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ABSTRACT 

International Data Corporation[3] (IDC) data estimates that 152,200 Internet of things (IoT) 

devices will be connected to the Internet every minute by the year 2025. This rapid expansion in the 

utilization of IoT devices in everyday life leads to an increase in the attack surface for cybercriminals. 

IoT devices are frequently compromised and used for the creation of botnets. However, it is difficult to 

apply the traditional methods to counteract IoT botnets and thus calls for finding effective and efficient 

methods to mitigate such threats. In this work, the network snapshots of IoT traffic infected with two 

botnets, i.e., Mirai and Bashlite, are studied. Specifically, the collected datasets include network traffic 

from 9 different IoT devices such as baby monitor, doorbells, thermostat, web cameras, and security 

cameras. Each dataset consists of 115 stream aggregation feature statistics like weight, mean, 

covariance, correlation coefficient, standard deviation, radius, and magnitude with a timeframe decay 

factor, along with a class label defining the traffic as benign or anomalous. 

The goal of the research is to identify a proper machine learning method that can detect IoT 

botnet traffic accurately and in real-time on IoT edge devices with low computation power, in order to 

form the first line of defense in an IoT network. The initial step is to identify the most important 

features that distinguish between benign and anomalous traffic for IoT devices. Specifically, the Input 

Perturbation Ranking algorithm[12] with XGBoost[26]is applied to find the 9 most important features 

among the 115 features. These 9 features can be collected in real time and be applied as inputs to any 

detection method. Next, a supervised predictive machine learning method, i.e., Decision Trees, is 

proposed for faster and accurate detection of botnet traffic. The advantage of using decision trees over 

other machine learning methodologies, is that it achieves accurate results with low computation time 

and power. Unlike  deep learning methodologies, decision trees can provide visual representation of the 

decision making and detection process. This can be easily translated into explicit security policies in 

the IoT environment. In the experiments conducted, it can be clearly seen that decision trees can detect 

anomalous traffic with an accuracy of 99.997% and takes 59 seconds for training and 0.068 seconds for 

prediction, which is much faster than the state-of-art deep-learning based detector, i.e., Kitsune[4]. 

Moreover, our results show that decision trees have an extremely low false positive rate of 0.019%. 

Using the 9 most important features, decision trees can further reduce the processing time while 

maintaining the accuracy. Hence, decision trees with important features are able to accurately and 

efficiently detect IoT botnets in real time and on a low performance edge device such as Raspberry Pi[9]. 
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1. INTRODUCTION 

Over the last decade there has been a significant increase in the presence of Internet of 

Things(IoT) devices in our daily lives. The Internet of things (IoT) describes the network of 

physical objects—“things” or objects—that are embedded with sensors, software and other 

technologies for the purpose of connecting and exchanging data with other devices and systems 

over the Internet[1]. These IoT devices, ranging from security cameras to baby monitors, are 

constantly streaming private data throughout the Internet but without strong security protections, 

leading to having a large number of devices that can be easily compromised and used as bots in 

IoT botnets[2]. This calls for a faster and deeper scrutiny in detecting threats and securing such 

devices.  IoT botnets are one of the most common attacks against the IoT devices. Attackers 

compromise less secure IoT devices and convert them into a network of bots, which are then 

used to conduct distributed denial of service (DDoS) attacks on targeted devices or websites[2]. 

Therefore, it is important and imperative to detect the appearance of IoT botnets in real time and 

based on low computation power IoT edge devices. 

 

Recently there has been a rise in applying machine learning algorithms to detect IoT botnet 

traffic in the network in real-time. Different machine learning algorithms have been explored to 

improve the detection performance[4][5][6][7]. One the most popular methods used is an 

unsupervised deep learning method called autoencoders. An autoencoder is a type of artificial 

neural network used to learn efficient data codings in an unsupervised manner, where the output 

is the same as the input during training to obtain the characteristics of the input data in the 

network[8]. Specifically, Kitsune[4], the state-of-art detector against IoT botnets, uses the benign 

network as both input and output to the autoencoders during training. When evaluating a packet, 

this packet is fed into the input of Kitsune, and if the output is different from the input, the 

packet will be labelled as anomalous. Autoencoders have been shown to be able to accurately 

detect anomalous traffic in IoT[4,6]. The advantage of using autoencoders is that there is no need 

for a previously labelled dataset during the training period. While this is a huge advantage to 

detect network traffic attacks, the time and memory requirements to run autoencoders such as 

Kitsune are still significant and cannot fit for low computation power IoT edge devices, such as 

Raspberry Pi[9,10]. As a result, it is still a research question: what is the proper machine learning 
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method that can detect IoT botnet traffic accurately and at the same time can be run in low 

computation power IoT edge devices in real time, in order to form the first line of defense in an 

IoT network. 

 

To answer this question, we begin with studying two botnets  – MIRAI and BASHLITE. 

Specifically, the MIRAI botnet is a collection of IoT bots that attacked several high-profile 

targets with massive DDoS attacks[28]. The Mirai botnet came into mainstream during 2016 

mainly due to the increased usage of IoT devices, which had insecure default passwords 

configured and lacked embedded security measures. The botnet would first target vulnerable IoT 

devices, mainly IP cameras, and convert them into bots. Then this network of hundred thousand 

bots would be used to send concentrated DDoS attacks on specified targets like game servers, e-

commerce sites, and telecoms. BASHLITE or GAFGYT is a well-known malware that infects 

Linux based IoT devices to create bots to launch DDoS attacks[29]. Specifically, it converts linux 

based IoT devices into bots by brute forcing their telnet access using default credentials. Once 

the bots are created, it is able to launch DDoS attacks with a bandwidth up to 400Gbps. Bashlite 

was first discovered in 2015 and is considered a predecessor to Mirai botnets. We obtained the 

datasets of both MIRAI and BASHLITE from UC Irvine machine learning repository[27]. The 

datasets contain both benign and anomalous network traffic for 9 different IoT devices and 

consist of 115 features extracted from network traffic. 

 

Next, we attempt to identify the most important features among 115 features, by using the 

important feature ranking (IFR) algorithm[12]. Specifically, we applied the IFR method with the 

XGBoost machine learning algorithm, which is a power tool in machine learning[26], to each of 9 

datasets (i.e., 9 IoT devices). The IFR method is able to rank input features based on their effects 

on the predications of XGBoost in a dataset. We observed that some features ranking high across 

all 9 datasets. By applying some simple calculations, we are able to find 9 most important 

features that can essentially be used to differentiate between benign and anomalous traffic. As 

shown in this thesis, when these 9 most important features are applied to a machine learning, the 

processing time, for both training and prediction, is much less than that with the original 115 

features. Moreover, the detection accuracy is still very high and is over 99.9%. 
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In this paper, we propose to use decision trees machine learning to detect IoT botnet 

attacks in real-time and to use in low computation power IoT edge devices as the first line of 

defense. Specifically, we use balanced trained decision tree classifier with varying depths for an 

accurate detection of IoT botnets. A decision tree is a predictive supervised machine learning 

algorithm that utilizes the input features of a packet to predict if the packet is benign or 

anomalous[11]. The advantages of using decision trees over other machine learning methods 

include: 

• Fast detection time and low computation power - Decision trees require very 

low computation power and are very fast with significantly lower training and 

prediction times (in milliseconds or seconds). Moreover, comparing with other 

machine learning methods, decision trees demand less memory to store data or 

model information. Hence, such a machine learning method can be easily run in 

IoT edge devices such as Raspberry Pi.  

• Security policy making - Decision trees can be used to visually and explicitly 

represent decisions and decision-making. In a decision tree, decision nodes 

represent the clear conditions to distinguish between benign and anomalous traffic, 

which can be easily translated into explicit security policies. 

