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ABSTRACT

Polymer matrices present in composite materials are prone to have time-dependent be-

havior very sensitive to changes in temperature. The modeling of thermoviscoelasticity is

fundamental for capturing the performance of anisotropic viscoelastic materials subjected

to both mechanical and thermal loads, or for manufacturing simulation of composites. In

addition, improved plate/shell and beam models are required to efficiently design and sim-

ulate large anisotropic composite structures. Numerical models have been extensively used

to capture the linear viscoelasticity in composites, which can be generalized in integral or

differential forms. The hereditary integral constitutive form has been adopted by many re-

searchers to be implemented into finite element codes, but its formulation is complex and

time consuming as it is function of the time history. The differential formulation provides

faster computation times, but its applicability has been limited to capture the behavior of

three-dimensional thermoviscoelastic orthotropic materials.

This work extends mechanics of structure genome (MSG) to construct linear thermovis-

coelastic solid, plate/shell and beam models for multiscale constitutive modeling of three-

dimensional heterogeneous materials made of time and temperature dependent constituents.

The formulation derives the transient strain energy based on integral formulation for ther-

morheologically simple materials subject to finite temperature changes. The reduced time

parameter is introduced to relate the time-temperature dependency of the anisotropic ma-

terial by means of master curves at reference conditions. The thermal expansion creep is

treated as inherent material behavior. Exact three-dimensional thermoviscoelastic homoge-

nization solutions are also formulated for laminates modeled as an equivalent, homogeneous,

anisotropic solid. The new model is implemented in SwiftCompTM, a general-purpose multi-

scale constitutive modeling code based on MSG, to handle real heterogeneous materials with

arbitrary microstructures, mesostructures or cross-sectional shapes.

Three-dimensional representative volume element (RVE) analyses and direct numerical

simulations using a commercial finite element software are conducted to verify the accuracy

of the MSG-based constitutive modeling. Additionally, MSG-based plate/shell results are

validated against thin-ply high-strain composites experimental data showing good agreement.
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Numerical cases with uniform and nonuniform cross-sectional temperature distributions are

studied. The results showed that unlike MSG, the RVE method exhibits limitations to

properly capture the long-term behavior of effective coefficients of thermal expansion (CTEs)

when time-dependent constituent CTEs are considered. The analyses of the homogenized

properties also revealed that despite the heterogeneous nature of the composite material,

from a multiscale analysis perspective, the temperature dependencies of the effective stiffness

and thermal stress properties are governed by the same shift factor as the polymer matrix.

This conclusion remains the same for MSG-based solid, plate/shell and beam models with

uniform temperature distributions.
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1. INTRODUCTION

1.1 Background and Motivation

Fiber reinforced composites are increasingly being used in high-performance structures

and aerospace applications such as light weight components, additively manufactured com-

posite tools ([ 1 ], [ 2 ]) such as the one shown in Figure  1.1 , deployable booms, solar sails or

space antennas [ 3 ]. These structures need to withstand certain mechanical loads under wide

temperature variations and operate for long periods of time. Polymer matrices present in

composite materials are prone to have time-dependent behavior very sensitive to changes in

temperature. Creep happens when a viscoelastic material is exposed to quasi-static persis-

tent stresses and stress changes which may lead to a reduction of the load bearing capacity

of the material and energy dissipation [ 4 ]. In case strains are applied instead of stresses, the

phenomenon is called relaxation. This time-dependent behavior is significantly influenced

by the environmental conditions such as temperature, mechanical loads, or a combination of

both [ 3 ].

Figure 1.1. An additively manufactured composite tool (also presented in Ref. [  1 ]).

During the thermal cure cycle of a composite, two types of shrinkage appear, including

thermal shrinkage and chemical shrinkage. The thermal shrinkage is due to the thermal

deformation during heating and cooling of the composite and it is represented by means

of the coefficients of thermal expansion (CTEs). The chemical shrinkage is caused by the

reduction in the resin volume. In case of thermoset resins, the chemical shrinkage depends

on the progression of the degree of cure (DOC). For thermoplastic resin, it is function of the

crystallization and it can be expressed as a function of the degree of crystallinity (DOC).
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Since the deformation is restrained in composite materials, residual stresses appear due

to the process-induced chemical shrinkage and thermal shrinkage. The thermomechanical

anisotropy leads to the manifestation of residual stresses at both macroscopic and microscopic

levels. At microscopic level, the residual stresses may provoke matrix cracking as well as fiber-

matrix debonding; at macroscopic level, they are detrimental for the dimensional stability

of the product, fatigue life of the part and yield strength [ 5 ]. Once the composite part

is removed from the tool, the presence of residual stresses in the part generates undesired

distortions that provoke geometrical deviations with respect to manufacturing tolerances.

These distortions are mitigated following a mold compensation strategy that often relies on

numerical models based on the finite element method.

In general, the higher the shrinkage strain of the resin, the higher is the residual stress

[ 6 ]. Although the residual stresses can be beneficial under certain circumstances, they are

in general detrimental and undesired on-dominated transverse loading, depending on the

magnitude of the residual stress and the material strength. However, for pure shear loading

and compression-dominated transverse loading, the residual stress is always detrimental [ 6 ].

If thermoelastic analysis is used instead of thermoviscoelastic analysis (see Figure  1.2 ),

the former will give a reasonable prediction of the dimensional stability of the final shape

of the de-tooled part. However, the absolute deformation and the residual stress levels

will be inaccurate ([ 7 ], [ 8 ]). The thermoelastic type of analysis does not account for the

time-dependence of the material properties and thus, no effect of the cooling rate on the

dimensional stability will be predicted. A thermoelastic approach can be used to obtain

initial estimation of internal stresses, but it will tend to provide over-estimations since it

ignores relaxation [ 9 ]. In other words, the thermoelastic model accounts for the generation

of the strains but the relaxation of the stresses will not be considered. Once the composite

processing is completed, the residual stress tends to relax to a constant value [  7 ]. It is

noted that the proper prediction of the internal stress state is essential for accurate initial

failure and fatigue analyses of composite materials. Albeit the stress state obtained from a

thermoelastic analysis could be more conservative as it neglects relaxation, it could lead to

the design of heavier composite materials due to not predicting properly the initial stress

states for the performance analysis.
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One of the main challenges of thermoviscoelastic analysis compared to thermoelastic

analysis is that the number of variables required to characterize the material can be high and

thus, increase the experimental work. Thermoviscoelastic analysis can also require significant

amount of storage space and computation time if conventional analysis is considered. For

instance, if the material is orthotropic, nine independent stiffness matrix components need

to be defined, which in turn also requires the expensive characterization of nine independent

master curves at the lab [ 10 ]. Stiffness components could also have significantly different

temperature dependencies and require their independent characterization. This is even more

time-consuming if some material behavior simplifications such as thermorheologically simple

materials are not assumed. Furthermore, it is not trivial to experimentally characterize

several components like off-axis stiffness components in relaxation experiments [ 11 ]. These

facts lead to adoption of accurate and efficient multiscale approaches to generate the required

equivalent microscale, mesoscale, and macroscale thermoviscoelastic properties. Indeed, the

necessity to improve the homogenization process of highly filled composite materials has

been identified by other researches ([ 10 ], [  12 ]).

Figure 1.2. Different fidelity levels of constitutive modeling (adapted from Ref. [ 13 ]).

In case of thin-ply high-strain composites (TP-HSC) technology, it is more widely being

adopted for high-performance aerospace applications such as flexible composites for morphing

wings and deployable space structures like solar sails, deployable booms or space antennas [  3 ]

(see Figure  1.3 ). TP-HSC are made of thin laminae, which are approximately 0.02 to 0.1 mm
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thick, and are thermally more stable than traditional space-rated metals [ 14 ]. In addition,

some of their main advantages are that they offer excellent packaging properties, low-cost,

lightweight, higher resistance to material failure by delamination, resistance to microcrack-

ing, improved aging and fatigue resistance, and improved damage tolerance to manufacturing

imperfections ([ 15 ], [  16 ]). These space structures can be stored after launch for years before

deployment and thus, are designed to operate for long periods of time and withstand certain

mechanical loads under wide range of temperature variations and sometimes under extreme

conditions. However, the changes in temperature for long periods of time can affect the

material properties of the polymer matrices present in composite materials. The relaxation

of the polymer matrix can indeed lead to an unsuccessful deployment, and their short-term

and long-term durability, thermal stability as well as structural integrity are a source of great

concern ([ 14 ], [ 17 ]). The success of a mission can be compromised by the reduction of the

bending stiffness and an incomplete recovery of the structural shape caused by the relax-

ation of the matrix ([ 18 ], [ 19 ]). In case of thermal effects, three types of thermally induced

motions namely thermal snap, thermally induced vibrations, and thermally induced flutter,

which provoke thermal-mechanical iterations and attitude disturbances have been observed

in flown spacecrafts [ 20 ]. Thermal snap consists of a bending deformation caused by rapidly

changing temperature gradients that does not result in vibration. For this kind of applica-

tions, composite materials offer a significant advantage over metals as they are lightweight

and thermally more stable [ 14 ]. Engineering of the coefficients of thermal expansion (CTEs)

has been a key feature to increase the thermal stability of composite structures and avoid

these undesired deformations [ 3 ]. The effective CTEs of these structures are controlled by

selecting the adequate constituent material for the mesostructures [ 21 ]. The control over

the CTEs should be more pronounced over the orientations in which the polymer matrix

dominates [ 4 ] as the fiber has almost negligible coefficients of thermal expansion. This can

be achieved by engineering either the microstructure (i.e. arrangement of the fibers and

matrix) or the mesostructure (i.e. layup angles or lattice configurations) [  22 ]. Therefore, im-

proved multiscale models that also account for thermoviscoelastic behavior are fundamental

for proper design and deployment planning of these structures.
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Many TP-HSC structures such as deployed composite booms can be modeled using

plate/shell models or beam models, thus leading to much simpler governing equations and

convenient interpretation of the results. Traditional plate/shell models, however, cannot

satisfactorily handle TP-HSC structures having small thicknesses because these models rely

on different ad hoc assumptions such as the Kirchhoff–Love assumptions and the plane stress

assumption. Plates are degenerated shells with zero initial curvatures. As far as the consti-

tutive modeling is concerned, a MSG-based plate model can also be used for shells as long as

the initial curvature is not too large [ 23 ]. In case of beam models, one has to capture the be-

havior associated with the eliminated two dimensions, named the cross-sectional coordinates

[ 24 ], to take advantage of this geometric feature without loss of accuracy. Bearing in mind

its efficiency and simplicity, beam models are often interesting to be used in system level

analyses or preliminary designs. Traditional beam models, nonetheless, cannot accurately

handle slender structures consisting of highly anisotropic, and heterogeneous materials such

as TP-HSC because these models rely on different ad hoc assumptions such as the uniaxial

stress assumption. The fully populated matrix of cross-sectional stiffness properties that cap-

ture the couplings among all forms of deformation modes are not considered with traditional

methods [ 25 ], and there is a gap between existing linear thermoviscoelastic constitutive solid

models and existing beam models.

(a) Lenticular boom (source [ 25 ]) (b) Hinge (source [ 26 ])

Figure 1.3. Self-deployable structures made of composite materials.
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The technology developed for self-deployable space structures has encountered other com-

mercial applications such as expeditionary structures or shelters for disaster relief scenarios,

temporary infrastructure, or consumer goods such as golf shafts. In all these applications the

aforementioned relaxation behavior is of great concern. Therefore, the accurate modeling of

thermoviscoelasticity is fundamental for capturing the performance of anisotropic viscoelas-

tic materials subjected to both mechanical and thermal loads that are present during the

manufacturing and operations of the composite parts.

1.2 Literature Review

Earlier linear thermoviscoelastic analyses of composite materials were proposed by Hashin

([ 27 ]–[ 30 ]), Schapery ([  31 ]–[ 33 ]), and Christensen [ 34 ]. These homogenization approaches

relied on the correspondence principle ([ 32 ], [  34 ]–[ 36 ]) and analytical models such as the

self-consistent [ 37 ], Mori and Tanaka [ 38 ], and dilute solution models. Later, Park and

Schapery [  39 ] derived an efficient numerical method to convert the compliance and modulus

functions among the Laplace, time, and frequency domains. Noh and Whitcomb [ 40 ] derived

an analytical solution to study the behavior of symmetric and balanced laminates considering

orthotropic lamina properties. Levin et al. [ 41 ] derived an analytical approach for computing

the effective viscoelastic properties based on the fraction-exponential operator. Liu and Shi

[ 42 ] proposed an analytical solution based on trigonometric series to capture the residual

stress and deformation in flat composite laminates considering thermoviscoelastic effects.

Several authors have proposed numerical approaches to compute the effective viscoelastic

stiffness of composite materials without considering the temperature effects. For instance,

the homogenization of viscoelastic matrices reinforced with spherical particles was studied by

several authors ([ 43 ]–[ 48 ]). The effective mechanical properties of three-phase viscoelastic

composites featuring viscoelastic interphases between the matrix and spherical inclusions

were predicted by Brinson et al. ([ 43 ], [  44 ]).

Nonlinear viscoelastic composites reinforced with randomly generated spherical inclu-

sions were studied by Lévesque et al.[ 45 ]. Muliana and Kim [ 46 ] developed a micromechanics

model based on representative volume element analysis (RVE) for composites made of non-

25



linear viscoelastic matrix and linearly elastic spherical solids. Gusev [ 49 ] studied short fiber

reinforced composites predicting their viscoelastic stiffness. Zobeiry [ 13 ] proposed a differen-

tial approach to numerically study the thermoviscoelastic behavior of composite materials,

and implemented it to homogenize isotropic and transversely isotropic thermoviscoelastic

media [ 50 ]. Pathan et al. [  51 ] used numerical approaches to get the effective properties

of unidirectional fiber reinforced composites (UDFRC). Tang and Felicelli [  52 ] followed the

variational asymptotic method for unit cell homogenization (VAMUCH) [ 53 ] to compute

the effective viscoelastic properties of a UDFRC. Textile composites were analyzed by El

Mourid et al. [ 54 ], who consider linearly viscoelastic resin with a constant Poisson’s ratio

and elastic yarns. Courtois et al. ([ 12 ], [ 55 ]) proposed a numerical thermoviscoelastic model

to homogenize textile composites following a thermodynamics framework ([ 56 ], [  57 ]) assum-

ing orthotropic behavior. The epoxy resin was experimentally characterized according to the

model proposed in Ref. [ 58 ], integrated in an Abaqus framework [ 59 ], and used to analyze

the distortion of plates ([ 60 ], [  61 ]).

Few authors studied the temperature-dependent viscoelastic behavior ([ 62 ], [ 63 ]) and ana-

lyzed the role of the CTEs for viscoelastic media undergoing thermal or mechanical deforma-

tions. Cai and Sun [ 64 ] simulated the thermoviscoelastic behavior of 3D braided composites

and a priori assumed without mathematically proving the same time-temperature super-

position principle (TTSP) relationship for the composite and for the resin. Zobeiry et al.

([ 13 ], [ 50 ]) implemented a temperature-dependent viscoelastic model into a FE software to

model isotropic and transversely isotropic behaviors. Spencer and Boyer [ 65 ] experimentally

observed the thermal relaxation behavior in polymer materials. Mukherjee et al. [ 66 ] experi-

mentally found the same behavior for thin polymer films as a function of the glass-transition

temperature, Tg. The thinner the polymer film, the more evident are the counter-intuitive

effects of the thermal relaxation [ 67 ] and negative thermal expansivity [  68 ]. Schapery formu-

lated relaxation type effects occurring for the thermal expansion behavior and applied them

to describe the behavior of composite materials considering the quasi-elastic approach ([ 33 ],

[ 69 ]). Zocher et al. [  70 ] derived a numerical algorithm to solve the uncoupled initial bound-

ary value problem involving orthotropic viscoelastic media that considered the contribution

of the stiffness matrix and CTEs. The relaxation of the thermal expansion behavior was also
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formulated by Lakes [ 71 ]. Khan and Muliana [ 72 ] performed parametric studies of the ef-

fective time-temperature-stress-dependent CTEs for particulate composites considering that

the particle and matrix constituents are temperature dependent. Cai and Sun [ 64 ] assumed a

Prony series expression of the effective CTEs of braided composites to simulate the thermal

expansion deformation with time. Pettermann and DeSimone followed the thermal strain

approach to express CTEs in terms of Prony series and analyze the thermal expansion creep

[ 73 ]. The formulation was implemented into an implicit finite element method (FEM) code

under plane stress assumption.

Different cure-dependent viscoelastic models for epoxy resins have been proposed in the

literature. Kim and White [ 74 ] captured the cure dependency of the composite material

through the time shift factor aT which also had temperature dependent behavior. This

model has been extensively adopted in subsequent work of Kim and White ([  75 ]–[ 77 ]) and

by several other authors that modeled thermoviscoelasticity ([ 50 ], [ 78 ]–[ 81 ]). Simon et al.

[ 82 ] considered the DiBenedetto equation [ 83 ] to relate the degree of cure with the glass-

transition temperature Tg and to do so, they proposed to adopt the cure-dependent Tg as

the reference temperature. O’Brien et al. [  84 ] suggested to use a cure dependency stiffness

of a linearly viscoelastic model. Courtois et al. ([  12 ], [ 55 ], [ 58 ], [ 59 ]) linked the resin be-

havior to the thermodynamic principles and introduced the cure dependency of the resin

using single convoluted integrals. In case of thermoplastic composite materials, Chapman

et al. [ 85 ] introduced the Standard Linear Solid (SLS) viscoelastic constitutive model to

describe the behavior of polyetheretherketone (PEEK). The model accounted for the effects

of crystallinity assuming that the PEEK behaved as an isotropic material. Lawrence et al.

[ 86 ] implemented the SLS model to predict the residual stress generation in a laminate.

Experimental results have also been used to validate homogenization results. A numerical

time-dependent model for plain weave composites was proposed by Xuet al. [ 87 ], who later

compared their predictions against uniaxial tension relaxation tests at room temperature.

Nonlinear viscoelastic composites were studied by means of a numerical finite element (FE)

approach by Haj-Ali and Muliana [ 88 ]. This FE approach relied on the RVE analysis. They

used creep and stress relaxation data to validate their simulation results. The same finite

element approach was extended to capture the behavior of thermorheologically complex
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materials with time-temperature variations. The homogenized predictions were compared

against experimental creep results on orthotropic laminates [  63 ] and multi-layered composites

[ 62 ]. 3D interlock woven composite structures were numerically and experimentally studied

by Courtois et al. [ 12 ]. The homogenization approach assumed that the matrices were

orthotropic. Temperature dependence for the mesoscale was assumed to be the same as that

of the neat resin because the Arrhenius parameters of the tows were already the same as that

of the neat resin [ 12 ]. To represent 3D interlock woven, they used conventional RVE analysis

on a voxel mesh and applied mixed uniform boundary conditions (MUBC). It is noted that

whereas MUBC and periodic boundary conditions (PBCs) led to the same elastic properties

if orthotropic materials are considered ([ 89 ], [  90 ]), MUBC provided non-trivial differences for

randomly oriented fibers under macroscopic uniaxial tensile stress and using strong matrix

hardening. Their 3D interlock woven voxel model also exhibited some convergence issues

[ 12 ].

In the area of micromechanics of TP-HSC, little work has been published. Polymer beams

and tape springs were first computationally analyzed under stowage conditions by Kwok and

Pellegrino ([ 91 ]–[ 93 ]). This work was extended to composite tape springs by considering a

viscoelastic model for plain weave structures ([ 94 ], [ 95 ]). Gomez-Delrio and Kwok [  96 ] ana-

lyzed the bending of a TP-HSC plate with a simplified analytical model and a finite element

simulation. They found that the results from the two models match well when a uniform

distribution of curvature is assumed. Most of the research in the linear thermoviscoelas-

tic modeling with beam elements has been focused on the experimental characterization of

the bending stiffness ([ 97 ], [ 98 ]), using Euler-Bernoulli viscoelastic beam models in draping

simulation of textile composites [ 99 ], or Timoshenko beam models in the frequency domain

[ 100 ]. Limited work has been done in modeling TP-HSC by means of beam models.

Among commercially available simulation software, Digimat-AM© [ 101 ] supports the ho-

mogenization of temperature dependent elastic material properties and temperature depen-

dent shrinkage behavior. It also computes homogenized thermoviscoelastic properties based

on the mean-field homogenization approach, which is a semi-analytical homogenization ap-

proach [ 102 ]. To capture the warpage behavior of the material, it uses the inherent strain

approach that required an experimental preprocessing to account for the material behavior
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under different processing conditions. If the processing conditions and utilized material does

not change, these values can be utilized in future simulations. However, if one of the pa-

rameters is changed, a new calibration is required. Moldex3D has also recently incorporated

a viscoelasticity module as part of its add-on [ 103 ], but this module is limited to calculate

the viscous and elastic properties of plastic materials in flow simulations. Abaqus [ 104 ] has

been used to perform numerical analysis by means of representative volume elements of fiber

reinforced polymer matrix composites considering the stress relaxation response ([ 81 ], [ 105 ])

or creep response [ 106 ]. For these analyses, PBCs need to be applied and only isotropic

materials with time-temperature dependency can be defined using the default libraries of

Abaqus [ 104 ]. The current Micromechanics Plugin for Abaqus [  107 ] also allows to use RVE

to compute homogenized properties, but the model should be manually modified to perform

thermoviscoelastic analysis.

1.3 Objectives and Outline

Conventional linear thermoviscoelastic constitutive models are built upon ad hoc assump-

tions that limit their generalities, accuracy, and efficiency. The focus of the present work

is to investigate the following three challenges related with constitutive modeling of linear

thermoviscoelastic behavior.

1. Derive a thermodynamically consistent constitutive model for composite materials

exhibiting linear thermoviscoelastic behavior. The constitutive model should be

able to accurately capture different dependencies such as time, and temperature.

2. Predict time and temperature dependent behavior of composite solids, plates/shells,

and beams.

3. Investigate the multiscale relationship of the shift function to establish links be-

tween properties and to reduce the required characterization data.

The novelty of this work relies on extending the recently discovered mechanics of struc-

ture genome (MSG) [ 108 ] to provide a complete thermoviscoelastic behavior of composites

as a function of the time and temperature regardless of the heterogeneity and periodicity of
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the microstructure. MSG proved to be a valid approach to capture the long-time mechanical

behavior of textile composites following the quasi-elastic method for linear thermoviscoelas-

ticity at reference temperature ([ 40 ], [ 95 ]). MSG showed the capability to overcome the lim-

itations of the traditional approaches to model viscoelasticity in textile composites. First,

MSG allowed to model a broader weave pattern spectrum as it removed the assumptions

used to describe the geometry. Second, ad hoc assumptions, such as plane strain or plane

stress, used in the description of the local strain and stress state that affect the accuracy

of the predictions were avoided. In addition, compared to RVE analysis, MSG also allowed

to handle aperiodic microstructures [ 109 ]. It is noted that RVE analysis can accurately

model general microstructures as far as it is possible to apply PBCs, which implies peri-

odicity in the three directions (i.e. x−, y− and z− directions). Nonetheless, thin textile

composites are aperiodic in the thickness direction [ 110 ] and thus, their behavior is not well

represented with RVE analysis. Furthermore, when analyzing some structures with com-

plex cross sections such as triangular rollable and collapsible (TRAC) or lenticular booms

[ 14 ], MSG allows to obtain effective properties from cross-sectional analysis avoiding the fi-

nite element modeling of the entire structure. In addition, anisotropic viscoelastic materials

with time- and temperature-dependency are not available in most commercial finite element

analysis (FEA) packages, and further efforts are required to define the properties through

user-defined functions, such as the combination of Abaqus user-defined thermal material be-

havior (UMATHT) or user-defined material subroutine (UMAT) with user-defined thermal

expansion subroutine (UEXPAN) ([ 73 ], [  104 ], [  111 ]).

This dissertation is arranged as follows.

Chapter 1 introduces the background and motivation of this study, a comprehensive

literature review, and the objectives and outline of this study.

Chapter 2 provides a brief introduction to linear thermoviscoelasticity and presents the

numerical formulations used to solve the problem. In the present study, the quasi-elastic

method and the direct integration method were considered.

Chapter 3 extends the MSG theory to compute the effective properties of thermovis-

coelastic media following the quasi-elastic approach. It also presents the MSG-based direct

integration approach to model the global behavior of thermoviscoelastic composites by means
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of solid, plate/shell, and beam elements. The formulation presented captures the effects

of pointwise temperature distribution in the composite for steady-state thermoviscoelastic

problems, and uniform temperature distribution for transient thermoviscoelastic problems.

Exact solutions for the case of symmetric and balanced laminates were also derived.

Chapter 4 presents numerical case studies with MSG-based solid model and quasi-elastic

approach. Three different composite SGs were considered to homogenize and compute the

equivalent thermoviscoelastic properties. These case studies were a UDFRC, a balanced

and symmetric laminate, and a textile composite. The effective engineering constants and

CTEs were directly obtained from the MSG analysis and compared with 3D direct numerical

simulations (DNS) for the first and third case, and with an analytical solution for the second

case, respectively.

Chapter 5 describes several numerical case studies with the MSG-based shell/plate model.

The first subsection explains how MSG was used to engineer the mesostructure and match

the effective experimental properties of the M30S/PMT-F7 plain weave composite. In this

case, a MSG-based plate/shell model with quasi-elastic approach was considered to compute

the effective plate/shell properties of a [ ± 45PW ]4 laminate and compare them against the

experimental bending stiffness data provided by NASA Langley Research Center (LaRC).

The second subsection presents the validation of MSG-based plate/shell model with direct

integration approach. To do so, the formulation was implemented into a user-defined shell

general section (UGENS) subroutine for Abaqus and compared against column bending test

(CBT) data provided by NASA LaRC.

Chapter 6 presents numerical case studies with MSG-based beam model. The first sub-

section uses the MSG-based quasi-elastic approach to compute the effective beam stiffness

properties. To demonstrate the accuracy of the MSG-based beam model, three different

numerical examples were selected to homogenize and compute the equivalent beam prop-

erties. The first and the second cases consisted of both lenticular and TRAC booms with

uniform temperature distributions. The third case considered both lenticular and TRAC

booms with steady-state pointwise nonuniform temperature distribution. Finally, the sec-

ond subsection describes the implementation of the MSG-based direct integration approach

to compute the global beam behavior for lenticular and TRAC booms with uniform tempera-
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ture distribution, and a lenticular boom with steady-state pointwise nonuniform temperature

distribution. These latter cases were verified against 3D DNS and MSG-based plate/shell

model with direct numerical approach showing excellent agreement.

Chapter 7 outlines the main conclusions and contributions of this research work, as well

as areas of future work to improve upon the current research.

Appendix A first briefly presents the formulation required to describe the behavior of

thermoset and thermoplastic composites. It also summarizes the material data used for

the numerical cases of this dissertation. Most of these data were found in the literature.

However, experimental data of the PMT-F7 toughened epoxy resin were provided by NASA

LaRC and compared in this appendix against the one available in the literature.

Appendix B complements the formulation of the direct integration approach presented

in Chapter 3 by providing more detailed steps for its derivation.

Appendix C briefly explains the software development carried out as part of this disser-

tation. Since the viscoelastic and thermoviscoelastic homogenization capabilities developed

in this dissertation were added to SwiftCompTM [ 112 ], the Abaqus SwiftComp GUI [ 113 ]

was accordingly updated to accommodate these new capabilities.
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2. THERMOVISCOELASTICITY

This chapter introduces the linear thermoviscoelastic theory. It also describes the solution

methods used to solve the problem which in the present study are the quasi-elastic (QE)

method and direct integration (DI) method.

2.1 Introduction

Following the Boltzmann superposition principle and assuming that there is no previous

strain history prior to t = 0, a thermodynamically valid expression to describe the three-

dimensional constitutive equation for a general anisotropic linear thermoviscoelastic non-

aging material reads as ([ 32 ], [  69 ]–[ 71 ])

σij(t) =
∫ t

0

[
Cijkl(T, t− τ)ε̇kl(τ) + βij(T, t− τ)θ̇(τ)

]
dτ (2.1)

where σij(t) are the instantaneous stress components, T is the temperature, t is time,

Cijkl(T, t) is the stress relaxation stiffness tensor which is function of temperature and

time, ε̇kl is the strain rate tensor, θ̇(τ) is the temperature change rate from a stress free

starting temperature, and βij(T, t) is the instantaneous thermal stress tensor. The term

Cijkl represents the fourth-order tensor of relaxation moduli relating stress to strain, and

βij stands for the second-order tensor of relaxation moduli relating stress to temperature

change [  70 ]. It is noted that for solid elements the CTEs can be calculated as αij(T, t) =

−
(
Cijkl(T, t)

)−1
βkl(T, t).

If we assume that the material is thermorheologically simple, the effects on the material

properties caused by temperature changes are equivalent to the effects caused by changes

in the time scale [ 114 ]. In general viscoelastic materials each molecular transition is associ-

ated with a relaxation mechanism, but thermorheologically simple materials only show one

dominant molecular transition [  115 ], which in turn implies that the same sequence of molec-

ular processes is always present in similar deformations at different temperatures [ 116 ]. For

thermorheologically simple materials, the time-temperature superposition principle (TTSP)

[ 117 ] applies as the material tested at a higher temperature shows the same mechanical be-
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havior as if it was tested over a significant longer period of time. Most amorphous polymers

with only one major molecular transition around the glass transition temperature Tg behave

as thermorheologically simple materials [ 115 ]. Based on the thermorheologically simple ma-

terial assumption, we can define a reduced time parameter ξ for all the components of Cijkl
as [  70 ]

ξ(t) =
∫ t

0

ds

aT (T ) (2.2)

where aT is the shift factor depending on the temperature. The corresponding value of

real time t can be found for each value of reduced time ξ and vice versa [  118 ]. The shift

factor represents a property that embodies the material temperature dependencies and can

be expressed either in terms of an Arrhenius or Williams-Landel-Ferry (WLF) equation as

([ 10 ], [  70 ])

 log aT = Ea
ln 10R

(
1
T
− 1

T0

)
T < Tg(X)

log aT = −C1(T−T0)
C2+(T−T0) T ≥ Tg(X)

(2.3)

where Ea represents the activation energy expressed with unit J/mol, R stands for the uni-

versal gas constant equal to 8.314 J/K/mol, C1 and C2 are material constants adjusted from

experimental data, and T0 stands for reference temperature at which the master curve was

defined. More details of the shift function for both thermoset and thermoplastic composites

are presented in Appendix  A.1 . In general, albeit the composite material is viscoelastic

in nature, the viscoelastic behavior of the matrix has proved to determine the shift factor

that expresses the temperature dependencies of effective Young’s moduli, shear moduli, and

Poisson’s ratios of the composites for one-step homogenization [  119 ].

