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ABSTRACT

We study a multivariate version of the Bernstein–Sato polynomial, the so-called

Bernstein–Sato ideal, associated to an arbitrary factorization of an analytic germ f =

f1 · · · fr. We identify a large class of geometrically characterized germs so that the

DX,x[s1, . . . , sr]-annihilator of f s1
1 · · · f srr admits the simplest possible description and, more-

over, has a particularly nice associated graded object. As a consequence we are able to verify

Budur’s Topological Multivariable Strong Monodromy Conjecture for arbitrary factorizations

of tame hyperplane arrangements by showing the zero locus of the associated Bernstein–Sato

ideal contains a special hyperplane. By developing ideas of Maisonobe and Narváez-Macarro,

we are able to find many more hyperplanes contained in the zero locus of this Bernstein–

Sato ideal. As an example, for reduced, tame hyperplane arrangements we prove the roots

of the Bernstein–Sato polynomial contained in [ − 1, 0) are combinatorially determined; for

reduced, free hyperplane arrangements we prove the roots of the Bernstein–Sato polynomial

are all combinatorially determined. Finally, outside the hyperplane arrangement setting, we

prove many results about a certain DX,x-map ∇A that is expected to characterize the roots

of the Bernstein–Sato ideal.
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1. INTRODUCTION

1.1 Overview

For X a smooth analytic space and f ∈ OX,x an analytic germ, the Bernstein–Sato

polynomial bf is an invariant of f that describes a very general sort of differential equation

called the functional equation. Specifically, the Bernstein–Sato polynomial bf ∈ C[s], for s

some new variable, is the minimal, monic polynomial satisfying the functional equation

bff
s = Pf s+1.

Here P is some differential operator (possibly with s-terms) and the action of P on the

symbols f s+1, f s, . . . is given by formally obeying the chain rule. A similar constructions

applies for in the algebraic setting. That the Bernstein–Sato polynomial exists and is not

zero was proved by Bernstein [  1 ] in the algebraic case and Kashiwara [ 2 ] in the local, analytic

one.

It turns out the Bernstein–Sato polynomial contains multitudes of information about

the singular structure of Var(f). For the sake of this thesis we will restrict, primarily,

to two phenomena, though the second is merely conjectural. First, the so-called Mil-

nor fiber is a classical way to capture the behavior of f on X \ Var(f) near x and,

very loosely, arises as the fiber in the map X \ Var(f) → C?. (Ex: when f is a ho-

mogeneous polynomial, the Milnor fiber can be identified with {f = 1}.) The fun-

damental group of C? lifts to an action on the Milnor fiber called the geometric mon-

odromy; the induced action on homology is the algebraic monodromy. Malgrange [ 3 ]

and Kashiwara [ 4 ] proved that {e2πia | a is a root of the Bernstein–Sato polynomial bf} =

{eigenvalues of the algebraic monodromy of Milnor fiber}. Second, one can take a log reso-

lution of µ : Y → X of f and package the numerics of orders of vanishings of both f and

the Jacobian of µ along the resultant irreducible components into, what turns out to be, a

rational function. This is the Topological Zeta Function (see Chapter 2’s Introduction for a

precise definition). The Topological Strong Monodromy Conjecture asserts that the poles of

this rational function are contained in the roots of the Bernstein–Sato polynomial of f .
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We primarily study a multivariate generalization of the Bernstein–Sato polynomial, called

the Bernstein–Sato ideal, and give particular attention to multivariate generalizations of two

items from above. Namely: the relationship between the exponentials of the zeroes of the

Bernstein–Sato ideal to nontrivial local systems; whether or not the poles of the Topological

Multivariable Zeta Function appear as zeroes of the Bernstein–Sato ideal.

The Bernstein–Sato ideal BF,x is defined in an entirely similar was as the univariate

version. Let F = (f1, . . . , fr) denote a factorization f = f1 · · · fr. Introduce r new variables

s1, . . . , sr and let F S denote the symbol f s1
1 · · · f srr . Then the Bernstein–Sato ideal BF,x ⊆

C[s1, . . . , sr] consists of the polynomials b(S) satisfying the functional equation

b(S)F S = PF S+1

where P is a differential operator, possibly with many s-terms, and the action of P on the

symbols F S+1, F S, . . . is given by the chain and quotient rules. Sabbah [ 5 ] showed this ideal

is nonzero in the local, analytic setting. Just as before, a similar construction holds for global

algebraic f .

In [ 6 ], Budur revitalized the study of the Bernstein–Sato ideal with a series of conjectures.

Hereafter, denoted these zeroes by Z(BF,x). First, he conjectured a generalization of Kashi-

wara and Malgrange’s result about eigenvalues of the algebraic monodromy by conjecturing

that exponentiating Z(BF,x) recovers the local systems on the complement of Var(f), near

x, with nontrivial cohomology. Second, he conjectured the Topological Multivariable Strong

Monodromy Conjecture, asserting that the the Topological Multivariable Zeta Function has

poles contained in Z(BF,x). (This multivariable zeta function, explicitly defined in Chapter

2’s Introduction, is similar to the univariate one except one also keeps track of the order of

vanishings along all the factors fk.)

1.2 Our Setting

We restrict to a class of divisors cut out by global sections f that was first considered

by Walther in [ 7 ]. This class is defined in terms of geometric data, specifically data about

the logarithmic derivations DerX,x(− log f). These are the derivations on X, near x, that
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when applied to f land back in the OX,x-ideal generated by f ; they also correspond to

the vector fields tangent to Var(f). The hypotheses are as follows: f is Saito-holonomic,

i.e. the stratification of X determined by the logarithmic derivations is locally finite; f

is strongly Euler-homogeneous, i.e. locally everywhere f has a particular nice logarithmic

derivation; f is tame, i.e. Saito’s logarithmic de Rham complex [ 8 ] satisfies a sliding bound on

projective dimension. These can be thought of as, respectively: a vehicle allowing induction;

an assumption allowing well-defined-ness; a technical hypothesis used to obtain projective

resolutions. If dimX ≤ 3 then f is automatically tame; if f is a hyperplane arrangement it

is automatically Saito-holonomic and strongly Euler-homogeneous.

Let DX be the sheaf of C-linear differential operators on X and let DX [S] :=

DX [s1, . . . , sr] be a polynomial ring extension by central variables. Let DX,x[S]F S ⊆

OX,x[S, 1
f
]F S be the DX,x[S]-submodule generated by the symbol F S, where, again, the

DX,x[S]-action on gF S, g ∈ OX,x[S, 1
f
], is given by the chain and quotient rules. It follows

from the definitions that the Bernstein–Sato ideal satisfies

BF,x = C[S] ∩ (annDX,x[S] F
S + DX,x[S] · f)

So one way to understand the Bernstein–Sato ideal is to study the DX,x[S]-annihilator of

F S. Without hypothesis this is very hard: even computer packages are not able to find a

generating set for this annihilator in a practical amount of time.

Our result, Theorem 2.2.1, powering this thesis’s two chapters is that, under the work-

ing hypotheses of Saito-holonomic, strongly Euler-homogeneous, and tame, the DX,x[S]-

annihilator of F S has the simplest possible generating set. Every logarithmic derivation

determines an element of this annihilator and, under these hypotheses, these elementary

elements generate said annihilator. Walther obtained this result in the univariate, i.e. f s,

setting in [ 7 ]. We use some of his techniques but our proof is not a simple consequence of

his ideas. Not only do his techniques require significant massaging to apply to our setting,

but to even connect his paper to our chapter we have to develop an adequate theory of a

very non-standard flat family of maps and realize one of his constructions as the special

fiber. (See Section 2.6 for this development.) Not only do we obtain a nice description of
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annDX,x [S]F S but we also conclude the associated graded object of DX,x[S]F S with respect

to the total order filtration is a Cohen–Macaulay domain of dimension dimX + r.

1.3 On Exponentiating the Zeroes of the Bernstein–Sato Ideal

Let A := (a1, . . . , ar) ∈ Cr. The connection between A being a zero, or not a zero, of

the Bernstein–Sato ideal and the local system determined by (e2πia1 , . . . , e2πiar) “should” be

expressible in the behavior of a certain map ∇A. This map comes about as follows. First,

let ∇ : DX,x[S]F S → DX,x[S]F S be the DX,x-linear map determined by sending each sk to

sk+1. In particular F S 7→ F S+1. There is an induced DX,x-linear map on quotient modules

∇A : DX,x[S]F S∑(sk − ak)DX,x[S]F S
→ DX,x[S]F S∑(sk − (ak − 1))DX,x[S]F S

.

In the univariate, i.e. f s case, it is known ∇a is surjective if and only if a − 1 is not a

root of the Bernstein–Sato polynomial. Budur observed that if the same where true in the

multivariate setting, i.e. the F S case for r > 1, then his generalization of Malgrange and

Kashiwara’s result would hold. That is, if ∇A characterized whether A − 1 was or was not

a root of the Bernstein–Sato polynomial, then exponentiating Z(BF,x) would compute the

local systems on X \ Var(f) near x with nontrivial cohomology.

In Chapter 2 we are able to show, provided that f is Sato-holonomic, strongly Euler-

homogeneous, and tame that if ∇A is injective then it is surjective. To study the reverse

implication we strengthen the tame hypothesis, instead assume f is free. This means the

logarithmic derivations constitute a free module. Under these strengthened hypotheses we

prove ∇A is injective if and only if it is surjective and, consequently, give a weak characteri-

zation of local systems with nontrivial cohomology in terms of the behavior of ∇A. In this

case, the key technique is understanding the DX,x-dual of ∇A. To do so, we use duality for-

mulas due to Narváez-Macarro [ 9 ]. In Chapter 3, section 3.7, we prove ∇A does characterize

the roots of the Bernstein–Sato ideal provided f is a free, reduced hyperplane arrangement.

The reader should note that after these results were obtained, this conjecture of Budur’s

was resolved in [ 10 ] by Budur, van der Veer, Wu, and Zhou. However, their proof is highly

nonconstructive and the question of whether or not ∇A characterizes the zeroes of the
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Bernstein–Sato ideal remains open. We expect our results to help, eventually, unlock this

behavior.

1.4 On the Topological Multivariable Strong Monodromy Conjecture

When f is a hyperplane arrangement, Budur [ 6 ] came up with the following criterion for

the Topological Multivariable Strong Monodromy Conjecture: if for any central, indecom-

posable, hyperplane arrangement f = f1 · · · fr ∈ C[x1, . . . , xn]

{deg(f1)s1 + · · ·+ deg(fr)sr + n = 0} ⊆ Z(BF,0)

then the Topological Multivariable Strong Monodromy Conjecture holds for the factorization

F = (f1, . . . , fr) of f . Since tameness is a local condition, if we can verify this criterion for

central, indecomposable, and tame hyperplane arrangements then we can show this conjec-

ture holds for any factorization of tame hyperplane arrangements.

This is exactly what we do: in Theorem 2.1.2 we prove the Topological Multivariable

Strong Monodromy Conjecture holds for any factorization of a tame hyperplane arrangement.

This generalizates a similar result by Walther [ 7 ] in the univariate case. Our result is a

relatively easy consequence of the fact we can compute DX,0[S]-annihilator of F S explicitly

in this case: this computation lets us estimate the Bernstein–Sato ideal well enough to

establish the criterion.

1.5 Bernstein–Sato Ideals, Polynomials for Hyperplane Arrangements

In Chapter 3 we focus exclusively on tame and free hyperplane arrangements and try to

determine which zeroes (resp. roots) of the Bernstein–Sato ideal (resp. polynomial) are de-

termined by the intersection lattice of the hyperplane arrangement. Maisonobe [ 11 ] was able

to, again using Narváez-Macarro’s duality formulas, compute the Bernstein–Sato ideal for a

reduced free arrangement factored into linear forms. However, the question of non-reduced

free arrangements and different factorizations was not accessible by his methods. With sig-

nificant labor, we can extend his ideas to these cases. In particular we can prove that the
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roots of the Bernstein–Sato polynomial of a free, reduced arrangement are comibinatorially

determined and admit a reasonable combinatorial formula, cf. Theorem 3.1.4. Along the

way we obtain more general versions of Narváez-Macarro’s duality formulas thanks to an

entirely novel approach, cf. Chapter 3, section 6.

Outside the free setting, we are also able to show, in Theorem 3.1.3, that if f is a

tame arrangement, the roots of the Bernstein–Sato polynomial contained in [ − 1, 0) are

combinatorially determined and admit a simple formula. It is known that these roots live

in (−2, 0) ∩ Q but, even in the tame case, are not always combinatorial, cf. [  7 ]. The

“problematic” roots seem to be the ones very close to −2. In Theorem 3.1.5 we give a

interesting interpretation of these “problematic” roots. We present a simple measurement

for the distance between a hyperplane arrangement f and a free hyperplane arrangement

containing Var(f) and show these roots give a lower bound for this distance.

13



2. BERNSTEIN–SATO IDEALS AND ANNIHILATION OF
POWERS 

1
 

2.1 Introduction

Let X be a smooth analytic space or C-scheme of dimension n with structure sheaf OX

and with the sheaf of C-linear differential operators DX . Take a global function f ∈ OX .

The classical construction of the Bernstein–Sato polynomial of f is as follows:

1. Consider the OX [f−1, s]-module generated by the symbol f s. This has a DX [s]-module

structure induced by the formal rules of calculus.

2. The Bernstein–Sato ideal Bf of f is

Bf := C[s] ∩
(
DX [s] · f + annDX [s] f

s
)
.

3. For X = Cn and f a polynomial, Bernstein showed in [ 1 ] that Bf is not zero. For

f local and analytic, Kashiwara [ 2 ] proved the same. Since Bf , or the local version

Bf,x, is an ideal in C[s] it has a monic generator, the Bernstein–Sato polynomial of f .

The variety V(Bf ) contains a lot of information about the divisor of f and its singularities.

For example, if Exp(a) = e2πia and if Mf,y is the Milnor Fiber of f at y ∈ V(f), cf. [ 13 ],

then Malgrange and Kashiwara showed in [  3 ], [  4 ] that

Exp(V(Bf,x)) =
⋃

y∈V(f) near x

{ eigenvalues of the algebraic monodromy on Mf,y}

Suppose f factors as f1 · · · fr. Let F = (f1, . . . , fr). Then there is a generalization of the

Bernstein–Sato ideal Bf of f called the multivariate Bernstein–Sato ideal BF of F obtained

in a similar way.

1. Introduce new variables S := s1, . . . , sr. Consider the OX [F−1, S]-module generated

by the symbol F S = ∏
f skk . Again, this is a DX [S]-module via formal differentiation.

1
 ↑ A version of this chapter has been published in the Transactions of the American Mathematical Society

as [ 12 ].
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2. The multivariate Bernstein–Sato ideal BF is

BF := C[S] ∩
(
DX [S] · f + annDX [S] F

S
)
.

3. For X = Cn and f1, . . . , fr polynomials, BF is nonzero, see [ 14 ]. Sabbah proved in

[ 5 ] the corresponding statement for f1, . . . , fr local and analytic. However neither BF

nor BF,x need be principal: cf. Bahloul and Oaku [ 15 ].

The significance of V(BF ) or the local version V(BF,x) is less developed than the univariate

counterparts. Let f = f1 · · · fr be a product of distinct and irreducible germs at x and let

F = (f1, . . . , fr). Let UF,y be the intersection of a small ball about y ∈ V(f) with X \V(f).

Denote by V (UF,y) the rank one local systems on UF,y with nontrivial cohomology, i.e. the

set of rank one local systems L such that Hk(UF,y, L) is nonzero for some k. This is the

cohomology support locus of f at y in the language of Budur and others. Since local systems

can be identified with representations π1(UF,y)→ C?, regard V (UF,y) ⊆ (C∗)r. In [ 6 ], Budur

proposes that the relationship between the roots of the Bernstein–Sato polynomial and the

eigenvalues of the algebraic monodromy is generalized by the conjecture

Exp(V(BF,x)) =
⋃

y∈V(f) near x

res−1
y (V (UF,y)). (2.1.1)

where resy restricts a local system on Ux to a local system on Uy. (This generalization passes

through the support of the Sabbah specialization complex in the same way that the proof of

the univariate version uses the support of the nearby cycle functor.)

This paper follows two threads. First we study the logarithmic derivations DerX(− log f)

of f inside annDX [S] F
S. We are motivated by [ 7 ] where Walther shows that, in the univariate

case and with some mild hypotheses on the divisor of f , these members generate annDX [s] f
s.

We restrict ourselves to “nice” divisors: strongly Euler-homogeneous (possessing a par-

ticular logarithmic derivation locally everywhere); Saito-holonomic (the logarithmic stratifi-

cation is locally finite); tame (a restriction on homological dimension). The main result of

Section 2 is the following:

15



Theorem 2.1.1. Let F = (f1, . . . , fr) be a decomposition of f = f1 · · · fr. If f is strongly

Euler-homogeneous, Saito-holonomic, and tame then

annDX [S] F
S = DX [S] · {δ −

r∑
k=1

sk
δ • fk
fk
| δ ∈ DerX(− log f)}.

The strategy is to take a filtration of DX [S] and consider the associated graded object of

annDX [S] F
S. This object can be given a second filtration so its initial ideal is similar to the

Liouville ideal of [  7 ]. Section 6 provides the mild generalizations of Gröbner type arguments

necessary to transfer properties from this initial ideal to the ideal itself and Section 2 proves

nice things about our associated graded objects, culminating in Theorem  2.1.1 . In [  11 ],

Maisonobe proves a similar statement in the more restrictive setting of free divisors where

many of these methods are not needed. We crucially use one of his techniques.

Not much is known about particular elements of V(BF ) even when F corresponds to a

factorization (not necessarily into linear forms) of a hyperplane arrangement. In [ 6 ] Budur

generalized the −n
d

conjecture (see Conjecture 1.3 of [  7 ]) as follows:

Conjecture 2.1.1. (Conjecture 3 in [ 6 ]) Let f = f1 · · · fr be a central, essential, indecom-

posable hyperplane arrangement in Cn. Let F = (f1, . . . , fr) where the fk are central hyper-

plane arrangements, not necessarily reduced, of degree dk. Then

{d1s1 + · · ·+ drsr + n = 0} ⊆ V (BF ).

Using Theorem  2.1.1 , we can prove Conjecture  2.1.1 in the tame case:

Theorem 2.1.2. Let f = f1 · · · fr be a central, essential, indecomposable, and tame hyper-

plane arrangement in Cn. Let F = (f1, . . . , fr) where the fk are central hyperplane arrange-

ments, not necessarily reduced, of degree dk. Then

{d1s1 + · · ·+ drsr + n = 0} ⊆ V (BF ).

Conjecture  2.1.1 was motivated by the formulation of the Topological Multivariable

Strong Monodromy Conjecture due to Budur, see Conjecture 5 of [ 6 ]. We now state this.
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First let f = f1 · · · fr with each fk ∈ C[x1, . . . , xn] and let F = (f1, . . . , fr). Given a log

resolution µ : Y → X of f , let {Ei}i∈S be the irreducible components of f ◦ µ, let ai,j be

the order of vanishing of fj along Ei, let ki be the order of vanishing of the determinant of

the Jacobian of µ along Ei, and, for I ⊆ S, let E◦I = ∩i∈I \ ∪i∈S\IEi. The topological zeta

function of F is

Ztop
F (S) :=

∑
I⊆S

χ(E◦I ) ·
∏
i∈I

1
ai,1s1 + · · ·+ ai,rsr + ki + 1

and this is independent of the resolution. Conjecture 5 of [ 6 ] states:

Conjecture 2.1.2. (Topological Multivariable Strong Monodromy Conjecture) The polar

locus of Z top
F (S) is contained in V(BF ).

By work of Budur in loc. cit., Conjecture  2.1.1 implies Conjecture  2.1.2 for hyperplane

arrangements. Consequently, we conclude Section 2 with the following:

Corollary 2.1.3. The Topological Multivariable Strong Monodromy Conjecture is true for

(not necessarily reduced) tame hyperplane arrangements.

The paper’s second thread follows the link between Exp(V(BF,x)) and the cohomology

support loci of f near x. The bridge between the two is, with A = (a1, . . . , ar) ∈ Cr, resp.

A− 1 = (a1 − 1, . . . , ar − 1) ∈ Cr, the DX,x-linear map

∇A : DX,x[S]F S

(S − A)DX,x[S]F S
→ DX,x[S]F S

(S − (A− 1))DX,x[S]F S
.

Here (S − A)DX,x[S]F S, resp. (S − (A − 1))DX,x[S]F S, is the submodule of DX,x[S]F S

generated by s1− a1, . . . , sr− ar, resp. s1− (a1− 1), . . . , sr− (ar− 1), and ∇A is induced by

F S 7→ F S+1. In the classical, univariate case, the following are equivalent (cf. Björk, 6.3.15

of [ 16 ]): (a) A − 1 /∈ V(Bf,x); (b) ∇A is injective; (c) ∇A is surjective. Showing that (a),

(b), and (c) are equivalent in the multivariate case would verify that Exp(V(BF,x)) equals

the cohomology suport loci of f near x. Moreover, under the hypotheses of Theorem  2.1.1 ,

it would show that intersecting V (BF,x) with appropriate hyperplanes gives V (Bf,x).
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In any case, (a) implies (b) and (c). Under the hypotheses of Theorem  2.1.1 , we prove

that s1 − a1, . . . , sr − ar behaves like a regular sequence on DX [S]F S. This allows us to

recreate a picture similar to Björk’s and prove, using different methods, the main result of

Section 3:

Theorem 2.1.3. Let f = f1 · · · fr be strongly Euler-homogeneous, Saito-holonomic, and

tame and let F = (f1, . . . , fr). If ∇A is injective then ∇A is surjective.

In Section 4 we strengthen the hypotheses of Theorem  2.1.1 and assume f is reduced

and free, that is, we assume DerX,x(− log f) is a free OX,x-module. In [ 9 ] Narváez–Macarro

computed the DX,x[s]-dual of DX,x[s]f s for certain free divisors; in [ 11 ], Maisonobe shows

that this computation easily applies to DX,x[S]-dual of DX,x[S]F S. For our free divisors we

compute the DX,x-dual of DX,x[S]FS
(S−A)DX,x[S]FS and lift ∇A to this dual. Consequently, we prove:

Theorem 2.1.4. Let f = f1 · · · fr be reduced, strongly Euler-homogeneous, Saito-holonomic,

and free and let F = (f1, . . . , fr). Then ∇A is injective if and only if ∇A surjective.

In Section 5 we summarize the relationship between the cohomology support loci of f

near x, Exp(V (BF,x), and ∇A. In [ 17 ], the authors characterize membership in the cohomol-

ogy support loci of f near x in terms of the simplicity of certain perverse sheaves. When f

is reduced, strongly Euler-homogeneous, Saito-holonomic, and free, we show this character-

ization can be stated in terms of the simplicity of the DX,x-module DX,x[S]FS
(S−A)DX,x[S]FS .

2.2 The DX [S]-Annihilator of F S

As in the introduction, let X be a smooth analytic space or C-scheme of dimension

n and with structure sheaf OX . Let f ∈ OX be regular with divisor Y = Div(f) and

corresponding ideal sheaf IY . Throughout, Y = Div(f) will not necessarily be reduced. Let

DX be the sheaf of C-linear differential operators with OX-coefficients and let DX [s] and

DX [S] = DX [s1, . . . , sr] be polynomials rings over DX .

Recall the order filtration F(0,1) on DX induced, in local coordinates, by making every

∂xk weight one and every element of OX weight zero. Denote the differential operators of

order at most k as F k
(0,1) and the associated graded object as gr(0,1)(DX).
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Definition 2.2.1. Let DerX(− log f) = DerX(− log(Y )), be the sheaf of logarithmic deriva-

tions, i.e. the OX-module with local generators on U the set

DerX(− log f) := {δ a vector field in DX(U) | δ •I ⊆ I }.

We also put

DerX(− log0 f) := {δ ∈ DerX(− log f) | δ • f = 0}.

Note that DerX(− log0 f) may depend on the choice of defining equation for f, which is why

we have fixed a global f .

Definition 2.2.2. For x ∈ X, we say that f ∈ OX,x is Euler-homogeneous at x if there

exists Ex ∈ DerX,x(− log f) such that Ex • f = f. If Ex vanishes at x then f is strongly

Euler-homogeneous at x .

Finally, a divisor Y is (strongly) Euler-homogeneous if there is a defining equation f at

each x such that f is (strongly) Euler-homogeneous at x.

Example 2.2.1. Let f = x(2x2 + yz). Note that Sing(f) = {z − axis} ∪ {y − axis}. Along

the z-axis there is the strong Euler-homogeneity induced by 1
3x(∂x • f) + 2

3y(∂y • f); along

the y-axis there is the strong Euler-homogeneity induced by 1
3x(∂x • f) + 2

3z(∂z • f). Since

f is automatically strongly Euler-homogeneous on the smooth locus, f is strongly Euler-

homogeneous everywhere.

Example 2.2.2. Let f be a central hyperplane arrangement. Then the Euler vector field∑
xi∂xi shows that f is strongly Euler-homogeneous at the origin. A coordinate change

argument implies f is strongly Euler-homogeneous.

Definition 2.2.3. Define the total order filtration F(0,1,1) as the filtration on DX [S] in-

duced by the (0, 1, 1)-weight assignment that, in local coordinates, gives elements of the form

OU∂
uSv, u, v non-negative integral vectors, weight ∑ui + ∑

vi. Let F k
(0,1,1) be the homo-

geneous operators of weight at most k with respect to the total order filtration. When the

context is clear, we will use F k
(0,1,1) to refer to the similarly defined filtration on DX [s] (the

classical case). Denote the associated graded object associated to F(0,1,1) as gr(0,1,1)(DX [S]).
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Our principal objective is to study the annihilator of F S—the left DX [S]-ideal

annDX [S] F
S. Take the OX [f−1

1 , . . . , f−1
r , S]-module generated freely by the symbol F S =∏

f skk . To make this a DX [S]-module define, for a derivation δ and h ∈ OX ,

δ • hS
v

f j
F S = δ • ( h

f j
)SvF S +

∑
k

sk
(δ • fk)hSv

fkf j
F S.

In most cases annDX [S] F
S is very hard to compute. In the classical setting, there

is a natural identification between the (0, 1, 1)-homogeneous elements of annDX [s] f
s and

DerX(− log f). We will establish a similar correspondence.

Definition 2.2.4. The annihilating derivations of F S are the elements of the OX-module

θF := annDX [S] F
S ∩ F 1

(0,1,1).

We say annDX [S] F
S is generated by derivations when annDX [S] F

S = DX [S] · θF .

Proposition 2.2.3. For f = f1 · · · fr, let F = (f1, . . . , fr). Then as OX-modules,

ψF : DerX(− log f) '−→ θF

where ψF is given by

δ 7→ δ −
r∑

k=1
sk
δ • fk
fk

.

Proof. We first prove the claim locally. By Lemma 3.4 of [ 18 ], DerX(− log f) =⋂DerX(− log fk); in particular, δ −∑k sk
δ•fk
fk

lies in DX,x[S].

Fix a coordinate system. Take P ∈ θF,x, P = δ+p(S), where δ ∈ DX,x is a derivation and

p(S) = ∑
k bksk ∈ OX,x[S] is necessarily S-homogeneous of S-degree 1. Keep the notation F s

and the fk for the local versions at x. By definition,

0 =
(
δ −

∑
k

bksk

)
• F S =

∑
k

(
sk
δ • fk
fk
− bksk

)
F S.

Because DX,xF
S is a free OX,x[f−1, S]-module ∑k(sk δ•fkfk

−bksk) = 0. Thus for each k, δ•fk
fk
sk−

bksk = 0. So δ • fk ∈ OX,x · fk; moreover, δ • fk = bkfk.
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We have shown δ ∈ ⋂DerX,x(− log fk) and, in fact,

θF,x = {δ −
∑
k

bksk | δ ∈ DerX,x(− log f), δ • fk = bkfk}.

Thus the map ψF : DerX,x(− log f) → θF,x given by δ 7→ δ −∑k
δ•fk
fk
sk is a well-defined

OX,x-linear isomorphism for a fixed coordinate system. Showing that θF,x commutes with

coordinate change is routine and is effectively shown in Remark  2.2.7 (b).

Since δ ∈ Der(− log f) precisely when δ • f = 0 in OX/(f), membership in Der(− log f)

is a local condition. The above shows that ψ−1
F,x is an OX,x-isomorphism at all x; hence ψ−1

F is

an isomorphism.

2.2.1 Hypotheses on Y and F .

In this subsection we introduce many of the standard hypothesis on Y and F we use

throughout the paper.

Definition 2.2.5. Let U ⊆ X be open and f ∈ OX(U). We will say F = (f1, . . . , fr) is a

decomposition of f when f = f1 · · · fr.

We will also restrict to divisors Y such that DerX(− log Y ) has a light constraint on its

dimension.

Definition 2.2.6. Consider the sheaf of differential forms of degree k: Ωk
X = ∧k Ω1

X and

the differential d : Ωk
X → Ωk+1

X . We define the subsheaf of logarithmic differential forms

Ωk
X(log f) by

Ωk
X(log f) := {w ∈ 1

f
Ωk
X | d(w) ∈ 1

f
Ωk+1
X }.

See 1.1 and 1.2 in [ 8 ] for more details.

We say f ∈ OX(U), U ⊆ X open, is tame if the projective dimension of Ωk
U(log f) is

at most k at each x ∈ U . A divisor Y is tame if it admits tame defining equations locally

everywhere. See Defintion 3.8 and the surrounding text in [ 7 ] for more details on tame

divisors. In particular, if n ≤ 3 then Y is automatically tame.
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We will also use a stratification of X that respects the logarithmic data of Y .

Definition 2.2.7. (Compare with 3.8 in [ 8 ]) Define a relation on X by identifying two points

x and y if there exists an open U ⊆ X, x, y ∈ U and a derivation δ ∈ DerU(− log(Y ∩ U))

such that (i) δ is nowhere vanishing on U and (ii) the integral flow of δ passes through x and

y. The transitive closure of this relation stratifies X into equivalence classes. The irreducible

components of the equivalence classes are called the logarithmic strata; the collection of all

strata the logarithmic stratification.

We say Y is Saito-holonomic if the logarithmic stratification is locally finite, i.e. at every

x ∈ X there is an open U ⊆ X, x ∈ U , such that U intersects finitely many logarithmic

strata. Equivalently, Y is Saito-holonomic if the dimension of {x ∈ X | rkC(DerX(− log Y )⊗

OX,x/mX,x = i} is at most i.

Remark 2.2.4.(a) Pick x ∈ X and consider its log stratum D with respect to f = f1 · · · fr.

We can find logarithmic derivations δ1, . . . , δm at x, m = dim D, that are C-

independent at x. Each δi also lies in DerX,x(− log fi). By Proposition 3.6 of [  8 ]

there exists a coordinate system (x1, . . . , xn) so that these generators can be written

as δk = ∂
∂xn−m+k

+∑
1≤j≤n−m gjk(x) ∂

∂xj
, with the gjk analytic functions defined near x.

(b) By Lemma 3.5 and Proposition 3.6 of [ 8 ], the same change of coordinates φF

from  2.2.4 .(a) fixes the last m coordinates and satisfies φF (x1, . . . , xn−m, 0) =

(x1, . . . , xm, 0). Moreover, it simultaneously satisfies fi(φF (x1, . . . , xm)) =

ui(x1, . . . , xm)fi(x1, . . . , xn−m, 0) where ui(x1, . . . , xm) is a unit for 1 ≤ i ≤ m.

(c) Now assume the logarithmic stratification is locally finite and the log stratum D of

x has dimension 0. So D = {x}. Since every other zero dimensional strata is disjoint

from D, there exists an open U 3 x such that U \ x consists only of points whose

logarithmic stratum are of positive dimension.

(d) By Lemma 3.4 of [ 8 ], for a divisor Y connected components of X \Y and Y \Sing(Y )

are logarithmic strata.
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Example 2.2.5. Let f = x(2x2 + yz) and note that Sing(f) = {z − axis} ∪ {y − axis}.

Since the Euler derivation x∂x + y∂y + z∂z is a logarithmic derivation, the z-axis \{0} and

the y-axis \{0} are logarithmic strata. Therefore f is Saito-holonomic.

