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ABSTRACT

Federated learning (FL) is a decentralized privacy-preserving learning technique in which

clients learn a joint collaborative model through a central aggregator without sharing their

data. In this setting, all clients learn a single common predictor (FedAvg), which does not

generalize well on each client’s local data due to the statistical data heterogeneity among

clients. In this paper, we address this problem with PersFL, a discrete two-stage person-

alized learning algorithm. In the first stage, PersFL finds the optimal teacher model of

each client during the FL training phase. In the second stage, PersFL distills the useful

knowledge from optimal teachers into each user’s local model. The teacher model provides

each client with some rich, high-level representation that a client can easily adapt to its

local model, which overcomes the statistical heterogeneity present at different clients. We

evaluate PersFL on CIFAR-10 and MNIST datasets using three data-splitting strategies to

control the diversity between clients’ data distributions.

We empirically show that PersFL outperforms FedAvg and three state-of-the-art person-

alization methods, pFedMe, Per-FedAvg and FedPer on majority data-splits with minimal

communication cost. Further, we study the performance of PersFL on different distilla-

tion objectives, how this performance is affected by the equitable notion of fairness among

clients, and the number of required communication rounds. We also build an evaluation

framework with the following modules: Data Generator, Federated Model Generation,

and Evaluation Metrics. We introduce new metrics for the domain of personalized FL,

and split these metrics into two perspectives: Performance, and Fairness. We analyze

the performance of all the personalized algorithms by applying these metrics to answer the

following questions: Which personalization algorithm performs the best in terms of accuracy

across all the users?, and Which personalization algorithm is the fairest amongst all of them?

Finally, we make the code for this work available at https://tinyurl.com/1hp9ywfa for public

use and validation.
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1. INTRODUCTION

Federated Learning (FL) is a distributed collaborative learning paradigm that does not re-

quire centralized data storage in a single location. Instead, a joint global predictor is learned

jointly by a network of participating users [1 ]. This paradigm is useful when the clients have

private data that they cannot share with the participating entities due to privacy concerns.

Recently, FL has found widespread applications in domains ranging from healthcare, finance

to predictive keyboards. However, in spite of its widespread applications, FL faces different

challenges such as expensive communication, systems heterogeneity, statistical heterogeneity,

and privacy concerns [2 ]. Among these, statistical data heterogeneity has recently gained at-

traction, which means that clients’ data are unbalanced and non-identical and independently

distributed (non-IID). These challenges are discussed in more detail below.

Expensive Communication. In the FL setting, there are potentially a massive number of

devices present in the network, and as a result the network communication in comparison

to the local computation can be slower by many orders of magnitude. Therefore, it becomes

imperative to develop communication-efficient methods wherein the communications are

composed of small payloads as opposed to sharing the entire data over the network.

Systems Heterogeneity. Since there are a massive number of devices present in the FL

setting, these devices may differ in a variety of aspects such as hardware, network connectivity

and power ratings, etc. In addition to this, only a small fraction of all devices may be active

at any given point of time. It is also a common assumption in such settings that each device

may be unreliable, and in some cases an active device can even drop out of the system at

any given point of time say due to the device’s battery being dead or even the device being

out of network coverage area, etc. Such characteristics of the device are what lead to the

issue of systems heterogeneity.

Privacy Concerns. In FL, sharing the model updates over each global aggregation round

rather than sharing the raw data leads to a step towards protecting the user data. However,

several works have shown that it is possible to extract sensitive information from such updates

communicated in the network, either to the central server or to a third party. Recently,

techniques such as differential privacy are being used to ensure privacy in FL. However, these

14



privacy guarantees come at the cost of reduced system performance. Hence, understanding

these trade-offs theoretically and empirically becomes very important to realizing FL systems

with privacy.

Statistical Heterogeneity. The data in FL is distributed across millions of users. Each

user has their own characteristics when it comes to device usage. The number of data points

per user can also vary significantly, and in addition to this, there may be an underlying

structure in the global data distribution that captures the relationship amongst devices

and the local device data distributions. This is in violation of the frequently-used I.I.D

assumption in centralized machine learning as well as distributed optimization. This type

of a heterogeneity leads to an increased complexity in terms of modeling, analysis, and

evaluation.

