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ABSTRACT

This dissertation is based on joint work with Lindsey Hill. There are two main parts,

which are linked by the common theme of the integral closure of the Rees algebra.

In the first part of this dissertation, comprised of Chapter  3 and Chapter  4 , we study

the integral closure of the Rees algebra directly. In Chapter  3 we identify a bound for

the multiplicity of the Rees algebra R[It] of a homogeneous ideal I generated in the same

degree, and combine this result with theorems of Ulrich and Vasconcelos in [ 34 ] to obtain

upper bounds on the number of generators of the integral closure of the Rees algebra as a

module over R[It]. We also find various other upper bounds for this number, and compare

them in the case of a monomial ideal generated in the same degree. In Chapter  4 , inspired

by the large depth assumption on the integral closure of R[It] in the results of Chapter  3 , we

obtain a lower bound for the depth of the associated graded ring and the Rees algebra of the

integral closure filtration in terms of the dimension of the Cohen-Macaulay local ring R and

the equimultiple ideal I. We finish the first part of this dissertation with a characterization

of when the integral closure of R[It] is Cohen-Macaulay for height 2 ideals.

In the second part of this dissertation, Chapter  5 , we use the integral closure of the Rees

algebra as a tool to discuss specialization of the integral closure of an ideal I. We prove

that for ideals of height at least two in a large class of rings, the integral closure of I is

compatible with specialization modulo general elements of I. This result is analogous to a

result of Itoh and an extension by Hong and Ulrich which show that for ideals of height at

least two in a large class of rings, the integral closure of I is compatible with specialization

modulo generic elements of I. We then discuss specialization modulo a general element of

the maximal ideal, rather than modulo a general element of the ideal I itself. In general it

is not the case that the operations of integral closure and specialization modulo a general

element of the maximal ideal are compatible, even under the assumptions of Theorem  5.2.4 .

We prove that the two operations are compatible for local excellent algebras over fields of

characteristic zero whenever R/I is reduced with depth at least 2, and conclude with a class

of ideals for which the two operations appear to be compatible based on computations in

Macaulay2.
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1. INTRODUCTION

A central theme of this dissertation, which is based on joint work with Lindsey Hill, is the

integral closure of the Rees algebra. In Chapter  3 and Chapter  4 our main results provide

information about the integral closure of the Rees algebra, while in Chapter  5 the integral

closure of the Rees algebra is the tool we use to determine properties of the integral closure

of an ideal.

Given an ideal I in a ring R, the integral closure of I is

I = {x ∈ R |xn + a1x
n−1 + · · ·+ an−1x+ an = 0 for some n ∈ N and ai ∈ I i}.

That is, the integral closure of I consists of roots of monic polynomials with coefficients in

the appropriate powers of I.

The integral closure of an ideal I of a ring R can alternatively be viewed as the degree

one component of the integral closure of a particular ring called the Rees algebra. The

Rees algebra can be viewed as a graded subring R[It] of the polynomial ring R[t], and is

isomorphic as an R-module to

⊕∞n=0I
n.

Thus, the Rees algebra encodes information about all powers of the ideal I.

In the case where I is a monomial ideal of a polynomial ring, the integral closure of I has

a geometric description – the exponent set of I is the set of lattice points of the convex hull

of the exponent set of I itself (see [ 31 , Section 1.4]). In general, the integral closure of an

ideal is not easy to compute. As of writing this dissertation, the methods implemented in

the computer algebra system Macaulay2 involve computing first the integral closure of R[It],

then reading off the degree-one component. Finding the integral closure of R[It] actually

provides the integral closure of every power of I, computing far more than the desired integral

closure of I itself. Moreover, computing the integral closure of R[It] is a computationally

intensive process, possibly by computing the S2-ification followed by the desingularization

in codimension one (both of which are discussed in [ 35 , Chapter 6]). Because of the work

involved in finding the integral closure of an ideal in this way, it is helpful to understand how
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complex the integral closure of R[It] may be to better bound the number of computations

that must be performed.

In terms of geometric intuition, the Rees algebra is the algebraic object which corresponds

to the geometric concept of blowing up along a subvariety to resolve singularities. More

precisely, the projective scheme of the Rees algebra of an ideal I in a ring R is the blowing-

up of the spectrum of R along the subscheme defined by I. Similarly, since a normal ring

satisfies Serre’s conditions R1 and S2, under slight assumptions the integral closure S of a

ring S removes, in particular, the codimension one component of the singular locus of S.

That is, both considering the Rees algebra of an ideal I and considering integral closure of

a ring relate to resolution of singularities.

The main results of this dissertation are divided into three chapters: Chapter  3 , which

discusses the number of generators and embedding dimension of the integral closure of the

Rees algebra; Chapter  4 , which discusses the depth of the integral closure of the Rees algebra;

and Chapter  5 , which discusses conditions which ensure that taking the integral closure of

an ideal commutes with taking a quotient modulo a sufficiently general element. More

specifically, this dissertation is organized as follows.

Chapter  2 introduces terminology, notation, and properties of algebraic objects that will

be used in more than one of Chapters 3 through 5. We will relegate preliminary material

that is specific to a certain chapter to that individual chapter. In Section  2.1 we briefly

introduce graded rings and modules, including the Hilbert function and multiplicity. Next,

in Section  2.2 we define the Rees algebra, extended Rees algebra, associated graded ring, and

fiber cone of an ideal. We briefly discuss some natural gradings on each ring, and provide

information about their dimensions. In Section  2.3 , we discuss integral closure. We first

remind the reader of the integral closure of a ring, then define the integral closure of an

ideal and discuss how it relates to the integral closure of the Rees algebra. We then provide

some basic properties of integral closure and define the reduction of an ideal. Finally, in

Section  2.4 , we define and discuss various properties of rings, such as being analytically

unramified or excellent, that are associated with integral closure.

In Chapter  3 , we first discuss bounds by Ulrich and Vasconcelos on the number of gener-

ators of a finite birational extension of a ring as a module over the original ring, and on the
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embedding dimension of the extension ring. These bounds give us an idea of how complex

the integral closure of the Rees algebra is, providing a priori bounds for computing the

integral closure. The bounds given by Ulrich and Vasconcelos rely on the multiplicity of the

ring. We then restrict to the integral closure of the Rees ring the case of homogeneous ideals

in polynomial rings. In this case, we can explicitly compute bounds on the multiplicity. We

do so in Theorem  3.2.4 , then combine this bound with the results of Ulrich and Vasconce-

los, obtaining the bounds discussed in Theorem  3.2.5 and Theorem  3.2.6 . We conclude the

chapter with a brief discussion of an alternate bound (Proposition  3.2.15 ) on the number

of generators of the integral closure of the Rees algebra in the case of a monomial ideal

generated in the same degree, and give a comparison of the two bounds.

In the case of non-monomial ideals, the results in Chapter  3 require that the integral clo-

sure of the Rees algebra have maximal or near-maximal depth. With this as our motivation,

in Chapter  4 we discuss the depth of the integral closure of the Rees algebra, and of the

associated graded ring related to the integral closure filtration F = {In}. As we journey to

our main result of the chapter, Theorem  4.2.1 , we first discuss previous results which link

the depth of the Rees algebra and associated graded ring of an ideal, and which give lower

bounds for the depth of the Rees algebra of an ideal and of a filtration.

In the final chapter of this dissertation, Chapter  5 , we discuss when specialization by an

element is compatible with integral closure of an ideal. We begin in Section  5.1 , where we give

a simple counterexample in which specialization by an element is not compatible with integral

closure. We then define two “sufficiently random” types of elements – generic elements and

general elements – and provide several results from the literature which guarantee that

specialization by a generic element of an ideal I is compatible with integral closure of I. In

the following section, Section  5.2 , we prove our main result (Theorem  5.2.4 ), which shows

that for ideals of height at least two in a large class of rings, the integral closure of the ideal is

compatible with specialization modulo general elements of the ideal. Finally, in Section  5.3 ,

we provide counterexamples to the related question of whether specialization by a general

element of the maximal ideal of a local ring commutes with the integral closure of an ideal.

We conclude by discussing cases where it seems that such specialization does in fact commute

with integral closure of an ideal.
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2. PRELIMINARIES

In this chapter, we discuss definitions and properties of algebraic objects that will be used

throughout. Unless otherwise stated, we will assume all rings are commutative with 1.

2.1 Graded Rings and Modules

Definition 2.1.1. A ring R is a graded ring if it can be decomposed into Abelian groups

Ri as R = ⊕
i∈ZRi such that for any integers i and j, RiRj ⊂ Ri+j. Here Ri is called the

i th graded component of R, and an element f ∈ Ri is called homogeneous of degree i

(or a form of degree i).

Example 2.1.2. By giving the indeterminate t degree 1, the polynomial ring k[t] over a field

k is a graded ring with R0 = k and Ri = kti for all i ≥ 0. For any a ∈ k, an element at2 is

homogeneous of degree 2 under this grading.

More generally, for any ring R we may consider the polynomial ring R[x1, . . . , xn] in the

variables x1, . . . , xn. If we give each xi degree 1, the 2nd graded component of R[x1, . . . , xn]

will consist of elements of the form ∑
1≤i,j≤n aijxixj where the coefficients aij are in R.

Definition 2.1.3. A graded ring R is nonnegatively graded if R = ⊕
i≥0 Ri. A graded

ring R is called standard graded if R = R0[R1]; that is, if R is generated as an R0-algebra

by the degree-one component of R.

Example 2.1.4. Both of the examples in Example  2.1.2 are standard graded. By assigning

different degrees to the variables, we can change the grading so the rings are neither nonneg-

atively graded nor standard graded - for example, by giving t degree −1 in the polynomial

ring k[t].

Definition 2.1.5. A homogeneous ideal is an ideal which can be generated by homoge-

neous elements (potentially of different degrees). An ideal is generated in degree n if it

is a homogeneous ideal which has a generating set consisting entirely of elements which are

homogeneous of degree n.

Definition 2.1.6. A ring R is called *local if R has a unique maximal homogeneous ideal.
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Definition 2.1.7. An R-module M is a graded R-module if it can be decomposed into

Abelian groups Mi as M = ⊕
i∈ZMi such that for any integers i and j, RiMj ⊂Mi+j. Mi is

called the i th graded component of M , and an element f ∈ Mi is called homogeneous

of degree i.

When discussing the graded components of a more complicated module M , we will often

write [M ]i instead of Mi in order to provide clarity.

We next recall the definitions of the Hilbert function, Hilbert series, Hilbert polynomial,

and multiplicity of a graded module. For those interested in a more thorough discussion, we

recommend Chapter 11 of Commutative Algebra by Atiyah and MacDonald [ 1 ] or Chapter 4

of Cohen-Macaulay Rings by Bruns and Herzog [ 2 ].

Definition 2.1.8. Denote by λR(M) the length of a module M over a ring R. (Length is

frequently denoted instead by `R(M). However, we will reserve ` for the analytic spread of

an ideal, defined in Definition  2.2.8 .) Given a Noetherian graded ring R with R0 Artinian,

and a finitely generated graded R-module M , we define the Hilbert function of M , denoted

HM : Z→ N0 by

HM(i) = λR0(Mi)

and the Hilbert series of M as the formal series

hM(t) =
∞∑

i=−∞
HM(i)ti.

Theorem 2.1.9. [See [  1 , Chapter 11]] If in addition R is standard graded, then for integers

t� 0, hM(t) is equal to a polynomial function PM(t). If dimM ≥ 1, then PM is a polynomial

in Q[x] with leading term e0

(d− 1)!x
d−1, where d = dimM and e0 ∈ Z>0.

Definition 2.1.10. The polynomial PM as in Theorem  2.1.9 is called the Hilbert polyno-

mial of M .

The multiplicity of M is defined to be

e(M) =


e0 if d ≥ 1

λR(M) if d = 0 or M = 0

12



2.2 Blowup Algebras

In this section, we will define and give basic properties of four blowup algebras: the Rees

algebra, the extended Rees algebra, the associated graded ring, and the fiber cone. These

rings are called blowup algebras due to their connection to the notion of blowing-up from

algebraic geometry. Here blowing-up has the connotation of zooming in on the point, and

repeated blowups are used to resolve singularities. To be more precise about the relation

between geometric blowups and blowup algebras, the projective scheme of the Rees algebra

of an ideal I in a ring R is the blowing-up of the spectrum of R along the subscheme defined

by I.

For the remainder of this work, we will use the algebraic meaning of the Rees algebra, as

defined below.

Definition 2.2.1. Given a ring R, an R-ideal I, and an indeterminate t, the Rees algebra

of I , denoted in this work as R[It] (and sometimes denoted as R(t) in other literature), is

the R-subalgebra of the polynomial ring R[t] generated by It. More precisely,

R[It] =
∞⊕
i=0

I iti = R⊕ It⊕ I2t2 ⊕ I3t3 ⊕ · · · ⊂ R[t].

As an R-module, the Rees algebra is isomorphic to

R[It] ∼=
∞⊕
i=0

I i,

where I i is defined to be R for i ≤ 0. The Rees algebra provides information not only about

the ring R, but also about all powers of the ideal I.

Notice that by giving t degree one, the Rees algebra inherits a natural standard grading

from the polynomial ring R[t], in which the degree i component is

[R[It]]i = I iti.

13



Definition 2.2.2. The extended Rees algebra of an R-ideal I is the R-subalgebra of the

Laurent polynomial ring R[t, t−1] (where t is an indeterminate of the ring R) generated by

It and t−1. That is,

R[It, t−1] =
∞⊕

i=−∞
I iti = · · · ⊕Rt−2 ⊕Rt−1 ⊕R⊕ It⊕ I2t2 ⊕ I3t3 ⊕ · · · ⊂ R[t, t−1]

As an R-module, the extended Rees algebra is isomorphic to

R[It, t−1] ∼=
∞⊕

i=−∞
In,

where I i is again defined to be R for i ≤ 0. Like the Rees algebra, the extended Rees algebra

provides information not only about the ring R, but also about all powers of the ideal I.

The extended Rees algebra also has a natural (but neither standard nor nonnegative)

grading inherited from R[t, t−1] by giving t degree 1. Under this grading, the degree i

component is again [
R[It, t−1]

]
i

= I iti.

Theorem 2.2.3 ([ 31 , Theorem 5.1.4]). If R is a Noetherian ring,

dimR[It, t−1] = dimR + 1.

If in addition I has positive height,

dimR[It] = dimR + 1.

14



Definition 2.2.4. The associated graded ring of an R-ideal I, denoted grI (R), is the

quotient of the extended Rees algebra of I modulo the ideal generated by the nonzerodivisor

t−1:

grI (R) = R[It, t−1]/t−1R[It, t−1]

= R[It]/IR[It]

∼=
⊕
i≥0

(I i/I i+1),

where we again define I0 to be R.

Remark 2.2.5. The associated graded ring can be thought of as a graded ring by assigning to

it the grading inherited from the Rees algebra; that is, [grI (R)]i ∼= I i/I i+1 for i ≥ 0. If R is

Noetherian and I ⊂ Rad(R), the Jacobson radical of R, then the dimension of the associated

graded ring is equal to the dimension of R (see, for instance, [ 31 , Proposition 5.1.6]).

Definition 2.2.6. If (R,m) is a Noetherian local ring, the fiber cone (or special fiber

ring) of I, denoted FI(R), is the tensor product of the Rees algebra with the residue field

R/m:

FI(R) = R[It]⊗R (R/m) = R[It]
mR[It]

∼=
⊕
i≥0

I i

mI i
.