Example 2.2.6. By Example 3.14 of [  8 ], hyperplane arrangements are Saito-holonomic.

2.2.2 Generalized Liouville Ideals.

In Section 3 of [ 7 ], Walther defines the Liouville ideal Lf as the ideal in gr(0,1)(DX)

generated by the symbols gr(0,1)(DerX(− log0 f). As DerX(− log0 f) ⊆ annDX f
s, Lf rep-

resents the contribution of DerX(− log0 f) to gr(0,1)(annDX f
s). When f is strongly Euler-

homogeneous with strong Euler-homogeneity Ex, Lf is coordinate independent (see Remark

3.2 [ 7 ]) and gr(0,1,1)(DX,x[s]) ·Lf,x and gr(0,1)(Ex)−s generate the simplest degree one elements

of gr(0,1,1)(annDX,x[s] f
s).

If we want to generalize this to F S, there is no obvious inclusion between DerX(− log0 f)

and annDX F
S. In fact, δ ∈ DerX(− log0 f) is in annDX F

S preciscely when δ ∈⋂DerX(− log0 fi). Trying to define a generalized Liouville ideal using ⋂DerX(− log0 fi) would

lose too many elements of DerX(− log0 f).

Definition 2.2.8. Recall the isomorphism of OX-modules from Proposition  2.2.3 

ψF : DerX(− log f) '−→ θF ,

which is given by

ψF (δ) = δ −
∑

sk
δ • fk
fk

.

This restricts to a map of sheaves of OX-modules:

ψF : DerX(− log0 f) ↪→ θF .
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Let the generalized Liouville ideal LF by the ideal in gr(0,1,1)(DX [S]) generated by the symbols

of ψF (DerX(− log0 f)) in the associated graded ring:

LF := gr(0,1,1)(DX [S]) · gr(0,1,1)(ψF (DerX(− log0 f))).

We also define

L̃F : = gr(0,1,1)(DX [S]) · gr(0,1,1)(θF )

= gr(0,1,1)(DX [S]) · gr(0,1,1)(ψF (DerX(− log(f))).

Remark 2.2.7. With Ex a Euler-homogeneity for f at x, the OX,x-module direct sum

DerX,x(− log f) ' DerX,x(− log0 f)⊕OX,x ·Ex LF,x, depends on the choice of defining equation

for f . Following Remark 3.2 of [ 7 ], if the the divisor of f is strongly Euler-homogeneous,

then the algebraic properties of LF,x and L̃F,x are independent of the choice of local equation

of Div(f).

(a) To this end, let x and x′ denote two coordinates systems, J = (∂x
′
j

∂xi
) the Jacobian

matrix with rows i, columns j, ∂ and ∂′ column vectors of partial differentials in

the x and x′ coordinates, respectively. Let ∇(g), ∇′(g) be the gradient, as a column

vector, of g in the two coordinate systems. Finally, express a derivation δ in terms of

the two coordinate systems as δ = cTδ ∂ = c′Tδ ∂
′, where cδ, c′δ, are column vectors of

OX functions representing the coefficients of the partials in the x and x′ coordinates.

Note that in x′-coordinates c′δ = JT cδ.

(b) In x-coordinates ψF (δ) = cTδ ∂−
∑
k sk

cTδ ∇(fk)
fk

. In x′-coordinates δ = cTδ J∂
′ and ψF (δ) =

cTδ J∂
′ − ∑

k sk
cTδ J∇

′(fk)
fk

. Thus ψF commutes with coordinate change. (Note that

strongly Euler-homogeneous is not needed here.)

(c) Suppose Ex is a strong Euler-homogeneity at x ∈ X for f . Recall from Remark 3.2 of

[ 7 ] that for a unit u ∈ OX,x, the map αu : DerX,x(− log0 f) → DerX,x(− log0 uf)

given by αu(δ) = δ − δ•u
u+Ex•uEx is an OX,x-isomorphism that commutes with co-
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ordinate change. In particular, let u = ∏
1≤i≤r ui be a product of units and let

uF = (u1f1, . . . , urfr). Then we have an OX,x-isomorphism

ψF ◦ αu ◦ ψ−1
F : ψF (DerX,x(− log0 f))→ ψF (DerX,x(− log0 uf))

that commutes with coordinate change.

(d) To be precise,

ψF ◦ αu ◦ ψ−1
F (δ −

∑
k

sk
δ • fk
fk

) = δ − δ • u
u+ Ex • u

Ex −
∑
k

sk
δ • uk
uk

−
∑
k

sk
δ • fk
fk

+
∑
k

sk
(δ • u)(Ex • (ukfk))
ukfk(u+ Ex • u) .

Note that Ex • (ukfk) is a multiple of fk and δ ∈ DerX,x(− log fk) so all these fractions

make sense.

(e) Inspection reveals that the morphism of graded objectes induced by ψF ◦ αu ◦ ψ−1
F is

an OX,x[S]-linear endomorphism βu on gr(0,1,1) DX,x[S], where

βu(gr(0,1,1)(∂)) = gr(0,1,1)(∂)− ∂ • u
u+ Ex • u

gr(0,1,1)(Ex)−
∑
k

sk
∂ • uk
uk

+
∑
k

sk
(∂ • u)(Ex • (ukfk))
ukfk(u+ Ex • u) .

Since the OX,x-linear endomorphism of gr(0,1)(DX,x) given by gr(0,1)(∂)→ gr(0,1)(∂)−
∂•u

u+Ex•u gr(0,1)(Ex) is surjective and injective, βu is as well. So βu(LF,x) = LuF,x. It is

clear by (d) that βu commutes with coordinate change.

(f) Therefore for strongly-Euler-homogeneous f , the local algebraic properties of

gr(0,1,1)(DX [S])/LF are independent of the choice of local equations for the f1, . . . , fr.

(g) It is also clear that αu sends Ex, a strong Euler-homogeneity for f, to a strong Euler-

homogeneity for uf and so βu(L̃F,x) = L̃uF,x. Hence, if f is strongly Euler-homogeneous

then the local properties of L̃F do not depend on the defining equations of the fk.

At the smooth points of f , LF and L̃F are well understood. First, a lemma:
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Lemma 2.2.8. Suppose f = f1 · · · fr has the Euler-homogeneity Ex at x ∈ X. Let F =

(f1, . . . , fr). Then

gr(0,1,1)(ψF (Ex)) /∈ mxOX,x[Y ][S] ⊆ OX,x[Y ][S] ' gr(0,1,1)(DX,x[S]).

Proof. Working at x ∈ X and letting f̂k = ∏
j 6=k
fj:

f = Ex • f =
∑
k

(Ex • fk)f̂k =
(∑

k

Ex • fk
fk

)
f.

So 1 = ∑ Ex•fk
fk

in OX,x; thus there exists a j such that Ex•fj
fj

/∈ mx. As ψF (Ex) = Ex+
∑
sk

Ex•fk
fk

the claim follows after looking at the symbol gr(0,1,1)(ψF (Ex)).

Proposition 2.2.9. Let f = f1 · · · fr be strongly Euler-homogeneous and let F =

(f1, . . . , fr). Then locally at smooth points, LF and L̃F are prime ideals of dimension n+r+1

and n+ r respectively. Moreover, for any x ∈ X:

dim gr(0,1,1)(DX,x[S])/LF,x ≥ n+ r + 1;

dim gr(0,1,1)(DX,x[S])/L̃F,x ≥ n+ r.

Proof. Let x ∈ X be a part of the smooth locus of f ; fix coordinates and choose ∂xi such

that ∂xi • f is a unit in OX,x. Then Γ = {∂xk −
∂xk•f
∂xi•f

∂xi}nk=1,k 6=i ⊆ DerX,x(− log0 f) is a set

of n− 1 linearly independent elements. Saito’s Criterion (cf. page 270 of [ 8 ]) implies that Γ

together with Ex, the strong Euler derivation, gives a free basis for DerX,x(− log f). Hence,

Γ generates DerX,x(− log0 f) freely. As OX,x[Y ][S]/LF,x ' OX,x[yi][S], LF,x is a prime ideal of

dimension n+ r + 1.

By Lemma  2.2.8 , and the choice of j outlined in its proof, there is a ring map

OX,x[Y ][S]/ gr(0,1,1)(ψF (Ex)) ' OX,x[Y ][s1, . . . , sj−1, sj+1, . . . , sr].
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Consider the image of gr(0,1,1)(ψF (yk −
∂xk•f
∂xi•f

yi)) (hereafter denoted with (−)) in

OX,x[Y ][S]/ gr(0,1,1)(ψF (Ex)) . Since Ex is a strong Euler-homogeneity, the coefficient of each

yk in gr(0,1,1)(ψF (Ex)) lies in mx. Thus the coefficient of yk in

gr(0,1,1)(ψF (yk −
∂xk • f
∂xi • f

yi)) ∈ OX,x[Y ][S]/ gr(0,1,1)(ψF (Ex))

' OX,x[Y ][s1, . . . , sj−1, sj+1, . . . , sr].

belongs to OX,x \mx. So as rings, OX,x[Y ]/L̃F,x ' OX,x[yi][s1, . . . , sj−1, sj+1, . . . , sr] and L̃F,x is

a prime ideal of dimension n+ r.

Since the smooth points are dense, we get the desired inequalities.

Take a generator gr(0,1,1)

(
δ −∑ sk

δ•fk
fk

)
, δ ∈ DerX(− log0 f), of LF,x. Erasing the sk-terms

results in gr(0,1,1)(δ) = gr(0,1)(δ) ∈ Lf,x. This process is formalized by filtering gr(0,1,1)(DX,x[S])

in such a way that the sk-terms have degree 0 and then taking the initial ideal of LF,x.

Definition 2.2.9. It is well known that for an open U ⊆ X with a fixed coordinate system

gr(0,1,1)(DX(U)[S]) ' OX(U)[Y ][S], where yi = gr(0,1,1)(∂xi). Grade this by the integral vector

(0, 1, 0) ∈ Nn×Nn×Nr. For example the element gY uSv, where u, v are nonnegative integral

vectors and g ∈ OU , will have (0, 1, 0)-degree ∑j uj. Changing coordinate systems does not

effect the number of y-terms so this extends to a grading on gr(0,1,1)(DX(U)[S]).

Define in(0,1,0) LF to be the initial ideal of the generalized Liouville ideal with respect to

the (0, 1, 0)-grading. See Section 6 for details about initial ideals.

We now have three ideals: LF , in(0,1,0) LF , and gr(0,1,1)(DX [S]) ·Lf , the ideal extension of

Lf to gr(0,1,1)(DX [S]). Proposition  2.6.6 shows how some nice properties of in(0,1,0) LF transfer

to nice properties of LF . The following construction will let us transfer nice properties of Lf ,

and consequently of gr(0,1,1)(DX [S]) · Lf , to nice properties of in(0,1,1) LF .

27



Proposition 2.2.10. Assume f = f1 · · · fr is strongly Euler-homogeneous and let

F = (f1, . . . , fr). Consider gr(0,1,1)(DX [S]) · Lf , the extension of the Liouville ideal to

gr(0,1,1)(DX [S]). Then there is a surjection of rings:

gr(0,1,1)(DX [S])
gr(0,1,1)(DX [S]) · Lf

�
gr(0,1,1)(DX [S])

in(0,1,0) LF
. (2.2.1)

Proof. Lf is generated by the symbols of δ ∈ DerX(− log0 f) in gr(0,1)(DX). Thinking of

gr(0,1)(DX) ⊆ gr(0,1,1)(DX [S]), gr(0,1,1)(DX [S]) ·Lf will have the generators gr(0,1,1)(δ). On the

other hand LF is locally generated by gr(0,1,1)

(
δ −∑ sk

δ•fk
fk

)
for δ ∈ DerX,x(− log0 f). Each

such generator has (0, 1, 0)-initial term gr(0,1,1)(δ). So gr(0,1,1)(DX,x[S])·Lf,x ⊆ in(0,1,0) LF,x.

Proposition 2.2.11. Suppose f = f1 · · · fr is a strongly Euler-homogeneous divisor and let

F = (f1, . . . , fr). Then the following data transfer from the Liouville ideal to the initial ideal

of the generalized Liouville ideal:

(a) If dim gr(0,1)(DX,x)/Lf,x = n+ 1, then

dim gr(0,1,1)(DX,x[S])/LF,x = n+ r + 1;

(b) If Lf is locally a prime ideal, then there is an isomorphism of rings

gr(0,1,1)(DX [S])
gr(0,1,1)(DX [S]) · Lf

'
gr(0,1,1)(DX [S])

in(0,1,0) LF
;

(c) If Lf is locally Cohen–Macaulay and prime, then LF is locally Cohen–Macaulay.

Proof. Because gr(0,1,1)(DX [S]) · Lf is the extension of Lf into a ring with new variables S,

there are ring isomorphisms

gr(0,1,1)(DX [S])
gr(0,1,1)(DX [S]) · Lf

' OX [Y ][S]
OX [Y ][S] · Lf

' OX [Y ]
Lf

[S] '
gr(0,1)(DX)

Lf
[S].

So if dim gr(0,1)(DX,x)/Lf,x = n + 1, dim gr(0,1,1)(DX,x[S])/ gr(0,1,1)(DX,x[S]) · Lf = n + r + 1.

Similarly if Lf,x is prime, then gr(0,1,1)(DX,x[S]) · Lf,x is prime.
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The map ( 2.2.1 ) gives n+r+1 ≥ dim in(0,1,0) LF,x. By Proposition  2.6.6 and Remark  2.6.7 ,

dim in(0,1,0) LF,x ≥ dimLF,x. Proposition  2.2.9 gives dimLF,x ≥ n+ r+ 1, proving (a). As for

(b), the hypotheses guarantee that the map (  2.2.1 ) is locally a surjection from a domain to

a ring of the same dimension and hence an isomorphism. To prove (c), recall Proposition

 2.6.6 and Remark  2.6.7 show that if in(0,1,0) LF is locally Cohen–Macaulay, then LF is locally

Cohen–Macaulay. So (b) implies (c).

2.2.3 Primality of LF,x and L̃F,x.

Now we show that when f is strongly Euler-homogeneous and Saito-holonomic and F

a decomposition of f , that the conclusions of Proposition  2.2.11 imply LF and L̃F are

locally prime. The method of argument relies on the Saito-holonomic condition: we use the

coordinate transformation of Remark  2.2.4 to reduce the dimension of logarithmic stratum.

Our first proof mirrors the proof of Theorem 3.17 in [ 7 ]. Because our situation is a little

more technical and because we end up using this argument again in Theorem  2.2.2 , we give

full details.

Theorem 2.2.1. Suppose f = f1 · · · fr is strongly Euler-homogeneous and Saito-holonomic

and let F = (f1, . . . , fr). If Lf is locally Cohen–Macaulay and prime of dimension n + 1,

then LF is locally Cohen–Macaulay and prime of dimension n + r + 1. In particular, this

happens when f is strongly Euler-homogeneous, Saito-holonomic, and tame.

Proof. If we prove the second sentence, the third will follow by Theorem 3.17 and Remark

3.18 of [ 7 ]. By Proposition  2.2.11 , the only thing to prove in the second sentence is that LF
is locally prime. To do this we induce on the dimension of X. If dimX is 1, then LF,x = 0

and the claim is trivially true.

So we may assume the claim holds for all X with dimension less than n. Suppose x

belong to a logarithmic stratum σ of dimension k. If k = n, then by Proposition  2.2.9 

and Remark  2.2.4 , LF,x is prime. Now assume 0 < k < n. By Remark  2.2.4 , we can find

a coordinate transformation near x such that each fi = uigi, where ui is a unit near x and

gi(x1, . . . , xn) = fi(x1, . . . , xn−k, 0, . . . , 0), cf. 3.6 of [  8 ]. By Remark  2.2.7 , LF,x is well-behaved
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under coordinate transformations and multiplication by units, so we may instead prove the

claim for LG,x, where g = ∏
gi and G = (g1, . . . , gr). Let X ′ be the space of the first n − k

coordinates and x ′ the first n− k coordinates of x. When viewing g′i as an element of OX′,x ′,

call it g′i. Let g′ = ∏
g′i and G′ = (g′1, . . . , g′r). Because strongly Euler-homogeneous descends

from X to X ′, see Remark 2.8 in [ 7 ], local properties LG′ do not depend on the choice of the

defining equations for the gi. Now

DerX,x(− log g) = OX,x ·DerX′,x ′(− log g′) +
∑

1≤j≤k
OX,x · ∂xn−k+j ,

where ∂xn−k+j ∈ DerX,x(− log0 gi) for each 1 ≤ j ≤ k and 1 ≤ i ≤ r. Therefore

OX,x[y1, . . . , yn][S]/LG,x ' OX,x[y1, . . . , yn−k][S]/LG′,x ′. Since Saito-holonomicity descends to

g′, see 3.5 and 3.6 of [ 8 ] and Remark 2.6 of [ 7 ], we may instead prove the claim for X ′ and

LG′,x ′. Since dimX ′ < dimX, the induction hypothesis proves the claim.

So we may assume σ has dimension 0. By Remark  2.2.4 , there is some open U 3 x, such

that x = U ∩ σ and U \ x consists of points whose logarithmic strata are of strictly positive

dimension. The discussion above implies LF is prime at all points of U \ x.

Let π : Spec OX [Y ][S] � Spec OX be the map induced by OX ↪→ OX [Y ][S]. If LF is not

prime at x, it must have more than one irreducible component that intersects π−1(x). As LF
is prime at points of U \ x, if LF,x is not prime it must have an “extra” irreducible component

V(q) lying inside π−1(x). By assumption, LF,x is Cohen–Macaulay of dimension n + r + 1

and so V(q) has dimension n + r + 1. But π−1(x) has dimension n + r. Thus LF,x is prime

completing the induction.

Proposition 2.2.12. Suppose f = f1 · · · fr is a strongly Euler-homogeneous divisor and let

F = (f1, . . . , fr). If LF is locally prime, Cohen–Macaulay, and of dimension n+ r + 1, then

L̃F is locally Cohen–Macaulay of dimension n + r. In particular, this happens when f is

strongly Euler-homogeneous, Saito-holonomic, and tame.

Proof. Let Ex be a strong Euler-homogeneity and consider gr(0,1,1)(ψF (Ex)), which is (0, 1, 1)-

homogeneous of degree 1. The generalized Liouville ideal is generated by the elements
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ψF (DerX,x(− log0 f). If gr(0,1,1)(ψF (Ex)) ∈ LF,x, then ψF (Ex) ∈ ψF (DerX,x(− log0 f). This is

impossible since Ex /∈ DerX,x(− log0 f).

Locally, gr(0,1,1)(DX,x[S])/L̃F,x is obtained from gr(0,1,1)(DX,x[S])/LF,x by modding out by

a non-zero element, which must be regular. So L̃F is locally Cohen–Macaulay of dimension

at most n+ r. That locally the dimension L̃F is n+ r follows from the dimension inequality

in Proposition  2.2.9 .

The final sentence is true by Theorem  2.2.1 .

This section’s first main result is that L̃F,x is locally prime when f is strongly Euler-

homogeneous, Saito-holonomic, and tame. The strategy is the same as in Theorem  2.2.1 .

Under much stricter hypotheses, and in his language, Maisonobe shows in Proposition 3 of

[ 11 ], that L̃F is locally prime. Experts will note that we recycle the part of his argument

where he reduced dimension in our proof.

Theorem 2.2.2. Assume that f = f1 · · · fr is strongly Euler-homogeneous and Saito-

holonomic and let F = (f1, . . . , fr). If L̃F is locally Cohen–Macaulay of dimension n +

r, then L̃F is locally prime. In particular, L̃F is locally prime, Cohen–Macaulay, and of

dimension n+ r when f is strongly Euler-homogeneous, Saito-holonomic, and tame.

Proof. By Proposition  2.2.12 , it suffices to prove the first claim. The proof follows the

inductive argument of Theorem  2.2.1 with a slight modification at the end.

If dimX is 1, then L̃F,x is generated by ψF (Ex), Ex a strong Euler-homogeneity. By

Lemma  2.2.8 , OX,x[Y ][S]/L̃F,x ' OX,x[Y ][s1, . . . sj−1, sj+1, . . . sr].

Now assume the claim holds for all X with dimension less than n and x belongs to a

logarithmic stratum σ of dimension k. If k = n, then L̃F,x is prime by Proposition  2.2.9 .

If 0 < k < n we can make the same coordinate transformation as in Theorem  2.2.1 and

instead prove L̃G is locally prime where gi(x) = fi(x1, . . . , xn−k, 0, . . . , 0). Using the notation

of Theorem  2.2.1 , X ′ is strongly Euler-homogeneous and Saito-holonomic and

DerX,x(− log g) = OX,x ·DerX′,x ′(− log g′) +
∑

1≤j≤k
OX,x · ∂xn−k+j ,
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where ∂xn−k+j ∈ DerX,x(− log0 gi) for each 1 ≤ j ≤ k and 1 ≤ i ≤ r. Moreover, the strong

Euler-homogeneity Ex ′ for g′ at x ′ ∈ X ′ can be viewed as a strong Euler-homogeneity for

g at x ∈ X. Therefore OX,x[y1, . . . , yn][S]/L̃G,x ' OX,x[y1, . . . , yn−k][S]/L̃G′,x ′. Since dimX ′ <

dimX, the induction hypothesis shows that L̃G′,x ′ is prime.

So we may assume σ has dimension 0. Let π : Spec OX,x[Y ][S] � Spec OX be the map

induced by OX ↪→ OX,x[Y ][S]. Reasoning as in Theorem  2.2.1 , we deduce that if L̃F,x is not

prime then there exists a irreducible component V(q) of L̃F,x contained entirely in π−1(x).

By assumption, L̃F,x is Cohen–Macaulay of dimension n+r and V(q) has dimension n+r.

Let Ex be the strong Euler-homogeneity at x. Then V(q) ⊆ π−1(x) ∩ V(gr(0,1,1)(ψF (Ex))).

We will show that the intersection of V(gr(0,1,1)(ψF (Ex))) and π−1(x) is proper; since the

dimension of π−1(x) is n+ r this will show that V(q), which we know is of dimension n+ r,

is contained in a closed set of strictly smaller dimension. Therefore no such q exists and L̃F,x
is prime.

Recall gr(0,1,1)(ψF (Ex)) = gr(0,1,1)(Ex) −
∑ Ex•fk

fk
sk. Lemma  2.2.8 proves that there exists

an index j such that Ex•fj
fj

/∈ mx. So there is a closed point in π−1(x) that does not lie

in V(gr(0,1,1)(ψF (Ex))). In particular, the intersection of V(gr(0,1,1)(ψF (Ex))) and π−1(x) is

proper and the inductive step is complete.

2.2.4 The DX [S]-annihilator of F S.

Let Jac(f) be the Jacobian ideal of f . In a given coordinate system, there is a natural

OX,x-linear map

φf : gr(0,1,1)(DX,x[s]) � SymOX,x
(Jac(f)) � R(Jac(f))

given by

s 7→ ft and gr(0,1,1)(∂xk) 7→ (∂xk • f)t.
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Its kernel contains gr(0,1)(annDX,x[s] f
s). (See Section 1.3 in [  19 ] for details.) So we have the

containments

Lf,x + gr(0,1,1)(DX,x[s]) · gr(0,1,1)(Ex − s) ⊆ gr(0,1)(annDX,x[s] f
s) ⊆ ker(φf )

and equality will hold throughout if Lf,x+gr(0,1,1)(DX,x[s])·gr(0,1,1)(Ex−s) agrees with ker(φf ).

This motivates our analysis of annDX [S] F
S: we will construct a map φF from

gr(0,1,1)(DX [S]) into a Rees-algebra like object and squeeze gr(0,1,1)(annDX [S] F
S) between

L̃F and ker(φF ).

Definition 2.2.10. Let Jac(fi) be the Jacobian ideal of fi and consider the multi-Rees algebra

R(Jac(f1), . . . , Jac(fr)) associated to these r Jacobian ideals. Consider the OX,x-linear map

φF : gr(0,1,1)(DX [S])→ R(Jac(f1), . . . , Jac(fr)) ⊆ OX [S]

given, having fixed local coordinates on U , by

yi 7→
∑
k

f

fk
(∂xi • fk)sk and sk 7→ fsk.

Proposition 2.2.13. Let f = f1 · · · fr and F = (f1, . . . , fr). Then

gr(0,1,1)(annDX [S] F
S) ⊆ ker(φF ).

Proof. It is enough to show this locally, so take P ∈ annDX,x[S] F
S of order ` under the (0, 1, 1)-

filtration. For any Q of order ` it is always true that f `Q • F S ∈ OX,x[S]F S. Any time a

partial is applied to gF S, a s-term only comes out of the product rule when the partial is

applied to F S. A straightforward calculation shows that the S-lead term of f `PF S is exactly

φF (gr(0,1,1)(P ))F S. Since f `P annihilates F S, we conclude gr(0,1,1)(P ) ∈ ker(φF ).

Proposition 2.2.14. ker(φF ) is a prime ideal of dimension n+ r.

Proof. It is prime. Since Rees rings are domains, to count dimension we squeeze

φF (gr(0,1,1)(DX [S])) between two well-behaved multi-Rees algebras: R((f), . . . , (f)) and
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R(Jac(f1), . . . , Jac(fr)) (the first multi-Rees algebra is built using r copies of (f)). As the

latter is the target of φF and φF (si) = fsi this is easy:

R((f), . . . , (f)) ⊆ φF (gr(0,1,1) DX [S]) ⊆ R(Jac(f1), . . . , Jac(fr))

Moreover, the dimension of a multi-Rees algebra is well known: R(I1, . . . , Ir) = r+ the

dimension of the ground ring.

So φF (gr(0,1,1)(DX,x[S])) is a domain squeezed between subrings of OX,x[S] of dimension

n+ r. The result then follows by the following lemma:

Lemma 2.2.15. Let R ⊆ A ⊆ B ⊆ C ⊆ R[X] be finitely generated, graded R-algebras, whose

gradings are inherited from the standard grading on R[X]. Assume that R is a universally

caternary Notherian domain. If dimA = dimC, then dimA = dimB = dimC.

Proof. Claim: if m? is a graded maximal ideal of A, then m?B 6= B. We prove the con-

trapositive. So assume m?B = B. Then m?R[X] = R[X]. Write m? = (a1, . . . , a`) in terms

of homogeneous generators ai ∈ A and find r1, . . . , rn in R[X] such that 1 = ∑
riai. Since

the degree of 1 is zero, we can assume either ri and ai are both degree 0 or ri = 0. Thus

1 = ∑
riai occurs in m? ∩R and so m? = A, a contradiction.

Now we argue using a version of Nagata’s Altitude Formula (see [ 20 ] Theorem 13.8):

dim(Bq) = dim(Ap)+dim(Q(A)⊗AB), for q ∈ SpecB maximal with respect to the property

q∩A = p. Since B is a finitely generated A-algebra, and tensors are right exact, Q(A)⊗AB

is a finitely generated Q(A)-algebra. Thus dim(Q(A) ⊗A B) = trdegQ(A)(Q(A) ⊗A B) =

trdegQ(A)Q(Q(A)⊗AB) = trdegQ(A)Q(B) = trdegAB. Similar statements hold for the other

pairs A ⊆ C and B ⊆ C.

Let m ∈ SpecA such that dim(Am) = dim(A). By the claim in the first paragraph (so

assuming m is graded if necessary), we can find q ∈ SpecC maximal with respect to the

property q ∩ A = m. So dim(Cq) = dim(Am) + trdegAC. Therefore dim(C) ≥ dim(A) +

trdegAC and hence trdegAC = 0. Since we are looking at algebras finitely generated over the

appropriate subring, transcendence degree is additive. So 0 = trdegAB and 0 = trdegBC.
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Let m ∈ SpecA with dim(Am) = dim(A), as before. Again, using the claim, select p ∈

SpecB maximal with respect to the property p∩A = m. So dim(Bp) = dim(Am) + trdegAB;

hence dim(B) ≥ dim(A). Argue similarly for B ⊆ C to determine dim(C) ≥ dim(B). This

ends the proof.

The following is an analogous statement to Corollary 3.23 in [ 7 ]:

Corollary 2.2.16. There is the containment

L̃F ⊆ gr(0,1,1)(annDX [S] F
S) ⊆ ker(φF ).

If f is strongly Euler-homogeneous, Saito-holonomic, and tame then all three ideals are equal.

Proof. The containments follow from the construction of L̃F and Proposition  2.2.13 . They

are equalities when f is suitably nice because, by Theorem  2.2.2 and Proposition  2.2.14 , at

each x ∈ X the outer ideals are prime of the same dimension.

Because DX,x[S] · θF ⊆ annDX,x[S] F
S, we can use Corollary  2.2.16 and a type of Gröbner

basis argument to prove:

Theorem 2.2.3. If f = f1 · · · fr is strongly Euler-homogeneous, Saito-holonomic, and tame

and if F = (f1, . . . , fr), then the DX [S]-annihilator of F S is generated by derivations, that

is

annDX [S] F
S = DX [S] · θF .

Proof. Take P ∈ annDX [S] F
S of order k under the total order filtration. By Corollary  2.2.16 ,

there exist L1, . . . , Lk ∈ θF , n1, . . . , nk ∈ OX [Y ][S] such that

gr(0,1,1)(P ) =
∑

ni · gr(0,1,1)(Li).

Since gr(0,1,1)(P ) is homogeneous of degree k and gr(0,1,1)(Li) is homogeneous of degree 1,

we may assume the ni are homogeneous. For each i select Ni ∈ DX [S] such that ni =

gr(0,1,1)(Ni). Consequently, P −∑Ni ·Li has order (under the total order filtration) less than

k and lies in annDX [S] F
S. Since OX [S] ∩ annDX [S] F

S = 0, an induction argument shows

P ∈ DX [S] · θF .
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Corollary 2.2.17. Let f = f1 · · · fr ∈ C[x1, . . . , xn], where each fk ∈ C[x1, . . . , xn], and let

F = (f1, . . . , fr). If f is strongly Euler-homogeneous, Saito-holonomic, and tame, then the

DX [S]-annihilator of F S is generated by derivations, that is

annDX [S] F
S = DX [S] · θF .

More generally, if X is the analytic space associated to a smooth C-scheme and if f and

F = (f1, . . . , fr) are algebraic, then the conclusion of Theorem  2.2.3 holds in the algebraic

category.

Proof. This follows from Theorem  2.2.3 and the fact algebraic functions have algebraic

derivatives and hence algebraic syzygies. See Theorem 3.26 and Remark 2.11 in [ 7 ] for

more details.

2.2.5 Comparing Different Factorizations of f

Definition 2.2.11. Consider the functional equation

bf,x(s)f s = Pf s+1

where bf,x(s) ∈ C[s] and P ∈ DX,x[s]. Let Bf,x be the ideal in C[s] generated by all such

bf,x(s), that is the ideal generated by the Bernstein–Sato polynomial. We may write Bf,x =

(DX,x[s] · f + annDX,x[s] f
s) ∩ C[s]. Then the variety V(Bf,x) consists of the roots of the

Bernstein–Sato polynomial.

In the multivariate situation we may consider functional equations of the form

bF,x(S)F S = PF S+1

where bF,x(S) ∈ C[S] and P ∈ DX,x[S]. Just as above, the set of all such bF,x(S) form an ideal

BF,x = (DX,x[S] · f + annDX,x[S] F
S) ∩C[S]. The variety V(BF,x) is called the Bernstein–Sato

variety of F .
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It would be interesting to compare V(BF,x) and V(BG,x) where F and G correspond to

two different factorizations of f . The following is a particular case of Lemma 4.20 of [ 6 ]:

Proposition 2.2.18. (Lemma 4.20 of [  6 ]) Suppose that f = f1 · · · fr is strongly Euler-

homogeneous, Saito-holonomic, and tame. Let C[S] = C[s1, . . . , sr], F = (f1, . . . , fr), and

G = (f1, . . . , fr−2, fr−1fr). Then

BF,x + C[S] · (sr−1 − sr) ⊆ C[S] ·BG,x + C[S] · (sr−1 − sr).

In particular, let ∆ : C 7→ Cr be the diagonal embedding. Then ∆(V(Bf,x)) ⊆ V(BF,x).