Thus, the global model trained on clients’ non-IID data restricts it from delivering good

generalization on each client’s local data. Each client gets a common model, irrespective of

their data distribution. For instance, consider the next word prediction engine that outputs

what word comes next suggestions on a smartphone that enables users to express themselves

faster. A common model learned collaboratively among clients fails to give each user useful

suggestions, particularly when they have a unique way of expressing themselves in mobile

applications such as in writing texts or emails. On the other hand, learning without client

collaboration leads to a poor generalization of local clients due to a lack of data. Personalized

learning schemes proposed for FL aim to address this problem by finding a personalized

model for each client that benefits from other clients’ data while overcoming the statistical

heterogeneity problem.

Personalization Approaches. There have been a few different approaches that proposed

learning schemes through meta-learning, local fine-tuning, multi-task learning, model reg-

ularization, contextualization, and model interpolation to build personalized models. For

instance, Per-FedAvg [3 ] uses Meta-Learning to learn a common initialization point for all

the users, which is then adapted to each user with a couple of steps of gradient descent. An-

other approach, pFedMe [4 ], re-formulates the FL objective as a bi-level optimization problem

and modifies the minimized loss function with the inclusion of a regularization term. Lastly,

15



FedPer [5 ] splits a deep neural network into base and personalization layers, where the base

layers are learned collaboratively, and personalization layers are specific to each user. How-

ever, some of these approaches incur high computational and algorithmic complexity. For

instance, pFedMe and Per-FedAvg require a higher number of global communication rounds

compared to FedPer. Model Agnostic Meta-Learning based methods (MAML) [6 ] (used in

Per-FedAvg) require the computation of the Hessian matrix, which significantly adds com-

putational complexity to each client.

Evaluation in FL. In [7 ], the authors introduce an evaluation framework for large-scale FL.

They introduce several evaluation metrics such as the number of network nodes, the size

of the datasets, the number of communication rounds, etc. Though these metrics are also

relevant for personalized FL, they do not cover aspects such as measures of performance

and fairness across the users, and more importantly do not answer the following questions:

Which personalization algorithm performs the best in terms of accuracy across all the users?,

and Which personalization algorithm is the fairest amongst all of them?

Contributions. In this paper, we introduce PersFL, a new discrete two-stage personal-

ization algorithm, which distills each client’s optimal teacher model into each client’s local

model. In the first stage, each client participates in the FL training and sets the global model

across all the aggregation rounds that gives the least error as an optimal teacher. Teacher

models contain useful information unique to each client that can be readily adapted into the

local models. At the end of the first stage, each client obtains a separate teacher model and

proceeds to the second stage. In the second stage, each client distills the information from

the optimal teacher model into their local model to learn a personalized model. PersFL

controls the trade-off between optimal teacher and local model with temperature parameter

that scales the class probability predictions from the teacher, and imitation parameter that

balances how much a client imitates the teacher. At the end of PersFL algorithm, each

client would have trained a local model based on their dataset and the useful knowledge

extracted from other clients’ datasets.

We empirically demonstrate the effectiveness of PersFL using CIFAR-10 and MNIST

datasets, which are widely used to evaluate personalized models’ performance. We compare
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PersFL with FedAvg and three recent approaches for personalization in FL, a transfer-

learning based algorithm (FedPer), a bi-level optimization based algorithm (pFedMe), and

a meta-learning based algorithm (Per-FedAvg). To have a fair comparison, we use three

different data-splitting strategies to control how each client’s local dataset differs from other

clients’ data.

Our extensive experiments demonstrate that PersFL outperforms FedAvg, and outper-

forms or yields comparable results with the FedPer, pFedMe and Per-FedAvg in local ac-

curacy. For example, compared to the best performing methods on CIFAR-10 data-splits,

PersFL improves the accuracy of users on average by 4.7%, 0.6% and 3.9% over FedPer,

pFedMe, and FedPer, respectively. We perform additional experiments to characterize the

equitable notion of fairness–the deviation among per-user accuracy, study the performance

of variants of distillation objectives and investigate the number of communication rounds

for convergence. For instance, PersFL reduces the deviation of per-user accuracy distribu-

tions on average by 1.5x and 1.67x compared to Per-FedAvg and FedPer algorithms on two

different data-splits on MNIST. For the number of global communication rounds, PersFL

takes 0.03x and 0.5x less communication rounds than pFedMe and FedPer on two different

data-splits on CIFAR-10. We show that these results challenge the existing objectives of per-

sonalized learning schemes and motivate new problems in personalization for the research

community.