Remark 2.2.7. The fiber cone can also be written as a quotient of the associated graded ring

or extended Rees algebra if I 6= R:

FI(R) = grI (R)
m grI (R) = R[It, t−1]

(m, t−1)R[It, t−1] .

It can be thought of as a graded ring by assigning to it the grading inherited from the Rees

algebra; that is, [FI(R)]i ∼= I i/mI i for i ≥ 0.

The dimension of the fiber cone is an important invariant of an ideal, called the analytic

spread. It is related to integral closure and reductions of ideals, as discussed in Remark  2.3.12 .

Definition 2.2.8. The analytic spread of an ideal I, denoted `(I), is `(I) = dimFI(R).
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2.3 Integral Closure of Rings and Ideals

The integral closure of an ideal is closely related to the integral closure of the Rees

algebra. As a reminder, the integral closure of a ring is a generalization of the algebraic

closure of a field:

Definition 2.3.1. For rings R ⊂ S, the integral closure of R in S is the collection of

roots of monic polynomials with coefficients in R. That is,

R
S = {x ∈ S |xn + a1x

n−1 + a2x
n−2 + · · ·+ an−1x+ an = 0 for some n ∈ N and ai ∈ R}.

An element x ∈ S satisfying such an equation is called integral over R, and such an

equation is called an equation of integrality.

Recall that the integral closure of a ring R is an integrally closed subring of S; that is,

R
S
S

= R
S. Additionally, integral closure preserves inclusion: if R ⊂ T ⊂ S, then R

S ⊂ T
S.

If R ⊂ S is a homogeneous inclusion of graded rings, then R
S is also graded, and if S is

non-negatively graded then so is RS. (These facts can be generalized to other gradings on

rings, as seen in [ 31 , Theorem 2.3.2].) The integral closures of the Rees algebra and extended

Rees algebra are of particular interest, since the Rees algebras provide information about

powers of ideals.

Definition 2.3.2. Let I be an ideal of a ring R. The integral closure of I, denoted I ,

consists of roots of monic polynomials whose coefficients are in the appropriate power of I;

more specifically,

I = {x ∈ R |xn + a1x
n−1 + a2x

n−2 + · · ·+ an−1x+ an = 0 for some n ∈ N and ai ∈ I i}.

Such an equation is called an equation of integrality of x.
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Theorem 2.3.3 (Alternate Definition of I ). [ 31 , Proposition 5.2.1] Let I be an ideal of a

ring R. The integral closure of I can equivalently be defined as the degree-one component

of the integral closure of the (extended) Rees algebra of I:

I t =
[
R[It]R[t]

]
1

=
[
R[It, t−1]R[t,t−1]

]
1

Moreover,

R[It]R[t] = R⊕ I t1 ⊕ I2t2 ⊕ · · · =
⊕
i≥0

I iti

and

R[It, t−1]R[t, t−1] = · · · ⊕Rt−1 ⊕R⊕ I t1 ⊕ I2t2 ⊕ · · · =
⊕
i∈Z

I iti

If R is integrally closed in its total ring of quotients (RQuot(R) = R) then R[It]R[t] =

R[It]Quot(R[t]) and R[It, t−1]R[t,t−1] = R[It, t−1]Quot(R[t,t−1]) (see, for instance, [ 31 , Proposition

5.2.4]). From this point on, unless otherwise stated we will use the notation R[It] to refer

to the integral closure of R[It] in R[t], and the notation R[It, t−1] to refer to the integral

closure of R[It, t−1] in R[t, t−1].

Definition 2.3.4. An ideal is integrally closed if I = I.

An element x is said to be integral over I if x ∈ I . An ideal K is said to be integral

over I if every element of K is integral over I; that is, if K ⊂ I.

An ideal is normal if R[It] = R[It]; that is, if every power of I is integrally closed.

Remark 2.3.5 (Properties of I ). There are many important properties of integral closure that

follow quickly from either Theorem  2.3.3 or Definition  2.3.2 .

(a) I is an ideal.

(b) I is integrally closed.

(c) I ⊂ I .

(d) I ⊂
√
I. In particular, radical and prime ideals are integrally closed.

(e) If I ⊂ J are ideals, then I ⊂ J .
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(f) Persistence: If ϕ : R → S is a ring homomorphism and I is an R-ideal, then

ϕ(I ) ⊂ ϕ(I)S .

(g) Contraction: If ϕ : R → S is a ring homomorphism and I is an S-ideal, then

ϕ−1(I ) is integrally closed.

(h) If I ⊂ J and J ⊂ K are both integral extensions, then I ⊂ K is also an integral

extension.

Proof. (a) By Theorem  2.3.3 , we can see that I is an ideal since R is the degree 0

component of the ring R[It] and I t is the degree-one component of the same ring.

(b) By Definition  2.3.2 , we can see that I ⊂ I since every x ∈ I is the root of an

equation of integrality x− x = 0.

(c) By Theorem  2.3.3 , we can see that I = I since the corresponding property holds

for rings; that is, since R[It] is integrally closed in R[t].

(d) By Definition  2.3.2 , we can see that I ⊂
√
I since an equation of integrality shows

xn ∈ I.

(e) By Definition  2.3.2 , we can see that integral closure of an ideal preserves inclusion

since an equation of integrality over I is also an equation of integrality over a larger

ideal J . Alternatively, we can see this by Theorem  2.3.3 , since integral closure of

rings preserves inclusion.

(f) By Definition  2.3.2 , we can see that persistence of integral closure holds since the

image of an equation of integrality f(x) = 0 of x over I becomes an equation of

integrality of ϕ(x) over ϕ(I)S.

(g) Let x ∈ ϕ−1(I ). Then x has an equation of integrality f over ϕ−1(I ). So ϕ(f) is

an equation of integrality of ϕ(x) over I , hence ϕ(x) ∈ I = I and x ∈ ϕ−1(I ).

(h) This follows from the transitivity of integral closure of rings.

�
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Remark 2.3.6. Remark  2.3.5 shows that the integral closure of an ideal satisfies the properties

of a closure operation: idempotence  (b) , extension  (c) , and order-preservation  (e) . For more

on closure operations, see [  3 ].

For more properties of integral closure, the interested reader should refer to [ 31 ].

Remark 2.3.7. Integral closure of an ideal behaves well with respect to localization and

quotients by minimal primes. Thus, we can often reduce to the case where R is a local

domain to check that an element belongs to the integral closure.

(a) ([  31 , Remark 1.3.2]) Integral closure commutes with localization; in other words,

W−1(I ) = W−1I for any multiplicatively closed set W of R. Therefore, r ∈ I if

and only if rRp ∈ Ip for all p ∈ m-Spec(R).

(b) ([ 31 , Proposition 1.1.5]) r ∈ I if and only if r + p ∈ I(R/p) for every p ∈ Min (R).

(c) ([  31 , Proposition 1.1.5]) r ∈ I if and only if r(Rred) ⊂ IRred

When proving things about the integral closure of an ideal, it is frequently helpful to

consider instead a reduction of the ideal, a possibly smaller ideal with the same integral

closure.

Definition 2.3.8. An ideal J is a reduction of I if J ⊂ I and there is a non-negative

integer n such that In+1 = JIn. The smallest such n is called the reduction number of I

with respect to J, and is denoted rJ(I).

J is a minimal reduction of I if it is minimal with respect to inclusion, and I is basic

if I is its own minimal reduction. The (absolute) reduction number of I is denoted r(I)

and defined to be

r(I) = min{rJ(I) | J is a minimal reduction of I}.

Remark 2.3.9. Notice that in the above definition, JIn is always contained in In+1 since

J ⊂ I; if J is a reduction of I then the reverse containment also holds.

Reductions and integral closure are closely related.
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Proposition 2.3.10 ([ 31 , Corollary 1.2.5]). Let J ⊂ I be ideals, with I finitely generated.

The following are equivalent :

(a) J is a reduction of I

(b) I is integral over J

If R is Noetherian, these are also equivalent to

(c) R[It] is a finite R[Jt]-module

Remark 2.3.11. If J is a reduction of a finitely generated ideal I, then I = J because

J ⊂ I ⊂ J = J . Conversely, if I = J , then J is a reduction of I. Thus, minimal reductions

of I are the smallest ideals contained in I with the same integral closure.

Remark 2.3.12 ([ 31 , Theorem 8.3.5 and Proposition 8.3.7]). If R is a Noetherian local ring,

then minimal reductions of an ideal I always exist. If R has infinite residue field, then a

reduction is a minimal reduction if and only if it is generated by `(I) elements, and an ideal

generated by `(I) sufficiently general elements of I is a minimal reduction. For a definition

of general elements, see Definition  5.1.3 .

We now define two properties of ideals which are related to integral closure of ideals:

Definition 2.3.13. An ideal I is called unmixed if ht I = ht p for every associated prime

p ∈ Ass(R/I).

Definition 2.3.14. Let (R,m) be a Noetherian local ring of dimension d. A system of

parameters of R is a set of elements a1, . . . , ad such that (a1, . . . , ad) is an m-primary ideal.

An ideal I is called a parameter ideal if it is generated by a system of parameters.

Definition 2.3.15. An ideal I is called an equimultiple ideal if `(I) = ht I.

Remark 2.3.16. In a Noetherian local ring (R,m), for any proper ideal I we have that

ht I ≤ `(I) ≤ dimR (see, for instance, [ 31 , Corollary 8.3.9]). Thus an m-primary ideal in

such a ring is always equimultiple.
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2.4 Types of Rings

We frequently need to assume a ring is “nice enough” in order to prove properties related

to integral closure. For reference, we will define such assumptions on a ring in this section,

and discuss consequences of these properties.

Definition 2.4.1. An M-regular sequence of an R-module M is a sequence of elements

a1, . . . , an in R such that for 1 ≤ i ≤ n, ai is a nonzerodivisor on M/(a1, . . . , ai−1)M

and M/(a1, . . . , an)M 6= 0. We will use the term regular sequence to refer to an R-regular

sequence.

Definition 2.4.2. Let R be a Noetherian ring, let M be a finite R-module, and let I be an

R-ideal.

(a) If IM 6= M , we define the I−depth of M (or the grade of I on M), denoted

depthI(M) , to be the maximal length of an M-regular sequence contained in I.

(b) If I 6= R, the grade of I, denoted grade(I), is the maximal length of an R-regular

sequence contained in I – that is, grade(I) = grade(I, R).

(c) If R is a local ring with maximal ideal m and M 6= 0, we define the depth of M ,

denoted depth(M), to be the maximal length of an M-regular sequence – that is,

depth(M) = depthm(M).

Proposition 2.4.3 ([ 23 , Theorem 16.7]). Let R be a Noetherian ring, let I be an R-ideal,

and let M be a finite R-module with IM 6= M . We can equivalently define depth and grade

in terms of non-vanishing of Ext modules:

(a) depthI(M) = inf{i ∈ Z≥0 | ExtiR(R/I,M) 6= 0} and

(b) grade(M) = inf{i ∈ Z≥0 | ExtiR(M,R) 6= 0}

Definition 2.4.4. A ring R satisfies Serre’s condition Sn if

depth(Rp) ≥ min{dimRp, n}.
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Equivalently, a ring satisfies Sn if Rp is Cohen-Macaulay for every prime p of height at most

n, and has depth at least n otherwise.

A ring R satisfies Serre’s condition Rn if Rp is a regular local ring for all primes

p ∈ Spec(R) with dimRp ≤ n.

Definition 2.4.5. A ring R is reduced if either of the following equivalent conditions are

satisfied:

(a)
√

0 = 0

(b) R has no nonzero nilpotent elements

If R is Noetherian, these conditions are equivalent to:

(c) R satisfies Serre’s conditions R0 and S1

Definition 2.4.6. A domain R is normal if RQuot(R) = R, where Quot(R) denotes the total

ring of quotients of R.

A ring R (which is not necessarily a domain) is normal if Rm is a normal domain for

all m ∈ m-Spec((R)).

Remark 2.4.7. For a Noetherian ring R, the following conditions are equivalent:

(a) R is a normal ring.

(b) R satisfies Serre’s conditions R1 and S2.

(c) R is reduced and integrally closed in Quot(R).

The property of being analytically unramified is closely related to the integral closure of

the powers of an ideal.

Definition 2.4.8. A local ring (R,m) is analytically unramified if its completion R̂ is

reduced.

A ring is locally analytically unramified if the rings Rp are analytically unramified

for all p ∈ Spec(R).
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Remark 2.4.9. In [  29 ], Rees proved two conditions are equivalent to being analytically un-

ramified.

If (R,m) is an analytically unramified Noetherian local ring, and I is an R-ideal, then

R[It] is a finite R[It] module. This property of analytically unramified rings is beneficial

when considering how complex the integral closure of the Rees algebra may be. It follows

directly from Rees’ theorem in [ 29 ] that a Noetherian local ring is analytically unramified if

and only if for every ideal I there is an integer k such that In+k ⊂ In for all n ≥ 0.

The second equivalence proved by Rees is that a Noetherian local domain (R,m) is

analytically unramified if and only if for every finitely generated R-algebra S with R ⊂ S ⊂

Quot(R), SQuot(R) is finitely generated as a module over S.

For more information about analytically unramified rings, we refer the reader to Chapter 9

of Swanson and Huneke’s Integral Closure of Ideals, Rings, and Modules [  31 ].

Given an ideal I, it is always true that ht I+dimR/I ≤ dimR. It is frequently beneficial

to be able to have an equality instead: ht I + dimR/I = dimR. This is not always the case,

but is true given certain reasonable conditions on the ring.

Definition 2.4.10. A ring R is catenary if for any two primes p ⊂ q, every chain of prime

ideals p = p0 ( p1 ( · · · ( pn = q which cannot be extended to a larger chain of prime ideals

has the same length.

A ring R is universally catenary if it is Noetherian and every finitely generated R-

algebra is catenary.

Theorem 2.4.11 (Dimension Formula [ 31 , Theorem B.3.2]). A universally catenary Noethe-

rian ring R satisfies the dimension formula. That is, for any finitely generated extension S

of R which is a domain, and for any Q ∈ Spec(S) and P = Q ∩R,

dimSQ = dimRP + trdegR S − trdegκ(P ) κ(Q).

Remark 2.4.12. If R is a catenary local domain, then for every ideal I, ht I + dimR/I =

dimR.

Definition 2.4.13. A ring R is equidimensional if for all p ∈ Min(R), dimR/p = dimR.
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Remark 2.4.14. Notice that Definition  2.4.13 does not require that all maximal ideals m ∈

m-Spec(R) have the same height. We will abide by the convention that rings which satisfy

this property will be called equicodimensional, and that rings which are both equidimensional

and equicodimensional are called biequidimensional.

Definition 2.4.15. A Noetherian local ring ring R is formally equidimensional (sometimes

also called quasi-unmixed) if the completion R̂ is equidimensional.

A Noetherian ring R is locally formally equidimensional if Rp is formally equidi-

mensional for every prime p of R.

Remark 2.4.16. To determine whether a ring is locally formally equidimensional, it is enough

to check for maximal ideals by [  31 , Theorem B.5.2].

Rees proved that in a formally equidimensional ring, the integral closure of an ideal is

the unique largest ideal with the same multiplicity:

Theorem 2.4.17 (Rees [  28 , Theorem 3.2]). If (R,m) is a formally equidimensional (Noetherian

local) ring and if I is an m-primary ideal, then I is the unique largest ideal containing I

with e(I) = e(I), where e(I) denotes the multiplicity of I.

