memory-aware LBM with Loop-tiling
1: for iT=0; iT < N; iT += 2 do
2: for outerX = 1; outerX ≤ lx; outerX += tile do
3: for outerY = 1; outerY ≤ ly; outerY += tile do
4: for innerX = outerX; innerX ≤ MIN(outerX + tile - 1, lx); ++innerX do
5: for innerY = outerY; innerY ≤ MIN(outerY + tile - 1, ly); ++innerY do
6: // First fused collision and streaming:
7: compute (innerX, innerY) collision using buf1
8: stream (innerX, innerY)’s buf1 to its own and 8 neighbors’ buf2
9: // Second fused collision and streaming:
10: if innerX>1 and innerY>1 then
11: if innerX == lx− 1 or lx then // Handle boundary condition
12: save ρ at column lx− 1 & lx− 2
13: compute (innerX-1, innerY-1) collision using buf2
14: stream (innerX-1, innerY-1)’s buf2 to its own and 8 neighbors’ buf1
15: Compute the second fused collision and streaming on the rightmost column lx and handle

boundary conditions. // see section 5.5.2

5.5.2 Special Handling of Boundary Conditions

Boundary conditions (BCs) are complex and affect the correctness, stability, and accu-

racy of LBM. The discrete distribution functions on the boundary have to be taken care

of to reflect the macroscopic BCs of the fluid. Fig. 5.8 shows the four BCs used in our

LBM simulation experiments. The horizontal and vertical axis are in the same direction as

Fig. 5.23 :

1. The upper (red) and lower (green) boundaries use regularized BC.

2. At the inlet (yellow left boundary), a parabolic Poiseuille profile is imposed on the

velocity.

3. At the outlet (blue right boundary), an outflow condition: ∇u = 0 is implemented.

At every time step, we compute a second-order extrapolation on the right boundary

to ensure a zero-gradient BC on the pressure. Thus the velocity is constrained to be

perpendicular to the outflow surface.

4. On the surface of the cylinder obstacle and within its interior, the bounce-back BC is

used.

104

Other different BCs can also be applied, as long as we follow the procedure in the next

paragraph.

X

Parabolic
Poiseuille

profile

Pressure
Zero

Gradient

Bounce-back

upper: regularized BC

lower: regularized BC lx

ly

(1,1)

Y
(lx,ly)

Fluid nodes use
bgk collision

Figure 5.8. Four boundary conditions used in the LBM simulation.

X

Parabolic
Poiseuille

profile

Pressure
Zero

Gradient

Bounce-back

upper: regularized BC

lower: regularized BC lx-2

ly

(1,1)

Y
(lx,ly)

Store ρ at the columns
lx-1 & lx-2 to compute

the BC at the last column lx

Orange domain has
completed two-step

computation

lx
lx-1

Figure 5.9. Handle the right outlet BC. When Alg. 6 reaches innerX = lx, the
orange domain has completed two-step computation. We use two extra arrays to
store the density ρ of cells at column lx−1 and lx−2 after the first fused computation
but before the second fused computation, so that the right outlet BC at the time
step t + 1 can be correctly handled.

Handling the Four BCs.

The upper, lower and left BCs are all local computation and do not use neighbors’ data,

but the right outlet BC (zero-gradient on pressure) is not local, and it requires data from

105

its two neighbors on the left. Specifically, we have to conform to the formula ρx,y = 4/3 ×

ρx−1,y − 1/3× ρx−2,y. This indicates the density ρ of cells at column lx depends on the ρ of

cells at column lx− 1 and lx− 2. But every time a cell executes collide function, its density

ρ will change. To ensure the correctness of the right BC at the time step t + 1, we need two

extra arrays to store the density ρ of cells at column lx − 1 and lx − 2 after the first fused

computation but before the second fused computation. This is reflected in lines 8 and 9 in

Alg. 6 . Thus, with the ρ stored in the two arrays, we can successfully compute the second

fused collision and streaming, and handle the right outlet BC correctly at the time step t+1.

5.5.3 Parallel Two-step Memory-aware LBM Algorithm

To further improve performance and support manycore systems, threading can be used

to parallelize the 2D sequential two-step memory-aware LBM. OpenMP [135] is a portable

shared-memory programming model that can quickly convert a sequential program to a

multi-threaded parallel program with high performance. However, to design the 2D two-

step LBM with OpenMP, there are several challenges:

1. To reduce the frequent synchronization cost, how to divide the computational domain

among multiple threads?

2. To avoid race conditions and keep thread safety, how to handle the “intersection do-

main” (overlapped cells) between two threads?

3. How to add tiling to increase spatial locality into the new parallel algorithm?

We will resolve these challenges in this section.

Fig. 5.10 illustrates the idea of 2D parallel two-step memory-aware LBM Alg. 7 on a 6× 4

lattice. The whole lattice is evenly distributed to two threads along the channel’s length

(X-axis), thus each thread computes a 4×3 sub-lattice. I define the top row of each thread’s

sub-lattice as the “intersection”, e.g., row 3 is the intersection. The algorithm generally

works in three stages and seven steps:

1. Stage I (prepossessing): In Fig. 5.10 .a∼c, each thread computes the first fused collision

and streaming on the “intersection” (row 3 & 6), as mapped to lines 3∼7 in Alg. 7 .

106

Fluid grid node

Boundary fluid grid node

#

Buf# Initialize, ready for 1st collision

Buf# empty/flush

#

1st-time collision () and streaming

2nd-time collision () and streaming

Buf# updated by 1st streaming

Buf# ready for 3rd collision

Buf# updated by 2nd streaming

Buf# ready for 2nd collision

(b)(a)

1

2

3

4

2 1 2 1 2

1 21 21 21 2

1 2 1 2 1 2 1 2

1 21 21 21 2

1 2 1

5

6

2 1 2 1 2

1 21 21 21 2

1 2 1

Thread1

Thread0

1

2

3

4

2 1 2 1 2

1 21 21 21 2

1 2 1 2 1 2

1 21 21 21 2

1 2 1

5

6

2 1 2 1 2

1 21 21 2

1 1

1 2

1 2

2

Thread1

Thread0

(c)

1

2

3

4

2 1 2 1 2

1111 2

1 1 1

1 21 21 21 2

1 2 1

5

6

1 2 11 1

1 2

1 2

2

21 2 211

2 2 2

2 2

222

Thread1

Thread0

(d)

1

2

3

4

2 1 2 1 2

1111 2

1 1 1

1 21 21 2

1

5

6

1 2 11 1

1 2

1 2

2

21 2 211

2 2 2

2 2

222

1 2

1 2

Thread1

Thread0

(f)

1

2

3

4

1112

1 1 1

22

5

6

1 2 11

1 2

1 2

2

21 2 211

2 2 2

2 2

222

1 2

1 2

1 1 1 2

2 2 2111

1

1Thread1

Thread0

Thread1

Thread0

(g)

1

2

3

4

112

1 1 1

22

5

6

1 2 1

1 2

1 2 21 2 211

2 2 2

2

22

1 2

1

1 1 1 2

2 2 2111

1

1 21

21

2

2

(e)

1

2

3

4

1111 2

1 1 1

22

5

6

1 2 11 1

1 2

1 2

2

21 2 211

2 2 2

2 2

222

1 2

1 2

1 1 1 2

2 2 2111

Thread1

Thread0

Thread1

Thread0

(h)

1

2

3

4

112

1 1 1

22

5

6

1 2 1

1 2

1 2 21 2 211

2 2 2

2

22

1 1 1 2

2 2111

1

1 21

21

2

21 2

1 2

(k)

Thread1

Thread0

1

2

3

4

5

6

1

1

1

1 1

1

1 2

1

1 1

11

1 1

2 2 2 2

2

1

2 2

1

222

1

2 2 2 2

2222

11 1

21 1 2 21 1 2

2

Thread1

Thread0

(j)

1

2

3

4

1 1 1

5

6

1 2

1 2 21 2 211

2 2 2

1

1

1 1

1

1 2

1

1 1

11

1 1

2 2 2 2

2

1

2 2

1

2 2 2 2

222

1

2

(i)

Thread1

Thread0

1

2

3

4

2

1 1 1

5

6

2

1 2

1 2 21 2 211

2 2 2

1

1

1

1 21

21

2

21

1 2

1 1 2

1 2 1 2 2

2

2 1 21

21 21

Thread1

Thread0

X (Length)

Y (Width)

Figure 5.10. Parallel two-step memory-aware algorithm in Y-X axis. (a) Initial-
ization. (b∼c) First computation on the “intersection” (row 3 & 6) at time step
t. (d∼e) First computation on row 1 and 3 at time step t. (f) First computation
on the leftmost cell on row 2 and 5. (g) When thread 0 and 1 complete the first
computation on (2, 2) and (5, 2) respectively, the buf2 in (1, 1) and (4, 1) fulfill the
data dependency for the second computation at time step t + 1. (h) Second fused
computation on (1, 1) and (4, 1). (i∼j) Do the first computation on row 2 and 5,
meanwhile do the second computation on row 1 and 4. (k) Second computation on
the “intersection” (row 3 & 6).

107

2. Stage II (main computation in each thread’s sub-lattice): In Fig. 5.10 .d∼e., each thread

computes the first fused collision and streaming on the bottom row of their sub-lattice

(row 1 & 4) as mapped to lines 14∼16 in Alg. 7 .

3. In Fig. 5.10 .f, each thread computes the first fused collision and streaming on the second

row (row 2 and 5) in each sub-lattice.

4. In Fig. 5.10 .g, the buf2 of some cells fulfill the data dependency for the second collision,

we change them to yellow.

5. In Fig. 5.10 .h, each thread computes the second fused collision and streaming on these

cells in step 4, as mapped to lines 20∼22 in Alg. 7 .

6. In Fig. 5.10 .i∼j, each thread repeats steps 3∼5 and completes two-step computation

for the rest of the cells in their own sub-lattice except for the “intersection”.

7. Stage III: In Fig. 5.10 .k, each thread computes the second fused collision and streaming

on “intersection”, as mapped to lines 24∼29 in Alg. 7 .

X

Y
Width = ly

Length = lx(1,1)

(lx,ly)(1,ly)

(lx,1)

Thread 0

Thread 1

...

Thread n-1

sub_len sub_len sub_len sub_len

Intersections

Figure 5.11. Partition of a 2D lattice by parallel memory-aware LBM.

Alg. 7 presents the parallel two-step memory-aware LBM with loop tiling. The 2D lattice

is evenly partitioned by n threads along X-axis (length lx) in Fig. 5.11 , and columns at

108

Algorithm 7 2D Parallel Two-step Memory-aware LBM with Loop-tiling
1: for iT=0; iT < N; iT += 2 do
2: #pragma omp parallel{
3: // tid: each thread id; sub_len: length of each thread’s sub-lattice
4: mylx[0] = 1 + tid * sub_len; // the lowest row of the sub-lattice
5: mylx[1] = (tid + 1) * sub_len; // “intersection”, i.e., the highest row of the sub-lattice
6: /* Stage I: First fused collision and streaming on the “intersection”: */
7: for iy=1; iy≤ ly; ++iy do
8: compute (mylx[1], iy) collision using buf1
9: stream (mylx[1], iy) buf1 to its own and 8 neighbors’ buf2
10: #pragma omp barrier
11: /* Stage II: Main computation in each thread’s sub-lattice: */
12: for outerX = mylx[0]; outerX ≤ mylx[1]; outerX += tile do
13: for outerY = 1 ; outerY ≤ ly; outerY += tile do
14: for innerX=outerX; innerX ≤ MIN(outerX + tile - 1, mylx[1]); ++innerX do
15: for innerY=outerY; innerY ≤ MIN(outerY + tile - 1, ly); ++innerY do
16: // First fused collision and streaming at time step t:
17: if innerX != mylx[1] then
18: compute (innerX, innerY) collision using buf1
19: stream (innerX, innerY)’s buf1 to its own and 8 neighbors’ buf2
20: // Second fused collision and streaming at time step t + 1:
21: if innerX != mylx[0] and innerY > 1 then
22: if innerX == lx− 1 or lx then // Handle boundary condition
23: save ρ at column lx− 1 & lx− 2
24: compute (innerX-1, innerY-1) collision using buf2
25: stream (innerX-1, innerY-1)’s buf2 to its own and 8 neighbors’ buf1
26: #pragma omp barrier
27: Stage III: Second fused collision and streaming on “intersection” mylx[1] and row ly, mean-

while handle boundary conditions.
28: }

109

lx/n, 2 ∗ lx/n, ..., lx are “intersections”. Thus, each thread computes a local lx/n× ly sub-

lattice. The red arrows describe the tiling traversal in each thread’s sub-lattice. The “MIN”

statements in 13 and 14 allow users to select the best non-negative tile based on the size

of the last level cache on their architectures. Since line 22 stores the density ρ at cells on

column lx− 1 and lx− 2 in the post-collision state at time step t, we can compute the zero

gradient BCs at time step t + 1, as mentioned in Sect. 5.5.2 .

Handling Thread Safety on Intersection Lines

Thread1

Thread0

1

6

5

4

3

2

Row 3
(1st comp)

t+1t

Row 3
(2nd comp)

Row 4
(1st comp)

Row 4
(2nd comp)

Data Dependency

time steps

Intersection

Figure 5.12. Handle the intersection line. To keep thread safety, the second
computation on row 4 should be delayed after the first computation on row 3, and
the second computation on row 3 should also be delayed after the first computation
on row 4.

We handle the thread safety on the “intersection layer” between two threads in Stage I

(step 1) and Stage III (step 7). As shown in Fig. 5.12 , the second computation on the bottom

row in thread 1’s sub-lattice (row 4) needs the data streamed from the intersection (i.e., row

3, the top row in the thread 0’s sub-lattice). In other words, the second computation on

row 4 should be delayed after the first computation on row 3. Thus we need to compute the

first fused collision and streaming on row 3 in advance, which is pre-processed by Step 1,

mapping to lines 6∼8 of Alg. 7 . And the first barrier is inserted in line 9 of Alg. 7 to ensure

the delay.

110

In Stage II (step 2∼5), each thread starts computation from the lowest row in their

own sub-lattice. Main computation happens here, mapping to line 10∼24 of Alg. 7 . When

thread 0 reaches the highest row of its sub-lattice (row 3), since the first computation has

already been completed on these row, we ignore the first computation in line 15 in Alg. 7 ,

but compute the second computation on its lower one row. The second computation on row

3 should be delayed after the first computation on row 4 in Fig. 5.12 , as mapped to line 25

in Alg. 7 .

In Stage III, we compute the second computation on the intersection row ly (the rightmost

column in Fig. 5.10). Above all, since the majority of computation happens in Stage II of

each thread’s sub-domain, we avoid the frequent “line-wise” thread synchronizations that

occur in the wave-front parallelism. Besides, we only synchronize at the intersection lines

every two time steps, hence the overhead of two barriers of Alg. 7 becomes much less.

5.6 k-step Memory-aware LBM Algorithm

Sect. 5.5 designs the two-step memory-aware LBM, and we ask ourselves: can we merge

three steps or more? This section extends the two-step LBM by more temporal and spatial

data reuse to further increase performance.

5.6.1 Sequential k-step Memory-aware LBM Algorithm

The basic idea of k-step memory-aware LBM is to merge k time steps into one iteration.

Since the key observation of the two-step memory-aware LBM is that when completing

the first computation on (ix, iy), we can execute the second computation on (ix-1, iy-1).

Similarly, when we are at row k, is it possible to compute the k-th computation on (ix-k,

iy-k)? Fig. 5.13 illustrates how to merge k=3 time steps of LBM computation.

1. Fig. 5.13 .a∼f do the same operation as Fig. 5.7 .a∼f to complete the first computation

on line 2, and the second computation on line 1.

2. From Fig. 5.13 .g∼i, we continue using the two-step LBM until cell (3,3).

111

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2

1 2 1 2 1 2 1 2

1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2

1 2 1 2 1 2 1 2

1 2

1 2 1 2 1 2

1 2 1 2 1 2

1 2

1 2 1 2 1 2

1 2

1 2 1 2 1 2

1 2 1 2 1 2

1 2

1 2 1 2 1 2

1 2

1 2 1 2 1 2

1 2 1 2 1 2

1 2

1 2 1 2 1 2 1 2

1 2

1 2 1 2

1 2 1 2 1 2

1 2

1 2 1 2

1 2

1 2

1 2

1 2 1 2

1 2 1 2 1 2

1 2

1 2 1 2

1 2

1 2 1 2

1 2

1 2 1 2

1 2 1 2 1 2

1 2

1 2 1 2

1 2

1 2 1 2

1 2

1 2 1 2

1 2 1 2 1 2

1 2

1 2 1 2

1 2

1 2

(a) (b)

(e)(d)

(c)

(f)

(g) (h) (i)

(j) (k) (l)

3

2

1

3

2

1

3

2

1

3

2

1

Fluid grid node

Boundary fluid
grid node

1st-time collision & streaming 2nd-time collision & streaming 3rd-time collision & streaming

#

#

Buffer # initialized

Buffer # empty or flushed
#

#

Buffer # updated by 1st streaming

Buffer # ready for 2nd collision
#

#

Buffer # updated by 2nd streaming
Buffer # ready for 3rd collision

Buffer # updated by 3rd streaming

Y (Width)

X (Length)

Figure 5.13. Sequential k-step memory-aware algorithm. (k=3) (a) Initializa-
tion. (b) First computation on line 1. (c) First computation on (2, 1). (d) First
computation on (2, 2). The data dependency of (1, 1) is fulfilled to compute the
second computation. (e) Second computation on (1, 1). (f) First computation on
line 2. Second computation on line 1. (g ∼ j) First computation on line 3. Second
computation on line 2. (k) Second computation on (2, 2). The data dependency
of (1, 1) is fulfilled to compute the third computation. (l) Third computation on
(1, 1).

112

3. In Fig. 5.13 .j, we compute the first fused computation on cell (3, 3). Note that after

cell (3, 3)’s streaming phase, since the buf2 in cell (2, 2) has collected all the dependent

data from its neighbors, cell (2, 2) can compute the second collision at the time step

t + 1. Thus we change its buf2 to yellow.

4. In Fig. 5.13 .k, we perform the second fused computation on cell (2, 2) using buf2 at

the time step t + 1. The streaming phase of cell (2, 2) propagates the “intermediate”

t + 1 data to its own and its neighbors’ buf1, meanwhile its buf2 can be flushed, thus

we change it to blank. At this moment, cell (1,1)’s buf1 has fulfilled all the t + 1 data

dependency to compute at the time step t + 2. Therefore, we change cell (1,1)’s buf1

to purple, indicating that it is ready for the third computation at the time step t + 2.

5. In Fig. 5.13 .l, we perform the third fused computation on cell (1, 1) using buf1 at the

time step t+2. After the streaming phase, since the buf2 of cell (1, 1) and its neighbors

are flushed, we can safely propagate the “intermediate” t + 2 data to its own and its

neighbors’ buf2. Thus, we change these buf2 to pink, indicating that they are updated

by the third computation at the time step t + 2 but still need more dependent data to

ready for the fourth computation at the time step t + 3.

The 2D sequential three-step memory-aware LBM method with loop tiling is shown in

Alg. 8 . It supports any non-negative tile size. More details about how to handle BCs both

sequentially and in parallel and are discussed in Sect. 5.6.3 . Meanwhile, I will present how

to avoid the extra two arrays used in Sect. 5.5.2 when supporting the zero-gradient BC.

Furthermore, loop-unrolling can be used to extract the two if-branches in lines 10 and

14 of Alg. 8 outside the four-level nested for-loop. In Fig. 5.13 , we can prepossess row 1 till

the time step t + 2, row 2 till the time step t + 1 , and row 3 till the time step t. Thus, the

innermost of the nested for-loop can remove the if-branches which break CPU pipeline, in

order to achieve more unit strides. For k > 4 (future work), we can use additional if-branches

after line 16 of Alg. 8 to compute the fourth fused collision, and streaming by swapping buf1

and buf2, and so on. Besides, we need to handle the second, third, and fourth computation

on the last few lines near the boundaries of the simulation domain, which is similar to lines

113

Algorithm 8 2D Sequential k-step Memory-aware LBM with Loop-tiling. (k=3)
1: for iT=0; iT < N; iT += 3 do
2: for outerX = 1; outerX ≤ lx; outerX += tile do
3: for outerY = 1; outerY ≤ ly; outerY += tile do
4: for innerX = outerX; innerX ≤ MIN(outerX + tile - 1, lx); ++innerX do
5: for innerY = outerY; innerY ≤ MIN(outerY + tile - 1, ly); ++innerY do
6: /*First fused collision and streaming:*/
7: collide on (innerX, innerY) using buf1
8: stream (innerX, innerY)’s buf1 to its own and 8 neighbors’ buf2
9: // /*Second fused collision and streaming:*/
10: if innerX>1 and innerY>1 then
11: collide on (innerX-1, innerY-1) using buf2
12: stream (innerX-1, innerY-1)’s buf2 to its own and 8 neighbors’ buf1
13: // /*Third fused collision and streaming:*/
14: if innerX>2 and innerY>2 then
15: collide on (innerX-2, innerY-2) using buf1
16: stream (innerX-2, innerY-2)’s buf1 to its own and 8 neighbors’ buf2
17: /* Handle remaining incomplete boundaries*/
18: Second collide using buf2 and stream to neighbors’ buf1 on row ly and column lx.
19: Third collide using buf1 and stream to neighbors’ buf2 on row ly− 1 & ly, and column lx− 1

& lx.
20: Swap buf1 and buf2.

18∼19 in Alg. 8 . Since k=3 is an odd number, we need to swap the two pointers buf1 and

buf2 at every three time steps, as shown in line 20 of Alg. 8 .

5.6.2 Parallel k-step Memory-aware LBM Algorithm

This section presents the 2D parallel k-step memory-aware LBM algorithm 9 , which is

generally divided into three stages. Stage I in Fig. 5.16 is the pre-processing stage. which

handles the intersection between threads in advance because of data dependency. Stage II

in Fig. 5.17 and 5.17 are the main computation in each thread’s sub-lattice. Stage III is to

compute the remaining incomplete cells and to handle BCs.

Let’s start with an example to illustrate how the parallel three-step memory-aware LBM

works. Similar to the parallel two-step LBM, Fig. 5.14 .a shows that a 10×4 lattice is assigned

to two threads along X-axis. Thus each thread has a 5× 4 sub-lattice. The intersection area

is the overlapped cells between two threads, i.e., row 5 and 6, and we need to carefully

handle the data dependencies when merging three time steps. Fig. 5.14 .b shows the data

114

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

5

4

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

3

2

1

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

10

9

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

8

7

6

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

5

4

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

3

2

1

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

10

9

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

8

7

6

thread 1's
sub-lattice

5x4

thread 0's
sub-lattice

5x4

thread 0

thread 1

thread 0

(a) 2 OMP threads work on each sub-lattice (b) Preprocess the intersection area
between 2 threads' sub-lattice

IntersectionIntersection

Y (Width)

X (Length)

Figure 5.14. A 10× 4 lattice is distributed to 2 threads. (a) Each thread owns a
5× 4 sub-lattice. (b) Pre-processing intersection area: thread 1 computes the data
domain from row 4 to 7; thread 0 computes the bottom 2 rows (row 1 & 2) and top
2 rows (row 9 & 10).

domain where each thread will preprocess during Stage I. Thread 1 will preprocess 4 rows

from row 4 to 6, while thread 0 will also preprocess 4 rows, which are the bottom two

rows (row 1 & 2) and the top two rows (row 9 & 10). For a general case, lx × ly lattice

is distributed to n threads along X-axis. Let lx/n = h, mylx0 = 1 + threadid × h and

mylx1 = (threadid + 1) × h, thus each thread’s sub-lattice is h × ly from (mylx0, 1) to

(mylx1, ly). In Stage I, threadid=1∼(n−1) pre-processes 4 lines mylx0 − 2 ∼ mylx0 + 1, while

thread 0 pre-processes lines 1, 2, lx, and lx−1. Fig. 5.15 shows the legends in use to describe

the parallel k-step memory-aware algorithm.

115

Fluid grid node

Boundary fluid grid node

1st-time collision & streaming

2nd-time collision & streaming

3rd-time collision & streaming

#

#

Buffer # initialized

Buffer # empty or flushed

#

#

Buffer # updated by 1st streaming

Buffer # ready for 2nd collision
#

#

Buffer # updated by 2nd streaming
Buffer # ready for 3rd collision

Buffer # updated by 3rd streaming
Buffer # ready for 4th collision

Figure 5.15. Legend used to describe parallel k-step memory-aware LBM.