The stress, strain, and temperature change values of the real time can be used to replace

their corresponding values of the reduced time domain as ([ 31 ], [  118 ], [  120 ])

σij(ξ) ≡ σij(ξ(t)) ≡ σij(t)

εij(ξ) ≡ εij(ξ(t)) ≡ εij(t)

θ̇(ξ) ≡ θ̇(ξ(t)) ≡ θ̇(t)

(2.4)
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and similarly [ 71 ]

Cijkl(T0, ξ) ≡ Cijkl(T, t) βij(T0, ξ) ≡ βij(T, t) (2.5)

Hence, using Eqs. ( 2.2 )-( 2.5 ), Eq. ( 2.1 ) can be simplified to be a thermodynamically valid

expression for a thermorheologically simple material as [ 32 ]

σij(t) =
∫ t

0

[
Cijkl (T0, ξ(t)− ξ(τ)) ε̇kl(τ) + βij (T0, ξ(t)− ξ(τ)) θ̇(τ)

]
dτ (2.6)

2.2 Solution Methods

The complete set of homogenized thermoviscoelastic properties can be computed fol-

lowing the quasi-elastic method, correspondence principle, and direct time integration of the

incremental viscoelastic equations [ 40 ]. Schapery ([ 31 ], [ 32 ], [ 121 ]) proposed the quasi-elastic

(QE) method to use the elastic approach to homogenize a viscoelastic composite by consid-

ering the time-dependent relaxation moduli as the replacement of the elastic constants. It

is the simplest approach to determine the effective relaxation moduli ([ 95 ], [ 110 ]) but it

does not assure the accuracy of the local stress field for a general strain input [ 40 ]. The

correspondence principle is a classical method to solve the boundary value problem in the

linear theory of viscoelasticity. An integral transform is applied to the field equations and

boundary conditions, transforming them from time domain to Laplace domain [ 35 ]. Then,

the solution of the original problem is reduced to transform inversion if an elastic solution

compatible with the transformed boundary conditions exists. This methodology guarantees

the accuracy of the results only if the inversion to the time domain is successful [ 40 ]. It is

not a valid approach when the boundaries are time-dependent as the boundary conditions

cannot be transformed [ 31 ]. The direct time integration (DI) with the incremental stress

form considers time marching procedure. The constitutive relation can be represented by

a recursive form in which the stresses and strains in the current state are affected by the

stress history of the previous steps ([  120 ], [ 122 ]). The three methods agree well in terms of

computing homogenized values [  40 ], but in this work only the QE and DI approaches will be

used. The correspondence principle is not considered because the computational efficiency of
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this method is limited and the applications are constrained as it required to first transform

to the Laplace domain, solve the problem in the this domain and then, and carry out the

inverse transform to the real time domain. The forward and backward transformation must

exist for this method to work.

2.2.1 Quasi-Elastic Method

Schapery ([ 31 ], [  32 ], [  121 ]) derived the QE method applying the direct method of inver-

sion to the correspondence principle. The detailed derivation to prove validity and guarantee

the thermodynamic consistency of the QE formulation to describe time- and temperature-

dependent media can be found in Schapery’s work ([ 31 ], [ 32 ]). In the formulation, the

derivation was focused on the mechanical behavior without temperature effects and then,

the results found were applied to study some viscoelastic problems with temperature changes.

This section complements the derivation presented by Schapery [  32 ] extending the deriva-

tion of the QE method to thermoviscoelastic thermorheologically simple media withstanding

temperature changes. The thermal expansion creep is treated as inherent material behavior.

However, when the formulation includes the thermal effects through CTEs and tempera-

ture dependent stiffness properties, Schapery’s derivation [ 31 ] should be considered. The

formulation here developed is later linked with the transient strain energy U(t) required to

formulate MSG-based QE method presented in section  3.2 .

If we assume that the thermoset composite material has a fixed degree of cure value or

analogously that the thermoplastic composite material has a fixed degree of crystallinity,

the relaxation functions of Cijkl(T0, ξ) and βijkl(T0, ξ) from Eq.( 2.6 ) can be expressed in an

exponential series form as [  32 ]

Cijkl(T0, ξ) = Cijkl,∞ +
n∑
s=1

Cijkl,s exp
(
− ξ

λs

)

βij(T0, ξ) = βij,∞ +
n∑
s=1

βij,s exp
(
− ξ

λs

) (2.7)

where Cijkl,∞ and βij,∞ are the long-term properties, Cijkl,s and βij,s stand for the Prony

series coefficients, and λs are the discrete stress relaxation times.
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Following the correspondence principle, the constitutive equation expression given by Eq.

( 2.6 ) is very similar to the ones of the elastic media when they are Laplace transformed. For

thermorheologically simple materials with transient temperature, it is advantageous to take

the Laplace transform of Eq. ( 2.6 ) with respect to the reduced time ξ [ 32 ]. The Laplace

transform with respect to the reduced time is given by

f̂ = f̂(p) ≡
∫ ∞

0
f(ξ) exp (−pξ)dξ (2.8)

which is used to Laplace transform Eq. ( 2.6 ) into [ 32 ]

σ̂ij = C̃ijklε̂kl + β̃ij θ̂ (2.9)

where the operational moduli C̃ijkl and β̃ij read as

C̃ijkl ≡ pĈijkl = Cijkl,∞ +
∑
s

pCijkl,s
p+ 1/λs

β̃ij ≡ pβ̂ij = βij,∞ +
∑
s

pβij,s
p+ 1/λs

(2.10)

Therefore, the transformed constitutive Eq. ( 2.9 ) is formally equivalent to the constitutive

equation for an anisotropic elastic media with C̃ijkl and β̃ij as the material properties. When

temperature is transient but changes slowly enough that it is spacewise constant, an expres-

sion in the Laplace domain equivalent to the Helmholtz free energy in a thermoelastic body

[ 29 ] can be found as well [ 32 ]. For that, all the variables should be transformed with respect

to the reduced time given by Eq. ( 2.8 ).

Once the associated elastic solution is solved in the Laplace domain, the Laplace trans-

form inversion should be applied to the elastic results to find the solution in the time domain.

In the derivation of the QE method, Schapery proposed to use the direct method to compute

the inverse [  31 ]. The direct method is an approximate inversion technique that enables a

direct relationship between the transformed solutions and the time-dependent domain. It

provides an accurate approach when the surface tractions and displacements are step func-

tion applied at t = 0, and realistic relaxation moduli are used. It is noted that the step
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function inputs are used for the RVE analysis of linear viscoelastic composite materials to

compute the effective properties ([ 52 ], [  110 ]).

If f(ξ) has small curvature when plotted against log ξ, then [ 123 ]

pf̂ ' [f(ξ)]ξ= 1
2p

(2.11)

which is an exact solution if f(ξ) is proportional to log ξ. To apply the direct inversion

method, the equivalent form of Eq. ( 2.11 ) reads as

f(ξ) '
[
pf̂
]
p= 1

2ξ
(2.12)

If the variation of the operational moduli C̃ijkl and β̃ijkl are spread smoothly over several

decades of p, the small curvature condition is met ([ 123 ], [ 32 ]). Then, it is possible to relate

pf̂ with the operational moduli C̃ijkl and β̃ijkl to obtain the transformed solution as [ 32 ]

pf̂ = Ce1fe1
(
C̃ijkl

)
+ Ce2fe2

(
β̃ij
)

(2.13)

where Ce1 and Ce2 are timewise constants, and the right side represent the response of an

thermoelastic body with elasticity tensor and thermal stress tensor equal to C̃ijkl and β̃ij,

respectively. Since C̃ijkl and β̃ij represent the p-transforms of relaxation moduli, substituting

Eq. ( 2.10 ) into Eq. ( 2.11 )

C̃ijkl ≡ pĈijkl ' [Cijkl(T0, ξ)]ξ= 1
2p

β̃ij ≡ pβ̂ij ' [βij(T0, ξ)]ξ= 1
2p

(2.14)

Then, Eq. (  2.12 ) is applied to the transformed solution in Eq. ( 2.13 ) and the result of Eq.

( 2.14 ) is substituted, it reads as

f(ξ) '
[
Ce1fe1

(
C̃ijkl

)
+ Ce2fe2

(
β̃ij
)]
p= 1

2ξ

' Ce1fe1 (Cijkl(T0, ξ)) + Ce2fe2 (βijkl(T0, ξ))
(2.15)
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where rather than the convolution type expressions of Eq. ( 2.6 ), Eq.( 2.15 ) represents the

solution of a thermoelastic body whose constitutive equation reads as

σij = Cijkl(T0, ξ)εij + βij(T0, ξ)θ (2.16)

In summary, the QE method allows the approximation of a viscoelastic solution by an

elastic solution replacing the elastic constants with time-dependent viscoelastic properties

[ 32 ]. For thermorheologically simple media with time- and temperature-dependent proper-

ties, thermoviscoelastic properties in the reduced time domain should be used to replace the

thermoelastic properties. For MSG formulation, the thermoviscoelastic solution of U(t) is

approximated by a thermoelastic solution replacing the thermoelastic constants with time-

dependent thermoviscoelastic properties.

To complete the basic three-dimensional equations needed for the linear thermoviscoelas-

tic problem, the kinematics contains three displacements u1, u2, u3 and six strains ε11, ε22,

ε33, ε23, ε13, ε12, which are all functions of the three coordinates x1, x2, x3, and time t. The

strain-displacement relationships are given as [ 32 ]

εij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
(2.17)

For the kinetics, the stresses are governed by the following equilibrium equations [  32 ]

∂σij
∂xj

+ Fi = 0 (2.18)

where Fi are the components of a prescribed body force vector. It is noted that the six

stresses are also functions of x1, x2, x3, and t [ 32 ].

The constitutive equations have been written in terms of both the real time t (see Eq.

( 2.1 )) and the reduced time ξ (see Eq. ( 2.6 )). The constitutive equations are better suited

for some applications when ξ is used and hence, it may be interesting to rewrite the strain-

displacement and equilibrium equations in terms of xi and ξ. Let us define f to represent
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either ui or σi in Eqs. ( 2.17 ) and (  2.18 ), respectively. The original variables xi and t are

transformed to the new variables x̂i and ξ as

x̂i = xi ξ = ξ(xi, t) =
∫ t

0

ds

aT [T (xi, s)]
(2.19)

where it is assumed that the temperature is also function of xi. Then, if f is derived

∂f

∂xi
= ∂f

∂x̂i

∂x̂i
∂xi

+ ∂f

∂ξ

∂ξ

∂xi
= ∂f

∂xi
+ ∂f

∂ξ

∂ξ

∂xi
(2.20)

Consequently, if Eqs. ( 2.17 ) and ( 2.18 ) are used together with Eq. (  2.6 ), all the spatial

derivatives should be changed to [ 32 ]

∂

∂xi
→ ∂

∂xi
+ ∂ξ

∂xi

∂

∂ξ
(2.21)

However, if the temperature is spacewise constant or has a steady-state distribution, the

second-term on the right-hand side of Eq. ( 2.21 ) vanishes and hence, the original form of

the strain-displacement and equilibrium equations are recovered.

2.2.2 Direct Integration Method

In the recursive method, due to the nonlinear dependency between the stresses and

strains of the composite material, the analysis is presented as incremental [ 40 ]. Therefore,

the current stress state is affected by the previous stress state [ 120 ]. Using Eq. (  2.6 ), the

stress increment due to a time increment ∆t reads as

∆σij(t) = σij(t+ ∆t)− σij(t) =
∫ t+∆t

t

[
Cijkl(T0, ξ(t+ ∆t)− ξ(τ))ε̇kl(τ)

+βij(T0, ξ(t+ ∆t)− ξ(τ))θ̇(τ)
]
dτ

+
∫ t

0

[
Cijkl(T0, ξ(t+ ∆t)− ξ(τ))ε̇kl(τ) + βij(T0, ξ(t+ ∆t)− ξ(τ))θ̇(τ)

]
dτ

−
∫ t

0

[
Cijkl(T0, ξ(t)− ξ(τ))ε̇kl(τ) + βij(T0, ξ(t)− ξ(τ))θ̇(τ)

]
dτ

(2.22)
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If small time increments are considered, we can assume that the strain rate ε̇kl(τ) and

temperature change rate θ̇(τ) are kept constant during each time increment ∆t ([ 120 ], [ 122 ]).

Then Eq. (  2.22 ) reads as

∆σij(t) = Mijkl(T0, ξ)∆εkl(t) + ηij(T0, ξ)∆θ(t) + Ωij(T0, ξ) (2.23)

where

Mijkl(T0, ξ) = 1
∆t

∫ t+∆t

t
Cijkl(T0, ξ(t+ ∆t)− ξ(τ))dτ (2.24)

ηij(T0, ξ) = 1
∆t

∫ t+∆t

t
βij(T0, ξ(t+ ∆t)− ξ(τ))dτ (2.25)

Ωij(T0, ξ) =
∫ t

0

[
Cijkl(T0, ξ(t+ ∆t)− ξ(τ))ε̇kl(τ)

+βij(T0, ξ(t+ ∆t)− ξ(τ))θ̇(τ)
]
dτ

−
∫ t

0

[
Cijkl(T0, ξ(t)− ξ(τ))ε̇kl(τ) + βij(T0, ξ(t)− ξ(τ))θ̇(τ)

]
dτ

(2.26)

where Mijkl(T0, ξ), and ηij(T0, ξ) given in Eqs. (  2.24 )-( 2.25 ) represent the instantaneous

effective tangent stiffness matrices of the properties represented by Cijkl(T0, ξ) and βij(T0, ξ)

[ 124 ]. The viscoelastic problem is completed by six strain-displacement relations of Eq.

( 2.17 ) and the three equilibrium equations given by Eq. (  2.18 ).
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3. MSG THERMOVISCOELASTIC FORMULATION

This chapter extends the MSG theory to compute the effective properties of thermovis-

coelastic media and model its global behavior by means of solid, Kirchhoff-Love plate/shell

and Euler-Bernoulli beam models. The QE approach was implemented in SwiftCompTM

to compute the effective thermoviscoelastic properties as it is the most efficient approach.

However, the QE approach does not properly capture the residual stresses and strains for a

general loading case [ 125 ]. Therefore, to solve the global linear thermoviscoelastic problem

and accurately predict the residual stresses and strains, MSG-based solid, Kirchhoff-Love

plate/shell and Euler- Bernoulli beam models using DI method were formulated. The effects

of pointwise temperature distributions in the composite for steady-state thermoviscoelastic

problems and uniform temperature distribution for transient thermoviscoelastic problems

are captured with the present formulation. Exact solutions were also derived for the simple

case of symmetric and balanced laminates.

3.1 The Concept of Structure Gene

Mechanics of structure genome (MSG) has been developed to provide a unified theory

for multiscale and multiphysics constitutive modeling for all types of composite structures

including 3D structures, plates/shells, and beams by Yu ([ 108 ], [ 126 ]). MSG provides a

general-purpose micromechanics theory when it is specialized to constitutive modeling of 3D

structures [ 127 ].

Structural properties in terms of microstructures can be predicted with different MSG

models. Homogenized beam, plate/ shell, and 3D properties can be computed from the

analysis domain of MSG, known as structure gene (SG). SG is defined as the smallest math-

ematical building block of the structure and the word gene is used to accentuate the fact

that it contains all the constitutive information needed for a structure in the same fashion

as the gene contains all the intrinsic information for an organism’s growth and development.

For 3D bodies, SG has a similar role as RVE or unit cell (UC) concept in micromechanics

(Figure  3.1 ). However, they are significantly different. For example, if we assume that a

composite laminate is made of homogeneous layers, it features 1D heterogeneity (see Fig-

42



ure  3.1 a) and hence, the SG will be the transverse normal line with segments denoting the

corresponding layers. One can mathematically repeat this straight line in-plane to build the

composite laminate. The constitutive modeling over the 1D SG can compute the complete

set of 3D properties and local fields. Such applications of SG are not equivalent to RVE. For

a structure made of composites featuring 2D heterogeneity (e.g. continuous unidirectional

fiber reinforced composites, Figure  3.1 b), the SG will be a 2D domain. Although 2D RVEs

are also used in micromechanics, only in-plane properties and in-plane local fields can be

obtained from a common RVE analysis. In this case, if the complete set of properties are

needed for a 3D structural analysis, a 3D RVE is usually required ([  128 ], [  129 ]), while a

2D domain is sufficient if it is modeled using MSG (Figure  3.1 b). For a structure made of

composites featuring 3D heterogeneity (e.g. particle reinforced composites, Figure  3.1 c), the

SG will be a 3D volume. Although 3D SG for 3D structures represents the most similar case

to RVE, boundary conditions in terms of displacements and tractions indispensable in the

RVE analysis are not needed for micromechanics models constructed using MSG.

Figure 3.1. SG for 3D structures.

For plate/shell analysis, take as an example the different internal constructions shown in

Figure  3.2 . Their SGs can be identified based on their internal constructions. Regardless of

the dimension of an SG, the constitutive modeling over the SG can always give the effective

43



Figure 3.2. SG for 2D structures.

Figure 3.3. SG for 1D structures.
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plate/shell properties needed by two-dimensional (2D) plate/shell analysis and the local fields

in the original 3D structure. In case of beam models, such as a deployed composite boom

with uniform cross sections (see Figure  3.3 ), its SG can simply be the cross section. The

constitutive modeling over the cross section can give the effective beam properties needed by

the one-dimensional (1D) beam analysis and the local fields in the original 3D structure. All

in all, 1D, 2D and 3D SGs have been successfully used to provide an accurate and efficient

approach to analyze many engineering structures with complex geometry made of anisotropic

and/or heterogeneous materials ([ 130 ], [ 131 ]). Once the structural analysis is complete, the

global structural responses can be used to recover local stress, strain, and displacement fields

within the SG.

Identify SG and determine 
material models

MSG homogenization 
(SwiftComp)

Mechanics of Structure 
Genome (MSG) Structural Simulation

New ∆𝒕?

Postprocess results

YES

NO

Quasi-Elastic (QE) Method

v

Replace the elastic constant with time-
dependent viscoelastic properties.

vOut of scope in this dissertation

v

Direct Integration (DI) Method

Other terms
Stress relaxation 

stiffness
Thermal 
stresses

MSG dehomogenization if 
necessary (SwiftComp)

Input Prony series coefficients of the effective 
thermoviscoelastic properties

Incremental formulation. Solve analytically or by numerical simulation.

Stress relaxation 
stiffness

Thermal 
stresses

Figure 3.4. Workflow of the MSG-based thermoviscoelastic simulation framework.

The principle of minimum information loss (PMIL) is one of the kernels of MSG. It

states that the homogenized model can be constructed through minimizing the information

loss between the homogenized body and the original heterogeneous body. In case of a linear

thermoviscoelastic material, the transient strain energy density represents this information

[ 110 ] and it is valid regardless quasi-elastic (QE) method or direct integration (DI) method
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are used. Figure  3.4 shows the workflow of the MSG-based simulation framework. Once the

type of SG and degree of heterogeneity of the thermoviscoelastic material model are identi-

fied, the effective thermoviscoelastic properties are computed. To solve the homogenization

problem, the QE method is applied within the MSG framework as it is more efficient than the

DI method for computing homogenized values [ 40 ]. Subsequently, the DI method is used to

solve the global composites structural problem by means of solid, plate/shells or beam mod-

els, as it accounts for residual stresses and strains for any arbitrary loading or displacement

conditions [ 125 ]. The DI method requires the effective thermoviscoelastic properties com-

puted from the homogenization step expressed by means of Prony series coefficients. Once

the global problem is analytically or numerically solved, MSG can be used for dehomoge-

nization. It is noted that the MSG-based dehomogenization for linear thermoviscoelastic

materials has not been pursued in this dissertation.

3.2 Quasi-Elastic Method

The QE method allows the approximation of a viscoelastic solution by an elastic solution

replacing the elastic constants with time-dependent viscoelastic properties [ 31 ]. Next, this

procedure is used to construct the transient strain energy U(t) of a thermoviscoelastic media

with time- and temperature-dependent behavior. It is noted that for thermorheologically

simple media with time- and temperature-dependent properties, the reduced time domain

thermoviscoelastic properties should be used to replace the thermoelastic properties.

3.2.1 3D Solid Model

The homogenized body can be described by the global coordinate system denoted as

xi. As the size of the macroscopic structure is much larger than the size of SG, micro

coordinates yi = xi/δ are introduced to describe the domain occupied by SG, with δ being a

small parameter. The displacement field of the original heterogeneous body can be expressed

in terms of that of the homogeneous body at the time t for the MSG-based solid model as

ui(x1, x2, x3, y1, y2, y3, t) = ūi(x1, x2, x3, t) + δχi(x1, x2, x3, y1, y2, y3, t) (3.1)
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with ui standing for the displacement field of the heterogeneous body, ūi denoting the dis-

placement of the homogenized body, and χi representing the difference between these two

fields, which is commonly called the fluctuating function in micromechanics or warping func-

tions in structural mechanics literature [ 126 ]. It is noted that the Latin indices used here

and throughout this document assume 1, 2, and 3, and repeated indices are summed over

their range except where explicitly indicated.

Then, we can express the instantaneous strain field of the linear viscoelastic body as

εij(t) = 1
2

(
∂ui(t)
∂xj

+ ∂uj(t)
∂xi

)
(3.2)

Dropping higher-order terms following the variational asymptotic method (VAM) [ 132 ], the

instantaneous strain field of the heterogeneous body reads as

εij(x, y, t) = ε̄ij(x, t) + χ(i|j)(t) (3.3)

Here εij represents the instantaneous strain field in the original heterogeneous body and

ε̄ij = ū(i,j) represents the instantaneous strain field of the homogenized body. The parenthesis

in subscript indicates a symmetric operation and the vertical bar indicates differentiation

with respect to the micro coordinates, χ(i|j) = 1
2

(
∂χi(t)
∂yj

+ ∂χj(t)
∂yi

)
.

To construct the homogenized model out of the original heterogeneous model, the instan-

taneous kinematic variables of the homogenized model must be defined in terms of those of

the original model. A reasonable election is to define

ūi(t) ≡ 〈ui(t)〉 ε̄ij(t) ≡ 〈εij(t)〉 (3.4)

where the angle brackets indicate the integration over the SG. The following constraints on

the instantaneous fluctuating functions are implied from Eq. ( 3.4 )

〈χi(t)〉 = 0
〈
χ(i|j)(t)

〉
= 0 (3.5)
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where the first expression means that the averaged displacements of the homogenized and

original structures over the SG are the same according to the first equation in Eq. ( 3.4 ), and

the second expression represents that the averaged strains of the homogenized and original

structures over the SG are the same according to the second equation in Eq. ( 3.4 ). It is noted

that for MSG, the first Eq. ( 3.5 ) should be applied regardless PBCs or aPBCs are considered

[ 109 ]. In the former case, PBCs can be applied to the fluctuating functions by enforcing the

equality of χi on the corresponding periodic boundaries and the second equation of Eq. ( 3.5 )

will be automatically satisfied. In the latter case, the second expression of Eq. ( 3.5 ) should

be applied for taking care of everything that it is not periodic.

Let us denote ε̄(t) = [ε̄11(t) ε̄22(t) ε̄33(t) 2ε̄23(t) 2ε̄13(t) 2ε̄12(t)] and ω(t) = [χ1(t) χ2(t)

χ3(t)]. Then the 3D strain field of the MSG solid model can be written as

Γ(t) = Γεε̄(t) + Γhω(t) (3.6)

where Γ(t) = [Γ11 Γ22 Γ33 2Γ23 2Γ13 2Γ12]T is the strain field of the original structure, and

ω(t) is the fluctuating function. Γε is an operator matrix depending on the macroscopic

structural model. If the macroscopic structural model is the 3D Cauchy continuum model,

Γε is the 6 × 6 identity matrix. Finally, Γh is an operator matrix that depends on the

dimension of the SG. For 3D SG it is given as

Γh =


∂
∂y1

0 0 0 ∂
∂y3

∂
∂y2

0 ∂
∂y2

0 ∂
∂y3

0 ∂
∂y1

0 0 ∂
∂y3

∂
∂y2

∂
∂y1

0


T

(3.7)

In case of 2D SGs, the derivatives with respect to y1 should be vanished in Γh. It is noted

that the infinitesimal strain field is used to derive the operator matrix and the asymptotically

smaller terms have been dropped based on VAM ([ 126 ],[ 132 ]).
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3.2.2 2D Kirchhoff-Love Plate/Shell Model

The kinematics of the MSG-based Kirchhoff-Love plate/shell model accounts for the

time-dependent displacement field expressed as

u1(x1, x2, y1, y2, y3, t) = ū1(x1, x2, t)− δy3ū3,1(x1, x2, t) + δχ1(x1, x2, y1, y2, y3, t)

u2(x1, x2, y1, y2, y3, t) = ū2(x1, x2, t)− δy3ū3,2(x1, x2, t) + δχ2(x1, x2, y1, y2, y3, t)

u3(x1, x2, y1, y2, y3, t) = ū3(x1, x2, t) + δχ3(x1, x2, y1, y2, y3, t)

(3.8)

where ūi are the displacements of the homogenized plate structure. The comma in the

subscript express differentiation with respect to macro-coordinates xi.

The plate/shell strain measures can be defined as

εαβ(x1, x2, t) = 1
2 (ūα,β(t) + ūβ,α(t))

καβ(x1, x2, t) = −ū3,αβ(t)
(3.9)

where εαβ(x1, x2, t) stand for the instantaneous in-plane strains, and καβ(x1, x2, t) denote the

instantaneous curvature strains. where the double digits after the comma in the subscript

indicate the second derivatives with respect to the macro-coordinates.

In case of the fluctuating functions, the MSG-based plate model only needs to satisfy the

following constraints on the instantaneous fluctuating functions χi(t) as

〈χi(t)〉 = 0 (3.10)

It should be pointed out that in-plane periodicity is also enforced for χi(t). Additional

constraints can be added as needed depending on the periodicity of the SG.

The asymptotically smaller terms can be dropped based on VAM. Then the 3D strain

field of the MSG plate/shell model can be written as

Γ(t) = Γεε̄(t) + Γhω(t) (3.11)
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where ε̄ is the generalized plate/shell strain measures defined as ε̄(t) = [ε11 ε22 2ε12 κ11 κ22 2κ12]T

if the macroscopic structure is modeled using a classical (also called Kirchhoff-Love) plate/shell

model. Γε is an operator matrix depending on the macroscopic structural model. For the

classical plate/shell model it is given as

Γε =



1 0 0 δy3 0 0

0 1 0 0 δy3 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0δy3


(3.12)

3.2.3 1D Euler-Bernoulli Beam Model

The 1D Euler-Bernoulli contains four beam strains named γ11(x1, t), κ11(x1, t), κ12(x1, t)

and κ13(x1, t). γ11(x1, t) denotes the instantaneous axial strain, and κ11(x1, t) denotes the

instantaneous twist rate, and κ12(x1, t) and κ13(x1, t) represent the instantaneous curvatures

around x2 and x3, respectively. It is noted that x1 represents the beam reference axis, and x2

and x3 represent the cross-sectional axes. Following MSG to construct a thermoviscoelastic

beam model, the displacement field of the original 3D linear thermoviscoelastic model, ui
is described in terms of the desired beam model. For a general 1D Euler-Bernoulli beam

model, four displacement variables including a rotation Φ1 also known as the beam sectional

rotation or twist angle, and three displacements ūi are required ([ 108 ], [ 126 ], [ 133 ]). These

four time-dependent beam displacement variables can be used to describe the displacement

field of the original 3D body as

u1(x1, y1, y2, y3, t) = ū1(x1, t)− δy2ū2,1(x1, t)− δy3ū3,1(x1, t) + δχ1(x1, y1, y2, y3, t)

u2(x1, y1, y2, y3, t) = ū2(x1, t)− δy3Φ1(x1, t) + δχ2(x1, y1, y2, y3, t)

u3(x1, y1, y2, y3, t) = ū3(x1, t) + δy2Φ1(x1, t) + δχ3(x1, y1, y2, y3, t)

(3.13)

It is noted that δyα = xα with α = 2, 3.
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Since the beam model is constructed out of the original 3D model, the time-dependent

kinematic field of the beam model needs to be defined in terms of those of the original model

such that

Φ1(x1, t) = 1
2〈u3,2 − u2,3〉

ū2(x1, t) = 〈u2〉+ δ〈y3〉Φ1(x1, t)

ū3(x1, t) = 〈u3〉 − δ〈y2〉Φ1(x1, t)

ū1(x1, t) = 〈u1〉+ δ〈y3〉ū3,1(x1, t) + δ〈y2〉ū2,1(x1, t)

(3.14)

where the angle brackets denote the average over the SG. The physical meaning of the first

term is that the true instantaneous 3D twist average over the SG is the same as the instan-

taneous 1D rotation. The other three terms define the true instantaneous 3D displacements

over the SG offset by the corresponding rotations as the instantaneous 1D displacements. If

the origin of y2 and y3 is located at the geometric center of the SG, 〈y2〉 = 〈y3〉 = 0 and thus,

the instantaneous 1D displacements are the average of the corresponding 3D displacements.

From the definitions of Eq. ( 3.14 ), we effectively introduce the following four constraints on

the fluctuating functions [ 134 ]

〈χi(t)〉 = 0 〈χ3|2(t)− χ2|3(t)〉 = 0 (3.15)

where the vertical bar in the subscript indicates differentiation with respect to the micro-

coordinates, yi. Note that additional constraints can be added as needed depending on the

periodicity of the SG [ 109 ].

The four beam strains of the 1D Euler-Bernoulli beam model are defined as ([ 108 ], [  126 ],

[ 133 ])

γ11(x1, t) = ū1,1(x1, t) κ11(x1, t) = Φ1,1(x1, t)

κ12(x1, t) = −ū3,11(x1, t) κ13(x1, t) = ū2,11(x1, t)
(3.16)
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The corresponding 3D strain field can be written as

Γ(t) = Γεε̄(t) + Γhω(t) (3.17)

where ε̄ is the generalized beam strain measures defined as ε̄(t) = bγ11 κ11 κ12 κ13cT if the

macroscopic structure is modeled using the 1D Euler-Bernoulli beam model and Γε is an

operator matrix depending on the macroscopic structural model. For the Euler-Bernoulli

beam model it is defined as

Γε =



1 0 δy3 −δy2

0 0 0 0

0 0 0 0

0 0 0 0

0 δy2 0 0

0 −δy3 1 0


(3.18)

3.2.4 Finite Element Implementation with Uniform Temperature Distribution

The temperature dependency of the material with a logarithmic time shift can be related

through the TTSP and thus, after applying this time shift the material behavior is assumed

as instantaneously temperature independent. Based on the QE method and Eq. ( 2.16 ), linear

thermoelasticity is used to derive the transient Helmholtz free energy [ 135 ] and construct

the transient strain energy of the original model as

U(t) =
〈1

2Cijkl(T0, ξ)εij(t)εkl(t) + βij(T0, ξ)εij(t)θ̄(t)
〉

(3.19)

The instantaneous temperature within a SG is approximated as uniform to enforce that

the temperature change is spacewise constant and thus, the instantaneous temperature

change is denoted by θ̄(t). No a priori assumptions are invoked in terms of the reduced

time ξ for the homogenized model.
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The transient strain energy of Eq. ( 3.19 ) expressed in a matrix form reads as

U(t) =
〈

1
2

(
Γhω(t) + Γεε̄(t)

)T
C(T0, ξ)

(
Γhω(t) + Γεε̄(t)

)

+
(

Γhω(t) + Γεε̄(t)
)T
β(T0, ξ)θ̄(t)

〉 (3.20)

with the operator matrix Γh defined in Eq. ( 3.7 ) and the operator matrix Γε depending on

the macroscopic structure as defined fro solid, plate/shell and beam models.