• Tradeoff between accuracy and computation power by varying tree depths– 

Decision trees provide the user a flexibility to choose between accuracy and 

computational power. The user can choose to have a low tree depth with slightly 

lesser accuracy and higher false positive rate, but with significantly better 

prediction time and lower computational power. The higher depth the tree is 

allowed to grow, the better the accuracy. Therefore, the user can choose between 

these two tradeoffs based on his computing needs or performance requirements. 

This flexibility is not seen with other machine learning methods, such as 

autoencoders, where the user is unable to control how big the autoencoder can grow 

or how much computation power will be used. 

 

From our experiments, we have found that the decision tree is able to match (and 

sometimes be greater than) the accuracy of unsupervised learning methods, i.e., Kitsune, while 

taking much less time for both training and prediction. Specifically, using 115 features for both 
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Kitsune and decision trees with the maximum depth, averagely Kitsune is with 99.459% 

accuracy and takes 602 seconds for training and 3454 seconds for prediction, whereas decision 

tree is with 99.997% accuracy and takes 59 seconds for training and 0.068 seconds for prediction. 

Our results show that decision trees have a lower false positive rate as compared to Kitsune. 

Moreover, we demonstrate the tradeoff between accuracy and computation power by varying the 

depth of the decision trees and point out that the decision trees with 9 most important features 

can further reduce processing time while keeping the similar decision accuracy. Furthermore, we 

show that decision trees can be easily extended to classify among benign traffic, Mirai botnet 

traffic and Bashlite botnet traffic. 

 

The rest of the paper is divided into the following sections: Section 2 discusses the 

literature survey conducted in the domain of anomaly detection, Section 3 provides a detailed 

look into our datasets, whereas Section 4 provides a description of how the important feature 

ranking works, Section 5 details the working of our methodology using the decision tree 

algorithm and Section 6 looks into the experiment results of our algorithms and compares them 

to an established baseline (i.e., Kitsune). Finally, Section 7 presents our conclusion and discusses 

the future work. 
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2. LITERATURE SURVEY 

Developing new network intrusion detection techniques has always been a dynamic and 

predominant research field. Due to the advancement of technology, there is a constant rise in the 

number and types of network attacks. Human detection methodologies have long since been 

made obsolete due to the sheer volume of network attacks seen every day. Hence developing 

new machine-based NIDS (network intrusion detection systems) has become a very relevant 

research area. Despite the exceptional progress and a large body of work, there are still several 

opportunities to improve the state-of-the-art in detecting and thwarting network-based 

attacks[13][14]. Usage of machine learning for implementing NIDSs has been comprehensively 

researched in the past[15] and they are usually categorized based on the underlying computational 

methodologies and the detection modes.  

 

There are two types of network intrusion detection techniques, signature based and 

anomaly-based techniques. Signature based techniques, while being efficient due to frequent 

updating, are unable to detect new attacks. The focus of this paper is therefore going to be on 

anomaly-based detection techniques. 

 

One of the highly researched computation methodologies for network intrusion detection 

is the anomaly detection technique. This technique has been thoroughly researched by various 

researchers and each have contributed to improve the accuracy of these detections [4][5][6][7].   

 

Anomaly detection generally conforms to the following three steps[15]: 

• Parameterization Stage: Instances of the target system are represented in a well-defined 

pre-determined form. 

• Training Stage: The normal behavior of the target system is illustrated in the form of a 

model. See Table 2.1 for the different types of models  that can be built. 

• Detection Stage: The parameters from stage 1 are compared with the generated model 

and any deviations from the normal behavior (usually above a certain threshold level) is 

tagged as anomalous behavior. 
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Table 2.1 further summarizes the previous research conducted on the anomaly detection of 

network intrusions. 

 

Table 2.1: Past Research on Network Intrusion Detection using Machine Learning 

Paper Name Detection 
Techniques 

ML/DL technique 
used 

Detection 
Mode 

Type of 
Traffic 

detected 
Dataset Used 

Kitsune: An Ensemble of 
Autoencoders for Online 
Network Intrusion 
Detection[4] 

Anomaly 
detection 

Autoencoder, ANN 
based unsupervised 
learning 

Online Network attacks Custom dataset 

ZeroWall: Detecting 
Zero Day Web Attacks 
through Encoder-
Decoder Recurrent 
Neural Networks[5] 

Anomaly 
detection 

Encoder-decoder 
RNN, unsupervised 
learning 

Online 
detection, 

Offline 
periodic 

retraining 

Web attacks, 
Zero-day web 

attacks 
Custom dataset 

N-BaIoT—Network  
Based  Detection of IoT 
Botnet Attacks Using 
Deep Autoencoders[6] 

Anomaly 
detection Autoencoder Offline 

IoT 
traffic/botnet 

attacks 
Custom dataset 

Evaluating and 
Improving Adversarial 
Robustness  
of Machine Learning 
Based Network Intrusion 
Detectors[16]  

Evasive attack 
methodology GAN Online Network attacks Kitsune dataset, 

CICIDS2017 

Unsupervised Anomaly 
Detection via Variational 
Autoencoder for 
Seasonal KPIs in Web 
Applications[17] 

Anomaly 
detection 

Variational 
Autoencoder Offline 

Key 
performance 
indicators of 

Web 
applications 

Custom dataset 

Robust and 
Unsupervised KPI 
Anomaly Detection 
Based on Conditional 
Variational 
Autoencoder[18] 

Anomaly 
detection 

Conditional 
Variational 
Autoencoder 

Offline 

Key 
performance 
indicators of 

Web 
applications 

Custom dataset 
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A Deep Learning 
Approach for Network 
Intrusion Detection 
System[7] 

Anomaly 
detection 

Self-taught 
learning, Sparse 
autoencoder 

Offline Network attacks NSL-KDD 
dataset 

Deep Autoencoding 
Gaussian Mixture Model 
for Unsupervised 
Anomaly Detection[19] 

Anomaly 
detection Autoencoders Offline Network attacks KDDCUP 

dataset 

Machine Learning DDoS 
Detection for Consumer 
Internet of Things 
Devices[20] 

Anomaly 
detection 

Random forest, 
KNN, SVM, 
decision tree, ANN 

Offline IoT botnet 
attacks Custom dataset 

A Deep Learning 
Approach to Network 
Intrusion Detection[21] 

Anomaly 
detection 

Stacked non-
symmetric deep 
autoencoder and 
Random forest 

Offline Network attacks KDDCUP, 
NSL-KDD 

Sequence Aggregation 
Rules for Anomaly 
Detection in Computer 
Network Traffic[22] 

Anomaly 
detection LSTM, RNN Offline Network attacks CICIDS2017 

Towards an Effective 
Zero Day Attack 
Detection Using Outlier 
Based Deep Learning 
Techniques[23] 

Anomaly 
detection Autoencoder, ANN Offline 

Network 
attacks, zero-
day attacks 

CICIDS2017 

 

The key aspects in choosing the detection methodologies are based on the accuracy of the 

methodology and the cost involved in running the entire operation. Due to abundance of resource 

and bandwidth availability, we do not delve further into the cost aspect in this paper. 

However, accuracy of the detection methodology is an important factor while selecting and 

implementing network intrusion detection techniques. 

 

Machine learning gives a system the ability to evolve its model as new information is 

processed. Hence usage of machine learning for anomaly detection[4][5][6][7] is a popular technique. 
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In the N-BaIoT and Kitsune papers[4][6], we see that machine learning techniques such as 

autoencoders are used to detect anomalous behavior in the IoT (Internet of Things) network.  

