
DETECTION OF IOT BOTNETS USING DECISION TREES
by

MEGHANA RAGHAVENDRA

A Thesis

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Master of Science in Computer Science

Department of Computer Science

Fort Wayne, Indiana

May 2021

2

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Dr. Zesheng Chen, Chair

Department of Computer Science

Dr. Jin Soung Yoo

Department of Computer Science

Dr. Bin Chen

Department of Electrical and Computer Engineering

Approved by:

Dr. Jin Soung Yoo

3

To my parents,

Raghavendra N and Kalpana N

and to my husband,

Raghunandan Aswathanarayana

4

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to various people without whose support and
encouragement, this work would not have been possible. First, I would like to thank my thesis
advisor Dr. Zesheng Chen for his guidance and encouragement at every stage of this research.
His immense knowledge and experience have helped me in shaping my research and
understanding this field better.

I would like to thank Dr. Jin Soung Yoo and Dr. Bin Chen for being on my thesis defense
committee and providing valuable feedback that helped in improving the quality of this work. I
would like to acknowledge the funding opportunity from 2020 Purdue Fort Wayne Collaborative
Research Grant.

Finally, my appreciation goes out to my family and friends for their encouragement and support
during my studies.

5

TABLE OFCONTENTS

LIST OF TABLES .. 6

LIST OF FIGURES .. 7

LIST OF EQUATIONS .. 8

ABSTRACT .. 9

1. INTRODUCTION .. 10

2. LITERATURE SURVEY ... 14

3. DATASET DESCRIPTION ... 24

4. IMPORTANT FEATURE RANKING ... 27

5. DECISION TREE CLASSIFIER ... 33

6. EVALUATION ... 38

6.1 Experimental Setup ... 38

6.2 Evaluation Metrics .. 38

6.3 Decision Tree Classification Evaluation ... 41

6.3.1 Binary Classification ... 41

6.3.2 Multi-class Classification .. 46

6.3.3 Combined datasets .. 48

6.4 Important Feature Ranking Evaluation ... 52

7 CONCLUSION AND FUTURE WORK ... 55

REFERENCES ... 56

6

LIST OF TABLES

Table 2.1: Past Research on Network Intrusion Detection using Machine Learning 15

Table 3.1: Description of the 9 datasets ... 24

Table 3.2: Features extracted from network traffic for each dataset[6] .. 25

Table 3.3: Features from Stream Aggregation ... 26

Table 4.1: Feature Ranking per dataset ... 28

Table 4.2: Sample of features that are present across different datasets 29

Table 4.3: 9 Most Important Features .. 29

Table 6.1: Runtimes for varying tree depths ... 42

Table 6.2: Comparing Decision Tree with max depth results with Kitsune Baseline 43

Table 6.3: Multi-class Decision Tree with max depth depicting runtime and detection
performance .. 46

Table 6.4: Comparison of Decision Tree methodology performance with other Supervise
learning methods ... 51

Table 6.5: Detection and Runtime performance using 9 most important features with Decision
Trees .. 52

7

LIST OF FIGURES

Figure 4.1: Log-scaled Scatter Plot of feature MI_dir_L0.1_weight against the classes for
Danmini Doorbell dataset ... 30

Figure 4.2: Depicts the use of HH_jit_L0.1_mean as root node for Decision tree classifier in
various datasets .. 31

Figure 5.1: Decision Tree elements explained with an example ... 34

Figure 5.2: Illustration of our Decision Tree algorithm methodology ... 36

Figure 6.1: Confusion matrix with true-positive, true-negative, false-positive and false-negative
values depicted .. 39

Figure 6.2: ROC curve .. 41

Figure 6.3: Decision Tree with varying tree depths for Danmini Doorbell dataset 44

Figure 6.4: Confusion matrix depicts improved detection performance as the depth of Decision
Tree grows for Danmini Doorbell dataset .. 45

Figure 6.5: AUC depicts improved detection performance as the depth of Decision Tree grows
for Danmini Doorbell dataset ... 45

Figure 6.6: Multi-class Decision Tree Classification for Danmini Doorbell with varying tree
depths .. 47

Figure 6.7: Confusion matrix for Multi-class Decision Tree Classification for Danmini Doorbell
with varying tree depths .. 48

Figure 6.8: Decision Tree Classification for combined dataset with varying tree depths 49

Figure 6.9: Confusion matrix for Decision Tree Classification for combined dataset with varying
tree depths ... 50

Figure 6.10: AUC depicts improved detection performance as the depth of Decision Tree grows
for combined dataset ... 50

Figure 6.11: Confusion matrix for datasets using the using 9 most important features with
Decision Trees .. 53

Figure 6.12: Confusion Matrix with evaluation metrics and AUC curve for combined dataset .. 54

8

LIST OF EQUATIONS

Equation 4-1: Feature Importance .. 27

Equation 5-1: Entropy ... 34

Equation 5-2: Gini Index ... 35

Equation 6-1: True-positive, True-Negative, False-Positive and False-Negative Rates formulae
... 39

Equation 6-2: Accuracy ... 40

Equation 6-3: Precision .. 40

Equation 6-4: Recall or Sensitivity ... 40

Equation 6-5: F1-Score ... 40

9

ABSTRACT

International Data Corporation[3] (IDC) data estimates that 152,200 Internet of things (IoT)

devices will be connected to the Internet every minute by the year 2025. This rapid expansion in the

utilization of IoT devices in everyday life leads to an increase in the attack surface for cybercriminals.

IoT devices are frequently compromised and used for the creation of botnets. However, it is difficult to

apply the traditional methods to counteract IoT botnets and thus calls for finding effective and efficient

methods to mitigate such threats. In this work, the network snapshots of IoT traffic infected with two

botnets, i.e., Mirai and Bashlite, are studied. Specifically, the collected datasets include network traffic

from 9 different IoT devices such as baby monitor, doorbells, thermostat, web cameras, and security

cameras. Each dataset consists of 115 stream aggregation feature statistics like weight, mean,

covariance, correlation coefficient, standard deviation, radius, and magnitude with a timeframe decay

factor, along with a class label defining the traffic as benign or anomalous.

The goal of the research is to identify a proper machine learning method that can detect IoT

botnet traffic accurately and in real-time on IoT edge devices with low computation power, in order to

form the first line of defense in an IoT network. The initial step is to identify the most important

features that distinguish between benign and anomalous traffic for IoT devices. Specifically, the Input

Perturbation Ranking algorithm[12] with XGBoost[26]is applied to find the 9 most important features

among the 115 features. These 9 features can be collected in real time and be applied as inputs to any

detection method. Next, a supervised predictive machine learning method, i.e., Decision Trees, is

proposed for faster and accurate detection of botnet traffic. The advantage of using decision trees over

other machine learning methodologies, is that it achieves accurate results with low computation time

and power. Unlike deep learning methodologies, decision trees can provide visual representation of the

decision making and detection process. This can be easily translated into explicit security policies in

the IoT environment. In the experiments conducted, it can be clearly seen that decision trees can detect

anomalous traffic with an accuracy of 99.997% and takes 59 seconds for training and 0.068 seconds for

prediction, which is much faster than the state-of-art deep-learning based detector, i.e., Kitsune[4].

Moreover, our results show that decision trees have an extremely low false positive rate of 0.019%.

Using the 9 most important features, decision trees can further reduce the processing time while

maintaining the accuracy. Hence, decision trees with important features are able to accurately and

efficiently detect IoT botnets in real time and on a low performance edge device such as Raspberry Pi[9].

10

1. INTRODUCTION

Over the last decade there has been a significant increase in the presence of Internet of

Things(IoT) devices in our daily lives. The Internet of things (IoT) describes the network of

physical objects—“things” or objects—that are embedded with sensors, software and other

technologies for the purpose of connecting and exchanging data with other devices and systems

over the Internet[1]. These IoT devices, ranging from security cameras to baby monitors, are

constantly streaming private data throughout the Internet but without strong security protections,

leading to having a large number of devices that can be easily compromised and used as bots in

IoT botnets[2]. This calls for a faster and deeper scrutiny in detecting threats and securing such

devices. IoT botnets are one of the most common attacks against the IoT devices. Attackers

compromise less secure IoT devices and convert them into a network of bots, which are then

used to conduct distributed denial of service (DDoS) attacks on targeted devices or websites[2].

Therefore, it is important and imperative to detect the appearance of IoT botnets in real time and

based on low computation power IoT edge devices.

Recently there has been a rise in applying machine learning algorithms to detect IoT botnet

traffic in the network in real-time. Different machine learning algorithms have been explored to

improve the detection performance[4][5][6][7]. One the most popular methods used is an

unsupervised deep learning method called autoencoders. An autoencoder is a type of artificial

neural network used to learn efficient data codings in an unsupervised manner, where the output

is the same as the input during training to obtain the characteristics of the input data in the

network[8]. Specifically, Kitsune[4], the state-of-art detector against IoT botnets, uses the benign

network as both input and output to the autoencoders during training. When evaluating a packet,

this packet is fed into the input of Kitsune, and if the output is different from the input, the

packet will be labelled as anomalous. Autoencoders have been shown to be able to accurately

detect anomalous traffic in IoT[4,6]. The advantage of using autoencoders is that there is no need

for a previously labelled dataset during the training period. While this is a huge advantage to

detect network traffic attacks, the time and memory requirements to run autoencoders such as

Kitsune are still significant and cannot fit for low computation power IoT edge devices, such as

Raspberry Pi[9,10]. As a result, it is still a research question: what is the proper machine learning

11

method that can detect IoT botnet traffic accurately and at the same time can be run in low

computation power IoT edge devices in real time, in order to form the first line of defense in an

IoT network.