Fig. 5.16 shows Stage I to preprocess the intersection area between the 2 thread’s sub-

lattice.

1. In Fig. 5.16 .a, thread 0 and 1 starts the first fused collision and streaming on row 1

and 4 at time step t, respectively.

2. In Fig. 5.16 .b, thread 0 starts the first fused computation on row 2, whenever the data

dependency for row 1 is fulfilled, we immediately execute the second collision and

streaming on row 2 at time step t + 1. Meanwhile, thread 1 starts the first fused

computation on row 5. However, row 4 still needs data propagated from row 3, thus

row 4 cannot perform the second computation.

3. In Fig. 5.16 .c, thread 0 starts first fused computation on row 9. Meanwhile, thread 1

starts the first fused computation on row 6, whenever the data dependency for row

5 is fulfilled, we immediately execute the second collision and streaming on row 5 at

time step t + 1.

4. in Fig. 5.16 .d, thread 0 starts first fused computation on row 10. For the case without

using zero gradient BC, since row 10 only needs data dependency from row 9, at this

moment of completion of row 9’s first computation, whenever a cell’s right neighbor

completes the first computation, it can perform the second computation. For example,

when cell (10, 2) completes the first computation, the second computation on (10, 1) is

ready to do. Meanwhile, thread 1 starts the first fused computation on row 7, whenever

116

1 2 1 2 1 2 1 25

4

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

3

2

1

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

10

9

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

8

7

6

1st

1st
thread 1

thread 0
1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

(a) Thread 0 first computa-
tion on Line 1; Thread 1 first
computation on Line 4.

5

4

1 2 1 2 1 2 1 23

2

1

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

10

9

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

8

7

6

1st

1st
thread 1

thread 0

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

2nd
thread 0

(b) Thread 0 second compu-
tation on Line 1; Thread 1
first computation on Line 4.

5

4

1 2 1 2 1 2 1 23

2

1

1 2 1 2 1 2 1 210

9

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

8

7

6

1st

1st
thread 1

thread 0

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

2nd
thread 1

(c) Thread 0 first computa-
tion on Line 9; Thread 1 sec-
ond computation on Line 5.

5

4

1 2 1 2 1 2 1 23

2

1

10

9

1 2 1 2 1 2 1 28

7

6

1st

1st
thread 1

thread 0

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 22nd
thread 1

1 2 1 2 1 2 1 2

2nd

(d) Thread 0 second compu-
tation on Line 10; Thread 1
second computation on Line
6.

Figure 5.16. Stage I (preparation): handle the intersection.

117

the data dependency for row 6 is fulfilled, we immediately execute the second collision

and streaming on row 6 at time step t + 1.

5. At the end of Stage I, a barrier is necessary. Since each thread computes 4 rows, they

have the same workload and normally will end at the same time. Thus, the overhead

is quite low and we ensure that all threads can start the next stage simultaneously.

Fig. 5.17 and 5.17 shows Stage II, which is the main computation in each thread’s sub-

lattice.

1. In Fig. 5.17 .a, at time step t, thread 0 computes on cell (3,1) and (3,2) in row 3, while

thread 1 computes on cell (8,1) and (8,2) in row 8. They both use buf1 to execute the

first fused collision and streaming to the buf2 of its own and neighbors. Therefore,

we change the two cells’ buf1 from beige to blank, and change the buf2 of their own

and neighbors to red. Since we have pre-processed row 4 and 9 at time step t during

Stage I, after the streaming phase of cell (3,2) and (8,2), cell (2,1) and (7,1) are ready

for the second computation at the time step t + 1. Thus we change these four buf2 to

yellow.

2. In Fig. 5.17 .b, on (3,1) in row 3 and (8,1) in row 8, thread 0 and 1 use buf2 to do

the second fused collision and streaming to their neighbors’ buf1 at time step t + 1,

respectively. Then buf2 of (2,1) and (7,1) change to blank. We annotate the second

streaming by dark blue streaming arrows, so the buf1 of the neighbors of(2,1) and

(9,2) change to dark green, which indicates that they are updated by the results from

the second computation at time step t + 1, but still lack data dependency to compute

at the time step t + 2.

3. In Fig. 5.17 .c, thread 0 and 1 use buf1 to execute the first fused collision on (3,3) and

(8,3) and streaming to their neighbors’ buf2, so we change these buf1 to blank. After

the streaming phase of the two cells, the buf2 of cell (2,2), (4,2), (7,2), and (9,2) are

ready for the second computation. Hence, we change these four buf2 to yellow.

4. In Fig. 5.17 .d, thread 0 and 1 use buf2 to execute the second fused collision and stream-

ing on (2,2) and (7,2), respectively. Note that at the end of the second streaming phase

118

5

4

1 2 1 23

2

1

10

9

1 2 1 28

7

6

1st

1st
thread 1

thread 0

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

(a) Thread 0 first computa-
tion on (3,2); Thread 1 first
computation on (8,2).

5

4

1 2 1 23

2

1

10

9

1 2 1 28

7

6

2nd

2nd
thread 1

thread 0

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

(b) Thread 0 second compu-
tation on (2,1); Thread 1 sec-
ond computation on (7,1).

5

4

1 23

2

1

10

9

1 28

7

6

1st

1st
thread 1

thread 0

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2

1 2 1 2

1 2

1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

(c) Thread 0 first computa-
tion on (3,3); Thread 1 first
computation on (8,3).

5

4

1 23

2

1

10

9

1 28

7

6

2nd

2nd
thread 1

thread 0

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2

1 2 1 2

1 2

1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

(d) Thread 0 second compu-
tation on (2,2); Thread 1 sec-
ond computation on (7,2).

Figure 5.17. Stage II: main computation in each thread’s sub-lattice.

119

Figure 5.17. Continued.

5

4

1 23

2

1

10

9

1 28

7

6

3rd

3rd
thread 1

thread 0
1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2

1 2 1 2

1 2

1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

(a) Thread 0 third computa-
tion on (1,1); Thread 1 third
computation on (6,1).

5

4

3

2

1

10

9

8

7

6

3rd

1st
thread 1

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2

1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2

thread 0
1st

2nd

3rd

2nd 1 2 1 2 1 2

1 2

1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

(b) Thread 0 first computa-
tion on (3,4); Thread 1 first
computation on (8,4).

5

4

3

2

1

10

9

8

7

6

thread 1

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

2nd

2nd

1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2

thread 0

2nd

2nd

3rd

3rd

1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2 1 2

(c) Thread 0 second computa-
tion on Line 4; Thread 1 sec-
ond computation on Line 9.

5

4

3

2

1

10

9

8

7

6

thread 1

1 2 1 2 1 2 1 2

3rd

3rd

1 2 1 2 1 2 1 2

thread 0

3rd

3rd

3rd

3rd

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

(d) Thread 0 third computa-
tion on Line 5; Thread 1 third
computation on Line 10.

120

of cell (2,2) and (7,2), since we have pre-processed the row 1 and 7 at time step t + 1

during Stage I, buf1 of cell (1,1) and (6,1) fulfill the dependency for the third compu-

tation at t + 2. Hence, we change the two buf1 to purple.

5. In Fig. 5.17 .e, thread 0 and 1 use buf1 to execute the third fused collision and streaming

on (1,1) and (6,1), respectively. Thus, the two buf1 change to blank. The third

streaming is annotated by pink streaming arrows, so the buf1 of the neighbors of (2,1)

and (9,2) also change to pink, which indicates that they are updated by the results

from the third computation at the time step t + 2, but still lack data dependency to

compute at the time step t + 3.

6. In Fig. 5.17 .f, similarly to step 3 to 5, thread 0 and 1 use buf1 to execute the first fused

collision and streaming on (3,4) and (8,4), respectively. Since the two cells are the

last cells in each row, the last two cells in row 2 and 7 have fulfilled the dependency

for the second computation. Because of pre-processing in stage I, the last two cells

in row 4 and 9 are also ready for the second computation at the time step t + 1. ii)

Next, thread 0 and 1 use buf2 to execute the second fused collision and streaming

on cell (2,3) and (2,4) in row 2, and cell (7,3) and (7,4) in row 7, respectively. After

the second streaming phase, the last three cells in row 1 and 6 are ready for the third

computation at the time step t+2. iii) At last, thread 0 and 1 use buf1 to execute the

third fused collision and streaming from (1,2) to (1,4) in row 2, and cell (6,2) to (6,4)

in row 6, respectively. In the real problem, each thread’s sub-lattice is far larger than

the current dimension, step 3 to 6 will repeat and this is where the main computation

happens.

7. In Fig. 5.17 .g, thread 0 and 1 reach row 4 and 9, respectively. i) During stage I, since

row 4 and 9 have already been computed by the first fused computation till the time

step t, thread 0 and 1 only need to use buf2 to perform the second computation on

row 4 and 9. ii) Next, thread 0 and 1 use buf1 to perform the second computation

on row 3 and 7. After the second streaming, the buf1 of row 3 to 5 and row 8 to 10

are all ready for the third computation, so these buf1 change to purple. iii) At last,

thread 0 and 1 use buf1 to execute the third computation on row 2 and 7. After the

121

third streaming phase, the buf2 in row 1 are ready for the fourth computation at the

time step t + 3, so we change them to orange.

8. In Fig. 5.17 .h, thread 0 and 1 reach row 5 and 10, i.e., the highest row in their own

sub-lattice. During Stage I, since row 5 and 10 have already been computed by the

second fused computation till the time step t + 1, we are left to only perform the third

computation on these rows and the two rows below. Specifically, thread 0 computes

the third computation from row 5 to 3, while thread 1 computes the third computation

from row 10 to 8. Finally, the buf2 of all cells changes to orange.

Alg. 9 presents the parallel k-step memory-aware LBM algorithm. In Fig. 5.17 .f, when a

thread computes the first computation on the last cell in a row, we can execute the second

computation on the last two cells in the lower one row, and the third computation on the

last three cells in the lower two rows. This operation will involve extra if-branches within the

nested loop. But to avoid this overhead, loop unrolling can be used. Thus, there is a Stage

III from lines 28∼31 in Alg. 9 to compute the remaining lines, which haven’t completed the

computation at the time step t + 1 and t + 2.

5.6.3 Special Handling of Boundary Conditions

Except for the zero-gradient BCs, all other BCs are local computation. The boundary

cells just call the related BC function, same as the cells which call the BGK collision function.

To support the zero-gradient BCs, we make the following changes in Alg. 9 .

1. On line 8 of Alg. 9 in Stage I, thread 0 has to compute the first computation on

extra two columns lx− 2 and lx− 3, so that buf2 of lx− 1 and lx− 2 collects all data

dependency for the second computation. Fig. 5.18 shows that: a) the first zero gradient

BC on column lx is dependent on the buf1 from columns lx − 1 and lx − 2. b) the

second zero gradient BC on column lx is dependent on the buf2 from columns lx− 1

and lx − 2. However, the buf2 on lx − 2 is depend on the buf2 from column lx − 3

at the time step t, and that’s why we need to compute the extra lx − 3. Thus line 9

remains unchanged, and thread 0 can use the zero gradient BC to correctly execute

the second computation on column lx. Therefore in Stage I, since we have computed

122

Algorithm 9 2D Parallel k-step Memory-aware LBM with Loop-tiling
1: for iT=0; iT < N; iT += 3 do
2: #pragma omp parallel default(shared) {
3: // tid: each thread id; sub_len: length of each thread’s sub-lattice
4: mylx[0] = 1 + tid * sub_len; // the lowest row of the sub-lattice
5: mylx[1] = (tid + 1) * sub_len; // “intersection”, i.e., the highest row of the sub-lattice
6: /* Stage I: preprocess on the “intersection”: */
7: if tid == 0 then
8: First fused collision and streaming on column 1, 2, lx− 1 & lx using buf1.
9: Second fused collision and streaming on column 1 & lx using buf2.
10: else
11: First fused collision and streaming on column mylx[0]− 2 to mylx[0] + 1 using buf1.
12: Second fused collision and streaming on column mylx[0] to mylx[0]− 1 using buf2.
13: #pragma omp barrier
14: // Stage II: Main computation in each thread’s sub-lattice:
15: for outerX = mylx[0]+2; outerX ≤ mylx[1]; outerX += tile do
16: for outerY = 1; outerY ≤ ly; outerY += tile do
17: for innerX=outerX; innerX ≤ MIN(outerX + tile - 1, mylx[1]); ++innerX do
18: for innerY = outerY; innerY ≤ MIN(outerY + tile - 1, ly); ++innerY do
19: // First fused collision and streaming at the time step t:
20: if innerX != mylx[1] && innerX != mylx[1] - 1 then
21: Collide on (innerX, innerY)’s buf1 & stream to its own and 8 neighbors’ buf2
22: // Second fused collision and streaming at the time step t + 1:
23: if innerY > 1 then
24: Collide on (innerX-1, innerY-1)’s buf2 & stream to its own and 8 neighbors’ buf1
25: // Third fused collision and streaming at the time step t + 2:
26: if innerY > 2 then
27: Collide on (innerX-2, innerY-2)’s buf1 & stream to its own and 8 neighbors’ buf2
28: // Stage III: compute the remaining incomplete cell and handle BCs
29: Second fused collision and streaming on row ly.
30: Third fused collision and streaming on column mylx[1] - 1, then on the “intersection” mylx[1], mean-

while handle BCs.
31: Third fused collision and streaming on row ly − 1, then on row ly.
32: }
33: Swap buf1 and buf2

123

lx in advance till the time step t + 1 , we no longer need the extra two arrays to store

the density from the column lx− 1 and lx− 2 afterwards.

buf2column lx -2
(1st comp)

t+1t

buf2
column lx -1
(1st comp) Zero Gradient BC

on column lx
(2nd comp)

time steps

column lx-3
(1st comp)

buf2

Zero Gradient BC
on column lx
(1st comp)

buf1

buf1

Figure 5.18. Zero gradient BC data dependency in k-step memory-aware LBM (k=3).

2. On line 20 in Stage II, we need to change the if-branch accordingly as follows:

If innerX ! = mylx[1] && innerX ! = mylx[1]− 1

&& innerX ! = lx− 2 && innerX ! = lx− 3

This is because we have computed the first computation on all these columns in Stage

I to avoid computation twice at the time step t.

3. Stage III remains unchanged, and we just follow line 31 in Alg. 9 . Now, thread n − 1

uses the zero gradient BC to compute the third computation on column lx − 1, then

on column lx.

5.7 Analysis of the 2D LBM Algorithms

In this section, we analyze the algorithms by counting how many data reuses are in the

Original, Fuse, two-step, k-step memory-aware LBM.

124

5.7.1 Data Reuse in Original LBM & Fuse LBM

Fig. 5.19 shows the times of data reuses in the Original LBM on a 3 × 4 lattice. We

assume that a core’s private cache can hold all the data.

4
 In each time step, the Original

LBM sweeps the lattice twice. During the first sweep, since each cell only uses its buf1 to

collide and does not access neighbors’ data, there is no data reuse. However, the second

streaming sweep has 8 data reuse per cell, as shown in the grey region. For example, when

the cell (2, 2) starts streaming to the red buf2 of its own and its neighbors, except for (3,3),

all the other buf2 in its neighbors have just been streamed. Cell (2,1) has streamed to buf2

of (3,1) and (3,2) in row 3, (2,1) and (2,2) in row 2, and (1,1) and (1,2) in row 1. Cell

(1,2) has streamed to buf2 of (2,3). Thus, 7 neighbors and its own buf2 are in the cache.

Therefore, we count 8 buf2 reuse in the Original LBM.

1 2 1 2 1 2 1 2

1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2

3

2

1

Figure 5.19. The Original LBM has 8 buf2 reuses per cell (in the grey region)
during the streaming stage, while the Fuse LBM has 9 data reuses per cell (including
1 buf1 reuse).

Since the Fuse LBM uses loop fusion, it uses a cell’s buf1 to execute the collision, then

immediately propagates the cell’s buf1 to its neighbors. Hence, a cell’s buf1 is reused during

the streaming phase. The streaming phase has the same reuse as the Original LBM. Then

there are 1 + 8 = 9 data reuses per cell in the Fuse LBM.
4

 ↑ Each cell’s buf is (9 * double + 1 pointer)* 8B = 80B, and each cell has two buffers. Data moves around
most of the cache hierarchy are 64-byte cache lines. Thus, using buf# to compute the collision on a cell
requires at least two cache line loads if it is not in the cache.

125

5.7.2 Data Reuse in k-step Memory-aware LBM

Fig. 5.20 shows the times of data reuse in the two-step memory-aware algorithm on a

4 × 4 lattice. We still assume that a core’s private cache can hold all the data here. Same

as the Fuse LBM, in Fig. 5.20a , when cell (3, 3) use buf1 to execute the first computation,

there are 9 data reuses in the grey region. Next, in Fig 5.20b , cell (2,2) uses buf2 to execute

the second fused collision and streaming to the buf1 of its own and neighbors. Hence, its

buf2 is reused in the second collision, while 9 buf1 in the blue region are also reused during

the second streaming. Therefore, there are 9 + 1 + 9 = 19 reuses per two cells in every two

time steps.

1 2 1 2 1 2

1 2

1 2 1 2 1 2

1 2 1 2

1 2

1 2

1 2

1 21 2 1 21 2

3

2

1

4

(a) First computation on (3,3).

1 2 1 2 1 2

1 2

1 2 1 2 1 2

1 2 1 2

1 2

1 2

1 2

1 21 2 1 21 2

(b) Second computation on (2,2).

Figure 5.20. The two-step memory-aware LBM has 19 data reuses per two
cells in two time steps.

Fig. 5.21 shows the times of data reuse in the k-step memory-aware algorithm (k=3) on a

× lattice. Same as the Fuse LBM, in Fig. 5.21a , when cell (4, 4) use buf1 to execute the first

fused collision and streaming, there are 9 data reuses in the grey region. Next, in Fig 5.21b ,

cell (3,3) uses buf2 to execute the second fused collision and streaming to the buf1 of its

own and neighbors. Hence, its buf2 is reused in the second collision, while 9 buf1 in the blue

region are also reused during the second streaming. At last, cell (2,2) uses buf1 to execute

the second fused collision and streaming to the buf2 of its own and neighbors. So its buf1

is reused in the third collision, while 9 buf2 in the pink region are also reused during the

126

1 2 1 2 1 2

1 2

1 2 1 2 1 2

1 2 1 2

1 2

1 2

1 2

1 21 2 1 21 2

1 2

1 2

1 2

1 21 2 1 21 2 1 2

1 2

3

2

1

4

5

(a) First computation on (4,4).

1 2 1 2 1 2

1 2

1 2 1 2 1 2

1 2 1 2

1 2

1 2

1 2 1 21 2

1 2

1 2

1 21 2 1 2

1 2

1 2

1 2

1 21 2

1 2

(b) Second computation on (3,3).

1 2 1 2 1 2

1 2

1 2 1 2 1 2

1 2 1 2

1 2

1 2

1 2 1 21 2

1 2

1 2

1 21 2 1 2

1 2

1 2

1 2

1 21 2

1 2

3

2

1

4

5

(c) Third computation on (2,2).]

Fluid grid node

Boundary fluid grid node

1st-time collision & streaming

2nd-time collision & streaming

3rd-time collision & streaming

#

#

Buffer # initialized

Buffer # empty or flushed
#

#

Buffer # updated by 1st streaming

Buffer # ready for 2nd collision
#

#

Buffer # updated by 2nd streaming
Buffer # ready for 3rd collision

Buffer # updated by 3rd streaming

(d) Legend used in (a)∼(c).

Figure 5.21. The three-step memory-aware LBM has 29 per three cells in
three time steps.

second streaming. Therefore, there are 9 + (1 + 9) ∗ 2 = 29 reuses per three cells in every

three time steps.

5.8 Experimental Evaluation

In this section, we first evaluate the sequential and parallel performance of the seven

LBM algorithms, namely Original LBM, Fuse LBM (with/without tile), two-step memory-

127

aware LBM (with/without tile), and three-step memory-aware LBM (with/without tile) on

three Intel CPU architectures deployed in two supercomputers: Haswell on Bridges, Skylake

and Knight Landing on Stampede2. Secondly, we visualize and validate the results using

Paraview and Catalyst.

The Bridges HPC system in the Pittsburgh Supercomputer Center (PSC) has 752 regular

nodes (“RM”). Each node has 28 Haswell physical cores on 2 sockets. The Stampede2 HPC

system in the Texas Advanced Computing Center (TACC) has 1,736 Skylake nodes (SKX)

and 4,200 Knight Landing nodes (KNL). Each SKX node has a total of 48 Skylake physical

cores on 2 sockets, while each KNL node has a total of 68 physical cores on a single socket.

More details about the HPC system and the CPU architectures used in our experiments are

given in Tab. 5.2 .

Table 5.2. Details of the experimental platforms.

HPC System PSC Bridges TACC Stampede2

Microarchitecture Haswell’14 Skylake’17 Knight Landing’16

Intel CPU product code Xeon E5-2695v3 Xeon Platinum 8160 Xeon Phi 7250
Total #Cores/node 28 on 2 sockets 48 on 2 sockets 68 on a single socket
Clock rate (GHz) 2.1∼3.3 2.1 nominal (1.4∼3.7) 1.4
L1 cache/core 32KB 32KB 32KB
L2 cache/core 256KB 1MB 1MB per two-core tile
L3 cache/socket 35MB 33MB (Non-inclusive) 16GB MCDRAM
DDR4 Memory(GB)/node 128 (2133MHz) 192 (2166MHz) 96 (2166MHz)

Compiler icc/19.5 icc/18.0.2
AVX extension AVX2 AVX512

The Haswell microarchitecture released in 2014 uses the two red ring buses in Fig. 5.22a

to connect the L2 caches to portions of the L3 cache, as well as QPI, PCIe links, and the

home agents for the memory controllers. The Knight Landing (Xeon Phi) processor released

in 2016 uses a 2D mesh in Fig. 5.22b . It does not have an L3 cache, but has a Multi-

Channel DRAM (MCDRAM) instead. The 2D mesh is composed of tiles, which includes

two cores, 2 Vector Processing Unit (VPU, supporting AVX512), and a shared L2 cache

per tile. The Skylake (Xeon Platinum) processor released in 2017 also uses a 2D mesh in

128

Fig. 5.22c . The major improvements are larger private L2 cache, non-inclusive L3 cache and

Snoop Filter (SF), and QPI updated to Ultra Path Interconnect (UPI). Prior architectures

use the “Inclusive” L3, which has copies of all lines in L2. But in the new “Non-inclusive”

L3 (Skylake only), lines in L2 may not exist in L3. The new design results in reducing SKX

local memory latency significantly, and multi-threaded workloads can operate on larger data

per thread (due to increased L2 size) and reduce interconnect and L3 activity.

(a) Haswell (2014) has two bidirectional
rings. [136]

(b) Knight Landing (2016) has a 2D
mesh of cores. [137]

(c) Skylake (2017) has a 2D mesh of
cores. [138]

Figure 5.22. On-chip Interconnect of CPUs used in experiments.

All the LBM algorithms are compiled with “-O3 -AVX2” flag on Bridges, and “-O3 -

xCORE-AVX512 -MIC-AVX512” on Stampede2 and to enable vectorization and AVX instruc-

tions. The compiler optimization has resulted in significant speedup in the local computation

(e.g. BGK collision) due to using vector instructions. All implementations use double preci-

sion. Besides, we use MFLUPS (millions of fluid lattice node updates per second), which is

a widely-used metric in CFD community, to evaluate the performance of LBM algorithms.

129

5.8.1 Experiment Setup

We choose to simulate a classic 2D CFD benchmark, namely the steady Poiseuille fluid

flowing past a circular cylinder as shown in Fig. 5.23 . As time goes by, the flow will eventually

become unstable and generate vortexes. The horizontal direction (X-axis) is the channel’s

length lx, while the vertical direction (Y-axis) is the channel’s width ly. Thus, the left

bottom corner is (1,1), while the right top corner is (lx, ly). We use “row” to represent

the horizontal direction in Fig. 5.23 , e.g., “row ly” is the top line (1,ly) → (lx,ly), and use

“column” to represent the vertical direction, e.g., “column lx” is the rightmost line (lx,1)

→ (lx, ly). The particles on the cylinder has bounce-back boundary conditions (BC) and

the four boundaries of the channel have regularized BCs, as discussed more in detail in

Sect. 5.5.2 .