Theorem 2.4.18 (Ratliff [ 25 , Theorem 3.6]). A Noetherian domain is locally formally

equidimensional if and only if it is universally catenary.

Lemma 2.4.19. Any ideal I in a Noetherian local ring (R,m) which is both equidimensional

and catenary satisfies

dimR/I + ht I = dimR (2.1)

Proof. Notice that it is enough to prove that Equation ( 2.1 ) is true for every prime p ∈

Spec(R):

It is always true that dimR/I + ht I ≤ dimR. If we have equality for every prime

p, then for any ideal I we may choose a prime p ∈ V (I) with ht I = ht p. Notice that

dimR/I ≥ dimR/p, thus equality for p implies equality for I.

Now, assume p ∈ Spec(R). Since R is equidimensional, every minimal prime q has the

same dimension, dimR/q = dimR. Choose a minimal prime q ∈ Min(R) contained in p.
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Since R is also catenary, we can extend the chain of primes q ⊂ p ⊂ m to a saturated chain;

the length must be dimR/q, which is equal to dimR. �

In general, catenary rings are not equidimensional. If a catenary ring is also Noetherian

local and satisfies Serre’s condition S2, then the ring is equidimensional.

Lemma 2.4.20. Every Noetherian local ring which satisfies Serre’s condition S2 and is

catenary is equidimensional.

Before we prove Lemma  2.4.20 , we will state the algebraic version of Hartshorne’s Con-

nectedness Lemma, which we will use in the proof.

Lemma 2.4.21 (Hartshorne’s Connectedness Lemma). [ 10 , Proposition 2.1] Let R be a

Noetherian local ring, and let I and J be non-nilpotent ideals (that is, I 6⊂
√

0 and J 6⊂
√

0)

such that their product IJ is nilpotent. Then grade(I+J) ≤ 1. (Equivalently, Spec(R)\V (K)

is connected for an ideal K with grade at least 2.)

Proof of Lemma  2.4.20 . Let R be a Noetherian local ring which is both S2 and catenary.

Suppose toward contradiction that R is not equidimensional. We may write Min(R) =

{p1, . . . , ps, ps+1, . . . , pn}, and without loss of generality we may assume that the first s

primes, p1, . . . , ps are exactly the minimal primes for which dimR/pi = dimR. Let I =

p1 ∩ · · · ∩ ps and let J = ps+1 ∩ · · · ∩ pn.

Notice I and J are both non-nilpotent: Suppose J is nilpotent. Then J ⊂
√

0 = I ∩ J ,

hence ps+1 · · · · · pn ⊂ ps+1 ∩ · · · ∩ pn = J ⊂ p1, hence for some i 6= 1 some pi ⊂ p1. This

is a contradiction since pi 6= p1 and p1 is a minimal prime. Similarly, I is not nilpotent.

However, IJ ⊂ I ∩ J =
√

0 is nilpotent.

Thus by Hartshorne’s Connectedness Lemma, Lemma  2.4.21 , we know grade(I +J) ≤ 1.

Since R is S2, this implies ht (I + J) ≤ 1. Hence there is a prime q of height 1 containing

I + J . Notice that R/I is equidimensional of dimension d = dimR since its minimal primes

p1/I, . . . , ps/I correspond to the minimal primes of R of maximal dimension. The ring R/I

is also a catenary ring because it is a factor ring of a catenary ring. Therefore dimR/q =

dimR/I − ht q/I = d− 1 (where ht q/I = 1 because I is an intersection of minimal primes).

Now, since the height of q in R is 1 and J ⊂ q, for some j between s + 1 and n we must
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have that pj is properly contained in q. Recall that by definition pj does not have maximal

dimension. However, since pj ( q we must have that dimR/pj ≥ d, a contradiction.

�

In the remainder of this section, we lead up to the definition of excellent rings and

provide a few properties of excellent rings. In practice, almost all rings in number theory

and in algebraic geometry are excellent, including fields, complete Noetherian local rings,

and any finitely generated algebra over or localization of an excellent ring.

Before defining an excellent ring, we define two conditions an excellent ring must satisfy:

that of being a G-ring and a J-2 ring.

Definition 2.4.22. A ring R is called a G-ring if it is Noetherian and for every prime p

of R, and for every q ∈ Spec(Rp), R̂p ⊗Rp K is a regular ring for any finite field extension

K of the residue field k(q) = Rq/qRq.

Definition 2.4.23. A ring R is J-2 if for any finitely generated R-algebra S, the set of

primes at which Sp is regular is an open subset of Spec(S).

Definition 2.4.24. A ring R is excellent if it is a (Noetherian) G-ring that is J-2 and

universally catenary. (If a ring satisfies all these properties except being universally catenary,

it is called quasi-excellent.)

Remark 2.4.25. If R is semilocal, one does not need to require J-2 in the definition of excellent

(see [  22 , 259]).

Definition 2.4.26. A Noetherian ring R is a Nagata ring if for every p ∈ Spec(R), R/pL

is a finite R/p-module for any finite field extension L of Quot(R/p).

Remark 2.4.27. An excellent ring is a Nagata ring (see [  22 , Theorem 78]).

Remark 2.4.28. Let R be a reduced excellent ring. Then R
Quot(R) is finitely generated over

R as a module.

Proof. Let S = ×(R/pi), where the product ranges over all pi ∈ Min(R). Notice that

Quot(R) = Quot(S) and R ⊂ S is a finite extension, thus R = S , where the integral
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closures are taken in Quot(R) = Quot(S). Notice that S = ×R/pi , where the integral

closure of R/pi is taken in Quot(R/pi). Because R is Nagata, R/pi is a finite R/pi-module

for each pi, and hence R ⊂ S ⊂ S = R are all finite extensions. Thus R ⊂ R is a finite

extension. �

Example 2.4.29. A few examples of excellent rings are:

(a) fields

(b) Dedekind domains of characteristic zero

(c) complete local rings

(d) finitely generated algebras over excellent rings

(e) homomorphic images of excellent rings

(f) localizations of excellent rings

For more information on excellent rings, we direct the interested reader to Chapter 13 of

Matsumura’s Commutative Algebra [ 22 ].
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3. COMPLEXITY OF INTEGRAL CLOSURE

In this chapter, we discuss bounds on the number of generators and embedding dimension

of R[It]R[t], which we denote as R[It]. Before we do so, we discuss a few preliminaries which

are specific to this chapter.

3.1 Complexity Preliminaries

Definition 3.1.1. Let M be a finitely generated graded module over a positively graded *local

ring R with R0 local. We will denote the minimal number of generators of M as an R-module

by µR(M).

Remark 3.1.2. Notice Definition  3.1.1 encompasses the case where M is a module over a

local ring R by letting R = R0.

Definition 3.1.3. Let B be a reduced, finitely generated k-algebra over a field k. That is,

B is an affine k-algebra and can be presented non-uniquely as B ∼= k[x1, . . . , xn]/I, where I

is an k[x1, . . . , xn]-ideal. The embedding dimension of B, denoted embdim(B), is

embdim(B) = min{n | k[x1, . . . , xn]/I is a presentation of B}.

Definition 3.1.4. A ring extension A ⊂ B is called finite if B can be generated by finitely

many elements as an A-module, and is called birational if Quot(A) = Quot(B).

Remark 3.1.5. Let I be an R-ideal of positive grade, and consider the Rees algebra A = R[It]

and its integral closure B = R[It]. Notice A ⊂ B ⊂ R[t] and that every nonzerodivisor

remains a nonzerodivisor under these inclusions, hence

Quot(A) ⊂ Quot(B) ⊂ Quot(R[t]). (3.1)

Since I has positive grade, there exists x ∈ I such that x is a nonzerodivisor, and hence

t = x−1xt ∈ Quot(A). Thus Quot(A) = Quot(R[t]), hence the inequalities in Equation ( 3.1 )

are equalities, thus A ⊂ B is a birational extension.
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Also, recall that if R is an analytically unramified Noetherian local ring, then R[It] ⊂

R[It] is a module-finite extension by a theorem of Rees (see Remark  2.4.9 ).

Definition 3.1.6. A ring homomorphism ϕ : R→ S is said to be flat if S is a flat R-module

with the module structure given by ϕ - that is, if tensoring with S is left-exact. Equivalently,

we say that S is a flat R-algebra.

Similarly, ϕ is said to be faithfully flat if S is a faithfully flat R-module with the module

structure given by ϕ. That is, ϕ is faithfully flat if a sequence of R-linear maps L is exact if

and only if L⊗R S is exact. Equivalently, we say that S is a faithfully flat R-algebra.

In the case where R is a polynomial ring, we can often say more about the complexity

of the Rees algebra since R is particularly nice.

Let R = k[x1, . . . , xd] be a polynomial ring over a field k with homogeneous maximal

ideal m = (x1, . . . , xd). Often, polynomial rings are endowed with the grading obtained by

giving deg xi = 1. Under this grading, R is a standard graded ring over the field k (recall

the definition of a standard graded ring from Definition  2.1.3 ).

Let I be an R-ideal generated by homogeneous elements f1, . . . , fs with deg fi = n for all

1 ≤ i ≤ s. We say that I is generated in the same degree n (or generated in degree

n). In this case a natural grading on the Rees algebra R[It] is the bi-grading obtained

by giving each xi degree (1, 0) and giving t degree (−n, 1). Under this grading, R[It] is a

standard bigraded ring, but is not a standard graded k-algebra.

Since much is known about standard graded rings, it can be helpful to consider R[It] as

a standard graded ring over k. We may naturally consider R[It] to be a standard graded

k-algebra by considering instead the total degree given by the sum of the bigraded degrees.

Then R[It] = k[x1, . . . , xd, f1t, . . . , fst], where deg xi = 1 for 1 ≤ i ≤ d and deg fit =

deg fi + deg t = 1 for 1 ≤ i ≤ s. In this way, we may obtain additional information about

the complexity of the Rees algebra and its integral closure.

In Lemma  3.2.3 , we find the multiplicity of a Rees algebra graded in this way (recall the

definition of multiplicity from Definition  2.1.8 ). This result is similar to a result of Verma

in [  36 ], which he obtains through the notion of mixed multiplicities.

29



3.2 Number of Generators of the Integral Closure of the Rees Algebra

In the case where A is a reduced, equidimensional, finitely generated algebra over a field

k, and when B is a finite and birational ring extension of A, Ulrich and Vasconcelos in

[ 34 ] give bounds for the number of generators of B as an A-module, and for the embedding

dimension of B over k. These results rely on the depth of B being fairly large. (We discuss

the depth of the specific instance where B = R[It] in Section  4.2 .) In the case where B is

Cohen-Macaulay, one obtains the smallest upper bounds:

Theorem 3.2.1 (Ulrich-Vasconcelos [ 34 , Theorem 2.1]). Let A be a reduced and equidi-

mensional affine algebra of dimension d over a field k. For T = k[x1, . . . , xd] a Noether

normalization of A and K = Quot(T ), let rankT (A) be the dimension of the K-vector space

A ⊗T K. Let e = inf{rankT (A) |T is a Noether normalization of A}. If A ⊂ B is a finite

and birational ring extension, and B is Cohen-Macaulay, then

µA(B) ≤ e

and

embdim(B) ≤ e+ d− 1.

In the case where A is standard graded and B instead has large depth (depthA(B) ≥

dimA − 1), Ulrich and Vasconcelos were able to find larger bounds for the number of gen-

erators and embedding dimension of B:

Theorem 3.2.2 (Ulrich-Vasconcelos [ 34 , Theorem 3.2]). Let k be a field of characteristic

zero and let A be a reduced and equidimensional standard graded k–algebra of dimension

d and multiplicity e. If A ⊂ B is a finite and birational extension of graded rings with

depthA(B) ≥ d− 1, then

µA(B) ≤ (e− 1)2 + 1

and

embdim(B) ≤ (e− 1)2 + d+ 1.
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In the case where R is a polynomial ring, A = R[It], B = R[It], and I is a homogeneous

R-ideal generated in the same degree, we can consider A to be a standard-graded algebra

over a field and determine a bound for the multiplicity of A:

Lemma 3.2.3. Let R = k[x1, . . . , xd] be a polynomial ring over a field k with homogeneous

maximal ideal m = (x1, . . . , xd), and give R[mnt] a standard grading by setting deg xi = 1

and deg t = 1−n. Then the multiplicity of R[mnt] under this grading is e(R[mnt]) = nd − 1
n− 1 .

Proof. The Rees algebra of mn is R[mnt] = k[m,mnt]. Since mn is generated by elements

of exponent degree n, we can consider R[mnt] to be a standard graded algebra over k as

before, by giving each xi degree 1 and giving t degree 1 − n. Under this grading, the

degree s component of the Rees algebra is obtained from s-fold products of the variables and

generators of mnt. Moreover, since R[mnt] is generated over k by its degree 1 component,

the degree s component of the Rees algebra is the direct sum of the products of Rs−k ·(Rnt)k.

R[mnt]s = Rs ⊕Rs−1 · (Rnt)⊕ · · · ⊕Rs−k · (Rnt)k ⊕ · · · ⊕ (Rnt)s

= Rs ⊕Rs+n−1t⊕ · · · ⊕Rs+(n−1)kt
k ⊕ · · · ⊕Rnst

s

As a k-vector space, this is isomorphic to

[ms]s ⊕
[
ms+n−1

]
s+n−1

⊕ · · · ⊕
[
ms+(n−1)j

]
s+(n−1)j

⊕ · · · ⊕ [mns]ns

or equivalently
s⊕
j=0

[
ms+(n−1)j

]
s+(n−1)j

.

Thus, the Hilbert function H(s) of R[mnt] under this grading is given by the sum of the

number of generators of ms+(n−1)j for j = 0, . . . , s.

Notice that the number of monomials of degree n in d variables is equal to the number of

d-tuples of non-negative integers whose sum is n. This number is given by a combinatorial

argument often referred to as the stars and bars method (see, for example, [  4 ]). (As an

aside, to the best of our knowledge this method is not associated with the flag of the same
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name, but is rather named for the illustrative approach of assigning indistinguishable objects

(stars) and dividers (bars) into n + d − 1 blank spaces.) Using this method, we know that

the number of monomials of degree n in d variables is given by
(
n+d−1
d−1

)
. For simplicity, we

will use the notation H(s) to represent HR[mnt](s). Then for all s,

H(s) =
s∑
j=0

(
s+ (n− 1)j + d− 1

d− 1

)
.

Recall that because mn has positive height, dimR[mnt] = d+ 1. Thus, to determine the

multiplicity we wish to find the coefficient of sd, the top degree of s. In the next several

steps, we rewrite H(s) to better determine this coefficient.

H(s) =
s∑
j=0

(s+ (n− 1)j + d− 1)(s+ (n− 1)j + d− 2) · · · (s+ (n− 1)j + 2)(s+ (n− 1)j + 1)
(d− 1)!

=
s∑
j=0

(s+ (n− 1)j)d−1

(d− 1)! + lower degree terms in s.

Dropping the lower degree terms, it is enough for us to consider the leading coefficient of s

in the simpler expression

s∑
j=0

(s+ (n− 1)j)d−1

(d− 1)! =
s∑
j=0

1
(d− 1)!

d−1∑
i=0

(
d− 1
i

)
si((n− 1)j)d−i−1 by a binomial expansion

=
s∑
j=0

d−1∑
i=0

1
(d− i− 1)! i! s

i(n− 1)d−i−1jd−i−1

=
d−1∑
i=0

1
(d− i− 1)! i! s

i(n− 1)d−i−1
s∑
j=0

jd−i−1

since no other terms depend on j.

