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ABSTRACT

Partition Theory (PT) is a quantum chemistry method for simplifying a molecular calcu-

lation by breaking it down into fragment calculations. This “fragmentation” can lead to more

efficient and/or more accurate results. The work in this thesis concerns studying fundamen-

tal aspects of PT and exact properties of energy functionals used in PT. We hope that these

properties can be used for the development of feasible approximations to PT functionals.

We implemented PT so that it can be solved numerically exactly for model systems

in 1-D. We used this implementation to study exact properties of the partition potential

(a fictitious one-body potential used in PT to recover inter-fragment interactions). Our

implementation can be used to study non-interacting and interacting electrons in 1D. We

extended PT to systems supporting continuous electronic states (e.g., metals and metal

surfaces) and demonstrated this method using a model system in 1D. We derived an exact

virial relation for fragment energies and tested it on simple diatomic molecules in 3D. Finally,

we studied properties of the partition potentials obtained through numerical inversions of

formic acid dimer systems in 3D.
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1. INTRODUCTION

Partition Theory is a particular type of quantum-embedding methods for electronic-structure

calculations. In a quantum-embedding calculation, the full quantum system (e.g. a molecule)

is divided into fragments for which properties can be obtained with a higher accuracy and/or

at a lower computational cost. The properties of the full system are then computed from the

properties of the fragments corrected for the inter-fragment interactions. Partition Theory

uses electronic density as the main variable and is constructed analogously to the Kohn-Sham

Density-Functional Theory.

This work is organized as follows. In Chapter 2 , we review the formalism of the Density-

Functional Theory. This chapter provides background information important for introducing

PT later. In Chapter 3 , we introduce PT and derive the equations that are used for frag-

ment calculations within PT. In PT, the sum of fragment energies is minimized under the

constraint that fragment electronic densities sum to the total density of the full system. We

introduce the partition potential, an embedding potential that guarantees that the density

constraint is satisfied at each point in space. In Chapter 4 , we illustrate how PT works using

exactly solvable models in 1-D. We also demonstrate several exact properties of the parti-

tion potential. In Chapter 5 , we extend PT to systems supporting a continuum of electronic

states. We demonstrate our extension on a model system designed to mimic metal-atom

interactions. In Chapter 6 , we derive a virial relationship for fragments within PT. Verifica-

tion of the new relationship is done using a set of atomic dimers. In Chapter 7 , we compute

the partition potential for four different conformations of the formic acid dimer. We demon-

strate that partition potential has no transferable features corresponding to particular types

of hydrogen bonds.

Unless otherwise specified, we use Hartree atomic units throughout this work (reduced

Planck constant, elementary charge, and electron mass are all equal to unity).

12



2. DENSITY-FUNCTIONAL THEORY

The solution of the non-relativistic Schrödinger equation for N electrons is a wavefunction

depending on 3N spatial and N spin coordinates. Density-Functional Theory (DFT) re-

places the many-body wavefunction with a one-body electron density function as its main

variable. Within this reformulation of the electronic-structure problem, the equations are

computationally easier to work with. However, the form of the energy operator is no longer

readily available. In DFT, one does not seek to approximate electronic wavefunctions more

accurately. Instead, the goal is to find a more accurate functional dependence of the energy

as a functional of density.

In this chapter, we will review the Hohenberg-Kohn theorem, which laid the rigorous

foundation of DFT. We will also review the formalism of the Kohn-Sham DFT, the most

popular practical approach to DFT calculations.

2.1 Preliminaries: Many-Electron Problem in Quantum Chemistry

Finding solutions to the time-independent Schrödinger equation

ĤΨ = EΨ (2.1)

for electrons in the electrostatic field of “fixed” nuclei is the main interest of this work. The

fixed-nuclei approximation (commonly referred to as the Born-Oppenheimer approximation)

is central to the field of quantum chemistry [1 ]. Qualitatively, this approximation is justified

by the fact that electrons are much lighter than nuclei and therefore move much faster.

Quantitative aspects of this approximation have been recently discussed by Gross et al. [2 ]

The form of the electronic hamiltonian Ĥ in the Eq. 2.1 is:

Ĥ = T̂ + V̂ee + V̂ext . (2.2)

13



The kinetic operator T̂ is given by:

T̂ = −1
2

N∑
i

∇2
i , (2.3)

where the summation is over N electronic spatial coordinates ri. The electron-electron

interaction operator is the sum of Coulomb operators between two electrons over all electron

pairs:

V̂ee = 1
2

N∑
i

N∑
j6=i

1
|ri − rj|

. (2.4)

The interaction energy of electrons with the external electrostatic field is described by the

operator

V̂ext =
N∑
i
vext(ri) , (2.5)

where vext(ri) is the interaction energy of an electron with nuclei of charge ZA centered at

RA:

vext(ri) =
∑
A

−ZA

|ri − RA|
. (2.6)

In non-relativistic quantum mechanics, spin is introduced in an ad hoc fashion [3 ]. It

is postulated that the electronic wavefunction must be antisymmetric with respect to the

interchange of particle indices (i.e. Ψ(. . . ,xi, . . . ,xj, . . . ) = −Ψ(. . . ,xj, . . . ,xi, . . . ), where

xi = (ri, si) is the particle coordinate combining both spatial and spin coordinates)1
 . In the

absence of magnetic interactions, the electronic wavefunction should also be an eigenfunction

of the total spin Ŝ2 operator.

In practical calculations, the antisymmetry condition is handled by forcing the wavefunc-

tion to have the form of the Slater determinant [1 ],

Ψ(x1,x2, . . . ,xN) ≈

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

χ1(x1) χ2(x1) . . . χN(x1)

χ1(x2) χ2(x2) . . . χN(x2)
... ... ...

χ1(xN) χ2(xN) . . . χN(xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= |χ1, χ2, . . . , χN〉 . (2.7)

1↑ Discrete spin coordinate si can take the value of either ↑ or ↓ and satisfies α(↑) = β(↓) = 1 and α(↓) =
β(↑) = 0, where α and β are eigenfunctions of the spin Ŝz operator.

14



Here, χ(x) is the spin orbital,

χ(x) =


ψ(r)α(s)

ψ(r)β(s)
. (2.8)

Alternatively, the spatial part can be solved independently and then combined with the

eigenvalues of the N -spin Ŝz,total operator [3 ], [4 ]:

Ψ(x1,x2, . . . ,xN) =
∑

ψs1,s2,...,sN
(r1, r2, . . . , rN) |s1, s2, . . . , sN〉 ,

where the sum is over all |s1, s2, . . . , sN〉 spin states and ψs1,s2,...,sN
(r1, r2, . . . , rN) are the

degenerate eigenstates of the spatial hamiltonian.

The main DFT variables, electronic density n(r) and spin-up (and -down) densities ns(r)

are defined through2
 :

n(r) =
∑

s=↑,↓
ns(r) =

∑
s=↑,↓

N
∫
dx2 . . . dxN |Ψ(x,x2, . . . ,xN)|2 . (2.9)

The possibility to use n(r) instead of the wavefunction as the main variable in quantum me-

chanical calculations with hamiltonians of the form of Eq. 2.2 was proven by the Hohenberg-

Kohn theorem [5 ].

2.2 Hohenberg-Kohn Theorem

From Eqs. 2.3 —2.5 , it should be clear that for fixed N the system is completely deter-

mined by the location of its nuclei (i.e. by the Eq. 2.6 ). In principle, if we know N and

vext(r) we can solve Eq. 2.2 to obtain the ground state wavefunction Ψ0(x,x2, . . . ,xN) and

all other properties of the system (including its electronic density). The Hohenberg-Kohn

Theorem [5 ] establishes that the ground state density n0(r) can be used in place of vext(r).
2↑ We use the shortcut notation

∫
dx =

∑
s

∫
d3r .

15



We will take a look at the elegant proof of the Hohenberg-Kohn theorem given by Levy

[6 ]. We start by introducing the universal density functional that returns the sum of the

kinetic and the electron-electron interaction energies for a given density n(r):

F [n] = min
Ψ→n

〈Ψ|T̂ + V̂ee|Ψ〉 , (2.10)

where the minimization is over all antisymmetric wavefunctions Ψ(x,x2, . . . ,xN) that inte-

grate to density n(r) through Eq. 2.9 . Levy established the variational principle for DFT

by proving that for any n(r)3
 :

F [n] +
∫
d3r vext(r)n(r) ≥ E0 , (2.11)

where E0 = 〈Ψ0|Ĥ|Ψ0〉. Levy also demonstrated that

F [n0] = 〈Ψ0|T̂ + V̂ee|Ψ0〉 , (2.12)

providing an alternative definition of the ground state wavefunction Ψ0(x,x2, . . . ,xN): the

ground state wavefunction is the wavefunction that minimizes the expectation value of T̂+V̂ee

and integrates to the ground state density. Starting with n0(r), we, in principle, can find

Ψ0(x,x2, . . . ,xN) using this definition. We can then use this Ψ0(x,x2, . . . ,xN) to reconstruct

the external potential according to:

N∑
i
vext(ri) = − T̂Ψ0

Ψ0
− V̂ee + E0 , (2.13)

where we used Eqs. 2.2 —2.5 and the fact that:

∫
d3r n(r) = N . (2.14)

Eqs. 2.10 —2.13 illustrate that for a given n0(r) we can find a unique corresponding vext(r)

and that n(r) alone can, in principle, be used to describe the electronic structure of molecules.
3↑ Note that 〈Ψ|V̂ext|Ψ〉 =

∫
d3r vext(r)n(r) .
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2.3 Kohn-Sham DFT

Reformulating the electronic structure problem in terms of n(r)— a function of only 3

spatial coordinates— simplifies how the equations are handled computationally. However, it

comes with a drawback that the analytical form of F [n] is not known for systems with more

than 2 electrons. It also turns out that approximating F [n] directly as a functional of n(r) is

problematic. The biggest error comes from approximating the kinetic energy functional T [n]

[7 ]. To solve this problem, Kohn and Sham [8 ] suggested that T [n] can be well approximated

by the kinetic energy of non-interacting electrons (i.e., electrons with V̂ee = 0 that satisfy the

antisymmetry relation) with the density n(r). This approach leads to the formulation of the

Kohn-Sham equations, a set of Schrödinger-like equations for orbitals of the non-interacting

electrons with the same ground state density n0(r) as the real interacting system.

2.3.1 Kohn-Sham Equations

In Kohn-Sham DFT (KS-DFT [8 ]), we map the problem of interacting electrons to a

system of non-interacting electrons in a fictitious external one-body potential, called the

Kohn-Sham potential or vKS(r). The Kohn-Sham potential is chosen such that the non-

interacting system has the same ground state density as the interacting system. The energy

of this system is given as:

EKS[n] = TS[n] +
∫
d3r vKS(r)n(r) , (2.15)

where TS[n] is the kinetic energy of the non-interacting electrons. Note that for a given n0(r),

vKS(r) is uniquely defined. The minimization of Eq. 2.15 with respect ot n(r) leads to:

0 = δTS[n]
δn(r) + vKS(r) . (2.16)

From Eq. 2.10 , TS[n] is:

TS[n] = min
Ψ→n0

〈Ψ|T̂ |Ψ〉 . (2.17)
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The minimizing wavefunction in Eq. 2.17 is (for a closed-shell system) a Slater determinant

Φ0(x1,x2, . . . ,xN) =
∣∣∣φ1α, φ1β, . . . , φN/2α, φN/2β

〉
, (2.18)

where orbitals are the eigenfunctions of

[ − 1
2∇2 + vKS(r)]φi(r) = εiφi(r) , (2.19)

and n0(r) is given by:

n0(r) = 2
N/2∑

i
|φi(r)|2 . (2.20)

We can now write the following decomposition of the energy functional of the interacting

system:

E[n] = TS[n] + EH[n] +
∫
d3r vext(r)n(r) + EXC[n] , (2.21)

where the the classical electrostatic (Hartree) energy is:

EH[n] = 1
2

∫
d3rd3r′ n(r)n(r′)

|r − r′|
. (2.22)

It turns out that EH[n] for most systems accounts for a large part of the electron-electron

interaction energy. The exchange-correlation (XC) energy is then a small “leftover” piece

accounting for all quantum effects:

EXC[n] = (T [n] − TS[n]) + ( 〈Ψ|V̂ee|Ψ〉 − EH[n]) . (2.23)

Taking the derivative of Eq. 2.21 with respect to n(r) gives:

0 = δTS[n]
δn(r) +

∫
d3r′ n(r′)

|r − r′|
+ vext(r) + δEXC[n]

δn(r) , (2.24)

where we define the Hartree potential:

vH[n](r) = δEH[n]
δn(r) =

∫
d3r′ n(r′)

|r − r′|
, (2.25)
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and the exchange-correlation potential:

vXC[n](r) = δEXC[n]
δn(r) . (2.26)

Since the definition of TS[n] is the same in Eq. 2.16 and in Eq. 2.24 , we identify:

vKS[n](r) = vH(r) + vext(r) + vXC[n](r) . (2.27)

The ground state density n0(r) for the real interacting system can be found by solving

[ − 1
2∇2 + vH(r) + vext(r) + vXC[n](r)]φi(r) = εiφi(r)

using some approximate exchange-correlation functional. We note that vKS[n](r) implicitly

depends on orbitals φi(r) through density. Therefore, KS equations must be solved self-

consistently.

2.3.2 Approximate Exchange-Correlation Functionals

Along their famous equations, Kohn and Sham [8 ] also introduced the first modern XC

approximation, called the local-density approximation or LDA. In LDA, the XC energy has

the form:

EXC[n] =
∫
d3r εXC[n](r)n(r), (2.28)

where εXC[n](r) is the energy per particle for the uniform electron gas. LDA is commonly

used even today. In fact, the function form of the exchange energy EX[n], defined through

EXC[n] = EC[n] + EX[n] =

( 〈Φ|Ĥ|Φ〉 − TS[n] − EH[n] − Vext[n]) + ( 〈Ψ|Ĥ|Ψ〉 − 〈Φ|Ĥ|Φ〉) , (2.29)
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is known exactly for the uniform electron gas. The correlation energy EC[n] can be deter-

mined through parameterization of the highly accurate calculations of the uniform electron

gas [9 ]. In Eq. 2.29 , the term Vext[n] is simply:

Vext[n] =
∫
d3r vext(r)n(r) . (2.30)

More sophisticated XC functionals exist [10 ]. Generalized Gradient Approximation func-

tionals (or GGA) [11 ]–[13 ] that use the gradient of the density to capture some non-homogeneity

of electronic density and meta-GGA [14 ] that use the Laplacian of the density are among the

most successful modern functionals [9 ]. Parametrized hybrid functionals [15 ]–[17 ] that in-

clude a fraction of the exact exchange (from Hartree-Fock theory) also became very popular

for chemical applications [9 ].