Inflow

X

Y

Outflow

Width = ly

Length = lx
2D Channel

(1,1)

(lx,ly)(1,ly)

(lx,1)

row ly

colum
n lx

Figure 5.23. A steady Poiseuille fluid flowing around a cylinder in a 2D channel.

5.8.2 Sequential Experiments and Performance Analysis

The first experiment intends to compare the sequential performance of the seven LBM

algorithms. The experiment uses a single core, and takes the input of square lattice ranging

with side length L = 128 ∼ 16384 on 3 different CPUs. Each algorithm runs by five times,

and we calculate the average MFLUPS. To get accurate results, the same time steps to

warm up the machine for each algorithm is given before measurement. For the “tile” version

130

algorithms, we test with different tile size (ranging from 8, 16, 32, ..., to 4096) to find the

best tile which gives the best performance and presents in the results.

128 256 512 1024 2048 4096 8192 16384
Side length of a square lattice

0

5

10

15

20

25

30

35

40

45

M
FL

UP
S

Original
Fuse
Fuse Tile
2-Step
2-Step Tile
3-Step
3-Step Tile

(a) Haswell.

128 256 512 1024 2048 4096 8192 16384
Side length of a square lattice

0

10

20

30

40

50

60

M
FL

UP
S

Original
Fuse
Fuse Tile
2-Step
2-Step Tile
3-Step
3-Step Tile

(b) Skylake.

128 256 512 1024 2048 4096 8192 16384
Side length of a square lattice

0

2

4

6

8

10

12

14

M
FL

UP
S

Original
Fuse
Fuse Tile
2-Step
2-Step Tile
3-Step
3-Step Tile

(c) Knight Landing.

Figure 5.24. Sequential performance using seven LBM algorithms on three Intel CPUs.

Fig. 5.24 shows the sequential performance of the seven LBM algorithms on the Intel

Haswell, Knight Landing, and Skylake CPU, respectively. Let’s start with the Haswell CPU

in Fig. 5.24a . When the lattice is small, the Fuse LBM is the fastest, and is up to 44%

faster than the Original LBM on 128 × 128 and 256 × 256. This is because the memory of

the whole small lattice can fit into a Haswell CPU’s L3 cache (35MB per socket). Tab. 5.3

presents the memory allocation size for each square lattice in the sequential experiments.

Thereby, memory-aware LBM won’t help much.

Table 5.3. Memory allocation size for each square lattice in the sequential experiments.

Side length 128 256 512 1024 2048 4096 8192 16384

Memory(MB) 2.5 10 40 160 640 2056 10240 40960

131

Besides, the Fuse LBM doesn’t contain the if-branch within the loop to break the in-

struction pipeline, so that it achieves more unite strides. But when the length of a square

lattice is 512 and larger, the L3 cache cannot hold the whole lattice. So the Fuse LBM

drops 16% from the length increase from length 256 to 512, and drops 28% from length 512

to 1024. This suggests that spatial and temporal tiling are necessary, if seeking to increase

more cache locality and data reuse. As the lattice grows larger and larger than L3 can hold,

more DRAM accesses involves. We find that the 2-step-tile LBM performs the best, achieves

up to 35.3 MFLUPS, and is up to 32.7% faster than the Fuse LBM when L = 1024 . When

L = 16384, the 2-step-tile LBM acquires 34.95 MFLUPS and is 31.9% faster than the fused

LBM, while the second-fastest 3-step-tile LBM achieves 33.3 MFLUPS and is 25.6% faster

than the fused LBM. And I will explain the reason why the 3-step LBM is 4.75% faster than

2-step-tile LBM later.

Secondly, Fig. 5.24b shows that Skylake gives similar ranking results as Haswell since they

both have an on-chip L3 cache. Fuse LBM is still the fastest with L ≤ 512 and up to 43%

faster than the Original LBM. Then we see the same phenomenon again that when L > 512,

which exceeds the Skylake’s 33 MB L3 cache, the Fuse LBM starts to slump. As the lattice

grows even larger, the 2-step-tile LBM again performs the best, and achieves up to 54.7

MFLUPS and up to 18.7% faster than the Fuse LBM when L = 8192. When L = 16384,

the 2-step-tile memory-aware LBM achieves 51.5 MFLUPS and is 14.3% faster than the

fused LBM, while the second-fastest 3-step-tile LBM achieves 50.0 MFLUPS and is 10.9%

faster than the fused LBM. Besides, we also find that for all the algorithms, performance

on Skylake is better than Haswell, although the frequency of Skylake and Haswell are both

around 2.1GHz.

5
 For example, the 2-step-tile LBM on Skylake gives an average of 52.5%

better performance than on Haswell. This is because Skylake’s larger L2 cache helps to

increase L2 hit, and non-inclusive L3 helps to reduce DRAM memory latency.

At last, on Knight Landing CPU in Fig. 5.24c , we see that the Original LBM is the fastest

till L = 4096 lattice. But as lattice grows larger than that, the 2-step LBM without tiling
5

 ↑ The actual clock of the SKX CPU depends on the vector instruction set, the number of active cores, and
other factors affecting power and temperature limits. A single core serial code using the AVX2 instruction
set may run at 3.7GHz, while a large, fully-threaded MKL dgemm may run at 1.4GHz.

132

is the best and can be up to 10.5% faster than the Fuse LBM. When L = 16384, the 2-step

LBM achieves 10.08 MFLUPS and is 9.6% faster than the fused LBM, while the second-

fastest 3-step no-tile LBM achieves 10.05 MFLUPS and is 8.83% faster than the fused LBM.

The reason why on KNL 2-step-tile and 3-step-tile LBM don’t gain the same speedup as

Haswell and Skylake is that the LLC on KNL is 1 MB L2 cache and no L3 cache exists.

Thus even L = 128 lattice cannot fit into it, which results in fewest data reuse and the most

DRAM memory accesses.

Above all, considering that LBM simulation usually runs on a large scale, on three

different CPUs, we can still claim that the k-step memory-aware LBM will outperform other

methods in most use cases.

Performance Analysis of Sequential LBM Experiments

To investigate the reason why the performance of the seven algorithms differ, the “Call-

stacks Roofline” can be again used to measure the total performance and total AI of the

seven sequential LBM algorithms. I use the same input and configuration as in the Sec. 5.3 ,

and choose the same following metrics: to measure the (INT+FLOAT) operations of DRAM

data transfer on a 1024×1024 square lattice running 30 time steps on a Haswell node. Since

the 33MB LLC cache cannot hold the 160MB memory allocation size of the whole lattice,

we can evaluate how each algorithm performs on the DRAM memory access.

Fig. 5.25 shows the DRAM Roofline comparison for the 7 sequential LBM algorithms.

The point information of each algorithm in the figure are in Tab. 5.4 . Firstly, we see that

only the Original LBM is below the scalar double floating add peak (3.28 GFLOPS), while

the other six are above it, but all of them are under the integer scalar add peak (8.06

GINTOPS). Secondly, the machine balance between DRAM and integer scalar add peak is

0.84 OP/Byte. We use it to decide a kernel belonging to memory-bound or compute-bound.

Thus, the Original, Fuse, and Fuse tile LBMs are on the left of the machine boundary (0.84

OP/Byte), so they are memory bounded by DRAM. Fuse LBM improves the AI of the

Original LBM by 1.22X, and the Fuse tile LBM has the largest AI and GOPs among the

three. However, the Fuse tile LBM almost sits on the DRAM roof, suggesting that it is

133

2.2

12

3

4

5

6

7

8
9

10

0.3 1.40.4 0.5 0.6 0.7 0.8 0.9 1

Compute bo

Scalar L2 Bandwidth: 25.34 GB/sec
DP Vector Add Peak: 11.91 GFLOPS

L3 Bandwidth: 31.85 GB/sec

Scalar L3 Bandwidth: 22.38 GB/sec

Scalar Add Peak: 3.28 GFLOPS

Integer Scalar Add Peak: 8.06 GINTOPS

DRAM Bandwidth: 9.63 GB/sec

G
igaO

PS

OP/Byte (Arithmetic Intensity)
Original

Fuse

Fuse Tile
2Step

2Step Tile

3Step

3Step Tile

0.84 1.240.34

Figure 5.25. DRAM roofline comparison for the 7 sequential LBM algorithms
with L = 1024 on a Haswell node.

impossible to use vectorization and threading on this kernel to vertically move it to higher

GOPs, since there is no more room between its position and the DRAM roof, thus only

changing the algorithm to get higher AI in order to move right can help. Secondly, we see

that 2-step LBM improves AI by 1.98X compared to the Fuse LBM, indicating that the 2-step

LBM executes twice the number of the (INT+FLOAT) operations for every byte transferred

from DRAM to L3 cache. Besides, 2-step LBM’s kernel is on the right side of the machine

boundary and stays in the compute-bound region. The 2-step-tile LBM takes advantage of

spatial tiling and has the best GOPS and MFLUPS among the seven algorithms. At last, the

3-step LBM moves its kernel further right and even enters into the compute-bound region

of the roofs using DRAM and DP (double floating-point) vector add peak (11.91 GFLOPS).

Its AI is 3X of the Fuse LBM’s AI, also meaning that it has 3X data reuse. The GOPS

and MFLUPS of 3-step-tile LBM is only 4.6% less than 2-step-tile, and ranks the second

in the sequential experiment. Thus since both 2-step-tile and 3-step-tile LBMs are in the

compute-bound region, we can increase parallelism to improve their performance.

Next, I use the Memory Access Pattern (MAP) tool of Intel Advisor to analyze the

collision-streaming loop of each LBM algorithm. Tab. 5.5 presents the stride distribution of

134

Table 5.4. Point information of each algorithm on the Roofline Fig. 5.25 .

Algorithm Original Fuse Fuse Tile 2Step 2Step Tile 3Step 3Step Tile

DRAM AI (OP/Byte) 0.35 0.43 0.44 0.85 0.88 1.27 1.31

Giga OPs 2.5 3.36 4.05 3.93 4.60 4.01 4.38

MFLUPS 18.6 26.4 31.8 31.2 35.3 31.7 33.8

Speedup baseline 1.42X 1.71X 1.68X 1.9X 1.71X 1.82X
OP = INT + FLOAT operations.

Table 5.5. Memory Access pattern analysis of the innermost loop within each
sequential algorithm on a 1024×1024 square lattice on a Bridges Haswell node.

Algorithm Original Fuse Fuse
Tile 2Step 2Step

Tile 3Step 3Step
TileCollide Stream

Unit Stride% 62% 0% 61% 63% 59% 63% 62% 64%

Constant Stride% 36% 100% 38% 37% 32% 37% 38% 36%

Irregular Stride% 2% 0% 2% 0% 2% 0% 0% 0%

Mem. addr. range 80KB 80KB 20KB 80KB 488B 80KB 20KB

each kernel, and their memory address range. If a kernel has more unit stride and small

memory footprint, it will have effective SIMD instructions, and no latency or bandwidth

bottlenecks, which is the ideal case. Firstly, a kernel’s stride distribution shows portions of

different types of memory access strides during its loop execution. The tool reports unit

(stride 0/1), constant (stride N), and irregular (variable/random) stride accesses. More unit

stride percentage has better effective SIMD performance. Since the Original LBM sweeps

the whole lattice twice in each time step, it is separated by the collide and stream sweep. We

see that the 3-step-tile LBM has the highest 64% unit stride and 36% constant stride. The

2-step-tile LBM ranks the second place, and has 63% unit stride and 37% constant stride.

Secondly, the memory address range represents the maximum distance between minimum

and maximum memory address values accessed by instructions in this loop, leading to the

memory footprint. For the algorithms without tiling, they all have 80 KB address range.

For the Fuse tile LBM and 3-step-tile LBM, they both reach their best performance with

135

tile = 256, and both access in the 20KB address range. The 2-step-tile LBM gives the best

result when tile = 8, and its innermost loop only accesses 488 B address range. Above all,

with more unit strides and the smallest memory footprint, the sequential 2-step-tile LBM

is 4.75% better 3-step-tile LBM, but the two algorithms are far better than the other five

algorithms. The reason why the 2-step-tile and 3-step-tile LBM is not 2X or 3X faster than

the Fuse tile LBM in terms of MFLUPS is that the BGK collision computation has spent

85.4% and 83.9% of their total time in the sequential experiment, respectively. According to

Amdahl’s law, the theoretical speedup is always limited by the part of the task that cannot

benefit from the improvement. Our optimization on the memory access pattern spatially

and temporarily can improve a kernel’s AI, but since k-step memory-aware LBM is now

compute-bound, our future work is to improve the performance of the collision kernel by

using vector instructions.

5.8.3 Strong Scalability and Performance Analysis

Our second experiment evaluates the strong scalability performance of the seven parallel

LBM algorithms with the edge size of 2D lattice L = 112 ∼ 14336 on a Bridges Haswell

node, , L = 192 ∼ 24576 on a Stampede2 Skylake node and L = 272 ∼ 17408 on a Stampede2

KNL node. The parallel version of original, Fuse, and Fuse tile LBM distribute the whole

lattice to n threads according to the channel’s length direction (X-axis), just as the parallel

k-step algorithms, so that we have a fair comparison among them. The number of threads

n is picked from 1 to the maximum total number of the physical cores on each node of a

system, namely 28 threads on Haswell, 48 threads on Skylake, and 68 threads on KNL. The

OpenMP thread affinity sets “spread” to bind each thread to a physical core, meanwhile

evenly distributed on the two sockets of a node. The result of every algorithm is an average

of five times execution on each lattice size. For the tile LBM implementations, tile ranges

from 8 to 512 and then we pick the fastest achieved result.

Fig. 5.26 and Fig. 5.26 shows the strong scalability of the 7 LBM algorithms on a Haswell

node of Bridges with the edge size of 2D lattice L = 112 ∼ 14336. Besides, the memory

consumption of each lattice size is in Tab. 5.7 , and the memory allocation of the largest

136

1 2 4 8 14 16 28
Number of cores

0

100

200

300

400

500

600
M

FL
UP

S
Original
Fuse
Fuse Tile
2-Step
2-Step Tile
3-Step
3-Step Tile

(a) L = 112.

1 2 4 8 14 16 28
Number of cores

0

100

200

300

400

500

600

700

800

M
FL

UP
S

Original
Fuse
Fuse Tile
2-Step
2-Step Tile
3-Step
3-Step Tile

(b) L = 224.

1 2 4 8 14 16 28
Number of cores

0

100

200

300

400

500

600

700

800

900

M
FL

UP
S

Original
Fuse
Fuse Tile
2-Step
2-Step Tile
3-Step
3-Step Tile

(c) L = 448.

1 2 4 8 14 16 28
Number of cores

0

100

200

300

400

500

600

700

800

M
FL

UP
S

Original
Fuse
Fuse Tile
2-Step
2-Step Tile
3-Step
3-Step Tile

(d) L = 896.

1 2 4 8 14 16 28
Number of cores

0

100

200

300

400

500

600

700

800

M
FL

UP
S

Original
Fuse
Fuse Tile
2-Step
2-Step Tile
3-Step
3-Step Tile

(e) L = 1792.

1 2 4 8 14 16 28
Number of cores

0

100

200

300

400

500

600

700

800

M
FL

UP
S

Original
Fuse
Fuse Tile
2-Step
2-Step Tile
3-Step
3-Step Tile

(f) L = 3584.

Figure 5.26. Haswell Strong Scalability performance.

L = 14336 lattice in this group of experiment nearly reaches the max memory 128 GB of each

RM node in Bridges. Firstly, Fig. 5.26a to Fig. 5.26c shows that when L ≤ 448, the memory

size of the whole lattice fits into the LLC (35MB/socket× 2sockets/node = 70MB/node),

the Fuse tile LBM gives the best parallel performance. However, when the lattice grows

137

Figure 5.26. Continued.

1 2 4 8 14 16 28
Number of cores

0

100

200

300

400

500

600

700

800

M
FL

UP
S

Original
Fuse
Fuse Tile
2-Step
2-Step Tile
3-Step
3-Step Tile

(a) L = 7168.

1 2 4 8 14 16 28
Number of cores

0

100

200

300

400

500

600

700

800

M
FL

UP
S

Original
Fuse
Fuse Tile
2-Step
2-Step Tile
3-Step
3-Step Tile

(b) L = 14336.

1 2 4 8 14 16 28
Number of cores

0

100

200

300

400

500

600

700

800

M
FL

UP
S

Original
Fuse
Fuse Tile
2-Step
2-Step Tile
3-Step
3-Step Tile

(c) L = 20720.

1 2 4 8 14 16 28
Number of cores

0

100

200

300

400

500

600

700

800

M
FL

UP
S

Original
Fuse
Fuse Tile
2-Step
2-Step Tile
3-Step
3-Step Tile

(d) L = 27104.

larger, its performance slumps a lot and doesn’t scale well, because each core in the Fuse tile

LBM sits the DRAM bound, analyzed in Sect. 19 . Secondly, among the algorithms without

tiling when L ≥ 896, 3-step LBM generally ranks the first by up to 18.5% faster than the

second place 2-step LBM, Fuse LBM ranks the third, and the original LBM is the baseline.

The performance of k-step LBM using 28 cores drops significantly and is worse than the Fuse

tile LBM when the side length is larger than 7168. This indicates that tiling is necessary

to reduce the socket level data transfer (e.g., SNOOP request, QPI and etc.) and explore

more data reuse especially as the number of threads increases to all the cores on a node.

Thirdly, when L ≥ 896, the 3-step-tile LBM performs the best with up to 704.5 MFLUPS

and achieves the nearly ideal linear strong scalability. Using 28 threads, it is up to 22.3%

138

Table 5.6. Memory consumption for each 2D lattice in the parallel experiments
on a Bridges Haswell node.

Side length L 112 224 448 896 1792 3584 7168 14336 20720 27104

Memory(B) 1.9M 7.7M 30.6M 122.5M 490M 1.9G 7.7G 30.6G 64.0G 109.5G

faster 2-step-tile LBM, 135% faster than Fuse tile LBM, and 358% faster than Fuse LBM.

On the other hand, the 2-step-tile ranks the second when using 28 threads, with up to

93% faster than Fuse tile LBM, and 280% faster than Fuse LBM. The result that the 2-

step-tile outperforms the Fuse-tile by up to 1.93X strongly claims that merging two steps

of computation significantly improves the actual performance and the data reuse by nearly

twice. The 3-step-tile LBM gets up to 2.35X but not nearly 3X faster than the Fuse tile

LBM, suggesting that the local collision computation has become the new bottleneck and

the whole algorithm is compute-bounded, which will later be shown in the Roofline graph.

Table 5.7. Memory consumption for each 2D lattice in the parallel experiments
on a Stampede2 SKX node.

Side length 192 384 786 1536 3072 6144 12288 24576 28800 33600

Memory(B) 1.9M 22.5M 90M 360M 1.4G 5.6G 22.5G 90G 123.6G 168.2G

Fig. 5.27 and Fig. 5.27 shows the strong scalability of the 7 LBM algorithms on a Skylake

node of Stampede2 with edge size L = 192 ∼ 33600. Tab. 5.7 presents the memory allocation

size of each lattice. Firstly, Fig. 5.27a to Fig. 5.27c shows that when L ≤ 768, the Fuse

tile LBM is the best, since at least half of the memory consumption can fit into LLC size

(33MB/socket × 2sockets/node = 66MB/node). However, when the lattice grows larger,

Fuse tile slumps a lot again due to the DRAM bound. Secondly, among the algorithms

without tiling when L ≥ 1536, 3-step LBM generally ranks the first by up to 13.5% faster

than the second-place 2-step LBM, Fuse LBM ranks the third, and the original LBM is the

baseline. The performance of k-step LBM using 48 cores drops significantly and is worse

than the Fuse tile LBM when the side length of the lattice is larger than 6144. Thirdly,

when L ≥ 1536, the 3-step-tile LBM performs the best and get up to 1514.6 MFLUPS.

139

12 4 8 16 24 32 48
Number of cores

0

200

400

600

800

1000

1200
M

FL
UP

S
Original
Fuse
Fuse Tile
2-Step
2-Step Tile
3-Step
3-Step Tile

(a) L = 192.

12 4 8 16 24 32 48
Number of cores

0

200

400

600

800

1000

1200

1400

1600

M
FL

UP
S

Original
Fuse
Fuse Tile
2-Step
2-Step Tile
3-Step
3-Step Tile

(b) L = 384.

12 4 8 16 24 32 48
Number of cores

0

200

400

600

800

1000

1200

1400

1600

M
FL

UP
S

Original
Fuse
Fuse Tile
2-Step
2-Step Tile
3-Step
3-Step Tile

(c) L = 768.

12 4 8 16 24 32 48
Number of cores

0

200

400

600

800

1000

1200

1400

1600

M
FL

UP
S

Original
Fuse
Fuse Tile
2-Step
2-Step Tile
3-Step
3-Step Tile

(d) L = 1536.

12 4 8 16 24 32 48
Number of cores

0

200

400

600

800

1000

1200

1400

1600

M
FL

UP
S

Original
Fuse
Fuse Tile
2-Step
2-Step Tile
3-Step
3-Step Tile

(e) L = 3072.

12 4 8 16 24 32 48
Number of cores

0

200

400

600

800

1000

1200

1400

1600

M
FL

UP
S

Original
Fuse
Fuse Tile
2-Step
2-Step Tile
3-Step
3-Step Tile

(f) L = 6144.

Figure 5.27. Skylake Strong Scalability performance.

Using 48 threads, it is up to 36.7% faster than the 2-step-tile LBM, 170% faster than the

Fuse tile LBM, and 401% faster than the Fuse LBM. On the other hand, the 2-step-tile

ranks the second when using 48 threads, with up to 97.7% faster than the Fuse tile LBM,

and 275% faster than the Fuse LBM. At last, when we compare the results using 16 threads

140

Figure 5.27. continued.

12 4 8 16 24 32 48
Number of cores

0

200

400

600

800

1000

1200

1400

1600

M
FL

UP
S

Original
Fuse
Fuse Tile
2-Step
2-Step Tile
3-Step
3-Step Tile

(a) L = 12288.

12 4 8 16 24 32 48
Number of cores

0

200

400

600

800

1000

1200

1400

1600

M
FL

UP
S

Original
Fuse
Fuse Tile
2-Step
2-Step Tile
3-Step
3-Step Tile

(b) L = 24576.

12 4 8 16 24 32 48
Number of cores

0

200

400

600

800

1000

1200

1400

1600

M
FL

UP
S

Original
Fuse
Fuse Tile
2-Step
2-Step Tile
3-Step
3-Step Tile

(c) L = 28800.

12 4 8 16 24 32 48
Number of cores

0

200

400

600

800

1000

1200

1400

1600

M
FL

UP
S

Original
Fuse
Fuse Tile
2-Step
2-Step Tile
3-Step
3-Step Tile

(d) L = 33600.

between Haswell and Skylake, we find Skylake has around 60% better performance on all

algorithms. For example, the 2-step-tile LBM on Skylake with L = 12288 is 1.65X faster

than on Haswell with L = 14336. This is highly related to 4X larger size of L2 cache, the

2D mesh structure of cores, and the non-inclusive L3 cache used in Skylake to reduce the

memory latency significantly.

Table 5.8. Memory consumption for each 2D lattice in the parallel experiments
on a Stampede2 KNL node.

Edge size L 272 544 1088 2176 4352 8704 17408 20400 21760

Memory(B) 11.3M 45.2M 180.6M 722.5M 2.8G 11.3G 45.2G 62G 70.6G

141

12 4 8 16 34 68
Number of cores

0

50

100

150

200

250

300

350

400
M

FL
UP

S
Original
Fuse
Fuse Tile
2-Step
2-Step Tile
3-Step
3-Step Tile

(a) L = 272.

12 4 8 16 3234 68
Number of cores

0

100

200

300

400

500

M
FL

UP
S

Original
Fuse
Fuse Tile
2-Step
2-Step Tile
3-Step
3-Step Tile

(b) L = 544.

12 4 8 16 3234 64 68
Number of cores

0

100

200

300

400

500

600

M
FL

UP
S

Original
Fuse
Fuse Tile
2-Step
2-Step Tile
3-Step
3-Step Tile

(c) L = 1088.