We also introduce a framework for the domain of personalized FL. We have three mod-

ules part of this framework, namely: Data-Generator, Federated Model Generation, and

Evaluation Metrics, respectively. The data generator's responsibilities are two-fold:

selecting the dataset based on the user’s choice and the subsequent generation of a data split

for this chosen dataset. The federated model generation module is responsible for train-

ing the global FedAvg model and personalized algorithms. Lastly, the evaluation metrics

module applies the metrics that we introduce to answer the following questions: (1) Which

personalization algorithm performs the best in terms of accuracy across all the users?, and

(2) Which personalization algorithm is the fairest amongst all of them?

We introduce new metrics in addition to the average accuracy used in the evaluation of

personalized FL models. We split these metrics into two perspectives based on their utility:

17



Performance, and Fairness. We employ these metrics to find the best performing algorithm

and the fairest solutions across different data splits of the CIFAR-10 dataset as well as provide

an analysis of the performance and fairness of the personalized FL algorithms. Interestingly,

we note that the best performing algorithm need not necessarily be the fairest algorithm as

well. There can be two different algorithms for each of these perspectives, respectively, and

we show that this is indeed the case on DS-2 of CIFAR-10.
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2. RELATED WORK

Several prior works have explored techniques for personalization in FL instead of using a com-

mon model for all users. These works can be broadly grouped into the following categories

based on the techniques adapted to improve clients’ model performance, such as local fine-

tuning, multi-task learning, contextualization, model regularization based personalization,

and model interpolation-based personalization. Table 2.1 shows the surveyed works classi-

fied into the different categories mentioned previously. Below, we review these approaches

in more detail.

2.1 Local Fine-tuning

This is the most widely used form of personalization, where each user receives a copy of

the global FedAvg model. Then they adapt it to their local data distribution by taking a cou-

ple of steps of gradient descent using their local data. This kind of adaptation is employed in

gradient-based meta-learning methods, transfer learning [8 ] and domain-adaptation [9 ] meth-

ods. Model agnostic meta-learning (MAML) has an adaptation phase, wherein the common

initialization point is adapted to each task by taking a couple of steps of gradient descent.

This adaptation ensures that we find a reasonably good set of parameters for a particular

task.

Per-FedAvg uses MAML to learn a common initialization point for each user during the

training phase, which is then subsequently adapted to each user’s local data distribution.

This local adaptation to each user is what causes the models learned this way to be per-

sonalized to each user. In Personalized FedAvg [10 ], the authors opine that the following

objectives: improved personalized performance, solid initial model, and fast convergence, must

all be addressed simultaneously. They also interpret FedAvg as a meta-learning algorithm,

and combine FedAvg and a meta-learning algorithm Reptile [11 ], to personalize the local

models of each user.

In FedMeta [12 ], the authors combine meta-learning, more specifically MAML and Meta-

SGD [13 ] with FedAvg to learn a common parameterized algorithm (a meta-learner) across

the users. In FedML [14 ], the authors propose a personalized algorithm in FL using meta-
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Table 2.1. The evaluation analysis of studied related Personalized FL methods.
# Method Only FL metrics† Fairness Analysis Datasets‡ Use of Custom

Datasplit∗ Comparison

LOCAL FINE-TUNING

1 APFL [15 ] X 7 (1), (2), (3), (6) X
FedAvg, SCAFFOLD,
Per-FedAvg, pFedMe

2 pFedMe [4 ] X 7 (1), (6) X FedAvg, Per-FedAvg
3 Per-FedAvg [3 ] X 7 (1), (3) X FedAvg
4 FedPer [5 ] X 7 (3), (4), (5) X FedAvg

