
TEXT NORMALIZATION BASED ON ERROR TYPE USING

PRE-TRAINED LANGUAGE MODEL
by

Youlim Ko

A Thesis

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the Degree of

Master of Science

Department of Computer and Information Technology

West Lafayette, Indiana

May 2021



THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Eric T. Matson, Co-Chair

Department of Computer and Information Technology

Dr. Baijian Yang, Co-Chair

Department of Computer and Information Technology

Dr. Julia M. Rayz

Department of Computer and Information Technology

Approved by:

Dr. John A. Springer

2



This thesis is dedicated to my family for all their love and support.

3



ACKNOWLEDGMENTS

I wish to gratefully acknowledge my advisors, Dr. Eric T. Matson and Dr. Baijian Yang,

for all their guidance and support, as well as the confidence they have provided me throughout

this process from the beginning to the end. I would also like to extend my gratitude towards my

committee member, Dr. Julia M. Rayz, for her insightful comments and guidance in the field of

Natural Language Processing. This thesis could not have been completed without the kind

support from all of you, I am truly grateful.

Furthermore, I would like to thank Dr. Rob van der Goot, for his assistance in the

MoNoise model as well as his helpful feedbacks. Finally, I would like to express my love and

gratitude towards my family for all their support and encouragement throughout my studies.

4



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

CHAPTER 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Research Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.7 Delimitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

CHAPTER 2. REVIEW OF LITERATURE . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.1 Traditional Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.1.1 Spelling Correction Approaches . . . . . . . . . . . . . . . . 20

2.1.1.2 Machine Translation Approaches . . . . . . . . . . . . . . . 21

2.1.1.3 Sequential Labeling Approaches . . . . . . . . . . . . . . . 22

2.1.1.4 Integration of Approaches . . . . . . . . . . . . . . . . . . . 23

2.1.2 Normalization Benchmark Dataset . . . . . . . . . . . . . . . . . . . . 27

2.2 Contextual Pre-trained Language Models . . . . . . . . . . . . . . . . . . . . 29

2.3 Recent and State-of-the-art Approaches . . . . . . . . . . . . . . . . . . . . . 29

2.3.1 Neural Network Approaches . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.2 State-of-the-art Approaches . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.3 Contextual Pre-trained Language Model Approaches . . . . . . . . . . 32

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

CHAPTER 3. RESEARCH METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . 37

5



3.1 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

CHAPTER 4. RESULTS AND ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 Experiment 1. Investigation of BERT in candidate generation . . . . . . . . . . 45

4.1.1 Candidate generation performance on all error types . . . . . . . . . . . 45

4.1.2 Candidate generation performance on different error types . . . . . . . . 46

4.1.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Experiment 2. Investigation of ranking methods based on error type . . . . . . . 49

4.2.1 Candidate ranking performance with 1-best accuracy . . . . . . . . . . 49

4.2.2 Candidate ranking performance with k-best accuracy . . . . . . . . . . 55

4.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

CHAPTER 5. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 Conclusion and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6



LIST OF TABLES

1.1 Example of canonical and non-canonical text . . . . . . . . . . . . . . . . . . . . 12

1.2 Example of normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Example of 1:1 and 1:N replacements . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Example of normalization error types . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Summarization of the Multi-lingual Normalization Benchmark . . . . . . . . . . . 28

2.2 Summary of related work in normalization . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Experimented ranking methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Experimented Error Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Summarization of the NormTax Dataset . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Comparison of the NormTax and NormTax single Dataset . . . . . . . . . . . . . . 42

4.1 BERT candidate generation results on the NormTax single dataset . . . . . . . . . 45

4.2 K-best Ranking Results on Error 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 K-best Ranking Results on Error 7 . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 K-best Ranking Results on Error 11 . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5 K-best Ranking Results on Error 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.6 K-best Ranking Results on Error 8 . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.7 K-best Ranking Results on Error 13 . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.8 K-best Ranking Results on Error 10 . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.9 K-best Ranking Results on Error 12 . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.10 K-best Ranking Results on Error 9 . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.11 K-best Ranking Results on Error 14 . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1 Best Performing Ranking Method based on Error Type . . . . . . . . . . . . . . . 66

7



LIST OF FIGURES

3.1 Example of Preprocessed Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Error Type Distribution of the NormTax Dataset . . . . . . . . . . . . . . . . . . . 43

4.1 Candidate Generation Performance of BERT based on Error Types . . . . . . . . . 46

4.2 Candidate Generation Performance of BERTbase . . . . . . . . . . . . . . . . . . 47

4.3 Candidate Generation Performance of BERTlarge . . . . . . . . . . . . . . . . . . 47

4.4 Ranking Performance of BERTbase on Error 1 . . . . . . . . . . . . . . . . . . . . 50

4.5 Ranking Performance of BERTlarge on Error 1 . . . . . . . . . . . . . . . . . . . 50

4.6 Ranking Performance of BERTbase on Error 3 . . . . . . . . . . . . . . . . . . . . 51

4.7 Ranking Performance of BERTlarge on Error 3 . . . . . . . . . . . . . . . . . . . 51

4.8 Ranking Performance of BERTbase on Error 12 . . . . . . . . . . . . . . . . . . . 52

4.9 Ranking Performance of BERTlarge on Error 12 . . . . . . . . . . . . . . . . . . . 52

4.10 Ranking Performance of BERTbase on Error 8 . . . . . . . . . . . . . . . . . . . . 53

4.11 Ranking Performance of BERTlarge on Error 8 . . . . . . . . . . . . . . . . . . . 53

4.12 Ranking Performance of BERTbase on Error 9 . . . . . . . . . . . . . . . . . . . . 54

4.13 Ranking Performance of BERTlarge on Error 9 . . . . . . . . . . . . . . . . . . . 54

4.14 Ranking Performance of BERTbase on Error 14 . . . . . . . . . . . . . . . . . . . 55

4.15 Ranking Performance of BERTlarge on Error 14 . . . . . . . . . . . . . . . . . . . 55

4.16 Summarization of Ranking Performance based on Error Type . . . . . . . . . . . . 61

8



LIST OF ABBREVIATIONS

NLP Natural Language Processing

UGC User Generated Content

BERT Bidirectional Encoder Representations from Transformers

SMS Short Messaging Service

IV In-Vocabulary

OOV Out-Of-Vocabulary

MT Machine Translation

SMT Statistical Machine Translation

CSMT Character-based Statistical Machine Translation

CRF Conditional Random Field

DCRF Dynamic Conditional Random Field

POS Part-Of-Speech

ANN Artificial Neural Network

RNN Recurrent Neural Network

LSTM Long Short-Term Memory

ERR Error Reduction Rate

MLM Masked Language Model

NSP Next Sentence Prediction

MFR Most-Frequent Method

9



ABSTRACT

With the emergence of Social media and its growing popularity, there has been substantial

growth in User Generated Content (UGC), which holds great potential in extracting meaningful

information. Due to the dynamic nature of social media contents, many Natural Language

Processing (NLP) systems have suffered from performance degradation due to the original

intention in development for application to standard data. To resolve this significant drop in

performance, normalization of non-standard data was introduced as a pre-processing step for

processing non-standard texts before being applied to these downstream tasks. This thesis focuses

on investigating the incorporation of the pre-trained language model BERT in normalization and

the varying performance of normalization methods based on different types of errors. In this

study, the BERT model is used for the candidate generation of normalization and simple ranking

methods are further applied for the candidate ranking on the normalization candidates generated

through BERT. The candidate generation performance of BERT and the ranking performance of

different methods are investigated based on the different types of errors.
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CHAPTER 1. INTRODUCTION

This thesis concerns the normalization of non-standard data, which can be described as a

preprocessing step performed on non-standard data before NLP downstream applications, with a

focus on investigating the incorporation of the pre-trained language model BERT in normalization

and the varying performance of normalization methods based on different error types.

Due to the increased amount of social media content and its characteristic of high volume

and availability, this type of non-standard data holds great potential in the extraction of

meaningful information. However, many Natural Language Processing (NLP) systems have

shown a significant decrease in performance when applied to this type of non-standard data.

Therefore, in applying normalization to process non-standard data to its standard form, the

performance degradation can be improved significantly aiding in producing accurate results in

downstream NLP tasks. The following sections will describe the background, problem, research

question, and significance of the work, followed by the review of literature and research

methodology.

1.1 Background

With the emergence of social media and its growing popularity, there has been substantial

growth in User Generated Content (UGC), which holds great potential in extracting and analyzing

meaningful information. UGC data includes many variations of out-of-vocabulary (OOV) words

such as spelling mistakes, abbreviations, internet jargon, etc. (Kumar, Makhija, & Gupta, 2020).

However, many NLP systems were developed considering standard text data, with no

consideration for non-standard text data such as social media data. As a result, performance

degradation in non-standard text data has been a growing problem in NLP systems. Numerous

previous work has demonstrated the hinder of performance in various NLP tasks when introduced

with noise in the data, these tasks including parsing, machine translation, POS tagging, sentiment

analysis, and semantic textual similarity (Foster et al., 2011; Han, Cook, & Baldwin, 2013;

Hassan & Menezes, 2013; Kumar et al., 2020; F. Liu, Weng, Wang, & Liu, 2011b; van der

Goot, Plank, & Nissim, 2017; van der Goot et al., 2017; C. Zhang, Baldwin, Ho, Kimelfeld, &
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Li, 2013). To alleviate this performance degradation in non-standard text data, adaption was

introduced as a solution by including normalization as a preprocessing step. Thus, normalization

can be conceived as a preprocessing step added to process non-standard text data (Ljubešić,

Zupan, Fišer, & Erjavec, 2016).

Normalization has been defined subjectively differently in different researches, but it can

be generalized to a broad definition of transforming non-canonical texts into their canonical forms

(F. Liu, Weng, Wang, & Liu, 2011a). Canonical text is the standard form of text that includes

formal and highly-edited texts such as texts from books and essays. Non-canonical text is the

non-standard form of text that is informal and noisy, including many variations of OOV words.

Non-canonical texts are commonly contained in UGC, such as Tweets and Short Messaging

Service (SMS) texts. Table 1.1 shows an example of non-canonical texts and their canonical

forms.

Table 1.1. Example of canonical and non-canonical text

Non-canonical text what r u doin tmr

Canonical text what are you doing tomorrow

Table 1.2. Example of normalization

Normalization Type Normalization Result

Original Sequence I didnt kno, its so goooooood 2 finaly see ur face

Correct Normalization I didn’t know, it’s so good to finally see your face

Normalization with Spelling Correction (a) I didn’t know, its so good 2 finally see urban face

Normalization with Simple Lookup Table (b) I didn’t know, its so god two finally see you are face

Normalization can be performed with different methods and can yield significantly

different results based on these different methods. Table 1.2 shows an example of the original

sequence, the corresponding correct normalization result, along with the normalization result

performed with a traditional spelling correction and a simple lookup table of common

12



abbreviations.. The normalization task is quite similar to a spelling correction task, however, the

former often consists of intentional errors while the latter consists of unintentional errors. Due to

this factor, it can be seen in the example result in Table 1.2 (a), that solely utilizing spelling

correction methods are incapable of fully performing normalization since it is unable to handle

common internet abbreviations such as ur.

Some may then argue that a simple lookup table of common internet abbreviations and

their full form pairs, as well as common errors and their correction pairs, could be sufficient for

normalization. However, as it can be seen in the example result of Table 1.2 (b), abbreviations

oftentimes have more than one full form (e.g. ur→ your, you are) thus requiring either the

context that it appeared in or domain-specific information and also there are too many

non-standard variations for a single token (e.g. earthqua, eathquake, earthquakee→ earthquake)

(Han, 2014) for a simple lookup table to handle. Therefore, simply applying a lookup table

without taking context into account and applying spelling correction methods, will result in poor

outcomes as shown.

The normalization task can be defined in different ways, but the task can generally be

divided into three steps: 1) OOV detection, 2) Candidate generation, and 3) Candidate selection

(Gouws, Hovy, & Metzler, 2011; Gouws, Metzler, Cai, & Hovy., 2011). In the first step, OOV

detection, nonstandard words that require normalization are detected. Once the words for

normalization are identified, candidates that are likely to be the normalized form of the detected

words are generated in the candidate generation step. In the last step, candidate selection, the

most likely candidate is selected among the candidates to be the normalized word.