12 4 8 16 3234 64 68
Number of cores

0

100

200

300

400

500

600

M
FL

UP
S

Original
Fuse
Fuse Tile
2-Step
2-Step Tile
3-Step
3-Step Tile

(d) L = 2176.

12 4 8 16 3234 64 68
Number of cores

0

100

200

300

400

500

600

M
FL

UP
S

Original
Fuse
Fuse Tile
2-Step
2-Step Tile
3-Step
3-Step Tile

(e) L = 4352.

12 4 8 16 3234 64 68
Number of cores

0

100

200

300

400

500

600

M
FL

UP
S

Original
Fuse
Fuse Tile
2-Step
2-Step Tile
3-Step
3-Step Tile

(f) L = 8704.

Figure 5.28. Knight Landing Strong Scalability performance.

Fig. 5.28 and Fig. 5.28 show the strong scalability of the 7 LBM algorithms on a KNL node

of Stampede2 with edge size L = 272 ∼ 21760. Tab. 5.8 presents the memory consumption

of each lattice. The KNL nodes on Stampede2 are configured in cache mode, meaning that

MCDRAM is configured as an “L3 cache” and the operating system transparently uses the

142

Figure 5.28. Continued.

12 4 8 16 3234 64 68
Number of cores

0

100

200

300

400

500

600

M
FL

UP
S

Original
Fuse
Fuse Tile
2-Step
2-Step Tile
3-Step
3-Step Tile

(a) L = 17408.

12 4 8 16 34 68
Number of cores

0

100

200

300

400

500

600

M
FL

UP
S

Original
Fuse
Fuse Tile
2-Step
2-Step Tile
3-Step
3-Step Tile

(b) L = 20400.

12 4 8 16 3234 64 68
Number of cores

0

100

200

300

400

500

600

M
FL

UP
S

Original
Fuse
Fuse Tile
2-Step
2-Step Tile
3-Step
3-Step Tile

(c) L = 21760.

MCDRAM to move data from main memory. But comparing to the real on-chip L1, L2 and

L3, MCDRAM is still too low speed. Thus a high L1 and L2 cache hit rate is necessary

for KNL to run at full speed. Fig. 5.28a shows that the original performs the best for all

threads cases. Fig. 5.28b to Fig. 5.28c shows the Fuse tile ranks the first when using 68 cores.

Then after that, the k-step LBM performs the best, especially when L ≤ 17408, the total

memory size of the whole lattice cannot fit into the MCDRAM (16 GB). Since there is no

on-chip L3 cache on KNL, the k-step LBM without tiling doesn’t drop too much as the

results on Haswell and Skylake. Fig. 5.28d to Fig. 5.29c shows that with the lattice L ≥ 1536,

the 3-step-tile LBM performs the best with up to 571.1 MFLUPS and achieves the nearly

ideal linear strong scalability. Using 68 threads, it is up to 27% faster 2-step-tile LBM, 124%

143

faster than the Fuse tile LBM, and 162% faster than the Fuse LBM. On the other hand, the

2-step-tile ranks the second when using 48 threads, with up to 79.4% faster than the Fuse

tile LBM, and 112.7% faster than the Fuse LBM.

Performance Analysis of Parallel LBM Experiments

15

150

17.5

25

32.5

40
47.5

55
62.5

70
77.5

85
100

0.1 1.960.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

und by compute
d memory roofs Compute bound

L2 Bandwidth: 11
46

Scalar L3 Bandwidth: 306.1 GB/se
c

Integer Scalar Add Peak: 95.63 GINTOPS

DP Vector Add Peak: 144.04 GFLOPS

DRAM Bandwidth: 121.31 GB/se
c

Scalar L2 Bandwidth: 354.99 GB/se
c

Scalar Add Peak: 38.79 GFLOPSL3 Bandwidth: 445.1 GB/se
c

G
igaO

PS

OP/Byte (Arithmetic Intensity)
Original

Fuse

Fuse Tile

2Step

2Step
 Tile

3Step

3Step
Tile

0.790.32
1.19

Figure 5.30. DRAM Roofline comparison for the 7 parallel LBM algorithms with
28 threads on the 14336× 14336 square lattice on a Haswell node.

Table 5.9. Point information of each algorithm on the Roofline Fig. 5.30

Algorithm Original Fuse Fuse Tile 2Step 2Step Tile 3Step 3Step Tile

DRAM AI(OP/Byte) 0.2 0.225 0.44 0.295 1.432 0.334 2.002

Giga OPs 19.73 21.28 43.22 28.49 81.72 29.97 87.81

MFLUPS 143.48 154.48 304.81 205.25 579.37 227.88 668.44

Speedup baseline 1.08X 2.124X 1.43X 4.04X 1.59X 4.66X
OP = INT + FLOAT operations.

Fig. 5.30 shows the DRAM Roofline comparison for the 7 parallel LBM algorithms with

28 threads with L = 14336 on a Haswell node. The point information of each algorithm

144

in the figure are in Tab. 5.9 . Firstly, we see that all the parallel algorithms without tiling

are below the scalar double floating add peak (38.79 GFLOPS), while the other three with

tiling are above it, but all of them are under the integer scalar add peak (95.63 GINTOPS).

Secondly, in terms of the crosspoint of the roofs of DRAM and integer scalar add peak, the

AI machine balance is 0.79 OP/Byte. Thus we see that the original, Fuse, Fuse tile, 2-step,

and 3-step LBM are on the left side of the boundary, so they are memory-bounded by DRAM

roof. Secondly, 2-step-tile LBM and 3-step-tile LBM are on the right side of the machine

balance (0.79 OP/Byte), thus they are now compute-bounded, and reside under the ceilings

of “DP vector add peak” (144.04 GFLOPS) and DRAM. We see that the thee-step tile and

2-step-tile LBM improves AI by 4.55X and 3.25X compared to Fuse tile LBM, respectively.

At last, the parallel 3-step-tile LBM has the best GOPS and MFLUPS among the seven

algorithms, and improves 4.66X compared to the original LBM.

5.8.4 Visualization

The last experiment is used to visualize and validate the memory-aware LBM algorithm.

Our simulation examines the widely known and extended test scenario, a flow past a cylinder

placed in a channel, which dates back to the design of wings of an aircraft and understanding

the behavior of the flow past them in the early 20th century. It turns out that the Reynolds

number (i.e., the ratio of a fluid’s inertial force to its viscous force) plays an important role in

characterizing the behavior of the flow. As the Reynolds number increases to 100 or higher,

an unstable periodic pattern is created, which is called the Karman vortex street.

Our algorithm can compute and output the velocity of each fluid point. We use Catalyst

to convert those outputs to VTK files. Next, Paraview reads the VTK files and generates

figures and videos. The simulation is a flow past a 1280 × 256 channel. An uncompressed

cylinder at location (320,128) with a radius equaling 26 makes the steady-state symmetrical

flow unstable. In Fig. 5.31a , after running 100,000 steps, a Karman vortex street is generated.

Fig. 5.31a and 5.31b show the Karman vortex street when the Reynolds number equals 100

and 400, respectively. We can observe that more vortices are generated when the Reynolds

number equals 400. This is because inertial forces dominate the viscous forces at higher

145

(a) Reynolds number = 100.

(b) Reynolds number = 400.

Figure 5.31. Vorticity plot of flow past a cylinder, a Karman vortex street is generated

Reynolds numbers, which tend to produce more chaotic eddies and induce flow instabili-

ties [139]. The full simulation videos are published at https://youtu.be/C5IqsZVPV0Y and

 https://youtu.be/hyNN6yxdn18 .

146

https://youtu.be/C5IqsZVPV0Y
https://youtu.be/hyNN6yxdn18

6. 3D PARALLEL MEMORY-AWARE LBM ON MANYCORE

SYSTEMS

A version of this chapter is a pending publication in Euro-Par’21, 27th International Euro-
pean Conference on Parallel and Distributed Computing.

Chap. 5 merges multiple collision-streaming cycles (or time steps) in 2D, this chapter aims

to augment the memory-awareness idea to support parallel 3D LBM. Sect. 6.2 presents the

baseline 3D LBM algorithms. Sect. 6.3 design the sequential 3D memory-aware LBM algo-

rithms that combine five features: single-copy distribution, loop fusion (single sweep), swap

algorithm, prism traversal, and merging two collision-streaming cycles. Sect. 6.4 presents the

parallel 3D memory-aware LBM, which aims to keep the thread safety on the intersection

layers among threads and reduce the synchronization cost in parallel. Sect. 6.5 conducts two

groups of experiments on three different manycore architectures, followed by performance

analysis. The first group of sequential experiments (i.e., using a single CPU core) shows that

our memory-aware LBM outperforms the state-of-the-art Palabos (Fuse swap prism LBM

solver)[116] by up to 19% on a Haswell CPU and 15% on a Skylake CPU. The second group

evaluates the performance of parallel algorithms. The experimental results show that our

parallel 3D memory-aware LBM outperforms Palabos by up to 89% on a Haswell node with

28 cores, 85% on a Skylake node with 48 cores, and 39% on a Knight Landing node with 68

cores.

Table 6.1. Four LBM algorithms discussed in this chapter. Each algorithm
has its sequential version and parallel version.

Algorithms Description
Fuse (swap) LBM Use a single copy of distribution, swap algorithm and loop fusion

Fuse (swap) prism LBM Use a single copy of distribution, swap algorithm, loop fusion and
prism traversal

2-step (swap) LBM Use a single copy of distribution, swap algorithm, loop fusion, and
merge two steps

2-step (swap) tile LBM Use a single copy of distribution, swap algorithm, loop fusion, prism
traversal and merge two steps

147

6.1 Introduction

Although it seems to be simple to move from the 2D space to 3D space, it is significantly

much more difficult to design an efficient 3D memory-aware LBM algorithm. In this chapter,

we focus on solving the following three main challenges.

1. As geometries change from 2D to 3D, the required data storage increases from O(N2) to

O(N3), and the data dependency of the lattice model becomes much more complicated

(from D2Q9 to D3Q19 as shown in Fig. 6.1 .

1
 There exist single-copy distribution

methods to reduce data storage cost by half, but they require following a particular

traversal order. Can we combine one of the best single-copy distribution methods with

our idea of merging multiple collision-streaming cycles to design a 3D memory-aware

LBM with higher performance?

2. If the combination is possible, since normal 3D tiling [140] doesn’t apply to this case,

how to additionally explore the spatial locality?

3. When designing the parallel 3D memory-aware LBM, a non-trivial interaction occurs

at the boundaries between threads, how to guarantee the thread safety and avoid

race conditions? Although some existing works use wavefront parallelism to explore

the temporal locality, they insert frequent layer-wise synchronizations among threads

every time step [47], [51]. In this chapter, we also aim to reduce the synchronization

cost in parallel threads.

6.2 Baseline 3D LBM Algorithm

The baseline 3D LBM algorithm in this chapter is called Fuse swap LBM as shown in

Alg. 10 , which involves three features: single-copy distribution, swap algorithm, and loop

fusion. To reduce the high data storage cost in 3D, Sect. 5.4.1 introduces a few single copy

distribution kernels such as swap [43], AA [45], shift [44], and esoteric twist [46], but each

needs to follow some constraints. For example, swap requires predefined order of discrete
1

 ↑ 3D LBM has a sequence of velocity sets with increasingly higher accuracy and computational complexity,
i.e., D3Q13, D3Q15, D3Q19, D3Q27, or customized lattice sets.

148

1

2

4

3

5
6

7

8
9

10

11

13

12

14
15

17

16

18

Figure 6.1. The D3Q19 velocity sets of each cell in 3D LBM.

cell velocities, AA requires distinguishing between even and odd time steps, shift requires

extra 2D layer space. We choose the swap algorithm since it is relatively simpler than the

other single-copy distribution methods, and is more efficient to use simple index arithmetic

to access neighbors in the matrix-based memory organization. The swap algorithm [43]

replaces the copy operations between a cell and its neighbors in the streaming kernel by a

value swap, thereby it is in-place and doesn’t require the second copy. But when combining

it with loop fusion, we must guarantee that the populations of neighbors involved in the

swap are already in a post-collision state to keep thread safety.

The work-around solution is to adjust the traversal order of simulation domains with a

predefined order of discrete cell velocities [121], [122]. Thus each cell can stream its post-

collision data by swapping values with half of its neighbors pointed by the red arrows (1 ∼ 9

directions for D3Q19 in Fig. 6.2a), if those neighbors are already in post-collision and have

“reverted” their distributions. We define this operation as “swap_stream”. The “revert”

operation in Fig. 6.2b lets a cell locally swap its post-collision distributions to opposite di-

rections. We will explain the behavior of the two operations later in detail.

To make the Fuse swap LBM more efficient, Palabos pre-processes and post-processes the

boundary cells on the bounding box at line 2 and 7, respectively, so that we can remove the

boundary checking operation in the inner bulk domain. Fig. 6.3a presents the big picture of

three stages of Fuse swap LBM traversing on a cuboid box from (1,1,1) to (lx, ly, lz). Thus

Alg. 10 is divided into three stages in every time step as follows.

149

1

2

4

3

5
6

7

8
9

10

11

13

12

14
15

17

16

18

Z

Y
X

(a) swap_stream: the post-collision
distribution will be swapped with half
of its neighbors pointed by red arrows.

1

2

4

3

5

6
7

8
9

10

11

13

12

1415

17

16

18

Z

Y
X

(b) revert: a cell locally swaps its post-
collision data to its opposite direction.

Figure 6.2. Two operations used in sequential 3D Fuse swap LBM.

Z
Y

X

Width=ly

Length=lz

Height=lx

(1,1,1)

(lx,ly,lz)(lx,ly,1)

(1,ly,lz)

(1,1,lz)

(lx,1,1) (lx,1,lz)

(a) A 3D cuboid simulation domain.

(2) Collide & Swap Stream

(1) Collide Revert;
(3) Boundary Swap Stream

(b) Three stages in 3D Fuse swap
LBM.

Figure 6.3. Big picture of 3D Fuse swap LBM.

1. Stage I (line 2): collide followed by “revert” operations are performed at the cells

located on the bounding box (i.e., six red surfaces of the 3D block domain in Fig. 6.3b).

2. Stage II (line 3 ∼ 6): collide followed by “swap_stream” operations are performed

at the cells located in the center blue bulk domain from (2,2,2) to (lx−1, ly−1, lz−1)

in Fig. 6.3b . This stage contains the most workload.

3. Stage III (line 7): “boundary_swap_stream” on the bounding box.

Now, we explain why we need “revert” operation performed at the cells on the bounding

box in Stage I. Fig. 6.2b shows that a cell locally swaps its post-collision distribution data to

its opposite directions. Thus, the red arrows with 1 ∼ 9 directions are reverted to the top

150

Algorithm 10 3D Fuse swap LBM
1: for iT = 0; iT < N; ++iT do
2: Stage I: collide and revert on the bounding box, i.e., 6 surfaces of cuboid (1,1,1) to (lx, ly, lz)

// Stage II: bulk domain computation
3: for iX = 2; iX ≤ lx− 1; ++iX do
4: for iY = 2; iY ≤ ly − 1; ++iY do
5: for iZ = 2; iZ ≤ lz − 1; ++iZ do
6: collide & swap_stream on (iX, iY, iZ) to half of its neighbors
7: Stage III: boundary_swap_stream on the bounding box

part of a cell, while the blue arrows are reverted to the bottom part. We remain heads of

red and blue arrows the same directions as in Fig. 6.2a , indicating that we should originally

stream (copy) the post-collision data into neighbor’s storage along with those directions. Due

to the nature of the four-value swap in swap_stream, the cells in the inner bulk domain do

not need to check whether their neighbors are on the boundary or not. Therefore, we can

safely remove the if-statements for inner cells to check out-of-bound errors, thereby speed up

the bulk domain computation. But since we have not executed stream on these boundary

cells, we leave them in Stage III.

In Stage II, the “swap_stream” operation performed on the inner cells streams their

post-collision data to half of their neighbors. Fig. 6.4 illustrates this process between two

cells along the first and tenth direction (vertical X axis) as an example, and swap_stream

on other pairs of directions are similar. Fig. 6.4a is the initial state: cell (x, y, z) on the

top of the figure is at layer 1, and has just completed collide, and is ready to stream its

post-collision distribution to its neighbors; cell (x− 1, y, z) on the bottom is at layer 0, and

has completed the collide and revert operation. We can see that because of the revert, the

storage of (x−1, y, z) at the first direction (marked by “(1)” with orange color) now stores the

post-collision distribution data which is originally at the tenth direction (navy blue arrow),

indicating that the data currently stored in the first direction should be streamed upward.

Since we aim to copy the post-collision data in (x, y, z) in the first direction downward into

the storage of (x− 1, y, z) at the first direction, meanwhile to copy the post-collision data in

(x− 1, y, z) at the tenth direction upward into the storage of (x, y, z) at the tenth direction.

151

1

2

4

3

5
6

7

8
9

10

11

13

12

14
15

17

16

18

Y

fTmp =

(x,y,z)[1] 1

2

4

3

5
67

8
9

10

11

13

12

1415

17

16

18

Z

X
(1)

(10)

(a) fTmp← (x, y, z)[1]. (Push)

10

2

4

3

5
6

7

8
9

10

11

13

12

14
15

17

16

18

Y

fTmp =

(x,y,z)[1] 1

2

4

3

5
67

8
9

10

11

13

12

1415

17

16

18

Z

X

(10)

(1)

(10)

(1)

(b) (x, y, z)[1]← (x, y, z)[10]. (Push)

10

2

4

3

5
6

7

8
9

10

11

13

12

14
15

17

16

18

Y

fTmp =

(x,y,z)[1] 1

2

4

3

5
67

8
9

10

11

13

12

1415

17

16

18

Z

X

(10)

(1)

(10)

(1)

(c) (x, y, z)[10]← (x− 1, y, z)[1]. (Pull)

10

2

4

3

5
6

7

8
9

10

11

13

12

14
15

17

16

18

Y

fTmp =

(x,y,z)[1] 1

2

4

3

5
67

8
9

1

11

13

12

1415

17

16

18

Z

X

(10)

(10)

(1)

(1)

(d) (x− 1, y, z)[1]← fTmp. (Push)

Figure 6.4. Swap Stream on (x, y, z) and (x−1, y, z) along with the first and
tenth directions.

152

To achieve such a goal, we use a temporary variable fTmp, thereby swap_stream operation

can be divided into 4 copy instructions as follows.

1. fTmp ← (x, y, z)[1]. Cell (x, y, z) push (copy) its post-collision distribution at the

first direction into the fTmp, as shown by the thick blue arrow in Fig. 6.4a .

2. (x, y, z)[1] ← (x, y, z)[10]. Cell (x, y, z) push the data in its tenth direction into its

first direction, as shown by the thick green arrow in Fig. 6.4b . We mark the storage

in (x, y, z)’s first direction with green color and the number 10, indicating that it

currently stores the cell’s post-collision distribution at the tenth direction.

3. (x, y, z)[10]← (x−1, y, z)[1]. Cell (x, y, z) pull the data in (x−1, y, z)’s first direction

(which now stores the post-collision data at the tenth direction because of “revert”

in Stage I) into the storage in (x, y, z)’s tenth direction, as shown by the thick yellow

arrow in Fig. 6.4c . We mark the storage in (x, y, z)’s tenth direction with yellow color

and the number 10, indicating that it currently stores the (x− 1, y, z)’s post-collision

data at the tenth direction.

4. (x − 1, y, z)[1] ← fTmp. fTmp push its data into (x − 1, y, z)’s first direction, as

shown by the thick blue arrow in Fig. 6.4d . We mark the storage in (x− 1, y, z)’s first

direction with blue color and the number 1, indicating that it currently stores the

(x, y, z)’s post-collision data at the first direction.

At last, the “boundary_swap_stream” in Stage III is performed at the cells on the

bounding box. Since the inner cells in the blue bulk domain of Fig. 6.3b have already

swap_stream the data with half of post-collision data on the boundary cells during stage

II, the other half of post-collision data on the boundary cells (red arrows in Fig. 6.2b) re-

mains to be streamed to neighbors. During this operation, we add extra boundary-checking

statements when accessing the neighbors’ coordinate in case of out-of-bound errors.

6.2.1 3D Fuse Swap Prism LBM Algorithm

To further increase data reuse, a combination with spatial locality like loop blocking in a

small region can be used. Otherwise, we need to go through a whole line or a whole layer in

153

a large domain, which results in data eviction from the cache. However, the normal 3D tiling

[140] doesn’t apply to the case that combines single-copy distribution and swap algorithm.

But when cutting Fig. 6.2a (swap_stream) along the Y-Z plane, we have a planar slice as

shown in Fig. 6.5 . We observe that a cell (star) swaps with its lower right neighbor (orange)

at direction 9. In other words, when the orange cell swaps with the upward row, its neighbor

“shifts” one cell leftward. Similarly, if cutting Fig. 6.2a (swap_stream) along the X-Y plane,

when a cell swaps data with the upward row, its neighbor “shifts” one cell forward. This

access pattern is named “prism traversal”, as we will see later that the shape of traversal

order is either a prism or parallelepiped shape.

Y
Z

X

3
8 2 9

Figure 6.5. Planar slice when cutting Fig. 6.2a (swap stream operation) along Y-Z plane.

Fig. 6.6 gives an example of prism traversal on a prism with four layers. On layer iX = 1,

we can traverse four rows, and the last coordinate of the first row is 4. Thus, the last

coordinate on the second row is 3, and the length of other rows gradually decreases by one.

On layer iX = 2, we can traverse three rows, and the last coordinate of the first row is 3.

On layer iX = 3, we can traverse two rows, and the last coordinate of the first row is 2. On

layer iX = 4, only one cell is accessed.

y

z
x

iX=1 iX=2 iX=3 iX=4

1st
2nd
3rd
4th

Figure 6.6. Prism traversal with four layers when tile = 4.

Next, we use an example to explain its access pattern in a 4 × 16 × 16 cuboid with

stride tile = 4. Fig. 6.7a ∼ 6.7d are the four separate 16 × 16 layers of the cuboid from

154

bottom to top. The cells with the same number on the four layers construct a prism (e.g.,

the cells with number 1 in Fig. 6.7a ∼ 6.7d construct a pyramid-shape “Prism 1”). In each

prism, we still firstly go along Z-axis, then along Y-axis, and upward along X-axis at last.

Then we traverse prism-wise from Prism 1 to Prism 30. Finally, if a cuboid is much larger

than this example, the majority of prisms are “parallelepiped ” shapes like Prism 9 and

10 in Fig. 6.7e . Thus when we traverse tile number of cells on Z-axis at row iY , they can

swap with tile number of cells but shifted one cell leftward at row iY + 1, thereby we get

parallelograms in Fig. 6.7a ∼ 6.7d . When the shift encounters domain boundaries, we truncate

the parallelograms and get isosceles right triangles or part of parallelograms.

Alg. 11 presents the 3D Fuse swap LBM algorithm with prism traversal, short for Fuse

prism LBM. It also contains three stages, and the first and third stage are the same as Fuse

swap LBM. The bulk domain computation in stage II is different. This part uses dy and dx

to shift on the Y axis and X axis, respectively. As a result, the outerY range is from 2 to

ly − 1 + tile− 1 = ly + tile− 2, while the outerZ range is from 2 to lz − 1 + 2 ∗ (tile− 1) =

lz + 2 ∗ tile − 3. The combination of innerX, innerY and innerZ accesses the cells, so

the “MIN” and “MAX” statements from line 7 to 11 are used to ensure the user-chosen

“tile” not to access data outside the domain boundary. This also allows users to select any

non-negative tile parameter to produce the best performance on their architectures.