Now, the leading term of ∑s
j=0 j

d−i−1 is 1
d− i

· sd−i (see, for instance, [ 21 ]). Thus, to

determine the coefficient of the largest power of s, it is enough to consider the expression
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d−1∑
i=0

1
(d− i− 1)! i! s

i(n− 1)d−i−1
( 1
d− i

· sd−i
)

=
d−1∑
i=0

1
(d− i)! i! s

i+d−i(n− 1)d−i−1

=
d−1∑
i=0

(n− 1)d−i−1

(d− i)! i! sd.

So the coefficient of sd in H(s) is ∑d−1
i=0

(n− 1)d−i−1

(d− i)! i! , and the multiplicity of R[It] is thus

d! ·∑d−1
i=0

(n− 1)d−i−1

(d− i)! i! . It remains to show this is equal to nd − 1
n− 1 . This comes from slight

adjustments to rewrite the sum in the form of a binomial expansion. First, we adjust the

exponent of n− 1:

e(R[It]) =
d−1∑
i=0

d!
(d− i)! i! (n− 1)d−i−1

=
d−1∑
i=0

(
d

i

)
(n− 1)d−i−1

= 1
n− 1 ·

d−1∑
i=0

(
d

i

)
(n− 1)d−i.

Next, we adjust the bounds of the sum by adding and subtracting
(
d
d

)
(n− 1)0 = 1:

e(R[It]) = 1
n− 1 ·

(
−1 +

d∑
i=0

(
d

i

)
(n− 1)d−i

)
.

Finally, we write (n− 1)d−i as (n− 1)d−i · 1i and use the binomial expansion to obtain

e(R[It]) = 1
n− 1 ·

(
−1 + ((n− 1) + 1)d

)
= nd − 1

n− 1 .

Thus e(R[mnt]) = nd − 1
n− 1 (or equivalently, 1 + n+ n2 + · · ·+ nd−1). �
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Theorem 3.2.4. Let R = k[x1, . . . , xd] be a polynomial ring over a field k, and let I be a

non-zero proper homogeneous ideal generated in the same degree n, and consider again the

standard grading on R[It] given by setting deg xi = 1 and deg t = 1 − n. Then e(R[It]) ≤
nd − 1
n− 1 .

Proof. With this grading, R[It] is a graded subring of R[mnt], where R[mnt] is graded as

in Lemma  3.2.3 . Since both rings have the same dimension, but the graded components of

R[It] grow more slowly than the graded components of R[mnt], we see that the multiplicity

of R[It] is at most the multiplicity of R[mnt]. �

We can combine Theorem  3.2.4 with the two results of Ulrich and Vasconcelos to obtain

bounds on the number of generators of R[It] as an R[It]-module and on the embedding

dimension of R[It], for I a homogeneous ideal generated in the same degree.

Theorem 3.2.5. Let k be a field, let R = k[x1, . . . , xd] be a polynomial ring over k, and let

I be a non-zero, proper homogeneous ideal generated in the same degree n. Let A = R[It]

and let B = R[It]. If B is Cohen-Macaulay, then

µA(B) ≤ nd − 1
n− 1

and

embdim(B) ≤ nd − 1
n− 1 + d− 1.

Theorem 3.2.6. Let k be a field of characteristic zero, let R = k[x1, . . . , xd] be a polynomial

ring over k, and let I be a non-zero, proper homogeneous ideal generated in the same degree

n. Let A = R[It] and let B = R[It]. If depth(B) ≥ d then

µA(B) ≤
(
nd − 1
n− 1 − 1

)2

+ 1

and

embdim(B) ≤
(
nd − 1
n− 1 − 1

)2

+ d+ 1.
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Remark 3.2.7. Before we prove Theorem  3.2.5 and Theorem  3.2.6 , we note that the Rees

algebra of an ideal of positive height in an equidimensional ring is equidimensional:

Let p be any minimal prime of R[It]. By the discussion in [  31 , Section 5.1], we know that

p = pR[t]∩R[It] for some p ∈ Min(R). Then R[It]/p is the Rees algebra of (I+p)/p ⊂ R/p,

which has dimension equal to dimR/p + 1 by Theorem  2.2.3 . Since R is equidimensional,

the dimension of any minimal prime of R[It] is dimR + 1.

Proof of Theorem  3.2.5 and Theorem  3.2.6 . Notice in this case, A ⊂ R[t] is reduced (in fact,

it is a domain). Additionally, it is equidimensional by Remark  3.2.7 since it is the Rees

algebra of an equidimensional ring. As discussed previously, we may give t degree 1−n to give

A a standard grading. Since R is a domain, grade I > 0, and hence dimA = d+ 1. Finally,

by Remark  3.1.5 the extension A ⊂ B is finite and birational since R is an excellent reduced

ring, hence analytically unramified. We found an upper bound for the multiplicity of R[It]

as a standard graded algebra in Theorem  3.2.4 , which we can substitute into Theorem  3.2.2 

and Theorem  3.2.1 . �

We can extend the previous result about the number of generators of R[It] to homoge-

neous ideals that are not generated in the same degree by considering a related homogeneous

ideal, which we will call J , which is generated in the same degree in the polynomial ring

R[a].

Lemma 3.2.8. Let R = k[x1, . . . , xd] be a polynomial ring over a field k and let I be a homo-

geneous R-ideal with minimal homogeneous generators v1, . . . , vs. Let deg v1 = m1, . . . , deg vs =

ms with m1 ≤ m2 ≤ . . . ≤ ms. Let S = R[a], where a is an indeterminate over R, and let

J = (ams−m1v1, a
ms−m2v2, . . . , vs). Notice all generators of J have degree ms, so J is gener-

ated in the same degree. Then µR[It](R[It]) ≤ µS[Jt](S[Jt]).

Proof. Because localization preserves generating sets, we may localize S[Jt] at a to see that

µS[Jt]a(S[Jt]a) ≤ µS[Jt](S[Jt]).
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Thus, it is enough to show that

µR[It](R[It]) ≤ µS[Jt]a(S[Jt]a). (3.2)

Now,

S[Jt]a = R[a][(v1a
ms−m1 , v2a

ms−m2 , . . . , vs−1a
ms−ms−1 , vs)t]a

= R[a][(v1, . . . , vs)t]a since a is a unit

= (R[a])a[(v1, . . . , vs)(R[a])at]

So we can rewrite S[Jt]a as R[a]a[IR[a]at] or as R[It] ⊗R R[a]a, where R[a]a = R ⊗k k[a]a.

Similarly, since localization and adjoining variables both commute with integral closure,

S[Jt]a = (S[Jt])a = R[a]a[IR[a]at] = R[It]⊗RR[a]a, so the right hand side of Equation ( 3.2 )

can be rewritten as µR[IRt]⊗RR[a]a(R[It] ⊗R R[a]a). It remains to show that

µR[It](R[It]) ≤ µR[IRt]⊗RR[a]a(R[It] ⊗R R[a]a).

This is in fact an equality because R → R[a]a is a flat extension of *local rings which

maps the maximal homogeneous ideal to the maximal homogeneous ideal, thus −⊗R R[a]a
preserves minimal presentations of modules. �

Theorem 3.2.9 (Bound 1). Let R be a polynomial ring in d variables over a field k of

characteristic 0. Let I be a nonzero proper monomial ideal with N being the maximal degree

of some minimal monomial generating set. Then µR[It](R[It]) ≤
(
Nd+1 − 1
N − 1 − 1

)2

+ 1.

Proof. Combine Lemma  3.2.8 with Theorem  3.2.5 . Notice in this case, S[Jt] is normal

because R is normal, and is a toric ring (which we will not define) because it is generated

over k by monomials, thus by a theorem of Hochster in [ 11 , Theorem 1], S[Jt] is Cohen-

Macaulay. Observe that dimS = d+ 1. �

In the case where the ideal I is a monomial ideal, we obtain an alternate bound for the

minimal number of generators of R[It] by combining two results:
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Theorem 3.2.10 (Singla [ 30 , Theorem 5.1]). Let I ⊂ R = k[x1, . . . , xd] be a monomial

ideal, and let J be its minimal monomial reduction ideal. Let ` be the analytic spread of I,

as defined in Definition  2.2.8 . Then Im = JIm−1 for all m ≥ `.

Theorem  3.2.10 has immediate application for the integral closure of the Rees algebra:

Corollary 3.2.11. Let I ⊂ R = k[x1, . . . , xd] be a monomial ideal, and let ` be the analytic

spread of I. Then as a module R[It] is generated over R[It] by elements of t-degree at most

`− 1.

Proof. As in Theorem  3.2.10 , let R = k[x1, . . . , xd], and let I be a monomial ideal with

analytic spread `. Define the typical grading on the Rees algebra R[It] by setting deg t = 1;

that is, [R[It]]i = I iti. Since J ⊂ I, Theorem  3.2.10 means that for all n ≥ 0,

I`+n ⊂ II`+n−1 ⊂ I · II`+n−2 = I2I`+n−2 ⊂ · · · ⊂ In+1I`−1 .

Translating this to R[It] gives information about the generating degree of R[It] as a module

over R[It]:

[
R[It]

]
`+n
⊂ I`+nt`+n ⊂ In+1I`−1t`+n = [R[It]]n+1 ·

[
R[It]

]
`−1

.

Thus, as a module R[It] is generated by elements of t-degree at most `− 1. �

Moreover, for monomial ideals there is an upper bound for the degrees of generators of

I in terms of the generating degrees of I:

Theorem 3.2.12 ([ 31 , Proposition 1.4.9]). Let I ⊂ R = k[x1, . . . , xd] be a monomial ideal.

Let N be the upper bound on the degrees of minimal monomial generators of I. Then the

generators of the integral closure of I have degree at most N + d− 1.

Remark 3.2.13. In the setting of Theorem  3.2.12 , a bound for the degrees of generators of

Ik is kN + d− 1 since an upper bound on the degrees of minimal monomial generators of Ik

is kN .
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Proposition 3.2.14 (Bound 2). Let R = k[x1, . . . , xd] be a polynomial ring over a field k,

let I be a monomial R-ideal with minimal monomial generators v1, . . . , vs, and let ` be the

analytic spread of I. Without loss of generality, we may assume that deg v1 ≤ deg v2 ≤ · · · ≤

deg vs. Let m = deg v1 and let N = deg vs. Then

µR[It](R[It]) ≤ (`− 1)
[(

(`− 1)N + 2d− 1
d

)
−
(
m+ d− 1

d

)]
+ 1.

Proof. By Theorem  3.2.10 , we know that R[It] is generated as a module over R[It] in t-

degree at most `− 1. Thus the number of generators of R[It] as a module over R[It] can be

bounded by the number of monomials needed to generate R[It] in t-degrees 0 through `− 1.

A rough bound on this number is the sum of the number of monomials needed to generate

Ik for 1 ≤ k ≤ `− 1, plus 1 to generate the degree one component. That is,

µR[It](R[It]) ≤
[
`−1∑
k=1

µ(Ik)
]

+ 1.

Notice that the generators of the integral closure of I have degree at least m by a degree

argument:

If x ∈ I is homogeneous, then x satisfies an equation of integrality

xn + a1x
n−1 + · · ·+ an = 0

where ai ∈ I i are homogeneous. Since deg ai ≥ mi, it follows that deg x ≥ m.

More generally, the generators of the integral closure of Ik have degree at least km by

the same degree argument.

Thus the degrees of generators of Ik are between km and kN + d − 1, where the upper

bound is given by Remark  3.2.13 . Since we know the number of monomials whose degrees

are between km and kN + d− 1, this gives a bound on µ(Ik). Thus
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µR[It](R[It]) ≤
[
`−1∑
k=0

(number of monomials which generate Ik/Ik)
]

+ 1

≤
[
`−1∑
k=1

(number of monomials of degree km through kN + d− 1)
]

+ 1

=
[
`−1∑
k=1

(number of monomials of degree at most kN + d− 1)

−(number of monomials of degree at most km− 1)] + 1

Recall that the number of monomials of degree exactly n in d variables is
(
n+d−1
d−1

)
(see

the proof of Lemma  3.2.3 ). Notice that the number of monomials of degree at most n in

k[x1, . . . , xd] is equal to the number of monomials of degree exactly n in k[x1, . . . , xd+1], with

the correspondence coming from mapping xd+1 to 1. Thus the number of monomials of

degree at most n in d variables is
(
n+d
d

)
. So we can rewrite the above bound as

µR[It](R[It]) ≤
[
`−1∑
k=1

(
(kN + d− 1) + d

d

)
−
(

(km− 1) + d

d

)]
+ 1

=
[
`−1∑
k=1

(
kN + 2d− 1

d

)
−
(
km+ d− 1

d

)]
+ 1

To obtain a closed form for the bound, we note that for all k, 1 ≤ k ≤ ` − 1. Thus for

all k in question,

(
kN + 2d− 1

d

)
−
(
km+ d− 1

d

)
≤
(

(`− 1)N + 2d− 1
d

)
−
(
m+ d− 1

d

)

and hence

µR[It](R[It]) ≤ (`− 1)
[(

(`− 1)N + 2d− 1
d

)
−
(
m+ d− 1

d

)]
+ 1

�
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If I is a monomial ideal generated in the same degree n, we can say more. Notice that

in this case, I is also generated by monomials of degree n. We can see this geometrically by

considering the Newton polyhedron (see [ 31 , Section 1.4] for more information). Moreover,

the minimal generators of I are minimal generators of I because I ⊂ I are both generated

in the same degree, and µ(Ik) ≥ µ(I) because Ik is generated in degree nk, thus the kth

power of every minimal generator of I is a minimal generator of Ik. Using these facts, we

can modify the bound in Proposition  3.2.14 :

Proposition 3.2.15 (Bound 2′). Let R = k[x1, . . . , xd] be a polynomial ring over a field k,

let I be a monomial R-ideal with minimal monomial generators v1, . . . , vs, all of degree n,

and let ` be the analytic spread of I. Then

µR[It](R[It]) ≤ (`− 1)
[(

(`− 1)n+ d− 1
d− 1

)
− µ(I)

]
+ 1.

Proof. By Theorem  3.2.10 , we know that R[It] is generated as a module over R[It] in t-

degree at most `− 1. Thus the number of generators of R[It] as a module over R[It] can be

bounded by the number of monomials needed to generate R[It] in t-degrees 0 through `− 1.