5 Three Approaches
for Personalization [16 ] X 7 (1), (2) X FedAvg, AGNOSTIC

6 Personalized FedAvg [10 ] X 7 (2), (7) X FedAvg
7 FedMeta [12 ] X X (7), (8), (9), (10) X FedAvg

MULTI-TASK LEARNING
8 MOCHA [17 ] X 7 (11), (12), (13) X FedAvg

CONTEXTUALIZATION
9 LG-FedAvg [18 ] X 7 (6), (1), (3), (14) X FedAvg, FEDPROX

MODEL REGULARIZATION BASED PERSONALIZATION

10 FedAMP [19 ] X 7 (1), (15), (2), (4) X
SCAFFOLD, APFL,
FedAvg, FEDPROX

11 FML [20 ] X 7 (1), (3), (4) X FedAvg, FEDPROX
MODEL INTERPOLATION BASED PERSONALIZATION

12 LotteryFL [21 ] X 7 (1), (3), (2) X FedAvg, LG-FedAvg
† Whether the personalization method only reports metrics in the FL domain.
‡ (1) MNIST, (2) EMNIST, (3) CIFAR-10, (4) CIFAR-100, (5) FLICKR-AES, (6) Synthetic, (7) Shakespeare, (8) FEMNIST, (9) Sen-
timent 140, (10) Industrial recommendation task, (11) Google Glass (GLEAM), (12) Human Activity Recognition (HAR), (13) Vehicle
Sensor, (14) Mobile Assessment for Prediction of Suicide (MAPS), (15) FMNIST.
∗ Whether the personalization method uses a custom datasplit technique.

learning, and the formulation of the problem is very similar to that studied in Per-FedAvg,

with the only difference being that they perform the study only for strongly convex functions.

In Per-FedAvg, the authors study non-convex functions and address the issue of gradient

stochasticity.

The following methods use non-MAML based meta-learning techniques to achieve per-

sonalization in FL. Average Regret-Upper-Bound Analysis (ARUBA) [22 ] is a meta-learning

algorithm that is inspired from online convex optimization and improves the performance

of FedAvg when applied to it. In Differentially-Private Gradient-Based Meta-Learning (DP-

GBML) [23 ], the authors use a similar idea to design personalized algorithms combining FedAvg

and meta-learning, with the application of differential privacy [24 ].

In FedPer [5 ], the authors view a deep network as a combination of base and personal-

ization layers, with the base layers being learned collaboratively and the personalized layers

being specific to each user. In q-Fair Federated Learning (q-FFL) [25 ], the authors study

a different combination of a MAML-type method combined with the FL architecture from an
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empirical point of view. They introduce a novel optimization objective that is inspired by

fair resource allocation from wireless networks. The formulation of this optimization objec-

tive encourages a more uniform (and thereby fair) distribution of accuracy across users in

the federated environment.

2.2 Multi-task Learning

Another way of looking at the problem of personalization in FL is from the perspective of a

multi-task learning (MTL) setting. In MOCHA [17 ], each client is analogous to a task. Therefore

the adaptation to a task is analogous to personalizing to each user in the FL setting. It also

requires all the clients to be online during the training phase. The connections between FL

and MTL and meta-learning are elaborated in [2 ], [26 ]. Another approach that is also an open

problem, and is discussed in [27 ], is to cluster clients (users) based on features such as region

or other similar characteristics as similar tasks. work [16 ].

2.3 Contextualization

Contextualization is a closely related notion to personalization, in the sense that the

model learned in the federated setting should be able to work under different contexts. For

example, the context can differ between users as their characteristics differ. On the other

hand, this can be true even in a single user’s case, i.e., the ability of a single model on a user

to work under different contexts. This problem is studied in the form of the next character

recognition task [28 ]. To obtain any solution in such a setting, we would need access to

features about the context during the training phase. In fact, evaluating models proposed

in such settings has been analyzed in a closely related work [29 ]. In this work, the authors

propose an evaluation technique to measure the extent of on-device personalization. They

also explore the conditions under which personalization yields desirable models. In Local-

Global Federated Averaging (LG Fed-Avg) [18 ], the authors propose to learn compact local

representations on each client and a global model across all the clients, i.e., an ensemble of

local and global models. Models learned this way are better at dealing with heterogeneous

data and learning fair representations effectively, thereby obfuscating protected attributes.

21



2.4 Model Regularization-based Personalization

Each user’s model can be personalized by employing the regularization of the differences

between the global and the local models. pFedMe [4 ] uses Moreau envelopes [30 ] as a reg-

ularization term to learn personalized models and the global FL model parallelly. Clients

can pursue their models in different directions, albeit staying not too far away from the

global FedAvg model (w). They compare their method to Per-FedAvg, and claim that their

method is better as they directly optimize for fi(.) (loss function at client i) and also that

Per-FedAvg requires the computation or the estimation of the Hessian matrix whereas this

is not the case in pFedMe.