Algorithm 11 3D Fuse swap LBM with Prism Traversal
1: for iT = 0; iT < N; ++iT do
2: Stage I: collide and revert on the bounding box

// Stage II: bulk domain computation
3: for outerX = 2; outerX ≤ lx− 1; outerX += tile do
4: for outerY = 2; outerY ≤ ly − 1 + tile− 1; outerY += tile do
5: for outerZ = 2; outerZ ≤ lz − 1 + 2 ∗ (tile− 1); outerZ += tile do
6: for innerX=outerX; innerX ≤ MIN(outerX+tile-1, lx− 1); ++innerX,++dx do
7: minY = outerY - dx; maxY = minY + tile - 1; dy = 0;
8: for innerY=MAX(minY,2); innerY≤MIN(maxY, ly − 1); ++innerY,++dy do
9: minZ = outerZ - dx - dy; maxZ = minZ + tile - 1;
10: for innerZ=MAX(minZ, 2); innerZ ≤ MIN(maxZ, lz − 1);++innerZ do
11: collide & swap_stream on (innerX, innerY, innerZ) to half of its neighbors.
12: Stage III: boundary_swap_stream on the bounding box

155

1 1 1 1
1 1 1 2
1 1 2 2
1 2 2 2

2 2 2 2
2 2 2 3
2 2 3 3
2 3 3 3

3 3 3 3
3 3 3 4
3 3 4 4
3 4 4 4

4 4 4 4
4 4 4 5
4 4 5 5
4 5 5 5

7 7 7 7
7 7 7 8
7 7 8 8
7 8 8 8

8 8 8 8
8 8 8 9
8 8 9 9
8 9 9 9

9 9 9 9
9 9 9 10
9 9 10 10
9 10 10 10

10 10 10 10
10 10 10 11
10 10 11 11
10 11 11 11

13 13 13 13
13 13 13 14
13 13 14 14
13 14 14 14

14 14 14 14
14 14 14 15
14 14 15 15
14 15 15 15

15 15 15 15
15 15 15 16
15 15 16 16
15 16 16 16

16 16 16
16 16 16 17
16 16 17 17
16 17 17 17

19 19 19 19
19 19 19 20
19 19 19 20
19 20 20 20

20 20 20 20
20 20 20 21
20 20 21 21
20 21 21 21

21 21 21 21
21 21 21 22
21 21 22 22
21 22 22 22

22 22 22 22
22 22 22 23
22 22 23 23
22 23 23 23

16

(a) Layer iX = 1.

1 2 3 4
1 1 1 2
1 1 2 2
1 2 2 2

2 2 2 3
2 2 3 3
2 3 3 3

3 3 3 4
3 3 4 4
3 4 4 4

4 4 4 5
4 4 5 5
4 5 5 5

7 7 7

8

7 7 8

8
7 8 8
8

8 8 8 8
8 8 8 9
8 8 9 9

8 9 9 9

9 9 9 9
9 9 9 10
9 9 10 10
9 10 10 10

10 10 10 10
10 10 10 11
10 10 11 11
10 11 11 11

11
11

11
11

13 13 13
13 13 14
13 14 14
14 14 14

14 14 14 14
14 14 14 15
14 14 15 15
14 15 15 15

15 15 15 15
15 15 15 16
15 15 16 16
15 16 16 16

16 16 16
16 16 16 17
16 16 17 17
16 17 17 17

16 17
17
17
17

19 19 19
19 19 20
19 19 20
20 20 20

20 20 20 20
20 20 20 21
20 20 21 21
20 21 21 21

21 21 21 21
21 21 21 22
21 21 22 22
21 22 22 22

22 22 22 22
22 22 22 23
22 22 23 23
22 23 23 23

23
23
23
23

25 25 25 262626 26 27 27 27 27 28 28 28 28 29

(b) Layer iX = 2.

16

24

18

12

27

1 2 3 4
1 1 2 2
1 2 2 2

2 2 3 3
2 3 3 3

3 3 4 4
3 4 4 4

4 4 5 5
4 5 5 5

7 7
7

8

8

8
8 8

8 8 8 8
8 8 8 9
8 8 9 9

8 9 9 9

9 9 9 9
9 9 9 10
9 9 10 10
9 10 10 10

10 10 10 10
10 10 10 11
10 10 11 11
10 11 11 11

11
11
11
11

11
11
11

13 13
13 14
14 14
14 14

14 14 14 14
14 14 14 15
14 14 15 15
14 15 15 15

15 15 15 15
15 15 15 16
15 15 16 16
15 16 16 16

16 16
16 16 16 17
16 16 17 17
16 17 17 17

16 17
17
17
17

17
17
17

19 19
19 20
19 20
20 20

20 20 20 20
20 20 20 21
20 20 21 21
20 21 21 21

21 21 21 21
21 21 21 22
21 21 22 22
21 22 22 22

22 22 22 22
22 22 22 23
22 22 23 23
22 23 23 23

23
23
23
2323
23

23

23
23

2925 25 262626 26 27 27 27 27 28 28 28 28 29
25 262626 26 27 27 27 28 28 28 28 29 29 29

(c) Layer iX = 3.

25

1 2 3 41 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5
7

8

8

8
8

8 8 8 8
8 8 8 9
8 8 9 9

9 9 9

9 9 9 9
9 9 9 10
9 9 10 10
9 10 10 10

10 10 10 10
10 10 10 11
10 10 11 11
10 11 11 11

11
11
11

11
11

11

11
11

11

1212
12

13
14
14
14

14 14 14 14
14 14 14 15
14 14 15 15
14 15 15 15

15 15 15 15
15 15 15 16
15 15 16 16
15 16 16 16

16 16 16
16 16 16 17
16 16 17 17
16 17 17 17

16 17
17
17
17

17
17
17

17
17

18 18
18

19
20
20
20

20 20 20 20
20 20 20 21
20 20 21 21
20 21 21 21

21 21 21 21
21 21 21 22
21 21 22 22

22 22 22

22 22 22 22
22 22 22 23
22 22 23 23

23 23 23

23
23
23
2323
23

23

23
23

24

23
23

24
24

29262626 26 27 27 27 27 28 28 28 28 29
262626 26 27 27 27 27 28 28 28 28 29 29 29

29

262626 27 27 27 27 28 28 28 28 29 29 29 29
29
30

2221

(d) Layer iX = 4.

9 10

(e) Prism 9 and 10 are paral-
lelpiped shapes. Layer iX = 4 is
on the top.

Figure 6.7. Fuse swap prism traversal on a 4× 16× 16 cuboid block.

156

6.3 Sequential 3D Memory-aware LBM Algorithms

Sect. 6.2.1 has added four features to the original 3D LBM: one copy distribution, swap

algorithm, loop fusion, and prism traversal. Based on them, we design and develop the

sequential 3D memory-aware LBM by adding the temporal locality feature, i.e., merging

two collision-streaming cycles. We start adding it by dropping off the prism traversal feature

first. Next, we add back the prism traversal and make the complete version.

Fig. 6.8 shows an example of how to merge two collision-streaming cycles given a 4×4×4

cube: if a cell at (iX, iY, iZ) completes its first collide-streaming cycle, we expect to execute

the second computation of cell at (iX-1, iY-1, iZ-1) if it fulfills dependencies, so that we can

increase data reuse when data is still in the cache.

1. Fig. 6.8a shows the initial state of all cells at the current time step t. Green cells are

on boundaries, and blue cells are located in the inner bulk domain.

2. In Fig. 6.8b , we compute the first collide, revert, and boundary_swap_stream row

by row on the bottom layer iX = 1. After a cell completes the first computation, we

change it to orange.

3. In Fig. 6.8c , we compute the first collide and boundary_swap_stream row by row till

cell (2,2,1) on the second layer iX = 2.

4. In Fig. 6.8d , cell (2,2,2) completes its first collide and swap_stream, so we change it

to red since they are inner cells. Then we observe that cell (1,1,1) is ready for the

second collide, so we change it to yellow.

5. In Fig. 6.8e , we execute the second collide and boundary_swap_stream on cell (1,1,1),

and change it to purple.

Alg. 12 presents the sequential 3D memory-aware LBM algorithm without prism traversal.

The computation of boundary cells and inner bulk cells for two time steps are combined inside

the innermost loop from line 4 to 8, and is divided into three sub-steps. For simplicity of

description, we define three helper functions. The boundary_cell_comp function executes

three sequential operations: collide, revert, and boundary_swap_stream at a boundary cell.

157

iX=1

iX=2

iX=3

iX=4

(a) Initialization

iX=1

iX=2

iX=3

iX=4

(b) First collide, revert,
boundary_swap_stream
on layer iX = 1

iX=4

iX=3

iX=2

iX=1

(c) First collide, revert,
boundary_swap_stream
on surface iX = 2

iX=4

iX=3

iX=2

iX=1

(d) First collide,
swap_stream on cell
(2,2,2).

iX=4

iX=3

iX=2

iX=1

(e) Second collide,
revert, bound-
ary_swap_stream
on cell (1,1,1)

Inner Fluid Cell
Boundary Fluid Cell

1st Collide, Swap Stream

1st Collide, Revert,
Boundary Swap Stream

Ready for 2nd Collision
2nd Collide, Revert,
Boundary Swap Stream

Z

Y
X

(f) Legends.

Figure 6.8. 3D sequential two-step memory-aware LBM on a 4× 4× 4 cube lattice.

The adaptive_collide_stream function executes either boundary_cell_comp at a boundary

cell, or collide and swap_stream at an inner bulk cell. The boundary_neighbor_handler

function handles the second computation of (iX, iY, iZ)’s neighbors at certain locations. The

three helper functions are also used in later algorithms.

158

Algorithm 12 Sequential 3D Memory-aware LBM
1: for iT = 0; iT < N; iT+=2 do
2: for iX = 1; iX ≤ lx; ++iX do
3: for iY = 1; iY ≤ ly; ++iY do
4: for iZ = 1; iZ ≤ lz; ++iZ do

/* (1) First computation at time step t. */
5: adaptive_collide_stream(iX, iY, iZ);

/* (2) Second computation at time step t + 1. */
6: if iX > 1 && iY > 1 && iZ > 1 then
7: adaptive_collide_stream(iX-1, iY-1, iZ-1);

/* (3) Second computation of neighbors at certain locations.*/
8: boundary_neighbor_handler(iX, iY, iZ);
9: Second collide, revert & boundary_swap_stream on the top layer iX = lx.
10: function boundary_cell_comp(iX, iY, iZ)
11: collide, revert, & boundary_swap_stream on (iX, iY, iZ) to half of its neighbors;
12: function adaptive_collide_stream(iX, iY, iZ)
13: if (iX, iY, iZ) is on the boundary then
14: boundary_cell_comp(iX, iY, iZ);
15: else
16: collide & swap_stream on (iX, iY, iZ) to half of its neighbors;
17: function boundary_neighbor_handler(iX, iY, iZ)

// Handle the second computation of (iX, iY, iZ)’s neighbors at certain locations.
18: if iZ == lz then // (iX, iY, iZ) is the last cell of a row.
19: boundary_cell_comp (iX-1, iY-1, iZ);
20: if iY == ly && iZ > 1 then // (iX, iY, iZ) is in the last row of a layer.
21: boundary_cell_comp(iX-1, iY, iZ-1);
22: if iY == ly && iZ == lz then // (iX, iY, iZ) is the last cell on a layer.
23: boundary_cell_comp(iX-1, iY, iZ);

1. For the first computation at time step t, we do not separately compute the bounding

box and the inner bulk domain like Fuse swap LBM. Because if a cell is ready to

compute the second computation at time step t + 1, it must get the first post-collision

data at time step t from its neighbors, who can be either inner cells or boundary

cells. Thus we must start from the the bottom layer iX = 1 and complement the

boundary_swap_stream on the cells after their first collide and revert. Differently,

Fuse swap LBM that leaves the stream in the post-processing stage. Contrarily, inner

cells still compute their first collide and swap_stream operation. Therefore, we call

159

adaptive_collide_stream function in line 5 for all cells to adaptively execute the first

computation at time step t.

2. For the second computation at time step t + 1, the if-statement in line 6 ensures that

the cell to compute at time step t + 1 are in post-collision state, which can apply to

the standard D3Q15, D3Q19 and D3Q27 velocity sets.

2
 Besides, we still need to

distinguish cells on the boundary or not. Line 7 calls the adaptive_collide_stream

function to execute the second computation at time step t + 1.

3. We call boundary_neighbor_handler to compute the second computation of cell (iX,

iY, iZ)’s neighbors at certain locations. When (iX, iY, iZ) is at the last cell of a row

(line 9 ∼ 10), the last row of a layer (line 11 ∼ 12), or the last cell of a layer (line 13

∼ 14), we need to complete execute boundary_cell_comp on (iX-1, iY-1, iZ), (iX-1,

iY, iZ-1) or (iX-1, iY, iZ) at time step t + 1, respectively.

4. After the iX loop of line 2 ∼ 8, line 9 wraps up the second computation on the top

layer lx of the domain.

In the real implementation, we use loop unrolling to move some if-branches outside the

innermost loop to avoid breaking the instruction pipeline. For example, we can unroll the

innermost iZ loop by iZ = 1, iZ = 2 ∼ lz − 1, and iZ = lz to separately compute the

boundary cells, which requires boundary_swap_stream and the inner bulk cells requiring

swap_stream. Besides, if we compute the first two layers beforehand, we can remove the

if-branch at line 6, since the cells from layer 3 don’t need to check this condition. Details

about implementation are presented in the Github repository [141].

6.3.1 Sequential 3D Prism Memory-aware LBM Algorithm

We can safely combine “prism traversal” with merging two collision-streaming cycles,

since the cell at the left forward down corner has been in a post-collision state and ready

to compute the second computation when following the above traversal order. Line 6 ∼ 10
2

 ↑ For D3Q19 and D3Q15 dynamics, when (iX, iY, iZ) completes first computation, we can start the second
computation on (iX-1, iY-1, iZ). But to generalize the algorithm on D3Q27, we shift one cell and compute
(iX-1, iY-1, iZ-1).

160

Algorithm 13 Sequential 3D Prism Memory-aware LBM
1: tile := stride of the prism traversal
2: for iT = 0; iT < N; iT += 2 do
3: for outerX = 1; outerX ≤ lx; outerX += tile do
4: for outerY = 1; outerY ≤ ly + tile - 1; outerY += tile do
5: for outerZ = 1; outerZ ≤ lz + 2* (tile - 1); outerZ += tile do
6: for innerX=outerX; innerX ≤ MIN(outerX+tile-1, lx); ++innerX, ++dx do
7: minY = outerY - dx; maxY = minY + tile - 1; dy = 0; /* forward shift */
8: for innerY=MAX(minY, 1); innerY ≤ MIN(maxY, ly); ++innerY, ++dy do
9: minZ = outerZ - dx - dy; maxZ = minZ + tile - 1; /* leftward shift */
10: for innerZ=MAX(minZ, 1); innerZ ≤ MIN(maxZ, lz); ++innerZ do

/* (1) First computation at time step t. */
11: adaptive_collide_stream(innerX, innerY, innerZ);

/* (2) Second computation at time step t + 1. */
12: if innerX > 1 && innerY > 1 && innerZ > 1 then
13: adaptive_collide_stream(innerX-1, innerY-1, innerZ-1);

/* (3) Second computation of neighbors at certain locations. */
14: boundary_neighbor_handler(innerX, innerY, innerZ);
15: Second collide, revert & boundary_swap_stream on the top layer iX = lx.

in Alg. 13 traverse the 3D cuboid domain prism by prism with stride tile = 4. Within

each prism, it accesses cells regularly row by row, and then layer by layer. The innermost

operations of line 11 ∼ 14 merge two-step computation, which follows the three sub-steps in

Alg. 12 .

In the implementation [141], similar loop unrolling methods as mentioned before are also

used to ease the “if-branch” inefficiency. The “MIN” and “MAX” statements allow users to

choose any non-negative “tile” size to produce the best performance on their architectures.

6.4 Parallel 3D Memory-aware LBM

To support manycore systems, we use OpenMP to realize the parallel 3D memory-aware

LBM algorithm. Fig. 6.9 shows the way to partition the data domain by our parallel 2-step

prism LBM. A 3D cuboid domain is decomposed along the X-axis (height) by n threads. Let

sub_h = lx/n, thus each thread has a 3D sub-cuboid domain with sub_h×ly×lz. Although

it can be optimal to choose the axis depending on the dimensions of a given domain, our

current implementation partitions only along the X-axis.

161

Z
Y

X

v

Width=ly

Length=lz

Height=lx

(1,1,1)

(lx,ly,lz)(lx,ly,1)

(1,ly, lz)

(1,1,lz)

(lx,1,1)

Thread 0

Thread 1

Thread n-1

...

sub_h

sub_h

sub_h

Figure 6.9. Partition of a 3D cuboid domain by n threads.

Fig. 6.10 illustrates its idea on an 8 × 4 × 4 cuboid, which is evenly partitioned by two

threads along the X-axis (height). Then each thread traverses a 4× 4× 4 sub-domain with

prism stride tile = 4. Line 4 in Alg. 14 defines the start and end layer index of each thread’s

sub-domain, thus the end layers myEndX are “intersections” (e.g., layer 4 and 8). Fig. 6.10a

shows the initial state at time step t. In addition, the parallel 3D memory-aware Alg. 14

consists of three stages: Preprocessing, Sub-domain computation, and Post-processing.

Fig. 6.10 illustrates the idea of 3D parallel memory-aware LBM Alg. 14 on a 8× 4× 4 3D

cuboid domain. The cuboid domain is evenly decomposed by two threads along the X-axis

(height), so each thread traverses a 4 × 4 × 4 sub-domain with prism stride tile = 4. We

define the top layer of each thread’s sub-domain as the “intersection”, e.g., layer 4

and 8. Fig. 6.10a shows the initial state at time step t. We use an extra variable layer_id at

line 12 of Alg. 14 as the internal index of each thread’s sub-domain. The algorithm generally

is divided into three stages, i.e., preprocessing, main bulk computation (step 2 ∼ 9), and

post-processing.

1. Stage I (Preprocessing) line 5 in Alg. 14 : In Fig. 6.10b , thread 0 and 1 compute

the first collide and revert on the “intersection” layers 4 and 8, respectively, and then

change them to pink.

2. Stage II (Sub-domain computation) handles five cases from step 2 to 7. In

case 0 (lines 15∼17 in Alg. 14), when thread 0 and 1 access the cells on the first

162

iX=5

iX=6

iX=7

iX=8

iX=1

iX=2

iX=3

iX=4

thread 1

thread 0

(a) Initialization

iX=5

iX=6

iX=7

iX=8

iX=1

iX=2

iX=3

iX=4

1st collide
& revert

1st collide
& revert

thread 1

thread 0

(b) Stage I.

iX=5

iX=6

iX=7

iX=8

iX=1

iX=2

iX=3

iX=4

1st collide
& stream

1st collide
& stream

thread 1

thread 0

(c) Stage II: Case 1.

iX=5

iX=6

iX=7

iX=8

iX=1

iX=2

iX=3

iX=4

2nd collide
& revert

2nd collide
& revert

thread 0

thread 1

1st collide
& stream

1st collide
& stream

(d) Stage II: Case 2.

iX=5

iX=6

iX=7

iX=8

iX=1

iX=2

iX=3

iX=4

1st collide
& stream

1st collide
& stream

thread 1

thread 0

(e) Stage II: Case 0.

iX=5

iX=6

iX=7

iX=8

iX=1

iX=2

iX=3

iX=4

1st stream

1st stream

thread 0

thread 1

(f) Stage II: Case 3.

iX=5

iX=6

iX=7

iX=8

iX=1

iX=2

iX=3

iX=4

1st collide
& stream

2nd collide
& stream

1st collide
& stream

2nd collide
& stream

thread 1

thread 0

(g) Stage II: Case 4.

Inner Fluid Cell

Boundary Fluid Cell

1st Collide, Swap Stream

1st Collide, Revert,
Boundary Swap Stream

Ready for 2nd Collision

2nd Collide, Revert

1st Collide, Revert

2nd Collide, Revert,
Boundary Swap Stream

Z
Y

X

(h) Legends.

Figure 6.10. 3D parallel two-step memory-aware LBM on a 8× 4× 4 cuboid.

row and column of each layer except the “intersection” layers, we execute the first

boundary_cell_comp on them and change them to orange.

163

Algorithm 14 3D Parallel Two-step Memory-aware LBM with Prism Traversal
1: for iT = 0; iT < N; iT += 2 do
2: #pragma omp parallel default(shared){
3: sub_h = lx/nthreads; // height of each thread’s sub-domain
4: myStartX = 1 + thread_id× sub_h; myEndX = (thread_id + 1)× sub_h;

/* Stage I: First collide & revert on the intersection layer.*/
5: collide & revert on all ly × lz cells on layer iX = myEndX;
6: #pragma omp barrier

/* Stage II: Main computation in each thread’s sub-domain.*/
7: for outerX = myStartX; outerX ≤ myEndX; outerX += tile do
8: for outerY = 1; outerY ≤ ly + tile - 1 ; outerY += tile do
9: for outerZ = 1; outerZ ≤ lz + 2 * (tile - 1); outerZ += tile do
10: for innerX=outerX; innerX≤MIN(outerX+tile-1, myEndX); ++innerX, ++dx do
11: minY = outerY - dx; maxY = minY + tile - 1; dy = 0; /* forward shift */
12: for innerY=MAX(minY, 1); innerY≤MIN(maxY, ly); ++innerY, ++dy do
13: minZ = outerZ - dx - dy; maxZ = minZ + tile - 1; /* leftward shift */
14: for innerZ = MAX(minZ, 1); innerZ ≤ MIN(maxZ, lz); ++innerZ do

// Case 0: First collide & stream on the first row and column of each layer except the intersection
layers.

15: if innerX != myEndX && (innerX == 1 or innerY == 1 or innerZ == 1) then
16: First boundary_cell_comp(innerX, innerY, innerZ);
17: continue;

// Case 1: First collide & stream on layer myStartX:
18: if innerX == myStartX then
19: First adaptive_collide_stream(innerX, innerY, innerZ);

// Case 2: First collide & stream on myStartX + 1; Second collide & revert on myStartX:
20: else if innerX == myStartX + 1 then
21: First adaptive_collide_stream(innerX, innerY, innerZ);
22: Second collide & revert on (innerX-1, innerY-1, innerZ-1);
23: Handle the second collide & revert of neighbors at certain boundary locations;

// Case 3: First stream on layer myEndX; Second collide & stream under one layer:
24: else if innerX == myEndX then
25: First adaptive_stream(innerX, innerY, innerZ);
26: Second adaptive_collide_stream(innerX-1, innerY-1, innerZ-1);
27: boundary_neighbor_handler (innerX, innerY, innerZ);

// Case 4: first collide & stream on other layers; Second collide & stream under one layer:
28: else
29: First adaptive_collide_stream(innerX, innerY, innerZ);
30: Second adaptive_collide_stream(innerX-1, innerY-1, innerZ-1);
31: boundary_neighbor_handler(innerX, innerY, innerZ);
32: #pragma omp barrier

/* Stage III: second collide & stream on the intersection; then second stream on the layer myStartX.
*/

33: adaptive_collide_stream at all ly × lz cells on layer iX = myEndX;
34: #pragma omp barrier
35: stream at all ly × lz cells on layer iX = myStartX;
36: }

164

3. Fig. 6.10c shows case 1 (lines 18∼19 in Alg. 14). When thread 0 and 1 access the cells on

layer myStartX (iX = 1 & 5), respectively, we execute the adaptive_collide_stream

on them to compute at time step t, and then change the boundary cells to orange and

the inner cells to red.

4. Fig. 6.10d shows case 2 (lines 20∼23 in Alg. 14). When thread 0 and 1 are on layer

myStartX+1 (iX = 2 & 6), respectively, we execute the first adaptive_collide_stream

at time step t and change boundary cells to orange and inner cells to red. Meanwhile,

cell (5,1,1) and (1,1,1) have collected the data dependencies to collide at time step

t + 1, we execute the second collide and revert but without stream on them, and

change to light purple.

5. Fig. 6.10e shows that when continuing traversal in Prism 1, thread 0 and 1 are on layer

iX = 3 & 6. Since the cells traversed in this figure are in the first row and column,

case 0 is used here, otherwise, case 4 is used.

6. Fig. 6.10f shows case 3 (lines 24∼27 in Alg. 14). When thread 0 and 1 are on the

intersection layers (iX = 4 & 8), we execute the remaining first stream at time step t

due to preprocessing in Stage I. Then if cells under one layer (iX = 3 & 7) collect their

data dependency at time step t + 1, we execute the second adaptive_collide_stream

on them.

7. Fig. 6.10g shows case 4 (lines 28∼31 in Alg. 14). When thread 0 and 1 are on the other

layers of sub-domain, we conduct the first adaptive_collide_stream on (innerX, innerY,

innerZ) at time step t, and then the second adaptive_collide_stream on (innerX-1,

innerY-1, innerZ-1) at time step t + 1. Then we call boundary_neighbor_handler to

compute the neighbors of (innerX, innerY, innerZ) at certain locations at time step

t + 1.