To answer this question, we begin with studying two botnets – MIRAI and BASHLITE.

Specifically, the MIRAI botnet is a collection of IoT bots that attacked several high-profile

targets with massive DDoS attacks[28]. The Mirai botnet came into mainstream during 2016

mainly due to the increased usage of IoT devices, which had insecure default passwords

configured and lacked embedded security measures. The botnet would first target vulnerable IoT

devices, mainly IP cameras, and convert them into bots. Then this network of hundred thousand

bots would be used to send concentrated DDoS attacks on specified targets like game servers, e-

commerce sites, and telecoms. BASHLITE or GAFGYT is a well-known malware that infects

Linux based IoT devices to create bots to launch DDoS attacks[29]. Specifically, it converts linux

based IoT devices into bots by brute forcing their telnet access using default credentials. Once

the bots are created, it is able to launch DDoS attacks with a bandwidth up to 400Gbps. Bashlite

was first discovered in 2015 and is considered a predecessor to Mirai botnets. We obtained the

datasets of both MIRAI and BASHLITE from UC Irvine machine learning repository[27]. The

datasets contain both benign and anomalous network traffic for 9 different IoT devices and

consist of 115 features extracted from network traffic.

Next, we attempt to identify the most important features among 115 features, by using the

important feature ranking (IFR) algorithm[12]. Specifically, we applied the IFR method with the

XGBoost machine learning algorithm, which is a power tool in machine learning[26], to each of 9

datasets (i.e., 9 IoT devices). The IFR method is able to rank input features based on their effects

on the predications of XGBoost in a dataset. We observed that some features ranking high across

all 9 datasets. By applying some simple calculations, we are able to find 9 most important

features that can essentially be used to differentiate between benign and anomalous traffic. As

shown in this thesis, when these 9 most important features are applied to a machine learning, the

processing time, for both training and prediction, is much less than that with the original 115

features. Moreover, the detection accuracy is still very high and is over 99.9%.

12

In this paper, we propose to use decision trees machine learning to detect IoT botnet

attacks in real-time and to use in low computation power IoT edge devices as the first line of

defense. Specifically, we use balanced trained decision tree classifier with varying depths for an

accurate detection of IoT botnets. A decision tree is a predictive supervised machine learning

algorithm that utilizes the input features of a packet to predict if the packet is benign or

anomalous[11]. The advantages of using decision trees over other machine learning methods

include:

• Fast detection time and low computation power - Decision trees require very

low computation power and are very fast with significantly lower training and

prediction times (in milliseconds or seconds). Moreover, comparing with other

machine learning methods, decision trees demand less memory to store data or

model information. Hence, such a machine learning method can be easily run in

IoT edge devices such as Raspberry Pi.

• Security policy making - Decision trees can be used to visually and explicitly

represent decisions and decision-making. In a decision tree, decision nodes

represent the clear conditions to distinguish between benign and anomalous traffic,

which can be easily translated into explicit security policies.

• Tradeoff between accuracy and computation power by varying tree depths–

Decision trees provide the user a flexibility to choose between accuracy and

computational power. The user can choose to have a low tree depth with slightly

lesser accuracy and higher false positive rate, but with significantly better

prediction time and lower computational power. The higher depth the tree is

allowed to grow, the better the accuracy. Therefore, the user can choose between

these two tradeoffs based on his computing needs or performance requirements.

This flexibility is not seen with other machine learning methods, such as

autoencoders, where the user is unable to control how big the autoencoder can grow

or how much computation power will be used.

From our experiments, we have found that the decision tree is able to match (and

sometimes be greater than) the accuracy of unsupervised learning methods, i.e., Kitsune, while

taking much less time for both training and prediction. Specifically, using 115 features for both

13

Kitsune and decision trees with the maximum depth, averagely Kitsune is with 99.459%

accuracy and takes 602 seconds for training and 3454 seconds for prediction, whereas decision

tree is with 99.997% accuracy and takes 59 seconds for training and 0.068 seconds for prediction.

Our results show that decision trees have a lower false positive rate as compared to Kitsune.

Moreover, we demonstrate the tradeoff between accuracy and computation power by varying the

depth of the decision trees and point out that the decision trees with 9 most important features

can further reduce processing time while keeping the similar decision accuracy. Furthermore, we

show that decision trees can be easily extended to classify among benign traffic, Mirai botnet

traffic and Bashlite botnet traffic.

The rest of the paper is divided into the following sections: Section 2 discusses the

literature survey conducted in the domain of anomaly detection, Section 3 provides a detailed

look into our datasets, whereas Section 4 provides a description of how the important feature

ranking works, Section 5 details the working of our methodology using the decision tree

algorithm and Section 6 looks into the experiment results of our algorithms and compares them

to an established baseline (i.e., Kitsune). Finally, Section 7 presents our conclusion and discusses

the future work.

14

2. LITERATURE SURVEY

Developing new network intrusion detection techniques has always been a dynamic and

predominant research field. Due to the advancement of technology, there is a constant rise in the

number and types of network attacks. Human detection methodologies have long since been

made obsolete due to the sheer volume of network attacks seen every day. Hence developing

new machine-based NIDS (network intrusion detection systems) has become a very relevant

research area. Despite the exceptional progress and a large body of work, there are still several

opportunities to improve the state-of-the-art in detecting and thwarting network-based

attacks[13][14]. Usage of machine learning for implementing NIDSs has been comprehensively

researched in the past[15] and they are usually categorized based on the underlying computational

methodologies and the detection modes.

There are two types of network intrusion detection techniques, signature based and

anomaly-based techniques. Signature based techniques, while being efficient due to frequent

updating, are unable to detect new attacks. The focus of this paper is therefore going to be on

anomaly-based detection techniques.

One of the highly researched computation methodologies for network intrusion detection

is the anomaly detection technique. This technique has been thoroughly researched by various

researchers and each have contributed to improve the accuracy of these detections [4][5][6][7].

Anomaly detection generally conforms to the following three steps[15]:

• Parameterization Stage: Instances of the target system are represented in a well-defined

pre-determined form.

• Training Stage: The normal behavior of the target system is illustrated in the form of a

model. See Table 2.1 for the different types of models that can be built.

• Detection Stage: The parameters from stage 1 are compared with the generated model

and any deviations from the normal behavior (usually above a certain threshold level) is

tagged as anomalous behavior.

15

Table 2.1 further summarizes the previous research conducted on the anomaly detection of

network intrusions.

Table 2.1: Past Research on Network Intrusion Detection using Machine Learning

Paper Name Detection
Techniques

ML/DL technique
used

Detection
Mode

Type of
Traffic

detected
Dataset Used

Kitsune: An Ensemble of
Autoencoders for Online
Network Intrusion
Detection[4]

Anomaly
detection

Autoencoder, ANN
based unsupervised
learning

Online Network attacks Custom dataset

ZeroWall: Detecting
Zero Day Web Attacks
through Encoder-
Decoder Recurrent
Neural Networks[5]

Anomaly
detection

Encoder-decoder
RNN, unsupervised
learning

Online
detection,

Offline
periodic

retraining

Web attacks,
Zero-day web

attacks
Custom dataset

N-BaIoT—Network
Based Detection of IoT
Botnet Attacks Using
Deep Autoencoders[6]

Anomaly
detection Autoencoder Offline

IoT
traffic/botnet

attacks
Custom dataset

Evaluating and
Improving Adversarial
Robustness
of Machine Learning
Based Network Intrusion
Detectors[16]

Evasive attack
methodology GAN Online Network attacks Kitsune dataset,

CICIDS2017

Unsupervised Anomaly
Detection via Variational
Autoencoder for
Seasonal KPIs in Web
Applications[17]

Anomaly
detection

Variational
Autoencoder Offline

Key
performance
indicators of

Web
applications

Custom dataset

Robust and
Unsupervised KPI
Anomaly Detection
Based on Conditional
Variational
Autoencoder[18]

Anomaly
detection

Conditional
Variational
Autoencoder

Offline

Key
performance
indicators of

Web
applications

Custom dataset

16

A Deep Learning
Approach for Network
Intrusion Detection
System[7]

Anomaly
detection

Self-taught
learning, Sparse
autoencoder

Offline Network attacks NSL-KDD
dataset

Deep Autoencoding
Gaussian Mixture Model
for Unsupervised
Anomaly Detection[19]

Anomaly
detection Autoencoders Offline Network attacks KDDCUP

dataset

Machine Learning DDoS
Detection for Consumer
Internet of Things
Devices[20]

Anomaly
detection

Random forest,
KNN, SVM,
decision tree, ANN

Offline IoT botnet
attacks Custom dataset

A Deep Learning
Approach to Network
Intrusion Detection[21]

Anomaly
detection

Stacked non-
symmetric deep
autoencoder and
Random forest

Offline Network attacks KDDCUP,
NSL-KDD

Sequence Aggregation
Rules for Anomaly
Detection in Computer
Network Traffic[22]

Anomaly
detection LSTM, RNN Offline Network attacks CICIDS2017

Towards an Effective
Zero Day Attack
Detection Using Outlier
Based Deep Learning
Techniques[23]

Anomaly
detection Autoencoder, ANN Offline

Network
attacks, zero-
day attacks

CICIDS2017

The key aspects in choosing the detection methodologies are based on the accuracy of the

methodology and the cost involved in running the entire operation. Due to abundance of resource

and bandwidth availability, we do not delve further into the cost aspect in this paper.