In [4]  the authors have proposed the use of ensemble autoencoders to differentiate between 

normal and anomalous behavior without supervision in an efficient manner. The main difference 

between Kitsune and its predecessors that also use autoencoders is that this model is able to do 

the detection while online with performance that is comparable to offline detections. The authors 

emphasize the lightweight and scalability of the Kitsune models over other similar models[24]. 

 

Network intrusion detection systems can also be divided based on the mode in which they 

operate: online or offline modes. Most of the detection methodologies explored work in offline 

mode[6][7][19][20][21] and perform with greater efficiency as compared to online detection systems. 

The online detection system like Kitsune[4] and ZeroWall[5] show that it is possible to have 

efficient online detection systems. The main advantage of an offline system is that they are able 

to run over the training data in batches many times before coming up with an efficient model and 

do not have the constraint of runtime memory. But the drawback of offline system is that they 

require frequent updating of their training data for the model to remain relevant when new 

attacks are being discovered constantly. However, the online detection system has a constant 

supply of new data that is naturally able to overcome the above problem, but they run into the 

challenges of real-time processing with neural networks which can lead to a reduction in the 

runtime efficiency. While offline systems are evaluated based on their detection accuracy, online 

systems have to show efficiency in both detection performance and runtime performance which 

makes it an interesting and complex challenge. 

 

Looking at Table 2.1, we see that most of the papers tend to use custom datasets while 

testing the effectiveness of their detection methodologies. Usage of custom datasets instead of 

standardized datasets leads to the absence of an established baseline. Benchmark datasets like 

KDDCUP[39], NSL-KDD[40], CICIDS2017[41] have been collected while considering several 

factors like findability, accessibility, interoperability and reusability[42]. These datasets have been 

collected and compiled specifically for the purpose of anomaly detection and have been 

repeatedly used by various research leading to a comprehensive understanding of its features and 

characteristics. Using such datasets to test the efficiency of new anomaly detection techniques 
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helps the reader to get a better understanding of the performance. Usage of custom dataset 

require the reader to first understand the behavior and characteristics of the dataset and then 

understand how efficient the algorithm is on that dataset. This, usually, is a tedious process due 

to the large amounts of network traffic collected and can also skew the performance results of the 

detection technique. In this paper we are focusing on the Kitsune and N-BaIoT papers, both of 

which use a custom dataset for training and testing purposes. 

 

The papers chosen for the literature survey use two main types of datasets for anomaly 

detection – IoT traffic and normal Network traffic.  Different preprocessing and machine 

learning techniques are required to detect attacks in these datasets. Looking into a detailed view 

of each of the papers, we can see that most of the papers are using autoencoders for the detection 

purpose. This is due to the ease with which autoencoders are able to extract features and build 

more accurate models.  

 

First let us look at a paper that compares the traditional machine learning algorithms and the 

neural networks and see how the accuracies vary. 

 

Machine Learning DDoS Detection for Consumer Internet of Things Devices paper[20] 

talks about anomaly detection for IoT specific network behavior using different machine learning 

methods – K-nearest neighbors, Random Forest, Decision tree, Support Vector Machines and 

Neural network with a 4 layer fully connected feed forward layers. The purpose of the paper is to 

detect DDoS (Distributed Denial of Service) attacks with high accuracy and low cost for protocol 

agnostic and flow based IoT traffic. The accuracy results for the different machine algorithms 

vary between 0.991 to 0.999. The important factor to note here is that due to the flooding nature 

of DoS packets, there are attacks packets 15 times more than normal packets. This would mean 

that even if the algorithms predicted all packets to be malicious, it would result in a baseline 

accuracy of 0.93. The main contribution of the paper depicts the usage of IoT specific features. 

Using Gini score as a metric to differentiate the stateful and stateless features, the author shows 

that usage of a few stateless features along with the IoT specific features increases the accuracy 

and f1 score of detection by 0.5. The authors identify the necessity to study results of the study 
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using a more balanced distribution of normal and attack traffic, larger dataset, additional features 

and usage of complex machine learning techniques. 

 

Now let us look into the papers that use autoencoders in varying ways to detect IoT and 

traditional network attacks. 

 

Kitsune[4] is an unsupervised online network intrusion detection system that uses an 

ensemble of autoencoders to detect anomalies. The authors of this paper propose their core 

algorithm KitNet that works in tandem with feature extractors and mappers to detect network 

attacks with performance equal to that of offline detectors. The paper[4] compares the 

performance of Kitsune with other standardized algorithms like Suricata (signature based 

detection), Isolation Forest[35] and Gaussian Mixture Models[36](anomaly based batch detection), 

Incremental Gaussian Mixture Model[37] and pcStream[38](anomaly based online detection) for 

nine different types of network attacks that include OS Scan, Fuzzing, Video Injection, ARP 

MiTM, Active Wiretap, SSDP Flood, SYN DoS, SSL Renegotiation and Mirai botnet. The 

Kitsune outperforms the online anomaly detection algorithms and holds its own against the 

offline anomaly detection algorithm as well. The greatest advantage of Kitsune is its runtime 

performance that is enhanced by using ensemble of autoencoders instead of a single encoder that 

reduces the number of operations used to process an instance. The paper also clearly shows the 

tradeoff between the runtime performance and detection performance for the Kitsune model. 

Depending on the user’s requirement, the value of m (user defined parameter) can be adjusted to 

increase the detection performance or the runtime performance. Though the Kitsune solution 

looks superior to its predecessors, it is not without drawbacks. One of the main drawbacks of the 

Kitsune algorithm is its susceptibility to adversarial attacks. Since the algorithm assumes all the 

input network traffic to be benign during the training mode, it is possible for a compromised 

system to be able to train the algorithm to acknowledge the attacks as normal behavior. Another 

drawback is that a Denial-of-Service attack on the Feature Extractor can overwhelm the system 

to store a large number of instances and hence destabilize the NIDS. The authors of the paper[4] 

run the algorithms on a custom dataset that they have created. While this is acceptable, it is not 

easy to baseline the evaluation criteria for its performance. It would have been more useful and 

relevant if the performance statistics were based on standard datasets.  
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A Deep Learning Approach for Network Intrusion Detection System[7] paper proposes a 

deep learning-based approach called Self Taught Learning (STL) on NSL-KDD benchmark 

dataset for network intrusion. The STL consists of using a sparse autoencoder for unsupervised 

learning of the features and this learnt representation is used for classification which is done 

using SoftMax regression. The main advantage of this paper is that it is using a benchmark 

dataset. This evaluates the performance of the STL against traditional SoftMax regression 

algorithm with STL showing better performance for 2-class than 5 and 23-class detections. The 

authors propose usage of more advanced techniques in place of the sparse autoencoder like 

Stacked Autoencoder for unsupervised feature learning, and NB-Tree, Random Tree, or J48 for 

classification. The authors plan to implement a real-time version of the same along with on-the-

go feature learning on raw network traffic headers. The disadvantage of this model is that it 

performs well only for datasets with a low number of classes. Higher the number of classes, the 

performance of the model is worse than the traditional SoftMax regression. 

 

Deep Autoencoding Gaussian Mixture Model[19] (DAGMM) for unsupervised anomaly 

detection utilizes a deep autoencoder that performs dimensionality reduction for input samples, 

prepares their low dimensional representations from both the reduced space and the 

reconstruction error features and feeds these representations into the next stage which is the 

estimation network that predicts the likelihood within the GMM framework. This paper also 

utilizes a benchmark dataset KDDCUP for estimating the model’s performance. The authors 

have used traditional machine learning algorithms like support vector machines, Deep structured 

energy-based model and Deep clustering network model along with variations of DAGMM 

model. The authors have considered precision, recall and F1 score for the accuracy metrics with 

the DAGMM model showing high precision and F1 score as compared to the other models. The 

DAGMM shows 14% increase in performance compared to the previous models on the 

benchmark datasets. Usage of KDDCUP dataset by the authors really highlights the 

improvements of their models with other models using the same dataset, hence making it easy 

for other researchers to build upon it. Another advantage of the model is that it is not specific to 

certain datasets or traffic. The authors have shown that the model works with network intrusion 

datasets, arrhythmia and thyroid datasets. 
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A Deep Learning Approach to Network Intrusion Detection[21] proposes an unsupervised 

feature learning with non-symmetric data dimensionality reduction technique using autoencoders. 