8. Stage III (Post-processing) lines 33∼35 in Alg. 14 : Firstly, since Stage I and case

3 have completed the first computation on intersection layers, we wrap up the second

collide and stream on intersections. Secondly, since case 2 have executed the second

collide and revert on the first layers myStartX of each sub-domain, the second stream

remains to be executed.

165

6.4.1 Handle Thread Safety on Intersection Layers

Thread1

Thread0

5

Layer 4
1st collide
& revert

t+1t

Layer 5
1st collide &
swap stream

Time Step

Intersection

6

7

8

x

z
y

Layer 6
1st collide &
swap stream

Layer 5
2nd collide

& revert

Layer 6
2nd collide &
swap stream

Stage I
preprocessing

case 1

case 2

Layer 4
1st swap
stream

Layer 5
2nd swap

stream

Layer 4
2nd collide &
swap stream

post-
processing

Stage II

Stage III

ca
se

 3

1

2

3

4

case 4

Layer 3
1st collide &
swap stream

myEndX

myStartX

Figure 6.11. Handle thread safety on intersection layers. To keep thread safety:
(1) the first swap_stream on layer 5 during stage II should be delayed after the first
revert on layer 4 during stage I; (2) during stage II, the second swap_stream on
layer 6 should be delayed after the second revert on layer 5. (3) during stage III, the
second swap_stream on layer 5 should be delayed after the second swap_stream
on layer 4 during stage II.

We aim to keep thread safety and minimize the synchronization cost during parallel

executions. To this end, we need to carefully design the initial state of each thread so that

the majority of computation stays in each threads’ local sub-domain. The left part of Fig. 6.11

shows the view of Fig. 6.10 along X-Z axis, and layer 4 is the intersection layer that partitions

two threads’ sub-domains. The right part shows the data dependencies near the intersection

layer in two time steps. In the figure, the red block represents Stage I of Alg. 14 , yellow blocks

Stage II, and green blocks Stage III . The arrows indicate that data are transferred from layer

A to B by using a procedure (or B depends on A). There are three non-trivial dependencies

requiring to handle thread safety near intersection layers. (1) Since the swap algorithm only

streams data to half of the neighbors under one layer, the swap_stream on layer 5 —the first

layer of thread 1’s sub-domain— should be delayed after the revert on layer 4 in thread 0’s

sub-domain. Thus, in Stage I, we pre-process collide and revert at time step t but without

stream on layer 4, since stream on layer 4 depends on the post-collision on layer 3, which

has not been computed yet. (2) In Stage II, the second swap_stream on layer 6 called by

the case 4 procedure should be delayed after the second revert but without swap_stream on

166

layer 5. This is because thread 1 cannot guarantee that thread 0 has completed the second

swap_steam on layer 4. To keep thread safety, swap_stream on layer 5 is delayed to Stage

III. (3) Thus, in Stage III, the second swap_stream on layer 5 is delayed after the second

swap_stream on layer 4. Above all, since the majority of computation happens in Stage

II of each thread’s sub-domain, we avoid the frequent “layer-wise” thread synchronizations

that occur in the wave-front parallelism. Besides, we only synchronize at the intersection

layers every two time steps, hence the overhead of three barriers of Alg. 14 becomes much

less.

6.5 Experimental Evaluation

In this section, we first present the experimental setup and validations on our 3D memory-

aware LBM. Then we evaluate its sequential and parallel performance.

6.5.1 Experiment Setup and Verification

The details of our experimental hardware platforms are provided in Tab. 5.2 . To evaluate

the performance of our new algorithms, we use the 3D lid-driven cavity flow simulation in

Fig. 6.12 as an example. The 3D cavity has a dimension of lz× ly× lx, and its top lid moves

with a constant velocity v. As time goes by, the flow inside the cavity becomes unstable and

generates vortexes. Our 3D memory-aware LBM algorithms have been implemented as C++

template functions, which are then added to the Palabos framework. For verification, we

construct a cavity with the same procedure, and then separately execute four algorithms on

it, i.e., Palabos solvers fuse() and fuse_prism() for N time steps, and our memory-aware

algorithms two_step_prism() and two_step_prism_omp() for N/2 time steps. Then, we

compute the velocity norm of each cell and write to four separate logs. At last, we verify that

our algorithms produce the same result as Palabos for guaranteeing software correctness.

6.5.2 Performance Analysis of Sequential 3D Memory-aware LBM

The first set of experiments with 3D cavity flows compare the sequential performance of

four different LBM algorithms, which are the Fuse swap LBM (with/without prism traversal),

167

Z

X
Y

v

ly

lz
lx

Figure 6.12. 3D lid-driven cavity benchmark: the top lid moves with a
constant velocity v.

and the two-step memory-aware LBM (with/without prism traversal). For simplicity, we

use the abbreviations of Fuse LBM, Fuse prism LBM, 2-step LBM, and 2-step prism LBM,

respectively. The simulation input is 3D cubes with edge size L = 64 ∼ 896. Every algorithm

is executed five times, and the average MFLUPS (millions of fluid lattice node updates per

second) is calculated. For the “prism” algorithms, different prism strides (“tile” ranging from

8, 16, 32, ..., to 448) are tested, and we select the best performance achieved.

Fig. 6.13a shows the sequential performance on the Haswell CPU. When we use a small

edge size, e.g. L = 64, 128, the 2-step LBM is the fastest. But when edge size L ≥ 256, the 2-

step prism LBM performs the best and achieves up to 15.1 MFLUPS. At the largest L = 896,

the 2-step prism LBM acquires 12.6 MFLUPS and is 18.8% faster than the second-fastest

Fuse prism LBM.

Table 6.2. Memory allocation size for each 3D cube lattice in the sequential experiments.

Edge size L 64 128 256 384 512 640 768 896

One layer memory (MB) 0.7 2.7 10.7 23.9 42.3 66 95 129
Cube memory (GB) 0.045 0.34 2.7 9.0 21.2 41.4 71.4 113.3

We observe that the performance of algorithms without prism traversal starts to drop

when edge size L ≥ 768. Especially, Fuse swap LBM plummets 40.5% from 14.8 MFLUPS to

8.79 MFLUPS when L increases from 256 to 384.The reason is that the L3 cache cannot hold

168

64 128 256 384 512 640 768 896
Side length of a 3D cube cavity

6

8

10

12

14

16

M
FL

UP
S

Palabos Fuse
Palabos Fuse Prism
2-Step
2-Step Prism

(a) Haswell.

64 128 256 384 512 640 768 896
Side length of a 3D cube cavity

6

8

10

12

14

16

18

20

M
FL

UP
S

Palabos Fuse
Palabos Fuse Prism
2-Step
2-Step Prism

(b) Skylake.

64 128 256 384 512 640 768
Side length of a 3D cube cavity

3.0

3.2

3.4

3.6

3.8

4.0
M

FL
UP

S

Palabos Fuse
Palabos Fuse Prism
2-Step
2-Step 3Parts Prism

(c) Knight Landing.

Figure 6.13. Sequential performance using four LBM algorithms on three types of CPUs.

two layers of cells. Tab. 6.2 shows the memory consumption of one layer and total domain

used in the experiments. Since Fuse swap LBM collides on (iX, iY, iZ) and swap_stream

to half of its neighbors on layer iX and iX-1, it accesses cells on two layers without spatial

data reuse. When L ≥ 384, two layers of cells 23.9 × 2 = 47.8MB exceeds L3 cache (35

MB per socket on Haswell). Similarly, since 2-step LBM accesses cells on three layers, its

performance also drops when L ≥ 384, Meanwhile, without prism traversal, we notice that

2-step LBM is up to 53.3% faster than Fuse swap LBM. With prism traversal, Fuse prism

LBM is up to 71.7% faster than Fuse swap LBM, and 2-step prism is LBM up to 28.6%

faster than 2-step LBM. Hence, we can conclude that prism traversal and merging two steps

both significantly increase data reuse on a large domain.

Secondly, Fig. 6.13b shows that the sequential performance on the Skylake CPU. The 2-

step LBM is still the fastest when L = 64, 128, and up to 9.3% faster than Fuse swap LBM.

Similarly, when L ≥ 256, 2-step prism LBM performs the best again, and achieves up to

18.2 MFLUPS and up to 15.5% faster than Fuse prism LBM at when L = 512. Meanwhile,

169

without prism traversal, we notice that 2-step LBM is up to 20.5% faster than Fuse swap

LBM. With prism traversal, Fuse prism LBM is up to 58.2% faster than Fuse swap LBM,

and 2-step prism LBM is up to 50.4% faster than 2-step LBM. In the largest L = 896, 2-step

prism LBM achieves 14.5 MFLUPS and is 13.7% faster than Fuse prism LBM. Besides, we

also find that for all the algorithms with every L, the performance on Skylake is better than

on Haswell. For example, the 2-step prism LBM on Skylake is on average 20.5% faster than

on Haswell. This suggests that the larger L2 cache (1 MB on Skylake vs 256KB on Haswell)

helps to increase L2 hit, and non-inclusive L3 helps to reduce DRAM memory latency.

Another interesting result is that when L = 256, 2-step LBM drops more on Skylake than

on Haswell. This is because three layers of cells (10.7× 3 = 32.1MB) nearly exhaust 33 MB

L3 cache per socket on Skylake, but they can fit in 35 MB L3 cache per socket on Haswell.

At last, Fig. 6.13c shows the sequential performance on Knight Landing CPU, we see

that when L ≥ 256, 2-step prism LBM is the best and can be up to 1.15% faster than Fuse

prism LBM. The reason why 2-step prism LBM on KNL does not gain the same significant

speedup as with the previous two CPUs is that the LLC (last level cache) on KNL is 1 MB

shared L2 cache on every two cores, and no large L3 cache exists. Let’s assume each core

occupies 0.5 MB L2 cache exclusively, but it still cannot hold a 64× 64 layer of cells, which

results in few data reuse and many DRAM accesses.

Above all, we need to use spatial locality by adding the feature of prism traversal. Con-

sequently, on Haswell and Skylake, fuse tile LBM is up to 71.7% and 58.2% faster than Fuse

swap LBM, and 2-step tile LBM is up to 28.6% and 50.4% faster than 2-step LBM. When

only adding the feature of merging two steps, 2-step LBM is faster than Palabos (Fuse) by

up to 53.3% on Haswell and 20.5% on Skylake. Hence, we conclude that both prism traversal

and merging two steps significantly increase cache reuse on the large domain.

Why do all sequential performance drop when L is very large?

In Fig. 6.13 , we observe that the performance of all algorithms starts to drop when L ≥ 768

on Haswell and L = 896 on Skylake, but doesn’t drop on KNL. To investigate the reason,

we use Remora[142] to monitor the memory free and used on each socket of a compute node

every 5 seconds. In Fig. 6.14 , a group of stacked charts presents the memory free and used

on each socket, when we run the above benchmark with edge size L = 640, 768, 896 on a

170

Haswell node. If memory usage exceeds the DRAM capacity per socket, NUMA memory

accesses are involved and causes longer foreign memory access latency than local ones.

Socket 1

Socket 0

M
em

or
y

U
se

d
(M

B)

Time (s)

(a) Memory used (L = 640)
M

em
or

y
U

se
d

(M
B)

Time (s)

Socket 1

Socket 0

(b) Memory used (L = 768)

M
em

or
y

U
se

d
(M

B)

Time (s)

Socket 0

Socket 1

(c) Memory used (L = 896)
Socket 1

Socket 0

M
em

or
y

Fr
ee

 (M
B)

Time (s)

(d) Memory free (L = 640)

M
em

or
y

Fr
ee

 (M
B)

Time (s)

Socket 1

Socket 0

(e) Memory free (L = 768)

M
em

or
y

Fr
ee

 (M
B)

Time (s)

Socket 0

Socket 1

(f) Memory free (L = 896)

Figure 6.14. Memory used and free on two sockets of a Haswell node.

1. When L = 640, the allocated memory is 41.4GB and smaller than the 128GB/node÷

2sockets = 64GB/(socket · node) DRAM capacity on a Haswell node. In Fig. 6.14a ,

44 GB memory of socket 0 (blue area) is mainly in use, while socket 1 only uses 2.4

GB memory. Meanwhile, Fig. 6.14d also shows that socket 1 (red area) has 61.6 GB

of free memory. Since NUMA access is relatively small in this setup, we don’t see a

significant performance drop when 256 ≤ L ≤ 640.

2. When L = 768, the allocated memory is 71.4GB > 64GB DRAM per socket. In

Fig. 6.14b , we see that socket 1 has average 13.6 GB memory used, which is 5.7X more

NUMA memory accesses than L = 640. Meanwhile, Fig. 6.14e shows that socket 1 has

average 50.4 GB of free memory.

3. When L = 896, the allocated memory is 113.3 GB and 1.8X larger than 64GB DRAM

per socket. Socket 1 has used 63.9 GB memory in Fig. 6.14c , and almost none free

171

memory in Fig. 6.14f . This indicates that socket 1 in this case has 4.7X more NUMA

access than L = 768.

We can conclude that given a 3D lattice whose memory allocation is larger than the

DRAM capacity per socket, because of large amounts of NUMA memory access involved, se-

quential performance will reduce significantly, which motivates the needs of parallel memory-

aware LBM algorithms.

(a) Memory used (L = 768) (b) Memory used (L = 896)

(c) Memory free (L = 768) (d) Memory free (L = 896)

Figure 6.15. Memory free and usage on two sockets of a Skylake node.

Fig. 6.15 presents the memory free and used when L = 768 and 896 on Skylake. Each

socket on a Skylake node has 192GB/node ÷ 2sockets = 96GB/(socket · node) DRAM.

Similar conclusion can also be achieved. When L = 768, the allocated memory is 71.4GB <

96GB DRAM per socket. In Fig. 6.15c , socket 1 (red area) has used 3.4 95GB free memory,

while socket 0 (blue area) is mainly in use and consumes 78.5GB memory in Fig. 6.15a .When

L = 896, the allocated memory is 113.3GB > 96GB DRAM per socket. In Fig. 6.15b , socket

1 has used average 28 GB memory, while in Fig. 6.15d , the free memory on socket 1 has

decreased from 92.6 GB to an average of 67.8 GB. This indicates that 8.2X more NUMA

memory accesses have been involved, which incurs the performance slump of all algorithms

at L = 896 in Fig. 6.13b .

172

Table 6.3. Allocated memory of cubes and speedup in the strong scalability
experiments on a Haswell node.

Edge size L 112 224 336 448 560 672 784 840

Cube memory (GB) 0.23 1.8 5.9 14 27.5 47.5 75.4 92.7
Max Speedup1 89.2% 48.1% 46.0% 37.9% 31.6% 31.4% 18.7% 23.8%
Max Speedup2 19.7% 14.1% 18.3% 21.1% 20.4% 14.2% 4.7% 9.3%
Speedup1 = (2-step prism eqv / Palabos Fuse prism - 1) ×100%
Speedup2 = (2-step prism / Palabos Fuse prism - 1) ×100%

6.5.3 Performance of Parallel 3D Memory-aware LBM

Given N cores, Palabos LBM solvers partition the simulation domain evenly along three

axes by Nz ×Ny ×Nx = N MPI processes, which follows the underlying memory layout of

cells along the axis of Z, then Y, and X at last. But our 3D memory-aware LBM partitions

a domain only along X-axis by N OpenMP threads. Hence, Palabos LBM solvers have

a smaller Y-Z layer size per core than our algorithm, thus have closer memory affinity,

especially in a large domain. To exclude the factor caused by different partition methods,

when the input of Palabos LBM solvers still uses cubes, 3D memory-aware LBM will take

two different inputs. Firstly, it takes the input of the “equivalent dimension” of those cubes,

such that a thread in our algorithm and a process in Palabos will compute a sub-domain

with the same dimension after the respective partition method. Secondly, it simply takes

the identical input of those cubes.

Fig. 6.16 shows the strong scalability on a Haswell node. The input of Palabos LBM

solvers uses cubes with edge size L = 112 ∼ 840. Tab. 6.3 presents the allocated memory

of cubes and the maximum speedup achieved by 2-step prism LBM when using equivalent

Table 6.4. Equivalent input used by 2-step prism LBM when the input of Palabos
LBM solvers is a cube with L = 840 on a Haswell node.

Cores 1 2 4 6 8 10 12 14 20 24 28

lx (height) 840 1680 3360 5040 3360 8400 5040 11760 8400 10080 11760
ly (width) 840 840 420 420 420 420 420 420 420 420 420
lz (length) 840 420 420 280 420 168 280 120 168 140 120

173

1 2 4 8 14 16 28
Number of cores

0
50

100
150
200
250
300
350

M
FL

UP
S

Palabos Fuse
Palabos Fuse Prism
2-Step Prism
2-Step Prism Eqv

(a) L = 112.

1 2 4 8 14 16 28
Number of cores

0
50

100
150
200
250
300
350

M
FL

UP
S

Palabos Fuse
Palabos Fuse Prism
2-Step Prism
2-Step Prism Eqv

(b) L = 224.

1 2 4 6 8 12 14 16 24 28
Number of cores

0
50

100
150
200
250
300
350

M
FL

UP
S

Palabos Fuse
Palabos Fuse Prism
2-Step Prism
2-Step Prism Eqv

(c) L = 336.

1 2 4 8 14 16 28
Number of cores

0
50

100
150
200
250
300
350

M
FL

UP
S

Palabos Fuse
Palabos Fuse Prism
2-Step Prism
2-Step Prism Eqv

(d) L = 448.

1 2 4 8 10 14 16 20 28
Number of cores

0
50

100
150
200
250
300
350

M
FL

UP
S

Palabos Fuse
Palabos Fuse Prism
2-Step Prism
2-Step Prism Eqv

(e) L = 560.

1 2 4 6 8 12 14 16 24 28
Number of cores

0
50

100
150
200
250
300
350

M
FL

UP
S

Palabos Fuse
Palabos Fuse Prism
2-Step Prism
2-Step Prism Eqv

(f) L = 672.

Figure 6.16. Haswell Strong Scalability performance. “2-step prism eqv” =
Parallel 3D memory-aware LBM takes the equivalent input of cubes.

input and identical input. Tab. 6.4 gives an example of the equivalent input used by 3D

memory-aware LBM when Palabos LBM solvers use a cube with L = 840 on a Haswell node.

174

Figure 6.16. Continued.

1 2 4 8 14 16 28
Number of cores

0
50

100
150
200
250
300
350

M
FL

UP
S

Palabos Fuse
Palabos Fuse Prism
2-Step Prism
2-Step Prism Eqv

(a) L = 784.

1 2 4 6 8 10 12 14 20 24 28
Number of cores

0
50

100
150
200
250
300
350

M
FL

UP
S

Palabos Fuse
Palabos Fuse Prism
2-Step Prism
2-Step Prism Eqv

(b) L = 840.

Table 6.5. Allocated memory of cubes in the strong scalability experiments on a Skylake node.

Edge size L 192 384 576 768 864 960

Cube memory (GB) 1.1 8.8 29.9 70.9 100.9 138.4
Max Speedup1 84.6% 51.2% 64.2% 70.7% 50.6% 34.2%
Max Speedup2 16.4% 22.8% 54.7% 54.3% 32.8% 28.7%
Speedup1 = (2-step prism eqv / Palabos Fuse prism - 1) ×100%
Speedup2 = (2-step prism / Palabos Fuse prism - 1) ×100%

Table 6.6. Equivalent input used by the 2-step prism LBM when Fuse prism
LBM is given a 960× 960× 960 cube on a Skylake node.

Cores 1 2 4 6 8 10 12 16 20 24 30 32 40 48

lx (height) 960 1920 3840 5760 3840 9600 5760 7680 9600 11520 14400 15360 19200 23040
ly (width) 960 960 480 480 480 480 480 480 480 480 320 240 480 240
lz (length) 960 480 480 320 480 192 320 240 192 160 192 240 96 160

Fig. 6.17 shows the strong scalability on a Skylake node. The input of Palabos LBM

solvers use cubes with edge size L = 192 ∼ 960. Tab. 6.5 presents the allocated memory

of cubes and the maximum speedup achieved by 2-step prism LBM when using equivalent

input and identical input. Tab. 6.6 gives an example of the equivalent input used by 3D

memory-aware LBM when Palabos LBM solvers use a cube with L = 960 on a Skylake node.

175

12 4 6 8 12 16 24 32 48
Number of cores

0

100

200

300

400

500

600
M

FL
UP

S
Palabos Fuse
Palabos Fuse Prism
2-Step Prism
2-Step Prism Eqv

(a) L = 192.

12 4 6 8 12 16 24 32 48
Number of cores

0

100

200

300

400

500

600

M
FL

UP
S

Palabos Fuse
Palabos Fuse Prism
2-Step Prism
2-Step Prism Eqv

(b) L = 384.

12 4 6 8 12 1618 24 32 36 48
Number of cores

0

100

200

300

400

500

600

M
FL

UP
S

Palabos Fuse
Palabos Fuse Prism
2-Step Prism
2-Step Prism Eqv

(c) L = 576.

12 4 6 8 12 16 24 32 48
Number of cores

0

100

200

300

400

500

600

M
FL

UP
S

Palabos Fuse
Palabos Fuse Prism
2-Step Prism
2-Step Prism Eqv

(d) L = 768.

12 4 6 8 12 1618 24 32 36 48
Number of cores

0

100

200

300

400

500

600

M
FL

UP
S

Palabos Fuse
Palabos Fuse Prism
2-Step Prism
2-Step Prism Eqv

(e) L = 864.

12 4 6 8 1012 16 20 24 3032 40 48
Number of cores

0

100

200

300

400

500

600

M
FL

UP
S

Palabos Fuse
Palabos Fuse Prism
2-Step Prism
2-Step Prism Eqv

(f) L = 960.

Figure 6.17. Skylake Strong Scalability performance. “2-step prism eqv” =
Parallel 3D memory-aware LBM takes the equivalent input of cubes.

Fig. 6.18 shows the strong scalability on a KNL node. The input of Palabos LBM solvers

use cubes with edge size L = 272 ∼ 680. Tab. 6.7 presents the allocated memory of cubes

and the maximum speedup achieved by 2-step prism LBM when using equivalent input and

176

12 4 8 16 34 68
Number of cores

0

50

100

150

200

250
M

FL
UP

S
Palabos Fuse
Palabos Fuse Prism
2-Step Prism
2-Step Prism Eqv

(a) L = 272.

12 4 10 20 34 68
Number of cores

0

50

100

150

200

250

M
FL

UP
S

Palabos Fuse
Palabos Fuse Prism
2-Step Prism
2-Step Prism Eqv

(b) L = 340.

12 4 6 8 12 24 34 68
Number of cores

0

50

100

150

200

250

M
FL

UP
S

Palabos Fuse
Palabos Fuse Prism
2-Step Prism
2-Step Prism Eqv

(c) L = 408.

12 4 14 28 34 68
Number of cores

0

50

100

150

200

250

M
FL

UP
S

Palabos Fuse
Palabos Fuse Prism
2-Step Prism
2-Step Prism Eqv

(d) L = 476.

12 4 8 16 3234 68
Number of cores

0

50

100

150

200

250

M
FL

UP
S

Palabos Fuse
Palabos Fuse Prism
2-Step Prism
2-Step Prism Eqv

(e) L = 544.

12 4 6 12 18 3436 68
Number of cores

0

50

100

150

200

250

M
FL

UP
S

Palabos Fuse
Palabos Fuse Prism
2-Step Prism
2-Step Prism Eqv

(f) L = 612.

Figure 6.18. Knight Landing scalability performance. “2-step prism eqv” =
Parallel 3D memory-aware LBM takes the equivalent input of cubes.

identical input. Tab. 6.6 gives an example of the equivalent input used by 3D memory-aware

LBM when Palabos LBM solvers use a cube with L = 680 on a KNL node.

177

Figure 6.18. Continued.

12 4 810 20 34 40 68
Number of cores

0

50

100

150

200

250

M
FL

UP
S

Palabos Fuse
Palabos Fuse Prism
2-Step Prism
2-Step Prism Eqv

(a) L = 680.

Table 6.7. Allocated memory size of cubes on a KNL node.

