
COMMUNITY DETECTION OF ANOMALIES IN LARGE-SCALE

NETWORK WITH DEEP LEARNING

by

Adefolarin Bolaji

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Department of Technology

West Lafayette, Indiana

May 2021

2

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Dr. John Springer, Chair

Department of Computer and Information Technology

Dr. James Eric Dietz

Department of Computer and Information Technology

Dr. Jin Kocsis

Department of Computer and Information Technology

Dr. Vetria Byrd

Department of Computer Graphics Technology

Approved by:

Dr. Kathryne Newton

3

This work is dedicated to my parent Adesola and Sarah Bolaji, and my God-given wife Adebunmi

Elizabeth Odefunso; for how the Lord has used them to make me who I am today.

4

ACKNOWLEDGMENTS

I wish to acknowledge the God of all grace through my Lord and Savior Jesus Christ. “for

in Him I live, move, and have my being…” Acts 17:28. The Lord has been so good to me and my

family, all the glory on my life and work belongs to Him and Him alone.

I appreciate Dr. John Springer, my advisor, for believing in me, and for giving me a chance.

I also acknowledge the help and untiring assistance from my Ph.D. committee, Dr. Vetria Byrd,

Dr. James Eric Dietz, and Dr. Jin Kocsis. Don and Cheryl Brier were God-sent to my family. They

stood by us as parents during our studies. The following people made a significant impact on my

life during my assistantship role at the graduate school, Mummy Debbie Fellure, Ashlee

Messersmith (my buddy), Dr. James Mohler, Christal Musser, Jenny Matson, Wei Kao, Victoria

Chu, Dr. Julius Eason, Dean Linda Mason, and all the graduate school staff.

I appreciate Kayode and Bunmi Adeagbo for their role and support in making this become

a reality. All our family friends in Colorado such as the Jimos, Ajibolas, Talabis, and Amusats. Dr.

Dan & Seun Falola, Dr. Gbenga & Adesola Olatunde are also appreciated for standing with us

during this program. I thank God for the lives of Prof. Kola and Dr. Mary Ajuwon, they have

played very significant roles in my family during this period at West Lafayette. The families of

Pastor Ademola and Sis. Bukola Dada’s & Mr. Kenny and Mrs. Folake Ayano, Mr. Deji & Mrs.

Lanre Oyewumi, and Aunty Anita Amiaya have been of immense help to us during this program.

I acknowledge the African Christian Fellowship leaders & members for their spiritual and

moral support always. Nigerian Student Association at Purdue (which was founded by me and few

others) is also appreciated. The families of Mr. Femi Babatunde, Dr. Evidence Matangi, Mr.

Chinonso Etumnu, Dr. Toba Omotilewa, Dr. & Dr. Mrs. Jay Uche, and Dr. Saheed Osho are

appreciated for all the help they provided to my family at Purdue. Sis OpeAdura Osunbami is

especially recognized for her immense help. I also acknowledge Rev Dr & Mrs. Gabriel Kehinde,

Prof Femi Ajayi, Dn Kayode & Prof Mrs. Temitope Oyedepo, Prof Longe Olumide, and Prof Seun

Kolade for all the guidance and help they provided to me. The family of Prof Tayo and Dr. Lola

Adedokun & Pastor Kola and Mrs. Peju Olugbenro are recognized for their input during this period.

I appreciate the family of my siblings, Rev Johnson & Titilade Adeleke, Mr. Kehinde &

Yemisi Bolaji, Dr. Tola & Dr. Adeola Bolaji, Bidemi & Lola Ogundare for their strong support. I

also appreciate my Aunty, Mrs. Funke Adebimpe for her support always. I acknowledge Mr. M.O.

5

Raji & Mr. Lateef Adebimpe for their input on my career. I appreciate Gracelink Computech and

her associates which include Niyi Odefunso, Ganiyu Waheed, Samson Babalola, Dele Farayola,

Ezekiel Babarinde, Engr Damola Eesuola, Mr. Tayo Lawal, Mr. Tajudeen Fasesan, and Mr. Ally

Sulaimon for their great help during this time.

I also do appreciate the families of my in-law for their encouragement, worthy of note is

the strong help provided by my mother-in-law, Mrs. Paulina Odefunso, and her children, Pastor

Wale & Mrs. Peju Adeyemo, Banke, and Niyi Odefunso. I appreciate the family of Pastor Joel &

Adeola Oke, our spiritual mentor. I acknowledge the families of Pastor Sanmi Oyedeji, Dr. Felix

Adeoluwa Olanrewaju, Segun Ajisafe, Dr. SamGoforth Ajani, Pastor Thomas Egbeleke, Pastor

Gbolahan Oyelakin, and Dr. & Mrs. Ade Durodola for their constant follow up and support.

Finally, I appreciate Adebunmi Elizabeth Ojochenemi Odefunso, my beloved wife, for

being a strong pillar to my success in this program. I appreciate God for my children Smith, Donald

& Catherine, they made me happy always with their outstanding performances.

6

TABLE OF CONTENTS

LIST OF TABLES .. 9

LIST OF FIGURES .. 10

LIST OF ABBREVIATIONS ... 11

GLOSSARY... 12

ABSTRACT .. 13

 INTRODUCTION .. 14

1.1 Nature of the Problem ... 14

1.2 Statement of Problem .. 15

1.3 Research Questions ... 16

1.4 Hypothesis... 16

1.5 Significance of Problem .. 17

1.6 Statement of Purpose .. 17

1.7 Scope ... 18

1.8 Assumptions .. 19

1.9 Limitation and Delimitation .. 19

1.10 Summary ... 20

 REVIEW OF LITERATURE ... 21

2.1 Introduction ... 21

2.2 Anomaly detection in Large-scale Network ... 21

2.2.1 Network traffic anomalies ... 22

2.2.2 Anomalies caused by Botnet Attack and IoT devices ... 23

2.2.3 Anomaly Detection approaches in Network Traffic .. 26

2.3 Anomaly Detection with Deep Learning .. 28

2.4 Prediction of Anomaly and its connections .. 30

2.5 Community Detection ... 32

2.6 Community Structure .. 35

2.7 Overlapping Community Detection .. 36

2.8 Community Detection Techniques and Algorithms ... 37

2.9 Implementation Plan ... 40

7

2.10 Conclusion .. 41

 METHODOLOGY.. 43

3.1 Research Framework .. 43

3.2 Research methodology and experimental setup .. 44

3.3 Location of Study .. 44

3.4 Data Collection ... 45

3.5 Data Storage .. 47

3.6 Data Preprocessing and Analysis .. 47

3.6.1 Data Wrangling .. 47

3.6.2 Variables for Anomaly Detection .. 48

3.6.3 Variables for Community Detection .. 48

3.6.4 Software Packages, Libraries, and Tools ... 49

3.7 Anomaly Detection Modeling... 49

3.8 Community Detection of Anomalies .. 51

3.8.1 Community Detection with Louvain ... 51

3.8.2 Community Detection with PageRank .. 52

3.9 Assessment Instrument ... 52

3.10 Conclusion .. 53

 RESULTS AND DISCUSSIONS ... 54

4.1 Data Presentation and Analysis .. 54

4.2 Implementation Requirements .. 55

4.3 Anomaly detection with LSTM Deep Learning ... 55

4.3.1 Anomaly Detection Model Validation ... 61

4.3.2 Calculating the cutoff value/threshold ... 61

4.4 Conclusion for Research Question Number 1 .. 62

4.5 Community Detection with Louvain and PageRank Algorithm 63

4.5.1 Community Detection with Louvain Algorithm.. 63

4.5.2 Community Detection with PageRank Algorithm ... 67

4.5.3 Community Detection Result Validation ... 67

4.6 Conclusion for Research Question Number 2 .. 69

4.7 Conclusion .. 69

8

 CONCLUSIONS, SUMMARIES AND RECOMMENDATIONS.................... 70

5.1 Anomaly Detection with Deep Learning in Large-scale Network 70

5.2 Community Detection of Anomalies .. 71

5.3 Contribution .. 73

5.4 Future Research Direction .. 75

REFERENCES ... 77

APPENDIX A. CODES .. 88

9

LIST OF TABLES

Table 3.1: Purdue Gilbreth Community Cluster Specification ... 45

Table 3.2: Trace statistics for the CAIDA dataset used in this research. (Source:

“https://www.caida.org/data/passive/trace_stats/”) .. 46

Table 3.3: Network Traffic Variables to be used in Anomaly Detection 48

Table 3.4: Variables used in the study for community detection ... 49

Table 4.1: Embedded information in each of the pcap files used in the study 54

Table 4.2: Description of the value column based on packet length and TTL values 57

Table 4.3: Overview of newly formed Anomaly Dataset ... 63

10

LIST OF FIGURES

Figure 1.1: A simplified diagram of anomaly and community detection process 15

Figure 2.1: The split distribution of 51 Billion IoT connected units by eight key regions in 2022.

Source: (Sorrell, 2018) .. 24

Figure 2.2: A summary of the various research directions in graph-based anomaly detection.

(Source: Chen, Hendrix & Samatowa 2011, p. 2) .. 27

Figure 3.1: Community Detection of Anomalies Workflow .. 44

Figure 3.2: The distribution function of packet size for equinix-nyc.dirA.20190117-130000.UTC.

(Source: “https://www.caida.org/data/passive/trace_stats/nyc-A/2019/equinix-

nyc.dirA.20190117-130000.UTC.df.xml”) .. 46

Figure 3.3: Gephi visualization of different communities. (Source: Bolaji, 2018) 53

Figure 4.1: Plot of TTL against date time for the first 1000 rows .. 55

Figure 4.2: Plot of TTL against date time for the first 10000 rows .. 56

Figure 4.3: Plot of TTL against date time for the millions of rows .. 56

Figure 4.4: The plot of value column of packet length and TTL values before scaling 58

Figure 4.5: The plot of scaled value column of packet length and TTL values 58

Figure 4.6: Reconstruction error plot .. 60

Figure 4.7: Training and validation loss graph ... 60

Figure 4.8: Plot of the data points with respect to the chosen threshold 62

Figure 4.9: The Graph of the Anomaly dataset (Q = 0.914) ... 64

Figure 4.10a and b: The generated graph at resolution (a)1.0 and (b) 2.0 65

Figure 4.11: The largest sub-community in the graph with 10.41% (15, 600) of all the nodes ... 66

Figure 5.1: Ranking of communities discovered in the anomaly dataset 73

Figure 5.2: Visualization of packets distribution by nodes ... 75

11

LIST OF ABBREVIATIONS

CAIDA Center for Applied Internet Data Analysis

D.A.T.A Discovery Advancements Through Analytics (Laboratory at Purdue).

DDoS Distributed Denial of Service

HPC High Performance Machine

IDS Intrusion Detection Systems

IoT Internet of Things

IP Internet Protocol

IPS Intrusion Prevention System

MDL Minimum Description Length

MOGA-OCD Multi-Objective Genetic Algorithm in Overlapping Community Detection

NIDS Network Intrusion Detection Systems

AI Artificial Intelligence

RNN Recurrent Neural Network

LSTM Long Short-Term Memory

CDoA Community Detection of Anomalies

12

GLOSSARY

Graph – “A mathematical representation of a set of objects and their relations. We denote a graph

G as an ordered pair G = (V, E) where V represents the set of objects (also called nodes

or vertices) and E represents the set of relations (also called edges, links or connections)”

(Araujo, 2017, p.9).

Community – “The division of network nodes into groups within which the network connections

are dense, but between which are sparser” (Newman & Girvan, 2004, p. 1).

Modularity – “The extent, relative to a null model network, to which edges are formed within the

modules instead of between the modules” (Barber, 2007, p. 1).

13

ABSTRACT

The detection of anomalies in real-world networks is applicable in different domains; the

application includes, but is not limited to, credit card fraud detection, malware identification and

classification, cancer detection from diagnostic reports, abnormal traffic detection, identification

of fake media posts, and the like. Many ongoing and current researches are providing tools for

analyzing labeled and unlabeled data; however, the challenges of finding anomalies and patterns

in large-scale datasets still exist because of rapid changes in the threat landscape.

In this study, I implemented a novel and robust solution that combines data science and

cybersecurity to solve complex network security problems. I used Long Short-Term Memory

(LSTM) model, Louvain algorithm, and PageRank algorithm to identify and group anomalies in

large-scale real-world networks. The network has billions of packets. The developed model used

different visualization techniques to provide further insight into how the anomalies in the network

are related.

Mean absolute error (MAE) and root mean square error (RMSE) was used to validate the

anomaly detection models, the results obtained for both are 5.1813e-04 and 1e-03 respectively.

The low loss from the training phase confirmed the low RMSE at loss: 5.1812e-04, mean absolute

error: 5.1813e-04, validation loss: 3.9858e-04, validation mean absolute error: 3.9858e-04. The

result from the community detection shows an overall modularity value of 0.914 which is proof of

the existence of very strong communities among the anomalies. The largest sub-community of the

anomalies connects 10.42% of the total nodes of the anomalies.

The broader aim and impact of this study was to provide sophisticated, AI-assisted

countermeasures to cyber-threats in large-scale networks. To close the existing gaps created by the

shortage of skilled and experienced cybersecurity specialists and analysts in the cybersecurity field,

solutions based on out-of-the-box thinking are inevitable; this research was aimed at yielding one

of such solutions. It was built to detect specific and collaborating threat actors in large networks

and to help speed up how the activities of anomalies in any given large-scale network can be

curtailed in time.

14

 INTRODUCTION

1.1 Nature of the Problem

Anomalies are often called outliers because they deviate from normal, standard, or

expected patterns (Farias, Fabregas, Dormido-Canto, Vega, & Vergara, 2020). Anomalies in a

network are not easy to identify until they have caused significant problems. The continuous and

rapid increase in network traffic volumes is making the prevalence and sophistication of attacks

more visible (Do and Gadepally, 2020).

The use of traditional intrusion detection and intrusion prevention systems have initially

slowed down the rate of cyber-attacks, but the systems are limited in terms of the kinds of attack

they can handle. For example, the recent form of distributed denial of service attacks requires more

intelligent and robust systems to handle them, especially due to the high volume and rate of attacks

experienced in very short durations. Strategies involving different techniques such as Big data,

Artificial Intelligence (AI) are evolving rapidly. They are currently being used to overcome the

current limitations of traditional intrusion detection and intrusion prevention systems (Kai, Singtel

& Balachandran, 2020).

The provision of robust cybersecurity solutions requires the coordination of both machine

and human endeavors. For example, the increase in the number of fileless malware attacks as

indicated in the CrowdStrike Global Threat Report requires attention and a quick solution

(CrowdStrike Inc., 2020). The fileless malware attacks are also known as “living-off-the-land”

(LotL) attacks.

These kinds of frequent changes in the attack landscape weaken and delay progress in the

cybersecurity domain; many of the existing solutions have been rendered useless or irrelevant by

the changes in the attack landscape. This research is proposing a community detection of anomalies

(CDoA) solution that makes use of existing anomaly and community detection algorithms in

identifying relationships and patterns of anomalies in a large-scale network. A simplified diagram

of anomaly and community detection procedure is as shown in Figure 1.1

The diagram shows that a hidden Change in Network Property will influence the behavioral

pattern of the network traffic from normal to abnormal. For example, packets with manipulated

Time-To-Live (TTL) can cause abnormal behavior in the network. This change in network

15

property would influence the process that generates the Observed Network Graphs which

represents the network property’s factual information. The summarized graphs which are based on

the Graph Statistics become the inputs to some Anomaly Detector system. The output of the

detector will lead to conclusions as to when the change in the network property is abnormal. The

assumption in this scenario is that a 1:1 mapping exists between the graph statistics and the network

property. That is, no other property of the network is affecting the observed statistical values.

Figure 1.1: A simplified diagram of anomaly and community detection process

1.2 Statement of Problem

Recent growth in cyber-attacks threatens personal credibility, security of nations, and the

rights of ownership on intellectual properties globally. Network security-related incidences are

great threats to private/personal data which include cards’ credentials, personal health and financial

records, and other confidential information. All these are hijacked or stolen daily. Growth in

cybercriminal activities brings destruction to innovations, disruption to the trading of stocks and

government agencies by using ransomware to steal sensitive and crucial data (Zurier, 2021).

The rate at which devices are now being connected on the internet is related to the rate at

which adversaries and cyber-attacks increase. The adversaries are launching more attacks by the

16

day and getting more skillful and successful in their plots (Hoque, Bhuyan, Baishya, Bhattacharyya,

& Kalita, 2014).

Available research indicated the inability of the existing defenses to keep commensurable

pace with the recent cyber-attacks (Reddy & Reddy, 2014). Sophisticated methods that combine

human and artificial intelligence (AI) in detecting anomalies and patterns are required as the world

experience data explosion (bigdata) through the proliferation of connected devices and automation

(Berman, Buczak, Chavis, & Corbett, 2019). To address this problem, a robust technique for

detecting communities of anomalies in large-scale networks with deep learning techniques was

implemented.

1.3 Research Questions

The research answered the following related questions on community detection of

anomalies with deep learning techniques:

(i) Given a large-scale network with millions or billions of nodes, what level of accuracy of

anomaly detection can be achieved with the CDoA model using deep learning long short-term

memory (LSTM)?

(ii) Can we identify strong communities of anomalies in a large-scale network using the CDoA

model with the Modularity metric as a measure?

1.4 Hypothesis

The following hypotheses were proposed for this study:

1. H0: The use of deep learning LSTM to detect anomalies in large-scale Internet traffics dataset

with more than 20 billion packets will yield more than 10% each of mean absolute error and

root mean square error, using time step size, batch size, and epoch of 100, 50 and 100

respectively.

HA: The use of deep learning LSTM to detect anomalies in large-scale Internet traffics dataset

with more than 20 billion packets will yield less than 10% each of loss, mean absolute error,

validation loss, and validation mean absolute error using time step size, batch size and epoch

of 100, 50 and 100 respectively.

17

2. H0: When the quality function is used as a measure, the average modularity value of identified

communities of anomalies in large-scale Internet traffic with billions of packets will be less

than 0.6.

HA: When the quality function is used as a measure, modularity values of identified

communities of anomalies in large-scale Internet traffic with billions of packets will be

higher than 0.6.

1.5 Significance of Problem

Recent attacks on large cyber networks demonstrate a need for enhanced and combined

solutions for network segmentation and monitoring. This approach will help cybersecurity

specialists to alienate specific sections of network communities for proper investigation and

control of network-based cyber threats.

The community detection of anomalies (CDoA) model will help cybersecurity specialists

to provide efficient and scalable solutions to prevalent cyber threats which include Botnets, LotL,

and distributed denial of service attacks (DDoS). Some of these cyberattacks are gaining

momentum with the use of proliferating IoT devices.

1.6 Statement of Purpose

From works of literature, deep learning techniques have not been featured frequently in

community detection processes but have in anomaly detection (Gao, Song, Wen, Wang, Sun, Xu,

& Zhu 2020; Farias et al., 2020; Maimo, Gomez, Clemente, Perez, & Perez, 2018; Malhotra, Vig,

Gautam, & Agarwal, 2015; Shipmon, Gurevitch, Piselli, & Edwards, 2017). Recently, deep neural

networks have gained widespread attention with methods such as kernel machines in numerous

important applications. Both feedforward (acyclic) neural networks (FNNs) and recurrent (cyclic)

neural networks (RNNs) have been very popular in deep neural networks (Schmidhuber, 2015).

According to Alla &Adari (2019), anomaly detection types include supervised anomaly detection,

semi-supervised anomaly detection, and unsupervised anomaly detection. All these include the

development of suitable models for detecting anomalies, training the models, and testing the

models with targeted datasets.

18

To evaluate these models, a confusion matrix is often used along with accuracy, recall, F1

score, and precision (Alla &Adari, 2019); a 2x2 confusion matrix has historically been sufficient

to evaluate anomaly detection models using true positive (TP), True Negative (TN), False Positive

(FP), and False Negative (FN). Deep learning anomaly detection models that have been developed

and used successfully include Isolation Forest, Support Vector Machine (SVM), Convolutional

Neural Network (CNN), Variants of Auto-Encoder, Deep Belief Networks (DBN), Recurrent

Neural Network (RNN), and Long Short-Term Memory (LSTM) (Berman, Buczak, Chavis, &

Corbett, 2019). A study on “time series anomaly detection” shows RNN to be more effective in

handling false positives (Shipmon, Gurevitch, Piselli, & Edwards, 2017). However, strengthening

defensive measures against threat actors requires additional efforts such as combining the RNN

with a community detection approach. This gave birth to the CDoA model.

Community detection generally employs the use of graph theory to solve complex

problems (Liao, Deng & Wang, 2019). For example, using partitional clustering essentially

involves the identification of different communities in a given network and minimizing the loss

function according to the distances that exist among the points and/or identified communities

(Fortunato, 2010). This technique is utilized by k-means, minimum-k clustering, k-medoids, and

other classical algorithms. Its drawback is its requirement for the prior specification of a certain

number of clusters as inputs; in a real-world network, this may not be possible. A hierarchical

clustering algorithm was developed to overcome this drawback. The algorithm has two popular

classes known as Agglomerative and Divisive algorithms (Fortunato, 2010). The agglomerative

class was used for community detection in this study. It recursively merged nodes with high

similarity to form communities. Using this together with the LSTM anomaly detection model

significantly helped in solving high-dimensional and complex security challenges.

1.7 Scope

This research’s scope was based on the following:

1. Detect anomalies in a given real-world large-scale cyber network using a deep learning

algorithm.

2. Identify subnetworks of anomalies in the given network using a community detection

algorithm.

19

3. Formulate an extended modularity metric to define the quality function for the identified

subnetworks.

4. Confirm relationships among the anomalies in the identified subnetworks.

5. Evaluate CDoA Model.

1.8 Assumptions

The following assumptions were made for this study:

1. The same execution environment was used for the anomaly and community detection in the

given large-scale network dataset.

2. IP address represents the network nodes which could represent either source nodes or target

nodes in this study.

3. Center for Applied Internet Data Analysis (CAIDA) dataset was used to represent a real-world

large-scale network.

4. The network traffic dataset was not manipulated under any circumstances.

5. The size and number of the community of anomalies detected were not known a priori.

6. The variety and size of the network traffic anomalies detected were not known a priori

7. The results of this study which was carried out with the use of existing algorithms in related

studies are genuine, and this study was based on this assumption.

1.9 Limitation and Delimitation

The limitations and delimitation of this research were:

1. One limitation of this study is that the speed of execution and analysis for this study varied based

on the available high-performance machine (HPC) infrastructure provided by Purdue University.

2. The only metric that was taken into consideration to evaluate the strength/structure of the

communities that were discovered is modularity.

3. Community detection in this research is limited to only overlapping and non-overlapping

networks.

4. The network traffic anomalies discovered were limited to the traces provided by CAIDA.

5. Weighted and directed graphs only were used in this study.

20

6. Multiple links from a node to the same destination were treated as redundant and were therefore

considered as a single link.

1.10 Summary

The statement of problems and the research questions that were answered in this dissertation were

presented in this chapter. The chapter started with the introduction and explained the scope,

purpose statement and the significance of this research. The chapter also identified specific

limitations, delimitations, and assumptions of this study.

21

 REVIEW OF LITERATURE

This chapter presents an overview of relevant works of literature that were reviewed in this

research. It gives a general and summarized introduction to the concepts of anomalies and

detection approaches. The chapter zoomed in on Botnet (as an example of malware attack that is

common in a large-scale network), IoT (Internet of Things) devices, and network traffic anomalies.

Deep learning approaches to anomaly detection, community structures/types, community

detection techniques, and algorithms were also discussed.