2.3.3 Spin-unrestricted KS-DFT

It is straightforward to generalize KS-DFT to the spin-unrestricted case. We choose our

reference system of non-interacting electrons in a way that spin-up and spin-down densities of

the non-interacting system and of the real system are the same [18 ] (in contrast to “regular”

KS-DFT, where only the total densities are equal). Mathematically, it is accomplished by

introducing a magnetic component to vKS(r) that interacts only with the spin [18 ], [19 ]:

vKS(r) = vKS,electrostatic(r) + vKS,spin(r)

 1 0

0 -1

 . (2.31)

KS spin orbitals can now be found from:

[ − 1
2∇2 + vKS,s(r)]φi,s(r) = εiφi,s(r) , (2.32)

where s is either ↑ or ↓ and:

vKS,↑/↓(r) = vKS,electrostatic(r) ± vKS,spin(r) = vH[n](r) + vext(r) + vXC↑/↓[n](r) , (2.33)
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with:

vXC,↑/↓[n](r) = δEXC[n↑, n↓]
δn↑/↓(r) . (2.34)

The KS wavefunction is still a Slater determinant of the form:

Φ0(x1,x2, . . . ,xN) =
∣∣∣φα

1α, φ
β
1β, φ

α
2α, φ

β
2β, . . .

〉
. (2.35)

We note that Φ0(x1,x2, . . . ,xN) is not an eigenfunction of the total spin Ŝ2 operator if φα
i 6=

φβ
i for all doubly-occupied indices. It turns out that most modern functional approximations

as well as the computational software packages work within the spin KS-DFT formalism [9 ].

2.4 DFT for non-integer electrons

Our discussion so far has been limited to the case of integer electron numbers. However,

non-integer number of electrons can arise in an open system as, for example, a time average

[20 ]. For the case of non-integer electron number N = M + ω (0 ≤ ω ≤ 0), Perdew, Parr,

Levy, and Balduz (PPLB [20 ]) showed using the grand canonical ensemble theory that the

energy of the open system is given by:

E0(N) = (1 − ω)E0(M) + ωE0(M + 1), (2.36)

and the density is given by:

n0,N(r) = (1 − ω)n0,M(r) + ωn0,M+1(r). (2.37)

The chemical potential of the open system at zero temperature is [20 ], [21 ]:

µ = δE[n]
δn(r) = E0(M + 1) − E0(M) . (2.38)

We should note that for ω = 0, µ in Eq. 2.38 is undefined (i.e., µ is different depending

on the side the derivative is taken on). Eqs. 2.36 —2.38 are exact as long as E0(N) is a

convex function of integer N values (which is empirically the case for all known Coulomb

21



systems [22 ]). Recently, the same results were derived by Ayers et al. [23 ] without evoking

ensembles (only using exact known properties of the energy functional). Gál and Geerlings

[19 ] generalized Eqs. 2.36 —2.38 for spin-DFT.

2.5 Connection to the Partition Theory

The idea of mapping an interacting system to a non-interacting system is central to the

Partition Theory (PT) where we deal with non-interacting molecular fragments “mimicking”

the real interacting molecule. The goal of this section is to highlight the relation between

PT and DFT with as few technicalities as possible. For this reason, we will restrict ourselves

to the system of two fragments (A and B) each containing an integer number of electrons

(NA and NB respectively). The extension to a more general case with an arbitrary number

of open systems that can exchange electrons among each other will follow in the subsequent

chapter.

We imagine that fragments A and B are not interacting with each other. The elec-

trons within each fragment are interacting and indistinguishable, but we can distinguish

A-electrons from B-electrons. Fragments are defined through the position of their atoms:

V̂J =
NJ∑
i
vJ(ri) , (2.39)

where J is either A or B. We also imagine that the fragments are embedded in the same

external one-body potential vP(r). In PT, vP(r) (or the partition potential) will play the

role of restoring the interaction energy between A and B while enforcing that the electronic

densities of A and B sum to the density of AB. The operator of vP(r) acting on the fragment

J can be written simply as:

V̂P,J =
NJ∑
i
vP(ri) , (2.40)

By analogy to Sec. 2.2 and to Ref. [6 ], we introduce the following functional:

Q[nA, nB] = min
ΨA→nA

〈ΨA|F̂A|ΨA〉 + min
ΨB→nB

〈ΨB|F̂B|ΨB〉 , (2.41)
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where the operator F̂J is defined through Eqs. 2.3 and 2.4 at NJ electrons:

F̂J = T̂J + V̂ee,J . (2.42)

Let us now look at the quantity

E [nA, nB] = Q[nA, nB] +
∫
d3r vA(r)nA(r) +

∫
d3r vB(r)nB(r) +

∫
d3r vP(r)n(r) , (2.43)

where n(r) = nA(r) + nB(r). Clearly, the expression on the right-hand side can be written

as:

〈ΨA[nA]|H̃A|ΨA[nA]〉 + 〈ΨB[nB]|H̃B|ΨB[nB]〉 ,

where ΨA[nA] and ΨB[nB] are the wavefunctions that satisfy the minimization on the right-

hand side of Eq. 2.41 and H̃J = F̂J + V̂ext,J + V̂P,J. Since H̃J only acts on J-electrons:

E [nA, nB] = 〈ΨA[nA]| 〈ΨB[nB]| H̃A + H̃B |ΨA[nA]〉 |ΨB[nB]〉 ≥ Ẽ0 =
〈
Ψ̃AB,0

∣∣∣ H̃AB

∣∣∣Ψ̃AB,0
〉
.

(2.44)

Here, H̃AB = H̃A + H̃B and the inequality is simply due to the variational principle. Note

that any wavefunction in the product space can be expanded as |ΦAB〉 = ∑
i,j cij |ΨA,i〉 |ΨB,j〉,

where |ΨJ,i〉 is an eigenstate of H̃J. For the ground state |ΨAB,0〉, only the terms where both

|ΨA,i〉 and |ΨB,j〉 are the ground state eigenfunctions (of H̃A and H̃B respectively) can enter

the expansion. It, therefore, becomes clear that4
 :

Ẽ0 = 〈ΨA,0| 〈ΨB,0| H̃A + H̃B |ΨA,0〉 |ΨB,0〉 . (2.45)

Now, let us chose nA,0 and nB,0 to be the ground state densities of H̃A and H̃B respectively.

Again, we get from the variational principle:

E [nA,0, nB,0] = 〈ΨA[nA,0]| 〈ΨB[nB,0]| H̃A + H̃B |ΨA[nA,0]〉 |ΨB[nB,0]〉 ≥ Ẽ0 . (2.46)
4↑ In the case of a degenerate ground state of A (and/or B), Eq. 2.45 holds for a particular orthogonal
degenerate ground eigenstate |ΨA,0〉 (and/or |ΨB,0〉).
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Substituting the expression for Ẽ0 from Eq. 2.45 into 2.46 yields:

〈ΨA[nA,0]|F̂A|ΨA[nA,0]〉 + 〈ΨB[nB,0]|F̂B|ΨB[nB,0]〉 ≥ 〈ΨA,0|F̂A|ΨA,0〉 + 〈ΨB,0|F̂B|ΨB,0〉 .

(2.47)

However, from the definition ofQ[nA, nB], 〈ΨJ[nJ,0]|F̂J|ΨJ[nJ,0]〉 ≤ 〈ΨJ,0|F̂J|ΨJ,0〉. Therefore,

Eq. 2.47 holds if and only if:

〈ΨA[nA,0]|F̂A|ΨA[nA,0]〉 + 〈ΨB[nB,0]|F̂B|ΨB[nB,0]〉 = 〈ΨA,0|F̂A|ΨA,0〉 + 〈ΨB,0|F̂B|ΨB,0〉 .

(2.48)

From Eq. 2.48 , we can conclude the following. Given the ground state densities of H̃A

and H̃B, we can find |ΨA[nA,0]〉 and |ΨB[nB,0]〉 through two minimizations on the right-hand

side of Eq. 2.41 (even without knowing vA(r) and/or vB(r)). We can then use |ΨA[nA,0]〉

and |ΨB[nB,0]〉 to construct
∣∣∣Ψ̃AB,0

〉
= |ΨA[nA,0]〉 |ΨB[nB,0]〉. Finally, we can use

∣∣∣Ψ̃AB,0
〉
to

recover (up to a constant) ∑
J=A,B

NJ∑
i
vP(ri) + vJ(ri)

analogously to Eq. 2.13 . Therefore, for a particular decomposition of AB (i.e., for fixed

vA(r) and vB(r)), we can find a unique vP(r) from nA,0(r) and nB,0(r). Observe that Eqs.

2.44 and 2.48 establish that, in principle, there exists a universal functional Q[nA, nB] that

has the ground state energy as its lower bound and when minimized solves the problem of

two independent fragments embedded in the same external potential.

Keeping in mind the properties of Q[nA, nB] from Eqs. 2.44 and 2.48 , let us now assume

that the potential vP(r) is a special potential that guarantees that the density of our fictitious

system of non-interacting fragments is the same as the density of the interacting system AB5
 .

We can choose to write the energy of the interacting system AB as:

EAB,0 = Ef + EP , (2.49)
5↑ Note that such vP(r) may not exist for some AB systems.
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where:

Ef = Q[nA,0, nB,0] +
∫
d3r vA(r)nA,0(r) +

∫
d3r vB(r)nB,0(r) , (2.50)

and EP is just the “remaining” energy that accounts for the interactions between A and B.

By construction, Ef[nAB] of the interacting system is equal to that of the fictitious system

at the stationary point (i.e., at nAB(r) = nAB,0(r)). In addition, we established that vP(r) is

unique for given nA,0(r) and nA,0(r). Therefore, we can identify an important relationship

between EP[nAB] and vP(r):
δEP[nAB]
δnAB

= vP(r) . (2.51)

It is useful to further decompose Ep[nAB] into non-additive electron-nuclear and non-

additive electron-electron energy contributions:

EP[nAB] = Enad
ee [nA, nB] + V nad

ext [nA, nB] . (2.52)

The functional form of the the electron-nuclear non-additive energy can be derived trivially:

V nad
ext [nA, nB] =

∫
d3r vB(r)nA(r) +

∫
d3r vA(r)nB(r) . (2.53)

The functional form of

Enad
ee [nA, nB] = F [nA + nB] −Q[nA, nB] (2.54)

is generally not known and needs to be approximated in practice. We emphasise that the

universality of Q[nA, nB] illustrated above is essential for the task of developing widely ap-

plicable approximations to Q[nA, nB].
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3. PARTITION THEORY

This section contains work from the article entitled “Exact partition potential for model
systems of interacting electrons in 1-D” written by the author and Adam Wasserman published
in the European Physical Journal of B [24 ].

In Sec. 2.5 , we considered a simple two-fragment partition problem and established the

following about the Partition Theory (PT). In PT, we imagine a fictitious system of non-

interacting fragments embedded in a global potential (i.e., same for all fragments). The

fragments are constrained to have densities that sum to the total molecular density while

minimizing the sum of fragment energies (more on this quantity later). The uniqueness of the

fragment densities is ensured by the global embedding potential, according to the theorem

of ref. [25 ]. In this chapter, we will take a closer look at PT and will re-derive its formalism

for a general case of arbitrary number of open fragments that can exchange electrons among

each other.

3.1 Partition Theory

To formally introduce the PT, we partition the external potential v(r) into fragments

labeled by the index α:

v(r) =
∑

α

vα(r) . (3.1)

PT is based on the following decomposition of the molecular ground state energy1
 :

Ev[n0] = min
n→N

[ min
{nα}→n

[Ef [{nα}]] + EP[n]] , (3.2)

where Ef [{nα}] is the sum of fragment energies and EP[n] is the partition energy. In eq.

3.2 , the outer minimization is over all densities that integrate to N electrons. Each of the

fragment contributions to Ef is defined to have the PPLB functional form:

Ef [{nα}] =
∑

α

{(1 − ωα)Evα [npα ] + ωαEvα [npα+1]} , (3.3)

1↑ Note that we now label energy functionals with their corresponding external potential in the subscript
(e.g., v or vα).
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where pα and ωα are the integer and fractional parts of Nα (number of electrons in fragment

α). The inner minimization in 3.2 is over all pα, ωα, npα(r), and npα+1(r) that produce the

density nf(r) = n0(r) according to (See. Eq. 2.37 ):

nf(r) =
∑

α

{(1 − ωα)npα(r) + ωαnpα+1(r)} . (3.4)

To avoid finite-difference derivatives, it is common to fix the integer part of the occupation

numbers and use {nα} to denote the set of all ωα’s, npα(r)’s, and npα+1(r)’s. We also follow

this convention in this text. Therefore, all our derivatives with respect to ωα, npα(r), or

npα+1(r) are not the “formal” derivatives but rather constrained derivatives that keep the

integer part of the corresponding fragment α constant.

The inner minimization in eq. 3.2 is done by the method of Lagrange multipliers. The

equivalent unconstrained extremization is done for the following functional:

G[{nα}, vP(r)] = Ef [{nα}] +
∫
drvP(r)[nf(r) − n0] , (3.5)

where the partition potential, vP(r), has been introduced as the Lagrange multiplier that

forces condition 3.4 to be satisfied at each point in space. Eq. 3.5 also brings out the

physical meaning of the fragment densities

nα(r) = (1 − ωα)npα(r) + ωαnpα+1(r) . (3.6)

They are the ensemble ground state densities of Nα electrons in the potential (vα(r) +

vP(r)). The partition potential vP(r) is the above-mentioned global embedding potential

that guarantees the uniqueness of the nα’s. [25 ] Note that Evα [npα ] in eq. 3.3 is not the

correct ground state energy corresponding to npα(r), but Evα+vP [npα ] is.
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3.1.1 Chemical Potential

Stationarity of G[{nα}, vP(r)] with respect to ωα implies: [25 ]

µPT
α = µPT

β , (3.7)

for any two fragments α and β, where the α-chemical potential of PT is defined as

µPT
α =(Evα [npα+1] +

∫
drvP(r)npα+1(r))−

(Evα [npα ] +
∫
drvP(r)npα(r)) .

