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LIST OF SYMBOLS

H a Hilbert space

`n2 (H) the n-fold Hilbertian direct sum
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R+ all positive real numbers
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X ∗ the Banach dual of the operator space X .

X ′ the weak dual of a matrix ordered ∗-vector space (X , C)
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I(X ) the injective envelope of the operator system X
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〈·, ·〉 scalar pairing between ∗-vector spaces

〈〈·, ·〉〉 matrix pairing between ∗-vector spaces

〈·|·〉H inner product on the Hilbert space H

(X , C, e) operator system

C(p) the matrix ordering induced by a positive contraction p

C(p1, . . . , pN) matrix ordering induced by N positive contractions

JN the N ×N matrix with 1 in every entry

C∞
n the Archimedean closure of ⋃L∈N CLn

C∞ the inductive limit of the nested increasing sequence of matrix orderings {CL}L∈N

πL : X → M2NL(X ) the mapping x 7→ x⊗ J2NL

C∞(p1, . . . , pN) the inductive limit of the nested increasing sequence {π
−1
L C(p1, . . . , pN)L}L∈N

C(n, k) set of correlations with n-inputs and k-outputs

(X x, Cx, x) the operator system induced by the positive element x

αx : X x → [0,∞) operator space norm induced by the positive element x

(X x, αx) the operator space induced by the positive element x
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⊗ the algebraic tensor product

⊗min the minimal tensor product (either of operator spaces or operator systems)

⊗∧ the operator space projective tensor product
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ABSTRACT

We introduce the notion of an abstract projection in an operator system and when a

finite number of positive contractions in an operator system are all simultaneously abstract

projections in that operator system. We extend this notion to Archimedean order unit spaces

where we prove when a positive contraction is an abstract projection in some operator system,

and furthermore when a finite number of positive contractions in an Archimedean order

unit space are all simultaneously abstract projections in a single operator system. These

methods are then used to provide new characterizations of both nonsignalling and quantum

commuting correlations. In particular, we construct a universal Archimedean order unit

space such that every quantum commuting correlation may be realized as the image of a

unital linear positive map acting on the generators of that Archimedean order unit space.

We also construct an Archimedean order unit space which is universal (in the same way) to

nonsignalling correlations. We conclude with results concerning weak dual matrix ordered

∗-vector spaces and the operator systems they induce.
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1. INTRODUCTION

With its origins dating back to the early 20th century, operator algebras has had a profound

impact in the world of mathematics with an abundance of applications to fields such as

probability theory, ergodic theory and quantum information theory. In order to provide a

rigorous mathematical foundation for quantum mechanics, John von Neumann and Francis

Murray published a series of papers ([14 ], [15 ], [16 ]) where they provided the foundations for

the field now known as von Neumann algebras. In later years the field was greatly expanded

due to the development of the theory of C*-algebras. The name operator algebras comes

from the (highly non-trivial) fact that both von Neumann algebras and C*-algebras may

always be realized as a subalgebra of B(H) for some Hilbert space H. This is to say that

every von Neumann algebra or C*-algebra may be regarded as being contained in B(H), the

algebra of bounded linear operators on some Hilbert space H. As time progressed it was

noticed by operator algebraists that if one were to ease the structure of a C*-algebra and

consider more general objects, then one could deduce amazing results concerning the ambient

algebras. It was using these methods that an incredible connection was made between the

fields of operator algebras and quantum information theory.

Analogous with the development of quantum mechanics, it was realized that even in

“classical” operator algebra theory, looking at the level one operator algebra provided insuf-

ficient information with regard to many natural constructions or questions one may have.

This is to say that if A is the object in question, then one must not only look at A but rather

at Mn(A) for every natural number n. We point out if n is a natural number then Mn(A) is

also a C*-algebra with structure induced from the algebra B(`n2 (H)), where `n2 (H) denotes

the n-fold Hilbertian direct sum. An example of this is if one wishes to consider continu-

ous maps on tensor products of C*-algebras. It is well known that given two linear maps

between vector spaces then they induce a unique linear map between the algebraic tensor

products of their domains and their ranges. This presents no problems since linear maps are

the “morphisms” one considers when looking at vector spaces, but when we consider objects

with nontrivial topological structure, such as C*-algebras, then this property becomes much

more delicate. In general, given two continuous maps between C*-algebras it is not true that
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their induced linear map on the algebraic tensor product extends to a continuous map on

the C*-algebra tensor product. By considering properties of matrices over A and induced

maps on those spaces of matrices, one can circumvent such difficulties. Thus, it is precisely

the matricial properties of A that one must consider to avoid problems.

Every C*-algebra contains a closed positive cone of elements. By our remarks above, if

A ⊂ B(H) then the positive cone of A, A+, is precisely the convex set of positive operators

on H intersected with A. There is also a closed positive cone in Mn(A) for every natural

number n, defined in a similar way. In particular, there is a noncommutative (matricial)

order structure that one may consider on A. The abstract analogue of such “noncommuta-

tive matrix ordered spaces” first appeared in the work of Choi and Effros in [4 ], where they

were able to use such matricially ordered spaces to deduce various properties of C*-algebras

and von Neumann algebras. These matricially ordered spaces came to be known as operator

systems, but despite this work appearing in 1977, operator system theory was not a par-

ticularly dominate niche in operator algebras. Operator system theory reemerged in 2009

in [19 ], where Paulsen and Tomforde worked out the abstract theory for objects known as

Archimedean order unit spaces. Such an object consists of a vector space with involution, a

positive cone, and a “suitable” notion of a unit. Though this paper did not directly pertain

to operator systems, it provided the foundation for later work in the theory. A couple of

years later, in [12 ] and [11 ], both the tensor theory of operator systems and properties of

quotients of operator systems were developed and the authors were able to provide operator

system equivalences to the most famous open problem in operator algebras.

Beginning with a remark of Connes in [5 ], it was a conjecture made by Kirchberg in

[13 ], which drove research in the theory for decades and into the present day. In particular,

Kichberg’s conjecture became the most famous problem in operator algebras. Given a dis-

crete group G then one may always associate a maximal C*-algebra to it. This full group

C*-algebra of G, denoted C∗(G), is often a complicated object to understand. Kirchberg

conjectured that when G is the free group on 2-generators, then there was only one possible

C*-algebra tensor product associated to the algebraic tensor product of C∗(F2) with itself.

Kirchberg went on to prove his conjecture was indeed equivalent to the remark made my

Connes’ 17 years earlier. In particular, Connes’ remark had an affirmative answer if and
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only if Kircherg’s conjecture was true. Using operator system theory, in [11 ], the authors

were able to prove an operator system equivalence to Kirchberg’s conjecture.

Once again consider a C*-algebra A ⊂ B(H). In a similar spirit to our remarks con-

cerning matricial orderings on A, there are also matricial norms on A. Every C*-algebra

has the relative operator norm induced by B(H). If n is a natural number, then making

the identification Mn(B(H)) ' B(`n2 (H)), it is immediate that Mn(A) has a relative norm

induced by the algebra B(`n2 (H)). Doing this for every natural number, we obtain a matri-

cial norm structure on the C*-algebra. The abstract theory of matricial normed spaces first

appeared in [20 ], and such objects came to be known as operator spaces. As remarked above,

though the abstract ideas of operator systems appeared first, it was operator space theory

that dominated the minds of many operator algebraists during the late ’80s and throughout

the ’90s. Not only has operator space theory had many applications in operator algebras,

but in recent years it has had incredible applications in quantum information theory.

Correlations are tuples of positive real numbers which model joint probability distribu-

tions. Sets of correlations have long been investigated by physicists, even going back to the

work of Bell in [3 ]. Of particular interest is the set correlations determined by families of

pairwise commuting projections on a Hilbert space. Various interesting sets of correlations

are subsets of this set, and many questions have revolved around distinguishing such subsets.

In [22 ], Tsirelson asked whether the set of correlations determined by suitable pairs of pair-

wise commuting projections on an arbitrary Hilbert space (quantum commuting correlations)

could be approximated by similar correlations but where the projections are restricted to

finite-dimensional Hilbert spaces (quantum correlations). Using fundamental techniques and

ideas from operator space and operator system theory, in [9 ], Junge et al. made an incred-

ible discovery where they proved Tsirelson’s problem was indeed equivalent to Kirchberg’s

conjecture. Since then, there has been a surge of activity using operator space and operator

system theory in answering various questions regarding such sets of correlations. According

to a recent preprint, [8 ], it is not the case that quantum correlations approximate quantum

commuting correlations for all input and output values.

One learns in their first course of functional analysis that projections on Hilbert spaces

are the building blocks of normal operators defined on that Hilbert space. As we saw in the
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preceding paragraph, projections are also the building blocks of various sets of correlations.

Despite many excellent results concerning these correlation sets, there is much we still do not

understand about them. Following [1 ] and [2 ], in this manuscript we develop the notion of a

projection in an operator system which mirrors the properties of a concrete projection in a

C*-algebra. We have generalized this characterization to finite sets of positive contractions

in an operator system and we have proven when such a finite number of positive contractions

in an operator system are all simultaneously projections. In a similar spirit we have been

able prove when a positive contraction in an Archimedean order unit space is a projection

in some operator system, and furthermore when a finite number of positive contractions

in an Archimedean order unit space are all simultaneously projections in a single operator

system. Using our methods we have been able to provide a purely abstract characterization

of the set of quantum commuting correlations. In particular, we establish a characterization

of quantum commuting correlations viewed as actions of particular morphisms on classes of

Archimedean order unit spaces. Thus, our work provides a new and abstract way one may

view quantum commuting correlations.

A fundamental principle in the theory of Banach spaces is that of local reflexivity. In

short, every Banach space E satisfies the property that if V is a finite-dimensional Banach

space and E∗∗ denotes the bidual of E , then every contraction u : V → E∗∗ is the point-weak

dual limit of a net of contractions {ui}i∈I , ui : V → E . The analogue of local reflexivity

for operator spaces was introduced by Effros and Haagerup in [6 ]. It was quickly noticed

that local reflexivity for operator spaces was much more delicate than its counterpart in

Banach space theory. For one, it is not true in general that every operator space is locally

reflexive. Furthermore, Effros and Haagerup showed that local reflexivity for operator spaces

was connected to highly non-trivial properties concerning C*-algebras. Motivated by this, we

provide the beginnings of a method to establish a notion of local reflexivity in the category of

operator systems. In order to do this we introduce weak dual matrix ordered ∗-vector spaces

and the canonical operator systems that they induce. Though operator systems are similar

to operator spaces, one cannot simply transfer the characterization of local reflexivity to the

category of operator systems. The obstacles arise precisely because of the lack of duality

theory in operator systems. By definition, an operator system contains a “suitable” unit
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and this unit characterizes various properties of the operator system. In particular, every

operator system has an operator space norm defined on it, and this norm is dependent on

the unit of the system. Thus, if X is an operator system, then one may consider its Banach

dual X ∗. The issue arises because the Banach dual may not have a unit. Thus, in general,

the Banach dual of an operator system is not an operator system. As mentioned above,

we partially circumvent this obstacle by considering the more relaxed structure of a matrix

ordered ∗-vector space. We then consider dual pairs of such objects, so that one may consider

the weak topology on the space and the weak-dual topology on its dual. In other words,

we consider weak dual matrix ordered ∗-vector spaces. We then prove that every weak dual

matrix ordered ∗-vector space induces a canonical collection of operator systems.

The manuscript is organized as follows: Section 2 discusses preliminary material for

the manuscript. In Section 3 we develop the notion of a projection in an operator system

and characterize when a finite number of positive contractions in an operator system are

all simultaneously projections. In Section 4 we establish when a positive contraction in an

Archimedean order unit space is a projection in some operator system and furthermore, when

a finite number of positive contractions in an Archimedean order unit space are all simultane-

ously projections in a single operator system. In Section 5 we apply our methods to questions

in quantum information theory. In particular, we construct a universal Archimedean order

unit space such that every quantum commuting correlation must be induced by the action of

a morphism on the generators of that Archimedean order unit space. In Section 6 we estab-

lish results concerning weak dual matrix ordered ∗-vector spaces and the operator systems

they induce. In Section 7 we close with some remarks concerning ongoing work.
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2. PRELIMINARIES

We begin with the theory of Archimedean order unit spaces. Consider a ∗-vector space X ,

which is to say X is a vector space equipped with an involution ∗ : X → X . Given x ∈ X ,

if x = x∗ then we will say x is hermitian and we will denote the real vector subspace of all

hermitian elements of X by Xh. A subset C ⊂ Xh is a cone if R+C ⊂ C and C + C ⊂ C.

Here we let R+ denote all positive real numbers. The cone C induces a partial ordering on

Xh by declaring x ≥ y if and only if x − y ∈ C. The pair (X , C) will be called an ordered

∗-vector space. If C ∩ −C = {0} then we will call C a proper cone and in this case the

pair (X , C) will be called a proper matrix ordered ∗-vector space. An element e ∈ C be will

called an Archimedean order unit if it satisfies the following two properties: (i) given any

x ∈ Xh there exists r > 0 such that re − x ∈ C; (ii) x ∈ C if and only if εe + x ∈ C for all

ε > 0. Property (i) ensures that the positive cone majorizes the real hermitian subspace and

Property (ii) is saying the positive cone C is order closed with respect to the element e. If

an element e ∈ Xh satisfies Property (i) then we will call it an order unit.

Definition 2.0.1 ([19 ]). If (X , C) is a proper ordered ∗-vector space and e is an Archimedean

order unit, then the triple (X , C, e) will be called an Archimedean order unit (AOU) space.

We will simply denote an AOU space as X when there is no confusion as to what the

ordering or unit is for X . If (X , C) is an ordered ∗-vector space then there is always canonical

quotient one may take to form a proper ordered ∗-vector space. To this end, suppose (X , C)

is an ordered ∗-vector space. Let J := spanC ∩ −C. Then one may consider the quotient

∗-vector space X/J with proper ordering C + J . In particular, if e ∈ C is an Archimedean

order unit for the ordered ∗-vector space, then e + J is an Archimedean order unit for the

proper ordered ∗-vector space (X/J , C + J ) and therefore the triple (X/J , C + J , e+ J )

is an AOU space.

Let u : (X , C) → (Y , D) be a linear map between two ordered ∗-vector spaces. We call u

positive if u(C) ⊂ D. If u is a linear isomorphism such that both u and u−1 are positive then

we will call u an order isomorphism. If u : X → Y is an order isomorphism onto its range

then we will sometimes say u is a order embedding. If eX , eY are two Archimedean order
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units for the spaces (X , C) and (Y , D), respectively, then we call u unital if u(eX ) = eY . A

unital positive linear functional will be called a state of the AOU space X .

If X and Y are two AOU spaces and if there exists a (unital) order isomorphism u : X →

Y then we say the AOU spaces are (unital) order isomorphic. In this way we identify two

AOU spaces. Fix an AOU space (X , C, e) and consider the map αe : Xh → [0,∞) defined

by αe(x) := inf{t ∈ R+ : te ± x ∈ C}. It follows αe is a seminorm on Xh and since e is

Archimedean then it is necessarily a norm. In a natural way one may extend this norm to

all of X . An order *-seminorm on X is a seminorm
∥∥∥ ·
∥∥∥ : X → [0,∞) such that

∥∥∥x∥∥∥ =
∥∥∥x∗

∥∥∥
for all x ∈ X and

∥∥∥ ·
∥∥∥|Xh = αe. Of particular interest will be the minimal order norm,

which we will denote by αmin : X → [0,∞) defined by αmin(x) := sup{|ϕ(x)| : ϕ : X →

C is unital positive}. In Section 4 we will be concerned with positive contractions in an AOU

space (X , C, e). Such reference will always be made with regard to the order norm αe.

The concrete analogue of AOU spaces dates back to the work of Kadison in [10 ]. AOU

spaces are the abstract version of function systems which are self-adjoint, unital subspaces of

the Banach space of continuous functions on some compact Hausdorff space. In particular,

along with Kadison’s work, it was shown in [19 , Theorem 5.2] that given any AOU space X

there exists a compact Hausdorff space V and a unital order embedding Φ : X → C(V ) such

that
∥∥∥Φ(x)

∥∥∥∞ = αmin(x) for all x ∈ X . Here we have let
∥∥∥ ·
∥∥∥∞ : C(V ) → [0,∞) denote the

supremum norm on C(V ). In particular, given an AOU space X , then X may be identified

with the function system of complex-valued continuous affine functions on the state space

of X . In short, if we let V := {ϕ : X → C} denote the set of all unital positive maps on X ,

then V is a weak-dual compact Hausdorff space and there exists a unital order isomorphism

from X to A(V ), where A(V ) := {F : V → C : F continuous affine}.

We now review the theory of operator systems. Suppose X is a vector space with an

involution ∗ : X → X . A matrix ordering on X is defined to be a collection C := {Cn}n∈N of

sets Cn ⊂ Mn(X )h satisfying the following properties:

• Cn is a cone for every n ∈ N. This is to say Cn + Cn ⊂ Cn and R+Cn ⊂ Cn for

every n ∈ N.
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• a∗Cna ⊂ Cm for every a ∈ Mn,m and n,m ∈ N. We will call this property

compatibility of the family C.

If C satisfies the additional property that Cn ∩ −Cn = {0} for every n ∈ N, then we will

call C a proper matrix ordering. The pair (X , C) will be called a (proper) matrix ordered

∗-vector space when X is a ∗-vector space and C is a (proper) matrix ordering. Given a

natural number n ∈ N then we let [n] := {1, . . . , n}.

We record the following well-known fact for convenience:

Lemma 2.0.1. Let X be a ∗-vector space and suppose C is a matrix ordering such that

C1 ∩ −C1 = {0}. Then C is a proper matrix ordering.

Proof. Assuming C1 is proper we claim Cn ∩ −Cn = {0} for every n ∈ N. Suppose that

x ∈ Cn ∩ −Cn. Let {ek}k∈[n] ⊂ Cn denote the canonical basis vectors viewed as column

vectors. It then follows for every k ∈ [n] we have xkk = e∗
kxek ∈ C1 ∩ −C1. By assumption it

must follow xkk = 0. Let k, l ∈ [n] such that k 6= l. Then (ek + el)∗x(ek + el) = xlk + xkl =

2 Re(xlk) ∈ C1 ∩ −C1 which implies Re(xlk) = 0. In a similar fashion (ek − iel)∗x(ek − iel) =

i(xlk − xkl) = 2i Im(xlk) ∈ C1 ∩ −C1 and therefore Im(xlk) = 0. Thus xlk = 0, and it follows

x = 0. This proves Cn is proper and thus C is a proper matrix ordering.

Throughout much of the manuscript we will be concerned with matrix ordered ∗-vector

spaces that also contain a noncommutative order unit. To this end, consider a hermitian

element e ∈ Xh which satisfies the following properties:

• Given x ∈ Mn(X )h there exists r > 0 such that rIn⊗e−x ∈ Cn. This property ensures

that there is a single element which majorizes the hermitian subspace of X .

• An element x ∈ Mn(X ) is in Cn if and only if εIn ⊗ e+ x ∈ Cn for every ε > 0.

This property ensures that each cone Cn is order closed with respect to the element e.

If an element e ∈ Xh satisfies Property (i) we will call it a matrix order unit. It is a well-

known fact that if (X , C) is a proper matrix ordered ∗-vector space, then an element e ∈ Xh

is an order unit if and only if it is a matrix order unit.
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Proposition 2.0.1. Given a matrix ordered ∗-vector space X then e ∈ X is an order unit

if and only if it is a matrix order unit.

Proof. Assume e ∈ Xh is an order unit and let x ∈ Mn(X )h. We write x = ∑
i≤nAi ⊗ xi ∈

(Mn)h ⊗ Xh. For each i write Ai = Pi − Qi, where Pi, Qi ∈ M+
n . Choose r > 0 such that

re± xi ∈ X + for each i. We then see

r(
∑
i≤n

Pi +Qi) ⊗ e− x =
∑
i≤n

Pi ⊗ (re− xi) +
∑
i≤n

Qi ⊗ (re+ xi) ∈ Mn(X )+.

Simply choose r̃ such that r̃In ≥ r(∑i≤n Pi +Qi) which proves the claim.

Definition 2.0.2 ([4 ]). Let (X , C) be a proper matrix ordered ∗-vector space and let e ∈ Xh

be an Archimedean matrix order unit. Then the triple (X , C, e) is called an operator system

Similar to the case for AOU spaces, when no confusion will arise we will simply denote

an operator system as X . Let X,Y be vector spaces and let u : X → Y be a linear map.

Then u induces a linear map on the vector spaces of matrices over X, and Y . In particular,

given n ∈ N we define the nth-amplification of u as the map

un : Mn(X) → Mn(Y ),
∑

ij
eie

∗
j ⊗ xij 7→

∑
ij
eie

∗
j ⊗ u(xij).

If (X , C) and (Y ,D) are matrix ordered ∗-vector spaces then we say a linear map u : X → Y

is completely positive if un(Cn) ⊂ Dn for every n ∈ N. If X and Y are operator systems

with Archimedean matrix order units eX , eY , respectively, then u is unital if u(eX ) = eY .