2.1 Introduction

Application of community detection of anomalies in large networks has the possibility of

alleviating cyber-attacks in the global arena. This application leveraged existing deep learning

anomaly detection algorithms, especially those that have been successfully used to address

problems in given real-world complex networks.

2.2 Anomaly detection in Large-scale Network

Anomalies in any domain of human endeavors are usually not friendly. An anomaly was

defined intuitively as “a surprising or unusual occurrence” and as a deviation from the normal

(Marteau, 2021; Farias et al., 2020; Noble & Cook, 2003 p.632). A system with outliers in its data

output (or input) generally raises concern that requires further investigation. Some systems use

anomaly scores to determine if anomalies exist in a network based on previously set thresholds on

an intrusion detection system (Marteau, 2021; Peddabachigari, Abraham, Grosan, & Thomas,

2007).

Every standard system is expected to behave and exhibit some predefined set of functions,

deviation from such expectations are regarded as anomalies. An adding machine that generates

number-three as the result of the addition of double number-two (i.e. 2+2 = 3) is anomalous in its

operation. Anomalies are usually caused by hidden factors that can be discovered by further

diligent research. Further investigation into the causes of anomalies can expose the factors and

reasons behind such anomalies. For example, graph solution has been used in community detection

22

to investigate and detect anomalous subgraphs in graphs that have single attributes (Jie, Wang,

Chen, Li & Wu, 2020; Shao, Li, Chen & Chen, 2018; Noble & Cook, 2003, p.634).

Depending on the field of consideration and point of view, anomalies can be categorized and

expressed based on various related variables and thresholds. According to this thesis, anomalies

were categorized to be based on expectation, impact, and time. In other related studies, anomalies

have also been categorized to be based on a data point, pattern, and context. Anomaly detection

styles are supervised anomaly detection, semi-supervised anomaly detection (Marteau, 2021), and

unsupervised anomaly detection (Alla and Adari, 2019). The category of anomalies that is related

to this study is based on nodes and edges and the style adopted is semi-supervised anomaly

detection.

The sensitive nature of data handling in the present age requires anomalies to be prevented

at all costs. In situations where prevention is not possible, greater efforts should be made to detect

or notice anomalies on time before they cause irreversible or untold problems in any network of

concern. Computer networks have become an essential tool since their inception; they have been

playing significant roles in the daily activities of almost everybody in the world today. A computer

network was described as a model of human transactive memory (Wegner, 1995, p.319). Computer

networks have been very significant in data and resource sharing. For example, the use of mobile

communication technologies for telecommunication purposes is based on a computer network; the

voice or text signals from the phones are sent as network traffic on dedicated networks. According

to Katz & Aakhus, 2001, p.3, “Mobile communication technologies are already modifying well-

established communication patterns, amplifying and substituting for them.” Maintaining a

computer network and its traffic against the disruption that could be caused by anomalies requires

constant effort and research.

2.2.1 Network traffic anomalies

Network traffic anomalies have the potential to disrupt and destabilize the operation and

activities of any organized system. Network traffic anomalies can be traced to faults in the network

devices or intentional disruptions on the devices through cyber-attacks such as DDOS (Zhou & Li,

2019). Cyber-attacks are usually carried out with malicious intent by adversaries that are within or

without an organization. Cyber-attacks threaten businesses, government entities, and individuals’

Intellectual Property (IP) and Personal Identity Information (PII) for espionage and monetary gain.

23

Variants of cyber-attacks are still evolving and becoming more sophisticated and efficient in the

last 30 years. These threats are growing and becoming more prevalent every day (Gupta, Tewari,

Jain, & Agrawal, 2016). Cyber-attacks are successful when a cyber threat is used to exploit known

vulnerabilities in any of the devices on the network. The world of cyber networks is evolving fast

in recent times because of diverse IoT devices that are being manufactured and connected on the

Internet. As the network evolves, the data generation increases, as a result, the need for network

and data security increases. An example of the common attacks that thrive on IoT is known as the

Botnet attack (Hussain, Abbas, Fayyaz, Shah, Toqeer & Ali, 2020).

2.2.2 Anomalies caused by Botnet Attack and IoT devices

Internet of Things (IoT) was reported to have fueled one of the biggest attacks in Internet

history; “A giant botnet made up of hijacked internet-connected things like cameras, lightbulbs,

and thermostats was used to launch the largest Distributed Denial of Service (DDoS) attack ever

against a top security blogger in October 2016.” (Greene, 2016). A botnet is a cyber-attack that

makes use of networked compromised devices to perform malicious remote operations in an

organized environment. It is a group of compromised computers that are running one or more

computer application programs that are being controlled and manipulated only by the owner of the

software source called Bot Controller or Herder (Sikorski & Honig, 2012).

A botnet attack consists of a master that covertly controls the activities of compromised

devices or systems. A Bot Herder or Bot Master gives commands to the compromised devices

which are referred to as a robot, bot, zombie, or a drone, the devices are usually compromised via

a Trojan (Marcus, 2013). “Some attackers have botnets of thousands of compromised machines

under their control and use the IP addresses of the compromised hosts as an underground Internet

currency, with stealth routines to hide them from prying eyes” (Rhodes-Ousley, 2013).

Information gathering on Botnet involves “the process of creating a blueprint or map of an

organization’s network and systems, which are attackable by a botnet. It also involves determining

the target systems, applications, or physical locations of the botnet target.” This will then lead to

the use of non-intrusive methods in gathering information about the botnet (Kimberly, 2010). All

the operations performed by Botnet are generally covert by nature.

Botnets have been known to cause many of the catastrophic cyber-attacks in recent times

(Greene, 2016). Anomalies are not uncommon in any environment where botnets are in operation.

24

In other words, botnets are one of the significant sources of network anomalies. The major problem

of a botnet is that it can be in operation on a network for long without being noticed or discovered

except there are strong measures for its discovery and prevention.

Security researchers have warned for years that poor security for IoT devices could have

serious consequences. “Botnets made up of compromised IoT devices are capable of launching

distributed denial-of-service attacks of unprecedented scale” (Constantin, 2016). Recent Juniper

Research revealed that the number of IoT-connected sensors and devices will exceed 50 billion in

2022, up from 21 billion estimated for 2018; this will be a rise of about 140% within four years

(Sorrell, 2018). Figure 2.1 shows the split distribution of 51 Billion IoT connected units by 8 key

regions in 2022. North America and West Europe take the largest shares of the distribution while

Africa & Middle East and the rest of Asia Pacific will not exceed the 1 billion-barrier by the end

of the shown forecast period (Sorrell, 2018).

Figure 2.1: The split distribution of 51 Billion IoT connected units by eight key regions in 2022.

Source: (Sorrell, 2018)

According to Grau (2015, p. 52), IoT devices can be subjected to various attacks that are

categorized into three parts; the ‘take control’ kind, meaning unauthorized applications or actions

25

that are not permitted by the owner is executed and this may lead to serious incidents. The ‘steal

information’ kind of attack means that hackers sniffed data transmitted and gain private

information like location and personal data. The third way of attempting an attack on the IoT

device is to disrupt its services; this prevents the IoT device from executing a normal operation,

stopping its function, causing incidents like a non-stoppable auto vehicle, or insulin pump not

acting while it should.

Research on anomaly detection is very important because it is aimed at solving many

problems that exist in various application domains. Many of the techniques that were developed

over time for detecting anomalies have been somewhat specific to application domains, while

some were developed for more generic purposes (Chandola, Banerjee & Kumar, 2007).

Several reports of IoT devices being routinely hacked and used as weapons in launching

big-scale cyber-attacks due to poor security measures and insecure encryption mechanisms in IoT

infrastructures have called for a proactive measure in tackling security-related issues with IoT

devices generally. For instance, the reported massive DDoS attack that occurred on October 21,

2016, against Dyn servers “brought down much of America’s internet. It affected many sites

including Twitter, Spotify, PayPal, the Guardian, Netflix, Reddit, CNN, and many other websites”

(Raj, 2016). This section describes the previous works on anomaly detection and IoT.

Gendreau & Moorman (2016) proposed a safeguard solution to networks by detecting

unauthorized intruders within the constraints of each type of device or subnetwork ahead of

information leakage incidents. The proposed solution presented “a survey of Intrusion Detection

Systems (IDS) using the most recent ideas and methods proposed for the IoT.” The survey tried to

separate “IDS platform differences and the current research trend towards a universal, cross-

platform distributed approach.” This was done by historical examination of intrusion detection

systems to provide better understanding and illustration.

IoT devices have some vulnerabilities to different types of attacks, such as routing/insider

attacks. Bostani and Sheikhan (2017) proposed “a novel real-time hybrid intrusion detection

framework. The framework consists of anomaly-based and specification-based intrusion detection

modules for detecting two well-known routing attacks in IoT”. The two routing attacks are known

as a sinkhole and selective-forwarding attacks. The specification-based intrusion detection agents

and anomaly-based intrusion detection agents were used; the agent employed the unsupervised

optimum-path forest algorithm for projecting clustering models by using incoming data packets.

26

The agent used in this study was based on the MapReduce architecture (Bostani and Sheikhan,

2017).

One of the increasingly popular solutions applicable for network intrusion detection

systems (NIDS) is the Neural Networks (Mirsky, Doitshman, Elovici & Shabtai, 2018). Neural

networks have a very suitable capability of learning complex patterns and behaviors, this capability

has made them a useful tool for differentiating between normal traffic and network attacks. One

of the major limitations of neural networks is the number of resources needed to train them in a

supervised manner. Mirsky et al. (2018) tried to overcome the limitation of neural networks by

proposing “Kitsune: a plug and play NIDS, which can learn to detect attacks on the local network,

without supervision, and in an efficient online manner”.

 The “need to develop new methods for detecting attacks launched from compromised IoT

devices and differentiate between an hour and millisecond long IoT-based attacks” led to another

study by Meidan, Bohadana, Mathov, Mirsky, Breitenbacher, Shabtai & Elovici (2018). The study

proposed and empirically evaluated a novel network-based anomaly detection method. The

method “extracts behavior snapshots of the network and uses deep autoencoders to detect

anomalous network traffic emanating from compromised IoT devices”. Anomaly-based

approaches to intrusion detection are one of the major approaches in use today. It has the potential

to detect a zero-day attack and other new forms of attack (Harish, 2016)

2.2.3 Anomaly Detection approaches in Network Traffic

Many methods have been used to address the issue of anomaly detection in network traffics.

For example, deep learning methods have been used for anomaly detection in social networks by

utilizing multimodal data and multidimensional networks (Chaabene, Bouzeghoub, Guetari &

Ghezala, 2021). Another method for anomaly detection in a network is graph-based. Existing

research has classified graph-based anomaly detections into two broad categories, “white crow”

and “in-disguise” as shown in Figure 2.2 (Chen, Hendrix & Samatowa 2011, p. 2). Detected nodes,

edges, subgraphs are classified as white crow anomalies while unusual patterns in the network

which comprises uncommon nodes and entity alterations are the indicators of an in-disguise class

of anomalies.

The CDoA model focused on the later path of anomaly detection. Further research on white

crow anomalies has been carried out to identify various types of anomalies (Moonesinghe & Tan,

27

2006; Sun. Qu, Chakrabarti, & Faloutsos, 2005; Hautamäki, Kärkkäinen, & Fränti, 2004; Noble

& Cook, 2003; Lin & Chalupsky, 2003). In-disguise anomalies were further researched by Shetty

and Adibi (2005) and Eberle & Holder (2007).

The significant role of computing networks has required the need to develop means of

protecting specific networks and their components. Anomalies in the network traffic are indicators

of the existence of background or not-so-obvious challenges facing the network. The majority of

the network anomalies are usually caused by cyber-attacks even in situations where preventive

measures have been put in place on the network. Such preventive measures include the use of

firewalls, intrusion detection systems (IDS), intrusion prevention systems (IPS), and other security

measures. Many methods are now being used to detect network traffic anomalies on top of these

preventive measures (Marteau, 2021).

Figure 2.2: A summary of the various research directions in graph-based anomaly detection.

(Source: Chen, Hendrix & Samatowa 2011, p. 2)

28

The recent growth of the internet of connected things has led to surprisingly large data

generation, transportation, and storage. The generated data from the large-scale network of several

connected ‘things’ or devices have produced huge data that is now popularly being referred to as

‘Big data’. Big data has been very useful for several purposes such as weather forecast, anomaly

detection, and so on (Kai, Singtel & Balachandran, 2020; Bendre, Thool & Thool, 2015). To ensure

the integrity of big data that is generated by the community of connected things, the community

itself must be properly observed. One of the best ways to effectively manage and monitor large-

scale networks is the use of anomaly detection.

 Chandola, Banerjee & Kumar (2007) provided a survey on available anomaly detection

techniques. The provided survey gave a more structured and comprehensive overview of various

anomaly detection research by grouping existing techniques into different categories. The

underlying approach that was adopted by each technique served as the basis for the grouping. The

survey identified key assumptions of each of the techniques that were used to differentiate between

normal and anomalous behavior. The goal of the survey was to provide a better understanding of

the different directions on anomaly detection research. It also discussed how developed techniques

could be used in other domains that are different from the ones where they were created.

Such developed techniques in recent times include the use of artificial intelligence in

addressing the problems of anomalies in large datasets. Anomalies in a large data set can be

detected using different AI approaches and methods, one of the efficient approaches being used in

recent times is deep learning.

2.3 Anomaly Detection with Deep Learning

 Defining deep learning is challenging because it has been changing form gradually in the

past decade. It could be defined as “neural networks that have a large number of parameters and

layers in one of the following fundamental network architectures, unsupervised pre-trained

networks, convolutional neural networks, recurrent neural networks and recursive neural networks”

(Patterson and Gibson, 2017).

 Deep learning autoencoders have been used for anomaly detection in recent studies. Fan,

Zhang & Li (2020) used dual autoencoder for anomaly detection on attributed networks. Deep

autoencoders have been used to detect anomalous network traffics emanating from compromised

29

IoT devices (Meidan et al., 2018). KitNet algorithm, an ensemble of autoencoders which is based

on a neural network was used to develop a plug-and-play network intrusion detection system that

can collectively differentiate between normal and abnormal patterns (Mirsky, Doitshman, Elovic

& Shabtai, 2018). Recently, deep neural networks have gained wide-spread attention, because it

outperforms alternative machine learning methods such as kernel machines in numerous important

applications. Both feedforward (acyclic) neural networks (FNNs) and recurrent (cyclic) neural

networks (RNNs) have been very popular in deep neural networks (Schmidhuber, 2015).

A study on Time series anomaly detection was carried out by Shipmon, Gurevitch, Piselli,

& Edwards, (2017). The study used an RNN model to detect and predict anomalies in time series.

Apart from RNN, DNN and LSTM were used in the anomaly detection and all of the models have

the same performance on the dataset that was used. RNN was more effective in handling false

positives encountered in the study.

Wang & Paschalidis (2017) conducted a study on a two-stage approach for detecting the

presence of botnet and identifying nodes that are compromised and controlled by Botnet.

Anomalies were detected by observing large deviations of an empirical distribution. The study

used a flow-based approach to estimate the histogram of quantized flow and a graph-based

approach to estimate the degree distribution of node interaction graphs. The study was very

effective in detecting anomalies based on large deviations results, but the drawback is in the

inability of the approach to detect small deviations that could also be anomalous.

Several other deep learning-related anomaly detection methods were presented by Chalapathy &

Chawla (2019). The study was based on a survey that presented a structured and comprehensive

overview of research methods in deep learning-based anomaly detection. It also assessed the

effectiveness of the adoption of the methods for anomaly detection across various application

domains. Recurrent neural network shares the same family with FNNs, RNNs’ major difference

from FNN is that they can send information over time-steps (Patterson and Gibson, 2017).

According to Schmidhuber (2015), RNNs are regarded as the deepest of all neural networks among

others, they are more powerful than FNNs in terms of computation and can create and process

memories of arbitrary sequences of input patterns in principle.

A confusion matrix is used to evaluate the performance of RNN and other deep learning

models using accuracy, recall, and precision. A 2x2 confusion matrix is enough to evaluate

anomaly detection models using true positive (TP), True Negative (TN), False Positive (FP), and

30

False Negative (FN) (Wu, Wei & Feng, 2020). Deep learning anomaly detection models that have

been developed and used successfully include Isolation Forest, Support Vector Machine (SVM),

Convolutional Neural Network (CNN), Variants of Auto-Encoder, Deep Belief Networks (DBN),

Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM) (Chalapathy & Chawla,

2019). A study on “time series anomaly detection” shows RNN to be more effective in handling

false positives (Shipmon, Gurevitch, Piselli, & Edwards, 2017).

One of the most used deep learning approaches in the detection of anomalies is the RNN.

A type of RNN known as long short-term memory (LSTM) networks was used by Malhotra, Vig,

Gautam & Agarwal (2015) for anomaly detection in time series. The study trained a network on

non-anomalous data, the trained network was used as a predictor over several time steps.

Multivariate Gaussian distribution was used in the study to assess the existence of anomalous

behavior.

2.4 Prediction of Anomaly and its connections

The last part of this study will focus on the discovery of anomalous nodes’ relationships

and forecasting of potential anomalous connections. Anomaly prediction involves the use of

existing data to forecast the possibilities of anomalies on a network. Data sources today are

heterogeneous and characterized by different types of entities and relations that could be leveraged

for dataset enrichment (Araujo, 2017).

Tan, Gu & Wang (2010) presented a novel adaptive runtime anomaly prediction system.

The system was called ‘ALERT’. The system aimed to raise anomaly alerts in advance of

occurrence to provide for just-in-time anomaly prevention. To achieve this, a novel context-aware

anomaly prediction scheme was proposed, the ALERT system was meant to improve prediction

of accuracy in dynamic hosting infrastructures.

Araujo (2017), proposed the modeling of heterogeneous graphs as Coupled Tensors to

predict the evolution of some interaction in a network. The ability to study interactions between

edges and vertices in networks will provide strong leverage for identifying and predicting

anomalies in such networks. Deep learning will make such observation easier in large-scale

networks. Forecasting the tensors jointly was expected to generate better predictions than when

the tensors are considered independently. TensorCast method was proposed for this study and it

achieved over 20% higher precision in top-1000 queries. It also doubled the precision when finding

31

new relations than comparable alternatives. The method was tested in datasets with over 300M

interactions and it scaled well with the input size at (E + N log N). The main advantage of

TensorCast is its ability to be simultaneously contextual and time-aware.

LSTM network for anomaly detection models behaviors that are dependent on time or

sequence. “The output of a neural network layer at a time (t) to the input of the same network layer

at a time (t)+1. It is more efficient than typical RNN because it solves the vanishing gradient

problem that exists in typical RNN” (Alla & Adari, 2019). LSTM belongs to the gated recurrent

unit (GRU) class of RNN; its components are forget gate (Ft), input gate (It), output gate (Ot), and

memory cell. A detailed LSTM Network is as shown in Figure 2.3.

Figure 2.3: A detailed LSTM Network.

(Source: commons.wikimedia.org)

This study will implement LSTM in developing the CDoA model because of its strong

efficiency in capturing the long-term dependencies across a large number of instants of time. The

first part of the network is the forget gate, it decides the amount of information from a prior stage

to be remembered or forgotten. The input gate is responsible for the decision of the amount of

information to be passed to the current stage by using activation functions known as sigmoid and

tanh. The output gate decides the amount of information the hidden state of a particular stage can

retain and pass to the next stage. To strengthen defensive measures against threat actors, the CDoA

32

model requires additional efforts such as combining the LSTM with community detection

approach in this study.

2.5 Community Detection

 Community detection has gathered increasing attention lately because of the significance

of its application to different domains of human endeavors. Community detection aims to partition

networks edges and nodes into sets of clusters, this is to make related nodes within the same cluster

more densely connected to themselves than to those in other clusters (Sun, He, Huang, Sun, Li,

Wang, He, Sun, and Jia, 2020). Its application has been observed to have a significant impact in

computer science, biology, sociology, physics, and other science and social science disciplines

(Chakraborty, Dalmia, Mukherjee, & Ganguly, 2017).

Community detection is regarded as an ill-defined concept according to Fortunato (2010)

because the nature of the communities is not known in advance. Barabasi (2016) defined

community detection as subgraphs that are connected densely in a network and further classified

communities as either strong or weak.

Community detection is based on the use of graphs in solving real-world problems. Graphs

have been used over several years to model relationships between entities; such entities can be

represented with real or abstract objects as shown in Figure 2.4a, b & c. Graphs have been used in

biology, geography, and computing to model the relationship between neuron and their synapses,

roads and their links, and compute nodes and their networks respectively (Fortunato, 2010).

The aim of using community detection for anomalies is to discover patterns and

relationships of anomalies in a given network. Consider a network graph G(V, E), where V

represents a set of vertices or nodes in the graph and E represents a set of edges or links between

the nodes in the network. Every edge in the set of edges of the network can be represented by ei,j

∈ [0, 1] where i and j are the endpoints of that edge, forming the |V | × |V |-sized matrix E. Graph

can also be represented by a weighted graph G = (V,W) where matrix W replaces matrix E. Rather

than having 0-1 values, cells wij are continuous variables. The weight of the edge is the magnitude

of communication or relationship between the two endpoints of the edge. An exponentially or

hyperbolically large number of possible sub-communities can be found in a given network. These

sub-communities can be called subgraphs of any network represented by a graph solution.

33

(a) (b)

(c)

Figure 2.4: The use of graphs for modeling real-life scenarios.

(a) Social network (b) Neuron and synapses relationship (c) Roads and their links.

(Sources: Creusefond et al., 2017; Petersen, 2015)

The simplest measurable statistics from a network are the node and edge count. The node

count |N| is the number of nodes and the edge count |E| represents the number of edges. For this

research, edge count refers to |W|, the total weight of the edges

 In consideration of the network modeling, modularity function is used in a graph to

determine the number of edges that are internal or external with respect to the original graph and

to evaluate the difference in the number of such edges if null graph (random graph with identical

34

degree distribution as the original graph). For the given graph, the null graph was expected to be

the most appropriate quality function that outputs the maximum modularity with the graph.

Modularity according to Newman (2006) is therefore defined as:

(Eq. 2.1)

Where Aij is the adjacency matrix, di and dj are the degree of nodes i and j, ω is the community of

node, m is the number of edges on the graph, δωi,ωj is the Kronecker delta function, the function

returns 1 if ωi = ωj, or if i and j belong to the same community, and 0 if otherwise. The value of

modularity lies between -1 and 1. A modularity value that is closer to 1 indicates a strong

community structure while it shows a weak community structure if the values get closer to -1.

According to Araujo (2017), other metrics for measuring communities’ quality are:

(a) Normal Cut or Conductance: it gives the best communities to the ones that are densely

linked and connected with few edges to the rest of the network (Shi and Malik 2000).

(b) Partitioning: this method involves the process of splitting the graph into two groups

of predefined sizes and repeated application to find groups of similar sizes. It is

related to the label propagation method (Gregory, 2009). This method is not

considered good for community detection because they require the definition of the

number of groups and their sizes beforehand (Fortunato, 2010).

(c) Random-Walk: This method groups nodes of the network by their score when doing

a random walk with restart (RWR) (Tong, Faloutsos, & Pan, 2008). This method is

similar to PageRank (Page, Brin, Motwani & Winograd, 1999).

(d) Spectra: This method uses eigenvalues to partition a graph (Gkantsidis, Mihail, &

Zegura, 2003). It has been well extended over time, its extension includes spectral

clustering methods in the presence of node-attributes (Günnemann, Färber, Boden,

& Seidl, 2014).

(e) Generative Models: These “models start by representing the network as a group of

communities, then rely on inference methods to learn the most appropriate parameters

to fit the model to the network” (Araujo, 2017, p. 29). An example of this is block

modeling (Wasserman & Faust, 1994).