(3.8)

Note that similarly to Eq. 2.38 , µPT
α is undefined when Nα is integer. Therefore,

stationarity of G[{nα}, vP(r)] may correspond not only to Eq. 3.7 but also to µPT
α being

undefined for one or more fragments.

3.1.2 Decomposition of vP(r)

Following the standard KS decomposition of Eq. 2.21 , the partition energy of eq. 3.2 

can be written as:

EP[n] =T nad
S [{nα}] + Enad

ext [{nα}] + Enad
H [{nα}]+

Enad
XC [{nα}] ,

(3.9)

The superscript “nad” in Eq. 3.9 indicates that each of these functionals is a non-additive

contribution defined (for an arbitrary functional Π) as: Πnad[{nα}] = Π[n] − ∑
α{(1 −

ωα)Πα[npα ] + ωαΠα[npα+1]}.

The relationship between EP[{nα}] and vP(r) was derived by Nafziger and Wasserman

[26 ]:

vP(r) =
∫
dr
∑

α

{ δEP

δnpα(r′)
δnpα(r′)
δnf(r) +

δEP

δnpα+1(r′)
δnpα+1(r′)
δnf(r) }.

(3.10)
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Observe that Eq. 3.10 can be derived from Eq. 2.51 using the chain rule for the functional

derivative on the right-hand side. Substituting 3.9 into 3.10 leads to a useful decomposition

of vP(r) into contributions from kinetic, external, Hartree, and exchange-correlation parts.

3.1.3 Spin in PT

Analogously to KS-DFT, we can extend PT to the spin-unrestricted case. We chose our

reference system in such a way that spin-up and spin-down densities of the non-interacting

fragments and of the full system are the same. These constraints can be enforced by intro-

ducing two separate partition potentials: vP,↑(r) and vP,↓(r).

In the case of spin-unrestricted PT, optimization with respect to the number of electrons

in fragments is problematic as the convexity with respect to both M and MS
2

 is no longer

guaranteed (in contrast to Eq. 2.36 , where the convexity with respect toM only is required).

In practice (see Chap. 7 of this manuscript), we fix occupations and spin states of fragments

to the ones of the isolated fragments.

3.2 Partition-DFT

It is worth pointing out that fragment calculations in PT can be performed at any level

of theory. In fact, we can apply different methods to different fragments (see, e.g., Chap. 5 

of this manuscript). However, KS-DFT provides the most direct way to take advantage of

Eq. 3.9 that is important for practical application of PT. When fragment calculation are

performed with DFT, we will refer to the method as the Partition-DFT or P-DFT.

Fragment calculations in P-DFT can be performed by solving effective KS equations of

the form:

[ − 1
2∇2 + vH[nα](r) + vα(r) + vXC[nα](r) + vP[{nα}](r)]φi(r) = εiφi(r) , (3.11)

making P-DFT straightforward to implement within quantum chemistry computational

packages that already work with DFT.

2↑ Here, MS is the difference between the integer number of up and down electrons.

29



4. EXACT PARTITION POTENTIAL FOR MODEL SYSTEMS

OF INTERACTING ELECTRONS IN 1D

This section contains work from the article entitled “Exact partition potential for model
systems of interacting electrons in 1-D” written by the author and Adam Wasserman published
in the European Physical Journal of B [24 ].

In this chapter, we will demonstrate how PT works on simple systems designed to model

diatomic molecules. We will find the numerically exact partition potential for 1-D systems of

two interacting electrons in 1-D. At integer fragment occupations, the kinetic contribution to

the partition potential develops sharp features in the internuclear region that nearly cancel

corresponding features of exchange-correlation. They occur at locations that coincide with

those of well-known features of the underlying molecular Kohn-Sham potential. For non-

integer fragment occupations, we demonstrate that the fragment Kohn-Sham gaps determine

the kinetic part of the partition potential. Our results highlight the importance of non-

additive noninteracting kinetic and exchange-correlation energy approximations in density-

embedding methods at large internuclear separations and the importance of nonadditive

noninteracting kinetic energy approximations at all separations.

4.1 Model System and Numerical Methods

The properties of each fragment as well as the entire system are computed on a fine real

grid. Density-to-potential inversion techniques are used to solve the PT problem (i.e. the

problem of finding vP(r) for a given density and choice of partitioning). A more detailed

discussion of the numerical methods is presented below.
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4.1.1 Model Hamiltonians

Our model of a 1-D dimer has two interacting valence electrons. The soft-coulomb (SC)

potential is used to model charge-charge interactions. The electronic Hamiltonian is:

H =
∑

i=1,2

{
−1

2∇2
xi

− 1√
1.0 + (xi −RH)2

−

ZX√
1.0 + (xi −RX)2

}
+ λ√

1.0 + (x1 − x2)2
,

(4.1)

where xi is the coordinate of the ith electron, RX is the position of the nucleus X (X stands

for either H or He), ZX is the nuclear charge and λ is the parameter that switches the

electron-electron interaction on (λ = 1) or off (λ = 0). We use the softening parameter value

of 1.0 and a simulation box of 25 a.u. The case of LiH is discussed separately in Eq. 4.11 .

With the nuclear-nuclear interaction given by:

Vnn = ZX√
3.0 + (RX −RH)2

, (4.2)

the equilibrium bond-length is R0 = 1.6 a.u. for H2 and R0 = 2.1 a.u. for HeH+.

The fragment Hamiltonians have the form:

Hpα+1 =
∑

i=1,2

{
−1

2∇2
xi

− ZX√
1.0 + (xi −RX)2

+

vP(xi)
}

+ λ√
1.0 + (x1 − x2)2

(4.3)

and

Hpα = −1
2∇2

x − ZX√
1.0 + (x−RX)2

+ vP(x) . (4.4)

31



4.1.2 Decomposition of vP(x)

With the strategy introduced by eqs. 3.9 and 3.10 , we rewrite vP(x) as:

vP(x) = vP,kin(x) + vP,ext(x) + vP,H(x) + vP,XC(x) , (4.5)

where the components correspond to those of EP in Eq. 3.9 . To calculate each component,

we note:

δT nad
S [npα ]
δnpα(x) =(1 − ωα)(vKS[npα ](x) − vKS[n0](x)), (4.6a)

δEnad
α [npα ]
δnpα(x) =(1 − ωα)(v(x) − vα(x)), (4.6b)

δEnad
H [npα ]
δnpα(x) =(1 − ωα)

∫
dx1

n0(x1) − npα(x1)√
1.0 + (x1 − x)2

, (4.6c)

δEnad
XC [npα ]
δnpα(x) =(1 − ωα)(vXC[n0](x) − vXC[npα ](x)). (4.6d)

The equivalent derivatives with respect to the npα+1 are omitted for brevity. The functional

derivatives in eqs. 4.6 can be readily calculated and used further to obtain vP,kin(x), vP,ext(x)

and vP,H(x). The remaining vP,XC(x) is calculated as a difference between the full vP(x) and

the first three components. For the functional derivative δnpα(x′)/δnf (x) in Eq. 3.10 , we

use the local approximation: [27 ]

δnpα(x′)
δn0(x) ≈ Qpα(x, x′) ≡ npα(x′)

n0(x) δ(x− x′) , (4.7)
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resulting in the following equations for the components:

vP,kin(x) =
∑

α

{ωαQpα+1(x, x)v(−)
KS [npα+1](x)+

(1 − ωα)Qpα(x, x)v(−)
KS [npα ](x)}−

v
(−)
KS [n0](x),

(4.8a)

vP,ext(x) =
∑

α

{(v(x) − vα(x))nα(x)
n0(x) }, (4.8b)

vP,H(x) =
∑

α

{
ωαQpα+1(x, x)

·
∫
dx1

n0(x1) − npα+1(x1)√
1.0 + (x1 − x)2

+

(1 − ωα)Qpα(x, x)
∫
dx1

n0(x1) − npα(x1)√
1.0 + (x1 − x)2

}
,

(4.8c)

vP,XC(x) =v(−)
XC [n0](x)−∑
α

{ωαQpα+1(x, x)v(−)
XC [npα+1](x)+

(1 − ωα)Qpα(x, x)v(−)
XC [npα ](x)},

(4.8d)

where the superscript “(−)” indicates that the x-independent constant in vKS(x) at integer

electron number is calculated at the limit from below. Since this approximation satisfies

the sum rule, ∑α{Qpα + Qpα+1} = δ(x− x′), the sum of vP(x) components yields the exact

vP(x). [27 ] Although this local approximation was shown to be reliable for various systems

[26 ], it can still affect the individual components. Finally, we note that since v(−)
KS [npα ](x) =

vα(x) + vH[npα ](x) + v
(−)
XC [npα ](x) + vP(x), eqs. 4.8 can be derived simply by construction.

4.1.3 Numerical methods

Exact diagonalization: Hamiltonians 4.1 , 4.3 and 4.4 are all diagonalized on a real grid

using the sixth order central finite difference method for the ∇2
xi
operator. [28 ] We note that

both 4.1 and 4.3 are symmetric under the particle index interchange and all the eigenstates

are either symmetric or antisymmetric. Spatially symmetric solutions correspond to the

spin zero state while the antisymmetric spatial solutions correspond to triplet spin states. It
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therefore becomes clear that we simply need to search for the lowest eigenstate of 4.3 or 4.4 .

[29 ], [30 ] We then use a Matlab built-in eigs function to solve for the lowest eigen-pair of the

resulting Hamiltonian matrices (size N2-by-N2, where N is the number of grid points).

Density-to-potential inversions: To obtain the exact vP(x), we need to perform a numer-

ical inversion. The following outlines the inversion algorithm employed to find vP(x) for a

particular partitioning at a fixed set of fragment occupation numbers:

0. Start with an initial guess for vP(x).

1. Use eqs. 3.4 , 4.3 and 4.4 to compute the sum of fragment densities in the presence of

vP(x).

2. Calculate the difference between the total molecular density and the sum from 1 .

3. Based on the value from 2, decide whether the sum of the fragment densities is suffi-

ciently close to the total molecular density. If it is, the optimization is done; otherwise

go to 4 .

4. Update vP(x). Go to step 1 .

We note that the algorithm assumes that the total molecular density can be pre-computed.

For the convergence criterion in step 3 we use the value of the following functional at step

k:

θ(k)[n(k)
f ] = 1

22

∫
dx[n(k)

f (x) − n0(x)]2 , (4.9)

where the factor 2 in the denominator appears because we have two electrons. For the

update in step 4 , we utilize the Broyden’s method. [31 ] After the algorithm is converged,

we methodically vary the occupation numbers to eventually scan the entire set and find

the minimum. The initial guess of vP(x) = 0 in step 0 and the convergence thresholds

of 10−14 in step 3 are sufficient for obtaining accurate energies. To obtain accurate and

smooth potentials, we apply the following procedure. After the initial optimization to θ(k) ∼

10−14, we compute v(k)
P,kin(x), v(k)

P,ext(x), v(k)
P,H(x) and v

(k)
P,XC(x) using eqs. 4.8 . In particular,

we use the exact molecular density to compute derivatives of Eq. 4.6 and the current

n
(k)
f (x) to compute the factors of Eq. 4.7 . We then use the computed potetials to find
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v̄P,kin(x) = v
(k)
P (x)−v(k)

P,ext(x)−v(k)
P,H(x)−v(k)

P,XC(x) and v̄P,XC(x) = v
(k)
P (x)−v(k)

P,ext(x)−v(k)
P,H(x)−

v
(k)
P,kin(x). Finally, we construct the new guess for vP(x) by adding v̄P,kin(x), v̄P,XC(x), v(k)

P,ext(x)

and v
(k)
P,H(x). This new guess is run through a single cycle of the algorithm to return the

improved results. This procedure does not significantly improve the energy results. However,

it markedly improves the density convergence in the low-density regions and produces smooth

potentials. Applying this procedure periodically within our algorithm can converge it to

machine precision (max|n(k)
f (x) − n0(x)| ∼ 10−16). However, no appreciable changes in

features of the potentials are observed after the threshold of θ ∼ 10−14.

Since each fragment can only have up to 2 electrons, the KS potentials can be obtained

analytically. The expressions for the inversions are trivial. [32 ]

4.2 Illustrative Results and Discussion

4.2.1 H2 Model

We consider first a symmetric dimer model of H2 at two different internuclear separa-

tions: the equilibrium bond length, R0 = 1.60 a.u., and the large separation, R = 10.0

a.u. The optimal occupations for this model is clearly NH,left = 1.0 and NH,right = 1.0. We

analyze features of vP(x) and how they are affected by the electron-electron interaction.

Our results highlight the importance of approximating vP,kin(x) and vP,XC(x) accurately in

density embedding calculations, as previously pointed out by several computational studies

using approximate T nad
S [npα ] [33 ]–[36 ] For the noninteracting system, we show that vP(x) is

dominated by vP,ext(x) at R0 = 1.60 and by vP,kin(x) R0 = 10.0.

In Fig. 4.1 , we plot the PT deformations of the fragment densities (δnα(x) = nα(x) −

n0
α(x), where n0

α(x) is the density of an isolated fragment) and partition potentials corre-

sponding to these two cases. At R = 10.0, both densities are slightly shifted away from

the interatomic region. In contrast, at the equilibrium separation, the densities are shifted

towards the bonding region. Furthermore, the interatomic interactions are markedly weaker

at the larger separation. This is reflected in the density deformations and vP(x) features that

are roughly two orders of magnitude smaller than those at the equilibrium bond distance.
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Figure 4.1. 1-D H2 model at R0 = 1.60 a.u. (left) and R = 10.0 a.u. (right).
Top: deformations of the fragment densities δnα(x) = nα(x) − n0

α(x), where
n0

α(x) is the density of an isolated fragment. Bottom: partition potential vP(x)
and its components defined through Eq. 4.5 . Vertical dashed lines indicate
the position of nuclei. The electron-electron interaction parameter λ = 1.