This helps in providing better classification results using the random forest classifier. The main 

goal of this paper is to utilize deep and shallow learning techniques to improve detection 

accuracy while reducing training time and analytical overheads. Usage of NSS-KDD benchmark 

dataset for evaluation highlights the improvements made by this model over the existing 

approaches. The authors use a variety of network attacks like DoS, Probe, R2L and U2R for the 

detection. The model shows promising improvements for granular and detailed datasets while 

decreasing the training time by 78% when compared to Deep Belief Networks (DBN). The 

future work identified by the authors is an improvement to the model to handle zero day attacks. 

The strength of the paper is that it is able to significantly reduce the training time while 

increasing the accuracy of anomaly detection. Another important factor is that the current 

approach reduces the false alarm rate when compared to DBNs. The only drawback is that the 

method works well for detailed and large datasets but performs moderately for simple datasets 

with low number of classes. 

 

N-BaIoT—Network Based Detection of IoT Botnet Attacks Using Deep Autoencoders[6] 

proposes an anomaly detection methodology that extracts behavior snapshots of the network and 

utilizes deep autoencoders to detect the anomalous IoT traffic. The authors compare the results 

of their methodology against One class SVM, Local Outlier Factor and Isolation Forest showing 

that their methodology achieves a better true positive rate, decreased false positive rate and 

utilizes less time for detection as compared to the traditional approaches. The advantage of this 

paper is that it demonstrates a 100% true positive rate using its model and an almost 0% false 

positive rate for both the BASHLITE and MIRAI IoT attacks. The disadvantage is that the paper 

utilizes a custom dataset procured by the authors which reduces the ability to compare with 

previously estimated accuracy results. The authors plan to evaluate transfer learning techniques 

for their future works. 
 

After looking into papers that utilize autoencoders and unsupervised learning for anomaly 

detection, let us now focus on the usage of new technologies like RNN (Recurrent Neural 

Networks), LTSM-RNN, etc. 
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ZeroWall: Detecting Zero Day Web Attacks through Encoder-Decoder Recurrent Neural 

Networks[5] is an unsupervised approach for the detection of Zero-day Web attacks hidden in 

Web requests. The paper proposes a methodology that utilizes the encoder-decoder RNN to 

capture the features of  benign requests and prepare a self-translation model. When an attack 

request passes through this model, it cannot be translated back to the original benign request and 

hence can be declared as an attack. This approach successfully detects the zero-day attacks 

missed by traditional Web Application Firewalls (WAF) and outperforms it by achieving a high 

F1 score of 98%. The strength of this approach is that it can be used as a augmentation on top of 

the existing WAFs and is immediately usable in real world scenarios. It is also the first paper to 

translate the usage of encoder-decoder RNNs for detection of zero-day web attacks. Another 

advantage of this paper is that it utilizes real world traffic. While the paper achieves such great 

results, it is not without drawbacks. One of the drawbacks is that this approach focuses on 

contextual and collective anomaly detection which is unable to be used for evaluation of this 

paper’s model. Another drawback is that too small a dataset penalizes the performance metrics of 

the model. Since the model is used in real world scenario and is unsupervised, it is susceptible to 

poisoning attacks. Future work could be focused on evading such poisoning attacks. 

 

Sequence Aggregation Rules for Anomaly Detection in Computer Network Traffic[22] 

paper talks about sequence modeling using long short-term memory recurrent neural networks 

(LSTM-RNN) on the CICISS2017 benchmark dataset. The paper borrows the concept from 

natural language processing literature and applies it to anomaly detection. The paper uses a 

simple frequency-based method of outlier detection for its baseline. The paper shows that in 

most cases, the simple frequency-based method works better than the LSTM methodology. This 

could be because the LSTM methods are more suited to capturing the beginning of an attack as 

compared to detecting all the flows related to the attacks. The paper claims that the methodology 

they have proposed is a steppingstone for further research in the field. The drawbacks of the 

paper are that it neither identifies the good features to be used nor the best aggregated sequences 

that could lead to improved detection accuracy. 

 

We have looked into various works related to the machine learning techniques that can be 

used for anomaly detection. Let us now delve into the feature selection mechanism for such 
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datasets. Feature selection is the process of reducing the number of input features to a machine 

learning algorithm such that the model developed is using the most important features in its 

decision-making process. Such methods help in reducing computation cost and sometime can 

enable better performance. Supervised feature selection methodologies can be divided into 3 

types - Filter methods, Wrapper methods and Embedded methods[43].   

 

Filter models predict based on measures of the overall traits of the training data such as 

distance, consistency, dependency, information, and correlation. Relief [45], Fisher score [46] and 

Information Gain based methods[47] are among the most representative algorithms of the filter 

model[44]. Wrapper selection methods utilize a classification algorithm during the feature 

evaluation step that leads to better performance . Filter methods are independent of  classification 

algorithms and hence are computationally less intensive but perform much poorer compared to 

wrapper methodologies. The embedded model was proposed to bridge the above gap between the 

filter and wrapper models. It includes the statistical criteria, same as the filter model to select 

feature subsets and then chooses the subset with highest classification accuracy similar to 

wrapper models. Hence the embedded model achieves both high performance accuracy and low 

computation time[44].  
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3. DATASET DESCRIPTION 

The dataset used in our paper, consists of 115 features extracted from raw network traffic 

data flowing through 9 different IoT devices[27]. The dataset consists of benign traffic and 

anomalous MIRAI and BASHLITE traffic packets. The benign traffic is assigned the class 0 

while malicious traffic is assigned the class 1. This leads to the decision tree to conduct a binary 

classification on our datasets. In the case of multi class decision tree classification, we have 

assigned class 0 for benign traffic, class 1 for MIRAI botnet traffic and class 2 for BASHLITE 

botnet traffic.  

 
The 9 datasets are collected from different IoT devices like webcam, doorbells, thermostat, 

security cameras and baby monitor. Each device has its own functionality and different network 

traffic pattern which are extracted into 23 features from 5 different time windows of the most 

recent 100ms, 500ms, 1.5sec, 10sec and 1minute[6]. The features are extracted from individual 

network packets with packets being considered separately(flow context not present). The datasets 

are described in Table 3.1 in more detail. 

 

Table 3.1: Description of the 9 datasets 

 
  

No. Dataset Name Dataset Type Benign 
Samples

Malicious 
Samples

Mirai 
Botnet Data

Bashlite 
Botnet Data

1 Danmini Doorbell Doorbell 49548 968750 P P

2 Ecobee Thermostat Thermostat 13113 822763 P P

3 Ennio Doorbell Doorbell 39100 316400 X P

4 Philips B120N10 Baby Monitor Baby Monitor 175240 923437 P P

5 Provision PT737E Security Camera Security Camera 62154 766106 P P

6 Provision PT838 Security Camera Security Camera 98514 738377 P P

7 Samsung SNH1011N Webcam Webcam 52150 323072 X P

8 SimpleHome XCS71002WHT Security Camera Security Camera 46585 816471 P P

9 SimpleHome XCS71003WHT Security Camera Security Camera 19528 831298 P P
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The 23 features that are extracted from network traffic are aggregated as listed below in Table 

3.2. 