We can solve this problem using the finite element method (FEM). In general FEM,

the displacement fields are approximated using shape functions. In case of MSG, shape

functions are used to approximate the fluctuating functions [ 133 ]. The discretization of the

instantaneous fluctuating functions χ over the SG reads as

χ(xk, yj, t) = S(yj)V (xk, t) (3.21)

where S(yj) represents the standard shape functions according to the type of element, and

V (xk, t) is the instantaneous nodal value that we need to solve for. We can obtain the

discretized version of the transient strain energy substituting Eq. ( 3.21 ) in Eq. ( 3.20 ) as

U(t) =
1

2V (t)TE(T0, ξ)V (t) + V (t)TDhε(T0, ξ)ε̄(t) + 1
2 ε̄(t)

TDεε(T0, ξ)ε̄(t)

+V (t)TDhθ(T0, ξ)θ̄(t) + ε̄(t)TDεθ(T0, ξ)θ̄(t)
 (3.22)

where

E(T0, ξ) = 〈(ΓhS)TC(T0, ξ)(ΓhS)〉 Dhε(T0, ξ) = 〈(ΓhS)TC(T0, ξ)Γε〉

Dεε(T0, ξ) = 〈ΓTε C(T0, ξ)Γε〉 Dhθ(T0, ξ) = 〈(ΓhS)Tβ(T0, ξ)〉

Dεθ(T0, ξ) = 〈β(T0, ξ)〉

(3.23)
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If we minimize Eq. ( 3.22 ) applying the constraints defined in Eq. ( 3.5 ) and adding

additional constraints as needed, the following instantaneous linear system is found

E(T0, ξ)V (t) = −Dhε(T0, ξ)ε̄(t)−Dhθ(T0, ξ)θ̄(t) (3.24)

From Eq. ( 3.24 ) we can determine that in each instant of time V (t) linearly depends on θ̄(t)

and ε̄(t). The symbolic writing of this relationship reads as

V (t) = V0(T0, ξ)ε̄(t) + Vθ(T0, ξ)θ̄(t) (3.25)

The transient strain energy stored in the SG can be computed by substituting Eq. ( 3.25 )

into Eq. ( 3.22 ) obtaining

U(t) = 1
2 ε̄(t)

T
(
V T

0 (T0, ξ)Dhε(T0, ξ) +Dεε(T0, ξ)
)
ε̄(t)

+ ε̄(t)T
[1
2

(
DT
hε(T0, ξ)Vθ(T0, ξ) + V T

0 (T0, ξ)Dhθ(T0, ξ)
)

+Dεθ(T0, ξ)
]
θ̄(t)

≡ 1
2 ε̄(t)

TC∗(T, t)ε̄(t) + ε̄(t)Tβ∗(T, t)θ̄(t)

(3.26)

The identification of terms in Eq. ( 3.26 ) leads to

C∗(T, t) = V T
0 (T0, ξ)Dhε(T0, ξ) +Dεε(T0, ξ) = C∗(T0, ξ)

β∗(T, t) = 1
2

(
DT
hε(T0, ξ)Vθ(T0, ξ) + V T

0 (T0, ξ)Dhθ(T0, ξ)
)

+Dεθ(T0, ξ) = β∗(T0, ξ)
(3.27)

which implies that the effective properties in the time domain can be expressed in the

reduced time domain. This is applicable if the composite is thermorheologically simple,

which is automatic when one thermorheologically simple thermoviscoelastic phase exists.

In a composite made of two or more distinct thermoviscoelastic phases, if each phase is

thermorheologically simple and all have the same aT , the effective properties of the composite

will also be thermorheologically simple. However, if each phase has a distinct shift factor, for

the composite to be thermorheologically simple all the phases except one need to be elastic

over the temperature range studied [ 31 ].
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It is noted that Eq. ( 3.27 ) provides the effective thermoviscoelastic properties of the

macroscopic structural model. For the 3D solid model, C∗(T, t) is the fully populated 6 × 6

stiffness matrix and the effective CTEs can be computed from

α∗ij(T, t) = −
(
C∗ijkl(T, t)

)−1
β∗kl(T, t) (3.28)

where according to Eq. ( 3.27 ), α∗ij(T, t) = α∗ij(T0, ξ) applies.

For the 2D plate/shell model, C∗(T, t) is the fully populated 6 × 6 stiffness matrix,

also know as ABD matrix. β∗(T, t) represents the effetive thermal induced plate/shell stress

resultants divided by θ̄, as uniform temperature distribution within the SG is assumed.

Finally, for the 1D Euler-Bernoulli beam model, C∗(T, t) is the fully populated 4 × 4 stiffness

matrix (i.e. C∗(T, t) = Cb(T, t)) and β∗(T, t) represents the effective thermal induced beam

stress resultants divided by θ̄.

3.2.5 Quasi-Elastic Thermoviscoelastic Hybrid Rules of Mixture

For the particular case of homogenizing a composite laminate with uniform temperature

distribution as an equivalent anisotropic solid, an analytical solution can be derived. To do

so, first we write the transient strain energy difference between the original model and the

3D solid homogenized model as

Π(t) =
〈1

2Cijkl(T0, ξ)εij(t)εkl(t) + βij(T0, ξ)εij(t)θ̄(t)
〉

−
〈

1
2C
∗
ijkl(T, t)ε̄ij(t)ε̄kl(t) + β∗ij(T, t)ε̄ij(t)θ̄(t)

〉 (3.29)

The free energy of the homogenized model is independent of the fluctuating functions. There-

fore, the homogenized model is considered as given, which in turn implied that C∗ijkl(T, t),

β∗ij(T, t), ε̄ij(t) and θ̄(t) cannot be varied. The variational statement to solve for χi reads as

min
χi(t)∈Eq. ( 3.5 )

〈
1
2Cijkl(T0, ξ)

(
ε̄ij(t) + χ(i|j)(t)

)(
ε̄kl(t) + χ(k|l)(t)

)

+βij(T0, ξ)
(
ε̄ij(t) + χ(i|j)(t)

)
θ̄(t)

〉 (3.30)
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Additional constraints can be incorporated as needed along with the constraints given by

Eq. ( 3.5 ). It is noted that for periodic materials, χi(t) must be periodic, and the second

equation in Eq. ( 3.5 ) is automatically satisfied.

If we assume that the laminate is made of homogeneous anisotropic thermoviscoelastic

layers, a through-the-thickness SG containing all segments needed to represent each layer can

be used to model the laminate. In this analytical solution, we do not constrain the stacking

sequence of the laminate or the anisotropy of the laminae. However, due to approximating the

laminate as an anisotropic, homogeneous solid, the coupling between bending and extension

deformations is not captured for asymmetric laminates.

Let us denote the in-plane coordinates as y1 and y2, and use y3 to denote the thickness

coordinate. Since the composite laminate is heterogeneous along y3 direction and uniform in

the y1− y2 plane, χi(t) are instantaneous functions of y3 only. This dependency implies that

the partial derivatives of the fluctuating functions, χi|j(t), will vanish except χi|3(t). Then

the simplified governing differential equations read as

(
Ci3kl(T0, ξ)

(
ε̄kl(t) + χk|l(t)

)
+ βi3(T0, ξ)θ̄(t)

)
|3

= 0 (3.31)

which can be integrated reading as

Ci3kl(T0, ξ)
(
ε̄kl(t) + χk|l(t)

)
+ βi3(T0, ξ)θ̄(t) = ci(t) (3.32)

where ci(t) indicates that three constants per each time instance are considered. It is easy

to conclude that

σi3(t) = Ci3kl(T0, ξ)
(
ε̄kl(t) + χk|l(t)

)
+ βi3(T0, ξ)θ̄(t) (3.33)

Thus we can conclude from Eqs. ( 3.32 ) and ( 3.33 ) that the through-the-thickness normal and

transverse shear stresses are constant per each time instance according to the QE method.

The chosen modeling technique leads to this conclusion as we want to model the laminate as

an anisotropic, homogeneous solid. However, it is noteworthy to mention that in reality these
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stress components are usually not constant through the thickness, such as when free-edge

stress effects are matter of study [ 130 ].

We can solve for the fluctuating functions from Eq. (  3.32 ) obtaining an equation for each

constant ci (t). The fluctuating functions for each layer are linear functions of y3. For the

local strain field, it is interesting to remark that

ε11(t) = ε̄11(t) ε22(t) = ε̄22(t) ε12(t) = ε̄12(t)

ε33(t) = ε̄33(t) + χ3|3(t) ε13(t) = ε̄13(t) + χ1|3(t) ε23(t) = ε̄23(t) + χ2|3(t)

which implies that the in-plane strains are constant and transverse strains are piecewise con-

stant through the thickness per each instant of time. A simple thermoviscoelastic hybrid rule

of mixtures (TVHRM) for composite laminates can be derived bearing in mind this evidence

along with the fact that transverse stresses are constant, as concluded from Eq. ( 3.33 ).

Let σ‖ = bσ11(t) σ22(t) σ12(t)cT , σ⊥ = bσ33(t) σ23(t) σ13(t)cT , ε‖ = bε11(t) ε22(t) 2ε12(t)cT ,

ε⊥ = bε33(t) 2ε23(t) 2ε13(t)cT , α⊥ = bα33(T0, ξ) 2α23(T0, ξ) 2α13(T0, ξ)cT , α‖ = bα11(T0, ξ)

α22(T0, ξ) 2α12(T0, ξ)cT and Sij(T0, ξ) be the components of the 6 × 6 instantaneous com-

pliance matrix. It is noted that although material properties are function of T0 and ξ and

the stress, strain, and temperature change are function of time t, for clarity purposes these

terms have been omitted in the formulation hereinafter presented. Then, the instantaneous

constitutive relation of each layer reads as

ε‖ε⊥
 =

S‖ S∠

ST∠ S⊥


σ‖σ⊥

+

α‖α⊥
 θ̄ (3.34)

From Eq. ( 3.34 ), it follows that

ε‖ = S‖σ‖ + S∠σ⊥ + α‖θ̄

ε⊥ = ST∠σ‖ + S⊥σ⊥ + α⊥θ̄
(3.35)
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From which σ‖ and ε⊥ can be solved leading to

σ‖ = S−1
‖ (ε‖ − α‖θ̄)− S−1

‖ S∠σ⊥

ε⊥ − α⊥θ̄ =
(
S⊥ − ST∠S−1

‖ S∠

)
σ⊥ + ST∠S

−1
‖ (ε‖ − α‖θ̄)

(3.36)

Letting Q = S−1
‖ and bearing in mind that both σ⊥ and ε‖ are constant through the thickness,

for it to be homogenized to an equivalent homogeneous body with no a priori assumptions,

the through-the-thickness average on both sides of the first equation in Eq. ( 3.36 ) can be

computed as

σ̄‖ = 〈Q〉 ε̄‖ −
〈
Qα‖

〉
θ̄ − 〈QS∠〉 σ̄⊥ = Q∗(ε̄‖ − α∗‖θ̄)−Q∗S∗∠σ̄⊥ (3.37)

with

Q∗ = Q∗(T, t) = 〈Q〉 = Q∗(T0, ξ)

S∗∠ = S∗∠(T, t) = (Q∗)−1 〈QS∠〉 = S∗∠(T0, ξ)

α∗‖ = α∗‖(T, t) = (Q∗)−1
〈
Qα‖

〉
= α∗‖(To, ξ)

(3.38)

It is clearly concluded that since Q, S∠, and α‖ are functions of T0 and ξ, the effective

properties in the real time domain also have their equivalent properties in the reduced time

domain.

The average of both sides of the second equation in Eq. ( 3.36 ) can also be computed as

〈
ε⊥ − α⊥θ̄

〉
=
〈
ST∠Q

〉
ε̄‖ −

〈
ST∠Qα‖

〉
θ̄ +

〈
S⊥ − ST∠QS∠

〉
σ̄⊥ (3.39)

This equation can be rewritten as

ε̄⊥ − α∗⊥θ̄ = S∗T∠ Q∗(ε̄‖ − α∗‖θ̄) +
(
S∗⊥ − S∗T∠ Q∗S∗∠

)
σ̄⊥ (3.40)
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with

S∗⊥ = S∗⊥(T, t) =
〈
S⊥ − ST∠QS∠

〉
+ S∗T∠ Q∗S∗∠

α∗⊥ = α∗⊥(T, t) =
〈
α⊥ − ST∠Qα‖

〉
+ S∗T∠ Q∗α∗‖

(3.41)

From Eq. ( 3.38 ) we concluded that Q∗, S∗∠, and α∗‖ can be expressed in the reduced time

domain, and S⊥ and α⊥ are also function of T0 and ξ. Therefore, we can determine that S∗⊥
and α∗⊥ are also function of the reduced time domain, and thus, S∗⊥ = S∗⊥(T, t) = S∗⊥(T0, ξ)

and α∗⊥ = α∗⊥(T, t) = α∗⊥(T0, ξ). From Eqs. ( 3.38 ) and ( 3.41 ) we can also determine that the

behavior of the equivalent homogeneous solid is thermorheologically simple.

Finally, the effective thermoviscoelastic constitutive relations for the equivalent anisotropic

solid of the composite laminate read as

 ε̄‖(t)ε̄⊥(t)

 =

 S∗‖(T, t) S∗∠(T, t)

S∗T∠ (T, t) S∗⊥(T, t)


 σ̄‖(t)σ̄⊥(t)

+

α
∗
‖(T, t)

α∗⊥(T, t)

 θ̄(t) (3.42)

with S∗‖(T, t) =
(
Q∗(T, t)

)−1
. It is noted that we can extract the effective engineering

constants from the effective instantaneous compliance matrix in Eq. ( 3.42 ) for each instant

of time.

3.2.6 Finite Element Implementation with Nonuniform Temperature Distribu-
tion

When nonuniform steady-state temperature distribution is considered withing the SG,

the constitutive equation given by Eq. ( 2.1 ) is used to construct the transient strain energy

of the original model as

U(t) =
〈

1
2

(
Γhω(t) + Γεε̄(t)

)T
C(T, t)

(
Γhω(t) + Γεε̄(t)

)

+
(

Γhω(t) + Γεε̄(t)
)T
β(T, t)θ

〉 (3.43)
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where θ could be pointwisely distributed within the SG. Therefore, following the QE method,

the associated themoelastic problem has spatially dependent properties [ 32 ].

Substituting Eq. (  3.21 ) into Eq. (  3.43 ), the discretized version of the transient strain

energy is obtained as

U(t) =
1

2V (t)TE(t)V (t) + V (t)TDhε(t)ε̄(t) + 1
2 ε̄(t)

TDεε(t)ε̄(t)

+ V (t)TDhθ(t) + ε̄(t)TDεθ(t)
 (3.44)

where
E(t) = 〈(ΓhS)TC(T, t)(ΓhS)〉 Dhε(t) = 〈(ΓhS)TC(T, t)Γε〉

Dεε(t) = 〈ΓTε C(T, t)Γε〉 Dhθ(t) = 〈(ΓhS)Tβ(T, t)θ〉

Dεθ(t) = 〈β(T, t)Γεθ〉

(3.45)

Minimizing Eq. ( 3.44 ) applying the constraints defined in Eq. ( 3.15 ) and adding addi-

tional constraints as needed, the following instantaneous linear system is found

E(t)V (t) = −Dhε(t)ε̄(t)−Dhθ(t) (3.46)

In each instant of time, V (t) linearly depends on ε̄(t) as determined from Eq. ( 3.46 ). The

symbolic writing of this relationship reads as

V (t) = V0(t)ε̄(t) + Vθ(t) (3.47)

To compute the transient strain energy stored in the SG, Eq. ( 3.47 ) is substituted into Eq.

( 3.44 ) obtaining

U(t) = 1
2 ε̄(t)

T
(
V T

0 (t)Dhε(t) +Dεε(t)
)
ε̄(t)

+ ε̄(t)T
[1
2

(
DT
hε(t)Vθ(t) + V T

0 (t)Dhθ(t)
)

+Dεθ(t)
]

≡ 1
2 ε̄(t)

TC∗(t)ε̄(t) + ε̄(t)Tβ∗(t)

(3.48)
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The identification of terms in Eq. ( 3.48 ) leads to

C∗(t) = V T
0 (t)Dhε(t) +Dεε(t)

β∗(t) = 1
2

(
DT
hε(t)Vθ(t) + V T

0 (t)Dhθ(t)
)

+Dεθ(t)
(3.49)

For the macroscopic 3D solid model, C∗(t) is the time-dependent effective the 6 × 6 stiffness

matrix; for the 2D plate/shell model, C∗(t) is the 6 × 6 ABD(t) matrix, and for the 1D

Euler-Bernoulli beam model, is the 4 × 4 Cb(t) matrix. However, Eq. ( 3.49 ), β∗(t) represents

the effective thermal induced stress resultants. For the 2D plate/shell model, these thermal

induced stress resultants are

β∗(t) = [NT11(t) NT22(t) NT12(t) MT11(t) MT22(t) MT12(t)] (3.50)

In case of the 1D Euler-Bernoulli beam model, these thermal induced stress resultants

are

β∗(t) = [FT1(t) MT1(t) MT2(t) MT3(t)] (3.51)

3.3 Direct Integration Method

3.3.1 3D Solid Model

The formulation next presented was adapted from Zocher et al. [ 70 ] to solve the lin-

ear thermoviscoelastic problem. This section presents the main steps of its derivation and

intermediate steps are provided as complementary in Appendix  B . The stress state at the

current reduced time ξn+1 should be expressed by means of an incremental stress form that

uses a time marching procedure. Let us assume that the reduced time can be subdivided in

discrete intervals as

ξn+1 = ξn + ∆ξn+1 (3.52)

where ∆ξn+1 stands for the reduced time increment in the current step, and ξn+1 and ξn

represent the reduced time in the current and previous, respectively. We also assume that
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the stress state at the previous reduced time ξn is known. Following Eq. ( 2.6 ) the stress

state at the reduced time ξn+1 reads as

σij(ξn+1) =
∫ ξn+1

0

[
Cijkl (T0, ξn+1(t)− ξ(τ)) ε̇kl(τ) + βij (T0, ξn+1(t)− ξ(τ)) θ̇(τ)

]
dτ (3.53)

which can also be written as

σij(ξn+1) =∫ ξn

0
Cijkl (T0, ξn+1(t)− ξ(τ)) ε̇kl(τ)dτ +

∫ ξn+1

ξn
Cijkl (T0, ξn+1(t)− ξ(τ)) ε̇kl(τ)dτ

+
∫ ξn

0
βij (T0, ξn+1(t)− ξ(τ)) θ̇(τ)dτ +

∫ ξn+1

ξn
βij (T0, ξn+1(t)− ξ(τ)) θ̇(τ)dτ

(3.54)

We can define the incremental stress field ∆σij as

∆σij(ξn+1) ≡ σij(ξn+1)− σij(ξn)

=
∫ ξn+1

ξn
Cijkl (T0, ξn+1(t)− ξ(τ)) ε̇kl(τ)dτ

+
∫ ξn+1

ξn
βij (T0, ξn+1(t)− ξ(τ)) θ̇(τ)dτ + Ωij

(3.55)

where Ωij is defined as

Ωij =
∫ ξn

0
∆Cijklε̇kl(τ)dτ +

∫ ξn

0
∆βij θ̇(τ)dτ (3.56)

and ∆Cijkl and ∆βij read as

∆Cijkl ≡ Cijkl (T0, ξn+1(t)− ξ(τ))− Cijkl (T0, ξn(t)− ξ(τ))

∆βij ≡ βij (T0, ξn+1(t)− ξ(τ))− βij (T0, ξn(t)− ξ(τ))
(3.57)
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Let us assume that Cijkl and βij are expressed with Prony series coefficients. Then, Cijkl (T0, ξn+1(t)− ξ(τ))

and βij (T0, ξn+1(t)− ξ(τ)) can be written as

Cijkl (T0, ξn+1(t)− ξ(τ)) = Cijkl,∞ +
m1∑
s1=1

Cijkl,s1e
(
− ξn+1(t)−ξ(τ)

λs1

)

βij (T0, ξn+1(t)− ξ(τ)) = βij,∞ +
m2∑
s2=1

βij,s2e
(
− ξn+1(t)−ξ(τ)

λs2

) (3.58)

where Cijkl,∞ is the long-term stiffness matrix, βij,∞ is the long-term thermal stress tensor,

λs are the discrete stress relaxation times, and Cijkl,s and βij,s stand for the Prony series

coefficients of the stiffness matrix and thermal stress tensor, respectively. For the sake of

simplicity, the same discrete stress relaxation times are considered for all the components

of the stress relaxation stiffness and thermal stress tensor. It is noted that when time-

and temperature-dependent experimental or simulation data are reduced, it is possible to

constrain λs in the algorithm to compute the corresponding Prony series coefficients.

Furthermore, we approximate the strain and temperature difference over the interval

∆ξn+1 (i.e. ξn ≤ ξ ≤ ξn+1) as

εij(ξ) = εijn +Rεijn+1
(ξ − ξn)H(ξ − ξn)

θ(ξ) = θn +Rθn+1(ξ − ξn)H(ξ − ξn)
(3.59)

where εijn and θn stand for the strain and temperature change values at the beginning of the

interval, Rεijn+1
is a vector of constants representing the strain rate change over the interval,

Rθn+1 is a constant representing the temperature rate change over the interval, and H(ξ−ξn)

is the Heaviside step function. Substituting Eq. ( 3.59 ) into Eq. ( 3.57 ), it can be integrated

in a closed form as

∆σij(ξn+1) = Mijkl∆εkl(ξn+1) + ηij∆θ(ξn+1) + Ωij (3.60)
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where

Mijkl ≡ Cijkl,∞ + 1
∆ξn+1

m1∑
s1=1

λs1Cijkl,s1

(
1− e

−∆ξn+1
λs1

)
(No sum on i, j, k, l)

ηij ≡ βij,∞ + 1
∆ξn+1

m2∑
s2=1

λs2βij,s2

(
1− e

−∆ξn+1
λs2

)
(No sum on i, j)

∆εij(ξn+1) ≡ Rεijn+1
∆ξn+1

∆θ(ξn+1) ≡ Rθn+1∆ξn+1

Ωij ≡ −
m1∑
s1=1

(
1− e

−∆ξn+1
λs1

)
Dij,s1(ξn)−

m2∑
s2=1

(
1− e

−∆ξn+1
λs2

)
Bij,s2(ξn) (No sum on i, j)

(3.61)

where Rεijn+1
is a second-order tensor evaluated in the current time increment, Rθn+1 is a

constant evaluated in the current time increment, and

Dij,s1(ξn) = e
−∆ξn
λs1 Dij,s1(ξn−1) + λs1Cijkl,s1Rεkln

(
1− e

−∆ξn
λs1

)
(No sum on i, j)

Bij,s2(ξn) = e
−∆ξn
λs2 Bij,s2(ξn−1) + λs2βij,s2Rθn

(
1− e

−∆ξn
λs2

)
(No sum on i, j)

(3.62)

Finally, for a given strain field εkl(t), it is possible to compute ∆σij(ξn+1) with the

formulation here presented. Then, σij(ξn+1) is computed as

σij(ξn+1) = σij(ξn) + ∆σij(ξn+1) (3.63)

3.3.2 2D Kirchhoff-Love Plate/Shell Model

For the MSG-based plate/shell model with the DI method let us define the shell strains,

curvatures, forces, moments, thermal force and moment resultants as ε(t) = bε11(t) ε22(t)

2ε12(t)cT , κ(t) = bκ11(t) κ22(t) 2κ12(t)cT , N(t) = bN11(t) N22(t) N12(t)cT , M(t) =

bM11(t) M22(t) M12(t)cT , NT (t) = bNT11(t) NT22(t) NT12(t)cT , MT (t) = bMT11(t) MT22(t)

MT12(t)cT . Then, we also define the time- and temperature-dependent shell stiffness ma-
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trix by means of extension relaxation stiffness matrix A(T, t), extension-bending coupling

relaxation stiffness matrix B(T, t), and bending relaxation stiffness matrix D(T, t) as

A(T, t) =


A11(T, t) A12(T, t) A16(T, t)

A12(T, t) A22(T, t) A26(T, t)

A16(T, t) A26(T, t) A66(T, t)



B(T, t) =


B11(T, t) B12(T, t) B16(T, t)

B12(T, t) B22(T, t) B26(T, t)

B16(T, t) B26(T, t) B66(T, t)



D(T, t) =


D11(T, t) D12(T, t) D16(T, t)

D12(T, t) D22(T, t) D26(T, t)

D16(T, t) D26(T, t) D66(T, t)


Then, Eq. ( 2.1 ) can be rewritten in terms of the 2D Kirchhoff-Love plate/shell model as

N(t) =
∫ t

0
A(T, t− τ)ε̇(τ)dτ +

∫ t

0
B(T, t− τ)κ̇(τ)dτ +NT (t)

M(t) =
∫ t

0
B(T, t− τ)ε̇(τ)dτ +

∫ t

0
D(T, t− τ)κ̇(τ)dτ +MT (t)

(3.64)

where the terms NT (t) and MT (t) are given as

NT (t) =
∫ t

0
βNT (T, t− τ)θ̇(τ)dτ

MT (t) =
∫ t

0
βMT (T, t− τ)θ̇(τ)dτ

(3.65)

where βNT and βMT
represent 3 × 1 column matrices of relaxation moduli relating the

force and moment resultants to temperature change in 2D Kirchhoff-Love plate/shell model,

respectively. Likewise, Eq. ( 2.6 ) can be rewritten as

N(t) =
∫ t

0
A(T0, ξ(t)− ξ(τ))ε̇(τ)dτ +

∫ t

0
B(T0, ξ(t)− ξ(τ))κ̇(τ)dτ +NT (t)

M(t) =
∫ t

0
B(T0, ξ(t)− ξ(τ))ε̇(τ)dτ +

∫ t

0
D(T0, ξ(t)− ξ(τ))κ̇(τ)dτ +MT (t)

(3.66)
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where the terms NT (t) and MT (t) for Eq. ( 3.66 ) are given as

NT (t) =
∫ t

0
βNT (T0, ξ(t)− ξ(τ))θ̇(τ)dτ

MT (t) =
∫ t

0
βMT (T0, ξ(t)− ξ(τ))θ̇(τ)dτ

(3.67)

The DI method follows the incremental approach to solve Eq. (  3.64 ) and hence, we want

to compute the incremental force ∆N(ξn+1) and moment ∆M(ξn+1) resultants as

∆N(ξn+1) ≡ N(ξn+1)−N(ξn)

∆M(ξn+1) ≡M(ξn+1)−M(ξn)
(3.68)

where the reduced time increments are computed as given by Eq. ( 3.52 ). To solve Eq. ( 3.68 ),

we apply two assumptions. The first assumption is that the terms A(T, t), B(T, t), D(T, t),

βNT (T, t) and βMT (T, t) are expressed in terms of Prony series coefficients as

A (T0, ξ) = A∞ +
m∑
s=1

Ase(− ξ
λs

)

B (T0, ξ) = B∞ +
m∑
s=1

Bse(− ξ
λs

)

D (T0, ξ) = D∞ +
m∑
s=1

Dse(− ξ
λs

)

βNT (T0, ξ) = βNT∞ +
m∑
s=1

βNTs e(− ξ
λs

)

βMT (T0, ξ) = βMT
∞ +

m∑
s=1

βMT
s e(− ξ

λs
)

(3.69)

where A∞, B∞ and D∞ are the long-term shell stiffness matrices, βNT∞ and βMT
∞ are the

long-term values of the 3 × 1 column matrices of relaxation moduli relating the force and

moment resultants to temperature change, and As, Bs, Ds, βNTs and βMT
s are the Prony

series coefficients. For the sake of simplicity, the same discrete stress relaxation times are

considered for all the components of the thermoviscoelastic stiffness and thermal stress re-

sultant matrices. The QE method implemented in SwiftCompTM and uniform temperature

distribution within the plate/shell model were used to compute all these thermoviscoelastic
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matrices and hence, all these terms correspond to the effective thermoviscoelastic plate/shell

properties computed according to Eq. (  3.27 ).

The second assumption is that we approximate the plate strains and curvatures over the

time interval ∆ξn+1 (i.e. ξn ≤ ξ ≤ ξn+1) as

ε̇(τ) = ∂ε

∂τ
≈ Rεn+1 ≡

∆ε(ξn+1)
∆ξn+1

κ̇(τ) = ∂κ

∂τ
≈ Rκn+1 ≡

∆κ(ξn+1)
∆ξn+1

θ̇(τ) = ∂θ

∂τ
≈ Rθn+1 ≡

∆θ(ξn+1)
∆ξn+1

(3.70)

where ∆ε(tn+1), ∆κ(tn+1) and ∆θ(tn+1) stand for the plate strain, curvature, and tempera-

ture change increments, Rεn+1 and Rκn+1 are constant column matrices containing the plate

strain and curvature changes over the interval, and Rθn+1 is defined as in Eq. ( 3.59 ).