A unital completely positive map u : X → Mn will sometimes be called a matrix state or

a matrix n-state. In particular, this terminology will only be used when considering unital

completely positive maps into a matrix algebra. If the map u : X → Y is a (unital) linear

isomorphism and both u and u−1 are completely positive then we call u a (unital) complete

order isomorphism. If u is a (unital) complete order isomorphism onto its range then we

sometimes call u a (unital) complete order embedding. If X and Y are two operator systems

and u : X → Y is a (unital) complete order isomorphism, then we say X and Y are (unital)

completely order isomorphic.
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It was realized in [4 ] that operator systems are precisely the abstract analogue of self-

adjoint, unital subspaces of bounded operators on a Hilbert space. In particular, let H be

a Hilbert space and consider the algebra of bounded linear operators on H, B(H). Let

X ⊂ B(H) be a subspace of B(H) such that for all x ∈ X one has x∗ ∈ X , and furthermore

suppose IdH ∈ X . Consider the collection C := {Cn}n∈N such that Cn := Mn(X )∩B(`n2 (H))+

for each n ∈ N. Here we have let `n2 (H) denote the n-fold Hilbertian direct sum. It is readily

seen that C is a proper matrix ordering on X and furthermore, IdH is an Archimedean

matrix order unit for the proper matrix ordered ∗-vector space (X , C). Thus, (X , C, IdH) is

an operator system. Therefore we see that our characterization of operator systems as ∗-

vector spaces with proper matrix orderings and an Archimedean matrix order unit is precisely

the abstract characterization of unital self-adjoint subspaces of B(H) where H is a Hilbert

space.

Theorem 2.0.2 ([4 , Theorem 4.4]). Let (X , C, e) be an operator system. Then there exists

a Hilbert space H, a unital self-adjoint subspace X̃ ⊂ B(H) and a unital complete order

isomorphism Φ : X → X̃ . In particular, the operator system X may be realized as a unital

self-adjoint subspace of B(H) by making the identification X ' Φ(X ) = X̃ ⊂ B(H).

We saw earlier that every Archimedean order unit space may be identified with the

continuous affine functions defined on its state space. A similar noncommutative analogue

holds for operator systems. Let Vn ⊂ Mn(X ∗) denote the set of all linear maps x′ : X → Mn

such that x′ is unital completely positive. Here we have let X ∗ denote the Banach dual of

the operator system X . Then V := {Vn}n∈N is weak-dual compact matrix convex set. V is

called the matrix state space of the operator system X . V being matrix convex means that

for each fixed n ∈ N, that Vn is closed under sums of the form

∑
i≤n

γ∗
i x

′
iγi,

where x′
i ∈ Vni for each i ≤ n, γi ∈ Mni,n and ∑i≤n γ

∗
i γi = In. We call such a sum a matrix

convex combination. A map F := (Fn)n∈N, Fn : Vn → Mn is matrix affine if for each n ∈ N,
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Fn preserves matrix convex combinations. We let A(V ) denote all matrix affine functions

F := (Fn)n∈N such that F1 : V → C is continuous.

Proposition 2.0.2 ([23 , Proposition 3.5]). Given any operator system X then there exists a

unital complete order isomorphism Φ : X → A(V ), where V denotes the matrix state space

of the operator system X .

Consider a matrix ordered ∗-vector space (X , C). Then by letting J := span C1 ∩ −C1

we may consider the quotient space X/J along with the collection C + J . It readily follows

that the pair (X/J , C +J ) is a proper matrix ordered ∗-vector space. In particular if (X , C)

is a matrix ordered ∗-vector space and e ∈ Xh is an Archimedean matrix order unit then it

readily follows (X/J , C + J , e+ J ) is an operator system. See Proposition 3.1.2 .

An operator system Y is called injective if given any inclusion of operator systems X ⊂ X̃

then every unital completely positive map u : X → Y extends to a unital completely positive

map ũ : X̃ → Y such that ũ|X = u.

Fix an operator system X . It was shown in [7 ] that there exists an injective operator

system I(X ) and a unital complete order embedding j : X → I(X ) such that if E is

another injective operator system satisfying X ⊂ E ⊂ I(X ) then E is unital completely

order isomorphic to I(X ). This is to say I(X ) is the minimal injective object containing X

as an operator subsystem and furthermore it is unique up to complete order isomorphism.

We call I(X ) the injective envelope of the operator system X . The C*-envelope, C∗
e (X ), of

the operator system X is the C*-algebra generated by j(X ). In particular, the C*-envelope

satisfies the following universal property: given any pair (A, ι) where A is a unital C*-algebra

and ι : X → A is a unital complete order embedding such that A = C∗(ι(X )), then there

exists a unique ∗-epimorphism σ : A → C∗
e (X ) satisfying σι = j. Thus, we have the following

commutative diagram:

A

X C∗
e (X )

σ
ι

j

Remark 2.0.3. For the convenience of the reader we discuss the steps in showing the

existence of an injective envelope of an operator system. Let X ⊂ B(H) be an operator

21



system. Following the standard terminology, a linear map ϕ : B(H) → B(H) will be called

an X -map if it is completely positive and ϕ|X = IdX . Given an X -map ϕ : B(H) → B(H)

then the map pϕ : B(H) → [0,∞) defined by pϕ(x) :=
∥∥∥ϕ(x)

∥∥∥, will be called an X -seminorm.

If ϕ : B(H) → B(H) is an X -map such that ϕϕ = ϕ then we call ϕ an X -projection.

In the construction of the injective envelope, one first shows that there exists a minimal

X -seminorm. This is done by cosidering a net of X -maps {ϕi}i∈I such that the induced

X -seminorms {pϕi}i∈I form a descending chain. One proves such chain has a lower bound at

which point one invokes Zorn’s Lemma. The next step is proving that if ϕ : B(H) → B(H)

is an X -map such that pϕ : B(H) → [0,∞) is a minimal X -seminorm then ϕ is necessarily

a minimal X -projection and ϕ(B(H)) is an injective envelope. One then proves that the

injective envelope is unique up to isomorphism (in the category).

Consider an AOU space (X , C, e). We will call a matrix ordering C an operator system

structure on X if C1 = C and the triple (X , C, e) is an operator system. It was proven in [18 ]

that one may construct a unique minimal, and unique maximal operator system structure

on an AOU space. The maximal operator system structure will play a pivotal role in the

early sections of the manuscript. Consider the collection Dmax := {Dmax
n }n∈N where for each

n ∈ N we have

Dmax
n := {a∗xa : x =

⊕
i∈[m]

xi, xi ∈ C, a ∈ Mm,n,m ∈ N}.

Furthermore define the collection Cmax := {Cmax
n }n∈N where for each n ∈ N we have

Cmax
n := {x ∈ Mn(X ) : εIn ⊗ e+ x ∈ Dmax

n , ∀ε > 0}.

It is readily seen that the triple (X , Cmax, e) is an operator system which we call the 1-max

(or maximal) operator system and we call Cmax the 1-max (or maximal) operator system

structure on X . The 1-max operator system structure satisfies the property that if C is any

other operator system structure on X then it follows Cmax ⊂ C, which is to say for every

n ∈ N we have Cmax
n ⊂ Cn. When no confusion will arise we will denote the triple (X , Cmax, e)

by Xmax.
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3. PROJECTIONS IN OPERATOR SYSTEMS

3.1 Single Projections in Operator Systems

Consider a concrete operator system X ⊂ B(H). Recall that the matrix ordering C of X

is defined for each n ∈ N by

Cn := Mn(X ) ∩Mn(B(H)))+.

Suppose that p ∈ C1 is an element of X that acts as a projection on the Hilbert space H.

Such a p induces a collection of subsets C̃(p) := {C̃(p)n}n∈N such that for each n ∈ N we have

C̃(p)n := {x ∈ Mn(X )h : (In ⊗ p)x(In ⊗ p) ∈ B(`n2 (H))+}.

Note that C ⊂ C̃(p).

Proposition 3.1.1. Let X ⊂ B(H) be an operator system and let p ∈ C1 be a projection on

the Hilbert space H. Then {C̃(p)n}n∈N is a matrix ordering on X and if p ≤ e then p is an

Archimedean matrix order unit for the matrix ordered ∗-vector space (X , C̃(p)).

Proof. We begin by showing that C̃(p) is a matrix ordering on X . Note that the compression

by such an element p is a linear completely positive map. In particular, if λ ∈ R+ and

x ∈ C̃(p)n then (In ⊗ p)(λx)(In ⊗ p) = λ(In ⊗ p)x(In ⊗ p) ∈ λB(`n2 (H))+ ⊂ B(`n2 (H))+.

Similarly linearity and complete positivity of the compression by the projection p readily

implies that C̃(p)n + C̃(p)n ⊂ C̃(p)n. Finally if a ∈ Mn,m then

(Im ⊗ p)(a∗xa)(Im ⊗ p) =
p
 n∑
k,l=1

akixklalj

 p
m

i,j=1

=
 n∑
k,l=1

akipxklpalj

m
i,j=1

= a∗(In ⊗ p)x(In ⊗ p)a ∈ a∗B(`n2 (H))+a.

Since a∗B(`n2 (H))+a ⊂ B(`m2 (H))+ this proves that C̃(p) is a matrix ordering on X .

We now show p ∈ C1 is an Archimedean matrix order unit for (X , C̃(p)). We first

show that p is a matrix order unit. By Proposition 2.0.1 it suffices to show that p is an

order unit. First note that since e is an Archimedean matrix order unit for (X , C) then
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for x ∈ Xh there exists r > 0 such that re − x ∈ C1 and thus rp − pxp ∈ B(H)+. In

particular, we see that p is an order unit, and thus matrix order unit, for operators of the

form pxp, x ∈ Xh. Furthermore suppose x ∈ Mn(X )h and that for all ε > 0 we assume that

ε(In ⊗ p) + (In ⊗ p)x(In ⊗ p) ∈ B(`n2 (H))+. Since p ≤ e it follows

ε(In ⊗ e) + (In ⊗ p)x(In ⊗ p) ≥ ε(In ⊗ p) + (In ⊗ p)x(In ⊗ p) ∈ B(`n2 (H))+.

Since e is an Archimedean matrix order unit for B(`n2 (H)) it follows that (In ⊗ p)x(In ⊗ p) ∈

B(`n2 (H))+ and in particular x ∈ C̃(p)n. Thus, p is an Archimedean matrix order unit for

operators of the form pxp where x ∈ Xh.

Thus, given x ∈ Xh let r > 0 such that rp − pxp ∈ B(H)+. If we consider rp − x then

p(rp − x)p = rp − pxp ∈ B(H)+ which implies that rp − x ∈ C̃(p)1. This proves that p is a

matrix order unit for (X , C̃(p)). Finally suppose that x ∈ Mn(X ) such that for all ε > 0 we

have ε(In ⊗ p) + x ∈ C̃(p)n. This implies ε(In ⊗ p) + (In ⊗ p)x(In ⊗ p) ∈ B(`n2 (H))+ for all

ε > 0. By our earlier remarks this necessarily implies that (In ⊗ p)x(In ⊗ p) ∈ B(`n2 (H))+

which implies that x ∈ C̃(p)n. This proves that p is an Archimedean matrix order unit for

the matrix ordered ∗-vector space (X , C̃(p)).

We now consider a quotient ∗-vector space of the matrix ordered ∗-vector space (X , C̃(p)).

Define J := span C̃(p)1 ∩ −C̃(p)1. It is readily checked that J is a ∗-closed subspace of Xh.

Lemma 3.1.1. Let X ⊂ B(H) be an operator system and let p ∈ C1 be a projection on H.

For n ∈ N define Jn := span C̃(p)n ∩ −C̃(p)n then Mn(J ) = Jn for all n ∈ N.

Proof. Let x ∈ Mn(J ) which we write as x = ∑
ij eie

∗
j ⊗ xij where xij ∈ J . Thus for each

i, j ∈ [n] we write xij = ∑
k λijkxijk where xijk ∈ C̃(p)1 ∩ −C̃(p)1. It readily follows that

(In ⊗ p)x(In ⊗ p) = (In ⊗ p)
∑

ijk
λijkeie

∗
j ⊗ xijk

 (In ⊗ p) =
∑
ijk
λijkeie

∗
j ⊗ pxijkp.

It then follows (In ⊗ p)x(In ⊗ p) = 0 since ±pxijkp ∈ B(H)+ for all i, j, k. Thus x ∈ C̃(p)1 ∩

−C̃(p)1.
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Conversely suppose x ∈ Jn which we write as x = ∑
k λkxk where xk ∈ C̃(p)n∩−C̃(p)n. For

each k we write xk = ∑
ij eie

∗
j ⊗xkij ∈ Mn(X ). Since (In ⊗p)xk(In ⊗p) = 0 for each k implies

that pxkijp = 0 for all i, j. Thus xkij ∈ C̃(p)1 ∩ −C̃(p)1 which implies x = ∑
ijk eie

∗
j ⊗ λkxkij ∈

Mn(J ). This finishes the proof.

In this setting we thus consider the quotient ∗-vector space X/J where ∗ denotes the

relative involution on cosets. Finally if C̃(p) denotes the matrix ordering induced by the

projection p we consider the collection C̃(p) + J := {C̃(p)n +Mn(J )}n∈N.

Theorem 3.1.2. Let X ⊂ B(H) be an operator system and let p ∈ C1 be a projection on the

Hilbert space H. Furthermore let J := span C̃(p)1 ∩ −C̃(p)1. Then (X/J , C̃(p) + J , p+ J )

is an operator system.

Proof. We need only check that C̃(p) + J is a proper matrix ordering and that p + J

is an Archimedean matrix order unit. Note that since C̃(p) is a matrix ordering on X

and J is a ∗-closed subspace it readily follows that R+C̃(p) + J ⊂ C̃(p) + J and (C̃(p) +

J ) + (C̃(p) + J ) ⊂ C̃(p) + J . Furthermore, compatibility of C̃(p) implies if a ∈ Mn,k then

a∗C̃(p)na + Jk ⊂ C̃(p)k + Jk and therefore C̃(p) + J is a matrix ordering on the quotient

∗-vector space X/J . If ±x + Mn(J ) ∈ C̃(p)n + Mn(J ) then ±x ∈ C̃(p)n which implies

x ∈ Jn. By Lemma 3.1.1 it follows since Mn(J ) = Jn we have x + Mn(J ) = 0 + Mn(J )

and therefore the matrix ordering C̃(p) + J is proper.

Given x + J ∈ (X/J )h it follows x ∈ Xh and therefore there exists r > 0 such that

rp − x ∈ C̃(p)1. In particular we have (rp + J ) − (x + J ) ∈ C̃(p)1 + J . This proves p + J

is an order unit and thus is a matrix order unit. Finally if x + Mn(J ) ∈ Mn(X/J ) such

that for ε > 0 it follows (ε(In ⊗ p) + x) +Mn(J ) ∈ C̃(p)n +Mn(J ) then necessarily we have

ε(In⊗p)+x ∈ C̃(p)n for all ε > 0. Since C̃(p) is Archimedean closed with respect to p it follows

x ∈ C̃(p)n and consequently x+Mn(J ) ∈ C̃(p)n+Mn(J ). Therefore (X/J , C̃(p)+J , p+J )

is an operator system.

Thus we have shown that any positive element of X which acts as a projection the the

Hilbert space H in turn induces a natural operator system. We thus arrive at the following

definition:
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Definition 3.1.1. Let X ⊂ B(H) be an operator system and let p ∈ C1 be a positive

element of X which acts as a projection on H and such that p ≤ e. If C̃(p) denotes the

matrix ordering induced by p and if we let J := span C̃(p)1 ∩ −C̃(p)1 then we call the triple

(X/J , C̃(p) + J , p + J ) the concrete compression operator system relative to p. We will

denote the concrete compression operator system relative to p by pXp, regarded as linear

operators on pH.

Throughout the rest of the manuscript we will be primarily concerned with operator

systems induced by the direct sum of projections. In particular, we wish to formulate the

abstract analogue of the concrete compression operator system induced by the direct sum

of a projection p and its orthogonal p⊥. Our results imply that if X ⊂ B(H) is an operator

system with p ∈ C1 then since p ≤ e it follows that p⊥ := e− p ∈ C1 and acts as a projection

on H. We thus define the matrix ordering C(p) on M2(X ) to be defined for each n ∈ N as

C(p)n := {x ∈ M2(X )h : (In ⊗ (p⊕ p⊥))x(In ⊗ (p⊕ p⊥)) ∈ B(`2n
2 (H))+}.

This yields the following corollary:

Corollary 3.1.3. Let X ⊂ B(H) be an operator system and let p ∈ C1 such that p acts as

a projection on H. Let C(p) be the collection of subsets {C(p)n}n∈N where C(p)n := {x ∈

M2n(X )h : (In ⊗ (p⊕ p⊥))x(In ⊗ (p⊕ p⊥)) ∈ B(`2n
2 (H))+}. Define J := span C(p)1 ∩ −C(p)1.

Then the triple (M2(X )/J , C(p) + J , p ⊕ p⊥ + J ) is an operator system. In particular,

C(p)+J is a proper matrix ordering on M2(X )/J and p⊕p⊥ +J is an Archimedean matrix

order unit.

In order to formulate an abstract analogue of our previously defined concrete compression

operator systems, we begin by showing that given any matrix ordered ∗-vector space (X , C)

and an element e ∈ C1 that acts as an Archimedeam matrix order unit, then there is always

a canonical operator system obtained by taking a particular quotient.

Lemma 3.1.4. Let X be a ∗-vector space and let C be a matrix ordering on X . For each

n ∈ N we define the ∗-subspace Jn := span Cn ∩ −Cn, where we will let J := J1. Then

Mn(J ) = Jn for all n ∈ N.
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Proof. First suppose that x ∈ Jn. Then we write x = ∑
k λkxk, where xk ∈ Cn ∩ −Cn. For

each k we write λk = ak + ibk which yields x = ∑
k λkxk = ∑

k akxk + i∑k bkxk. We see that

if we let y1 := ∑
k akxk and y2 := ∑

k bkxk then both y1, y2 ∈ Cn ∩ −Cn. In particular this

implies that if x ∈ Jn then we may write x = y1 + iy2 such that yi ∈ Cn ∩ −Cn.

We will prove that given any x ∈ J1 that eke∗
l ⊗x ∈ Jn. This will prove thatMn(J ) ⊂ Jn.

By our remarks above we write x = y1 + iy2 where y1, y2 ∈ C1 ∩ −C1. Since C is a matrix

ordering necessarily implies that for k, l ∈ [n] we have eke∗
k ⊗ ±y1, and eke

∗
k ⊗ ±y2 are in

Cn which necessarily implies ±eke∗
k ⊗ x ∈ Jn. Similarly (ek + el)(ek + el)∗ ⊗ ±x ∈ Jn and

(ek + iel)(ek + iel)∗ ⊗ ±x ∈ Jn. It thus follows

((ek + el)(ek + el)∗ − eke
∗
k − ele

∗
l ) ⊗ x = (eke∗

l + ele
∗
k) ⊗ x ∈ Jn. (3.1)

Similarly it follows

i((ek + iel)(ek + iel)∗ − eke
∗
k − ele

∗
l ) ⊗ x = (eke∗

l − ele
∗
k) ⊗ x ∈ Jn. (3.2)

Summing these equations together implies that eke∗
l ⊗x ∈ Jn which proves the first inclusion.

Consider now x ∈ Jn which by our remarks above we write as x = y1 + iy2 where

ys ∈ Cn∩−Cn. We will show that if y1 = ∑
kl eke

∗
l ⊗y1kl that y1kl ∈ J for each k, l. The proof

for y2 will be the same. These together will prove that x ∈ Mn(J ). By the assumption that C

is a matrix ordering necessarily implies that given k, l ∈ [n] that e∗
ky1ek = y1kk, e

∗
l y1el = y1ll

are contained in J . Similarly, (ek + el)∗y1(ek + el) = y1kk + y1kl + y1lk + y1ll ∈ J and

(ek + iel)∗y1(ek + iel) = y1kk + iy1kl − iy1lk + y1ll ∈ J . Thus we see that y1kl + y1lk ∈ J and

y1kl − y1lk ∈ J which implies y1kl ∈ J as desired.

Similar to our results above we thus are able to prove that every matrix ordered ∗-vector

space e with Archimedean matrix order unit e induces a canonical operator system.

Proposition 3.1.2. Let (X , C) be a matrix ordered ∗-vector space and suppose that e is an

Archimedean matrix order unit. Let J := span C1 ∩−C1. Then the triple (X/J , C +J , e+J )

is an operator system.
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Proof. The proof that C + J is a matrix ordering is similar to the method of proof used in

Theorem 3.1.2 . Suppose that ±x+Mn(J ) ∈ Cn +Mn(J ). This implies ±x ∈ Cn and thus

x ∈ Jn which by Lemma 3.1.4 implies x ∈ Mn(J ). In particular, x+Mn(J ) = 0 +Mn(J ).

This proves that C + J is a proper matrix ordering on X/J . The proof that e + J is an

Archimedean matrix order unit is a direct consequence of the fact that e is an Archimedean

matrix order unit for the pair (X , C).

Throughout the manuscript we will be considering matrix ordered ∗-vector spaces which

may not be a priori proper. Thus, time and again we will rely on the techniques of the

above results to consider the canonical induced operator systems. We first relate the order

structure as defined in the concrete compression operator systems to the initial ordering of

the operator system.

Note that if X ⊂ B(H) is an operator system and p ∈ C1 is a positive contraction which

acts as a projection on H then given x ∈ C1, since conjugation by p is a positive map (on

B(H)) it follows that pxp ∈ B(H)+. In the next result we determine an equivalent condition

for the converse.

Lemma 3.1.5. Let X ⊂ B(H) be an operator system and let p ∈ C1 be a positive contraction

that acts as a projection on the Hilbert space H. Then for any x ∈ Xh it follows pxp ∈ B(H)+

if and only if for all ε > 0 there exists t > 0 such that x+ εp+ tp⊥ ∈ C1.

Proof. The if direction is immediate by our remarks preceding the lemma along with the

assumption that e is an Archimedean matrix order unit for B(H). For the converse, suppose

that we write H = pH ⊕ p⊥H. It then follows an operator u ∈ B(H) is positive if and only

if both pup, p⊥up⊥ are both positive and for all ξ = ξ1 + ξ2 ∈ pH ⊕ p⊥H we have

∣∣∣〈pup⊥ξ2|ξ1〉
∣∣∣2 ≤ 〈pupξ1|ξ1〉〈p⊥up⊥ξ2|ξ2〉.