Edge size L 272 340 408 476 544 612 680

Cube mem(GB) 3.1 6.2 10.6 16.9 25.2 35.9 49.2
Max Speedup1 38.8% 29.3% 29.7% 28.8% 27.1% 28.0% 31.8%
Max Speedup2 35.7% 29.3% 29.1% 28.9% 27.9% 24.8% 27.7%
Speedup1 = (2-step prism eqv / Palabos Fuse prism - 1) ×100%
Speedup2 = (2-step prism / Palabos Fuse prism - 1) ×100%

Table 6.8. Equivalent input used by 2-step prism LBM when the Fuse prism LBM
is given a 680× 680× 680 cube on a Knight Landing node.

Cores 1 2 4 8 10 20 34 40 68

lx (height) 680 1360 2720 2720 6800 6800 23120 13600 23120
ly (width) 680 680 340 340 340 340 340 340 340
lz (length) 680 340 340 340 136 136 40 68 40

We observe that the 2-step prism LBM scales efficiently and always achieves the best

performance in all cases. (1) When using the equivalent input of cubes on three compute

nodes, for small scale cubes (with L = 112, 192, 272) in Fig. 6.16a . 6.17a . 6.18a , 3D memory-

aware LBM (green legend) is faster than the second-fastest Palabos (Fuse Prism) by up to

89.2%, 84.6%, and 38.8%, respectively. In Fig. 6.16d . 6.17c . 6.18d , for the middle scale cubes

(with L = 448, 576, 476), it is still faster than Palabos (Fuse Prism) by 37.9%, 64.2%, and

178

28.8% on three compute nodes, respectively. In Fig. 6.17b . 6.17f . 6.19a , for the large scale

cubes (with L = 840, 960, 680), it is still faster than Palabos (Fuse Prism) by 34.2%, 34.2%,

and 31.8%, respectively. (2) When using the identical input of cubes, although our 3D

memory-aware LBM has larger Y-Z layer sizes, it is still faster than Palabos (Fuse Prism)

but with less speedup than before, i.e., by up to 21.1%, 54.7%, and 30.1% on the Haswell,

Skylake and KNL node, respectively. The less speedup suggests our future work to partition

a domain with smaller Y-Z layer sizes.

179

7. SUMMARY & FUTURE WORK

This dissertation firstly studies the scientific workflows that combine large-scale simulations

with big data analysis using the present I/O and data transfer libraries. The trace analyses

reveal that there are significant performance inefficiencies in the current practices (such as re-

mote server and metaserver read/write time, coarse-grain critical sections, interlock between

applications, barriers, and application stalls). With the aim of minimizing the end-to-end

time of scientific workflows, a novel Zipper in-situ runtime system has been designed and

implemented. It combines the parallelism of fine-grain task, pipelining, and asynchrony to

seamlessly intertwine the simulation and analysis workflow such that the time-to-solution

is merely one stage of time. Based on the experiment results, Zipper workflow obtains the

fastest end-to-end time, and is verified by a proposed performance model. Additionally, the

concurrent data transfer optimization method can reduce the stall time of the simulation

application when the simulation is coupled with relatively slow data analysis. The experi-

ments with the real-world CFD and LAMMPS workflows show that the Zipper approach is

able to outperform the Decaf method — which is the second-fastest in-situ methods — by

up to 2.2 times. A set of subsequent traces also reveal that the reduced idle/stall time, the

lesser interference with the simulation time, and the full overlapping of each workflow stages

have contributed the most to Zipper’s enhanced end-to-end workflow time.

For the future works of Zipper, there is a new research direction called ”in situ algorithms”.

Since we currently use a prior knowledge about what we want to analyze and where to send

data, the visualization/analysis is scheduled beforehand. But for exploration scenarios that

we do not know what to visualize/analysis, we can add the following features to Zipper:

study the data in each cycle of workflows and decide when to trigger visualization/analysis,

keep balance between reduction and data integrity, and complement traditional algorithm

specifically for in-situ setting. Besides, the idea to asynchronously transfer fine-grain data

could apply to the distributed workflows, e.g., between HPC to cloud, etc.

To address the memory bound limitation of Lattice Boltzmann method in manycore

systems, we design the novel 2D and 3D memory-aware LBM algorithms. Then, we provide a

detailed algorithm analysis to demonstrate how they enable more data reuses across multiple

180

time steps. For the 2D case, the sequential and strong scalability experiments show that our

2D memory-aware LBM outperforms the Fuse LBM by up to 358% faster on the Haswell

system, up to 401% faster on the Skylake system, and up to 162% on the Knight Landing

system. In the 3D case, our 3D memory-aware LBM outperforms Fuse prism LBM by up

to 89.2% faster on a Hawell node, up to 84.6% faster on a Skylake node and up to 38.8%

on a Knight Landing node. Moreover, we use the Roofline model to give an insight into

the speedup reasons. Our future work is to explore the 3D distributed memory-aware LBM

across a large scale of nodes.

181

REFERENCES

[1] U.S. Department of Energy, Office of Science.Exascale Computing Project, https ://
www.exascaleproject.org/exascale-computing-project/ , 2020.

[2] J. Slotnick, A. Khodadoust, J. Alonso, D. Darmofal, W. Gropp, E. Lurie, and D.
Mavriplis, “CFD vision 2030 study: a path to revolutionary computational aerosciences,”
2014.

[3] K.-L. Ma, “In situ visualization at extreme scale: Challenges and opportunities,” Com-
puter Graphics and Applications, IEEE, vol. 29, no. 6, pp. 14–19, 2009.

[4] J. Chen, A. Choudhary, S. Feldman, B. Hendrickson, C. Johnson, R. Mount, V. Sarkar,
V. White, and D. Williams, “Synergistic challenges in data-intensive science and exascale
computing,” DOE ASCAC Data Subcommittee Report, Department of Energy Office of
Science, 2013.

[5] Fugaku system overview, https://www.top500.org/system/179807/ , 2020.

[6] Fugaku specifications, https:// www.f ujitsu.com/ global/ about/ innovation/ f ugaku
/specif ications/ , 2020.

[7] E. P. Duque, B. J. Whitlock, S. M. Legensky, C. P. Stone, R. Ranjan, and S. Menon,
“The impact of in situ data processing and analytics upon scaling of cfd solvers and
workflows,” in 27th International Conference on Parallel Computational Fluid Dynam-
ics, Montreal, Canada, 2015.

[8] A. S. Szalay, “From large simulations to interactive numerical laboratories,” IEEE Data
Eng. Bull., vol. 36, no. 4, pp. 41–53, 2013.

[9] H. Childs, S. D. Ahern, J. Ahrens, A. C. Bauer, J. Bennett, E. W. Bethel, P.-T. Bremer,
E. Brugger, J. Cottam, M. Dorier, et al., “A terminology for in situ visualization and
analysis systems,” The International Journal of High Performance Computing Applica-
tions, vol. 34, no. 6, pp. 676–691, 2020.

[10] E. Deelman, T. Peterka, I. Altintas, C. D. Carothers, K. K. van Dam, K. Moreland,
M. Parashar, L. Ramakrishnan, M. Taufer, and J. Vetter, “The future of scientific
workflows,” The International Journal of High Performance Computing Applications,
vol. 32, no. 1, pp. 159–175, 2018.

[11] M. Dreher and T. Peterka, “Decaf: Decoupled dataflows for in situ high-performance
workflows,” Argonne National Lab.(ANL), Argonne, IL (United States), Tech. Rep.,
2017.

182

https://www.exascaleproject.org/exascale-computing-project/
https://www.exascaleproject.org/exascale-computing-project/
https://www.top500.org/system/179807/
https://www.fujitsu.com/global/about/innovation/fugaku/specifications/
https://www.fujitsu.com/global/about/innovation/fugaku/specifications/

[12] M. Dorier, R. Sisneros, T. Peterka, G. Antoniu, and D. Semeraro, “Damaris/viz: A
nonintrusive, adaptable and user-friendly in situ visualization framework,” in 2013
IEEE Symposium on Large-Scale Data Analysis and Visualization (LDAV), IEEE, 2013,
pp. 67–75.

[13] V. Vishwanath, M. Hereld, M. Papka, R. Hudson, G. Jordan IV, and C. Daley, “In Situ
Data Analysis and I/O Acceleration of FLASH Astrophysics Simulation on Leadership-
Class System Using GLEAN,” in Proc. SciDAC, Journal of Physics: Conference Series,
2011.

[14] N. Fabian, K. Moreland, D. Thompson, A. C. Bauer, P. Marion, B. Gevecik, M. Rasquin,
and K. E. Jansen, “The paraview coprocessing library: A scalable, general purpose in
situ visualization library,” in Large Data Analysis and Visualization (LDAV), 2011 IEEE
Symposium on, IEEE, 2011, pp. 89–96.

[15] H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky, K. Schwan, and F. Zheng, “Datastager:
Scalable data staging services for petascale applications,” Cluster Computing, vol. 13,
no. 3, pp. 277–290, 2010.

[16] J. Bennett, H. Abbasi, P. Bremer, R. Grout, A. Gyulassy, T. Jin, et al., “Combining
in-situ and in-transit processing to enable extreme-scale scientific analysis,” in High
Performance Computing, Networking, Storage and Analysis (SC), 2012 International
Conference for, IEEE, 2012, pp. 1–9.

[17] M. Dorier, M. Dreher, T. Peterka, J. M. Wozniak, G. Antoniu, and B. Raffin, “Lessons
learned from building in situ coupling frameworks,” in Proceedings of the First Workshop
on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization, 2015,
pp. 19–24.

[18] D. A. Reed and J. Dongarra, “Exascale computing and big data,” Communications of
the ACM, vol. 58, no. 7, pp. 56–68, 2015.

[19] E. M. National Academies of Sciences, Future Directions for NSF Advanced Computing
Infrastructure to Support U.S. Science and Engineering in 2017-2020. Washington, DC:
The National Academies Press, 2016. doi: 10.17226/21886 .

[20] G. Fox, J. Qiu, S. Jha, S. Ekanayake, and S. Kamburugamuve, “Big data, simulations
and HPC convergence,” in Workshop on Big Data Benchmarks, Springer, 2016, pp. 3–
17.

[21] F. D. Witherden and A. Jameson, “Future directions in computational fluid dynamics,”
in 23rd AIAA Computational Fluid Dynamics Conference, 2017, p. 3791.

183

https://doi.org/10.17226/21886

[22] Towards Exascale Computing of Compressible Flows using LBM, https : // catalog .
data.gov/ dataset/ towards-exascale-computing-of -compressible-f lows-using-lbm-
phase-i , 2020.

[23] C. L. Rumsey, J. P. Slotnick, and A. J. Sclafani, “Overview and Summary of the Third
AIAA High Lift Prediction Workshop,” Journal of Aircraft, vol. 56, no. 2, pp. 621–644,
2019.

[24] Clay Mathematics Institute., https :// www .claymath .org/ millennium-problems ,
2020.

[25] C. Coreixas, B. Chopard, and J. Latt, “Comprehensive comparison of collision models
in the lattice Boltzmann framework: Theoretical investigations,” Physical Review E,
vol. 100, no. 3, p. 033 305, 2019.

[26] S. Succi, G. Amati, M. Bernaschi, G. Falcucci, M. Lauricella, and A. Montessori, “To-
wards exascale lattice Boltzmann computing,” Computers & Fluids, vol. 181, pp. 107–
115, 2019.

[27] H. Si, Y. Shi, and B. Wang, “LBM/LES for the study of fluid flow with high Reynolds
numbers,” in Mechanics and Mechatronics (ICMM2015) Proceedings of the 2015 In-
ternational Conference on Mechanics and Mechatronics (ICMM2015), World Scientific,
2016, pp. 142–150.

[28] X. Zhou, B. Dong, C. Chen, and W. Li, “A thermal LBM-LES model in body-fitted co-
ordinates: Flow and heat transfer around a circular cylinder in a wide Reynolds number
range,” International Journal of Heat and Fluid Flow, vol. 77, pp. 113–121, 2019.

[29] A. Pradhan and S. Yadav, “Large eddy simulation using lattice Boltzmann method
based on sigma model,” Procedia Engineering, vol. 127, pp. 177–184, 2015.

[30] M. Vardhan, J. Gounley, L. Hegele, E. W. Draeger, and A. Randles, “Moment represen-
tation in the lattice Boltzmann method on massively parallel hardware,” in Proceedings
of the International Conference for High Performance Computing, Networking, Storage
and Analysis, 2019, pp. 1–21.

[31] J. M. Wozniak, T. G. Armstrong, M. Wilde, D. S. Katz, E. Lusk, and I. T. Foster,
“Swift/T: Large-scale application composition via distributed-memory dataflow pro-
cessing,” in 2013 13th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGrid), 2013, pp. 95–102.

[32] L. Ramakrishnan, S. Poon, V. Hendrix, D. Gunter, G. Z. Pastorello, and D. Agarwal,
“Experiences with user-centered design for the tigres workflow api,” in 2014 IEEE 10th
International Conference on e-Science, IEEE, vol. 1, 2014, pp. 290–297.

184

https://catalog.data.gov/dataset/towards-exascale-computing-of-compressible-flows-using-lbm-phase-i
https://catalog.data.gov/dataset/towards-exascale-computing-of-compressible-flows-using-lbm-phase-i
https://catalog.data.gov/dataset/towards-exascale-computing-of-compressible-flows-using-lbm-phase-i
https://www.claymath.org/millennium-problems

[33] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A. Lee, J. Tao,
and Y. Zhao, “Scientific workflow management and the Kepler system,” Concurrency
and Computation: Practice and Experience, vol. 18, no. 10, pp. 1039–1065, 2006.

[34] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi,
G. B. Berriman, J. Good, et al., “Pegasus: A framework for mapping complex scientific
workflows onto distributed systems,” Scientific Programming, vol. 13, no. 3, pp. 219–
237, 2005.

[35] L. Bavoil, S. P. Callahan, P. J. Crossno, J. Freire, C. E. Scheidegger, C. T. Silva, and
H. T. Vo, “Vistrails: Enabling interactive multiple-view visualizations,” in VIS 05. IEEE
Visualization, 2005., IEEE, 2005, pp. 135–142.

[36] J. Goecks, A. Nekrutenko, J. Taylor, G. Team, et al., “Galaxy: A comprehensive ap-
proach for supporting accessible, reproducible, and transparent computational research
in the life sciences,” Genome biology, vol. 11, no. 8, R86, 2010.

[37] K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers, S. Owen, S. Soiland-
Reyes, I. Dunlop, A. Nenadic, P. Fisher, et al., “The Taverna workflow suite: Designing
and executing workflows of web services on the desktop, web or in the cloud,” Nucleic
acids research, vol. 41, no. W1, W557–W561, 2013.

[38] Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox, D. Gannon, C. Goble, M. Livny,
L. Moreau, and J. Myers, “Examining the challenges of scientific workflows,” Computer,
vol. 40, no. 12, pp. 24–32, 2007.

[39] R. Thakur, W. Gropp, and E. Lusk, “On implementing MPI-IO portably and with high
performance,” in Proceedings of the sixth workshop on I/O in parallel and distributed
systems, ACM, 1999, pp. 23–32.

[40] H. Abbasi, J. Lofstead, F. Zheng, K. Schwan, M. Wolf, and S. Klasky, “Extending I/O
through high performance data services,” in IEEE International Conference on Cluster
Computing and Workshops (CLUSTER’09), IEEE, 2009, pp. 1–10.

[41] C. Docan, M. Parashar, and S. Klasky, “DataSpaces: An interaction and coordination
framework for coupled simulation workflows,” Cluster Computing, vol. 15, no. 2, pp. 163–
181, 2012.

[42] J. Dayal, D. Bratcher, G. Eisenhauer, K. Schwan, M. Wolf, X. Zhang, H. Abbasi, S.
Klasky, and N. Podhorszki, “Flexpath: Type-based publish/subscribe system for large-
scale science analytics,” in The 14th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid), IEEE, 2014, pp. 246–255.

185

[43] K. Mattila, J. Hyväluoma, T. Rossi, M. Aspnäs, and J. Westerholm, “An efficient
swap algorithm for the lattice Boltzmann method,” Computer Physics Communications,
vol. 176, no. 3, pp. 200–210, 2007.

[44] T. Pohl, M. Kowarschik, J. Wilke, K. Iglberger, and U. Rüde, “Optimization and pro-
filing of the cache performance of parallel lattice Boltzmann codes,” Parallel Processing
Letters, vol. 13, no. 04, pp. 549–560, 2003.

[45] P. Bailey, J. Myre, S. D. Walsh, D. J. Lilja, and M. O. Saar, “Accelerating lattice Boltz-
mann fluid flow simulations using graphics processors,” in 2009 international conference
on parallel processing, IEEE, 2009, pp. 550–557.

[46] M. Geier and M. Schoenherr, “Esoteric twist: An efficient in-place streaming algorithmus
for the lattice Boltzmann method on massively parallel hardware,” Computation, vol. 5,
no. 2, p. 19, 2017.

[47] S. Liu, N. Zou, Y. Cui, andW.Wu, “Accelerating the parallelization of lattice Boltzmann
method by exploiting the temporal locality,” in 2017 IEEE International Symposium
on Parallel and Distributed Processing with Applications and 2017 IEEE International
Conference on Ubiquitous Computing and Communications (ISPA/IUCC), IEEE, 2017,
pp. 1186–1193.

[48] G. Crimi, F. Mantovani, M. Pivanti, S. F. Schifano, and R. Tripiccione, “Early experi-
ence on porting and running a lattice Boltzmann code on the xeon-phi co-processor,”
Procedia Computer Science, vol. 18, pp. 551–560, 2013.

[49] J. Habich, C. Feichtinger, H. Köstler, G. Hager, and G. Wellein, “Performance engi-
neering for the lattice Boltzmann method on GPGPUs: Architectural requirements and
performance results,” Computers & Fluids, vol. 80, pp. 276–282, 2013.

[50] N.-P. Tran, M. Lee, and S. Hong, “Performance optimization of 3D lattice Boltzmann
flow solver on a GPU,” Scientific Programming, vol. 2017, 2017.

[51] G. Wellein, G. Hager, T. Zeiser, M. Wittmann, and H. Fehske, “Efficient temporal block-
ing for stencil computations by multicore-aware wavefront parallelization,” in Computer
Software and Applications Conference, 2009. COMPSAC’09. 33rd Annual IEEE Inter-
national, IEEE, vol. 1, 2009, pp. 579–586.

[52] Q. Liu, J. Logan, Y. Tian, H. Abbasi, N. Podhorszki, J. Y. Choi, S. Klasky, R. Tchoua,
J. Lofstead, and R. Oldfield, “Hello ADIOS: The challenges and lessons of developing
leadership class I/O frameworks,” Concurrency and Computation: Practice and Experi-
ence, vol. 26, no. 7, pp. 1453–1473, 2014.

186

[53] F. Zhang, Programming and runtime support for enabling data-intensive coupled sci-
entific simulation workflows (Phd dissertation). Rutgers The State University of New
Jersey-New Brunswick, 2015.

[54] U. Ayachit, “The paraview guide: A parallel visualization application,” 2015.

[55] Y. Fu, F. Li, F. Song, and Z. Chen, “Performance analysis and optimization of in-situ
integration of simulation with data analysis: Zipping applications up,” in Proceedings
of the 27th International Symposium on High-Performance Parallel and Distributed
Computing, ACM, 2018, pp. 192–205.

[56] Y. Fu, F. Song, and L. Zhu, “Modeling and Implementation of an Asynchronous Ap-
proach to Integrating HPC and Big Data Analysis,” in International Conference on
Computational Science (ICCS-2016), San Diego, CA, Jun. 2016.

[57] Y. Fu and F. Song, “SDN helps Big Data to optimize access to data,” in Big Data and
Software Defined Networks, J. Taheri, Ed., Stevenage: The Institution of Engineering
and Technology, 2018, ch. 14, pp. 297–318.

[58] Y. Fu, F. Li, F. Song, and L. Zhu, “Designing a parallel memory-aware lattice Boltzmann
algorithm on manycore systems,” in 2018 30th International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD), IEEE, 2018, pp. 97–106.

[59] NCAR Graphics., http://ngwww.ucar.edu/ , 2020.

[60] VisIt, https://visit.llnl.gov , 2018.

[61] J. Biddiscombe, J. Soumagne, G. Oger, D. Guibert, and J.-G. Piccinali, “Parallel com-
putational steering and analysis for hpc applications using a paraview interface and the
hdf5 dsm virtual file driver,” 2011.

[62] C. Johnson, S. Parker, and D. Weinstein, “Large-scale computational science applica-
tions using the SCIRun problem solving environment,” Proceedings of Supercomputer,
2000.

[63] J. Li, W.-k. Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp, R. Latham, A. Siegel,
B. Gallagher, and M. Zingale, “Parallel netCDF: A high-performance scientific I/O
interface,” in SC’03: Proceedings of the 2003 ACM/IEEE conference on Supercomputing,
IEEE, 2003, pp. 39–39.

[64] W. Gropp, E. Lusk, and R. Thakur, Using MPI-2: Advanced features of the message-
passing interface. MIT press, 1999.

[65] Ascent, https://ascent.readthedocs.io/en/ latest/ , 2021.

187

http://ngwww.ucar.edu/
https://visit.llnl.gov
https://ascent.readthedocs.io/en/latest/

[66] DataSpaces Project, http://dataspaces.org , 2018.

[67] C. Docan, M. Parashar, and S. Klasky, “Dart: A substrate for high speed asynchronous
data io,” in Proceedings of the 17th international symposium on High performance dis-
tributed computing, 2008, pp. 219–220.

[68] P. Subedi, P. Davis, S. Duan, S. Klasky, H. Kolla, and M. Parashar, “Stacker: An auto-
nomic data movement engine for extreme-scale data staging-based in-situ workflows,” in
SC18: International Conference for High Performance Computing, Networking, Storage
and Analysis, IEEE, 2018, pp. 920–930.

[69] F. Zheng, H. Zou, G. Eisenhauer, K. Schwan, M. Wolf, J. Dayal, T. Nguyen, J. Cao,
H. Abbasi, and S. Klasky, “FlexIO: I/O middleware for location-flexible scientific data
analytics,” in IEEE 27th International Symposium on Parallel & Distributed Processing
(IPDPS), IEEE, 2013, pp. 320–331.

[70] G. Eisenhauer, M. Wolf, H. Abbasi, and K. Schwan, “Event-based systems: Oppor-
tunities and challenges at exascale,” in Proceedings of the Third ACM International
Conference on Distributed Event-Based Systems, ACM, 2009.

[71] A. C. Bauer, H. Abbasi, J. Ahrens, H. Childs, B. Geveci, S. Klasky, K. Moreland, P.
O’Leary, V. Vishwanath, B. Whitlock, et al., “In situ methods, infrastructures, and
applications on high performance computing platforms,” in Computer Graphics Forum,
Wiley Online Library, vol. 35, 2016, pp. 577–597.

[72] K. Timm, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva, and E. Viggen, “The
lattice Boltzmann method: Principles and practice,” Springer International Publishing
AG Switzerland, ISSN, pp. 1868–4521, 2016.

[73] P. A. Thompson and G. Beavers, Compressible-fluid dynamics, 1972.

[74] J. H. Ferziger, M. Perić, and R. L. Street, Computational methods for fluid dynamics.
Springer, 2002, vol. 3.

[75] B. Baliga and S. Patankar, “A new finite-element formulation for convection-diffusion
problems,” Numerical Heat Transfer, vol. 3, no. 4, pp. 393–409, 1980.

[76] H. Jasak, A. Jemcov, Z. Tukovic, et al., “OpenFOAM: A C++ library for complex
physics simulations,” in International workshop on coupled methods in numerical dy-
namics, IUC Dubrovnik Croatia, vol. 1000, 2007, pp. 1–20.

[77] Ansys Fluent, https://www.ansys.com/products/ f luids/ansys-f luent , 2021.

[78] Ansys CFX, https://www.ansys.com/products/ f luids/ansys-cf x , 2021.

188

http://dataspaces.org
https://www.ansys.com/products/fluids/ansys-fluent
https://www.ansys.com/products/fluids/ansys-cfx

[79] Starccm+, https : // www .plm .automation . siemens . com / global / en / products /
simcenter/STAR-CCM.html , 2021.

[80] COMSOL, https://www.comsol.com/products , 2021.

[81] B. Baliga and S. Patankar, “A new finite-element formulation for convection-diffusion
problems,” Numerical Heat Transfer, vol. 3, no. 4, pp. 393–409, 1980.