Under the hypotheses of Theorem  2.2.3 , on the level of annihilators we obtain a more

precise statement:

Proposition 2.2.19. Suppose f = f1 · · · fr is strongly Euler-homogeneous, Saito-holonomic,

and tame. Let F = (f1, . . . , fr) and G = (f1, , . . . , fr−2, fr−1fr). Then there is an isomor-

phism of rings:

DX [s1, . . . , sr]
annDX [s1,...,sr] DXF S + (sr−1 − sr)

' DX [s1, . . . , sr−1]
annDX [s1,...,sr−1] DX [s1, . . . , sr−1]GS

.

Proof. This follows from Theorem  2.2.3 , the definition of ψF,x(δ) for δ a logarithmic deriva-

tion, and a straightforward computation using the product rule.

Remark 2.2.20. Let F = (f1, . . . , fr) correspond to a factorization of f where f is strongly

Euler-homogeneous, Saito-holonomic, and tame. For a ∈ C, DX,x[S] · (s1 − a, . . . , sr − a) =

DX,x[S] · (s1 − s2, . . . , sr−1 − sr, sr − a). By Proposition  2.2.19 , there is a ring isomorphism

DX,x[S]F S/(s1− a, . . . , sr − a) ·DX,x[S]F S ' DX,x[s]f s/(s− a) ·DX,x[s]f s. Using this fact we

propose in Remark  2.3.2 a more precise way to analyze the diagonal embedding of Proposition

 2.2.18 .
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2.2.6 Hyperplane Arrangements.

Finally let us turn to the algebraic setting and particular to central hyperplane ar-

rangements A ⊆ Cn = X whose defining equations are given by fA = ∏
Li, where the

Li ∈ C[x1, . . . , xn] are homogeneous polynomials of degree 1. A central hyperplane arrange-

ment is indecomposable if there is no choice of coordinates t1 t t2, t1 and t2 disjoint, such

that fA = g1(t1)g2(t2). Central hyperplane arrangements are strongly Euler-homogeneous

and Saito-holonomic, cf. examples  2.2.2 ,  2.2.6 .

Write Dn for the nth Weyl Algebra C[x1, . . . , xn, ∂1, . . . , ∂n]. Let F = (f1, . . . , fr) be some

decomposition of fA into factors. Construct the Dn[s]-module (Dn[S]-module) generated

by the symbol f s (F S) in an entirely similar way as in the analytic setting. Furthermore,

define the roots of the Bernstein–Sato polynomial Bf and the Bernstein–Sato variety BF

just as before. For an algebraic f equipped with an algebraic decomposition F , Bf and BF

agree with the analytic versions because algebraic functions have algebraic derivatives and

syzygies.

In [  6 ], Budur makes the following conjecture:

Conjecture 2.2.21. (Conjecture 3 in [ 6 ]) Let A be a central, essential, indecomposable hy-

perplane arrangement. Factor fA = f1 · · · fr, where each factor fk is of degree dk and the fk
are not necessarily reduced, and let F = (f1, . . . , fr). Then

{d1s1 + · · ·+ drsr + n = 0} ⊆ V(BF ).

This conjecture is related to the Topological Multivariable Strong Monodromy Conjecture,

see Conjecture  2.1.2 , for hyperplane arrangements, which claims that the polar locus of the

topological zeta function of F = (f1, . . . , fr) is contained in V(BF,0). In Theorem 8 of loc. cit.

Budur proves Conjecture  2.2.21 implies the Topological Multivariable Strong Monodromy

Conjecture for hyperplane arrangements. See [ 6 ], in particular subsection 1.3 and Theorem

8, for details.
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Walther proves in Theorem 5.13 of [ 7 ] the r = 1 version of this conjecture: if f is a

tame and indecomposable central hyperplane arrangement of degree d, then −n/d ∈ V(Bf ).

Analogously, we prove Conjecture  2.2.21 in the tame case:

Theorem 2.2.4. Suppose fA is a central, essential, indecomposable, and tame hyperplane

arrangement. Let F = (f1, . . . , fr) be a decomposition of fA where fk has degree dk and the

fk are not necessarily reduced. Then

{d1s1 + · · ·+ drsr + n = 0} ⊆ V(BF ).

Proof. Since fA is homogeneous, DerX(− log f) is a graded C[X]-module after giving each

xi degree one and each ∂i degree -1. In the proof of Theorem 5.13 of [ 7 ], Walther shows

that the indecomposablity hypothesis implies there exists a system of coordinates such that

δ ∈ DerX(− log f) is homogeneous of positive total degree or δ = w
∑
xi∂i, w ∈ C. Fix this

system of coordinates and E = ∑
xi∂i for the rest of the proof.

By Corollary  2.2.17 , annDn[S] F
S = Dn[S] · ψF (DerX(− log f)). Recall ψF (δ) = δ −∑ δ•fk

fk
sk. If δ is of positive (1,−1) total degree, then the coefficient of each sk is either

0 or of positive degree as polynomial in C[x1, . . . , xn]. This shows ψF (δ) ∈ Dn[S] · (X),

where Dn[S] · (X) is the left ideal generated by x1, . . . , xn. Because E + n ∈ Dn · (X),

annDn[S] F
S +Dn[S] · f ⊆ Dn[S] · (X) +Dn[S] · ψF (E)

= Dn[S] · (X) +Dn[S] · (E −
∑

dksk)

= Dn[S] · (X) +Dn[S] · (−n−
∑

dksk).

Suppose P (S) is in the intersection of Dn[S] · (X) + Dn[S] · (−n − ∑ dksk) and C[S].

For each root α of −n − ∑ dksk there is a natural evaluation map Dn[S] 7→ Dn sending

P 7→ P (α) ∈ Dn · (X). Since Dn · (X) is a proper ideal of Dn, P (α) = 0 for all such α.

Therefore V(P (S)) ⊇ V(C[S] · (−n−∑ dksk)) and we have shown

V(BF ) = V((annDn[S] F
S +Dn[S] · f) ∩ C[S]) ⊇ V(−n−

∑
dksk).
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As outlined in the introduction, Theorem  2.2.4 is related to the Topological Multivariable

Strong Monodromy Conjecture, that is, to Conjecture  2.1.2 .

Corollary 2.2.22. The Topological Multivariable Strong Monodromy Conjecture is true for

(not necessarily reduced) tame hyperplane arrangements.

Proof. This follows by Theorem 8 of [ 6 ] since tameness is a local condition.

Remark 2.2.23. Not all arrangements are tame. For example, the C4-arrangement∏
(a1,...,a4)∈{0,1}4(a1x1 + a2x2 + a3x3 + a4x4) is not tame. If an arrangement has rank at

most 3, then it is automatically tame.

2.3 The Map ∇A

In this section we analyze the injectivity of DX,x-map

∇A : DX,x[S]F S

(S − A)DX,x[S]F S
→ DX,x[S]F S

(S − (A− 1))DX,x[S]F S

under the nice hypotheses of the previous section. This will, see Section 5, let us better

understand the relationship between V(BF,x) and the cohomology support loci of f near

x. The section has two parts: a brief discussion of Koszul complexes associated to central

elements over certain non-commutative rings with an application to DX,x[S]FS
(S−A)DX,x[S]FS ; a detailed

proof that under nice hypotheses, if ∇A is injective then it is surjective.

Let’s first give a precise definition of ∇A.

Definition 2.3.1. (Compare to 5.5 and 5.10, in particular ρα, in [ 6 ]) Define

∇ : DX,x[S]F S → DX,x[S]F S
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by sending si 7→ si + 1 for all i. To be precise, in local coordinates declare ∂u = ∏
t ∂

ut
xt ,

Sv = ∏
k s

vk
k , and let S + 1 be shorthand for replacing each si with a si + 1. Then ∇ is given

by the assignment

∑
u,v
Qu,v∂

uSv • F S 7→
∑
u,v
Qu,v∂

u(S + 1)v • F S+1.

This is a homomorphism of DX,x-modules but is not C[S]-linear.

Denote the ideal of DX,x[S] generated by s1 − a1, . . . , sr − ar, for a1, . . . , ar ∈ C by (S −

A)DX,x[S]. Then ∇ is injective and sends (S−A)DX,x[S]F S onto (S+ 1−A)DX,x[S]F S+1 =

(S − (A− 1)DX,x[S]F S+1 ⊆ (S − (A− 1))DX,x[S]F S. Let ∇A be the induced homomorphism

of DX,x-modules:

∇A : DX,x[S]F S

(S − A)DX,x[S]F S
−→ DX,x[S]F S

(S − (A− 1))DX,x[S]F S
.

As mentioned in the introduction, a source of our motivation is investigating the three

statements that show up in the following proposition.

Proposition 2.3.1. Consider the following three statements, where A− 1 denotes the tuple

(a1 − 1, . . . , ar − 1) ∈ Cr :

(a) A− 1 /∈ V(BF,x);

(b) ∇A is injective;

(c) ∇A is surjective.

Then in any case (a) implies (b) and (c).

Proof. Choose a functional equation B(S)F S = P (S)F S+1 where we may assume B(A−1) 6=

0.

We first prove that (a) implies (c). Since ∇(P (S − 1)F S) = P (S)F S+1,

P (S − 1)F S ∇A7−→ P (S)F S+1 = B(S)F S.
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This shows that ∇A(P (S − 1)F S) generates DX,x[S]FS
(S−(A−1))DX,x[S]FS .

To show that (a) implies (b) suppose ∇A(Q(S)F S) = 0. This means Q(S + 1)F S+1 ∈∑(si − (ai − 1)) · DX,x[S]F S. Multiplying both sides by B(S) gives Q(S + 1)B(S)F S+1 ∈∑(si−(ai−1)) ·DX,x[S]P (S)F S+1. So Q(S)B(S−1)F S ∈ ∑(si−ai) ·DX,x[S]F S and Q(S)F S

is zero in DX,x[S]FS
(S−A)DX,x[S]FS .

Remark 2.3.2. 1. In the classical setting where F = (f) and F S = f s, (a), (b), and (c)

of Proposition  2.3.1 are equivalent (see 6.3.15 in [ 16 ] for the equivalence of (a) and

(c); the claims involving (b) follow by a similar diagram chase).

2. Suppose A = (a, . . . , a) and f is strongly Euler-homogeneous, Saito-holonomic, and

tame. By Remark  2.2.20 , there is a commutative square of DX,x- maps:

DX,x[S]FS
(S−A)DX,x[S]FS

DX,x[s]fs
(s−a)DX,x[s]fs

DX,x[S]FS
(S−(A−1))DX,x[S]FS

DX,x[s]fs
(s−(a−1))DX,x[s]fs .

'

∇A ∇a

'

If the conditions in Proposition  2.3.1 were equivalent, then the inclusion induced

by the diagonal embedding V(Bf,x) ↪→ V(BF,x)
⋂V(s1 − s2, . . . , sr−1 − sr), given in

Proposition  2.2.18 would be surjective.

Example 2.3.3. Let f = x(2x2 + yz) and F = (x, 2x2 + yz). This is strongly Euler-

homogeneous, Saito-holonomic (cf. Examples  2.2.1 ,  2.2.5 ), and tame (n ≤ 3). Using Singular

and Macaulay2 we compute V(BF,0) = (s1 + 1)(s2 + 1)∏r
k=3(s1 + 2s2 + k) and V(Bf,0) =

(s+ 1)3(s+ 4
3)(s+ 5

3). In this case, the diagonal embedding V(Bf,0) ↪→ V(BF,0)⋂V(s1− s2)

of Proposition  2.2.18 is surjective and, see Remark  2.3.2 , ∇−k+1,−k+1 is neither surjective nor

injective for k = 3, 4, 5.

The rest of this section is devoted to proving that under the nice hypotheses of the

previous section and in the language of Proposition  2.3.1 , that (b) implies (c). Our proof

makes use of a Koszul resolution over the central elements S − A.
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Convention 2.3.1. A resolution is a (co)-complex with a unique (co)homology module at its

end. An acyclic (co)-complex has no (co)homology. Given a (co)-complex (C•) C• resolving

A, the augmented (co)-complex (C• → A) C• → A is acyclic.

Definition 2.3.2. For a (not necessarily commutative) ring R and a sequence of central

R-elements a = a1, . . . , ak let K•(a) be the Koszul co-complex induced by the elements a,

cf. Section 6 in [ 21 ]. For a left R-module M , let K•(a;M) = K•(a) ⊗M be the Koszul

co-complex on M induced by a. We index K•(a) so that the right most object is K0(a).

The following lemma is immediate after considering H−1(K•(c1, . . . , cr;M)) :

Lemma 2.3.4. Let R be a, possibly noncommutative, ring, M a left R-module, mi ∈ M ,

and c1, . . . , cr central elements of R. Assume H−1(K(c1, . . . , cr);M) = 0. If cimi ∈

(c1, . . . , ci−1, ci+1, . . . , cr)M , then mi ∈ (c1, . . . , ci−1, ci+1, . . . , cr)M.

Let v1, . . . , vk be positive integers. If R is commutative and if K•(a;M) is a resolution,

we know K•(av1
1 , . . . , a

vk
k ;M) is a resolution, cf. Exercise 6.16 in [ 21 ]. A routine induction

argument (that we omit) using the the tensor product of Koszul co-complexes verifies that

this is also true for general R and central a:

Proposition 2.3.5. Let R be a, possibly non-commutative, ring, M a R-module, c1, . . . , cr

central elements of R, and v1, . . . , vr ∈ Z+. If K•(c1, . . . , cr;M) is a resolution, then

K•(cv1
1 , . . . , c

vr
r ;M) is a resolution.

Now return to gr(0,1,1)(DX,x[S]F S). Under the nice hypothesis of the previous section,

gr(0,1,1)(s1), . . . , gr(0,1,1)(sr) act like a regular sequence:

Proposition 2.3.6. Let f = f1 · · · fr and let F = (f1, . . . , fr). Suppose that for x ∈ X the

following hold:

• f has the strong Euler-homogeneity Ex at x;

• L̃F,x ⊆ gr(0,1,1)(DX,x[S]) is Cohen–Macaulay of dimension n+ r;

• Lf,x + gr(0,1)(DX,x) · gr(0,1)(Ex) ⊆ gr(0,1)(DX,x) is Cohen–Macaulay of dimension n.
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Then K•(S; gr(0,1,1)(DX,x[S])/L̃F,x) is co-complex of gr(0,1,1)(DX,x[S])-modules resolving

gr(0,1,1)(DX,x[S])/(L̃F,x, S) ' gr(0,1)(DX,x)/(Lf,x + gr(0,1)(DX,x) · gr(0,1)(Ex)).

Proof. The last isomorphism is immediate from the definition of ψF and the construction of

L̃F,x and Lf,x, see Definition  2.2.8 and the preceding comments.

Multiplying gr(0,1,1)(DX,x[S]) by sk increases the degree of an element by one. So after

doing the appropriate degree shifts, we may view K•(S; gr(0,1,1)(DX,x[S])) as a sequence of

graded modules with degree preserving maps. By Proposition 1.5.15 (c) of [ 22 ], exactness

of such a sequence is a graded local property. The only (0, 1, 1)-graded maximal ideal m? is

generated by OX,x and the irrelevant ideal. So localize K•(S; gr(0,1,1)(DX,x[S])/L̃F,x) at m?.

By Theorem 2.1.2 of [ 22 ], if both (gr(0,1,1)(DX,x[S])/L̃F,x)m? and

(gr(0,1,1)(DX,x[S])/L̃F,x + gr(0,1,1)(DX,x[S])m? ' (gr(0,1)(DX,x)/Lf,x + gr(0,1)(Ex))m?

are Cohen–Macaulay and the difference in their dimensions is the length of the sequence S,

then our localized Koszul co-complex is a resolution. Since the dimension of a graded-local

ring equals the dimension after localization at the graded maximal ideal, cf. Corollary 13.7

of [  20 ], we are done.

For a1, . . . , ar ∈ C, label S − A = s1 − a1, . . . , sr − ar ∈ DX,x[S]. Being central elements,

S −A yields the Koszul co-complex K•(S −A; DX,x[S]F S) of DX,x[S]-modules. Its terminal

cohomology module is DX,x[S]F S/(S − A)DX,x[S]F S. We show that under our standard

hypotheses on f , i.e. strongly Euler-homogeneous, Saito-holonomic, and tame, that s1− a1,

. . . , sr − ar behaves like a regular sequence.

Proposition 2.3.7. Suppose f = f1 · · · fr is strongly Euler-homogeneous, Saito-holonomic,

and tame and let F = (f1, . . . , fr). Then K•(S − A; DX,x[S]F S) resolves DX,x[S]F S/(S −

A)DX,x[S]F S.

Proof. Under the total order filtration, sk − ak has weight one. It is rou-

tine to define a filtration G, compatible with the total order filtration, on

the augmented co-complex K•(S − A; DX,x[S]F S) → DX,x[S]F S/(S − A)DX,x[S]F S

such grG(K•(S − A; DX,x[S]F S) → DX,x[S]F S/(S − A)DX,x[S]F S) is isomorphic to
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K•(S; gr(0,1,1)(DX,x[S])/L̃F,x) → gr(0,1)(DX,x)/(Lf,x + gr(0,1)(DX,x) · gr(0,1)(Ex)). If this co-

complex is acyclic, then a standard argument using the spectral sequence attached to a

filtered co-complex proves that K•(S − A; DX,x[S]F S) → DX,x[S]F S/(S − A)DX,x[S]F S is

acyclic is well. The claim then follows by Theorem  2.2.2 , Corollary 3.19 of [  7 ], and Proposi-

tion  2.3.6 .

Finally we can prove the section’s main theorem:

Theorem 2.3.2. Let f = f1 · · · fr be strongly Euler-homogeneous, Saito-holonomic, and

tame and let F = (f1, . . . , fr). If ∇A is injective, then it is surjective.

Proof. For this proof, and this proof alone, write s̃i = si − (ai − 1). Also, (−) denotes the

image of (−) in the appropriate quotient object.

The Plan: If there is some multivariate Bernstein–Sato polynomial B(S) that does not

vanish at (a1 − 1, . . . , ar − 1), then the claim follows by Proposition  2.3.1 . So pick a multi-

variate Bernstein–Sato polynomial B(S) = ∑
Aks̃k, Ak ∈ C[S]. The idea is to successively

“remove” each sk factor from each Ak. In doing so, we will produce a finite sequence of

polynomials B0, Bi, . . . satisfying the technical condition ( 2.3.1 ) introduced in Step 1, start-

ing with our multivariate Bernstein–Sato polynomial, such that each polynomial uses fewer

variables than its predecessor. The terminal polynomial will demonstrate that the cokernel

of ∇A vanishes.

The inductive construction of these polynomials is not hard but technical. Before doing

it we prove three claims. The first is that a particular cohomology module of the Koszul

co-complex of s̃1, . . . , s̃r on DX,x[S]FS
DX,x[S]FS+1 vanishes. We use this to “remove” the s̃k factors. The

second and third claims are the technical details comprising the inductive algorithm used to

produce these polynomials.

Claim 1: For all positive integers v1, . . . , vr,

H−1
(
K•

(
s̃1
v1 , . . . , s̃r

vr ; DX,x[S]F S

DX,x[S]F S+1

))
= 0.
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Proof of Claim 1: The DX,x-map ∇A is always injective and sends F S 7→ F S+1. If ∇A is

also injective there is a short exact sequence of augmented co-complexes:

0→ (K•(S − A; DX,x[S]F S)→ DX,x[S]F S

(S − A)DX,x[S]F S
)

→ (K•(S − (A− 1); DX,x[S]F S)→ DX,x[S]F S

(S − (A− 1))DX,x[S]F S
)

→ (K•(S − (A− 1); DX,x[S]F S

DX,x[S]F S+1 )→ DX,x[S]F S

(S − (A− 1))DX,x[S]F S+1 )→ 0.

The first map is induced by ∇ and by ∇A on the augmented part; the second by quo-

tient maps. By Proposition  2.3.7 and the canonical long exact sequence, the last (nonzero)

augmented co-complex is acyclic. Claim 1 follows by Proposition  2.3.5 .

Claim 2: Write F S for the image of F S in DX,x[S]FS
DX,x[S]FS+1 . Suppose there exists P (S) ∈ C[S],

1 ≤ j < r, positive integers nj+1, . . . , nr, and an integer m ≥ max{nj+1, . . . , nr} such that

( ∏
j+1≤k≤r

s̃k
nk

)
P (S) • F S ∈ (s̃1, . . . , s̃j, s̃j+1

m, . . . , s̃r
m) DX,x[S]F S

DX,x[S]F S+1 .

Then for m′ = min{m− nj+1, . . . ,m− nr} we have

P (S) • F S ∈ (s̃1, . . . , s̃j, s̃j+1
m′ , . . . , s̃r

m′) DX,x[S]F S

DX,x[S]F S+1 .

Proof of Claim 2: The idea is to use Claim 1 and Lemma  2.3.4 to “remove” each s̃knk factor

one at a time. We first “remove” the s̃j+1
nj+1 factor.

By hypothesis, there exists Qj+1 ∈ DX,x[S] such that

( ∏
j+1≤k≤r

s̃k
nk

)
P (S) • F S − s̃j+1

mQj+1 • F S

= s̃j+1
nj+1

( ∏
j+2≤k≤r

s̃k
nk

)
P (S) • F S − s̃j+1

m−nj+1Qj+1 • F S


∈ (s̃1, . . . , s̃j, s̃j+2

m, . . . , s̃r
m) DX,x[S]F S

DX,x[S]F S+1 .
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By Claim 1, H−1(K(s̃1, . . . , s̃j, s̃j+1
nj+1 , s̃j+2

m, . . . , s̃r
m; DX,x[S]FS

DX,x[S]FS+1 )) vanishes. So Lemma

 2.3.4 implies

( ∏
j+2≤k≤r

s̃k
nk

)
P (S) • F S − s̃j+1

m−nj+1Qj+1 • F S

∈ (s̃1, . . . , s̃j, s̃j+2
m, . . . , s̃r

m) DX,x[S]F S

DX,x[S]F S+1 .

Rearrange to see

( ∏
j+2≤k≤r

s̃k
nk

)
P (S) • F S ∈ (s̃1, . . . , s̃j, s̃j+1

m−nj+1 , s̃j+2
m, . . . , s̃r

m) DX,x[S]F S

DX,x[S]F S+1 .

Repeat this process on each remaining factor s̃knk , j + 2 ≤ k ≤ r one at a time to conclude

P (S) • F S ∈ (s̃1, . . . , s̃j, s̃j+1
m−nj+1 , s̃j+2

m−nj+2 , . . . , s̃r
m−nr) DX,x[S]F S

DX,x[S]F S+1 .

Claim 3: Suppose Bj ∈ C[sj+1, . . . , sr], where j < r, with Bj ∈ C[sj+1, . . . , sr] ·

(s̃j+1, . . . , s̃r) but Bj /∈ C[s̃j+1, . . . , s̃r] · (s̃k) for all j + 1 ≤ k ≤ r. Furthermore, assume

that for m ≥ max{nj+1, . . . , nr} we have

Bj • F S ∈ (s̃1, . . . , s̃j, s̃j+1
m, . . . , s̃r

m) DX,x[S]F S

DX,x[S]F S+1 .

Then, relabeling the sk if necessary, there exists Bi ∈ C[si+1, . . . sr], where j < i < r,

Bt /∈ C[si+1, . . . , sr] · (s̃k) for i+ 1 ≤ k ≤ r, so that for m′ = min{m− nj+1, . . . ,m− nr} we

have

Bi • F S ∈ (s̃1, . . . , s̃i, s̃t+1
m′ , . . . , s̃r

m′) DX,x[S]F S

DX,x[S]F S+1 .

Proof of Claim 3: Note that the hypotheses imply j < r − 1 so the promised choice of i

is possible. Since Bj /∈ C[sj+1, . . . , sr] · (s̃k) for all j + 1 ≤ k ≤ r, there exists a largest

∅ 6= I = {s̃i1 , . . . , s̃i|i|} ( {j+ 1, . . . , r} such that Bj /∈ C[sj+1, . . . , sr] · (s̃i1 , . . . , s̃i|I|). Relabel
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so that I = {j+1, . . . , i}. This means there exist positive integers nk, polynomials Al ∈ C[S],

and a polynomial Bi ∈ C[si+1, . . . , sr] such that

Bj =
( ∏
i+1≤k≤r

s̃k
nk

)
Bi +

∑
1≤`≤i

s̃`A`.

We may make each nk large enough so as to assume Bi /∈ C[si+1, . . . , sr] · (s̃k) for any

i+ 1 ≤ k ≤ r.

Therefore

( ∏
i+1≤k≤r

s̃k
nk

)
Bi • F S ∈ (s̃1, . . . , s̃i, s̃i+1

m, . . . , s̃r
m) DX,x[S]F S

DX,x[S]F S+1 .

Then Claim 3 follows from Claim 2.

Proof of Theorem.

Step 1: We will inductively construct a sequence of polynomials Bi1 , Bi2 , . . . , such that

(after potentially relabelling the sk) the following hold: 0 ≤ it < r for each it; it < it+1;

Bit ∈ C[sit+1, . . . , sr]; for mit arbitrarily large

Bit • F S ∈ (s̃1, . . . , s̃it , s̃it+1
mit , . . . , s̃r

mit ) DX,x[S]F S

DX,x[S]F S+1 . (2.3.1)

We terminate the induction once we produce a Bi such that, in addition to the above

properties, Bi /∈ C[si+1, . . . , sr] · (s̃i+1, . . . , s̃r).

Base Case: Take a multivariate Bernstein–Sato polynomial B(S) ∈ BF,x. If

B(S) /∈ C[s1, . . . , sr] · (s̃1, . . . , s̃r) then we are done: B(S) = B0 works. (Recall B(S) • F S ∈

DX,x[S]F S+1.) Otherwise find the largest J ( [r] such that B(S) /∈ C[S] · (s̃j1 , . . . , s̃j|J|).

Re-label to assume J = {1, . . . , j}, j < r. (We allow J = ∅, in which case j = 0.) This

means we can write B(S) as

B(S) =
( ∏
j+1≤k≤r

s̃k
nk

)
Bj +

∑
1≤t≤j

s̃tAt
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where Bj ∈ C[sj+1, . . . , sr] and each nk a positive integer chosen large enough so that Bj /∈

C[sj+1, . . . , sr] · (s̃k), for j + 1 ≤ k ≤ r, Because B(S) is a multivariate Bernstein–Sato

polynomial, B(S) • F S ∈ DX,x[S]F S+1. Therefore,

( ∏
j+1≤k≤r

s̃k
nk

)
Bj • F S ∈ (s̃1, . . . , s̃j)

DX,x[S]F S

DX,x[S]F S+1 . (2.3.2)

Now ( 2.3.2 ) trivially implies that for all m ≥ 0

( ∏
j+1≤k≤r

s̃k
nk

)
Bj • F S ∈ (s̃1, . . . , s̃j, s̃j+1

m, . . . , s̃r
m) DX,x[S]F S

DX,x[S]F S+1 .

In particular, the above holds for m arbitrarily large. By Claim 2, there exists mj arbitrarily

large such that

Bj • F S ∈ (s̃1, . . . , s̃j, s̃j+1
mj , . . . , s̃r

mj) DX,x[S]F S

DX,x[S]F S+1 .

Then Bj is the first element in our sequence of polynomials.

Inductive Step: Suppose Bj ∈ C[sj+1, . . . , sr] has already been defined. If the algo-

rithm has not terminated, j < r and Bj /∈ C[sj+1, . . . , sr] · (s̃k) for all j + 1 ≤ k ≤ r. Then

use Claim 3 to define Bi, where j < i < r. Note that if j = r− 1 then Br−1 /∈ C[sr] · (s̃r) and

so the algorithm terminates at Br−1.

Step 2: Use the terminal polynomial Bi ∈ C[si+1, . . . , sr], i < r, produced by Step 1.

This means Bi /∈ C[si+1, . . . , sr] · (s̃i+1, . . . , s̃r) and easily implies

Bi • F S ∈ (s̃1, . . . , s̃r)
DX,x[S]F S

DX,x[S]F S+1 .

On one hand, since Bi does not vanish at (ai+1 − 1, . . . , ar − 1), BiF S and F S gener-

ate the same submodule of DX,x[S]FS
(s̃i,...,s̃r)DX,x[S]FS+DX,x[S]FS+1 ; on the other hand, 0 = Bi • F S ∈

DX,x[S]FS
(s̃i,...,s̃r)DX,x[S]FS+DX,x[S]FS+1 . Thus, DX,x[S]FS

(s̃i,...,s̃r)DX,x[S]FS+DX,x[S]FS+1 = 0 (because it is generated by

F S). That is, the cokernel of ∇A vanishes.

Using Theorem  2.3.2 we can show that the three conditions of Proposition  2.3.1 are

equivalent in a very special and restricted case:
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Proposition 2.3.8. Suppose f = f1 · · · fr is a central, essential, indecomposable, and tame

hyperplane arrangement, where each fk is of degree dk and the fk are not necessarily reduced.

Let F = (f1, . . . , fr). If A− 1 ∈ {d1s1 + · · · + drsr + n = 0}, then A− 1 ∈ V(BF,0) and ∇A

is neither surjective nor injective.

Proof. An easy extension of the argument in Theorem  2.2.4 shows that both

annDX,0[S] F
S + DX,0[S] · f ⊆ DX,0[S] ·m0 + DX,0[S] · (−n−

∑
dksk). (2.3.3)

and A− 1 ∈ V(BF,0). Now ∇A is surjective precisely when

DX,0[S] = annDX,0[S] F
S + DX,0[S] · f +

∑
DX,0[S] · (sk − (ak − 1)).

By (  2.3.3 ), if ∇A is surjective,

DX,0[S] ⊆ DX,0[S] ·m0 + DX,0[S] · (−n−
∑

dksk) +
∑

DX,0[S] · (sk − (ak − 1)).

After evaluating each sk at ak−1, we deduce DX,0 ⊆ DX,0 ·m0. Therefore∇A is not surjective.

By Theorem  2.3.2 , ∇A is not injective.

2.4 Free Divisors, Lie–Rinehart Algebras, and ∇A

In Definition  2.2.6 we defined tame divisors. A stronger condition is freeness:

Definition 2.4.1. A divisor Y is free if it locally everywhere admits a defining equation f

such that DerX,x(− log f) is a free OX,x-module.

Freeness implies tameness because ΩX,x(log f) and DerX,x(− log f) are dual and if

ΩX,x(log f) is free, then Ωp
X,x(log f) = ∧p ΩX,x(log f) (see 1.7, 1.8 of [ 8 ]).

Throughout this section we upgrade our working hypotheses of strongly Euler-

homogeneous, Saito-holonomic, and tame to reduced, strongly Euler-homogeneous, Saito-

holonomic, and free. The goal is to investigate the surjectivity of the map ∇A. Let’s give

a road map. First we compute Ext modules of DX,x[S]F S/(S − A)DX,x[S]F S using [  9 ] and
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the rich theory of Lie–Rinehart algebras. Lifting a surjective ∇A to these Ext-modules will

produce an injective map. This injective map acts like ∇−A. By Theorem  2.3.2 , ∇−A is

surjective. Using duality again will show that ∇A is injective.

2.4.1 Lie–Rinehart Algebras and the Spencer Co-Complex Sp.

Definition 2.4.2. (Compare with [  19 ]), [ 23 ] and the appendix of [ 3 ]) Fix a homomorphism

of commutative rings k → A. A Lie–Rinehart algebra L over (k,A) is a A-module L with

anchor map ρ : L→ Derk(A) that is A-linear, a k-Lie algebra map, and satisfies, for all λ,

λ′ ∈ L, a ∈ A,

[λ, aλ′] = a[λ, λ′] + ρ(λ)(a)λ′.

We will usually drop ρ and replace ρ(λ)(a) with λ(a). A morphism F : L → L′ of Lie–

Rinehart algebras over (k,A) is a A-linear map that is a morphism of Lie-algebras satisfying

λ(a) = F (λ)(a).

Example 2.4.1.(a) Derk(A) is a Lie–Rinehart algebra over (k,A) with the identity as

the anchor map.

(b) Any A-submodule of Derk(A) that is also a k-Lie algebra is a Lie–Rinehart algebra

over (k,A), with anchor map induced by the inclusion into Derk(A). In particular

DerX,x(− log(f)) is a Lie–Rinehart algebra over (C,OX,x).