Substituting the approximations given by Eqs. ( 3.69 ) and ( 3.70 ), Eq. ( 3.66 ) can be

integrated in a closed form leading to

∆N(ξn+1) = Aeq∆ε(ξn+1) +Beq∆κ(ξn+1) + βNTeq ∆θ(ξn+1) + ΩN

∆M(ξn+1) = Beq∆ε(ξn+1) +Deq∆κ(ξn+1) + βMT
eq ∆θ(ξn+1) + ΩM

(3.71)
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where

Aeq ≡ A∞ + 1
∆ξn+1

m∑
s=1

λsAs

(
1− e

−∆ξn+1
λs

)

Beq ≡ B∞ + 1
∆ξn+1

m∑
s=1

λsBs

(
1− e

−∆ξn+1
λs

)

Deq ≡ D∞ + 1
∆ξn+1

m∑
s=1

λsDs

(
1− e

−∆ξn+1
λs

)

βNTeq ≡ βNT∞ + 1
∆ξn+1

m∑
s=1

λsβ
NT
s

(
1− e

−∆ξn+1
λs

)

βMT
eq ≡ βMT

∞ + 1
∆ξn+1

m∑
s=1

λsβ
MT
s

(
1− e

−∆ξn+1
λs

)
∆ε(ξn+1) ≡ Rεn+1∆ξn+1

∆κ(ξn+1) ≡ Rκn+1∆ξn+1

∆θ(θn+1) ≡ Rθn+1∆ξn+1

ΩN ≡ −
m∑
s=1

(
1− e

−∆ξn+1
λs

)(
aN,s(ξn) + bN,s(ξn) + fN,s(ξn)

)

ΩM ≡ −
m∑
s=1

(
1− e

−∆ξn+1
λs

)(
bM,s(ξn) + dM,s(ξn) + fM,s(ξn)

)

(3.72)

where Rεn+1 and Rκn+1 are column matrices evaluated in the current time increment, Rθn+1

is a constant evaluated in the current time increment, and aN,s, bN,s, fN,s, bM,s, dM,s and

fM,s are 3× 1 column matrices defined as

aN,s(ξn) = e
−∆ξn
λs aN,s(ξn−1) + λsAsRεn

(
1− e

−∆ξn
λs

)
bN,s(ξn) = e

−∆ξn
λs bN,s(ξn−1) + λsBsRκn

(
1− e

−∆ξn
λs

)
fN,s(ξn) = e

−∆ξn
λs fN,s(ξn−1) + λsβ

NT
s Rθn

(
1− e

−∆ξn
λs

)
bM,s(ξn) = e

−∆ξn
λs bM,s(ξn−1) + λsBsRεn

(
1− e

−∆ξn
λs

)
dM,s(ξn) = e

−∆ξn
λs dM,s(ξn−1) + λsDsRκn

(
1− e

−∆ξn
λs

)
fM,s(ξn) = e

−∆ξn
λs fM,s(ξn−1) + λsβ

MT
s Rθn

(
1− e

−∆ξn
λs

)

(3.73)
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It is noted that aN,s, bN,s, bM,s and dM,s store the change of in-plane forces and moments

history for each of the discrete stress relaxation times, λs, used to define the Prony series

coefficients. For instance, if 10 discrete stress relaxation times are used to define the Prony

series coefficients of the ABD matrices, there will be 10 different matrices for aN,s, bN,s,

bM,s and dM,s as s = 1, 2, ..., 10 (i.e. 40 matrices total). The units of aN,s, bN,s and fN,s are

plate/shell force, and the ones of bM,s, dM,s and bM,s are plate/shell moment. In addition, at

the first step of the computation (i.e. n = 1), the values of Eq. ( 3.73 ) are equal to

aN,s(ξ1) = λsAsRε1

(
1− e

−∆ξ1
λs

)
bN,s(ξ1) = λsBsRκ1

(
1− e

−∆ξ1
λs

)
fN,s(ξ1) = λsβ

NT
s Rθ1

(
1− e

−∆ξ1
λs

)
bM,s(ξ1) = λsBsRε1

(
1− e

−∆ξ1
λs

)
dM,s(ξ1) = λsDsRκ1

(
1− e

−∆ξ1
λs

)
fM,s(ξ1) = λsβ

MT
s Rθ1

(
1− e

−∆ξ1
λs

)

(3.74)

as the first terms on the right hand side of Eq. ( 3.73 ) vanish. Finally, for a given plate

strain ε, curvature κ and temperature change θ fields, it is possible to compute ∆N(ξn+1)

and ∆M(ξn+1) with the formulation here presented. Then, N(ξn+1) and M(ξn+1) are given

as

N(ξn+1) = N(ξn) + ∆N(ξn+1)

M(ξn+1) = M(ξn) + ∆M(ξn+1)
(3.75)

The present formulation differs from the formulation presented by Gomez-Delrio and

Kwok [  96 ] in the way ΩN and ΩM are computed for the particular case of aT = 1 and θ = 0 in

Eqs. ( 3.71 ) and ( 3.72 ). The present formulation allows to use different time increments from

step to step and hence, both formulations are only equal if ∆tn = ∆tn+1. This discrepancy

in the formulation may not lead to a significant difference when real time increment, ∆t is
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used to solve the problem but it can be noteworthy when reduced time increment ξn is used

instead.

3.3.3 1D Euler-Bernoulli Beam Model

The kinetics of the 1D Euler-Bernoulli beam model contains four time-dependent stress

resultants F1(x1, t), M1(x1, t), M2(x1, t), M3(x1, t) with F1(x1, t) denoting the time-dependent

axial force, M1(t) denoting the torque, and M2(x1, t), M3(x1, t) denoting the time-dependent

bending moments around x2, and x3 respectively. Let us define ς as ς(t) = bF1 M1 M2 M3cT ,

and the 4 × 4 beam stiffness matrix Cb(T, t) capturing extension, torsion, and bending in

two directions as

Cb(T, t) =



Cb
11(T, t) Cb

12(T, t) Cb
13(T, t) Cb

14(T, t)

Cb
12(T, t) Cb

22(T, t) Cb
23(T, t) Cb

24(T, t)

Cb
13(T, t) Cb

23(T, t) Cb
33(T, t) Cb

34(T, t)

Cb
14(T, t) Cb

24(T, t) Cb
34(T, t) Cb

44(T, t)


(3.76)

Then, Eq. (  2.1 ) can be rewritten in terms of the 1D Euler-Bernoulli beam model as

ς(t) =
∫ t

0

[
Cb(T, t− τ) ˙̄ε+ βb (T, t− τ) θ̇(τ)

]
dτ (3.77)

where βb represents a 4×1 column matrix of relaxation moduli relating the stress resultants

to temperature change in the 1D Euler-Bernoulli beam model. Similarly, Eq. ( 2.6 ) can be

rewritten as

ς(t) =
∫ t

0

[
Cb(T0, ξ(t)− ξ(τ)) ˙̄ε+ βb (T0, ξ(t)− ξ(τ)) θ̇(τ)

]
dτ (3.78)

Following the DI method, the incremental beam stress resultants are solved as

∆ς(ξn+1) ≡ ς(ξn+1)− ς(ξn)+ (3.79)
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where the reduced time increments are computed as given by Eq. ( 3.52 ). Then, let us assume

that the terms of Cb(T, t) are expressed with Prony series as

Cb (T0, ξ) = Cb
∞ +

m∑
s=1

Cb
se(− ξ

λs
)

βb (T0, ξ) = βb∞ +
m∑
s=1

βbse(− ξ
λs

)
(3.80)

where Cb
∞ is the long-term beam stiffness matrix, βb∞ is the long-term relaxation moduli

relating the stress resultants to temperature change, and Cb
s and βbs denote the Prony se-

ries coefficients. To simplify the formulation, the same discrete stress relaxation times are

considered for all the components of the 4 × 4 beam stiffness and thermal stress resultant

matrices. We first compute the time- and temperature-dependent beam thermoviscoelastic

stiffness and thermal stress resultant matrix using SwiftCompTM [ 112 ] assuming that the

beam cross-section has uniform temperature distribution (see Eq. ( 3.27 ) for beam models).

Afterwards, all the terms can be fit into Prony series coefficients.

Furthermore, we approximate the beam strains over the interval ∆ξn+1 (i.e. ξn ≤ ξ ≤

ξn+1) as

˙̄ε(τ) =



γ̇11(τ)

κ̇11(τ)

κ̇12(τ)

κ̇13(τ)


=



∂γ11
∂τ

∂κ11
∂τ

∂κ12
∂τ

∂κ13
∂τ


≈



Rγ11n+1

Rκ11n+1

Rκ12n+1

Rκ13n+1


≡



∆γ11
∆ξ

∆κ11
∆ξ

∆κ12
∆ξ

∆κ13
∆ξ


≡ Rε̄n+1

θ̇(τ) = ∂θ

∂τ
≈ Rθn+1 ≡

∆θ(ξn+1)
∆ξn+1

(3.81)

where Rγ11 , Rκ11 , Rκ12 and Rκ13 are constants representing beam strain changes over the

interval, and Rε̄ is a column matrix containing these constants.

Substituting the approximations given by Eqs. (  3.80 ) and (  3.81 ), and bearing in mind

Eq. ( 2.4 ), Eq. (  3.78 ) can be integrated in a closed form leading to

∆ς(ξn+1) = Cb
eq∆ε̄(ξn+1) + βbeq∆θ(ξn+1) + Ωb (3.82)
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with

Cb
eq ≡ Cb

∞ + 1
∆ξn+1

m∑
s=1

λsC
b
s

(
1− e

−∆ξn+1
λs

)

βbeq ≡ βb∞ + 1
∆ξn+1

m∑
s=1

λsβ
b
s

(
1− e

−∆ξn+1
λs

)
∆ε̄(ξn+1) ≡ Rε̄n+1∆ξn+1

∆θ(ξn+1) ≡ Rθn+1∆ξn+1

Ωb ≡ −
m∑
s=1

(
1− e

−∆ξn+1
λs

)
(as(ξn) + fs(ξn))

(3.83)

where Rε̄n+1 and Rθn+1 are evaluated for the current time increment, and as and fs are a 4×1

column matrices defined as

as(ξn) = e
−∆ξn
λs as(ξn−1) + λsC

b
sRε̄n

(
1− e

−∆ξn
λs

)
fs(ξn) = e

−∆ξn
λs fs(ξn−1) + λsβ

b
sRθn

(
1− e

−∆ξn
λs

) (3.84)

It is noted that as stores the change of beam forces and moments for each of the discrete

relaxation times, λs, used to define the Prony series coefficients. As an example, if five

discrete relaxation times are used to define the Prony series coefficients of Cb(T, t), there will

be five different matrices for as as s = 1, 2, ..., 5. For a given beam strain ε̄ and temperature

change θ fields, it is possible to compute ∆ς(ξn+1) with the formulation here presented.

Then, following Eq. ( 3.79 ), ς(ξn+1) is given as

ς(ξn+1) = ς(ξn) + ∆ς(ξn+1) (3.85)

It is noted that if all the computations are performed at reference temperature T0, aT = 1

and hence, t = ξ. The DI method can be implemented analytically to compute the global

behavior of thermoviscoelastic beams or, alternatively, using a user-defined element (UEL)

subroutine in Abaqus. In the present work, the DI method was implemented analytically.
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3.3.4 Direct Integration Thermoviscoelastic Hybrid Rules of Mixture

An analytical solution is derived next for the particular case of computing the structural

behavior of a composite laminate with uniform temperature distribution as an equivalent

anisotropic solid. We assume that the laminate is made of homogeneous anisotropic thermo-

viscoelastic layers whose three-dimensional strain-stress relationship is given by Eqs. ( 3.60 )

- ( 3.63 ). Then, a 1D SG through the thickness containing all segments needed to represent

each layer is used to model the laminate. This analytical solution does not constrain the

anisotropy of the laminae or the stacking sequence of the laminate. However, similarly to the

analytical case presented in Subsection  3.2.5 , the coupling between bending and extension

deformations is not captured for asymmetric laminates as we approximated the laminate as

an anisotropic, homogeneous solid.

Let ∆σ‖ = b∆σ11 ∆σ22 ∆σ12cT , ∆σ⊥ = b∆σ33 ∆σ23 ∆σ13cT , ∆ε‖ = b∆ε11 ∆ε22 2∆ε12cT ,

∆ε⊥ = b∆ε33 2∆ε23 2∆ε13cT , η‖ = bη11 η22 η12cT , η⊥ = bη33 η23 η13cT , Ω‖ =

bΩ11 Ω22 Ω12cT , Ω⊥ = bΩ33 Ω23 Ω13cT and Mij be the components of the 6 × 6

tangent stiffness matrix given as

∆σ‖
∆σ⊥

 =

M‖ M∠

MT
∠ M⊥


∆ε‖

∆ε⊥

+

η‖η⊥
∆θ̄ +

Ω‖
Ω⊥

 (3.86)
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with

M‖ =


M11 M12 M16

M12 M22 M26

M16 M26 M66



M∠ =


M13 M14 M15

M23 M24 M25

M36 M46 M56



M⊥ =


M33 M34 M35

M34 M44 M45

M35 M45 M55


From Eq. ( 3.86 ) we have that

∆σ‖ = M‖∆ε‖ +M∠∆ε⊥ + η‖∆θ̄ + Ω‖

∆σ⊥ = MT
∠ ∆ε‖ +M⊥∆ε⊥ + η⊥∆θ̄ + Ω⊥

(3.87)

From which ∆σ‖ and ∆ε⊥ can be solved leading to

∆σ‖ =
(
M‖ −M∠M

−1
⊥ MT

∠

)
∆ε‖ +M∠M

−1
⊥ ∆σ⊥ −M∠M

−1
⊥ η⊥∆θ̄

−M∠M
−1
⊥ Ω⊥ + η‖∆θ̄ + Ω‖

∆ε⊥ =M−1
⊥ ∆σ⊥ −M−1

⊥ MT
∠ ∆ε‖ −M−1

⊥ η⊥∆θ̄ −M−1
⊥ Ω⊥

(3.88)

Bearing in mind that both ∆σ⊥ and ∆ε‖ are constant through the thickness, for it to be

homogenized to an equivalent homogeneous body with no a priori assumptions, the through-

the-thickness average on both sides of Eq. ( 3.88 ) can be computed as

∆σ̄‖ =
〈
M‖ −M∠M

−1
⊥ MT

∠

〉
∆ε̄‖ +

〈
M∠M

−1
⊥

〉
∆σ̄⊥ +

〈
η‖ −M∠M

−1
⊥ η⊥

〉
∆θ̄

+
〈
Ω‖ −M∠M

−1
⊥ Ω⊥

〉
∆ε̄⊥ =

〈
M−1
⊥

〉
∆σ̄⊥ −

〈
M−1
⊥ MT

∠

〉
∆ε‖ −

〈
M−1
⊥ η⊥

〉
∆θ̄ −

〈
M−1
⊥ Ω⊥

〉 (3.89)
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It can be concluded that

M∗
⊥ =

〈
M−1
⊥

〉−1

M∗
∠ =

〈
M∠M

−1
⊥

〉
M∗
⊥

M∗
‖ =

〈
M‖ −M∠M

−1
⊥ MT

∠

〉
+M∗

∠M
∗−1
⊥ M∗T

∠

η∗⊥ = M∗
⊥

〈
M−1
⊥ η⊥

〉
η∗‖ =

〈
η‖ −M∠M

−1
⊥ η⊥

〉
+M∗

∠M
∗−1
⊥ η∗⊥

Ω∗⊥ = M∗
⊥

〈
M−1
⊥ Ω⊥

〉
Ω∗‖ =

〈
Ω‖ −M∠M

−1
⊥ Ω⊥

〉
+M∗

∠M
∗−1
⊥ Ω⊥

(3.90)

Finally, the effective thermoviscoelastic constitutive relations for the equivalent anisotropic

solid of the composite laminate read as

∆σ̄‖
∆σ̄⊥

 =

M∗
‖ M∗

∠

M∗T
∠ M∗

⊥


∆ε̄‖

∆ε̄⊥

+

η
∗
‖

η∗⊥

∆θ̄ +

Ω∗‖
Ω∗⊥

 (3.91)

Then, the stress state of the homogenized laminate in each time increment is computed

substituting Eq. ( 3.91 ) into Eq. ( 3.63 ).
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4. CASE STUDIES WITH THERMOVISCOELASTIC

THREE-DIMENSIONAL SOLIDS

This chapter presents numerical case studies with MSG-based solid model and the QE

method to compute the effective thermoviscoelastic properties of three different composite

SGs. Analytical solutions and 3D numerical simulations were used to verify the MSG-based

solid model. As part of this research work, these results were published in a journal article

[ 136 ]. In regard to MSG-based solid model and the DI method presented in Section  3.3.1 ,

numerical results of the lenticular and TRAC booms using this approach are presented in

Chapter  6 .

4.1 Effective Thermoviscoelastic Solid Properties

To illustrate the accuracy of the MSG-based QE solid model presented in Section  3.2 ,

three different composites were considered to homogenize and compute the equivalent ther-

moviscoelastic properties. For these numerical studies, it was assumed that the composite

material was completely cured and thus, there were no shrinkage effects. The first case study

was a unidirectional fiber reinforced composite (UDFRC). The second case consisted of a

balanced and symmetric composite laminate and was used to prove validity of the analytical

solution presented by means of the TVHRM. The last case considered a plain weave textile

composite created using TexGen [ 137 ]. For this mesostructure the influences of periodic and

aperiodic boundary conditions on the homogenized properties were studied. All the formu-

lation was implemented in SwiftCompTM and verified accordingly using RVE analysis and

direct numerical simulation (DNS) in Abaqus 6.14 [  104 ]. ABAQUS-SwiftComp GUI [ 113 ]

and TexGen4SC [ 138 ] were also used to create the microstructures for different composites.

For all the three cases the validity of the time shift given by Eq. ( 2.2 ) to represent the

homogenized composite properties at different temperatures was also analyzed.
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4.1.1 Unidirectional Fiber Reinforced Composite

A square-pack microstructure with fiber volume fraction equal to Vf = 0.64 was used to

model the UDFRC. This is represented by the 2D SG shown in Figure  4.1 (a) in which MSG

was used to compute the equivalent solid properties. T300/PMT-F4 thermoset composite

material properties were adapted for this study [ 95 ] and summarized in Appendix  A.2 .

X

Y

Z

X

Y

Z

(a) 2D SG model

X

Y

Z

X

Y

Z

(b) RVE model

Figure 4.1. Modeling of the UDFRC by means of SG and RVE.

To confirm the results of the MSG solid model with 2D SG, a 3D RVE model shown

in Figure  4.1 (b) was built in Abaqus 6.14 [ 104 ]. Periodic boundary conditions were applied

to the RVE in x−, y−, and z− directions. A total of 4,800 linear hexahedral elements of

type C3D8 were used to discretize the 3D RVE. The planar direction mesh size was kept

the same for the 2D SG with 1,200 linear four-noded quadrilateral elements used to mesh

it. In the RVE model, both materials, the fiber and the matrix were directly defined using

material libraries available in Abaqus 6.14 [ 104 ]. Five different separate analyses were used

to determine C∗11, C∗12, C∗22, C∗23, C∗44, C∗55, α∗11, and α∗22 for each temperature of interest. A

two-step simulation was defined with the viscoelastic option to capture the effective time-

dependent material behavior. In case of the homogenized stiffness components at different

isothermal conditions, in the first step a unit strain was applied over a short period (i.e. 0.1
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s) to the RVE, and then in the second step, the strain was kept constant for a long period

of time (i.e. 1010 s). For computing the homogenized time-dependent CTEs, a temperature

increment step function [ 31 ] and periodic boundary conditions with macroscopic strains

equal to zero were applied [ 139 ]. The initial temperature was assigned to be the reference

temperature. In the first step a temperature increase was applied for a short period of time

(i.e. 0.1 s). In the second step, the material relaxed for a long period of time keeping the

new temperature constant (i.e. 1010 s). Then, the effective CTEs were computed as [ 139 ]

α∗ij(T, t) = −1
θ̄

(
C∗ijkl(T, t)

)−1
〈σkl(T, t)〉 (4.1)

where C∗ijkl(T, t) is the effective stress relaxation stiffness tensor, θ̄ is the applied temperature

change, and the macroscopic stresses are computed from averaging the microscopic stresses

over the volume of the RVE as 〈σkl(T, t)〉. The values of the effective thermoviscoelastic

stiffness components for different temperature conditions are shown in Figure  4.2 and effec-

tive CTEs in Figure  4.3 . The instantaneous creep compliance matrix can also be directly

calculated from the inverse of the relaxation matrix at each time step and from it, the in-

stantaneous equivalent engineering constants. For the reference temperature of T0 = 40◦C,

the Prony series coefficients were computed using Levenberg-Marquardt algorithm in Matlab

2018b. The corresponding coefficients are given in Table  4.1 and the fitting curves are plot-

ted with white round markers in Figures  4.2 - 4.3 . The fit values showed a good agreement

with the original effective property data.

The effective properties computed using the MSG solid model and 3D RVE analysis are

shown with different markers and solid lines in Figures  4.2 - 4.3 , respectively. It is noted

that 3D RVE analyses were performed for every temperature case and all of the results

are represented with the solid line in the legend. All the values of the effective stiffness

components and CTEs based on the MSG solid model agreed well with the ones obtained

using the 3D RVE analysis.

In regards to the efficiency for each temperature of interest, RVE analyses required dif-

ferent simulations to compute the effective properties taking on average 194 s, while MSG

was done in a single analysis and took 1.07 s. The results revealed that in the directions
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Table 4.1. Effective properties for the UDFRC at T0 = 40◦C. Note that C∗22
= C∗33, C∗12 = C∗13, C∗55 = C∗66, and α∗22 = α∗33.

s ∞ 1 2 3 4 5 6 7
λs (s) - 103 105 106 107 108 109 1010

C∗11,s(MPa) 150030.0 129.3 248.9 274.6 189.4 600.8 39.8 1244.2
C∗12,s(MPa) 1475.8 94.3 165.3 257.3 84.6 626.1 -82.8 1453.7
C∗22,s(MPa) 4836.0 257.7 431.7 743.6 162.7 1831.0 -361.8 4308.0
C∗23,s(MPa) 1389.0 116.4 214.4 305.5 141.9 745.2 -30.0 1729.5
C∗44,s(MPa) 1046.8 91.2 171.2 225.1 120.4 531.9 -5.1 1187.9
C∗55,s(MPa) 1581.7 114.9 207.6 301.8 124.5 728.4 -59.0 1673.1
α∗11,s(µ/◦C) -0.371 0.036 0.071 0.066 0.062 0.132 0.031 0.246
α∗22,s(µ/◦C) 29.974 0.120 0.232 0.258 0.183 0.573 0.049 1.198
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Figure 4.2. Evolution of normalized effective stiffness components of the
UDFRC at different temperatures. 80



Figure 4.3. Evolution of normalized effective CTEs of the UDFRC at different
temperatures.

dominated by the fiber behavior, such as in the case of C∗11, the effect of the time-relaxation

is negligible. However, for the directions dominated by the matrix, such as C∗22, the effective

material properties exhibited time- and temperature-dependent behavior as the values de-

creased with the increase of time and temperature. At T = 20◦C the material time-dependent

behavior was not as evident as at T = 40◦C, as the resin modulus slowly decreased over time.

When the temperature is significantly above the reference temperature such as T = 100◦C,

the effective properties reached the long-term value.

One of the key findings of this numerical study was that although the CTEs of the

constituent material were constant with time and temperature, the effective CTEs exhibited

relaxation behavior with time and temperature. The nature of the effective CTEs was

driven by the thermoviscoelastic behavior of the stiffness matrix of the resin and showed

a good agreement with the conclusions of Khan and Muliana [ 72 ]. It was observed that

α∗11 in Figure  4.3 (left) evolved from being positive at room temperature to negative as the

temperature increased. In case of α∗22 shown in Figure  4.3 (right), although the relative

difference between completely relaxed and unrelaxed values was smaller than for α∗11, it was
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higher in terms of absolute values as the CTEs in matrix dominated directions were more

than one order of magnitude bigger than the CTEs in the fiber dominated one.

Dashed lines in Figures  4.2 - 4.3 represent the effective thermoviscoelastic properties at

different temperatures computed applying the shift factor given by Eq. ( 2.2 ) to the effective

properties at reference temperature of T = 40◦C, as summarized in Table  4.1 . Shifted values

at T = 20◦C, 60◦C, 80◦C and 100◦C were computed following this approach. We observed

that the shifted homogenized values agreed well with the ones computed using MSG solid

model with 2D SG and RVE analysis and thus, despite the heterogeneous thermoviscoelastic

nature of the composite material, the temperature dependencies of the effective properties

represented by the shift factor exhibited the same characteristics as those of the polymer

matrix. This finding not only validated the conclusions of Martynenko and Lvov [ 119 ] for the

effective thermoviscoelastic stiffness components but also extended their work accounting for

the behavior of the effective CTEs. It also proved that the a priori assumption of Cai and

Sun [ 64 ] is valid. Therefore, when computing the effective properties with one thermovis-

coelastic constituent material, it is possible to calculate the effective properties at different

temperatures by applying directly the shift factor to the thermoviscoelastic material and

then homogenizing the properties, or by doing the homogenization at reference temperature

first and then applying the shift factor directly to the effective properties. Clearly, the latter

approach was much more efficient.

4.1.2 Composite Laminate

The complete set of homogenized three-dimensional thermoviscoelastic properties of a

[45/− 45]s balanced and symmetric laminate were computed using TVHRM, SwiftCompTM

with 1D SG (see Figure  4.4 (a)), and 3D RVE analysis (see Figure  4.4 (b)). The effective

thermoviscoelastic properties of the UDFRC presented in Table  4.1 at T0 = 40◦C were

used as lamina properties. To assess the loss of accuracy of approximating as constant the

time-dependent CTEs of the constituent materials, time-dependent CTEs given in Table

 4.1 and constant CTEs obtained from the thermoelastic analysis (i.e. α∗e,11 = 0.2720 µ/◦C,

α∗e,22 = α∗e,33 = 33.07 µ/◦C) were considered as effective lamina CTEs.
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(a) 1D SG model
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Z

X
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Z

(b) 3D RVE model

Figure 4.4. Modeling of the [45/− 45]s laminate by means of SG and RVE.

A total of 16 linear elements were used to mesh the 1D SG for MSG analysis. In case of

1D SG, periodic boundary conditions can be proved to be the same as the volume constraint

in the second equation in Eq. ( 3.5 ). The 3D RVE model built in Abaqus 6.14 [  104 ] was

discretized using a total of 8,000 linear hexahedral elements of type C3D8, and periodic

boundary conditions were applied in x−, y−, and z− directions. For the 3D RVE analysis,

the lamina properties were input through a UMAT, and CTEs were defined with a UEXPAN.

Five analyses were required to determine all the effective stiffness and CTEs. The steps of

the analyses were defined as previously explained for the UDFRC case. In the case of MSG

analysis, the material properties were easily defined in the input file and only one analysis

was needed. For each time step, the instantaneous creep compliance of the laminate was

computed from the inverse of the relaxation matrix.

The engineering constants are shown in Figure  4.5 . Since TVHRM and SwiftCompTM

are both based on MSG, they provide the same effective properties and both are represented

as MSG in the figures. Solid line is used to represent the effective properties at differ-

ent temperatures of the 3D RVE analysis. The effective engineering constants and CTEs

computed using MSG matched well the results of the 3D RVE analysis, except for when

time-dependent lamina CTEs were considered as input (see Figure  4.6 bottom). In this lat-

ter case, the RVE analysis was able to properly capture the time-dependent behavior of the

CTEs when T = 20◦C and T = 100◦C. However, for T = 40◦C, T = 60◦C, and T = 80◦C, the
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Table 4.2. Effective properties for [45/ − 45]s laminate at T0 = 40◦C. It is
noted that E∗1 = E∗2 , ν∗13 = ν∗23, G∗13 = G∗23, and α∗11 = α∗22. Subscript c stands
for the CTEs computed from the constant lamina CTEs, and t for the ones
computed from the time-dependent lamina CTEs.

s ∞ 1 2 3 4 5 6 7
λs (s) - 103 105 106 107 108 109 1010

E∗1,s(MPa) 6152.4 363.4 771.8 772.4 806.9 1918.2 335.2 5703.4
E∗3,s(MPa) 4802.8 226.5 471.9 505.3 464.9 1274.4 83.6 3946.6
ν∗12,s 0.921 -0.004 -0.008 -0.009 -0.009 -0.022 -0.004 -0.067
ν∗13,s 0.024 0.002 0.004 0.003 0.004 0.008 0.002 0.025
G∗12,s(MPa) 38021.9 44.6 96.5 106.5 76.1 250.5 0.1 639.6
G∗13,s(MPa) 1260.1 106.5 201.0 210.5 213.5 487.1 103.2 1337.8
α∗11c,s(µ/◦C) 1.383 0.052 0.046 0.192 -0.051 0.410 -0.157 0.953
α∗33c,s(µ/◦C) 42.161 0.005 -0.003 0.186 -0.098 0.401 -0.007 0.991
α∗11t,s(µ/◦C) 0.596 0.100 0.086 0.366 -0.124 0.726 -0.289 1.328
α∗33t,s(µ/◦C) 38.383 0.156 0.250 0.570 0.035 1.190 -0.014 2.429

effective CTEs matched MSG values at t = 1 s but did not converge to a single long-term

value eventually leading to unrealistic results. This discrepancy was due to the fact that

the RVE analysis requires applying a temperature difference to compute the effective CTEs.

The applied temperature difference was only θ̄ 6= 0 during the first step of the analysis and

thus, the RVE analysis computed the effective properties for the second step (i.e. relaxation

step) considering the lamina CTE values at the end of the first step. In the second step

of the analysis the temperature was kept constant (i.e. θ̄ = 0), although the lamina CTE

values continued to evolve. Therefore, this evolution was not captured when computing the

effective properties of the laminate as θ̄ = 0 was used to compute the thermal strains. This

limitation of the RVE analysis did not appear when constant lamina CTEs were used. Since

MSG does not require the application of a priori thermal loads to compute effective CTEs,

it was able to properly capture the convergence of the effective properties at T = 40◦C,

T = 60◦C, and T = 80◦C towards the long-term value represented by T = 100◦C for both

time-dependent and constant lamina CTEs.
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Figure 4.5. Evolution of normalized effective thermoviscoelastic engineering
constants of [45/−45]s laminate. TVHRM and SwiftCompTM are both named
as MSG. 85



Figure 4.6. Evolution of normalized effective CTEs of [45/ − 45]s laminate
for constant (top), and time-dependent (bottom) lamina CTEs, respectively.
TVHRM and SwiftCompTM are both named as MSG.
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Prony series coefficients of the laminate effective engineering constants at reference tem-

perature of T = 40◦C are summarized in Table  4.2 . The Prony series coefficients of the

effective laminate Young’s and shear moduli, and CTEs were computed using the Levenberg-

Marquardt algorithm in Matlab 2018b. For the effective Poisson’s ratios (i.e. ν∗12 and ν∗13)

the trust region reflective algorithm in Matlab 2018b was used instead, which provided a

smoother approach to capture their time-dependent behavior. Fittings are shown with white

round markers in Figures  4.5 - 4.6 , which agree well with the original data.

All the effective engineering constants, including the Poisson’s ratios, exhibited time- and

temperature-dependent behavior. They all decreased with increased time and temperature,

except for ν∗12 which grew for increased time and temperatures. Similarly to the UDFRC

case, the effective CTEs exhibited time- and temperature-dependent behavior regardless of

considering constant or time-dependent lamina CTEs (see Figure  4.6 ). Although the in-

plane CTEs showed higher relative relaxation as the time passed and temperature increased,

in terms of absolute values the through-the-thickness relaxation was more significant as α∗33

was considerably bigger than α∗11.