In the bottom panels of Fig. 4.1 , we analyze the origin of these features through the

decomposition of Eq. 4.5 . We combine vP,ext(x) and vP,H(x) because vP,ext(x) has a deep

well and vP,H(x) has a high peak in the internuclear region. However, their sum is on the

order of the features in vP(x). Adding the external and Hartree components can be further

justified by the fact that in practical calculations both can be computed exactly, but vP,kin(x)

and vP,XC(x) require approximations. In the plot for R = 10.0, we also combine vP,kin(x)

and vP,XC(x), as they are analyzed separately later in the paper. At the equilibrium, the

depth of the well in vP(x) is determined by the vP,kin(x) and the vP,ext(x) + vP,H(x) terms.

The position of the peaks is also determined by the vP,ext(x) + vP,H(x) contribution. We

note that the effect of the non-additive XC term is small relative to the other components.

At R = 10.0, the peak in the middle comes from vP,ext(x) + vP,H(x). The contribution from
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vP,kin(x) is almost completely cancelled by vP,XC(x), but fine features persist even when the

threshold θ(k) is decreased to 10−23.

Figure 4.2. The relationship between features of vP,kin(x) and the peak of
molecular vKS(x) for H2 model at λ = 1 and R = 10.0. Top left: molec-
ular KS potential v(−)

KS [n0](x) and fragment KS potentials v(−)
KS [nH](x). Top

right: the differences between the molecular and fragment potentials. Bottom
left: npα(x)/n0(x) terms. Bottom right: kinetic and XC contributions to the
partition potential. Vertical dashed lines indicate the position of nuclei.

It may appear that the contributions from vP,kin(x) and vP,XC(x) at large separation

are unimportant as they cancel each other. However, the bottom right panel in Fig. 4.2 

shows that these features have high magnitude. Since in practice vP,kin(x) and vP,XC(x) are

approximated separately, the accuracy of the total vP(x) can be highly sensitive to the errors

in these approximations.

In addition, Fig. 4.2 shows the formation of vP,kin(x) according to Eq. 4.8a . Top left

panel shows v(−)
KS [n0](x) along with v(−)

KS [nH](x)’s. We observe that v(−)
KS [nH](x) matches closely
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with v(−)
KS [n0](x) in the nuclear regions. The difference between the fragment and molecular

KS potentials δvKS(x), plotted at the top right, has the flat region around their nucleus. The

differences are weighted by the corresponding npα(x)/n0(x) terms and summed, producing

the total vP,kin(x). We note that vP,kin(x) has a well from the peak in v(−)
KS [n0](x). The peak

in vP,XC(x) has the same origin [37 ]–[40 ] and it nearly cancels the well in vP,kin(x). This

cancelation is not exact and the fine features in vP,kin(x) + vP,XC(x) can still be observed.

Figure 4.3. Same as Fig. 4.1 , but for λ = 0

We turn off the electron-electron interaction in the system by setting λ = 0. The results

are shown in Fig. 4.3 . Our method recovers the trivial result that vp,H(x) and vp,XC(x) are

zero. At both separations, vP(x) has a single well. At equilibrium, this well is dominated by

vP,ext(x). In contrast, at R = 10.0, the well is predominantly determined by vP,kin(x). The

vP(x) plots are consistent with previously reported ones for noninteracting systems, [41 ], [42 ]
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but the present work shows that the well in vP(x) is dominated by different components at

different internuclear distances.

4.2.2 HeH Ion Model

We study the features of vP(x) in the simplest heteronuclear molecular ion HeH+ at

equilibrium separation. This model has non-integer optimal occupations. We use this fact

to analyze the relationship between the kinetic component of vP(x) and the KS gap of PT

fragments.

Figure 4.4. Summary of the PT results for the model system of HeH+ at equi-
librium separation and λ = 1. Left: fragment energies (top) and PT chemical
potentials (bottom) at varying occupations on H atom. Right: density defor-
mations relative relative to the isolated fragments with the optimal electron
occupations (top) and corresponding partition potential along its components
(bottom). Vertical dashed lines indicate the position of nuclei (H is on the
left).
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The left two panels of Fig. 4.4 show the behavior of Ef [{nα}] as a function of the

number of electrons on the hydrogen atom, at the equilibrium bond distance of 2.09 a.u.

The curvature of the energy plot is an important consequence of accounting for the finite-

distance interfragment interactions (in contrast, the plot of energy versus the number of

electrons in DFT consists of straight-line segments). This curvature does not smoothen the

graph at integer occupations, where it still has a cusp. The graph has a minimum when

NH ≈ 0.3175. At this occupation, we also observe the chemical potential equalization of

the fragments. A rigorous definition of fragments allows the discussion of the nature of a

chemical bond and the optimal occupations suggest the amount of the ionic character a bond

has. The connection between 1-D models and real bonds is, of course, not obvious. More

generally, the physical interpretation of PT fragment properties is still an open question.

The top right panel of Fig. 4.4 shows the density deformations relative to the isolated

fragments with the optimal electron occupations. We observe that both He and H densities

are shifted towards the interatomic region. The partition potential that facilitates this shift

is plotted at the bottom right of Fig. 4.4 , along with its components. Although its overall

shape is similar to H2 at equilibrium bond distance, vP(x) of HeH+ is dominated by vP,ext(x).

Naively, this can be attributed to the fact that HeH+ is an ion and the electron-nuclear

interactions are the dominant ones.

The non-integer occupation numbers allow to establish the relationship between vP,kin(x)

and the fragment KS gaps ∆α = Iα − Aα, where Iα is the ionization potential and Aα is the

electron affinity of a fragment in the presence of vP(x). If we assume the near-linearity of the

fragment KS potentials, [43 ] Eq. 4.8a can be approximated as vP,kin(x) ≈ vnl
P,kin(x), where:

vnl
P,kin(x) =

∑
α

{
nα(x)
n0(x) vKS[nα](x)−

(1 − ωα)∆αQpα(x, x)
}

− v
(−)
KS [n0](x) .

(4.10)

Fig. 4.5 indicates that this approximation is in excellent agreement with the exact vP,kin(x).

The right panel in Fig. 4.5 compares the molecular KS potential to the weighted sum of

the fragment KS potentials, ∑α nα[nα](x)/n0(x)vKS(x) from Eq. 4.10 . We can see that
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Figure 4.5. The relationship between vP,kin and ∆He defined through Eq.
4.10 . ∆He-term stands for −(1 − ωHe)∆HeQpHe(x, x). Vertical dashed lines
indicate the position of nuclei (H is on the left).

these two contributions almost entirely cancel out and vP,kin(x) is largely determined by the

(1 − ωHe)∆HeQpHe(x, x) term (note that there is no contribution from ∆H because pH = 0).

Additional calculations on model systems suggest that the fragment KS term closely mimics

−v(−)
KS [n0](x) in the high density regions, but it misses its low density peak-and-step features.

4.2.3 LiH Model

We consider a heteroatomic dimer model of lithium hydride that separates into neutral

fragments. In this model, the core electrons are not treated explicitly but their effects are

simulated by adjusting the parameters of the external potential function. The modified

electronic Hamiltonian of Eq. 4.1 is:

H =
∑

i=1,2

{
−1

2∇2
xi

− 1√
2.25 + (xi −RLi)2

−

ZX√
0.6 + (xi −RH)2

}
+ 1√

0.7 + (x1 − x2)2
,

(4.11)

where the SC parameters for Li, H and electron-electron interactions (2.25, 0.70 and 0.60

respectively) are chosen following the same considerations as in ref. [39 ]. These parameters

produce the correct ionization potential difference between isolated Li and H atoms. The
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individual ionization potentials produced by this model are higher than the real ones, making

the densities less diffuse and allowing us to use a simulation box of 25 a.u.

Figure 4.6. Summary of the PT results for the model system of LiH, defined
through Eq. 4.11 at R = 10.0. Left: fragment energies (top) and PT chem-
ical potentials (bottom) at varying occupations on H atom. Right: partition
potential and its components (top); kinetic and XC contributions to vP(x)
(bottom). Vertical dashed lines indicate the position of nuclei (H is on the
left)

The results for LiH are summarized in Fig. 4.6 . The left two graphs show the fragment

energies and chemical potentials at varying occupation numbers. Ef is minimized when NH

(and obviously NLi) is equal to 1. This point is a cusp in Ef as expected from Eq. 3.3 .

R = 10.0 a.u. can be taken as the large separation limit in our model and it shows that the

bond breaking is homolytic. Although not obvious from the plot, the graph of Ef is curved,

similar to the one for HeH+ in Fig. 4.4 . The chemical potentials exhibit a step-like feature

into integer occupations, which prevent the condition of Eq. 3.8 to be satisfied. The right
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two graphs show vP(x) and its decomposition. Similarly to the case of H2, vP(x) has a peak

in the internuclear region, dominated by the vP,ext(x)+vP,H(x) term. Moreover, the vP,kin(x)

and vP,XC(x) almost completely cancel out. Analogously to the case of H2, their features are

connected to the features of the molecular KS potential. [37 ]–[40 ] In addition to the peak,

in this case, vP,kin(x) and vP,XC(x) also display a step. The steps almost entirely cancel out.

The remaining small peak we observe in the top right panel of Fig. 4.6 is likely due to the

long range nature of SC potentials.

4.2.4 A Closer Look at Spin in PT

We study the equalization of spin densities in the model of He+
2 with three interacting

electrons. The system is described with a modified hamiltonian of Eq. 4.1 :

H =
∑

i=1,2,3

{
−1

2∇2
xi

− 2√
1.0 + (xi −RHe,left)2

− 2√
1.0 + (xi −RHe,right)2

}
+

1√
1.0 + (x1 − x2)2

+ 1√
1.0 + (x1 − x3)2

+ 1√
1.0 + (x2 − x3)2

.

(4.12)

For the case of 3 electrons, we no longer have a straightforward mapping between the ground

state of the spatial hamiltonian 4.12 and the spatial part of the true ground state wavefunc-

tion of the system. We briefly discussed this issue in Sec. 2.1 . A more detailed discussion

can be found in the appendix.

It is worth pointing out that only the total density (but not spin densities) equalize in

spin-unresolved PT. We illustrate this in Fig. 4.7 where we plot spin densities

nS(r) = n↑(r) − n↓(r) (4.13)

for the ground state of the full system nS,0(x) (blue solid line) and for the sum of fragment

densities at convergence nS,f(x) (red dashed line). Notably, nS,0(x) has regions of both posi-

tive and negative values. This important [44 ]–[46 ] feature of nS,0(x) is completely “missed”

by nS,f(x). This behavior is, however, expected as we only constrain the total density in our

calculations. Although, in principle, only the ground state density is required to get any
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property of the system, in practice, functional dependence of many observables on density

is not readily available (e.g., even the spin density nS,0(r) cannot be easily obtained from

n0(r)). It is, therefore, desirable to have a theory that reproduces both spin and total den-

sities of the full system. In PT, this can be achieved by introducing a separate embedding

potential for spin-up and spin-down electrons:

G[{n↑,α, n↓,α}, {vP,↑, vP,↓}] =Ef [{n↑,α, n↓,α}]+∫
d3r vP,↑[n↑,f(r) − n↑,0(r)] +

∫
d3r vP,↑[n↓,f(r) − n↓,0(r)] .

(4.14)

This is analogous to our treatment of spin in KS-DFT: PT reference system is now a fictitious

system of non-interacting fragments in the external field with a magnetic component that

interacts only with spin.

Figure 4.7. Spin densities (defined through Eq. 4.13 ) for the He+
2 model.

Blue solid line: spin density of the full system nS,0(x). Red dashed line: spin
density of the sum of the fragments nS,f(x).

Fragment energy in the case of spin-resolved PT does not have a simple formula similar

to Eq. 3.3 that comes directly from the PPLB energy Eq. 2.36 . Recall that Eq. 2.36 holds

due to convexity of energy with respect to the electron number N . Gál and Geerlings [19 ]
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investigated the generalization of the PPLB Eq. 2.36 to the spin-resolved case. For the case

of an integer number of electrons (N = M) and a non-integer spin-difference number

NS = N↑ −N↓ = (M↑ −M↓) + (ω↑ − ω↓) = MS + ωS (4.15)

(with the integer part Ms and the fractional part ωs of Ns)1
 , they derived:

E0(M,NS = MS ± ωS) = (1 − ωS

2 )E(M,MS) + ωS

2 E(M,MS ± 2) , (4.16)

with 0 ≤ ωS ≤ 2. It is critical to mention that in Eq. 4.16 , E(M,MS) (or E(M,MS ± 2))

is the lowest energy at the given MS (i.e., E0,S(M,MS) or E0,S(M,MS ± 2)) if E0,S(M,MS)

(or E0,S(M,MS ± 2)) is convex. Otherwise, E0,S(M,MS) > E(M,MS) (or E0,S(M,MS ± 2) >

E(M,MS ± 2)). The convexity with respect to MS is clearly not commonplace. One obvious

system where the MS convexity does not hold is the Nitrogen atom [22 ], [47 ]. It is known

that the ground state of the Nitrogen atom has MS = ±3 (i.e., all three valence p-electrons

are either spin-up or spin-down). Therefore, any E(N = 7, NS ∈ (−3, 3)) for Nitrogen is a

superposition of just E(N = 7, NS = −3) and E(N = 7, NS = −3) terms.

The systems with non-integer N and non-zero magnetic field (as we have in the spin-

resolved PT) are even more problematic as the simultaneous convexity with respect to N and

NS is now required to have the “PPLB-like” equation for Ef [{n↑,α, n↓,α}]. The constrained

minimization over all E0,S(M,MS) is clearly required, but computationally is not feasible.

How can this issue be resolved in practice?

We suggest that Eq. 4.14 is minimized for a fixed functional form of Ef [{n↑,α, n↓,α}]. In

the He+
2 model, we can set

Ef [{n↑,α, n↓,α}] = Eleft(N↑ = 1, N↓ = 1) + Eright(N↑ = 1, N↓ = 0) (4.17)
1↑ Note that we use the lowercase “s” to represent the spin state (↑ or ↓) and the capital “S” to represent
quantities depending on the difference of spin-up and spin-down electrons.
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by putting 2 electrons in the left fragment and 1 electron in the right fragment. Alternatively,

we can chose a more “intuitive” form:

Ef [{n↑,α, n↓,α}] =
∑

α

0.5Evα(N↑ = 1, N↓ = 1) + 0.5Evα(N↑ = 1, N↓ = 0) , (4.18)

where we have 1.5 electrons (1 spin-up electron and 0.5 spin-down electron) in each fragment.