35

(f) Information Theory: Information-theoretic modules were proposed by Rosvall and

Bergstrom (2007). The proposed modules try to maximize mutual information. Some

approaches rely on this module at their core.

2.6 Community Structure

Community structure was defined as “the division of network nodes into groups within

which the network connections are dense, but between which they are sparser” (Newman & Girvan,

2004, p.1). The efficiency of identified community structures in a given network can be measured

with modularity metric (Q) as expressed in Equation 1. It is to be noted that networks in the real

world contain more than a single subnetwork. Modularity in a random graph is different from that

of a non-random graph. For random graph, Q = 0, but for non-random, Q lies between 0.3 and 0.7.

The formation of communities was based on the structural or functional similarities among

the vertices in the network (Newman, 2004). Research on community structures in networks has a

very wide and rich history (Newman & Girvan, 2004). Proper understanding of how communities

are formed with nodes in a network will give a broad and deeper view of the network structure

formation through the interaction of the nodes with identical nature (Mahoney, Dasgupta, Lang,

& Leskovec, 2009; Faltings, Leyton-Brown, & Ipeirotis, 2012; Abbe & Sandon, 2015; Benson,

Gleich, & Leskovec, 2016).

Chakraborty et al. (2017) illustrated a toy example to illustrate community structure as

shown in Figure 2.5. The example was used to categorize communities in the real-world networks

into different types as follows:

(a) Nonoverlapping or disjoint, (e.g. a lecturer teaching classes in a school from Mondays

to Thursday and consulting for industries on Saturday and Sunday)

(b) Overlapping (e.g. a staff functioning in different committees in the same department)

(c) Hierarchical (e.g. team members in an organization being supervised by team leaders

who are in turn supervised by departmental leaders and so on)

(d) Local (e.g. a faculty in a college having uneven interactions between certain members

of staff within a department in a University)

This research is considering large-scale networks which contain millions or billions of

nodes, which can be regarded as complex networks. The community structure of such networks

can be narrowed down to overlapping and non-overlapping.

36

Figure 2.5: Illustration of different types of communities with toy examples.

(a) non-overlapping (b) overlapping (c) hierarchical and (d) local.

(Source: Chakraborty et.al, 2017)

The structure is considered overlapping when nodes in the given network can exhibit the

characteristics of more than one community at a time while it is considered non-overlapping when

nodes in the network belong to a single community per time.

2.7 Overlapping Community Detection

According to Orgaz, Salcedo-Sanz, and Camacho (2018), overlapping communities exist

in real-world networks. Multi-Objective Genetic Algorithm (MOGA-OCD) can be used to detect

overlapping communities. The algorithm used measures that are related to the network

connectivity for the detection of overlapping communities. It used a phenotype-type edge

information encoding and a new fitness function that focused on optimizing two classical

objectives in a community detection problem. Although this approach generated a good result

when used, the drawback is that modularity was not considered in both the internal and external

metrics that were used in the approach. Using extended modularity density as a metric will enhance

the possibilities of effective analyses of community structure.

Finding overlapping community structures is also important in realistically analyzing large

networks such as the social network. A link clustering-based memetic algorithm for overlapping

community detection can be used to optimize the modularity density function (Li and Liu, 2018).

The algorithm can detect groups of links that are densely connected on the weighted line graph

37

that is modeling the network. The algorithm then maps the link communities to node communities

using a novel genotype representation. Though the algorithm has a very good state-of-the-art

performance, it requires high execution time.

According to Zhou, Liu, Wang & Li (2017), a density-based link clustering algorithm for

overlapping community detection in networks is a good approach to solving problems related to

excessive overlap. It can improve the accuracy of detecting overlapping communities in networks.

The only setback of the algorithm is that it cannot handle weighted and directed networks.

The high cost of computation is associated with providing the optimum solution to

community detection in large datasets that are generated by social networks. One novel approach

that was proposed to address the problem of detecting overlapping communities in a large dataset

is the use of a parallel community forest model and sequential Nash equilibrium for large datasets

implemented in parallel with spark (Sarswat & Guddeti, 2018). Markov chain clustering algorithm

could also be used to detect overlapping communities in both real and artificial networks (Deng,

Ma & Li, 2018).

This project plans to set up an overlapping community detection experiment by using

modularity in measuring the quality of a community structure and changes in the community

structure in relation to network traffic anomalies. This will be carried out with a sampled large-

scale network dataset. It is expected that the use of an efficient community detection algorithm in

the development of CDoA will overcome some of the drawbacks of the existing overlapping

community detection algorithms.

2.8 Community Detection Techniques and Algorithms

Several community detection techniques and algorithms have been devised and used in

different spheres of network science. For example, Nonnegative matrix factorization (NMF), is

one of the emerging standard frameworks (Ye, Li, Lin, Chen, & Zheng, 2018). It has been

employed widely for overlapping community detection, its operation is based on the factorization

of the adjacency matrix into low-rank factor matrices to obtain node’s soft community membership

(Wang, Wang, Zhu & Ding, 2011). The drawback of NMF is that it requires a very difficult task

of post-processing the real-valued factor matrix by a manual threshold specification.

A “discrete overlapping community detection pseudo supervision” approach was proposed

by Ye, Chen, Zheng, Li & Yu (2019). The project used Discrete Nonnegative Matrix Factorization

38

(DNMF). The operation of this framework is by seeking a discrete (binary) community

membership matrix directly. DNMF does not need post-processing, to assign explicit community

memberships to nodes. Another strength of DNMF is that it is robust. The robustness is enhanced

by its ability to “incorporate a pseudo supervision module to exploit the discriminative information

in an unsupervised manner.” After a thorough evaluation of DNMF using both synthetic and real-

world networks, DNMF was reported to have “the ability to outperform state-of-the-art baseline

approaches”.

Dynamic complex networks are known for community structures that change over time or

frequently. One of the recent dynamic community detection algorithms that were introduced to

capture such dynamics of network community structure is “a detailed analysis of the dynamic

community detection algorithms,” carried out by Singh, Haraty, Debnath & Choudhury (2020).

The research tested dynamic algorithms such as quick community adaptation (QCA), BatchInc,

GreMod, and learning-based targeted revision (LBTR) on small, medium, and large real-world

network datasets. The research determined that some of the algorithms were best suited in terms

of performance on certain networks than on the others. The comparative analysis will guide anyone

who needs to choose the best dynamic community detection algorithms for various sizes of

networks in the real world.

Deshmukh (2018) summarizes some of the previously used community detection

algorithms in this section. Louvain algorithm was formulated on heuristic technique constructed

with modularity optimization and is useful for the discovery of high modularity clusters in large-

scale networks; it completely unrolls hierarchical community structure of the network (Blondel,

Guillaume, Lambiotte & Lefebvre, 2008).

Community detection employs the use of graph theory to solve complex problems. Graph

partitioning technique was developed by Fortunato (2010), which divides “vertices into groups of

a predetermined size such that edges lying between the groups are minimized.” The algorithms for

this technique are unsuitable for detecting communities because they cannot reveal information

about the structure of the community.

Partitional clustering technique essentially involves “identifying different clusters in a

network and minimizing the loss function based on the distances between the points and/or

identified clusters” (Fortunato, 2010). This technique is utilized by k-means, minimum-k

clustering, k-medoids, and other classical algorithms. Its drawback is its requirement to specify

39

the number of clusters as inputs; in a real-world network, this may not be possible. A hierarchical

clustering algorithm was developed to overcome this drawback. The algorithm has two popular

classes known as Agglomerative and Divisive algorithms (Fortunato, 2010).

The Fast algorithm was developed as an agglomerative hierarchical clustering method

(Newman 2004). Newman-Girvan’s modularity metric was observed by Chakraborty et al. (2017,

p. 31) as “the most popular and widely accepted metric in the literature of community analysis”.

It lays the foundation for many other metrics that are being used in community detection. Clauset-

Newman-Moore algorithm tried to overcome the time-consuming limitation of the Newman Fast

algorithm (Newman, 2004) by focusing on maintaining and updating the matrix of modularity

value instead of tracking the adjacency matrix and calculating modularity value every time. The

algorithm achieved a better running time as proposed (Clauset, Newman & Moore, 2004).

The Walktrap algorithm uses a hierarchical clustering approach and has an improved run

time complexity (Pons & Latapy, 2006). Infomap algorithm’s formulation was based on analysis

of information flow in a given network. As a method it uses, random walks on the given network

to unroll the community structure of the network. Communities in the given network are identified

using an optimal compression of the network structure (Rosvall & Bergstrom, 2007). Label

propagation algorithm: In this algorithm, all the nodes are assigned unique labels that indicate the

community that each of the nodes belongs. Nodes determine their community based on their

neighbors’ community labels (Raghavan, Albert & Kumara, 2007).

Community detection and graph clustering methods were classified into five broad classes

by Papadopoulos, Kompatsiaris, Vakali, and Spyridonos (2011). The classes are:

(a) Cohesive subgraph

(b) Vertex clustering comprises of spectral clustering (Donetti & Munoz, 2004; Von

Luxburg 2006); (Wasserman & Faust, 1994); Walktrap (Pons & Latapy 2006).

(c) Community quality optimization

(d) Divisive is based on the following works, seminal algorithm (Girvan & Newman 2002)

(e) Model-based class spin model (Reichardt and Bornholdt, 2006), and statistical

inference (Hastings, 2006).

 Important methods of traditional clustering include partitional clustering, neural network

clustering, and multidimensional scaling (MDS); a respective example of each is k-means

40

clustering, self-organizing maps, and singular value decomposition (SVD), and principal

component analysis (PCA) (Gan, Ma & Wu, 2007).

Kernighan-Lin algorithm was proposed in 1970 as a heuristic procedure for partitioning

electronic circuits into boards. The focus of the algorithm was to optimize Q, to achieve this, it

uses the subset swap method. It begins by partitioning a graph into two predefined sizes, it then

iteratively swaps the subsets that contain equal numbers of vertices between the two partitioned

groups. It is best used as a supplement to high-quality partitions that are obtained by the use of

other methods (Porter, Onnela & Mucha, 2009).

Community detection algorithms can also be classified into global and local algorithms.

Global assumes that the whole network structure is known and available, it defines communities

with respect to the whole graph. Local algorithms assume no previous knowledge of the network,

it starts from examining “some given seed nodes and expand them” to the network. Identified local

communities “can be aggregated to uncover the global community structure of the network”. Local

algorithms can result in many redundant communities and become costly in terms of computation

if the algorithm starts naively from each of the nodes in the given network (Moradi, 2014).

2.9 Implementation Plan

 An agglomerative class of community detection algorithms will be used to build a CDoA

model in this study. The agglomerative hierarchical algorithm recursively merges nodes with high

similarity to form communities (Nugraha, Perdana, Santoso, Zeniarja, Luthfiarta & Pertiwi, 2018;

Babichev, Taif & Lytvynenko, 2016). Using this together with the LSTM anomaly detection model

will significantly help in solving high-dimensional and complex security challenges. PageRank

algorithm is an example of an agglomerative algorithm that will be used in this study. PageRank

can be used to solve large network graph problems (Page, Brin, Motwani & Winograd, 1999). A

modified page rank algorithm has been used successfully in the area of information retrieval and

sequencing of pages on the Web (Usha & Nagadeepa, 2018; Sen, Chaudhary & Choudhury, 2017)

The problem of community detection of the anomalies will be implemented according to

the Minimum Description Length (MDL) principle. The principle will use an approach that will

group labeled nodes that are connected by edges with the main aim of minimizing the total

description length of the labeled large network (consisting of millions/billions of nodes). To reduce

the problem size and speed up the iterations, this part will be achieved with the implementation of

41

a variation of the PageRank algorithm on PySpark because it is naturally parallelizable and will

scale easily to a massive dataset.

In providing answers to the research questions of this study, this research identified the

sub-communities of anomalies in the large-scale network and formulate ‘individual modularity

values’ for each of the subgraphs. This will help in incorporating all the possible subnetworks of

the given network in the composite modularity metric evaluation process. For example, in a

university campus scenario where several computers are being compromised due to various cyber-

attacks, the cyber-attacks can be due to worm infestation, botnet, distributed denial of service

(DDoS), or phishing. There is no single cybersecurity solution that can resolve all the cyber threats

at once. The ability to detect the available communities of threat actors in such a network will

significantly help the cybersecurity specialist to handle the related attacks in groups, and also to

provide appropriate solutions to each one of the detected communities of threats.

A community structure with high modularity value among the threat actors will help the

specialists to identify and rank the cyber-attacks in the order of severity, danger, complexity, and

complication. The approach of community detection with modularity density metrics can also be

used in a real-time network where network data changes with high velocity; time-series data apply

to such problems.

Clustering of available anomalies in a large-scale network into related communities will

make it easier to evaluate the strength and severity of such anomalies in given large-scale networks.

The formation of a community in this setting can be established when there is frequent interaction

among individual anomalies within a group than to the anomalies outside the group (Aditya, Dhuli,

Sashrika, Shivani & Jayanth, 2020; Bedi & Sharma, 2016, p. 116).

2.10 Conclusion

The literature review for this research provides a justification basis to address the research

questions. The components of the community detection of anomalies (CDoA) model were

explained with relevant pieces of literature, various techniques and algorithms were discussed and

a strong basis for evaluation criterion was systematically mentioned. The review explored the

importance of using modularity metrics to measure the result of this study. It gave a clearer picture

of community detection of anomalies as specified in the research questions.

42

Understanding the pattern of relationship among compromised nodes in a botnet-infested

network will serve as a good example of how a community detection approach can be used to

classify anomalies into various clusters for further investigation. This study will use the CDoA

model to identify anomalies in the network traffic dataset and study the significance of available

anomalies and changes in the underlying community structure of the network. Analysis of how the

variables of this study have been successfully used in other studies was presented in this chapter.

The result of this study will assist cybersecurity specialists in providing scalable solutions to cyber-

attacks in a large-scale network.

43

 METHODOLOGY

This chapter explains the methodology and the overall research framework that was

adopted during this research. Approaches and procedures for implementing the techniques of

CDoA were discussed. Lastly, the source of the dataset, variables used, and the environmental

setup for the execution was described at the end of this chapter for replicability purpose.

3.1 Research Framework

In real-world large networks, communities change with time. Developing a model that can

recognize minute changes and understand the cause and source of such changes will go a long way

in helping to analyze the activities of anomalies and their effects on the community structure of

large networks. Consistent observation of the pattern of network traffics and its impact on the

community structure will expose anomalies in the community. This kind of observation can be

achieved by using deep learning techniques that have been tested in other domains of big data

analytics. This study utilized the combination of exploratory and constructive research in

answering the research questions. Essentially, this study tried to address the following research

questions:

(i) Given a large-scale network with millions or billions of nodes, what level of

accuracy of anomaly detection can be achieved with the CDoA model using deep

learning long short-term memory (LSTM)?

(ii) Can we identify strong communities of anomalies in a large-scale network using

the CDoA model with the Modularity metric as a measure?

In other words, the study investigates if the use of CDoA - a combination of deep learning

technique for anomaly detection and community detection, can help identify anomalies in large-

scale networks, and group the anomalies into communities based on their behaviors or pattern of

communication. The quality metric that I used to evaluate the community structure is modularity.

The change in modularity values of the sub-communities was used to detect changes in underlying

community structures of the network.

44

3.2 Research methodology and experimental setup

The set of procedures that I followed in this research comprises data collection, data

preprocessing, data training using deep learning algorithm, model generation with LSTM, and

anomaly identification and separation based on TTL property of the network traffic data set.

Community detection with Louvain and PageRank algorithms were also implemented. The

workflow is as shown in Figure 3.1 and the processes are highlighted as follows.

Figure 3.1: Community Detection of Anomalies Workflow

3.3 Location of Study

I carried out this study at the D.A.T.A laboratory of Purdue Polytechnic Institute, Purdue

University, West Lafayette, Indiana. The HPC resources (Gilbreth) provided by the University

were used for this study. Table 3.1 shows the detailed specification of the Purdue Gilbreth

community cluster.

45

Table 3.1: Purdue Gilbreth Community Cluster Specification

Front-Ends Number of Nodes Cores per Node Memory per Node GPUs per node

With GPU 2 20 96 GB 1 P100

Sub-Cluster Number of Nodes Cores per Node Memory per Node GPUs per node

A 4 20 256 GB 2 P100

B 16 24 192 GB 2 P100

C 3 20 768 GB 4 V100

D 8 16 192 GB 2 P100

E 16 16 192 GB 2 V100

F 5 40 192 GB 2 V100

The Operating System that runs on each node is CentOS 7. For job and resource

management, it uses “Moab Workload Manager 8 and TORQUE Resource Manager 5 as the

portable batch system (PBS)”. Each node has 100Gbps InfiniBand interconnects and at least

192GB of RAM (www.rcac.purdue.edu).

I carried out this research under the supervision of Dr. John Springer.

3.4 Data Collection

Anonymized passive network traffic traces dataset from the Center for Applied Internet

Data Analysis (CAIDA) Equinix-nyc monitor was used in the implementation of this framework

because of its robustness. The location of the capturing monitor was at an “Equinix data center in

New York, New York and it was connected to an OC192 backbone link (9953 Mbps) of a Tier1

ISP between New York, NY and Sao Paulo, Brazil”. The data for this research was based on

direction label A (Sao Paulo to New York), captured on 01/17/2019 between 13:00 UTC and 14:00

UTC (www.caida.org). Trace statistics of the dataset used for this research are as shown in Table

3.2. The distribution is as shown in Figure 3.2.

46

Table 3.2: Trace statistics for the CAIDA dataset used in this research.

(Source: “https://www.caida.org/data/passive/trace_stats/”)

Duration 1hour and 02 minutes

First timestamp 1547729950.467105016

Last timestamp 1547733671.460902311

Total number of packets 2366419918

Total number of IPv4 packets 2339350262

Total number of native IPv6 packets 27069656

Total number of tunneled IPv6 packets 602

CAIDA’s passive and active measurement infrastructures provide visibility into the

behavior of the Internet globally. Collected data are curated, archived, and shared. CAIDA’s

anonymized the data by using CryptoPan prefix-preserving anonymization and store the data in

pcap format. The size of the trace is about 640GBytes.

Figure 3.2: The distribution function of packet size for equinix-nyc.dirA.20190117-130000.UTC.

(Source: “https://www.caida.org/data/passive/trace_stats/nyc-A/2019/equinix-

nyc.dirA.20190117-130000.UTC.df.xml”)

https://www.caida.org/data/passive/trace_stats/nyc-A/2019/equinix-nyc.dirA.20190117-130000.UTC.df.xml
https://www.caida.org/data/passive/trace_stats/nyc-A/2019/equinix-nyc.dirA.20190117-130000.UTC.df.xml

47

3.5 Data Storage

 Data storage for this work was provided by Purdue D.A.T.A. Laboratory. Multiple data

storage facilities were used for different levels of data wrangling and processing. The storage

used includes:

i. Purdue Fortress HPSS Archive: A large system with a long-term, multi-tiered file

caching and storage facility. It utilizes both robotic tape drives and an online disk. It

uses an IBM T3584 robotic tape library with over 10PB capacity. This work enjoyed a

limitless quota on Fortress.

ii. Purdue Research Computing – Data Depot: A reliable, fast, high-capacity, and secure

data storage service. It was purposefully designed, configured, and operated for the

Purdue researchers’ needs. It is usable in any field of research and is shareable with

collaborators on-campus and off-campus. It provides 100GB space free of charge and

could also be purchased in increments of 1 TB.

iii. Purdue Scratch Parallel Filesystem: Scratch storage consists of several redundant and

high-availability disk spaces filesystem. Scratch filesystem for Gilbreth was used. It

consists of 2.3PB of redundant, high-availability disk space. It has a quota of 200TB

and 2,000,000 files.

3.6 Data Preprocessing and Analysis

In this phase, I carried out several activities to fit the data into formats that are most

appropriate for each level of analysis. Some activities that were carried out and tools used are

described in the following section.

3.6.1 Data Wrangling

 This part of the research took a whole lot of time compared to other phases of this research.

It requires a very careful approach because a mistake at this point will negatively affect the

whole result of this research. The original network traffic trace from the CAIDA dataset were

all in pcap format. The dataset with a total file size of 640GBytes was zipped in small chunks

for easy download and transmission. First, I extracted all the data with Bash scripting into

Fortress storage. The needed direction A dataset was then separated from the whole chunk of

48

the dataset. The data were further converted into CSV format to enable the easy manipulation

of the dataset by different software tools. I cleaned the data by removing all the not available

(NA) and null parameters from the dataset.

3.6.2 Variables for Anomaly Detection

For the first part of this study I used 23 parameters/variables for model building in the

LSTM layer for anomaly detection, this include units, activation, recurrent_initializer,

reccurent_activation, use_bias, bias_initializer, kernel_initializer, unit_forget_bias,

kernel_regularizer, bias_regularizer, recurrent_regularizer, activity_regularizer, kernel_constraint,

recurrent_constraint, bias_constraint, dropout, recurrent_dropout, implementation,

return_sequences, go_backwards, return_state, , stateful and unroll. The model would be trained

with time-steps, learning rate, batch size, threshold cutoff, epochs of the neural network, and

hidden layer.

For the second part, I used some features of the network traffic traces as variables. These

are outlined in Table 3.3.

Table 3.3: Network Traffic Variables to be used in Anomaly Detection

Features Description

Source_IP Packet Source IP Address (Node)

Destination_IP Packet Destination IP Address (Node)

Packet_Length Length of the captured packet

Time Time duration of the captured frame

Time-To-Live (TTL) Time-to-Live of each packet

Protocol L3 Protocols: Internet Protocol, (UDP), andTCP

3.6.3 Variables for Community Detection

The variables that I used in this study for the community detection part are displayed in

Table 3.4.

49

Table 3.4: Variables used in the study for community detection

Variable Description

N_anom The total number of unique anomaly nodes/vertices available in the dataset

L_anom The total number of unique anomaly links/edges available in the dataset

N_link The total number of links (edges) between the nodes in each community

N_nodes The total number of unique nodes/vertices available in each community

𝑸 The value of modularity for the community structure of the anomaly graph

according to Newman (2006).

Explanatory/Independent variables are N_anom, L_anom, N_link, and N_nodes while the

dependent variable is, 𝑸.

3.6.4 Software Packages, Libraries, and Tools

 An anaconda 5.1.0 environment was loaded on the Purdue Gilbreth cluster for this research.

The following software packages, libraries, and tools were installed in the environment. Python

3.8.3 was chosen to be used for this work because it is the most recent version that is available on

the cluster, it is lightweight and easy to use and debug. Scikit-learn 0.23.2 (sklearn) which is a

machine learning library was used with Python because it contains almost all the algorithm needed

for this work and has an extensive background. Pandas 1.0.5 powerful library on Python was used

to perform different operations such as filtering, bulk deletion, replacement, and addition.

Matplotlib 3.2.2 was used for visualization such as graph creation. Numpy 1.18.5 was used for

mathematical and logical operations. Seaborn 0.10.1 and Tensorflow 2.3.0 were also used in

collaborations with many other packages such as Keras 2.4.3 in this environment.

3.7 Anomaly Detection Modeling

LSTM sequential model was implemented with Keras. This model has an LSTM layer and

a dense (fully connected) layer. To get the final output between 0 and 1, I applied sigmoid and

tanh activation functions to the dense layer.