Normalization is also commonly referred to as text normalization, UGC normalization, or

lexical normalization, but lexical normalization specifically refers to the normalization task with

replacements only on the word-level, in other words, one-to-one replacements. One way of

categorizing different types of normalization is by type of replacement: one-to-one replacement,

one-to-many replacement, and many-to-one replacement. Table 1.3 shows an example of

one-to-one and one-to-many replacements in normalization. Another way of categorizing is more

specifically by the different types of errors, e.g. spelling errors and word lengthening errors.

Examples of different types of errors are shown in Table 1.4. Some tokens consist of more than

one type of error and require multiple actions for normalization. For example, the error token
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no1s consists of three error types (i.e. substitution, phrasal abbreviation, and missing-apostrophes

error) and thus requires substituting 1→ one, splitting, and adding an apostrophe, resulting in the

final normalization result of no one’s.

Table 1.3. Example of 1:1 and 1:N replacements

Category Source text Target text

1:1 Replacement tmr tomorrow

1:N Replacement omw on my way

Table 1.4. Example of normalization error types

Error Type Example

Spelling error tommorow→ tomorrow

Missing-Apostrophes error dont→ don’t

Missing-Whitespace Characters error heyyou→ hey you

Word Lengthening error noooooooo→ no

Phrasal Abbreviation error omg→ oh my god

Word Shortening error tmr→ tomorrow

Substitution error 2→ to

1.2 Problem Statement

To address the issue of performance degradation, active research in normalization has

been conducted and various approaches have been applied for normalization. Traditional spelling

correction methods utilizing noisy channel models (Shannon, 1948) were initially applied (Brill

& Moore, 2000; Choudhury et al., 2007; Cook & Stevenson, 2009; Toutanova & Moore,

2002). Since spelling errors and typographical errors are typical in informal texts, this approach
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was effective in resolving these particular types of errors. However, this approach was incapable

of normalization outside of the word boundary which would require a broader context. In

disregarding the context of the error word, ambiguity also became an issue with words that have

multiple mappings. For example, when it comes to words such as ”4” that can either be the

number ”4” or a phonetic substitution for ”for”, the spelling correction approach was unable to

handle this ambiguity since it doesn’t take context into account.

As a solution to these limitations, machine translation was investigated in performing

normalization. In applying machine translation, many-to-many mappings between non-standard

words and standard words were able to be handled. To incorporate context in normalization,

phrase-based statistical machine translation (SMT) was first applied (Aw, Zhang, & Su, 2006).

This approach was capable of taking context into account resolving the ambiguity issue but was

incapable of normalizing non-standard words that were not in the training corpora, even if a

similar pattern of normalization existed in the corpora. Also, in performing transformation at the

phrase-level, it was impossible for lexical creativity that is commonly observed in informal texts

(e.g. SMS and social media texts) to be captured through this approach (Kobus, Yvon, &

Damnati, 2008).

In light of this assertion, character-based statistical machine translation (CSMT) was

proposed for normalization, which was capable of capturing the character-level creativity in word

variants (Li & Liu, 2012b; Ljubešić, Erjavec, & Fišer, 2014; Pennell & Liu, 2011a). In

applying this approach, new abbreviations that were not in the training corpora could be handled,

which was a critical limitation of phrase-based SMT since new abbreviations and words appear

daily in this domain. However, since this approach performs normalization at the token-level, the

context could not be taken into account. Therefore, some approaches incorporated both

phrase-based and character-level SMT to take advantage of both approaches (Ling, Dyer, Black,

& Trancoso, 2013). However, SMT approaches are still highly prone to suffer from an

insufficient amount of annotated training data.

Sequential labeling was another popular traditional approach applied (F. Liu et al., 2011a;

Pennell & Liu, 2011b; Yang & Eisenstein, 2013). In these approaches, character-level

sequential labeling is applied to standard dictionary words to generate their variants, and this is

formed into a look-up table that is later on used to find the best possible normalization candidates
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for non-standard words. These approaches are capable of learning the patterns in letter

transformation, but since every character of the standard word and their combinations are used as

features, this leads to a lot of noise in the look-up process for normalization candidates (Xu, Xia,

& Lee, 2015).

Many studies also combined these different approaches to benefit from the different

approaches’ advantages and overcome their limitations (Beaufort, Roekhaut, Cougnon, & Fairon,

2010; Gao, Li, Micol, Quirk, & Sun, 2010; Gouws, Hovy, & Metzler, 2011; Kobus et al.,

2008; Li & Liu, 2012a; F. Liu, Weng, & Jiang, 2012; C. Zhang et al., 2013). These studies

often incorporated external resources such as string similarity, phonetic similarity, dictionary, and

target domain lexicons for accuracy improvement as well.

Most of these approaches required a large-scale manually annotated training dataset,

which was often unavailable and expensive to generate. This issue was resolved to some extent,

With the Text Normalization Shared Task of the ACL2015 W-NUT workshop (Baldwin et al.,

2015). With the growth in the annotated dataset for the training and testing of normalization,

many works started applying deep learning and neural networks following the trend of its

growing application in NLP (Chrupala, 2014; Leeman-Munk, Lester, & Cox, 2015; Min &

Mott, 2015; Sridhar, 2015). These methods were able to enable learning complicated text

transformations and working with large diverse streams of user-generated data (Lourentzou,

Manghnani, & Zhai, 2019). Although the context was incorporated in these approaches, however,

most works incorporated limited contextual information at a specific context window.

In the attempt to incorporate the full context of the error word for normalization, the

sequence-to-sequence (Seq2Seq) model was applied (Lourentzou et al., 2019), and was able to

produce the highest accuracy among the neural models, but was not able to surpass the

performance of the state-of-the-art models (Jin, 2015; van der Goot & van Noord, 2017) that

utilized random forest classifiers. Although these current state-of-the-art models do not leverage

any deep learning or neural networks, the limitations of these models have shown that strong

contextual information is still a critical component in normalization. Therefore, an approach that

takes strong context into account could potentially provide value for normalization.

Due to the recent achievement of the contextual pre-trained language model, BERT

(Devlin, Chang, Lee, & Toutanova, 2019), with state-of-the-art results in various NLP tasks and
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its strong context, the BERT model could potentially be a strong candidate for the incorporation

of context. However, very few works have been done in incorporating the pre-trained language

model BERT to the normalization of non-standard data, with only a single work incorporating

BERT directly for the normalization task.

Moreover, although many studies have been conducted on different normalization

methods, very few studies have investigated the performance of normalization based on different

error types. Due to the variety of different error types that exists in normalization and their

varying characteristics, an investigation into the performance of different normalization methods

is necessary.

1.3 Research Question

The main research question investigated in this research are as follows:

• How can the pre-trained language model BERT be applied to normalization?

• How does the performance of different normalization methods vary based on the different

types of errors?

– The baseline of this study is the pre-trained language model, BERT (Devlin et al.,

2019) and the normalization model, MoNoise (van der Goot, 2019).

1.4 Significance

Normalization is capable of improving performance significantly in NLP tasks that

include utilizing non-canonical texts. Many approaches have been taken in normalization, but

there is still room for improvement. The state-of-the-art models are generally computationally

expensive and require high resource environments. This study aims to provide a simple

alternative to these methods for users performing normalization in low resource environments.
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Since pre-trained language models have yet been investigated thoroughly in this field, this

investigation could help enhance the normalization performance in incorporating the strengths of

contextual pre-trained language models. This will also be a chance to investigate the strengths of

contextual pre-trained language models in normalization. Also, although many studies have been

conducted on normalization, not much work has been focused on the normalization of different

types of errors. The normalization of 14 different error types will be investigated in this study

based on the taxonomy of van der Goot, van Noord, and van Noord (2018), and will be able to

uncover how the performance of different ranking methods vary based on the different error types

as well as the performance difference in candidate generation of the BERT model on different

types of errors. To the best of my knowledge, there has not been any research that has applied the

pre-trained language model BERT specifically for the task of normalization without any

modifications or fine-tuning.

The study aims to shed some light on the potential that the BERT model holds in

normalization, and through a simple BERT-infused normalization method that can be improved

through different ranking methods, provide suggestion and guidance for users performing

normalization to preprocess informal text data based on different types of errors it contains.

1.5 Assumptions

This research has the following assumptions:

• The baseline studies investigated in this study are state-of-the-art methods.

• The datasets used in this study are correctly annotated.

• Out-of-vocabulary (OOV) words such as named entities are unconsidered for normalization.

• The OOV detection step of normalization has been performed and further normalization

steps are only performed on the detected errors.
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1.6 Limitations

This research has the following limitations:

• The study was conducted with publicly available data, and are not able to represent all

non-canonical text data.

• The study was conducted on English Twitter data and are not able to represent Twitter data

in all languages.

1.7 Delimitations

This research has the following delimitations:

• The study focuses only on the normalization of the English language.

• The study focuses only on the normalization of OOV words excluding emojis and

punctuations.

• The study uses the NormTax dataset (van der Goot et al., 2018) to test the accuracy of

different types of normalization errors.

• The Baseline study is BERT (Devlin et al., 2019) and MoNoise (van der Goot, 2019).

1.8 Summary

This chapter described the problem of performance degradation in many NLP systems

when applied to non-standard text data such as social media, and the importance of resolving this

performance issue due to the rise in social media and increase in user-generated contents, which

includes abundant potential in extracting meaningful information. This chapter also describes the

main research question of this study and the assumptions, limitations, and delimitations. The

following chapter will review the literature and previous work conducted in normalization and

contextual pre-trained language models.
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CHAPTER 2. REVIEW OF LITERATURE

This chapter provides an extensive review of the current and previous work on

normalization. The chapter reviews traditional approaches such as spelling correction-based

approaches, machine translation-based approaches, sequential labeling-based approaches, and

hybrid approaches in normalization. Contextual pre-trained language models, as well as the

recent and state-of-the-art normalization approaches are also reviewed.

2.1 Normalization

This section reviews studies in normalization as well as the existing limitations of the

current state-of-the-art normalization systems/approaches.

2.1.1 Traditional Approaches

Research into normalization grew with the emergence of SMS texts and social media.

Traditional approaches have focused on three main approaches: Spelling correction, Machine

Translation, and sequential labeling-based approaches (Gouws, Metzler, et al., 2011).

2.1.1.1 Spelling Correction Approaches

Many approaches utilize spelling correction frameworks such as noisy channel models

(Shannon, 1948) for normalization. This spelling correction-based approach commonly

incorporates morphophonemic similarity to perform normalization and focuses on single-word

replacements (Han, 2014). The strong suit of this approach is that it is capable of unsupervised

learning, which makes it highly attractive in normalization due to the difficulty in obtaining

properly labeled training data from the target domain. Nonetheless, the weakness of this approach

tends to be in flexibility, compared to different approaches.

Although these spelling correction models have shown state-of-the-art results in

Grammatical Error Correction (GEC), they have shown significantly lower performance in

non-standard text data. Therefore, considering the unique characteristics of SMS and social media
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data, research has been focused on capturing new forms of words such as abbreviations and word

shortenings, that are largely consisted of these types of data. Multiple error generation models

were proposed by Cook and Stevenson (2009), each model focused on different type forms of

SMS non-standard words such as words formed from phonetic spelling or clipping. Similar error

generation models were integrated for tweets by Xue, Yin, and Davison (2011).

Meanwhile, Han and Baldwin (2011) proposed a normalization method that utilizes a

detection classifier, candidate generation based on morphophonemic similarity, and candidate

selection based on word similarity and context. Xu et al. (2015) extends the traditional noisy

channel model in proposing a syllable-based tweet normalization method. The study was

conducted under the assumption that syllables are an essential part of the formation of

non-canonical words in social media. Based on this assumption, syllables were utilized to

represent one-to-one word replacements in both word levels and syllable levels.

2.1.1.2 Machine Translation Approaches

Another popular approach in normalization is employing monolingual machine

translations. The machine translation approach was proposed to incorporate context in

normalization, by translating noisy, non-standard text to standard text. This approach benefits in

being more flexible, which is enabled by an extra alignment factor, allowing many-to-many word

replacements in normalization (Brown, Della Pietra, Della Pietra, & Mercer, 1993). The common

issue with this approach, however, is that a large amount of suitable training data is required.