Even though such fixed forms of Ef [{n↑,α, n↓,α}] may be consistent with the equations of Gál

and Geerlings [19 ] for isolated fragments, they will not necessarily be correct in presence of

vP(r). This approach also comes with a drawback that a rigorous definition of the fragment

chemical potential is no longer possible.

Figure 4.8. Fragment densities for the He+
2 model at R0 = 2.64. Left panel:

functional form of Ef [{n↑,α, n↓,α}] is defined through Eq. 4.17 . Right panel:
functional form of Ef [{n↑,α, n↓,α}] is defined through Eq. 4.18 .

In Fig. 4.8 , we plot the PT densities corresponding to the fragment occupations chosen

above. In both cases, calculations successfully converged at a rate similar to the one of the

spin-unresolved calculation. Notably, the fragment energy in the spin-unresolved case is the

lowest among the 3 calculations we performed.

In Fig. 4.8 , we observe that the density of the left Helium fragment is delocalized in

the case of integer occupations on the fragments (left panel). Although the case of 1D

He+
2 is extreme, this “leaking” of density into the spatial regions of other fragments can

be problematic with real 3D calculations where the localization is important for accuracy
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and efficiency of fragment calculations. We believe that the “correct” choice of the form of

Ef [{n↑,α, n↓,α}] in practice will depend on a particular functional approximation to EP[n],

and this issue should be taken into consideration when these approximations are developed.

4.3 Concluding Remarks

In spite of the simplicity of this model, we expect the same features discovered here to be

present in real molecules. Explicit treatment of core electrons and 3D-Coulomb interactions

would be of course needed to verify this.

Finally, the decomposition of vP(x) through Eq. 4.5 provides a useful way for identifying

the origin of important features of vP(x) and linking them to the approximations used in

practical density-embedding calculations. We plan to investigate in future work the extent

to which approximate XC and non-additive kinetic energy functionals reproduce the features

of vP(x) observed here.
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5. DENSITY EMBEDDING WITH CONSTRAINED

CHEMICAL POTENTIAL

This section contains work from the article entitled “Partition potential for hydrogen-bonding
in formic acid dimers” written by the author, Kelsie Niffenegger, Jonathan Nafziger, and
Adam Wasserman published in the Molecual Physics [48 ].

To this point, we have only discussed systems with finite number of electrons. In this

chapter, we will formulate a chemical-potential constrained density embedding method for

systems where different fragments can have either continuum or discrete electronic states. We

will illustrate the method with the simplest model system designed to mimic an atom near a

metal surface. It is trivial to separate the full system into two fragments (metal and atom)

only when the distance between them is infinite. In this case, a range of metallic chemical

potentials, µ, will lead to an identical number of electrons, N , on the atom. Our density

embedding method can be used to define fragments even at finite separations. We show

that using these definitions for fragments, the typical N(µ) staircase function is partially

smoothed out due to the finite-distance interactions, resembling finite-temperature effects.

Fractional occupations on the atom occur only for sharply-defined µ’s. Because calculating

fractional charges is important in various fields, from electrolysis to catalysis, solar cells and

organic electronics, we anticipate several potential uses of the proposed approach.

In Sec. 5.1 , we review how PPLB equations (see Sec. 2.4 ) can be use to describe atom-

metal interactions. We describe our method in Sec. 5.2 and illustrate it through explicit

numerical computation in Sec. 5.3 . We end with a brief summary and outlook in Sec. 5.4 .

5.1 PPLB Equations for Atom-Metal Interactions

According to PPLB theorem (see Sec. 2.4 and Eqs. 2.36 —2.38 ), the ground-state energy

of an N -electron system (E(N), N can be a non-integer number) is a piecewise-continuous

linear function of N . At strictly zero temperature, an atom or molecule that is in equilibrium
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with a far-away metal reservoir, will be neutral in the ground state for any chemical potential

µ in the range

−I < µ < −A , (5.1)

where I is the ionization potential and A the (positive) electron affinity of the neutral atom.

For chemical potentials lower than −I, the atom transfers one electron to the reservoir. For

chemical potentials higher than −A, the atom receives one electron from the reservoir. The

number of electrons in the atom is thus a staircase function of the chemical potential (black

dot-dash line in Fig. 5.1 ), which is clearly only sharply defined for non-integer numbers. The

range of µ that is consistent with the integer m is the fundamental energy gap of the atom,

Eg = I − A, which is thus given by the total discontinuity in the derivative of E(N) with

respect to N at N = M . All properties of the system involving derivatives of the energy

with respect to N are similarly undefined at the integers at zero temperature.
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Figure 5.1. The atomic fragment occupation number Natom as a function of
the system chemical potential, µ, for R = 3 (dotted blue line), R = 5 (solid red
line), and R > 10 (dot-dash black line). The step-like behavior that occurs
at large separations smooths out as we bring the fragments closer together.
The light blue and salmon-shaded regions highlight µ values for which Natom
is exactly integer at R = 3 and R = 5 respectively.
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A smoothening of the discontinuities at integer numbers of electrons and a range of µ that

is narrower than I−A can be found by applying techniques of the grand-canonical ensemble

at finite temperature [21 ]. The main result of the work in this chapter is that sharper values

of µ can be found even at zero temperature by considering finite distances from the metal

reservoir. To show this, an unambiguous definition is needed for the charge of the atom

when it is located at an interacting distance from the metal. We provide such definition

by requiring that the chemical potential of the two fragments (metal and atom) be equal

while satisfying the standard constraint of density-embedding methods, i.e. that the sum of

the two fragment densities be equal to the total electronic density. With this definition of

fragments, the regions of strictly integer numbers of electrons on the atom are narrower than

I − A when the atom is at an interacting distance from the reservoir (red and blue lines in

Fig. 5.1 ). Outside of the shaded regions in Fig. 5.1 , the atom acquires a fractional number

of electrons. At large separations between the atom and the metal, our model recovers the

PPLB results. At shorter separations, the regions of integer occupations shrink but do not

collapse to a single point. Due to the finite-distance interactions, the effective values of I

and A are different from those of the isolated atom. As a result, the narrowing of the integer

windows is not symmetric with respect to (I + A)/2 and is markedly different near different

integer occupations.

5.2 Chemical-potential constrained Partition-DFT

Consider a system of electrons in an external potential v(r) that can be written as:

v(r) = vatom(r) + vmetal(r) , (5.2)

where vmetal(r) describes a background periodic or semi-periodic metallic potential support-

ing a continuum of electronic levels occupied up to a Fermi energy, εF , and vatom(r) is a

localized potential such as the Coulomb or screened-Coulomb potential of an atom. The

partition of Eq.(5.2 ) is useful when one wants to describe an atomic defect in a solid or an

atom adsorbed on a metal surface.
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The task of finding the number of electrons on the atom, Natom, is trivial only when

vatom(r) is non-zero far from all regions where vmetal(r) is non-zero, in which case one recov-

ers the black staircase function of Fig.1 with µ = εF . The total density n(r) for the combined

system of atom and metal can be partitioned as natom(r) + nmetal(r) in many different ways.

Partition Density Functional Theory (P-DFT, [26 ], [49 ], [50 ]) provides an elegant, unam-

biguous method for performing such a partition when the number of electrons is finite and

the external potential for each fragment vanishes in all directions as |r| → ∞. Fragments in

P-DFT are isolated from each other and are in contact with a far-away electronic reservoir

through which they can exchange electrons. The interaction energy between the fragments

is recovered by means of a unique global embedding potential, referred to here as the re-

activity potential, vR(r) (to distinguish it from the partition potential we defined for finite

systems). The prescription to determine Natom becomes simple: Minimize the sum of the

fragment energies (i.e. atom and metal) subject to the constraint that the fragment densities

sum to to the correct total density, and then calculate the number of electrons in the atom

as Natom =
∫
natom(r)dr. This number is in general not an integer because each P-DFT

fragment energy is given by the ensemble expression of Eq.(2.36 ), where the non-integer ω

is one of the parameters to be optimized during the energy minimization.

In the case of the potential of Eq.(5.2 ), however, vmetal(r) does not vanish as |r| → ∞ in

all directions, and one of the fragment energies is infinite. The approach of P-DFT is thus

not directly applicable.

In lieu of an energy minimization, we propose here to impose a chemical-potential equal-

ization constraint, shown to be equivalent to energy-minimization for the case of finite sys-

tems [25 ]. The prescription is just as simple: Find the fragment densities that equalize the

chemical potentials of the fragments and the chemical potential of the combined system:

µatom = µmetal = µ , (5.3)

while adding to the correct total density. The resulting density of the atom is an ensemble

ground-state density of vatom(r) modified by the addition of vR(r). The latter piece is identical

for both atomic and metallic fragments.
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When Natom is an integer, µatom is defined only within a range, so Eq. 5.3 is applicable

only for non-integer values of Natom. For integer occupations, the condition of Eq. 5.3 is

modified taking into account Eq. 5.1 :

−Iatom < µmetal = µ < −Aatom , (5.4)

where Iatom and Aatom are computed in the presence of vR(r). We consider our method

converged if either Natom is non-integer and condition 5.3 is satisfied or if Natom is integer

and condition 5.4 is satisfied. In the following section, we successfully apply this method to a

model system that mimics an atom-metal interface in 1-D; however, the rigorous derivation of

the conditions for the existence of a unique reactivity potential for systems with semi-infinite

fragments is still not established.

5.3 Simple Illustration

We choose the simplest non-trivial system that exhibits the features we need: One semi-

infinite fragment (the ‘metal’) and one finite fragment with a small number of bound states

(the ‘atom’). The total number of electrons is infinite, but the electrons are non-interacting

and restricted to move in only one dimension.

5.3.1 Model System

The metal is represented by a potential that goes to a negative constant −V0 as x → −∞:

vmetal(x) = −V0

1 + es(x−R) , (5.5)

and is populated with non-interacting ‘spinless electrons’ up to the Fermi level εF , with

−V0 < εF < 0. In Eq. 5.5 , R is the separation between the metal surface and the center of

the atomic potential, and s is a parameter that determines the steepness of the step. The

form of the potential allows it to be smooth enough to be used with finite-difference methods
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Figure 5.2. The potentials vmetal and vatom (dashed black lines) along with
the total external potential v (solid red line) for the parameters R = 5, γ = 0.5,
Z = 2, and V0 = 3.5.

on a spatial grid while preserving a steep step-like feature. The atom is represented by a

finite potential with a finite number of bound states:

vatom(x) = −Zcosh−2(γx) , (5.6)

where Z and γ are parameters that control the depth and width of the well. We use V0 = 3.5,

Z = 2, and γ = 0.5 throughout the paper. The total external potential is then just the sum

of vmetal and vatom according to Eq.(5.2 ), as shown in Fig. 5.2 .

The full system of metal plus atom produces a continuum of states. All calculations

are done at zero temperature so µ = εF . The reactivity potential vR(x) ensures fragment

densities sum to the total density of the system. The densities of the total system and of

the metal fragment are calculated using the Green’s function approach [51 ], [52 ]. The total

system density n(x) for a large separation R = 15 is shown in Fig. 5.3 . We can see that

as the chemical potential of the system increases through the energy levels of the isolated

atomic potential, the density near the atom increases in large jumps every time the chemical

potential reaches a bound state. The atomic densities have the ensemble form [20 ]:

natom(x) = ωnp+1(x) + (1 − ω)np(x) , (5.7)
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Figure 5.3. Total system densities, n(x), for four choices of µ which give
Natom = 0, 1, 2, and 3 using a separation R = 15.

where p is the lower bounding integer of Natom, 0 ≤ ω < 1, and Natom = p+ ω. Calculations

of the atomic densities at integer occupations are trivial.

5.3.2 Search for Chemical-potential Equalization

To obtain a single point on the Natom versus µ plot in Fig. 5.1 , we perform a numerical

algorithm for a set value of µ. This algorithm consists of an ‘inner’ inversion that computes

the reactivity potential at the current guess of Natom and an ‘outer’ loop that updates Natom

until one of the chemical-potential equalization conditions, Eq. 5.3 or Eq. 5.4 , is satisfied.

Our inversion method requires the precomputed total density n(x) for each µ. We set µmetal

equal to µ and do not vary it throughout the inversion procedure.

We choose v(0)
R,Guess(x) = 0 as our initial guess for vR(x). To calculate the initial guess for

Natom, we start by calculating the isolated atomic density, n(0)
atom(x). We separate n(0)

atom(x)

into contributions from the density of the highest occupied atomic orbital (HOMO) and the

density due to the core electrons, n(0)
atom(x) = n(0)

core(x) + n
(0)
HOMO(x). The number of states

included in the core region, Ncore, is equal to the number of eigenvalues of the isolated atom

which are below µ.

At each iteration k ≥ 0 of the ‘outer’ loop, we use the current values N (k)
atom and v(k)

R,Guess(x)

to compute the v(k)
R (x) that minimizes the difference between n(x) and n(k)

f (x) = n
(k)
metal(x) +
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Figure 5.4. The atomic fragment eigenvalues εi as the fragment occupation
number Natom passes through the integer occupation of one for R = 3.

n
(k)
atom(x) to numerical precision (i.e. v(k)

R,Guess(x) is used as an initial guess to find v(k)
R (x) at

fixed N (k)
atom and µmetal). The resulting fragment densities are used to calculate the fragment

responses χ(k)
α (x, x′) that are then used to update v(k)

R,Guess(x).

If N (k)
atom is not an integer, then µ(k)

atom equals the HOMO energy ε(k)
HOMO in the presence of

v
(k)
R (x), and Eq. 5.3 is used to check if the algorithm has converged. On the other hand, if

N
(k)
atom is an integer, the convergence criteria of Eq. 5.4 is employed, with −Iatom = ε

(k)
HOMO

and −Aatom = ε
(k)
LUMO, where ε

(k)
LUMO is the energy of lowest unoccupied atomic orbital in the

presence of v(k)
R (x).

If neither of the conditions is met, one continues by calculating N (k+1)
atom and repeating the

above procedure.

5.3.3 Chemical Potentials, Energies and Densities

The origin of the discontinuities of the chemical potential can be understood in terms of

the atomic orbitals εi (in the presence of vR(x)). Near integer occupations, the energy of the

HOMO shifts up from the left and the energy of the LUMO shifts down from the right, as

seen in Fig. 5.4 . Even for separations as small as R = 3, levels do not equalize.
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Figure 5.5. The atomic fragment energy Eatom as a function of the fragment
occupation number Natom for R = 3 (solid red line) and R = ∞ (dashed black
line).