50

Sigmoid activation function

 (Eq 3.1)

tanh activation function

 (Eq 3.2)

For the loss function, I used the Adam optimizer and the mean squared error. Some

parameters like threshold cutoff, time-steps number, epochs of the neural network, hidden layer,

and batch size were varied to analyze different results of the model in this study. The study

employed the distributed algorithm approach for the identification and analysis of anomalies in the

network traffic associated with the time series in the dataset. The following procedures were used

in this modeling:

i. To select the dataset, data was loaded from the dataFilePath as a CSV file using

Pandas data frame.

ii. To describe the value column, describe() command was run on the dataset to

understand the data more.

iii. To normalize the data, a seaborn KDE plot was used to plot the dataset. This

reveals the minimum and maximum data points of the dataset; scaling was used for

the normalization. Scaling = (x-Min) / (Max-Min).

iv. The anomaly detection model was formed with a sequential model with Keras. The

formed model has the LSTM layer as the hidden layer, while its dense layer forms

the output layer. The LSTM layer’s output was used as the input of the dense layer.

Sigmoid activation was applied to make the final output range between 0 and 1.

v. The model was trained for 100 epochs, the training set was used as the validation

data.

vi. The loss and mean absolute error graphs were plotted during the training process.

vii. After training the model, data for testing was predicted, and the root means square

error (RMSE) was computed.

viii. The predicted dataset and the test dataset were used to arrive at the value of the

difference, this value was passed through vector norms.

51

ix. The difference values were sorted, and a cut-off value was used to select the

threshold for the anomaly.

x. Any value outside the range of the threshold was considered an anomaly.

TTL was used as the pivotal variable to identify anomalies in the dataset (Patel, Srinivasan,

Chang, Gupta & Kataria, 2020). The threshold picked after model training were in three

different ranges, they are (1 < TTLA ≤ 30), (64 < TTLA ≤ 98), and (128 < TTLA ≤ 255)

where TTLA is abnormal TTL value. This agrees with previous research such as Scheitle,

Gasser, Emmerich & Carle (2016); Yamada & Goto (2012). All the detected anomalies

were extracted and aggregated in preparation for community detection.

3.8 Community Detection of Anomalies

As previously discussed, one of the main aims of this research is to investigate the

relationship that may exist between anomalies in large-scale networks. It is believed that the ability

to establish communication between anomalies may provide a good insight into possible threats to

cybersecurity specialists. This will help them to narrow down their investigation to specific areas

of concern, as a result, associated resources, cost, and time spent on solving such risks would not

be a waste.

Community detection involves the use of graph-based solutions to address real-world

network problems. This research followed used Louvain algorithm and PageRank for the

community detection part of this study.

3.8.1 Community Detection with Louvain

Louvain algorithm is a greedy optimization method with complexity O(NlogN) that

identifies disjoint communities in a network. It seeks to maximize the value of modularity (Q) for

each community. The values of modularity range from -1 to 1. Modularity value closer to 1

signifies quality community.

The two stages of the Louvain algorithm were implemented. At the first stage, all the nodes

were assigned a community of their own, then for each node i, the gain in modularity is computed

by moving the node to its neighbor j with the highest modularity gain, if there is no modularity

gain the node remains in its initial community. This process was repeated for all the nodes in the

52

anomaly dataset. The second stage of the algorithm groups all the nodes in the same community

to form a new single node. Intra-edges are collapsed into a single self-loop edge and the weight is

the sum of the weight of all the intra-edges. Multiple inter-edges between two communities are

collapsed into a single edge and the weight is the sum of the edges between them, a new network

was formed when the second stage was completed. The algorithm then iteratively called the first

stage again and the cycle is repeated until there was no more modularity gain.

3.8.2 Community Detection with PageRank

 The principle used here is an approach that grouped labeled nodes that are connected by

edges with the main aim of minimizing the total description length of the labeled large network.

To reduce the problem size and speed up the iterations, this part was achieved with the

implementation of a variation of the PageRank algorithm. PageRank is good because it is naturally

parallelizable and will scale easily to a massive dataset. The following rules were followed in

implementing PageRank:

3.9 Assessment Instrument

The quality of the results of anomaly detection with LSTM deep learning can be evaluated

using different metrics. The metrics used for evaluation are determined by the structure of the data

and the goal of the experiment. The quality of the LSTM model can be evaluated based on a

confusion matrix using true positive (TP), true negative (TN), false positive (FP), and false-

negative (FN) to estimate the accuracy and precision of the model.

Another method for calculating the accuracy of the deep learning LSTM model involves

the use of mean absolute error (MAE) and root mean square error (RMSE). This method was used

to determine the accuracy of the deep learning LSTM model that was used for anomaly detection

in this research. The method was chosen because of the nature of the dataset; the dataset was not

pre-classified. The presence of anomalies in the dataset was assumed before the experiment was

carried out. The anomalies in the dataset were being sought out of the wild.

Modularity, a measure of goodness of partitioned network was used to evaluate the quality

of the identified community of anomalies. Gephi and Tableau were used for data visualization of

detected communities. An example of Gephi visualization of identified communities is shown in

53

Figure 3.3. Different communities of anomalies detected can be represented with distinct colors as

shown in the diagram.

3.10 Conclusion

This chapter provided insight into the execution workflow of this study. It presented a

detailed description of the variables that were considered for the study. The location of the study

and the available resources for the study were also outlined in this chapter.

This study explains the efforts made on the implementation of AI to speed up the

identification of anomalies in large network traffic. It described how AI can be used to analyze the

existing relationships among identifiable communities of anomalies in a given network. Lastly, it

described how AI can be used to gain insight into the pattern of anomalous connections in the

network.

Figure 3.3: Gephi visualization of different communities.

(Source: Bolaji, 2018)

54

 RESULTS AND DISCUSSIONS

This chapter provides the result from various implementations I carried out in this study.

As mentioned in previous chapters, the major aim of this research was to identify the presence of

anomalies in large network traffic datasets and to study the relationship between the discovered

anomalies. These were achieved by using deep learning LSTM and community detection

algorithms. The results of this study are presented and discussed in this chapter.

4.1 Data Presentation and Analysis

As mentioned in chapter 3, an anonymized passive network traffic traces dataset from the

CAIDA Equinix-nyc monitor was used in the implementation of this framework because of its

robustness. The robustness of the CAIDA dataset has been helpful in many studies such as “cache

snooping rare domains at large public domain name service (DNS) resolvers” by Randall, Liu,

Akiwate, Padmanabhan, Voelker, Savage & Schulman, (2020); finding outbound addresses in

traceroute (Marder, Luckie, Huffaker & Claffy, 2020). The data were zipped in about 65 pcap

files. Each of the pcap files was first unzipped and later converted to CSV files for easy data

manipulation and evaluation. The size of each of the pcap files is about 4.6GB on average. Each

has an average of 29 million rows and 7 columns. The sample of the specific columns and their

data are as shown in Table 4.1.

 The source, destination, and info columns contain the most important parameters that were

used in this study. The TTL values were extracted from the info column.

Table 4.1: Embedded information in each of the pcap files used in the study

55

4.2 Implementation Requirements

 The whole study was implemented in an environment on the Purdue Gilbreth cluster. The

first research question of this study was based on anomaly detection while the second research

question focused on community detection of discovered anomalies. The following were carried

out as research experiments:

i. Anomaly detection with LSTM Deep Learning

ii. Community Detection with Louvain and PageRank Algorithm

4.3 Anomaly detection with LSTM Deep Learning

LSTM is known to be very good with time-series datasets; the dataset in use has a

timestamp that can easily be plotted for all the data points. LSTM has shown the highest

performance for time-series classification in the studies of Xu, Zhao, Liu & Sun (2020), and

Hashida & Tamura (2019). Since the dataset used in this research is time series as can be seen in

the plots of TTL against date time as shown in Figure 4.1, 4.2, and 4.3. The plots were shown for

the first 1,000 rows, the first 10,000 rows, and a big chunk of the whole dataset containing millions

of rows. The plots show discrete changes in the values of TTL with time for each of the received

packets of the dataset.

Figure 4.1: Plot of TTL against date time for the first 1000 rows

56

Figure 4.2: Plot of TTL against date time for the first 10000 rows

Figure 4.3: Plot of TTL against date time for the millions of rows

The anomaly detection process was implemented using Python as formulated by Alla &

Adari (2019). Different packages such as Keras, sklearn, seaborn, matplotlib, sys, pandas, NumPy,

and TensorFlow were imported into the environment. The data was loaded from the dataFilePath

57

(/depot/datalab/bolaji/Anoms/AnomaliesAll.csv) as a CSV using Pandas. The describe ()

command was used to look at the structure of the data for a better understanding of its packet

length and TTL values. It yielded the value column of the data as shown in Table 4.2. Data

understanding in cybersecurity is very essential because it can expose hidden trends of breaches.

The value column for both packet length and TTL values before scaling and after scaling

were plotted with KDE as shown in Figures 4.4 and 4.5 respectively. The minimum value for the

packet length is 28 while that of TTL is 2. The maximum values for both are 1,500 while that of

TTL is 225. The formula used for calculating scaling is (x-Min) / (Max-Min) (Alla & Adari, 2019;

Domingos & Hulten, 2001). The scaling process includes the derivation of upper and lower bound

for the learning loss as a function. The function is for the number of examples that were used in

each of the steps of the algorithm. The KDE plotted graph shows that the shape of the dataset

remains the same before and after scaling. Big data scaling reduces the number of resources that

are required for analysis in data analytics. Scaling also speeds up the data interpretation process,

this is huge in security provisioning in cyber networks.

4.3.1 Calculating the MAE and RMSE of the model

The goal of the whole process is to find anomalous data points, that is, data points that are out of

order among the dataset. In detecting the anomalies, an LSTM deep learning model that was built

for this purpose was implemented.

Table 4.2: Description of the value column based on packet length and TTL values

 ip.len ip.ttl

count 1.358340e+07 1.358340e+07

mean 6.491317e+02 9.145724e+01

std 6.350038e+02 4.470046e+01

min 2.800000e+01 2.000000e+00

25% 5.200000e+01 8.300000e+01

50% 2.190000e+02 8.700000e+01

75% 1.450000e+03 8.900000e+01

58

Figure 4.4: The plot of value column of packet length and TTL values before scaling

Figure 4.5: The plot of scaled value column of packet length and TTL values

The model was used to classify and separate anomalies from the dataset. A very important

question to ask about the model is, “how accurate is the built model and can the model’s accuracy

be measured?” This is where the use of mean absolute error and calculated loss serve as metrics

for testing deep learning models. Root mean square error (RMSE) and Mean absolute error (MAE)

are useful in measuring the accuracy of LSTM models as can be seen in the studies of Ali &

Hassanein (2020), Wang, Guo & Chen (2019). An inaccurate model, for example, can lead to

massive problems in data security. The integrity of data cannot be guaranteed, high-level

confidentiality and privacy can also be jeopardized as a result of an inaccurate model. Spending a

huge amount of money to purchase a security system that cannot be tested for accuracy poses a

very high risk to cyber networks.

The mean absolute error of any test dataset is the same as the average of the absolute values

of error of prediction on all data points of the test dataset. Mean absolute error was used to measure

the accuracy of the anomaly detection model. The attempt was to predict a data point at a time (t)

59

based on the history of the existing data until the time (t-1). This helped to compare an expected

value to an actual value; to determine if the data is within the expected range of values for time (t).

The difference between predicted and actual values produced a sequence of errors as a distribution.

The mean absolute error (MAE) is achieved by using the following approach:

 Actual Value - Predicted Value = Prediction Error (Eq. 4.1)

The prediction error is recorded for each of the predictions after all errors have been

converted to positive using the absolute value for each of the errors. That is,

Absolute Error = |Prediction Error| (Eq. 4.2)

To arrive at MAE, the mean for all the recorded absolute errors was calculated with the

formula in equation 4.3.

 (Eq. 4.3)

The process was achieved by building a sequential model (anomaly detection model) using

Keras. LSTM layer was used as the hidden layer of the model while a dense layer (connected layer)

was used as the output layer. The time series dataset was fed into the LSTM layer, the layer learned

the values of the dataset with respect to time. The output of the LSTM layer was used as the input

for the dense layer, the dense layer transformed the input values into a fully connected one.

Sigmoid activation was applied on the dense layer to get the final output between 0 and 1.

For loss function, adam optimizer and mean squared error were used. When output that is

produced from the model is different from the input, the loss function penalizes the network that

creates them. The loss metric was used to distinguish between the anomalies and the normal

datapoint because anomalies do have higher reconstruction error as can be seen in Figure 4.6.

Reconstruction error reflects the characteristic of anomalies (Chang, Du & Zhang, 2019). The

reconstruction error plot of the dataset revealed that data points that are above the threshold

(anomalies) had higher errors point compared to the normal points.

60

The anomaly detection model was trained until the best accuracy was achieved; this was at

100 epochs. The training dataset was used as the validation data. The loss during the training and

validation process was plotted as shown in Figure 4.7. It could be deduced from the plot that there

is a healthy correlation between training loss and validation loss. They are both reducing around a

constant value. This serves as an indication that the model is well trained and that the model is

good on both the hidden and training data.

Figure 4.6: Reconstruction error plot

Figure 4.7: Training and validation loss graph

61

4.3.1 Anomaly Detection Model Validation

To validate this model, regression loss functions were used instead of the confusion matrix.

The structure of the dataset is not compatible with using a confusion matrix because the anomalies

in the dataset are not pre-labeled. Therefore, MAE and RMSE were computed to estimate the

accuracy of the model. After the model was trained, a test dataset was used. The test dataset was

split into subsequences of the same length according to the time steps, and this was used as the

training dataset. Root mean square error (RMSE) was computed after this and it has an output of

0.001.

 (Eq. 4.4)

 The RMSE value was quite low, this agrees with the findings in the studies of Ibrahim &

Hossain (2020), and Ali & Hassanein (2020). The low error loss from the training phase after 100

epochs confirmed the low RMSE at loss: 5.1812e-04, mean absolute error: 5.1813e-04, validation

loss: 3.9858e-04, validation mean absolute error: 3.9858e-04. The low validation values achieved

in the study are supported by the values gotten with the LSTM model by Roy, Roy, Gupta &

Sharma (2020), Tandon, Tripathi, Saraswat & Dabas (2019), and Liu, Jiang & Wang (2020).

4.3.2 Calculating the cutoff value/threshold

To identify an anomaly in the dataset, the distribution of the calculated loss in the training

dataset was used to determine a threshold value. As a regularization method in deep learning, it is

usually a requirement to calculate the magnitude (length) of vectors. After sorting the diffs, a cut

of value was used to pick the threshold. The threshold was set above the noise level to prevent the

triggering of false positives. The chosen threshold was 0.0072. Any data point above this value

was considered an anomaly. The plot of the dataset with respect to the chosen threshold is as shown

in Figure 4.8.

 The data points colored red are regarded as the anomalies while the ones in green color are

the normal data points according to the chosen threshold. The anomalies were chosen based on

TTL values of each of the packets as explained in chapter 3. This agreed with the position of Patel

62

et.al., (2020), Gasser et.al., (2016), and Yamada & Goto (2012). The position indicated that

malicious IP packets can be identified by abnormal TTL values. Using LSTM deep learning

methods for anomaly detection with TTL values shows that this is a worthy cause.

4.4 Conclusion for Research Question Number 1

 The accuracy of the model performance, as evaluated by measurements of the two loss

functions, MAE and RMSE is very high as can be proven by other studies such as Sunny, Maswood

& Alharbi (2020); Ibrahim & Hossain (2020); and Ali & Hassanein (2020). The values of mean

absolute error at 5.1813e-04 and that of root mean square error at 1.0000e-03 shows high accuracy

in the difference between the actual values observed and the anomalies values predicted by the

deep learning LSTM model.

Figure 4.8: Plot of the data points with respect to the chosen threshold

This result shows that a high level of accuracy can be achieved with the CDoA model when

deep learning long short-term memory (LSTM) is used on a large-scale network with millions or

billions of nodes. The deep learning LSTM model will be significant and useful in determining

63

anomalous packets in a large-scale network using the Internet protocol Time-To-Live value as the

basis of the determination. Separating anomalous packets in big data will significantly help

cybersecurity specialists in narrowing down their search beacon in big data; as a result,

investigation time is saved for more purposeful use, and the cost is reduced.

4.5 Community Detection with Louvain and PageRank Algorithm

 After the anomalous packets were separated in the experiment as previously described. An

attempt was made to discover communities among the identified anomalous packets. This was to

investigate the existence of a relationship among the components of the identified anomalous

packets. To achieve this, a new dataset was formed using the identified anomalies in the pcap files.

The combined size of the anomaly dataset is 1.02GB. It contains few columns that may be used in

community detection and visualization of the communities. The columns are ip.src (relabeled as

Source), ip.dst (relabeled as Target), ip.len (relabeled as PacketLen), and ip.ttl (relabeled as TTL)

as shown in Table 4.1

Table 4.3: Overview of newly formed Anomaly Dataset

PacketLen Source Target TTL

40 55.36.90.123 171.223.205.255 225

314 52.30.36.94 131.96.28.128 225

40 55.36.90.123 171.223.205.255 225

40 55.36.90.123 171.223.205.255 225

40 55.36.90.123 171.223.205.255 225

4.5.1 Community Detection with Louvain Algorithm

Louvain algorithm optimizes modularity, that is, it seeks to maximize the value of

modularity (Q) for each community. The values of modularity range from -1 to 1. Modularity

value close to 1 signifies quality community. To achieve this, unique IP addresses were identified

from both the source and target columns of the anomaly dataset. These IP addresses were used as

nodes. The edge list was made using the rows that indicated communications between a source

64

and destination(s) or target(s) that were extracted from the dataset. There were 149,001 nodes and

1,048,576 edges.

All the nodes and edges were used to generate a graph with Python-NetworkX. The graph

generated is as shown in Figure 4.9. It represented the connectivity between various nodes and

edges. Gephi was also used to generate the anomaly graph with resolution setting at 1.0 and 2.0.

The generated graph at resolutions 1.0 and 2.0 are as shown in Figure 4.10a and b respectively.

Different colors were used to represent identified communities of anomalies in the graph.

It could be observed that all the graphs maintained the same shape. However, the size of

the dataset makes it difficult to analyze the identified communities in the graph. Different colors

were used to represent each of the identified communities. Further analysis was carried out with

Gephi and Tableau to better visualize the graphs and the sub-communities that were formed in the

graph.

About 1,920 sub-communities were identified in the graph. The measured modularity value

of the graph is 0.91, this is considered very high. This agrees with various studies on modularity

optimization such as Newman (2006) and Wang, Sun, Sun & Chen (2020), and Huang, Wang &

Chao (2018).

Figure 4.9: The Graph of the Anomaly dataset (Q = 0.914)

65

(a) (b)

Figure 4.10a and b: The generated graph at resolution (a)1.0 and (b) 2.0

Modularity maximization devises approximate and heuristic schemes because the search

space is exponential with respect to the number of nodes (Papadopoulos et al., 2011). As a result,

the greedy solution of Louvain merges the majority of the identified sub-communities that are

negligible based on the number of nodes that are involved. For example, the largest identified sub-

community in the graph has 10.41% of all the nodes that made up the graph. It is as shown in

Figure 4.11. The communities with similar features were merged to optimize the modularity value

of the graph. Figure 4.12 represents this with a bubble chart (circle packing diagram). A bubble

chart uses circles to represent categories, colors to represent differences, and the size of the circle

to represent the proportion of quantities. The diagram shows that 39 clusters were generated as a

result of the merge. The largest cluster contains all the sub-communities with 0.01% of all the

nodes. Different colors represent different classes, while the sizes represent modularity class count

in each cluster.

66

Figure 4.11: The largest sub-community in the graph with 10.41% (15, 600) of all the nodes

Figure 4.12: The sub-communities in the graph after merging the ones with related features.

67

4.5.2 Community Detection with PageRank Algorithm

 The importance of the PageRank algorithm started with its use to count the number and

quality of links to a page, and to generate a ranking score for the pages. PageRank was used in this

research to generate a ranking score (r) for each of the nodes in the dataset. It specifically iterates

over every node to check for its neighbors and out edges. As mentioned earlier Python NetworkX

was used to create the graph. The probability for damping factor (D) was chosen to be 0.85. The

graph was iterated over 95 times.

 The abridged version of the PageRank score generated for each of the nodes is listed in

Appendix A of this report. The value of the PageRank score is the probability between 0 and 1,

just like the modularity value used in the previous section. Individual node PageRank’s value was

based on the number of nodes that are connected to it (Zhang, Xia, Xu, Yu, Wu, Yu & Wei (2020)

and Page, Brin, Motwani & Winograd (1999).

 The highest PageRank score observed is 0.03502 for a node with IP address

146.206.121.50 while the one with the lowest score was given as 0.00002 with an IP address of

175.84.136.42. The implication of these scores shows that the device with IP address

146.206.121.50 has the highest influence on the network; it is the device with the highest number

of connectivity. The highest-ranking devices are the ones with the most connections as expected.

The visualization of the PageRank is as shown in Figure 4.13 the list of the first 1,000 PageRank

score of the 149,001 nodes is listed in Appendix A.

 The dynamic nature of present-day network traffics due to the growing numbers of

connected devices makes it difficult to study community structure and find hierarchical

overlapping community structure in large-scale networks. The implementation and result of this

section show that PageRank can be used to tackle the community detection problems in the large-

scale network (Zhang et.al., 2020).

4.5.3 Community Detection Result Validation

 Many other quantitative measures have been used in previous research for validating the

output of the community detection algorithm (Li, 2016). A detailed study showed that using

metadata as a test for community detection algorithm has a lot of shortcomings (Peel, Larremore

& Clauset) but, modularity has been reported to be the most widely used accepted metric (Newman

68

& Girvan, 2004). The modularity achieved in this study is very high at 0.91, this validates the

existence of strong communities in the graph of discovered anomalies. The validation result agrees

with previous studies on community detection, such as validation of community robustness

(Carissimo, 2016), Community detection: effective evaluation on large social networks (Lee

&Cunningham, 2014), and Fagnan, Abnar, Rabbany & Zaiane (2018).

Figure 4.13: Visualization of the PageRank Score for the Graph of the Anomalies.

69

4.6 Conclusion for Research Question Number 2

As previously mentioned in chapter 2, it was stated in the literature that the Louvain

algorithm is one of the fastest community detection algorithms. It can handle large networks while

preserving the quality of the communities detected. The modularity measure was used as the

quality function to assess the community detection implementation in this study. The result of the

modularity value which is equal to 0.91 is very high. This is an indication that the graph of the

anomaly dataset has a very strong community. The Modularity value shows that there is strong

compartmentalization of the communities discovered in the dataset. This agrees with the position

of previous studies by Newman (2004), Newman (2006), Newman & Girvan, 2003, and Wang,

Sun, Sun & Chen (2020).

4.7 Conclusion

 This chapter discussed the experimental results of various implementations that were

carried out to answer the research questions of this study. The results showed high accuracy for

the LSTM deep learning anomaly detection model that was used in this study. The communities

discovered in the study have very high modularity value which indicates a strong network. The

result of the implementation of the PageRank algorithm yielded good ranking scores for all the

nodes in the graph.

70

 CONCLUSIONS, SUMMARIES AND

RECOMMENDATIONS

This chapter provides the concluding thoughts and summary of the attempts made to fulfill

the goal of this study. It discusses further the results of this research and provides answers to each

of the research questions of this study. This chapter emphasizes the importance of CDoA to the

field of cybersecurity by discussing its applicability to present-day networks. It explains the

possible future direction of this research and ties the whole process together. This chapter discusses

anomaly detection with deep learning, community detection of anomalies, contribution, and future

research direction.

5.1 Anomaly Detection with Deep Learning in Large-scale Network

The original goal of this study was to use artificial intelligence to design, develop and

implement a multilayered enterprise cybersecurity solution. However, after much studies,

discussions with the research advisor, and data gathering, it was discovered that the goal was not

research-driven. The initial goal was eventually redirected into formulating research questions

and hypothesis which can be addressed within the specific timeframe on available resources.