In FedAMP [19 ], the authors propose a personalized method employing federated atten-

tive message passing to facilitate similar clients to collaborate more. They achieve this by

having a regularization term in the FL objective. The regularization term improves client

collaborations’ effectiveness through an attention-inducing function A(.). In a closely related

work [31 ], the authors add a regularization term to the global FL objective. This regulariza-

tion term is similar to an L2-penalty term on the distances between the local and the global

models. They also use a mixing parameter λ to control the optimization degree of the local

and the global models.

Federated Mutual Learning (FML) [20 ] uses the non-IID nature of the data as a feature to

learn more personalized models for each user. In this work, the authors combine the idea of

Knowledge Distillation [32 ] and Deep Mutual Learning (DML) [33 ]. They apply regularization

in the form of KL-divergence between the local models’ predictions and the global model to

achieve personalization.

2.5 Model Interpolation-based Personalization

Another class of personalization techniques that, broadly speaking, focus on the mixture

of the local and the global models. In Adaptive Personalized Federated Learning (APFL) [15 ],

the authors try to address the following question: what degree of personalization is best for

each client? They learn a personalized model for each client, a mixture of the local and global

models. The optimal mixing parameter, which controls the local and the global models’
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ratio, is integrated into the learning problem. In a recent work [16 ] the authors propose

the following three different approaches with generalization guarantees for personalization

in FL: user clustering, data interpolation, and model interpolation.

In user clustering, the clients are clustered into groups, and subsequently, a model is

trained for each group. Thus, the model is analogous to one that is between the purely local

models and the purely global model. This introduces a trade-off between the generalization

capability of the model learned and the distribution divergence. In data interpolation, the

authors try to answer the following question: how to use the auxiliary data (i.e., the global

data distribution) to improve the accuracy of the model learned on the local data distribution?

They relate this problem to domain adaptation. In the last approach model interpolation,

the authors propose to learn a personalized model that is a mixture of the local and the

global models. This formulation is very similar to the problem formulation of APFL. Out of

these three, the first two approaches are not suitable for FL since they require meta-feature

information from the clients, which raises privacy concerns.

In LotteryFL [21 ], the authors adopt a Lottery Ticket Network (LTN) through the appli-

cation of the Lottery Ticket Hypothesis (LTH) [34 ] to learn personalized models for each user.

Each client learns a LTN by pruning the base model parameters on their local data. Rather

than communicating the entire base model, only the parameters of the LTNs of each user are

communicated between the clients and the server. Subsequently, the server then aggregates

over all these LTNs, and the updated parameters are sent back to the clients. The clients

then repeat the same process of learning an LTN. This process continues until convergence.
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3. PRELIMINARIES

3.1 Federated Averaging

Federated Averaging (FedAvg) is an algorithm in which n users along with a central

global aggregator participate together to learn a joint collaborative (global) model. The data

of each user does not ever leave their device. The users train the shared model on their local

data and then share their model weights to the central aggregator. The central aggregator

then aggregates (averages) the model updates from all the participating users and shares the

new global model’s updated weights. This process continues till convergence. In the end,

each user obtains the same global model. The server aggregation over all the received client

models is shown in Equation 3.1 .

wt+1 ←
K∑

k=1

nk

n
wk

t (3.1)

In Equation 3.1 , wt+1 refers to the global model being learned in the global aggregation round

t + 1, K is the number of users indexed by k, nk is the number of training data samples that

user k has, and n is the number of training data samples across all the K users, and wk
t refers

to the global model adapted to the user k’s local training data distribution in the global

aggregation round t.

3.2 Distillation

Model compression [35 ] or distillation [32 ] are techniques to reduce the size and com-

plexity of machine learning models. Distillation compresses a large complex model or an

ensemble of models flarge(x) (teacher model) into a smaller and less complex model fsmall(x)

(student model), which mimics the predictions of the complex model. There are scenarios

in which the teacher model and ensemble models are too complicated from a computational

perspective. Thus, distilling a large model into a simpler model makes it easier to run on

limited computational resources such as on edge and mobile devices. Remarkably, model

distillation achieves model compression with no or minimal loss in accuracy.
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Put in math, given a large model flarge that has been already learned, a small model

fsmall is learned by minimizing

fs = arg min
fsmall∈Fs

1
n

n∑
i=1

[(1− λ)L({(xi, yi)}n
i=1, fsmall) + λL({xi, si}n

i=1, fsmall)] (3.2)

where fsmall is the candidate student model from the class capacity measure of the student

model Fs (i.e., hypothesis space of models for the student model ), fs is the optimal student

model learned, and λ ∈ [0, 1] is the imitation parameter which controls the extent to which

fsmall imitates flarge compared to directly learning from the data.