The effect of the finite-distance interactions on the energy of the atom can be seen in

Fig. 5.5 . The energy of the atom is defined as the sum of occupied orbitals minus the energy

contribution from the reactivity potential:

Eatom ≡
patom∑
i=1

εi
atom + wεLUMO

atom −
∫
dxvR(x)natom(x) . (5.8)

In Fig. 5.5 , the dashed line shows the energy at large separation, R = 15. It consists of

straight line segments [20 ], [53 ], [54 ]. At short distances (e.g. R = 3, solid red in Fig.

5.5 ) the line segments have a slight curvature. As shown in the inset plot of Fig. 5.5 , the

curvature is more noticeable for Natom in the range of 2 to 3, where Eatom values are more

evenly spaced. This curvature is the consequence of the inter-fragment interactions, but it

does not smoothen the cusps at integer occupations.

The atomic fragment density at large values of R jumps abruptly when going through

integer occupations, as can been seen in the top (Natom = 1) and middle (Natom = 2) panels of

Fig. 5.6 . For each value of Natom, increasing the Fermi energy of the system changes almost

exclusively nmetal(x). As these changes occur, we observe an increase in the value of the

metal density accompanied by a decrease in the period of density (Friedel) oscillations. The

bottom panel of Fig. 5.6 shows the representative behavior of fragment densities at small
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separations. Densities corresponding to non-integer values of Natom begin to appear. We

note that, in this regime, the density of the metal fragment appears unchanged for different

values of µmetal. The density response of the system to infinitesimal changes of µ is thus

largely localized to either atom or metal fragments.

In the case of finite systems, the sum of fragment energies typically displays cusps at

integer occupations and/or local minima at fractional occupations [42 ]. When searching

for the lowest value of this summed energy, fragments may acquire either integer numbers

when the infimum is a cusp (exactly an integer), or fractional numbers when it is not. Here,

we are not directly minimizing energies but attempting to equalize chemical potentials.

The blue and salmon-colored bands in Fig.4 indicate those regions where chemical-potential

equalization could not be achieved. The fact that those regions join smoothly with the

‘near-integer’ regions where chemical potentials were successfully equalized indicates that

any difference due to numerical precision between ‘exact’ and ‘near’ integers is unimportant

in practice.

Finally, the smoothening of the N vs. µ staircase in Fig.1 suggests a possible analogy

between finite distances and finite temperatures. In Fig. 5.7 , we compare our calculated

Natom to the average number of particles n̄ from a Fermi-Dirac (FD) distribution:

n̄ = 1
e(ε(0)

i −µ)/kT + 1
(5.9)

where k is Boltzmann’s constant and T is the temperature. It is apparent from the figures

that the analogy is not exact. The FD distribution at specified (unphysical) temperatures

can capture some of the behavior of Natom(µ) around the step between integer numbers or

the upper region of the curve as it flattens near the integer. It cannot capture both at once,

or correctly follow the behavior of the lower region as it rises from the lower integer.

5.4 Conclusions and Outlook

An essential feature of charge-transfer physics at metallic interfaces is that the metal has

a continuum of electronic states whereas an atom or molecule, when isolated, supports only

a discrete set of states. When the atom or molecule is adsorbed on the metallic surface,
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Figure 5.6. Fragment densities nα(x) at various values of R and µmetal. Top:
R = 15 and values of µmetal corresponding to Natom = 1: −1.55 (blue), −1.35
(red), −1.15 (black), and −0.95 (violet). Middle: R = 15 and values of µmetal
corresponding to Natom = 2: −0.8 (blue), −0.75 (red), −0.65 (black), and
−0.55 (violet). Bottom: R = 3 and values of µmetal producing values of Natom
between 0 and 1: −1.585 (blue), −1.565 (red), −1.56 (black), and −1.535
(violet).
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Figure 5.7. The atomic fragment occupation numbers Natom (solid blue line)
compared to the Fermi-Dirac n̄ (dashed black line). Top: T = 1050 K and
ε

(0)
0 = −1.5586. Bottom: T = 9500 K and ε(0)

1 = −0.8008.

the coupling between continuum (metallic) and discrete (molecular) levels poses a challenge

for embedding methods. It is this challenge that we have addressed here. In the extension

of Frozen-density embedding [55 ] to fragments with non-integer particle numbers [56 ], the

total energy is minimized under the constraint that each fragment density integrates to a pre-

established fractional value. In this method, each fragment has a different chemical potential

along with a different embedding potential, and the fractional charges on the fragments are

not an output but an input for the calculations. As an alternative, we propose chemical-

potential equalization as the main criterion for determining fractional charges in density

embedding. By imposing a chemical-potential equalization constraint, we have shown that

the chemical potential of an integer-electron system can be smaller than I − A when the

system (here, an atom) is at interacting distances from a metallic reservoir of electrons. A

continuous change in a global molecular property, µ, distorts the density of one fragment

(either metal or atom) markedly more than the density of the other fragment. The typical

Natom vs. µ staircase function is smoothed-out as a result of the finite-distance interactions

between the ‘atom’ and the ‘metal’. Further work will examine the extent to which these

results are generalizable: Do they apply to 3D, Coulomb-interacting systems? If so, is there

any physical meaning that can be attached to the resulting reactivity potentials?

Our method should prove useful for calculations on semi-infinite systems and allow treat-

ment of different fragments with different computational techniques. For example, an atomic
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or a molecular fragment can be treated with an accurate wave-function method and the semi-

infinite metal fragment can be treated with a more innate Green’s function method. The

method provides a convenient way to account for the finite-distance interactions near the

metal surface. Furthermore, because calculating fractional charges is important in various

fields, from electrolysis [6 ], [57 ] to catalysis [58 ], solar cells and organic electronics [59 ], [60 ],

we an
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6. VIRIAL RELATIONS IN DENSITY EMBEDDING

This section contains work from the article entitled “Virial relations in density embedding”
written by the author, Kaili Jiang, Martín A. Mosquera, and Adam Wasserman published in
the International Journal of Quantum Chemistry [61 ].

The accuracy of charge-transfer excitation energies, solvatochromic shifts and other en-

vironmental effects calculated via various density embedding techniques depend critically on

the approximations employed for the non-additive non-interacting kinetic energy functional,

T nad
S [n] [33 ]. Approximating this functional remains an important challenge in electronic

structure theory. To assist in the development and testing of approximations for T nad
S [n], we

derive two virial relations for fragments in molecules. These establish separate connections

between the non-additive kinetic energies of the non-interacting and interacting systems of

electrons, and quantities such as the electron-nuclear attraction forces, the partition energy

and potential, and the Kohn-Sham potentials of the system and its parts. We numerically

verify both relations on diatomic molecules.

6.1 Introduction and Notation

In our analysis to this point, we have only looked at partition potentials obtained through

exact numerical inversions. A functional approximation to vP(r) is needed in order for PT

to be practical and to be able to compete with KS-DFT and other embedding methods. Ap-

proximations for the nonadditive non-interacting kinetic energy T nad
S (NAKE) are central to

the development of accurate vP(r) functionals. The development of accurate approximations

of the full Ts[n] for orbital-free DFT is a notoriously difficult problem [62 ], explaining why

most DFT calculations today still rely on the Kohn-Sham (KS) [8 ] or generalized-KS [63 ]

schemes. However, approximating the NAKE is a different challenge than approximating

the full Ts[n]. Cancellation of errors can sometimes lead to acceptable NAKEs [64 ] but not

much is known about such errors or how to control them. Deriving exact conditions for the

NAKE would be helpful to guide the construction of improved approximations for it [65 ].

We derive here two virial relations that may be useful toward that goal.
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The quantum virial theorem provides relationships between the kinetic energy and the

potential energy of electronic systems. In Kohn-Sham DFT [8 ], virial relations have been

proven [66 ]–[68 ] that establish the connections between the kinetic and potential energies

of both, the real system of interacting electrons and the auxiliary system of non-interacting

electrons. Establishing analogous virial relations in embedding methods is challenging when

the fragment densities are not v-representable [69 ], [70 ], as discussed in ref.[71 ] and in ref.[72 ]

in the context of the early embedding method of ref.[73 ]. However, the fragment densities

of P-DFT are physical ground-state v-representable densities for which virial relations apply

just as they would for any physical system in isolation. Furthermore, due to the globality of

the partition potential in P-DFT [26 ], [49 ], [50 ], terms can be grouped together leading to

particularly simple virial expressions, as we show here.

Using the index “α” to label the fragments, the kinetic energy of fragment α is Kα[nα].

Following Eq. 3.9 , the non-additive kinetic energy is defined as:

Knad[{nα}] ≡ K[n] −
∑

α

Kα[nα] , (6.1)

whereK[n] is the total kinetic energy for density n(r). Equation 6.1 is the most direct method

to calculate Knad. We will be contrasting Equation 6.1 later on with a virial expression,

Equation 6.11 . Similarly, the NAKE is defined by

T nad
s [{nα}] ≡ Ts[n] −

∑
α

Ts[nα] , (6.2)

With the virial theorem, we can derive exact relations between T nad
s [n] and the densities

and potentials that can be obtained through P-DFT calculations. These relations can be

used as exact constraints in constructing approximations to T nad
s [n].
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6.2 Virial Relations

We now derive two virial relations for fragments in molecules. For a many-electron system

of ground state |Ψ0〉 and density n0(r) = 〈Ψ0|n̂(r)|Ψ0〉1
 governed by the hamiltonian of Eq.

2.2 , the virial theorem can be expressed as [66 ]:

2K[n] + Vee[n] =
∫
d3rn(r)r · ∇v(r) , (6.3)

where K[n] = 〈Ψ[n]|T̂ |Ψ[n]〉 and Vee = 〈Ψ[n]|V̂ee|Ψ[n]〉 are the total kinetic and electron

repulsion energies. Similarly, for the KS system of non-interacting electrons with kinetic

energy Ts,

2Ts[n] =
∫
d3rn(r)r · ∇vKS[n](r) , (6.4)

Equation 6.4 is applicable not only to the exact XC functional, but also to approximate XC

functionals at self-consistency.

Although P-DFT makes use of a grand-canonical ensemble formalism to describe frag-

ments with fractional numbers of electrons, we restrict the present analysis for simplicity to

cases where the fragments, labeled by index α, have integer numbers of electrons Nα (the one

exception in the examples that follow is H+
2 , where each atomic fragment is assigned a charge

of 0.5). The total number of electrons in the molecule, N , is given by the sum of the Nα,

and all single-particle operators are similarly additive. In particular, the external potential

v(r) = ∑
α vα(r), kinetic operator T̂ = ∑

α T̂α and density operator n̂(r) = ∑
α n̂α(r) are all

additive. However, V̂ee 6= ∑
α V̂ee,α as all electrons interact with one another.

We establishes that in PT, there is only one embedding potential vp(r) such that the

many-electron Schrödinger equations

[
Ĥα +

∫
d3rvp(r)n̂α(r)

]
|ψα〉 = Eα|ψα〉 , (6.5)

1↑ In this chapter, we drop the subscript “0” for simplicity of notation.
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lead to fragment densities nα(r) = 〈ψα|n̂α(r)|ψα〉 with the additive property:

∑
α

nα(r) = n(r) , (6.6)

In Equation 6.5 , we explicitly wrote the fragment hamiltonian with ground state |ψα〉 as

Ĥα = T̂α + V̂ee,α +
∫
d3rvα(r)n̂α(r). Because the nα(r) are true ground-state densities for Nα

electrons in vα(r) + vp(r), virial relations analogous to Equations 6.3 and 6.4 hold for the

fragments:

2Kα + Vee,α =
∫
d3rnα(r)r · ∇[vα(r) + vp(r)] , (6.7)

where Kα = K[nα] = 〈ψα[nα]|T̂α|ψα[nα]〉, Vee,α = Vee[nα] = 〈ψα[nα]|V̂ee,α|ψα[nα]〉, and

2Ts,α =
∫
d3rnα(r)r · ∇vs,α[nα](r) . (6.8)

Note that vs,α(r) = vα(r) + vH,α(r) + vXC,α(r) + vp(r). Next, subtract Equation 6.8 from

Equation 6.7 to get

Tc,α = −EXC,α −
∫
d3rnα(r)r · ∇vXC,α(r) , (6.9)

where Tc,α = Kα − Ts,α is the correlation kinetic energy of fragment α.[66 ]

Summing up Equation 6.7 over all fragments, we obtain

2Kf [{nα}] +Vee,f[{nα}] =∑
α

∫
d3rnα(r)r · ∇[vα(r) + vp(r)] , (6.10)

where Kf[{nα}] ≡ ∑
α Kα and Vee,f[{nα}] ≡ ∑

α Vee,α. Finally, combining Equation 6.3 with

Equation 6.10 and rearranging terms:

Knad[{nα}] = V nad
ext [{nα}] +

∫
d3r

∑
α

nα(r)r · ∇vnad
ext,α(r)

−Ep[n] −
∫
d3rn(r)r · ∇vp(r) , (6.11)
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where 6.11 , V nad
ext [{nα}] =

∫
d3r {n(r)v(r) −∑

α nα(r)vα(r)} is the non-additive external en-

ergy, and vnad
ext,α(r) ≡ δV nad

ext /δnα(r) = v(r) − vα(r).

Equation 6.11 provides a way to calculate the non-additive KE in terms of quantities

that can all be obtained through embedding (P-DFT) calculations.

Alternatively, subtracting Equation 6.8 from Equation 6.4 , we find:

T nad
s [{nα}] = 1

2

∫
d3r{

∑
α

nα(r)r · ∇[vs(r) − vs,α(r)]} , (6.12)

providing, together with Equation 6.11 , a route to the calculation of the non-additive corre-

lation kinetic energy, as

T nad
c [{nα}] = Knad[{nα}] − T nad

s [{nα}] . (6.13)

6.3 Numerical Verification and Discussion

In Tables 6.1 and 6.2 , we provide numerical verification of Equations 6.11 and 6.12 on

diatomic molecules (i.e. each molecule is partitioned into its two constituent atoms). All

calculations are performed on a real-space code that solves the KS equations in prolate

spheroidal coordinates [26 ]. P-DFT calculations were done with an algorithm that is numer-

ically “exact” for a given approximation to the XC functional [33 ].