Despite many fruitful academic kinds of research on anomaly detection in large networks,

cyber-attacks have continued to plague most of the well know big technologies. The detection of

anomalies in real-world networks has applications in various domains of human endeavor; the

application includes, but is not limited to, credit card fraud detection, malware identification and

classification, cancer detection from diagnostic reports, abnormal traffic detection, identification

of fake media posts, and the like. Many ongoing and current researches are providing tools for

analyzing labeled and unlabeled data; however, the challenges of finding anomalies and patterns

in large-scale datasets still exists because of rapid changes in the threat landscape(Arisoy,

Nasrabadi & Kayabol, 2021; Araujo, 2017 and Yao, Shu, Cheng & Stolfo, 2017).

As a result, we have a host of related challenges. How can we speedily identify sources of

compromise or infections in large networks with millions or billions of nodes? Is it possible to

predict the next employee that will fall for a phishing attack? What pattern of intrusion can be

identified with artificial intelligence in a power distribution grid system? Can we stop the

71

fraudulent transfer of a large amount of money in and out of a country? How do we know if a

machine learning algorithm is infected? This study was carried out to model large network traffic

using appropriate matrix, parameters, and tensor representation to gain insights into these

questions.

The use of the CAIDA dataset for the study provided a good representation of real-world

network traffic scenarios. Big Data analytics is one of the main challenges facing the domain of

cybersecurity in recent times. This is because of the rapid growth in the amount of data that are

generated daily and the required expertise for data analytics. The increasing adoption of artificial

intelligence in solving complex problems in different domains has made it possible for machine

learning and deep learning implementation to gain wider adoption in cybersecurity.

For this study, the raw dataset from CAIDA was used. The raw nature of the data posed a

lot of refactoring challenges for the researcher. Turning the unstructured dataset into usable sets

of data for deep learning algorithms is the most appropriate thing for this study. The data wrangling

part covered about 60% of the whole time that was spent on this research. The initial research

hypotheses included a section that plans to use a confusion matrix in measuring the performance

of the existing deep learning model that was adopted for this study. However, after getting

preliminary results from the experiments of this study, it was discovered that the confusion matrix

cannot be used because of the raw and unclassified nature of the dataset that was used. There was

no way to calculate true positive and false positive using the available data because anomalies have

not been previously discovered or classified. The hypothesis eventually changed to using mean

absolute error and root mean square error to estimate the accuracy of the model.

As discussed in the previous chapter, the accuracy of this implementation was high. This

is a significant milestone in addressing the problem of big data analytics in cybersecurity. This

proves that many of the attacks that are currently being experienced in large networks can be

tackled by using artificial intelligence-based algorithms.

5.2 Community Detection of Anomalies

One of the major interests of this study is to understand the relationship that may exist

between threat actors in large networks. Providing a general overview of linkages between

compromised devices on the network can lead to the provision of fast solutions for safeguarding

the whole network. This is synonymous with what is called “contact tracing” activity which

72

became a very significant method in stemming the tide of the recent COVID-19 infection (Tanaka,

Ramachandran & Krishnamachari, 2020 and Wang, Lin, Obaidat, Yu, Wei & Zhang 2021). A

node that is observed to be in proximity with another infected node is assumed to be likely infected

or compromised also. These can be separated for further vulnerability assessment.

This study was able to provide a CDoA model which combined the deep learning model

with a community detection approach that can be used to provide a first-hand overview of the

relationship among different sources of threats to a security responder. The use of Louvain and

Pagerank algorithms demonstrated that attacks in large networks can be ranked according to their

levels of severity based on the number of connections their host has.

The result of the experiments indicates that CDoA can be used to provide quick guidance

on priority areas or areas of concentration to cybersecurity specialists in a cyber-attack scenario.

For example, Figure 5.1 shows the modularity class of communities that exist in the anomaly

dataset that was used in this study. The class with ID 239 indicates the community covers 10.41%

of nodes that made up the network. The severity of attacks on a larger community is high compared

to the severity of attacks on the class with ID 97 which shows that the class only covers 0.33% of

the nodes present in the large network. Each of the classes is represented with different colors as

previously displayed in Figure 4.10a & b and Figure 4.11. The classes are arranged according to

their sizes, that is, the number of node connectivity each has in the overall network.

73

Figure 5.1: Ranking of communities discovered in the anomaly dataset

5.3 Contribution

Previous research studies have shown that variants of machine learning and deep learning

algorithms can be combined to provide robust anomaly detection models for network traffic.

Anomaly detection models with deep learning have evolved from semi-supervised models,

unsupervised models to other combinations like hybrid models and one-class neural networks

(Ruff, Kauffmann, Vandermeulen, Montavon, Samek, Kloft, Dietterich & Müller (2021);

Chalapaty & Chawla (2019); Singh, Hand & Alexis (2020); Kabir & Luo (2020); Dawoud,

Shahristani & Raun (2018)).

However, to the best of the researcher’s knowledge, very few or no research studies have

combined community detection algorithms with deep learning anomaly detection to study

74

anomalies in unstructured data of large-scale networks. Most studies have used existing data that

have been classified into benign or malignant data for their studies. Others have collected both

normal data and injected data in a controlled environment for their studies. Very few or no

researchers are known to have used uncontrolled ‘wild’ datasets for anomaly detection study.

The main contribution of this research is to fill the existing gap of combining proven

anomaly and community detection algorithms on an unstructured dataset to study the relationship

between identified anomalies in a large-scale network. For example, most anomaly detection

models have been used to classify anomaly detection, few or no one was known to have moved

beyond model training, identification, and classification of the anomalies to the investigation of

the relationship between the anomalies.

The high and quick overview of packets sent or received by each node in a large-scale

network as shown in Figure 5.2 is one of the main contributions of this work. It shows the load

distribution on the network per node. For example, the IP address 16.136.231.132 has sent out

more than 38 million packets within few hours of captured traces, this within a network calls for

great concern.

Visualization of such a source and others like it will provide quick direction of threat

investigation to a cybersecurity specialist. It will make it easier for a cybersecurity specialist to

investigate large networks in time and plan adequate remediation. The nodes with high packet

transfer rates can represent a case of data infiltration or distributed denial of service attacks if such

devices with high packet rate transmission are not known to be load balancers or servers on the

given network. It can also represent the presence of botnet activities based on the number of

devices it is connected to. The size of each circle in the diagram represents the total length of

packets being sent out during the observed hours. The number represents the IP address of the

devices on the network. I used the same color for all the nodes to show that they have similar

attributes on the network.

 Depending on the characteristics of the data points of the anomaly dataset, each modularity

class of the dataset can also be used to represent different threats that may be existing in the large

network as shown in Figure 5.3. It illustrates an example of how the CDoA model could be used

to present a quick overview of known, discovered, or confirmed threats in a typical large-scale

network traffic dataset.

75

Figure 5.2: Visualization of packets distribution by nodes

The broader aim and impact of this study is to provide sophisticated, AI-assisted

countermeasures to cyber-threats in large-scale networks. To close the existing gaps created by the

shortage of skilled and experienced cybersecurity specialists and analysts in the cybersecurity field,

solutions based on out-of-the-box thinking are inevitable; this research aimed at yielding one of

such solutions. It was built to detect specific and collaborating threat actors in large networks and

to help speed up how the activities of anomalies in any given large-scale network can be curtailed

in time.

5.4 Future Research Direction

Future research studies should focus on using other parameters in the network for

community detection of anomaly study. Other parameters such as protocols, the pattern of data

76

distribution, IP length, data frame time, and IP versions can be used as a basis for anomaly

detection and community detection in large-scale networks in future studies. Moreover, it would

be interesting to use the CDoA model on a pre-classified anomaly dataset. This will make it

possible to use the confusion matrix as one of the metrics of evaluation of this model.

 Future research studies should also consider using the hybrid deep learning model in

conjunction with a community detection algorithm to build a CDoA model to check if this would

improve the performance of the model. One other approach is to vary the community detection

algorithm to test for the effectiveness of the CDoA model.

Figure 5.3: Representation of the Real-life Application of the CDOA Model Output

Threats

77

REFERENCES

Abbe E. & Sandon C. (2015). Community detection in general stochastic block models:

Fundamental limits and efficient algorithms for recovery. In IEEE 56th Annual

Symposium on Foundations of Computer Science (FOCS’15). 670–688. Retrieved from

DOI:http://dx.doi.org/10.1109/FOCS.2015.47

Aditya, V., Dhuli, S., Sashrika, P. L., Shivani, K. K., & Jayanth, T. (2020). Closeness Centrality

Based Cluster Head Selection Algorithm for Large-scale WSNs. 2020 12th

International Conference on Computational Intelligence and Communication Networks

(CICN). doi:10.1109/cicn49253.2020.9242639

Alla, S., & Adari, S. K. (2019). Beginning Anomaly Detection Using Python-based Deep

Learning. doi:10.1007/978-1-4842-5177-5

Araujo, M. (2017). Communities and Anomaly Detection in Large Edge-labeled Graphs. Ph.D.

Thesis. Retrieved from https://repository.lib.ncsu.edu/.../1840.../Community-

basedAnomalyDetection.pdf?

Babichev, S., Taif, M. A., & Lytvynenko, V. (2016). Inductive model of data clustering based on

the agglomerative hierarchical algorithm. 2016 IEEE First International Conference on

Data Stream Mining & Processing (DSMP). doi:10.1109/dsmp.2016.7583499

Barber, M. J. (2007). Modularity and community detection in bipartite networks. Physical

Batagelj V, Zaversnik M (2003) An O(m) algorithm for cores decomposition of

networks. Eprint arXiv:cs/0310049

Bedi, P., & Sharma, C. (2016b). Community detection in social networks. Wiley

Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 6(3), 115–135.

Retrieved from https://doi.org/10.1002/widm.1178

Bendre M. R., Thool R. C. & Thool V. R. (2015). Big data in precision agriculture: Weather

forecasting for future farming. 1st International Conference on Next Generation

Computing Technologies (NGCT), Dehradun, pp. 744-750. DOI:

10.1109/NGCT.2015.7375220

https://doi.org/10.1002/widm.1178

78

Benson A. R., Gleich D. F., & Leskovec J. (2016). Higher-order organization of complex

networks. Science 353, 6295 (2016), 163–166. Retrieved from

DOI:http://dx.doi.org/10.1126/science.aad9029.

Berman D., Buczak A., Chavis J., & Corbett C. (2019). A Survey of Deep Learning Methods

for Cyber Security. Information, vol. 10, no. 4, p. 122.

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of

communities in large networks. Journal of Statistical Mechanics: Theory and

Experiment, 2008(10), P10008. Retrieved from https://doi.org/10.1088/1742-

5468/2008/10/P10008

 Bolaji A. (2018). Gephi visualization of communities in a graph. Unpublished activities in CGT

581, Spring Semester, Purdue University, Indiana.

Bostani H. & Sheikhan M. (2017). Hybrid of anomaly-based and specification-based IDS for

Internet of Things using unsupervised OPF based on MapReduce approach. Comput.

Commun., 98, pp. 52-71

Chaabene, N. E., Bouzeghoub, A., Guetari, R., & Ghezala, H. H. (2021). Deep learning

methods for anomalies detection in social networks using multidimensional networks

and multimodal data: A survey. Multimedia Systems. doi:10.1007/s00530-020-00731-

z

Chakraborty T., Dalmia A., Mukherjee A. & Niloy G. (2017). Metrics for Community

Analysis: A Survey. ACM Comput. Surv. 50 (4), 54:1–54:37.

Chalapathy R. & Chawla S. (2019). Deep learning for anomaly detection: A survey. arXiv

preprint arXiv:1901.03407.

Chandola, Banerjee & Kumar (2007). Anomaly Detection: A Survey ACM Computing Surveys

(CSUR),41(3), p.1-58,

Chen Z., Hendrix W., & Samatova N. F. (2011). Community-based anomaly detection in

evolutionary networks. Journal of Intelligent Information Systems, vol. 39, no. 1, pp.

59–85.

79

Clauset, A., Newman, M. E. J., & Moore, C. (2004). Finding community structure in very large

networks. Retrieved from https://arxiv.org/pdf/cond-mat/0408187.pdf.

Commons.wikimedia.org. Retrieved from:

https://commons.wikimedia.org/wiki/File:The_LSTM_cell.png

Constantin L. (2016). Armies of hacked IoT devices launch unprecedented DDoS attacks.

Retrieved from https://www.networkworld.com/article/3123817/security/armies-of-

hacked-iot-devices-launch-unprecedented-ddos-attacks.html

CrowdStrike Inc. (2020). 2020 CrowdStrike Global Threat Report. Retrieved from

https://www.crowdstrike.com/resources/reports/2020-crowdstrike-global-threat-report/

Deng G, Ma Z, & Li X. (2018). Overlapping community detection algorithm based on Markov

chain clustering. IEEE 3rd International Conference on Big Data Analysis (ICBDA),

Shanghai, 458-462.

Deshmukh, H. V. (2018). Community Detection in Cyber Networks. Theses and Dissertations.

Available from ProQuest. Retrieved from

https://docs.lib.purdue.edu/dissertations/AAI10808294

Do, E. & Gadepally, V. (2020). Classifying Anomalies for Network Security. ICASSP 2020 -

2020 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP). doi:10.1109/icassp40776.2020.9053419

Domingos P. & Hulten G. (2001). A General Method for Scaling Up Machine Learning

Algorithms and its Application to Clustering. In Proceedings of the Eighteenth

International Conference on Machine Learning. Pg. 106-113.

Donetti L. & Munoz M. (2004). Detecting network communities: a new systematic and efficient

algorithm. J Stat Mech P10012. doi:10.1088/1742-5468/2004/10/P10012

Fagnan J., Abnar A., Rabbany R. & Zaiane O.R. (2018) Modular Networks for Validating

Community Detection Algorithms. Retrieved from arxiv:1801.01229 [physics].

1801.01229.

Faltings B., Leyton-Brown K., & Ipeirotis P. (Eds.) (2012). Conference Proceeding, ACM

Conference on Electronic Commerce (EC’12). ACM. Retrieved from

http://dl.acm.org/citation.cfm?id=2229012

https://arxiv.org/pdf/cond-mat/0408187.pdf
https://www.networkworld.com/article/3123817/security/armies-of-hacked-iot-devices-launch-unprecedented-ddos-attacks.html
https://www.networkworld.com/article/3123817/security/armies-of-hacked-iot-devices-launch-unprecedented-ddos-attacks.html
https://www.crowdstrike.com/resources/reports/2020-crowdstrike-global-threat-report/
http://dl.acm.org/citation.cfm?id=2229012

80

Fan, H., Zhang, F., & Li, Z. (2020). Anomalydae: Dual Autoencoder for Anomaly Detection on

Attributed Networks. ICASSP 2020 - 2020 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP).

doi:10.1109/icassp40776.2020.9053387

Farias, G., Fabregas, E., Dormido-Canto, S., Vega, J., & Vergara, S. (2020). Automatic

recognition of anomalous patterns in discharges by recurrent neural networks. Fusion

Engineering and Design, 154, 111495. doi:10.1016/j.fusengdes.2020.111495.

Fortunato S. (2010). Community detection in graphs. Physics Reports 486, (3–5), 75–174.

Gan G., Ma C., & Wu J.(2007). Data Clustering: Theory, Algorithms, and Applications (ASA-

SIAM Series on Statistics and Applied Probability), SIAM.

Gendreau,A. A. & Moorman, M. (2016) Survey of intrusion detection systems towards an end to

end secure internet of things. In 2016 IEEE 4th international conference on future

internet of things and cloud (FiCloud) 2016 (pp. 84–90).

Girvan M. & Newman M. (2002). Community structure in social and biological networks. Proc

Natl Acad Sci USA 99(12):7821–7826.

Gkantsidis C., Mihail M., & Zegura E. (2003). Spectral analysis of internet topologies. In

Proceedings of the 22nd joint Conference of the Computer and Communications

Societies (INFOCOM), pp. 364–374, San Francisco, United States. IEEE.

Grau, A. (2015). “Can you trust your fridge?” IEEE Spectrum, 52(3), 50-56.

Greene T. (2016). Largest DDoS attack ever delivered by botnet of hijacked IoT devices.

Retrieved from https://www.networkworld.com/article/3123672/security/largest-ddos-

attack-ever-delivered-by-botnet-of-hijacked-iot-devices.html

Gregory S. (2009). Finding overlapping communities in networks by label propagation. Eprint

arXiv: 0910.5516.

Günnemann S., Färber I, Boden B., & Seidl T. (2014). Gamer: a synthesis of subspace clustering

and dense subgraph mining. Knowledge and Information Systems (KAIS), 40(2):243–

278.

https://www.networkworld.com/article/3123672/security/largest-ddos-attack-ever-delivered-by-botnet-of-hijacked-iot-devices.html
https://www.networkworld.com/article/3123672/security/largest-ddos-attack-ever-delivered-by-botnet-of-hijacked-iot-devices.html

81

Gupta B., Tewari A, Jain A. & Agrawal D. (2016). Fighting against phishing attacks: state of the

art and future challenges, Neural Computing and Applications 28(12), p.3629-3654.

Retrieved from doi>10.1007/s00521-016-2275-y

Harish V.K. (2016). An Anomaly-Based Intrusion Detection System Based on Artificial Immune

System (AIS) Techniques. Theses and Dissertations. Available from ProQuest.

Retrieved from https://docs.lib.purdue.edu/dissertations/AAI10808294

Hoque, N., Bhuyan, M. H., Baishya, R. C., Bhattacharyya, D., & Kalita, J. K. (2014). Network

attacks: Taxonomy, tools and systems. Journal of Network and Computer Applications,

40 , 307-324.

Huang, L., Wang, C., & Chao, H. (2018). Overlapping Community Detection in Multi-view Brain

Network. 2018 IEEE International Conference on Bioinformatics and Biomedicine

(BIBM). doi:10.1109/bibm.2018.8621075.

Hussain, F., Abbas, S. G., Fayyaz, U. U., Shah, G. A., Toqeer, A., & Ali, A. (2020). Towards a

Universal Features Set for IoT Botnet Attacks Detection. doi:10.21203/rs.3.rs-

114467/v1

Jie, F., Wang, C., Chen, F., Li, L., & Wu, X. (2020). A Framework for Subgraph Detection in

Interdependent Networks via Graph Block-Structured Optimization. IEEE Access, 8,

157800-157818. doi:10.1109/access.2020.3018497

Kai, K.S.B., Singtel E. C., & Balachandran V. (2020) Anomaly Detection on DNS Traffic using

Big Data and Machine Learning. Retrieved from http://ceur-ws.org/Vol-

2622/paper14.pdf

Katz J. & Aakhus M. (2001). Perpetual Contact: mobile communication, private talk, public

performance. Cambridge University Press, New York.

Kimberly G., (2010). Official Certified Ethical Hacker Review Guide. Second Edition. Wiley

Publishing, Inc., Indianapolis, Indiana.

Li M. & Liu J. (2018). A link clustering based memetic algorithm for overlapping community

detection. Physica A 503 (2018) 410–423.

http://ceur-ws.org/Vol-2622/paper14.pdf
http://ceur-ws.org/Vol-2622/paper14.pdf

82

Liao, W., Deng, K., & Wang, S. (2019). Community detection based on Graph Coloring. 2019

IEEE Symposium Series on Computational Intelligence (SSCI).

doi:10.1109/ssci44817.2019.9002759

Mahoney M. W., Dasgupta A., Lang K. J., & Leskovec J. (2009). Community structure in large

networks: Natural cluster sizes and the absence of large well-defined clusters. Internet

Mathematics 6(1), 29–123.

Maimo L., Gomez A., Clemente F., Perez M., & Perez G.M (2018). A Self-Adaptive Deep

Learning-Based System for Anomaly Detection in 5G Networks IEEE Access, 6, pp.

7700-7712.

Malhotra, P., Vig L., Gautam S. & Agarwal P. (2015). Long short term memory networks for

anomaly detection in time series. In ESANN, 23rd European Symposium on Artificial

Neural Networks, Computational Intelligence and Machine Learning.

Marcus A., (2013). Internet Security Overview. Workshop Notes, Africans Network Operators

Group. Lusaka, Zambia. Retrieved from https://nsrc.org/afnog

Marder, A., Luckie, M., Huffaker, B., & Claffy, K. (2020). Vrfinder. ACM SIGMETRICS

Performance Evaluation Review, 48(1), 55-56. doi:10.1145/3410048.3410080

Marteau, P. (2021). Random Partitioning Forest for Point-Wise and Collective Anomaly

Detection—Application to Network Intrusion Detection. IEEE Transactions on

Information Forensics and Security, 16, 2157-2172. doi:10.1109/tifs.2021.3050605

Meidan Y., Bohadana M., Mathov Y., Mirsky Y., Breitenbacher D., Shabtai A., & Elovici Y.,

(2018). “N-baiot: Network-based detection of iot botnet attacks using deep

autoencoders,” CoRR, vol. abs/1805.03409, [Online]. Available at:

http://arxiv.org/abs/1805.03409

Mirsky, Y., Doitshman, T., Elovici, Y., & Shabtai, A. (2018). Kitsune: an ensemble of

autoencoders for online network intrusion detection. In: Network and Distributed

System Security (NDSS) Symposium, San Diego, CA, USA

Moradi, F. (2014). Improving Community Detection Methods for Network Data Analysis.

http://www.cse.chalmers.se/~tsigas/papers/Farnaz-Thesis.pdf.

https://nsrc.org/afnog

83

Newman M. E. J. (2004). Detecting community structure in networks. EPJB 38 (2), 321–330.

Newman M. E. J. (2006). Modularity and community structure in networks. PNAS 103(23),

8577–8582. Retrieved from https://www.pnas.org/content/103/23/8577

Newman, M., & Girvan, M. (2004). Finding and evaluating community structure in networks.

Physical Review E, 69, 1–16. Retrieved from

https://doi.org/10.1103/PhysRevE.69.026113.

Noble C. & Cook D. (2003). Graph-based anomaly detection. In KDD. ACM, 631–636. Retrieved

from https://dl.acm.org/citation.cfm?id=956831

Nugraha, A., Perdana, M. A., Santoso, H. A., Zeniarja, J., Luthfiarta, A., & Pertiwi, A. (2018).

Determining The Senior High School Major Using Agglomerative Hierarchial

Clustering Algorithm. 2018 International Seminar on Application for Technology of

Information and Communication. doi:10.1109/isemantic.2018.8549834

Orgaz B., Salcedo-Sanz G. & Camacho D. (2018). A Multi-Objective Genetic Algorithm for

overlapping community detection based on edge encoding. Information Sciences.

462. 290-314. 10.1016/j.ins.2018.06.015.

Page Lawrence, Brin Sergey, Motwani Rajeev, & Winograd Terry (1999). The pagerank citation

ranking: Bringing order to the web. Technical report, Stanford InfoLab.

Papadopoulos, S., Kompatsiaris, Y., Vakali, A., & Spyridonos, P. (2011). Community detection

in Social Media. Data Mining and Knowledge Discovery, 24(3), 515-554.

doi:10.1007/s10618-011-0224-z.

Patterson, J. & Gibson, A. (2017). Deep Learning. A Practitioner’s Approach; O’Reilly Media,

Inc.: Sebastopol, CA, USA, pp. 6.