In Equation 3.2 , there are two datasets on which fsmall is trained, (xi, yi)n
i=1 and (xi, si)n

i=1.

si is called the soft label of the teacher (flarge) model computed as si = flarge(xi)/T and yi is

the ground truth label. T > 0 is called the temperature parameter, which softens the teacher

model’s class probabilities. The softened class-probability predictions reveal dependencies

among the labels that are otherwise hidden as either extremely small or large numbers.
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4. PROPOSED PERSONALIZATION ALGORITHM

We introduce PersFL, a new personalization algorithm, which unifies distillation with per-

sonalization to improve the generalization of each user’s model accuracy instead of using

the same global FedAvg model for each user (Section 4.1 ). Subsequently, in Section 4.2 we

provide an intuition into why PersFL works, and in Section 4.3 perform a convergence and

complexity analysis of PersFL.

4.1 PersFL Algorithm

Our idea of distillation for personalization is inspired by the discrete phase local adap-

tation technique called the greedy local fine-tuning method [15 ]. In this approach, a global

FedAvg model is first learned during the training phase. During the subsequent adapta-

tion phase, users perform several gradient descent steps to adapt the global FedAvg model’s

weights to users’ local data distribution. However, a crucial question that needs to be an-

swered is: why do all users adapt the same global model when the goal is personalization

for each user? This question inspires us to integrate a separate optimal teacher model into

the local model of each user. To obtain the optimal teacher, each user iteratively validates

the global FedAvg model on their local data during each aggregation round of the FL train-

ing phase. Subsequently, each user identifies the best global FedAvg model as an optimal

teacher based on the accuracy. Each user then incorporates the optimal teacher into their

local model through distillation. Algorithm 1 details the steps of PersFL, which is a discrete

two-stage algorithm.

Stage-1: Finding the Optimal Teacher Models. In the first stage, each user participates

in the training phase of FL and receives the current copy of the global model (FedAvg) in

each round. In this step, each user locally stores the global model’s current copy before

updating the local version of the global model and sending it to the server for aggregation.
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Algorithm 1 PersFL Algorithm
1: Stage-1:Finding the optimal teacher models
2: Notation:

K: Clients indexed by k, EG: Number of global aggregation rounds, Ge: Global FedAvg
model during the global aggregation round e, Ok: Optimal teacher model for user k, lk:
Loss of Ok on the user k’s validation data (initialized to an arbitrarily large value), xval

k :
Validation data of user k.

3: for global aggregation round e = 1 to EG do
4: for user k = 1 to K do
5: lk ← Lcross(σ(Ge(xval

k )), yval
k )

6: if lk < lk then
7: lk ← lk

8: Ok ← Ge

9: end if
10: end for
11: end for

12: Stage-2: Distilling from the optimal teacher models
13: Notation:

K: Clients indexed by k, B: Local mini-batch size, EL: Number of local epochs, T:
Temperature parameter, λ: Imitation parameter, Ok: Optimal teacher model for user k,
Ak: Local personalized model of user k, |T|c: Search space of temperature values, |λ|c:
Search space of imitation parameter values.
Client Side:

• For each client k, initialize Ak with the weights of Ok.

• Find the optimal values of λ and T by performing the following steps.

14: for user k = 1 to K do
15: B ← Obtain mini-batches of data from the user k’s training data
16: for local epoch i = 1 to EL do
17: for batch b ∈ B do
18: L(Ak, b)← (1− λ) ∗ hardLoss + (λT2) ∗ softLoss
19: hardLoss← Lcross(yb, σ(Ak(b)))
20: softLoss← KL(sb, σ(Ak(b)

T ))
21: sb ← σ(Ok(b)

T )
22: w← w− η∇L(Ak, b)
23: end for
24: end for
25: end for
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After the termination of the FL training phase, each user finds the optimal teacher model

Ok by minimizing:

Ok = arg min
Ok∈|G|E

Lcross(σ(Ok(xval
k )), yval

k ) (4.1)

where |G|E is the FedAvg model learned in each global aggregation round, E is the total

number of global aggregation rounds of FL, xval
k is the validation data of user k and yval

k is

the ground truth of the validation data of user k. Thus, the optimal teacher model represents

the global FedAvg model across the aggregation rounds that achieves the minimum loss on

the validation data of user k.