Table 3.2: Features extracted from network traffic for each dataset[6] 

  
 

The aggregation methods[27] used for extracting these features are explained in detail below: 

• Mean - Average of the size of the packets with particular Source IP, Source MAC, 

Channel and socket. It is also used to calculate the average of the packet jitter over a 

particular channel. 

• Variance - It measures how spread out the packet size and packet jitter values are. It is 

calculated as average squared deviation of each number from the mean of a dataset.  

• Magnitude - It measures the root squared sum of the means of the inbound and outbound 

packet streams. 

• Radius - It calculates the root squared sum of the variances of the inbound and outbound 

packet streams. 

• Covariance - It computes the mean value of the product of the deviations of the inbound 

and outbound packet streams from their respective means. 

• Correlation coefficient - It calculates the linear correlation between the inbound and 

outbound packet streams. 

• Weight - It computes the number of elements observed in the recent time window. 
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Looking into the dataset, we can see that each feature is named using certain symbols like 

H, HH, MI etc., along with numbers and the aggregation methodology. The dataset has been 

consolidated such that each network feature extracted and aggregated is named in the format of 

“FeatureName_LTimeWindow_AggregationMethod”. The Table 3.3 below shows the meaning 

of each feature and their symbolization[6]. The time windows are 100ms(L0.01), 500ms(L0.1), 

1.5sec(L1), 10sec(L3) and 1min(L5). 

 

Table 3.3: Features from Stream Aggregation 

 

  

Feature Name Packet Detail Meaning Example

H Source IP
Statistical summary of the recent traffic from
this packet's host IP

H_L0.01_variance

MI_dir Source MAC-IP
Statistical summary of the recent traffic from
this packet's host MAC-IP

MI_dir_L1_weight

HH Channel
Statistical summary of the recent traffic
going from this packet's host (Source IP) to
the packet's destination host (Destination IP).

HH_jit_L5_mean

HH_jit Channel Jitter
Statistical summary of the jitter of the traffic
going from this packet's host (Source IP) to
the packet's destination host (Destination IP).

HH_L3_magnitude

HpHp Socket
Statistical summary of the recent traffic
going from this packet's host and port (IP) to
the packet's destination host and port.

HpHp_L5_covariance
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4. IMPORTANT FEATURE RANKING 

For supervised learning predictive models, finding important features is essential in making 

accurate predictions. For classification tree-based models, the important features can be 

determined by evaluating the number and weight of splits, the given feature was involved in[12]. 

Using important feature ranking can result in higher accuracy while reducing the computation 

time. 

 

For our datasets, we are able to determine the best and important features to differentiate 

between normal and anomalous traffic by using the Input Perturbation Ranking (IPR) method 

with XGBoost algorithm. Once the IPR algorithm is run for each dataset, we rank the most 

important and common features across all the 9 datasets to find the 9 most important features. 

These features help us in understanding how the anomalous traffic deviates from the normal 

behavior. They can also be used to reduce the computation power for creating a decision tree 

classifier with just 9 features instead of 115.  

 

The following steps are followed to find the 9 most important features (depicted in Figure 4.4): 

• Input Perturbation Ranking - IPR is a feature importance algorithm that calculates 

the loss of a model when each of the input features to the model is perturbed by the 

algorithm[12]. It means that if an important feature value is changed, then the model 

suffers a very visible change as well. When a feature is perturbed, it becomes useless 

and is equivalent to be removed from the evaluation. Thus, if a feature is more 

important, such perturbation will lead to more losses and less accurate results for the 

model. The feature importance ranking is displayed to user in the form of a table 

consisting of the feature name, its importance value and the error or loss. The higher 

the loss, more important is the feature. Each feature has an importance value which is 

calculated using the formula: 

 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒	𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 = 	
𝐹𝑒𝑎𝑡𝑢𝑟𝑒	𝐿𝑜𝑠𝑠
	𝑀𝑎𝑥𝑖𝑚𝑢𝑚	𝐿𝑜𝑠𝑠 

Equation 4-1: Feature Importance 

 



 
 

28 

Higher the importance value, more important is the feature. We fit all our datasets 

using the XGBoost algorithm[26] as it leverages the advantages of random forest 

model and gradient boosting to strengthen the model and provide prediction errors ten 

times lower than random forest models. XGBoost also has a better performance time 

when compared to the traditional random forest approach and hence it is able to 

process larger sized datasets faster and more accurately. Once we have the trained 

model, we predict the target probabilities and perturb the features. By running the IPR 

on each of these datasets, we are able to collect 30 most important features based on 

the importance values from the 115 features available. 

 

• Feature Ranking per dataset - Each of the important features retrieved in the 

previous step are ranked from 1 to 30 with 1 being the most important and 30 being 

the least, as shown in Table 4.1. 

Table 4.1: Feature Ranking per dataset 

 
• Feature Ranking Aggregation across datasets - After collecting the most important 

30 features for all 9 datasets, we filter the features that are common across all the 9 

datasets (shown in Table 4.2). Once these common features have been filtered, we 

add the ranking of this feature across the 9 datasets and get a final ranking score. For 

example, if a feature A, has rank 1 in dataset 1, rank 4 in dataset 2 and so on, we add 

the rank number to get an aggregated rank score. 
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Table 4.2: Sample of features that are present across different datasets 

 
• Most Important Feature Ranking - After aggregating the rank score for all the 

common features across 9 datasets, we rank their importance based on the lowest 

ranking score. The one with the lowest ranking score is the most important feature. 

 

Using the above defined methodology, we have resulted in retrieving 9 most important features 

as shown in Table 4.3. 

Table 4.3: 9 Most Important Features 

 
The 3 most important features are: 

• HH_jit_L5_mean - This feature defines the average of the packet jitter between the 

packet’s host and destination over a particular channel in the time window of 1 

minute (L5). Looking into the datasets and the values this feature holds, we can see 

that for normal traffic, the jitter is a nominal amount while for anomalous traffic, the 
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jitter tends to either be very high (in millions) or extremely low (between 0 and 1). 

This feature helps in understanding how packet jitter variations are able to influence 

the distinction of traffic as normal or anomalous. 

 

• MI_dir_L0.1_weight -It describes the weight of the packets seen during the time 

window of 500ms(L0.1) originating from a particular Source MAC-IP. Weight 

describes how many of such packets were observed during a particular time period. 

This feature when plotted against the classes (Figure 4.1), shows that for anomalous 

values, it is very high whereas for normal values it tends to cluster around 0 to 2 (log 

scaled). The high weight for anomalous traffic is in line with the generic botnet 

activity of producing high volume of packets. Hence this is an important feature in 

distinguishing between normal and anomalous traffic. 

 

 
Figure 4.1: Log-scaled Scatter Plot of feature MI_dir_L0.1_weight against the classes for 

Danmini Doorbell dataset 

 

• HH_jit_L0.01_mean - This feature defines the average of the packet jitter between 

the packet’s host and destination over a particular channel in the time window of 

100ms(L0.01). This feature is used as the root node of the decision trees for 5 of our 

datasets showing the importance of this feature. The decision tree for Danmini 
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Doorbell datasets as shown in figure 4.2, classifies all samples having values below 

773.419 as normal and anything above as anomalous. 