The effective engineering constants and CTEs computed applying the shift defined by

Eq. ( 2.2 ) to the effective properties at reference temperature are shown with dashed lines

in Figures  4.5 - 4.6 . The shift was applied to the effective stiffness at reference temperature

(i.e. T0 = 40◦C) and afterwards, the effective engineering constants were extracted from

the stiffness matrix for each time step. The shifted effective engineering constants showed

a good agreement with the ones computed using MSG solid model with 1D SG, TVHRM,

and 3D RVE analysis. The difference between the shifted and directly calculated results

was less than 1%, and as depicted in Figure  4.6 , it was valid for both constant and time-

dependent CTE results. For comparison purposes of the latter case, the 3D RVE results

with time-dependent lamina CTEs were disregarded due to the limitations shown by the 3D

RVE analysis. Therefore, it can be concluded that when computing the effective properties

departing from the reference temperature, it is possible to calculate the effective properties

at different temperatures by applying directly the shift factor to the lamina properties and

then homogenizing them, or by doing the homogenization at reference temperature first and

then applying the shift factor to the effective properties. The latter approach appeared to
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be more efficient. Furthermore, the shift factor of the lamina and laminate was the same as

the one of the thermoviscoelastic resin.

4.1.3 Textile Composite

A plain weave composite material was analyzed using periodic (PBCs) and aperiodic

(aPBCs) boundary conditions with MSG solid model and two-step homogenization approach

[ 140 ]. Whereas the PBCs case properly modeled a textile composite with many layers and

showed good agreement with the traditional 3D RVE analysis, through-the-thickness aPBCs

should be used to capture the effective properties of textile composites made of few layers.

TexGen [ 137 ] and TexGen4SC [  138 ] were used to create the 3D SG model shown in Figure

 4.7 (a), which contained yarn and matrix material with thermovoviscoelastic behavior. The

yarn had a width and thickness of 0.90 mm and 0.06 mm, respectively. The fabric was 0.12

mm thick with a yarn spacing of 1.75 mm. The effective thermoviscoelastic properties of

the yarn were determined from the micro-homogenization step. For this numerical study,

yarns were modeled with the square-pack microstructure presented on the first example. The

effective properties summarized in Table  4.1 were used as yarn material properties for the

macro-homogenization step. To assess the loss of accuracy of approximating as constant the

time-dependent CTEs of the constituent materials with different boundary conditions, time-

dependent CTEs given in Table  4.1 and constant CTEs obtained given in the previous case

study were considered as effective yarn CTEs. The matrix consisted of PMT-F4 resin also

presented in the first numerical study and hence, the yarn and the matrix can be described

with the same shift factor given by Eq. (  A.11 ). The anisotropic behavior of the constituent

materials was easily defined in the MSG model without requiring any user-defined functions.

A MSG solid model with 125,000 elements was used to describe the mesostructure. The

current mesh size was in the order of magnitude of the mesh sizes used in previous studies

that proved to have good agreements with experimental data ([ 95 ], [  110 ]).

The effective engineering constants and CTEs were directly obtained from the MSG

analysis. All the Prony series coefficients for the aPBCs case at reference temperature of

T = 40◦C are summarized in Table  4.3 . The corresponding fittings are shown with white
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(b) 3D DNS model

Figure 4.7. Fabric models used in the mesostructural analysis with MSG, and
direct numerical simulation. The matrix is hidden to facilitate the visualization
of the yarns.

round markers in Figures  4.8 - 4.10 capturing well the results obtained from MSG analysis.

All the effective engineering constants shown in Figures  4.8 - 4.9 , including the Poisson’s

ratios, exhibited time- and temperature-dependent behavior. Similarly to the case of the

laminate, all of them decreased with increased time and temperature, except for ν∗12. The

latter effective property for aPBCs increased with time and temperature while for PBCs

was two orders of magnitude smaller (ν∗12, PBCs ≈ 0.07). The magnitudes of the rest of the

effective properties (i.e. E∗1 , E∗3 , ν∗13, G∗13, α∗11c and α∗11t) were slightly different for PBCs and

aPBCs except the in-plane shear modulus G∗12, which was the same for both cases. In case

of α∗33, aPBCs played a significant role. For the time-dependent CTE constituent properties,

whereas α∗33t, PBCs decreased with time and temperature (see the left figure of Figure  4.10 ),

α∗33t, aPBCs increases (see the right figure of Figure  4.10 ). Therefore, the long-term α∗33t, aPBCs

was bigger than the long-term α∗33t, PBCs. In case of constant CTE constituent properties,

α∗33c, aPBCs followed the same trend as α∗33t, aPBCs (see Figure  4.11 ).

To prove the latter finding, a 3D DNS of a single layer plain weave composite was carried

out in Abaqus 6.14 [ 104 ]. A total of 2,000,000 linear hexahedral elements of type C3D8

were used to discretize the 3D DNS model shown in Figure  4.7 (b). UMAT subroutine was

used to define the thermoviscoelastic material properties for the yarns. The PMT-F4 matrix
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Table 4.3. Effective properties for the textile composite with aperiodic bound-
ary conditions (aPBCs) in y3 and T0 = 40◦C. Note that E∗1, aPBCs = E∗2, aPBCs,
ν∗13, aPBCs = ν∗23, aPBCs, G∗13, aPBCs = G∗23, aPBCs, and α∗11, aPBCs = α∗22, aPBCs.

s, aPBCs ∞ 1 2 3 4 5 6 7
λs (s) - 103 105 106 107 108 109 1010

E∗
1,s(MPa) 19584.0 326.0 603.0 771.0 399.0 1805.0 -170.0 4416.0

E∗
3,s(MPa) 2071.5 282.0 577.2 553.6 532.0 1197.3 285.2 2549.3

ν∗
12,s 0.380 -0.003 -0.004 -0.011 0.002 -0.030 -0.014 -0.085
ν∗

13,s 0.269 0.001 0.004 0.000 0.009 0.004 -0.006 0.046
G∗

12,s(MPa) 712.1 98.0 200.6 187.5 185.7 402.8 92.7 882.1
G∗

13,s(MPa) 538.1 96.6 192.9 180.4 175.6 373.3 93.6 743.4
α∗

11t,s(µ/◦C) 2.258 0.350 0.606 0.848 0.370 1.766 0.030 3.449
α∗

33t,s(µ/◦C) 83.585 -0.195 -0.401 -0.296 -0.439 -0.603 -0.304 -1.295

properties were directly defined using the available material libraries. Due to the difficulty

of handling time dependent CTEs in Abaqus [  104 ] when a thermal load is applied, constant

CTEs were considered for both the yarn and the matrix, and the effective properties of the

DNS simulation were compared against α∗11c, aPBCs and α∗33c, aPBCs. Similarly to the case

of 3D RVE analysis, two viscoelastic steps were defined and the initial temperature was

assigned to be equal to the reference temperature. In the first step a temperature increase

was applied for a short period of time and then, in the second step the material was relaxed

for a long period of time keeping the new temperature constant.

The displacements of a region of interest (ROI) that mimics the 3D SG shown in Fig-

ure  4.7 (a) and located just in the middle of the textile composite were considered for the

effective CTEs calculations. The evolution of normalized effective CTEs of the DNS were

shown in dashed lines Figure  4.11 . Markers are used to plot the results for α∗11c, aPBCs and

α∗33c, aPBCs computed using SwiftCompTM. The MSG results exhibited good agreement with

DNS results with the difference being less than 0.5%. Furthermore, whereas in-plane CTEs

decreased with time and temperature, the through-the-thickness CTE increased corroborat-

ing the results found with MSG aPBCs analysis.
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Figure 4.8. Evolution of normalized effective properties for the textile com-
posite with PBCs (left) and aPBCs (right), respectively.
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Figure 4.9. Evolution of normalized effective shear moduli for the textile
composite with PBCs (left) and aPBCs (right), respectively.
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Figure 4.10. Evolution of normalized effective CTEs for the textile composite
with PBCs (left) and aPBCs (right), respectively.
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Figure 4.11. Normalized direct numerical simulation results of the textile
composite and MSG with aPBCs.
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Finally, the dashed lines of Figures  4.8 - 4.10 represent the effective engineering constants

and CTEs computed applying the shift factor to the effective properties of the textile com-

posite at reference temperature (i.e. T = 40◦C). Similarly to the previous case, the shift was

applied to the components of the stiffness matrix and then, the effective engineering con-

stants were computed. As the difference between the shifted and directly calculated results

was less than 1%, we can conclude that the shifted effective thermoviscoelastic properties

agree well with the ones computed using the MSG solid model. In this way, when computing

the effective properties departing from the reference temperature, both resin and yarn with

thermoviscoelastic behavior, it is possible to calculate the effective properties at different

temperatures by applying directly the shift factor to the constituents and then performing

the homogenization, or by doing the homogenization at reference temperature first and then

applying the shift factor directly to the effective properties. As it occurred in the previous

two cases, the latter approach clearly appeared to be more efficient. The shift factor of the

homogenized textile composite was the same as the one of the resin.

4.2 Summary

This chapter provided the numerical case studies to analyze the efficiency of the MSG-

based QE model. Three numerical case studies comprising UDFRC, a balanced and symmet-

ric laminate, and a textile composite were analyzed using MSG. The results were compared

against 3D RVE analysis showing good agreement, except when time-dependent CTE prop-

erties were considered at constituent level. In these cases, 3D RVE analysis was not able

to properly capture the convergence towards the long-term effective CTEs for T = 40◦C,

T = 60◦C and T = 80◦C, as a priori assumptions of thermal loads are required for the

computations. MSG accurately captured these long-term behaviors for both constant and

time-dependent constituent CTEs, and also increased the computation efficiency. In addi-

tion, these simulation efforts allowed to conclude that the effective CTEs of a composite

material that has thermoviscoelastic behavior show time and temperature dependency re-

gardless of whether constant or time-dependent CTEs are considered at constituent level.

When considering constant CTEs at constituent level, the thermoviscoelastic nature of the
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stiffness matrix drives the time- and temperature-dependent behavior of the effective CTEs.

Furthermore, the validity of the time shift to compute the homogenized properties at dif-

ferent temperatures departing from the effective properties at reference temperature was

analyzed. This analysis revealed that despite the heterogeneous thermoviscoelastic nature

of the composite material, the temperature dependencies of the effective properties given by

the shift factor have the same character as the ones of the polymer matrix. This aspect was

proved valid for the two-step homogenization approach used in textile composites, comput-

ing the effective laminate properties from homogenized lamina properties, and computing

UDFRC properties in terms of fiber and matrix properties. The analysis of the textile com-

posite also elucidated that the use of aPBCs allows to distinctively capture the increase

of the through-the-thickness CTE with increased time and temperature. Direct numerical

simulations corroborated this trend of the through-the-thickness CTE. It is noted that this

feature was not properly captured using PBCs, as a decrease of the through-the-thickness

CTE was observed for increased time and temperature. Although the proposed approach

does not guarantee the accuracy of the local stress field for a general strain input, it is

the most efficient and accurate method for multiscale homogenization of linear thermovis-

coelastic composite structures when the long-term thermoviscoelastic behavior and thermal

stability are of a concern. For instance, for thermoviscoelastic structures that undergo large

deformations that induce geometrical nonlinearity on structural scale, the effective properties

computed with the present approach can be used in a FEA package such as Abaqus [ 104 ] to

model the thermoviscoelastic behavior. However, when geometrical or material nonlineari-

ties, or both nonlinearities at the SG scale are also present, the approach here presented is

no longer valid.
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5. CASE STUDIES WITH THERMOVISCOELASTIC

PLATES/SHELLS

This chapter presents the numerical case studies with MSG-based shell/plate model. In the

first subsection, MSG plate/shell model with the QE method implemented in SwiftCompTM

is used to compute the effective properties, engineer the mesostructure and match the exper-

imental experimental bending stiffness data provided by NASA LaRC. [± 45PW ]4 laminate

made of M30S/PMT-F7 plain weave composite is considered. Once the elastic properties

of the selected mesostructure are in good agreement with the experimental data, the ther-

moviscoelastic ABD matrix and the plate thermal stress resultants of the laminate are also

computed. Part of this work was presented in American Society for Composites (ASC) 2020

conference [ 141 ]. In the second section, the implementation of the MSG-based plate/shell

model with the DI method into Abaqus as a UGENS user-defined subroutine is presented.

This subroutine was used within our research group by a colleague to simulate the column

bending test (CBT) of the [± 45PW ]4 laminate and compare against experimental data pro-

vided by NASA LaRC validating the subroutine. In this dissertation, the main outcomes of

this validation are briefly outlined for completeness. However, a more detailed description

was published at SciTech 2021 [ 125 ] and later extended into a journal paper currently under

review by NASA LaRC. It is also noted that the global behavior of lenticular and TRAC

booms are numerically simulated using MSG-based plate/shell model with the DI method

in Chapter  6 to verify the MSG-based beam model.

5.1 Effective Thermoviscoelastic Plate/Shell Properties

5.1.1 Engineering the Mesostructure

For this numerical case, SwiftCompTM [ 112 ] was used to engineer the mesostructure

and match the effective experimental properties of the M30S/PMT-F7 plain weave (PW)

composite. The MSG-based plate/shell model with the QE method was implemented in

SwiftCompTM. Both the in-plane elastic experimental data and the relaxation of the bending

stiffness D11 over the time were found in the literature [ 142 ]. Therefore, the objectives were

97



first to match the in-plane elastic lamina properties and then, compute the corresponding

viscoelastic behavior of D11 over time.

Table 5.1. Prony series coefficients of PMT-F7 toughened epoxy resin com-
puted from NASA LaRC experimental data at T0 = 40◦C.

s λs (s) Es (MPa)
∞ – 1546.0
1 37.0 324.7
2 1.0E+02 236.3
3 5.0E+02 7.1
4 1.0E+03 201.2
5 5.0E+03 81.5
6 1.0E+04 89.5
7 5.0E+04 223.9
8 1.0E+05 19.5
9 5.0E+05 109.3
10 1.0E+06 60.0
11 5.0E+06 0.8

The effective lamina properties of the M30S/PMT-F7 PW textile composite was com-

puted using PMT-F7 toughened epoxy resin characterized by NASA LaRC and fit into Prony

series coefficients shown in Table  5.1 . These data were later made available to the general

public [  143 ]. A Poisson’s ratio of 0.36, a coefficient of thermal expansion (CTE) of αm =

60 µ/◦C at a reference temperature of 40◦C and viscoelastic behavior was assumed to be

isotropic for the resin. The fiber constituent properties and microstructure characteristics

for the computation were found in literature ( [ 142 ], [ 144 ]). The M30S fiber was modeled as

transversely isotropic elastic materials and α11f = 0.100 µ/◦C and α22f = α33f= 10.080 µ/◦C

at the reference temperature of 40◦C were assumed. A two-step homogenization approach

was applied [  110 ] to compute the effective properties. First, the effective solid properties of

the microstructure (i.e. yarn) were computed which later were input as constituent prop-

erties for the computation of the effective properties of the mesostructure (i.e. laminate).

The yarn was modeled as a 2D SG with hexagonal pack microstructure and a fiber volume

fraction of 0.62 (see Figure  5.1 left). Periodic boundary conditions were applied and 18,124

linear four-noded quadrilateral elements were used to mesh it.
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Figure 5.1. 2D SG for the yarn microstructure and 3D SG for the [± 45PW ]4
mesostructure used to compute the effective properties (left and right).

Appendix  A.3 provides a comparison about the yarn properties computed using PMT-

F7 toughened epoxy data provided by NASA LaRC and the one found in the literature

[ 145 ] using MSG-based solid model. From this comparison, it was concluded that the NASA

LaRC resin relaxed faster than the one found in the literature. As for the composite laminate

mesostructure, a 3D SG was created with TexGen4SC [ 138 ] to model [0PW ]4 (i.e. 4-ply PW

laminate oriented at 0/90 degrees). The geometry of the mesostructure was obtained from

the literature [ 144 ]. PBCs were also considered and 256,000 elements were used to mesh it.

For both the microstructure and mesostructure, the interphases between the fiber and the

resin, and between the yarn and the resin were not modeled.

Then, the elastic lamina effective properties were computed using MSG-based solid model

and compared against experimental in-plane lamina data available in the literature [ 142 ]. For

that, the maximum Young’s modulus of the experimental data was selected as the Young’s

modulus of the resin and the effective yarn properties for t = 0 s were considered as the

elastic yarn properties. The mesh density was modified until the experimental properties

for the M30S/PMT-F7 [ 142 ] were matched being the selected results the ones reported for

the yarn and the laminate. As shown in Table  5.2 , both Young’s modulus values are within

1.2% of the experimental values and the highest difference comes from the shear modulus.

In addition, a [± 45PW ]4 (i.e. 4-ply PW laminate oriented at 45/-45 degrees) 3D SG was

created in TexGen [ 137 ] using the mesh density and geometrical properties of the [0PW ]4 case
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Table 5.2. Thin-ply lamina material properties for M30S/PMT-F7 PW com-
posite at T0 = 40◦ C.

Cured ply thickness E1 E2 ν12 G12
Experimental M30S/PMT-F7 [ 142 ] 60±3 µm 94.2 GPa 94.2 GPa 0.026 3.9 GPa

MSG solid M30S/PMT-F7 57 µm 93.1 GPa 93.1 GPa 0.026 3.3 GPa
Difference M30S/PMT-F7, % 0-10% 1.2% 1.2% 0% 15%

(see Figure  5.1 right). Then, the MSG-based plate/shell model implemented in SwiftCompTM

[ 112 ] was used to compute the effective viscoelastic plate/shell stiffness matrix. The MSG

results are compared against the experimental results in Figure  5.2 . A reference temperature

of T0 = 40◦C was selected, as this is the maximum stowage temperature expected for the

NASA solar sail application. The Prony series coefficients of the effective A,B,D relaxation

matrices were computed using Levenberg-Marquardt algorithm in Matlab 2018b and are

summarized in Table  5.3 . It is noted that the effective A,B,D relaxation matrices were

computed up to the maximum time available of the resin data, which is t = 107 s for NASA

LaRC resin. The MSG NASA LaRC D11,∞ = D22,∞ relaxed value at t = 107 s is within a

0.88% of the experimental relaxed value. In case of t = 0 s, this difference is 1.75%. Figure

 5.2 also shows that MSG slightly underpredicts the experimental value of D11 but it provides

closer results than the multiscale model presented in literature [ 142 ].

Table 5.3. Effective plate/shell viscoelastic stiffness properties of the
M30S/PMT-F7 [± 45PW ]4 laminate with hexagonal pack yarn and resin from
NASA LaRC at T0 = 40◦C.

s λs A11,s = A22,s A12,s A33,s D11,s = D22,s D12,s D33,s
s N/mm N/mm N/mm N·mm N·mm N·mm

∞ 1.093E+04 1.000E+04 1.011E+04 4.733E+01 4.334E+01 4.379E+01
1 3.70E+01 1.454E+02 2.383E+01 4.408E+01 6.304E-01 1.036E-01 1.912E-01
2 1.00E+02 1.285E+02 2.359E+01 4.200E+01 5.555E-01 1.013E-01 1.814E-01
3 1.00E+03 1.081E+02 1.969E+01 3.512E+01 4.654E-01 8.330E-02 1.508E-01
4 5.00E+03 4.632E+01 9.368E+00 1.614E+01 2.030E-01 4.220E-02 7.110E-02
5 1.00E+04 4.754E+01 8.497E+00 1.525E+01 2.039E-01 3.530E-02 6.490E-02
6 5.00E+04 1.318E+02 2.694E+01 4.624E+01 5.737E-01 1.190E-01 2.023E-01
7 1.00E+05 1.280E+01 2.895E+00 4.808E+00 5.190E-02 9.400E-03 1.800E-02
8 5.00E+05 6.690E+01 1.425E+01 2.413E+01 2.966E-01 6.790E-02 1.103E-01
9 1.00E+06 3.940E+01 9.122E+00 1.506E+01 1.631E-01 3.260E-02 5.880E-02
10 5.00E+06 4.446E-01 7.810E-02 1.414E-01 5.100E-03 3.300E-03 3.300E-03
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Figure 5.2. Comparison of the D11 term for a M30S/PMT-F7 [ ± 45PW ]4
laminate. Note that Ref. [A] represents Ref. [ 142 ].

Finally, the parameters for the PMT-F7 toughened epoxy resin shift function were man-

ually fit from experimental data provided by NASA LaRC for this study. The expression for

WLF equation was found to be equal to

log aT = − 3.6868(T − T0)
13.5513 + (T − T0) (5.1)

where the temperature was expressed in ◦C and T0 = 40 ◦C. Appendix  A.3 provides further

details for obtaining this expression.

5.1.2 Effective Thermoviscoelastic Plate/Shell Thermal Stress Resultants

Once the [ ± 45PW ]4 3D SG mesostructure presented in the previous subsection was

validated, the plate/shell stiffness properties and thermal resultants at temperatures of 40◦C,

60◦C, 80◦C, 100◦C and 120◦C were computed using SwiftCompTM [ 112 ]. To do so, first the

effective yarn properties at different temperatures were computed using the MSG-based solid
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model implemented SwiftCompTM. To do so, the M30S fiber data, which was treated as

elastic, and PMT-F7 toughened epoxy resin data, which was treated as thermoviscoelastic,

at different temperatures were input as constituent material properties. Afterwards, the

effective thermoviscoelastic properties of the yarn and the PMT-F7 toughened epoxy resin

at different temperatures were used as constituent properties to run homogenization of the

[ ± 45PW ]4. As it was proved for the solid case, for this last computation the yarn and the

resin were treated as thermoviscoelastic with the same time shift function. The effective

plate/shell stiffness properties and thermal stress resultants divided by the temperature

change (i.e. NT11,∞/θ̄) were normalized using the corresponding relaxed value as shown in

Figures  5.3 -  5.4 (left). It is noted that all the relaxed values used to normalized the effective

properties are listed in the first row of the Table  5.3 and NT11,∞/θ̄ = − 0.035 N/mm/◦C.

However, the thermal stress resultants were not normalized. For all the CTEs of the yarn

and resin, T0 = 40◦C was considered as reference temperature and thus, the effective thermal

stress resultants at these temperatures were equal to 0 N as depicted in Figure  5.4 . FEM

analysis was conducted to verify the results of the thermal stress resultants. As SwiftCompTM

and FEM analysis predicted the same thermal stress resultants, only the MSG results are

shown in Figures  5.3 - 5.4 . The results also revealed that the normalized values of A11 = A22,

D11 = D22, and NT11/θ̄ = NT22/θ̄ relaxed faster than A12, A33, D12, and D33 as the former

were more dominated by the thermoviscoelastic behavior of the resin.

In addition, to investigate the validity of the shift function of the resin to represent the

effective beam properties, the shift factor of the resin given by Eq. ( 5.1 ) was applied to the

effective beam properties at a reference temperature of T0 = 40◦C summarized in Table

 5.3 . Shifted values at T = 60◦C, 80◦C, 100◦C and 120◦C were computed following this ap-

proach and are represented with dashed lines in Figures  5.3 -  5.4 (left). We can observe that

the shifted homogenized values agree well with the ones computed using the MSG-based

plate/shell model. This conclusion is also valid for the thermal stress resultants divided by

the temperature change (i.e. NT11/θ̄). Consequently, despite the heterogeneous thermovis-

coelastic nature of the composite material, the temperature dependencies of the effective

plate/shell stiffness properties represented by the shift factor have the same characteristics

as those of the polymer matrix.
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Figure 5.3. Evolution of the normalized plate/shell thermoviscoelastic stiff-
ness properties of the M30S/PMT-F7 [ ± 45PW ]4 laminate with hexagonal
pack yarn and resin data from NASA LaRC. It is noted that A11 = A22 and
D11 = D22.
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Figure 5.4. Evolution of the normalized plate/shell thermal stresses of the
M30S/PMT-F7 [± 45PW ]4 laminate with hexagonal pack yarn and resin data
from NASA LaRC. It is noted that NT11/θ̄ = NT22/θ̄.

5.2 Global Thermoviscoelastic Plate/Shell Model

5.2.1 Validation against Experimental Data

The MSG-based plate/shell model with the DI method was implemented into Abaqus as

a UGENS user-defined subroutine. The analysis workflow followed to simulate the global

behavior of large viscoelastic structures in Abaqus is shown in Figure  5.5 . First, the material

constituent behavior is homogenized using MSG and then fit each term of the ABD matrix in

Prony series coefficients. For the sake of simplicity, the same discrete stress relaxation times

are considered for all the terms. Then the structural simulation is carried out considering

the viscoelastic shell section behavior that is directly input from the UGENS subroutine.

The steps that the subroutine follows for each time increment are shown in green in Figure

 5.5 . Once the Abaqus structural simulation is finished, results are post-processed and MSG

can be used for dehomogenization (not pursued herein). The focus of this section is on

the structural simulation. In case large deformation is present, such as in TP-HSC used in

deployable composite structures, geometric nonlinearity is considered in the structural FEA.
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Figure 5.5. Workflow of the MSG-based simulation framework for UGENS
subroutine in Abaqus.

As part of this work, a UGENS subroutine for the M30S/PMT-F7 [ ± 45PW ]4 laminate

was developed using the DI method and the Prony series coefficients of the ABD matrix

presented in Table  5.3 . Then, a colleague within our research group created the structural

FEA of a column bending test for the M30S/PMT-F7 [ ± 45PW ]4 laminate and run the

simulations using this subroutine. Further details of the structural model of the CBT can be

found in [ 125 ]. The simulated results were compared against the experimental data provided

by NASA LaRC for the same CBT at T = 40◦C. The experimental curvature during

folding (see the left figure of Figure  5.6 ), moment during relaxation (see Figure  5.7 ), as well

as residual curvature immediately after unfolding were in qualitative agreement with the

simulation results computed using the DI method.

To evaluate the capability for predicting the residual deformation of the present model,

the predicted and measured curvatures were also compared in the unfolding and recovery

stages, as shown in the right figure of Figure  5.6 . Table  5.4 also shows the curvature values

during relaxation, after unfolding and after recovery. Approximate values of the experimen-

tal data were chosen for the curvature shown in the column “After unfolding” column of
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Figure 5.6. Curvature history during folding (left) and residual curvature
after relaxation (right) [ 125 ].

Table  5.4 , as it was cumbersome to clearly define the separation between the folding and

relaxation steps. The analysis of residual deformation after relaxation revealed slight dis-

agreement, especially in the final steady-state curvature. The presence of viscoplasticity

was identified as the most likely reason for this discrepancy, as the difference between the

computed and experimental results remained relatively constant through the recovery period

[ 125 ]. Indeed, the large surface strains imposed on the specimens during the CBT experi-

mental test likely caused some degree of plastic deformation. This allowed to validate the

UGENS subroutine and identify the necessity to develop a viscoplastic material model and

a nonlinear shell model as future work.

Table 5.4. Residual curvature after relaxation [ 125 ].
Curvature, mm−1 Relaxation After unfolding (Approx.) After recovery
Simulation 0.06500 0.004130 0.0006444
Experiment 1 0.06239 0.007749 0.005936
Experiment 2 0.06153 0.008352 0.006154
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Figure 5.7. Moment relaxation history at T0 = 40◦C.

5.2.2 Temperature Shift

To validate the temperature shift capability of the thermoviscoelastic plate/shell model,

CBT simulations were performed with the shift factor implemented within the UGENS

subroutine in Abaqus. This capability enabled the simulation under different temperature

using the reduced time. This is a common approach in experiments to achieve large creeping

and relaxation without spending a long time. For this study, materials were considered

thermorheologically simple and the shift function was represented with Eq. ( 5.1 ). The

analysis of the effective plate/shell stiffness properties proved the temperature dependencies

of the effective plate/shell stiffness properties are governed by the same shift factor as the

polymer matrix. Using the reduced time given by Eq. ( 5.1 ), CBT under 40◦C, 60◦C and

80◦C were simulated.

The results revealed that the simulation can capture the shifting of the curves and pro-

vides a good agreement with the experiment. Residual curvature and strain were not com-

pared because of the strong noise in the experimental data.
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5.3 Summary

This chapter presented numerical cases to validate the MSG-based plate/shell model.

First, the MSG-based plate/shell model with the QE method was used to compute the

viscoelastic properties of the [ ± 45PW ]4 laminate made of M30S/PMT-F7 PW composite.

Experimental PMT-F7 toughened epoxy resin data received from NASA LaRC was used

as constituent property for both the yarn and the laminate in the two-step homogenization

approach. To compute the effective yarn properties, MSG-based solid model was used. Then,

effective viscoelastic properties were compared against the experimental bending stiffness

data provided by NASA LaRC showing good agreement. The difference between the MSG

and experimental results for both the initial (i.e. t = 0 S) and the relaxed values (i.e.

t = 107 S) were smaller than the ones provided by the FEM models of the literature.

Consequently, the viscoelastic analysis based on the MSG models can be safely used in the

microscale (i.e. fiber and matrix level) and mesoscale (i.e. yarn and matrix level) modeling.

As a second step, the validated 3D SG of the [ ± 45PW ]4 laminate was used to compute

the effective plate/shell properties and thermal stress resultants at different temperatures.

From a multiscale analysis perspective, it was concluded that despite the heterogeneous

thermoviscoelastic nature of the composite material, the temperature dependencies of the

effective plate/shell properties are driven by the same shift factor as the polymer matrix

except for nonuniform temperature distribution. This is also valid for the thermal stresses

divided by the temperature change θ̄ (i.e. NT11/θ̄) and corroborates the results found in the

previous chapter for the MSG-based solid model.

The second section presented the validation of the MSG-based plate/shell model with

the DI method. The model was implemented into Abaqus as a UGENS user-defined sub-

routine. Then, the subroutine was used within our research group to run CBT simulations

[ 125 ]. These simulations were compared against experimental results provided by NASA

LaRC. The comparison confirmed that whereas the QE method is convenient for computing

thermoviscoelastic effective properties, it cannot capture the residual stresses and strains as

it losses the stress history. Furthermore, the experimental curvature during folding, moment

during relaxation, as well as residual curvature immediately after unfolding were in qualita-
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tive agreement with the simulation results computed using the DI method. This comparison

allowed to validate the MSG-based plate/shell model with the DI method and its subroutine

that later was used for the simulation of thin-ply high strain composite booms.

109



6. CASE STUDIES WITH THERMOVISCOELASTIC BEAMS

This chapter presents a few numerical examples to verify the MSG-based linear thermovis-

coelastic beam model. The first section uses the MSG-based QE method presented in Section

 3.2.3 to compute the effective beam stiffness properties. Numerical examples containing uni-

form and nonuniform temperature distribution are presented to verify the formulation. Part

of this work was presented in American Society for Composites (ASC) 2020 conference [ 141 ]

and later transformed into a journal paper currently under review by NASA LaRC. The sec-

ond section describes the implementation of the MSG-based DI method presented in Section

 3.3.3 to compute the global beam behavior. The latter case is verified using direct numer-

ical simulations (DNS) implemented following the DI method for solid elements derived in

Section  3.3.1 and MSG-based plate/shell model with the DI method formulated in Section

 3.3.2 . Part of this work has been published at the SciTech 2021 conference [ 146 ].