A rough bound on this number is the sum of the number of monomials needed to generate

Ik/Ik for 1 ≤ k ≤ ` − 1, plus 1 to generate the degree zero component. Because I is a

monomial ideal generated in the same degree, µ(Ik/Ik) ≤ µ(Ik) − µ(Ik). Since generators

of the Ik have degree nk, we can write

µR[It](R[It]) ≤
[
`−1∑
k=0

(number of monomials which generate Ik/Ik)
]

+ 1

≤
[
`−1∑
k=1

µ(Ik)− µ(Ik)
]

+ 1

≤
[
`−1∑
k=1

(number of monomials of degree kn) − µ(Ik)
]

+ 1

As in the proof of Lemma  3.2.3 , the number of monomials of degree exactly n in d

variables is
(
n+d−1
d−1

)
. So we can rewrite the above bound as
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µR[It](R[It]) ≤
[
m−1∑
k=1

(
kn+ d− 1
d− 1

)
− µ(Ik)

]
+ 1

To obtain a closed form for the bound, we note that for all k, 1 ≤ k ≤ ` − 1 and

µ(Ik) ≥ µ(I). Thus for all k in question,

(
(kn+ d− 1

d− 1

)
− µ(Ik) ≤

(
(`− 1)n+ d− 1

d− 1

)
− µ(I)

and hence

µR[It](R[It]) ≤ (`− 1)
[(

(`− 1)n+ d− 1
d− 1

)
− µ(I)

]
+ 1

�

Example 3.2.16. In the case where I is generated in the same degree n, Theorem  3.2.9 

gives that µR[It](R[It]) ≤
(
nd−1
n−1 − 1

)2
+ 1 while Proposition  3.2.15 gives the inequality

µR[It](R[It]) ≤ (` − 1)
[(

(`−1)n+d−1
d−1

)
− µ(I)

]
+ 1. For ideals generated in small degree in

a polynomial ring R of large dimension, Theorem  3.2.9 may give a better bound. For ex-

ample, if n = 2, d = 7, and ` = 7, then Theorem  3.2.9 gives a bound of 15,877 while

Proposition  3.2.15 gives a bound on the order of 100,000 (with the exact value depending

on µ(I)).

On the other hand, if the generating degree is large and the number of variables is small,

then the bound given by Proposition  3.2.15 is likely better. For example, if n = 6, d = 3,

and ` = 3, then Theorem  3.2.9 gives a bound of 1,765 while Proposition  3.2.15 gives a bound

of at most 183 (with the exact value again depending on µ(I)).

It is also important to note that for many examples, these bounds are not particularly

close to the actual number of generators of R[It] as an R[It] module. For example, if I is a

normal ideal then the actual number of generators of R[It] as a module over R[It] is 1 because

the two rings are equal. As an explicit example, I = (xyz4, y3z3, y4z2, y5z) ⊂ Q[x, y, z] is a

normal ideal generated in degree 6 in a ring of dimension 3 whose analytic spread is 3, thus
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the bounds given above are not close to the actual number of generators. This leads to the

question of whether there is a better bound for certain classes of ideals, perhaps by decreasing

the estimate for the number of generators of Ik/Ik in the proof of Proposition  3.2.14 .
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4. DEPTH OF THE INTEGRAL CLOSURE OF THE REES

ALGEBRA

4.1 Depth Preliminaries

Recall that the bounds on complexity given by Ulrich and Vasconcelos in [  34 ] required

R[It] to have large depth. With this as our motivation, in this section we discuss some

previous results and provide our own result on the depth of R[It].

Before discussing the depth of the integral closure of the Rees algebra, we recall several

results about depth and discuss a few results about the depth of the Rees algebra itself.

We will frequently make use of the Depth Lemma to calculate the depth of modules. This

lemma can be proved using the long exact sequence of Ext modules induced by an exact

sequence, and the definition of depth in terms of non-vanishing of Ext modules.

Lemma 4.1.1 (Depth Lemma [  2 , Proposition 1.2.9]). Let R be a Noetherian ring, let I be

an R-ideal, and let M , M ′, and M ′′ be finite R-modules such that the sequence

0 M M M 0

is exact. Then

(a) depthI(M) ≥ min{depthI(M ′), depthI(M ′′)}

(b) depthI(M ′) ≥ min{depthI(M), depthI(M ′′) + 1}

(c) depthI(M ′′) ≥ min{depthI(M), depthI(M ′)− 1}

Definition 4.1.2. We will denote the set of primes p ∈ Spec(R) containing an ideal I as

V(I ).

The depth of the Rees algebra R[It] is closely related to the depth of the associated

graded ring grI (R), as well as to the reduction number of I. Recall that if R is Noetherian

and I ⊂ Rad(R) then dim grI (R) = dimR. There are many results about when R[It] is

Cohen-Macaulay. We briefly mention a few of these results, leaving out many others (for

instance, results in [ 8 ], [  33 ], [  32 ], [  7 ]).
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Recall that by r(I) we mean the reduction number of an ideal I, as defined in Def-

inition  2.3.8 . Goto and Shimoda prove that Cohen-Macaulayness of the Rees algebra is

related to Cohen-Macaulayness of the associated graded ring for an m-primary ideal I in a

Cohen-Macaulay local ring.

Theorem 4.1.3 (Goto-Shimoda [ 9 , Remark 3.10]). Let (R,m) be a Cohen-Macaulay local

ring of positive dimension with infinite residue field R/m, and let I be an m-primary ideal.

Then R[It] is Cohen-Macaulay if and only if the two following conditions are satisfied:

(a) grI (R) is Cohen-Macaulay

(b) r(I) ≤ dimR− 1.

Notice that when these conditions are satisfied, we get that

depth(R[It]) = depth(grI (R)) + 1. (4.1)

In the case where grI (R) is not Cohen-Macaulay, that is, when depth(grI (R)) � dim grI (R),

Huckaba and Marley showed that for an m-primary ideal I in a local Cohen-Macaulay ring

(R,m) with positive dimension, Equation (  4.1 ) still holds:

Theorem 4.1.4 (Huckaba-Marley [ 13 , Theorem 2.1]). Let (R,m) be a Cohen-Macaulay local

ring and let I be an m-primary ideal. If grI (R) is not Cohen-Macaulay, then

depth(R[It]) = depth(grI (R)) + 1.

Soon after, Huckaba and Marley were able to remove the assumption that I is m-primary:

Theorem 4.1.5 (Huckaba-Marley [ 14 , Corollary 3.12]). Let (R,m) be a Cohen-Macaulay

local ring and let I be an R-ideal. If grI (R) is not Cohen-Macaulay, then

depth(R[It]) = depth(grI (R)) + 1.

In the same paper, Huckaba and Marley show Equation (  4.1 ) holds when R is not Cohen-

Macaulay (with no assumption on the ideal) if depth(grI (R)) � depth(R):
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Theorem 4.1.6 (Huckaba-Marley [ 14 , Theorem 3.10]). Let (R,m) be a Noetherian local

ring and let I be an R-ideal. If depth(grI (R)) < depth(R), then

depth(R[It]) = depth(grI (R)) + 1.

Later, Johnston and Katz generalized the result of Goto and Shimoda:

Theorem 4.1.7 (Johnston-Katz [ 18 , Theorem 2.3]). Let R be a Cohen-Macaulay local ring

with infinite residue field and let I ⊂ R be an ideal of positive height. Then R[It] is Cohen-

Macaulay if and only if grI (R) is Cohen-Macaulay and r(Ip) ≤ `(Ip) for all prime ideals

p ∈ V (I) such that `(Ip) = dimRp.

We finish this section with a few lemmas.

Definition 4.1.8. An ideal I is called a complete intersection if I can be generated by

a (possibly empty) regular sequence.

Remark 4.1.9. In general, grade(I) ≤ ht I ≤ µ(I) (see [ 23 , 132]). Notice that I is a complete

intersection if and only if grade(I) = ht I = µ(I).

Lemma 4.1.10. Let R be a Noetherian ring satisfying Serre’s condition Sk. Then ht I =

grade(I) for every ideal I of height at most k.

Proof. Since the grade of I can be computed locally (see [ 2 , Proposition 1.2.10]), we can

write

grade(I) = min{depth(Rp) | p ⊃ I}

= min{{depth(Rp) | p ⊃ I, dimRp ≤ k} ∪ {depth(Rp) | p ⊃ I, dimRp > k}}

= min{{dimRp | p ⊃ I, dimRp ≤ k} ∪ {k}}

(by Sk, Rp is Cohen-Macaulay if dimRp ≤ k, and otherwise depth(Rp) ≥ k)

= ht I

�
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Remark 4.1.11. Let R be a Noetherian local ring with infinite residue field which satisfies

Serre’s condition Sk, and let I be an equimultiple ideal of height at most k. Then any

minimal reduction of I is a complete intersection.

Proof. Let J be a minimal reduction of I. We show grade(J) = µ(J), and hence J is a

complete intersection.

Now,

µ(J) = `(I) since k is infinite, see Remark  2.3.12 

= ht I since I is equimultiple

= ht J since J ⊂ I and JIn = In+1 for some n implies
√
I =
√
J

= grade(J) since R satisfies Serre’s condition Sk (see Lemma  4.1.10 )

�

We now define filtrations and discuss generalizations of several previously mentioned

results on the Cohen-Macaulayness and depth of the Rees algebra to Rees algebras of filtra-

tions.

Definition 4.1.12. Let R be a ring and let I be a proper R-ideal. A non-increasing sequence

of ideals F = {Ii | i ∈ N0} with IiIj ⊂ Ii+j is called a multiplicative filtration. If

IIi ⊂ Ii+1, then the filtration is called an I-filtration. In the remainder of this chapter,

unless otherwise noted, we will use F to denote a multiplicative I-filtration {Ii}.

Definition 4.1.13. The Rees algebra of F , which we will denote as R(F), is the graded

R[It]-algebra

R(F) =
∞⊕
i=0

Iit
i.

It is typically graded by [R(F)]i = Iit
i.

Definition 4.1.14. The associated graded ring of F , which we will denote as G(F), is

the graded R[It]-algebra

G(F) =
∞⊕
i=0

Ii/Ii+1.
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It is typically graded by [G(F)]i = Ii/Ii+1.

Definition 4.1.15. An ideal J ⊂ I is a reduction of F if In+1 = JIn for all n >> 0. The

reduction number of F with respect to J , denoted rJ(F), is the smallest non-negative

integer r such that In+1 = JIn for all n ≥ r.

We are interested in the integral closure filtration F = {In} of an R-ideal I. Notice that

this is, in fact, a multiplicative I-filtration since I iIj ⊂ I i+j and II i ⊂ II i ⊂ I i+1 for all i

and j. When F is the integral closure filtration, R(F) = ⊕∞i=0I
iti, which is simply R[It], the

integral closure of the Rees algebra of I in R[t]. Also notice that for any reduction J of I we

have that R[Jt] ⊂ R[It] ⊂ R(F) = R[It] are all integral extensions. Hence R[Jt] ⊂ R(F)

is an integral extension of graded rings.

Many of the results above relating the depth of the Rees algebra to the depth of the

associated graded ring can be generalized to the Rees algebra and associated graded ring of

filtrations. In particular, Nishida provides a bound for the depth of the associated graded

ring of a filtration. This result generalizes a previous result of Ghezzi in [ 6 , Theorem 3.2.10]

for the filtration {In}, which itself was a generalization of several of the previously discussed

results. In the case where F is the integral closure filtration, Nishida’s result gives the

following:

Theorem 4.1.16 (Nishida [ 24 , Theorem 1.1]). Let R be a Cohen-Macaulay local ring. Let

F = {In} be the integral closure filtration of an ideal I. Let ` = `(I) be the analytic spread

of I, and assume there exist elements a1, . . . , a` in I such that J = (a1, . . . , a`) is a reduction

of F with reduction number r = rJ(F). For 1 ≤ i ≤ `, let Ji = (a1, . . . , ai). Assume the

following conditions are satisfied:

(a) For all p ∈ V (I) with ht p = i < `, (Ji)p is a reduction of Fp with rJi
(Fp) ≤

max{0, r − `+ i}

(b) For 0 ≤ i < `− r, depth(R/(Ji : I))p ≥ ht p− i for all p ∈ Spec(R)

(c) For 0 < i < `− r, ai 6∈ q for any q ∈ Ass (R/Ji−1) \ V (I)
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(d) If 0 ≤ i < ` and n ≤ i − ` + r, then depth(R/In )p
(≥) min{ht p − i, ` − i} for all

p ∈ V (I).

Then the depth of G(F ) is at least

min{{d} ∪ {depth(R/In) + i | 0 ≤ i ≤ ` and n ≤ r − `+ i}}.

In our main result of this chapter, Theorem  4.2.1 , we give alternate conditions for which

we can find a lower bound on the depth of the integral closure of the Rees algebra and the

associated graded ring of the integral closure filtration.

4.2 Depth of the Integral Closure of the Rees Algebra

For the remainder of this chapter, we discuss our own results regarding the depth of the

integral closure of the Rees algebra, culminating in a particularly nice characterization of

when R[It] is Cohen-Macaulay for height 2 ideals.

The following lemma gives a formula for the depth of the integral closure of the Rees

algebra. A major assumption is that the reduction number of the integral closure filtration

is at most one. When this is the case, then by definition for any n ≥ 1

In = JIn−1 = J2In−2 = · · · = Jn−1I

and thus R(F) = R[I t] and we can use known results about the Rees algebra of an ideal. In

Theorem  4.2.2 we discuss conditions that imply that the reduction number rJ(F) is at most

1.

Theorem 4.2.1. Let (R,m) be a Cohen-Macaulay local ring of dimension d, and let I be

an equimultiple ideal of height g with depth(R/I) = k. Let F = {In} be the integral closure

filtration of I and suppose rJ(F) ≤ 1 for some minimal reduction J of I. Additionally,

assume either that J is a complete intersection or that R/m is infinite. Then

depth(G(F)) ≥ k + g
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and

depth(R(F)) ≥ min{d, k + g + 1}.

In particular, if R/I is Cohen-Macaulay then G(F) is Cohen-Macaulay.

Moreover, if g ≥ 2 then we obtain the equalities

depth(G(F)) = k + g

and

depth(R(F)) = k + g + 1,

thus R(F) is Cohen-Macaulay if and only if R/I is Cohen-Macaulay.

Proof. Let J be a minimal reduction of I such that rJ(F) ≤ 1. By assumption, J is a

complete intersection or R/m is infinite. In either case, J is a complete intersection. Notice

this implies that F = {In} (since In ⊂ In ⊂ Jn−1I ⊂ I
n implies equality throughout). Thus

R(F) = R[It] and G(F) = G(I).

If ht I = 0, then In =
√

0 for all n ≥ 1 and
√

0 = I2 ⊂ 0·I = 0. ThusR(F) = G(F) = R.

So we may assume ht I > 0.

Notice since J is generated by a regular sequence, hence by a quasi-regular sequence,

G(J) ∼= (R/J)[T1, . . . Tg]. Moreover, since Jk⊗R (R/I) ∼= (Jk/Jk+1)⊗R (R/I), the cokernel

of the natural inclusion map IR[Jt] ↪→ R[Jt] is R[Jt]⊗R (R/I) ∼= G(J)⊗R (R/I).

We apply the Depth Lemma to the short exact sequence

0 IR[Jt] R[Jt] (R/I)[T1, . . . , Tg] 0

Because J is generated by a regular sequence, R/J is Cohen-Macaulay and hence so is

G(J) ∼= (R/J)[T1, . . . Tg]. Hence by the work of Johnston and Katz (see Theorem  4.1.7 ),

R[Jt] is Cohen-Macaulay. Thus depth(R[Jt]) = dimR[Jt] = d + 1 since grade(J) > 0.

We also have that depth((R/I)[T1, . . . , Tg]) = k + g. Notice k + g = depth(R/I) + ht I ≤

dimR/I + ht I ≤ d. Thus by applying the Depth Lemma, we see depth(IR[Jt]) = k+ g+ 1.
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Next we apply the Depth Lemma to the short exact sequence

0 ItR[It] R[It] R 0 (4.2)

By the above, we have depth(ItR[It]) = k + g + 1. Since R is Cohen-Macaulay,

depth(R) = d. Thus by the Depth Lemma depth(R[It]) ≥ min{d, k + g + 1}. This proves

the second statement of the proposition.