However, accuracy of the detection methodology is an important factor while selecting and

implementing network intrusion detection techniques.

Machine learning gives a system the ability to evolve its model as new information is

processed. Hence usage of machine learning for anomaly detection[4][5][6][7] is a popular technique.

17

In the N-BaIoT and Kitsune papers[4][6], we see that machine learning techniques such as

autoencoders are used to detect anomalous behavior in the IoT (Internet of Things) network.

In [4] the authors have proposed the use of ensemble autoencoders to differentiate between

normal and anomalous behavior without supervision in an efficient manner. The main difference

between Kitsune and its predecessors that also use autoencoders is that this model is able to do

the detection while online with performance that is comparable to offline detections. The authors

emphasize the lightweight and scalability of the Kitsune models over other similar models[24].

Network intrusion detection systems can also be divided based on the mode in which they

operate: online or offline modes. Most of the detection methodologies explored work in offline

mode[6][7][19][20][21] and perform with greater efficiency as compared to online detection systems.

The online detection system like Kitsune[4] and ZeroWall[5] show that it is possible to have

efficient online detection systems. The main advantage of an offline system is that they are able

to run over the training data in batches many times before coming up with an efficient model and

do not have the constraint of runtime memory. But the drawback of offline system is that they

require frequent updating of their training data for the model to remain relevant when new

attacks are being discovered constantly. However, the online detection system has a constant

supply of new data that is naturally able to overcome the above problem, but they run into the

challenges of real-time processing with neural networks which can lead to a reduction in the

runtime efficiency. While offline systems are evaluated based on their detection accuracy, online

systems have to show efficiency in both detection performance and runtime performance which

makes it an interesting and complex challenge.

Looking at Table 2.1, we see that most of the papers tend to use custom datasets while

testing the effectiveness of their detection methodologies. Usage of custom datasets instead of

standardized datasets leads to the absence of an established baseline. Benchmark datasets like

KDDCUP[39], NSL-KDD[40], CICIDS2017[41] have been collected while considering several

factors like findability, accessibility, interoperability and reusability[42]. These datasets have been

collected and compiled specifically for the purpose of anomaly detection and have been

repeatedly used by various research leading to a comprehensive understanding of its features and

characteristics. Using such datasets to test the efficiency of new anomaly detection techniques

18

helps the reader to get a better understanding of the performance. Usage of custom dataset

require the reader to first understand the behavior and characteristics of the dataset and then

understand how efficient the algorithm is on that dataset. This, usually, is a tedious process due

to the large amounts of network traffic collected and can also skew the performance results of the

detection technique. In this paper we are focusing on the Kitsune and N-BaIoT papers, both of

which use a custom dataset for training and testing purposes.

The papers chosen for the literature survey use two main types of datasets for anomaly

detection – IoT traffic and normal Network traffic. Different preprocessing and machine

learning techniques are required to detect attacks in these datasets. Looking into a detailed view

of each of the papers, we can see that most of the papers are using autoencoders for the detection

purpose. This is due to the ease with which autoencoders are able to extract features and build

more accurate models.

First let us look at a paper that compares the traditional machine learning algorithms and the

neural networks and see how the accuracies vary.

Machine Learning DDoS Detection for Consumer Internet of Things Devices paper[20]

talks about anomaly detection for IoT specific network behavior using different machine learning

methods – K-nearest neighbors, Random Forest, Decision tree, Support Vector Machines and

Neural network with a 4 layer fully connected feed forward layers. The purpose of the paper is to

detect DDoS (Distributed Denial of Service) attacks with high accuracy and low cost for protocol

agnostic and flow based IoT traffic. The accuracy results for the different machine algorithms

vary between 0.991 to 0.999. The important factor to note here is that due to the flooding nature

of DoS packets, there are attacks packets 15 times more than normal packets. This would mean

that even if the algorithms predicted all packets to be malicious, it would result in a baseline

accuracy of 0.93. The main contribution of the paper depicts the usage of IoT specific features.

Using Gini score as a metric to differentiate the stateful and stateless features, the author shows

that usage of a few stateless features along with the IoT specific features increases the accuracy

and f1 score of detection by 0.5. The authors identify the necessity to study results of the study

19

using a more balanced distribution of normal and attack traffic, larger dataset, additional features

and usage of complex machine learning techniques.

Now let us look into the papers that use autoencoders in varying ways to detect IoT and

traditional network attacks.

Kitsune[4] is an unsupervised online network intrusion detection system that uses an

ensemble of autoencoders to detect anomalies. The authors of this paper propose their core

algorithm KitNet that works in tandem with feature extractors and mappers to detect network

attacks with performance equal to that of offline detectors. The paper[4] compares the

performance of Kitsune with other standardized algorithms like Suricata (signature based

detection), Isolation Forest[35] and Gaussian Mixture Models[36](anomaly based batch detection),

Incremental Gaussian Mixture Model[37] and pcStream[38](anomaly based online detection) for

nine different types of network attacks that include OS Scan, Fuzzing, Video Injection, ARP

MiTM, Active Wiretap, SSDP Flood, SYN DoS, SSL Renegotiation and Mirai botnet. The

Kitsune outperforms the online anomaly detection algorithms and holds its own against the

offline anomaly detection algorithm as well. The greatest advantage of Kitsune is its runtime

performance that is enhanced by using ensemble of autoencoders instead of a single encoder that

reduces the number of operations used to process an instance. The paper also clearly shows the

tradeoff between the runtime performance and detection performance for the Kitsune model.

Depending on the user’s requirement, the value of m (user defined parameter) can be adjusted to

increase the detection performance or the runtime performance. Though the Kitsune solution

looks superior to its predecessors, it is not without drawbacks. One of the main drawbacks of the

Kitsune algorithm is its susceptibility to adversarial attacks. Since the algorithm assumes all the

input network traffic to be benign during the training mode, it is possible for a compromised

system to be able to train the algorithm to acknowledge the attacks as normal behavior. Another

drawback is that a Denial-of-Service attack on the Feature Extractor can overwhelm the system

to store a large number of instances and hence destabilize the NIDS. The authors of the paper[4]

run the algorithms on a custom dataset that they have created. While this is acceptable, it is not

easy to baseline the evaluation criteria for its performance. It would have been more useful and

relevant if the performance statistics were based on standard datasets.

20

A Deep Learning Approach for Network Intrusion Detection System[7] paper proposes a

deep learning-based approach called Self Taught Learning (STL) on NSL-KDD benchmark

dataset for network intrusion. The STL consists of using a sparse autoencoder for unsupervised

learning of the features and this learnt representation is used for classification which is done

using SoftMax regression. The main advantage of this paper is that it is using a benchmark

dataset. This evaluates the performance of the STL against traditional SoftMax regression

algorithm with STL showing better performance for 2-class than 5 and 23-class detections. The

authors propose usage of more advanced techniques in place of the sparse autoencoder like

Stacked Autoencoder for unsupervised feature learning, and NB-Tree, Random Tree, or J48 for

classification. The authors plan to implement a real-time version of the same along with on-the-

go feature learning on raw network traffic headers. The disadvantage of this model is that it

performs well only for datasets with a low number of classes. Higher the number of classes, the

performance of the model is worse than the traditional SoftMax regression.

Deep Autoencoding Gaussian Mixture Model[19] (DAGMM) for unsupervised anomaly

detection utilizes a deep autoencoder that performs dimensionality reduction for input samples,

prepares their low dimensional representations from both the reduced space and the

reconstruction error features and feeds these representations into the next stage which is the

estimation network that predicts the likelihood within the GMM framework. This paper also

utilizes a benchmark dataset KDDCUP for estimating the model’s performance. The authors

have used traditional machine learning algorithms like support vector machines, Deep structured

energy-based model and Deep clustering network model along with variations of DAGMM

model. The authors have considered precision, recall and F1 score for the accuracy metrics with

the DAGMM model showing high precision and F1 score as compared to the other models. The

DAGMM shows 14% increase in performance compared to the previous models on the

benchmark datasets. Usage of KDDCUP dataset by the authors really highlights the

improvements of their models with other models using the same dataset, hence making it easy

for other researchers to build upon it. Another advantage of the model is that it is not specific to

certain datasets or traffic. The authors have shown that the model works with network intrusion

datasets, arrhythmia and thyroid datasets.

21

A Deep Learning Approach to Network Intrusion Detection[21] proposes an unsupervised

feature learning with non-symmetric data dimensionality reduction technique using autoencoders.