 

 

Figure 4.2: Depicts the use of HH_jit_L0.1_mean as root node for Decision tree classifier in 
various datasets 

From the 9 datasets, we separate the 9 features for each dataset and run decision tree 

classifier on each of them. The performance accuracy is over 99.9% for all datasets and the 

processing times are in the form of a few seconds. This shows that the above 9 features can be 

used as the main features to detect any malicious traffic with very high accuracy and very small 
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processing time. This helps in detecting important features that are common across all datasets 

helping us to understand network features that might be a common factor in differentiating 

between normal and anomalous IoT traffic. 
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5. DECISION TREE CLASSIFIER 

The model we are proposing in this thesis is based on the usage of Decision Trees to detect 

botnet traffic in various different types of IoT devices. We are using Decision trees which is a 

supervised predictive model as they take less computation time while providing accurate results 

when compared to other supervised or unsupervised machine learning methods. The usage of 

minimal computation resources and time helps in using decision trees on IoT edge devices as a 

first line of defense. The decision tree model also provides very clear and specific rules based on 

which the model classifies the samples as normal or anomalous. These clear and concise rules 

can be easily converted into security policies and applied on network security devices to prevent 

malicious traffic from infiltrating the network. Another advantage that decision tree provides 

over unsupervised learning methods like autoencoders is that we can have a tradeoff between 

computation time and power with accuracy. By varying the height to which a decision tree model 

can grow, the user can have a tradeoff between the computation time and power with accuracy. 

The higher the tree grows, the better the accuracy but it requires more computation time and 

power. In the case of small IoT devices such as doorbells or thermostats with very low 

computational power, running our methodology with a low tree depth can help with detection 

without greatly affecting its functionality. In devices like security cameras that come with more 

powerful processors, the tree depth can be increased proportionally to ensure more efficient 

detection performance. Hence, the user is given the flexibility to choose according to the needs 

of the network environment. This flexibility is not readily controllable with other unsupervised 

machine learning algorithms like autoencoders.  

 

Decision tree is a predictive supervised machine learning algorithm that helps in 

classification or regression problems. The decision tree algorithm used for classification, creates 

a training model that is able to predict the class of target variable by learning simple rules from a 

prior training dataset. The decision tree simulates the tree structure and has the following 

terminology: 

• Root Node: The first node at the top of the decision tree contains the entire sample 

and further gets divided into two (binary classification) or more (multi class 

classification) sub-nodes. 
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• Decision Nodes: When the sub-node is split into further sub-nodes, the parent sub-

node is called the decision node which contains the rule based on which the 

classification happened. 

• Leaf Node: The nodes at the bottom of the tree structure upon which further division 

is not possible.  

• Tree depth: This  specifies the number of levels a decision tree can have from the root 

node to the leaf node. 

The above-mentioned elements of the decision tree are explained with an example in Figure 5.1. 

 

Figure 5.1: Decision Tree elements explained with an example 
 

The crux of the decision tree split depends on choosing the feature that best separates the noise 

from the information to differentiate between classes. To measure the informativeness of a 

feature and use it as the decision node there are two methods - Entropy and Gini Index. 

• Entropy - It is used to measure the impurity or the randomness of a dataset. Lower the 

entropy value, better is the discrimination capability of the algorithm. 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = 	−	7 𝑝! ∗ log"(𝑝!)
!

 

Equation 5-1: Entropy 
 where, 

  pi is the probability of a sample being classified to a particular class i∈{1…n}. 
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• Gini Index - The Gini Index[30]is used to decide the important features based on which 

the tree will be split into sub-nodes. The lower down the tree we go, the better the 

classification. Gini index measures the probability of a sample being classified in the 

wrong class. The formula for Gini index is:  

 

𝐺𝑖𝑛𝑖	𝐼𝑛𝑑𝑒𝑥 = 1 −	7(𝑝!)"
#

!$%

 

Equation 5-2: Gini Index 
where, 

  pi is the probability of a sample being classified to a particular class i∈{1…n}. 

 n is the number of classes. 

 

The Gini index varies between 0 and 1-1/n, with 0 showing that all samples belong to the 

class they were classified into and 1-1/n shows that the samples are evenly distributed 

between the classes. Hence, a low value of Gini index in the final nodes of the tree imply 

greater discrimination. In our methodology, we have used the Gini Index as a measure for 

splitting the decision tree nodes. 

 

The first step in our proposed methodology (Figure 5.2) is to prepare the datasets into 

training and testing sets with an 80-20 distribution. Each training dataset is going to be run 

through the decision tree classifier and a model is generated. Since our datasets contain a higher 

number of anomalous traffic as compared to normal traffic, using plain decision trees can make 

the trees very skewed giving inaccurate results. Hence, we are going to use weighted decision 

trees to train the model. By using class weights that are inversely proportional to the length of a 

class sample, we can make sure that the tree is going to be balanced and impartial. 
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Figure 5.2: Illustration of our Decision Tree algorithm methodology 

 

The training datasets are run with the maximum tree depth, meaning that the decision tree is 

allowed to grow to its full length, till no more nodes can be split into sub-nodes. Next, we are 

going to vary the tree depths and evaluate the tradeoff between performance and processing time. 

Preliminary analysis for the values of tree depth shows that a depth of 3 has results that are 

comparable to the maximum depth tree and hence we limit the experiments to using 1,2,3 and 

maximum depth for the tree depth values. For each of the decision training model that are built, 

we are going to calculate the total time taken for training.  

 

The second step is to run the respective testing datasets over the trained model to predict the 

classes. The prediction times are calculated as well and combined with the training time to find 

the total time taken to run samples through our methodology. This will help in comparing the 

processing efficiency of our methodology over the baseline. Along with carrying out binary 

classification where benign traffic is assigned class 0 and anomalous traffic is assigned class 1, 
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we also carry out multi class classification by assigning benign traffic as class 0, Mirai botnet 

malicious traffic as class 1 and Bashlite botnet malicious traffic as class 2. The advantage of 

using decision trees is that, on one model we can do binary or multi class classification whereas 

Kitsune baseline would require two different models to be able to differentiate between benign 

and Mirai traffic and benign and Bashlite traffic. We also are able to combine the datasets 

together to form one dataset and run it through the decision tree classifier. This is not possible 

using autoencoders as combining the datasets will remove the patterns of specific devices and 

hence make the autoencoder model unusable. 

 

Finally, for calculating and measuring the performance of our method, we use metrics such 

as accuracy, precision, recall, F1-measure, true and false positive rates. Our methodology 

provides an average of 99% accuracy for all 9 datasets. We will discuss more of these results in 

Section 6. 
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6. EVALUATION 

In this section, we are going to look at the evaluation of our methodology in terms of packet 

detection and runtime performance. We are going to look at the experimental setup and then 

discuss the results generated. 

6.1 Experimental Setup 

In our evaluations, we compare our methodology with the Kitsune algorithm and other 

supervised learning methods. Though Kitsune is an unsupervised online learning methodology, 

we compare our methodology with it in an effort to show the difference in runtime while 

maintaining accuracy. Decision Tree which is a supervised learning method has a detection 

performance similar to an unsupervised deep learning method with significantly lesser runtime. 

Comparing with Kitsune shows using a simpler methodology as a first line of defense is more 

efficient than using a computation heavy methodology especially in case of IoT edge devices. 

 

We use the same set of training and testing datasets for both methodologies so that the 

baseline is accurate and impartial. Since Kitsune is an unsupervised machine learning 

methodology, the only change in the training dataset would be to remove the malicious samples. 

Table 3.1 describes the benign and malicious sample count for each of the datasets used in the 

experiment.  

6.2 Evaluation Metrics 

The output of the decision tree classification are the predicted class values which can be 

compared against the actual class values and the performance of our algorithm can be measured. 

The detection performance can be measured using the True-Positive(TP), True-Negative(TN), 

False-Positive(FP) and  False-Negative(FN) rates. The TP, TN, FP and FN values can be found 

using a confusion matrix developed by comparing the actual values with the predicted values as 

shown in Figure. 
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Figure 6.1: Confusion matrix with true-positive, true-negative, false-positive and false-negative 
values depicted 

Using the TP, TN, FP and FN values , we can find their respective rates using formulae 

shown below. 