Next, to find the depth of G(F) we apply the Depth Lemma to the short exact sequence

0 IR[It] R[It] G(I) 0

and obtain depth(G(I)) ≥ min{d, k + g} = k + g.

Moreover, if g ≥ 2, then by Johnston and Katz’s theorem (see Theorem  4.1.7 ) we have

that G(I) is Cohen-Macaulay if and only if R[It] is Cohen-Macaulay. If k+ g = d then G(I)

and R[It] are Cohen-Macaulay, necessarily of depths k + g and k + g + 1, by the above.

If k + g < d then by the above depth(R[I t]) = min{d, k + g + 1} < d + 1. So R[I t] is

not Cohen-Macaulay. Hence by Johnston and Katz’s theorem (see Theorem  4.1.7 ) G(I) is

not Cohen-Macaulay, and thus by the theorem of Huckaba and Marley (see Theorem  4.1.6 ),

depth(G(I)) = depth(R[It])− 1 = k + g. �

The previous result relies on the reduction number of F being small. In the following

theorem, we discuss conditions that ensure this.

Theorem 4.2.2. Let (R,m, k) be a Noetherian local ring that is universally catenary and

satisfies Serre’s conditions S3 and R2, and let I be an equimultiple ideal of height 2. Then the

integral closure filtration F of I has reduction number at most 1 over any minimal reduction

of I.

Proof. Let J be a minimal reduction of I, and let R(X) = R[X]mR[X]. Then JR(X) is a

reduction of IR(X). If K is a minimal reduction of JR(X) and hence of IR(X) and we

prove that the reduction number of the integral closure filtration {InR(X)} with respect

to K is at most 1, then the reduction number with respect to JR(X) is at most 1. Thus

50



JR(X)InR(X) = JR(X)InR(X) = In+1R(X) = In+1R(X) for all n and so rJ(F) ≤ 1.

Letting R = R(X) and J = K, we may assume the residue field R/m is infinite.

Then since R satisfies S2 and has an infinite residue field, J is generated by a regular

sequence of length two by Remark  4.1.11 . We will prove that JnI = In+1 for all n ≥ 1,

which we will use to show that rJ(F) ≤ 1. Since it is always true that

JnI ⊂ In I ⊂ In+1

for all n, to check that JnI = In+1 it suffices to check equality locally at associated primes

of JnI.

We claim that the ideal IJn is unmixed of height 2. From the short exact sequence

0 Jn/JnI R/JnI R/Jn 0

it follows that

Ass(R/JnI) ⊂ Ass(R/Jn) ∪ Ass(Jn/JnI).

We show that Ass(R/Jn) and Ass(Jn/IJn) consist only of height 2 prime ideals.

From the short exact sequence

0 Jn−1/Jn R/Jn R/Jn−1 0

we obtain

Ass(R/Jn) ⊂ Ass(R/Jn−1) ∪ Ass(Jn−1/Jn).

Proceeding inductively, we see that

Ass(R/Jn) ⊂
n⋃
k=1

Ass(Jk−1/Jk).

Since Jk−1/Jk = [G(J)]k−1 and G(J) is a polynomial ring over R/J (because J is gen-

erated by a regular sequence), we see that Jk−1/Jk is a free (R/J)-module. Therefore,
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Ass(Jk−1/Jk) ⊂ Ass(R/J) for 1 ≤ k ≤ n. Hence Ass(R/Jn) ⊂ Ass(R/J). Since J is a

complete intersection of height 2 and R satisfies Serre’s condition S3, Ass(R/J) consists of

prime ideals of height 2. Therefore, Ass(R/Jn) consists only of primes of height 2; that is,

Jn is unmixed of height 2.

Next, notice that

Jn/JnI ∼= Jn ⊗R R/I

∼= (Jn ⊗R R/J)⊗R/J R/I

∼= Jn/Jn+1 ⊗R/J R/I

By the above argument, Jn/Jn+1 is a free R/J-module, hence

Jn/Jn+1 ⊗R/J R/I ∼= (⊕R/J)⊗R/J R/I

∼= ⊕R/I.

Since Jn/JnI is a free R/I-module, Ass(Jn/IJn) ⊂ Ass(R/I). Since J is a reduction of I,

I = J .

Notice that since R is universally catenary and satisfies S2, R is equidimensional by

Lemma  2.4.20 . Thus R is formally equidimensional by a theorem of Ratliff in [ 26 ]. Then

applying another theorem of Ratliff ([ 27 , Theorem 2.12]) to the parameter ideal J (recall the

definition of a parameter ideal from Definition  2.3.14 ), we see that every associated prime of

J = I has height 2. Therefore, JnI is unmixed of height 2. This proves the claim.

Now, let p be an associated prime of JnI. Then localizing at p, a prime of height 2, we

may assume that R is a regular local ring of dimension 2 because R satisfies Serre’s condition

R2. Then

Jn+1 ⊂ Jn
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by work of Lipman and Sathaye ([ 19 , Theorem 1]). By work of Itoh ([ 16 , Theorem 1]),

Jn ∩ Jn+1 = JnJ for all n ≥ 1.

Since J is a reduction of I, it follows that Jn is a reduction of In for any n, and hence

In = Jn for any n. Therefore we may rewrite the two results above as

In+1 ⊂ Jn

and

Jn ∩ In+1 = JnI.

Combining these two results,

In+1 ⊂ JnI.

This confirms that In+1 = JnI for all n ≥ 1. Then for n ≥ 1,

In+1 = JnI = J(Jn−1I ⊂ JIn.

Hence rJ(F) ≤ 1.

�

We conclude this chapter with an application of Theorem  4.2.1 and Theorem  4.2.2 , which

provides a nice characterization of when the integral closure of the Rees algebra is Cohen-

Macaulay.

Theorem 4.2.3. Let (R,m) be a Cohen-Macaulay local ring that satisfies Serre’s condition

R2, and let I be an equimultiple ideal of height 2 with depth(R/I) = k. Then depth(R[It]) =

k + 3. In particular, R/I is Cohen-Macaulay if and only if R[It] is Cohen-Macaulay.

Proof. If R/m is not infinite, we may again reduce to the case where it is infinite as in the

proof of Theorem  4.2.2 , by considering R(X). Let F = {In} be the integral closure filtration

of I, and let J be a minimal reduction of I. Then by Theorem  4.2.2 , rJ(F) ≤ 1. Hence by

Theorem  4.2.1 , depth(R[It]) = depth(R(F)) = k + 3.
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Since R is local, equidimensional and catenary, dim(R/I) = dimR− 2 by Lemma  2.4.19 .

Therefore, R[It] is Cohen-Macaulay if and only if k = dimR − 2, which is true if and only

if R/I is Cohen-Macaulay. �

Remark 4.2.4. In Theorem  4.2.3 , unlike in Theorem  4.2.1 , we do not need to assume that

either J is a complete intersection or k is infinite since we do not need to assume that JR(X)

is a minimal reduction of FR(X).
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5. SPECIALIZATION OF INTEGRAL CLOSURE

5.1 Specialization Preliminaries

In this chapter we prove that for ideals of height at least two in a large class of rings, the

integral closure of the ideal is compatible with specialization modulo general elements of the

ideal.

By specialization, we mean taking the quotient of a ring R by an element of R. Saying

that integral closure is compatible with specialization for a certain class of elements means

that for those elements,

I (R/(a)) = I (R/(a)).

If a is in I, this is equivalent to saying that I/(a) = I/(a). Notice that by Remark  2.3.5 (in

particular, by persistence, Item  (f) ), it is always true that I (R/(a)) ⊂ I (R/(a)). It is not

always the case that the reverse containment holds, even for m-primary monomial ideals in

a polynomial ring, as seen in the following example.

Example 5.1.1. Let R = k[x, y] be a polynomial ring in two variables over a field k, and let

I be the integrally closed ideal I = (x2, xy, y2). After specialization by the element x2, we

see that x is integral over I/(x2) since it satisfies the equation of integral dependence x2 = 0

in R/(x2). Since x 6∈ I/(x2), we see that I/(x2) is not integrally closed, even though I was

integrally closed, so I/(x2) ( I/(x2).

Our results, and other results from the literature, show that in the case where a is “suf-

ficiently random” (which we define more precisely in Definition  5.1.2 and Definition  5.1.3 ),

then for a large class of ideals in a large class of rings, it is true that integral closure is

compatible with specialization.

Definition 5.1.2. Let R be a ring, let I = (a1, . . . , an) be an ideal generated by n elements,

and let S = R[X1, . . . , Xn] be a polynomial ring over R in n variables. If (R,m) is a

local ring, we may alternatively let S = R[X1, . . . , Xn]mR[X1,...,Xn] be the localization of a

polynomial ring. An element a = ∑n
i=1 Xiai is called a generic element of I.

We now define a general element of an ideal I in an algebra over an infinite field.
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Definition 5.1.3. Let k be an infinite field, let R be a k-algebra, and let I = (a1, . . . , an).

For α = (α1, . . . , αn) ∈ kn, let aα =
n∑
i=1

αiai. Then a property P holds for a general

element of I if there is a dense open subset U in affine n-space kn such that P holds for aα
whenever α ∈ U .

Remark 5.1.4. We can extend the definition of a general element to an ideal I = (a1, . . . , an)

of a local ring (R,m) which has infinite residue field k. For α = (α1, . . . , αn) ∈ Rn, we

say a property P holds for a general element of I if there is a dense open subset U of

affine n-space kn such that the property P holds for aα = ∑n
i=1 αiai whenever the image α

of α = (α1, . . . , αn) ∈ Rn in kn belongs to U .

Remark 5.1.5. Since the intersection of finitely many dense open subsets of kn, where k is

an infinite field, is again a dense open subset of kn, it follows that if finitely many properties

P1, . . . , Ps hold for a general element of I, then the intersection of all the properties, P1 ∧

· · · ∧ Ps, also holds for a general element of I.

In [ 17 ] Itoh proved specialization by a generic element of I is compatible with the integral

closure of I when I is a parameter ideal in an analytically unramified local Cohen-Macaulay

ring of dimension at least 2 (recall the definition of a parameter ideal from Definition  2.3.14 ):

Theorem 5.1.6 (Itoh [ 17 , Theorem 1]). Let (R,m) be an analytically unramified Cohen-

Macaulay local ring of dimension d ≥ 2 with R/m infinite. Let I = (a1, . . . , ad) be a param-

eter ideal of R. Let S = R[X1, . . . , Xd]mR[X1,...,Xd] be the localization of a polynomial ring

in the variables X1, . . . , Xd, and let x = ∑d
i=1 Xiai be a generic element of I in S. Then

IS/(x)S = I (S/(x)S).

Hong and Ulrich extend Itoh’s result to a larger class of ideals in a larger class of rings

in [  12 ]:

Theorem 5.1.7 (Hong-Ulrich [  12 , Theorem 2.1]). Let R be a Noetherian, locally equidimen-

sional, universally catenary ring such that Rred = R/
√

0 is locally analytically unramified.

Let I = (a1, . . . , an) be an R-ideal of height at least 2. Let S = R[X1, . . . , Xn] be a polynomial

ring in the variables X1, . . . , Xn, and let x = ∑n
i=1 Xiai be a generic element of I in S. Then

IS/(x)S = IS/(x)S.
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Remark 5.1.8. Notice that Itoh proves specialization commutes with integral closure for pa-

rameter ideals in an analytically unramified, Cohen-Macaulay local ring. Such a ring R

satisfies the conditions of Hong and Ulrich’s theorem: it is a Noetherian, locally equidimen-

sional, universally catenary ring such that Rred is locally analytically unramified. Since R

has dimension at least 2, any parameter ideal I will also have height at least 2. Finally, if

I/(x) = I/(x) where x is a generic element of I in a polynomial ring over R, then special-

ization also commutes with integral closure of I after localization, as Hong and Ulrich state

in [ 12 , Corollary 2.3]. So the result of Hong and Ulrich is truly an extension of Itoh’s result.

These results have many applications. In [  16 ], Itoh uses that specialization by generic

elements commutes with integral closure to prove that for an ideal I generated by a regular

sequence x1, . . . , xr in a Noetherian local ring, In∩In+1 = InI (Huneke independently proved

this result in [ 15 ]); Huneke’s proof of this theorem partially inspired the creation of tight

closure. Hong and Ulrich use Theorem  5.1.7 to show the integral closure of a module M

is compatible with specialization by a generic element of the module through the use of a

construction known as the generic Bourbaki ideal.

We can also use specialization of integral closure to obtain a quick proof of a result of

Ma, Quy, and Smirnov:

Corollary 5.1.9 (Ma-Quy-Smirnov [ 20 , Corollary 12]). Let (R,m) be a Noetherian local

formally equidimensional ring. Then for every m-primary integrally closed ideal I, we have

e(I) ≥ λ(R/I).

Proof. Let R̂ represent the completion of R with respect to m. Since e(I) = e(IR̂),

since λ(R/I) = λ(R̂/IR̂), and since IR̂ is still integrally closed (see, for instance, [ 31 ,

Lemma 9.1.1]), we may pass to R̂ to assume that R is not only Noetherian local and locally

equidimensional, but also complete. Since R̂ is a Noetherian complete local ring, it is in

addition universally catenary, and R̂ is analytically unramified, so the assumptions of [ 12 ,

Corollary 2.3] are satisfied. Thus, if ht I ≥ 2, we may specialize by a generic element x of I

to decrease the height by 1. Notice this preserves the assumptions of being Noetherian local,

equidimensional (since we may assume x is part of a system of parameters), and excellent.
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Case 1: Assume that ht(I) = dimR = 0. Then since dim grI(R) = dimR = 0, e(I) =

e(grI(R)) = λ(grI(R)). Since R/I embeds into grI(R), λ(R/I) ≤ λ(grI(R)) and hence

λ(R/I) ≤ e(I).

Case 2: Assume that ht(I) = dimR = 1. Since I is integrally closed,
√

0 ⊂ I, and

therefore Rred/IRred
∼= R/I. Therefore, λ(Rred/IRred) = λ(R/I). Since e(IRred) ≤ e(I), it

suffices to prove that λ(R/I) ≤ e(I) when R is reduced. Since dimR = 1 and R is reduced,

R is Cohen-Macaulay. Let a ∈ S = R[X1, . . . , Xn]mR[X1,...,Xn] be a generic element of I.

Then (a) is a parameter ideal in a Cohen-Macaulay ring, and hence λ(S/(a)) = e((a)). Since

S/(a) surjects onto S/IS, λ(R/I) = λ(S/IS) ≤ λ(S/(a)). Since (a) is a reduction of IS,

e((a)) = e(IS) = e(I). Therefore, λ(R/I) ≤ e(I).

If ht I = dimR ≥ 2, we can use specialization to reduce to one of the previous cases. Let x

be a generic element of I. Then IS/(x) is integrally closed by [ 12 , Corollary 2.3] , with height

ht I − 1 and λ(S/(x)/IS/(x)) = λ(S/IS) = λ(R/I) (see, for instance, [ 31 , Lemma 8.4.2]).

By [  31 , Lemma 11.1.9], e(I) = e(IS) = e(IS/(x)) because we may assume x is a superficial

element of IS. Thus, λ(S/(x)/IS/(x)) ≤ e(IS/(x)) implies λ(R/I) ≤ e(I). �

Remark. If R contains a field of characteristic 0, we can alternatively use our main result of

this chapter, Theorem  5.2.4 , to obtain this result.