This helps in providing better classification results using the random forest classifier. The main

goal of this paper is to utilize deep and shallow learning techniques to improve detection

accuracy while reducing training time and analytical overheads. Usage of NSS-KDD benchmark

dataset for evaluation highlights the improvements made by this model over the existing

approaches. The authors use a variety of network attacks like DoS, Probe, R2L and U2R for the

detection. The model shows promising improvements for granular and detailed datasets while

decreasing the training time by 78% when compared to Deep Belief Networks (DBN). The

future work identified by the authors is an improvement to the model to handle zero day attacks.

The strength of the paper is that it is able to significantly reduce the training time while

increasing the accuracy of anomaly detection. Another important factor is that the current

approach reduces the false alarm rate when compared to DBNs. The only drawback is that the

method works well for detailed and large datasets but performs moderately for simple datasets

with low number of classes.

N-BaIoT—Network Based Detection of IoT Botnet Attacks Using Deep Autoencoders[6]

proposes an anomaly detection methodology that extracts behavior snapshots of the network and

utilizes deep autoencoders to detect the anomalous IoT traffic. The authors compare the results

of their methodology against One class SVM, Local Outlier Factor and Isolation Forest showing

that their methodology achieves a better true positive rate, decreased false positive rate and

utilizes less time for detection as compared to the traditional approaches. The advantage of this

paper is that it demonstrates a 100% true positive rate using its model and an almost 0% false

positive rate for both the BASHLITE and MIRAI IoT attacks. The disadvantage is that the paper

utilizes a custom dataset procured by the authors which reduces the ability to compare with

previously estimated accuracy results. The authors plan to evaluate transfer learning techniques

for their future works.

After looking into papers that utilize autoencoders and unsupervised learning for anomaly

detection, let us now focus on the usage of new technologies like RNN (Recurrent Neural

Networks), LTSM-RNN, etc.

22

ZeroWall: Detecting Zero Day Web Attacks through Encoder-Decoder Recurrent Neural

Networks[5] is an unsupervised approach for the detection of Zero-day Web attacks hidden in

Web requests. The paper proposes a methodology that utilizes the encoder-decoder RNN to

capture the features of benign requests and prepare a self-translation model. When an attack

request passes through this model, it cannot be translated back to the original benign request and

hence can be declared as an attack. This approach successfully detects the zero-day attacks

missed by traditional Web Application Firewalls (WAF) and outperforms it by achieving a high

F1 score of 98%. The strength of this approach is that it can be used as a augmentation on top of

the existing WAFs and is immediately usable in real world scenarios. It is also the first paper to

translate the usage of encoder-decoder RNNs for detection of zero-day web attacks. Another

advantage of this paper is that it utilizes real world traffic. While the paper achieves such great

results, it is not without drawbacks. One of the drawbacks is that this approach focuses on

contextual and collective anomaly detection which is unable to be used for evaluation of this

paper’s model. Another drawback is that too small a dataset penalizes the performance metrics of

the model. Since the model is used in real world scenario and is unsupervised, it is susceptible to

poisoning attacks. Future work could be focused on evading such poisoning attacks.

Sequence Aggregation Rules for Anomaly Detection in Computer Network Traffic[22]

paper talks about sequence modeling using long short-term memory recurrent neural networks

(LSTM-RNN) on the CICISS2017 benchmark dataset. The paper borrows the concept from

natural language processing literature and applies it to anomaly detection. The paper uses a

simple frequency-based method of outlier detection for its baseline. The paper shows that in

most cases, the simple frequency-based method works better than the LSTM methodology. This

could be because the LSTM methods are more suited to capturing the beginning of an attack as

compared to detecting all the flows related to the attacks. The paper claims that the methodology

they have proposed is a steppingstone for further research in the field. The drawbacks of the

paper are that it neither identifies the good features to be used nor the best aggregated sequences

that could lead to improved detection accuracy.

We have looked into various works related to the machine learning techniques that can be

used for anomaly detection. Let us now delve into the feature selection mechanism for such

23

datasets. Feature selection is the process of reducing the number of input features to a machine

learning algorithm such that the model developed is using the most important features in its

decision-making process. Such methods help in reducing computation cost and sometime can

enable better performance. Supervised feature selection methodologies can be divided into 3

types - Filter methods, Wrapper methods and Embedded methods[43].

Filter models predict based on measures of the overall traits of the training data such as

distance, consistency, dependency, information, and correlation. Relief [45], Fisher score [46] and

Information Gain based methods[47] are among the most representative algorithms of the filter

model[44]. Wrapper selection methods utilize a classification algorithm during the feature

evaluation step that leads to better performance . Filter methods are independent of classification

algorithms and hence are computationally less intensive but perform much poorer compared to

wrapper methodologies. The embedded model was proposed to bridge the above gap between the

filter and wrapper models. It includes the statistical criteria, same as the filter model to select

feature subsets and then chooses the subset with highest classification accuracy similar to

wrapper models. Hence the embedded model achieves both high performance accuracy and low

computation time[44].

24

3. DATASET DESCRIPTION

The dataset used in our paper, consists of 115 features extracted from raw network traffic

data flowing through 9 different IoT devices[27]. The dataset consists of benign traffic and

anomalous MIRAI and BASHLITE traffic packets. The benign traffic is assigned the class 0

while malicious traffic is assigned the class 1. This leads to the decision tree to conduct a binary

classification on our datasets. In the case of multi class decision tree classification, we have

assigned class 0 for benign traffic, class 1 for MIRAI botnet traffic and class 2 for BASHLITE

botnet traffic.

The 9 datasets are collected from different IoT devices like webcam, doorbells, thermostat,

security cameras and baby monitor. Each device has its own functionality and different network

traffic pattern which are extracted into 23 features from 5 different time windows of the most

recent 100ms, 500ms, 1.5sec, 10sec and 1minute[6]. The features are extracted from individual

network packets with packets being considered separately(flow context not present). The datasets

are described in Table 3.1 in more detail.

Table 3.1: Description of the 9 datasets

No. Dataset Name Dataset Type Benign
Samples

Malicious
Samples

Mirai
Botnet Data

Bashlite
Botnet Data

1 Danmini Doorbell Doorbell 49548 968750 P P

2 Ecobee Thermostat Thermostat 13113 822763 P P

3 Ennio Doorbell Doorbell 39100 316400 X P

4 Philips B120N10 Baby Monitor Baby Monitor 175240 923437 P P

5 Provision PT737E Security Camera Security Camera 62154 766106 P P

6 Provision PT838 Security Camera Security Camera 98514 738377 P P

7 Samsung SNH1011N Webcam Webcam 52150 323072 X P

8 SimpleHome XCS71002WHT Security Camera Security Camera 46585 816471 P P

9 SimpleHome XCS71003WHT Security Camera Security Camera 19528 831298 P P

25

The 23 features that are extracted from network traffic are aggregated as listed below in Table

3.2.

Table 3.2: Features extracted from network traffic for each dataset[6]

The aggregation methods[27] used for extracting these features are explained in detail below:

• Mean - Average of the size of the packets with particular Source IP, Source MAC,

Channel and socket. It is also used to calculate the average of the packet jitter over a

particular channel.

• Variance - It measures how spread out the packet size and packet jitter values are. It is

calculated as average squared deviation of each number from the mean of a dataset.

• Magnitude - It measures the root squared sum of the means of the inbound and outbound

packet streams.

• Radius - It calculates the root squared sum of the variances of the inbound and outbound

packet streams.

• Covariance - It computes the mean value of the product of the deviations of the inbound

and outbound packet streams from their respective means.

• Correlation coefficient - It calculates the linear correlation between the inbound and

outbound packet streams.

• Weight - It computes the number of elements observed in the recent time window.

26

Looking into the dataset, we can see that each feature is named using certain symbols like

H, HH, MI etc., along with numbers and the aggregation methodology. The dataset has been

consolidated such that each network feature extracted and aggregated is named in the format of

“FeatureName_LTimeWindow_AggregationMethod”. The Table 3.3 below shows the meaning

of each feature and their symbolization[6]. The time windows are 100ms(L0.01), 500ms(L0.1),

1.5sec(L1), 10sec(L3) and 1min(L5).

Table 3.3: Features from Stream Aggregation

Feature Name Packet Detail Meaning Example

H Source IP
Statistical summary of the recent traffic from
this packet's host IP

H_L0.01_variance

MI_dir Source MAC-IP
Statistical summary of the recent traffic from
this packet's host MAC-IP

MI_dir_L1_weight

HH Channel
Statistical summary of the recent traffic
going from this packet's host (Source IP) to
the packet's destination host (Destination IP).

HH_jit_L5_mean

HH_jit Channel Jitter
Statistical summary of the jitter of the traffic
going from this packet's host (Source IP) to
the packet's destination host (Destination IP).

HH_L3_magnitude

HpHp Socket
Statistical summary of the recent traffic
going from this packet's host and port (IP) to
the packet's destination host and port.

HpHp_L5_covariance

27

4. IMPORTANT FEATURE RANKING

For supervised learning predictive models, finding important features is essential in making

accurate predictions. For classification tree-based models, the important features can be

determined by evaluating the number and weight of splits, the given feature was involved in[12].

Using important feature ranking can result in higher accuracy while reducing the computation

time.

For our datasets, we are able to determine the best and important features to differentiate

between normal and anomalous traffic by using the Input Perturbation Ranking (IPR) method

with XGBoost algorithm. Once the IPR algorithm is run for each dataset, we rank the most

important and common features across all the 9 datasets to find the 9 most important features.