Peddabachigari, S., Abraham, A., Grosan, C., & Thomas, J. (2007). Modeling intrusion detection

system using hybrid intelligent systems. Journal of network and computer

applications, 30(1), 114-132.

https://doi.org/10.1103/PhysRevE.69.026113
https://dl.acm.org/citation.cfm?id=956831

84

Pons, P., & Latapy, M. (2006). Computing Communities in Large Networks Using Random

Walks. Journal of Graph Algorithms and Applications, 10(2), 191–218. Retrieved

from http://www.liafa.jussieu.fr/

Porter M.A., Onnela J.-P., & Mucha P.J. (2009). Communities in networks. Notices of the

American Mathematical Society, 56, pp. 1082-1166

Raghavan, U., Albert, R., & Kumara, S. (2007). Near linear time algorithm to detect community

structures in large-scale networks. Physical Review E, 76(3), 36106. Retrieved from

https://doi.org/10.1103/PhysRevE.76.036106

Raj Abhi (2016). Major cyber-attack disrupts internet service across Europe and US – Dyn

DDoS. Retrieved from https://securityzap.com/major-cyber-attack-disrupts-internet/.

Randall, A., Liu, E., Akiwate, G., Padmanabhan, R., Voelker, G. M., Savage, S., & Schulman, A.

(2020). Trufflehunter. Proceedings of the ACM Internet Measurement Conference.

doi:10.1145/3419394.3423640

Reddy, G. & Reddy G. (2014). A study of cyber security challenges and its emerging trends on

latest technologies. Retrieved from arXiv preprint arXiv: 1402.1842.

Reichardt J. & Bornholdt S. (2006). Statistical mechanics of community detection. Phys Rev E

74:016110. Review E - Statistical, Nonlinear, and Soft Matter Physics, 76(6).

Retrieved from https://journals.aps.org/pre/abstract/10.1103/PhysRevE.74.016110

Rhodes-Ousley M., (2013). Information Security: The Complete Reference. Second Edition. The

McGraw-Hill Companies.

Rosvall M. & Bergstrom C. T., (2007). Proc. Natl. Acad. Sci. USA 104, 7327

Roy, M. S., Roy, B., Gupta, R., & Sharma, K. D. (2020). On-Device Reliability Assessment and

Prediction of Missing Photoplethysmographic Data Using Deep Neural Networks.

IEEE Transactions on Biomedical Circuits and Systems, 14(6), 1323-1332.

doi:10.1109/tbcas.2020.3028935

Sarswat A. & Guddeti R. M. R. (2018). A novel overlapping community detection using parallel

CFM and sequential Nash equilibrium. 10th International Conference on

Communication Systems & Networks (COMSNETS), Bengaluru, pp. 649-654.

http://www.liafa.jussieu.fr/
https://doi.org/10.1103/PhysRevE.76.036106
https://securityzap.com/major-cyber-attack-disrupts-internet/

85

Scheitle Q., Gasser O., Emmerich P., & Carle Georg (2016). Carrier-Grade Anomaly Detection

Using Time-to-Live Header Information. Retrieved from arXiv:1606.07613v1

[cs.NI].

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Netw., 61, 85–

117.

Sen, T., Chaudhary, D. K., & Choudhury, T. (2017). Modified Page Rank Algorithm: Efficient

Version of Simple Page Rank with Time, Navigation and Synonym Factor. 2017 3rd

International Conference on Computational Intelligence and Networks (CINE).

doi:10.1109/cine.2017.24

Shao, M., Li, J., Chen, F., & Chen, X. (2018). An Efficient Framework for Detecting Evolving

Anomalous Subgraphs in Dynamic Networks. IEEE INFOCOM 2018 - IEEE

Conference on Computer Communications. doi:10.1109/infocom.2018.8485830

Shi J. & Malik J. (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal

Mach Intell. 22(8):888–905

Shipmon, D. T., Gurevitch, J. M., Piselli, P. M., & Edwards, S. T. (2017). Time Series Anomaly

Detection: Detection of Anomalous Drops with Limited Features and Sparse Examples

in Noisy

Sikorski, M., & Honig, A. (2012). Practical Malware Analysis (1st Ed., Vol. 1). San Francisco,

CA: No Starch Press.

Singh, D. K., Haraty, R. A., Debnath, N. C., & Choudhury, P. (2020). An Analysis of the

Dynamic Community Detection Algorithms in Complex Networks. 2020 IEEE

International Conference on Industrial Technology (ICIT).

doi:10.1109/icit45562.2020.9067224

Sorrell Steffen (2018). Juniper Research “IOT ~ The Internet of Transformation 2018”. Retrieved

from https://www.juniperresearch.com/document-library/white-papers/iot-the-

internet-of-transformation-2018.

86

Sun, H., He, F., Huang, J., Sun, Y., Li, Y., Wang, C., . . . Jia, X. (2020). Network Embedding for

Community Detection in Attributed Networks. ACM Transactions on Knowledge

Discovery from Data, 14(3), 1-25. doi:10.1145/3385415

Tan Y., Gu X, & Wang H. (2010). Adaptive system anomaly prediction for large-scale hosting

infrastructures. Proceedings of the 29th ACM SIGACT-SIGOPS symposium on

Principles of distributed computing. pp. 173-182.

Tanaka N., Ramachandran G. Krishnamachari & B. (2020). Poster: Centralized vs. Decentralized

Contact Tracing: Do GDP and Democracy Index Influence Privacy Choices?

IEEE/ACM International Conference on Connected Health: Applications, Systems

and Engineering Technologies (CHASE), Crystal City, VA, USA, 2020, pp. 14-1.

The CAIDA UCSD Statistical information for the CAIDA Anonymized Internet Traces.

Retrieved from https://www.caida.org/data/passive/passive_trace_statistics.xml.

[Accessed 04/12/2019].

Tong, H., Faloutsos, C. & Pan, J. (2008). Knowl Inf Syst 14: 327. Retrieved from

https://doi.org/10.1007/s10115-007-0094-2

Usha, M., & Nagadeepa, N. (2018). Combined two phase page ranking algorithm for sequencing

the web pages. 2018 2nd International Conference on Inventive Systems and Control

(ICISC). doi:10.1109/icisc.2018.8398925

Von Luxburg U. (2006). A tutorial on spectral clustering. Technical report 149. Max Planck

Institute for Biological Cybernetics, August 2006.

Wang J. & Paschalidis I. (2017). Botnet Detection Based on Anomaly and Community

Detection. in IEEE Transactions on Control of Network Systems, 4(2), pp. 392-404.

Wang J. P., Lin C., Obaidat M. S., Yu Z., Wei Z. & Zhang Q. (2020). Contact Tracing Incentive

for COVID-19 and other Pandemic Diseases from a Crowdsourcing Perspective," in

IEEE Internet of Things Journal. Retrieve from doi: 10.1109/JIOT.2020.3049024.

Wang, F., Li, T., Wang, X., Zhu, S., & Ding, C. (2011). Community discovery using

nonnegative matrix factorization. Data Mining and Knowledge Discovery, 22(3),

493-521. doi:10.1007/s10618-010-0181-y

https://www.caida.org/data/passive/passive_trace_statistics.xml

87

Wasserman S. & Faust K. (1994). Social network analysis: methods and applications. Cambridge

University Press, Cambridge.

Wegner D. (1995). A Computer Network Model of Human Transactive Memory. Social

Cognition: 13(3), pp. 319-339. https://doi.org/10.1521/soco.1995.13.3.319

Gao, J., Song, Wen Q., Wang X., Sun, L., Xu, H., & Zhu, S. (2020). RobustSTL: A Robust

Seasonal-Trend Decomposition Algorithm for Long Time Series. Proceedings of the

AAAI Conference on Artificial Intelligence, 33, 5409-5416.

doi:10.1609/aaai.v33i01.33015409

Wu, Y., Wei, D., & Feng, J. (2020). Network Attacks Detection Methods Based on Deep

Learning Techniques: A Survey. Security and Communication Networks, 2020, 1-

17. doi:10.1155/2020/8872923

Yamada, R., & Goto, S. (2013). Using abnormal TTL values to detect malicious IP

packets. Proceedings of the Asia-Pacific Advanced Network, 34(0), 27.

doi:10.7125/apan.34.14

Ye, F., Chen, C., Zheng, Z., Li, R., & Yu, J. (2019). Discrete Overlapping Community Detection

with Pseudo Supervision. 2019 IEEE International Conference on Data Mining

(ICDM). doi:10.1109/icdm.2019.00081

Ye, F., Li, S., Lin, Z., Chen, C., & Zheng, Z. (2018). Adaptive Affinity Learning for Accurate

Community Detection. 2018 IEEE International Conference on Data Mining

(ICDM). doi:10.1109/icdm.2018.00188

Zhou Xu, Liu Yancheng, Wang Jian & Li Chun (2017). A density-based link clustering

algorithm for overlapping community detection in networks. Physica A 486, 65–78.

Zhou, Y., & Li, J. (2019). Research of Network Traffic Anomaly Detection Model Based on

Multilevel Autoregression. 2019 IEEE 7th International Conference on Computer

Science and Network Technology (ICCSNT). doi:10.1109/iccsnt47585.2019.89625

Zurier S. (2021) Payment processor used by government hit by ‘Cuba’ ransomware gang.

Retrieved from https://www.scmagazine.com/home/security-news/payment-

processor-used-by-state-municipal-agencies-hit-by-cuba-ransomware-gang/

88

APPENDIX A. CODES

A.1 Unzipping Multiple PCAP Files From CAIDA

The following source code was used to unzip the pcap files.

from platform import python_version

print(python_version())

app.py

import zipFile

import os

import gzip

import shutil

os.chdir("/scratch/gilbreth/abolaji/passive-2019/equinix-nyc/20190117-

130000.UTC/")

search_path = os.getcwd()

file_type = ".gz"

for fname in os.listdir(path=search_path):

 if fname.endswith(file_type):

 with gzip.open(fname,'rb') as f_in:

 with open(fname+'.pcap','wb') as f_out:

 shutil.copyfileobj(f_in,f_out)

A.2 Extracting needed Data from PCAP Files into CSV

The following source code was used to extract the files to csv on the cluster.

#!/bin/sh -l

###

Number of cores and gpus

Sub-Cluster A: 20, 2

Sub-Cluster B: 24, 2

89

Sub-Cluster C: V100 GPUs 20, 4

Sub-Cluster D: 16, 2

Sub-Cluster E: V100 GPUs 16, 2

F: 40, ?

###

#SBATCH --job-name=tshark-convert

##SBATCH --mail-type=ALL

#SBATCH --mail-type=END

#SBATCH --mail-user=jaspring@purdue.edu

#SBATCH --account=partner

#SBATCH --time=23:59:00

#SBATCH --nodes=1

#SBATCH --gpus-per-node=1

#SBATCH --output=%x.%j.out

#SBATCH --mem-per-cpu=64GB

tshark -r $FILENAME -T fields -e ip.len -e ip.len -e ip.id -e ip.ttl -e ip.proto -e ip.src -e ip.dst -e

tcp.srcport -e tcp.dstport -e tcp.seq -e tcp.len -e tcp.stream -e tcp.time_relative -e tcp.time_delta -E

header=y -E separator=, -E quote=d -E occurrence=f > $FILENAME.csv

Script:

#!/bin/sh

for filename in *.pcap

do

sbatch --export=ALL,FILENAME=$filename tshark.command.sub

done

A.3 Merging the CSV Files into a Single File

import os

import glob

import pandas as pd

os.chdir(r"/depot/datalab/bolaji/Anoms/")

extension = 'csv'

90

all_filenames = [i for i in glob.glob('*.{}'.format(extension))]

Final = (pd.concat([pd.read_csv(f) for f in all_filenames]))

Final.to_csv("AnomaliesAll2.csv", index=False, sep=',',encoding='utf-8-sig

')

A.4 Code for LSTM Deep Learning Anomaly Detection Model

/**

* This code is an adaptation of the code from a book

*Title: Beginning Anomaly Detection Using Python-Based Deep Learning

*Author: Alla, S., & Adari, S. K.

*Date:2019

*Code version:

*Availability: Link

**/

import sys

import seaborn as sns

import pandas as pd

import matplotlib.pyplot as plt

print("pandas: ", pd.__version__)

print("seaborn: ", sns.__version__)

print("matplotlib.pyplot: ", plt.__version__)

filename= r"/depot/datalab/bolaji/A1/equinix-nyc.dirA.20190117-125910.UTC.

anon.pcap.csv"

df =pd.read_csv(filename,error_bad_lines=False, engine="python")

data_s = df[['frame.time','ip.len','ip.src','ip.dst','ip.ttl']].copy()

print('Shape:' , data_s.shape[0])

data_s = data_s.dropna()

doi:10.1007/978-1-4842-5177-5

91

print('Shape:' , data_s.shape[0])

data_s["frame.time"].str[:-4].astype("datetime64[ns]")

fig, (ax1) = plt.subplots(ncols=1, figsize=(8, 5))

ax1.set_title('Before Scaling')

sns.kdeplot(data_s['ip.ttl'], ax=ax1)

class Visualization:

 labels = ["Normal", "Anomaly"]

 def draw_anomaly(self, y, error, threshold):

 groupsDF = pd.DataFrame({'error': error,

 'true': y}).groupby('true')

 figure, axes = plt.subplots(figsize=(12, 8))

 for name, group in groupsDF:

 axes.plot(group.index, group.error, marker='x' if name == 1 el

se 'o', linestyle='',

 color='r' if name == 1 else 'g', label="Anomaly" if na

me == 1 else "Normal")

 axes.hlines(threshold, axes.get_xlim()[0], axes.get_xlim()[1], col

ors="b", zorder=100, label='Threshold')

 axes.legend()

 plt.title("Anomalies")

 plt.ylabel("Error")

 plt.xlabel("Data")

 plt.show()

 def draw_error(self, error, threshold):

92

 plt.figure(figsize=(10, 8))

 plt.plot(error, marker='o', ms=3.5, linestyle='',

 label='Point')

 plt.hlines(threshold, xmin=0, xmax=len(error)-1, colors="r", zorde

r=100, label='Threshold')

 plt.legend()

 plt.title("Reconstruction error")

 plt.ylabel("Error")

 plt.xlabel("Data")

 plt.show()

i = 0

tensorlog = tensorlogs[i]

dataFilePath = dataFilePaths[i]

print("tensorlog: ", tensorlog)

print("dataFilePath: ", dataFilePath)

df = pd.read_csv(filepath_or_buffer=dataFilePath, header=0, sep=',')

print('Shape:' , df.shape[0])

print('Head:')

print(df.head(5))

df['Datetime'] = pd.to_datetime(df['frame.time'])

#print(df.head(3))

#df.shape

#df.plot(x='Datetime', y='ip.len', figsize=(12,6))

#plt.xlabel('Date time')

#plt.ylabel('ip.len')

#plt.title('Time Series of ip.len by date time')

93

fig, (ax1) = plt.subplots(ncols=1, figsize=(8, 5))

ax1.set_title('Before Scaling')

sns.kdeplot(df['ip.len'], ax=ax1)

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler(feature_range = (0, 1))

df['scaled_ip.len'] = pd.DataFrame(scaler.fit_transform(pd.DataFrame(df['i

p.len'])),columns=['ip.len'])

print('Shape:' , df.shape[0])

df.head(5)

fig, (ax1) = plt.subplots(ncols=1, figsize=(8, 5))

ax1.set_title('After Scaling')

sns.kdeplot(df['scaled_ip.len'], ax=ax1)

data_s = df[['Datetime','ip.len','ip.src','ip.dst','ip.ttl','scaled_ip.len

']].copy()

print('Shape:' , data_s.shape[0])

data_s.head(5)

time_steps = 48

metric = 'mean_absolute_error'

model = Sequential()

model.add(LSTM(units=32, activation='tanh', input_shape=(time_steps, 1), r

eturn_sequences=True))

model.add(Dense(1, activation='sigmoid'))

model.compile(optimizer='adam', loss='mean_absolute_error', metrics=[metri

c])

94

print(model.summary())

sequence = np.array(data_s['scaled_ip.len'])

print(sequence)

time_steps = 48

samples = len(sequence)

trim = samples % time_steps

subsequences = int(samples/time_steps)

sequence_trimmed = sequence[:samples - trim]

print(samples, subsequences)

sequence_trimmed.shape = (subsequences, time_steps, 1)

print(sequence_trimmed.shape)

training_dataset = sequence_trimmed

print("training_dataset: ", training_dataset.shape)

batch_size=32

epochs=100

history = model.fit(x=training_dataset, y=training_dataset,batch_size=batc

h_size,epochs=epochs,

 verbose=1,validation_data=(training_dataset,training_dataset))

acc = history.history['mean_absolute_error']

val_acc = history.history['val_mean_absolute_error']

loss = history.history['loss']

val_loss = history.history['val_loss']

plt.figure(figsize=(8, 8))

95

plt.subplot(2, 1, 1)

plt.plot(acc, label='Training Mean Absolute Error')

plt.plot(val_acc, label='Validation Mean Absolute Error')

plt.legend(loc='upper right')

plt.ylabel('Mean Absolute Error')

plt.title('Training and Validation Mean Absolute Error')

plt.subplot(2, 1, 2)

plt.plot(loss, label='Training Loss')

plt.plot(val_loss, label='Validation Loss')

plt.legend(loc='upper right')

plt.ylabel('Mean Absolute Error')

plt.title('Training and Validation Loss')

plt.xlabel('epoch')

plt.show()

import math

from sklearn.metrics import mean_squared_error

sequence = np.array(data_s['scaled_ip.len'])

print(sequence)

time_steps = 48

samples = len(sequence)

trim = samples % time_steps

subsequences = int(samples/time_steps)

sequence_trimmed = sequence[:samples - trim]

print(samples, subsequences)

sequence_trimmed.shape = (subsequences, time_steps, 1)

96

print(sequence_trimmed.shape)

testing_dataset = sequence_trimmed

print("testing_dataset: ", testing_dataset.shape)

testing_pred = model.predict(x=testing_dataset)

print("testing_pred: ", testing_pred.shape)

testing_dataset = testing_dataset.reshape((testing_dataset.shape[0]*testin

g_dataset.shape[1]), testing_dataset.shape[2])

print("testing_dataset: ", testing_dataset.shape)

testing_pred = testing_pred.reshape((testing_pred.shape[0]*testing_pred.sh

ape[1]), testing_pred.shape[2])

print("testing_pred: ", testing_pred.shape)

errorsDF = testing_dataset - testing_pred

print(errorsDF.shape)

rmse = math.sqrt(mean_squared_error(testing_dataset, testing_pred))

print('Test RMSE: %.3f' % rmse)

#based on cutoff after sorting errors

dist = np.linalg.norm(testing_dataset - testing_pred, axis=-1)

scores =dist.copy()

print(scores.shape)

scores.sort()

cutoff = int(0.999 * len(scores))

97

print(cutoff)

#print(scores[cutoff:])

threshold= scores[cutoff]

print(threshold)

plt.plot(testing_dataset, color='green')

plt.plot(testing_pred, color='red')

z = zip(dist >= threshold, dist)

y_label=[]

error = []

for idx, (is_anomaly, dist) in enumerate(z):

 if is_anomaly:

 y_label.append(1)

 else:

 y_label.append(0)

 error.append(dist)

98

A.5 Code for Louvain Algorithm

/**

* This code is an adaptation of the code from

*Title: Exploring and Analyzing Network Data with Python

*Author: John R. Ladd, Jessica Otis, Christopher N. Warren, and Scott Weingart

*Date:2020

*Code version:

*Availability: Link

**/

import networkx as nx

import pandas as pd

import csv

from operator import itemgetter

from networkx.algorithms import community

with open('/depot/datalab/bolaji/Anoms/AnoUni/Nodes.csv', 'r') as nodecsv:

 # Open the file

 nodereader = csv.reader(nodecsv) # Read the csv

 # Retrieve the data (using Python list comprehension and list slicing

to remove the header row, see footnote 3)

 nodes = [n for n in nodereader][1:]

node_names = [n[0] for n in nodes] # Get a list of only the node names

https://doi.org/10.46430/phen0064

99

with open('/depot/datalab/bolaji/Anoms/AnoUni/Edges2.csv', 'r') as edgecsv

: # Open the file

 edgereader = csv.reader(edgecsv) # Read the csv

 edges = [tuple(e) for e in edgereader][1:] # Retrieve the data

G.add_nodes_from(node_names)

G.add_edges_from(edges)

print(nx.info(G))

import community as community_louvain

import matplotlib.cm as cm

import matplotlib.pyplot as plt

partition = community_louvain.best_partition(G)

%%time

draw the graph

pos = nx.spring_layout(G)

color the nodes according to their partition

cmap = cm.get_cmap('viridis', max(partition.values()) + 1)

nx.draw_networkx_nodes(G, pos, partition.keys(), node_size=40,

 cmap=cmap, node_color=list(partition.values()))

nx.draw_networkx_edges(G, pos, alpha=0.5)

plt.show()

#Graphtype = nx.Graph()

#G = nx.from_pandas_edgelist(df, 'Source', 'Target', ['TTL'])

100

A.6 Code for PageRank Algorithm Implementation

/**

* This code is an adaptation of the code from

*Title: PageRank algorithm

*Author: Unknown.

*Date:2021

*Code version:

*Availability: Link

**/

from scipy.sparse import coo_matrix

import numpy as np

import csv

nodesID = {}

n = 0

line_count = 0

%%time

with open('/depot/datalab/bolaji/Anoms/AnoUni/Edges2.txt', 'r') as edges:

Open the file

 for line in edges:

 line_count += 1

 if line.startswith('#') : continue

 tokens = line.strip().split('\t')

 #print tokens

 if tokens[0] not in nodesID:

 nodesID[tokens[0]] = n

 n += 1

https://notebook.community/shngli/Data-Mining-Python/Mining%20massive%20datasets/PageRank%20algorithm

101

 if tokens[1] not in nodesID:

 nodesID[tokens[1]] = n

 n += 1

col = []

row = []

value = []

line_count = 0

with open('/depot/datalab/bolaji/Anoms/AnoUni/Edges2.txt','r') as edges:

 for line in edges:

 line_count += 1

 if line.startswith('#') : continue

 tokens = line.strip().split('\t')

 url1 = nodesID[tokens[0]]

 url2 = nodesID[tokens[1]]

 col.append(url1)

 row.append(url2)

 value.append(1.0)

print (M)

M.shape

inLink = M.sum(1)

inLink

outLink = M.sum(0).T

outLink

outLink.shape

value = [1.0 / outLink[col[i], 0] for i, v in enumerate(value)]

102

M = coo_matrix((value, (row,col)), shape=(n, n))

print (M)

print (M.shape)

beta= 0.8

epsilon = 1./(10**11)

r = np.ones([n,1])

r = r/n

print (np.sum(r))

r

a_file = open(r"C:\Users\FOLA-BUNMI\Downloads\test.txt", "w")

for row in r:

 np.savetxt(a_file, row)

a_file.close()

for _ in range(250):

 old_r = r

 r = beta * M * r

 for j in range(n):

 if inLink[j,0] == 0 :

 r[j] = 0

 S = r.sum()

 r = r + (1 - S)/n

 if np.sum(np.abs(old_r - r)) < epsilon:

 print ("{} iterations".format(_))

 old_r = r

 break

 else:

103

 old_r = r

#print((r), [nodesID])

print(my_dict)

with open('test3.csv', 'w') as f:

 for key in my_dict.keys():

 f.write("%s,%s\n"%(key,my_dict[key]))

A.7 PageRank score for the first 1,000 nodes

SN PageRank (r) Source Node No.