Also, it tends to be slower in computation, due to the processing steps included, e.g. word

alignment (Han, 2014).

Aw et al. (2006) adapts a phrase-based statistical machine translation (SMT) model for the

normalization of SMS texts, in viewing normalization as a translation problem. The downside of

this approach is that a phrase-based model requires a large annotated dataset since the training is

conducted at the word-level. Pennell and Liu (2011a) apply a character-based statistical machine

translation (CSMT) model for the normalization of SMS abbreviations. Training at the

character-level, the model is able to recognize common abbreviation patterns, enabling it to be

more effective against new abbreviations compared to phrase-level or word-level models.

Character-level models are able to resolve the issues of data sparsity that the word-level and
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phrase-level models face. Ling et al. (2013) integrated these two approaches in utilizing both

character-based and phrase-based machine translation systems. The character-based system first

performs normalization at the word-level, and then the optimized normalization sequence is

selected by the phrase-based system at the sentence-level.

Ljubešić et al. (2014) extended the work of Pennell and Liu (2011a) in training a CSMT

model on a lexicon of OOV tokens from Slovene tweets. The work was further extended in

(Ljubešić et al., 2016), investigating segment-level normalization. Segment refers to text longer

than a single token. In investigating segment-level normalization methods, contextual information

could be incorporated, overcoming the limitations of the previous token-level normalization.

2.1.1.3 Sequential Labeling Approaches

Text normalization can be framed as a sequential labeling task for an automatic speech

recognition (ASR) problem. The strength of the sequential labeling-based approach is its ability

to capture the mutual influence of neighboring word-level normalizations in a sequence. In other

words, rather than performing individual normalization of each non-canonical word, candidates

are generated for each word and the best candidate is selected based upon the overall likelihood of

the normalization sequence. The best normalization sequence is selected often through the Viterbi

algorithm based on a language model trained from the target domain, and a sequence modeling

framework, Conditional Random Fields (CRF) (Lafferty, McCallum, & Pereira, 2001) are often

used in these approaches. The sequential labeling-based approach can be viewed as a sequential

generalization of the aforementioned spelling correction-based methods, but with enhanced

flexibility.

Cucerzan and Brill (2004) proposed a query log misspelling correction method, utilizing a

weighted edit distance on edits in individual words and applying the standard Viterbi algorithm

based on a bigram language model on the full sequence, in this case, query. Contractor, Faruquie,

and Subramaniam (2010) presented a similar method incorporating the longest common character

subsequence and consonant edit distance for normalization candidate generation, and the Viterbi

algorithm in candidate selection for the most reasonable normalized sequence. Choudhury et al.

(2007) utilized a hidden Markov model (HMM) for word-level SMS text normalization, motivated

by previous work in automatic speech recognition (ASR) (Jelinek, 1997) that utilized HMM to
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capture pronunciation and spelling variations. This is achieved by regarding users’ intentional

abbreviations and unintentional typos, respectively as HMM state transitions and emissions.

Through this approach, Choudury et al. were able to capture both cognitive errors and typo errors.

Zhu, Tang, Li, Ng, and Zhao (2007) presented a unified CRF model for the normalization

of different levels of informal text, e.g. capitalization or punctuation errors. However, due to the

shortage of sufficient training data, normalization of non-standard words was excluded in the

study. Beaufort et al. (2010) utilized the finite state machine for the normalization of French SMS

text, employing an SMS trigram model to select the best-normalized word sequence. This

method, however, still requires a large labeled dataset for training.

F. Liu et al. (2011a) utilized a character-based CRF model, trained using the alignments of

OOV tokens and normalization candidates based on the longest common subsequence, to obtain

the likelihood of a token to be converted into a noisy token. Sequence tagging is performed

through the character-based CRF model, to generate normalization candidates for a letter

sequence. Pennell and Liu (2011b) also utilized a similar CRF model, with a focus on the

normalization of deletion-based non-standard words.

2.1.1.4 Integration of Approaches

Due to the different strengths and weaknesses of these different approaches, many studies

have integrated different approaches to obtain higher performance in normalization. Kobus et al.

(2008) integrated a machine translation system with an ASR system for SMS normalization and

showed performance enhancement compared to both separate systems. Machine translation

system was used for the initial normalization, and the speech recognition system was then used to

generate normalization candidates for each of the OOV tokens left from the initial normalization,

which are then combined in phoneme sequences and reassembled into word sequences. A trigram

model is then utilized to rescore these word sequences and produces the final normalization

output.

Gao et al. (2010) follow a similar two-step process of candidate generation and candidate

re-ranking, in the spelling correction of search queries. The study generalizes the noisy channel

model to a ranker-based system for the spelling correction of search queries. It incorporates

similarity features and phrase-based machine translation probabilities into feature vectors for each
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query and generated candidate pair, and also utilizes web-scale n-gram language models to

measure the likelihood of a candidate being the correction of the query.

Gouws, Hovy, and Metzler (2011) integrated a sequential labeling method with an

augmented method utilizing an automatically generated exception dictionary, for the

normalization of tweets. This study constructs a lookup table of OOV tokens and their standard

forms from the mined lexical variant pairs. The 50 highest scored pairs with the product of the

semantic similarity score and lexical similarity score, are used for the exception dictionary. This

exception dictionary is then utilized to augment their baseline sequential labeling method. This

augmented method is used for the initial normalization, and the baseline sequential labeling

method is used for the remaining non-standard words in normalization candidate generation and

normalization sequence decoding.

Li and Liu (2012a) investigate enhancing normalization by integrating character-based

machine translation and other methods. The study has shown that integrating spelling correction,

character-level and character segment-level machine translation models, and a character

segment-level sequential labeling method, produced the highest accuracy. The study utilizes

character segments rather than individual characters, based on the effectiveness in alignment and

shorter decoding length.

F. Liu et al. (2012) enhanced the performance of their previous character-based CRF

model (F. Liu et al., 2011a), in integrating three subnormalizers: enhanced letter transformation

using character-level sequence labeling, visual priming, and spell checker using string/phonetic

similarity. The incorporation of visual priming was a unique application, which prioritizes the

highest frequency candidate with the longest common subsequences with the non-standard token.

In integrating these sub-normalizers, the system has been able to improve recall with the

following integration strategies. Two strategies of integration were employed: word-level and

message-level. The word-level integration strategy is essentially to prioritize the candidates from

sub-normalizers with higher precision. Among the three sub-normalizers, visual priming has

shown lower precision compared to letter transformation and spell checker, which showed high

precision in candidate generation (F. Liu et al., 2011b). Thus, depending on the confidence score

of the best candidate, top-3 candidates from either letter transformation or spell checker are

placed higher in the candidate list, and candidates from visual priming are finally utilized to fill
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the total number of candidates (n) in the list. In this strategy, message-level context information is

unincluded. Meanwhile, the message-level integration strategy reranks all the candidates from the

word-level strategy output, utilizing local context information through message-level Viterbi

decoding.

C. Zhang et al. (2013) propose a normalization framework that can be customized to

specific domains, presenting a solution for the domain adaptation issue which had yet been

properly investigated. This was enabled in including a small set of domain-specific replacement

generators to the general model. In general replacement generators, different methods such as

spelling correction, edit distance, and Internet slang lexicon were integrated for the normalization

candidate generation. The proposed approach is capable of 1:N replacements (e.g., ”idk” to ”i

don’t know”), and has the advantage of flexible candidate generation and global optimization.

Joint decoding of the normalization sequence in incorporating context was able to improve

traditional spelling correction methods that mainly focus on the normalization of individual

non-standard tokens.

Yang and Eisenstein (2013) present unLOL, a normalization system that utilizes

sequential labeling methods, that captures string and context similarities between non-standard

and standard words in employing a unified unsupervised log-linear model. The challenge with

this approach is efficiency and computational tractability. To resolve the issue of slow

computation in Viterbi decoding, this system employs the Sequential Monte Carlo (SMC) training

algorithm to sample a subset of plausible candidates before applying Viterbi decoding for ranking.

Wang and Ng (2013) argue the importance of further normalization operations such as

punctuation correction and missing word recovery, where most studies have focused on word

substitutions. The presented method uses a CRF model for missing word recovery and a dynamic

conditional random field (DCRF) model for punctuation correction. The study also proposes

integrating different normalization operations through a machine translation decoder. In the

normalization process, hypotheses are generated which is a partially normalized tweet, compared

to a candidate word in previous studies. Hypothesis generation is conducted through various

methods such as phonetic approximations. Each hypothesis is assessed with language model

scores, and beam search is then further utilized to prune the hypotheses. After these processes,

only the hypotheses with the highest score are kept.
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Han et al. (2013) propose a lexical variant detection classifier for OOV detection, a

morphophonemic similarity-based method for candidate generation, and a word similarity and

context-based method for candidate selection. The proposed normalization is performed through

two steps in large: Confusion set generation (i.e., candidate generation for the given type of

non-canonical word) followed by candidate selection. Han (2014) further analyzed the existing

methods in text normalization and based on the analysis, developed a type-based method

compared to their previous token-based normalization utilizing combined lexicons based on

morphophonemic information.

Many systems that participated in the Text Normalization Shared Task of the 2015

Workshop on Noisy User-generated Text ”ACL2015 W-NUT” (Baldwin et al., 2015) followed

the approach of integrating different methods as well. The shared task included both constrained

and unconstrained systems, where constrained systems were only allowed to utilize the training

data provided by the shared task, and unconstrained systems were allowed to use any additional

publicly available resources. In constrained systems, Akhtar, Sikdar, and Ekbal (2015) propose a

hybrid normalization approach combining a machine learning method with rule-based methods.

The proposed method utilizes a supervised CRF model trained with the training dataset provided

by the shared task and a derived set of domain-independent features for the detection of words

that need to be normalized, and heuristic rules to perform normalization on the identified words.

The incorporated features include local context, part-of-speech (POS) information, morphology

features, etc.

In the unconstrained systems category, Beckley (2015) proposes a simple normalization

method utilizing a combination of lexicon, rule, and ranker, with the advantage of fast

performance. The first component of the proposed method is a semi-supervised dictionary of

non-standard words and the respective list of normalization candidates and performs most of the

normalization. For the rule-based component, two rules were selected among the different rules

through experimentation and applied in their final system, which is the ”ing” and ”coool” rule.

These hand-crafted rules are for the purpose of capturing morphology errors that frequently

appear in user-generated texts. For the last component of ranking, the proposed method utilizes a

sentence-level re-ranker (i.e. bigram Viterbi algorithm). Even with this very simple approach,
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Beckley (2015) was able to place third among the five teams that participated in the unconstrained

normalization task of the shared task.

Berend and Tasnádi (2015) propose an error type-sensitive normalization method utilizing

”efficiently indexed n-gram statistics”. This study utilized a CRF-based sequence labeling module

to identify the type of correction needed for the lexical variant, and performs normalization based

on external lexicons and the indexed n-gram statistics from English tweets. The external lexicons

were utilized to determine the features of individual words and includes: SCOWL dictionary from

Aspell spell checker project, normalization dictionaries from (Han, Cook, & Baldwin, 2012;

F. Liu et al., 2012), and a web-derived slang normalization dictionary. In utilizing n-grams, the

proposed normalization aims to utilize context in the normalization of OOV words. The proposed

system showed the second-highest performance among the unconstrained systems in the shared

task.

Supranovich and Patsepnia (2015) propose a CRF-based approach in performing both

normalization detection and normalization of words that are nonexistent in the lexicon, utilizing

an SVM model-based query misspelling correction module that was developed by the IHS R&D

team, i.e. did-you-mean (DYM) module. The proposed system showed the highest performance

among the unconstrained systems that participated in the shared normalization task (Baldwin et

al., 2015).

2.1.2 Normalization Benchmark Dataset

Han and Baldwin (2011) introduced the first benchmark Twitter dataset LexNorm

consisting of a total of 549 Tweets and 558 normalization pairs of non-standard token and

standard words for normalization. This was followed by Yang and Eisenstein (2013), who

presented LexNorm1.2 with improved annotations on the original LexNorm corpus. Li and Liu

(2015) then presented another Twitter corpus LiLiu that incorporates LexNorm along with other

Twitter datasets. This corpus contains capitals compared to the LexNorm and LexNorm1.2 which

does not contain any capitals.