Let ε > 0 and choose t >
∥∥∥x∥∥∥ such that ε(t −

∥∥∥x∥∥∥) > ∥∥∥x∥∥∥2. Let u := x + εp + tp⊥.

We then have pup⊥ = pxp⊥, p⊥up = p⊥xp. Furthermore, pup = pxp + εp ∈ B(H)+ since
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pxp ∈ B(H)+. It follows p⊥up⊥ = p⊥xp⊥ + tp⊥ ≥ tp⊥ −
∥∥∥x∥∥∥p⊥ = (t −

∥∥∥x∥∥∥)p⊥ ∈ B(H)+. It

then follows

∣∣∣〈pup⊥ξ2|ξ1〉
∣∣∣2 ≤

∥∥∥x∥∥∥2
∥∥∥ξ1

∥∥∥2
∥∥∥ξ2

∥∥∥2 < ε(t−
∥∥∥x∥∥∥)∥∥∥ξ1

∥∥∥2
∥∥∥ξ2

∥∥∥2.

It is then immediate

ε
∥∥∥ξ1

∥∥∥2 = 〈εpξ1|ξ1〉 ≤ 〈pxpξ1|ξ1〉 + 〈εpξ1|ξ1〉 = 〈pupξ1|ξ1〉,

and

(t−
∥∥∥x∥∥∥)∥∥∥ξ2

∥∥∥2 = 〈(t−
∥∥∥x∥∥∥)p⊥ξ2|ξ2〉 ≤ 〈p⊥up⊥ξ2|ξ2〉.

We then obtain

∣∣∣〈pup⊥ξ2|ξ1〉
∣∣∣2 ≤ 〈pupξ1|ξ1〉〈p⊥up⊥ξ2|ξ2〉. (3.3)

Thus, u = x+ εp+ tp⊥ ∈ X ∩B(H)+ which is precisely the cone C1.

Definition 3.1.2. Let (X , C, e) be an operator system and let p ∈ X be a positive contraction.

Define the collection C(p) := {C(p)n}n∈N with base space M2(X ) for each n ∈ N by

C(p)n := {x ∈ M2n(X )h : ∀ε > 0 ∃t > 0 such that (3.4)

x+ εIn ⊗ (p⊕ p⊥) + tIn ⊗ (p⊥ ⊕ p) ∈ C2n}. (3.5)

Theorem 3.1.6. Let (X , C, e) be an operator system and let p ∈ C1 be a positive contraction.

Then C(p) is a matrix ordering on M2(X ). Furthermore if J := span C(p)1 ∩ −C(p)1 then

the triple (M2(X )/J , C(p) + J , (p⊕ p⊥) + J ) is an operator system.

Proof. We begin by showing that C(p) is a matrix ordering on M2(X ). Let y ∈ C(p)n and let

λ > 0. Then if ε > 0 choose t > 0 such that y+ ε
λ
(In⊗(p⊕p⊥))+t(In⊗(p⊥⊕p)) ∈ C2n. It then

follows λy+ε(In⊗(p⊕p⊥))+λt(In⊗(p⊥ ⊕p)) ∈ λC2n ⊂ C2n. Thus, R+C(p) ⊂ C(p). Consider

now y1, y2 ∈ C(p)n and let ε > 0. Then there exists ti > 0 such that yi+ ε
2(In⊗(p⊕p⊥))+ti(In⊗

(p⊥⊕p)) ∈ C2n. Let t := max{t1, t2}. This implies (y1+y2)+ε(In⊗(p⊕p⊥))+t(In⊗(p⊥⊕p)) ∈
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C2n. Therefore C(p) + C(p) ⊂ C(p). It remains to show compatibility of the collection C(p).

Let y ∈ C(p)n and suppose a ∈ Mn,k. We claim (a⊗ I2)∗y(a⊗ I2) ∈ C(p)k. Let ε > 0 and let

t > 0 such that y + ε
‖a‖2 (In ⊗ (p⊕ p⊥)) + t(In ⊗ (p⊥ ⊕ p)) ∈ C2n. Then it necessarily follows

(a⊗ I2)∗y(a⊗ I2) + ε∥∥∥a∥∥∥2
(a⊗ I2)∗(In ⊗ (p⊕ p⊥))(a⊗ I2)

+ t(a⊗ I2)∗(In ⊗ (p⊥ ⊕ p))(a⊗ I2)

is an element of C2k. Since we have (a⊗ I2)∗(In ⊗ (p⊕ p⊥))(a⊗ I2) ≤
∥∥∥a∥∥∥2(Ik ⊗ (p⊕ p⊥)) and

(a⊗ I2)∗(In ⊗ (p⊥ ⊕ p))(a⊗ I2) ≤
∥∥∥a∥∥∥2(Ik ⊗ (p⊥ ⊕ p)) then it follows

(a⊗ I2)∗y(a⊗ I2) + ε(Ik ⊗ (p⊕ p⊥)) + t
∥∥∥a∥∥∥2(Ik ⊗ (p⊥ ⊕ p)) ∈ C2k.

Consequently (a⊗ I2)∗y(a⊗ I2) ∈ C(p)k which proves C(p) is a matrix ordering on M2(X ).

It is then an immediate consequence of our previous results that C(p) + J is a proper

matrix ordering on the quotient ∗-vector space M2(X )/J .

It remains to show (p ⊕ p⊥) + J is an Archimedean matrix order unit for M2(X )/J .

By Proposition 2.0.1 it suffices to show (p ⊕ p⊥) + J is an order unit. To this end let

x ∈ M2(X )/J and choose r > 0 such that r(I2 ⊗ e) − x ∈ C2. It then follows if ε > 0 and we

let t = r we have

(r(p⊕ p⊥) − x) + ε(p⊕ p⊥) + r(p⊥ ⊕ p) = (r(I2 ⊗ e) − x) + ε(p⊕ p⊥) ∈ C2.

Thus, (r(p ⊕ p⊥) + J ) − (x + J ) ∈ C(p)1 + J which proves (p ⊕ p⊥) + J is an order unit

and therefore a matrix order unit.

Consider x ∈ Mn(M2(X )/J ) such that δ(In ⊗ (p ⊕ p⊥)) + x ∈ C(p)n for all δ > 0.

Furthermore let ε > 0. It then follows that there exists t > 0 such that ( ε2(In⊗(p⊕p⊥))+x)+
ε
2(In⊗(p⊕p⊥))+t(In⊗(p⊥⊕p)) ∈ C2n. Thus, we see x+ε(In⊗(p⊕p⊥))+t(In⊗(p⊥⊕p)) ∈ C2n

which implies x ∈ C(p)n and consequently x + Mn(J ) ∈ C(p)n + Mn(J ) which proves

(p⊕p⊥)+J is an Archimedean matrix order unit. Thus, (M2(X )/J , C(p)+J , (p⊕p⊥)+J )

is an operator system.
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Definition 3.1.3. Let (X , C, e) be an operator system and let p ∈ C1 be a positive con-

traction. If C(p) denotes the matrix ordering induced by the positive contraction p and if

J := span C(p)1 ∩ −C(p)1 then we call the triple (M2(X )/J , C(p) + J , (p ⊕ p⊥) + J ) the

abstract compression operator system relative to the positive contraction p. We will denote

the abstract compression operator system relative to p by M2(X )/J when no confusion will

arise.

Corollary 3.1.7. Let X ⊂ B(H) be an operator system and let p ∈ C1 be a positive

contraction which acts as a projection on H. Then if J := C(p)1 ∩ −C(p)1 then (p ⊕

p⊥)X (p ⊕ p⊥) is completely order isomorphic to the abstract compression operator system

M2(X )/J .

Proof. This is an immediate consequence of Lemma 3.1.5 and Theorem 3.1.6 . In particular,

one needs only show that given x ∈ M2n(X )h then (In⊗(p⊕p⊥)x(In⊗(p⊥⊕p)) ∈ B(`2n
2 (H))+

if and only if for every ε > 0 there exists t > 0 such that

x+ εIn ⊗ (p⊕ p⊥) + tIn ⊗ (p⊥ ⊕ p) ∈ C2n.

Since In ⊗ (p ⊕ p⊥) is a projection on `2n
2 (H) then by Lemma 3.1.5 it follows (In ⊗ (p ⊕

p⊥)x(In ⊗ (p⊥ ⊕ p)) ∈ B(`2n
2 (H))+ if and only if for every ε > 0 there exists t > 0 such that

x+ εIn ⊗ (p⊕ p⊥) + tIn ⊗ (p⊥ ⊕ p) ∈ C2n.

In particular, since the matrix orderings coincide then this shows the identity (p⊕p⊥)X (p⊕

p⊥) → M2(X )/J is a unital complete order isomorphism.

We point out that our results generalize to arbitrary direct sums of finite length. In

particular if {p1, . . . , pN} is a set of positive contractions on an operator system (X , C, e)

then if we let P := ⊕ipi and P⊥ := ⊕p⊥
i then we may consider MN(X )/J , the abstract

compression operator system relative to P , where J := span C(P )1 ∩ −C(P )1.

Throughout the manuscript, given n ∈ N then we let Jn ∈ Mn denote the n × n matrix

with 1 in every entry.
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Theorem 3.1.8. Let X ⊂ B(H) an operator system and let p ∈ C1 be a positive contraction

which acts as a projection on H. Then given x ∈ Mn(X ) it follows x ⊗ J2 ∈ C(p)n if and

only if x ∈ Cn.

Proof. First consider x, y, z ∈ X such that x, z ∈ Xh. We begin by proving that

 x y

y∗ z

 ∈

C(p)1 if and only if pxp + pyp⊥ + p⊥y∗p + p⊥zp⊥ ∈ B(H)+. If

 x y

y∗ z

 ∈ C(p)1 then by

Lemma 3.1.5 we have

(p⊕ p⊥)

 x y

y∗ z

 (p⊕ p⊥) ∈ B(`2
2(H))+. (3.6)

Conjugating by the matrix

1

1

 yields the desired conclusion. Conversely if pxp + pyp⊥ +

p⊥y∗p+p⊥zp⊥ ∈ B(H)+ then once again by Lemma 3.1.5 we need only show (p⊕p⊥)

 x y

y∗ z

 (p⊕

p⊥) =: S ∈ B(`2
2(H))+. Write H = pH ⊕ p⊥H and let ξ, η ∈ H. If we denote ξ′ := pξ and

η′ := p⊥η then it follows

〈S(ξ ⊕ η)|(ξ ⊕ η)〉 = 〈(pxp+ pyp⊥ + p⊥y∗p+ p⊥zp⊥)(ξ′ + η′)|(ξ′ + η′)〉 ∈ R+,

and thus

 x y

y∗ z

 ∈ C(p)1.

We go on to prove our claim that x⊗ J2 ∈ C(p)n if and only if x ∈ Cn. Let x ∈ Cn. Then

x⊗ J2 ∈ C2n and therefore if ε > 0 and we let t = ε then it follows

x⊗ J2 + εIn ⊗ (p⊕ p⊥) + εIn ⊗ (p⊥ ⊕ p) ∈ C2n.
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This proves x⊗ J2 ∈ C(p)n. Conversely, suppose x ∈ Mn(X )h such that x⊗ J2 ∈ C(p)n. Let

ε > 0 be arbitrary. Then there exists t > 0 such that

x⊗ J2 + εIn ⊗ (p⊕ p⊥) + tIn ⊗ (p⊥ ⊕ p) ∈ C2n.

Applying a canonical shuffle we rewrite the above sum as

x x

x x

+ ε

In ⊗ p 0

0 In ⊗ p⊥

+ t

In ⊗ p⊥ 0

0 In ⊗ p

 ∈ C2n.

This implies

x x

x x

 ∈ C(In ⊗ p)1 and by the first part of our proof this implies

(In ⊗ p)x(In ⊗ p) + (In ⊗ p)x(In ⊗ p⊥) + (In ⊗ p⊥)x(In ⊗ p) + (In ⊗ p⊥)x(In ⊗ p⊥)

is an element of B(`n2 (H))+. Since p + p⊥ = IdH then we have x ∈ Cn. This concludes the

proof.

Motivated by the above theorem we arrive at the following definition:

Definition 3.1.4. Let (X , C, e) be an operator system and let p ∈ C1 be a nonzero positive

contraction. If C(p) denotes the matrix ordering induced by p and if J := span C(p)1 ∩−C(p)1

then we will say p is an abstract projection if the map

πp : X → M2(X )/J , x 7→ x⊗ J2 + J ,

is a complete order embedding. If p = 0 then we call p the zero abstract projection.

It follows if (X , C, e) is an operator system then e is an abstract projection. We consider

the map πe : X → M2(X )/J where J := span C(e)1 ∩ −C(e)1. First note that if x ∈ Cn then
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x ⊗ J2 ∈ C2n. One may check this by taking a concrete realization of X and showing the

property holds. In particular, if ε > 0 is arbitrary and we let t = ε then we have

x⊗ J2 + εIn ⊗ (e⊕ 0) + εIn ⊗ (0 ⊕ e) ∈ C2n.

Thus x ⊗ J2 ∈ C(e)n. If x ∈ Mn(X ) such that (πe)n(x) ∈ C(e)n + Mn(J ) then this implies

for all ε > 0 there exists t > 0 such that

x⊗ J2 + εIn ⊗ (e⊕ 0) + tIn ⊗ (0 ⊕ e) ∈ C2n.

By first applying a canonical shuffle Mn ⊗M2 → M2 ⊗Mn and then compressing the above

expression by

1

1

 (here we are compressing to the 1 × 1 block) implies x + εIn ⊗ e ∈ Cn.

Here we have used the assumption that C is a matrix ordering and is therefore compatible.

Since ε > 0 is arbitrary and the matrix ordering C is Archimedean closed with respect to e

necessarily implies x ∈ Cn. This proves πe is a complete order embedding. Thus we see in

an abstract operator system (X , C, e) that the “identity” e is indeed an abstract projection.

This coincides with the immediate fact that if H is a Hilbert space then the identity operator

IdH : H → H is a projection. In a similar fashion to our remarks regarding the abstract

projection, e, one shows that the zero element 0 is also an abstract projection in (X , C, e).

Similarly this coincides with the immediate fact that if we once again consider B(H), that

0 is trivially a projection on H.

Consider the operator system X and let p ∈ C1 be an abstract projection. We claim

p⊥ := e− p is also an abstract projection. By assumption it follows x ∈ Cn if and only if for

all ε > 0 there exists t > 0 such that

x⊗ J2 + εIn ⊗ (p⊕ p⊥) + tIn ⊗ (p⊥ ⊕ p) ∈ C2n.
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If we conjugate by the unitary In ⊗

0 1

1 0

 then necessarily we have

x⊗ J2 + εIn ⊗ (p⊥ ⊕ p) + tIn ⊗ (p⊕ p⊥) ∈ C2n.

In particular, x ∈ C2n if and only if (πp⊥)n(x) ∈ C(p⊥)n; i.e., πp⊥ is a complete order

embedding. A similar argument shows if p⊥ is an abstract projection then p is also an

abstract projection. Thus, as in the case for bounded operators on a Hilbert space, a positive

contraction p is an abstract projection if and only if p⊥ is an abstract projection.

Remark 3.1.9. Let (X , C, e) be an operator system. If we consider the abstract projection

e then it follows for all n ∈ N, if C̃(e) denotes the matrix ordering on X induced by e then

C̃(e)n := {x ∈ Mn(X )h : ∀ε > 0, x+ εIn ⊗ e ∈ Cn}

which by the fact that C is Archimedean closed with respect to e yields C̃(e)n = Cn. Thus,

J := span C̃(e)1 ∩ −C̃(e)1 = {0}. Thus, X/J ' X . Therefore we see that e behaves as the

identity operator projection would in the concrete setting of B(H).

If we consider now p = 0 it follows that C̃(0) is the matrix ordering defined for each n ∈ N

by

C̃(0)n := {x ∈ Mn(X )h : ∃t > 0 such that x+ tIn ⊗ e ∈ Cn}.

Since e is a matrix order unit it follows C̃(0)1 = Xh, i.e., for each n ∈ N it follows C̃(0)n =

Mn(X )h. This implies if J := span C̃(0)1 ∩ −C̃(0)1 then X/J = X/Xh = {0} which is a

direct result of the fact that X = Xh ⊕ iXh. Thus we see that the zero abstract projection

behaves as the identically zero operator on a Hilbert space H.

Remark 3.1.10. Given an operator system X then our conditions that a positive contraction

p ∈ X be an abstract projection imply a very important property regarding the norm. It

must be the case that if p is a nonzero abstract projection in (X , C, e) then α(p) = 1 where

α : X → [0,∞) denotes the order norm induced by the Archimedean order unit e. Suppose
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0 < α(p) < 1. Let r := α(p). Then it follows re − p ∈ C1. Recalling that e = p + p⊥ we see

re−p = rp+rp⊥−p = (r−1)p+rp⊥. If ε > 0 is arbitrary then it follows (r−1)p+εp+rp⊥ ∈ C1

and therefore we see (r − 1)p ∈ C̃(p)1 where we will let C̃(p) denote the matrix ordering on

X defined for each n ∈ N as

C̃(p)n := {x ∈ Mn(X )h : ∀ε > 0 ∃t > 0 such that x+ εp+ tp⊥ ∈ Cn}.

As our results in the beginning of Section 3.1 imply, it follows if J := span C̃(p)1 ∩ −C̃(p)1

then the triple (X/J , C̃(p)+J , p+J ) is an operator system. Since p ∈ C1 it follows p ∈ C̃(p)1.

Furthermore since (r−1)p = −(1−r)p ∈ C̃(p)1 then −p ∈ C̃(p)1. Thus, we see that p ∈ J and

consequently the abstract compression operator system (X/J , C̃(p)+ J , p+J ) is trivial. In

particular, if we assumed that p was an abstract projection with α(p) < 1 then πp(p) = 0+J

and thus πp would not be injective, contradicting the assumption that it was a complete order

embedding, and thus a linear isomorphism.

Corollary 3.1.11. Let X ⊂ B(H) be an operator system and let p ∈ X be a positive

contraction that acts as a projection on H. Then p is an abstract projection in X .

Proof. Immediate from Lemma 3.1.5 , Corollary 3.1.7 , and Theorem 3.1.8 .

Thus far we have proven that our notion of an abstract projection satisfies many prop-

erties as that of a concrete projection on some Hilbert space. In particular, Corollary 3.1.11 

implies that every concrete projection is an abstract projection. We now go on to prove that

every abstract projection is a concrete projection on some Hilbert space H.

Proposition 3.1.3. Let (X , C, e) be an operator system and let p ∈ X be an abstract

projection. Let C(p) be the induced matrix ordering on M2(X ) induced by p and let J :=

span C(p)1 ∩ −C(p)1. Then given any matrix state ϕ : M2(X )/J → Mn there exists another

matrix state ϕ′ : M2(X )/J → Mn′ such that ϕ′((p⊕ 0) + J ) and ϕ′((0 ⊕ p⊥) + J ) are both

projections in Mn′ and if x, y, z ∈ Mn(X ) then

ϕ′
n


 x y

y∗ z

+Mn(J )

 ∈ M+
nn′
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if and only if

ϕ2n





x 0 0 y

0 0 0 0

0 0 0 0

y∗ 0 0 z


+M2n(J )


∈ M+

n2 .

Proof. For notational convenience we will let x̂ ∈ Mn(M2(X )/J ) denote the coset x+Mn(J )

where x ∈ M2n(X ). Since ϕ(p̂⊕ 0) = In − ϕ(0̂ ⊕ p⊥) it follows
[
ϕ(p̂⊕ 0), ϕ(0̂ ⊕ p⊥)

]
= 0.

Here we have let [·, ·] denote the commutator defined by [a, b] := ab− ba, a, b ∈ Mn. Choose

an orthonormal basis of `n2 such that both ϕ(p̂⊕ 0) and ϕ(0̂ ⊕ p⊥) are diagonal. We write

P := ϕ(p̂⊕ 0) and P⊥ := ϕ(0̂ ⊕ p⊥) which by reordering our basis we may write as

P =



Ik

xk+1
. . .

xk′

0n−k′


∈ Mn, and P⊥ =



0k
yk+1

. . .

yk′

In−k′


∈ Mn

such that 0 ≤ k ≤ k′ ≤ n and xi + yi = 1 with xi, yi ∈ (0, 1) for each i. We consider the

following operators

A :=



Ik

x
−1/2
k+1 0k′,n−k′

. . .

x
−1/2
k′


∈ Mk′,n,
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and

B :=



y
−1/2
k+1

0n−k,k
. . .

y
−1/2
k′

In−k′


∈ Mn−k,n.

It then follows that APA∗ = Ik′ and BP⊥B∗ = In−k. Let m := k′ + n− k and define the

map ϕ′ : M2(X )/J → Mm by

̂x y

w z

 7→ (A⊕B)



ϕ

̂x 0

0 0

 ϕ

̂0 y

0 0



ϕ

̂0 0

w 0

 ϕ

̂0 0

0 z




(A∗ ⊕B∗).