1 0.035017014 146.206.121.50 232

2 0.027379503 161.39.9.234 11

3 0.002681855 52.30.35.134 66

4 0.002519125 61.94.210.119 47

5 0.00179733 203.253.164.213 1392

6 0.001670975 161.72.147.65 3169

7 0.001534544 162.198.28.36 3958

8 0.001440519 16.136.249.221 695

9 0.001222921 161.90.117.125 3895

10 0.00106154 175.241.100.26 265

11 0.001007772 161.89.82.225 4385

12 0.000997523 154.158.26.111 3951

13 0.000862354 182.22.78.12 3201

14 0.000794486 136.9.100.66 935

15 0.000756392 45.174.112.221 402

16 0.000711271 162.198.30.92 758

17 0.000687681 175.84.137.216 1868

18 0.000596885 161.185.16.201 1815

19 0.000590405 161.159.172.201 41

20 0.000571148 203.253.164.194 1368

21 0.000568642 161.158.26.29 3851

22 0.000565097 161.89.80.40 137

23 0.000553186 113.201.161.82 1873

24 0.000552511 180.211.115.96 5567

25 0.000536379 161.190.162.49 96

26 0.000536379 161.40.201.135 841

104

27 0.000536379 161.195.232.249 1680

28 0.000529342 164.172.28.39 1799

29 0.000512181 146.206.109.220 578

30 0.000498565 16.136.243.221 492

31 0.000496054 52.76.82.239 12104

32 0.000455721 52.31.77.43 1701

33 0.000448053 177.125.196.20 12142

34 0.000439589 182.245.239.8 3526

35 0.000439589 173.251.247.153 5082

36 0.000431111 182.22.75.34 570

37 0.000428756 203.66.190.180 1317

38 0.00042678 122.252.42.103 1811

39 0.000419912 25.111.51.13 1509

40 0.000419262 171.222.165.65 2494

41 0.000399336 170.237.67.207 1499

42 0.000391194 173.136.104.188 734

43 0.000391194 161.5.164.130 1355

44 0.000384838 55.87.248.82 13299

45 0.000383128 170.230.43.141 1641

46 0.000375062 113.201.213.247 2043

47 0.000375062 162.160.48.202 5260

48 0.000366418 16.136.247.134 184

49 0.00035893 203.21.182.107 2246

50 0.00035893 175.84.140.91 4984

51 0.00035893 173.219.98.240 10293

52 0.000350864 170.199.92.207 8559

53 0.000341848 85.171.48.156 1917

54 0.00034175 167.104.87.169 993

55 0.000338054 180.229.155.199 21669

56 0.000327882 104.150.50.154 3446

57 0.000327389 175.68.135.97 443

58 0.000326667 161.5.163.239 1920

59 0.000326667 170.238.213.189 6704

60 0.000326667 167.6.25.195 10485

61 0.000325418 55.49.253.216 2115

62 0.000310535 179.163.208.82 4665

63 0.000294404 52.55.168.212 2129

64 0.000294404 175.240.30.234 30819

65 0.000289661 202.118.75.59 2266

66 0.000288426 171.168.6.173 3831

67 0.000285187 180.222.92.75 4968

68 0.000278477 173.178.117.220 174

69 0.000278272 180.211.112.179 423

105

70 0.000278272 161.185.236.13 3032

71 0.000278272 170.199.231.214 3739

72 0.000275602 161.146.182.57 5527

73 0.000264456 169.77.36.139 3001

74 0.000263042 203.93.247.140 1476

75 0.000262387 180.120.208.121 5011

76 0.00026214 13.71.229.205 2567

77 0.00026214 143.143.105.224 5532

78 0.000255822 221.228.62.130 1273

79 0.000250041 16.136.226.91 8298

80 0.000248631 146.206.134.241 4212

81 0.000246008 52.18.155.118 1833

82 0.000246008 13.73.120.195 2881

83 0.000246008 145.122.186.46 3891

84 0.000246008 175.84.132.251 4528

85 0.000246008 136.28.170.224 10316

86 0.000245928 170.238.248.102 2021

87 0.000243466 173.214.39.173 1351

88 0.00022997 34.245.72.251 3073

89 0.000229877 16.136.226.67 197

90 0.000229877 171.129.182.189 651

91 0.000229877 164.172.28.72 1591

92 0.000229877 175.84.149.163 2589

93 0.000229877 180.120.246.58 6700

94 0.000228969 113.201.206.108 2428

95 0.000226316 171.199.171.70 1383

96 0.000221612 182.10.60.120 1574

97 0.000218571 131.14.142.66 5484

98 0.000217637 13.240.165.102 2507

99 0.000215583 161.130.10.187 858

100 0.000213947 131.251.199.162 1726

101 0.000213745 66.35.161.128 9

102 0.000213745 203.34.60.4 1553

103 0.000213745 173.141.34.43 4948

104 0.000213745 135.56.168.159 5297

105 0.000213745 202.127.153.85 5409

106 0.000213745 34.205.112.197 10178

107 0.000210191 30.239.0.80 1478

108 0.000208456 175.84.162.191 1805

109 0.000205679 131.118.66.106 5929

110 0.000203663 175.84.134.121 8852

111 0.000197815 203.97.55.35 10971

112 0.000197613 182.250.32.50 6232

106

113 0.000197613 13.69.50.179 1571

114 0.000197613 175.84.141.231 7887

115 0.000197613 173.136.99.20 11099

116 0.000196486 2.229.3.110 1560

117 0.000193118 52.86.120.79 1612

118 0.000192255 175.84.136.230 4831

119 0.000190827 132.252.197.238 183

120 0.000189651 77.5.227.184 5432

121 0.000186528 171.234.246.224 951

122 0.000186206 161.80.108.160 7611

123 0.000184296 182.245.236.238 635

124 0.000181482 175.71.242.171 6044

125 0.000181482 161.53.112.202 18271

126 0.000179333 180.237.7.211 33692

127 0.000179054 175.84.161.233 15144

128 0.000176825 113.201.196.117 2239

129 0.000169371 203.253.164.1 1512

130 0.000168051 25.111.247.34 2081

131 0.000166083 69.27.140.65 10640

132 0.00016535 42.27.128.130 1124

133 0.00016535 162.246.10.100 4862

134 0.00016535 175.84.135.158 5095

135 0.00016535 175.68.195.147 6247

136 0.00016535 175.84.137.60 6733

137 0.00016535 175.84.165.100 7015

138 0.00016535 175.84.148.118 7558

139 0.00016535 169.26.85.233 9279

140 0.00016535 113.201.152.182 12986

141 0.000162322 202.140.70.56 4379

142 0.000159973 131.251.72.25 313

143 0.000157435 182.250.24.143 1135

144 0.000156686 45.235.3.175 873

145 0.000154997 173.136.111.55 1353

146 0.000150947 118.163.134.75 12206

147 0.000149878 175.84.142.153 3416

148 0.00014942 23.12.195.252 1377

149 0.00014942 113.201.225.140 19870

150 0.000149366 136.199.115.221 12204

151 0.000149218 69.35.152.139 6727

152 0.000149218 175.84.153.197 6941

153 0.000149218 47.36.84.65 8813

154 0.000148965 136.127.65.201 655

155 0.000148527 177.125.214.33 13177

107

156 0.000145991 161.88.188.196 561

157 0.000145646 153.62.125.73 33618

158 0.000144999 182.19.217.203 1577

159 0.000141669 161.80.67.136 10136

160 0.000140703 180.120.246.99 1896

161 0.000140115 52.18.143.139 1959

162 0.00013993 160.219.74.44 8001

163 0.000139351 173.31.235.58 919

164 0.000137816 16.136.205.126 399

165 0.000137707 158.48.141.194 1033

166 0.000136825 161.40.202.25 845

167 0.000135177 162.102.142.231 7445

168 0.000135035 203.253.164.220 1401

169 0.00013477 52.30.19.146 2395

170 0.000133993 161.145.237.152 28171

171 0.000133115 161.185.16.250 1887

172 0.000133087 175.84.139.106 2010

173 0.000133087 175.84.162.247 4905

174 0.000133087 161.146.139.21 9377

175 0.000133087 131.14.83.225 11812

176 0.000133087 72.106.33.179 12793

177 0.000133087 175.241.82.27 18244

178 0.000133022 161.215.87.178 2636

179 0.000132586 77.38.63.129 4901

180 0.000132243 55.44.142.203 2484

181 0.000131358 175.84.138.196 1666

182 0.000130255 136.227.171.156 1678

183 0.000129241 171.198.95.58 8598

184 0.000129233 56.55.110.215 2213

185 0.000129193 161.195.235.72 829

186 0.000128821 180.212.185.134 1662

187 0.000127709 126.74.191.161 932

188 0.000126757 177.125.214.2 2806

189 0.000125722 162.102.134.75 472

190 0.000125675 161.190.11.221 16006

191 0.000125406 175.70.102.10 2181

192 0.000125089 195.192.187.139 838

193 0.000125021 162.160.50.34 6401

194 0.000124732 34.221.96.236 3160

195 0.000123742 161.185.226.108 1845

196 0.000122919 173.141.54.29 7032

197 0.000122332 135.56.237.29 5699

198 0.000118971 162.160.61.5 7170

108

199 0.000118893 66.84.56.228 4343

200 0.000118725 171.191.225.93 5788

201 0.000118221 175.84.142.234 4535

202 0.000117061 16.136.252.22 3751

203 0.000117 182.17.120.74 10611

204 0.000116955 72.106.32.148 105

205 0.000116955 177.125.214.123 2673

206 0.000116955 113.201.208.21 3139

207 0.000116955 70.251.239.212 7316

208 0.000116955 126.255.163.24 8874

209 0.000116955 161.195.225.62 14477

210 0.000116955 162.67.187.31 15942

211 0.000116955 180.120.208.81 16823

212 0.000116955 161.55.27.20 21149

213 0.00011695 99.11.157.14 9536

214 0.000114827 175.84.160.184 4171

215 0.000113794 77.226.254.216 34681

216 0.000113711 184.255.249.69 1670

217 0.000113055 170.199.90.7 393

218 0.000113039 171.198.7.158 663

219 0.000113005 61.18.60.155 12439

220 0.000112432 131.106.82.17 1790

221 0.000112295 175.84.135.67 1566

222 0.000112079 118.49.145.71 33627

223 0.00011168 113.201.183.224 13051

224 0.000111559 13.219.169.185 2786

225 0.000111158 34.210.255.150 1911

226 0.000110998 161.61.122.33 1102

227 0.000110156 175.70.12.172 13676

228 0.000109573 52.214.80.87 2513

229 0.000108573 69.35.151.255 7580

230 0.000108318 173.196.54.7 1071

231 0.000108292 182.232.27.224 62

232 0.000107326 171.198.20.109 2079

233 0.000107055 114.131.79.222 9292

234 0.000106382 175.84.138.68 3255

235 0.000106274 37.0.229.184 1251

236 0.0001062 45.224.106.3 6761

237 0.000106021 180.211.115.0 4646

238 0.000104003 161.30.51.62 35034

239 0.000102592 161.185.234.112 3011

240 0.00010236 175.71.184.115 2533

241 0.000101759 175.73.181.56 1221

109

242 0.000101695 52.30.20.243 20051

243 0.000101098 177.125.233.236 3064

244 0.000100823 42.27.130.233 1192

245 0.000100823 197.180.162.95 2501

246 0.000100823 66.134.187.165 3085

247 0.000100823 169.68.59.80 6239

248 0.000100823 173.141.0.93 6558

249 0.000100823 45.86.171.127 11402

250 0.000100823 161.40.201.214 14471

251 0.000100823 175.241.33.144 18756

252 0.000100823 113.201.214.206 20148

253 0.000100823 162.246.67.103 24134

254 0.00010055 161.5.166.179 3366

255 0.000100176 177.125.215.223 2553

256 0.000100159 175.84.140.107 755

257 9.97E-05 34.226.171.106 3081

258 9.93E-05 45.62.240.219 2116

259 9.88E-05 34.210.164.39 1860

260 9.86E-05 175.84.159.23 3284

261 9.85E-05 136.87.91.121 34822

262 9.75E-05 55.60.251.122 2886

263 9.74E-05 175.84.145.222 7678

264 9.73E-05 196.43.146.120 2370

265 9.72E-05 177.125.198.119 13117

266 9.58E-05 42.27.128.228 990

267 9.56E-05 175.84.147.224 4482

268 9.54E-05 178.57.62.237 4569

269 9.53E-05 161.185.239.157 1742

270 9.46E-05 153.62.125.77 6482

271 9.44E-05 175.69.146.15 9056

272 9.42E-05 223.231.151.122 590

273 9.30E-05 162.67.179.85 9005

274 9.22E-05 55.68.32.228 12638

275 9.21E-05 158.48.141.195 1089

276 9.16E-05 175.241.98.34 5101

277 9.14E-05 71.217.76.215 1035

278 9.11E-05 161.34.214.231 6009

279 9.09E-05 175.84.167.251 677

280 9.07E-05 161.80.15.194 7650

281 9.04E-05 161.80.21.16 29

282 8.99E-05 171.129.179.50 1091

283 8.95E-05 180.1.127.102 3457

284 8.92E-05 37.24.12.122 3978

110

285 8.92E-05 16.136.231.152 4144

286 8.88E-05 136.9.147.165 18398

287 8.87E-05 170.227.6.22 31763

288 8.81E-05 184.253.194.170 6433

289 8.79E-05 170.249.198.42 13048

290 8.73E-05 175.84.162.0 6389

291 8.65E-05 109.87.242.88 10398

292 8.56E-05 161.73.110.167 11782

293 8.55E-05 175.73.163.133 1300

294 8.54E-05 2.193.157.121 8880

295 8.53E-05 161.145.254.28 33058

296 8.52E-05 171.198.16.245 4685

297 8.50E-05 175.71.19.30 5128

298 8.50E-05 199.124.196.2 4846

299 8.49E-05 202.73.26.224 7613

300 8.48E-05 117.154.56.83 21089

301 8.48E-05 175.84.142.175 15285

302 8.48E-05 170.237.66.134 1439

303 8.47E-05 175.241.66.34 1720

304 8.47E-05 161.30.44.114 1718

305 8.47E-05 113.201.216.252 2861

306 8.47E-05 182.250.165.156 5811

307 8.47E-05 202.136.44.161 5876

308 8.47E-05 45.224.163.238 6419

309 8.47E-05 161.40.201.48 6449

310 8.47E-05 143.143.186.124 6479

311 8.47E-05 161.5.163.201 6831

312 8.47E-05 173.168.29.235 6855

313 8.47E-05 180.232.18.139 7407

314 8.47E-05 173.55.233.240 7808

315 8.47E-05 75.201.73.153 7929

316 8.47E-05 161.40.202.112 7962

317 8.47E-05 161.127.77.23 11616

318 8.47E-05 55.86.232.34 11808

319 8.47E-05 171.198.22.195 13847

320 8.47E-05 171.235.126.88 16884

321 8.47E-05 175.84.135.162 17599

322 8.47E-05 161.75.137.245 19038

323 8.47E-05 175.84.161.196 20821

324 8.47E-05 175.73.227.102 1063

325 8.45E-05 161.89.80.249 3296

326 8.44E-05 161.34.213.125 793

327 8.43E-05 158.48.141.222 1219

111

328 8.42E-05 161.80.15.114 4705

329 8.40E-05 180.237.55.118 10114

330 8.39E-05 13.49.59.120 2232

331 8.34E-05 112.98.126.124 1058

332 8.33E-05 161.80.46.254 10401

333 8.33E-05 182.250.166.246 653

334 8.24E-05 45.22.118.155 8217

335 8.23E-05 175.68.119.52 1054

336 8.18E-05 7.23.50.233 1441

337 8.16E-05 161.145.143.124 3068

338 8.15E-05 175.84.164.20 8774

339 8.14E-05 62.47.94.54 212

340 8.14E-05 129.197.65.92 93

341 8.09E-05 171.129.178.204 428

342 8.02E-05 161.131.83.182 4271

343 7.98E-05 113.201.203.53 12838

344 7.98E-05 113.201.229.73 2144

345 7.96E-05 175.71.106.137 12520

346 7.91E-05 175.84.154.106 17649

347 7.90E-05 171.176.21.97 20553

348 7.84E-05 175.68.140.189 13763

349 7.83E-05 171.222.163.13 23

350 7.83E-05 173.168.17.208 4784

351 7.80E-05 109.234.166.154 3504

352 7.79E-05 16.136.252.33 717

353 7.76E-05 200.7.28.69 4739

354 7.74E-05 136.10.171.94 3699

355 7.68E-05 175.71.43.0 28173

356 7.66E-05 132.252.133.80 2216

357 7.66E-05 175.84.133.171 8802

358 7.66E-05 146.206.122.3 14401

359 7.66E-05 175.84.137.128 17676

360 7.63E-05 113.201.153.63 2251

361 7.63E-05 42.27.129.231 3157

362 7.61E-05 52.103.137.30 10877

363 7.58E-05 47.52.147.0 3615

364 7.57E-05 16.136.249.248 5018

365 7.55E-05 161.5.248.122 37568

366 7.53E-05 55.83.255.223 12152

367 7.52E-05 161.89.82.3 2487

368 7.47E-05 23.23.119.230 3374

369 7.45E-05 69.104.35.55 974

370 7.41E-05 164.172.28.86 1321

112

371 7.40E-05 143.48.213.220 36574

372 7.40E-05 136.255.161.199 1643

373 7.38E-05 146.206.103.177 3368

374 7.37E-05 146.206.111.237 17333

375 7.35E-05 34.243.94.245 2693

376 7.26E-05 55.11.19.172 12133

377 7.24E-05 161.130.5.120 19

378 7.23E-05 203.80.10.188 693

379 7.22E-05 182.16.8.210 6382

380 7.20E-05 175.84.147.45 7183

381 7.19E-05 180.212.218.0 1109

382 7.16E-05 161.40.201.247 4804

383 7.14E-05 99.116.52.166 14252

384 7.13E-05 161.89.82.193 4455

385 7.11E-05 161.34.211.200 13843

386 7.11E-05 203.80.4.202 27115

387 7.07E-05 182.22.77.190 5150

388 7.07E-05 45.80.165.99 414

389 7.06E-05 175.84.138.66 2957

390 7.05E-05 161.34.216.199 11024

391 7.04E-05 13.57.233.243 3042

392 7.03E-05 175.73.177.63 6993

393 6.98E-05 175.84.150.15 4993

394 6.98E-05 203.253.164.234 1480

395 6.92E-05 175.240.12.168 5522

396 6.90E-05 201.222.50.139 1781

397 6.90E-05 161.104.68.0 12465

398 6.89E-05 146.206.111.221 8376

399 6.86E-05 161.146.133.214 18606

400 6.86E-05 173.136.103.220 3392

401 6.86E-05 202.209.124.14 23226

402 6.86E-05 175.84.157.180 14070

403 6.86E-05 146.206.166.122 9724

404 6.86E-05 203.244.242.151 1031

405 6.86E-05 63.47.55.31 2689

406 6.86E-05 34.235.250.164 2698

407 6.86E-05 72.106.58.237 2873

408 6.86E-05 170.238.213.157 6556

409 6.86E-05 171.191.230.89 8515

410 6.86E-05 175.69.188.176 8954

411 6.86E-05 61.158.234.149 9149

412 6.86E-05 69.35.149.97 9708

413 6.86E-05 203.67.62.219 10215

113

414 6.86E-05 161.89.80.210 10615

415 6.86E-05 131.175.72.28 10835

416 6.86E-05 191.151.24.211 10917

417 6.86E-05 167.104.87.176 10983

418 6.86E-05 203.38.37.209 11840

419 6.86E-05 136.185.4.113 12012

420 6.86E-05 113.201.169.87 12975

421 6.86E-05 143.143.105.247 17077

422 6.86E-05 49.36.203.110 17263

423 6.86E-05 182.22.238.22 18578

424 6.86E-05 131.14.105.30 18730

425 6.86E-05 203.140.147.225 18932

426 6.86E-05 113.201.220.69 20577

427 6.86E-05 180.212.217.82 26351

428 6.86E-05 117.154.143.252 26611

429 6.86E-05 113.201.139.154 26928

430 6.86E-05 13.240.42.98 27435

431 6.86E-05 175.84.142.53 28259

432 6.86E-05 173.250.209.222 28698

433 6.86E-05 180.90.99.80 30693

434 6.86E-05 161.185.239.148 2049

435 6.86E-05 52.117.186.251 13417

436 6.83E-05 170.251.76.66 1634

437 6.76E-05 42.27.129.217 3612

438 6.75E-05 161.34.167.147 71

439 6.70E-05 117.155.121.170 11035

440 6.69E-05 45.169.199.230 598

441 6.68E-05 162.190.51.56 7602

442 6.65E-05 164.37.46.149 2586

443 6.65E-05 173.168.29.4 3362

444 6.65E-05 175.69.101.89 12438

445 6.57E-05 175.68.171.136 5679

446 6.56E-05 182.250.35.130 6257

447 6.55E-05 161.31.199.1 213

448 6.54E-05 175.240.22.218 27

449 6.54E-05 175.68.242.114 9822

450 6.54E-05 175.240.29.77 10733

451 6.53E-05 164.88.118.203 10593

452 6.52E-05 195.192.101.48 14384

453 6.51E-05 175.73.97.129 5705

454 6.47E-05 146.206.106.93 272

455 6.45E-05 218.183.179.115 14481

456 6.44E-05 113.201.197.30 85

114

457 6.44E-05 113.201.142.213 12416

458 6.43E-05 173.136.103.61 270

459 6.41E-05 175.240.19.130 25

460 6.41E-05 113.201.152.212 2610

461 6.40E-05 182.127.153.108 30988

462 6.40E-05 113.201.199.100 12696

463 6.39E-05 25.111.44.39 1314

464 6.38E-05 203.24.248.14 5161

465 6.37E-05 203.38.38.172 21504

466 6.33E-05 146.206.112.136 374

467 6.32E-05 175.84.132.186 4836

468 6.32E-05 149.14.184.87 2870

469 6.31E-05 96.126.217.23 5902

470 6.31E-05 161.191.71.155 2482

471 6.25E-05 180.229.153.50 43

472 6.23E-05 203.253.166.231 1576

473 6.23E-05 161.146.157.139 10803

474 6.22E-05 171.232.87.24 30476

475 6.20E-05 13.243.152.14 1673

476 6.19E-05 171.198.4.59 6201

477 6.17E-05 203.29.249.106 45

478 6.16E-05 169.68.59.181 4008

479 6.14E-05 171.235.127.4 3481

480 6.10E-05 175.84.131.250 4713

481 6.09E-05 161.90.153.12 23140

482 6.06E-05 160.219.79.42 13996

483 6.05E-05 175.70.12.189 463

484 6.05E-05 201.67.248.4 6617

485 6.04E-05 113.201.220.239 2917

486 6.03E-05 175.84.137.29 5362

487 6.01E-05 45.125.27.124 11230

488 5.99E-05 175.84.161.145 12853

489 5.95E-05 96.163.14.177 1698

490 5.95E-05 162.188.201.69 10807

491 5.94E-05 203.253.166.182 1501

492 5.94E-05 174.110.86.7 4812

493 5.93E-05 161.75.142.20 20555