[82] D. Frenkel and B. Smit, From algorithms to applications, 1996.

[83] J. Hardy, Y. Pomeau, and O. De Pazzis, “Time evolution of a two-dimensional model
system. i. invariant states and time correlation functions,” Journal of Mathematical
Physics, vol. 14, no. 12, pp. 1746–1759, 1973.

[84] U. Frisch, B. Hasslacher, and Y. Pomeau, “Lattice-gas automata for the Navier-Stokes
equation,” Physical review letters, vol. 56, no. 14, p. 1505, 1986.

[85] E. Manoha and B. Caruelle, “Summary of the lagoon solutions from the benchmark
problems for airframe noise computations-iii workshop,” in 21st AIAA/CEAS aeroa-
coustics conference, 2015, p. 2846.

[86] P. Hoogerbrugge and J. Koelman, “Simulating microscopic hydrodynamic phenomena
with dissipative particle dynamics,” EPL (Europhysics Letters), vol. 19, no. 3, p. 155,
1992.

[87] G. Bird, “Approach to translational equilibrium in a rigid sphere gas,” The Physics of
Fluids, vol. 6, no. 10, pp. 1518–1519, 1963.

[88] A. Malevanets and R. Kapral, “Mesoscopic model for solvent dynamics,” The Journal
of chemical physics, vol. 110, no. 17, pp. 8605–8613, 1999.

[89] D. Violeau, Fluid mechanics and the SPH method: theory and applications. Oxford
University Press, 2012.

[90] D. Ricot, V. Maillard, and C. Bailly, “Numerical simulation of unsteady cavity flow
using Lattice Boltzmann Method,” in 8th AIAA/CEAS Aeroacoustics Conference &
Exhibit, 2002, p. 2532.

[91] S. S. Shende and A. D. Malony, “The TAU parallel performance system,” The Interna-
tional Journal of High Performance Computing Applications, vol. 20, no. 2, pp. 287–311,
2006.

[92] Intel. (2018). “Intel trace analyzer and collector,” [Online]. Available: https://software.
intel.com/en-us/intel-trace-analyzer .

189

https://www.plm.automation.siemens.com/global/en/products/simcenter/STAR-CCM.html
https://www.plm.automation.siemens.com/global/en/products/simcenter/STAR-CCM.html
https://www.comsol.com/products
https://software.intel.com/en-us/intel-trace-analyzer
https://software.intel.com/en-us/intel-trace-analyzer

[93] F. Zheng, H. Abbasi, C. Docan, J. Lofstead, Q. Liu, S. Klasky, M. Parashar, N. Pod-
horszki, K. Schwan, and M. Wolf, “Predata-preparatory data analytics on peta-scale
machines,” in 2010 IEEE International Symposium on Parallel & Distributed Process-
ing (IPDPS), IEEE, 2010, pp. 1–12.

[94] Q. Sun, M. Romanus, T. Jin, H. Yu, P. Bremer, S. Petruzza, S. Klasky, and M. Parashar,
“In-staging data placement for asynchronous coupling of task-based scientific work-
flows,” in International Workshop on Extreme Scale Programming Models and Middle-
ware (ESPM2), IEEE, 2016, pp. 2–9.

[95] F. Alali, F. Mizero, M. Veeraraghavan, and J. M. Dennis, “A measurement study of
congestion in an infiniband network,” in Network Traffic Measurement and Analysis
Conference (TMA), 2017, IEEE, 2017, pp. 1–9.

[96] S.-A. Reinemo, T. Skeie, T. Sodring, O. Lysne, and O. Trudbakken, “An overview of
QoS capabilities in InfiniBand, advanced switching interconnect, and Ethernet,” IEEE
Communications Magazine, vol. 44, no. 7, pp. 32–38, 2006.

[97] E. Gonsiorowski, C. D. Carothers, J. LaPre, P. Heidelberger, C. Minkenberg, and G.
Rodriguez, “Using quality of service lanes to control the impact of raid traffic within a
burst buffer,” in 2017 Winter Simulation Conference (WSC), IEEE, 2017, pp. 932–943.

[98] B. Kim and J.-D. Kim, “Dynamic QoS Scheme for InfiniBand-Based Clusters,” in Ad-
vances in Computer Science and Ubiquitous Computing, Springer, 2016, pp. 573–578.

[99] S. Kalayci, G. Dasgupta, L. Fong, O. Ezenwoye, and S. M. Sadjadi, “Distributed and
Adaptive Execution of Condor DAGMan Workflows.,” in SEKE, 2010, pp. 587–590.

[100] E. L. Lusk, S. C. Pieper, R. M. Butler, et al., “More scalability, less pain: A simple
programming model and its implementation for extreme computing,” SciDAC Review,
vol. 17, no. 1, pp. 30–37, 2010.

[101] M. S. Birrittella, M. Debbage, R. Huggahalli, J. Kunz, T. Lovett, T. Rimmer, K. D.
Underwood, and R. C. Zak, “Intel® Omni-path architecture: Enabling scalable, high
performance fabrics,” in The 23rd IEEE Annual Symposium on High-Performance In-
terconnects (HOTI), IEEE, 2015, pp. 1–9.

[102] PAPI project, http:// icl.utk.edu/papi/ , 2018.

[103] Intel, Intel omni-path fabric suite fabric manager gui user guide, version 1.0, Nov. 2015.

[104] Z. Guo and C. Shu, Lattice Boltzmann method and its applications in engineering. World
Scientific, 2013.

190

http://icl.utk.edu/papi/

[105] L. Zhu, D. Tretheway, L. Petzold, and C. Meinhart, “Simulation of fluid slip at 3D
hydrophobic microchannel walls by the lattice Boltzmann method,” Journal of Compu-
tational Physics, vol. 202, no. 1, pp. 181–195, 2005.

[106] J. Schumacher, “Derivative moments in stationary homogeneous shear turbulence,”
Journal of Fluid Mechanics, vol. 441, pp. 109–118, 2001.

[107] J. L. Lumley, Stochastic tools in turbulence. Courier Corporation, 2007.

[108] S. Dormido-Canto, J. Vega, J. Ramı́rez, A. Murari, R. Moreno, J. López, A. Pereira,
and J.-E. Contributors, “Development of an efficient real-time disruption predictor from
scratch on JET and implications for ITER,” Nuclear Fusion, vol. 53, no. 11, p. 113 001,
2013.

[109] T. Miyoshi, M. Kunii, J. Ruiz, G.-Y. Lien, S. Satoh, T. Ushio, K. Bessho, H. Seko,
H. Tomita, and Y. Ishikawa, ““Big Data Assimilation” revolutionizing severe weather
prediction,” Bulletin of the American Meteorological Society, vol. 97, no. 8, pp. 1347–
1354, 2016.

[110] E. P. Gross and M. Krook, “Model for collision processes in gases: Small-amplitude
oscillations of charged two-component systems,” Physical Review, vol. 102, no. 3, p. 593,
1956.

[111] R. R. Nourgaliev, T.-N. Dinh, T. G. Theofanous, and D. Joseph, “The lattice Boltzmann
equation method: Theoretical interpretation, numerics and implications,” International
Journal of Multiphase Flow, vol. 29, no. 1, pp. 117–169, 2003.

[112] G. Gompper, T. Ihle, D. Kroll, and R. Winkler, “Multi-particle collision dynamics: A
particle-based mesoscale simulation approach to the hydrodynamics of complex fluids,”
Advanced computer simulation approaches for soft matter sciences III, pp. 1–87, 2009.

[113] B. Dünweg, U. D. Schiller, and A. J. Ladd, “Statistical mechanics of the fluctuating
lattice Boltzmann equation,” Physical Review E, vol. 76, no. 3, p. 036 704, 2007.

[114] A. J. Ladd, “Numerical simulations of particulate suspensions via a discretized Boltz-
mann equation. part 1. theoretical foundation,” Journal of fluid mechanics, vol. 271,
pp. 285–309, 1994.

[115] E. M. Viggen, “The lattice Boltzmann method: Fundamentals and acoustics,” 2014.

[116] Palabos, http://www.palabos.org/ , 2016.

[117] R. Allen and K. Kennedy, Optimizing compilers for modern architectures: a dependence-
based approach. Morgan Kaufmann San Francisco, 2002, vol. 1.

191

http://www.palabos.org/

[118] S. Williams, “Roofline: An Insightful Visual Performance Model for Floating-Point Pro-
grams and Multicore,” ACM Communications, 2009.

[119] STREAM, https://www.cs.virginia.edu/stream/ , 2021.

[120] Intel. (2021). “Intel advisor,” [Online]. Available: https://software.intel.com/content/
www/us/en/develop/tools/oneapi/components/advisor.html .

[121] J. Latt, “Technical report: How to implement your DdQq dynamics with only q variables
per node (instead of 2q),” 2007.

[122] J. Latt, C. Coreixas, and J. Beny, “Cross-platform programming model for many-core
lattice Boltzmann simulations,” arXiv preprint arXiv:2010.11751, 2020.

[123] R. Argentini, A. Bakker, and C. Lowe, “Efficiently using memory in lattice Boltzmann
simulations,” Future Generation Computer Systems, vol. 20, no. 6, pp. 973–980, 2004.

[124] A. P. Randles, V. Kale, J. Hammond, W. Gropp, and E. Kaxiras, “Performance analysis
of the lattice Boltzmann model beyond Navier-Stokes,” in 2013 IEEE 27th International
Symposium on Parallel and Distributed Processing, IEEE, 2013, pp. 1063–1074.

[125] D. J. Kerbyson, A. Hoisie, E. John, and J. Rubio, A Performance Analysis of Two-Level
Heterogeneous Processing Systems on Wavefront Algorithms. CRC Press, 2007.

[126] J. Habich, T. Zeiser, G. Hager, and G. Wellein, “Enabling temporal blocking for a
lattice Boltzmann flow solver through multicore-aware wavefront parallelization,” in 21st
International Conference on Parallel Computational Fluid Dynamics, 2009, pp. 178–182.

[127] T. Zeiser, G. Wellein, A. Nitsure, K. Iglberger, U. Rude, and G. Hager, “Introducing a
parallel cache oblivious blocking approach for the lattice Boltzmann method,” Progress
in Computational Fluid Dynamics, an International Journal, vol. 8, no. 1-4, pp. 179–
188, 2008.

[128] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran, “Cache-oblivious algo-
rithms,” in Foundations of Computer Science, 1999. 40th Annual Symposium, IEEE,
1999, pp. 285–297.

[129] V. Heuveline and J. Latt, “The OpenLB project: An open source and object oriented im-
plementation of lattice Boltzmann methods,” International Journal of Modern Physics
C, vol. 18, no. 04, pp. 627–634, 2007.

[130] J. Lätt and B. Chopard, “VLADYMIR—a C++ matrix library for data-parallel appli-
cations,” Future Generation Computer Systems, vol. 20, no. 6, pp. 1023–1039, 2004.

192

https://www.cs.virginia.edu/stream/
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/advisor.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/advisor.html

[131] M. D. Mazzeo and P. V. Coveney, “HemeLB: A high performance parallel lattice-
Boltzmann code for large scale fluid flow in complex geometries,” Computer Physics
Communications, vol. 178, no. 12, pp. 894–914, 2008.

[132] G. Zavodszky, B. van Rooij, V. Azizi, S. Alowayyed, and A. Hoekstra, “Hemocell: A
high-performance microscopic cellular library,” Procedia Computer Science, vol. 108,
pp. 159–165, 2017.

[133] M. Hasert, K. Masilamani, S. Zimny, H. Klimach, J. Qi, J. Bernsdorf, and S. Roller,
“Complex fluid simulations with the parallel tree-based lattice Boltzmann solver Musubi,”
Journal of Computational Science, vol. 5, no. 5, pp. 784–794, 2014.

[134] C. Feichtinger, S. Donath, H. Köstler, J. Götz, and U. Rüde, “WaLBerla: HPC software
design for computational engineering simulations,” Journal of Computational Science,
vol. 2, no. 2, pp. 105–112, 2011.

[135] OpenMP, http://www.openmp.org/ , 2018.

[136] Intel, https:// sof tware.intel.com/content/www/us/en/develop/download/ intel-
xeon-processor-e5-and-e7-v3-f amily-uncore-perf ormance-monitoring-ref erence-
manual.html , 2015.

[137] Avinash Sodani, https:// www.alcf .anl .gov/ f iles/ HC27.25.710-Knights-Landing-
Sodani-Intel.pdf , 2016.

[138] Akhilesh Kumar, https:// www.primeline-solutions.com/ media/ wysiwyg/ news-
presse/ intel-xeon-scalable-architecture-deep-dive_1.pdf , 2017.

[139] M. Van Dyke and M. Van Dyke, “An album of fluid motion,” 1982.

[140] G. Rivera and C.-W. Tseng, “Tiling optimizations for 3d scientific computations,” in
SC’00: Proceedings of the 2000 ACM/IEEE conference on Supercomputing, IEEE, 2000,
pp. 32–32.

[141] Yuankun Fu, https://github.com/qoof yk/mem-aware-lbm , 2020.

[142] C. Rosales, A. Gómez-Iglesias, and A. Predoehl, “Remora: A resource monitoring tool
for everyone,” in Proceedings of the Second International Workshop on HPC User Support
Tools, 2015, pp. 1–8.

193

http://www.openmp.org/
https://software.intel.com/content/www/us/en/develop/download/intel-xeon-processor-e5-and-e7-v3-family-uncore-performance-monitoring-reference-manual.html
https://software.intel.com/content/www/us/en/develop/download/intel-xeon-processor-e5-and-e7-v3-family-uncore-performance-monitoring-reference-manual.html
https://software.intel.com/content/www/us/en/develop/download/intel-xeon-processor-e5-and-e7-v3-family-uncore-performance-monitoring-reference-manual.html
https://www.alcf.anl.gov/files/HC27.25.710-Knights-Landing-Sodani-Intel.pdf
https://www.alcf.anl.gov/files/HC27.25.710-Knights-Landing-Sodani-Intel.pdf
https://www.primeline-solutions.com/media/wysiwyg/news-presse/intel-xeon-scalable-architecture-deep-dive_1.pdf
https://www.primeline-solutions.com/media/wysiwyg/news-presse/intel-xeon-scalable-architecture-deep-dive_1.pdf
https://github.com/qoofyk/mem-aware-lbm

A. Zipper Interfaces

We present how to use the interfaces of Zipper as follows.

A.1 Producer Module Interface

Fig. A.1 shows how to use the Zipper producer module to integrate with a simulation ap-
plication. The first step is to setup the parameters of the in-situ workflow. Graph g contains
the prior information about which group the process belongs to (e.g., simulation or anal-
ysis), num_simulation_process, num_analysis_process, and their mapping information
(e.g., producer process rank 0 and 1 will send data to consumer process rank 0, etc.). We
use fine_grain_blk_size and producer_ringbuffer_size to control the producer ring
buffer size. The writer_threshold controls the threshold when the writer thread starts
to steal blocks from producer ring buffer and then uses the dual channels to transfer data.
The preserve_flag controls whether to store the intermediate simulation data. The second
step is to start the simulation computation, when a block is generated in a time step t,
users can call Zipper.write(blk_id, blk, blk_size). Then Zipper chops this blk into
to find grain blocks, and transfers the data to the corresponding analysis process. Finally,
the simulation application calls its own clean-up code.

1 /* Step 1: In-situ workflow setup */
2 Graph g; // contains the priori workflow information
3 size_t fine_grain_blk_size;
4 size_t producer_ringbuffer_size , consumer_ringbuffer_size;
5 int writer_threshold;
6 bool preserve_flag; // whether or not store the simulation data
7

8 /* ... Simulation application initialization code ... */
9 Zipper.init(g, fine_grain_blk_size , producer_ringbuffer_size ,

consumer_ringbuffer_size , writer_threshold , preserve_flag)
10

11 /* Step 2: Simulation application starts */
12 for (long t = 0; t < total_time_steps; ++t) {
13 /* ... Simulation computation code ... */
14 /* Simulation generates a data block: long blk_id, void* blk, size_t

blk_size*/
15 Zipper.write(blk_id, blk, blk_size);
16 }
17

18 /* Step 3: Simulation application clean-up code */

Figure A.1. Use the Zipper Producer Module to integrate with a simulation application.

194

A.2 Consumer Module Interface

Fig. A.2 shows how to use the Zipper consumer module to integrate with an analysis
application. Similar to the above producer procedure, there are three steps. Firstly, after
setup the input parameters for the in-situ workflow, we use fine_grain_blk_size and
consumer_ringbuffer_size to control the consumer ring buffer size. During the second
step, users can call blk = Zipper.read(&blk_id, &blk_size) to get a block of data from
the corresponding simulation process. Finally, the analysis application can call its own
clean-up code.

1 /* Step 1: In-situ workflow setup */
2 Graph g;
3 size_t fine_grain_blk_size;
4 size_t producer_ringbuffer_size , consumer_ringbuffer_size;
5 int writer_threshold;
6 bool preserve_flag;
7

8 /* ... Analysis application initialization code ... */
9 Zipper.init(g, fine_grain_blk_size , producer_ringbuffer_size ,

consumer_ringbuffer_size , writer_threshold , preserve_flag)
10

11 /* Step 2: Analysis application starts */
12 for (long t = 0; t < total_time_steps; ++t) {
13 void* blk;
14 long blk_id
15 size_t blk_size;
16 blk = Zipper.read(&blk_id, &blk_size);
17 long source_rank = ((long*)blk)[0]; // simulation process rank
18 /* ... Analysis computation code ... */
19 }
20 /* Step 3: Analysis application clean-up code */

Figure A.2. Use the Zipper consumer module to integrate with an analysis application.

195

VITA
Yuankun Fu was born in Dalian, Liaoning, Peoples Republic of China in 1988. He

graduated from Northeastern University (Shenyang, China) with B.S. degree in Electronic
and Information Engineering in 2011. Then he graduated from Institute of Computing
Technology, University of Chinese Academy of Sciences (Beijing, China) with M.S. degree in
Computer Architecture in 2014. He is currently a Ph.D. candidate in the School of Computer
Science at Purdue University. His Ph.D. research focuses on accelerating the integration of
in-situ workflow and designing parallel algorithms for memory-bound CFD simulations.

196

PUBLICATIONS
1. Yuankun Fu, Fengguang Song, “Designing a 3D Parallel Memory-Aware Lattice Boltz-

mann Algorithm on Manycore Systems”, Euro-Par’21, Lisbon Portugal, 09/2021.

2. Feng Li, Ranran Chen, Yuankun Fu, Fengguang Song, Yao Liang, Isuru Ranawaka,
Sudhakar Pamidighantam, Daniel Luna, Xu Liang, “Accelerating complex modeling
workflows in CyberWater using on-demand HPC/Cloud resources” (in submission).

3. Slaughter Elliott, Wei Wu, Yuankun Fu, Legend Brandenburg, Nicolai Garcia, Wilhem
Kautz, Emily Marx, Kaleb S. Morris, Qinglei Cao, George Bosilca, Seema Mirchan-
daney, Wonchan Lee, Sean Treichler, Patrick McCormick, Alex Aiken, “Task Bench:
A Parameterized Benchmark for Evaluating Parallel Runtime Performance”, SC’20:
International Conference for High Performance Computing, Networking, Storage and
Analysis, Atlanta, Georgia, 11/2020. [PDF]

4. Yuankun Fu, Feng Li, Fengguang Song, Luoding Zhu, “Designing a Parallel Memory-
Aware Lattice Boltzmann Algorithm on Manycore Systems”, SBAC-PAD’18: 2018
30th International Symposium on Computer Architecture and High Performance Com-
puting, Lyon, France, 09/2018. [PDF]

5. Yuankun Fu, Feng Li, Fengguang Song, Zizhong Chen, “Performance Analysis and
Optimization of In-situ Integration of Simulation with Data Analysis: Zipping Appli-
cations Up”, HPDC’18: Proceedings of the 27th International Symposium on High-
Performance Parallel and Distributed Computing, Tempe, Arizona, 06/2018. [PDF]

6. Yuankun Fu, Fengguang Song, “SDN helps Big-Data to optimize access to data”,
chapter 14, 297-318(504), Big Data and Software Defined Networks, Stevenage, UK,
03/2018. [PDF]

7. Yuankun Fu, Fengguang Song, Luoding Zhu, “Modeling and Implementation of an
Asynchronous Approach to Integrating HPC and Big Data Analysi”, ICCS’16: 2016
International Conference on Computational Science, San Diego, CA, 06/2016. [PDF]

197

https://arxiv.org/pdf/1908.05790.pdf
https://ieeexplore.ieee.org/abstract/document/8645909
https://par.nsf.gov/servlets/purl/10095818
https://digital-library.theiet.org/content/books/10.1049/pbpc015e_ch14
https://www.sciencedirect.com/science/article/pii/S1877050916306482

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	ABSTRACT
	INTRODUCTION
	Motivation and Objectives
	Research Challenges
	Research Overview
	Accelerating the massively parallel in-situ workflow
	Accelerating the lattice Boltzmann method

	Contributions
	Dissertation Organization

	BACKGROUND
	Overview of In-situ Processing
	Categories of In Situ Systems
	State-of-the-art In-Situ Systems

	Overview of Computational Fluid Dynamics
	Computational Fluid Dynamics
	Continuum Governing Equations
	Dimensionless number

	Existing Numerical Methods for Fluid Dynamics
	Conventional CFD Methods
	Particle-Based Methods

	PERFORMANCE ANALYSIS OF WORKFLOWS WITH STATE-OF-THE-ART IN-SITU SYSTEMS
	In-Situ Workflow Benchmark Setup
	Experimental Evaluation
	Performance Analysis of In-Situ Workflow Experiments

	ZIPPER IN-SITU SYSTEM
	Design and Implementation
	System Overview
	Implementation
	Optimization of Concurrent Message and File Data Transfers
	Summary of Zipper's features

	Performance Model

	Related Work
	Experimental Evaluation
	Evaluation of the Performance Model
	Effect of the Concurrent Message and File Transfer Optimization
	Why the concurrent optimization can improve performance?

	Scalability Performance
	The CFD application
	The LAMMPS application

	2D PARALLEL MEMORY-AWARE LBM ON MANYCORE SYSTEMS
	Background of Lattice Boltzmann Method
	The Lattice Boltzmann Equation
	LBM Pros & Cons

	Baseline 2D LBM Algorithms
	2D Original LBM
	2D Fuse LBM
	2D Fuse Tile LBM

	Roofline Analysis of 2D Baseline LBM Algorithms
	Brief Introduction of Roofline Model
	Roofline Analysis of Three 2D LBM algorithms

	Related Works
	Optimization of Data Storage and Streaming Patterns
	Difference with Wavefront Related Algorithms
	Difference with Cache Oblivious Algorithms
	State-of-the-art CFD and LBM Software Packages

	Two-step Memory-aware LBM Algorithm
	Sequential Two-step Memory-aware LBM
	Special Handling of Boundary Conditions
	Parallel Two-step Memory-aware LBM Algorithm
	Handling Thread Safety on Intersection Lines

	k-step Memory-aware LBM Algorithm
	Sequential k-step Memory-aware LBM Algorithm
	Parallel k-step Memory-aware LBM Algorithm
	Special Handling of Boundary Conditions

	Analysis of the 2D LBM Algorithms
	Data Reuse in Original LBM & Fuse LBM
	Data Reuse in k-step Memory-aware LBM

	Experimental Evaluation
	Experiment Setup
	Sequential Experiments and Performance Analysis
	Performance Analysis of Sequential LBM Experiments

	Strong Scalability and Performance Analysis
	Performance Analysis of Parallel LBM Experiments

	Visualization

	3D PARALLEL MEMORY-AWARE LBM ON MANYCORE SYSTEMS
	Introduction
	Baseline 3D LBM Algorithm
	3D Fuse Swap Prism LBM Algorithm

	Sequential 3D Memory-aware LBM Algorithms
	Sequential 3D Prism Memory-aware LBM Algorithm

	Parallel 3D Memory-aware LBM
	Handle Thread Safety on Intersection Layers

	Experimental Evaluation
	Experiment Setup and Verification
	Performance Analysis of Sequential 3D Memory-aware LBM
	Performance of Parallel 3D Memory-aware LBM

	SUMMARY & FUTURE WORK
	REFERENCES
	Zipper Interfaces
	Producer Module Interface
	Consumer Module Interface

	VITA
	PUBLICATIONS