Specialization by a generic element involves extending the original ring R, either to a

polynomial ring over R or a localization thereof. This is often sufficient for proofs using

induction on the height of the ideal when considering properties preserved under faithfully

flat extensions. However, there are cases where we may not want to change the ring. The core

of the ideal, which is the intersection of all reductions of an ideal, may not be preserved under

ring change. Similarly, properties of the residue field, such as being perfect or algebraically

closed, may not pass to extensions of R. To preserve the original ring we need to instead

consider specialization by general elements of the ideal, which come from the original ring.

In our main result, Theorem  5.2.4 , we show that for many k-algebras, where k is a field

of characteristic zero, specialization by a general element of the ideal is compatible with

integral closure if the height of the ideal is at least 2.
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An important breakthrough for specialization by general elements came in Flenner’s pa-

per [  5 ]. In his paper, Flenner proves there is a local version of Bertini’s second classical

theorem, positively answering a question posed by Grothendieck about whether Serre’s con-

ditions pass to specializations of rings. We recall Flenner’s theorems in Theorem  5.1.10 and

Corollary  5.1.11 . Recall that many properties, such as a ring being normal or reduced, are

equivalent to satisfying certain of Serre’s conditions. This result is vital to the proof of our

main theorem, as it allows us to pass Serre’s conditions to specializations of R[It].

Theorem 5.1.10 (Flenner [ 5 , Corollary 4.7]). Let (S,m) be a local excellent k-algebra over

the field k of characteristic 0, let I = (x1, . . . , xn) ⊂ m, and let U = Spec(S) \ V (I), where

V (I) = {p ∈ Spec(R) | I ⊂ p}. Assume that for primes p ∈ U , the ring Sp satisfies Serre’s

conditions Sr and/or Rs. For general α ∈ kn, let xα = ∑n
i=1 αixi be a general element of I

in S. Then for p ∈ U ∩ V (xα) the ring (S/xαS)p also satisfies the conditions Sr and/or Rs.

In particular, normality is preserved by specialization by a general element in the following

way:

Corollary 5.1.11 (Flenner [ 5 , Corollary 4.8]). Let (S,m) be a local excellent k-algebra over

the field k of characteristic 0 and let I = (x1, . . . , xn) ⊂ m. Let Nor(S) = {p ∈ Spec(S) |Sp
is normal}, and let D(I) = {p ∈ Spec(R) | I 6⊂ p}. For general α ∈ kn, let xα = ∑n

i=1 αixi,

as in Theorem  5.1.10 . Then

Nor(S) ∩ V (xα) ∩D(I) ⊂ Nor(S/xαS).

Next, we note a lemma of Hong and Ulrich which they use in [ 12 ] to prove their result of

specialization of integral closure by generic elements. We will use a slight modification of this

statement in our proof of specialization by a general element. We note that the statement

of this lemma includes the Rees valuations of I. For this dissertation, it is enough to know

that Rees valuations exist and are unique, therefore the number e in the below lemma is

well defined; more information about Rees valuations can be found in [ 31 , Chapter 10]. The

statement of item  (c) below is a consequence of [ 12 , Lemma 1.1(c)], although it is not the

stated result.
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Lemma 5.1.12 (Hong-Ulrich [ 12 , Lemma 1.1]). Let R be a Noetherian, equidimensional,

universally catenary local ring of dimension d such that Rred = R/
√

0 is analytically unram-

ified. Let I = (a1, . . . , an) be a proper R-ideal with ht I > 0 and write A = R[It, t−1] for

the extended Rees ring of I. Let v1, . . . , vr be the Rees valuations of I, and let e be the least

common multiple of the values v1(I), . . . , vr(I) of I. Let u be a variable with ue = t and

deg u = 1/e. Write S = A [u−1] and let S be the integral closure of S in R[u, u−1].

(a) Let Sred denote the integral closure of Sred in Rred[u, u−1]. Then the R-algebra Sred
is finitely generated and graded by (1/e)Z, has a unique maximal homogeneous

ideal, which is a maximal ideal, and is equidimensional of dimension d+ 1.

(b) One has the equality S/u−1S = Sred/u−1Sred. This R-algebra is finitely generated

and graded by (1/e)Z≥0, has a unique maximal homogeneous ideal, is equidimen-

sional of dimension d, and is reduced.

(c) grade(It(A/t−1A)) ≥ 1.

Remark 5.1.13. Using the notation of Lemma  5.1.12 , let x be a general element of I. Notice

xt is a general element of It. Since it is a general condition to avoid finitely many primes, by

item  (c) above we may assume that xt is regular on A/t−1A. equivalently, we may assume

that t−1, xt is a regular sequence on A.

A final ingredient in the proof of our main theorem in this chapter, Theorem  5.2.4 , is the

vanishing of local cohomology of the integral closure of the extended Rees ring of I. We first

recall the definition and a few relevant properties of local cohomology, and refer the reader

to [  2 , Section 3.5] for a more detailed discussion in the case I = m.

Definition 5.1.14. Let R be a ring and let I be an R-ideal. For an R-module M , set

ΓI(M) = {x ∈M | Inx = 0 for some n ≥ 0}

=
⋃
n≥0

(0 :M In)

∼= lim−→
n

HomR(R/In,M).
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The functor ΓI(−) is called the section functor with respect to I.

The ith local cohomology functor with respect to I, denoted H i
I(−), is the ith right

derived functor of ΓI(−), and is naturally isomorphic to

H i
I(−) ∼= lim−→ExtiR(R/In,−).

Remark 5.1.15. (Properties of Local Cohomology)

(a) Because H i
I(−) is a right derived functor, a short exact sequence

0 M ′ M M ′′ 0

induces a natural long exact sequence of local cohomology

0 ΓI(M ′) ΓI(M) ΓI(M ′′) H1
I (M ′) · · ·

(b) If I and J are finitely generated ideals with
√
I =
√
J , then H i

I(M) = H i
J(M) for

all i.

(c) The I-depth of a module is the smallest i such that local cohomology does not

vanish: If R is a Noetherian ring and M is a finite R-module, then

depthI(M) = min{i |H i
I(M) 6= 0}.

(d) Local cohomology can be computed via the Čech complex: Let I = (x1, . . . , xn),

and let x = x1, . . . , xn. The Čech complex of M with respect to x, denoted

C•(x;M), is defined as

C•(x,M) = C•(x1)⊗R · · · ⊗R C•(xn)⊗RM

where

C•(x) : 0 R Rxi
0
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is the cochain complex concentrated in cohomological degrees 0 and 1. Here Rxi

denotes the localization of R at the element xi. If R is Noetherian, then H i
I(M) ∼=

H i(C•(x;M), the ith cohomology of the Čech complex of M .

Hong and Ulrich use the following theorem in their proof of compatibility of integral

closure with specialization by generic elements. We are able to use the same result in our

proof that integral closure is compatible with specialization by general, rather than generic,

elements.

Theorem 5.1.16 (Hong-Ulrich [ 12 , Theorem 1.2]). Let R be a Noetherian, locally equidi-

mensional, universally catenary ring such that Rred is locally analytically unramified. Let I

be a proper R-ideal with ht I > 0, A = R[It, t−1] the extended Rees ring of I, and A the

integral closure of A in R[t, t−1]. Let J be an A-ideal of height at least 3 generated by t−1

and homogeneous elements of positive degree. Then [H2
J(A)]n = 0 for all n ≤ 0, where [ ]n

denotes the degree n component.

Lemma 5.1.17. Let R be a Noetherian ring, M an R-module, and J = (a1, . . . , an) an

R-ideal. If H0
J(M) = M , then H i

J(M) = 0 for i ≥ 1.

Proof. Consider the Čech complex

C•(a,M) : 0 M ⊕ni=1Mai
⊕0≤i≤j≤nMaiaj

· · ·ϕ

and recall that H i
J(M) ∼= H i(C•(a,M)) for all i. In particular, M = H0

J(M) = kerϕ, thus

ϕ = 0 and hence Mai
= 0 for all i. Thus any further localization of M is also zero. Therefore

the Čech complex has the form

C•(a,M) : 0 M 0 0 · · ·

So H i
J(M) = 0 for all i ≥ 1. �
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5.2 Specialization by General Elements

In this section we prove in Theorem  5.2.4 that integral closure of an ideal is compatible

with specialization by a general element of the ideal. First, we state and prove a few technical

lemmas necessary to reduce to the case where R is a normal reduced ring. Lemma  5.2.1 allows

us to restrict our focus to reduced rings, Lemma  5.2.2 allows us to restrict our focus further

to normal rings, and Lemma  5.2.3 shows that the height of an ideal is preserved under these

reductions.

Lemma 5.2.1. Let R be an algebra over a field k with |k| = ∞, let Rred := R/
√

0, and

let J be an R-ideal. Let x be an element of R, which may or may not be an element of

J . If specialization by x is compatible with integral closure for the image of J in Rred, then

specialization and integral closure are also compatible for the ideal J . Stated symbolically, if

JRred (Rred/(x)Rred) = J (Rred/(x)Rred), then J (R/(x)) = J (R/(x)).

Proof. By persistence of integral closure (see Remark  2.3.5 ) applied to the natural map

R → R/(x), it is always true that J (R/(x)) ⊂ J (R/(x)). It remains to show that the

reverse containment holds if JRred (Rred/(x)Rred) = J (Rred/(x)Rred).

Let ϕ denote the natural map from R/(x) to Rred/(x)Rred given by a+ (x) 7→ a+ (x) +

(
√

0).

By assumption JRred (Rred/(x)Rred) = J (Rred/(x)Rred), and hence we have equality of

the preimages:

ϕ−1
(
JRred (Rred/(x)Rred)

)
= ϕ−1

(
J (Rred/(x)Rred)

)
.

Since integral closure modulo the nilradical lifts, JRred = JRred (see Remark  2.3.7 ). Thus

ϕ−1
(
JRred (Rred/(x)Rred)

)
= ϕ−1(J (Rred/(x)Rred))

= {a+ (x) | a+ (x) +
√

0 ∈ J + (x) +
√

0)}.
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Notice
√

0 ⊂ J for any ideal J because a nilpotent element satisfies an equation of integrality

xn = 0. Thus we can rewrite the above as

ϕ−1
(
JRred (Rred/(x)Rred)

)
= {a+ (x) | a+ (x) ∈ J + (x))}

= J (R/(x)) .

Hence to show that J (R/(x)) ⊂ J (R/(x)) it remains to show that J (R/(x)) ⊂ ϕ−1(J (Rred/(x)Rred)).

It is always true that

J (R/(x)) ⊂ ϕ−1
(
ϕ
(
J (R/(x))

))
. (5.1)

Moreover, we can again apply persistence to the natural map R/(x) → Rred/(x)Rred given

by a+ (x) 7→ a+ (x) +
√

0 to see that

ϕ
(
J (R/(x))

)
⊂ J (Rred/(x)Rred). (5.2)

Taking preimages of Equation (  5.2 ) and combining it with Equation ( 5.1 ), we conclude that

J (R/(x)) = J (R/(x)), as desired. �

Lemma 5.2.2. Let R be an algebra over a field k with |k| = ∞, let m ∈ m-Spec(R), let I

be an R-ideal, and let x be an element of I. If specialization by x is compatible with integral

closure of the image of I in Rm for every maximal ideal m, then specialization and integral

closure are also compatible for the ideal I. Stated symbolically, if IRm

(
Rm/(x)Rm

)
=

I
(
Rm/(x)Rm

)
for all m ∈ m-Spec(R), then I (R/(x)) = I (R/(x)).

Proof. As a first step, we show that under these assumptions

IR
(
R/(x)R

)
= I

(
R/(x)R

)
(5.3)
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Since both are ideals of R/(x)R, it suffices to check that the two are equal locally at maximal

ideals m ∈ m-Spec(R/(x)R). Identifying m-Spec(R/(x)R) with the maximal ideals of R

which contain x, we have that

(
I
(
R/(x)R

))
m

= I
(
Rm/(x)Rm

)
since integral closure commutes with localization by Remark  2.3.7 

= IRm

(
Rm/(x)Rm

)
by assumption

=
(
IR

(
R/(x)R

))
m

by Remark  2.3.7 

This proves the desired equality of Equation (  5.3 ).

We use the above to show that I (R/(x)) = I (R/(x)).

By persistence of integral closure (Remark  2.3.5 ) applied to the natural map R→ R/(x),

it is always true that I (R/(x)) ⊂ I (R/(x)).

It remains to show that the reverse containment holds if Equation ( 5.3 ) holds. Let ϕ

denote the natural map from R/(x) to R/(x)R, which is induced by the composition of the

natural maps R ↪→ R � R/(x)R. Then by Equation ( 5.3 ),

ϕ−1
(
IR

(
R/(x)R

))
= ϕ−1

(
I
(
R/(x)R

))
.

Since R is an integral extension of R, IR ∩R = I (see [  31 , Proposition 1.6.1]). Thus

ϕ−1
(
IR

(
R/(x)R

))
= {a+ (x)R | a ∈ R and a+ (x)R ∈ IR + (x)R}

= {a+ (x)R | a ∈ R ∩ IR}

= I (R/(x))

where the second equality holds because x ∈ I .

Therefore, it suffices to show that I (R/(x)) ⊂ ϕ−1
(
I
(
R/(x)R

))
.

As in the proof of Lemma  5.2.1 , by persistence and taking preimages we see that

ϕ−1
(
ϕ
(
I (R/(x))

))
⊂ ϕ−1

(
I
(
R/(x)R

))
.
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Since it is always true that

I (R/(x)) ⊂ ϕ−1
(
ϕ
(
I (R/(x))

))
,

we conclude that I (R/(x)) ⊂ ϕ−1
(
I
(
R/(x)R

))
. Hence I (R/(x)) = I (R/(x)).

�

Lemma 5.2.3. Let (R,m) be a local equidimensional excellent ring. Let I be an R-ideal.

Then ht IRred = ht I.

Proof. Notice that the properties of being local, equidimensional, and excellent pass from R

to Rred. Moreover, ht I = ht IRred. Thus by replacing R with Rred, we may assume R is a

reduced local equidimensional excellent ring. It remains to show that ht IR = ht I.

We first note that R is finitely generated over R by Remark  2.4.28 since it is reduced and

excellent. Since R is excellent, it is by definition (Definition  2.4.24 ) universally catenary.

Therefore, R is catenary.

We next show that R is locally equidimensional of the same dimension at every maxi-

mal ideal. Notice R ⊂ R is a birational extension – that is, Quot(R) = Quot(R) – since

R ⊂ R ⊂ Quot(R) and it can be shown that every nonzerodivisor of R is a unit of Quot(R).

Since Quot(R) is the ring of fractions of R with respect to the complement of the union of

the associated primes of R, and hence all minimal primes are preserved, there is a one-to-one

correspondence between Min(R) and Min(Quot(R)). Thus there are one-to-one correspon-

dences

Min(R) 1-1←→ Min(Quot(R)) = Min(Quot(R)) 1-1←→ Min(R)

By this one-to-one correspondence, we see that every minimal prime of R contracts to a

minimal prime of R.

Now let n ∈ m-Spec(R). Let q ∈ Min(R) be contained in n. Notice n∩R must be equal

to m, the unique maximal ideal of R, since the contraction of a maximal ideal in any ring

integral over R must be a maximal ideal of R. As we showed above, p = q ∩ R must be

a minimal prime of R. Since R is equidimensional and local, dim (R/p)m = dimR. Notice

that the dimension formula (Theorem  2.4.11 ) applies because R/p ⊂ R/q is an extension
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of domains, R/p is a universally catenary Noetherian ring, and R/q is a finitely generated

algebra over R/p. By the dimension formula,

dim
(
R/q

)
n

= dim (R/p)m + trdegR/pR/q − trdegκ(m/p) κ(n/q)

The above transcendence degrees are both zero since they are transcendence degrees of

integral extensions, hence dim
(
R/q

)
n

= dim (R/p)m = dimR = dimR. Thus R is locally

equidimensional of the same dimension at every maximal ideal n.