𝑇𝑃𝑅 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 

 

𝑇𝑁𝑅 = 	
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 

 

𝐹𝑃𝑅 = 		
𝐹𝑃

𝑇𝑁 + 𝐹𝑃 

 

𝐹𝑁𝑅 = 	
𝐹𝑁

𝑇𝑃 + 𝐹𝑁 

  

Equation 6-1: True-positive, True-Negative, False-Positive and False-Negative Rates formulae 

 

These measures help us to understand how many anomalous packets were detected accurately 

and how many were mis-classified. The false-positive rate depicts the probability of a true 

negative value, being classified as a positive value. It is very important to have a low false-

positive rate for any anomaly detection algorithm so that false alarms can be avoided. 

 

We also use metrics such as accuracy, precision, recall and f1-score to understand how well 

the anomaly detection happens.  

• Accuracy - calculates the ratio of correctly predicted samples to the total number of 

samples. It is defined as: 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 

 
Equation 6-2: Accuracy 

 

• Precision -  measures how many values are accurately predicted as positive out of the 

total positively predicted values. It is defined by the following formula: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 

 
 

Equation 6-3: Precision 
 

• Recall or Sensitivity -  also known as true-positive rate (TPR) specifies how many 

samples are actually positive out of the total samples predicted as positive. It is 

defined as: 

𝑅𝑒𝑐𝑎𝑙𝑙 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 
   

Equation 6-4: Recall or Sensitivity 
 

• F1-Score - is the weighted average of both precision and recall. This measure helps 

in better understanding of the prediction accuracy in case of uneven class distribution. 

It is defined as: 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 	2 ∗ 	
𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 
 

Equation 6-5: F1-Score 

 

Area under the receiver operating characteristic curve (AUC) and receiver operating 

characteristic (ROC) is used to measure if the algorithm is classifying the samples correctly or if 

it is randomly guessing the labels. ROC curve is plotted with TPR as y-axis and FPR as x-axis. It 
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is a probability curve that plots TPR against FPR at various threshold levels. Figure 6.2 depicts 

the ROC and AUC plot. AUC represents the measure of separability. Higher the AUC, better is 

the model at predicting the classes accurately. AUC values vary between 0 and 1 with AUC=0 

meaning that the classifier inaccurately predicts the positives as negatives and vice versa, 

AUC=1 meaning that the classifier accurately differentiates between the positive and negative 

samples. 

 

 

Figure 6.2: ROC curve 

 

6.3 Decision Tree Classification Evaluation 

6.3.1 Binary Classification 

One of the greatest advantages of using decision trees is the very fast runtime 

performance exhibited by the algorithm. We can see from Table 6.1, the runtimes for decision 

trees with different depths. To be fairly compared with the baseline, Kitsune, in this section, all 

115 features are applied to both binary and multi-class decision tree classification, instead of the 

9 important features. 
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Table 6.1: Runtimes for varying tree depths 

 
 

From the experiment, we can clearly see that the runtime is very less when compared to 

the Kitsune baseline as depicted in the Table 6.2. In this table, we are comparing a decision tree 

with maximum depth to the Kitsune autoencoder baseline. Table 6.2 also depicts that the 

decision tree algorithm has better detection rates as shown by the higher true-positive rate and 

accuracy metrics and very low false-positive rates when compared to Kitsune. For a few datasets, 

Kitsune shows 100% true-positive rate and recall, the false-positive rates are higher in the range 

of  3-10%. This shows that while Kitsune is extremely good at detecting the normal traffic 

patterns, it falters a bit with raising higher number of false-alarms due to higher false-positive 

Dataset
Tree Depth

Training Time 
(seconds)

Prediction Time 
(seconds)

1 8.412 0.097
2 15.818 0.082
3 23.369 0.083

MaxDepth 77.163 0.095
1 6.419 0.073
2 14.026 0.069
3 21.496 0.067

MaxDepth 55.728 0.064
1 1.209 0.026
2 2.228 0.025
3 3.233 0.026

MaxDepth 13.428 0.029
1 11.341 0.087
2 22.723 0.088
3 32.934 0.086

MaxDepth 121.201 0.103
1 6.217 0.065
2 13.474 0.065
3 19.217 0.064

MaxDepth 62.954 0.072
1 6.628 0.068
2 12.844 0.068
3 18.393 0.069

MaxDepth 70.122 0.079
1 1.361 0.025
2 2.487 0.024
3 3.607 0.024

MaxDepth 12.413 0.026
1 7.349 0.065
2 14.825 0.061
3 22.236 0.061

MaxDepth 48.896 0.071
1 7.023 0.061
2 14.023 0.062
3 20.945 0.062

MaxDepth 76.269 0.072

Samsung SNH1011N Webcam

SimpleHome XCS71002WHT Security Camera

SimpleHome XCS71003WHT Security Camera

Danmini Doorbell

Ecobee Thermostat

Ennio Doorbell

Philips B120N10 Baby Monitor

Provision PT737E Security Camera

Provision PT838 Security Camera
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rate. Comparing our methodology with this we can clearly see that our false-positive rates are 

extremely low in the range of 0.0 to 0.03% making our algorithm much better at detection of 

anomalous traffic. Comparing the computation time, our methodology takes milliseconds to 

predict values, whereas the Kitsune baseline varies from 20 minutes up to 2 hours. Since the 

accuracy is same for methodologies at 99%, we can clearly see a huge advantage for our 

methodology in terms of runtime performance especially on IoT edge devices with low 

computation power. 

Table 6.2: Comparing Decision Tree with max depth results with Kitsune Baseline 

 
 

Looking at the nodes of Decision trees in Figure 6.3 depicting the various tree depths for 

Danmini Doorbell dataset, we can say that certain features are important in making decisions and 

they can be used to add security policies. Figure 6.4 and Figure 6.5 shows how the confusion 

matrix and AUC for Danmini Doorbell dataset improves as the tree depth grows. From the 

confusion matrix, we can clearly see that as the tree depth increases, the false positives decrease 

significantly. For the tree with maximum depth, the false-positive is very low and the AUC is 1 

showing that the algorithm performs very well in distinguishing the normal and malicious traffic. 
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Figure 6.3: Decision Tree with varying tree depths for Danmini Doorbell dataset 
 

Depth = 1 Depth = 2 

Depth = 3 
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Figure 6.4: Confusion matrix depicts improved detection performance as the depth of Decision 
Tree grows for Danmini Doorbell dataset 

 

 

Figure 6.5: AUC depicts improved detection performance as the depth of Decision Tree grows 
for Danmini Doorbell dataset 
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6.3.2 Multi-class Classification 

As mentioned in Section 4, we will be training a new model to differentiate between the 

Mirai and Bashlite botnet traffic from the benign traffic. Using the multi-class classification 

decision tree, we are able to conduct the experiment with 99% detection accuracy. This shows 

that decision tree is capable of differentiating between two types of IoT botnet traffic well. The 

runtime and detection performance are also measured as shown in Table 6.3. In Table 6.3, we are 

comparing a decision tree with maximum depth to the Kitsune autoencoder baseline. Figure 6.6 

depicts the decision tree of varying depth formed for the multi-class classification of Danmini 

Doorbell dataset along with the confusion matrix for the same. We can see that in the tree with 

depth as 1, the decision tree classifies everything into only two classes as it is unable to 

accommodate the third class due to the limitation of the tree depth. But for depths 2 and 3, we 

can clearly see that all 3 classes are depicted in the decision tree and the false-positive rate drops 

with increase in tree depth. Figure 6.7 depicts the confusion matrix for Multi-class Decision Tree 

Classification for Danmini Doorbell with varying tree depths. 