(c) If L is a Lie–Rinehart algebra over (k,A), then L ⊕ A is a Lie–Rinehart algebra

over (k,A) with anchor map induced by the projection L ⊕ A → L, (λ, a) 7→ λ. So

DerX,x⊕Or
X,x and DerX,x(− log(f))⊕ Or

X,x are Lie–Rinehart algebras over (C,OX,x).

Definition 2.4.3. Let L be a Lie–Rinehart algebra over (k,A) with k → A. Suppose R is a

ring (not necessarily a Lie–Rinehart algebra) and A→ R a ring homomorphism that makes

R central over k, i.e. images of elements of k are central elements in R. Then a k-linear

map g : L→ R is admissible if:
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(a) g(aλ) = ag(λ), for a ∈ A, λ ∈ L (g is a morphism of A-modules);

(b) g([λ, λ′]) = [g(λ), g(λ′)], for λ, λ′ ∈ L (g is a morphism of Lie-algebras);

(c) g(λ)a− ag(λ) = λ(a)1R for λ ∈ L, a ∈ A.

The following theorem will be our definition of the universal algebra U(L) :

Theorem 2.4.1. (cf. [ 23 ]) For any Lie–Rinehart algebra L over (k,A) there exists a ring

U(L), a ring homomorphism A → U(L) making U(L) central over k, and an admissible

map θ : L → U(L) that is universal in the following sense: for any ring R with a ring

homomorphism A→ R making R central over k, and any admissible map g : L→ R, there

is a unique ring homomorphism h : U(L) → R such that h ◦ θ = g. The natural map

θ : L→ U(L) induces a filtration on U(L) given by the powers of images of θ.

We omit the proof of the following proposition. It uses the (not provided) explicit con-

struction of U(L) and standard universal object arguments.

Proposition 2.4.2. Given a Lie–Rinehart algebra L over (k,A), consider the direct sum

L ⊕ A. This is a Lie–Rinehart algebra over (k,A) with anchor map induced by projection:

L ⊕ k � L → Derk(A). Then U(L ⊕ A) ' U(L)[s]. Moroever, the natural filtration on

U(L ⊕ A) corresponds to a “total order filtration” on U(L)[S], i.e. a filtration where s has

weight one.

Example 2.4.3.(a) The universal Lie–Rinehart algebra of DerX,x over (C,OX,x) is DX,x.

The natural filtration is the order filtration.

(b) By repeated application of Proposition  2.4.2 , the universal Lie–Rinehart algebra of

DerX,x⊕Or
X,x over (C,OX,x) is DX,x[s1, . . . , sr]. The natural filtration is the total order

filtration F(0,1,1).

(c) For F = (f1, . . . , fr) a decomposition of f = f1 · · · fr, the annihilating deriva-

tions θF,x constitute a Lie–Rinehart algebra over (C,OX,x). The OX,x-map ψF :

DerX,x(− log f)→ θF,x is an isomorphism of Lie–Rinehart algebras over (C,OX,x). So

there is a containment of Lie–Rinehart algebras over (C,OX,x): θF,x ⊆ DerX,x⊕Or
X,x.
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(d) The universal algebra of the Lie–Rinehart algebra DerX,x [S] over (C[S],OX,x[S]) is

DX,x[S]. Note that sk is contained in the 0th filtered part and the filtration is induced

by the order filtration.

We care about the formalism of Lie–Rinehart algebras because we want to construct

complexes of the universal algebras. Given two Lie–Rinehart algebras L ⊆ L′, the following

gives a complex of U(L′)-modules.

Definition 2.4.4. (Compare with 1.1.8 of [ 19 ]) Let L and L′ be Lie–Rinehart algebras over

(k,A). The Cartan–Eilenberg–Chevalley–Rinehart–Spencer co-complex associated to L ⊆ L′

and the left U(L)-module E is the co-complex SpL,L′(E). Here

Sp−r(L,L′) := U(L′)⊗A
r∧
L⊗A E

and the U(L′)-linear differential

d−r : Sp−rL,L′(E)→ Sp−(r−1)
L,L′ (E)

is given by

d−r(P ⊗ λ1 ∧ · · · ∧ λr ⊗ e) =
r∑
i=1

(−1)i−1Pλi ⊗ λ̂i ⊗ e−
r∑
i=1

(−1)i−1P ⊗ λ̂i ⊗ λie (2.4.1)

+
∑

1≤i<j≤r
(−1)i+jP ⊗ [λi, λj] ∧ λ̂i,j ⊗ e.

(Here λ̂i,j is the wedge of the of all the λ’s except λi and λj.) There is a natural augmentation

map

U(L′)⊗A E → U(L′)⊗U(L) E.

When E = A, write SpL,L′(A) as SpL,L′ .

In general, the cohomology of SpL,L′(E) is mysterious. In principal, it can be computed

using the spectral sequence associated to the filtration of U(L′) promised by Theorem  2.4.1 .

In the classical case of a Lie algebra, the Poincaré-Birkhoff-Witt theorem says that the
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natural associated graded ring of universal algebra of g is canonically isomorphic (as algebras)

to the symmetric algebra of g. Rinehart proved, cf. [ 23 ], the analogous result for L: the

natural associated graded ring of U(L) is isomorphic to SymA(L). A spectral sequence

argument gives the following:

Proposition 2.4.4. (Proposition 1.5.3 in [ 19 ]) Suppose L ⊆ L′ are Lie–Rinehart algebras

over (k,A) and E a left U(L)-module free over A. Moreover, suppose L, L′ are free A-

modules of finite rank such that a basis of L forms a regular sequence in the symmetric

algebra SymA(L′). Then SpL,L′(E) is a finite free U(L′)-resolution of U(L′)⊗U(L) E.

We may use Proposition  2.4.4 to resolve DX,x[S]F S, provided f is nice enough:

Proposition 2.4.5. Suppose f = f1 · · · fr is reduced, strongly Euler-homogeneous, Saito-

holonomic, and free and let F = (f1, . . . , fr). Then SpθF,x,DerX,x⊕OrX,x
is a free DX,x[S]-

resolution of DX,x[S]F S.

Proof. We argue as in Section 1.6 of [ 24 ]. First, note that by Proposition 6.3 of [ 25 ] and

Corollary 1.9 of [  26 ], that for reduced free divisors being Saito-holonomic is equivalent to

being Koszul free, where Koszul free means there is a basis δ1, . . . , δn of DerX,x(− log f)

that gr(0,1)(δ1) . . . gr(0,1)(δn) is a regular sequence in gr(0,1)(DX,x). Let δ1, . . . , δn be such

a basis. Then s1, . . . , sn, ψF,x(δ1), . . . , ψF,x(δn) is a regular sequence in gr(0,1,1)(DX,x[S]).

As these elements are all (0, 1, 1)-homogeneous, we may rearrange them and conclude

ψF,x(δ1), . . . , ψF,x(δn) is a regular sequence in gr(0,1,1)(DX,x[S]) ' SymOX,x
(DerX,x⊕Or

X,x). Now

Proposition  2.4.4 implies that SpθF,x,DerX,x⊕OrX,x
is a free DX,x[S]-resolution and inspecting the

terminal map of this co-complex shows it resolves DX,x[S]/DX,x[S] · θF,x, which, by Theorem

 2.2.3 , is isomorphic to DX,x[S]F S.

When f is strongly Euler-homogeneous, Saito-holonomic, and tame we showed in Proposi-

tion  2.3.7 that there is a Koszul co-complex resolution of DX,x[S]F S/(S−A)DX,x[S]F S. Using

SpθF,x,DerX,x⊕OrX,x
we construct a free DX,x[S]-resolution of DX,x[S]F S/(S − A)DX,x[S]F S.
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Proposition 2.4.6. Suppose f = f1 · · · fr is reduced, strongly Euler-homogeneous, Saito-

holonomic, and free and let F = (f1, . . . , fr). Then there is a finite, free resolution of DX,x[S]-

modules
DX,x[S]

(S − A)DX,x[S] ⊗DX,x[S] SpθF,x,DerX,x⊕OrX,x
→ DX,x[S]F S

(S − A)DX,x[S] .

Proof. By Proposition  2.4.5 , it is enough to prove that, for k ≥ 1,

TorkDX,x[S](
DX,x[S]

(S − A)DX,x[S] ,DX,x[S]F S) = 0.

As K•(S − A; DX,x[S]) resolves DX,x[S]/(S − A)DX,x[S], use Proposition  2.3.7 .

2.4.2 Dual of DX,x[S]F S/(S − A)DX,x[S]F S.

Now that we have resolutions, we can proceed to our first goal: to compute the DX,x-dual

of DX,x[S]FS
(S−A)DX,x[S]FS .

Definition 2.4.5. (Compare with Appendix A of [ 9 ]) Consider a Lie–Rinehart algebra L

over (k,A) that is A-projective of constant rank n. There is an equivalence of categories from

right U(L)-modules Q to the left U(L)-modules given by Qleft = HomA(wL, Q) where wL is the

dualizing module of L, namely, wL = HomA(∧n L,A). Regard DX,x as the universal algebra

of the Lie–Rinehart algebra DerX,x over (C,OX,x) and DX,x[S] as the universal algebra of the

Lie–Rinehart algebra DerX,x [S] over (C[S],OX,x[S]). In the appropriate derived category of

left modules, where N is a left U(L)-module, let:

D(N) := (RHomDX,x(N,DX,x)left;

DS(N) := (RHomDX,x[S](N,DX,x[S])left.

The following demystifies how (−)left works for the above universal algebras. Its proof is

entirely similar to the classical case of (−)left for DX,x-modules.

Lemma 2.4.7. Take a `×m matrix M with entries in DX,x[S] so that multiplication on the

left gives a map of right DX,x[S]-modules DX,x[S]m → DX,x[S]`. Here an element DX,x[S]m is
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a column vector. For some fixed coordinate system, define the map τ : DX,x[S] → DX,x[S],

τ(xu∂vsw) = (−∂)vxusw. Extend τ to DX,x[S]m in an obvious way and to M by applying τ

to each entry. Then there is a commutative diagram of left DX,x[S]-modules, where elements

in the bottom row are row vectors and (−)T denotes the transpose:

(DX,x[S]m)left (DX,x[S]`)left

DX,x[S]m DX,x[S]`.

M left

' '

·τ(M)T

Given a right DX,x-linear map M : Dm
X,x → D `

X,x, there is an entirely similar commutative

diagram of left-DX,x modules (where τ has the obvious definition).

The first step in computing D( DX,x[S]FS
(S−ADX,x[S])) is finding a resolution–this is Proposition  2.4.6 .

The second is the following technical lemma:

Lemma 2.4.8. Suppose f = f1 · · · fr is reduced, strongly Euler-homogeneous, Saito-

holonomic, and free and let F = (f1, . . . , fr). As complexes of free DX,x-modules,

D
(

DX,x[S]
(S − A)DX,x[S] ⊗DX,x[S] SpθF,x,DerX,x⊕OrX,x

)

' DX,x[S]
(S − A)DX,x[S] ⊗DX,x[S] DS

(
SpθF,x,DerX,x⊕OrX,x

)

Proof. For brevity, abbreviate SpθF,x,DerX,x⊕OrX,x
to Sp•. Write the differential as d−k : Sp−k →

Sp−(k−1) .

We will first compute the objects and maps of D
(

DX,x[S]
(S−A)DX,x[S] ⊗DX,x[S] Sp

)
. Since Sp is a

co-complex of finite, free DX,x[S]-modules, Sp−k ' DX,x[S](
n
k). Therefore, as DX,x[S]-modules,

DX,x[S]
(S − A)DX,x[S] ⊗DX,x[S] Sp−k ' DX,x[S]

(S − A)DX,x[S]

(nk)
. (2.4.2)
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On the LHS of ( 2.4.2 ), we have the differential DX,x[S]
(S−A)DX,x[S] ⊗DX,x[S] d

−k. Think of d−k as a

matrix. On the RHS of ( 2.4.2 ) the differential is evalA(d−k): the matrix d−k except each si

is replaced with ai. As right DX,x-modules,

HomDX,x

(
DX,x[S]

(S − A)DX,x[S] ⊗DX,x[S] Sp−k,DX,x

)
' HomDX,x

(
D

(nk)
X,x ,DX,x

)

' D
(nk)
X,x .

Making the above identification, HomDX,x

(
DX,x[S]

(S−A)DX,x[S] ⊗DX,x[S] Sp,DX,x

)
has a differential

given by multiplication on the left by (evalA(d−k))T–the transpose of evalA(d−k). To make

the Hom complex a complex of left modules we apply the equivalence of categories (−)left.

By Lemma  2.4.7 we get a complex of left DX,x modules isomorphic to the following, with

differential given by matrix multiplication on the right

A• := . . . −→ D
( n
k−1)

X,x

·τ((evalA(d−k))T )T−−−−−−−−−−−→ D
(nk)
X,x → . . . .

Now we compute the objects and maps of DX,x[S]
(S−A)DX,x[S] ⊗DX,x[S] DS(Sp). As right DX,x[S]-

modules, HomDX,x[S]
(
Sp−k,DX,x[S]

)
' DX,x[S](

n
k). The induced differential is multiplication

on the left by (d−k)T . By Lemma  2.4.7 , we can identify the complex obtained by applying

(−)left with a complex whose terms are DX,x[S](
n
k) and whose differentials are τ((d−k)T )T . As

left DX,x[S]-modules (and so as left DX,x-modules),

DX,x[S]
(S − A)DX,x[S] ⊗DX,x[S] DX,x[S](

n
k) ' DX,x[S]

(S − A)DX,x[S]

(nk)
. (2.4.3)

The RHS of ( 2.4.3 ) is isomorphic as a left DX,x-module to D
(nk)
X,x . With this identification, the

differentials of the complex DX,x[S]
(S−A)DX,x[S] ⊗DX,x[S] DS(Sp) are given by evalA(τ((d−k)T )T ). Thus

the complex of left DX,x[S]-modules DX,x[S]
(S−A)DX,x[S] ⊗DX,x[S] DS(Sp) is isomorphic as a complex

of left DX,x-modules to

B• := . . . −→ D
( n
k−1)

X,x

·evalA(τ((d−k)T )T )−−−−−−−−−−−→ D
(nk)
X,x → . . . .
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We will be done once we show that A• and B• are isomorphic complexes of DX,x-modules.

Because τ((evalA(d−k))T )T = τ(evalA(d−k)) = evalA(τ(d−k)) = evalA(τ((d−k)T )T ), A• and

B• have the same differentials.

So we have reduced our problem to, in light of Proposition  2.4.5 , computing

DS(DX,x[S]F S). In Corollary 3.6 of [ 9 ] Narváez–Macarro does this for DX,x[s]f s with simi-

lar working hypotheses as ours and Maisonobe shows in [ 11 ] that this result generalizes to

DX,x[S]F S as well. In our language, cf. the proof of Proposition  2.4.5 , this result is as follows:

Proposition 2.4.9. (Proposition 6 in [ 11 ]) Let f = f1 · · · fr be reduced, strongly Euler-

homogeneous, Saito-holonomic, and free and let F = (f1, . . . , fr). Then, in the category of

left derived DX,x[S]-modules, there is a canonical isomorphism

DS(DX,x[S]F S) ' DX,x[S]F−S−1[n].

Theorem 2.4.2. Suppose f = f1 · · · fr is reduced, strongly Euler-homogeneous, Saito-

holonomic, and free and let F = (f1, . . . , fr). Then in the derived category of DX,x-modules

there is a DX,x-isomorphism χA given by

χA : D
(

DX,x[S]F S

(S − A)DX,x[S]F S

)
'−→ DX,x[S]F−S−1

(S − A)DX,x[S]F−S−1 [n] (2.4.4)

'−→ DX,x[S]F S

(S − (−A− 1)DX,x[S]F S
[n].

Proof. The DX,x-linear involution on DX,x[S] defined by sending each sk 7→ −sk − 1

induces a DX,x-linear map DX,x[S]F−S−1 ' DX,x[S]F S. This gives the second iso-

morphism of ( 2.4.4 ). Considerations using this map and Proposition  2.4.5 show that

TorkDX,x[S]

(
DX,x[S]FS

(S−A)DX,x[S]FS ,DX,x[S]F−S−1
)

vanishes for k ≥ 1. Proposition  2.4.9 then implies

the acylicity of the augmented co-complex

DX,x[S]
(S − A)DX,x[S] ⊗DX,x[S] DS

(
SpθF,x,DerX,x⊕OrX,x

)
→ DX,x[S]F−S−1

(S − A)DX,x[S]F−S−1 .

This, Proposition  2.4.6 , and Lemma  2.4.8 give the first isomorphism of ( 2.4.4 ).
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Remark 2.4.10. When f is reduced, strongly Euler-homogeneous, Saito-holonomic, and free,

this immediately implies DX,x[S]F S/(S−A)DX,x[S]F S is a holonomic DX,x-module. Without

freeness, computing Ext is currently intractable.

2.4.3 Free Divisors and ∇A.

Recall from Definition  2.3.1 the DX,x-linear map

∇A : DX,x[S]F S

(S − A)DX,x[S]F S
→ DX,x[S]F S

(S − (A− 1))DX,x[S]F S

induced by sk 7→ sk + 1, for each k. If f is reduced, strongly Euler-homogeneous,

Saito-holonomic, and free, by Proposition  2.4.2 the complexes D( DX,x[S]FS
(S−A)DX,x[S]FS ) and

D( DX,x[S]FS
(S−(A−1))DX,x[S]FS ) can be identified with modules (i.e. Ext vanishes in all but one place).

∇A lifts to a map between the resolutions of DX,x[S]FS
(S−A)DX,x[S]FS and DX,x[S]FS

(S−(A−1))DX,x[S]FS and to the

Hom of those resolutions. Therefore ∇A induces a map (thinking of these as modules)

D( DX,x[S]F S

(S − A)DX,x[S]F S
) −→ D( DX,x[S]F S

(S − (A− 1))DX,x[S]F S
).

Name this map D(∇A).

Theorem 2.4.3. Suppose f = f1 · · · fr is reduced, strongly Euler-homogeneous, Saito-

holonomic, and free and let F = (f1, . . . , fr). Let χA be the DX,x-isomorphism of Theorem

 2.4.2 . Then there is a commutative diagram

D
(

DX,x[S]FS
(S−A)DX,x[S]

)
DX,x[S]FS

(S−(−A−1))DX,x[S]FS

D
(

DX,x[S]FS
(S−(A−1))DX,x[S]

)
DX,x[S]FS

(S−(−A))DX,x[S]FS .

'
χA

'
χA−1

D(∇A) ∇−A

Proof. First consider the DX,x-linear map ∇ : DX,x[S]F S → DX,x[S]F S given by send-

ing si → si+1 for all i. By Propositon  2.4.5 , the co-complex of free DX,x[S]-modules
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SpθF,x,DerX,x⊕OrX,x
resolves DX,x[S]F S. For readability, in this proof we will write this co-

complex as Sp . Regarding this as a co-complex of DX,x-modules, we may lift ∇ to a chain

map. A straightforward computation using ( 2.4.1 ) and the definition of ψF,x shows that one

such lift is given by
Sp−k DX,x[S](

n
k)

Sp−k DX,x[S](
n
k),

'

σ−k

'

where the dashed line is the lift of ∇ at the −k slot and σ−k multiplies each component of

the direct sum by f on the right and sends each si to si+1 in every component.

We may use the finite, free DX,x-resolution of DX,x[S]F S/(S − A)DX,x[S]F S by
DX,x[S]

(S−A)DX,x[S] ⊗DX,x[S] Sp to lift ∇A to a chain map, cf. Proposition  2.4.6 . One such lift is

given by

DX,x[S]
(S−A)DX,x[S] ⊗DX,x[S] Sp−k DX,x[S]

(S−A)DX,x[S]
(nk)

DX,x[S]
(S−(A−1))DX,x[S] ⊗DX,x[S] Sp−k DX,x[S](S−(A−1))

(S−(A−1))DX,x[S]
(nk),

`−k(∇A)

'

σA−k

'

(2.4.5)

where the `−k(∇A) is the lift of ∇A the −k slot and σA−k is induced by σ−k. That is, σA−k is

given by multiplying each component of the direct sum by f on the right.

Apply HomDX,x(−,DX,x)left to the chain map given by the l−k(∇A). Then ( 2.4.5 ) implies

that at the −n slot we have

HomDX,x(
DX,x[S]

(S−A)DX,x[S] ⊗DX,x[S] Sp−n,DX,x)left DX,x[S]
(S−A)DX,x[S]

HomDX,x(
DX,x[S]

(S−(A−1))DX,x[S] ⊗DX,x[S] Sp−n,DX,x)left DX,x[S]
(S−(A−1)DX,x[S] ,

'

HomDX,x
(`−n(∇A),DX,x)left HomDX,x

(σA−n,DX,x)left

'

(2.4.6)

where HomDX,x(σA−n,DX,x)left is simply multiplication by f on the right. Since

D(DX,x[S]F S/(S − A)DX,x[S]F S) has nonzero homology only at the −n slot, we may

identify this complex with that homology module and the map D(∇A) is induced by
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HomDX,x(σA−n,DX,x)left, i.e. by multiplication by f on the right. So ( 2.4.6 ) and Theorem

 2.4.2 give the following commutative diagram

DX,x[S]
(S−A)DX,x[S] D( DX,x[S]FS

(S−A)DX,x[S]FS ) DX,x[S]FS
(S−(−A−1))DX,x[S]FS

DX,x[S]
(S−(A−1))DX,x[S] D( DX,x[S]FS

(S−(A−1))DX,x[S]FS ) DX,x[S]FS
(S−(−A))DX,x[S]FS .

'
χA

·f

'
χA−1

D(∇A)

A straightforward diagram chase shows that the dashed map is ∇−A.

Theorem 2.4.4. Suppose f = f1 · · · fr is reduced, strongly Euler-homogeneous, Saito-

holonomic, and free and let F = (f1, . . . , fr). Then ∇A is injective if and only if it is

surjective.

Proof. By Theorem  2.3.2 , we may assume∇A is surjective. So we have a short exact sequence

of holonomic left DX,x-modules:

0→ N → DX,x[S]F S

(S − A)DX,x[S]F S

∇A−−→ DX,x[S]F S

(S − (A− 1))DX,x[S]F S
→ 0.

Using the long exact sequence of Ext and basic properties of holonomic modules, one checks

∇A is surjective if and only if D(∇A) is injective. Similarly, ∇A is injective if and only if

D(∇A) is surjective. We are done by the following:

∇A is surjective ⇐⇒ D(∇A) is injective [Duality]

⇐⇒ ∇−A is injective [Theorem  2.4.3 ]

=⇒ ∇−A is surjective [Theorem  2.3.2 ]

⇐⇒ D(∇A) is surjective [Theorem  2.4.3 ]

⇐⇒ ∇A is injective [Duality].
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2.5 Free Divisors and the Cohomology Support Loci

In this short section, we assume f1, . . . , fr are mutually distinct and irreducible germs

at x ∈ X that vanish at x. Let f = f1 · · · fr. Take a small open ball Bx about x and let

Ux = Bx \ Var(f). Define Uy for y ∈ Var(f) and y near x similarly.

Definition 2.5.1. (Compare with Section 1, [  17 ]) Let M(U) denote the rank one local

systems on U . Define the cohomology support loci of f near x, denoted as V (Ux, Bx), by:

V (Ux, Bx) :=
⋃

y∈D near x

res−1
y ({L ∈M(Uy) | H•(Uy, L) 6= 0}),

where resy : M(Ux)→M(Uy) is given by restriction. This agrees with the notion of “uniform

cohomology support locus” given in [ 6 ], cf. Remark 2.8 [ 17 ] and [ 27 ].

Convention 2.5.1. For A ∈ Cr and k ∈ Z, let A− k denote (a1 − k, . . . , ar − k).

Let j be the embedding of Ux ↪→ Bx. For L ∈M(Ux), Rj?(L[n]) is a perverse sheaf (hence

of finite length). In Theorem 1.5 of [ 17 ], the authors prove that

V (Ux, Bx) = {L ∈M(Ux) | Rj?(L[n]) is not a simple perverse sheaf on Bx}. (2.5.1)

Using this Budur proves in Theorem 1.5 of [  6 ], cf. Remark 4.2 of [  17 ], that

Exp(V(BF,x)) ⊇ V (Ux, Bx). (2.5.2)

Here M(Ux) are identified with representations {π1(Ux)→ C?} ⊆ C?r .

While we cannot prove the converse containment to ( 2.5.2 ), we can prove a weaker state-

ment about simplicity of modules:

Theorem 2.5.2. Suppose f = f1 · · · fr and F = (f1, . . . , fr), where the fk are mutually

distinct and irreducible hypersurface germs at x vanishing at x. Suppose f is reduced, strongly

Euler-homogeneous, Saito-holonomic, and free. If A ∈ Cr such that the rank one local

system LExp(A) /∈ V (Ux, Bx), then, for all k ∈ Z, the map ∇A+k is an isomorphism and
DX,x[S]FS

(S−(A+k))DX,x[S]FS is a simple DX,x-module.
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Proof. For all A ∈ Cr there is a cyclic DX,x-module DX,xF
A defined similarly to DX,x[S]F S.

Moreover, there is a commutative diagram of DX,x-modules and maps

DX [S]FS
(S−(A+k))DX [S]FS DX,xF

A+k

DX [S]FS
(S−(A+k−1))DX [S]FS DX,xF

A+k−1.

pA+k

∇A+k

pA+k−1

(2.5.3)

By Theorem 5.2 in [  6 ], DX,xF
A is regular, holonomic and

DR(DX,xF
A−k) = Rj?LExp(A)[n], for k ∈ N, k � 0;

DR(DX,xF
A+k) = IC(LExp(A)[n]), for k ∈ N, k � 0.

Here DR is the de Rham functor and LExp(A) is the local system given by a representation

π1(Ux) → C?r . Because of ( 2.5.1 ), our hypotheses on LExp(A) imply DX,xF
A+k is simple for

all k ∈ Z. So to prove the theorem, it suffices to show that the DX,x-maps pA+k and ∇A+k

of ( 2.5.3 ) are isomorphisms for all k ∈ Z.

By Proposition 3.2 and 3.3 of [ 28 ] there exists an integer t ∈ Z such that pA+t−1−j is

an isomorphism for all j ∈ Z≥0. By the commutativity of ( 2.5.3 ), ∇A+t is surjective. By

Theorem  2.4.4 , ∇A+t is an isomorphism. Thus pA+t is as well. Repeat this procedure to

finish the proof.

2.6 Initial Ideals

Suppose the commutative Noetherian ring R is a domain containing a field K. Consider

the polynomial ring over many variables R[X], graded by the total degree of a non-negative

integral vector u. Let I be an ideal contained in (X) ·R[X]. We closely follow the treatment

of Bruns and Conca in [ 29 ] to obtain our main result, Proposition  2.6.6 , which establishes

a relationship between the initial ideal inu of I with respect to the u-grading and I itself.

This is a weaker analogue to Proposition 3.1 of loc. cit. and is integral to the strategy of

Section 2.
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Remark 2.6.1.(a) The monomials of R[X] are the elements xv = ∏
xvii for v a non-

negative integral vector.

(b) Just as in the case R = K we can declare a monomial ordering > on R[X]. This

ordering is Artinian, with least element 1 ∈ R.

(c) Every f ∈ R[X] has a unique expression in monomials: f = ∑
rimi, ri ∈ R, mi a

monomial, mi > mi+1, for some total ordering > of the monomials.

(d) Let the initial term of f be in>(f) := r1m1, where we appeal to the unique expression

of f above. For V a R-submodule of R[X] let in>(V ) be the R-submodule generated

by all the in>(f) elements for f ∈ V .

(e) Given a nonnegative integral vector u = (u1, . . . un) there is a canonical grading on

R[X] given by u(xi) = ui. Every monomial ∏xvii is u-homogeneous of degree ∑ viui

and every element f ∈ R[X] has a unique decomposition into u-homogeneous pieces.

The degree u(f) is the largest degree of a monomial of f; the initial term inu(f) is the

sum of the monomials of f of largest degree.

Definition 2.6.1. Let f ∈ R[X], f = ∑
rimi its monomial expression, u a non-negative

integral vector defining a grading on R[X]. We introduce a new variable t by letting T =

R[X][t]. Define the homogenization of f with respect to u to be

homu(f) :=
∑

rimit
u(f)−u(mi) ∈ T.

For a R-submodule V of R[X] let

homu(V ) := the R[t]-submodule generated by {homu(f) | f ∈ V }.

Remark 2.6.2.(a) If I is an ideal of R[X], homu(I) is an ideal of T.

(b) Let u′ be the non-negative integral vector (u, 1) and extend the grading on R[X] to T

by declaring t to have degree 1. Then homu(f) is a u′-homogeneous of degree u(f).
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Proposition 2.6.3. Suppose R is a Noetherian domain containing the field K and let I be

an ideal of R[X]. Then

T

(homu(I), t) '
R[X]
inu(I) and T

(homu(I), t− 1) '
R[X]
I

.

Proof. Argue as in Proposition 2.4 of [ 29 ].

As in the classical case, t is regular on T/ homu(I) (cf. Proposition 2.3 (d) in [ 29 ]). The

argument is similar so we only outline the basic steps.

Definition 2.6.2. Let τ be a monomial ordering on R[X], u a non-negative integral vector.

Let n, m be monomials in R[X]. Define a monomoial ordering τu on R[X]:

[m >τu n] ⇐⇒ [u(m) > u(n)] or [u(m) = u(n), m >τ n].

Define a monomial ordering τu′ on T:

[mti >τu′ nt
j] ⇐⇒ [u′(mti) > u′(ntj)] or,

[u′(mti) = u′(ntj) and i < j] or,

[u′(mti) = u′(ntj) and i < j and m >τ n].

Lemma 2.6.4. (Compare with 2.3(c) in [ 29 ]) Suppose R is a Noetherian domain containing

the field K. For V a R-submodule of R[X],

inτu(V )R[t] = inτu′(homu(V )).

Proof. Argue similarly to Proposition 2.3 (c) in [ 29 ].

Proposition 2.6.5. (Compare with 2.3(d) in [ 29 ]) Suppose R is a Noetherian domain con-

taining the field K. Let I ⊆ X ·R[X] be an ideal of R[X] and u a nonnegative integral vector.

Then T/ homu(I) is a torsion-free K[t] module.

Proof. We give a sketch. Suppose h ∈ T , s(t) ∈ K[t] such that s(t)h ∈ homu(I). We must

show that h ∈ homu(I).
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Because τu′ is a monomial order, inτu′(s(t)h) = skt
k inτu′(h), for sk ∈ K. By hypothesis

and Lemma  2.6.4 , sktk inτu′(h) ∈ inτu(I)R[t]. By comparing monomials and using the fact

we can “divide” an equation by t if both sides are multiples of t, careful bookkeeping yields

the following: there exists g ∈ homu(I) such that h − g < h and s(t)(h − g) ∈ homu(I).

Repeat the process to continually peel off initial terms and conclude either h ∈ homu(I)

or there exists 0 6= r ∈ R ∩ inτu(I). Because I ⊆ X · R[X], we have inτu(I) ⊆ X · R[X].

Therefore no such r exists and the claim is proved.

The following is the section’s main proposition:

Proposition 2.6.6. (Compare with 3.1 in [  29 ]) Suppose R is a Noetherian domain con-

taining the field K. Let I ⊆ X · R[X] be an ideal of R[X] and u a non-negative integral

vector. Then the following hold:

(a) If R[X]/ inu(I) is Cohen–Macaulay, then R[X]/I is Cohen–Macaulay;

(b) dim(R[X]/ inu(I)) ≥ dim(R[X]/I).

Proof. (a). We follow the argument of Proposition 3.1 in [ 29 ]: first, we show that Cohen–

Macaulayness percolates from T/(homu(I), t) to T/ homu(I); second, that it descends from

T/ homu(I) to T/(homu(I), t− 1).

First, the percolation. Since u′(t) = 1, any maximal u′-graded ideal m? of T/ homu(I)

contains t. Consider the commutative diagram

T/ homu(I) Tm/(homu(I))m?

T/(homu(I), t) Tm?/(homu(I), t)m? ,

with horizontal maps localization at m?, vertical maps quotients by t.