Then ϕ′ : M2(X )/J → Mm is unital completely positive and ϕ′(p̂⊕ 0) = Ik′ ⊕ 0n−k and

ϕ′(0̂ ⊕ p⊥) = 0k′ ⊕ In−k. In particular we see ϕ′(p̂⊕ 0) + ϕ′(0̂ ⊕ p⊥) = Im. In order to verify

the final claim it suffices to show if

 x y

y∗ z

 ∈ M2(X )h then the nonzero entries of

ϕ


̂x 0

0 0


 , ϕ


̂0 y

0 0


 , ϕ


̂ 0 0

y∗ 0


 , ϕ


̂0 0

0 z


 ,

are all supported in the proper corners. This is to say that the nonzero entries of ϕ


̂x 0

0 0




are contained in its upper left k′×k′ corner, the nonzero entries of ϕ


̂0 0

0 z


 are contained

in its lower right (n−k)×(n−k) corner, and the nonzero entries of ϕ


̂0 y

0 0


 are contained
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in its upper right k′×(n−k) corner. This in turn proves the claim since ϕ′ : M2(X )/J → Mm

is simply the compression of



ϕ

̂x 0

0 0

 ϕ

̂0 y

0 0



ϕ

̂0 0

w 0

 ϕ

̂0 0

0 z




to its support, and thus a m×m submatrix, followed by conjugation by the invertible matrix



Ik

x
− 1

2
k+1

. . .

x
− 1

2
k′

y
− 1

2
k+1

. . .

y
− 1

2
k′

In−k′



.

We begin by proving the claim for ϕ


̂x 0

0 0


 . Thus, for x ∈ Xh we may assume

that (p⊕ p⊥) ±

x 0

0 0

 ∈ C(p)1 since p̂⊕ p⊥ is an Archimedean order unit for the abstract

compression operator system M2(X )/J . Since C(p) is a matrix ordering this necessarily

implies for all ε > 0 there exists t > 0 such that p ± x + εp + tp⊥ ∈ C1 and consequentlyp± x 0

0 0

 ∈ C(p)1. Positivity of ϕ implies that ϕ


̂p± x 0

0 0


 = P±ϕ


̂x 0

0 0


 ∈ M+

n

which necessarily implies that the nonzero entries of ϕ


̂x 0

0 0


 sit in the upper left k′ ×k′
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block. A similar argument holds in showing that the matrix ϕ

̂0 0

0 z

 has support contained

in its lower right (n − k) × (n − k) block. It remains to prove the claim for ϕ


̂0 y

0 0


 .

Since p̂⊕ p⊥ is an order unit we may assume after rescaling that

 p y

y∗ p⊥

 ∈ C(p)1. Since

the mapping

x y

w z

 7→



x 0 0 y

0 0 0 0

0 0 0 0

w 0 0 z


is completely positive then



p 0 0 y

0 0 0 0

0 0 0 0

y∗ 0 0 p⊥


∈ C(p)2.

Consequently it follows

ϕ2



̂

p 0 0 y

0 0 0 0

0 0 0 0

y∗ 0 0 p⊥




=



P ϕ


̂0 y

0 0




ϕ


̂ 0 0

y∗ 0


 P⊥


∈ M+

2n.

This proves the claim and therefore finishes the proof.

Lemma 3.1.12. Let (X , C, e) be an operator system and let p ∈ X be an abstract projection.

Let C(p) be the matrix ordering on M2(X ) induced by p and let J := span C(p)1 ∩ −C(p)1.

Then the map πp : X → M2(X )/J is unital.
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Proof. It suffices to prove that

±

0 p

p p

 ,±
p⊥ p⊥

p⊥ 0

 ∈ C(p)1.

It will then follow that πp(e) = e ⊗ J2 + J = (p ⊕ p⊥) + J which by Theorem 3.1.6 proves

the claim. We prove the claim for ±

0 p

p p

 and the argument for ±

p⊥ p⊥

p⊥ 0

 is similar.

Let ε > 0 and let t = 1
ε
. It then follows

0 p

p p

+ ε(p⊕ p⊥) + 1
ε
(p⊥ ⊕ p) =

ε 1

1 1 + 1
ε

⊗ p+

1
ε

0

0 ε

⊗ p⊥ ∈ C2.

Similarly, if ε > 0 is arbitary and we choose t = (1 + 1
ε
) then

 0 −p

−p −p

+ ε(p⊕ p⊥) + (1 + 1
ε
)(p⊥ ⊕ p) =

 ε −1

−1 1
ε

⊗ p+

1 + 1
ε

0

0 ε

⊗ p⊥ ∈ C2.

This, along with our initial remarks, concludes the proof.

Theorem 3.1.13. Let (X , C, e) be an operator system and let p ∈ X be an abstract projection.

Then there exists a Hilbert space H and a unital complete order embedding π : X → B(H)

such that π(p) is a projection on H.

Proof. For each n ∈ N we consider the set

An := {ψ : M2(X )/J → Mn, such that ψ is unital completely positive},

i.e., we are letting An denote the convex set of matrix states of level n on the operator system

M2(X )/J . Consider the map ϕ := ⊕
n∈N

⊕
ψ∈An ψ : M2(X )/J → ⊕

n∈N
⊕

ψ∈AnM
ψ
n ,M

ψ
n =

Mn for each ψ ∈ An, which is necessarily a unital complete order isomorphism onto the range.

Using Proposition 3.1.3 we replace each ψ : M2(X )/J → Mn with the unital completely

positive map ψ′ : M2(X )/J → Mm and we then obtain a unital completely positive map

ϕ′ : M2(X )/J → ⊕
m∈N

⊕
ψ′∈AmM

ψ′
m ⊂ B(H) where H := ⊕

m∈N
⊕

ψ′∈Am `
mψ′
2 , and such that

41



ϕ′(p̂⊕ 0) is a projection on H. We claim that ϕ′ is a complete order embedding. It will

suffice to show that for x, z ∈ Mn(X )h, and y ∈ Mn(X ), if
̂ x y

y∗ z

 /∈ C(p)n then there exists

a natural number m and ψ ∈ Am such that ψn


̂ x y

y∗ z


 /∈ M+

mn. If
̂ x y

y∗ z

 /∈ C(p)n then

it follows

̂

x 0 0 y

0 0 0 0

0 0 0 0

y∗ 0 0 z


/∈ C(p)2n.

In particular there exists a matrix state ψ : M2(X )/J → Mm such that

ψ2n



̂

x 0 0 y

0 0 0 0

0 0 0 0

y∗ 0 0 z




/∈ M+

2mn.

Let ψ′ : M2(X )/J → Mm′ be the induced unital completely positive map whose existence

comes from Proposition 3.1.3 . This implies that ψ′
n


̂ x y

y∗ z


 /∈ M+

m′n and since ψ′ ∈ Am′

this proves our claim. Thus, ϕ′ : M2(X )/J → B(H) is a unital complete order embed-

ding. Let πp : X → M2(X )/J be the unital complete order embedding into the abstract

compression operator system. The desired map is then π := ϕ′πp : X → B(H).

Theorem 3.1.14. Let (X , C, e) be an operator system and let p ∈ X be an abstract projection.

Then p is a projection in C∗
e (X ).

Proof. Using Theorem 3.1.13 we let H be a Hilbert space, and π : X → B(H) a unital

complete order embedding such that π(p) is a projection in B(H). Let A := C∗(π(X )),

i.e., A is the unital C*-algebra generated by the image of X under π. Using the universal

42



property of C∗
e (X ) there exists a unique ∗-epimorphism σ : A → C∗

e (X ) such that σπ = j

where j : X → C∗
e (X ) denotes the canonical embedding into the C*-envelope. We verify that

j(p) is a self-adjoint idempotent. Since j is positive then it is necessarily self-adjoint which

is to say that given any x ∈ X that j(x∗) = j(x)∗. Consequently, since p ∈ Xh we have that

j(p) = j(p)∗. For our final claim we see

j(p)2 = (σπ(p))(σπ(p)) = σ(π(p)2) = σ(π(p)) = j(p).

This finishes the proof.

Combining Definition 3.1.4 , Theorem 3.1.13 , and Theorem 3.1.14 we thus arrive at the

following theorem which we use to completely characterize abstract projections in an operator

system.

Theorem 3.1.15. Let (X , C, e) be an operator system and let p ∈ X be a positive contraction.

Then the following are equivalent:

1. p is an abstract projection.

2. There exists a Hilbert space H and a unital complete order embedding

π : X → B(H) such that π(p) is a projection.

3. p is a projection in C∗
e (X ).

3.2 Multiple Projections in Operator Systems

Expanding on the methods of Section 3.1 we now develop our methods in order to detect

when a finite number of positive contractions in an operator system are all simultaneously

abstract projections. In particular, our goal is to avoid using the C*-envelope as we had done

in Theorem 3.1.15 . The reason for doing this is we wish to determine when a finite number

of positive contractions in an AOU space are all simultaneously abstract projections relative

to the same operator system structure. Our new methods are necessary since when dealing

with AOU spaces one cannot simply appeal to the C*-envelope since no such universal object

is guaranteed to exist in the category of AOU spaces with morphisms being positive maps.
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Definition 3.2.1. Let (X , C, e) be an operator system and let {p1, . . . , pN} ⊂ X be a finite

set of positive contractions in X . For each i ∈ [N ] we define

PN
i := I2i−1 ⊗ (pi ⊕ p⊥

i ) ⊗ J2N−i ,

and

QN
i := I2i−1 ⊗ (p⊥

i ⊕ pi) ⊗ J2N−i .

Similarly, for each i ∈ [N ] we define

P̂N
i := J2i−1 ⊗ (pi ⊕ p⊥

i ) ⊗ J2N−i

and

Q̂N
i := J2i−1 ⊗ (p⊥

i ⊕ pi) ⊗ J2N−i .

For each i ∈ [N ] it follows PN
i , Q

N
i , P̂

N
i , Q̂

N
i ∈ M2N (X ).We define the collection C(p1, . . . , pN)

for each n ∈ N by x ∈ C(p1, . . . , pN)n if and only if x ∈ Mn2N (X )h and for all ε1, . . . , εN > 0

there exists t1, . . . , tN > 0 such that

x+
∑

i
εiIn ⊗ PN

i +
∑

i
tiIn ⊗QN

i ∈ Cn2N , (3.7)

with the additional property that if we replace 0 < ε′
i < εi then we may choose t′i > ti such

that Equation (3.7 ) is still satisfied. We define the collection Ĉ(p1, . . . , pN) analogously with

P̂N
i and Q̂N

i in place of PN
i and QN

i in Equation (3.7 ).

Note that given any n ∈ N then both C(p1, . . . , pN)n and Ĉ(p1, . . . , pN)n are nonempty

since if one chooses x ∈ Cn2N then letting ti = εi for each i ∈ [N ] as in Definition 3.2.1 , then

Equation (3.7 ) is satisfied.
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Lemma 3.2.1. Let (X , C, e) be an operator system and let {p1, . . . , pN} ⊂ X be a finite set

of positive contractions. Let C(p1, . . . , pN) and Ĉ(p1, . . . , pN) be as in Definition 3.2.1 . Then

Ĉ(p1, . . . , pN) ⊂ C(p1, . . . , pN).

Proof. First note that J2 ≤ 2I2. In particular if we fix n ∈ N then In ⊗ P̂N
i ≤ 2i−1In ⊗ PN

i .

Consider x ∈ Ĉ(p1, . . . , pN)n. Thus, for all ε1, . . . , εN > 0 there exists t1, . . . , tN > 0 such

that

x+
∑

i

εi

2i−1 In ⊗ P̂N
i +

∑
i
tiIn ⊗ Q̂N

i ∈ Cn2N .

By our beginning remarks it then follows

x+
∑

i
εiIn ⊗ PN

i +
∑

i
2i−1tiIn ⊗QN

i ∈ Cn2N .

This proves that x ∈ C(p1, . . . , pN)n.

Proposition 3.2.1. Let X ⊂ B(H) be an operator system and let {p1, . . . , pN} ⊂ X be a

finite set of positive contractions such that each contraction acts as a projection on H. Then

the following are equivalent:

1. x ∈ Cn.

2. x⊗ J2N ∈ C(p1, . . . , pN)n.

3. x⊗ J2N ∈ Ĉ(p1, . . . , pN)n.

Proof. Since C ⊗ J2N ⊂ Ĉ(p1, . . . , pN) ⊂ C(p1, . . . , pN) we readily see that (1) implies (3)

implies (2). We will prove by induction on N that if x⊗ J2N ∈ C(p1, . . . , pN)n then x ∈ Cn.

The base case is given by Theorem 3.1.8 . Thus, suppose that our claim holds for N − 1

contractions. Consider x ∈ Mn(X ) such that x⊗J2N ∈ C(p1, . . . , pN)n. Thus given arbitrary

ε1, . . . , εN > 0 there exists t1, . . . , tN > 0 such that

x⊗ J2N +
∑

i
εiIn ⊗ PN

i +
∑

i
tiIn ⊗QN

i ∈ Cn2N
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which we rewrite as

x⊗ J2N +
N−1∑
i=1

εiIn ⊗ PN
i + εNIn2N−1 ⊗ (pN ⊕ p⊥

N) +
N−1∑
i=1

tiIn ⊗QN
i + tNIn2N−1 ⊗ (p⊥

N ⊕ pN).

Fix i ∈ [N−1]. Notice In⊗PN
i = In⊗PN−1

i ⊗J2 and similarly In⊗QN
i = In⊗QN−1

i ⊗J2.

Rewriting the first term of the above equation as x⊗J2N−1 ⊗J2 we rewrite the above equation

as

[
x⊗ J2N−1 +

N−1∑
i=1

εiIn ⊗ PN−1
i +

N−1∑
i=1

tiIn ⊗QN−1
i

]
⊗ J2 + εNIn2N−1 ⊗ (pN ⊕ p⊥

N)

+tNIn2N−1 ⊗ (p⊥
N ⊕ pN) ∈ Cn2N .

Since In2N−1 ⊗ pN is a projection on the Hilbert space `n2N−1
2 (H) then by Theorem 3.1.8 we

conclude

x⊗ J2N−1 +
N−1∑
i=1

εiIn ⊗ PN−1
i +

N−1∑
i=1

tiIn ⊗QN−1
i ∈ Cn2N−1 .

By the inductive hypothesis we conclude x ∈ Cn and thus (1) holds. This finishes the

proof.

Lemma 3.2.2. Let (X , C, e) be an operator system and let {p1, . . . , pN} ⊂ X be a finite

set of positive contractions. Let C(p1, . . . , pN) denote the collection of sets as defined in

Definition 3.2.1 . Then (M2N (X ), C(p1, . . . , pN)) is a matrix ordered ∗-vector space.

Proof. The proof is similar to that of Theorem 3.1.6 . We show C(p1, . . . , pN) is closed under

direct sums and conjugation by matrices of the form a ⊗ I2N . Let x ∈ C(p1, . . . , pN)n and

y ∈ C(p1, . . . , pN)m. Then if ε1, . . . , εN , δ1, . . . , δN > 0 there exists s1, . . . , sN , t1, . . . , tN > 0

such that

x+
∑

i
εiIn ⊗ PN

i +
∑

i
siIn ⊗QN

i ∈ Cn2N ,

and

y +
∑

i
δiIn ⊗ PN

i +
∑

i
tiIn ⊗QN

i ∈ Cn2N .
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Set ri := max{si, ti} then it follows

x⊕ y +
∑

i
εIn+m ⊗ PN

i +
∑

i
riIn+m ⊗QN

i ∈ C(n+m)2N

and therefore x⊕ y ∈ C(p1, . . . , pN)n+m.

Suppose x ∈ C(p1, . . . , pN)n and let a ∈ Mn,k. We claim (a ⊗ I2N )∗x(a ⊗ I2N ) ∈

C(p1, . . . , pN)k. Let ε1, . . . , εN > 0 and let t1, . . . , tN > 0 such that

x+
∑

i

εi∥∥∥a∥∥∥2
In ⊗ PN

i +
∑

i
tiIn ⊗QN

i ∈ Cn2N .

Conjugating by a⊗ I2N we have

(a⊗ I2N )∗x(a⊗ I2N ) +
∑

i

εi∥∥∥a∥∥∥2
a∗a⊗ PN

i +
∑

i
tia

∗a⊗QN
i ∈ Ck2N ,

from which it follows

(a⊗ I2N )∗x(a⊗ I2N ) +
∑

i
εiIk ⊗ PN

i +
∑

i

∥∥∥a∗a
∥∥∥tiIk ⊗QN

i ∈ Ck2N .

Thus C(p1, . . . , pN) is compatible and this finishes the proof.

Lemma 3.2.3. Let (X , C, e) be an operator system and let {p1, . . . , pN} ⊂ X be a finite set

of positive contractions. Then I2N ⊗ e is an Archimedean matrix order unit for the matrix

ordered ∗-vector space (M2N (X ), C(p1, . . . , pN)).

Proof. We begin by showing I2N ⊗ e is a matrix order unit which by using Proposition 2.0.1 

implies we need only show it is an order unit. Let x ∈ M2N (X )h. Since e is a matrix order

unit implies there exists r > 0 such that rI2N ⊗ e − x ∈ C2N ⊂ C(p1, . . . , pN)1. This implies

I2N ⊗ e is indeed an order unit. Assume x ∈ Mn2N (X ) such that for all ε > 0 it follows

εIn2N ⊗ e+ x ∈ C(p1, . . . , pN)n. Thus, if ε1, . . . , εN > 0 there exists t1, . . . , tN > 0 such that

x+ εN
2 In2N ⊗ e+

N−1∑
i=1

εiIn ⊗ PN
i + εN

2 In ⊗ PN
N +

N∑
i=1

tiIn ⊗QN
i ∈ Cn2N .
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Since

In2N ⊗ e = In ⊗ I2N−1 ⊗ (e⊕ e)

we see

In ⊗ PN
N + In ⊗QN

N = In ⊗ I2N−1 ⊗ (pN ⊕ p⊥
N) + In ⊗ I2N−1 ⊗ (p⊥

N ⊕ pN)

and consequently,

In2N ⊗ e = In ⊗ PN
N + In ⊗QN

N .

It then follows

x+
N∑

i=1
εiIn ⊗ PN

i +
N−1∑
i=1

tiIn ⊗QN
i + (tN + εN

2 )In ⊗QN
N ∈ Cn2N .

Thus, x ∈ C(p1, . . . , pN)n which implies I2N ⊗ e is an Archimedean matrix order unit.

Proposition 3.2.2. Let (X , C, e) be an operator system and let {p1, . . . , pN} ⊂ X be a finite

set of positive contractions. Let C(p1, . . . , pN) denote the matrix ordering on M2N (X ) as

defined in Definition 3.2.1 . If J := span C(p1, . . . , pN)1 ∩ −C(p1, . . . , pN)1 then the triple

(M2N (X )/J , C(p1, . . . , pN) + J , I2N ⊗ e+ J )

is an operator system.

Proof. The proof is immediate by Lemma 3.2.2 and Lemma 3.2.3 .

Proposition 3.2.3. Let (X , C, e) be an operator system and let {p1, . . . , pN} ⊂ X be a

finite set of positive contractions. Let C(p1, . . . , pN) be the matrix ordering as defined in

Definition 3.2.1 and let J := span C(p1, . . . , pN)1 ∩ −C(p1, . . . , pN)1. Then the mapping
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x 7→ x ⊗ J2N + J from the operator system (X , C, e) to the quotient operator system

(M2N (X )/J , C(p1, . . . , pN) + J , I2N ⊗ e+ J ) is unital. In particular,

e⊗ J2N + J = I2 ⊗ e⊗ J2N−1 + J = I22 ⊗ e⊗ J2N−2 + J = · · · = I2N ⊗ e+ J .

Proof. Fix i ∈ [N ] and consider I2i−1 ⊗ e ⊗ J2N−i+1 + J . Since e = pi + p⊥
i we may rewrite

I2i−1 ⊗ e⊗ J2N−i+1 + J as

I2i−1 ⊗ e⊗ J2N−i+1 + J = (I2i−1 ⊗ pi ⊗ J2N−i+1 + J ) + (I2i−1 ⊗ p⊥
i ⊗ J2N−i+1 + J ).

We claim

I2i−1 ⊗ pi ⊗ J2N−i+1 + J = I2i−1 ⊗ (pi ⊕ 0) ⊗ J2N−i + J (3.8)

and

I2i−1 ⊗ p⊥
i ⊗ J2N−i+1 + J = I2i−1 ⊗ (0 ⊕ p⊥

i ) ⊗ J2N−i + J . (3.9)

Our methods are similar to those of Lemma 3.1.12 . We first consider I2i−1 ⊗ pi ⊗J2N−i+1 + J

which we rewrite as

I2i−1 ⊗

pi pi

pi pi

⊗ J2N−i + J ,

of which Equation (3.8 ) will follow if we prove that

±I2i−1 ⊗

0 pi

pi pi

⊗ J2N−i ∈ C(p1, . . . , pN)1.

Let ε1, . . . , εN > 0. For each j 6= i set tj = εj and set ti = 1 + 1
εi
. It follows

0 pi

pi pi

+ εi

pi 0

0 p⊥
i

+ ti

p⊥
i 0

0 pi

 =

εi 1

1 2 + 1
εi

⊗ pi +

1 + 1
εi

0

0 εi

⊗ p⊥
i ∈ C2.
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Furthermore,

−

0 pi

pi pi

+ εi

pi 0

0 p⊥
i

+ ti

p⊥
i 0

0 pi

 =

 εi −1

−1 1
εi

⊗ pi +

1 + 1
εi

0

0 εi

⊗ p⊥
i ∈ C2

This implies

±I2i−1 ⊗

0 pi

pi pi

⊗ J2N−i + εiP
N
i + tiQ

N
i ∈ C2N .

Consequently, it follows

±I2i−1 ⊗

0 pi

pi pi

⊗ J2N−i +
N∑

j=1
εjP

N
j +

N∑
j=1

tjQ
N
j ∈ C2N ,

which implies

±I2i−1 ⊗

0 pi

pi pi

⊗ J2N−i ∈ C(p1, . . . , pN)1.

This proves Equation (3.8 ) and Equation (3.9 ) is proven in a similar manner. Notice when

we add the right side of Equation (3.8 ) with the right side of Equation (3.9 ) we obtain

(I2i−1 ⊗ (pi ⊕ 0) ⊗ J2N−i + J ) + (I2i−1 ⊗ (0 ⊕ p⊥
i ) ⊗ J2N−i + J ) = PN

i + J .