These features help us in understanding how the anomalous traffic deviates from the normal

behavior. They can also be used to reduce the computation power for creating a decision tree

classifier with just 9 features instead of 115.

The following steps are followed to find the 9 most important features (depicted in Figure 4.4):

• Input Perturbation Ranking - IPR is a feature importance algorithm that calculates

the loss of a model when each of the input features to the model is perturbed by the

algorithm[12]. It means that if an important feature value is changed, then the model

suffers a very visible change as well. When a feature is perturbed, it becomes useless

and is equivalent to be removed from the evaluation. Thus, if a feature is more

important, such perturbation will lead to more losses and less accurate results for the

model. The feature importance ranking is displayed to user in the form of a table

consisting of the feature name, its importance value and the error or loss. The higher

the loss, more important is the feature. Each feature has an importance value which is

calculated using the formula:

𝐹𝑒𝑎𝑡𝑢𝑟𝑒	𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 = 	
𝐹𝑒𝑎𝑡𝑢𝑟𝑒	𝐿𝑜𝑠𝑠
	𝑀𝑎𝑥𝑖𝑚𝑢𝑚	𝐿𝑜𝑠𝑠

Equation 4-1: Feature Importance

28

Higher the importance value, more important is the feature. We fit all our datasets

using the XGBoost algorithm[26] as it leverages the advantages of random forest

model and gradient boosting to strengthen the model and provide prediction errors ten

times lower than random forest models. XGBoost also has a better performance time

when compared to the traditional random forest approach and hence it is able to

process larger sized datasets faster and more accurately. Once we have the trained

model, we predict the target probabilities and perturb the features. By running the IPR

on each of these datasets, we are able to collect 30 most important features based on

the importance values from the 115 features available.

• Feature Ranking per dataset - Each of the important features retrieved in the

previous step are ranked from 1 to 30 with 1 being the most important and 30 being

the least, as shown in Table 4.1.

Table 4.1: Feature Ranking per dataset

• Feature Ranking Aggregation across datasets - After collecting the most important

30 features for all 9 datasets, we filter the features that are common across all the 9

datasets (shown in Table 4.2). Once these common features have been filtered, we

add the ranking of this feature across the 9 datasets and get a final ranking score. For

example, if a feature A, has rank 1 in dataset 1, rank 4 in dataset 2 and so on, we add

the rank number to get an aggregated rank score.

29

Table 4.2: Sample of features that are present across different datasets

• Most Important Feature Ranking - After aggregating the rank score for all the

common features across 9 datasets, we rank their importance based on the lowest

ranking score. The one with the lowest ranking score is the most important feature.

Using the above defined methodology, we have resulted in retrieving 9 most important features

as shown in Table 4.3.

Table 4.3: 9 Most Important Features

The 3 most important features are:

• HH_jit_L5_mean - This feature defines the average of the packet jitter between the

packet’s host and destination over a particular channel in the time window of 1

minute (L5). Looking into the datasets and the values this feature holds, we can see

that for normal traffic, the jitter is a nominal amount while for anomalous traffic, the

30

jitter tends to either be very high (in millions) or extremely low (between 0 and 1).

This feature helps in understanding how packet jitter variations are able to influence

the distinction of traffic as normal or anomalous.

• MI_dir_L0.1_weight -It describes the weight of the packets seen during the time

window of 500ms(L0.1) originating from a particular Source MAC-IP. Weight

describes how many of such packets were observed during a particular time period.

This feature when plotted against the classes (Figure 4.1), shows that for anomalous

values, it is very high whereas for normal values it tends to cluster around 0 to 2 (log

scaled). The high weight for anomalous traffic is in line with the generic botnet

activity of producing high volume of packets. Hence this is an important feature in

distinguishing between normal and anomalous traffic.

Figure 4.1: Log-scaled Scatter Plot of feature MI_dir_L0.1_weight against the classes for

Danmini Doorbell dataset

• HH_jit_L0.01_mean - This feature defines the average of the packet jitter between

the packet’s host and destination over a particular channel in the time window of

100ms(L0.01). This feature is used as the root node of the decision trees for 5 of our

datasets showing the importance of this feature. The decision tree for Danmini

31

Doorbell datasets as shown in figure 4.2, classifies all samples having values below

773.419 as normal and anything above as anomalous.

Figure 4.2: Depicts the use of HH_jit_L0.1_mean as root node for Decision tree classifier in
various datasets

From the 9 datasets, we separate the 9 features for each dataset and run decision tree

classifier on each of them. The performance accuracy is over 99.9% for all datasets and the

processing times are in the form of a few seconds. This shows that the above 9 features can be

used as the main features to detect any malicious traffic with very high accuracy and very small

32

processing time. This helps in detecting important features that are common across all datasets

helping us to understand network features that might be a common factor in differentiating

between normal and anomalous IoT traffic.

33

5. DECISION TREE CLASSIFIER

The model we are proposing in this thesis is based on the usage of Decision Trees to detect

botnet traffic in various different types of IoT devices. We are using Decision trees which is a

supervised predictive model as they take less computation time while providing accurate results

when compared to other supervised or unsupervised machine learning methods. The usage of

minimal computation resources and time helps in using decision trees on IoT edge devices as a

first line of defense. The decision tree model also provides very clear and specific rules based on

which the model classifies the samples as normal or anomalous. These clear and concise rules

can be easily converted into security policies and applied on network security devices to prevent

malicious traffic from infiltrating the network. Another advantage that decision tree provides

over unsupervised learning methods like autoencoders is that we can have a tradeoff between

computation time and power with accuracy. By varying the height to which a decision tree model

can grow, the user can have a tradeoff between the computation time and power with accuracy.

The higher the tree grows, the better the accuracy but it requires more computation time and

power. In the case of small IoT devices such as doorbells or thermostats with very low

computational power, running our methodology with a low tree depth can help with detection

without greatly affecting its functionality. In devices like security cameras that come with more

powerful processors, the tree depth can be increased proportionally to ensure more efficient

detection performance. Hence, the user is given the flexibility to choose according to the needs

of the network environment. This flexibility is not readily controllable with other unsupervised

machine learning algorithms like autoencoders.

Decision tree is a predictive supervised machine learning algorithm that helps in

classification or regression problems. The decision tree algorithm used for classification, creates

a training model that is able to predict the class of target variable by learning simple rules from a

prior training dataset. The decision tree simulates the tree structure and has the following

terminology:

• Root Node: The first node at the top of the decision tree contains the entire sample

and further gets divided into two (binary classification) or more (multi class

classification) sub-nodes.

34

• Decision Nodes: When the sub-node is split into further sub-nodes, the parent sub-

node is called the decision node which contains the rule based on which the

classification happened.

• Leaf Node: The nodes at the bottom of the tree structure upon which further division

is not possible.

• Tree depth: This specifies the number of levels a decision tree can have from the root

node to the leaf node.

The above-mentioned elements of the decision tree are explained with an example in Figure 5.1.

Figure 5.1: Decision Tree elements explained with an example

The crux of the decision tree split depends on choosing the feature that best separates the noise

from the information to differentiate between classes. To measure the informativeness of a

feature and use it as the decision node there are two methods - Entropy and Gini Index.

• Entropy - It is used to measure the impurity or the randomness of a dataset. Lower the

entropy value, better is the discrimination capability of the algorithm.

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = 	−	7 𝑝! ∗ log"(𝑝!)
!

Equation 5-1: Entropy
 where,

 pi is the probability of a sample being classified to a particular class i∈{1…n}.

35

• Gini Index - The Gini Index[30]is used to decide the important features based on which

the tree will be split into sub-nodes. The lower down the tree we go, the better the

classification. Gini index measures the probability of a sample being classified in the

wrong class. The formula for Gini index is:

𝐺𝑖𝑛𝑖	𝐼𝑛𝑑𝑒𝑥 = 1 −	7(𝑝!)"
#

!$%

Equation 5-2: Gini Index
where,

 pi is the probability of a sample being classified to a particular class i∈{1…n}.

 n is the number of classes.

The Gini index varies between 0 and 1-1/n, with 0 showing that all samples belong to the

class they were classified into and 1-1/n shows that the samples are evenly distributed

between the classes. Hence, a low value of Gini index in the final nodes of the tree imply

greater discrimination. In our methodology, we have used the Gini Index as a measure for

splitting the decision tree nodes.

The first step in our proposed methodology (Figure 5.2) is to prepare the datasets into

training and testing sets with an 80-20 distribution. Each training dataset is going to be run

through the decision tree classifier and a model is generated. Since our datasets contain a higher

number of anomalous traffic as compared to normal traffic, using plain decision trees can make

the trees very skewed giving inaccurate results. Hence, we are going to use weighted decision

trees to train the model. By using class weights that are inversely proportional to the length of a

class sample, we can make sure that the tree is going to be balanced and impartial.

36

Figure 5.2: Illustration of our Decision Tree algorithm methodology

The training datasets are run with the maximum tree depth, meaning that the decision tree is

allowed to grow to its full length, till no more nodes can be split into sub-nodes. Next, we are

going to vary the tree depths and evaluate the tradeoff between performance and processing time.

Preliminary analysis for the values of tree depth shows that a depth of 3 has results that are

comparable to the maximum depth tree and hence we limit the experiments to using 1,2,3 and

maximum depth for the tree depth values. For each of the decision training model that are built,

we are going to calculate the total time taken for training.