Furthermore, Baldwin et al. (2015) presented a shared task of Twitter text lexical

normalization in the 2015 Workshop on Noisy User-generated Text. The dataset from this shared
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task, LexNorm2015, has since been widely used in normalization studies. The presented corpus

consists of 5,200 Tweets with 6,666 normalization pairs including all one-to-one, one-to-many,

and many-to-one replacements, and was able to resolve the lack of annotated datasets for training

and evaluation in normalization. It also not only covers OOV non-standard words but also covers

tokens that are non-standard words but with the same spelling as a standard word.

Most recently, The state-of-the-art work from van der Goot (2019) presented a

Multi-lingual Normalization Benchmark dataset for the evaluation of multi-lingual normalization

performance. The Multi-lingual Normalization Benchmark is a bundle of a total of nine datasets

in seven languages and includes all the previous benchmark datasets in English (Baldwin et al.,

2015; Li & Liu, 2014; Yang & Eisenstein, 2013) as well as different language normalization

datasets such as Spanish and Croatian. The comparison of the datasets included in the benchmark

is organized in Table 2.1.

Table 2.1. Summarization of the Multi-lingual Normalization Benchmark
(Word #: Word Count, Lang: Language, Norm%: Percentage of normalized words, 1:N: Existence of

1-to-n replacements, Cap: Existence of capitalization, EN: English, NL: Dutch, ES: Spanish, TR:
Turkish, SL: Slovenian, HR: Croatian, SR: Serbian)

Corpus Lang Word # Norm% 1:N Cap

LexNorm1.2 (Yang & Eisenstein, 2013) EN 10,576 11.6 x x

LiLiu (Li & Liu, 2014) EN 40,560 10.5 x o

LexNorm2015 (Baldwin et al., 2015) EN 73,806 9.1 o x

GhentNorm (De Clercq, Schulz, Desmet, & Hoste, 2014) NL 12,901 4.8 o o

TweetNorm (Alegria et al., 2013) ES 13,542 6.3 o o

IWT (Eryiǧit & Torunoǧ-Selamet., 2017) TR 38,918 8.5 o o

Janes-Norm (Erjavec et al., 2017) SL 75,276 15.0 x o

ReLDI-hr (Ljubešić, Erjavec, Miličević, & Samardžić, 2017a) HR 89,052 9.0 x o

ReLDI-sr (Ljubešić, Erjavec, Miličević, & Samardžić, 2017b) SR 91,738 8.0 x o
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2.2 Contextual Pre-trained Language Models

Recent work in the field of natural language processing (NLP) has been able to achieve

state-of-the-art results employing the contextual pre-trained language model, Bidirectional

Encoder Representations from Transformers (BERT) (Devlin et al., 2019) in various NLP tasks

such as language inference and question answering. BERT is a pre-trained language model of

deep bidirectional representations from unlabeled texts, enabling the incorporation of both the left

and right contexts. The framework of BERT consists of two steps: pre-training and fine-tuning.

BERT is pre-trained on two unsupervised tasks of the Masked Language Model (MLM) and Next

Sentence Prediction (NSP). The model architecture of BERT is a multi-layer bidirectional

Transformer encoder (Vaswani et al., 2017), and many downstream tasks from the fine-tuning are

enabled through the self-attention mechanism of the Transformer. Other than its strength in

capturing contextual information, another strong suit of the BERT pre-trained model is that it is

capable of being fine-tuned to different downstream tasks with an addition of just a single output

layer. Due to the success of BERT, many variants have been introduced (Clark, Luong, Le, &

Manning, 2020; W. Liu et al., 2020; Y. Liu et al., 2019; Sanh, Debut, Chaumond, & Wolf,

2020; Yao, Mao, & Luo, 2019).

2.3 Recent and State-of-the-art Approaches

2.3.1 Neural Network Approaches

Recent Approaches in normalization have been applying deep learning models such as

multi-layer feed-forward neural networks and recurrent neural networks (RNN), that have

achieved promising results in numerous NLP tasks such as sentiment analysis (Socher et al.,

2013) and speech recognition (Hinton et al., 2012). Chrupala (2014) presents a normalization

model that utilizes edit sequences learned from labeled data and features from unlabeled data

through recurrent neural embedding. The study has found that incorporating these features from

text embeddings was able to significantly lower word error rates in normalization. Also, unlike
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previous studies that have applied generative Bayesian methods, this work has chosen to edit

non-canonical data into their canonical forms directly, with edits generated through a linear chain

CRF model.

Some systems that participated in the Text Normalization Shared Task of the 2015

Workshop on Noisy User-generated Text ”ACL2015 W-NUT” (Baldwin et al., 2015) took the

approach of neural network architectures in the constrained system category and demonstrated

comparable results to the best performing system (Jin, 2015).

Wagner and Foster (2015) propose utilizing a generalized perceptron for sequence

labeling rather than utilizing CRF as traditional methods have done in normalization. The study

compares the application of the proposed generalized perceptron method to a CRF method

following the work of Chrupala (2014). Due to memory constraints, the CRF model was

restricted with a smaller training dataset. The sequence labelers were utilized for edit operations

that produce normalization candidates, the extracted edit operations including the following three

actions: no edit, character deletion, and string insertion before the character. In the generation of

word edit operations, various extracted features were included such as RNN language model

hidden layer activations and edit operations (which were the same as (Chrupala, 2014)), with two

new additional features: character class and editing eligibility based on the rules of the shared

task. For the final selection of the best normalization candidate among the generated candidates,

the system utilizes a noisy channel model and character n-gram models that are trained on the

normalized tweets of the training data.

Leeman-Munk et al. (2015) applied a deep learning approach to normalization, utilizing a

combination of two augmented feed-forward neural networks in the normalizer and flagger. The

proposed model consists of three major components: the normalizer, flagger, and conformer. The

normalizer is responsible for encoding the input and outputting the normalized result and utilizes a

feed-forward neural network. The flagger is responsible for determining whether the token should

be normalized or not, and has a similar structure as the normalizer in utilizing a feed-forward

neural network, but has a softmax layer in the last layer that performs predictions on whether the

word needs to be normalized.The last component, conformer, is responsible for correcting the

failed attempts of the normalizer. Built through a dictionary derived from the training data, the

conformer uses the Levenshtein distance (Levenshtein, 1966) to find the closest word in the
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dictionary. Even with the lack of context incorporation, due to the constrained system not being

able to include any external resources, the proposed system showed the third-highest performance

in constrained systems showing comparable performance to the model that placed second.

Min and Mott (2015) also applied a deep learning approach in utilizing a contextual

long-short term memory (LSTM) recurrent neural network-based model with an induced

dictionary from the training data for normalization. The presented system employs LSTM

(Graves, 2012; Hochreiter & Schmidhuber, 1997) for text normalization, and augments

character sequences and POS tags tagged with the part-of-speech tagger (Owoputi et al., 2013)

provided by the shared task. The proposed system consists of three large phases: 1)

domain-specific entity filtering 2) dictionary-based normalization 3) LSTM-based normalization.

The proposed system showed the second-highest performance in constrained systems following

the random forest classifier approach of Jin (2015). However, both of these methods did not

utilize any external lexical resources for the normalization task.

Lourentzou et al. (2019) adapt sequence-to-sequence (Seq2Seq) models for normalization.

The recent study presents a hybrid word-based Seq2Seq model trained specifically for the

normalization of social media data, as a solution to the limitations of previous work in only being

able to include specific context windows and specific error types. The proposed model is capable

of including a fuller context in incorporating long-term contextual dependencies and handling

multiple errors at the same time. The results outperformed the other normalization methods

employing neural architectures of ANN (Artificial Neural Network) (Leeman-Munk et al., 2015)

and LSTM (Min & Mott, 2015) and showed comparable performance with the state-of-the-art

works (Jin, 2015; van der Goot & van Noord, 2017).

2.3.2 State-of-the-art Approaches

Jin (2015) presents one of the state-of-the-art Twitter lexical normalization systems that

perform candidate generation based on prior knowledge (largely from the training data) and a

novel string similarity measurement proposed in the study, and candidate selection utilizing a

binary Random Forest (RF) classifier (Breiman, 2001). The proposed novel string similarity

measure represents each string with a similarity feature set where the feature includes n-grams
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and k-skip-n-grams in the corresponding string. The similarity between the two strings is then

evaluated with the Jaccard Index (Levandowsky & D., 1971) of the two strings’ similarity feature

sets.

van der Goot and van Noord (2017) further extended this work in presenting MoNoise, the

current state-of-the-art normalization model, that takes a modular approach to normalization. The

system employs a modular approach for candidate generation, where each module performs

different types of normalization actions. The modules include a spelling correction, word

embeddings, and a static lookup list module. Candidate ranking of the generated candidates is

conducted through a random forest classifier (Breiman, 2001), and n-gram features along with

the features from the generation modules are incorporated into the classifier. Implementation of

Ranger (Wright & Ziegler, 2017) was used with the default parameters.

van der Goot (2019) improved the MoNoise model in incorporating features from the

original word for normalization candidate generation and presents a new multi-lingual benchmark

dataset and novel evaluation metric, Error Reduction Rate (ERR). The presented dataset is a

bundle of nine datasets that includes seven languages. For an easier comparison between different

datasets, the study presents ERR as a new evaluation metric, which can be conceived as a

normalized accuracy for the percentage of words that are normalized in the golden standard.

In terms of the performance on different error types, MoNoise was not capable of

handling the type of normalization errors that require splitting of two or more words and

unknown type of errors that were unknown to annotators or in disagreement, according to the

work of van der Goot et al. (2018). Based on the results, the MoNoise model also showed

difficulty in Typographical errors, phonetic transformation errors, as well as merge errors.

2.3.3 Contextual Pre-trained Language Model Approaches

Recent attempts have been made to utilize contextual pre-trained language models for

normalization. BERT (Devlin et al., 2019), the current state-of-the-art pre-trained language

model, has especially been explored in the appliance to enhance the performance of

normalization.
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van der Goot and Çetinog̈lu (2021) proposes a lexical normalization method for

code-switched data. Code-switched (CS) data refers to data that includes multiple languages in a

single utterance. The proposed systems incorporate the BERT model, in applying a BERT-based

tagger (i.e. MaChAmp (van der Goot, Üstün, Ramponi, & Plank, 2020)) with the multilingual

BERT model for the word-level language identification. Although the proposed method

incorporated the BERT model, they were applied for the tagging and language identification step

rather than the normalization step itself.

J. Zhang et al. (2020) presents a Mandarin text normalization system utilizing multi-head

self-attention, which was proposed in Transformer (Vaswani et al., 2017). The study further

experiments with various neural model setups, including the word-to-vector (w2v) model and

fine-tuning with the BERT model, and the w2v model resulted in better performance than

fine-tuning with BERT. The study suggests the overfitting of the model as a reason for the lack of

performance. Since the text normalization task was performed on a Text-to-Speech (TTS) news

corpus in this study, the type of non-standard words contained is quite different from that of

user-generated data (e.g. social media), in the text data being more formal.

To the best of my knowledge, (Muller, Sagot, & Seddah, 2019) is the only work that has

been conducted on utilizing the BERT pre-trained language model specifically for lexical

normalization. The study investigates the ability of BERT in performing normalization, by

framing normalization as a token prediction task and enhancing the architecture and fine-tuning

BERT. To focus on the capability of the BERT model itself, the study was conducted with only

the 3,000 training sentences, without the use of any other UGC resources.

Some studies have taken a different approach to enhance the performance of downstream

tasks on non-standard data, in directly applying BERT for downstream tasks without performing

normalization. Radivchev and Nikolov (2019) utilize BERT and ensembles for offensive tweet

classification. The study compared the results of ten different models including soft voting

classifier (SVC), recurrent neural network (RNN), BERT, etc., and BERT proved to show the best

overall performance (Radivchev & Nikolov, 2019).