When we add the left side of Equation (3.8 ) with the left side of Equation (3.9 ) we obtain

(I2i−1 ⊗ pi ⊗ J2N−i+1 + J ) + (I2i−1 ⊗ p⊥
i ⊗ J2N−i+1 + J ) = I2i−1 ⊗ e⊗ J2N−i+1 + J .

Combining these yields

I2i−1 ⊗ e⊗ J2N−i+1 + J = PN
i + J , for each i ∈ [N ].
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Once again fix i ∈ [N ] and suppose ε1, . . . , εN > 0. For j 6= i let tj = εj and set ti = 1. It

follows

±QN
i +

∑
j
εjP

N
j +

∑
j
tjQ

N
j ∈ C2N ,

and consequently ±QN
i ∈ C(p1, . . . , pN)1. This implies

PN
i + J = (PN

i +QN
i ) + J = I2i ⊗ e⊗ J2N−i + J , for each i ∈ [N ].

It thus follows

e⊗ J2N + J = I2 ⊗ e⊗ J2N−1 + J = I22 ⊗ e⊗ J2N−2 + J = · · · = I2N ⊗ e+ J

and in particular, the mapping x 7→ x⊗ J2N + J is unital.

Proposition 3.2.4. Let (X , C, e) be an operator system and let p ∈ X be a positive con-

traction. Let C(p) denote the matrix ordering, induced by p, on M2(X ) and let J :=

span C(p)1 ∩ −C(p)1. If πp : X → M2(X )/J denotes the mapping taking x 7→ x ⊗ J2 + J

then πp is completely positive.

Proof. Fix n ∈ N and consider x ∈ Cn. Then x ⊗ J2 ∈ C2n and consequently if ε > 0 is

arbitrary then by letting t = ε it follows

x⊗ J2 + εIn ⊗ (p⊕ p⊥) + εIn ⊗ (p⊥ ⊕ p) ∈ C2n.

This implies that (πp)n(x) = x⊗ J2 +Mn(J ) ∈ C(p)n +Mn(J ) which proves the claim.

We now prove when a finite set of positive contractions in an operator system are all

simultaneously abstract projections.

Theorem 3.2.4. Let (X , C, e) be an operator system and let {p1, . . . , pN} ⊂ X be a finite

set of positive contractions. Then the following are equivalent:

1. Each pi is an abstract projection in X .
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2. For each i ∈ [N ] the map πpi : X → M2(X )/Ji, x 7→ x⊗ J2 + Ji, where

Ji := span C(pi)1 ∩ −C(pi)1 is a complete order embedding.

3. The map x 7→ x⊗ J2N + J , where J := span C(p1, . . . , pN)1 ∩ −C(p1, . . . , pN)1,

is a complete order embedding from (X , C, e) to

(M2N (X )/J , C(p1, . . . , pN) + J , I2N ⊗ e+ J ).

Proof. The equivalence of (1) and (2) is Theorem 3.1.15 . Furthermore it is immediate from

Proposition 3.2.1 that (1) implies (3). We thus prove (3) implies (2).

Assume (3) holds and fix i ∈ [N ]. We claim πpi : X → M2(X )/Ji is a complete order

embedding. By Proposition 3.2.4 we need only show π−1
pi

: πpi(X ) → X is completely positive.

Let x ∈ Mn(X ) such that (πpi)n(x) ∈ C(pi)n + Mn(Ji). Thus for every ε > 0 there exists

ti > 0 such that

x⊗ J2 + εIn ⊗ (pi ⊕ p⊥) + tIn ⊗ (p⊥
i ⊕ pi) ∈ C2n.

By tensoring on the left by the positive matrix J2N−i and by tensoring on the right by the

positive matrix J2i−1 we obtain

J2N−i ⊗ (x⊗ J2) ⊗ J2i−1 + εiJ2N−i ⊗ In ⊗ (pi ⊕ p⊥
i ) ⊗ J2i−1 + tiJ2N−i ⊗ In ⊗ (p⊥

i ⊕ pi) ⊗ J2i−1 ,

which is then an element of Cn2N . By applying the canonical shuffle M2N−i ⊗ Mn ⊗ M2 ⊗

M2i−1 → Mn ⊗ M2N−i ⊗ M2 ⊗ M2i−1 , followed by the shuffle Mn ⊗ M2N−i ⊗ M2 ⊗ M2i−1 →

Mn ⊗M2i−1 ⊗M2 ⊗M2N−i , it follows

x⊗ J2N + εiIn ⊗ P̂N
i + tiQ̂

N
i ∈ Cn2N ,
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where P̂N
i and Q̂N

i are as in Definition 3.2.1 . Let εj > 0 be arbitrary for j 6= i and set tj = εj

for j 6= i. Then

x⊗ J2N +
∑

j
εjIn ⊗ P̂N

j +
∑

j
tjIn ⊗ Q̂N

j ∈ Cn2N .

Consequently, x ⊗ J2N ∈ Ĉ(p1, . . . , pN)n ⊂ C(p1, . . . , pN)n which by our assumption implies

x ∈ Cn. This proves (2) and concludes the proof.

We have thus far shown that our notion of an abstract projection in an operator system

has similar properties to projections in C*-algebras. In Theorem 3.1.15 we characterized

when a positive contraction is necessarily an abstract projection. Furthermore, given a finite

number of positive contractions in an operator system, in Theorem 3.2.4 we proved when

all the positive contractions are simultaneously abstract projections. In the next chapter we

will extend our methods to Archimedean order unit spaces.
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4. PROJECTIONS IN ARCHIMEDEAN ORDER UNIT

SPACES

Building off of our results in Section 3 our goal of this section will be to characterize when

finite sets of positive contractions in an AOU space are simultaneously abstract projections

relative to the same operator system structure.

4.1 Single Projections in AOU spaces

Given an operator system (X , C, e) and a positive contraction p ∈ X then we once again

let C(p) denote the matrix ordering on M2(X ) defined for each n ∈ N by

C(p)n := {x ∈ M2n(X )h : ∀ε > 0 ∃t > 0 such that x+ εIn(p⊕ p⊥) + tIn ⊗ (p⊥ ⊕ p) ∈ C2n}.

Furthermore, we will let J := span C(p)1 ∩ −C(p)1.

We consider the operator system (M2(X )/J , C(p) + J , I2 ⊗ e+ J ).

Remark 4.1.1. In Subsection 3.1 we considered abstract compression operator systems

where the Archimedean matrix order unit was given by p ⊕ p⊥ + J where p ∈ X was our

initial contraction. Similar to our proof in Lemma 3.1.12 it follows that p⊕p⊥+J = I2⊗e+J .

Let πp : X → M2(X )/J denote the map x 7→ x ⊗ J2 + J . It was proven in Lemma 3.1.12 

that e⊗J2 +J = (p⊕p⊥)+J . Note that I2 ⊗e+J = (p⊕p⊥)+J +(p⊥ ⊕p)+J . We claim

that ±(0 ⊕ p),±(p⊥ ⊕ 0) ∈ C(p)1. This is proven following the methods of Lemma 3.1.12 .

Another way to see this is by utilizing Proposition 3.2.3 . In the proof of Proposition 3.2.3 

we saw if {p1, . . . , pN} ⊂ X is a finite set of positive contractions then for each i ∈ [N ] one

has

I2i−1 ⊗ e⊗ J2N−i+1 + J = PN
i + J = I2i ⊗ e⊗ J2N−i + J .

Let N = 1. Then we have e⊗ J2 + J = P 1
1 + J = I2 ⊗ e+ J .

Lemma 4.1.2. Let (X , C, e) be an AOU space and let C be an operator system structure

on X . Furthermore, let p ∈ X be a positive contraction and let C(p) denote the matrix
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ordering induced by p. Set J := span C(p)1 ∩ −C(p)1. For each n ∈ N consider the set

(πp)−1
n (C(p)n +Mn(J )), where

πp : (X , C, e) → (M2(X )/J , C(p) + J , I2 ⊗ e+ J )

denotes the mapping πp(x) = x⊗J2+J . Then the collection π−1
p (C(p)+J ) := {(πp)−1

n (C(p)n+

Mn(J ))}n∈N is a matrix ordering on X and C(p)n = π−1
p (C(p) + J )(p)n for each n ∈ N.

Proof. For notational convenience, throughout this proof we denote π−1
p (C(p) + J ) by D.

Thus, we claim that C(p) = D(p). Since C(p) + J is a matrix ordering then it follows

immediately that D is a matrix ordering. Using Proposition 3.2.4 then given any x ∈ Cn it

necessarily follows that (πp)n(x) ∈ C(p)n +Mn(J ), i.e., x ∈ Dn. Thus, C ⊂ D.

Suppose x ∈ C(p)n and let ε > 0 be arbitrary. Then there exists t > 0 such that

x+ εIn ⊗ (p⊕ p⊥) + tIn ⊗ (p⊥ ⊕ p) ∈ C2n,

and since C2n ⊂ D2n it follows that x ∈ D(p)n and therefore C(p) ⊂ D(p).

Conversely, suppose that x ∈ D(p)n which implies that for all ε > 0 there exists t > 0

such that

x+ εIn ⊗ (p⊕ p⊥) + tIn ⊗ (p⊥ ⊕ p) ∈ D2n

and thus

(πp)2n(x+ εIn ⊗ (p⊕ p⊥) + tIn ⊗ (p⊥ ⊕ p)) ∈ C(p)2n +M2n(J ).

In particular given any δ > 0 there exists r > 0 such that

[
x+ εIn ⊗ (p⊕ p⊥) + tIn ⊗ (p⊥ ⊕ p)

]
⊗ J2 + δI2n ⊗ (p⊕ p⊥) + rI2n ⊗ (p⊥ ⊕ p) ∈ C4n.
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Thus, given any ε > 0 there exists t, r > 0 such that

[
x+ ε

2In ⊗ (p⊕ p⊥) + tIn ⊗ (p⊥ ⊕ p)
]

⊗ J2 + ε

2I2n ⊗ (p⊕ p⊥) + rI2n ⊗ (p⊥ ⊕ p) ∈ C4n

After applying the canonical shuffle M2n ⊗M2 → M2 ⊗M2n the above expression becomes

J2 ⊗
[
x+ ε

2In ⊗ (p⊕ p⊥) + tIn ⊗ (p⊥ ⊕ p)
]

+ ε

2(p⊕ p⊥) ⊗ I2n + r(p⊥ ⊕ p) ⊗ I2n.

Let A ∈ M4n denote the 4n× 4n permutation matrix which exchanges the ith and (i + 2n)th

columns for i = 2, 4, . . . , 2n. Conjugating the above expression by A then compressing to the

1 × 1 corner implies that for all ε > 0 there exists t, r > 0 such that

x+ εIn ⊗ (p⊕ p⊥) + (t+ r)In ⊗ (p⊥ ⊕ p) ∈ C2n

and consequently x ∈ C(p)n which finishes the proof.

Using the above lemma we are now able to characterize when a positive contraction in

an AOU space is an abstract projection relative to some operator system structure.

Theorem 4.1.3. Let (X , C, e) be an AOU space and let p ∈ X be a positive contraction.

Then the following are equivalent:

1. There exists an operator system structure C, on X , such that p is an abstract

projection in (X , C, e).

2. The map πp : (X , C) → (M2(X )/J , Cmax(p)1 + J ), x 7→ x⊗ J2 + J is an order

embedding.

Proof. We begin by showing (1) implies (2). Suppose C is an operator system structure on X

such that p ∈ X is an abstract projection. This is to say that (X , C, e) is an operator system

and C1 = C. If x ∈ C = Cmax
1 then by Proposition 3.2.4 we know πp(x) ∈ Cmax(p)1 + J .

Conversely, if πp(x) ∈ Cmax(p)1 + J , then for all ε > 0 there exists t > 0 such that

x⊗ J2 + ε(p⊕ p⊥) + t(p⊥ ⊕ p) ∈ Cmax
2 .
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By properties of the maximal operator system structure we have Cmax ⊂ C. Consequently,

x⊗ J2 + ε(p⊕ p⊥) + t(p⊥ ⊕ p) ∈ C2.

Thus, πp(x) ∈ C(p)1 + J , which by our assumption implies x ∈ C1 = C. This proves (2).

We now show (2) implies (1). To this end suppose that

πp : (X , C, e) → (M2(X )/J , Cmax(p)1 + J )

is an order embedding. We consider the matrix ordering π−1
p (Cmax(p) + J ) on X which, for

notational convenience, we will denote as D. By assumption we have D1 = C. We claim πp :

(X ,D, e) → (M2(X )/J ,D(p)+J , I2⊗e+J ) is a complete order embedding. By Lemma 4.1.2 

we have D(p) = Cmax(p). Thus, if x ∈ Mn(X ) such that (πp)n(x) ∈ D(p)n + Mn(J ) then

(πp)n(x) ∈ Cmax(p)n +Mn(J ). By construction it must follow x ∈ Dn.

We end this section with some remarks regarding our methods above. Using Theo-

rem 4.1.3 we are able to detect when a positive contraction in an AOU space is an abstract

projection relative to some operator system structure on the ∗-vector space. But this the-

orem has strict limitations. In particular, if p1 and p2 are two positive contractions in an

AOU space (X , C, e) then by Theorem 4.1.3 there exist operator system structures K and

L, on X , such that p1 is an abstract projection in (X ,K, e) and p2 is an abstract projection

in (X ,L, e). The issue arises in the fact that it is not necessary that K = L. We wish to

develop a method to determine when a finite set of positive contractions in an AOU space

are all simultaneously abstract projections in the same operator system.

4.2 Multiple Projections in AOU spaces

Expanding on methods from Subsection 3.2 , the goal of this section is to prove when a

finite set of positive contractions in an AOU space are simultaneously abstract projections

relative to an operator system structure on the AOU space.
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Definition 4.2.1. Let (X , C, e) be an operator system and let {p1, . . . , pN} ⊂ X be a fi-

nite set of positive contractions in X . For each i ∈ [N ] let PN
i , Q

N
i ∈ M2N (X ) be as in

Definition 3.2.1 . Fix L ∈ N and define the operators on M2NL(X ),

PNL
ij := I2N(j−1) ⊗ PN

i ⊗ J2N(L−j) ,

QNL
ij := I2N(j−1) ⊗QN

i ⊗ J2N(L−j) ,

where j ∈ [L]. For each L ∈ N we define the collection C(p1, . . . , pN)L := {C(p1, . . . , pN)Ln}n∈N

such that for each n ∈ N, we have x ∈ C(p1, . . . , pN)Ln if and only if given any N ×L matrix

(εij)ij of strictly positive real numbers there exists an N × L matrix (tij)ij of strictly positive

real numbers such that

x+
∑

ij
εijIn ⊗ PNL

ij +
∑

ij
tijIn ⊗QNL

ij ∈ C2NL , (4.1)

with the property that if one replaces εij with 0 < ε′
ij < εij then we may choose t′ij > tij such

that Equation (4.1 ) still holds.

Another way to view the collection C(p1, . . . , pN)L is that it is the collection of cones as

defined in Definition 3.2.1 when the positive contractions p1, . . . , pN are repeated sequentially

L times. This leads to an immediate proposition.

Proposition 4.2.1. Let (X , C, e) be an operator system and let {p1, . . . , pN} ⊂ X be a finite

set of positive contractions. Fix L ∈ N, then the following hold:

1. Let J L := span C(p1, . . . , pN)L1 ∩ −C(p1, . . . , pN)L1 . Then the triple

(M2NL(X )/J L, C(p1, . . . , pN)L + J , I2NL ⊗ e+ J L)

is an operator system and the mapping x 7→ x⊗ J2NL + J is unital.

2. The positive contractions p1, . . . , pN are all abstract projection in X if and only

if the mapping x 7→ x⊗ J2NL + J from (X , C, e) to

(M2NL(X )/J L, C(p1, . . . , pN)L + J , I2NL ⊗ e+ J L)
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is a complete order embedding.

Proof. Statement (1) is immediate from Proposition 3.2.2 and Proposition 3.2.3 . Statement

(2) is immediate from Theorem 3.2.4 .

Definition 4.2.2. Let X be a ∗-vector space and fix a nonzero hermitian element e ∈ Xh.

Suppose for every L ∈ N there exists a matrix ordering CL such that (X , CL, e) is an operator

system. We say the collection {CL}L∈N of matrix orderings is nested increasing if for all

n ∈ N it follows CLn ⊂ CL+1
n for each L ∈ N. Given a nested increasing sequence {CL}L∈N we

define the inductive limit C∞ to be the collection C∞ := {C∞
n }n∈N defined for each n ∈ N by

x ∈ C∞
n if and only if for all ε > 0 there exists L ∈ N such that x+ In⊗e ∈ CLn . In particular,

C∞
n is the Archimedean closure of ⋃L∈NC

L
n with respect to e.

Lemma 4.2.1. Let X be a ∗-vector space and consider a nonzero hermitian element e ∈ Xh.

Suppose for every L ∈ N there exists a matrix ordering CL such that (X , CL, e) is an operator

system and suppose the collection {CL}L∈N forms a nested increasing sequence. Then (X , C∞)

is a matrix ordered ∗-vector space and e is an Archimedean matrix order unit.

Proof. We prove that C∞ is a matrix ordering by showing that it is closed under direct

sums and is compatible. First consider the collection C ′ := {C ′
n}n∈N where C ′

n := ⋃
L∈N CLn .

If x ∈ C ′
n and λ > 0 then since x ∈ CLn for some L implies λx ∈ λCLn ⊂ CLn and thus

R+C ′ ⊂ C ′. If x ∈ C ′
n and y ∈ C ′

m then there exists Lx, Ly ∈ N such that x ∈ CLxn and y ∈ CLym .

Let L := max{Lx, Ly}. Since the collection {CL}L∈N is nested increasing implies x ∈ CLn and

y ∈ CLm and consequently x⊕y ∈ CLn+m which implies x⊕y ∈ C ′
n+m. The compatibility of C ′ is

immediate since each CL is compatible. Since for each n ∈ N, C∞
n is the Archimedean closure

of C ′
n, then this proves (X , C∞) is a matrix ordered ∗-vector space. Let x ∈ Mn(X )h. Then

for each L ∈ N there exists r > 0 such that rIn ⊗ e−x ∈ CLn . In particular, rIn ⊗ e−x ∈ C ′
n.

Thus, e is a matrix order unit for the pair (X , C∞). By definition of C∞ we have that e is

necessarily an Archimedean matrix order unit and this finishes the proof.

Proposition 4.2.2. Let (X , C, e) be an operator system and let {p1, . . . , pN} ⊂ X be a finite

set of positive contractions. For each L ∈ N define the mapping πL : X → M2NL(X ) defined

59



by πL(x) := x ⊗ J2NL. Then the collection {π
−1
L C(p1, . . . , pN)L}L∈N is a nested increasing

sequence of matrix orderings on X .

Proof. For every L ∈ N we have π
−1
L C(p1, . . . , pN)L := {(πL)−1

n (C(p1, . . . , pN)Ln}n∈N is a matrix

ordering on X . Indeed, this follows by Lemma 3.2.2 and methods similar to Lemma 4.1.2 .

We therefore show that the collection {π
−1
L C(p1, . . . , pN)L}L∈N forms a nested increasing

sequence. To this end, fix n, L ∈ N and suppose x ∈ Mn(X ) ∩ (πL)−1
n (C(p1, . . . , pN)Ln) and

therefore x ⊗ J2NL ∈ C(p1, . . . , pN)Ln . We claim x ⊗ J2N(L+1) ∈ C(p1, . . . , pN)L+1
n which will

finish the proof.

By our assumptions it follows that given an N×L matrix (εij)i∈[N ],j∈[L], of strictly positive

real numbers, there exists an N×L matrix (tij)i∈[N ],j∈[L] of strictly positive real numbers such

that

x⊗ J2NL +
∑

ij
εijIn ⊗ PNL

ij +
∑

ij
tijIn ⊗QNL

ij ∈ Cn2NL .

We tensor this expression on the right by the positive matrix J2N which yields

x⊗ J2N(L+1) +
∑

ij
εijIn ⊗ PNL

ij ⊗ J2N +
∑

ij
tijIn ⊗QNL

ij ⊗ J2N ∈ Cn2N(L+1) .

For each i ∈ [N ] let εi,(L+1) > 0 be arbitrary and set ti,(L+1) = εi,(L+1). Notice for each i ∈ [N ]

and j ∈ [L] we have

PNL
ij ⊗ J2N = I2N(j−1) ⊗ PN

i ⊗ J2N(L−j) ⊗ J2N = I2N(j−1) ⊗ PN
i ⊗ J2N((L+1)−j) = P

N(L+1)
ij ,

and a similar calculation holds for QNL
ij ⊗J2N .We therefore arrive at the following expression

x⊗ J2N(L+1) +
N∑

i=1

L+1∑
j=1

εijIn ⊗ P
N(L+1)
ij +

N∑
i=1

L+1∑
j=1

tijIn ⊗Q
N(L+1)
ij ∈ Cn2N(L+1) .

This proves x⊗ J2N(L+1) ∈ C(p1, . . . , pN)(L+1)
n which proves that the collection

{π
−1
L C(p1, . . . , pN)L}L∈N
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is nested increasing.

Definition 4.2.3. Let (X , C, e) be an operator system and let {p1, . . . , pN} ⊂ X be a finite

set of positive contractions in X . We define the matrix ordering C(p1, . . . , pN)∞ on X to be

the inductive limit of the collection {π
−1
L C(p1, . . . , pN)L}L∈N where πL : X → M2NL(X ) is the

mapping x 7→ x⊗ J2NL.