Table 6.1. Numerical verification of Equation 6.11 . Knad
I is calculated

through Equations 6.1 , 6.13 , and 6.12 . Knad
II is calculated through Equation

6.11 . The H+
2 result in the top line is from exact one-electron calculations for

which Knad
I is calculated directly from wavefunctions.

System Knad
I × 102 Knad

I /Knad
II

H+
2 (exact) -8.522 0.99914
H+

2 -8.259 0.99994
H2 -12.571 0.99993
Li2 1.716 1.01237
He2 0.1107 1.00025
Ne2 0.2999 1.00366
Ar2 0.4424 1.00417
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Table 6.2. Numerical verification of Equation 6.12 . T nad
s,I is calculated through

Equation 6.2 , and T nad
s,II is calculated through Equation 6.12 .

System T nad
s,I × 102 T nad

s,I /T
nad
s,II

H+
2 -8.181 0.99997

H2 -15.207 0.99997
Li2 0.4917 1.0035
He2 0.0993 1.00014
Ne2 0.2750 1.00239
Ar2 0.4050 1.00239

Table 6.3. Comparison in the NAKE of He2 when approximated functionals
are used. T nad

s,I is calculated directly from the approximated functionals. T nad
s,II

is calculated using Equation 6.12 , where the approximated NAKE functionals
are used in calculating the partition potential.

Functional T nad
s,I × 103 T nad

s,II × 103 T nad
s,I /T nad

s,II
TF[74 ], [75 ] 1.198 1.402 0.85419
vW[76 ] -37.823 -37.824 0.99999

GEA2[77 ], [78 ] -1.561 -1.146 1.36154
TW02[79 ] 1.136 1.444 0.78654
LC94[80 ] 0.565 0.812 0.69630
R-PBE[34 ] 0.995 1.196 0.83215

Table 6.1 shows a very close agreement between the non-additive kinetic energy calculated

through Equation 6.1 , denoted asKnad
I , and calculated through the virial relation of Equation

6.11 , denoted as Knad
II . The main source of error comes from the calculation of the gradient

of the potentials on the right-hand-side of Equation 6.11 , as the densities have cusps and

the potentials singularities at the nuclei. Similar agreement can be seen in Table 6.2 that

compares T nad
s,I (Equation 6.2 ) and T nad

s,II (Equation 6.12 ).

The results in Tables 6.1 and 6.2 are a numerical verification of Equations 6.11 and 6.12 .

The virial relation is satisfied for each fragment and for the full molecule. The latter occurs

because the algorithm of ref.[33 ] guarantees that the sum of fragment densities reproduces

the full-molecular KS density.
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Table 6.3 provides the ratio T nad
s,I /T nad

s,II for He2 when instead of using exact numerical

inversions, as before, one uses an approximate density-functional for T nad
s , as is typically done

in subsystem-DFT calculations [81 ]. T nad
s,I is constructed from approximate Ts[n] functionals

on the right-hand side of Equation 6.2 . In Equation 6.12 , T nad
s,II is calculated with the same

Ts[n] approximation and the expression vs(r) − vs,α(r) = δT nad
s [n]/δnα(r) [33 ]. In contrast to

the results of the exact inversion algorithm, Equations 6.11 and 6.12 are not trivially satisfied

in the case of approximate density functionals. The full-molecular density n(r), resulting

from the sum of fragment densities in Equation 6.6 , is now a self-consistent result and does

not reproduce the full-molecular KS density.

For most approximate T nad
s functionals, the virial relation Equation 6.12 is not well

preserved. Interestingly, the von Weisäcker (vW) functional yields an extremely accurate

virial relation for He2 even though the vW functional is only exact for the fragments. This

indicates that the left-hand side and the right-hand side of Equation 6.4 are nearly equal for

this approximate functional, implying that T vW
s [nvW,P−DFT] = Ts[ñ], where nvW,P−DFT is the He2

density from a P-DFT calculation that uses the vW functional, and ñ is the exact density

corresponding to the KS potential vs[nvW,P−DFT](r), where vs[nvW,P−DFT](r) is calculated by

plugging the density nvW,P−DFT into the Hartree, XC and external potential functionals. The

entire error here is fragment-density-driven [82 ], and it is clearly very small. However,

our previous study [34 ] showed that vW NAKE performed poorly for systems of rare gas

dimers, indicating that the performance of NAKE functionals should not be judged based

on Equation 6.12 alone.
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7. PARTITION POTENTIAL FOR HYDROGEN-BONDING IN

FORMIC ACID DIMERS

This section contains work from the article entitled “Partition potential for hydrogen-bonding
in formic acid dimers” written by the author, Sara Gómez, Albeiro Restrepo, and Adam
Wasserman published in the International Journal of Quantum Chemistry [83 ].

Among the many types of intermolecular interactions, hydrogen-bonding is of particular

interest because hydrogen bonds (HB’s) are known to be responsible for stabilization of

various chemical systems from the life-supporting properties of liquid water [84 ]–[87 ] to the

tertiary structures of biomolecules in charge of storing and replicating genetic information.

[88 ] Although the very nature of hydrogen bonding is not without controversy [89 ]–[92 ],

several types of HB’s are recognized in the literature. [47 ] Of particular interest to this

work are the conventional primary hydrogen bonds, where a hydrogen atom sits between two

electronegative atoms, and the non-conventional, secondary hydrogen bonds, where a proton

is donated from a non-polar C–H bond.

Although P-DFT is particularly well suited to study molecular clusters, these systems are

challenging because intermolecular interaction energies in clusters are significantly smaller

than energies associated with formal bonds. Individual molecules in clusters retain their

chemical identities to a large degree and require carefully constructed partition potentials

to account for the comparatively weak interactions. Previously, P-DFT was successfully

applied to water dimers, [93 ] where it was shown that the partition potential and P-DFT

densities can be used to describe the mechanism of hydrogen-bond formation.

The question we address in this chapter is whether the partition potential has transferable

features corresponding to particular types of HB’s. Finding transferability would imply that

the partition potential around a hydrogen bond in one molecule could be used as a starting

point to calculate approximate interaction energies in other molecules with similar HB’s, an

appealing prospect for computational chemistry. The formic acid dimers are ideal systems

to investigate this question because their four lowest-energy conformations have two types of

primary HB’s (C=O· · ·H–O and H–O· · ·H–O ) and two types of secondary HB’s (C=O· · ·H–

C, H–O· · ·H–C). Is vP(r) in the vicinity of a primary HB in one of these four dimers a good
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approximation to vP(r) for a primary HB in a different dimer? What about the same

question for secondary HB’s? Previous work on one-dimensional model systems [94 ] taught

us that the transferability of P-DFT densities was about an order of magnitude higher than

that of real-space partitioning schemes, so it is reasonable to expect transferable features

in the underlying partition potentials. However, we find that the answer is no in both

cases (primary and secondary), contrary to naive intuition. Conversely, monomer density

deformations do have specific features that can be used to distinguish between different types

of HB’s.

7.1 Preliminaries and Methods

Despite being the smallest carboxylic acid, the conformational space for the formic acid

dimers is notoriously rich, with a considerable number of structures already experimentally

detected [95 ]. For our work, we selected four lowest energy motifs from this set (shown in

Fig. 7.1 ). We optimized their geometries and confirmed the found stationary points are true

minima by frequency calculations using the B3LYP XC functional and Dunning’s aug-cc-

pVTZ basis set. P-DFT calculations were performed over the resulting geometries. B3LYP

and PW91 were used as XC functionals in the construction of the effective potentials. The

partition potential was expanded using aug-cc-pVTZ basis set. PW91 has been shown to

be useful for the evaluation of intermolecular interactions in hydrogen-bonded systems. In

particular, the dimers of water and formic acid for which PW91 computed interaction energies

showed only slight changes with respect to CCSD(T). [96 ] It has also been concluded that

large basis sets for vP (r) lead to accurate total densities. [93 ] All calculations were carried

out using the NWChem package [97 ].

For P-DFT calculations, we choose two monomers as fragments and label them left (L)

and right (R). The inversion algorithm for obtaining the partition potential is based on

computing the fragment density response, χf (r, r′) at each step and updating vP(r) through:

[93 ], [98 ]

δvP(r) =
∫
dr′χf(r, r′)−1

(∑
i
ni(r′) − nf(r′)

)
. (7.1)

For our choice of fragmentation, nf(r) = nL(r) + nR(r).
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D1
BE = 12.83
∆E = 0.00

D2
BE = 8.02
∆E = 4.81

D3
BE = 6.41
∆E = 6.42

D4
BE = 5.58
∆E = 7.25

Figure 7.1. Lowest energy dimers of formic acid from the
MP2/6–311++G(d,p) Potential Energy Surface. Both monomers are in
the anti conformation. BE’s are the CCSD(T)/6–311++G(d,p) binding
energies calculated as the difference between the given dimer and the isolated
fragments. Relative energies with respect to the global minimum are shown.
All energies in kcal/mol and corrected for zero-point vibrational energies.
The right monomer (R), which simultaneously acts as a donor and acceptor
of hydrogen bonds, is shown in the same perspective in all cases. The origin
of coordinates is placed at the oxygen atom in the left (L) monomer.
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As discussed in Chapter 3 , P-DFT is generally formulated for varying non-integer frag-

ment occupations. In this work, however, we fix occupations to the ones of isolated frag-

ments. This simplification increases the efficiency of the method as optimization with respect

to occupation numbers is not needed. Previous work on simpler systems suggests that oc-

cupations usually lock to integers when fragments have similar electronic structures. Since

we work with neutral dimers with small dipole moments, we choose neutral fragments and

focus attention on monomer density deformations:

∆ni(r) = ni(r) − n0
i (r) , (7.2)

where n0
i (r) is the density of an isolated i-fragment.

7.2 Results and Discussion

7.2.1 Energy Analysis

We begin by introducing the preparation energy, Eprep, which will be useful for describing

fragment interactions within P-DFT formalism. The preparation energy is defined as the

energy required to distort the density of isolated fragments to the P-DFT density of fragments

within the dimer:

Eprep = Ef[nL(r), nR(r)] − (EL[n0
L(r)] + ER[n0

R(r)]) , (7.3)

We can also identify the preparation energy of a fragment i:

Ei
prep = Ei[ni(r)] − Ei[n0

i (r)] . (7.4)

The partition energy energy (Ep = EDimer[nL(r), nR(r)] −Ef[nL(r), nR(r)], see Eq. 3.2 ) can

then be viewed as the interaction energy among the “prepared” fragments. The binding

energy, BE, is simply the sum of these two energy contributions:

BE = EP + Eprep = EDimer[nL(r), nR(r)] − (EL[n0
L(r)] + ER[n0

R(r)]) . (7.5)
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Since all four dimers have their atoms lie on a plane, it is most convenient to visualize

the densities and potentials at values of r belonging to this plane.

Table 7.1 lists relevant quantities extracted from the P-DFT calculations using both

B3LYP and PW91 functionals. The experimental BE for D1 is −59.5 ± 0.5 kJ/mol (2.27

× 10−2 a.u.) [99 ]. The BE’s computed with eq. 7.5 yield 2.90 × 10−2 a.u. (B3LYP) and

3.14 × 10−2 a.u. (PW91). We note that these values do not include zero-point vibrational

energies and thermal corrections.

An inventory of intermolecular interactions in the four formic acid dimers studied here is

provided in the rightmost column of Table 7.1 . D1 and D3 are stabilized by primary hydrogen

bonds only while D2 and D4 include one secondary hydrogen bond each. D1 exhibits two

equivalent primary hydrogen bonds where the hydroxyl group in one monomer donates a

proton to the carbonyl group of the other (see Fig. 7.1 ). D2 and D4 have two types of

contacts: a secondary C=O · · · H–C hydrogen bond and a C=O · · · H–O (D2) and H–

O · · · H–O (D4) primary HB. D3 has two non–equivalent primary hydrogen bonds, where

R simultaneously acts as donor and acceptor in two different functional groups, the O–H

bond in L acts as donor and acceptor of both HB’s, freeing the carbonyl group in L of

intermolecular interactions. We note that although secondary hydrogen bonds are typically

considered weaker than primary hydrogen bonds [47 ], the overall stability of the dimers is

not correlated with the primary or secondary nature of the HB’s. For example, D2 is lower

in energy than D3, even though D2 has one primary and one secondary HB’s and D3 has two

primary HB’s. This lack of correlation extends to the number of hydrogen bonds, as seen in

the case of two water dimers in Ref. [93 ].

Table 7.1 also lists preparation energies for each dimer and its components according to

Eqs. 7.3 and 7.4 . It is clear from the definition of Ef (Eq. 3.2 ) and from Eq. 7.3 that

Eprep is always positive. We also expect larger values of Eprep for fragments that are more

distorted relative to their isolated states. Eprep decreases in going from D1 to D4. Fig. 7.2 ,

which shows the densities on the plane of two monomers, makes it obvious that this decrease

corresponds to the decrease in the total density deformation.

There are characteristic deformation patterns for the primary and secondary bonds, as

shown in Fig. 7.2 . The O atom of the H-donating O–H group has a significant density

72



T
ab

le
7.

1.
R
el
ev
an

t
en
er
gi
es

(a
.u
.)

fro
m

P-
D
FT

ca
lc
ul
at
io
ns

(B
3L

Y
P,

PW
91

,v
P

(r
)
w
ith

th
e
au

g–
cc
–p

V
T
Z

ba
sis

se
t)

on
th
e
lo
we

st
en
er
gy

fo
rm

ic
ac
id

di
m
er
s
(F

ig
.

7.
1 )
.

T
he

en
er
gy

fo
r
th
e
iso

la
te
d
a
n
ti

fo
rm

ic
ac
id

m
on

om
er

is
E

0 L
=
E

0 R
=

−
18

9.
84

6
a.
u.

A
ll
en
er
gi
es

in
kc
al
/m

ol
.

Sy
st
em

B
E

E
D

i
pr

ep
(E

q.
7.
3 )

E
L pr

ep
E

R pr
ep

E
P

In
te
rm

ol
ec
ul
ar

In
te
ra
ct
io
ns

D
1

(B
3L

Y
P

)
−

18
.1

9
7.

14
3.