Nguyen, Vu, and Nguyen (2020) propose a pre-trained language model designated for

English tweets, BERTweet. As the first large-scale and publicly available model, BERTweet was

trained employing the pre-training procedures of RoBERTa (Y. Liu et al., 2019) utilizing the

33



model configuration of the BERTbase model. These results outperformed RoBERTabase and

XLM-Rbase (Conneau et al., 2020) on the tweet NLP tasks: Text classification, Named-entity

recognition, and Part-of-speech (POS) tagging. This results on BERTweet were results from the

above three NLP tasks rather than the task of normalization itself.

Although BERT has been proved to be a powerful tool, due to the diversity in

non-standard text data and errors, it will be difficult to handle different types of errors and

generalize to different downstream tasks with BERT alone. Therefore, the intuition of this study

is to incorporate the pre-trained language model, BERT, with other normalization methods to be

able to handle different types of normalization errors effectively as well as generalize over various

downstream tasks.

2.4 Summary

The summarization of the related work conducted in normalization are shown in Table

2.2. Different approaches applied from the studies in the literature review are organized.

Table 2.2.: Summary of related work in normalization
(SC: Spelling Correction, MT: Machine Translation, SL: Sequential
Labeling, NN: Neural Network Architecture, CP: Contextual Pre-trained
Language model, LM: Language Model, NG: N-gram, DN: Dictionary)

Related Work SC MT SL NN CP LM NG DN

Cook and Stevenson (2009) o x x x x o o o

Xue et al. (2011) o x x x x o o o

Han and Baldwin (2011) o x x x x o o o

Xu et al. (2015) o x x x x o o o

Aw et al. (2006) x o x x x o o o

Pennell and Liu (2011a) x o x x x o o o

Ling et al. (2013) x o x x x o o o

Ljubešić et al. (2014) x o x x x o x x

Ljubešić et al. (2016) x o x x x o x x

Cucerzan and Brill (2004) x x o x x o o x
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Table 2.2. continued

Related Work SC MT SL NN CP LM NG DN

Contractor et al. (2010) x o o x x o o o

Choudhury et al. (2007) x x o x x o o o

Zhu et al. (2007) x x o x x o o x

Beaufort et al. (2010) o o o x x o o o

F. Liu et al. (2011a) x x o x x o o x

Pennell and Liu (2011b) x x o x x o o o

Kobus et al. (2008) x o o x x o o o

Gao et al. (2010) o o x x x o o o

Gouws, Hovy, and Metzler (2011) x x o x x o o o

Li and Liu (2012b) o o o x x o o o

F. Liu et al. (2012) o x o x x o o o

C. Zhang et al. (2013) o x o x x o o o

Yang and Eisenstein (2013) x x o x x o o o

Wang and Ng (2013) x o o x x o o o

Han et al. (2013) x x o x x o o o

Han (2014) x x o x x x x o

Akhtar et al. (2015) x x o x x x x o

Beckley (2015) x x o x x x o o

Berend and Tasnádi (2015) x x o x x x o o

Supranovich and Patsepnia (2015) o x o x x x o o

Chrupala (2014) x x o o x o o o

Wagner and Foster (2015) o x o o x o o x

Sridhar (2015) x x x o x o o x

Leeman-Munk et al. (2015) x x x o x x x o

Min and Mott (2015) x x x o x x o o

Lourentzou et al. (2019) x x x o x x x x
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Table 2.2. continued

Related Work SC MT SL NN CP LM NG DN

Jin (2015) x x x x x x o o

van der Goot and van Noord (2017) o x x x x o o o
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CHAPTER 3. RESEARCH METHODOLOGY

This chapter describes the overall research design and methodology that is used

throughout this study. The system design, experiments, dataset, and evaluation method are

described in this chapter.

3.1 System Design

Normalization is commonly divided into three steps: OOV detection, candidate

generation, and candidate selection. OOV detection is the detection of OOV tokens requiring

normalization. Candidate generation is the generation of a list of potential normalization

candidates of the detected OOV token. Candidate selection is the selection of a candidate from

the generated candidate list, which will be the normalization result. This is typically performed

through candidate ranking to select the best possible normalization candidate.

In this study, OOV detection is assumed to have been performed on the dataset, and

normalization is performed solely on detected OOVs (i.e. normalization errors). On the OOVs

detected, normalization is performed through two steps: candidate generation and candidate

ranking. The candidate generation step is performed using BERT, forming candidate generation

as a Masked LM (MLM) task, to produce potential candidates based on context. Based on the

characteristic of the BERT model, up to 30,000 candidates can be generated. The candidate

ranking step is performed through five different methods: longest common prefix, longest

common sequence, edit distance, and phonetic distances; SoundEx and NYSIIS.

In integrating the contextual pre-trained language model BERT in candidate generation,

this study intends to incorporate more contextual information in normalization and apply different

non-complex methods for candidate ranking to achieve normalization results on different types of

normalization errors with faster performance in limited resource environments as well.
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3.2 Preprocessing

Datasets requiring normalization may often time include multiple normalization errors in

one data. The BERT model, in performing the MLM task, can only have one masked word per

input and only single words for output (i.e. candidates). Due to this characteristic of BERT,

preprocessing is required on the dataset to modify the data from multiple errors to a single error

per data.

For each data, all the errors that are included in the data are detected. For each detected

error, all the other errors will be replaced with the corresponding normalization result. A data that

includes n number of errors will produce n number of data of the same original text but with

different words as errors for each data. As a result, all data will include only one error. Figure 3.1

shows an example of the preprocessed data. The errors in the data are indicated in red and the

errors replaced with their corresponding normalization result are indicated with an underline. The

example shows that the input data contains three errors in total, thus the preprocessed data results

in three different data each including different errors with the other errors replaced with their

correct normalization results.

Figure 3.1. Example of Preprocessed Data
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3.3 Experiments

To investigate the varying performance of different normalization methods based on the

different types of errors, the following experiments will be conducted. The experiments along

with the dataset utilized in performing the experiment and evaluation metric used to evaluate the

result will be described in the following:

The first experiment is to investigate the incorporation of BERT (Devlin et al., 2019) in

the candidate generation step of the normalization of non-standard data. As a BERT-based

normalization method, the BERT model is used in the candidate generation step to produce top-n

normalization candidates for the error word, in which then different normalization methods such

as edit distance are applied for the candidate ranking to find the best candidate. Candidate

generation is performed with the BERT model as a masked language modeling (MLM) task,

masking the non-standard word that requires normalization and generating top-n candidate

predictions of the masked word.

Due to the constraints of BERT, which can only handle one masked word for each input,

this experiment is performed on data that contains only single errors. To test the varying

performance of BERT in candidate generation based on different types of errors, the BERT model

is tested on the different error types classified in the taxonomy of van der Goot et al. (2018). The

experimented error types are shown in Table 3.2. This experiment is performed on two different

BERT models to compare the performance: BERTbase and BERTlarge.

The second experiment is to investigate the varying performance of different ranking

methods based on different types of normalization errors. The performance of six different

ranking methods, including the basic ranking of the baseline study BERT, is tested on different

types of errors. The experimented ranking methods are shown in Table 3.1 and the description of

each ranking methods are as follows:
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Table 3.1. Experimented ranking methods

Ranking Methods Description

LCP Longest common prefix

LCS Longest common subsequence

Edit dist Edit distance (Levenshtein)

Soundex Phonetic distance (SoundEx)

Nysiis Phonetic distance (NYSIIS)

(Baseline) BERT Basic ranking performed with BERT

• First, the longest common prefix ranks candidates based on the length of their common

prefix with the OOV word, ranking candidates with longer common prefixes higher.

• Secondly, the longest common subsequence ranks candidates based on the length of their

common subsequence with the OOV word, ranking candidates with longer common

sequences higher. The subsequences do not need to be continuous.

• Thirdly, for edit distance, the Levenshtein distance is used to calculate and perform ranking

based on the minimum number of operations required to transform the candidate word to

the OOV word. The edit operations consist of insertion, deletion, and substitution.

Candidates with smaller edit distances are ranked higher in the candidate list.

• Lastly, two phonetic distances are used as ranking methods: SoundEx and NYSIIS. These

algorithms are one of the most commonly known phonetic algorithms along with

Metaphone, but SoundEx and NYSII were chosen since these algorithms output a single

conversion while Metaphone outputs two conversions.

Finally, the performance of these different ranking methods is compared to the

performance of the baseline models, BERT and MoNoise. The first baseline BERT refers to the

basic ranking performed through the BERT model in the process of candidate generation, with no

further ranking performed. The second baseline MoNoise refers to the gold error detection results

of the state-of-the-art MoNoise model. For a more accurate comparison, the results will be
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compared to the gold error detection results of MoNoise since gold error detection assumes

correct OOV detection.

The described ranking methods are tested on the error types shown in Table 3.2, excluding

the error types that are determined from the results of the first experiment to be incapable of being

handled through BERT. Rankings are performed on the candidates generated with BERT, and the

BERTlarge model is used in this experiment for candidate generation based on the results of the

first experiment.

Table 3.2. Experimented Error Types

Error Type Error Description Example

Error 1 Typographical error can’t→ ca’nt
Error 2 Missing-Apostrophes error don’t→ dont
Error 3 Spelling error neighbors→ neighbours
Error 4 Split error love→ l o v e
Error 5 Merge error no more→ nomore
Error 6 Phrasal Abbreviation error on the way→ otw
Error 7 Repetition error please→ pleaseeeee
Error 8 Shortening vowels error people→ ppl
Error 9 Shortening end error favorite→ fav
Error 10 Shortening other error because→ bc
Error 11 Phonetic transformation error though→ tho
Error 12 Regular transformation error going→ goin
Error 13 Slang error thanks→ thx
Error 14 Unknown error they→ nem

3.3.1 Dataset

NormTax, the error-type annotated dataset in the work of van der Goot et al. (2018), is

used for the experiments in this study. van der Goot et al. (2018) augmented the training set of the

LexNorm2015 (Baldwin et al., 2015) dataset with their proposed taxonomy of error types,

annotating the normalization replacements with the respective category in the taxonomy. The

summarization of the NormTax dataset is presented in Table 3.3. The proposed taxonomy
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classifies normalization errors into fourteen different types of errors, and the distribution of the

taxonomy in the LexNorm2015 dataset is shown in Figure 3.2 (van der Goot et al., 2018).

Due to the limited data containing single errors, the NormTax dataset was modified to

produce n number of data rows with single errors from a data row containing n number of errors.

This data modification process is described in section 3.2, and the modified dataset will be

referred to as the NormTax single dataset throughout this study. From the total of 1864 data rows,

the dataset was modified resulting in a total of 3916 data rows. The NormTax single dataset is

used to perform both experiments 1 and 2. The comparison of the NormTax dataset and

NormTax single dataset is presented in Table 3.4.

Table 3.3. Summarization of the NormTax Dataset
(Tweet #: Tweet Count, Word #: Word Count, Non-standard #: Non-standard Error Count, Norm%:

Percentage of normalized words, 1:N: Existence of 1-to-n replacements, Cap: Existence of
capitalization, EN: English)

Dataset NormTax

Source van der Goot et al. (2018)

Language EN

Tweet # 2,950

Word # 44,385

Non-standard # 3,928

Norm% 8.85

1:N o

Cap x

Table 3.4. Comparison of the NormTax and NormTax single Dataset
(Data #: Data Count, Multiple err: Includes multiple errors in one data, Non-standard #:

Non-standard Error Count)

Dataset NormTax NormTax single

Data # 1,864 3,916

Multiple err o x

Non-standard # 3,928 3,916
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Figure 3.2. Error Type Distribution of the NormTax Dataset

3.3.2 Evaluation Metrics

For the evaluation of the candidate generation performance of BERT models as well as the

performance of different ranking methods based on different error types, the word-level n-best

accuracy score is used. In the word-level n-best accuracy score (F. Liu et al., 2012), for each

OOV word, the case is considered accurate if the correct normalization result exists among the

n-best candidates. In this study, the word-level n-best accuracy measure is further adapted to the

experiments for better interpretation as the accuracy measure for each candidate generation and

candidate ranking. For candidate generation, this evaluation metric is used to evaluate the

performance of how well the candidates are generated by measuring how often the correct

candidate exists in the generated candidate list prior to ranking. For candidate ranking, this

evaluation metric is used to not only evaluate the accuracy of the 1-best but also the n-best results

for a more accurate evaluation of the ranking performance. The accuracy measures are referred to

as the following:

• N-best accuracy: For each OOV word, it is considered correct if the correct normalization

result exists among the n number of candidates generated with BERT. This metric is used as

the accuracy measure for the performance of candidate generation.
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• K-best accuracy: For each OOV word, it is considered correct if the correct normalization

result exists among the top-k ranked candidates. This metric is used as the accuracy

measure for the performance of candidate ranking.
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CHAPTER 4. RESULTS AND ANALYSIS

This chapter presents the results and analysis of two different experiments. The results

presents the findings for adopting BERT to candidate generation and in the performance of

different ranking methods based on the different types of normalization errors.