It suffices to show that T/ homu(I) is Cohen–Macaulay after localizing at a maximal u′-

graded ideal m? (cf. Exercise 2.1.27 [ 22 ]). Since t ∈ m?, by assumption Tm?/(homu(I), t)m? is

Cohen–Macaulay. And since t is a non-zero divisor on Tm?/ homu(I)m? by Proposition  2.6.5 ,

we see Tm?/ homu(I)m? is Cohen–Macaulay (cf. Theorem 2.1.3 in [  22 ]).
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It remains to show that Cohen–Macaulayness descends from T/ homu(I) to

T/(homu(I), t− 1). By the universal property of localization we have:

T/ homu(I) T/(homu(I), t− 1)

(T/ homu(I))[t−1].

γ (2.6.1)

It is well known (cf. Proposition 1.5.18 in [  22 ]) that

(T/ homu(I))[t−1] ' ((T/ homu(I))[t−1])0[y, y−1].

So γ of ( 2.6.1 ) induces, where −0 denotes the degree 0 elements, the ring maps:

T/(homu, t− 1) ' (T/ homu(I))[t−1]
(t− 1)(T/ homu(I))[t−1]) ' ((T/ homu(I))[t−1])0.

We have

(T/ homu(I))[t−1] ' (T/(homu(I), t− 1))[y, y−1]. (2.6.2)

Therefore, since Cohen–Macualayness is preserved under localization at a non-zero di-

visor, all we need to show is that if B[y, y−1] is a Laurent polynomial ring that is Cohen–

Macaulay then B is an Cohen–Macaulay. To see this take a m ∈ mSpec(B) and look at

(m, y − 1) ∈ Spec(B[y]) and the corresponding prime ideal in B[y, y−1].

Now we move onto (b). The descent part of part (a) gives us the plan:

dim(T/(homu(I), t− 1)) = dim((T/(homu(I), t− 1))[y, y−1])− 1

= dim((T/ homu(I))[t−1])− 1

≤ dim(T/ homu(I))− 1

= dim(T/(homu(I), t)).

The second equality follows by ( 2.6.2 ). The inequality is not an equality because local-

ization may lower dimension. For the last equality use the fact dimension of a graded ring
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can be computed by looking only at the height of the graded maximal ideals (Corollary

13.7 [  20 ]). In T/ homu(I), t is contained in all graded maximal ideals; since it is a non-zero

divisor, its associated primes are not minimal.

Remark 2.6.7.(a) This proposition generalizes the common geometric picture for R = K.

In this setting the map K[t] → T/ homu(I) gives a flat family whose generic fiber is

R/I and whose special fiber is R/ inu(I). In our generality, it is easy to extend

Proposition  2.6.5 and show that K[t] ↪→ T/ homu(I) is a flat ring map whose special

fiber is R[X]/ inu(I) and whose generic fiber is R[X]/I.

(b) In Section 2 we study ideals I ⊆ (Y, S) ·OX,x[Y, S] where OX is an analytic structure

sheaf and the u-grading assigns 1 to the y-terms and 0 to the s-terms. Proposition

 2.6.6 applies with R = OX,x.
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3. COMBINATORIALLY DETERMINED ZEROES OF
BERNSTEIN–SATO IDEALS FOR TAME AND FREE AR-
RANGEMENTS 

1
 

3.1 Introduction

Consider a central, not necessarily reduced, hyperplane arrangement cut out by f ∈

C[X] = C[x1, . . . , xn]. Given a factorization f = f1 · · · fr, not necessarily into linear terms,

and letting F = (f1, . . . , fr), there is a free C[X][ 1
f
][s1, . . . , sr]-module generated by the sym-

bol F S = f s1
1 · · · f srr . This module has an An(C) [S] = An(C) [s1, . . . , sr]-module structure,

where An(C) [S] is a polynomial ring extension over the Weyl algebra, given by the formal

rules of calculus. We will denote the An(C) [S]-module generated by F S as An(C) [S]F S. For

f ′ and g ∈ C[X] dividing f we study the polynomials B(S) ∈ C[S] = C[s1, . . . , sr] satisfying

the functional equation

B(S)f ′F S ∈ An(C) [S]gf ′F S. (3.1.1)

The ideal populated by said polynomials is the Bernstein–Sato ideal Bg
f ′F . When f ′ = 1

and g = f this defines the multivariate Bernstein–Sato ideal in the sense of Budur [ 6 ] and

we simply write BF ; if we further restrict to the trivial factorization F = (f) then we obtain

the classical functional equation whose corresponding ideal, which we denote by Bf , has as

its monic generator the Bernstein–Sato polynomial.

The roots of the Bernstein–Sato polynomial encode various data about the singular lo-

cus of f . Malgrange and Kashiwara, cf. [ 3 ], [ 4 ], famously proved that exponentiating the

local version of the Bernstein–Sato polynomial’s roots recovers the eigenvalues of the alge-

braic monodromy action on nearby Milnor fibers. In [  6 ], Budur conjectured the analogous

claim for the multivariate Bernstein–Sato ideal BF associated to a factorization of f into

irreducibles: exponentiating the ideal’s zero locus recovers the cohomology support locus of

the complement of Var(f). A proof of this (for germs f that need not be arrangements)

has recently been announced by Budur, Veer, Wu, and Zhou, cf. [ 10 ]. Beyond these mon-
1

 ↑ A version of this chapter has been published in the Journal of Singularities as [ 30 ].
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odromy results, zeroes of Bernstein–Sato polynomials are related to many other invariants:

multiplier ideals, log canonical thresholds, F-pure thresholds, etc.

However, even in the case of arrangements, formulae for Bernstein–Sato ideals, polynomi-

als, or their zero loci are very rare. Walther has found a formula for the Bernstein–Sato poly-

nomial for generic arrangements in [ 31 ], Maisonobe has shown the Bernstein–Sato ideal BF

for a generic arrangement factored into linear forms is principal and found the corresponding

formula for a generator, cf. [  32 ], and Saito has shown that the roots of the Bernstein–Sato

polynomial of a reduced and central arrangement f lie in (−2 + 1
deg(f) , 0) ∩ Q, cf. [  33 ].

On the other hand, Walther has shown that, in general, the roots of the Bernstein–Sato

polynomial are not combinatorially determined, that is, they cannot be computed from the

arrangement’s intersection lattice, cf. [ 7 ] and Example  3.4.22 . The multivariate Bernstein–

Sato ideal BF is not even guaranteed to be principal, cf. [  15 ] for a counter-example in the

local case. To our knowledge, there are no systematic studies of the more general type of

Bernstein–Sato ideal Bg
f ′F though it does play a role in [  31 ].

Our starting point is the program of Maisonobe in [ 11 ] wherein he proves the Bernstein–

Sato ideal of a central, reduced, and free (in the sense of Saito [ 8 ]) arrangement equipped

with its factorization into linear forms is principal and gives a combinatorial formula for its

generator. While the approach is similar, we encounter many technical difficulties because

our results are significantly more general: we consider the more general functional equation

( 3.1.1 ) and we often relax the assumptions of f being factored into linear forms, being free,

and being reduced.

In Section 2, we consider a larger class of analytic germs f ∈ OX than just central,

reduced, and free arrangements and we consider any factorization f = f1 · · · fr. In Chapter

2, we proved that annDX,x[S] F
S is generated by derivations, that is, by differential operators

of order at most one under a natural filtration, under the hypotheses of tameness (a sliding

condition on projective dimension), strongly Euler-homogeneous (a hypothesis that a partic-

ular logarithmic derivation exists locally everywhere), and Saito-holonomicity (a finiteness

condition on the logarithmic stratification). We use similar techniques to generalize these

results from Chapter 2 in Theorem  3.2.21 :
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Theorem 3.1.1. Suppose f = f1 · · · fr is tame, strongly Euler-homogeneous, and Saito-

holonomic, f ′ ∈ OX,x[ 1
f
] is compatible with f , and F = (f1, . . . , fr). Then the DX,x[S]-

annihilator of f ′F S is generated by derivations.

In Section 3, we replace the hypothesis of tame with free and prove a version of the sym-

metry of Bg
f ′F that was first identified by Narváez-Macarro in [ 9 ] in the case of Bernstein–

Sato polynomials and generalized to BF by Maisonobe in [ 11 ]. This follows from comput-

ing the DX,x[S]-dual of DX,x[S]f ′F S. Without freeness, computing these DX,x[S]-duals is

currently intractible. While we are certain one could use Narváez-Macarro’s Lie-Rinehart

strategy, we instead opt for Maisonobe’s approach, which itself relies on a computation of

the trace of an adjoint action first proved by Castro–Jiménez and Ucha in Theorem 4.1.4

of [  34 ]; we give a different proof of this in Section 5. With D denoting the DX,x[S]-dual

RHomDX,x[S](−,DX,x[S])left, in Theorem  3.3.9 we prove:

Theorem 3.1.2. Suppose f = f1 · · · fr ∈ OX is free, strongly Euler-homogeneous, and Saito-

holonomic and fred ∈ OX,x is a Euler-homogeneous reduced defining equation for f at x. Let

F = (f1, . . . , fr), let f ′ ∈ OX,x be compatible with f , and let g ∈ OX,x such that f ∈ OX,x · g.

Then

D
(

DX,x[S]f ′F S

DX,x[S] · gf ′F S

)
' DX,x[S](gf ′fred)−1F−S

DX,x[S](f ′fred)−1F−S
[n+ 1].

The main application is Theorem  3.3.16 which identifies technical conditions on f ′, g,

and F such that Bg
f ′F is invariant under a non-trivial involution of C[S].

In Section 4 we return to hyperplane arrangements and first show that the nice structure

of annDX,xS f
′F S from Theorem  3.2.21 allows us to adapt Maisonobe’s arguments to estimate

Bg
f ′F for any factorization. In particular we complement Walther’s result that the roots

of Bernstein–Sato polynomial are not combinatorial for even tame arrangements, cf. [ 7 ].

Namely, we prove in Theorem  3.4.21 the roots lying in [− 1, 0) are combinatorial:

Theorem 3.1.3. Let f be a central, not necessarily reduced, tame hyperplane arrangement.

Suppose f ′ divides f ; let g = f
f ′
. Then the roots V(Bg

f ′f ) lying in [−1, 0) are combinatorially

determined:

V(Bg
f ′f ) ∩ [− 1, 0) =

⋃
X∈L(A)

X indecomposable

dX⋃
jX=r(X)+d′X

−jX
dX

.
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Setting f ′ = 1 gives all the roots of the Bernstein–Sato polynomial of f lying in [− 1, 0).

If we assume further that f is free, then we can then use the symmetry property of Theo-

rem  3.3.16 to more accurately estimate V(Bg
f ′F ), where V(−) always refers to the zero locus

of the ideal in question. In this setting there is a computation for the multivariate Bernstein–

Sato ideal of a reduced, free f that has been factored into linear forms due to Maisonobe

[ 11 ], but no results about other factorizations, non-reduced f , or even the Bernstein–Sato

polynomial. We fill in much of this gap. With P g
f ′F,X ∈ C[S] the explicit linear polynomial

from Definition  3.4.10 , we obtain the following, which in particular shows that the roots of

the Bernstein–Sato polynomial for any power of a reduced, central, and free arrangement

are combinatorially determined:

Theorem 3.1.4. Suppose f = f1 · · · fr is a central, not necessarily reduced, free hyperplane

arrangement, F = (f1, · · · , fr), f ′ divides f , and g = f
f ′
. If (f ′, F ) is an unmixed pair up to

units and if deg(f ′) ≤ 4, then V(Bg
f ′F ) is a hypersurface and

V(Bg
f ′F ) = V

 ∏
X∈L(A)

X indecomposable

dX,red+dX−2r(X)−d′X∏
jX=0

(
P g
f ′F,X + jX

) . (3.1.2)

If L is a factorization of f = l1 · · · ld into irreducibles and deg(f ′) ≤ 4, then

Bg
f ′L =

∏
X∈L(A)

X indecomposable

dX,red+dX−2r(X)−d′X∏
jX=0

(
P g
f ′L,X + jX

)

and so Bg
f ′L principal. If f ′ = 1 and f is reduced, then for any F

V(BF ) = V

 ∏
X∈L(A)

X indecomposable

dX,red+dX−2r(X)∏
jX=0

(
P g
F,X + jX

) . (3.1.3)

In particular, if f is reduced or is a power of a central, reduced, and free hyperplane arrange-

ment, then the roots of the Bernstein–Sato polynomial of f are given by ( 3.1.3 ).
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In Remark  3.4.28 we discuss how to use new results to get a combinatorial formula for

the roots of the Bernstein–Sato polynomial corresponding to any central, free f , that is, to f

that may not be a power of a reduced arrangement. In the case of line arrangements, we are

also able to compute V(Bg
f ′F ) for any suitable choice of f ′, g, and F without the technical

condition of unmixed up to units, cf. Theorem  3.4.25 and Definition  3.3.14 .

Unfortunately our methods are not appropriate for determining the multiplicity of roots

of the Bernstein–Sato polynomial so we cannot conclude this polynomial is combinatorial for

free arrangements. These multiplicities are mysterious, although in [ 33 ] Saito proves various

results about them in the general (i.e. in the non-free) setting. Notably he shows that −1

has multiplicity equal to the arrangement’s rank.

In Section 5 we make use of our results involving the more general functional equation

( 3.1.1 ) to study the smallest arrangement V(f ′) that when added to the arrangement V(g)

makes V(f ′g) free, i.e. the smallest arrangement f ′ that frees g. For arbitrary divisors g, it

is unknown whether or not such a divisor f ′ exists. There are some positive results, but the

methodologies are very particular to the type of divisors considered. For example, Mond and

Schulze identified certain classes of germs that are freed by a adjoint divisors–these germs

are related to discrimants of versal deformations, cf. [ 35 ]. Other cases of freeing divisors

are considered in [  36 ] and [ 37 ]. However, Yoshinaga [ 38 ] has communicated to us a way,

based on the combinatorics of g, to find an arrangement f ′ that frees an arrangement g. In

Theorem  3.5.4 we prove the degree of f ′ is related to roots of the Bernstein–Sato polynomial

of g.

Theorem 3.1.5. Suppose that g is a central, reduced, tame hyperplane arrangement of rank

n, v an integer such that 1 < v ≤ n− 1, and deg(g) is co-prime to v. If −2 deg(g)+v
deg(g) is a root

of the Bernstein–Sato polynomial of g and if f ′ is a central arrangement that frees g, then

deg(f ′) ≥ n− v.

In Section 6 we prove a conjecture of Budur’s in the case of central, reduced, and free

hyperplane arrangments. The recently announced paper [ 10 ] gives a general proof using

entirely different methods.
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3.2 Bernstein–Sato Ideals and the DX,x[S]-module DX,x[S]f ′F S

In this section we introduce some of our working hypotheses on f ∈ OX . These are needed

to utilize results from Chapter 2 and [ 7 ] which will be needed throughout the chapter. We

generalize Theorem 2.29 of Chapter 2 and discuss how Bernstein–Sato varieties attached to

different factorizations of f relate to each other.

3.2.1 Hypotheses on f

Let X be a smooth analytic space or C-scheme of dimension n and OX be the analytic

structure sheaf. Pick f ∈ OX to be regular with divisor Y = Div(f) and ideal sheaf IY . In

general, we make no reducedness assumption on Y .

Definition 3.2.1. Let DerX(− log Y ) be the OX-sheaf of logarithmic derivations on Y , that

is, the sheaf generated locally by the vector fields δ such that δ •IY ⊆ IY . If Y = Div(f)

then we also label DerX(− log f) = DerX(− log Y ). Define the derivations that kill f to be

DerX(− log0 f) = {δ ∈ DerX(− log f) | δ • f = 0}.

Remark 3.2.2.(a) It is easily checked that DerX(− log Y ) depends on IY and not the

choice of generators of IY .

(b) By Lemma 3.4 of [ 18 ], DerX,x(− log fg) = DerX,x(− log f) ∩ DerX,x(− log g). This is

not always true when restricting to derivations that kill f .

(c) DerX,x(− log f) is closed under taking commutators.

At points we will be interested in when DerX(− log Y ) has a particularly nice structure.

Definition 3.2.3. The divisor Y = Div(f) is free when DerX(− log Y ) is locally everywhere

a free OX-module. Similarly f ∈ OX,x is free when DerX,x(− log f) is a free OX,x-module.

In [  8 ], Saito introduced the logarithmic differential forms which are, in some sense, a dual

notion to logarithmic derivations.
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Definition 3.2.4. Let Ωk
X be the sheaf of differential k-forms on X and d : Ωk

X → Ωk+1
X the

standard differential. Define the sheaf of logarithmic k-forms along f by

Ωk
X(log f) = {w ∈ 1

f
Ωk
X | df ∧ w ∈ Ωk+1

X }.

An element f ∈ OX is tame if the projective dimension of the logarithmic k-forms along

f is at most k in each stalk. A divisor Y is tame if it locally everywhere admits tame defining

equations.

Remark 3.2.5.(a) The logarithmic 1-forms are dual to the logarithmic differen-

tials: HomOX,x(DerX,x(− log f),OX,x) ' Ω1
X(log f). When f is free, Ωk

X(log f) '∧k Ω1
X(log f), cf. 1.6 and page 270 of [ 8 ].

(b) If dim(X) = n ≤ 3 then any divisor Y is automatically tame. This follows from the

reflexivity of logarithmic k-forms, cf. [  8 ].

The logarithmic derivations can also be used to stratify X:

Definition 3.2.6. (Compare to 3.3 and 3.8 of [ 8 ]) There is a relation on X induced by the

logarithmic derivations along Y . Two points x and y are equivalent if there exists an open U

containing them and a δ ∈ DerU(− log Y ∩U) such that: (i) δ vanishes nowhere on U ; (ii) an

integral curve of δ passes through x and y. The transitive closure of this relation stratifies

X into equivalence classes whose irreducible components are the logarithmic strata. These

strata constitute the logarithmic stratification.

We say Y is Saito-holonomic when the logarithmic stratification is locally finite.

Example 3.2.7. By 3.14 of [ 8 ] hyperplane arrangements are Saito-holonomic.

Finally, we define some homogeneity conditions on f ∈ OX .

Definition 3.2.8. We say f ∈ OX,x is Euler-homogeneous when there exists δ ∈

DerX,x(− log f) such that δ • f = f. If δ may be picked to vanish at x, then f is strongly

Euler-homogeneous.
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The element f ∈ OX is (strongly) Euler-homogeneous if it is so at each point. The divisor

Y is (strongly) Euler-homogeneous if it locally everywhere admits a defining equation that

is (strongly) Euler-homogeneous.

Remark 3.2.9. If f ∈ OX,x and u ∈ OX,x is a unit, then f is strongly Euler-homogeneous if

and only if uf is, cf. Remark 2.8 of [ 7 ].

Example 3.2.10. Hyperplane arrangements are strongly Euler-homogeneous.

Our working hypotheses on f will often be “tame, strongly Euler-homogeneous, and

Saito-holonomic” or “free, strongly Euler-homogeneous, and Saito-holonomic.” In light of

Examples  3.2.7 and  3.2.10 , if f cuts out a hyperplane arrangement only tameness or freeness

need be assumed.

3.2.2 The DX,x[S]-Annihilator of f ′F S

Let DX be the sheaf of C-linear differential operators with coefficients in OX and DX [S]

be the polynomial ring extension induced by adding r central variables S = s1, . . . , sr.

Definition 3.2.11. Consider the free OX [S][ 1
f
]-module generated by the symbol F S =

f s1
1 · · · f srr . This is endowed with a DX [S]-action by specifying the action of a C-linear deriva-

tion δ on OX . For any g ∈ OX [ 1
f
], declare

δ • (sigF S) = si(δ • g)F S + sig(
∑
k

δ • fk
fk

sk)F S.

Let DX [S]F S be the DX [S]-module generated by F S. For g ∈ OX [ 1
f
], let DX [S]gF S be the

DX [S]-module generated by gF S.

Remark 3.2.12. When executing the above construction with only one s, we use the notation

DX [s]f s. This is the classical, univariate situation.

In Proposition 2.7 of Chapter 2 we showed both that there is a canonical way to associate

elements of DerX(− log f) to elements of annDX [S] F
S and that when f is tame, strongly
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Euler-homogeneous, and Saito-holonomic, annDX,x[S] F
S is generated by said elements. In

this subsection we prove the analogous claims for annDX,x[S] f
′F S, provided f ′ is chosen such

that fNf ′ ∈ OX,x and fM ∈ OX,x · fNf ′ for suitable choices of N,M ≥ 0. First, we show how

to associate elements of DerX,x(− log f) to annDX,x[S] f
′F S in an entirely similar way as in

the prequel; second, we show that these elements generate annDX,x[S] f
′F S when f is tame,

strongly Euler-homogeneous, and Saito-holonomic.

Definition 3.2.13. The total order filtration F(0,1,1) on DX,x[S] assigns, in local coordinates,

every ∂xk weight one, every sk weight one, and every element of OX weight zero. We will

denote the elements of weight at most l by F l
(0,1,1) or F l

(0,1,1)(DX,x[S]).

Definition 3.2.14. Write f ∈ OX,x as f = ulp1
1 · · · lpqq where the lt are pairwise distinct

irreducibles, pt ∈ Z+, and u is a unit in OX,x. We say f ′ ∈ OX,x[ 1
f
] is compatible with f if

there exists a unit u′ ∈ OX,x and integers vt ∈ Z such that

f ′ = ulv1
1 · · · lvqq .

In this case, vt is the multiplicity of lt.

By Remark  3.2.2 , if f = ulp1
1 · · · lvqq a factorization of f into irreducibles at x, u a unit,

then if δ ∈ DerX,x(− log f), δ•lt
lt
∈ OX,x. So for f ′ compatible with f ,

δ • f ′F S = (δ • f ′)F S + f ′(
∑
k

δ • fk
fk

sk)F S = (δ • f
′

f ′
+
∑
k

δ • fk
fk

sk)f ′F S,

where ( δ•f ′
f ′

+∑
k
δ•fk
fk
sk) ∈ OX,x[S]. Indeed, δ•f ′

f ′
= ∑

vt
δ•lt
lt
∈ OX,x and similarly δ•fk

fk
∈ OX .

Definition 3.2.15. Suppose f ′ is compatible with f . If f = f1 · · · fr and F = (f1, . . . , fr),

then there is a map of OX,x-modules

ψf ′F,x : DerX,x(− log f)→ annDX,x[S] f
′F S ∩ F 1

(0,1,1)

given by

ψf ′F,x(δ) = δ −
∑
k

δ • fk
fk

sk −
δ • f ′

f ′
.
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The OX,x-module of annihilating derivations along f ′F is defined as

θf ′F,x = ψf ′F,x(DerX,x(− log f))

and annDX,x[S] f
′F S is generated by derivations when

annDX,x[S] f
′F S = DX,x[S] · θf ′F,x.

When f ′ = 1 we write ψF,x and θF,x.

Arguing as in Proposition 2.7 of Chapter 2 we see that:

Proposition 3.2.16. (Compare to Proposition 2.7 of Chapter 2) Suppose f ′ is compatible

with f . If f = f1 · · · fr and F = (f1, . . . , fr), then ψf ′F,x is an isomorphism.

Proof. Suppose δ − ∑
k bksk − b ∈ annDX,x[S] f

′F ∩ F 1
(0,1,1) where bk, b ∈ OX,x. Since f ′F S

generates a free OX,x[S][ 1
f
]-module we deduce

(
∑
k

δ • fk
fk

sk − bksk) + (δ • f
′

f ′
− b) = 0

and hence

δ ∈
⋂
k

DerX,x(− log fk) = DerX,x(− log f).

So the map δ −∑k bksk − b 7→ δ sends annDX,x[S] f
′F ∩ F 1

(0,1,1) to DerX,x(− log f). Its inverse

is ψf ′F,x.

Remark 3.2.17. By definition, annDX,x[S] f
′F S is closed under taking commutators; hence

θf ′F,x is as well. As ψf ′F,x is an isomorphism, a basic computation shows ψf ′F,x respects

taking commutators.

In Chapter 2 we generalized an approach of Walther’s in [  7 ]: we looked at the

associated graded object of annDX,x[S] F
S under the total order filtration F(0,1,1). As

ψF,x(DerX,x(− log f)) ⊆ annDX,x[S] F
S the following definition is natural:
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Definition 3.2.18. Suppose f is strongly Euler-homogeneous. The generalized Liouville

ideal L̃F,x ⊆ gr(0,1,1)(DX,x[S]) is generated by the symbols of elements in ψF (DerX,x(− log f))

under the total order filtration. That is,

L̃F,x = gr(0,1,1)(DX,x[S]) · gr(0,1,1)(ψF,x(DerX,x(− log f))).

Remark 3.2.19.(a) The strongly Euler-homogeneous assumption in the above definition

ensures that algebraic properties of L̃F,x do not depend on choice of defining equations

for each fk at x. See Remark 2.15 of Chapter 2 for details.

(b) By Corollary 2.28 of Chapter 2, if f ∈ OX is tame, strongly Euler-homogeneous, and

Saito-holonomic then L̃F,x = gr(0,1,1)(annDX,x[S] F
S).

(c) For δ ∈ DerX,x(− log f), note that

gr(0,1,1)(ψf ′F,x(δ)) = gr(0,1,1)(δ −
∑
k

δ • fk
fk

sk −
δ • f ′

f ′
)

= gr(0,1,1)(δ −
∑
k

δ • fk
fk

sk)

= gr(0,1,1)(ψF,x(δ)).

Since L̃F,x ⊆ gr(0,1,1)(DX,x[S]) has, by definition, generators {gr(0,1,1)(ψF,x(δ)) | δ ∈

DerX,x(− log f)}, we deduce

L̃F,x = gr(0,1,1)(DX,x[S]) · {gr(0,1,1)(ψf ′F,x(δ)) | δ ∈ DerX,x(− log f)}

= gr(0,1,1)(DX,x[S]) · gr(0,1,1)(θf ′F,x)

⊆ gr(0,1,1)(annDX,x[S] f
′F S).

By the preceding remark, L̃F,x approximates gr(0,1,1)(annDX,x[S] f
′F S). Arguing as in Corol-

lary 2.28 of Chapter 2 we prove the approximation is in fact an equality:
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Theorem 3.2.20. Suppose f = f1 · · · fr is tame, strongly Euler-homogeneous and Saito-

holonomic. Let F = (f1, . . . , fr) and suppose f ′ ∈ OX,x[ 1
f
] is compatible with f . Then

gr(0,1,1)(annDX,x[S] f
′F S) = gr(0,1,1)(DX,x[S]) · gr(0,1,1)(θf ′F,x).

Proof. For the first part of this proof we mimic Proposition 2.25 of Chapter 2. In Definition

2.24 of loc. cit. we introduced a OX,x-linear ring homomorphism φF,x : gr(0,1,1)(DX,x[S]) →

R(Jac(f1), . . . , Jac(fr)) where R(Jac(f1), . . . , Jac(fr)) is the multi-Rees algebra associated

to the r Jacobian ideals Jac(f1), . . . , Jac(fr). Using local coordinates ∂xi and identifying

gr(0,1,1)(DX,x[S]) with OX,x[Y ][S] via gr(0,1,1)(∂xi) = yi, the map φF,x is given by

yi 7→
∑
k

f

fk
(∂xi • fk)sk and sk 7→ fsk.

Proposition 2.26 of loc. cit. shows ker(φF,x) is a prime ideal of dimension n+ r.

Select P ∈ annDX,x[S] f
′F of weight l under the total order filtration F(0,1,1). For any

Q of weight l, f lQ • f ′F S ∈ OX,x[S]F S. Now, for g ∈ OX,x[S][ 1
f
], write ∂xi • gf ′F S =

(∂xi • g+ g
∂xi•f

′

f ′
+ g

∑
k
∂xi•fk
fk

sk)f ′F S. Thus, if applying a partial derivative to gf ′F S causes

the s-degree (under the natural filtration) of the OX,x[S]-coefficient of f ′F S to increase, the

terms of higher s-degree are precisely g∑k
∂xi•fk
fk

. A straightforward computation then shows

that the S-lead term of f lQ•f ′F S is exactly φF,x(gr(0,1,1)(Q))f ′F S ∈ OX,x[S]f ′F S. Since f ′F S

generates a free OX,x[S][ 1
f
]-module and since P•f ′F S = 0, we conclude gr(0,1,1)(P ) ∈ ker(φF,x).

By Remark  3.2.19 we deduce:

L̃F,x ⊆ gr(0,1,1)(DX,x[S]) · gr(0,1,1)(θf ′F,x) ⊆ gr(0,1,1)(annDX,x[S] f
′F S) (3.2.1)

⊆ ker(φF,x).

Since f is tame, strongly Euler-homogeneous, and Saito-holonomic, by Theorem 2.23 of loc.

cit., L̃F,x is a prime ideal of dimension n + r. So the outer ideals of (  3.2.1 ) are prime ideals

of dimension n+ r and the containments are equalities.
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Theorem 3.2.21. Suppose f = f1 · · · fr is tame, strongly Euler-homogeneous, and Saito-

holonomic, f ′ ∈ OX,x[ 1
f
] is compatible with f , and F = (f1, . . . , fr). Then the DX,x[S]-

annihilator of f ′F S is generated by derivations.

Proof. By Theorem  3.2.20 , for P ∈ annDX,x[S] f
′F S, we can find L ∈ DX,x[S] · θf ′F,x such

that P and L have the same initial term with respect to the total order filtration. Since

P − L annihilates f ′F S and, by construction, has a smaller weight than P , we can argue

inductively as in Theorem 2.29 of Chapter 2 now using Theorem  3.2.20 instead of Corollary

2.28 of Chapter 2. The induction argument therein will also terminate in this setting since

annDX,x[S] f
′F S ∩ OX,x = 0.

The following corollary will let us study the Weyl algebra version of the annihilator of

f ′F S when f ′ and f are global algebraic.

Corollary 3.2.22. If X is the analytic space of a smooth C-scheme, then the statement of

Theorem  3.2.21 holds in the algebraic category.

Proof. See Corollary 2.30 of Chapter 2.

We will also be interested in the DX,x[S]-module generated by the symbol F−S =

f−s1
1 · · · f−srr which is defined in the same way as DX,x[S]F S. Most of our previous defi-

nitions apply to F−S as well, in particular, if f ′ is compatible with f let ψ−Sf ′F,x and θ−SF,x be

as before, except with the signs of the sk switched.

Theorem 3.2.23. Suppose f = f1 · · · fr is tame, strongly Euler-homogeneous, and Saito-

holonomic, f ′ is compatible with f , and F = (f1, · · · , fr). Then the DX,x[S]-annihilator of

f ′F−S is generated by derivations in that

annDX,x[S] f
′F−S = DX,x[S] · θ−Sf ′F,x.

If X is the analytic space of a smooth C-scheme, then this holds in the algebraic category as

well.
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Proof. It is sufficient to prove the generated by derivations statement. For this argue as in

Theorem  3.2.21 except replace L̃F,x and φF,x with their images under the gr(0,1,1)(DX,x[S])

automorphism induced by sk 7→ −sk.

3.2.3 Bernstein–Sato Ideals

Recall the univariate functional equation, with b(s) ∈ C[s], P (s) ∈ DX,x[s]:

b(s)f s = P (s)f s+1.

The polynomials b(s) generate the Bernstein–Sato ideal Bf,x of f . The monic generator of

this ideal is the Bernstein–Sato polynomial; the reduced locus of its variety is V(Bf,x). We

will be interested in multivariate generalizations of this functional equation.

Definition 3.2.24. Let f ′, g1, . . . , gu ∈ OX,x and I the ideal generated by the g1, . . . gu.

Consider the functional equation

B(S)f ′F S =
∑
t

Ptgtf
′F S ∈ DX,x[S] · If ′F S

where f = f1 · · · fr, F = (f1, . . . , fr), Pt ∈ DX,x[S], and B(S) ∈ C[S]. The polynomials B(S)

satisfying this functional equation constitute the Bernstein–Sato ideal BI
f ′F,x. Note that

BI
f ′F,x = C[S] ∩ (annDX,x[S] f

′F + DX,x[S] · I).

When I = (f) we will write BI
f ′F,x = Bf ′F,x and when I = (g) we will write Bg

f ′F,x. When

in the univariate case, i.e. r = 1, we will write Bf ′F,x = Bf ′f,x and Bg
f ′F,x = Bg

f ′f,x. When in

the global algebraic case we define similar objects using An(C) [S] instead of DX,x[S]–in this

case we drop the (−)x subscript. Finally by V(−) we always mean the reduced locus of the

appropriate variety.