57
(5

0%
)

3.
57

(5
0%

)
−

25
.3

3
C

=
O

··
·

H
–O

C
=

O
··

·
H

–O

D
1

(P
W

91
)

−
19
.7

0
6.

99
3.

49
(5

0%
)

3.
49

(5
0%

)
−

26
.6

9
C

=
O

··
·

H
–O

C
=

O
··

·
H

–O

D
2

(B
3L

Y
P

)
−

9.
61

4.
67

2.
56

(5
5%

)
2.

11
(4

5%
)

−
14
.2

8
C

=
O

··
·

H
–O

C
=

O
··

·
H

–C

D
2

(P
W

91
)

−
10
.5

5
4.

76
2.

76
(5

8%
)

2.
00

(4
2%

)
−

15
.3

1
C

=
O

··
·

H
–O

C
=

O
··

·
H

–C

D
3

(B
3L

Y
P

)
−

6.
87

2.
08

1.
14

(5
5%

)
0.

94
(4

5%
)

−
8.

95
C

=
O

··
·

H
–O

H
–O

··
·

H
–O

D
3

(P
W

91
)

−
7.

84
2.

08
1.

11
(5

4%
)

0.
97

(4
6%

)
−

9.
92

C
=

O
··

·
H

–O
H

–O
··

·
H

–O

D
4

(B
3L

Y
P

)
−

5.
01

1.
71

1.
06

(6
2%

)
0.

66
(3

8%
)

−
6.

72
C

=
O

··
·

H
–C

H
–O

··
·

H
–O

D
4

(P
W

91
)

−
5.

62
1.

75
1.

13
(6
5%

)
0.

62
(3

5%
)

−
7.

37
C

=
O

··
·

H
–C

H
–O

··
·

H
–O

73



-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

Carbon

Hydrogen

Oxygen

D1 D2

D3 D4

Figure 7.2. Density distortions, Eq. 7.2 , On the molecular plane for various
dimer configurations (in a.u.). For clarity, atom positions are indicated by
hollow circles centered at atomic positions and bond lines are omitted. Upper
panels correspond to the left monomer; lower panels correspond to the right
monomers.
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increase along the approximate direction of the HB in a dumbbell-like shape. The O atom

of the acceptor has a density decrease of similar shape and direction. The H atom of the

O–H group also has some density deficiency around it. The secondary bond pattern is very

similar (note that the O–H donor is now replaced with C–H), but the deformation is smaller

in magnitude and is more disperse. These observations suggest that the stronger intermolec-

ular bonds require larger deformation of the original wavefunctions of the fragments, a result

that may appear obvious to many chemists, but can not be quantified without a rigorous

definition of fragments within a molecule. This is also consistent with the orbital interaction

picture where it is generally thought that the gain of electron density in the σ?
O−H region

of the donor and the simultaneous loss of charge in the region associated to the O atom of

the acceptor is responsible for the formation of a hydrogen bond. [89 ], [90 ], [100 ] Although

fragment occupation numbers remain constant in the present P-DFT implementation, frag-

ment densities are indeed distorted; these distortions are linked to the charge transfer within

fragments, provided by the orbital interactions.

The fragment preparation energies can be analyzed further. Since in D1 both monomers

are the same, their preparation energies are identical. In D2 and D4 the left monomer

acts as a donor of a secondary hydrogen bond. In those cases, EL
prep is significantly larger

than ER
prep, even though the density deformation reaches higher values in the R-monomer.

The L-monomer has a more delocalized density deformation. This imbalance can also be

attributed to the fact that weaker secondary HB’s require smaller preparation energies. In

D3, the energy needed to prepare L is larger than the energy needed to prepare R because

of the double donor/acceptor function of the O–H group in L.

Partition energies, EP, also shown in Table 7.1 , are always negative and their magnitudes

are correlated with the corresponding Eprep’s. That EP is negative can be proven from the

variational principle, but the observed correlation with Eprep (i.e. that Eprep decreases as EP

decreases) cannot. As predicted by the analysis of Fig. 7.2 , larger preparation energies lead

to larger partition energies, which is seen for all dimers in Table 7.1 . This trend is followed

not only by formic acid dimers but by all other systems we have studied so far. Whereas

this observation seems obvious, a hard proof is missing.

75



Table 7.2. Total preparation energies for different systems. All P-DFT cal-
culations using B3LYP/aug–cc–pVTZ with an expansion of vP(r) in the same
basis set. RO-O and RC-O are the distances between oxygen atoms in primary
hydrogen bonds and between carbon and oxygen atoms in secondary hydrogen
bonds, respectively.

System Distance (Å) Eprep (kcal/mol)a

LiH (neutral fragments) 1.59 34.76
LiH (ionic fragments) 1.59 23.59

H2 0.74 12.76
D1 RO-O = 2.67 7.14
D2 RO-O = 2.73, R C-O = 3.13 4.67
D3 RO-O = 2.73, 2.89 2.08

Cs Water Dimer R-O = 2.86 1.86
D4 RO−O = 2.90, RC-O = 3.35 1.71

C2h Water Dimer RO-O = 2.76 0.42
He2 1.60 0.53

aOur results for the diatomic molecules in this table differ slightly from those of the original
work of Nafziger, Wu, and Wasserman [101 ] because we recalculated all energies using the
aug–cc–pVTZ basis set.

It was noticed in previous work [93 ] that the character of chemical interactions (formal

bonds, long range, van der Waals, etc.) appears to be related to the magnitude of the

preparation energy. Thus, as expected, preparation energies in Table 7.1 suggest a direct

correlation with binding energies. Table 7.2 lists recalculated total Eprep for a set of diatomic

and polyatomic systems already available in the literature, as well as our results for the formic

acid dimers. Nicely, the preparation energies for the formic acid dimers fall in the same range

as that of the water dimer. They lead to interaction energies that are stronger than van der

Waals contacts but weaker than ionic and covalent bonds. In hydrogen bonding, the distance

separating the two moieties dictates the strength of the interaction. This tendency can be

seen in Table 7.2 .

7.2.2 Partition potentials

Hydrogen bonding is a complex interaction with various degrees of contribution from

electrostatic, inductive, and dispersive forces depending on the nature of the individual
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Figure 7.3. Partition potential, vP(r), for D1 using B3LYP (top) and PW91
(bottom) functionals. The aug-cc-pVTZ basis set was used for all calculations.
The left two plots show the vP(r) map on the molecular plane. The right two
plots show vP(r) along the approximate HB line (through H atom of the donor
and O atom of the acceptor).

molecules. In this work, we use the PW91 functional, which fortuitously yields accurate

interaction energies and molecular geometries in weakly-bonded clusters such as the benzene

and methane dimers among others [96 ]; and we also use the very popular B3LYP hybrid

functional.

Fig. 7.3 shows that all features of the partition potential are largely insensitive to the

choice of XC functional (we only show results for D1, but the same is also true for D2—D4).

Since vP(r) is obtained through the density-to-potential inversion of eq. 7.1 , this is due to

the densities being insensitive to the choice of XC functional. The question of whether the

approximate XC functionals can accurately capture the exact features of vP(r) remains open.

[24 ] For both functionals, we were able to achieve density convergence to the order of 10−8

a.u. in a reasonable number of iterations (on the order of 102).

Fig. 7.5 compares the B3LYP partition potentials for all four dimers. In contrast to the

monomer density deformations, similar bonds are not characterized by similar features in

vP(r). This is further highlighted in Figure 7.4 , where the partition potentials are plotted
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Figure 7.4. 1D plots of vP(r) along the approximate bond axis. The B3LYP
functional in conjunction with the aug-cc-pVTZ basis set was used for all
calculations. Vertical lines in the 1D plots enclose the intermolecular bonding
region.

along the following nearly-linear intramolecular bonds: C=O · · · O–H in D1 and D2; O–H

· · · O–H in D3; and O–H · · · O–H in D4. Note that although the density deformations in

the binding regions are qualitatively similar in all four dimers, vP(r) is qualitatively different

for the global minimum (D1), where it is highly negative.

The non-transferability of vP(r) or any of its features indicates its sensitivity to the

density variations in regions that may be far from r. In contrast, the density deformations

are highly localized. Qualitatively, the 2D density deformations of Figure 7.2 show that,

due to the formation of the hydrogen bond, charge is accumulated in the region occupied by

the antibonding orbital in the R monomer and simultaneously withdrawn from the region

occupied by the lone pair in the L monomer. Quantitatively, accumulation of charge in the

antibonding region of R and depletion of charge in the lone pair region of L are larger for

stronger bonds.
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7.3 Final Remarks

Contrary to our original expectation, we show that the partition potential is not trans-

ferable between systems with similar types of hydrogen-bonding. The result highlights the

nonlocal character of vP(r) in contrast to the local features of density deformations of the in-

dividual fragments, which are largely transferable. In practical calculations, we should take

advantage of the fact that fragment calculations can be done locally while still preserving

the global features of the partition potential. We also highlight the intuitive yet nontrivial

observation that large binding energies correspond to large preparation energies, and that

the strength of the partition potential is correlated with the overall stability of the dimer.
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A. THREE ELECTRONS IN 1D: AN EXACT SOLUTION

The electronic-structure hamiltonian of Eq. 2.2 describes only electrostatic effects of the

electronic motion. Spin in the non-relativistic quantum mechanics is introduced phenomeno-

logically, i.e., it is postulated that the electronic wavefunction should be antisymmetric under

particle interchange:

Ψ(. . . ,xi, . . . ,xj, . . . ) = −Ψ(. . . ,xj, . . . ,xi, . . . ) , (A.1)

where xi = (ri, si) is the particle coordinate consisting of spatial and spin coordinates. The

ground state wavefunction of an electronic system in the form of Eq. A.1 should still be

an eigenfunction of the hamiltonian of Eq. 2.2 . We also expect this wavefunction to be

an eigenfunction of Ŝz,total operator and (in the absence of magnetic fields and vanishing

spin-spin and spin-orbit interactions) an eigenfunction of Ŝ2 operator [3 ]. The spin part

is naturally described with the help of Ŝz,total eigenstates. For example, for 3 electrons:

|↑, ↑, ↑〉 , |↑, ↑, ↓〉 , |↑, ↓, ↑〉 . . . , |↓, ↓, ↓〉. The ground state wavefunction can then be written

as the superposition of the Ŝz,total eigenstates “weighted” by the eigenstates of 2.2 with the

same eigenvalue:

Ψ(x1,x2, . . . ,xN) =
∑

s1,s2,...,sN

ψs1,s2,...,sN
(r1, r2, . . . , rN) |s1, s2, . . . , sN〉 . (A.2)

In the case of 1 or 2 electrons, the expansion simplifies to a product of the spatial ground state

with an Ŝz,total eigenstate: ψ0(r) |↑〉 or ψ0(r1, r2)(|↑↓〉 − |↓↑〉1
 . The solution is less trivial for

3 or more electrons. To keep this manuscript self-contained, we will discuss practical aspects

of computing the 3-electron problem in Chap. 4 . The generalization to an arbitrary number

of electrons can be found in textbooks on Group Theory (e.g., Ref [4 ]).

We will now solve the problem of 3 electrons in 1D with NS = 1 (i.e., a doublet) that

we expect to be the ground-state spin state. Recall that Ŝz,total operator in the space of 3
1↑ for brevity, normalization constants will be dropped throughout this appendix.
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electrons has 8 eigenstates: 4 degenerate states corresponding to NS = 1 and 4 degenerate

states corresponding to NS = 3. The degenerate states with NS = 1 can be written as:

|1,−1〉1 = |↓↑↓〉 − |↑↓↓〉 , (A.3a)

|1,−1〉2 = |↓↓↑〉 − |↑↓↓〉 , (A.3b)

|1,+1〉1 = |↑↓↑〉 − |↓↑↑〉 . (A.3c)

|1,+1〉2 = |↑↑↓〉 − |↓↑↑〉 , (A.3d)

Of course, there are infinitely many ways these eigenstates can be represented, but the

form of Eqs. A.3 turns out to be the most convenient one. The states of Eqs. A.3a 

and A.3b share the same Ŝz,total eigenvalue and will serve as our basis for constructing the

full antisymmetric wavefunction (the same process can, of course, be repeated for states

A.3c and A.3d ). Observe that the state A.3a has a peculiar “mixed” symmetry. The first

term in A.3a is symmetric with respect to the interchange of s1 with s3, and the second

term is symmetric with respect to the interchange of s2 with s3. The entire state A.3a is

antisymmetric with respect to the interchange of s1 with s2 (i.e., A.3a was constructed from

|↓↑↓〉 by antisymmetrizing it with respect to the interchange of s1 with s2). Analogously,

A.3b is obtained from |↓↓↑〉 by antisymmetrizing it with respect to the interchange of s1

with s3. We now need to construct eigenstates of 2.2 with spatial “mixed” symmetries that

are transpose to those of states A.3a and A.3b .

Let us look at an arbitrary eigenstate of the spatial hamiltonian 2.2 , g(x1, x2, x3). We

can first symmetrize it with respect to the interchange of x1 and x3 and then antisymmetrize

it with respect to the inerchange of x1 with x3:

f(x1, x2, x3) = [g(x1, x2, x3) + g(x2, x1, x3)] − [g(x3, x2, x1) + g(x2, x3, x1)] . (A.4)

The spatial symmetry of A.4 is transpose to the spin symmetry of A.3a . Similarly, we can

construct a spatial function to “go along” the spin function A.3a :

h(x1, x2, x3) = [g(x1, x3, x2) + g(x3, x1, x2)] − [g(x2, x3, x1) + g(x3, x2, x1)] . (A.5)
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It is not difficult to see that:

Ψ(x1,x2,x3) = f(x1, x2, x3) |1,−1〉1 − h(x1, x2, x3) |1,−1〉2 (A.6)

is the fully antisymmetric wavefunction. One can also verify that A.5 is an eigenfunction

of Ŝ2 (and obviously of Ŝz,total). Observe that the (anti)symmetrization procedure of Eqs.

A.4 and A.5 fails if g(x1, x2, x3) is either fully symmetric or fully antisymmeteric (i.e., the

procedure returns the trivial eigenstate). Therefore, our procedure of finding Ψ(x1,x2,x3)

reduces to finding the lowest spatial eigenstate g(x1, x2, x3) that does not return zero when

inserted into either of Eqs. A.4 or A.5 .
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