Proposition 4.2.3. Let (X , C, e) be an operator system and let {p1, . . . , pN} ⊂ X be a finite

set of positive contractions. Suppose the matrix ordering C(p1, . . . , pN)∞ satisfies the condi-

tion that C(p1, . . . , pN)∞
1 ∩ −C(p1, . . . , pN)∞

1 = {0}. Then the triple (X , C(p1, . . . , pN)∞, e) is

an operator system and pi is an abstract projection in (X , C(p1, . . . , pN)∞, e) for each i ∈ [N ].

Proof. We have by Proposition 4.2.2 that for each L ∈ N it follows π
−1
L (C(p1, . . . , pN)L)

is a matrix ordering on X and furthermore {π
−1
L (C(p1, . . . , pN))}L∈N is a nested increasing

sequence. Along with Lemma 4.2.1 we necessarily have (X , C(p1, . . . , pN)∞) is a matrix

ordered ∗-vector space and e is an Archimedean matrix order unit. Since C(p1, . . . , pN)∞
1 is

proper then by applying Lemma 2.0.1 we have (X , C(p1, . . . , pN)∞, e) is an operator system.

It remains to show that each pi is an abstract projection in (X , C(p1, . . . , pN)∞, e). This

is to say that the map taking x 7→ x ⊗ J2N + J is a complete order embedding from

(X , C(p1, . . . , pN)∞, e) to

(M2N (X )/J , C(p1, . . . , pN)∞(p1, . . . , pN) + J , I2N ⊗ e+ J ),

where J := span C(p1, . . . , pN)∞(p1, . . . , pN)1 ∩ −C(p1, . . . , pN)∞(p1, . . . , pN)1. Therefore let

x ∈ Mn(X ) such that x ⊗ J2N + J ∈ C(p1, . . . , pN)∞(p1, . . . , pN)n + J . Thus, x ⊗ J2N ∈

C(p1, . . . , pN)∞(p1, . . . , pN)n which implies given arbitrary ε1, . . . , εN > 0 there exists

t1, . . . , tN > 0 such that

x⊗ J2N +
∑

i
εiIn ⊗ PN

i +
∑

i
tiIn ⊗QN

i ∈ C(p1, . . . , pN)∞
n2N .
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This implies given any ε > 0 there exists L ∈ N such that

x⊗ J2N +
∑

i
εiIn ⊗ PN

i +
∑

i
tiIn ⊗QN

i + εIn2N ⊗ e ∈ (πL)−1
n2N (C(p1, . . . , pN)Ln2N ),

which implies

(
x⊗ J2N +

∑
i
εiIn ⊗ PN

i +
∑

i
tiIn ⊗QN

i + εIn2N ⊗ e

)
⊗ J2NL ∈ C(p1, . . . , pN)Ln2N .

In particular we have

(
x⊗ J2N +

∑
i
εiIn ⊗ PN

i +
∑

i
tiIn ⊗QN

i + εIn2N ⊗ e

)
⊗ J2NL +Mn2N (J L)

∈ C(p1, . . . , pN)Ln2N +Mn2N (J L).

where J L := span C(p1, . . . , pN)L1 ∩ −C(p1, . . . , pN)L1 . By Proposition 3.2.3 we have

I2N ⊗ e⊗ J2NL +Mn2N (J L) = e⊗ J2N(L+1) +Mn2N (J L),

and therefore

In2N ⊗ e⊗ J2NL +Mn2N (J L) = In ⊗ e⊗ J2N(L+1) +Mn2N (J L).

Thus our expression above becomes

(
x⊗ J2N +

∑
i
εiIn ⊗ PN

i +
∑

i
tiIn ⊗QN

i + εIn ⊗ e⊗ J2N

)
⊗ J2NL +Mn2N (J L)

∈ C(p1, . . . , pN)Ln2N +Mn2N (J L),

and in particular

(
x⊗ J2N +

∑
i
εiIn ⊗ PN

i +
∑

i
tiIn ⊗QN

i + εIn ⊗ e⊗ J2N

)
⊗ J2NL ∈ C(p1, . . . , pN)Ln2N .
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By definition of C(p1, . . . , pN)Ln2N we have for any N × L matrix (δkl)k∈[N ],l∈[L] of strictly

positive real numbers there exists an N × L matrix (rkl)k∈[N ],l∈[L] of strictly positive real

numbers such that

(
x⊗ J2N +

∑
i
εiIn ⊗ PN

i +
∑

i
tiIn ⊗QN

i + εIn ⊗ e⊗ J2N

)
⊗ J2NL

+
∑
kl

δklIn2N ⊗ PNL
kl +

∑
kl

rklIn2N ⊗QNL
kl ∈ Cn2N(L+1) .

Note

In2N ⊗ PNL
kl = In ⊗ I2N ⊗ I2N(l−1) ⊗ PN

k ⊗ J2N(L−l) = In ⊗ I2N((l+1)−1) ⊗ PN
k ⊗ J2N(L+1−(l+1))

= In ⊗ P
N(L+1)
k(l+1) .

Furthermore, we see In⊗PN(L+1)
k1 = In⊗PN

i ⊗J2NL . Similar properties hold for In⊗QN
i ⊗J2NL

and In2N ⊗QNL
kl .

For each i ∈ [N ] set δi(L+1) = εi and similarly set ri(L+1) = ti. It then follows

(x+ εIn ⊗ e) ⊗ J2N(L+1) +
N∑

i=1

L+1∑
l=1

δilIn ⊗ P
N(L+1)
il +

N∑
i=1

L+1∑
l=1

rilIn ⊗Q
N(L+1)
il ∈ Cn2N(L+1) .

This proves that (x + εIn ⊗ e) ⊗ J2N(L+1) ∈ C(p1, . . . , pN)(L+1)
n , and thus x + εIn ⊗ e ∈

(πL+1)−1
n (C(p1, . . . , pN)(L+1)

n ). Since ε > 0 was arbitrary we conclude x ∈ C(p1, . . . , pN)∞
n .

Thus, the mapping x 7→ x⊗ J2N + J from (X , C, e) to

(M2N (X )/J , C(p1, . . . , pN)∞(p1, . . . , pN) + J , I2N ⊗ e+ J )

is a complete order embedding. By Theorem 3.2.4 this proves our claim.

We are now able to prove when a finite number of positive contractions in an AOU space

are all simultaneously abstract projections relative to a single operator system structure.

Theorem 4.2.2. Let (X , C, e) be an AOU space and let {p1, . . . , pN} ⊂ X be a finite set of

positive contractions in X . Then the following are equivalent:
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1. There exists a Hilbert space H and a unital order embedding π : X → B(H) such

that π(pi) is a projection on H for each i ∈ [N ].

2. There exists an operator system structure C, on X , such that each pi is an

abstract projection in (X , C, e).

3. C = Cmax(p1, . . . , pN)∞
1 .

Proof. (1) and (2) are equivalent by Theorem 3.2.4 . Thus, we need only show that (2) and

(3) are equivalent.

To this end, suppose that there exists an operator system structure C such that each

pi ∈ X is an abstract projection in (X , C, e). We claim C = Cmax(p1, . . . , pN)∞
1 . If x ∈ C

then since C = Cmax
1 and Cmax

1 ⊂ Cmax(p1, . . . , pN)L1 for each L ∈ N implies that C ⊂

Cmax(p1, . . . , pN)∞
1 . Conversely, suppose x ∈ Cmax(p1, . . . , pN)∞

1 . Thus, for ε > 0 arbitrary

there exists L ∈ N such that x+ εe⊗ J2NL ∈ Cmax(p1, . . . , pN)L1 . Since Cmax ⊂ C implies for

every ε > 0 there exists L ∈ N such that x+εe⊗J2NL ∈ C(p1, . . . , pN)L1 . By Proposition 4.2.1 

we have that x + εe ∈ C1 = C and since C is Archimedean closed with respect to e readily

implies x ∈ C. This proves (3).

Suppose that C = Cmax(p1, . . . , pN)∞
1 . This implies the cone Cmax(p1, . . . , pN)∞

1 is proper

and thus by Proposition 4.2.3 we have each pi is an abstract projection in the operator

system (X , Cmax(p1, . . . , pN)∞, e). By assumption we have Cmax(p1, . . . , pN)∞ is the desired

operator system structure.

Corollary 4.2.3. Let (X , C, e) be an AOU space and let {p1, . . . , pN} ⊂ X be a finite set

of positive contractions in X . If the cone Cmax(p1, . . . , pN)∞
1 is proper then there exists a

Hilbert space H a unital order embedding π : (X , Cmax(p1, . . . , pN)∞
1 , e) → B(H) such that

π(pi) is a projection on H for each i ∈ [N ].

Proof. Since the cone Cmax(p1, . . . , pN)∞
1 is proper then by Proposition 4.2.3 the triple

(X , Cmax(p1, . . . , pN)∞, e) is an operator system and for each i ∈ [N ], pi is an abstract projec-

tion in (X , Cmax(p1, . . . , pN)∞, e). If we consider the AOU space (X , Cmax(p1, . . . , pN)∞
1 , e)

then by (1) and (2) from Theorem 4.2.2 we know there exists a Hilbert space H and a uni-

64



tal order embedding π : (X , Cmax(p1, . . . , pN)∞
1 , e) → B(H) such that π(pi) is an abstract

projection for each i ∈ [N ].
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5. APPLICATIONS TO QUANTUM INFORMATION THEORY

Using our notions of abstract projections in operator systems and AOU spaces, we now

present new characterizations of the set of quantum commuting correlations. Fix two natural

numbers n, k ∈ N. We define a correlation to be a tuple p := {p(ab|xy) : a, b ∈ [k], x, y ∈ [n]}

such that p(ab|xy) ∈ R+ for all a, b ∈ [k], x, y ∈ [n] and such that ∑ab p(ab|xy) = 1 for each

x, y ∈ [n]. We refer to n as the number of inputs and k as the number of outputs. The set of

all correlations with n-inputs and k-outputs will be denoted by C(n, k). Given a correlation

p ∈ C(n, k) we consider the operators

pA(a|x) :=
∑
b

p(ab|xy), and pB(b|y) :=
∑
a

p(ab|xy),

where x, y ∈ [n], and a, b ∈ [k]. The correlation p is nonsignalling if both pA and pB are

well-defined which is to say pA(a|x) is independent of the input y ∈ [n] and pB(b|y) is

independent of the input x ∈ [n]. We denote the set of all nonsignalling correlations with

n-inputs and k-outputs by Cns(n, k). It readily follows that Cns(n, k) is a convex subset of

Rn2k2
. Of particular interest to operator algebraists has been the study of correlation sets

which are subsets of the nonsignalling correlations. In particular, all sets of correlations that

we consider will be subsets of the nonsignalling correlations with the appropriate input and

output sizes.

Let H be a Hilbert space. A projection-valued measure is a set of projections

{E1, . . . , EN} ⊂ B(H)

such that ∑i Ei = IH where i ∈ [N ] and IdH : H → H denotes the identity operator on

H. If p ∈ Cns(n, k) is a nonsignalling correlation then we will say p is quantum commuting

if there exists a Hilbert space H, a unit vector η ∈ H and pairwise commuting projection-

valued measures {Exa}ka=1, {Fyb}kb=1 for each x, y ∈ [n] such that p(ab|xy) = 〈η|ExaFybη〉

for each x, y ∈ [n] and a, b ∈ [k]. The set of all quantum commuting correlations with n-

inputs and k-outputs will be denoted Cqc(n, k). If we require the Hilbert space above to

be finite-dimensional then we will say the correlation is a quantum correlation. The set of
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all quantum correlations with n-inputs and k-outputs will be denoted Cq(n, k). The closure

Cq(n, k) will be called the quantum approximate correlations with n-inputs and k-outputs

and will be denoted Cqa(n, k). It follows

Cq(n, k) ⊂ Cqa(n, k) ⊂ Cqc(n, k) ⊂ Cns(n, k). (5.1)

Question 5.0.1 ([22 ]). Does it follow Cqa(n, k) = Cqc(n, k) for all n, k ∈ N?

It was proven in [21 ], that for certain input values n and output values k, the set of

quantum correlations Cq(n, k) is not closed. Until recently, it was unknown if for particular

values of n and k if the set of quantum approximate correlations was a proper subset of

the quantum commuting correlations. In particular, according to the authors in [8 ], the set

of quantum approximate correlations is a proper subset of the set of quantum commuting

correlations for very large n and k.

The goal of the rest of this section is to present new and purely abstract characterizations

of the set of quantum commuting correlations. We begin with a well-known fact (see e.g. [1 ,

Proposition 6.2]).

Proposition 5.0.1. Fix n, k ∈ N, and let p := {p(ab|xy) : a, b ∈ [k], x, y ∈ [n]} ∈ C(n, k).

Then the following are equivalent:

1. p ∈ Cqc(n, k) (resp. p ∈ Cq(n, k))

2. There exists a (resp. finite-dimensional) C*-algebra A, projection-valued

measures {Exa}ka=1, {Fyb}kb=1 ⊂ A for each x, y ∈ [n] , such that

ExaFyb = FybExa

for each a, b, x, y and a state ϕ : A → C such that ϕ(ExaFyb) = p(ab|xy) for each

a, b, x, y.

3. There exists a (resp. finite-dimensional) Hilbert space H, an operator system

X ⊂ B(H), projection-valued measures {Exa}ka=1, {Fyb}kb=1 for each x, y ∈ [n],
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such that ExaFyb ∈ X for each a, b, x, y, ExaFyb = FybExa for each a, b, x, y, and

a state ϕ : X → C such that ϕ(ExaFyb) = p(ab|xy) for each a, b, x, y.

Definition 5.0.1. Fix n, k ∈ N, and let (X , C, e) be an operator system. We say X is

nonsignalling if X = span {Q(ab|xy) : a, b ∈ [k], x, y ∈ [n]} where each Q(ab|xy) ∈ X +, and

such that for each x, y ∈ [n] we have ∑abQ(ab|xy) = e. Furthermore for each x, y ∈ [n] the

operators

E(a|x) :=
∑
b

Q(ab|xy), and F (b|y) :=
∑
a

Q(ab|xy)

are well-defined. We will call the set {Q(ab|xy) : a, b ∈ [k], x, y ∈ [n]} the set of generators

of X . We say X is a quantum commuting operator system if each generator Q(ab|xy) is an

abstract projection in X .

Theorem 5.0.2. Fix n, k ∈ N and let p ∈ C(n, k). Then p is a nonsignalling correlation if

and only if there exists a nonsignalling operator system X with generators {Q(ab|xy) : a, b ∈

[k], x, y ∈ [n]} and a unital completely positive map ϕ : X → C such that ϕ(Q(ab|xy)) =

p(ab|xy) for all x, y ∈ [n] and a, b ∈ [k]. Similarly, p is a quantum commuting correlation if

and only if there exists a quantum commuting operator system X with generators {Q(ab|xy) :

a, b ∈ [k], x, y ∈ [n]} and a unital completely positive map ϕ : X → C such that ϕ(Q(ab|xy)) =

p(ab|xy) for all x, y ∈ [n] and a, b ∈ [k].

Proof. We begin with the nonsignalling case. Let X be a nonsignalling operator system and

let ϕ : X → C be a state. For each x, y ∈ [n], a, b ∈ [k] set

p(ab|xy) := ϕ(Q(ab|xy))

and let p := {p(ab|xy) : a, b ∈ [k], x, y ∈ [n]}. It readily follows that p(ab|xy) ∈ R+ for each

x, y, a, b and furthermore 1 = ϕ(e) = ∑
ab ϕ(Q(ab|xy)) = ∑

ab p(ab|xy). Thus, p ∈ C(n, k). By

similar reasoning it follows the marginal operators pA and pB are well-defined. This proves

p ∈ Cns(n, k). Conversely, let p ∈ Cns(n, k). Let X := span{Q(ab|xy) : a, b ∈ [k], x, y ∈ [n]}

where for each a, b, x, y we have Q(ab|xy) := p(ab|xy). Thus, if we letH := C then X ⊂ B(H)
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is an operator system such that for each x, y ∈ [n] the sum ∑
abQ(ab|xy) = e, where the

Archimedean matrix order unit e is 1. And similarly, both marginal operators E(a|x) and

F (b|y) are well-defined for each a, b ∈ [k] and x, y ∈ [n]. Define the map ϕ : X → C by

ϕ(λ) = λ. Then ϕ is a state and satisfies ϕ(Q(ab|xy)) = p(ab|xy) for all a, b ∈ [k] and

x, y ∈ [n].

We now prove our claim for quantum commuting correlations. If p ∈ Cqc(n, k) then by

Proposition 5.0.1 there exists a Hilbert spaceH and projection-valued measures {Exa}ka=1 and

{Fyb}kb=1 for each x, y ∈ [n] such that ExaFyb = FybExa for each a, b, x, y. For each a, b ∈ [k]

and x, y ∈ [n] let Q(ab|xy) := ExaFyb. If we let X = span{Q(ab|xy) : a, b ∈ [k], x, y ∈ [n]},

then X is an operator subsystem of B(H) with generators {Q(ab|xy) : a, b ∈ [k], x, y ∈ [n]}

and it is readily verified that X is a quantum commuting operator system that satisfies the

claim by using the state ϕ as provided in Proposition 5.0.1 .

Conversely, let X be a quantum commuting operator system with the set of genera-

tors {Q(ab|xy) : a, b ∈ [k], x, y ∈ [n]}. By Theorem 3.1.15 it follows each abstract pro-

jection Q(ab|xy) is a projection in C∗
e (X ). For notational convenience we will write D :=

C∗
e (X ). Let H be a Hilbert space such that D is represented faithfully on H. It follows

Q(ab|xy)Q(a′b′|xy) = 0 if either a 6= a′ or b 6= b′ since by assumption ∑
abQ(ab|xy) = e.

Note, here e denotes the Archimedean matrix order unit of X , which by our assumption on

D is also equal to IdH . Furthermore, if we consider the marginal operators defined for each

a, b ∈ [k], x, y ∈ [n],

E(a|x) =
∑
b

Q(ab|xy), F (b|y) =
∑
a

Q(ab|xy),

then it is readily checked that both {E(a|x)}a∈[k] and {F (b|y)}b∈[k] are projection-valued

measures on H. It also follows

E(a|x)F (b|y) =
∑
a′b′

Q(ab′|xy)Q(a′b|xy) = Q(ab|xy).

Both of these observations follow from the properties and orthogonality of the projections

Q(ab|xy). Let ϕ : X → C be a state on the operator system X and let ϕ̃ : D → C be a
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(unital) completely positive extension of it obtained from the Arveson-Wittstock extension

theorem. Let p := {p(ab|xy) : a, b ∈ [k], x, y ∈ [n]} be the tuple defined by p(ab|xy) :=

ϕ̃(E(a|x)F (b|y)) = ϕ̃(Q(ab|xy)) = ϕ(Q(ab|xy)). By Proposition 5.0.1 it then follows p ∈

Cqc(n, k). This finishes the proof.

The goal of the rest of this section is to construct an AOU space which is universal with

respect to quantum commuting correlations. This is to say that a correlation p ∈ C(n, k) is

quantum commuting if and only if there exists a unital positive map on said AOU space such

that the correlation is determined by the action of the unital positive map on the generators

of the AOU space. We will first construct such an object which is universal with respect to

nonsignalling correlations, then we will apply methods from Section 3.2 and Section 4.2 to

obtain such a universal object with respect to quantum commuting correlations.

Definition 5.0.2. A nonsignalling vector space X is a vector space X such that X =

span {Q(ab|xy) : a, b ∈ [k], x, y ∈ [n]}, where the Q(ab|xy) are called the generators of X and

they satisfy the following properties:

1. For each x, y ∈ [n] it follows ∑abQ(ab|xy) = e, for some fixed nonzero e.

2. The vectors E(a|x) := ∑
bQ(ab|xy) and F (b|y) := ∑

aQ(ab|xy) are well-defined

for all x, y ∈ [n] and a, b ∈ [k].

The element e as in (1) will be called the unit of the vector space X . If X is a nonsignalling

vector space then we will let n(X ) and k(X ) denote the number of inputs and outputs,

respectively. Thus, X = span {Q(ab|xy) : a, b ∈ k(X ), x, y ∈ n(X )}.

Example 5.0.3. Let n, k ∈ N. Let Dk denote the set of diagonal k × k matrices. Let

Ea denote the diagonal matrix with 1 for its ath diagonal entry and zeroes elsewhere. Let

X ⊂ D⊗2n
k denote the vector space spanned by the operators {Q(ab|xy) : a, b ∈ [k], x, y ∈ [n]}

defined by

Q(ab|xy) := I⊗x−1
k ⊗ Ea ⊗ I⊗n−x

k ⊗ I⊗y−1
k ⊗ Eb ⊗ I⊗n−y

k
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where Ik denotes the k × k identity matrix and I⊗n
k denotes the n-fold tensor product of Ik

with itself (understanding I⊗0
k = 1). It readily follows that X is a nonsignalling vector space.

The marginal vectors are respectively defined as

E(a|x) = I⊗x−1
k ⊗ Ea ⊗ I⊗n−x

k ⊗ I⊗n
k and F (b|y) = I⊗n

k ⊗ I⊗y−1
k ⊗ Eb ⊗ I⊗n−y

k ,

for each x, y ∈ [n], a, b ∈ [k]. To see this fix a ∈ [k], x ∈ [n] and note

E(a|x) =
∑
b

I⊗x−1
k ⊗ Ea ⊗ I⊗n−x

k ⊗ I⊗y−1
k ⊗ Eb ⊗ I⊗n−y

k = I⊗x−1
k ⊗ Ea ⊗ I⊗n−x

k ⊗ I⊗n
k .

A similar calculation shows F (b|y) is as claimed. It is clear that each marginal vector is

well-defined and furthermore we see

∑
ab

Q(ab|xy) =
∑
ab

I⊗x−1
k ⊗ Ea ⊗ I⊗n−x

k ⊗ I⊗y−1
k ⊗ Eb ⊗ I⊗n−y

k = I⊗2n
k .