We will want to compare the Bernstein–Sato ideals corresponding to different factoriza-

tions.
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Definition 3.2.25. Let f = f1 · · · fr and F = (f1, . . . , fr). Write [r] as the disjoint union

of the intervals It where 1 ≤ t ≤ m and consider the coarser factorization H = (h1, . . . , hm)

where f = h1 · · ·hm and ht = ∏
i∈It fi. Define SH to be the ideal of C[S] generated by si− sj

for all i, j ∈ It and for all t.

Proposition 3.2.26. Let f = f1 · · · fr be tame, strongly Euler-homogeneous, and Saito-

holonomic. Let F = (f1, . . . , fr), let I ⊆ OX,x, and let H be a coarser factorization. If

f ′ ∈ OX,x such that f ∈ OX,x · f ′, then the image of BI
f ′F,x modulo SH lies in BI

f ′H,x.

Proof. As f ′ is compatible with f , annDX,x[S] f
′F S and annDX,x[S] f

′HS are both generated

by derivations. Since DerX,x(− log f) ⊆ DerX,x(− log f ′), we can easily get a result similar to

Proposition 2.33 of Chapter 2 and, from that, a result similar to Proposition 2.32 of loc. cit.

The argument is essentially the same as the proof of Proposition  3.5.3 of this chapter.

Example 3.2.27. For f = xy2(x+ y)2 and F = (xy, y(x+ y), x+ y),

BF = (s1 + 1)
1∏
j=0

(s1 + s2 + 1 + j)(s2 + s3 + 1 + j)(
4∏

m=0
(2s1 + 2s2 + s3 + 2 +m).

While Proposition  3.2.26 can estimate Bf , it estimates multiplicities poorly. Indeed, going

modulo (s1 − s2, s1 − s3, s2 − s3) we find

(s+ 1)3(2s+ 1)2
4∏

m=0
(5s+ 2 +m) ∈ Bf = C[s] · (s+ 1)(2s+ 1)

4∏
m=0

(5s+ 2 +m).

3.3 DX,x[S]-Dual of DX,x[S]f ′F S

In [ 9 ], Narváez-Macarro computed the DX,x[s]-dual of DX,x[s]f s when f is reduced, free,

and quasi-homogeneous; in [ 11 ] Maisonbe generalized this approach to compute the DX,x[S]-

dual of DX,x[S]F S where f is as in [ 9 ], f = f1 · · · fr, and F = (f1, . . . , fr). In this section we

will use Maisonobe’s approach to compute the DX,x[S]-dual of DX,x[S]f ′F S where f ∈ OX

is free, strongly Euler-homogeneous, Saito-holonomic, not necessarily reduced but admitting

a reduced Euler-homogeneous defining equation fred at x, f ′ ∈ OX,x is compatible with f ,

and F = (f1, . . . , fr) corresponds to any factorization, not necessarily into irreducibles, of
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f = f1 · · · fr. The strategy hinges on a formula for the trace of the adjoint first proved

by Castro–Jiménez and Ucha in Theorem 4.1.4 of [ 34 ]. We supply a different proof in

Proposition  3.6.12 .

In the second subsection, we note that this duality computation lets us argue as in

Maisonobe’s Proposition 20 of [ 39 ] and prove that the radical of Bf ′F,x is principal. In the

third subsection, we show that Bg
f ′F,x is fixed under a non-trivial involution when f ′, F , and

g satisfy a technical condition, cf. Definition  3.3.14 .

Convention 3.3.1. A resolution is a (co)-complex with a unique (co)-homology module at

its end. An acyclic (co)-complex has no non-trivial (co)-homology. Given a (co)-complex

(C•) C• resolving A, the augmented (co)-complex (C• → A) C• → A is acyclic.

3.3.1 Computing the Dual

Our argument begins at essentially the same place as Narváez-Macarro’s and

Maisonobe’s: the Spencer co-complex.

Definition 3.3.2. Let f = f1 · · · fr ∈ OX,x be free, let F = (f1, . . . , fr), and let f ′ ∈ OX,x

be compatible with f . Consider g1, . . . , gu ∈ OX,x such that f ∈ OX,x · gj for all 1 ≤ j ≤ u,

and let I ⊆ OX,x be the ideal generated by g1, . . . , gu. We will define SpIθf ′F,x , the extended

Spencer co-complex associated to f ′ and I. When I = (g), write Spgf ′F . This will be a mild

generalization of the normal Spencer complex, cf. A.18 of [ 9 ].

Let E be the free submodule of Ou
X,x prescribed by the basis e1, . . . , eu where ej =

(0, . . . , gj, . . . , 0). We define an anti-commutative map

σ : (θf ′F,x ⊕ E)× (θf ′F,x ⊕ E)→ θf ′F,x ⊕ E
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that is essentially the commutator on F 1
(0,1,1)(DX,x[S]). The map is determined by its anti-

commutativity and the following assignments:

σ(λi, λj) =


[λi, λj], λi, λj ∈ θf ′F,x,

0, λi, λj ∈ E,
δ•(bgj)
gj

ej, λi = ψf ′F,x(δi) for δi ∈ DerX,x(− log f), λj = bej.

Abbreviate SpIθf ′F,x as Sp• . Then the objects of our complex are

Sp−m = DX,x[S]⊗OX,x

m∧
(θf ′F,x ⊕ E)

and the differentials d−m : Sp−m 7→ Sp−m+1 are given by

d−m(P ⊗ λ1 ∧ · · · ∧ λm) =
r∑
i=1

(−1)i−1Pλi ⊗ λ̂i

+
∑

1≤i<j≤m
(−1)i+jP ⊗ σ(λi, λj) ∧ λ̂i,j.

Here λ̂i is the wedge, in increasing order, of all the λ1, . . . , λr except for λi; λ̂i,j is the same

except now excluding both λi and λj. To be clear, we interpret Pej as Pgj ∈ DX,x[S]; in

particular, d−1(P ⊗ ej) = Pgj. There is a natural augmentation map

Sp0 = DX,x[S] 7→ DX,x[S]
DX,x[S] · θf ′F,x + DX,x[S] · I .

Remark 3.3.3.(a) Since DerX,x(− log f) is closed under taking commutators, so is θf ′F,x,

see also Example 4.7 of Chapter 2. And as gj divides f for all 1 ≤ j ≤ u, we know

DerX,x(− log f) ⊆ DerX,x(− log gj) for all j. Thus σ, and consequently the differentials,

are well-defined.

(b) That the extended Spencer co-complex is in fact a co-complex is a straightforward

computation mirroring the case of the standard Spencer co-complex.

(c) We have assumed f is free so that SpIθf ′F,x will be a finite, free co-complex of DX,x[S]-

modules. We may fix a basis of θf ′F,x, extend it to a basis of θf ′F,x ⊕ E using the
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prescribed basis of E, and then compute differentials. Label this basis λ1, . . . , λn+u.

Let σ(λi, λj) = ∑n+u
k=1 c

i,j
k λk be the unique expression of σ(λi, λj). Then

d−m(λ1 ∧ · · · ∧ λm) =
m∑
i=1

(−1)i−1λi ⊗ λ̂i

+
∑

1≤i<j≤m
(−1)i+jci,ji ⊗ (−1)i−1λ̂j + (−1)i+jci,jj ⊗ (−1)jλ̂i

=
m∑
i=1

(−1)i−1λi +
∑
j<i

(−1)i−1cj,ij +
∑
i<j

(−1)ici,jj

⊗ λ̂i.
We can naturally encode this as matrix multiplication on the right.

The following calculation relies on Castro–Jiménez and Ucha’s formula for adjoints ap-

pearing in Theorem 4.1.4 of [ 34 ]; cf. Proposition  3.6.12 for our proof. See also Lemma 1 and

Proposition 6 of [ 11 ]. Before stating the Proposition, let us recall the side-changing functor

for DX,x[S]-modules. We use the notation of Appendix A of [ 9 ].

Definition 3.3.4. (Compare to Appendix A of [ 9 ]) We will define the equivalence of cate-

gories between right DX,x[S]-modules and left DX,x[S]-modules. First, regard DerX,x [S] as a

free OX,x[S]-module of rank n. Then the dualizing module ωDerX,x [S] of DerX,x [S] is defined

as

ωDerX,x [S] = HomOX,x[S]

(
n∧

DerX,x [S],OX,x[S]
)
.

This naturally carries a right DX,x[S]-module structure by A.20 of [ 9 ]. The aforementioned

equivalence of categories is given by associated to every right DX,x[S]-module Q the left

DX,x[S]-module Qleft defined by

Qleft = HomOX,x[S]
(
ωDerX,x [S], Q

)
.

That Qleft is a left DX,x[S]-module follows from A.2 of [ 9 ]; that this gives an equivalence of

categories follows from the discussion before A.25 of loc. cit.

Remark 3.3.5. Despite the s-terms, this side-changing functor is defined entirely similarly

to the side-changing functor for DX,x-modules. So just as in the DX,x[S]-module case, if we

fix coordinates (x, ∂x) we can describe the transition from right to left DX,x[S]-modules in
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elementary terms. Define τ : DX,x[S]→ DX,x[S] by τ(xα∂βxsγ) = (−∂βx )xαsγ where α, β, and

γ are multi-indices. Then (−)left sends the cyclic right DX,x[S]-module DX,x[S]/J is to the

left DX,x[S]-module DX,x[S]/τ(J). See 1.2 of [ 40 ] for details in a similar case.

Proposition 3.3.6. Let f = f1 · · · fr ∈ OX,x be free, F = (f1, . . . , fr), fred ∈ OX,x a Euler-

homogeneous reduced defining equation for f at x, and I ⊆ OX,x the ideal generated by

g1, . . . , gu with f ∈ OX,x · gv for each gv. Write g = g1 · · · gu. Then we can compute the

terminal homology module of HomDX,x[S](SpIθf ′F,x ,DX,x[S])left:

H−n−u
(
HomDX,x[S](SpIθf ′F,x ,DX,x[S])left

)
' DX,x[S]

DX,x[S] · θ−S(f ′gfred)−1F,x + DX,x[S] · I
.

Proof. We will show that the image of HomDX,x[S](d−n−u,DX,x[S])left is DX,x[S] ·θ−S(f ′gfred)−1F,x+

DX,x[S] · I. It suffices to do this in local coordinates x1, . . . , xn. Select a basis δ1, . . . , δn of

DerX,x(− log f), label λi = ψf ′F,x(δi) and label λn+j = ej = (0, . . . , gj, . . . , 0) for 1 ≤ j ≤ u, cf.

Definition  3.3.2 . Then λ1, . . . , λn+u is a basis of ψf ′F,x ⊕ E. Consequently, we may uniquely

write σ(λi, λj) = ∑n+u
k=1 c

i,j
k λk with ci,jk ∈ OX,x.

Let us compute the ci,jk terms in cases. First assume i, j ≤ n. Then σ(λi, λj) =

[ψf ′F,x(δi), ψf ′F,x(δj)] = [δi, δj], where the last equality follows since ψf ′F,x respects taking

commutators, cf. Remark  3.2.17 . Thus ci,j1 , . . . , c
i,j
n satisfy [δi, δj] = ∑n

k=1 c
i,j
k δk; moreover, if

k ≥ n+1, then ci,jk = 0. Second, assume i ≤ n and j ≤ u. By definition σ(λi, λn+j) = δ•gj
gj
λn+j

and so ci,n+j
n+j = δi•gj

gj
and ci,n+j

k = 0 for k 6= n+j. Similarly for j ≤ n and i ≤ u, cn+j,i
n+j = −∂i•gj

gj

and cn+j,i
k = 0 for all k 6= n + j. Finally, assume i, j ≤ u. Then σ(λn+i, λn+j) = 0 and

cn+i,n+j
k = 0 for all k.

Using Remark  3.3.3 , d−n−u is given, where i ≤ n and v ≤ u, by multiplying on the right

by the matrix

[
· · · (−1)i−1(ψf ′F,x(δi)−

n∑
j=1

ci,jj −
u∑
v=1

δ•gv
gv

) · · · (−1)n+v−1gv · · ·
]
. (3.3.1)

The dual map is given by transposing ( 3.3.1 ) and applying τ , the standard right-to-left map

(cf. Remark  3.3.5 ), to each each entry where τ is inert on OX,x[S] and sends h∂xi to −∂xih,
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h ∈ OX,x[S]. Write δi = ∑
e he,i∂xe and observe that τ(δi) = −δi −

∑
e ∂xe • he,i. Therefore

HomDX,x[S](d−n−u,DX,x[S])left is given by right multiplication by



...

(−1)i−1(−δi −
r∑

k=1

δi•fk
fk

sk − δi•f ′
f ′
−

n∑
e=1

∂xe • he,i −
n∑
j=1

ci,jj −
u∑
v=1

δ•gv
gv

)
...

(−1)n+v−1gv
...


(3.3.2)

Assume n ≥ 2. We could have chosen δ1, . . . , δn to be a preferred basis of

DerX,x(− log fred) = DerX,x(− log f), cf. Definition  3.6.11 , making δ1, . . . , δn−1 ∈

DerX,x(− log0 f) and δn a Euler-homogeneity for fred. By the trace-adjoint formula of Propo-

sition  3.6.12 :

∑
j

ci,jj = −
∑
e

∂xe • he,i for i 6= n;
∑
j

cn,jj = −
∑
e

∂xe • he,n + 1 for i = n.

Recall g = g1 · · · gu. Since δi • fred = 0 for i ≤ n − 1 and since δn is Euler-homogeneous on

fred, (  3.3.2 ) simplifies to 

...

(−1)i(ψ−S(f ′gfred)−1F,x)(δi)
...

(−1)n(ψ−S(f ′gfred)−1F,x(δn)
...

(−1)n+v−1gv
...



.

Thus the image of HomDX,x[S](d−n−u,DX,x[S])left is DX,x[S] · θ−S(f ′gfred)−1F,x +DX,x[S] · I, proving

the proposition for n ≥ 2.

As for n = 1, we can assume fred = x and DerX,x(− log fred) is freely generated by its

Euler-homogeneity. Simplifying ( 3.3.2 ) is then an easy calculation.
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We endow SpIf ′F,x with a chain co-complex filtration that is based on a construction of

Gros and Narváez-Macarro, cf. page 85 of [  41 ].

Proposition 3.3.7. Let f = f1 · · · fr be free, F = (f1, . . . , fr), and let f ′ and I be as in

Definition  3.3.2 . Abbreviate SpIθf ′F,x to Sp• . Define a filtration G• on Sp• by

Gp Sp−m =
⊕
j

F p−m+j
(0,1,1) DX,x[S]⊗OX,x

m−j∧
θf ′F,x ∧

j∧
E

 .
If δ1, . . . , δn is a basis of DerX,x(− log f), then grG(Sp•) is isomorphic to the following Koszul

co-complex on gr(0,1,1)(DX,x[S]):

K•(gr(0,1,1)(ψF,x(δ1)), . . . , gr(0,1,1)(ψF,x(δn)), g1, . . . , gu; gr(0,1,1)(DX,x[S])). (3.3.3)

Moreover, G• naturally gives a filtration on HomDX,x[S](Sp•,DX,x[S])left whose associated

graded complex is isomorphic to

K•(gr(0,1,1)(−ψF,x(δ1)), . . . , gr(0,1,1)(−ψF,x(δn)), g1, . . . , gu; gr(0,1,1)(DX,x[S])). (3.3.4)

Proof. That G• is a chain filtration and that the associated graded co-complex is isomorphic

to the Koszul complex ( 3.3.3 ) follows from the definitions. As for the dual statement, it

is enough to note that τ , the standard right-to-left map (cf. Lemma 4.13 of Chapter 2),

preserves weight 0 entries (under the total order filtration) and sends weight 1 entries δ+p(S)

to −δ + p(S)+ error terms, where δ is a derivation and both p(S) and the error terms lie in

OX,x[S].

We now add hypotheses to the settings of Propositions  3.3.6 and  3.3.7 . First, we assume

I = OX,x · g is principal; second, we assume f is not only free but also strongly Euler-

homogeneous and Saito-holonomic. This will let us use results from Chapter 2. The filtration

G• will demonstrate that Spgf ′F and its dual are resolutions.

Definition 3.3.8. For M a left DX,x[S]-module, denote the DX,x[S]-dual of M by

D(M) = RHomDX,x[S](M,DX,x[S])left.
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Theorem 3.3.9. Suppose f = f1 · · · fr ∈ OX is free, strongly Euler-homogeneous, and Saito-

holonomic and fred ∈ OX,x is a Euler-homogeneous reduced defining equation for f at x. Let

F = (f1, . . . , fr), let f ′ ∈ OX,x be compatible with f , and let g ∈ OX,x such that f ∈ OX,x · g.

Then

D
(

DX,x[S]f ′F S

DX,x[S] · gf ′F S

)
' DX,x[S](gf ′fred)−1F−S

DX,x[S](f ′fred)−1F−S
[n+ 1].

Proof. We first show that ( 3.3.3 ) and ( 3.3.4 ) are both resolutions; in fact, showing ( 3.3.3 )

is a resolution proves ( 3.3.4 ) is as well. Let δ1, . . . , δn be a basis of DerX,x(− log f). Since

gr(0,1,1)(DX,x[S]) is graded local and gr(0,1,1)(ψF,x(δi)) and f all live in the graded maximal

ideal, it is sufficient to prove that the Koszul co-complex ( 3.3.3 ) is a resolution after localiza-

tion at the graded maximal ideal. By Theorem 2.23 of Chapter 2, L̃F,x is Cohen–Macaulay

and prime of dimension n+ r. Therefore L̃F,x + gr(0,1,1)(DX,x[S]) · f has dimension n+ r− 1.

Moreover, this ideal’s dimension does not change after localization at the graded maximal

ideal. Theorem 2.1.2 of [ 22 ] then implies (  3.3.3 ) is a resolution after said localization, finish-

ing this part of the proof.

Since ( 3.3.3 ) is a resolution, a standard spectral sequence argument associated to the

filtered co-complex of Spgf ′F,x implies Spgf ′F,x is a resolution. By Theorem  3.2.21 and the

definition of the augmentation map it resolves DX,x[S]f ′FS
DX,x[S]gf ′FS . Similar reasoning verifies that

HomDX,x[S](Spgf ′F,x,DX,x[S])left is a resolution. Because fred is Euler homogeneous, the claim

follows by Proposition  3.3.6 and Theorem  3.2.23 .

Remark 3.3.10. We are skeptical that (  3.3.3 ) is a resolution for any non-principal, non-

pathological I. Possible candidates are linear free divisors f with many factors, even though

the non-pathological examples in n ≤ 4 fail, cf. [ 42 ].

3.3.2 Principality of Bernstein–Sato Ideals

Here we discuss the principality of the radical of Bg
f ′F,x. The argument is essentially the

same as Proposition 20 of [  39 ], but we do not have to appeal to tame pure extensions because

of our hypotheses on f .
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We will need some homological definitions for modules over non-commutative rings, cf.

Appendix IV of [ 16 ] for a detailed treatment. We say a DX,x[S]-module M has grade j if

ExtkDX,x[S](M,DX,x[S]) vanishes for all k < j and is nonzero for k = j. We say M is pure of

grade j if every nonzero submodule of M has grade j. We also need the following filtration

on DX,x[S]:

Definition 3.3.11. Define the order filtration F(0,1,0) on DX [S] by designating, in local

coordinates, every ∂xk weight one and every element of OX [S] weight zero. Let gr(0,1,0)(DX [S])

denote the associated graded object and note that locally gr(0,1,0)(DX [S]) ' OX [Y ][S], with

gr(0,1,0)(∂xk) = yk. For a coherent DX [S]-module M and any good filtration Γ on M relative

to F(0,1,0), the characteristic ideal J rel(M) ⊆ gr(0,1,1)(DX [S]) is defined as

J rel(M) =
√

anngr(0,1,0)(DX [S]) grΓ(M)

and is independent of the choice of good filtration.

Proposition 3.3.12. (Compare to Proposition 20 of [ 39 ]) Suppose f = f1 . . . fr ∈ OX is

free, strongly Euler-homogeneous, and Saito-holonomic such that the reduced divisor of f is

Euler-homogeneous. Let F = (f1, . . . , fr) and select f ′ ∈ OX and g ∈ OX such that f lies in

both OX · f ′ and OX · g. Then for all x,
√
Bg
f ′F,x is principal.

Proof. Since f ′ is a section generating a holonomic DX-module, by Proposition 13 of [  39 ]

there is a conical Lagrangian variety Λ ⊆ T ?X so that V(J rel(DX [S]f ′F S)) = Λ × Cr. So

V(J rel( DX [S]f ′FS
DX [S]gf ′FS )) ⊆ Λ × Cr, that is, in the language of Maisonobe, DX [S]f ′FS

DX [S]gf ′FS is majoré

par une Lagrangian. By Proposition 8 of [  39 ], there exist conical Lagrangians T ?XαX and

algebraic varieties Sα ⊆ Cr such that

V
(
J rel( DX [S]f ′F S

DX [S]gf ′F S
)
)

= ∪αT ?XαX × Sα. (3.3.5)

By Proposition 9 of [ 39 ], V(Bg
f ′F,x) = ∪x∈XαSα.

Now to show the radical of Bg
f ′F,x is principal, it suffices to show Sα is of dimension

r − 1 for each α such that x ∈ Xα; that is, by the description of T ?XαX, it suffices to show
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J rel( DX,x[S]f ′FS
DX,x[S]gf ′FS ) is equidimensional of dimension n + r − 1. By Theorem  3.3.9 , DX,x[S]f ′FS

DX,x[S]gf ′FS

has grade n + 1. Using Theorem  3.3.9 again and the characterization of pure modules in

terms of double Ext modules, cf. Proposition IV.2.6 of [ 16 ], we deduce DX,x[S]f ′FS
DX,x[S]gf ′FS is a pure

DX,x[S]-module of grade n+1. By Theorem IV.5.2 of [  16 ], J rel( DX,x[S]f ′FS
DX,x[S]gf ′FS ) is equidimensional

and every minimal prime of the characteristic ideal has codimension n + 1, completing the

proof.

The next proposition lays out a criterion for Bg
f ′F,x to be principal. The argument is that

of the last paragraph of Theorem 2 of [ 11 ].

Proposition 3.3.13. (Compare to Theorem 2 of [  11 ]) Let f , F , f ′, and g be as in Propo-

sition  3.3.12 and suppose that
√
Bg
f ′F,x = C[S] · b(S), i.e. it is principal. Suppose that

(Bf ′F,x :
√
Bf ′F,x) contains a polynomial a(S) such that V(C[S] · b(S)) ∩ V(C[S] · a(S)) has

irreducible components of dimension at most r − 2. Then Bg
f ′F,x equals its radical and is

principal.

Proof. It suffices to show b(S) DX,x[S]f ′FS
DX,x[S]gf ′FS is zero. If it is nonzero, it is a submodule of the

pure module DX,x[S]f ′FS
DX,x[S]gf ′FS of grade n + 1 and so is itself pure of the same grade. Reasoning

as in Proposition  3.3.12 , cf. Proposition 9 of [ 39 ] in particular, all the minimal primes of

C[S]-annihilator of b(S) DX,x[S]f ′FS
DX,x[S]gf ′FS have dimension r− 1. But the variety of this annihilator

is contained inside V(C[S] · b(S))∩V(C[S] · a(S)) which is of dimension r− 2 by hypothesis.

As this is impossible, b(S) DX,x[S]f ′FS
DX,x[S]gf ′FS must be zero.

3.3.3 Symmetry of Some Bernstein–Sato Varieties

As Theorem  3.3.9 generalizes Corollary 3.6 of [ 9 ] and Proposition 6 of [ 11 ], one would

hope Bg
f ′F,x has a symmetry generalizing Theorem 4.1 of [ 9 ] and Proposition 8 of [ 11 ]. How-

ever, without reducedness and with the addition of f ′, symmetry seems to depend on the

factorization of f .
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Definition 3.3.14. Suppose f has a factorization into irreducibles lv1
1 · · · lvqq at x where the

lt are distinct and vt ∈ Z+. Let f = f1 · · · fr be some other factorization of f and let

F = (f1, . . . , fr). We say the factorization f = f1 · · · fr is unmixed if the following hold:

(i) for each k, there exists dk ∈ Z+ and Jk ⊆ [q] such that fk = ∏
j∈Jk l

dk
j ;

(ii) if i, j ∈ Jk, then vi = vj.

F is unmixed when it corresponds to an unmixed factorization; F is unmixed up to units if

there exists units u1, . . . , ur such that uF = (u1f1, . . . , urfr) is unmixed. Given an unmixed

factorization, let the repeated multiplicity of F be {mk}k where, for any j ∈ Jk (and thus

all), mk is the multiplicity of lj with respect to f .

For f ′ ∈ OX,x compatible with f , we say (f ′, F ) is an unmixed pair if:

(i)’ F is unmixed;

(ii)’ f ′ = ∏
k

∏
j∈Jk l

d′k
j for d′k ∈ Z.

The pair (f ′, F ) is an unmixed pair up to units if F is unmixed up to units and f ′ satisfies

(ii)’ after possibly multiplying by a unit. For (f ′, F ) an unmixed pair up to units, the pairs

of repeated powers of (f ′, F ) are {(d′k, dk)}k.

Lemma 3.3.15. Write f = lv1
1 · · · lvqq where the li are distinct and irreducible; fk = ∏

j∈Jk l
dk
j ;

fred = l1 · · · lq. Assume that f ′ and g are compatible with f , F = (f1, . . . , fr) a factoriza-

tion of f , (f ′, F ) and (g, F ) are unmixed pairs with pairs of repeated powers {(d′k, dk)}k and

{(d′′k, dk)}k, and {mk}k the repeated multiplicities of F . If ϕ : C[S] → C[S] is the automor-

phism of C-algebras induced by

ϕ(sk) = −sk −
1
mk

− 2d′k
dk
− d′′k
dk
,

then for δ ∈ DerX,x(− log f), and after extending ϕ to DX,x[S],

ϕ(ψ−S(f ′gfred)−1F,x(δ)) = ψSf ′F,x(δ).

93



Proof. This is a straightforward computation once we observe that vj is the sum of all the

dk such that lj divides fk.

Theorem 3.3.16. Suppose f = f1 · · · fr ∈ OX is free, strongly Euler-homogeneous, and

Saito-holonomic, and while f is not necessarily reduced, suppose that it admits a strongly

Euler-homogeneous reduced defining equation at x. Let F = (f1, · · · , fr) and select g ∈ OX,x

such that f ∈ OX,x · g. Assume that f ′ and g are compatible with f , (f ′, F ) and (g, F )

are unmixed pairs up to units with pairs of repeated powers {(d′k, dk)}k and {(d′′k, dk)}k, and

{mk}k are the repeated multiplicities of F . If ϕ : C[S] → C[S] is the automorphism of

C-algebras induced by

ϕ(sk) = −sk −
1
mk

− 2d′k
dk
− d′′k
dk
,

then

B(S) ∈ Bg
f ′F,x ⇐⇒ ϕ(B(S)) ∈ Bg

f ′F,x.

Proof. We first reduce to the case that (f ′, F ) and (g, F ) are unmixed pairs. It follows from

the functional equation that if u is a unit in OX,x, then Bg
f ′F,x = Bg

uf ′F,x and Bg
f ′F,x = Bug

f ′F,x.

To finish the reduction, we must also verify that if F ′ = (u1f1, . . . , urfr) for units u1, . . . , ur

in OX,x, then Bg
f ′F,x = Bg

f ′F ′,x. This follows by arguing as in Lemma 10 (i) of [  15 ] wherein the

claim is proved for f ′ = 1 and g = f .

By the C[S]-linearity of D, cf. Remark 3.2 of [  9 ], and by Theorem  3.3.9 ,

B(S) ∈ annC[S]
DX,x[S]f ′F S

DX,x[S] · gf ′F S
=⇒ B(S) ∈ annC[S]

DX,x[S](gf ′fred)−1F−S

DX,x[S] · (f ′fred)F−S

where we may assume fred is as in Lemma  3.3.15 , cf. Remark  3.2.9 . In other words,

B(S) ∈ C[S] ∩ (DX,x[S] · θf ′F,x + DX,x[S] · g)

=⇒ B(S) ∈ C[S] ∩ (DX,x[S] · θ−S(f ′gfred)−1F,x + DX,x[S] · g).

By Lemma  3.3.15 , ϕ induces a DX,x-automorphism that sends DX,x[S]·θ−S(f ′gfred)−1F,x+DX,x[S]·g

to DX,x[S] · θf ′F,x + DX,x[S] · g. Therefore ϕ(BI
f ′F,x) ⊆ BI

f ′F,x. The reverse containment follows

from the fact ϕ is an involution.
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Remark 3.3.17. Suppose f , f ′, and F are as in Theorem  3.3.16 , and I is the ideal generated

by g1, . . . , gu such that f ∈ OX,x · gj. If Spgf ′F,x and its DX,x[S]-dual are both resolutions, then

ϕ fixes BI
f ′F,x. Note that ϕ depends only on the product of the gj.

Let us catalogue some of the most useful versions of the theorem:

Corollary 3.3.18. Suppose f = f1 · · · fr ∈ OX is free, strongly Euler-homogeneous, and

Saito-holonomic, and while f is not necessarily reduced, suppose that it admits a strongly

Euler-homogeneous reduced defining equation at x. Let F = (f1, . . . , fr) and ϕ be as in

Theorem  3.3.16 .

(a) Suppose that F = (l1, . . . , l1, . . . , lq) with each lt appearing vt times, and f ′ and g any

elements of OX,x dividing f . Then ϕ(Bg
f ′F,x) = Bg

f ′F,x.

(b) Suppose f is reduced, F corresponds to any factorization, f ′ = ∏
k′∈K′ f

′
k, g =∏

k∈K fk, for K ′, K ⊆ [r]. Then ϕ(Bg
f ′F,x) = Bg

f ′F,x.

(c) Suppose f ′ divides f = f1 · · · fr, F = (f1, . . . , fr) and g = f
f ′

. If (f ′, F ) is an unmixed

pair up to units, then ϕ(Bg
f ′F,x) = Bg

f ′F,x

(d) Suppose f = fkred and F = (fkred). Then ϕ(s) = −s− 1− 1
k

and ϕ(Bfk,x) = Bfk,x.

Proof. All that must be checked is that the appropriate things are unmixed pairs up to

units. For example, in (a) and (b), F is unmixed up to units because it is a factorization

into irreducibles, possibly with repetition, and because f is reduced, respectively. In both

cases, dk, d′k, and d′′k are all 1.

The symmetry property for the Bernstein–Sato polynomial of a reduced divisor forces

all its roots to lie inside (−2, 0), cf. [ 9 ]. We have the following generalization for powers of

reduced divisor:

Corollary 3.3.19. Suppose f is reduced, free, strongly Euler-homogeneous, and Saito-

holonomic. Then V(Bfk) ⊆ (−1− 1
k
, 0). If bfk,min is the smallest root of the Bernstein–Sato

polynomial of fk, then bfk,min → −1 as k →∞.

95



Proof. Since freeness, strongly Euler-homogeneous, and Saito-holonomicity pass from fred to

fk we may use Corollary  3.3.18 to improve the well known containment V(Bfk,x) ⊆ (−∞, 0)

to V(Bfk,x) ⊆ (−1− 1
k
, 0). The rest follows since −1 ∈ V(Bfk,x).

3.4 Bernstein–Sato Varieties for Tame and Free Arrangements

In this section we study the global Bernstein–Sato ideals Bg
f ′F where f is a central, not

necessarily reduced, tame hyperplane arrangement, f ′ divides f , g = f
f ′

, and F corresponds

to the factorization f = f1 · · · fr, which need not be into linear forms. We always assume

OX,x · f ′ 6= OX,x · f . We revisit the arguments of Maisonobe in [ 11 ] giving full details for

our versions of Lemma 2 and Proposition 9 in the first subsection and Proposition 10 in the

second. We generalize the strategy of Lemma 2 and Proposition 9 to compute a principal ideal

containing Bg
f ′F for tame hyperplane arrangements and any F ; we generalize Proposition 10

to find an element of Bg
f ′F when f is not necessarily reduced, not necessarily tame, and F is

the total factorization of f into linear forms. As Maisonobe does in Theorem 2 of loc. cit., in

the third subsection we use the symmetry of Bg
f ′F when f is free and (f ′, F ) is an unmixed

pair up to units to provide rather precise estimates of V(Bg
f ′F ). In certain situations, these

estimates compute V(Bg
f ′F ).