6.1 Effective Thermoviscoelastic Beam Stiffness Properties

To demonstrate the accuracy of the MSG-based beam model, three different numerical

examples were selected to homogenize and compute the equivalent beam properties. The

first case consists of a collapsible tubular mast (CTM), referred here as a lenticular boom

with uniform temperature distribution. The second case studies a triangular rollable and

collapsible (TRAC) boom with a uniform temperature distribution. The last case considers

both the lenticular and TRAC booms with steady-state nonuniform temperature distribu-

tion. SwiftCompTM [ 112 ] is used to perform the thermoviscoelastic cross-sectional analyses

of the three cases, which are also verified using DNS and available analytical solutions.

6.1.1 Material Properties

For these numerical cases two different TP-HSC composites, a M30S/PMT-F7 plain

weave (PW) textile composite and a MR60H/PMT-F7 unidirectional (UD) composite were

considered. The effective lamina properties of both composite materials were computed using

PMT-F7 toughened epoxy resin characterized by NASA LaRC [ 143 ] and fit into Prony series
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coefficients shown in Table  5.1 . Further comparison between the resin experimental data

provided by NASA LaRC and the one available in the literature is summarized in Appendix

 A.3 . A Poisson’s ratio of 0.36, a coefficient of thermal expansion (CTE) of αm = 60 µ/◦C at a

reference temperature of 40◦C and viscoelastic behavior were assumed to be isotropic for the

resin. The fiber constituent properties and microstructure characteristics for the computation

were found in literature (see Refs. [ 144 ] and [ 142 ] for M30S/PMT-F7 and Refs. [ 25 ] and

[ 142 ] for MR60H/PMT-F7). Both M30S and MR60H fibers were modeled as transversely

isotropic elastic materials. In addition, for both fibers α11f = 0.100 µ/◦C and α22f = α33f=

10.080 µ/◦C at the reference temperature of 40◦C were assumed. For the M30S/PMT-F7 PW

textile composite, a two-step homogenization approach was applied [ 110 ]. First, the effective

solid properties of the microstructure (i.e. yarn) were computed which later were input as

constituent properties for the computation of the effective properties of the mesostructure

(i.e. laminate). The yarn was modeled as a 2D SG with hexagonal pack microstructure and a

fiber volume fraction of 0.62 (see the left figure of Figure  6.1 ). Periodic boundary conditions

were applied and 18,124 linear four-noded quadrilateral elements were used to mesh it. A 3D

SG was created with TexGen4SC [ 138 ] to model [0PW ]4 (i.e. 4-ply PW laminate oriented at

0/90 degrees) composite laminate mesostructure (see the right figure of Figure  6.1 ). PBCs

were also considered and 256,000 elements were used to mesh it. The MR60H/PMT-F7 UD

composite was modeled as a 2D SG with hexagonal pack microstructure with PBCs and a

fiber volume fraction equal to 0.56. In this case, 18,088 elements were used to mesh the 2D

SG.

Before calculating the thermoviscoelastic effective properties, the elastic effective prop-

erties were computed and compared against experimental in-plane lamina data available in

the literature [ 142 ]. For that, the maximum Young’s modulus of the experimental data was

selected as the Young’s modulus of the resin and the effective yarn properties for t = 0 s

were considered as the elastic yarn properties. As shown in Table  6.1 , both Young’s modulus

values are within 1.2% of the experimental values and the highest difference comes from the

shear modulus. With these geometrical properties and mesh density, time-dependent effec-

tive yarn properties and the resin’s Prony series coefficients of Table  5.1 were input in the

MSG-based solid thermoviscoelastic model available in SwiftCompTM [ 141 ] to compute the
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Figure 6.1. 2D SG for the yarn microstructure and 3D SG for the plain weave
mesostructure used to compute the effective properties of the M30S/PMT-F7
PW textile composite at 0◦ orientation (left and right).

time-dependent effective lamina properties. The Prony series coefficients presented in Tables

 6.2 - 6.3 were used to represent the effective viscoelastic properties of both TP-HSC materi-

als at a reference temperature of T0 = 40◦C, as this is the maximum stowage temperature

expected for the NASA solar sail application. The Prony series coefficients of the effective

laminate stiffness, Young’s and shear moduli were computed using Levenberg-Marquardt al-

gorithm in Matlab 2018b. For the effective Poisson’s ratios (i.e. ν12 and ν23) the trust region

reflective algorithm in Matlab 2018b was used instead, which provided a smoother approach

to capture their time-dependent behavior.

Table 6.1. Thin-ply in-plane lamina material properties.
Cured ply thickness E1 E2 ν12 G12

Experimental M30S/PMT-F7 [ 142 ] 60±3 µm 94.2 GPa 94.2 GPa 0.026 3.9 GPa
MSG solid M30S/PMT-F7 57 µm 93.1 GPa 93.1 GPa 0.026 3.3 GPa

Difference M30S/PMT-F7, % 0-10% 1.2% 1.2% 0% 15%
Experimental MR60H/PMT-F7 [ 142 ] 40±3 µm 174.4 GPa 8.4 GPa 0.259 6.4 GPa

MSG solid MR60H/PMT-F7 - 174.4 GPa 8.3 GPa 0.259 2.9 GPa
Difference MR60H/PMT-F7, % - 0 % 1.2% 0% 54.7%
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Table 6.2. Effective viscoelastic lamina stiffness properties of the M30S/PMT-
F7 PW textile composite at T0 =40◦C.

s λs C11,s = C22,s C12,s C13,s = C23,s C33,s C44,s = C55,s C66,s α11,s = α22,s α33,s
s MPa MPa MPa MPa MPa MPa µ◦/C µ◦/C

∞ 91,526.00 2,856.80 3,070.20 7,285.40 1,975.80 2,020.60 1.649 48.059
1 3.70E+01 765.69 379.04 447.69 993.64 254.12 266.56 0.193 0.016
2 1.00E+02 684.27 315.84 376.20 849.00 220.50 230.16 0.167 0.012
3 1.00E+03 575.65 267.59 318.51 716.91 185.74 194.00 0.140 0.010
4 5.00E+03 249.90 108.29 130.18 297.08 77.92 81.03 0.059 0.004
5 1.00E+04 252.27 118.50 140.78 316.55 81.94 85.61 0.061 0.005
6 5.00E+04 713.04 307.44 370.03 843.80 221.14 229.99 0.167 0.010
7 1.00E+05 70.53 28.36 34.57 79.42 20.94 21.72 0.016 0.003
8 5.00E+05 364.46 152.75 184.75 422.85 111.17 115.46 0.084 0.006
9 1.00E+06 218.08 85.97 105.20 242.39 64.08 66.40 0.049 0.000
10 5.00E+06 2.34 1.10 1.31 2.96 0.77 0.80 0.001 0.003

Table 6.3. Effective viscoelastic lamina stiffness properties of the
MR60H/PMT-F7 unidirectional composite at T0 = 40◦C.

s λs E1,s E2,s = E3,s G12,s = G13,s G23,s ν12,s = ν13,s ν23,s α11,s α22,s = α33,s
s MPa MPa MPa MPa µ/◦C µ/◦C

∞ 173,790.00 4,954.00 1,721.30 1,676.60 0.259 0.477 0.367 37.479
1 3.70E+01 144.97 722.78 240.38 240.66 0.000 0.000 0.055 0.051
2 1.00E+02 107.36 604.62 203.91 202.14 0.000 0.000 0.041 0.038
3 1.00E+03 93.42 512.56 172.42 171.25 0.000 0.000 0.036 0.033
4 5.00E+03 34.53 208.97 71.06 70.05 0.000 0.000 0.013 0.012
5 1.00E+04 41.53 226.57 76.16 75.68 0.000 0.000 0.016 0.015
6 5.00E+045 99.88 594.68 201.96 199.31 0.000 0.000 0.039 0.036
7 1.00E+05 9.09 55.59 18.95 18.66 0.000 0.000 0.002 0.002
8 5.00E+05 48.89 297.03 101.11 99.64 0.000 0.000 0.023 0.021
9 1.00E+06 27.00 169.06 57.78 56.80 0.000 0.000 0.005 0.005
10 5.00E+06 0.34 2.16 0.73 0.72 0.000 0.000 0.002 0.002

6.1.2 Lenticular Boom with Uniform Cross-sectional Temperature Distribution

A lenticular boom was used as a numerical example to verify the MSG-based linear

thermoviscoelastic beam model. A schematic drawing with the boom cross-sectional design

parameters is shown in the left figure of Figure  6.2 and the numerical values of the boom

design parameters are summarized in Table  6.4 . Although the geometry selected is represen-

tative of the lenticular boom presented in Refs. [ 15 ] and [ 16 ], for this study a M30S/PMT-F7

PW textile composite instead of the HTA40/PMT-F7 was considered. The design parame-

ters from Table  6.4 were passed to the CAD preprocessor PreVABS to create a 2D SG for
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the cross-section. A mesh size of 0.02 mm was used to create the input file for SwiftCompTM

[ 112 ] (see the right figure of Figure  6.2 ). For both the left and right shells of the lenticu-

lar boom, [0UD/45PW ] lay-up was selected, where the PW lamina corresponds to the outer

surface ply on both shells [ 15 ]. Perfect bonding between both shells was considered and

the adhesive was not modeled. However, the viscoelastic properties for the adhesive have

recently become available [  143 ] and can be modeled for future implementation in this beam

model.

α1

α2

r1

hw

r2

x2

x3

Figure 6.2. Cross-sectional parameters of the lenticular boom design (left)
and mesh created for SwiftCompTM [ 112 ] input file (right). The sizes in the
right figure are in mm.

Table 6.4. Geometric parameters of the lenticular boom design.
Name Symbol Fixed Value

Flattened height hf 45.00 mm
Web height hω 3.00 mm

Shell section radius r1 = r2 6.98 mm
Subtended angle α1 = α2 80◦
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The effective 1D Euler-Bernoulli beam stiffness properties and thermal stress resultants

at temperatures of 40◦C, 60◦C, 80◦C, 100◦C and 120◦C were computed using SwiftCompTM

[ 112 ]. To do so, the effective laminae properties presented in Tables  6.2 - 6.3 at different

temperatures were input as constituent materials and then, SwiftCompTM [ 112 ] was run to

calculate the effective properties. The ±45 degrees orientation of the PW laminate was han-

dled by SwiftCompTM [ 112 ]. For all the cases, uniform temperature distribution was assumed

in the cross-section of the lenticular boom. The effective beam stiffness properties and ther-

mal stress resultants divided by the temperature change (i.e. FT1,∞/θ̄) were normalized using

the corresponding relaxed value as shown in Figure  6.3 . It is noted that Cb
11,∞ = 6.73× 105

N, Cb
22,∞ = 1.39× 107 N·mm2, Cb

33,∞ = 5.55× 107 N·mm2, Cb
44,∞ = 2.95× 107 N· mm2 and

FT1,∞/θ̄ = 0.08 N. However, the thermal stress resultants were not normalized since they also

account for the temperature change distribution within the cross-section. For all the CTEs

of the laminae, T0 = 40◦C was considered as reference temperature and thus, the effective

thermal stress resultants at these temperatures were equal to 0 N as depicted in Figure  6.3 .

As SwiftCompTM [ 112 ] and FEM analysis predicted the same effective stiffness properties,

only the MSG results are shown in Figure  6.3 . The normalized values of Cb
11, Cb

22, Cb
33 and

Cb
44 exhibit the same behavior and relaxation rate for the increased time and temperature.

In addition, to investigate the validity of the shift function of the resin to represent the

effective beam properties, the shift factor of the resin given by Eq. ( 5.1 ) was applied to the

effective beam properties at a reference temperature of T0 = 40◦C summarized in Table

 6.5 . Shifted values at T = 60◦C, 80◦C, 100◦C and 120◦C were computed following this

approach and are represented with dashed lines in Figure  6.3 . We can observe that the

shifted homogenized values agree well with the ones computed using MSG beam model with

a 2D SG and constituent laminae properties at different temperatures. This conclusion is

also valid for the thermal stress resultants divided by the temperature change (i.e. FT1/θ̄).

Therefore, despite the heterogeneous thermoviscoelastic nature of the composite material,

the temperature dependencies of the effective stiffness properties represented by the shift

factor have the same characteristics as those of the polymer matrix.

To further verify the effective linear thermoviscoelastic properties, a DNS in Abaqus CAE

6.14 [ 104 ] and an analytical solution [ 147 ] were used. The torsional stiffness value given by
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Figure 6.3. Evolution of the normalized effective beam stiffness properties for
MSG-based 1D Euler-Bernoulli beam model of the lenticular boom (Cb

11,∞ =
6.73× 105 N, Cb

22,∞ = 1.39× 107 N·mm2, Cb
33,∞ = 5.55× 107 N·mm2, Cb

44,∞ =
2.95× 107 N·mm2, FT1,∞/θ̄ = 0.08 N).
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Table 6.5. Effective viscoelastic beam properties of the lenticular boom at T0 = 40◦C.
s λs Cb

11,s Cb
22,s Cb

33,s Cb
44,s FT1,s/θ̄

s N N·mm2 N·mm2 N·mm2 N/◦C
∞ 673,250 13,928,000 55,491,000 29,483,000 0.08
1 3.70E+01 5,898 114,890 486,260 261,410 -0.03
2 1.00E+02 5,221 105,530 430,340 231,460 -0.01
3 1.00E+03 4,385 88,520 361,430 194,380 -0.01
4 5.00E+03 1,870 39,370 154,120 82,920 -0.02
5 1.00E+04 1,931 38,660 159,190 85,610 -0.01
6 5.00E+04 5,304 112,470 437,150 235,180 -0.01
7 1.00E+05 507 11,350 41,790 22,490 -0.01
8 5.00E+05 2,678 57,990 220,730 118,760 -0.01
9 1.00E+06 1,557 35,300 128,320 69,060 0.00
10 5.00E+06 18 360 1,500 810 -0.01

Cb
22 ≡ GJ at a reference temperature (i.e. T0 = 40◦C) and t = 0 s was selected as reference

parameter (see MSG Beam in Table  6.6 ) for comparison purposes. In case of the DNS model,

a 1,000-mm-long lenticular boom was created in Abaqus CAE 6.14 [ 104 ]. All the plies were

explicitly modeled as shown in Figure  6.4 by means of 588,800 linear hexahedral elements of

type C3D8. The effective elastic lamina properties equivalent to thermoviscoelastic lamina

properties at the reference temperature were used for the computation. These material

properties were directly introduced using the material libraries available in Abaqus 6.14

[ 104 ]. The root of the boom was clamped and in the other end, a moment of Mx1 = 1 N·mm

was applied. Then, the rotation around the axial direction x1 was measured and from it, the

twist rate κ11 and torsional stiffness were computed (see DNS in Table  6.6 ).

Table 6.6. Comparison of the torsional stiffness results at t = 0 s and T0 = 40◦C.
Case Torsional Stiffness GJ Difference w.r.t. MSG

N·mm2 %
MSG Beam 1.453 ×107 Reference
Analytical 1.420 ×107 -2.27

DNS 1.459 ×107 0.41

As for the analytical solution, Catia V5 was used to compute the cross-sectional area and

perimeter of the lenticular boom, which allows to estimate the equivalent torsional moment
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of area J [ 147 ]. Then, three-dimensional homogenization of the [0UD/45PW ] was carried out

using 1D SG in SwiftCompTM [ 112 ]. Similarly to DNS, the effective elastic lamina properties

equivalent to thermoviscoelastic lamina properties at the reference temperature of T0 =40◦C

and t = 0 s were used for the computation. Multiplying the effective in-plane shear stiffness

(i.e. G12) of the laminate with the computed equivalent torsional moment of area, the

torsional stiffness was estimated analytically (see Analytical in Table  6.6 ). Both the DNS

and the analytical results exhibited good agreement with the torsional stiffness computed

using the MSG-based linear thermoviscoelastic beam model as shown in Table  6.6 .
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Figure 6.4. Direct numerical simulation model of the lenticular boom for the
verification of the torsional stiffness.

6.1.3 TRAC Boom with Uniform Cross-sectional Temperature Distribution

A TRAC boom was also considered as a numerical example to verify the MSG-based

linear thermoviscoelastic beam model. In contrast with the lenticular boom, the TRAC

boom has more significant extension-bending coupling even at a reference temperature and

hence, it is a relevant example to study the influence of these off-diagonal terms. A schematic

drawing with the boom cross-sectional design parameters is shown in the left figure of Figure

 6.5 and the numerical values of the boom design parameters are summarized in Table  6.7 .

Although the geometry selected is representative of the TRAC boom presented in Ref. [ 15 ],

for this study a M30S/PMT-F7 plain weave composite instead of the HTA40/PMT-F7 was

also considered. The design parameters from Table  6.7 were passed to the CAD preprocessor
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PreVABS to create a 2D SG for the cross-section. A mesh size of 0.02 mm was used to create

the input file for SwiftCompTM [ 112 ] shown in the right figure of Figure  6.5 . For both the

left and right shells of the TRAC boom, [45PW/0UD] lay-up was selected, where the 0UD
lamina corresponds to the outer surface ply on both shells [ 15 ]. Perfect bounding between

both shells was considered and the adhesive was not modeled. However, the viscoelastic

properties for the adhesive have recently become available [ 143 ] and can be modeled for

future implementation in this beam model.

hw

r

α

x2

x3

Figure 6.5. Cross-sectional parameters of the TRAC boom design (left) and
mesh created for SwiftCompTM [ 112 ] input file (right). The sizes in the right
figure are in mm.

Table 6.7. Geometric parameters of the TRAC boom design.
Name Symbol Fixed Value

Flattened height hf 45.00 mm
Web height hω 6.00 mm

Shell section radius r 6.98 mm
Subtended angle α 88◦

A DNS in Abaqus CAE 6.14 [ 104 ] was carried out to verify the effective linear ther-

moviscoelastic behavior of the TRAC boom. A 1,000-mm-long TRAC boom was created

in Abaqus CAE 6.14 [  104 ] and all the plies were explicitly modeled by means of 576,000

linear hexahedral elements of type C3D8. Similarly to the lenticular boom, four elements

through-the-thickness of each ply were considered. The origin of coordinates was located

at the connection point of the web and the curved shells and hence, the center of gravity

was located at Gx2 = 0 mm and Gx3 = −13.40 mm. The effective thermoviscoelastic lam-
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Figure 6.6. Evolution of the normalized effective beam stiffness properties for
the MSG-based 1D Euler-Bernoulli beam model of the TRAC boom (Cb

11,∞ =
6.83× 105 N, Cb

13,∞ = −9.28× 106 N·mm, Cb
22,∞ = 4.39× 102 N·mm2, Cb

33,∞ =
1.91× 108 N·mm2, Cb

44,∞ = 8.70× 107 N·mm2).
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Figure 6.7. Evolution of the normalized effective thermal stress resultants for
the MSG-based 1D Euler-Bernoulli beam model of the TRAC boom (FT1,∞ =
−0.03 N, MT2,∞ = 0.66 N·mm).
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ina properties of Tables  6.2 - 6.3 were input through user-defined subroutines. A two-step

simulation is defined with the viscoelastic option to capture the effective time-dependent

material behavior. The root of the boom was clamped and three different tip-loading cases

were applied at the other end. A two-step simulation was defined with static option as the

thermoviscoelasticity was handled by the user-defined subroutines. In the first step a unit

load was applied over a short period (i.e. 1 s), and then in the second step, the load was

kept constant for a long period of time (i.e. 107 s).

Table 6.8. Effective viscoelastic beam properties of the TRAC boom at T0 =40◦C.
s λs Cb

11,s Cb
13,s Cb

22,s Cb
33,s Cb

44,s FT1,s/θ̄ MT2,s/θ̄
s N N·mm N·mm2 N·mm2 N·mm2 N/◦C N·mm/◦C

∞ 682,520 -9,281,900 439 190,940,000 87,000,000 -0.03 0.66
1 3.70E+01 5,689 -76,775 12 1,584,900 718,190 -0.05 0.72
2 1.00E+02 5,016 -67,648 10 1,396,700 632,860 -0.03 0.46
3 1.00E+03 4,216 -56,867 9 1,174,100 532,000 -0.03 0.42
4 5.00E+03 1,794 -24,192 4 499,480 226,330 -0.01 0.13
5 1.00E+04 1,857 -25,045 4 517,130 234,300 -0.01 0.19
6 5.00E+04 5,092 -68,666 11 1,417,700 642,370 -0.03 0.38
7 1.00E+05 487 -6,568 1 135,710 61,465 0.00 0.02
8 5.00E+05 2,571 -34,674 5 715,880 3,243,607 -0.01 0.21
9 1.00E+06 1,495 -20,164 3 416,310 188,650 0.00 0.04
10 5.00E+06 18 -237 0 4,898 2,216 0.00 0.02

The effective 1D Euler-Bernoulli beam stiffness properties and thermal resultants at

temperatures of 40◦C, 60◦C, 80◦C, 100◦C and 120◦C were computed using SwiftCompTM

[ 112 ]. Similarly to the previous case, the effective lamina properties at different temperatures

were input as constituent materials and then, SwiftCompTM [ 112 ] was run to calculate the

effective properties. For all the cases, uniform temperature distribution was assumed in the

cross-section of the TRAC boom. The effective beam stiffness properties (see Figure  6.6 )

and thermal stress resultants divided by the temperature change (i.e. FT1,∞/θ̄ and MT2,∞/θ̄)

were normalized using the corresponding relaxed value (see Figure  6.7 ). For all the CTEs

of the lamina, T =40◦C was considered as the reference temperature and thus, the effective

thermal stress resultants at T =40◦C were equal to FT1 = 0 N and MT2 = as depicted in

Figure  6.7 . As SwiftCompTM [ 112 ] and FEM analysis predicted the same effective stiffness
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properties, only the MSG results are shown in Figures  6.6 and  6.7 . The normalized values

of Cb
11, Cb

13, Cb
33, and Cb

44 exhibit the same behavior and relaxation rate for increased time

and temperature. In addition, compared to the lenticular boom, the TRAC boom has an

increased extension-bending coupling as demonstrated by the nonzero values of Cb
13 and MT2 .

6.1.4 Nonuniform Cross-sectional Temperature Distribution

The previous numerical cases considered that the temperature distribution over the cross-

section of the beam was uniform. However, there are circumstances in which the distribution

of the temperature over the cross-section is not uniform accelerating even more the relax-

ation of the material and generating some undesired couplings. For instance, a nonuniform

temperature distribution is a common phenomena of the booms in deployed configuration,

as the side that faces the Sun has increased temperature compare to the one that is in the

shadow [  148 ]. In this subsection, the effective beam properties of both the lenticular boom

and the TRAC boom with nonuniform temperature distribution are computed. The same

geometry, laminate and lamina material properties are considered for this purpose. In regard

to the temperature distribution of the lenticular boom, it was assumed that the web is at

T = 50◦C, the right shell (i.e. x2 > 0) at T0 = 40◦C and the left shell (i.e. x2 < 0) at T =

60◦C. For the TRAC boom, the web was assumed to be at T = 60◦C, the left shell at T0 =

40◦C and the right shell at T = 80◦C. Therefore, in case of these analyses, θ 6= 0 should

be used in the MSG-based linear thermoviscoelastic beam model presented in the previous

chapter.

The effective beam properties were computed using SwiftCompTM [ 112 ] and verified

against DNS showing excellent agreement. The effective properties of the lenticular boom

with a nonuniform temperature distribution are depicted as MSG Nonuniform in Figures  6.3 

and  6.8 . For the TRAC boom, MSG Nonuniform of Figures  6.6 ,  6.7 and  6.9 represent the

effective beam properties for nonuniform temperature distribution. The effective properties

corresponding to nonuniform temperature distribution also decrease with increased time. It

can also be observed that while the effective beam thermal stresses for the lenticular boom

are negligible, they do have more significant value, specially MT2 in case of the TRAC boom.
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Furthermore, the nonuniform temperature distribution yields the appearance of off-diagonal

terms that lead to coupling such as Cb
14 (see Figure  6.8 ) and Cb

23 (see Figure  6.9 ).

Figure 6.8. Evolution of the normalized effective properties for the lenticular
boom with a nonuniform temperature distribution (Cb

14,∞ = -46.94 N·mm).

Table 6.9. Effective viscoelastic beam properties of the lenticular boom with
a nonuniform cross-sectional temperature distribution.
s λs Cb

11,s Cb
14,s Cb

22,s Cb
33,s Cb

44,s
s N N·mm N·mm2 N·mm2 N·mm2

∞ 673,220 -32.34 13,928,000 55,490,000 29,483,000
1 3.70E+01 10,903 11,278 208,660 886,040 483,290
2 1.00E+02 0 -7005 6,395 0.16 5,286
3 1.00E+03 6,121 2,934 128,580 491,120 271,550
4 5.00E+03 2 -4,547 0 22,917 15
5 1.00E+04 2,934 1,471 60,764 244,730 121,980
6 5.00E+04 1,864 -16,084 43694 166,240 93,503
7 1.00E+05 707 448 10725 11278 24,844
8 5.00E+05 789 -7,367 25,486 64,800 57,096
9 1.00E+06 899 -3,613 16,552 42,782 34,728
10 5.00E+06 23 -96.34 333 0.27 972
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Figure 6.9. Evolution of the normalized effective properties for the TRAC
boom with a nonuniform temperature distribution (Cb

14,∞ = −10.06 N·mm,
Cb

23,∞ = 223.24 N·mm2).
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6.2 Global Thermoviscoelastic Beam Model

6.2.1 Lenticular Boom with Uniform Cross-sectional Temperature Distribution

The lenticular boom presented in Subsection  6.1.2 was selected as numerical case study

to verify the MSG-based DI method. The MSG-based beam model was compared against

a DNS simulation with 3D solid elements and a MSG-based plate/shell model to verify the

formulation presented in Sections  3.3.1 and  3.3.2 . For the three cases, the 1,000-mm-long

lenticular boom in a deployed configuration was considered with clamped root in one end

and subjected to three different tip-loading cases at the other end: axial compression force

of Fx1 = -1 N, and transverse forces of Fx2 = 1 N and Fx3 = 1 N, respectively. For all the

computations, a constant temperature of T = 40◦C was considered and hence, aT = 1 and

t = ξ.

X

Y

Z
X Y

Z

Figure 6.10. Direct numerical simulation model of the lenticular boom.

In the DNS model, all the plies were explicitly modeled as shown in Figure  6.10 by

means of 588,800 linear hexahedral elements of type C3D8. The thermoviscoelastic lamina

properties summarized in Tables  6.2 and  6.3 were introduced to the model through a user-

defined mechanical material behavior (UMAT) subroutine in Abaqus 6.14 [ 104 ]. This UMAT

subroutine also relied on the DI method to solve the hereditary integral but for 3D solid

elements instead of beam elements. It is noted that this UMAT was verified for isotropic

viscoelastic materials comparing it with default material libraries of Abaqus CAE [ 104 ], and

showed good agreement. A static general analysis was selected in Abaqus 6.14 [ 104 ] as the
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thermoviscoelasticity was handled by the UMAT. The root of the boom was clamped and

three different tip-loading cases were applied at the other end. These loads were introduced

in two steps. In the first step (i.e. concentrated load) the load was monotonically increased

up to the desired value and then, in the second step (i.e. stress relaxation) the load was kept

constant allowing relaxation until the desired time. Figures  6.11 (a),  6.12 (a), and  6.13 (a)

show the evolution of the cross-sectional shape at several times of the analysis for the DNS

case with different loading conditions. Due to the small relaxation of the selected laminate,

once the deformed configuration is reached, the cross-sectional shape remains constant as the

time increases. However, it should be noted that for any other layup with bigger relaxation

behavior such as [45UD/45PW ], the cross-sectional shape keeps changing as the time passes,

as can be observed in Figures  6.14 (a) and (b) and Figures  6.15 .

(a) DNS model (b) MSG-based plate/shell model

Figure 6.11. Evolution of the cross-sectional shape at midspan of the lentic-
ular boom (i.e. x1 = 500 mm) for the Fx1 = −1 N load case with a uniform
temperature distribution of T = 40◦C and [0UD/45PW ] lay-up. Displacements
are scaled by a factor of 104.

The MSG-based plate/shell model was used to analyze the lenticular boom with plate/shell

elements in Abaqus 6.14 [ 104 ]. In this case, two thermoviscoelastic plate/shell stiffness ma-

trices, one for the web and one for the left and right shells of the boom were computed using
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(a) DNS model (b) MSG-based plate/shell model

Figure 6.12. Evolution of the cross-sectional shape at midspan of the lentic-
ular boom (i.e. x1 = 500 mm) for the Fx2 = 1 N load case with a uniform
temperature distribution of T = 40◦C and [0UD/45PW ] lay-up.

(a) DNS model (b) MSG-based plate/shell model

Figure 6.13. Evolution of the cross-sectional shape at midspan of the lentic-
ular boom (i.e. x1 = 500 mm) for the Fx3 = 1 N load case with a uniform
temperature distribution of T = 40◦C and [0UD/45PW ] lay-up.
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(a) Fx1 = -1 N load case (b) Fx2 = 1 N load case

Figure 6.14. Evolution of the cross-sectional shape at midspan of the lentic-
ular boom (i.e. x1 = 500 mm) with a uniform temperature distribution of
T = 40◦C and [45UD/45PW ] lay-up. Displacement are scaled by a factor of 104

for the Fx1 = -1 N case (Figure (a)).
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1D SG in SwiftCompTM [ 112 ]. The thermoviscoelastic lamina properties of Tables  6.2 and

 6.3 were input as constituent properties of the 1D SG. Since the web was made of four plies,

the middle reference surface was used for the computation. However, the left and right shells

of the boom were made of two plies and hence, the inner surface was used as a reference

surface for the computation. The resulting ABD matrix had a nonzero extension-bending

coupling matrix. Then, the effective thermoviscoelastic components for both the web and

the shells were fit by means of Prony series coefficients (see Tables  6.10 and  6.11 ). These

effective plate/shell properties were coded in a user-subroutine UGENS to be used as the

sectional stiffness shell elements in Abaqus 6.14 [ 104 ]. This UGENS subroutine also relied

on the DI method to solve the hereditary integral. The formulation was previously validated

in column bending test (CBT) simulations performed for the [ ± 45PW ]4 laminate showing

excellent agreement [ 125 ]. The Abaqus 6.14 plate/shell global model was meshed with 68,800

general purpose shell element S4. Similarly to DNS, a static general analysis was used, as the

thermoviscoelastic behavior was handled by the subroutine. In addition, the same boundary

and loading conditions as those of the DNS model were assigned. Figures  6.11 (b),  6.12 (b),

and  6.13 (b) show the evolution of the cross-sectional shape at several times in the analysis

for the MSG-based plate/shell with different loading conditions. These results followed the

same trend as the ones observed for the DNS cases.