Moreover, since R is catenary and locally equidimensional of the same dimension at every

maximal ideal, one sees that for any prime p ∈ Spec(R), dimR/p+ ht p = dimR, and hence

the same holds for any ideal of R. Thus

ht I = dimR− dimR/I

= dimR − dimR/I

=
(
dimR/IR + ht IR

)
− dimR/I

By [  31 , Proposition 1.6.1], IR ∩ R = R, and thus the ring extension R/I = R/(IR ∩

R) → R/(IR) coming from the integral extension R → R is also an integral extension. So

dimR/IR = dimR/I , and thus by the above computation ht I = ht IR .

Finally, an ideal and its integral closure have the same height since they have the same

radical (see [ 31 , Lemma 8.1.10] and recall that I is a reduction of I ).

We conclude that ht I = ht I = ht IR = ht IR. �

We are now ready to prove our main theorem.

Theorem 5.2.4. Let (R,m) be a local equidimensional excellent k-algebra, where k is a field

of characteristic 0. Let I = (a1, ..., an) be an R-ideal such that ht I ≥ 2. Then for a general

element x of I, as defined in Definition  5.1.3 , we have that

I/(x) = I/(x).
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Proof. Notice that by persistence (Remark  2.3.5 ) applied to the natural map R→ R/(x), it

is always true that I/(x) ⊂ I/(x). This proof shows the reverse containment.

We may reduce to the case where R is in addition a local normal ring: By Lemma  5.2.1 ,

we may replace R by Rred to assume R is a reduced local equidimensional excellent k-algebra.

Since R is a reduced excellent local ring, R is finitely generatd over R. This shows that Rm

is excellent and that R is semilocal. Hence x is still a general element of IRm for each of

the finitely many maximal ideals m of R. By Lemma  5.2.2 we may replace R with Rm for

any m ∈ m-Spec(R) to assume in addition that R is a local normal ring (hence R is also a

domain). Also, by Lemma  5.2.3 we may assume that I still has height at least 2 after these

reductions. For the remainder of the proof, we will replace R with (Rred)m to assume that

R is a local, normal, equidimensional excellent k-algebra, where k is a field of characteristic

0, and that I = (a1, . . . , an) has height at least 2.

To simplify notation, let A = R[It, t−1] denote the extended Rees algebra of I, and let

A = R[It, t−1]R[t,t−1] denote the integral closure of A in R[t, t−1]. Notice that because R is

excellent, A is finitely generated over A by Remark  2.4.28 and is thus Noetherian. Similarly,

let B = (R/(x)) [(I/(x)) t, t−1] denote the extended Rees algebras of the R/(x)-ideal I/(x),

and let B denote the integral closure of B in (R/(x)) [t, t−1]. Define J to be the A-ideal

(It, t−1)A.

We note that A is catenary and locally equidimensional at the unique maximal homoge-

neous ideal m = (m, It, t−1)A: Since R is excellent it is by definition universally catenary

(see Definition  2.4.24 and Definition  2.4.10 ). Since A is a finitely generated algebra over the

universally catenary ring R, A is catenary. Since R is equidimensional, the localization of

A at the maximal homogeneous ideal m is equidimensional of dimension dimR + 1 by the

proof of [ 31 , Theorem 5.1.4(3)] and the fact that minimal primes of A come from minimal

primes of R, as discussed on [ 31 , p. 99].

We use these properties of A to show that ht J is at least 3, which is needed to apply

Theorem  5.1.16 . Notice J is homogeneous, and thus all minimal primes of J are homoge-
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neous. So ht J = ht Jm since m is the unique maximal homogeneous ideal. Now, Am is a

local catenary equidimensional ring, hence

ht Jm = dimAm− dim(A /J)m

≥ dimAm− dimA /J

Notice A /J ∼= R/I, and recall dimAm = dimR + 1 since ht I > 0. Thus we can rewrite

ht Jm ≥ dimA− dimA /J

= dimR + 1− dimR/I

= dimR + 1− (dimR− ht I)

= ht I + 1

≥ 3.

Thus

ht J ≥ 3 (5.4)

The natural map
R[t, t−1] (R/(x))[t, t−1]

a a+ (x)

induces a natural map

A = R[It, t−1] B = (R/(x))[(I/(x))t, t−1]

which in turn induces

A Bψ

Because xt ∈ kerψ, we obtain a natural map ϕ

A/(xt)A B.ϕ
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We ultimately wish to show I/(x)
I/(x) = 0. Notice I/(x)

I/(x) = [ cokerϕ]1, the degree 1 component of

the cokernel.

As a first step towards showing the cokernel is zero in degree 1, we show that ϕp is an

isomorphism for p ∈ Spec(A) \ V (JA). Such a prime p must either avoid t−1 or not contain

all of It. We consider the two cases separately.

Case 1: Suppose t−1 6∈ p. Notice At−1
∼= R[t, t−1] and similarly Bt−1

∼= (R/(x))[t, t−1], so

(
A/xtA

)
t−1
∼=
At−1

xtAt−1

∼=
R[t, t−1]
xtR[t, t−1] = R[t, t−1]/xR[tt−1] ∼=

R

(x) [t, t−1] ∼= Bt−1 .

Therefore any further localization is an isomorphism. So ϕp is an isomorphism if t−1 6∈ p.

Case 2: Now let p be any prime p ∈ Spec(A) \ V (ItA). We will use that ϕq is an

isomorphism if t−1 6∈ q to show that ϕp is also an isomorphism.

We first show ϕp is injective. Notice that (A/xtA)p is (xtA)p is contained in (xtR[t, t−1]∩

A)p. We can see that (xtR[t, t−1] ∩ A)p/(xtAp) = kerϕp by considering the natural maps

above. Thus, to show that ϕp is injective it is enough to show that (xtA)p = (xtR[t, t−1]∩A)p
locally at associated primes of xtAp.

Notice Ap is normal since R is normal, and as the localization of a finitely generated

algebra over an excellent ring, it is also excellent. Since xt is a general element of It, by

Flenner’s Bertini Theorem (Corollary  5.1.11 ) (A/xtA)p is normal and hence a domain. Since

xtAp isa prime ideal, it suffices to show the desired equality locally at q = xtAp. Notice

ht qAp ≤ 1. Since t−1, xt is an A-regular sequence by Remark  5.1.13 , we may assume t−1 6∈ q.

Thus the desired equality holds locally at q by the previous case. Thus ϕp is injective for all

p ∈ Spec(A) \ V (ItA).

We now show that for the same primes p ∈ Spec(A) \ V (ItA), ϕp is also a surjection.

Since A surjects onto B we have that the ring extension Im(A)p∩A = Bp∩A ⊂ Bp∩A is an

integral extension. Because A ⊂ A, Im(A)p∩A ⊂ Bp∩A is also an integral extension. Thus

Im(A)p = Im
(
A/xtA

)
p
⊂ Bp is also an integral extension.

Notice Im(
(
A/xtA

)
p
) ⊂ Bp, t−1 is a non-zerodivisor on both rings, and after making t−1

invertible both rings are equal. Hence they have the same total ring of quotients.
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Recall that
(
A/xtA

)
p

is normal and ϕp is injective. Hence Im (A/xtA)p is also normal.

It follows that ϕp must be a surjection. Therefore ϕp is an isomorphism, proving our claim.

To simplify notation, let K be the kernel of ϕ and C be the cokernel of ϕ, and recall

that it suffices to show that C1 = 0. In order to do so, we will identify C with a submodule

of H2
J(A). Because ϕp is an isomorphism for all p 6∈ V (JA) we have that Kp = 0 at such

primes. Thus H0
J(K) = K, which implies that H i

J(K) = 0 for all i > 0 by Lemma  5.1.17 .

Similarly H0
J(C) = C. Because t−1 ∈ J is a regular element on B, we also have that

H0
J(B) = {x ∈ B |xJn = 0 for some n ≥ 0} = 0.

From the long exact sequence of local cohomology induced by the exact sequence

0 K A/xtA Im(ϕ) 0ϕ

we obtain H i
J(A/xtA) ∼= H i

J(Im(ϕ)) for all i ≥ 1 since H i
J(K) vanishes for i ≥ 1.

From the long exact sequence of local cohomology induced by the exact sequence

0 Im(ϕ) B C 0

we obtain the exact sequence

0 = H0
J(B) H0

J(C) H1
J(Im(ϕ)) ∼= H1

J(A/xtA).

Therefore C = H0
J(C) ↪→ H1

J(A/xtA).

By Remark  5.1.13 we have depthJ(A) ≥ 2. Thus H1
J(A) = 0. Hence from the short exact

sequence

0 xtA A A/xtA 0

we obtain the exact sequence

0 = H1
J(A) H1

J(A/xtA) H2
J(xtA).

Therefore C ↪→ H2
J(xtA).
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Since x is a general element of I, we may assume x is a nonzerodivisor on R, and hence

that xt is a nonzerodivisor onA ⊂ R[t, t−1]. Thus we have an isomorphism of graded modules

xtA ∼= A(−1), and hence C ↪→ H2
J(A(−1)). So [C]n ↪→ [H2

J(A(−1))]n ∼= [H2
J(A)]n−1. By

Theorem  5.1.16 , we have [H2
J(A)]n−1 = 0 for all n ≤ 1. In particular, [C]1 = 0, that is,

I/(x) = I/(x). �

If we additionally assume that R is normal, we can extend our main theorem to sufficiently

large powers of I.

Proposition 5.2.5. Let (R,m) be a local normal excellent k-algebra, where k is a field of

characteristic 0. Let I = (a1, ..., an) be an R-ideal such that ht I ≥ 2, and let x be a general

element of I. Then (Is + (x))/(x) = (I/(x))s for s sufficiently large.

Proof. As in Theorem  5.2.4 , let A and B denote the extended Rees algebras of I and I/(x),

respectively, and let J denote the A-ideal (It, t−1). Consider again the natural map ϕ :

A/xtA → B, and denote the cokernel of ϕ by C. By the same proof as in Theorem  5.2.4 ,

we can show that H0
J(C) = C. Because Cs = (Is+(x))/(x)

(Is +(x))/(x) , it suffices to show Cs = 0 for all

s� 0, where Cs denotes the degree s component of C.

Next we show that we may assume R/(x) is a reduced excellent ring. Since R is excellent,

R/(x) is excellent. Since R is normal and hence reduced, by Flenner’s Bertini theorem

(Theorem  5.1.10 ) R/(x) satisfies Serre’s condition R0 locally at primes which do not contain

I. Since I has height at least 2 and Serre’s condition R0 can be checked locally at primes

of height 0, R/(x) satisfies R0. Moreover, since R satisfies Serre’s condition S2 and x is

a nonzerodivisor, R/(x) satisfies Serre’s condition S1. Therefore R/(x) is reduced. Since

(R/(x))[t, t−1] is reduced and contains B, we see that B is also a reduced ring. Furthermore,

B is finitely generated as an R/(x)-algebra and hence is excellent. Therefore B is a finite

B-module by Remark  2.4.28 . Since B is a Noetherian ring, BQuot(B) is a Noetherian B-module

and therefore, B ⊂ BQuot(B) is finitely generated as a B-module. Since A � B, B is also

finitely generated as a A-module. Since B is finitely generated as an A-module, so is its

homomorphic image C.

We show that since C is finitely generated as an A-module, Cs = 0 for s sufficiently large.

Let z1, . . . , zr be a set of generators of C. Since H0
J(C) = C, by definition for 1 ≤ i ≤ r there
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exists ki such that Jkizi = 0 for 1 ≤ i ≤ r. Therefore Cs = 0 for s > max{ki + deg(zi) | 1 ≤

i ≤ r}. Therefore, (Is + (x))/(x) = (I/(x))s for s > max{ki + deg(zi) | 1 ≤ i ≤ r}. �

Remark 5.2.6. In Proposition  5.2.5 we add the assumption that R is normal. This is because

we are unable to reduce to the normal case as in Theorem  5.2.4 since the proof of Lemma  5.2.2 

does not work when x is not an element of the ideal we are taking the integral closure of.

5.3 Specialization by General Elements of the Maximal Ideal

Even in the case of a monomial ideal in a polynomial ring, it is not necessarily true

that specialization by a general element of the maximal ideal is compatible with integral

closure. The issue with specialization by a general element x of the maximal ideal is similar

to the issue we encountered in Proposition  5.2.5 : x is not necessarily in the ideal we are

taking the integral closure of. There are many counterexamples where integral closure does

not commute with specialization by a general element of the maximal ideal, which can be

computed quickly with the aid of Macaulay2.

Example 5.3.1. The following examples show that integral closure may not be compatible

with specialization by a general element of the maximal ideal of the ring even if the ideal

and ring satisfy all the assumptions of Theorem  5.2.4 .

(a) Integral closure is not compatible with specialization by a general element of the

maximal ideal if dimR/I ≤ 1. Consider an ideal I which is reduced and generated

by general quadrics in R = Q[x, y, z]. Modulo a general element a of the maximal

ideal (x, y, z), an integrally closed ideal must be a power of the maximal ideal, and

thus must have at least 3 generators. Thus I(R/(a)) is not integrally closed.

(b) We can also find counterexamples when dimR/I = 2. Using Macaulay2, one can

compute that I = (x2, yw, xz2) ⊂ R = Q[x, y, z, w] is an integrally closed ideal of

height 2 and reduction number zero. However, I(R/(a)) is not integrally closed

for a general element a = α1x + α2y + α3z + α4w of m = (x, y, z, w) because

w2(α3z + α4w) ∈ I(R/(a)) \ I(R/(a)).
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However, if I is an ideal such that R/I is reduced and of depth at least 2, then the two

operations are compatible:

Proposition 5.3.2. Let (R,m) be a local excellent algebra over a field k of characteristic 0,

and let m = (x1, . . . , xn). Let I be an ideal such that R/I is reduced with depth(R/I) ≥ 2.

For general α ∈ kn, let xα = ∑n
i=1 αixi be a general element of the maximal ideal. Then

(I, a)/(a) ⊂ R/(a) is integrally closed.

Proof. By Theorem  5.1.10 , the ring R/(I, a) is reduced locally on the punctured spectrum

(that is, locally at primes p 6= m). Since depth(R/I) ≥ 2 and a is a general element of m, a

is regular on R. Thus depth(R/(I, a)) ≥ 1. It follows that R/(I, a) is reduced. Hence the

containments

(I, a)/(a) ⊂ (I, a)/(a) ⊂
√

(I, a)/(a)

are all equalities, i.e. (I, a)/(a) is integrally closed. �

This raises the question of whether specialization and integral closure are compatible for

an ideal which is reduced for which R/I has dimension at least 2, and depth equal to 1. Notice

that reduced monomial ideals are exactly the squarefree monomial ideals. Interestingly, it

appears from computation that specialization by a general element of the maximal ideal

does commute with integral closure for squarefree monomial ideals. We would be interested

in knowing whether there are any counterexamples to this, or whether it is can be proved

that for squarefree monomial ideals, specialization by a general element of the maximal ideal

commutes with integral closure.
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