The second step is to run the respective testing datasets over the trained model to predict the

classes. The prediction times are calculated as well and combined with the training time to find

the total time taken to run samples through our methodology. This will help in comparing the

processing efficiency of our methodology over the baseline. Along with carrying out binary

classification where benign traffic is assigned class 0 and anomalous traffic is assigned class 1,

37

we also carry out multi class classification by assigning benign traffic as class 0, Mirai botnet

malicious traffic as class 1 and Bashlite botnet malicious traffic as class 2. The advantage of

using decision trees is that, on one model we can do binary or multi class classification whereas

Kitsune baseline would require two different models to be able to differentiate between benign

and Mirai traffic and benign and Bashlite traffic. We also are able to combine the datasets

together to form one dataset and run it through the decision tree classifier. This is not possible

using autoencoders as combining the datasets will remove the patterns of specific devices and

hence make the autoencoder model unusable.

Finally, for calculating and measuring the performance of our method, we use metrics such

as accuracy, precision, recall, F1-measure, true and false positive rates. Our methodology

provides an average of 99% accuracy for all 9 datasets. We will discuss more of these results in

Section 6.

38

6. EVALUATION

In this section, we are going to look at the evaluation of our methodology in terms of packet

detection and runtime performance. We are going to look at the experimental setup and then

discuss the results generated.

6.1 Experimental Setup

In our evaluations, we compare our methodology with the Kitsune algorithm and other

supervised learning methods. Though Kitsune is an unsupervised online learning methodology,

we compare our methodology with it in an effort to show the difference in runtime while

maintaining accuracy. Decision Tree which is a supervised learning method has a detection

performance similar to an unsupervised deep learning method with significantly lesser runtime.

Comparing with Kitsune shows using a simpler methodology as a first line of defense is more

efficient than using a computation heavy methodology especially in case of IoT edge devices.

We use the same set of training and testing datasets for both methodologies so that the

baseline is accurate and impartial. Since Kitsune is an unsupervised machine learning

methodology, the only change in the training dataset would be to remove the malicious samples.

Table 3.1 describes the benign and malicious sample count for each of the datasets used in the

experiment.

6.2 Evaluation Metrics

The output of the decision tree classification are the predicted class values which can be

compared against the actual class values and the performance of our algorithm can be measured.

The detection performance can be measured using the True-Positive(TP), True-Negative(TN),

False-Positive(FP) and False-Negative(FN) rates. The TP, TN, FP and FN values can be found

using a confusion matrix developed by comparing the actual values with the predicted values as

shown in Figure.

39

Figure 6.1: Confusion matrix with true-positive, true-negative, false-positive and false-negative
values depicted

Using the TP, TN, FP and FN values , we can find their respective rates using formulae

shown below.

𝑇𝑃𝑅 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝑇𝑁𝑅 = 	
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

𝐹𝑃𝑅 = 		
𝐹𝑃

𝑇𝑁 + 𝐹𝑃

𝐹𝑁𝑅 = 	
𝐹𝑁

𝑇𝑃 + 𝐹𝑁

Equation 6-1: True-positive, True-Negative, False-Positive and False-Negative Rates formulae

These measures help us to understand how many anomalous packets were detected accurately

and how many were mis-classified. The false-positive rate depicts the probability of a true

negative value, being classified as a positive value. It is very important to have a low false-

positive rate for any anomaly detection algorithm so that false alarms can be avoided.

We also use metrics such as accuracy, precision, recall and f1-score to understand how well

the anomaly detection happens.

• Accuracy - calculates the ratio of correctly predicted samples to the total number of

samples. It is defined as:

40

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Equation 6-2: Accuracy

• Precision - measures how many values are accurately predicted as positive out of the

total positively predicted values. It is defined by the following formula:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Equation 6-3: Precision

• Recall or Sensitivity - also known as true-positive rate (TPR) specifies how many

samples are actually positive out of the total samples predicted as positive. It is

defined as:

𝑅𝑒𝑐𝑎𝑙𝑙 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Equation 6-4: Recall or Sensitivity

• F1-Score - is the weighted average of both precision and recall. This measure helps

in better understanding of the prediction accuracy in case of uneven class distribution.

It is defined as:

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 	2 ∗ 	
𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

Equation 6-5: F1-Score

Area under the receiver operating characteristic curve (AUC) and receiver operating

characteristic (ROC) is used to measure if the algorithm is classifying the samples correctly or if

it is randomly guessing the labels. ROC curve is plotted with TPR as y-axis and FPR as x-axis. It

41

is a probability curve that plots TPR against FPR at various threshold levels. Figure 6.2 depicts

the ROC and AUC plot. AUC represents the measure of separability. Higher the AUC, better is

the model at predicting the classes accurately. AUC values vary between 0 and 1 with AUC=0

meaning that the classifier inaccurately predicts the positives as negatives and vice versa,

AUC=1 meaning that the classifier accurately differentiates between the positive and negative

samples.

Figure 6.2: ROC curve

6.3 Decision Tree Classification Evaluation

6.3.1 Binary Classification

One of the greatest advantages of using decision trees is the very fast runtime

performance exhibited by the algorithm. We can see from Table 6.1, the runtimes for decision

trees with different depths. To be fairly compared with the baseline, Kitsune, in this section, all

115 features are applied to both binary and multi-class decision tree classification, instead of the

9 important features.

42

Table 6.1: Runtimes for varying tree depths

From the experiment, we can clearly see that the runtime is very less when compared to

the Kitsune baseline as depicted in the Table 6.2. In this table, we are comparing a decision tree

with maximum depth to the Kitsune autoencoder baseline. Table 6.2 also depicts that the

decision tree algorithm has better detection rates as shown by the higher true-positive rate and

accuracy metrics and very low false-positive rates when compared to Kitsune. For a few datasets,

Kitsune shows 100% true-positive rate and recall, the false-positive rates are higher in the range

of 3-10%. This shows that while Kitsune is extremely good at detecting the normal traffic

patterns, it falters a bit with raising higher number of false-alarms due to higher false-positive

Dataset
Tree Depth

Training Time
(seconds)

Prediction Time
(seconds)

1 8.412 0.097
2 15.818 0.082
3 23.369 0.083

MaxDepth 77.163 0.095
1 6.419 0.073
2 14.026 0.069
3 21.496 0.067

MaxDepth 55.728 0.064
1 1.209 0.026
2 2.228 0.025
3 3.233 0.026

MaxDepth 13.428 0.029
1 11.341 0.087
2 22.723 0.088
3 32.934 0.086

MaxDepth 121.201 0.103
1 6.217 0.065
2 13.474 0.065
3 19.217 0.064

MaxDepth 62.954 0.072
1 6.628 0.068
2 12.844 0.068
3 18.393 0.069

MaxDepth 70.122 0.079
1 1.361 0.025
2 2.487 0.024
3 3.607 0.024

MaxDepth 12.413 0.026
1 7.349 0.065
2 14.825 0.061
3 22.236 0.061

MaxDepth 48.896 0.071
1 7.023 0.061
2 14.023 0.062
3 20.945 0.062

MaxDepth 76.269 0.072

Samsung SNH1011N Webcam

SimpleHome XCS71002WHT Security Camera

SimpleHome XCS71003WHT Security Camera

Danmini Doorbell

Ecobee Thermostat

Ennio Doorbell

Philips B120N10 Baby Monitor

Provision PT737E Security Camera

Provision PT838 Security Camera

43

rate. Comparing our methodology with this we can clearly see that our false-positive rates are

extremely low in the range of 0.0 to 0.03% making our algorithm much better at detection of

anomalous traffic. Comparing the computation time, our methodology takes milliseconds to

predict values, whereas the Kitsune baseline varies from 20 minutes up to 2 hours. Since the

accuracy is same for methodologies at 99%, we can clearly see a huge advantage for our

methodology in terms of runtime performance especially on IoT edge devices with low

computation power.

Table 6.2: Comparing Decision Tree with max depth results with Kitsune Baseline

Looking at the nodes of Decision trees in Figure 6.3 depicting the various tree depths for

Danmini Doorbell dataset, we can say that certain features are important in making decisions and

they can be used to add security policies. Figure 6.4 and Figure 6.5 shows how the confusion

matrix and AUC for Danmini Doorbell dataset improves as the tree depth grows. From the

confusion matrix, we can clearly see that as the tree depth increases, the false positives decrease

significantly. For the tree with maximum depth, the false-positive is very low and the AUC is 1

showing that the algorithm performs very well in distinguishing the normal and malicious traffic.