4.1 Experiment 1. Investigation of BERT in candidate generation

The candidate generation performance of the BERT model is evaluated with the n-best

accuracy on the NormTax single dataset. The n-best accuracy is calculated for the different

number of candidates generated through the BERT model.

4.1.1 Candidate generation performance on all error types

First, the overall candidate generation performance of the BERT model was tested on the

NormTax single dataset, inclusive of all the different types of errors. Table 4.1 shows the overall

n-best accuracy results of BERT candidate generation on the NormTax single dataset. The

accuracy can be seen increasing with the increase in the number of candidates. The highest

accuracy was shown in 30000 candidates at 53.50%, with a close runner-up in 10000 candidates

at 52.91%. The intuition from this result was that the low performance could be due to certain

types of errors that could not be handled through the BERT model.

Table 4.1. BERT candidate generation results on the NormTax single dataset

N-best Candidates (N) 5 10 20 30 50 70 90 100 500 1000 10000 30000

N-best Accuracy (%) 23.67 28.60 32.12 34.32 36.59 38.18 39.27 39.68 45.25 47.85 52.91 53.50
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4.1.2 Candidate generation performance on different error types

Consequent to the intuition from the results of the previous experiment, the candidate

generation performance of the BERT model was tested on the different error types in the

NormTax single dataset. Figure 4.1 shows the candidate generation performance of the BERT

model on 30,000 candidates based on different error types. Candidate generation performance of

the BERT model increased significantly when experimented on different types of errors. The

highest accuracy was shown in Error 7 at 98.92% showing a 45.42% increase from the highest

accuracy of the previous experiment. Other error types also show a high increase in accuracy

compared to the previous experiment, except for Error 2, 4, 5, and 6 which shows 0% or close to

0% accuracy. This result reveals that the low overall performance of the BERT model on

candidate generation was due to certain types of errors that show close to no performance.

Figure 4.1. Candidate Generation Performance of BERT based on Error Types
(30,000 Candidates)

For further insight, the candidate generation performance of the BERT model was tested

on ten different types of errors, excluding the four non-performing error types (Error 2, 4, 5, 6),

with two different BERT models: BERTbase and BERTlarge. For each error type, the candidate

generation performance was tested on n candidates (n = 5, 10, 50, ..., 30000).
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Figure 4.2 and Figure 4.3 show the candidate generation performance of BERTbase and

BERTlarge, respectively, on different error types. Both models show an increasing trend in

candidate generation performance with the increased number of candidates and similar trends

based on the different types of errors, with Error 7 showing the highest accuracy in 500, 1,000,

10,000, 30,000 candidates and Error 12 in 5, 10, 50, 100 candidates. All methods show the

highest performance in 30,000 candidates with similar performance in 10,000 candidates.

However, most methods also show comparable performance in 500 and 1,000 candidates as well.

Figure 4.2. Candidate Generation Performance of BERTbase

Figure 4.3. Candidate Generation Performance of BERTlarge
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4.1.3 Discussion

The results of the experiment on the candidate generation of different error types show

that the low overall performance of the BERT model was due to the four types of errors that

showed low performance (0 - 3.38%). Looking into these four types of errors (i. e. Error 2, 4, 5,

and 6), the low performance of the BERT model on these specific error types can be understood.

Error type 2, missing-apostrophe’s error, requires an apostrophe to be included in the

correct normalization result (dont→don’t), however, the candidates generated through the BERT

model don’t include candidates with special characters in the word (e.g. don’t, can’t). Meanwhile,

Error type 4, split error, requires merging of the error words (l o v e→love) which require N:1

replacement of words. Error type 5, merge error, requires splitting of the error word (nomore→no

more) and Error type 6, phrasal abbreviation error, requires expanding to the full form of the

abbreviation (omw→on my way), both error types requiring 1:N replacement of words to perform

normalization. However, the BERT model can only perform 1:1 replacement of words, since it

takes a single word as input and outputs single word candidates. Therefore, the error types that

include special characters, 1:N or N:1 replacements cannot be handled with the BERT model, and

thus should be excluded from the further assessment of the BERT model, considered as a

limitation.

Despite these limitations, the results show that the BERT model shows high potential in

candidate generation for normalization in the error types that it is capable of handling, showing an

average accuracy of 86.02% and the highest accuracy up to 98.92%. Moreover, it shows that in

order to properly assess the potential of the BERT model in normalization, normalization

performance should be tested based on different error types.

Also, the results on the BERTbase and BERTlarge models show that the two models show

very similar performance and trend over all the error types. Thus, one could choose the model

based on the environment setting. While the two models have shown very similar performance,

the BERTlarge model has shown slightly higher performance. Therefore, one with more

computing resources to spare and prefer the higher accuracy could select the BERTlarge model,

and for one with limited computing resources and prefer faster speed, the BERTbase model could

be perfectly suitable.

48



Moreover, the results on the different number of candidates suggest that although the

highest candidate generation performance was shown in 30,000 candidates, same or close

performance was shown in 10,000 candidates in most error types and comparable performance

were shown in 500 and 1,000 candidates as well, providing insight that 1,000 candidates could be

sufficient. Although the higher number of candidates are showing higher candidate generation

performance, the large candidate pool could also hinder the performance of the ranking of

candidates. Therefore, assessing the appropriate number of candidates based on both candidate

generation and ranking will be important in the overall performance of normalization.

4.2 Experiment 2. Investigation of ranking methods based on error type

The candidate ranking performance of different ranking methods is evaluated with the

k-best accuracy on the different error types in the NormTax single dataset. The k-best accuracy is

calculated for the ranking methods on different error types based on the different number of

candidates generated through the BERT model.

For simplicity, each ranking method, longest common prefix, longest common

subsequence, edit distance (Levenshtein), phonetic distance (SoundEx), phonetic distance

(NYSIIS) will be referred to as LCP, LCS, Edit dist, Soundex, Nysiis, respectively.

4.2.1 Candidate ranking performance with 1-best accuracy

First, the ranking performance of six different ranking methods, including the baseline

BERT basic ranking, were tested on ten different error types. The Ranking was performed on

candidates generated with two different BERT models, BERTbase and BERTlarge, and tested with

different n number of candidates (n = 5, 10, 100, ..., 30000). The 1-best accuracy score is

calculated for each experiment.

Error 1, Error 7, and Error 11 showed a similar trend in the results, with Edit dist showing

the highest ranking performance and the baseline BERT ranking showing the lowest performance.

For example, Figure 4.4 and Figure 4.5 show the ranking performance on Error 1 with n

candidates generated with the BERTbase and BERTlarge model, respectively. In both models,
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Edit dist performed much higher than the baseline BERT, and showed the highest performance

from 5000 candidates with comparable performance at 1000 candidates. The second highest

performing method, LCS, showed close performance in smaller number of candidates, and the

baseline BERT was the lowest performing ranking method for both models. Both BERT models

also showed similar performance as the number of candidates increased, but the BERTlarge model

showed slightly higher performance in smaller number of candidates.

Figure 4.4. Ranking Performance of BERTbase on Error 1

Figure 4.5. Ranking Performance of BERTlarge on Error 1

In Error 3, Edit dist performed highly as well, however, Nysiis also showed high

performance and was the highest performing method. In this specific error type, the BERTbase
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showed higher performance in larger number of candidates and BERTlarge in lower, which was the

opposite of the general trend of other error types.

Figure 4.6. Ranking Performance of BERTbase on Error 3

Figure 4.7. Ranking Performance of BERTlarge on Error 3

Error 10 and Error 12 showed very similar trend in the results as well, with LCS showing

the dominant ranking performance with the baseline BERT showing the second highest

performance. Figure 4.8 and Figure 4.9 show the ranking performance on Error 12 with n

candidates generated with the BERTbase and BERTlarge model, respectively. For Error 12, LCS

was the highest performing method, showing highest accuracy in 100 candidates and comparable

performance in 500 and 1,000 candidates. LCS showed a slight decreasing trend in performance
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with the increase in the number of candidates after 100 candidates, and the other methods also

showed a decreasing trend in performance with the increased number of candidates. The highest

ranking method still outperformed the baseline BERT, but the baseline showed second highest

performance with other methods all showing very poor performance after 10 candidates.

Figure 4.8. Ranking Performance of BERTbase on Error 12

Figure 4.9. Ranking Performance of BERTlarge on Error 12

In Error 8 and Error 13, LCS was also the highest performing method, but Soundex

showed the second highest performance with the baseline BERT showing one of the lowest

performances. For example, Figure 4.10 and Figure 4.11 show the ranking performance on Error

8 with n candidates generated with the BERTbase and BERTlarge model, respectively. For Error 8,
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LCS performed much higher than the baseline BERT, and showed highest performance from 5000

candidates and comparable performance at 1000 candidates.

Figure 4.10. Ranking Performance of BERTbase on Error 8

Figure 4.11. Ranking Performance of BERTlarge on Error 8

Error 9 did not show a similar trend with the results of other error types. Figure 4.12 and

Figure 4.13 show the ranking performance on Error 9 with n candidates generated with the

BERTbase and BERTlarge model, respectively. For Error 9, LCP and LCS showed the highest

performance among the ranking methods with the LCP showing the highest accuracy for both

models. Edit dist was the lowest accuracy ranking method for both models. LCP showed highest
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accuracy in 30,000 candidates but showed comparable performance in 5,000 and 10,000

candidates. The ranking methods, LCP, LCS, and Soundex outperformed the baseline BERT.

Figure 4.12. Ranking Performance of BERTbase on Error 9

Figure 4.13. Ranking Performance of BERTlarge on Error 9

Figure 4.14 and Figure 4.15 show the ranking performance on Error 14 with n candidates

generated with the BERTbase and BERTlarge model, respectively. For Error 14, Soundex showed

the highest accuracy in BERTbase and LCS showed the highest accuracy in BERTlarge.
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Figure 4.14. Ranking Performance of BERTbase on Error 14

Figure 4.15. Ranking Performance of BERTlarge on Error 14

4.2.2 Candidate ranking performance with k-best accuracy

The ranking performance of the six ranking methods, including the BERT basic ranking,

were evaluated with k-best accuracy for 1-best, 5-best, and 10-best results for each n number of

candidates (n=10, 1,000, 30,000). Ranking was performed on candidates generated with the

BERTlarge model and on ten different error types. The k-best accuracy score is calculated for each

experiment. In the result tables, the ranking method with the highest performance in each k-best

of each n candidates are indicated with a single underline, with the highest accuracy in each
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k-best indicated in bold, and the highest accuracy over all the results is indicated with a double

underline.

Table 4.2, Table 4.3, and Table 4.4 shows the k-best ranking results on Error 1, Error 7,

and Error 11, respectively. For Error 1 and Error 11, the highest performance was shown in the

k-best results of 30,000 candidates, while Error 7 showed highest performance in 1,000

candidates. With all the ranking methods showing significant increase in accuracy with the

increased k, an increase can be seen from 77.42% in 1-best to the highest accuracy of 93.55% in

10-best for Error 7.