Finally, the formulation presented in the MSG-based DI beam model was implemented

analytically to solve the global beam model. For these analyses, the thermoviscoelastic

beam stiffness properties that were fit into Prony series coefficients (see Table  6.5 ) were

used as input. The displacements and cross-sectional shape evolution at the midspan of

the boom (i.e. x1 = 500 mm) were used as reference to compare the MSG-based beam

model against DNS and MSG-based plate/shell model. For both the DNS and MSG-based

plate/shell models, the required CPU time for the computations was recorded (see Tables

 6.12 ,  6.13 and  6.14 ). This CPU time only accounted for the time required to solve the

Abaqus computations, which were performed at Purdue University’s Halstead Server using

2 nodes and 20 CPUs per node. Therefore, the computation of effective thermoviscoelastic

properties, the recovery of the displacements, and the post-processing time was not accounted
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Table 6.10. Effective viscoelastic plate/shell stiffness properties for the web
area of the lenticular boom at T0 = 40◦C.

s λs A11,s A12,s A22,s A33,s
s N/mm N/mm N/mm N/mm

∞ 19,488.00 5,192.30 5,955.60 5,280.50
1 3.70E+01 89.52 27.31 132.17 41.66
2 1.00E+02 77.27 24.64 114.02 37.68
3 1.00E+03 65.28 20.74 96.25 31.66
4 5.00E+03 27.46 9.12 40.35 13.90
5 1.00E+04 28.74 9.06 42.41 13.85
6 5.00E+04 78.25 26.11 114.85 39.68
7 1.00E+05 7.54 2.63 10.98 3.96
8 5.00E+05 39.55 13.44 57.89 20.37
9 1.00E+06 23.12 8.16 33.63 12.29
10 5.00E+06 0.26 0.08 0.39 0.13
s λs D11,s D12,s D22,s D33,s

s N·mm N·mm N·mm N·mm
∞ 35.45 25.71 28.23 26.00
1 3.70E+01 0.38 0.07 0.40 0.12
2 1.00E+02 0.34 0.07 0.36 0.12
3 1.00E+03 0.28 0.06 0.30 0.10
4 5.00E+03 0.12 0.03 0.13 0.04
5 1.00E+04 0.12 0.02 0.13 0.04
6 5.00E+04 0.35 0.08 0.36 0.13
7 1.00E+05 0.03 0.01 0.03 0.01
8 5.00E+05 0.18 0.04 0.19 0.07
9 1.00E+06 0.09 0.02 0.10 0.04
10 5.00E+06 0.01 0.00 0.00 0.00
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Table 6.11. Effective viscoelastic plate/shell stiffness properties for the left
and right shells of the lenticular boom at T0 = 40◦C.

s λs A11,s A12,s A22,s A33,s
s N/mm N/mm N/mm N/mm

∞ 9,744.10 2,596.20 2,977.80 2,640.30
1 3.70E+01 44.76 13.65 66.09 20.83
2 1.00E+02 38.64 12.32 57.01 18.84
3 1.00E+03 32.64 10.37 48.12 15.83
4 5.00E+03 13.73 4.56 20.18 6.95
5 1.00E+04 14.37 4.53 21.18 6.93
6 5.00E+04 39.14 13.05 57.42 19.84
7 1.00E+05 3.77 1.32 5.49 1.98
8 5.00E+05 19.78 6.72 28.95 10.18
9 1.00E+06 11.56 4.08 16.81 6.14
10 5.00E+06 0.13 0.04 0.20 0.06
s λs B11,s B12,s B22,s B33,s

s N N N N
∞ 331.06 176.62 195.74 178.80
1 3.70E+01 2.71 0.57 3.13 0.97
2 1.00E+02 2.38 0.54 2.74 0.90
3 1.00E+03 2.00 0.45 2.31 0.75
4 5.00E+03 0.85 0.21 0.98 0.34
5 1.00E+04 0.88 0.20 1.02 0.32
6 5.00E+04 2.43 0.60 2.79 0.97
7 1.00E+05 0.23 0.06 0.27 0.10
8 5.00E+05 1.23 0.32 1.41 0.51
9 1.00E+06 0.72 0.19 0.83 0.30
10 5.00E+06 0.01 0.01 0.01 0.01
s λs D11,s D12,s D22,s D33,s

s N·mm N·mm N·mm N·mm
∞ 17.73 12.86 14.12 13.00
1 3.70E+01 0.19 0.03 0.20 0.06
2 1.00E+02 0.17 0.03 0.18 0.06
3 1.00E+03 0.14 0.03 0.15 0.05
4 5.00E+03 0.06 0.01 0.06 0.02
5 1.00E+04 0.06 0.01 0.07 0.02
6 5.00E+04 0.17 0.04 0.18 0.06
7 1.00E+05 0.01 0.01 0.02 0.01
8 5.00E+05 0.09 0.02 0.09 0.03
9 1.00E+06 0.05 0.01 0.05 0.02
10 5.00E+06 0.00 0.00 0.00 0.00
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Figure 6.15. Evolution of the cross-sectional shape at midspan of the lentic-
ular boom (i.e. x1 = 500 mm) for Fx3 = 1 N load case with a uniform temper-
ature distribution of T = 40◦C and [45UD/45PW ] lay-up.

for in these values, but each of the SwiftCompTM [ 112 ] computations lasted less than one

second.

As shown in Figures  6.17 and  6.16 , and Tables  6.12 - 6.14 , the MSG-based beam model

exhibited excellent agreements with the DNS and MSG-based plate/shell model in both

the predicted displacement field and the cross-sectional shape after 20,000 s of relaxation.

Therefore, it is feasible to use the MSG-based beam model to analyze booms that are in a fully

deployed configuration. This also applies when the entire boom has a uniform temperature

distribution different from the reference one, such as T = 60◦C. In this latter case, the value

of aT should be computed using Eq. ( 5.1 ), and accordingly used in the formulation presented

in Section  3.1 to compute the reduced time. Finally, it is noted that higher compression

and transverse loads would linearly scale up the displacements and deformations, as linear

thermoviscoelastic behavior is analyzed and effective properties only depend on time and

temperature. In reality, the stress and strain levels as well as the strain rate also have an

effect in material properties and structural behavior.
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(a) Transverse force Fx2 = 1 N (b) Transverse force Fx3 = 1 N

Figure 6.16. Comparison of DNS, MSG-based plate/shell and MSG-based
beam analysis for the lenticular boom at time t = 20,000 s with a uniform
temperature distribution of T = 40◦C and [0UD/45PW ] lay-up.

Figure 6.17. Comparison of DNS, MSG-based plate/shell and MSG-based
beam analysis for the lenticular boom at time t = 20,000 s for the Fx1 = −1 N
load case with a uniform temperature distribution of T = 40◦C and [0UD/45PW ]
lay-up. Displacements are scaled by a factor of 104.
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Table 6.12. Displacement at midspan of the lenticular boom (i.e. x1 = 500
mm) and time t = 20,000 s for the Fx1 = -1 N load case with a uniform
temperature distribution of T = 40◦C and [0UD/45PW ] lay-up.

Type ux1 ux2 ux3 CPU time
mm mm mm s

DNS -7.3350e-04 2.4250e-05 7.8120e-06 20,591
MSG Shell -7.3321e-04 1.4860e-05 2.0440e-05 1,218
MSG Beam -7.3355e-04 0.0000 0.0000 Analytical

Table 6.13. Displacement at midspan of the lenticular boom (i.e. x1 =
500 mm) and time t = 20,000 s for the Fx2 = 1 N load case with a uniform
temperature distribution of T = 40◦C and [0UD/45PW ] lay-up.

Type ux1 ux2 ux3 CPU time
mm mm mm s

DNS 0.1460 3.4890 0.0007 27,104
MSG Shell 0.1454 3.5025 0.0007 1,160
MSG Beam 0.0000 3.4892 0.0000 Analytical

Table 6.14. Displacement at midspan of the lenticular boom (i.e. x1 =
500 mm) and time t = 20,000 s for the Fx3 = 1 N load case with a uniform
temperature distribution of T = 40◦C and [0UD/45PW ] lay-up.

Type ux1 ux2 ux3 CPU time
mm mm mm s

DNS 0.1116 0.0004 1.8550 27,665
MSG Shell 0.1116 0.0004 1.8554 1,164
MSG Beam 0.0000 0.0000 1.8542 Analytical

6.2.2 TRAC Boom with Uniform Cross-sectional Temperature Distribution

The TRAC boom presented in Subsection  6.1.3 was selected as numerical case study to

verify the MSG-based DI method. The MSG-based beam model was compared against a

DNS simulation with 3D solid elements and a MSG-based plate/shell model to verify the

formulation presented in Sections  3.3.1 and  3.3.2 . For the two cases, the 1,000-mm-long

TRAC boom in a deployed configuration was considered with clamped root in one end and

subjected to two different tip-loading conditions at the other end: axial compression force
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of Fx1 = -1 N, and transverse force of Fx3 = 1 N. For all the computations, a constant

temperature of T = 40◦C was considered and hence, aT = 1 and t = ξ.
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Figure 6.18. Direct numerical simulation model of the TRAC boom.

In the DNS model, all the plies were explicitly modeled as shown in Figure  6.18 by

means of 576,000 linear hexahedral elements of type C3D8. The thermoviscoelastic lamina

properties summarized in Tables  6.2 and  6.3 were introduced to the model through a user-

defined mechanical material behavior (UMAT) subroutine in Abaqus 6.14 [ 104 ]. As in the

previous case, the UMAT subroutine used the DI method to solve the hereditary integral

for 3D solid elements instead of beam elements. A static general analysis was selected in

Abaqus 6.14 [ 104 ] as the thermoviscoelasticity was handled by the UMAT. The root of the

TRAC boom was clamped and two different tip-loading cases were applied at the other

end. These loads were introduced in two steps. In the first step (i.e. concentrated load)

the load was monotonically increased up to the desired value and then, in the second step

(i.e. stress relaxation) the load was kept constant allowing relaxation until the desired time.

Figures  6.19 (a) and  6.20 (a) show the evolution of the cross-sectional shape at several time

instances of the analysis for the DNS case with different loading conditions. Although the

selected laminate exhibits a small relaxation, the cross-sectional shape of the TRAC boom

experiences a higher deformation over time than the lenticular boom case.

The MSG-based plate/shell model was used to analyze the TRAC boom with plate/shell

elements in Abaqus 6.14 [ 104 ]. In this case, two thermoviscoelastic plate/shell stiffness

matrices, one for the web and one for the left and right shells of the boom were computed

using 1D SG in SwiftCompTM [ 112 ]. The thermoviscoelastic laminae properties of Tables  6.2 
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(a) DNS model (b) MSG-based plate/shell model

Figure 6.19. Evolution of the cross-sectional shape at midspan of the TRAC
boom (i.e. x1 = 500 mm) for the Fx1 = −1 N load case with a uniform
temperature distribution of T = 40◦C and [45PW/0UD] lay-up. Displacements
are scaled by a factor of 10.

(a) DNS model (b) MSG-based plate/shell model

Figure 6.20. Evolution of the cross-sectional shape at midspan of the TRAC
boom (i.e. x1 = 500 mm) for the Fx3 = 1 N load case with a uniform temper-
ature distribution of T = 40◦C and [45PW/0UD] lay-up.
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and  6.3 were input as constituent properties of the 1D SG. Since the web was made of four

plies, the middle reference surface was used for the computation. However, the left and right

shells of the boom were made of two plies and hence, the inner surface was used as a reference

surface for the computation. The resulting ABD matrix had a nonzero extension-bending

coupling matrix. Then, the effective thermoviscoelastic components for both the web and

the shells were fit by means of Prony series coefficients (see Tables  6.15 and  6.16 ). These

effective plate/shell properties were coded in a user-subroutine UGENS to be used as the

sectional stiffness shell elements in Abaqus 6.14 [ 104 ]. The same UGENS subroutine as the

lenticular boom was used with DI method to solve the hereditary integral. The Abaqus 6.14

plate/shell global model was meshed with 67,200 general purpose shell element S4. Similarly

to DNS, a static general analysis was used, as the thermoviscoelastic behavior was handled

by the subroutine. In addition, the same boundary and loading conditions as those of the

DNS model were assigned. Figures  6.19 (b) and  6.20 (b) show the evolution of the cross-

sectional shape at several times in the analysis for the MSG-based plate/shell with different

loading conditions. These results followed the same trend as the ones observed for the DNS

cases.

In addition, the formulation presented in the MSG-based DI beam model was imple-

mented analytically to solve the global beam model. For these analyses, the thermovis-

coelastic beam stiffness properties that were fit into Prony series coefficients (see Table  6.8 )

were used as input. The displacements and cross-sectional shape evolution at the midspan

of the TRAC boom (i.e. x1 = 500 mm) were used as reference to compare the MSG-based

beam model against DNS and MSG-based plate/shell model. As shown in Figure  6.21 , the

MSG-based beam model exhibited excellent agreement with the DNS model in the cross-

sectional shape after 20,000 s of relaxation. It should be noted that the difference for the

MSG-based plate/shell and Fx3 = 1 N was slightly higher compared to the results of the

lenticular case. However, it is feasible to use the MSG-based beam model to analyze booms

with different cross-sectional shapes that are in a fully deployed configuration.
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Table 6.15. Effective viscoelastic plate/shell stiffness properties for the web
area of the TRAC boom at T0 = 40◦C.

s λs A11,s A12,s A22,s A33,s
s N/mm N/mm N/mm N/mm

∞ 24031.00 3658.90 4409.20 3746.40
1 3.70E+01 73.57 30.37 135.41 43.35
2 1.00E+02 62.32 26.60 115.60 38.39
3 1.00E+03 52.83 22.45 97.72 32.32
4 5.00E+03 21.90 9.60 40.59 13.91
5 1.00E+04 23.29 9.86 43.11 14.19
6 5.00E+04 62.50 27.43 115.53 39.65
7 1.00E+05 5.98 2.70 10.97 3.89
8 5.00E+05 31.46 13.97 58.06 20.19
9 1.00E+06 18.29 8.31 33.52 11.99
10 5.00E+06 0.21 0.09 0.40 0.13
s λs D11,s D12,s D22,s D33,s

s N·mm N·mm N·mm N·mm
∞ 103.87 2.62 4.95 2.90
1 3.70E+01 0.14 0.12 0.45 0.15
2 1.00E+02 0.11 0.10 0.38 0.13
3 1.00E+03 0.10 0.08 0.32 0.11
4 5.00E+03 0.04 0.03 0.13 0.05
5 1.00E+04 0.04 0.04 0.14 0.05
6 5.00E+04 0.11 0.10 0.38 0.13
7 1.00E+05 0.01 0.00 0.03 0.01
8 5.00E+05 0.06 0.06 0.19 0.07
9 1.00E+06 0.02 0.02 0.10 0.03
10 5.00E+06 0.00 0.00 0.00 0.00
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Table 6.16. Effective viscoelastic plate/shell stiffness properties for the left
and right shells of the TRAC boom at T0 = 40◦C.

s λs A11,s A12,s A22,s A33,s
s N/mm N/mm N/mm N/mm

∞ 12016.00 1829.50 2204.60 1873.20
1 3.70E+01 36.79 15.19 67.70 21.67
2 1.00E+02 31.16 13.30 57.80 19.20
3 1.00E+03 26.41 11.23 48.86 16.16
4 5.00E+03 10.95 4.80 20.30 6.95
5 1.00E+04 11.64 4.93 21.30 7.09
6 5.00E+04 31.25 13.72 57.77 19.83
7 1.00E+05 2.99 1.35 5.48 1.94
8 5.00E+05 15.73 6.99 29.03 10.10
9 1.00E+06 9.14 4.15 16.76 6.00
10 5.00E+06 0.11 0.05 0.20 0.07
s λs B11,s B12,s B22,s B33,s

s N N N N
∞ 735.17 40.23 58.20 42.36
1 3.70E+01 1.29 0.84 3.42 1.12
2 1.00E+02 1.04 0.71 2.88 0.96
3 1.00E+03 0.89 0.61 2.44 0.81
4 5.00E+03 0.36 0.25 1.00 0.34
5 1.00E+04 0.39 0.27 1.08 0.36
6 5.00E+04 1.02 0.72 2.85 0.97
7 1.00E+05 0.10 0.07 0.27 0.09
8 5.00E+05 0.51 0.36 1.43 0.50
9 1.00E+06 0.29 0.20 0.81 0.28
10 5.00E+06 0.00 0.00 0.01 0.01
s λs D11,s D12,s D22,s D33,s

s N·mm N·mm N·mm N·mm
∞ 51.93 1.31 2.47 1.45
1 3.70E+01 0.07 0.06 0.23 0.07
2 1.00E+02 0.06 0.05 0.19 0.06
3 1.00E+03 0.05 0.04 0.16 0.05
4 5.00E+03 0.02 0.02 0.07 0.02
5 1.00E+04 0.02 0.02 0.07 0.02
6 5.00E+04 0.05 0.05 0.19 0.06
7 1.00E+05 0.00 0.00 0.02 0.01
8 5.00E+05 0.03 0.03 0.10 0.03
9 1.00E+06 0.01 0.01 0.05 0.02
10 5.00E+06 0.00 0.00 0.00 0.00
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(a) Fx1 = − 1 N (b) Fx3 = 1 N

Figure 6.21. Comparison of DNS, MSG-based plate/shell and MSG-based
beam analysis for the TRAC boom at time t = 20,000 s with a uniform tem-
perature distribution of T = 40◦C and [45PW/0UD] lay-up. Displacements are
scaled by a factor of 10 for the Fx1 = − 1 N case.

6.2.3 Nonuniform Cross-sectional Temperature Distribution

The previous numerical cases considered that the thermal distribution along the cross-

section of the beam was uniform. However, there are circumstances in which the distribution

of the temperature through the cross-section is nonuniform, accelerating even more the relax-

ation of the material and generating some undesired couplings. For instance, a nonuniform

temperature distribution is a common phenomenon for the booms in a deployed configura-

tion in space, as the shell sections that face the Sun has increased temperature compared to

the ones in the shadow [ 148 ]. This subsection studies the global behavior of the boom with

steady-state nonuniform temperature distribution. The same geometry, lamina and laminate

material properties were considered in this study. In regard to the temperature distribution

of the lenticular boom, it was assumed that the web is at T = 50◦C, the right shell (i.e.

x2 > 0) at T = 40◦C and the left shell (i.e. x2 < 0) at T = 60◦C. It is noted that this

cross-sectional distribution was kept constant along the span of the boom. Therefore, the

nonuniform cross-sectional temperature distribution is captured by the effective beam ther-
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moviscoelastic properties, and in the MSG-based DI beam formulation presented in Chapter

 6.2.1 , aT = 1 and hence, ξ = t applies. The effective beam properties were computed

using SwiftCompTM [ 112 ] and following the approach and mesh size previously described.

The fit Prony series coefficients are shown in Table  6.9 . For verification purposes, the previ-

ously presented DNS and MSG-based plate/shell models were considered. The relationship

between the reduced time and the real time is given by Eq. (  5.1 ), which was implemented

in the UMAT and UGENS subroutines, respectively.

(a) Fx1 = -1 N load case (b) Fx2 = 1 N load case

Figure 6.22. Evolution of the cross-sectional shape at midspan of the lentic-
ular boom (i.e. x1 = 500 mm) with a nonuniform temperature distribution
and [0UD/45PW ] lay-up. Displacement scaled by a factor of 104 for the Fx1 =
-1 N case (Figure (a)).

Similarly to the uniform temperature distribution example, three loading conditions were

studied: an axial compression force of Fx1 = -1 N, and transverse forces of Fx2 = 1 N and

Fx3 = 1 N, respectively. Tables  6.17 - 6.19 show the displacement at the midspan of the boom

for nonuniform temperature distribution at time of t = 20,000 s. The MSG-based beam

model exhibits excellent agreement with the DNS and MSG-based plate/shell model while

it is more computationally efficient. Furthermore, distinctively to the uniform temperature

distribution, the nonuniform cross-sectional temperature yields extension-bending coupling,
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Figure 6.23. Evolution of the cross-sectional shape at midspan of the lentic-
ular boom (i.e. x1 = 500 mm) for Fx3 = 1 N load case with nonuniform
temperature distribution of T = 40◦C and [0UD/45PW ] lay-up.
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as can be observed in Table  6.17 . Finally, as the [0UD/45PW ] laminate does not significantly

relax with increased time and temperature, the evolution of the cross-section as well as

the shape at time t = 20,000 s for the different loading conditions are similar to the ones

presented for the uniform temperature distribution in Subsection  6.2.1 (see Figures  6.22 -

 6.23 ). Therefore, it can be concluded that the [0UD/45PW ] laminate provides dimensional

stability to the lenticular boom presented in this work.

Table 6.17. Displacement at midspan of the lenticular boom (i.e. x1 = 500
mm) and time t = 20,000 s for the Fx1 = -1 N load case with nonuniform
temperature distribution and [0UD/45PW ] lay-up.

Type ux1 ux2 ux3 CPU time
mm mm mm s

DNS -7.3240e-04 -1.0650e-04 7.3800e-05 20,794
MSG Shell -7.3220e-04 -1.1470e-04 1.9620e-05 1,252
MSG Beam -7.3848e-04 -1.3101e-04 0.0000 Analytical

Table 6.18. Displacement at midspan of the lenticular boom (i.e. x1 = 500
mm) and time t = 20,000 s for the Fx2 = 1 N load case with nonuniform
temperature distribution and [0UD/45PW ] lay-up.

Type ux1 ux2 ux3 CPU time
mm mm mm s

DNS 0.1473 3.5120 0.0001 25,299
MSG Shell 0.1467 3.5280 0.0020 1,222
MSG Beam 0.0004 3.5109 0.0000 Analytical

Table 6.19. Displacement at midspan of the lenticular boom (i.e. x1 = 500
mm) and time t = 20,000 s for the Fx3 = 1 N load case with nonuniform
temperature distribution and [0UD/45PW ] lay-up.

Type ux1 ux2 ux3 CPU time
mm mm mm s

DNS 0.1125 0.0001 1.8700 24,161
MSG Shell 0.1125 0.0001 1.8700 1,130
MSG Beam 0.0000 0.0000 1.8685 Analytical
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6.3 Summary

The MSG-based liner thermoviscoelastic beam model was developed to efficiently com-

pute the effective thermoviscoelastic beam stiffness properties, thermal stress resultants and

its global behavior of composite beams made of constituents with time- and temperature-

dependent behavior. First, considering the 1D Euler-Bernoulli beam model, the QE method

was used to the solve the hereditary integral describing the beam behavior and compute

the effective themoviscoelastic beam stiffness properties. A lenticular boom and a TRAC

boom with uniform and nonuniform temperature distributions were considered as numerical

examples. Three-dimensional numerical simulations and analytical formulas were used to

verify the accuracy of the results model showing excellent agreement with MSG results. In

addition, the validity of the time shift to compute the effective beam stiffness properties at

different temperatures departing from the effective beam stiffness properties at reference tem-

perature was analyzed. PMT-F7 resin relaxation data characterized by NASA LaRC were

used for this purpose. The study revealed that despite the heterogeneous thermoviscoelastic

nature of the composite material, from a multiscale analysis perspective, the temperature

dependencies of the effective beam stiffness properties are governed by the same shift fac-

tor as the polymer matrix except for nonuniform temperature distribution. Therefore, the

most efficient approach is to compute the effective beam stiffness properties once at refer-

ence temperature and apply the shift function of the resin to these beam stiffness properties

to compute the effective beam stiffness at other temperatures of interest. This conclusion

remains the same for the MSG-based solid and plate/shell models. In addition, unlike tradi-

tional methods, the MSG-based model also allows to efficiently and accurately compute the

extension-bending and torsion-bending terms of the stiffness matrix, which become more rel-

evant when temperature distribution is not uniform over the cross-section. In addition, the

analysis revealed that when steady-state nonuniform temperature distributions are consid-

ered within the SG, the effective thermoviscoelastic properties are required to be computed

each time the temperature distribution changes.

In case of the global linear thermoviscoelastic beam problem, it was solved using the

MSG-based DI method. This methodology assumed that the effective beam thermovis-
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coelastic stiffness properties could be expressed by means of Prony series coefficients. 1D

Euler-Bernoulli beam model was considered for this purpose. Then, the MSG-based DI

beam model was analytically implemented to analyze a lenticular boom withstanding three

different load conditions: compression, transverse force in x2-direction and transverse force

in x3-direction. SwiftCompTM [ 112 ] was used to compute the effective thermoviscoelastic

beam stiffness properties that then were fit into Prony series coefficients. Three-dimensional

direct numerical simulations (DNS) and MSG-based thermoviscoelastic plate/shell model

of a TRAC boom with uniform cross-sectional temperature distribution, and a lenticular

boom with uniform and nonuniform cross-sectional temperature distribution were developed

to verify the MSG-based thermoviscoelastic beam model. The latter showed excellent agree-

ment for all the cases with both DNS and MSG-based plate/shell model in terms of global

displacements and the recovered cross-sectional shape while significantly reducing the com-

putational cost. The relaxation was practically nonexistent for the laminate of this study

and hence, once the deformed shape was reached, the cross-sectional shape of the lenticular

boom remained constant as the time increased time. The transverse load in the x2-direction

yielded the biggest displacement, followed by the transverse load in the x3-direction and

the compression load. However, the cross-sectional shape of the TRAC boom deformed

more compared to the lenticular boom case and continued to evolve for increased time. Due

to considering linear thermoviscoelastic behavior, the higher compression and transverse

loads would scale up linearly the deformations as the effective properties only depended on

time and temperature. Moreover, the MSG-based beam model of the lenticular boom was

able to properly capture the behavior of the boom with a steady-state nonuniform cross-

sectional temperature distribution. Distinctively to the uniform temperature distribution,

the nonuniform cross-sectional temperature yielded extension-bending coupling. The fact

that MSG-based thermoviscoelastic beam model provided accurate results with increased

computational efficiency proves its feasibility to model booms that are in a fully deployed

configuration. The MSG-based beam with nonuniform cross-sectional temperature distribu-

tion also brought new insights to predict the behavior of deployable booms.
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7. SUMMARY

This work developed a unified thermodynamically consistent formulation to capture the

behavior of linear thermoviscoelastic materials efficiently and accurately with time and

temperature-dependency at different scales. To do so, mechanics of structure genome (MSG)

was extended to capture the multiscale behavior of three-dimensional heterogeneous mate-

rials using solid, plate/shells or beam models subject to temperature changes. Thermorheo-

logically simple materials were considered to derive MSG-based quasi-elastic (QE) and direct

integration (DI) formulations from the integral form of the constitutive equation for a gen-

eral anisotropic linear thermoviscoelastic non-aging material. The QE method was used

for predicting thermoviscoelastic properties for composite solids, plate/shells and beams

whereas the DI method was formulated to capture the global analysis of composite solids,

plates/shells and beams. The computation of local fields by means of MSG-based dehomog-

enization step was not pursued in this work. The time-temperature superposition principle

was used, and hence, the reduced time parameter related the time-temperature dependency

of the anisotropic material by means of master curves at reference conditions. Uniform

and nonuniform temperature distributions were considered. The derivation of exact three-

dimensional thermoviscoelastic homogenization solutions for balanced and symmetric lami-

nates was also presented. All the derived formulation based on QE method was implemented

in SwiftCompTM, for general-purpose constitutive modeling of time and temperature depen-

dency for composites featuring arbitrary microstructure. The DI method was implemented

in UMAT and UGENS subroutines in Abaqus for solids and plates/shells, respectively. The

DI method required the Prony series coefficients of the effective thermoviscoelastic properties

computed with SwiftCompTM as input.

The MSG-based solid model with the QE method was used to compute the effective ther-

moviscoelastic properties and analyze three numerical case studies comprising unidirectional

fiber reinforced composite, a balanced and symmetric laminate, and a textile composite. The

results were compared against 3D RVE analysis showing good agreement, except when time-

dependent coefficients of thermal expansion (CTEs) were considered at constituent level.

The 3D RVE analysis exhibited limitations to properly capture the long-term behavior of
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effective CTEs when time-dependent constituent CTEs were considered. These limitations

were not present for the case of MSG, as it accurately captured these long-term behaviors for

both constant and time-dependent constituent CTEs, and also increased the computation

efficiency. The analyses of the homogenized properties also revealed that the shift factor

of the polymer matrix drives the temperature dependencies of the effective CTEs and en-

gineering constants of the heterogeneous composite material across all the scales except for

nonuniform temperature distribution. This finding was later proved to also hold for the

equivalent thermoviscoelastic plate/shell and beam stiffness. Therefore, the most efficient

approach is to compute the effective solid, plate/shell or beam stiffness properties once at

reference temperature, and then apply the shift function of the resin to these stiffness prop-

erties to compute the effective solid, plate/shell or beam properties at other temperatures of

interest. However, when steady-state nonuniform temperature distributions are considered

within the SG, the effective thermoviscoelastic properties are required to be computed each

time the temperature distribution changes.

The comparison of the simulated column bending test (CBT) results against the ex-

perimental data provided by NASA LaRC allowed to validate the MSG-based plate/shell

models. The effective bending stiffness relaxation computed using MSG-based QE method

showed excellent agreement against the experimental data provided by NASA LaRC. Then,

this viscoelastic plate/shell stiffness matrix was fit into Prony series coefficients and used

as input for the CBT simulated with the DI method. The results computed using MSG-

based plate/shell model showed good qualitative agreement against the experimental data

for the curvature during folding, moment during relaxation, as well as residual curvature

immediately after unfolding, thereby validating the model and the UGENS subroutine [ 125 ].

The MSG-based 1D Euler-Bernoulli beam model was also used to model thin-ply high

strain composite (TP-HSC) structures with uniform and nonuniform cross-sectional temper-

ature distributions. A lenticular boom and a TRAC boom were selected for this study and 3D

direct numerical simulations were conducted to verify the accuracy of SwiftCompTM results.

It is noted that modeling TP-HSCs by means of beam models is a widely unexplored research

area, and especially when different temperatures over the cross-section are present. Unlike

traditional methods, the MSG-based model allowed to compute the extension-bending and
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torsion-bending terms of the stiffness matrix efficiently and accurately, which became more

relevant when nonuniform temperature distributions over the cross-section were present.

Finally, the MSG-based DI beam model was implemented analytically to analyze a lentic-

ular boom withstanding three different load cases (i.e. compression force and transverse

forces in x2 and x3 directions), and a TRAC boom withstanding two different load cases (i.e.

compression and transverse force in x3 direction). The thermoviscoelastic beam stiffness

properties computed using MSG-based QE method were then fit into Prony series coeffi-

cients and used as input for the DI method. The DNS and MSG-based thermoviscoelastic

plate/shell model of the lenticular and TRAC booms were developed to verify the MSG-

based thermoviscoelastic beam model. The latter significantly reduced the computational

cost while showing excellent agreement with both DNS and MSG-based plate/shell model.