Thus, X is a nonsignalling vector space. We now show that dim(X ) = (n(k− 1) + 1)2. First

note

E(a|x)F (b|y) = (I⊗x−1
k ⊗ Ea ⊗ I⊗n−x

k ⊗ I⊗n
k )(I⊗n

k ⊗ I⊗y−1
k ⊗ Eb ⊗ I⊗n−y

k )

= ((I⊗x−1
k ⊗ Ea ⊗ I⊗n−x

k ) ⊗ I⊗n
k )(I⊗n

k ⊗ (I⊗y−1
k ⊗ Eb ⊗ I⊗n−y

k ))

= I⊗x−1
k ⊗ Ea ⊗ I⊗n−x

k ⊗ I⊗y−1
k ⊗ Eb ⊗ I⊗n−y

k

= Q(ab|xy).

Here we are taking the product in D⊗2n
k . If we let XA := span {E(a|x) : a ∈ [k], x ∈ [n]} and

XB := span {F (b|y) : b ∈ [k], y ∈ [n]} then X = XAXB. We see XA is spanned by the set

S = {E(a|x) : a ∈ [k − 1], x ∈ [n]} ∪ {I⊗2n
k },
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which is immediate from the fact that E(k|x) = I⊗2n
k −(∑k−1

a=1 E(a|x)). It follows S is linearly

independent and hence a basis for XA. Thus dim(XA) = n(k − 1) + 1. In a similar fashion

it follows dim(XB) = n(k − 1) + 1. We conclude

dim(X ) = dim(XA) dim(XB) = (n(k − 1) + 1)2.

Proposition 5.0.2. For each n, k ∈ N, there exists a nonsignalling vector space Xns with

n(Xns) = n, k(Xns) = k, and generators {Qns(a, b|x, y) : a, b ∈ [n], x, y ∈ [k]} satisfying the

following universal property: if Y is another nonsignalling vector space with n(Yns) = n,

k(Yns) = k, and generators {Q(a, b|x, y) : a, b ∈ [k], x, y ∈ [n]}, then there exists a linear map

ϕ : Xns → Y satisfying ϕ(Qns(a, b|x, y)) = Q(a, b|x, y). Moreover dim(Xns) = (n(k−1)+1)2.

Proof. Let Y be an arbitrary nonsignalling vector space as in the above statement. Let X :=

`n
2k2

2 and denote the set of the canonical basis elements by {Q′(ab|xy) : a, b ∈ [k], x, y ∈ [n]}.

Define a linear map ϕ : X → Y by ϕ(Q′(ab|xy)) = Q(ab|xy). Define the linear subspace J

to be the span of the following vectors:

F (x, y|x′, y′) :=
∑
a,b

Q′(a, b|x, y) −
∑
a,b

Q′(a, b|x′, y′),

G(a|x, z, w) :=
∑
c

Q′(a, c|x, z) −
∑
c

Q′(a, c|x,w), and

H(b|y, z, w) :=
∑
d

Q′(d, b|z, y) −
∑
d

Q′(d, b|w, y).

We then consider the quotient vector space Xns := X/J , where for each a, b ∈ [k], x, y ∈

[n] we denote Qns(ab|xy) := Q′(ab|xy) +J. It follows J ⊂ kerϕ and consequently ϕ descends

to a linear map ϕ̃ : Xns → Y such that Qns(ab|xy) 7→ Q(ab|xy). If ens := ∑
abQns(ab|xy) then

it is readily verified that Xns is a nonsignalling vector space and satisfies our initial claim.

It remains to check the dimension of Xns. Given any a, b ∈ [k] and x, y ∈ [n] let Ens(a|x)

and Fns(b|y) denote the respective marginal vectors in Xns. Consider the set

S := {ens, Qns(a, b|x, y), Ens(a|x), Fns(b|y) : a, b ∈ [k − 1], x, y ∈ [n]}.
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We see dimS = 1 + n2(k − 1)2 + 2n(k − 1) = (n(k − 1) + 1)2. We claim that S is a basis for

Xns. In order to show that S is a spanning set for Xns we show that S contains the vectors

Qns(k, b|x, y), Qns(a, k|x, y), and Qns(k, k|x, y) for each a, b ∈ [k − 1] and x, y ∈ [n]. Fix

b ∈ [k] and x, y ∈ [n]. Then

Fns(b|y) −
k−1∑
a=1

Qns(a, b|x, y) =
k∑
a=1

Qns(a, b|x, y) −
k−1∑
a=1

Qns(a, b|x, y) = Qns(k, b|x, y).

Thus Qns(k, b|x, y) ∈ spanS. A similar observation shows that Qns(a, k|x, y) ∈ spanS for

each a ∈ [k] and x, y ∈ [n]. Now fix x, y ∈ [n]. Then

ens −
k−1∑
a,b=1

Qns(a, b|x, y) −
k−1∑
b=1

Qns(k, b|x, y) −
k−1∑
a=1

Qns(a, k|x, y) = Qns(k, k|x, y).

Thus Qns(k, k|x, y) ∈ spanB. We conclude that dim(Xns) ≤ |S| = (n(k − 1) + 1)2. Suppose

we consider the nonsignalling vector space from Example 5.0.3 , which we denote by X . By

the universal property of Xns there exists a linear surjection ϕ : Xns → X . In particular,

dim Xns ≥ dim X = (n(k− 1) + 1)2. This proves dim Xns = |S| and consequently S is a basis

for Xns.

We thus know that Xns is isomorphic to the nonsignalling vector space from Exam-

ple 5.0.3 .

Definition 5.0.3. Fix n, k ∈ N and let Xns denote the universal nonsignalling vector space

with n(Xns) = n and k(Xns) = k. Define the following sets:

(Xns)h := {
∑

t(ab|xy)Qns(ab|xy) : t(ab|xy) ∈ R, for each a, b ∈ [k], x, y ∈ [n]},

Dns := {
∑

t(ab|xy)Qns(ab|xy) : t(ab|xy) ∈ R+, for each a, b ∈ [k], x, y ∈ [n]}.

Given z = ∑
s(ab|xy)Qns(ab|xy) then define the map ∗ : Xns → Xns by

z∗ :=
∑

s(ab|xy)Qns(ab|xy).
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Proposition 5.0.3. Fix n, k ∈ N and let Xns denote the universal nonsignalling vector space

with n(Xns) = n and k(Xns) = k. Let (Xns)h and Dns be as in Definition 5.0.3 . Then the

triple (Xns, Dns, ens) is an AOU space.

Proof. First note that the map ∗ : Xns → Xns is a well-defined involution being the involution

on the nonsignalling vector space from Example 5.0.3 . Furthermore, z ∈ (Xns)h if and only

if z = z∗. We also see Dns ⊂ (Xns)h and in particular, Dns ∩ −Dns = {0}. It remains

to show that ens is an interior point of Dns. The set of extreme points of Dns is exactly

{tQns(ab|xy) : t ∈ [0,∞)}. We then see that ens is in the interior of Dns since we may write

ens as a convex combination of such extreme points, e.g., ens = 1
n2k2

∑
abxy k

2Qns(ab|xy). This

finishes the proof.

Let Xns be the universal nonsignalling vector space with n inputs and k outputs and

consider the AOU space (Xns, Dns, ens). We consider the maximal operator system structure

Dns on Xns which implies (Dns)1 = Dns. By Proposition 5.0.3 it then follows that (Xns,Dns, ens)

is an operator system.

Proposition 5.0.4. Fix n, k ∈ N and let Xns denote the universal nonsignalling vector

space with n(Xns) = n and k(Xns) = k. Then the operator system (Xns,Dns, ens) satisfies

the following property: given any nonsignalling operator system Y such that n(Y) = n and

k(Y) = k, then if {Q(ab|xy) : a, b ∈ [k], x, y ∈ [n]} is the set of generators of Y, it follows,

the map π : Xns → Y , Qns(ab|xy) 7→ Q(ab|xy) is unital completely positive.

Proof. Let C denote the proper matrix ordering on Y . The map π is well-defined and

linear by Proposition 5.0.2 . Since Y is a nonsignalling operator system then π is unital. If∑
s(ab|xy)Qns(ab|xy) ∈ Dns then π(∑ s(ab|xy)Qns(ab|xy)) = ∑

s(ab|xy)Q(ab|xy) ∈ C1 since

{Q(ab|xy) : a, b ∈ [k], x, y ∈ [n]} ⊂ C1 and each s(ab|xy) ∈ R+. In particular, we see the map

π : (Xns, Dns, ens) → Y is unital positive. Since Dns denotes the maximal operator system

structure then it follows π : (Xns,Dns, ens) → Y is unital completely positive.

Theorem 5.0.4. Fix n, k ∈ N and let Xns denote the universal nonsignalling vector space

with n(Xns) = n and k(Xns) = k. Let p ∈ C(n, k). Then p ∈ Cns(n, k) if and only if there
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exists a unital positive map ϕ : (Xns, Dns, ens) → C such that p(ab|xy) = ϕ(Qns(ab|xy)) for

all a, b ∈ [k] and x, y ∈ [n].

Proof. First suppose p ∈ Cns(n, k). Then there exists a nonsignalling operator system (Y , C, e)

with generators {Q(ab|xy) : a, b ∈ [k], x, y ∈ [n]}, and a state ϕ : Y → C such that

p(ab|xy) = ϕ(Q(ab|xy)) for all a, b ∈ [k] and x, y ∈ [n]. By Proposition 5.0.4 the map

π : (Xns, Dns, ens) → Y , Qns(ab|xy) 7→ Q(ab|xy) is unital positive and consequently the com-

position ϕπ : (Xns, Dns, ens) → C is a state with ϕπ(Qns(ab|xy)) = p(ab|xy).

Conversely, consider the triple (Xns, Dns, ens) and let ϕ : (Xns, Dns, ens) → C be a state.

It necessarily follows ϕ : (Xns,Dns, ens) → C is also a state and by Theorem 5.0.2 it follows

if p := {p(ab|xy) : a, b ∈ [k], x, y ∈ [n]}, where p(ab|xy) := ϕ(Qns(ab|xy)) then p ∈ Cns(n, k).

This finishes the proof.

We now wish to prove a result analogous to Theorem 5.0.4 which we do by employing

our results from Section 4.2 .

Definition 5.0.4. Fix n, k ∈ N and let Xns denote the universal nonsignalling vector space

with n(Xns) = n and k(Xns) = k. Consider the operator system (Xns,Dns, ens) and let

{p1, . . . , pN} be some enumeration of the set of generators {Qns(ab|xy) : a, b ∈ [k], x, y ∈

[n]}, N = n2k2. We denote by Dqc := Dns(p1, . . . , pn)∞ the inductive limit of the matrix

orderings {π
−1
L (Dns(p1, . . . , pN)L)}L∈N, and let Dqc := Dns(p1, . . . , pN)∞

1

It will be shown that the matrix ordering Dqc, and thus Dqc, is independent of the choice

of enumeration of the generators {p1, . . . , pN}. In the next result let

PN
i (x) := I2i−1 ⊗ (x⊕ x⊥) ⊗ J2N−i and PN,L

i,j (x) := I2N(j−1) ⊗ PN
i (x) ⊗ J2N(L−j)

for any positive contraction x, where x⊥ := e− x, i ∈ [N ], and j ∈ [L].

Proposition 5.0.5. Fix n, k ∈ N and let H be a Hilbert space. For each x, y ∈ [n]

let {Exa}a∈[k] and {Fyb}b∈[k] be projection-valued measures such that ExaFyb = FybExa for

all a, b ∈ [k] and x, y ∈ [n]. Let Y := span {ExaFyb : a, b ∈ [k], x, y ∈ [n]}. Let π :

(Xns,Dqc, ens) → Y be defined by π(Qns(ab|xy)) = ExaFyb. Then π unital completely positive.
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Proof. For notational convenience we will denote each generator ExaFyb as Q(ab|xy). Thus,

{Q(ab|xy) : a, b ∈ [k], x, y ∈ [n]} will denote the set of generators of the operator system Y .

Note for each x, y ∈ [n] we have

∑
ab

Q(ab|xy) =
∑
ab

ExaFyb = IdH ,

which follows by the assumption that {Exa}a∈[k] and {Fyb}b∈[k] are projection-valued mea-

sures. Furthermore if x ∈ [n] and a ∈ [k] are fixed we see

E(a|x) =
∑
b

Q(ab|xy) = Exa
∑
b

Fyb = Exa IdH = Exa.

A similar observation holds for F (b|y) for each y ∈ [n] and b ∈ [k]. Thus, the marginal

operators are well-defined. Finally, since for each a, b ∈ [k] and x, y ∈ [n] we have ExaFyb =

FybExa it follows that each positive operator Q(ab|xy) is an abstract projection. This proves

that Y is a quantum commuting operator system. By Proposition 5.0.4 it follows the map

π : (Xns,Dns, ens) → Y , Qns(ab|xy) 7→ Q(ab|xy), is unital completely positive. We thus claim

π : (Xns,Dqc, ens) → Y is completely positive.

Recall, N := n2k2. For each L ∈ N let PNL
ij (pi) := PNL

ij and let QNL
ij (pi) := QNL

ij , where

{p1, . . . , pN} is some enumeration of the positive contractions {Qns(ab|xy) : a, b ∈ [k], x, y ∈

[n]}. In a similar fashion, if {p̂1, . . . , p̂N} is some enumeration of the generators {Q(ab|xy) :

a, b ∈ [k], x, y ∈ [n]} ⊂ B(H) then we let P̂NL
ij (p̂i) := P̂NL

ij and let Q̂NL
ij (p̂i) := Q̂NL

ij . Let

x ∈ (Dqc)n. Thus for all ε > 0 there exists L ∈ N such that (x + εIn ⊗ ens) ⊗ J2NL ∈

Dns(p1, . . . , pN)Ln . Therefore given an arbitrary N ×L matrix (εij)i∈[N ],j∈[L] of strictly positive

real numbers there exists another N × L matrix (tij)i∈[N ],j∈[L] such that

(x+ εIn ⊗ ens) ⊗ J2NL +
∑

ij
εijIn ⊗ PNL

ij +
∑

ij
tijIn ⊗QNL

ij ∈ (Dns)n2NL .
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Since the map π is completely positive with respect to the matrix ordering Dns we take the

n2NLth-amplification of the above expression which yields

πn2NL

(x+ εIn ⊗ ens) ⊗ J2NL +
∑

ij
εijIn ⊗ PNL

ij +
∑

ij
tijIn ⊗QNL

ij


= (πn(x) + εIn ⊗ IdH) ⊗ J2NL +

∑
ij
εijIn ⊗ P̂NL

ij +
∑

ij
tijIn ⊗ Q̂NL

ij ∈ B(`n2NL
2 (H))+.

Since the generators Q(ab|xy) in B(H) are abstract projections in Y it follows by Proposi-

tion 3.2.1 

(πn(x) + εIn ⊗ IH) ∈ B(`n2 (H))+.

Since the cone B(`n2 (H))+ is Archimedean closed with respect to IdH it follows πn(x) ∈

B(`n2 (H))+. This implies π is unital completely positive with respect to the operator system

(Xns,Dqc, ens) which finishes the proof.

Corollary 5.0.5. Fix n, k ∈ N and let Xns denote the universal nonsignalling vector space

with n(Xns) = n and k(Xns) = k. Let {Qns(ab|xy) : a, b ∈ [k], x, y ∈ [n]} be the set of

generators of Xns and let {p1, . . . , pN} be some enumeration of the generators where N = n2k2.

Let Dqc := Dns(p1, . . . , pN)∞ and let Dqc := Dns(p1, . . . , pN)∞
1 . Then Dqc ∩ −Dqc = {0} and

thus (Xns, Dqc, ens) is an AOU space and (Xns,Dqc, ens) is a quantum commuting operator

system. Furthermore, the matrix ordering Dqc is independent of the enumeration {p1, . . . , pN}

of the generators {Qns(ab|xy) : a, b ∈ [k], x, y ∈ [n]}. Thus, if {p′
1, . . . , p

′
N} is another such

enumeration of the nonsignalling generators and D′
qc is the corresponding inductive limit

D′
qc := Dns(p′

1, . . . , p
′
N)∞, then the identity map

Id : (Xns,D′
qc, ens) → (Xns,Dqc, ens)

is a (unital) complete order isomorphism.
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Proof. Let Y ⊂ B(`k2n
2 ) be the nonsignalling vector space from Example 5.0.3 . We then

recall

Q(ab|xy) := I⊗x−1
k ⊗ Ea ⊗ I⊗n−x

k ⊗ I⊗y−1
k ⊗ Eb ⊗ I⊗n−y

k .

Furthermore we saw the marginal vectors were

E(a|x) = I⊗x−1
k ⊗ Ea ⊗ I⊗n−x

k ⊗ I⊗n
k and F (b|y) = I⊗n

k ⊗ I⊗y−1
k ⊗ Eb ⊗ I⊗n−y

k .

It was established that Y was a nonsignalling vector space and in fact isomorphic to Xns.

We claim Y is a quantum commuting operator system with abstract projections {Q(ab|xy) :

a, b ∈ [k], x, y ∈ [n]}. Note the involution, matrix ordering, and Archimedean matrix order

unit are all inherited from B(`k2n
2 ). Furthermore we see

Q(ab|xy)2 = (I⊗x−1
k ⊗ Ea ⊗ I⊗n−x

k ⊗ I⊗y−1
k ⊗ Eb ⊗ I⊗n−y

k )2

= I⊗x−1
k ⊗ Ea ⊗ I⊗n−x

k ⊗ I⊗y−1
k ⊗ Eb ⊗ I⊗n−y

k

= Q(ab|xy).

Each generator Q(ab|xy) is hermitian and thus the set {Q(ab|xy) : a, b ∈ [k], x, y ∈ [n]} con-

sists of projections in B(`k2n
2 ). By Proposition 5.0.5 we know the map π : (Xns,Dqc, ens) →

Y , Qns(ab|xy) 7→ Q(ab|xy), is unital completely positive. This necessarily implies (Dqc)1 ∩

−(Dqc)1 ⊂ ker π since if ±x ∈ (Dqc)1 then ±π(x) ∈ Y+ which implies π(x) = 0. By as-

sumption we know dim Xns = dim Y and therefore π must be injective and consequently

(Dqc)1 ∩ −(Dqc)1 = {0}. By applying Lemma 2.0.1 we know Dqc is a proper matrix order-

ing which implies the triple (Xns,Dqc, ens) is an operator system and consequently the triple

(Xns, Dqc, ens) is an AOU space. The claim that (Xns,Dqc, ens) is a quantum commuting op-

erator system is a direct result of Proposition 4.2.3 . Indeed since (Dqc)1 = Dns(p1, . . . , pN)∞
1

then by applying Proposition 4.2.3 it follows each pi, i ∈ [N ], is an abstract projection.

To finish the proof we consider two enumerations, {p1, . . . , pN} and {p′
1, . . . , p

′
N}, of the

set of generators {Qns(ab|xy) : a, b ∈ [k], x, y ∈ [n]} ⊂ Xns. Consider the two quantum
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commuting operator systems (Xns,Dqc, ens) and (Xns,D′
qc, ens), which correspond to the re-

spective enumerations. By Proposition 5.0.5 it necessarily follows both

Id : (Xns,D′
qc, ens) → (Xns,Dqc, ens)

and

Id : (Xns,Dqc, ens) → (Xns,D′
qc, ens)

are completely positive. In particular, Id : (Xns,D′
qc, ens) → (Xns,Dqc, ens) is a (unital)

complete order isomorphism and consequently Dqc = D′
qc. This finishes the proof.

We are now able to characterize when a correlation is necessarily quantum commuting.

Theorem 5.0.6. Fix n, k ∈ N and let Xns denote the universal nonsignalling vector space

with n(Xns) = n and k(Xns) = k. Let {Qns(ab|xy) : a, b ∈ [k], x, y ∈ [n]} be the set

of generators of Xns and let {p1, . . . , pN} be some enumeration of the generators where

N = n2k2. Then a correlation p ∈ C(n, k) is quantum commuting if and only if there exists

a unital positive map ϕ : (Xns, Dqc, ens) → C such that p(ab|xy) = ϕ(Qns(ab|xy)) for each

a, b ∈ [k] and x, y ∈ [n].

Proof. Assume p ∈ Cqc(n, k). Then by Theorem 5.0.2 there exists a quantum commuting

operator system (Y , C, e) with set of generators {Q(ab|xy) : a, b ∈ [k], x, y ∈ [n]} and a unital

positive map ϕ : Y → C such that p(ab|xy) = ϕ(Q(ab|xy)) for all a, b ∈ [k], x, y ∈ [n]. If we

consider the universal nonsignalling vector space Xns with the set of generators {Qns(ab|xy) :

a, b ∈ [k], x, y ∈ [n]} then by Corollary 5.0.5 we know (Xns,Dqc, ens) is a quantum commuting

operator system and consequently, (Xns, Dqc, ens) is an AOU space with the property that if

π : (Xns, Dqc, ens) → Y denotes the map Qns(ab|xy) 7→ Q(ab|xy), then π is unital positive.

Thus, if we consider ϕπ : (Xns, Dqc, ens) → C then ϕπ is a state on (Xns, Dqc, ens) and

ϕπ(Qns(ab|xy)) = p(ab|xy) for each a, b ∈ [k] and x, y ∈ [n].

Conversely, consider the AOU space (Xns, Dqc, ens) and let ϕ : (Xns, Dqc, ens) → C be

a state. This implies ϕ : (Xns,Dqc, ens) → C is unital positive and it therefore follows
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ϕ : (Xns,Dqc, ens) → C completely positive. Consequently, if we consider the correlation

p ∈ C(n, k) defined by p(ab|xy) := ϕ(Qns(ab|xy)) for all a, b ∈ [k] and x, y ∈ [n] then by

Theorem 5.0.2 we must have p ∈ Cqc(n, k).