Table 4.2. K-best Ranking Results on Error 1

Candidate Num. (N) 10 1000 30000

K-best (K) 1 5 10 1 5 10 1 5 10

LCP 44.22 53.06 53.06 47.62 65.99 68.03 42.18 57.82 59.86

LCS 48.30 52.38 53.06 57.14 72.11 76.19 48.30 65.99 69.39

Edit dist 52.38 53.06 53.06 67.35 78.23 81.63 70.75 81.63 83.67

Soundex 41.50 51.70 53.06 41.50 53.06 60.54 42.18 52.38 58.50

Nysiis 41.50 52.38 53.06 45.58 65.31 66.67 42.18 59.18 63.95

(Baseline) BERT 29.25 46.26 53.06 29.25 46.26 53.06 29.25 46.26 53.06

Table 4.3. K-best Ranking Results on Error 7

Candidate Num. (N) 10 1000 30000

K-best (K) 1 5 10 1 5 10 1 5 10

LCP 55.91 60.22 60.22 64.52 88.17 90.32 58.06 80.65 91.40

LCS 53.76 60.22 60.22 39.78 68.82 79.57 24.73 43.01 51.61

Edit dist 55.91 60.22 60.22 77.42 90.32 93.55 77.42 88.17 90.32

Soundex 52.69 60.22 60.22 62.37 83.87 87.10 62.37 83.87 87.10

Nysiis 58.06 60.22 60.22 69.89 84.95 88.17 64.52 84.95 88.17

(Baseline) BERT 30.11 52.69 60.22 30.11 52.69 60.22 30.11 52.69 60.22
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Table 4.4. K-best Ranking Results on Error 11

Candidate Num. (N) 10 1000 30000

K-best (K) 1 5 10 1 5 10 1 5 10

LCP 27.92 30.55 30.55 48.93 54.65 56.09 56.32 56.80 57.04

LCS 26.49 30.07 30.55 48.21 49.64 51.79 53.94 55.61 56.32

Edit dist 28.16 30.55 30.55 51.31 52.74 53.46 57.76 60.62 60.86

Soundex 27.68 30.55 30.55 35.80 53.22 55.61 35.08 53.22 57.28

Nysiis 26.49 30.55 30.55 35.56 49.88 53.70 21.72 41.29 50.84

(Baseline) BERT 15.27 25.30 30.55 15.27 25.30 30.55 15.27 25.30 30.55

Table 4.5 shows the k-best ranking results on Error 3. In comparison to Error 7, although,

Edit dist was not the highest performing method in Error 3, it was the second highest performing

method with performance very close to the first highest performing method, Nysiis. The results

show that Nysiis also showed high performance in Error 7 as well. The highest performance was

seen in 30,000 candidates and the highest accuracy increased from 71.05% to 88.16% with 5-best

results. In LCP, there was a significant increase in accuracy from 17.11% in 1-best to % 78.95%

in 10-best.

Table 4.5. K-best Ranking Results on Error 3

Candidate Num. (N) 10 1000 30000

K-best (K) 1 5 10 1 5 10 1 5 10

LCP 26.32 30.26 30.26 23.68 56.68 60.53 17.11 59.21 78.95

LCS 27.63 30.26 30.26 31.58 60.53 60.53 27.63 69.74 81.58

Edit dist 28.95 30.26 30.26 55.26 63.16 63.16 69.74 86.84 86.84

Soundex 27.63 30.26 30.26 44.74 57.89 61.84 44.74 59.21 67.11

Nysiis 28.95 30.26 30.26 59.21 63.16 63.16 71.05 88.16 88.16

(Baseline) BERT 13.16 25.00 30.26 13.16 25.00 30.26 13.16 25.00 30.26

Table 4.6 and Table 4.7 shows the k-best ranking results on Error 8 and Error 13,

respectively. In Error 8, although the highest performance over all the results are shown in 30,000

candidates from LCS, the 1,000 candidate results of the method show very close performance,

and the results show that the performance of the overall ranking methods are highest in 1,000
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candidates with as well. Similarly in Error 13, although the highest performance over all the

results are shown in 1,000 candidates from LCS, the performance of the overall ranking methods

are shown highest in 10 candidates. In both error types, most of the ranking methods except for

LCS, show the highest results in 10 candidates for 1-best accuracy and a decreasing trend in

performance with the increase in the number of candidates. While Error 13 did not show high

performance, Error 8 showed high performance with the 1-best accuracy score of 83.33% and the

10-best accuracy of 90.91%.

Table 4.6. K-best Ranking Results on Error 8

Candidate Num. (N) 10 1000 30000

K-best (K) 1 5 10 1 5 10 1 5 10

LCP 51.01 64.14 64.14 47.47 69.19 74.75 37.37 67.68 71.72

LCS 63.13 64.14 64.14 82.83 89.39 90.40 83.33 89.90 90.91

Edit dist 44.95 63.64 64.14 40.40 50.51 51.52 37.88 37.88 47.98

Soundex 55.05 63.13 64.14 61.11 76.77 79.80 61.11 76.77 79.80

Nysiis 50.00 63.64 64.14 36.87 45.96 48.48 34.34 46.46 47.47

(Baseline) BERT 37.88 57.07 64.14 37.88 57.07 64.14 37.88 57.07 64.14

Table 4.7. K-best Ranking Results on Error 13

Candidate Num. (N) 10 1000 30000

K-best (K) 1 5 10 1 5 10 1 5 10

LCP 22.22 30.56 31.94 17.78 33.89 39.72 11.11 19.44 30.00

LCS 27.22 31.11 31.94 29.44 45.00 48.61 18.61 29.72 36.11

Edit dist 13.06 27.50 31.94 12.50 18.89 22.78 11.94 15.00 17.78

Soundex 21.67 31.39 31.94 19.44 27.22 34.72 19.44 26.94 31.11

Nysiis 16.39 24.72 31.94 14.17 23.89 25.56 10.56 14.72 21.94

(Baseline) BERT 15.56 27.50 31.94 15.56 27.50 31.94 15.56 27.50 31.94

Table 4.8 and Table 4.9 shows the k-best ranking results on Error 10 and Error 12,

respectively. In Error 10, although the highest performance over all the results are shown in

30,000 candidates from LCS, the results show that the performance of the overall ranking
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methods are highest in 10 candidates. Similarly in Error 12, although the highest performance

over all the results are shown in 1,000 candidates from LCS, the performance of the overall

ranking methods are shown highest in 10 candidates as well. In both error types, all the ranking

methods except for LCS, show the highest results in 10 candidates with a decreasing trend in

performance with the increase in the number of candidates including 1-best results. Error 12

showed an increase in highest accuracy from 65.81% in 1-best to 79.39% in 10-best.

Table 4.8. K-best Ranking Results on Error 10

Candidate Num. (N) 10 1000 30000

K-best (K) 1 5 10 1 5 10 1 5 10

LCP 32.87 54.63 56.94 29.63 39.81 43.52 21.30 39.35 42.59

LCS 50.93 55.56 56.94 64.81 74.54 76.85 64.81 75.00 76.85

Edit dist 23.15 48.61 56.94 13.43 26.39 37.50 10.65 15.28 23.15

Soundex 33.80 55.09 56.94 25.93 31.02 33.80 25.93 31.02 32.41

Nysiis 16.67 50.93 56.94 14.81 18.06 18.98 14.81 17.59 17.59

(Baseline) BERT 38.89 52.31 56.94 38.89 52.31 56.94 38.89 52.31 56.94

Table 4.9. K-best Ranking Results on Error 12

Candidate Num. (N) 10 1000 30000

K-best (K) 1 5 10 1 5 10 1 5 10

LCP 27.27 70.68 72.86 14.47 20.74 23.05 11.01 17.03 19.08

LCS 65.81 72.09 72.86 63.89 75.42 79.39 61.33 70.55 72.98

Edit dist 32.65 71.19 72.86 17.80 25.10 29.96 17.80 22.79 24.58

Soundex 28.94 70.42 72.86 15.62 25.74 28.43 15.24 21.38 23.82

Nysiis 43.02 71.57 72.86 14.85 40.46 70.42 13.83 18.18 62.10

(Baseline) BERT 55.70 70.17 72.86 55.70 70.17 72.86 55.70 70.17 72.86

Table 4.10 shows the k-best ranking results on Error 9. The highest performance was

shown in 30,000 candidates but comparable performance was shown in 1,000 candidates as well.

In the highest performing method, LCP, the highest accuracy increased from 69.78% in 1-best to

86.81% in 10-best.
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Table 4.10. K-best Ranking Results on Error 9

Candidate Num. (N) 10 1000 30000

K-best (K) 1 5 10 1 5 10 1 5 10

LCP 40.66 42.31 42.31 63.74 74.73 75.82 69.78 84.62 86.81

LCS 38.46 41.76 42.31 59.89 71.98 74.18 65.38 79.67 82.97

Edit dist 10.99 36.26 42.31 1.65 3.85 6.04 0.00 2.20 3.85

Soundex 37.36 42.31 42.31 48.90 65.38 72.53 48.90 66.48 72.53

Nysiis 14.84 29.67 42.31 13.74 15.93 15.93 13.74 15.38 15.38

(Baseline) BERT 21.43 36.81 42.31 21.43 36.81 42.31 21.43 36.81 42.31

Table 4.11 shows the k-best ranking results on Error 14. Even in Error 14, the highest

performance increased from 17.65% to 35.29% with 1-best to 10-best. In 30,000 candidates, the

accuracy increased from 0% to 35.29% with increased k-best.

Table 4.11. K-best Ranking Results on Error 14

Candidate Num. (N) 10 1000 30000

K-best (K) 1 5 10 1 5 10 1 5 10

LCP 5.88 11.76 11.76 5.88 5.88 11.76 11.76 23.53 29.41

LCS 5.88 11.76 11.76 5.88 11.76 23.53 17.65 23.53 29.41

Edit dist 0.00 5.88 11.76 0.00 11.76 11.76 0.00 29.41 35.29

Soundex 5.88 11.76 11.76 5.88 11.76 11.76 5.88 11.76 17.65

Nysiis 0.00 11.76 11.76 0.00 17.65 23.53 0.00 23.53 35.29

(Baseline) BERT 5.88 11.76 11.76 5.88 11.76 11.76 5.88 11.76 11.76

Figure 4.16 shows the highest accuracy score of the k-best results compared to the two

baselines, BERT and MoNoise, on the different error types. BERT refers to the first baseline

model BERT, and BERT+R refers to the presented method in BERT candidate generation with

additional ranking performed, each representing 1-best, 5-best, and 10-best results.

MoNoise Gold refers to the results of the second baseline model MoNoise with gold error

detection, which assumes that correct error detection is performed. Therefore, the gold error

detection results of MoNoise has been selected for comparison since the presented method

assumes that error detection has been performed. The results show that the BERT+R methods
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outperformed the baseline BERT on all error types. In terms of the baseline MoNoise, the 1-best

results outperformed the baseline on Error 1 and showed equivalent or comparable performance

on Error 9 and 14. The 5-best results outperformed the baseline on Error 1, 9, 14 and showed

comparable performance on Error 3, 7, and 8. The 10-best results outperformed the baseline on

Error 1, 7, 9, 14 and showed comparable performance on Error 3 and 8.

Figure 4.16. Summarization of Ranking Performance based on Error Type

4.2.3 Discussion

The results comparing the BERTbase and BERTlarge model show that the two models show

very similar performance and trend in candidate ranking as well. In general, the BERTbase model

showed slightly higher performance in smaller number of candidates and the BERTlarge model

showed slightly higher performance in larger number of candidates. Overall, all the methods

except for the baseline BERT showed very similar performance in the two models. The baseline

BERT ranking performance was shown to increase in all error types with the BERTlarge model.

The 1-best accuracy results showed that different ranking methods were more effective

and less effective based on different error types. However, in all the error types, all ranking

methods showed very similar performance in 5 candidates, and similar performance until 10
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candidates as well except for the baseline BERT method. Also, most methods have shown the

highest performance in the 1,000 to 30,000 candidate range.

For interpretation into the different error types, Error 1, 7, and 11 showed a similar trend

with Edit dist as the highest performing method and baseline BERT as the lowest. In Error 1,

typographical error, the high performance of Edit dist was expected since the error type tends to

require minor edits. However, this was not expected in Error 7 and 11, repetition error and

phonetic transformation error respectively, since both errors include shortening of words which

could lead to large edit distance. The high performance of phonetic distances, Soundex and

Nysiis, in Error 7 are also understandable since the phonetic similarity remains with repeated

characters, e.g. please→ pleaseee. However, the higher performance of Edit distance, LCP, and

LCS rather than phonetic distances in Error 11 was interesting considering that it is the phonetic

transformation error. This result suggests that the phonetic transformation to the human eye could

be not entirely in line with phonetic algorithms.