Definition 3.4.1. Let f ∈ C[x1, . . . , xn] be a central, not necessarily reduced, hyperplane

arrangement of degree d whose factorization into homogeneous linear forms is f = l1 · · · ld.

Associated to f is the intersection lattice L(A), partially ordered by reverse inclusion and

with smallest element Cn. We call any X ∈ L(A) an edge of L(A). The rank of X is the

length of a maximal chain in L(A) with smallest element Cn and largest element X. We

denote the rank of X by r(X); for example, r(V(li)) = 1. Given an edge X ∈ L(A) we define

J(X) to be the subset of [d] identifying the hyperplanes that contain X, that is:

X =
⋂

j∈J(X)
V(lj).
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Note that because f is not necessarily reduced J(X) may contain indices i and j such that

V(li) = V(lj). Given an edge X, there is the subarrangement AX which has the defining

equation

fX =
∏

j∈J(X)
lj.

The degree of fX is denoted dX . So dX = |J(X)|. The edge X is decomposable if there is

a change of coordinates y1 t y2, y1 and y2 disjoint, such that fX = pq where p and q are

hyperplane arrangements using variables only from y1 and y2 respectively. Otherwise X is

indecomposable.

Consider a potentially different factorization f = f1 · · · fr where each fk is of degree dk.

Since each fk is a product of some of the lm, let Sk ⊆ [d] identify the linear forms comprising

fk, that is,

fk =
∏
m∈Sk

lm.

The factorization f = f1 · · · fr induces a factorization of fX . Define SX,k ⊆ [d] by

SX,k = JX ∩ Sk.

Then fX inherits the factorization fX = fX,1 · · · fX,r where

fX,k =
∏

j∈SX,k
lj.

We say fX,k has degree dX,k. We also write FX = (fX,1, . . . , fX,r).

Any hyperplane arrangement has a reduced equation fred of degree dred. We define fX,red,

dX,red, fX,k,red, and dX,k,red similarly.

If f ′ of degree d′ divides f , then all the previous constructions apply to f ′. Define

f ′red, d
′
red, f

′
X , d

′
X , f

′
X,red, d

′
X,red, f

′
X,k, d

′
X,k, f

′
X,k,red, d

′
X,k,red in the natural ways.

We will be working with the Weyl algebra An(C) = C[x1, . . . , xn, ∂1, . . . , ∂n] where the

global Bernstein–Sato ideal Bg
f ′F is defined similarly to Bg

f ′F,x except using An(C) [S] opera-

tors. Write Bg
f ′f when F = (f) corresponds to the trivial factorization f = f. We use the

notation θf ′F and ψf ′F for the algebraic, global versions of θf ′F,x and ψf ′F,x.
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By Corollary  3.2.22 and Examples  3.2.7 and  3.2.10 , if f is tame and f ′ divides f , then

annAn(C) [S] f
′F S is generated by derivations. Moreover, fred is strongly Euler-homogeneous

itself. Finally, since f is central, the C?-action on V(f) can be used to show Bg
f ′F = Bg

f ′F,0.

Therefore we can apply the results of the previous sections.

Finally, recall that for any central hyperplane arrangement f ∈ C[x1, . . . , xn] of degree

d, the Euler derivation E = x1∂1 + · · · xn∂n satisfies E • f = df . Thus 1
d
E is a strong

Euler-homogeneity for f at the origin.

3.4.1 An Ideal Containing Bg
f ′F

We compute a principal ideal containing Bg
f ′F where f is a central, indecomposable, and

tame hyperplane arrangement, f ′ divides f , g = f
f ′

, and F corresponds to any factorization.

The argument tracks Lemma 2 and Proposition 9 of [ 11 ] but we have replaced freeness with

tameness, reduced with non-reduced, added f ′, and we will use any factorization F instead

of the factorization into linear forms. Though the approach is similar to Maisonobe’s, we

provide detail for the sake of the reader.

Definition 3.4.2. The right normal form of P ∈ An(C) [S] is the unique expression

P =
∑

u
∂uPu

where Pu ∈ C[X][S]. The right constant term of P is P0. Note that for P,Q ∈ An(C) [S],

the right constant term of P +Q is P0 +Q0.

Convention 3.4.3. Let C[X]t be the subspace of homogeneous polynomials in C[X] of

degree t and let C[X]≥t be the ideal of C[X] generated by the homogeneous polynomials of

degree at least t. Denote by C[X]t[S] and C[X]≥t[S] the C[S]-modules generated by C[X]t
and C[X]≥t respectively.
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Lemma 3.4.4. Consider a derivation δ = ∑
i ai∂xi and a polynomial c ∈ C[X][S]. If P ∈

An(C)[S] has right constant term P0, then P · (δ − c) has right constant term

−(
∑
i

∂xi • ai)P0 − δ • (P0)− cP0.

Proof. Consider the right normal form ∑
∂uPu of P . Then

P · (δ − c) =
∑

u
∂u(δPu − δ • Pu − Puc)

=
∑

u
∂u((

∑
i

∂iai −
∑
i

∂i • ai)Pu − δ • Pu − Puc)

=
∑

u
∂u∑

i

∂iaiPu +
∑

u
∂u((−

∑
i

∂i • ai)Pu − δ • (Pu)− cPu).

Because ∑u ∂
u∑

i ∂iaiPu has constant term 0, the lemma follows.

Lemma 3.4.5. Suppose δ ∈ DerX(− log f) can be written as ∑n
i=1 ai∂i where each ai is a

homogeneous polynomial of degree t in C[X]. Let f = f1 · · · fr where each fk is homogeneous,

F = (f1, . . . , fr), and f ′ is a homogeneous polynomial dividing f . If P ∈ An(C)[S], then the

right constant term of P · ψf ′F (δ) lies in C[X]≥t−1[S].

Proof. Recall ψf ′F (δ) = δ − ∑ δ•fk
fk
sk − δ•f ′

f ′
. By the choice of δ, −∑r

k=1
δ•fk
fk
sk − δ•f ′

f ′
∈

C[X]t−1[S]. By Lemma  3.4.4 , the right constant term of P · ψF (δ) is

(−
∑
i

∂i • ai)P0 − δ • P0 − (
∑
k

δ • fk
fk

sk)P0 −
δ • f ′

f ′
P0.

Let m be the smallest nonnegative integer such that P0 ∈ C[X]≥m[S]. Because ∂i • ai ∈

C[X]t−1 and δ • P0 ∈ C[X]≥t+m−1[S] the claim follows.

There is a natural C[X]-isomorphism between DerX(− log0 f) and the first syzygies of

the Jacobian ideal J(f), i.e. the ideal of C[X] generated by the partials of f . If f is

homogeneous, so is J(f) and so is its first syzygy module.

Definition 3.4.6. For f homogeneous, define mdr(f) to be

mdr(f) = min{t | there exists a homogeneous syzygy of J(f) of degree t}.
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Remark 3.4.7.(a) It known that a central hyperplane arrangement of f of rank ≥ 2 is

indecomposable if and only if mdr(f) ≥ 2. For one direction use the first part of

Theorem 5.13 of [  7 ]; for the other, use the two disjoint Euler derivations induced by

the coordinate change.

(b) Identify DerX(− log0 f) and first syzygies of J(f) to conclude that we may pick a

generating set δ1, . . . , δm of DerX(− log0 f) such that δj = ∑r
i=1 aj,i∂i and each aj,i ∈

C[X] is homogeneous of degree at least mdr(f).

We can now prove our version of Lemma 2 from [  11 ]. The argument is similar but we

defer applying any symmetry of Bg
f ′F until later.

Theorem 3.4.8. (Compare to Lemma 2 in [ 11 ]) Let f be a central, not necessarily reduced,

indecomposable and tame hyperplane arrangement of rank n ≥ 2 and let F = (f1, . . . , fr)

correspond to any factorization f = f1 · · · fr. If f ′ divides f and g = f
f ′

, then

Bg
f ′F ⊆ C[S] ·

mdr(f)+d−d′−3∏
j=0

(∑
k

dksk + n+ d′ + j

)
.

Proof. To begin, we choose two polynomials. First fix 0 6= B(S) ∈ Bg
f ′F . By definition of

Bg
f ′F,x, the polynomial B(S) lies in annAn(C) [S] f

′F + An(C) [S] · g. Second, pick a nonzero

homogeneous polynomial v ∈ C[X] such that (i) deg(v) ≤ mdr(f) − 2 and (ii) there exists

a point α ∈ V(g) \ V(v). By Remark  3.4.7 such a choice of v is possible. Note that

vB(S) ∈ annAn(C) [S] f
′F + An(C) [S] · g.

Let δ1, . . . , δm generate DerX,x(− log0 f) where δj = ∑
j aj,i∂i; let E by the Euler deriva-

tion. By Remark  3.4.7 , we may assume {aj,i}i are all homogeneous polynomials of the

same degree where that degree is at least mdr(f). Corollary  3.2.22 implies there exist

L, P,Q2, . . . , Qm ∈ An(C) [S] such that

vB(S) = Lg + Pψf ′F (E) +
m∑
j=2

Qjψf ′F (δj). (3.4.1)

Express both sides of ( 3.4.1 ) in their right normal form. First consider the right hand

side of (  3.4.1 ). By Lemma  3.4.5 , the right constant term of Qjψf ′F (δj) is in C[X]≥mdr(f)−1[S].
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Write the right constant term L0 of L as L0 = ∑
t L

t
0 where Lt0 ∈ C[X]t[S]; similarly, write

the right constant term P0 of P as P0 = ∑
t P

t
0 where P t

0 ∈ C[X]t[S]. The right constant

term of Lg is L0g. By Lemma  3.4.4 , the right constant term of Pψf ′F (E) is

∑
t

−nP t
0 − E • P t

0 −
(∑

k

E • fk
fk

sk

)
P t

0 −
E • f ′

f ′
P t

0

=
∑
t

(
−n− t−

∑
k

dksk − d′
)
P t

0.

On the other hand, the right constant term of vB(S) is vB(S) itself. Note that vB(S) ∈

C[X]deg(v)[S] and, by the choice of v, deg(v) < mdr(f) − 1. So when we write the right

constant term of both sides of (  3.4.1 ), the left hand side is vB(S) and the right hand side

can be written using only terms in C[X]deg(v)[S]. We deduce

vB(S) = L
deg(v)
0 g +

(
−n− deg(v)− d′ −

∑
k

dksk

)
P

deg(v)
0 . (3.4.2)

The equation (  3.4.2 ) occurs in C[X]deg(v)[S] and so the equality is still true when regarding

all the elements as belonging to C[X][S]. By the choice of v, there exists α ∈ V(g) \ V(v).

The polynomial P deg(v)
0 cannot vanish at α, lest B(S) = 0. By evaluating (  3.4.2 ) at α we see

B(S) ∈ C[S] ·
(
−n− deg(v)− d′ −

∑
k

dksk

)
. (3.4.3)

As deg(v) is flexible,

Bg
f ′F,x ⊆ C[S] ·

mdr(f)−2∏
j=0

(∑
k

dksk + n+ d′ + j

)
. (3.4.4)

Now suppose (f) ⊆ (f ′′) ⊆ (f ′) and let g′′ = f
f ′′

. Since f is a hyperplane arrangement

we can choose f ′′ to be of any degree between d′ and d − 1. Because Bg
f ′F ⊆ Bg′′

f ′′,F , the

containment ( 3.4.4 ) can be improved to

Bg
f ′F ⊆ C[S] ·

mdr(f)+d−d′−3∏
j=0

(∑
k

dksk + n+ d′ + j

)
.

101



Remark 3.4.9.(a) It is easy to see, see Corollary 6 in [ 15 ] for the BF statement, that

Bg
f ′F =

⋂
x∈Cn

Bg
f ′F,x.

(b) Recall the notation of Definition  3.4.1 . Given an edge X ∈ L(A), there exists a x ∈ X

such that x /∈ V(lm) for all m /∈ J(X). By definition,

FX = (fX,1, . . . , fX,r) = (
∏

j∈Sx,1
lj, . . . ,

∏
j∈SX,r

lj).

We may write F as

F = (
∏

m∈S1\SX,1

lm
∏

j∈SX,1
lj, . . . ,

∏
m∈Sr\SX,r

lm
∏

j∈SX,r
lj).

So at x, the decompositions F and FX differ by multiplying each component by a

unit at x. Arguing as in Lemma 10 of [ 15 ] (see also the first paragraph of the proof

of Theorem  3.3.16 ), we deduce

Bg
f ′F,x = BgX

f ′XFX ,x
.

Since x and 0 both lie in the maximal edge of fX , BgX
f ′XFX ,0

= BgX
f ′XFX ,x

. The centrality

of fX , and the consequent C?-action on V(fX), implies

BgX
f ′XFX ,0

= BgX
f ′XFX

.

(c) Putting (a) and (b) together yields

Bg
f ′F =

⋂
X∈L(A)

BgX
f ′XFX

.

The following definition will help simplify notation.
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Definition 3.4.10. Let f = f1 · · · fr be any factorization of a central hyperplane arrange-

ment and F = (f1, . . . , fr). Suppose f ′ divides f ; g = f
f ′

. For any indecomposable edge X

define the polynomial

P g
f ′F,X =

∑
k

dX,ksk + r(X) + d′X ∈ C[S].

Remark  3.4.9 and Theorem  3.4.8 prove our version of Proposition 9 in [ 11 ]:

Theorem 3.4.11. (Compare to Proposition 9 of [ 11 ]) Suppose f is a central, tame, not

necessarily reduced, hyperplane arrangement of rank n and let F = (f1, . . . , fr) correspond

to any factorization f = f1 · · · fr. Let f ′ divide f and g = f
f ′
. For indecomposable edges X

of rank ≥ 2 define

pf ′F,X(S) =
mdr(fX)+dX−d′X−3∏

jX=0

(
P g
f ′F,X + jX

)
.

For indecomposable edges X of rank one define

pf ′F,X(S) =
dX−d′X−1∏
jX=0

(
P g
f ′F,X + jX

)
.

Then

Bg
f ′F ⊆ C[S] · lcm {pf ′F,X(S) | X ∈ L(A), X indecomposable} .

Proof. By Remark  3.4.9 ,

Bg
f ′F =

 ⋂
X∈L(A)
r(X)≥2

BgX
f ′XFX

⋂
 ⋂
X∈L(A)
r(X)=1

BgX
f ′XFX


If X is an edge of rank ≥ 2, then Theorem  3.4.8 combined with Definition  3.4.10 says

BgX
f ′XFX

⊆ C[S] ·
mdr(fX)+dX−d′x−3∏

jX=0
(P g

f ′F,X + jX).
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Therefore, once we prove that for rank one edges X

BgX
f ′XFX

⊆ C[S] ·
dX−d′X−1∏
jX=0

(
P g
f ′F,X + jX

)
,

then the claim will follow.

For the rank one edges, argue as in Theorem  3.4.8 . Since the rank is one, we can get

an equation resembling ( 3.4.1 ) without any ψf ′F (δ) terms and with v = 1. Now looking at

the right constant terms, since B(S) ∈ C[S] and L0g is not, we deduce ( 3.4.3 ) holds with

deg(v) = 0. The other factors of pf ′F are found using the containment Bg
f ′F ⊆ Bg′′

f ′′F , as in

the final paragraph of Theorem  3.4.8 .

3.4.2 An Element of Bg
f ′F

Here we drop the assumption of tameness and compute an element ofBg
f ′F for f = f1 · · · fr

any factorization of a central, not necessarily reduced, hyperplane arrangement f and where

f ′ and g are as before. The bulk of the argument tracks Proposition 10 of [ 11 ], however we

have removed the reducedness hypothesis. Again, we provide detail for the reader’s sake.

We begin with some basic facts about differential operators. First, consider a product of

functions fg with factorizations f = f1 . . . fr and g = g1 . . . , gu. Let F = (f1, . . . , fr) and

G = (g1, . . . , gu) and FG = (f1, . . . , fr, g1, . . . , gu).

Definition 3.4.12. Let P ∈ An(C) [S] and consider An(C) [S](FG)S. Relabel the sk so

that we may write An(C) [S, T ]F SGT = An(C) [S]f s1
1 · · · f srr g

t1
1 · · · gtuu and consider P as in

An(C) [S, T ]. As there is an An(C) [S]-action on F S there is a naturally defined An(C) [S, T ]

action. Denote by P • F S the result of letting P act on F S.

Lemma 3.4.13. Let P ∈ An(C)[S] of total order k, i.e. P ∈ F k
(0,1,1)An(C)[S]. Then

PF SGT − (P • F S)GT ∈ An(C)[S, T ]F SGT−k.

Proof. It is sufficient to prove the following:
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Claim: If h ∈ C[X][S][T ], there exists Qu of total order at most |u| such that

∂uhF SGT − h(∂u • F S)GT = QuF
SGT−|u|.

We prove this by induction on |u|. The base case is straightforward. For the inductive

step, observe:

∂1∂
uhF SGT = ∂1[h(∂u • F )GT +QuF

SGT−|u|] (3.4.5)

= (∂1 • h)(∂u • F S)GT + h(∂1∂
u • F S)GT

+ h(∂u • F )(g
∑
k

tk
∂1 • gk
gk

)GT−1 + ∂1QuF
SGT .

Since ∂1 • h ∈ C[X][S][T ] the induction hypothesis implies

(∂1 • h)(∂u • F S)GT ∈ F |u|(0,1,1) An(C) [S][T ]F SGT−|u|.

Similarly, since h(g∑k tk
∂1•gk
gk

) ∈ C[S][T ], by induction

h(∂u • F S)(g
∑
k

tk
∂1 • gk
gk

)GT−1 ∈ F |u|(0,1,1) An(C) [S][T ]F SGT−|u|−1.

Rearranging (  3.4.5 ) proves the claim and hence the lemma.

We also need the following elementary lemma.

Lemma 3.4.14. Let E = x1∂1 + · · ·+ xn∂n be the Euler derivation. Then

t∏
j=0

(E + n+ j) =
∑

u1,...,un
u1+···+un=t+1

(
t+ 1

u1, · · · , un

)
∂uxu.

Proof. This also succumbs to induction on t after utilizing Pascal’s formula for multinomial

coefficients.

Definition 3.4.15. Consider a central, essential, not necessarily reduced, hyperplane ar-

rangement of rank n defined by f = l1 · · · ld, where the lk are homogeneous linear forms.

105



Write L = (l1, . . . , ld). For an edge X ∈ L(A) and with J(X) as in Definition  3.4.1 , define

the ideal ΓL ⊆ C[x1, . . . , xn] by

ΓL =
∑

X∈L(A)
r(X)=n−1

C[x1, . . . , xn] ·
∏

k/∈J(X)
lk.

Lemma 3.4.16. Consider a central, essential, not necessarily reduced, hyperplane arrange-

ment of rank n defined by f = l1 · · · ld, where the lk are homogeneous linear forms. Let

L = (l1, . . . , ld) and denote the ideal of C[x1, . . . , xn] generated by x1, . . . , xn by m. Then

there exists an integer k such that mk ⊆ ΓL.

Proof. It suffices to show ΓL is m-primary since m is maximal and C[x1, . . . , xn] is Noetherian.

So we need only show V(ΓL) = {0}. Suppose 0 6= p ∈ V(ΓL). Since V(ΓL) is the intersection

of unions of central hyperplanes, we deduce V(ΓL) contains a codimension n − 1 line. We

may find a largest edge X containing said line; if X is not of codimension n − 1 enlarge X

further to a codimension n − 1 edge. So for all k /∈ J(X), V(lk) will not contain this line

and hence will not contain p. But p ∈ V(ΓF ) ⊆ V(∏k/∈J(X) lk) = ∪k/∈J(X) V(lk), contradicting

p ∈ V(ΓL).

Remark 3.4.17. We need essentiality in the above lemma lest the maximal edge of L(A) have

rank n− 1 forcing ΓF = 1. Without this condition, the X selected in the above proof could

be the maximal edge of L(A).

Recall the notation of Definition  3.4.1 . We proceed to the subsection’s main idea, which

is a generalization of Proposition 10 of [  11 ] and is proved similarly.

Theorem 3.4.18. (Compare to Proposition 10 of [ 11 ]) Consider a central, not necessarily

reduced, hyperplane arrangement f = l1 · · · ld where the lk are linear terms and let L =

(l1, . . . , ld). Suppose that f ′ divides f ; let g = f
f ′
. Then there is a positive integer N such

that ∏
X∈L(A)

X indecomposable

N∏
j=0

(
P g
f ′L,X + j

)
∈ Bg

f ′F .

Proof. We prove this by induction on the rank of L(A) and first deal with the inductive

step. So we may assume the rank is n and f is essential. If f is decomposable into f1f2,
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then f ′ (resp. g) inherts a decomposition f ′1f ′2 (resp. g1g2). If F1 (resp. F2) is the associated

factorization of f1 (resp. f2) into linear forms and if b1 ∈ Bg1
f ′1F1

and b2 ∈ Bg2
f ′2F2

, then

b1b2 ∈ Bg
f ′F . In this case the induction hypothesis applies to Bg1

f ′1F1
and Bg2

f ′2F2
. So we may

assume f is indecomposable.

Let m be the ideal in C[x1, . . . , xn] generated by x1, . . . , xn. On the one hand, Lemma

 3.4.14 implies that for all positive integers t

t∏
j=0

(s1 + · · ·+ sd + n+ d′ + j)f ′LS =
t∏

j=0
(E + n+ j)f ′LS ∈ An(C) ·mt+1f ′LS.

By Lemma  3.4.16 , for any positive integer m there exists an integer N large enough so that

N∏
j=0

(s1 + · · ·+ sd + n+ d′ + j)f ′LS ∈
∑

X∈L(A)
r(X)=n−1

An(C) [S](
∏

k/∈J(X)
lk)mf ′XLS. (3.4.6)

Note we have folded some of the factors of f ′ into (∏k/∈J(X) lk)m.

By induction, for each such edge X of rank less than n, there exists a differential op-

erator PX of total order kX and a polynomial bX ∈ C[S] such that PX
∏
i∈J(X) l

si+1
i =

bXf
′
X

∏
i∈J(X) l

si
i . Fix m large enough so that m > max{kX | X ∈ L(A), X codimension n−

1}. Consequently, choose N large enough so that ( 3.4.6 ) holds for this fixed m. Lemma

 3.4.13 implies

bX(
∏

k/∈J(X)
lk)mf ′XLS = (bXf ′X

∏
i∈J(X)

lsii )(
∏

k/∈J(X)
lsk+m
k ) (3.4.7)

∈ An(C) [S](
∏

i∈J(X)
lsi+1
i )(

∏
k/∈J(X)

lsk+m−kX
k )

⊆ An(C) [S]LS+1.

Combining ( 3.4.6 ) and ( 3.4.7 ) we deduce

N∏
j=0

(s1 + · · ·+ sd + n+ d′ + j)(
∏

X∈L(A)
r(X)=n−1

bX)f ′LS ∈ An(C) [S]LS+1. (3.4.8)
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The result follows by the inductive description of each bX and the definition of P g
f ′L,X . Note

we may have to replace either the N chosen in ( 3.4.8 ) or the N coming from the inductive

hypothesis with a larger integer so that the final polynomial is in the promised form. There

is no harm in this as it can only only add linear factors to the polynomial appearing in

( 3.4.8 ) and does not change the containment.

All that remains is the base case, but this is obvious by a direct computation using

Lemma  3.4.14 .

This theorem only gives an element of Bg
f ′L when L is a factorization into linear forms.

If f is tame we can find an element no matter the factorization.

Corollary 3.4.19. Let f = f1 · · · fr be a central, not necessarily reduced, tame hyperplane

arrangement where the fk are not necessarily linear forms. Let F = (f1, . . . , fr). Suppose f ′

divides f ; let g = f
f ′
. If L corresponds to the factorization of f into linear terms, then there

exists a positive integer N such that

∏
X∈L(A)

X indecomposable

N∏
j=0

(
P g
f ′L,X + j

)
modulo SF ∈ Bg

f ′F ,

where SF is as in Definition  3.2.25 .

Proof. Use Proposition  3.2.26 .

Just as in the last part of Theorem 2 of [ 11 ],  3.4.18 also implies Bg
f ′L is principal. (Here

we very much need L to correspond to a factorization into linear forms.)

Corollary 3.4.20. Consider the central, not necessarily reduced, free hyperplane arrange-

ment f = l1 · · · ld, where the lk are linear forms, and let L = (l1, · · · , ld). Suppose f ′ divides

f ; let 0 6= g divide f
f ′

. Then Bg
f ′L equals its radical and is principal.

Proof. Let P (S) be the polynomial of Theorem  3.4.18 . If g divides f
f ′

, then by said theorem

P (S) ∈ Bg
f ′L. The claim then follows by Proposition  3.3.12 and Proposition  3.3.13 since

P (S) cuts out a reduced hyperplane arrangement.
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3.4.3 Computations and Estimates

We now have combinatorial determined ideal subsets and supsets of Bg
f ′F . In general,

V(Bf ) is not combinatorially determined. However, if f is tame, then V(Bf ) ∩ [ − 1, 0] is

combinatorial.

Theorem 3.4.21. Let f be a central, not necessarily reduced, tame hyperplane arrangement.

Suppose f ′ divides f ; let g = f
f ′
. Then the roots V(Bg

f ′f ) lying in [−1, 0) are combinatorially

determined:

V(Bg
f ′f ) ∩ [− 1, 0) =

⋃
X∈L(A)

X indecomposable

dX⋃
jX=r(X)+d′X

−jX
dX

.

Setting f ′ = 1 gives the roots of the Bernstein–Sato polynomial of f lying in [− 1, 0).

Proof. We find a subset and supset of Bg
f ′F using Corollary  3.4.19 and Theorem  3.4.11 

respectively. Their varieties will be equal after intersecting with [ − 1, 0) once we verify

the following inequalities for indecomposable edges X: r(X) + mdr(f) + dX − 3 ≥ dX if

r(X) ≥ 2; 1 + dX − 1 ≥ dX if r(X) = 1. The second is trivial. The first is as well: since X

is indecomposable mdr(f) ≥ 2.

Example 3.4.22. In [ 7 ], Walther showed the Bernstein–Sato polynomial of an arrangement

is not combinatorially determined. He gives the following two arrangements that have the

same intersection lattice, but the former has −18+2
9 as a root and the latter does not:

f = xyz(x+ 3z)(x+ y + z)(x+ 2y + 3z)(2x+ y + z)(2x+ 3y + z)(2x+ 3y + 4z);

g = xyz(x+ 5z)(x+ y + z)(x+ 3y + 5z)(2x+ y + z)(2x+ 3y + z)(2x+ 3y + 4z).

Because these arrangements are rank 3 they are automatically tame, cf. Remark  3.2.5 . The

above theorem says the roots of the b-polynomials agree inside [−1, 0). In Remark 4.14.(iv)

of [  33 ], Saito shows that their roots agree except for −18+2
9 .

For the rest of the subsection we restrict to free hyperplane arrangments. In [  11 ],

Maisonobe used the symmetry of BL, when L corresponded to a factorization of a reduced
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f into linear terms, to make his estimates of BL so precise they actually computed BL, cf.

Theorem 2 in loc. cit. We use the symmetry of Bg
f ′F given by ϕ of Theorem  3.3.16 similarly,

but our situation is more technical because of the addition of f ′, the lack of reducedness,

and our focus on different factorizations F .

Lemma 3.4.23. Let f = f1 · · · fr be an unmixed factorization of a central hyperplane ar-

rangement and let F = (f1, . . . , fr). Suppose f ′ divides f ; g = f
f ′
. If (f ′, F ) is an unmixed

pair and ϕ the C[S]-automorphism prescribed in Theorem  3.3.16 , then

ϕ(P g
f ′F,X) = −(P g

f ′F,X + dX,red + dX − 2r(X)− d′X).

Proof. First notation. Factor f = lv1
1 · · · lvqq , where the lt pairwise distinct irreducibles. Let

{mk} be the repeated multiplicities of F ; {d′k, dk}k and {d′′k, dk}k the repeated powers of the

unmixed pairs (f ′, F ) and (g, F ). Because f ′g = f , the formulation of ϕ in Theorem  3.3.16 

can be simplified:

ϕ(
∑
k

dX,ksk) = −
∑
k

dX,k(sk + 1
mk

+ 2d′k
dk

+ d′′k
dk

)

= −
∑
k

dX,k(sk + 1
mk

+ d′k
dk

+ 1)

= −
∑
k

dX,k(sk + 1
mk

)−
∑
k

dX,k,redd
′
k − dX

= −
∑
k

dX,k(sk + 1
mk

)− d′X − dX .

After rearranging, we will be done once we show that ∑k
dX,k
mk

= dX,red.

Fix k ∈ [r]. Observe:

∏
t∈[q]
vt=mk

lmkt =
∏
i∈[r]

mi=mk

fi =
∏
i∈[r]

mi=mk

∏
t∈[q]
fi∈(lt)

ldit . (3.4.9)
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Equality will still hold in ( 3.4.9 ) if we further restrict t to the integers such that lt divides

fX . The degrees of the resulting polynomials are equal:

mk |{lt | vt = mk; fX ∈ (lt)}| =
∑
i∈[r]

mi=mk

di |{lt | fi, fX ∈ (lt)}| (3.4.10)

=
∑
i∈[r]

mi=mk

di dX,i,red

=
∑
i∈[r]

mi=mk

dX,i.

Therefore

∑
k

dX,k
mk

=
∑

p∈{mk}

∑
i∈[r]
mi=p

dX,k
p

=
∑

p∈{mk}
|{lt | vt = p; fX ∈ (lt)}| (3.4.11)

=
∑

p∈{vt}
|{lt | vt = p; fX ∈ (lt)}|

= dX,red.

First we use Theorem  3.4.18 and the symmetry of Bg
f ′L to find an element of Bg

f ′L that

more accurately approximates the Bernstein–Sato ideal.

Proposition 3.4.24. Consider the central, not necessarily reduced, free hyperplane arrange-

ment f = l1 · · · ld, where the lk are linear forms, and let L = (l1, . . . , ld). Suppose f ′ divides

f ; let g = f
f ′

. Then

∏
X∈L(A)

X indecomposable

dx,red+dX−2r(X)−d′X∏
jX=0

(
P g
f ′L,X + jX

)
∈ Bg

f ′L. (3.4.12)

Proof. By Theorem  3.4.18 there exists a positive integer N such that

∏
X∈L(A)

X indecomposable

N∏
jX=0

(
P g
f ′L,X + jX

)
∈ Bg

f ′L. (3.4.13)
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Since (f ′, L) are an unmixed pair up to units by virtue of L being a factorization into linear

forms, by Theorem  3.3.16 /Corollary  3.3.18 and Lemma  3.4.23 

∏
X∈L(A)

X indecomposable

N∏
jX=0

(
P g
f ′L,X + dX,red + dX − 2r(X)− d′X − jX

)
∈ Bg

f ′L. (3.4.14)

By Corollary  3.4.20 , Bg
f ′L is principal. Comparing the irreducible factors of the elements

given in ( 3.4.13 ) and ( 3.4.14 ) proves the claim.

When the rank of f is at most 2, and so f is automatically free, we can compute V(Bg
f ′F )

for any factorization F of f and we can compute Bg
f ′L for L a factorization into linear terms.

Theorem 3.4.25. Suppose that f is a central, not necessarily reduced, hyperplane arrange-

ment of rank at most 2 and let F = (f1, . . . , fr) correspond to any factorization f = f1 · · · fr.