Table 6.3: Multi-class Decision Tree with max depth depicting runtime and detection 
performance 
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Figure 6.6: Multi-class Decision Tree Classification for Danmini Doorbell with varying tree 
depths 

Depth = 1 Depth = 2 

Depth = 3 
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Figure 6.7: Confusion matrix for Multi-class Decision Tree Classification for Danmini Doorbell 
with varying tree depths 

 

6.3.3 Combined datasets 

We combine the 9 datasets into one single dataset and run it through a binary decision tree 

classifier. The botnet traffic from different datasets is mixed together and are tested against our 

methodology. This experiment is clearly able to distinguish between benign and malicious traffic 

with an accuracy of over 99% for decision trees with various depths(shown in Figure 6.8). 

Figures 6.9 and 6.10 depict how the prediction accuracy increases as the tree depth increases. For 

the decision tree with maximum depth, the training time for 5,650,084 samples is 1024.18 

seconds and prediction time for 1,412,522 samples is 4.97 seconds(Table 6.4). We can clearly 

say that decision trees work well for botnet traffic infecting any type of IoT device.  
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Figure 6.8: Decision Tree Classification for combined dataset with varying tree depths 

Depth = 1 

Depth = 2 

Depth = 3 
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Figure 6.9: Confusion matrix for Decision Tree Classification for combined dataset with varying 
tree depths 

 

 

 

Figure 6.10: AUC depicts improved detection performance as the depth of Decision Tree grows 
for combined dataset 
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For the combined datasets, we also compare our methodology with other supervised learning 

methodologies like Logistic Regression[50], Naïve Bayes[51], Random Forest Classifier[52], 

AdaBoost Classifier[53], XGB Classifier[26], SGD Classifier[54] and ANN[55]. We have not shown 

the comparison with KNeighbors Classifier[56] as it is an extremely slow learning methodology 

which calculates the distance(Euclidean or other methods) for each of its predicted samples with 

its k-nearest neighbors. This would take a lot of runtime for 1 million testing samples and hence 

would be out of scope for our usage[48][49].Comparing our algorithm with above-mentioned 

supervised learning algorithms, we can see that our methodology performs extremely well with 

respect to low computation time while maintain a high accuracy(Table 6.4). Though Random 

Forest, XGBoost and AdaBoost methodologies also boast of a 100% accuracy, the running times 

are high showing that these methodologies might not be well suited for IoT edge devices that 

need to respond quickly. We also compare with an ANN model with 2 hidden layers using ‘relu’ 

activation and the output layer with ‘sigmoid’ activation for binary classification. The model 

configuration includes ‘adam’ function for optimization, ‘binary_crossentropy’ function for loss 

measurement and the model is trained for 150 epochs. The runtime for this ANN model is more 

than 4 hours while the prediction time is a comparatively low 20 seconds. The model has high 

accuracy of 98%, but the false positive rate is very high at 15%. Compared to our methodology, 

ANN takes more runtime and computation power and would be unsuitable for small IoT devices 

like doorbells or thermostats. 

Table 6.4: Comparison of Decision Tree methodology performance with other Supervise 
learning methods 
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6.4 Important Feature Ranking Evaluation 

Using the important feature ranking algorithm as explained in Section 4, we arrive at 9 

unique features that are ranked highly across all 9 datasets. When these 9 features are isolated for 

each dataset and the decision tree is run, we see that the detection performance is higher than 

99.9% showing that these features are key in distinguishing benign samples from malicious 

samples. These features also show that they can distinguish IoT botnet traffic irrespective of the 

type of IoT device being infected. Table 6.5 shows the training and testing times for datasets 

with only these 9 features and their detection performance metrics. We can clearly see that the 

false-positive rate is negligible showing that the algorithm works very well in accurately 

classifying the samples. Figure 6.11 shows the confusion matrices for all the 9 datasets. 

Table 6.5: Detection and Runtime performance using 9 most important features with Decision 
Trees 

 
 

The above experiment has shown that these 9 features can run decision tree classifier 

with average training time of 4.294 seconds and average prediction time of 0.012 seconds, while 

maintaining an average accuracy of 99.998%. Hence, using datasets filtered with only these 9 

features while classifying can help in faster detection on IoT edge devices with low computation 

power and memory. 

 

 

Dataset Training Time 
(seconds)

Prediction Time 
(seconds) TPR (%) FPR (%) Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Danmini Doorbell 5.231 0.014 99.999 0.03 99.998 99.998 99.999 99.999
Ecobee Thermostat 5.749 0.014 99.999 0.038 99.998 99.999 99.999 99.999
Ennio Doorbell 1.42 0.005 100 0.025 99.997 99.997 100 99.998

Philips B120N10 Baby Monitor
9.566 0.021 99.999 0.009 99.998 99.998 99.999 99.999

Provision PT737E Security 
Camera 2.991 0.012 99.999 0 99.999 100 99.999 99.999
Provision PT838 Security 
Camera 4.755 0.014 99.998 0.01 99.997 99.999 99.998 99.998

Samsung SNH1011N Webcam
0.946 0.006 100 0 100 100 100 100

SimpleHome XCS71002WHT 
Security Camera

3.907 0.012 99.999 0 99.999 100 99.999 100

SimpleHome XCS71003WHT 
Security Camera

4.078 0.011 100 0.026 99.999 99.999 100 100
AVERAGE 4.294 0.012 99.999 0.015 99.998 99.999 99.999 99.999
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Figure 6.11: Confusion matrix for datasets using the using 9 most important features with 
Decision Trees 

 

For the combined dataset mentioned in Section 6.3.3, we separate the 9 most important 

features from it and run the decision tree classifier with maximum depth. We find that the 

training time is 46.93 seconds, and the prediction time is 0.078 seconds which is a great 

improvement when compared with running the combined dataset with all 115 features(see 

Section 6.3.3). We also see that the accuracy is maintained the same while the runtime is reduced 

showing the usefulness of feature importance ranking(Figure 6.12). 



 
 

54 

 
 

 

Figure 6.12: Confusion Matrix with evaluation metrics and AUC curve for combined dataset 
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7 CONCLUSION AND FUTURE WORK 

Our methodology has been designed to act as an initial line of defense for IoT edge devices 

having low memory and computation powers. Our decision tree algorithm is a supervised 

machine learning method that is able to perform classification with high accuracy, low false-

positive rate and in minimal amount of time. In this paper, we have discussed the usage of 

decision trees and the ability to control the tradeoff between performance and computation time 

using tree depths. We have also evaluated the detection and runtime performance of our 

methodology against an established baseline in detail which showcases the efficiency of our 

algorithm. An important contribution of our research is the feature ranking algorithm which 

produces 9 most important features. These features when segregated from network traffic, can 

help in identifying normal and malicious traffic with high accuracy and less runtime on devices 

with low computation power. Hence, we can say that our methodology is efficient and cost-

effective especially as a first line of defense in the IoT environment. 

  

 Our work establishes the need for better ways to efficiently detect anomalous traffic at 

the edge of networks and raises more questions. An extension to our work can be in the form of 

extending the study about the important features found using the Important Feature Ranking 

algorithm. These important features can be studied in depth to figure out if they can be 

manipulated by adversaries to make their anomalous traffic look similar to normal traffic. These 

features can also be used to test with other IoT botnets to see if they are able to maintain the 

same standard of detection and runtime performances. This can help in (1) better understanding 

of what network properties make up anomalous traffic and (2) more efficient detection and 

runtime performances of other anomaly detection algorithms. 
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