494 5.93E-05 113.201.155.91 19899

495 5.92E-05 161.30.44.209 2850

496 5.92E-05 136.28.84.105 36781

497 5.91E-05 175.73.60.97 18272

498 5.89E-05 45.235.120.227 1523

499 5.89E-05 175.68.62.142 9966

115

500 5.89E-05 69.35.151.186 7345

501 5.89E-05 171.128.144.2 2868

502 5.89E-05 175.240.2.221 22389

503 5.88E-05 190.26.240.64 11038

504 5.85E-05 170.199.82.70 4397

505 5.84E-05 52.205.189.139 19983

506 5.82E-05 161.195.225.237 32899

507 5.81E-05 16.136.248.125 4405

508 5.78E-05 171.191.238.130 768

509 5.77E-05 135.56.249.65 7721

510 5.77E-05 66.84.63.11 5934

511 5.76E-05 175.71.220.53 4875

512 5.74E-05 161.185.230.184 1518

513 5.74E-05 61.119.179.184 1077

514 5.73E-05 161.40.201.61 254

515 5.72E-05 87.88.34.35 10756

516 5.71E-05 175.241.104.182 21829

517 5.70E-05 161.31.223.65 19732

518 5.69E-05 99.116.52.241 9454

519 5.69E-05 175.84.153.206 3330

520 5.68E-05 180.222.92.161 30625

521 5.66E-05 55.46.187.192 12873

522 5.65E-05 187.92.12.45 12408

523 5.65E-05 182.250.165.252 4632

524 5.63E-05 161.185.234.208 27413

525 5.62E-05 175.84.128.58 17845

526 5.62E-05 7.19.133.217 2001

527 5.62E-05 161.34.217.226 4470

528 5.62E-05 161.80.26.237 22392

529 5.61E-05 203.253.165.9 1555

530 5.60E-05 118.187.245.138 4038

531 5.58E-05 175.84.160.58 1636

532 5.57E-05 175.84.135.20 22950

533 5.53E-05 175.240.28.219 19390

534 5.53E-05 149.46.170.58 33828

535 5.52E-05 175.241.123.112 820

536 5.49E-05 161.146.132.170 3535

537 5.48E-05 218.183.191.102 9317

538 5.47E-05 35.124.60.27 2593

539 5.47E-05 45.224.196.59 661

540 5.46E-05 45.81.254.25 10957

541 5.46E-05 113.201.210.185 1304

542 5.46E-05 161.54.117.88 5233

116

543 5.45E-05 128.42.138.47 10769

544 5.45E-05 171.168.34.114 4359

545 5.44E-05 202.209.119.35 299

546 5.44E-05 161.83.185.252 11143

547 5.41E-05 166.146.141.2 10471

548 5.40E-05 161.90.142.126 18266

549 5.40E-05 52.205.249.22 31966

550 5.39E-05 180.229.196.142 28652

551 5.38E-05 135.56.113.198 7805

552 5.37E-05 113.201.202.36 2332

553 5.37E-05 16.136.205.115 4307

554 5.36E-05 161.158.16.235 1185

555 5.36E-05 171.176.23.228 25459

556 5.35E-05 173.215.35.94 25885

557 5.35E-05 55.163.84.27 12274

558 5.33E-05 49.208.195.160 5021

559 5.32E-05 164.172.28.87 1517

560 5.31E-05 161.130.2.160 52

561 5.31E-05 171.168.39.71 19248

562 5.30E-05 55.64.116.216 12941

563 5.29E-05 162.160.50.76 4617

564 5.28E-05 175.84.137.21 1828

565 5.28E-05 170.251.76.67 1632

566 5.28E-05 170.250.216.79 5786

567 5.27E-05 201.244.25.195 24849

568 5.27E-05 113.201.128.184 2447

569 5.26E-05 161.61.74.224 10059

570 5.26E-05 161.72.151.220 25552

571 5.26E-05 36.90.130.103 15308

572 5.26E-05 182.244.58.120 22827

573 5.26E-05 161.191.210.66 3126

574 5.25E-05 182.250.165.179 168

575 5.25E-05 161.75.179.83 30897

576 5.25E-05 161.5.248.106 1179

577 5.25E-05 161.89.81.139 7846

578 5.25E-05 161.5.164.126 14729

579 5.24E-05 175.73.200.12 14037

580 5.24E-05 34.245.13.205 1563

581 5.24E-05 161.40.204.7 413

582 5.24E-05 216.2.118.156 1586

583 5.24E-05 113.201.191.21 1599

584 5.24E-05 72.106.40.247 1763

585 5.24E-05 107.180.44.227 2411

117

586 5.24E-05 177.125.235.165 2441

587 5.24E-05 175.84.167.200 2659

588 5.24E-05 52.0.228.197 2755

589 5.24E-05 161.124.191.125 2830

590 5.24E-05 13.210.11.245 2983

591 5.24E-05 55.44.135.96 3059

592 5.24E-05 175.71.232.115 3095

593 5.24E-05 161.40.202.196 3681

594 5.24E-05 175.241.57.253 4158

595 5.24E-05 173.214.39.23 4254

596 5.24E-05 187.92.13.82 5405

597 5.24E-05 161.5.163.96 5793

598 5.24E-05 146.206.172.94 6175

599 5.24E-05 180.232.112.188 7369

600 5.24E-05 203.99.189.60 7908

601 5.24E-05 175.84.159.19 8133

602 5.24E-05 90.35.152.217 8622

603 5.24E-05 173.164.225.39 8627

604 5.24E-05 131.251.72.3 8663

605 5.24E-05 42.27.130.95 8900

606 5.24E-05 161.145.142.21 9309

607 5.24E-05 175.84.167.69 9625

608 5.24E-05 175.84.145.215 9635

609 5.24E-05 46.215.222.34 10271

610 5.24E-05 175.73.36.30 10360

611 5.24E-05 161.55.85.18 10409

612 5.24E-05 171.234.248.31 10613

613 5.24E-05 91.36.232.224 10821

614 5.24E-05 45.23.21.158 10853

615 5.24E-05 162.103.190.77 10863

616 5.24E-05 136.9.223.183 11072

617 5.24E-05 161.40.187.175 11162

618 5.24E-05 219.109.93.205 11297

619 5.24E-05 175.71.245.238 11386

620 5.24E-05 170.196.26.83 11605

621 5.24E-05 175.240.17.57 11864

622 5.24E-05 175.84.163.110 12442

623 5.24E-05 34.196.221.19 12467

624 5.24E-05 161.190.11.41 12492

625 5.24E-05 113.201.205.125 12503

626 5.24E-05 173.215.42.11 12536

627 5.24E-05 214.148.89.178 12655

628 5.24E-05 175.84.133.146 12787

118

629 5.24E-05 7.25.109.140 13222

630 5.24E-05 52.214.145.151 13291

631 5.24E-05 118.65.53.55 13370

632 5.24E-05 113.201.188.222 13398

633 5.24E-05 45.224.196.81 15391

634 5.24E-05 171.168.47.197 15647

635 5.24E-05 143.143.146.27 15710

636 5.24E-05 171.168.20.1 16051

637 5.24E-05 175.84.164.43 16110

638 5.24E-05 201.83.205.135 17123

639 5.24E-05 175.84.131.219 17231

640 5.24E-05 180.222.199.101 17442

641 5.24E-05 126.17.208.101 17540

642 5.24E-05 143.143.60.21 18286

643 5.24E-05 117.182.166.135 18520

644 5.24E-05 170.250.24.1 18543

645 5.24E-05 184.255.249.29 18549

646 5.24E-05 162.67.227.37 18598

647 5.24E-05 171.176.30.63 19156

648 5.24E-05 37.62.229.216 19405

649 5.24E-05 175.73.39.27 19449

650 5.24E-05 131.14.107.10 19773

651 5.24E-05 182.19.217.199 20077

652 5.24E-05 13.56.54.165 20394

653 5.24E-05 175.84.151.129 21552

654 5.24E-05 184.253.82.66 23177

655 5.24E-05 161.145.137.185 23328

656 5.24E-05 175.73.103.108 23989

657 5.24E-05 162.190.71.241 23998

658 5.24E-05 135.56.93.41 24092

659 5.24E-05 173.141.36.211 25045

660 5.24E-05 136.127.111.6 25297

661 5.24E-05 136.186.102.248 25433

662 5.24E-05 161.190.163.201 25741

663 5.24E-05 170.199.127.169 25745

664 5.24E-05 161.146.184.245 26101

665 5.24E-05 218.247.229.8 26262

666 5.24E-05 171.176.28.126 26372

667 5.24E-05 161.158.54.205 26550

668 5.24E-05 161.31.202.230 26585

669 5.24E-05 177.125.235.199 26720

670 5.24E-05 146.7.148.109 26807

671 5.24E-05 203.254.27.22 27032

119

672 5.24E-05 113.201.157.177 27366

673 5.24E-05 136.34.92.147 27560

674 5.24E-05 169.26.85.236 27631

675 5.24E-05 195.192.215.89 27999

676 5.24E-05 135.56.148.187 28007

677 5.24E-05 171.198.93.159 29731

678 5.24E-05 174.236.10.2 30500

679 5.24E-05 173.129.186.137 30536

680 5.24E-05 46.22.0.92 30668

681 5.24E-05 171.220.0.205 30775

682 5.24E-05 175.73.89.182 31055

683 5.24E-05 103.96.207.254 31075

684 5.24E-05 45.21.227.167 31316

685 5.24E-05 173.136.99.93 31380

686 5.24E-05 25.64.12.24 31884

687 5.24E-05 55.160.190.4 32521

688 5.24E-05 175.84.144.230 35052

689 5.23E-05 60.77.138.58 20750

690 5.21E-05 175.73.223.31 10299

691 5.20E-05 171.198.21.254 7464

692 5.19E-05 158.48.218.137 10192

693 5.19E-05 161.40.201.161 22115

694 5.19E-05 57.57.222.246 377

695 5.17E-05 161.146.161.23 3244

696 5.17E-05 34.192.136.182 2749

697 5.15E-05 211.176.102.94 4090

698 5.14E-05 171.222.160.19 91

699 5.13E-05 202.209.114.107 3402

700 5.12E-05 52.115.245.102 12158

701 5.11E-05 170.238.221.203 5781

702 5.11E-05 49.36.197.222 8617

703 5.11E-05 175.84.148.239 7053

704 5.10E-05 143.110.26.70 25389

705 5.07E-05 175.68.147.234 14135

706 5.07E-05 161.131.81.57 7227

707 5.06E-05 201.240.78.94 351

708 5.05E-05 180.211.115.111 2911

709 5.04E-05 203.38.44.111 1423

710 5.04E-05 175.73.29.76 30862

711 5.04E-05 203.253.164.217 1363

712 5.03E-05 171.198.3.99 3253

713 5.01E-05 192.175.233.74 34275

714 5.01E-05 177.125.198.100 2306

120

715 5.01E-05 190.202.169.114 5694

716 5.00E-05 223.231.48.108 21638

717 5.00E-05 180.1.127.184 143

718 4.99E-05 175.84.151.3 6091

719 4.98E-05 182.237.78.108 59

720 4.98E-05 128.222.2.57 3988

721 4.97E-05 175.84.159.205 7153

722 4.97E-05 170.238.219.205 13784

723 4.95E-05 171.168.1.86 9524

724 4.95E-05 98.110.231.226 18987

725 4.92E-05 175.70.123.230 18135

726 4.92E-05 171.222.166.82 18985

727 4.90E-05 161.5.163.58 4526

728 4.90E-05 223.249.45.189 1525

729 4.89E-05 180.1.127.205 35469

730 4.88E-05 175.70.199.213 23424

731 4.88E-05 16.136.226.93 4057

732 4.87E-05 157.62.163.30 5797

733 4.86E-05 173.31.236.23 21839

734 4.84E-05 173.196.45.98 11160

735 4.84E-05 203.94.159.252 13737

736 4.83E-05 182.247.131.151 14454

737 4.83E-05 52.118.34.253 25374

738 4.81E-05 175.241.82.247 10197

739 4.81E-05 61.119.179.174 10495

740 4.79E-05 117.164.136.187 18260

741 4.79E-05 140.152.217.245 1960

742 4.78E-05 175.240.27.138 25977

743 4.78E-05 175.84.146.248 21572

744 4.78E-05 136.185.84.254 18264

745 4.76E-05 175.84.162.224 6517

746 4.76E-05 113.201.170.5 2109

747 4.75E-05 161.190.175.22 799

748 4.73E-05 161.185.239.150 2783

749 4.73E-05 182.250.167.52 3716

750 4.72E-05 210.200.42.157 9460

751 4.71E-05 173.141.3.146 1333

752 4.71E-05 161.145.137.5 7398

753 4.70E-05 175.84.141.219 10089

754 4.69E-05 146.206.114.34 698

755 4.69E-05 161.53.63.135 4683

756 4.68E-05 204.227.68.11 10130

757 4.67E-05 162.173.237.136 2613

121

758 4.67E-05 175.84.160.18 21332

759 4.65E-05 113.201.224.197 13272

760 4.65E-05 171.168.7.220 5268

761 4.65E-05 161.89.82.111 14262

762 4.64E-05 175.68.237.97 25019

763 4.64E-05 126.40.66.145 1256

764 4.64E-05 170.231.102.97 5828

765 4.63E-05 170.238.217.194 583

766 4.63E-05 175.84.147.240 6210

767 4.63E-05 175.84.156.138 2341

768 4.61E-05 182.237.79.201 31

769 4.60E-05 105.18.187.26 2421

770 4.60E-05 45.226.119.98 21494

771 4.60E-05 108.41.214.156 15783

772 4.59E-05 161.55.84.198 2660

773 4.57E-05 69.35.149.123 5647

774 4.57E-05 175.84.161.160 12595

775 4.57E-05 45.172.88.122 8232

776 4.56E-05 175.84.156.67 5091

777 4.54E-05 171.176.19.188 3668

778 4.54E-05 175.241.13.208 23511

779 4.53E-05 45.226.7.39 6933

780 4.53E-05 161.159.173.4 1257

781 4.53E-05 175.68.209.27 4290

782 4.53E-05 175.84.162.165 20018

783 4.52E-05 61.22.69.19 17362

784 4.51E-05 175.84.141.24 9510

785 4.51E-05 161.89.86.8 8471

786 4.51E-05 223.231.106.161 7027

787 4.51E-05 170.199.73.62 953

788 4.50E-05 161.30.54.219 35

789 4.50E-05 162.190.19.20 4285

790 4.50E-05 45.23.226.189 36761

791 4.50E-05 211.143.185.136 3192

792 4.49E-05 113.201.142.240 26645

793 4.49E-05 171.176.24.46 11239

794 4.48E-05 45.175.66.2 14138

795 4.48E-05 161.30.45.207 77

796 4.48E-05 182.17.80.76 4923

797 4.47E-05 136.199.114.44 9763

798 4.47E-05 80.8.30.102 33987

799 4.47E-05 161.40.203.205 3945

800 4.47E-05 161.31.214.144 19997

122

801 4.45E-05 162.98.225.154 10940

802 4.44E-05 161.130.10.14 12818

803 4.44E-05 170.238.254.203 10536

804 4.44E-05 113.201.149.231 12092

805 4.44E-05 161.53.131.127 22504

806 4.44E-05 161.145.143.3 25728

807 4.44E-05 41.149.85.159 26497

808 4.44E-05 171.235.116.20 27324

809 4.44E-05 161.53.10.229 28493

810 4.44E-05 177.125.214.167 32370

811 4.42E-05 212.195.73.104 16603

812 4.42E-05 162.161.21.25 1157

813 4.41E-05 113.201.226.181 12563

814 4.40E-05 175.84.164.76 6603

815 4.39E-05 161.145.233.52 15814

816 4.39E-05 175.84.141.246 6819

817 4.39E-05 175.73.215.240 18783

818 4.39E-05 113.201.207.39 37570

819 4.38E-05 175.241.75.89 275

820 4.38E-05 175.84.147.222 8718

821 4.38E-05 161.144.97.216 31419

822 4.38E-05 175.68.92.223 21416

823 4.38E-05 161.34.214.24 114

824 4.38E-05 45.62.144.11 11716

825 4.36E-05 211.176.97.222 8389

826 4.36E-05 42.27.131.111 267

827 4.36E-05 166.194.196.29 10438

828 4.36E-05 16.110.190.135 28990

829 4.35E-05 173.196.126.143 4436

830 4.35E-05 128.72.211.35 30736

831 4.32E-05 202.209.114.244 18087

832 4.32E-05 161.146.191.131 34047

833 4.32E-05 161.80.58.84 4510

834 4.32E-05 55.44.128.232 1409

835 4.32E-05 116.100.240.235 10266

836 4.32E-05 202.148.107.213 25815

837 4.32E-05 223.231.21.33 6156

838 4.31E-05 187.92.14.27 1928

839 4.31E-05 69.35.147.85 8229

840 4.31E-05 201.92.22.86 11885

841 4.31E-05 180.211.1.240 13839

842 4.31E-05 170.238.72.21 3554

843 4.31E-05 173.141.2.155 1820

123

844 4.30E-05 25.74.174.165 12602

845 4.30E-05 162.67.181.61 14552

846 4.30E-05 37.232.225.142 12017

847 4.30E-05 161.40.202.34 33963

848 4.28E-05 175.84.140.113 2293

849 4.27E-05 175.71.1.163 8938

850 4.26E-05 55.63.179.121 13000

851 4.25E-05 175.241.100.25 297

852 4.25E-05 52.201.47.29 100

853 4.25E-05 71.217.221.229 1080

854 4.24E-05 35.79.178.51 20041

855 4.24E-05 69.35.155.124 7179

856 4.23E-05 170.227.13.31 795

857 4.23E-05 52.218.22.236 12365

858 4.23E-05 175.84.154.86 33722

859 4.23E-05 175.84.132.87 17657

860 4.23E-05 36.59.215.145 22669

861 4.23E-05 161.39.15.102 10784

862 4.22E-05 202.209.116.72 8932

863 4.22E-05 223.166.150.244 11212

864 4.21E-05 146.7.147.205 1386

865 4.21E-05 49.36.159.243 8398

866 4.21E-05 175.84.128.99 3343

867 4.20E-05 202.209.125.142 815

868 4.19E-05 45.170.193.77 37258

869 4.19E-05 161.72.1.141 24210

870 4.19E-05 201.244.17.53 6350

871 4.18E-05 170.238.72.108 36394

872 4.17E-05 202.118.35.6 20977

873 4.17E-05 42.27.128.77 20987

874 4.17E-05 162.103.88.227 25248

875 4.16E-05 118.66.185.104 13346

876 4.16E-05 45.172.78.83 11223

877 4.15E-05 173.215.39.205 2611

878 4.14E-05 175.84.132.245 1604

879 4.14E-05 175.84.155.156 13874

880 4.14E-05 175.240.10.56 6399

881 4.13E-05 37.190.21.119 5242

882 4.12E-05 201.194.10.94 8673

883 4.12E-05 136.127.65.149 36822

884 4.11E-05 162.160.153.28 14688

885 4.11E-05 180.229.155.131 13813

886 4.11E-05 171.235.120.182 21310

124

887 4.11E-05 177.125.214.27 2145

888 4.10E-05 175.84.153.151 880

889 4.10E-05 161.5.163.232 4136

890 4.10E-05 175.70.105.76 23896

891 4.10E-05 161.146.134.191 32584

892 4.09E-05 161.83.182.175 12518

893 4.09E-05 113.201.215.235 31620

894 4.09E-05 175.84.140.10 4762

895 4.09E-05 177.160.239.227 10274

896 4.09E-05 161.75.133.153 554

897 4.08E-05 179.163.203.99 331

898 4.08E-05 143.45.162.123 19029

899 4.07E-05 35.5.69.9 18246

900 4.06E-05 161.185.231.254 10909

901 4.06E-05 220.178.3.149 18486

902 4.06E-05 187.92.213.3 6064

903 4.06E-05 161.146.140.150 18524

904 4.06E-05 175.69.130.10 33442

905 4.05E-05 161.40.202.205 3394

906 4.05E-05 16.136.247.143 538

907 4.05E-05 161.80.16.160 3302

908 4.04E-05 175.71.211.9 9945

909 4.04E-05 113.201.219.212 1786

910 4.03E-05 136.68.156.29 1319

911 4.03E-05 113.201.201.246 1722

912 4.03E-05 161.40.202.191 9152

913 4.03E-05 161.83.253.244 20780

914 4.03E-05 161.40.204.24 24794

915 4.03E-05 175.84.155.225 30752

916 4.03E-05 175.84.140.88 7756

917 4.03E-05 135.56.61.236 21841

918 4.03E-05 162.173.232.53 24418

919 4.02E-05 175.73.57.187 11792

920 4.01E-05 182.236.93.238 4252

921 4.01E-05 131.14.10.51 5953

922 4.01E-05 80.9.254.161 5178

923 4.01E-05 161.53.10.162 30074

924 4.00E-05 13.51.248.22 12325

925 4.00E-05 170.227.4.52 9732

926 4.00E-05 37.27.86.234 8808

927 4.00E-05 175.71.182.14 23849

928 4.00E-05 171.128.156.245 7143

929 4.00E-05 167.104.87.168 1068

125

930 3.99E-05 175.84.134.115 28467

931 3.98E-05 55.36.78.80 31695

932 3.98E-05 170.238.203.236 5863

933 3.98E-05 195.89.24.101 12399

934 3.97E-05 162.102.118.153 22624

935 3.97E-05 175.241.116.116 3464

936 3.96E-05 113.201.216.125 2321

937 3.96E-05 161.145.232.158 10950

938 3.95E-05 118.65.59.110 20234

939 3.95E-05 136.7.228.97 9025

940 3.95E-05 180.211.115.29 14771

941 3.95E-05 162.198.28.34 670

942 3.95E-05 161.5.150.26 8221

943 3.94E-05 175.84.132.203 3640

944 3.94E-05 171.199.181.86 37196

945 3.94E-05 200.28.218.248 29165

946 3.93E-05 117.154.160.44 25963

947 3.93E-05 175.84.136.10 13854

948 3.93E-05 113.201.196.152 20390

949 3.93E-05 161.80.4.220 8330

950 3.93E-05 175.84.152.254 8681

951 3.92E-05 161.40.202.119 8846

952 3.92E-05 173.196.77.144 4628

953 3.92E-05 170.230.42.53 34975

954 3.92E-05 143.48.177.27 26051

955 3.91E-05 113.201.151.195 1305

956 3.91E-05 161.61.127.96 3439

957 3.91E-05 13.219.210.141 13145

958 3.90E-05 173.215.40.67 1826

959 3.90E-05 179.160.58.204 10279

960 3.90E-05 171.168.22.161 16136

961 3.90E-05 158.48.141.156 1056

962 3.90E-05 173.250.215.201 2804

963 3.90E-05 75.201.73.155 7858

964 3.90E-05 182.237.76.144 21813

965 3.90E-05 113.201.192.116 31645

966 3.89E-05 175.84.156.201 18000

967 3.89E-05 161.5.161.34 5737

968 3.88E-05 105.229.64.61 11029

969 3.88E-05 203.253.164.255 1378

970 3.88E-05 131.96.193.7 54

971 3.88E-05 171.198.20.108 30884

972 3.88E-05 170.227.3.236 32645

126

973 3.88E-05 161.130.5.34 4546

974 3.88E-05 173.219.141.10 5504

975 3.88E-05 113.201.191.7 12238

976 3.88E-05 194.191.86.134 21603

977 3.87E-05 45.62.83.102 2766

978 3.86E-05 171.235.120.255 5541

979 3.86E-05 175.70.191.45 10837

980 3.86E-05 175.251.49.114 16993

981 3.86E-05 175.84.155.232 611

982 3.86E-05 135.56.51.68 5385

983 3.86E-05 131.96.29.66 23086

984 3.86E-05 170.230.40.14 3735

985 3.85E-05 161.80.34.23 7797

986 3.85E-05 175.84.151.186 5363

987 3.85E-05 171.220.86.170 28879

988 3.85E-05 42.27.130.163 21549

989 3.84E-05 143.45.227.111 10501

990 3.84E-05 162.191.104.189 30887

991 3.84E-05 173.215.42.10 32006

992 3.84E-05 170.199.101.4 475

993 3.84E-05 99.11.157.100 28244

994 3.84E-05 211.176.102.228 6864

995 3.84E-05 113.201.208.82 20211

996 3.84E-05 180.211.115.183 13811

997 3.83E-05 202.118.33.252 18640

998 3.83E-05 175.84.163.201 545

999 3.83E-05 175.84.145.217 23339

1000 3.83E-05 161.144.232.64 1664