Let f ′ divide f and g = f
f ′
. Then

V(Bg
f ′F ) = V

 ∏
X∈L(A)

X indecomposable

dX,red+dX−2r(X)−d′X∏
jX=0

(
P g
f ′F,X + jX

) . (3.4.15)

If L is a factorization of f = l1 · · · ld into irreducibles, then

Bg
f ′L =

∏
X∈L(A)

X indecomposable

dX,red+dX−2r(X)−d′X∏
jX=0

(
P g
f ′L,X + jX

)
. (3.4.16)

Proof. If f is indecomposable, then by Saito’s criterion for freeness, cf. page 270 of [ 8 ],

mdr(f) = dred − 1. So in this case Theorem  3.4.11 implies

Bg
f ′F ⊆

√√√√√√√C[S] ·
dred+d−d′−4∏

j0=0

(
P g
f ′F,0 + j0

) ∏
X∈L(A)
r(X)=1

dX−d′X−1∏
jX=0

(
P g
f ′F,X + jX

)
. (3.4.17)
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Proposition  3.4.24 and Proposition  3.2.26 together imply

√√√√√√√C[S] ·
∏

X∈L(A)
X indecomposable

dx,red+dX−2r(X)−d′X∏
jX=0

(
P g
f ′F,X + jX

)
⊆
√
Bg
f ′F , (3.4.18)

where we have included radicals because the image of a polynomial modulo SF may have

multiplicands with large multiplicities, cf. Example  3.2.27 . Combining (  3.4.17 ) and ( 3.4.18 )

and simplifying dx,red + dX − 2r(X)− d′X for rank 2 and rank 1 edges proves ( 3.4.15 ).

Because L is a factorization into irreducibles, even if f is not reduced the polynomial on

the right hand side of ( 3.4.16 ) is reduced. Therefore ( 3.4.15 ) and Corollary  3.4.20 implies

( 3.4.16 ). The case of f decomposable follows by similar reasoning.

If f is of rank greater than 2, mdr(f) can be small and so the estimate in Theorem  3.4.11 

will not be precise enough for our purposes. In this case, we impose symmetry on Bg
f ′F to

obtain the following estimates:

Theorem 3.4.26. Suppose that f = f1 · · · fr is a central, not necessarily reduced, free hy-

perplane arrangement, F = (f1, · · · , fr), f ′ divides f , and g = f
f ′
. Then

√√√√√√√C[S] ·
∏

X∈L(A)
X indecomposable

dX,red+dX−2r(X)−d′X∏
jX=0

(
P g
f ′F,X + jX

)
⊆
√
Bg
f ′F . (3.4.19)

If we assume (f ′, F ) is an unmixed pair up to units, then

Bg
f ′F ⊆

√√√√√C[S] ·
∏

X∈L(A)
X indecomposable

∏
jX∈ΞX

(
P g
f ′F,X + jX

)
, (3.4.20)

where, for each indecomposable edge X, ΞX is the, possibly empty, set of nonnegative integers

defined by


[0, dX,red + dX − 2r(X)− d′X ] r(X) ≤ 2

[0, dX − d′X − 1] ∪ [dX,red − 2r(X) + 1, dX,red + dX − 2r(X)− d′X ] r(X) ≥ 3.
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Proof. The inclusion ( 3.4.19 ) is proved in exactly the same way as ( 3.4.18 ), so we need to

only prove ( 3.4.20 ). Arguing as in the beginning of Theorem  3.3.16 , we may assume (f ′, F )

is an unmixed pair. Theorem  3.4.11 implies

Bg
f ′F ⊆

√√√√√√√√C[S] ·
∏

X∈L(A)
X indecomposable

r(X)≥3

dX−d′X−1∏
jX=0

(
P g
f ′F,X + jX

)
. (3.4.21)

The symmetry of Bg
f ′F,X , cf. Theorem  3.3.16 /Corollary  3.3.18 , Lemma  3.4.23 , and ( 3.4.21 )

imply

Bg
f ′F ⊆

√√√√√√√√C[S] ·
∏

X∈L(A)
X indecomposable

r(X)≥3

dX−d′X−1∏
jX=0

P g
f ′F,X + dX,red + dX − 2r(X)− d′X − jX (3.4.22)

=

√√√√√√√√C[S] ·
∏

X∈L(A)
X indecomposable

r(X)≥3

dx,red+dX−2r(X)−d′X∏
jX=dx,red−2r(X)+1

(
P g
f ′F,X + jX

)
.

At the edges of rank two or one we have an ideal containment similar to (  3.4.17 ). Combining

this, (  3.4.21 ), and ( 3.4.22 ) and using the fact that C[S] is a UFD proves ( 3.4.20 ).

If d′ is small enough, the previous result does not just estimate–it computes.

Corollary 3.4.27. (Compare to Theorem 2 of [ 11 ]) Suppose f = f1 · · · fr is a central, not

necessarily reduced, free hyperplane arrangement, F = (f1, · · · , fr), f ′ divides f , and g = f
f ′
.

If (f ′, F ) is an unmixed pair up to units and if d′ ≤ 4, then

V(Bg
f ′F ) = V

 ∏
X∈L(A)

X indecomposable

dX,red+dX−2r(X)−d′X∏
jX=0

(
P g
f ′F,X + jX

) . (3.4.23)
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If L is a factorization of f = l1 · · · ld into irreducibles and d′ ≤ 4, then

Bg
f ′L =

∏
X∈L(A)

X indecomposable

dX,red+dX−2r(X)−d′X∏
jX=0

(
P g
f ′L,X + jX

)
. (3.4.24)

If f ′ = 1 and f is reduced, then for any F

V(BF ) = V

 ∏
X∈L(A)

X indecomposable

dX,red+dX−2r(X)∏
jX=0

(
P g
F,X + jX

) . (3.4.25)

In particular, if f is reduced or is a power of a central, reduced, and free hyperplane arrange-

ment, then the roots of the Bernstein–Sato polynomial of f are given by ( 3.4.25 ).

Proof. Because of Theorem  3.4.26 , proving (  3.4.23 ) amounts to showing that ΞX =

[0, dX,red+dX−2r(X)−d′X ] for each X of rank at least 3. This occurs if d′X ≤ 2(r(X)−1). So

( 3.4.23 ) is true. Since (f ′, L) is always an unmixed pair up to units, Corollary  3.4.20 proves

( 3.4.24 ). Equation ( 3.4.25 ) follows from ( 3.4.23 ) and the fact (1, F ) is always an unmixed

pair up to units when f is reduced, cf. Corollary  3.3.18 . For the final claim, it suffices to

note that (1, F ) for F = (f) is an unmixed pair up to units provided f is reduced or f is a

power of a central, reduced hyperplane arrangement.

Remark 3.4.28.(a) Let us outline how to strengthen the final claim of Corollary  3.4.27 

to Bernstein–Sato polynomials for all non-reduced, free f . In the recently announced

paper [ 10 ], Budur, Veer, Wu, and Zhou consider local, analytic f that satisfy a

vanishing Ext criterion. Namely, that ExtkDX,x[S](DX,x[S]F S,DX,x[S]) vanishes for all

but one value of k. (We let F corresponds to any factorization of f .) In Proposition

3.4.3 they characterize elements of V(BF,x) in terms of the non-vanishing of a certain

tensor product. It is easy to show that this is equivalent to the non-surjectivity of

the DX,x-map ∇A. This is the map DX,x[S]F S/(s1 − a1, . . . , sr − ar) · DX,x[S]F S →

DX,x[S]F S/(s1− (a1− 1), . . . , sr− (ar− 1)) ·DX,x[S]F S induced by sending each sk to

sk+1. Here A corresponds to (a1, . . . , ar) ∈ Cr. See Section 3 of Chapter 2, Proposition

2 of [ 6 ], or Section 6 in this chapter for more details on ∇A. If f corresponds to a free,
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possibly non-reduced, arrangement, it follows from Theorem  3.3.9 that the vanishing

Ext condition of [ 10 ] holds. Moreover, using the commutative diagram in Remark 3.3

of Chapter 2, the non-surjectivity of the map ∇A is equivalent to the non-surjectivity

of the classical map ∇a. (This is the same as ∇A for r = 1.) The non-surjectivity of

∇a is known to characterize the roots of the Bernstein–Sato polynomial of an arbitrary

f . So when L corresponds to a factorization of our possibly non-reduced arrangement

f into irreducibles, we can use the above procedure to show that intersecting V(BL)

with the diagonal gives V(Bf ), again, see Remark 3.3 of Chapter 2. Using the formula

for V(BL) in ( 3.4.24 ), we then obtain the expected formula ( 3.4.25 ) for V(Bf ) without

requiring the reduced hypothesis.

(b) The above strategy for computing V(Bf ) for f a central, reduced, free hyperplane

arrangement can also be executed without appeal to [ 10 ] thanks to Proposition  3.7.1 .

(c) In light of Proposition 3.4.3 of [  10 ], the assumption of “unmixed pair up to units”

does not seem to be necessary. Rather, it seems there should be a version of this

result for f ′F S so that computing Bg
f ′L would be sufficient for computing V(Bg

f ′F ).

3.5 Freeing Hyperplane Arrangements

In this short section we consider the problem of embedding a central hyperplane ar-

rangement g inside a central, free hyperplane arrangement. Equivalently, given such a g

we consider central hyperplane arrangements f such that fg is free. (Note that we have

somewhat switched notation for reasons that will become clear in Proposition  3.5.3 .)

Definition 3.5.1. We say the central arrangement f frees the central arrangement g if fg

is free.

For g an arbitrary divisor, it is unknown if such an f exists. In [  35 ], Mond and Schulze

find some general instances of the freeing divisor f ; see also [ 37 ], [ 43 ], [ 36 ]. Returning to

arrangements g, both Abe and Wakefield identify some situations in [ 44 ] and [  45 ] respectively

where f is a hyperplane and fg is free. For g a central hyperplane arrangement, Masahiko

Yoshinaga [ 38 ] has communicated to us an algorithm, depending only on the intersection
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lattice of g, that always produces such an f . Accordingly, we make the following definition,

noting nothing is lost by assuming reducedness.

Definition 3.5.2. For g a central, reduced hyperplane arrangement, define

µg = min{deg(f) | f is a central arrangement that frees g}.

We will highlight a connection between small roots of the Bernstein–Sato polynomial of

a tame g and lower bounds for µg. First some notation.

Consider a reduced hyperplane arrangement l1 · · · ld and write it as a product fg. Let

F = (f1, . . . , fr) and G = (g1, . . . , gu) correspond to the factorizations f = f1 · · · fr and

g = g1 · · · gu into linear terms and let FG correspond to the factorization l1 · · · ld = f1 · · · fr ·

g1 · · · gu. When considering the An(C) [S]-module generated (FG)S, we will re-label so this

is an An(C) [S, T ]-module generated by f s1
1 · f srr g

t1
1 · gtuu . Finally, let S + 1 denote the C[S]

ideal generated by s1 +1, . . . , sr +1 and let ∆S+1 : Cu → Cr+u = Cd be the embedding given

by (a1, . . . , au) 7→ (−1, . . . ,−1, a1, . . . , au).

We need the following result:

Proposition 3.5.3. Let f, g, F,G be as in the preceding paragraph. Suppose fg is tame.

Then

∆S+1(V(BG)) ⊆ V(Bg
fFG) ∩ {s1 = −1, . . . , sr = −1} ⊆ Cu+r.

Proof. Define I = An(C) [S, T ] · annAn(C) [T ] G
T + An(C) [S, T ] · g + An(C) [S, T ] · (S + 1). If

P ∈ I ∩ C[S, T ], then

P modulo An(C) [S, T ] · (S + 1) ∈ C[T ] ∩ (An(C) [T ] · annAn(C) [T ] G
T + An(C) [T ] · g).

So

I ∩ C[S, T ] ⊆ C[S, T ] ·BG + C[S, T ] · (S + 1).

As the reverse equality is obvious,

I ∩ C[S, T ] = C[S, T ] ·BG + C[S, T ] · (S + 1).
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For δ a logarithmic derivation of fg,

ψfFG(δ) = δ −
∑
k

sk
δ • fk
fk
−
∑
m

tm
δ • gm
gm

− δ • f
f

.

Under the map An(C) [S, T ] 7→ An(C) [S, T ]/An(C) [S, T ] · (S + 1),

ψfFG(δ) 7→ δ −
∑
m

tm
δ • gm
gm

= ψG(δ) ∈ annAn(C) [T ]G
T .

Therefore

I ⊇ An(C) [S, T ] · θfFG + An(C) [S, T ] · g + An(C) [S, T ] · (S + 1).

Intersecting with C[S, T ] and using Corollary  3.2.22 , we deduce

C[S, T ] ·BG + C[S, T ] · (S + 1) ⊇ Bg
f ′FG + C[S, T ] · (S + 1).

Taking varieties finishes the proof.

By Theorem 1 of [ 33 ], V(Bg) ⊆ (−2d+1
d

, 0), g any central arrangement; by the formula

( 3.4.25 ) for V(Bg), the presence of roots −2d+v
d

, 1 < v ≤ n− 1 suggests g is not free. While

this is not true because −2d+v
d

might not be written in lowest terms, the following outlines

how such roots can measure the distance g is from being free.

Theorem 3.5.4. Suppose that g is a central, reduced, tame hyperplane arrangement of rank

n, v an integer such that 1 < v ≤ n− 1, and deg(g) is co-prime to v. If −2 deg(g)+v
deg(g) is a root

of the Bernstein–Sato polynomial of g, then µg ≥ n− v.

Proof. Suppose f is a reduced, central hyperplane arrangement such that fg is free. We use

the notation of the preceeding proposition and paragraphs. It suffices to prove deg(f) ≥ n−v.
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By Proposition  3.2.26 (or Proposition 2.32 of Chapter 2) if −2 deg(g)+v
deg(g) is a root of the

Bernstein–Sato polynomial of g then (−2 deg(g)+v
deg(g) , . . . , −2 deg(g)+v

deg(g) ) ∈ V(BG), where G corre-

sponds to the factorization of g into linear terms. By Proposition  3.5.3 ,

∆S+1(−2 deg(g) + v

deg(g) , . . . ,
−2 deg(g) + v

deg(g) ) ∈ V(Bg
fFG) ∩ V(C[S][T ] · (S + 1)).

By Theorem  3.4.26 , there exists an indecomposable edge X associated to the intersection

lattice of fg, and an integer jX satisfying 0 ≤ jX ≤ 2 deg(gX)+2 deg(fX)−2r(X)−deg(fX)

such that ∆S+1(−2 deg(g)+v
deg(g) , . . . , −2 deg(g)+v

deg(g) ) lies in the intersection of V(C[S][T ] · (S + 1)) and

{
∑
k

deg(fX,k)sk +
∑
m

deg(gX,m)tm + r(X) + deg(fX) + jX = 0}.

That is,

− deg(fX) + deg(gX)(−2 deg(g) + v

deg(g) ) + r(X) + deg(fX) + jX = 0. (3.5.1)

Since v is co-prime to deg(g), deg(gX)v
deg(g) can only be an integer if deg(gX) = deg(g). This

implies X = 0 and r(X) = n. Rearranging ( 3.5.1 ) and using the upper bound on jX we see

deg(fX) ≥ r(X)− 2 deg(gX) + deg(gX)2 deg(g)− v
deg(g) . (3.5.2)

Because deg(gX) = deg(g) and X = 0, ( 3.5.2 ) simplifies to

deg(f) ≥ n− v.

This method of argument is more versatile than the theorem suggests. In practice,

information about the intersection lattice lets us drop the co-prime condition.

Example 3.5.5. Let g = xyzw(x + y + z)(y − z + w). This example is studied in [ 46 ],

Example 5.7, and [ 47 ], Example 5.8. In the latter, Saito verifies that −2∗6+2
6 is a root of the

Bernstein–Sato polynomial. Since proj dim Ω1(log g) = 1 and n = 4, g is tame. Suppose
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f is a central, reduced hyperplane arrangement such that fg is free. Argue as in Theorem

 3.5.4 until arriving at ( 3.5.1 ). If there is an indecomposable edge X 6= 0 associated to the

intersection lattice of fg such that (  3.5.1 ) holds, then deg(gX) must equal 3 so that 2 deg(gX)
6

is an integer. Then gX corresponds to the intersection of three hyperplanes of g; all such

edges have rank 3 (as edges of V(g)). So X has rank at least 3 as an edge of the intersection

lattice of fg. Equation ( 3.5.2 ) becomes deg(fX) ≥ 3− 2 ∗ 3 + 3 ∗ 10
6 = 2. On the other hand,

if ( 3.5.1 ) is satisfied at X = 0, then argument of Theorem  3.5.4 applies and deg(f) ≥ 2.

Hence µg ≥ 2.

3.6 Trace of Adjoints

Let f be free and a defining equation for a divisor Y at x and f = ld1
1 · · · ldrr its unique

factorization into irreducibles, up to multiplication by a unit. So any reduced defining

equation fred for Y at x is, up to multiplication by a unit, fred = l1 · · · ld. In this section we

find formulae involving the commutators of DerX,x(− log f), which by Remark  3.2.2 , equals

DerX,x(− log fred). These formulae are crucial to the proof of Proposition  3.3.6 and the

precise description of the dual of DX,x[S]f ′F S. Consequently, the formulae are one of the

main reasons certain Bernstein–Sato ideals have the symmetry property we used throughout

the chapter. These results were first proved by Castro–Jiménez and Ucha in Theorem 4.1.4

of [  34 ]; here we include a different proof.

Definition 3.6.1. Let fred be free and δ1, . . . , δn a basis of DerX,x(− log fred). Define a matrix

Adδi whose (j, k) entry is ci,jk , where ci,jk ∈ OX,x are determined by

adδi(δj) = [δi, δj] =
∑
k

ci,jk δk.

Remark 3.6.2. Note Adδi does not determine the map adδi : DerX,x(− log fred) →

DerX,x(− log fred) since said map is not OX,x-linear. Moreover, Adδi depends on a choice

of basis of DerX,x(− log fred).

We will eventually find, given a coordinate system, a particular basis δ1, . . . , δn of

DerX,x(− log fred) so that tr Adδi , the trace of Adδi , admits a nice formula. We collect some
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elementary facts about the interactions between DerX,x(− log fred) and Ω•(log fred). Recall by

Saito, cf. 1.6 of [ 8 ], the following: the inner product between DerX,x(log fred) and Ω1(log f)

shows Ω1(log fred) is the OX,x-dual of DerX,x(− log fred); Ω•(log fred) is closed under taking in-

ner products with logarithmic vector fields; Ω•(log fred) is closed under taking Lie derivatives

along logarithmic vector fields of fred; if fred is free then Ωk(log fred) = ∧k Ω1(log fred).

Definition 3.6.3. For w ∈ Ωk(log fred) and δ ∈ DerX,x(− log fred) let ιδ(w) ∈ Ωk−1(log fred)

denote the inner product of w and δ. Since fred is free, the induced map Ω1(log fred) ×

DerX,x(− log fred)→ OX,x is a perfect pairing. Given a basis δ1, . . . , δn of DerX,x(log fred) we

may select a dual basis δ?1, . . . , δ?n of Ω1(log fred) such that

ιδi(δ?i ) = 1 and ιδi(δ?j ) = 0 for i 6= j.

Definition 3.6.4. For w ∈ Ωk(log fred) and δ ∈ DerX,x(− log fred) let Lδi(w) ∈ Ωk(log fred)

denote the Lie derivative of w along δi. Let δ1, . . . , δn and δ?1, . . . , δ?n be as in Definition  3.6.3 .

Then there exists a unique choice of bi,jk ∈ OX,x such that

Lδi(δ?j ) =
∑
k

bi,jk δ
?
k.

Define the matrix Lieδi to have (j, k) entry bi,jk .

Remark 3.6.5. Just like Adδi , the matrix Lieδi does not determine the map Lδi :

Ω1(log fred) → Ω1(log fred); moreover, Lieδi depends on the choice of basis δ1, . . . , δn of

DerX,x(− log f) which in turn determines the basis δ?1, . . . , δ?n of Ω1(log f).

We need the following elementary lemma. It is well known for vector fields and differential

forms and can easily be shown to hold in the logarithmic case by writing a logarithmic

differential form as 1
fred

w where w is a differential form.

Lemma 3.6.6. Let X, Y ∈ DerX,x(log fred). Then as maps from Ωk(log fred) →

Ωk−1(log fred), we have

ι[X,Y ] = [LX , ιY ].
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Proposition 3.6.7. If fred is free and δ1, . . . , δn is a basis for DerX,x(− log fred), then

Adδi = −LieTδi .

Proof. On one hand,

ιadδi (δj)(δ
?
t ) = ι∑

k
ci,j
k
δk

(δ?t ) = ci,jt .

On the other hand,

[Lδi , ιδj ](δ?t ) = −ιδj(Lδi(δ?t )) = −ιδj(
∑
k

bi,tk δ
?
k) = −bi,tj ,

as the Lie derivative of a vector field on a constant is zero. Now use Lemma  3.6.6 .

Since fred is free, Ωn(log fred) is a free, cyclic OX,x-module generated by δ?1 ∧ · · · ∧ δ?n.

Moreover:

Proposition 3.6.8. Let fred be free and δ1, . . . , δn be a basis for DerX,x(− log fred). Then

Lδi(δ?1 ∧ · · · ∧ δ?n) = − tr Adδi(δ?1 ∧ · · · ∧ δ?n).

Proof. By basic facts of Lie derivatives:

Lδi(δ?1 ∧ · · · ∧ δ?n) =
∑
j

δ?1 ∧ · · · ∧ δ?j−1 ∧ Lδi(δ?j ) ∧ δ?j+1 ∧ · · · ∧ δ?n

=
∑
j

δ?1 ∧ · · · ∧ δ?j−1 ∧ (
∑
k

bi,jk δ
?
k) ∧ δ?j+1 ∧ · · · ∧ δ?n

= (
∑
k

bi,kk )(δ?1 ∧ · · · ∧ δ?n).

The result follows by Proposition  3.6.7 .

We will also need the following standard definition and proposition from differential

geometry.
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Definition 3.6.9. Consider local coordinates x1, . . . , xn. Let δ be a vector field. Then div(δ)

is the divergence of δ with respect to the n-form dx1 ∧ · · · ∧ dxn and is defined by:

Lδ(dx1 ∧ · · · ∧ dxn) = div(δ)(dx1 ∧ · · · ∧ dxn).

Proposition 3.6.10. In local coordinates x1, · · · , xn, write the vector field δ as δ = ∑
k hk

∂
∂xk

,

where hk ∈ OX,x. Then div(δ) with respect to dx1 ∧ · · · ∧ dxn satisfies the formula

div(δ) =
∑
k

∂

∂xk
• hk.

Proof. Write dx = dx1 ∧ · · · ∧ dxn. By Cartan’s formula, Lδ(dx) = d(ιδ(dx)). Using the

skew-symmetric properties of the inner product we deduce:

d(ιδ(dx)) = d(
∑
k

(−1)k−1(dx1 ∧ · · · ∧ ιδ(dxk) ∧ · · · ∧ dxn))

= d(
∑
k

(−1)k−1hk(dx1 ∧ · · · ∧ d̂xk ∧ · · · ∧ dxn))

= (
∑
k

∂

∂xk
• hk)dx.

Consider a basis δ1, . . . , δn of DerX,x(− log fred). Then for any choice of coordinates

x1, . . . , xn, there exists a corresponding unit u ∈ OX,x such that δ?1 ∧ · · · ∧ δ?n = u
fred

dx1 ∧

· · · ∧ dxn. See the proof of the first theorem on page 270 of [ 8 ] for justification. Clearly

uδ1, . . . , δn is still a basis of DerX,x(− log fred) and since 1
u
δ?1 = (uδ1)?, the logarithmic forms

(uδ1)?, δ?2, . . . , δ?n constitute a dual basis of Ω1(log fred) satisfying:

(uδ1)? ∧ δ?2 ∧ · · · ∧ δ?n = 1
fred

dx1 ∧ · · · ∧ dxn.

This shows, as long as n ≥ 2, that one can always find a basis of DerX,x(− log fred) satisfying

the conditions of the following definition:
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Definition 3.6.11. Let fred have Euler homogeneity E at x. Having fixed a coordi-

nate system x1, . . . , xn, consider a basis δ1, . . . , δn of DerX,x(− log fred) such that δn = E

and δ1, . . . , δn−1 is a basis of DerX,x(− log0 fred). Such a basis is a preferred basis of

DerX,x(− log fred) if, in addition,

δ?1 ∧ · · · ∧ δ?n = 1
fred

dx1 ∧ · · · ∧ dxn.

We are finally ready to state the main formula of this section.

Proposition 3.6.12. Let fred be free with Euler homogeneity E. Given a coordinate system

x1, . . . , xn, let δ1, . . . , δn be a preferred basis of DerX,x(− log fred). Write δi = ∑
k hk,i

∂
∂xk
.

Then

(i) tr Adδi = −∑k
∂
∂zk
• hk,i for i 6= n;

(ii) tr Adδn = −∑k
∂
∂zk
• hk,n + 1.

Proof. Write dx = dx1∧· · ·∧dxn. Because δ1, · · · , δn is a preferred basis of DerX,x(− log fred)

and by standard properties of the Lie derivative

Lδi(δ?1 ∧ · · · ∧ δ?n) = Lδi(
1
fred

dx) = Lδi(
1
fred

)dx+ 1
fred

Lδi(dx) (3.6.1)

= Lδi(
1
fred

)dx+ ( 1
fred

∑
k

∂

∂xk
• hk,i)dx.

Note that the last equality of ( 3.6.1 ) follows by Proposition  3.6.10 . When i 6= n, Lδi( 1
fred

) = 0;

when i = n, Lδn( 1
fred

) = − 1
fred

. The result follows by the definition of a preferred basis

together with Proposition  3.6.8 .

3.7 Budur’s Conjecture for Central, Reduced, Free Arrangements

In [ 6 ], Budur conjectured that exponentiating V(BF,x) (here F = (f1, . . . , fr) is collection

of polynomials) gives the support of the Sabbah specialization functor, generalizing the

fact that exponentiating the roots of the Bernstein–Sato polynomial gives the support of

the nearby cycle functor, cf. Conjecture 2 of loc. cit. In the same paper he reduced this
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conjecture to proving, in language we will shortly define, that if A−1 ∈ V(BF,x) then a certain

DX,x-linear map ∇A is not surjective, cf. Proposition 2 of loc. cit. For f = f1 · · · fr a central,

reduced, and free hyperplane arrangement and F = (f1, . . . , fr) an arbitrary factorization

of f we provide a proof here. Theorem 3.5.3 of the recently announced paper [ 10 ] gives

a general proof of the conjecture by proving the claim about ∇A for general points in the

codimension one components of V(BF,x). Our method relies on the computation of V(BF,0)

given in Corollary  3.4.27 and the behavior of ∇A under duality, cf. Section 4 of Chapter 2.

First, let us clarify our terminology. (See also Section 3 of Chapter 2 for more details).

For a1, . . . , ar ∈ C, denote by S − A the sequence s1 − a1, . . . , sr − ar. Similarly, let A and

A−1 denote the tuple a1, . . . , ar and a1−1, . . . , ar−1 respectively. There is an injective DX,x-

linear map ∇ : DX,x[S]F S → DX,x[S]F S given by sending every sk to sk + 1 and identifying

F S+1 with fF S. This induces the DX,x-linear map

∇A : DX,x[S]F S

(S − A)DX,x[S]F S
→ DX,x[S]F S

(S − (A− 1))DX,x[S]F S
.

By Proposition 2 of [ 6 ], to prove Budur’s conjecture in our setting, it suffices to prove

the following:

Proposition 3.7.1. Let f = f1 · · · fr be a central, reduced, and free hyperplane arrangement

where the fk are not necessarily linear forms. Let F = (f1, . . . , fr). If A− 1 ∈ V(BF,0), then

∇A : DCn,0[S]F S

(S − A)DCn,0[S]F S
→ DCn,0[S]F S

(S − (A− 1))DCn,0[S]F S

is not surjective.

Proof. Since the fk are globally defined we may consider the global version of ∇A. Since f

is central, there is a natural C?-action on V(f); moreover, ∇A is equivariant with respect to

this action. Therefore ∇A is surjective at 0 if and only if it is surjective at all x ∈ V(f). So

it suffices to prove ∇A is not surjective for

A− 1 ∈
2d−2n⋃
j=0
{
(∑

dksk
)

+ n+ j = 0},
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when f is indecomposable of rank n and degree d, cf. Corollary  3.4.27 and Remark  3.4.9 .

Since f is reduced, V(BF,0) is invariant under the map ϕ on C[S] induced by sk 7→ −sk−2,

cf. Theorem  3.3.16 or Proposition 8 of [  11 ]. This map sends {(∑ dksk) + n + j = 0} to

{(∑ dksk) + n + (2d − 2n − j) = 0}. Theorem 4.18 and Theorem 4.19 of Chapter 2 prove

that the invariance of ϕ forces ∇A to be surjective if and only if ∇−A is surjective. So if

we show ∇A is not surjective for all A− 1 ∈ {(∑ dksk) + n + j = 0} then we will have also

shown ∇−A is not surjective for all −A− 1 ∈ {(∑ dksk) + 2d− n− j = 0}. Thus it suffices

to prove ∇A is not surjective for

A− 1 ∈
d−n⋃
j=0
{
(∑

dksk
)

+ n+ j = 0}.

Let f ′ divide f , where the degree d′ of f ′ is less than d. Just as ∇A is induced by the

DCn,0-injection ∇ : DC,0[S]F S → DCn,0F
S sending each sk to sk + 1, there is an induced

DCn,0-map

∇f ′

A : DCn,0[S]F S

(S − A)DCn,0[S]F S
→ DCn,0[S]f ′F S

(S − (A− 1))DCn,0[S]f ′F S
.

Moreover, the non-injectivity of ∇f ′

A implies the non-injectivity of ∇A. Arguing as in Section

3 of Chapter 2, we can prove a version of Theorem 3.11 of loc. cit. for ∇f ′

A : if ∇f ′

A is

injective, then it is surjective. By Theorem 4.19 of loc. cit., it thus suffices to prove ∇f ′

A is

not surjective for

A− 1 ∈ {
(∑

dksk
)

+ n+ d′ = 0}.

Now we are in the situation of Theorem  3.4.8 , where instead of looking for vB(S) ∈

annDCn,0[S] f
′F S + DCn,0[S] · g, where g = f

f ′
, we are considering the following possibility:

1 ∈ annDCn,0[S] f
′F S + DCn,0[S] · g + (S − (A− 1))DCn,0[S]. (3.7.1)

Suppose, towards contradiction, ( 3.7.1 ) holds, i.e. ∇f ′

A is surjective. We argue as in Theorem

 3.4.8 , except letting B(S) and v be 1, and obtain an equation resembling ( 3.4.1 ) except with

additional terms on the right hand side from (S−(A−1))DCn,0[S]. Look at the right constant

terms of this version of (  3.4.1 ), evaluate each sk at ak − 1, and regard every summand as a
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power series. This gives an equality of elements in OX,0; denote by m0 the maximal ideal of

OX,0. By the argument of Theorem  3.4.8 , the only piece of the right hand side outside of m0

can come from L0g as the relevant pieces from Pψf ′F,0(E) and the (S−(A−1)DCn,0[S] terms

vanished after sending each sk to ak − 1 and there are no such pieces from the Qjψf ′F (δj)

terms by Lemma  3.4.5 . Certainly g ∈ m0. Thus the entire right hand side lies in m0. Since

1 /∈ m0, our assumption that (  3.7.1 ) holds is actually impossible, and the claim is proved.

Remark 3.7.2.(a) One can argue similarly for non-reduced f if we assume F is unmixed

up to units and we check Theorem 4.18 and Theorem 4.19 of Chapter 2 for F unmixed

up to units. In particular, this applies when F is a factorization into linear terms.

We leave this to the reader.

(b) In this case, we obtain the expected formula ( 3.4.25 ) for the roots of Bernstein–Sato

polynomial of an appropriate f by Remark  3.7.2 .(a) and the strategy outlined in

Remark  3.4.28 .(a). This approach does not rely on [ 10 ].

(c) The primary purpose of Theorem 3.5.3 of [ 10 ] is to analyze Exp(V(BF,0)). When f

is simply a central, reduced hyperplane arrangement and L is a factorization of f

into linear forms, Exp(V(BL,0) can be explicitly computed by Theorem  3.4.18 (or

Maisonobe’s Proposition 10 of [ 11 ]) and Corollary 2 of [ 6 ]. In this case, Budur’s

conjecture holds without appeal to [ 10 ]. Similar approaches work for non-reduced f

and different factorizations F of f , cf. Corollary  3.4.19 and also Remark 6.10 of [ 6 ].
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