The consideration of linear thermoviscoelastic behavior implied that the higher compression

and transverse loads would scale up linearly the deformations as the effective properties only

depended on time and temperature. Moreover, the MSG-based beam model of the lenticular

boom was able to properly capture the global behavior of the boom with a steady-state

nonuniform cross-sectional temperature distribution. Distinctively to the uniform temper-

ature distribution, the nonuniform cross-sectional temperature yielded extension-bending

coupling. The fact that the MSG-based thermoviscoelastic beam model provided accurate

results with increased computational efficiency proves its feasibility to model booms that are

in a fully deployed configuration. This result is also applicable for the cases when the entire

boom has a uniform temperature distribution different from the reference one. The MSG-

based beam with nonuniform cross-sectional temperature distribution also demonstrated new

capabilities to predict the behavior of large composite structures with uneven temperature

distributions.

7.1 Recommendations

The current research work has identified several areas for further development building

upon the formulation and methodology presented in this dissertation. A first step would

consist of extending the MSG-based thermoviscoelastic method to handle dehomogenization
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and recover the local fields within the SG. Although dehomogenization was not pursued in

this work, some preliminary work to compute the local fields of step-type inputs at structural

level has been carried out as QE and DI methods provide the same results for step-type inputs

[ 125 ]. Nonetheless, a more general approach that considers arbitrary stress, displacement

or strain inputs and computes local fields would be very convenient for failure and damage

analysis, for instance.

It is also recommended to implement the MSG-based beam model in a user-defined ele-

ment (UEL) subroutine in Abaqus to handle more general beam analyses. This subroutine

would be very useful for early design stages of beam-like structures such as deployable com-

posite booms and other large anisotropic composite structures.

Furthermore, a subsequent step to reinforce the use of the beam model would consist

of extending the range of conditions to cover higher temperature differences and/or more

extreme nonuniform temperature distributions for both the lenticular and TRAC boom

cases. To do so, the resin would also need to be experimentally characterized at more

extreme temperatures.

In addition, the application of the multiscale analysis approach with solid, plate/shell

and beam models in thermoplastic materials would pave the way to analyze additive man-

ufacturing simulations. Indeed, some preliminary work has been done with the Additive

Manufacturing team of Composites Manufacturing & Simulation Center at Purdue Univer-

sity. However, a more systematic comparison between the simulated and experimental results

is needed, especially to understand the influence that an uneven distribution of the degree of

crystallinity has in the prediction of the final homogenized properties. This approach would

consist of integrating the code developed to in-situ simulation of manufacturing processes.

This would allow computing the effective properties with nonuniform temperature distri-

butions within the SG using SwiftComp and then them into the manufacturing simulation

code.

Finally, an additional future research work area would be the development and integra-

tion of a nonlinear MSG-based constitutive model to investigate and capture the effects of

viscoelastic-viscoplastic media.
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A. MATERIAL PROPERTY DATA

This appendix first presents a brief compendium of the formulation required to describe the

behavior of thermoset and thermoplastic composites. Then, it also contains the relevant

constitutive material data for the different material systems used in the numerical studies

of this dissertation. Most of the data have been gathered from the literature. PMT-F7

toughened epoxy resin data were provided by NASA LaRC [ 143 ].

A.1 Thermoset and Thermoplastic Composites

This section provides additional constitutive relations for thermoset and thermoplastic

composites to complement the formulation for linear thermoviscoelasticity. Since most of

these formulae are obtained from data reduction of phenomenological processes experimen-

tally measured, slight variations from a thermorheologically simple media to another one

may be expected.

A.1.1 Thermoset Composites

In thermoset composites the resin transforms from a viscous liquid before the gel point

to a viscoelastic solid with increasing viscosity through the formation of polymer networks

[ 55 ]. The temperature around which the polymer transforms from a brittle glassy state to

a viscous rubbery state is denoted as the glass transition temperature Tg. The material

properties around Tg significantly evolve as the resin mechanical properties decrease and

the stress relaxation becomes predominant. Consequently, the stress relaxation becomes

important in thermoset composites when the temperatures are close to the glass transition

temperature and the resin is not completely polymerized. The glass transition temperature

is also function of the DOC, as it increases monotonically with the DOC. The DOC can

be related with the cure dependent glass transition temperature Tg(X) by means of the

DiBenedetto [ 83 ] equation as

Tg(X)− Tg0
Tg∞ − Tg0

= CDBX

1− (1− CDB)X (A.1)
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where CDB stands for a material parameter computed from experimental data, X is the

DOC, and Tg∞ and Tg0 are the glass transition temperatures of the fully cured (i.e. X = 1)

and uncured thermoset resin (i.e. X = 0), respectively.

The evolution of the shift factor aT with the temperature varies as a function of Tg in case

of thermoset composites ([ 149 ],[ 150 ]). For temperatures below and above Tg, the Arrhenius

[ 151 ] and the Williams-Landel-Ferry (WLF) [ 152 ] equations apply respectively as

 log aT = Ea
ln 10R

(
1
T
− 1

T0

)
T < Tg(X)

log aT = −C1(T−T0)
C2+(T−T0) T ≥ Tg(X)

(A.2)

where Ea represents the activation energy expressed with unit J/mol, R stands for the

universal gas constant equal to 8.314 J/K/mol, C1 and C2 are material constants adjusted

from experimental data, and T0 stands for reference temperature. Ea can also vary with the

DOC depending on the thermoset resin [ 12 ]. If Tg is used as T0, C1 = 17.44 and C2 = 51.6

can be used ([  114 ], [ 153 ]). If Tg is used as the reference temperature, when the temperature

is equal to the glass transition temperature (i.e. T = Tg), aT = 1. In general, it is

expected to have an increase in the relaxation rate for increased temperatures or for small

DOC values [ 55 ]. The CTE of the thermoset resin also exhibits a discontinuity at Tg and

thus, its value is different if temperatures below or above Tg are considered [ 114 ].

The DOC of the thermoset resin can be modeled by means of phenomenological rate

expressions with distinct grade of complexity. These semi-empirical expressions are reduced

from experimental data [  154 ] and vary depending on the thermoset material considered.

The simplest classical model to describe the cure kinetics for manufacturing simulation is

the n-model order [ 155 ], which reads as

dX

dt
= A exp

(
−Ea
RT

)
(1−X)n (A.3)

where n is a material parameter that needs to be determined from experimental data also

known as first exponential constant, and A is the frequency factor. The complexity of the

cure kinetics model can be increased if an autocatalytic model, which is also known as n-m
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model [ 155 ], is considered. The autocatalytic model for purely autocatalytic behavior reads

as
dX

dt
= A exp

(
−Ea
RT

)
Xm(1−X)n (A.4)

where m is a material parameter also determined from the experimental data, known as

the second exponential constant. If the diffusion of the reactants is considered, a diffusion-

controlled term can be added to the autocatalytic model of Eq. ( A.3 ) as [ 155 ]

dX

dt
=

A exp
(
−Ea
RT

)
Xm(1−X)n

1 + exp
(
C0[X − (XC0 +XCT )T ]

) (A.5)

where C0 is the diffusion constant, and XC0 and XCT are the material constants that account

for the critical DOC at T = 0 K, and the increase in critical DOC with temperature T ,

respectively.

It is noted that all the modeling approaches here presented consider the DOC and tem-

perature as independent field variables so TTSP can be applied ([ 12 ], [  114 ]).

A.1.2 Thermoplastic Composites

In thermoplastic composites made of semi-crystalline polymers, thermorheologically sim-

ple behavior can be assumed if only the phase transition around Tg is present. To achieve

these conditions, fully crystallized material samples of a semi-crystalline material can be

characterized up to the melting point [ 10 ]. During the manufacturing process of thermoplas-

tic composites the material transitions from a viscous fluid to a viscoelastic solid. In this

period, the constituent properties of the material have thermoviscoelastic behavior and are

governed by the crystallization process. In a semi-crystalline thermoplastic material, crys-

tallization happens during the cold-down between the crystallization and glass-transition

temperatures [ 85 ]. At the molten stage and before crystallization, the thermoplastic mate-

rial has negligible stiffness. However, during the cool down process the composite material

shrinks and internal stresses are developed while the material increases its stiffness. Similarly

to the case of thermoset composites, the process of crystallization generates crystallization
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strains that lead to part deformations and additional residual stresses. The CTEs of the

semi-crystalline polymer also exhibit temperature dependency and vary their value depend-

ing on Tg. In general, the value of the CTEs is higher above Tg [ 114 ] because the amount of

free polymer grows above Tg. In case of the crystallization shrinkage, it is driven by amount

of densification of the matrix material and DOC. However, compared to thermoset compos-

ites, Tg of a thermoplastic is fixed as it is defined by the molecular weight and architecture

of the polymer.

Analogously to the thermoset composites, the Arrhenius [ 151 ] and the WLF [ 152 ] equa-

tions can be used to describe the shift factor of the thermoplastic polymer below and above

Tg as [  114 ]  log aT = Ea
ln 10R

(
1
T
− 1

T0

)
T < Tg

log aT = −C1(T−T0)
C2+(T−T0) T ≥ Tg

(A.6)

where the two constants C1 and C2 are experimentally fit to the values obtained for log aT
for each material. It is also noted that for thermoplastic composites Tg does not vary as a

function of DOC.

There are different crystallization kinetics models depending on the thermoplastic mate-

rial considered. For instance, the Velisaris and Seferis [ 156 ] crystallization kinetics model is

broadly used to describe the behavior of polyetheretherketone (PEEK) thermoplastic matri-

ces ([  85 ], [  86 ], [  157 ], [  11 ]). The complete expression for this model reads as

Xvc

X∞vc
= w1Fvc1 + w2Fvc2 (A.7)

where Xvc represents the volume fraction of crystallinity, X∞vc is the equilibrium volume

fraction of crystallinity, Fvc1 is the time integral expression describing crystal nucleation,

Fvc2 is the time integral expression describing the growth for processes, and w1 and w2 are

the weight factors [  86 ]. Fvc1 and Fvc2 are given by [ 158 ]

Fvci = 1− exp
− Ci,1 ∫ t

0
T exp

( −Ci2
T − Tg + 51.6 −

−Ci3
T (Tm,i − T )2

)
niτ

n1−1dτ


i = 1, 2

(A.8)
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where Tm,i are the crystal melt temperatures for dual mechanisms, ni are the Avrami ex-

ponents for dual mechanisms [ 159 ], and Ci,1, Ci,2, and Ci,2 are model constants [ 85 ]. The

weight factors are constrained as

w1 + w2 = 1 (A.9)

It is noted that this model assumes that the crystallization temperatures are independent of

the cooling rate.

A.2 T300/PMT-F4 Thermoset Composite

T300/PMT-F4 thermoset composite material properties are used for this study [ 95 ]. The

T300 fiber is modeled as transversely isotropic with constituent properties given in Table

 A.1 .

Table A.1. Constituent properties of T300 fiber characterized as transversely
isotropic [  95 ].

E1f (MPa) E2f (MPa) G12f (MPa) ν12f ν23f α11f (µ/◦C) α22f (µ/◦C)
233,000.0 15,000.0 8,963.0 0.200 0.330 -0.540 10.080

The PMT-F4 epoxy matrix is modeled as a thermorheologically simple isotropic material

with time and temperature dependency. The time dependent Young’s modulus of the matrix

is approximated by Prony series that include the temperature effect as

Em = E∞ +
n∑
s=1

Es exp
(
− ξ

λs

)
(A.10)

where E∞ is the long-term modulus, Es stand for the Prony series coefficients of the resin,

λs are the discrete stress relaxation times, and ξ is the reduced time as a function of the

temperature given by Eq. ( 2.2 ). The Prony series coefficients are given in Table  A.2 . A

constant Poisson’s ratio of νm = 0.33 [ 110 ] and CTE of αm = 60 µ/◦C are assumed. It is

noted that E∞, νm, and αm are used to normalize the values of the effective properties. In

addition, whereas the Poisson’s ratios and the CTEs are shown with three digits after the

decimal point, one digit after the decimal point is used for the rest of material properties.
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Table A.2. Prony series coefficients and relaxation times for PMT-F4 [ 95 ].
s ∞ 1 2 3 4 5 6 7
λs (s) - 103 105 106 107 108 109 1010

Es (MPa) 1,000.0 224.1 450.8 406.1 392.7 810.4 203.7 1,486.0

The shift factor aT for PMT-F4 epoxy resin, which depends on the temperature, is defined

by a WLF equation as

log aT = − 28.3816(T − T0)
93.291 + (T − T0) (A.11)

where the temperature T is expressed in ◦C and T0 = 40◦C [ 95 ]. The evolution of the

normalized Em for different temperatures is shown in Figure  A.1 . At T = 100◦C, the resin

modulus is relaxed as it is equal to E∞ and keeps constant as the time passes. For T = 20◦C,

the resin modulus decreases with increased time, but this decrease cannot be observed clearly

in Figure  A.1 as it is equal to 0.58% for the period plotted.

Figure A.1. Evolution of normalized PMT-F4 resin modulus for different temperatures.
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A.3 Time-dependent Versus Prony Series Coefficients for M30S/PMT-F7 Plain
Wave Composite

During this PhD dissertation work, the PMT-F7 toughened epoxy resin data experimen-

tally characterized by NASA LaRC were used. These modulus relaxation data were gathered

during a tensile stress relaxation test and given as a time-dependent property and were later

made available for the general public by Salazar et al. [ 143 ]. However, for the purpose of the

present work, Prony series coefficients were fit and summarized in Table  A.3 . A reference

temperature of T0 = 40◦ C was selected to shift these experimental data, as it represents the

maximum boom stowage temperature expected for the NASA solar sail application ([ 15 ],

[ 16 ]). At this temperature, the material will achieve the highest expected relaxation during

the mission and thus, the results will be representative of the worst-case deployment sce-

nario. The Figure  A.2 shows the experimental data of the time-dependent Young’s modulus

of PMT-F7 provided by NASA LaRC against the one available in the literature ([ 144 ], [ 145 ]).

It can be observed that the NASA LaRC resin relaxes faster than the one available in the

literature ([ 144 ], [  145 ]). The fit Prony series coefficients for the NASA LaRC material are

summarized in Table  A.3 and the fit results are compared against the actual data in Figure

 A.2 .

Table A.3. Prony series coefficients fit for PMT-F7 experimental data pro-
vided by NASA LaRC at T0 = 40◦C.

s λs (s) Er (MPa)
∞ 1546.0
1 3.70E+01 324.7
2 1.00E+02 236.3
3 5.00E+02 7.1
4 1.00E+03 7.1
5 5.00E+03 201.2
6 1.00E+04 81.5
7 5.00E+04 89.5
8 1.00E+05 223.9
9 5.00E+05 19.5
10 1.00E+06 109.3
11 5.00E+06 60.0
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Figure A.2. Evolution of the Young’s modulus of the PMT-F7 resin at T0 =
40◦ C. Note that Ref. [B] represents Ref. [ 145 ].

The constituent materials can be input into SwiftCompTM [ 112 ] either using time-dependent

material properties, such as the ones directly measured in the experiments, or by means of

Prony series coefficients. To prove that both approaches lead to the same set of effective

properties, a yarn was modeled with a 2D SG as an hexagonal square pack with a fiber

volume fraction of 0.62 [ 144 ]. The M30S fiber was modeled as transversely isotropic mate-

rial and data from Ref. [ 144 ] were used. Then, two different viscoelastic homogenization

analyses were run in SwiftCompTM [ 112 ] representing the PMT-F7 toughened resin data

from Ref. [ 145 ] as time-dependent property and by means of Prony series coefficients. For

completeness, the same homogenization was run but considering PMT-F7 toughened resin

data from NASA LaRC. For all the three cases, a Poisson’s ratio of 0.36 was used for the

resin and isotropic behavior was assumed. The interphase between the fiber and the matrix

was not modeled.

174



Figure A.3. Evolution of the effective Young’s modulus for the yarn. It is
noted that E∗2 = E∗3 and that Ref. [B] represents Ref. [  145 ].

Figure A.4. Evolution of the effective shear moduli (Left) and Poisson’s ratios
(Right) modulus for the yarn. It is noted that G∗12 = G∗13 and ν∗12 = ν∗13 and
that Ref. [B] represents Ref. [ 145 ].
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The evolutions of the effective engineering constants of the yarn are shown in Figures

 A.3 and  A.4 . It can be observed that expressing the resin either as time-dependent input

or by means of Prony series coefficients lead to the same effective properties. Therefore,

SwiftCompTM [ 112 ] can handle the directly measured experimental time-dependent data

without losing accuracy. It also eliminates extra efforts in fitting these data into Prony series

coefficients. In addition, as expected, the effective properties computed from the NASA

LaRC resin relaxes faster than those computed from data in Ref. [ 145 ]. This was more

evident for the matrix dominated properties such as the Young’s modulus in the transverse

direction and shear moduli with 25.5% and 26% of difference at t = 107 s, respectively. Both

resin types lead to the same effective Poisson’s ratios, which did not relax with increased

time for this particular microstructure.

The parameters for the PMT-F7 toughened epoxy resin shift function were manually

fit from experimental data provided by NASA LaRC for this study. To do so, the resin

relaxation behavior at 30◦C, 40◦C, 50◦C, 60◦C and 80◦C were used in the calculations. The

70◦C relaxation data were discarded because they exhibited an unexpected behavior for this

type of resin. It is noted that these data were later partially published by Salazar and

Fernandez [ 143 ]. The data were plotted for each of the temperature values. The horizontal

axis represented the common logarithm of time in seconds, and the vertical axis represented

the relaxed value of the resin. Since 40◦C data were considered as reference temperature

T0, shift factor of aT = 1 was used for all the data at 40◦C. In other words, log t = 0

corresponds to T0 and for this particular case at T0, log t = log ξ since aT = 1. Then,

following the TTSP, the 30◦C, 50◦C, 60◦C and 80◦C curves were shifted horizontally until

they lied on top of the 40◦C curve. The amount needed to shift in the horizontal axis was

considered as the shift function value in common logarithmic scale for each temperature.

These values were later converted into the real scale and input into a Matlab script to fit

into the WLF equation. The script used a nonlinear least-squares curve-fitting function

with the Levenberg-Marquardt algorithm to compute the coefficients for the WLF equation.
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Since T > Tg, the objective was to find the parameters C1 and C2 of Eq. ( A.2 ). Finally, the

expression for WLF equation was found to be equal to

log aT = − 3.6868(T − T0)
13.5513 + (T − T0) (A.12)

where the temperature was expressed in ◦C and T0 = 40 ◦C.
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B. ADDITIONAL FORMULATION FOR THE DIRECT

INTEGRATION METHOD

This appendix details intermediate steps of the derivation of the MSG-based solid model

with the direct integration method. The aim of this appendix is to provide additional details

so that the derivation can be reproduced. It is noted that the formulation here presented

was adapted from Zocher et al. [  70 ].

1. Computation of Mijkl∆ε(ξn+1). Substituting the first expression of Eq. ( 3.58 ) and the

approximation given by Eq. (  3.59 ) into the first term on the right hand side of Eq. ( 3.55 ),

we have that

∫ ξn+1

ξn
Cijkl (T0, ξn+1(t)− ξ(τ)) ε̇kl(τ)dτ

=
∫ ξn+1

ξn

[
Cijkl,∞ +

m1∑
s1=1

Cijkl,s1e
(
− ξn+1(t)−ξ(τ)

λs1

)]
∂(εijn +Rεijn+1

(ξ − ξn)H(ξ − ξn))
∂ξ(τ) dξ(τ)

=
∫ ξn+1

ξn
Cijkl,∞Rεijn+1

(
(ξ − ξn)δ(ξ − ξn) +H(ξ − ξn)

)
dξ(τ)

+
∫ ξn+1

ξn
Rεijn+1

(
(ξ − ξn)δ(ξ − ξn) +H(ξ − ξn)

)[ m1∑
s1=1

Cijkl,s1e
(
− ξn+1(t)−ξ(τ)

λs1

)]
dξ(τ)

= Cijkl,∞Rεijn+1
∆ξn+1 +

[
m1∑
s=1

λs1
ξn+1

Cijkl,s1

(
1− e

(
−∆ξn+1

λs1

))]
Rεijn+1

∆ξn+1

=
[
Cijkl,∞ + 1

∆ξn+1

m1∑
s1=1

λs1Cijkl,s1

(
1− e

−∆ξn+1
λs1

)]
∆εn+1 ≡ Mijkl∆εn+1

(B.1)

where it is noted that

∫ ξn+1

ξn
H(ξ − ξn)dξ(τ) = (ξ − ξn)H(ξ − ξn) = ∆ξn+1 if ξ(τ) > ξn (B.2)

and ∫ ξn+1

ξn
(ξ − ξn)δ(ξ − ξn)dξ(τ) = 0 if ξ(τ) > ξn (B.3)
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2. Computation of ηij∆θ(ξn+1). Similarly to the case of the Mijkl∆εn+1, we need to

substitute the second expression of Eq. ( 3.58 ) and the approximation given by Eq. ( 3.59 )

into the second term on the right hand side of Eq. ( 3.55 ). Then, we have that

∫ ξn+1

ξn
βij (T0, ξn+1(t)− ξ(τ)) θ̇(τ)dτ

=
∫ ξn+1

ξn

[
βij,∞ +

m2∑
s2=1

βij,s2e
(
− ξn+1(t)−ξ(τ)

λs

)]
∂(θn +Rθn+1(ξ − ξn)H(ξ − ξn))

∂ξ(τ) dξ(τ)

=
∫ ξn+1

ξn
βij,∞Rθn+1

(
(ξ − ξn)δ(ξ − ξn) +H(ξ − ξn)

)
dξ(τ)

+
∫ ξn+1

ξn
Rθn+1

(
(ξ − ξn)δ(ξ − ξn) +H(ξ − ξn)

)[ m2∑
s2=1

βij,s2e
(
− ξn+1(t)−ξ(τ)

λs2

)]
dξ(τ)

= βij,∞Rθn+1∆ξn+1 +
[

m2∑
s2=1

λs2
ξn+1

βij,s2

(
1− e

(
−∆ξn+1

λs2

))]
Rθn+1∆ξn+1

=
[
βij,∞ + 1

∆ξn+1

m2∑
s2=1

λs2βij,s2

(
1− e

−∆ξn+1
λs2

)]
∆θn+1 ≡ ηij∆θn+1

(B.4)

where Eqs. (  B.2 ) - ( B.3 ) have been applied in the derivation.

3. Computation of Ωij - Viscoelastic part. To compute the value of Ωij, we substitute

Eqs. ( 3.52 ,  3.57 ,  3.58 ) into the first term of the right hand-side of Eq. ( 3.56 ) as

∫ ξn

0
∆Cijklε̇kl(τ)dτ =

∫ ξn

0

Cijkl,∞ +
m1∑
s1=1

Cijkl,s1e
(
− ξn+1(t)−ξ(τ)

λs1

)

− Cijkl,∞ +
m1∑
s1=1

Cijkl,s1e
(
− ξn(t)−ξ(τ)

λs1

)ε̇kl(τ)dτ

=
∫ ξn

0

[ m1∑
s1=1

Cijkl,s1e
(
− ξn(t)+∆ξn+1−ξ(τ)

λs1

)
−

m1∑
s1=1

Cijkl,s1e
(
− ξn(t)−ξ(τ)

λs1

)]
ε̇kl(τ)dτ

= −
m1∑
s1=1

[(
1− e

(
−∆ξn+1
λs1

)) ∫ ξn

0
Cijkl,s1e

(
− ξn(t)−ξ(τ)

λs1

)
ε̇kl(τ)dτ

]

= −
m1∑
s1=1

(
1− e

(
−∆ξn+1
λs1

))
Dij,s1(ξn)

(B.5)
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To solve the integral part of Eq. ( B.5 ) represented by the term Dij,s1(ξn), we need to

approximate the partial derivatives following Eq. ( 3.59 ) as

ε̇kl(τ) = ∂εkl(τ)
∂ξ(τ) ≈ Rεkln

≡ ∆εkl
∆ξn

(ξn −∆nξ ≤ ξ(τ) ≤ ξn) (B.6)

where ∆εkl and ∆ξn and hence, Rεkln
are determined from the previous step. It is noted

that from Eq. (  3.52 ), ξn −∆n = ξn−1. Then, the integral part of Eq. ( B.5 ) can be further

developed as

Dij,s1(ξn) =
∫ ξn

0
Cijkl,s1e

(
− ξn(t)−ξ(τ)

λs1

)
ε̇kl(τ)dτ

=
∫ ξn

ξn−1
Cijkl,s1e

(
− ξn(t)−ξ(τ)

λs1

)
ε̇kl(τ)dτ +

∫ ξn−1

0
Cijkl,s1e

(
− ξn(t)−ξ(τ)

λs1

)
ε̇kl(τ)dτ

=
∫ ξn

ξn−1
Cijkl,s1e

(
− ξn(t)−ξ(τ)

λs1

)
Rεkln

dτ +
∫ ξn−1

0
Cijkl,s1e

(
− ξn(t)+∆ξn−∆ξn−ξ(τ)

λs1

)
ε̇kl(τ)dτ

= λs1Cijkl,s1Rεkln

(
1− e

−∆ξn
λs1

)
+ e

−∆ξn
λs1

∫ ξn−1

0
Cijkl,s1e

(
− ξn−1(t)−ξ(τ)

λs1

)
ε̇kl(τ)dτ

= λs1Cijkl,s1Rεkln

(
1− e

−∆ξn
λs1

)
+ e

−∆ξn
λs1 Dij,s1(ξn−1)

(B.7)

4. Computation of Ωij - Thermoviscoelastic part. To compute the value of Ωij, we

substitute Eqs. ( 3.52 ,  3.57 ,  3.58 ) into the second term of the right hand-side of Eq. ( 3.56 )

as

∫ ξn

0
∆βij θ̇(τ)dτ =

∫ ξn

0

βij,∞ +
m2∑
s2=1

βij,s2e
(
− ξn+1(t)−ξ(τ)

λs2

)

− βij,∞ +
m2∑
s2=1

βij,s2e
(
− ξn(t)−ξ(τ)

λs2

)θ̇(τ)dτ

=
∫ ξn

0

[ m2∑
s2=1

βij,s2e
(
− ξn(t)+∆ξn+1−ξ(τ)

λs2

)
−

m2∑
s2=1

βij,s2e
(
− ξn(t)−ξ(τ)

λs2

)]
θ̇(τ)dτ

= −
m2∑
s2=1

[(
1− e

(
−∆ξn+1
λs2

)) ∫ ξn

0
βij,s2e

(
− ξn(t)−ξ(τ)

λs2

)
θ̇(τ)dτ

]

= −
m2∑
s2=1

(
1− e

(
−∆ξn+1
λs2

))
Bij,s2(ξn)

(B.8)
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To solve the integral part of Eq. ( B.8 ) represented by the term Bij,s2(ξn), we need to

approximate the partial derivatives following Eq. ( 3.59 ) as

θ̇(τ) = ∂θ(τ)
∂ξ(τ) ≈ Rθn ≡

∆θ
∆ξn

(ξn −∆ξ ≤ ξ(τ) ≤ ξn) (B.9)

where ∆εkl and ∆ξn and hence, Rθn are determined from the previous step. Then, the

integral part of Eq. ( B.8 ) can be further developed as

Bij,s2(ξn) =
∫ ξn

0
βij,s2e

(
− ξn(t)−ξ(τ)

λs2

)
θ̇(τ)dτ

=
∫ ξn

ξn−1
βij,s2e

(
− ξn(t)−ξ(τ)

λs1

)
θ̇(τ)dτ +

∫ ξn−1

0
βij,s2e

(
− ξn(t)−ξ(τ)

λs2

)
θ̇(τ)dτ

=
∫ ξn

ξn−1
βij,s2e

(
− ξn(t)−ξ(τ)

λs2

)
Rθndτ +

∫ ξn−1

0
βij,s2e

(
− ξn(t)+∆ξn−∆ξn−ξ(τ)

λs2

)
θ̇(τ)dτ

= λs2βij,s2Rθn

(
1− e

−∆ξn
λs2

)
+ e

−∆ξn
λs2

∫ ξn−1

0
βij,s2e

(
− ξn−1(t)−ξ(τ)

λs2

)
θ̇(τ)dτ

= λs2βij,s2Rθn

(
1− e

−∆ξn
λs2

)
+ e

−∆ξn
λs2 Bij,s2(ξn−1)

(B.10)
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C. SOFTWARE DEVELOPMENT

Abaqus SwiftComp GUI

SwiftCompTM [ 112 ] can be used as as a plugin for other commercial codes or a standalone

code. To facilitate the use of SwiftCompTM [ 112 ], a simple graphic user interface (GUI) with

a toolbar integrating the functions of SwiftCompTM [ 112 ] was developed for Abaqus CAE in

2016. This GUI was named as Abaqus SwiftComp GUI [ 113 ].

Since the viscoelastic and thermoviscoelastic homogenization capabilities developed in

this dissertation were added to SwiftCompTM [ 112 ], the Abaqus SwiftComp GUI [ 113 ] was

accordingly updated to be able to consider viscoelastic and thermoviscoelastic constituent

properties. To do so, the capability to define time-dependent constituent properties was

added (see Figure  C.1 ). It should be noted that the default material library of Abaqus

CAE [ 104 ] only considers isotropic viscoelastic properties defined by means of Prony series

coefficients. However, the current development of Abaqus SwiftComp GUI [ 113 ] enabled the

definition of viscoelastic or thermoviscoelastic material properties not only for isotropic but

also for any kind of material anisotropy such orthotropic defined either by stiffness matrix or

engineering constants, and general anisotropic (see Figure  C.2 ). Furthermore, the capability

to input the time-dependent material properties, such as the ones directly measured in the

experiments, was also supported. For this latter purpose, the constituent properties were

defined in a text file (see Figure  C.2 right).

Figure C.1. Abaqus SwiftComp GUI toolbox with time-dependent material
input function activated.

Finally, when the homogenization step was carried out (see Figure  C.3 ), the viscoelastic

and thermoviscoelastic analyses were added. For both analyses, the user needs to define the

initial time, final time and time increment in decades as shown in Figure  C.4 .
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Figure C.2. Abaqus SwiftComp GUI thermoviscoelastic material input types:
viscoelastic defined by Prony series coefficients (left), thermoviscoelastic de-
fined by Prony series coefficients (middle) and time-dependent input from a
text file (right).

Figure C.3. Abaqus SwiftComp GUI toolbox with homogenization function activated.
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Figure C.4. Abaqus SwiftComp GUI thermoviscoelastic or viscoelastic ho-
mogenization step.
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