Edit dist also showed high performance in Error 3, spelling error. With Error 3, it was

intuitable that Edit dist would show high performance since spelling errors usually contain minor

edits. However, the performance of Nysiis provided an interesting aspect, since it suggests that

spelling errors often maintain close phonetic similarities with the original word. In comparison to

Error 1, typographical error, which showed low performance in Nysiis, the high performance

shown in Error 3 suggests that this is due to the fundamental differences in the two error types.

Since Typographical errors are usually due to accidentally typed characters, the errors are often

completely irrelevant to the original character in terms of similarity but rather based on the keys

in close proximity on the keyboard. However, in spelling errors, the errors are often based on

what the user thinks the spelling is, which will often lead to the errors sharing similar phonetic

information with the original word, thus leading to high performance in phonetic distance.

Although these two error types, Error 1 and 3, may seem very similar on the surface, the

performance of Nysiis has been able to reveal this fundamental difference between the two error

types.

Error 10 and 12 shared a similar trend with LCS as the highest performing method with

the baseline BERT showing second highest performance. The dominant performance of LCS was

unexpected in Error 10, shortening other error, since many characters were expected to be omitted
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for shortening purposes. The high performance of LCS was expected in Error 12, regular

transformation error, since the error generally maintains similar structure to the original word

with minor or partial omissions. However, the low performance of Edit dist was not expected.

Another interesting result was that all the other methods except for LCS and BERT started to dive

in performance after 10 candidates, leaving the two methods dominant. Also, this particular error

type showed higher performance in lower candidate numbers.

One of the unique results from these two error types was that the baseline BERT ranking

method showed the second highest performance, since the baseline BERT showed relatively low

performance in all the other error types. Inferring from the significantly high results of the

baseline BERT on Error 12, one interpretation could be that this is due to the majority of the

errors including the most frequently used vocabulary in sentences such as pronouns (e.g. you) and

prepositions (e.g., with, about, before). Since the BERT model masks the error word and only

takes the surrounding context into account, the high performance on error words that include

high-frequency words is understandable.

LCS was the highest performing method in Error 8 and 13 as well. However, in these two

error types, Soundex was the second highest performing method rather than the baseline BERT.

The dominant performance of LCS was unexpected in Error 8, shortening vowels error, since

many characters (i.e. vowels) were expected to be omitted for shortening purposes. The high

performance of LCS was expected in Error 13, slang error, since the error generally maintains

some similarity with the original word, e.g. brother→ bra. However, the overall ranking

performance on Error 13 is very low, thus an improvement on the ranking method is required.

Error 9 did not show a similar trend with the other error types, with LCP showing highest

performance and Edit dist lowest. The highest performance of LCP was expected, since Error 9,

shortening end error, generally maintains the same prefix with the rest of the word omitted, e.g.

favorite→ fav. The low performance of Edit dist is also expected since the error word is often

shortened significantly. Since Error 14, unknown error was defined by van der Goot et al. (2018)

as errors unknown to the annotators or errors with disagreement across annotators, the errors do

not maintain a consistent pattern and only contain 17 errors. Thus, this error type can be

disregarded in terms of ranking performance.
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In all error types, the highest ranking method outperformed the baseline BERT method,

showing that using additional ranking methods is capable of improving the ranking performance

of the BERT-generated candidates. Meanwhile, the error types 10 and 12 suggest that in certain

types of errors, the ranking performed by the BERT model is already highly sufficient, especially

in Error 12, regular transformation error.

The k-best accuracy results showing accuracy increase up to 61.84%, reveals that even

though the 1-best accuracy does not show substantially high performance, the correct candidate

does indeed exist in the 5-best or 10-best candidates, which shows high potential with further

performance enhancement through different or more complex ranking methods.

The overall result in comparison with the baselines, BERT and MoNoise, represented in

Figure 4.16 shows that the additional ranking method applied on the candidates generated through

the BERT model has outperformed the baseline BERT ranking on all error types. Although, the

proposed method has not been able to reach the state-of-the-art performance of the baseline

MoNoise with gold error detection, the 10-best results have been able to outperform or show

comparable performance on 6 out of 10 different error types.

64



CHAPTER 5. CONCLUSION

5.1 Conclusion and Analysis

This study suggests a simple normalization method that utilizes the state-of-the-art

pre-trained language model, BERT, for candidate generation and simple ranking methods for

candidate ranking based on different error types. This study has investigated the performance of

different stages of normalization based on the different types of errors. To the best of my

knowledge, this is the first study to apply the BERT model to the candidate generation of

normalization without fine-tuning. Based upon the error taxonomy categorized by van der Goot et

al. (2018), the candidate generation performance of the BERT model and the candidate ranking

performance of five different ranking methods were compared to the baseline models, BERT and

MoNoise.

The results of the BERT model performance on candidate generation revealed the

potential of BERT in being applied to generating candidates for normalization. Further results on

candidate ranking showed that in certain types of errors, the basic ranking performed by the

BERT model already shows high performance, especially in regular transformation errors. In

performing additional ranking on the candidates generated through the BERT model, the results

have been able to significantly outperform the first baseline BERT ranking. Although

performance over the second baseline MoNoise was not substantial, the 10-best results were able

to show comparable performance on 6 out of 10 different error types.

The goal of this study is to enlighten on the potential that the BERT model holds in

normalization and the prospect of a simple BERT-infused normalization method that can be

improved through different ranking methods on different error types, as well as guidance for users

performing normalization to preprocess informal text data based on different types of errors it

contains. Table 5.1 shows the best performing ranking method for each error type. For datasets

including more typographical, spelling, repetition, and phonetic-transformation errors (Error 1, 3,

7, 11), edit distance would be recommended for use in ranking and should avoid using the BERT

basic ranking. For datasets including more shortening-vowels, shortening-end, shortening-other,
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regular-transformation, and slang errors (Error 8, 9, 10, 12, 13), the use of the longest common

subsequence would be recommended for use and to refrain from using edit distance. If one would

like to utilize a single ranking method on all error types, longest common subsequence would be

recommended for use, since it is the highest performing method among the different error types.

As a simple normalization method, this method could also be provided as an alternative to

complex and high-computing methods when performing normalization in low resource

environments.

Table 5.1. Best Performing Ranking Method based on Error Type

Type Error Description Example Ranking Method Cand Num

Error 1 Typographical error can’t→ ca’nt Edit dist 30000
Error 3 Spelling error neighbors→ neighbours Nysiis/Edit dist 30000
Error 7 Repetition error please→ pleaseeeee Edit dist 1000
Error 8 Shortening vowels error people→ ppl LCS 1000/30000
Error 9 Shortening end error favorite→ fav LCP/LCS 30000
Error 10 Shortening other error because→ bc LCS 1000/30000
Error 11 Phonetic transformation error though→ tho Edit dist 30000
Error 12 Regular transformation error going→ goin LCS 1000
Error 13 Slang error thanks→ thx LCS 1000
Error 14 Unknown error they→ nem LCS 30000

5.2 Future Work

From the findings of this study, many aspects for prospective improvement lies in the

proposed method. The following are a few of the recommendations on future research for

improvement:

In this study, five simple ranking methods were investigated in performing ranking on the

candidates generated through the BERT model. With the potential seen through these five ranking

methods and the k-best accuracy results, additional ranking methods and combinations of simple

ranking methods should be further investigated for performance enhancement. The high

candidate generation results of the BERT model on the different types of errors also suggest that

with the appropriate ranking method, there is great potential for improvement. A different
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variation of edit distance, Damerau–Levenshtein distance, could be one potential ranking method

to be explored. Damerau-Levenshtein includes the transposition of two adjacent characters in its

edit operations compared to the Levenshtein distance used in this study. In allowing the swapping

of adjacent characters, Damerau-Levenshtein could enhance the performance of edit distance and

the phonetic algorithms that use edit distance for calculation. The results of (Christanti & Naga,

2018) showed that using Damerau-Levenshtein distance improved the accuracy over the

Levenshtein distance.

One of the critical limitations of using the BERT model for candidate generation was the

incapability to handle special characters in words and 1:N or N:1 replacements. However, in

terms of the four error types that the BERT model was incapable of handling due to these factors,

the Most-Frequent Method (MFR) (van der Goot & Çetinog̈lu, 2021) could be a suitable

solution. In MFR, normalization is performed by replacing the error word with the most frequent

replacement pair seen in training. For the errors not in the training data, the error word is

returned. This simple method has shown relatively high performance of an ERR score of 61.88%

on the LexNorm2015 dataset and is also highly suitable for the error types that need handling

outside of the BERT model. Therefore, incorporating this method alongside the BERT-based

method could potentially be a solution for this limitation of BERT in normalization.

Another limitation of incorporating the BERT model to normalization was that the model

could only perform the MLM task on one masked word at a time. However, demonstration of

performing the MLM task with the BERT model on multiple masked tokens can be found in the

BERT Language Model Demo presented by the Bar Ilan NLP Lab (Bar Ilan NLP Lab, n.d.).

Modifying the BERT model and applying the multiple mask token of BERT for the normalization

of multiple tokens would be worth investigating.

Also, applying other variations of the BERT model such as DistilBERT (Sanh et al.,

2020), which compared to the BERTbase-uncased model contains 40% fewer parameters with 60%

faster speed and preserves over 95% of the performance at the same time, could further enhance

the performance of BERT candidate generation.

Considering the BERT model has a multilingual model that supports 104 languages,

another future aspect would be to incorporate the multilingual BERT model for the normalization

of multiple languages.
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van der Goot, R., Üstün, A., Ramponi, A., & Plank, B. (2020). Massive choice, ample
tasks(machamp):a toolkit for multi-task learning in nlp. arXiV preprint
arXiv:2005.14672v2.

van der Goot, R., & van Noord, G. (2017). Monoise: Modeling noise using a modular
normalization system. arXiV preprint arXiv:1710.03476.

van der Goot, R., van Noord, R., & van Noord, G. (2018). A taxonomy for in-depth evaluation of
normalization for user generated content. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation (LREC 2018) (pp. 684–688).
Miyazaki, Japan: European Language Resources Association (ELRA).

74



Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . . Polosukhin, I.
(2017). Attention is all you need. In Advances in Neural Information Processing Systems
(pp. 6000–6010).

Wagner, J., & Foster, J. (2015). Dcu-adapt: Learning edit operations for microblog normalization
with the generalised perceptron. In Proceedings of the ACL 2015 Workshop on Noisy
User-generated Text (pp. 93–98).

Wang, P., & Ng, H. T. (2013). A beam-search decoder for normalization of social media text with
application to machine translation. In Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies (NAACL HLT 2013) (pp. 471–481).

Xu, K., Xia, Y., & Lee, C.-H. (2015). Tweet normalization with syllables. In Proceedings of the
53rd Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (pp. 920–928).

Xue, Z., Yin, D., & Davison, B. D. (2011). Normalizing microtext. In Proceedings of the
AAAI-11 Workshop on Analyzing Microtext (pp. 74–79).

Yang, Y., & Eisenstein, J. (2013). A log-linear model for unsupervised text normalization. In
Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing (EMNLP 2013) (pp. 61–72).

Yao, L., Mao, C., & Luo, Y. (2019). Kg-bert: Bert for knowledge graph completion. arXiv
preprint arXiv:1909.03193.

Zhang, C., Baldwin, T., Ho, H., Kimelfeld, B., & Li, Y. (2013). Adaptive parser-centric text
normalization. In Proceedings of the 51st Annual Meeting of the Association for
Computational Linguistics (ACL 2013) (pp. 1159–1168).

Zhang, J., Pan, J., Yin, X., Li, C., Liu, S., Zhang, Y., . . . Ma, Z. (2020). A hybrid text
normalization system using multi-head self-attention for mandarin. In Proceedings of the
2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP).

Zhu, C., Tang, J., Li, H., Ng, H. T., & Zhao, T. (2007). A unified tagging approach to text
normalization. In Proceedings of the 45th Annual Meeting of the Association for
Computational Linguistics (ACL 2007) (pp. 688–695).

75