44

Figure 6.3: Decision Tree with varying tree depths for Danmini Doorbell dataset

Depth = 1 Depth = 2

Depth = 3

45

Figure 6.4: Confusion matrix depicts improved detection performance as the depth of Decision
Tree grows for Danmini Doorbell dataset

Figure 6.5: AUC depicts improved detection performance as the depth of Decision Tree grows
for Danmini Doorbell dataset

46

6.3.2 Multi-class Classification

As mentioned in Section 4, we will be training a new model to differentiate between the

Mirai and Bashlite botnet traffic from the benign traffic. Using the multi-class classification

decision tree, we are able to conduct the experiment with 99% detection accuracy. This shows

that decision tree is capable of differentiating between two types of IoT botnet traffic well. The

runtime and detection performance are also measured as shown in Table 6.3. In Table 6.3, we are

comparing a decision tree with maximum depth to the Kitsune autoencoder baseline. Figure 6.6

depicts the decision tree of varying depth formed for the multi-class classification of Danmini

Doorbell dataset along with the confusion matrix for the same. We can see that in the tree with

depth as 1, the decision tree classifies everything into only two classes as it is unable to

accommodate the third class due to the limitation of the tree depth. But for depths 2 and 3, we

can clearly see that all 3 classes are depicted in the decision tree and the false-positive rate drops

with increase in tree depth. Figure 6.7 depicts the confusion matrix for Multi-class Decision Tree

Classification for Danmini Doorbell with varying tree depths.

Table 6.3: Multi-class Decision Tree with max depth depicting runtime and detection
performance

47

Figure 6.6: Multi-class Decision Tree Classification for Danmini Doorbell with varying tree
depths

Depth = 1 Depth = 2

Depth = 3

48

Figure 6.7: Confusion matrix for Multi-class Decision Tree Classification for Danmini Doorbell
with varying tree depths

6.3.3 Combined datasets

We combine the 9 datasets into one single dataset and run it through a binary decision tree

classifier. The botnet traffic from different datasets is mixed together and are tested against our

methodology. This experiment is clearly able to distinguish between benign and malicious traffic

with an accuracy of over 99% for decision trees with various depths(shown in Figure 6.8).

Figures 6.9 and 6.10 depict how the prediction accuracy increases as the tree depth increases. For

the decision tree with maximum depth, the training time for 5,650,084 samples is 1024.18

seconds and prediction time for 1,412,522 samples is 4.97 seconds(Table 6.4). We can clearly

say that decision trees work well for botnet traffic infecting any type of IoT device.

49

Figure 6.8: Decision Tree Classification for combined dataset with varying tree depths

Depth = 1

Depth = 2

Depth = 3

50

Figure 6.9: Confusion matrix for Decision Tree Classification for combined dataset with varying
tree depths

Figure 6.10: AUC depicts improved detection performance as the depth of Decision Tree grows
for combined dataset

51

For the combined datasets, we also compare our methodology with other supervised learning

methodologies like Logistic Regression[50], Naïve Bayes[51], Random Forest Classifier[52],

AdaBoost Classifier[53], XGB Classifier[26], SGD Classifier[54] and ANN[55]. We have not shown

the comparison with KNeighbors Classifier[56] as it is an extremely slow learning methodology

which calculates the distance(Euclidean or other methods) for each of its predicted samples with

its k-nearest neighbors. This would take a lot of runtime for 1 million testing samples and hence

would be out of scope for our usage[48][49].Comparing our algorithm with above-mentioned

supervised learning algorithms, we can see that our methodology performs extremely well with

respect to low computation time while maintain a high accuracy(Table 6.4). Though Random

Forest, XGBoost and AdaBoost methodologies also boast of a 100% accuracy, the running times

are high showing that these methodologies might not be well suited for IoT edge devices that

need to respond quickly. We also compare with an ANN model with 2 hidden layers using ‘relu’

activation and the output layer with ‘sigmoid’ activation for binary classification. The model

configuration includes ‘adam’ function for optimization, ‘binary_crossentropy’ function for loss

measurement and the model is trained for 150 epochs. The runtime for this ANN model is more

than 4 hours while the prediction time is a comparatively low 20 seconds. The model has high

accuracy of 98%, but the false positive rate is very high at 15%. Compared to our methodology,

ANN takes more runtime and computation power and would be unsuitable for small IoT devices

like doorbells or thermostats.

Table 6.4: Comparison of Decision Tree methodology performance with other Supervise
learning methods

52

6.4 Important Feature Ranking Evaluation

Using the important feature ranking algorithm as explained in Section 4, we arrive at 9

unique features that are ranked highly across all 9 datasets. When these 9 features are isolated for

each dataset and the decision tree is run, we see that the detection performance is higher than

99.9% showing that these features are key in distinguishing benign samples from malicious

samples. These features also show that they can distinguish IoT botnet traffic irrespective of the

type of IoT device being infected. Table 6.5 shows the training and testing times for datasets

with only these 9 features and their detection performance metrics. We can clearly see that the

false-positive rate is negligible showing that the algorithm works very well in accurately

classifying the samples. Figure 6.11 shows the confusion matrices for all the 9 datasets.

Table 6.5: Detection and Runtime performance using 9 most important features with Decision
Trees

The above experiment has shown that these 9 features can run decision tree classifier

with average training time of 4.294 seconds and average prediction time of 0.012 seconds, while

maintaining an average accuracy of 99.998%. Hence, using datasets filtered with only these 9

features while classifying can help in faster detection on IoT edge devices with low computation

power and memory.

Dataset Training Time
(seconds)

Prediction Time
(seconds) TPR (%) FPR (%) Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Danmini Doorbell 5.231 0.014 99.999 0.03 99.998 99.998 99.999 99.999
Ecobee Thermostat 5.749 0.014 99.999 0.038 99.998 99.999 99.999 99.999
Ennio Doorbell 1.42 0.005 100 0.025 99.997 99.997 100 99.998

Philips B120N10 Baby Monitor
9.566 0.021 99.999 0.009 99.998 99.998 99.999 99.999

Provision PT737E Security
Camera 2.991 0.012 99.999 0 99.999 100 99.999 99.999
Provision PT838 Security
Camera 4.755 0.014 99.998 0.01 99.997 99.999 99.998 99.998

Samsung SNH1011N Webcam
0.946 0.006 100 0 100 100 100 100

SimpleHome XCS71002WHT
Security Camera

3.907 0.012 99.999 0 99.999 100 99.999 100

SimpleHome XCS71003WHT
Security Camera

4.078 0.011 100 0.026 99.999 99.999 100 100
AVERAGE 4.294 0.012 99.999 0.015 99.998 99.999 99.999 99.999

53

Figure 6.11: Confusion matrix for datasets using the using 9 most important features with
Decision Trees

For the combined dataset mentioned in Section 6.3.3, we separate the 9 most important

features from it and run the decision tree classifier with maximum depth. We find that the

training time is 46.93 seconds, and the prediction time is 0.078 seconds which is a great

improvement when compared with running the combined dataset with all 115 features(see

Section 6.3.3). We also see that the accuracy is maintained the same while the runtime is reduced

showing the usefulness of feature importance ranking(Figure 6.12).

54

Figure 6.12: Confusion Matrix with evaluation metrics and AUC curve for combined dataset

55

7 CONCLUSION AND FUTURE WORK

Our methodology has been designed to act as an initial line of defense for IoT edge devices

having low memory and computation powers. Our decision tree algorithm is a supervised

machine learning method that is able to perform classification with high accuracy, low false-

positive rate and in minimal amount of time. In this paper, we have discussed the usage of

decision trees and the ability to control the tradeoff between performance and computation time

using tree depths. We have also evaluated the detection and runtime performance of our

methodology against an established baseline in detail which showcases the efficiency of our

algorithm. An important contribution of our research is the feature ranking algorithm which

produces 9 most important features. These features when segregated from network traffic, can

help in identifying normal and malicious traffic with high accuracy and less runtime on devices

with low computation power. Hence, we can say that our methodology is efficient and cost-

effective especially as a first line of defense in the IoT environment.

 Our work establishes the need for better ways to efficiently detect anomalous traffic at

the edge of networks and raises more questions. An extension to our work can be in the form of

extending the study about the important features found using the Important Feature Ranking

algorithm. These important features can be studied in depth to figure out if they can be

manipulated by adversaries to make their anomalous traffic look similar to normal traffic. These

features can also be used to test with other IoT botnets to see if they are able to maintain the

same standard of detection and runtime performances. This can help in (1) better understanding

of what network properties make up anomalous traffic and (2) more efficient detection and

runtime performances of other anomaly detection algorithms.

56

REFERENCES

[1] Wikipedia, Internet of Things [Online]

Available: https://en.wikipedia.org/wiki/Internet_of_things

[2] Radware, A Quick History of IoT Botnets [Online]

Available: https://blog.radware.com/uncategorized/2018/03/history-of-iot-botnets/

[3] Jovana Letic, Internet of Things Statistics for 2020 – Taking things apart [Online]

Available: https://dataprot.net/statistics/iot-statistics/

[4] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici and Asaf Shabtai, Kitsune: An Ensemble

of Autoencoders for Online Network Intrusion Detection, Network and Distributed Systems

Security Symposium (NDSS) 2018

[5] Ruming Tang, Zheng Yang, Zeyan Li, Weibin Meng, Haixin Wang, Qi Li, Yongqian Sun,

Dan Pei∗, Tao Wei∥, Yanfei Xu and Yan Liu, ZeroWall: Detecting Zero-Day Web Attacks

through Encoder-Decoder Recurrent Neural Networks, IEEE INFOCOM 2020 - IEEE

Conference on Computer Communications

[6] Yair Meidan, Michael Bohadana, Yael Mathov, Yisroel Mirsky, Dominik Breitenbacher,

Asaf Shabtai, and Yuval Elovici, N-BaIoT—Network-Based Detection of IoT Botnet Attacks

Using Deep Autoencoders, IEEE Pervasive Computing (Volume: 17 , Issue: 3 , Jul.-Sep. 2018)

[7] Quamar Niyaz, Weiqing Sun, Ahmad Y Javaid, and Mansoor Alam, A Deep Learning

Approach for Network Intrusion Detection System, IEEE Transactions on Emerging Topics in

Computational Intelligence (Volume: 2 , Issue: 1 , Feb. 2018)

[8] Wikipedia, Autoencoder [Online]

Available: https://en.wikipedia.org/wiki/Autoencoder

57

[9] Raspberry Pi [Online]

Available: https://www.raspberrypi.org

[10] Sean Bryson, Five Components of IoT Edge Devices [Online]

Available: https://www.cisco.com/c/en/us/solutions/internet-of-things/iot-edge-devices.html

[11] Wikipedia, Decision Tree Learning [Online]

Available: https://en.wikipedia.org/wiki/Decision_tree_learning

[12] Jeff Heaton, Feature Importance in Supervised Training, Predictive Analytics and Futurism

Newsletter, Issue 17, April 2018

[13] A. Sundaram, “An introduction to intrusion detection,” Crossroads, vol. 2, no. 4, pp. 3–7,

April 1996.