Remark 5.0.7. We conclude with some remarks on generalizations of the results that we

have presented in Section 5 . In particular, such generalizations follow from the results thus

presented. The notions of nonsignalling vector spaces and nonsignalling operator systems

are readily generalized to the multipartite situation, where one considers correlations of the

form p(a1a2 . . . an|x1x2 . . . xn). Such multipartite correlations describe the scenario where n

spacially distinct parties each perform a measurement on their respective quantum system.

One then considers quantum commuting correlations arising from n mutually commuting

C*-algebras in a common Hilbert space. To describe such multipartite correlations using the

methods presented thus far, we redefine nonsignalling operator systems to be generated by

operators {Q(a1 . . . an|x1 . . . xn)} satisfying

∑
a1...an

Q(a1 . . . an|x1 . . . xn) = e

and such that the marginal operators

Ei(ai|xi) =
∑
aj,j6=i

Q(a1 . . . an|x1 . . . xn),

are well-defined. If one requires the generators to be abstract projections then this yields a

quantum commuting operator system. The constructions of the universal nonsignalling and

quantum commuting operator systems proceed in the same manner as the bipartite case.

Our work also readily generalizes to the setting of matricial correlation sets, as described in

[17 ]. In particular, it is readily seen that the matrix affine dual of the matricial nonsignalling

and quantum commuting correlations are precisely the operator systems (Xns,Dns, ens) and

(Xns,Dqc, ens), respectively, using work in [23 ].
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6. WEAK DUAL MATRIX ORDERED *-VECTOR SPACES

AND RELATIVE ARCHIMEDEANIZATIONS

Consider a proper matrix ordered ∗-vector space (X , C). Given x ∈ C1 we define the following

collection Cx where for each n ∈ N

Cxn := {y ∈ Mn(X ) : ∀ε > 0, εIn ⊗ x+ y ∈ Cn}.

Thus, Cx is nothing but the Archimedean closure of the proper matrix ordering C with respect

to x ∈ C1.

Proposition 6.0.1. Given a proper matrix ordered ∗-vector space (X , C) then Cx is a matrix

ordering on X.

Proof. Let y ∈ Cxn. Then if λ > 0 and ε > 0 is arbitrary it follows εIn ⊗ x + λy =

λ( ε
λ
In ⊗ x + y) ∈ λCn ⊂ Cn. Thus, R+Cx ⊂ Cx. If y1, y2 ∈ Cxn and ε > 0 is arbitrary it

follows

εIn ⊗ x+ (y1 + y2) = ( ε2In ⊗ x+ y1) + ( ε2In ⊗ x+ y2) ∈ Cn + Cn ⊂ Cn.

Thus Cx + Cx ⊂ Cx. We now check that Cx is compatible. Let y ∈ Cxn and let a ∈ Mn,k. Since

a∗a ≤
∥∥∥a∥∥∥2Ik it follows

εIk ⊗ x+ a∗ya ≥ ε∥∥∥a∥∥∥2
a∗a⊗ x+ a∗ya = a∗( ε∥∥∥a∥∥∥2

In ⊗ x+ y)a ∈ a∗Cna ⊂ Ck.

Thus a∗Cxna ⊂ Cxk and therefore Cx is a matrix ordering on X .

We recall some notions regarding duality for matrix ordered ∗-vector spaces. Given two

vector spaces X,X1 then we say that X and X1 are in duality if there exists a bilinear map

〈·, ·〉 : X ×X1 → C
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such that for x ∈ X then x = 0 if and only 〈x, x1〉 = 0 for all x1 ∈ X1, and similarly for

x1 ∈ X1 then x1 = 0 if and only if 〈x, x1〉 = 0 for all x ∈ X. If two spaces are in duality

then each induces a weak topology on the other. We will denote the weak topology on X

as w(X,X1) and similarly the weak topology on X1 as w(X1, X). Thus, when X and X1 are

in duality we will write 〈X,X1〉 and say it is a dual pair of vector spaces. Given two dual

pairs 〈X,X1〉 and 〈Y, Y1〉 then we let Bw(X,Y ) denote the weak-to-weak continuous maps:

i.e., the w(X,X1)-to-w(Y, Y1) continuous maps. We will write X ′ := Bw(X,C) and call it

the dual (or weak dual) of X. Thus, if 〈X,X1〉 is a dual pair of vector spaces then we may

identify X1 with X ′ and X with X ′′. Furthermore, if 〈X,X ′〉 is a dual pair of vector spaces

then 〈Mn(X),Mn(X ′)〉 is a dual pair of vector spaces under the pairing

〈·, ·〉 : Mn(X) ×Mn(X ′) → C, defined by 〈x, x′〉 :=
∑

ij
〈xij, x

′
ij〉. (6.1)

We will also make use of the matrix pairing defined in the following way: if 〈X,X ′〉 is a

dual pair of vector spaces then 〈Mm(X),Mn(X ′)〉 is a dual pair with pairing

〈〈·, ·〉〉 : Mn(X) ×Mm(X ′) → Mmn, defined by 〈〈x, x′〉〉 := [〈xij, x
′
kl〉]. (6.2)

The weak topology induced by Equation (6.1 ) coincides with that induced by Equation (6.2 )

Let (X , C) be a proper matrix ordered ∗-vector space with vector space dual X ′. We

say that X ′ is a ∗-vector dual of X if X ′ is a self-adjoint subspace of X d := L(X ,C), the

algebraic dual of X . We may then define a dual matrix ordering on X ′ in the following way:

let n ∈ N and define

C ′
n := {x′ ∈ Mn(X ′) : the map x′ : X → Mn, is completely positive}

where x′ : X → Mn is defined as x′(x) := ∑
ij eie

∗
j ⊗ x′

ij(x). Then the collection C ′ denotes a

matrix ordering on X ′ and thus (X ′, C ′) is a proper matrix ordered ∗-vector space and when

X ′ is given this matrix ordering we will call X ′ the matrix ordered dual of X . It follows by
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the Bipolar theorem that X is the matrix ordered dual of X ′ if and only if Cwn = Cn for all

n ∈ N where here we are taking the weak closure of Cn.

Definition 6.0.1. A matrix ordered ∗-vector space (X , C) will be called a weak dual matrix

ordered ∗-vector space if there exists another matrix ordered ∗-vector space (X1,D) such that

〈X ,X1〉 is a dual pair of matrix ordered ∗-vector spaces. In particular, Cw(X ,X1)
n = Cn for all

n ∈ N. If 〈X ,X1〉 is a dual pair of matrix ordered ∗-vector spaces when X1 = X d then we

will say X has the natural weak dual structure.

It necessarily follows that every operator system has the natural weak dual structure.

Whenever (X , C) is a weak dual matrix ordered ∗-vector space then we will let X ′ denote

its weak dual matrix ordered ∗-vector space.

Lemma 6.0.1. Let (X , C) be a proper weak dual matrix ordered ∗-vector space and let x ∈ C1.

Then the matrix ordering Cx is proper.

Proof. By Lemma 2.0.1 it suffices to show that Cx1 is proper. To this end, let ±y ∈ Cx1 .

By Proposition 6.0.1 it follows ±ry ∈ Cx1 for all r > 0. This implies for all ε > 0 we have

εx±ry ∈ C1 and consequently if ε = 1 we obtain 1
r
x±y ∈ C1.We consider the dual pair 〈X ,X ′〉

of matrix ordered ∗-vector spaces. Let x′ ∈ C ′
1 be arbitrary. It follows 〈1

r
x ± y, x′〉 ∈ R+.

Since R+ is closed it follows ±〈y, x′〉 = limr→∞
1
r
〈x, x′〉 ± 〈y, x′〉 ∈ R+. By [4 , Lemma 4.3]

the map

Λ : X → Bw(X ′,C), defined by Λ(y)(x′) := 〈y, x′〉,

is a (complete) order isomorphism. Thus, Λ(±y) ∈ Bw(X ′,C)+ since x′ ∈ C ′
1 was arbitrary

and 〈±y, x′〉 = Λ(±y)x′. Since Λ is an order isomorphism it follows ±y ∈ C1 which implies

y = 0 since C is proper. This completes the proof.

Remark 6.0.2. We point out in the proof of Lemma 6.0.1 above, in showing Cx is proper, one

could directly appeal to the assumption that X is a weak dual space and thus Cw(X ,X ′) = C.

In particular, the cone C1 is w(X ,X ′)-closed. We introduce the map Λ : X → Bw(X ′,C)

since it plays a vital role throughout the section.
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Let (X , C) be a weak dual matrix ordered ∗-vector space with x ∈ C1. Consider X x :=

X x
h ⊕ ıX x

h where

X x
h := {y ∈ Xh : rx± y ∈ C1 for some r > 0}. (6.3)

As in Proposition 6.0.1 we define the collection Cx where for each n ∈ N

Cxn := {y ∈ Mn(X x)h : ∀ε > 0, εIn ⊗ x+ y ∈ Cn}. (6.4)

Lemma 6.0.3. Given a proper matrix ordered ∗-vector space (X , C) then X x
h is a real vector

space.

Proof. Suppose y ∈ X x
h and let λ ∈ R. Let r > 0 such that rx± y ∈ C1.

• If λ > 0 then λrx ± λy = λ(rx ± y) ∈ λC1 ⊂ C1. Thus λr is the desired positive real

number.

• If λ < 0 then −λrx ± λy = −λ(rx ± −y) = −λ(rx ± y) ∈ −λC1 ⊂ C1. Thus, −λr is

the desired positive real number.

Thus, RX x
h ⊂ X x

h . Let y1, y2 ∈ X x
h and let ri > 0 such that rix± yi ∈ C1. If r := max{r1, r2}

then we see

2rx± (y1 + y2) = (rx± y1) + (rx± y2) ∈ C1 + C1 ⊂ C1.

Clearly 0 ∈ X x
h since rx ∈ C1 for all r > 0. This finishes the proof.

Definition 6.0.2. Let (X , C) be a proper matrix ordered ∗-vector space and let x ∈ C1. Then

we call X x
h the majorization subspace with respect to x. If y ∈ X x

h and r > 0 such that

rx± y ∈ C1 then we call r a majorization constant of y.

Proposition 6.0.2. Given a weak dual matrix ordered ∗-vector space (X , C) and x ∈ C1 then

Cx is a proper matrix ordering on X x and (X x, Cx, x) is an operator system.
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Proof. We begin by showing that Cx is a proper matrix ordering. Let y ∈ Cxn and let λ ∈ R+.

Then if ε > 0 it follows εIn⊗x+λx = λ( ε
λ
In⊗x+y) ∈ λC1 ⊂ C1. Thus R+Cx ⊂ Cx. Let yi ∈ Cxn.

Then for ε > 0 it follows εIn ⊗x+ (y1 + y2) = ( ε2In ⊗x+ y1) + ( ε2In ⊗x+ y2) ∈ Cn + Cn ⊂ Cn.

Thus y1 +y2 ∈ Cxn. If y ∈ Cxn and a ∈ Mn,k then since a∗a ≤
∥∥∥a∥∥∥2Ik and a∗a⊗x = a∗(In⊗x)a

we have for ε > 0 that

εIk ⊗ x+ a∗ya ≥C
ε∥∥∥a∥∥∥2
a∗a⊗ x+ a∗ya = a∗( ε∥∥∥a∥∥∥2

In ⊗ x+ y)a ∈ a∗Cna ⊂ Ck.

Thus a∗ya ∈ Cxk which proves that Cx is a matrix ordering. The ordering Cx will be proper

if we can show that Cx1 is proper by once again invoking 2.0.1 . If ±y ∈ Cx1 then ±y ∈ X x
h

by Lemma 6.0.3 . At this point the argument proceeds just as in Lemma 6.0.1 . Thus Cx is

proper and consequently (X x, Cx) is a proper matrix ordered ∗-vector space.

It remains to show x is an Archimedean matrix order unit. If y ∈ X x
h then by definition of

the majorization subspace relative to x it follows there exists r > 0 such that rx ± y ∈ C1.

Note that if ε > 0 then since εx ∈ C1 then εx+(rx±y) = (ε+r)x±y ∈ C1. This holds for all

ε > 0 and therefore rx± y ∈ Cx1 which proves x is an order unit and therefore x is a matrix

order unit by Proposition 2.0.1 . We remark it is immediate that rx± y ∈ X x
h since ±y ∈ X x

h

and rx ∈ X x
h . Given y ∈ Mn(X x) suppose that for all ε > 0 it follows εIn ⊗ x + y ∈ Cxn.

This implies that for all ε̃ > 0 we have (ε̃ + ε)In ⊗ x + y ∈ Cn. Let ε̃ = ε which yields

2εIn ⊗x+ y ∈ Cn and thus εIn ⊗x+ 1
2y ∈ Cn. Since this holds for all ε > 0 it follows 1

2y ∈ Cxn
and consequently y ∈ Cxn. Therefore x is an Archimedean matrix order unit. This finishes

the proof.

Thus, as a result of Proposition 6.0.2 if (X , C) is a proper weak dual matrix ordered ∗-

vector space it follows that every element of C1 induces an operator system, and consequently,

an operator space. If x ∈ C1 and αx : X x → [0,∞) denotes the operator space norm induced

by x then we may consider (X x, Cx, αx, x).

Definition 6.0.3. Let (X , C) be a proper weak dual matrix ordered ∗-vector space and let

x ∈ C1. Then the triple (X x, Cx, x) will be called the operator system relative to x. The pair
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(X x, αx) will be called the operator space relative to x. The collection {(X x, Cx, αx, x)}x∈C1

will be called the canonical collection of operator systems induced by the pair (X , C).

Remark 6.0.4. Let (X , C) be a proper weak dual matrix ordered ∗-vector space. Then C1

generates Xh if Xh = C1 − C1. In particular, C1 generates Xh if and only if given any y ∈ Xh

there exists x ∈ C1 such that x ≥C y. If C1 generates Xh then if y ∈ Xh we write y = x1 − x2

for xi ∈ C1. Consequently, x1 − y ∈ C1. Conversely, if there exists x ∈ C1 such that x− y ∈ C1

then y = x− (x− y).

Definition 6.0.4. Given a proper weak dual matrix ordered ∗-vector space (X , C) then if

Xh = C1 − C1 we will say C1 has non-void radial kernel.

Proposition 6.0.3. Let (X , C) be a proper weak dual matrix ordered ∗-vector space such

that C1 has non-void radial kernel. Then for all y ∈ Xh there exists x ∈ C1 such that y ∈ X x
h .

In particular, given y1, y2 ∈ Xh then there exists x ∈ C1 such that y1, y2 ∈ X x
h .

Proof. Let y ∈ Xh which we write as y = y1 − y2 for yi ∈ C1. It follows that there exists

xi ∈ C1 such that yi ∈ X xi
h . Note here that we may choose xi := yi, since yi ∈ Cyi

1 . Therefore

let ri > 0 be the respective majorization constants for yi. Furthermore let r = max{r1, r2}

and let x := x1 + x2. We claim y ∈ X x
h . Notice

2rx± y = 2rx± (y1 − y2) = (rx± y1) + (rx± −y2).

Since r ≥ r1 it follows (rx ± y1) ≥C (r1x ± y1) ∈ C1. Similarly, since r ≥ r2 we have

rx+y2, rx−y2 ∈ C1. Thus, 2rx±y = 2rx±(y1 −y2) = (rx±y1)+(rx±−y2) ∈ C1 +C1 ⊂ C1.

This proves that y ∈ X x
h .

Consider now y1, y2 ∈ Xh. By the first part of the proof we have yi ∈ X xi
h for some

xi ∈ C1. Once again we let r := max{r1, r2}, where each ri > 0 is the respective majorization

constant of yi, and set x := x1 + x2. Then x ∈ C1 and we see

rx± y1 = (rx1 ± y1) + rx2 ∈ C1

rx± y2 = rx1 + (rx2 ± y2) ∈ C1.
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This proves y1, y2 ∈ X x
h which finishes the proof.

Definition 6.0.5. Let (X , C) be a proper weak dual matrix ordered ∗-vector space and let

y ∈ Xh. Then the sufficiency number relative to y is the cardinality of the set J such that

for all j ∈ J one has y ∈ Cxj
1 . Note that J may be empty, and in this case we say y ∈ Xh has

a sufficiency number of 0.

Remark 6.0.5. Consider a dual pair 〈X ,X ′〉 of matrix ordered ∗-vector spaces. By identi-

fying X ' Λ(X ) we may realize X as maps on the weak dual X ′. Thus, given x ∈ X and

x′ ∈ X ′, if we are identifying x with Λ(x) then we will write the action as 〈x′, x〉. In particu-

lar, we will always write the element being acted on in the left-hand side of the pairing 〈·, ·〉.

Since X = (X ′)′ this should not introduce any ambiguity.

Lemma 6.0.6. Let (X , C) be a proper weak dual matrix ordered ∗-vector space such that C1

has non-void radial kernel and let y ∈ Xh. If the sufficiency number of y is at least 1 then

y ∈ C1.

Proof. Let J be the set such that |J | is the sufficiency number of y. By assumption |J | ≥ 1.

Thus, y ∈ ⋂
j∈J Cxj

1 , xj ∈ C1, and therefore for all ε > 0 we have εxj +y ∈ C1. Let 1 ≤ N < ∞.

We claim y ∈ C1 which occurs if and only if Λ(y) ∈ Bw(X ′,C)+. To this end let x′ ∈ C ′
1 be

arbitrary and let ε > 0. Choose εj > 0 such that ∑N
j=1 εj〈x′, xj〉 ≤ ε1. By assumption we have∑N

j=1 εjxj + y ∈ C1 and therefore

0 ≤ 〈x′,
N∑

j=1
εjxj + y〉 = 〈x′,

N∑
j=1

εjxj〉 + 〈x′, y〉 ≤ ε1 + 〈x′, y〉.

Since ε > 0 is arbitrary we have 〈x′, y〉 ≥ 0. Therefore since x′ ∈ C ′
1 is also arbitrary we have

Λ(y) ∈ Bw(X ′,C)+ and this proves y ∈ C1.

Conjecture 6.0.7. Given a proper weak dual matrix ordered ∗-vector space (X , C) such

that C1 has non-void radial kernel then there exists a complete order embedding from X to⊕
x∈C1 X x.

Remark 6.0.8. Let (X , C) be a proper weak dual matrix ordered ∗-vector space and let

{(X x, Cx, αx, x)}x∈C1
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denote the canonical collection of operator systems induced by (X , C). For each x ∈ C1 let

Hx be a Hilbert space such that Φx : X x → B(Hx) is a unital complete order isomorphism.

In particular identify ⊕
x∈C1

X x '
⊕
x∈C1

Φx(X x) ⊂ B(H),

where H := `2({Hx : x ∈ C1}) is the Hilbertian direct sum. An affirmative answer to

Conjecture 6.0.7 will imply that such a pair (X , C) may be realized concretely inside B(H)

for some H. Though recent progress has been made, Conjecture 6.0.7 is still not proven.

88



7. CLOSING REMARKS

7.1 Tsirelson’s Problem

We conclude this manuscript with some final remarks. The motivation for the develop-

ment of the methods in Section 3 and Section 4 was to understand the structure of correlation

sets better. In particular, we saw in Section 5 that our methods provided new characteriza-

tions of the sets of nonsignalling, and more importantly, the quantum commuting correla-

tions. Though, this is only half of the story. We recall that Tsirelson asked if for all n, k ∈ N

it follows Cqa(n, k) = Cqc(n, k). As already mentioned, according to the recent preprint [8 ],

the equality does not hold, but we still do not have an good grasp of these objects. Using

a hybrid from the theory of Archimedean order unit spaces and operator system theory,

we are working to complete the puzzle by providing a characterization, similar to those of

Section 5 , for quantum correlations. Thus, with such a characterization we will have a much

better understanding of quantum correlations, and consequently a better understanding of

Tsirelson’s problem.

7.2 Local Reflexivity

As explained in the Introduction, local reflexivity becomes an extremely delicate issue

when leaving the realm of Banach spaces. Let λ > 0. An operator space X is called λ-

locally reflexive if for every finite-dimensional operator space V and complete contraction

u : V → X ∗∗ then there exists a net {ui}i∈I , ui : V → X , of maps such that for each i ∈ I,∥∥∥ui

∥∥∥cb ≤ λ and ui → u in the point w(X ∗∗,X ∗)-topology. For the sake of simplicity we

will assume λ = 1. Translating such an approximation property to the realm of operator

systems does not present a problem, but suppose we consider an equivalent formulation of

local reflexivity which may also be taken as a definition: an operator space X is 1-locally

reflexive if for every finite-dimensional operator space V it follows

V ∗ ⊗∧ X ∗ ' (V ⊗min X )∗. (7.1)
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In Equation 7.1 the identification is a completely isometric linear isomorphism (complete

isometry), and we have let ⊗∧ denote the operator space projective tensor product, and ⊗min

denote the minimal operator space tensor product. In proving such an equivalence one takes

advantage of the well-behaved duality theory for operator spaces. In particular, since

(V ∗ ⊗∧ X ∗)∗ ' CB(V ∗,X ∗∗) ' V ⊗min X ∗∗,

then if we assume X is 1-locally reflexive, one must prove

V ⊗min X ∗∗ ' (V ⊗min X )∗∗,

as operator spaces. Note CB(V,∗ ,X ∗∗) denotes the Banach space of completely bounded

maps between the operator spaces V ∗ and X ∗∗. The converse is an immediate result of

Goldstine’s theorem. It is precisely this tensor characterization of local reflexivity that

presents problems when one moves to the realm of operator systems. If one only considers

finite dimensional operator systems then duality theory works well, but for arbitrary operator

systems it does not. Ongoing work uses methods presented in Section 6 to circumvent such

duality difficulties and it is our hope that our current work will shed light onto the proper

interpretation of local reflexivity for operator systems.
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