[14] Monowar H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, Network Anomaly Detection:

Methods, Systems and Tools, IEEE Communications Surveys & Tutorials (Volume: 16, Issue: 1,

First Quarter 2014)

[15] Garcia-Teodoro et. al. Anomaly-based network intrusion detection: Techniques, systems

and challenges. computers & security, 28(1):18–28, 2009.

[16] Dongqi Han, Zhiliang Wang,Ying Zhong, Wenqi Chen, Jiahai Yang,Shuqiang Lu, Xingang

Shi,and Xia Yin, Evaluating and Improving Adversarial Robustness of Machine Learning-Based

Network Intrusion Detectors, arXiv:2005.07519

[17] Haowen Xu, Wenxiao Chen, Nengwen Zhao, Zeyan Li, Jiahao Bu, Zhihan Li, Ying Liu,

Youjian Zhao, Dan Pei, Yang Feng, Jie Chen, Zhaogang Wang, HonglinQiao, Unsupervised

Anomaly Detection via Variational Auto-Encoder for Seasonal KPIs in Web Applications,

WWW 2018: Proceedings of the 2018 World Wide Web Conference

58

[18] Zeyan Li,Wenxiao Chen, Dan Pei, Robust and Unsupervised KPI Anomaly Detection Based

on Conditional Variational Autoencoder, 2018 IEEE 37th International Performance Computing

and Communications Conference (IPCCC)

[19] Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng Cristian Lumezanu, Daeki Cho,

Haifeng Chen, Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly

Detection, ICLR 2018

[20] Rohan Doshi, Noah Apthorpe, Nick Feamster, Machine Learning DDoS Detection for

Consumer Internet of Things Devices, 2018 IEEE Security and Privacy Workshops (SPW)

[21] Nathan Shone, Tran Nguyen Ngoc, Vu DinhPhai, Qi Shi, A Deep Learning Approach to

Network Intrusion Detection, IEEE Transactions on Emerging Topics in Computational

Intelligence (Volume: 2, Issue: 1, Feb. 2018)

[22] Benjamin J. Radford, Bartley D. Richardson and Shawn E. Davis, Sequence Aggregation

Rules for Anomaly Detection in Computer Network Traffic, 2018 ASA Symposium on Data

Science and Statistics

[23] Hanan Hindy, Robert C. Atkinson, C. Tachtatzis, J. Colin, Ethan Bayne, X. Bellekens,

Towards an Effective Zero-Day Attack Detection Using Outlier-Based Deep Learning

Techniques, 2020 Computer Science, ArXiV

[24] Miao Xie, Jiankun Hu, Song Han, and Hsiao-Hwa Chen. Scalable hypergrid k-nn-based

online anomaly detection in wireless sensor networks. IEEE Transactions on Parallel and

Distributed Systems, 24(8):1661–1670, 2013.

[25] George Saif, A Guide to Decision Trees for Machine Learning and Data Science [Online]

Available:https://towardsdatascience.com/a-guide-to-decision-trees-for-machine-learning-and-
data-science-fe2607241956

59

[26] XGBoost Documentation [Online]

Available: https://xgboost.readthedocs.io/en/latest/

[27]Yair Meidan, Michael Bohadana, Yael Mathov, Yisroel Mirsky, Dominik Breitenbacher,

Asaf Shabtai and Yuval Elovici, detection_of_IoT_botnet_attacks_N_BaIoT Data Set, March

18,[Online]

Available:https://archive.ics.uci.edu/ml/datasets/detection_of_IoT_botnet_attacks_N_BaIoT#

[28] Manos Antonakakis,	Tim April, Michael Bailey, Matthew Bernhard, Elie Bursztein, Jaime

Cochran, Michalis Kallitsis, Damian Menscher, Zakir Durumeric, Deepak Kumar, Chad Seaman,

J. Alex Halderman, Luca Invernizzi, Chaz Lever,	Zane Ma, Joshua Mason, Nick Sullivan, Kurt

Thomas, Yi Zhou, Understanding the Mirai Botnet

[29] K. Angrishi, “Turning internet of things (iot) into internet of vulnerabilities (iov): Iot

botnets,” 2017

[30] Wikipedia, Gini Impurity [Online]

Available: https://en.wikipedia.org/wiki/Decision_tree_learning#Gini_impurity

[31] Yusuke Sugiyama and Kunio Goto. Design and implementation of a network emulator using

virtual network stack. In 7th International Symposium on Operations Research and Its

Applications (ISORA08),

pages 351–358, 2008.

[32] Eric Leblond and Giuseppe Longo. Suricata idps and its interaction with linux kernel.

[33] Borja Merino. Instant Traffic Analysis with Tshark How-to. PacktPublishing Ltd, 2013.

[34] The Packet++ Project, GitHub [Online]

Available: https://github.com/seladb/PcapPlusPlus

60

[35] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In Data Mining, 2008.

ICDM’08. Eighth IEEE International Conference , pages 413–422. IEEE, 2008.

[36] Douglas Reynolds. Gaussian mixture models. Encyclopedia of biometrics, pages 827–832,

2015.

[37] Sylvain Calinon and Aude Billard. Incremental learning of gestures by imitation in a

humanoid robot. In Proceedings of the ACM/IEEE international conference on Human-robot

interaction, pages 255–262.ACM, 2007.

[38] Yisroel Mirsky, Tal Halpern, Rishabh Upadhyay, Sivan Toledo, and Yuval Elovici.

Enhanced situation space mining for data streams. In Proceedings of the Symposium on Applied

Computing, pages 842–849.ACM, 2017.

[39] KDD Cup 1999 Data, The Third International Knowledge Discovery and Data Mining

Tools Competition

[40] NSL-KDD dataset, Canadian Institute for Cybersecurity

[41] Intrusion Detection Evaluation Dataset (CIC-IDS2017), Canadian Institute for

Cybersecurity

[42] Mark D. Wilkinson, Michel Dumontier, Barend Mons, The FAIR Guiding Principles for

scientific data management and stewardship, Scientific Data 3

[43] B. Xue, M. Zhang, W. N. Browne and X. Yao, "A Survey on Evolutionary Computation

Approaches to Feature Selection," in IEEE Transactions on Evolutionary Computation, vol. 20,

no. 4, pp. 606-626, Aug. 2016

61

[44] Tang, J., Alelyani, S., & Liu, H. (2014). Feature selection for classification: A review. In

Data Classification: Algorithms and Applications (pp. 37-64). CRC Press. [Online]

Available: https://doi.org/10.1201/b17320

[45] M. R. Sikonja and I. Kononenko. Theoretical and empirical analysis of Relief and ReliefF.

Machine Learning, 53:23–69, 2003

[46] R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification. John Wiley & Sons,

New York, 2nd edition, 2001.

[47] H. Peng, F. Long, and C. Ding. Feature selection based on mutual information: criteria of

max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis

and Machine Intelligence, pages 1226–1238, 2005.

[48] Stack Overflow, KNN classifier taking too much time even on gpu [Online]

Available: https://stackoverflow.com/questions/51693501/knn-classifier-taking-too-much-time-

even-on-gpu

[49] Stack Overflow, Why does test takes longer than training? [Online]

Available: https://stackoverflow.com/questions/53133458/why-does-test-takes-longer-than-

training

[50] Wikipedia, Logistic Regression [Online]

Available: https://en.wikipedia.org/wiki/Logistic_regression

[51] Wikipedia, Naïve Bayes Classifier [Online]

Available: https://en.wikipedia.org/wiki/Naive_Bayes_classifier

[52] Wikipedia, Random Forest Classifier [Online]

Available: https://en.wikipedia.org/wiki/Random_forest

62

[53] Wikipedia, AdaBoost Classifier [Online]

Available: https://en.wikipedia.org/wiki/AdaBoost

[54] Scikit Learn, SGD Classifier [Online] Available: https://scikit-

learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html

[55] Wikipedia, ANN [Online]

Available: https://en.wikipedia.org/wiki/Artificial_neural_network

[56] Wikipedia, k-nearest Neighbors Algorithm [Online]

Available: https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