Stage-2: Distilling from the Optimal Teacher Models. The second stage takes place

locally for each user after the FL training phase, independent of FL (i.e., no client collab-

oration). We call this stage local adaptation. We first initialize the personalized model, Ak

with the weights of Ok for each user k. Following this, each user distills the information from

the optimal teacher (Ok) into their local model to learn Ak. Specifically, each user computes

Ak by distilling hard-loss and soft-loss by minimizing:

Ak = arg min
λ∈|λ|C,T∈|T|C

Ak∈|Ak|C

hard-loss︷ ︸︸ ︷
(1− λ)(Lcross(σ(Ak(xtrain

k )), ytrain
k ))

+

soft-loss︷ ︸︸ ︷
(λT2)×KL(σ(Ak(xtrain

k )
T

), σ(Ok(xtrain
k )
T

)) (4.2)

The hard-loss refers to the loss of the student model (Ak) on the hard-labels (yi), whereas

soft-loss refers to the loss of the student model on the soft labels (si). Soft labels are the

teacher model’s (Ok) scaled predictions. |λ|C refers to the complexity of the search space

of the imitation parameter, |T|C denotes the search space complexity of the temperature

parameter, and |Ak|C refers to the hypothesis space of the personalized models for k. Here,

each user performs a grid-based search to find the optimal values for distillation parameters
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temperature (T) and imitation parameter (λ) while simultaneously learning the personalized

model.

We use Kullback-Leibler (KL) divergence between the output of the teacher model (Ok)

and the student model (Ak). Enforcing the logits of Ok and Ak to be similar yields a regulariz-

ing effect, which in turn improves the generalization ability of Ak. We additionally multiply

the soft-loss by T2 since the gradients of the term σ(Ak(b)/T) scale as 1/T2. This ensures

that the relative contributions of the hard-labels (yi) and the soft-labels (si) are roughly

unchanged if the T value changes.

At the end of the Stage-2, each user learns a personalized model optimized for their local

data distribution by distilling the useful knowledge from other users into the personalized

model Ak through the optimal teacher Ok learned in Stage-1.

4.2 Why does PersFL work?

We introduce the learning under privileged information (LUPI) paradigm [36 ] and show

that PersFL reduces to Generalized Distillation [37 ], an instance of the LUPI paradigm.

Vapnik’s LUPI paradigm assumes that feature-label pairs (xi, yi), and additional information

x?
i about (xi, yi) are available at training time and x?

i is not available at test time. Here,

x?
i is called the privileged information. For example, consider the problem of identifying

cancerous biopsy images. x is the biopsy image of a patient in pixel space. An oncologist

may describe the biopsy image relevant to cancer in a specialized language space different

than the pixel space. The descriptions are called privileged information (x?), which contain

useful information to classify the biopsy images, however this information is not available at

test time.

Generalized distillation develops an objective to learn from multiple data representations

as follows. Firstly, it learns a teacher model ft on the feature-target set {x?
i, yi}n

i=1. Second,

it computes teacher soft labels si = ft(x?
i)/T using a temperature parameter T > 0. Lastly,

it learns a student model fs from {xi, yi}n
i=1, {xi, si}n

i=1.

In PersFL, the optimal teacher model Ok of each user k is analogous to the privileged

information x?. Since each user’s data distributions are not exactly the same, each user’s
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Figure 4.1. Users k’s distribution vs. global FedAvg model’s distribution
across the global aggregation rounds.

optimal teacher model is unique and identified with the best performing FedAvg model on

the user i’s validation data during the FL communication rounds. A user can obtain the

intricate patterns from other users’ large amounts of data through the weights of Ok as

privileged information, only available to each user during FL training.

Once each user identifies the teacher model, the soft-labels of the teacher model (si)

are computed on the data of each user. PersFL learns the student model from the teacher

through distillation by choosing optimal values of the parameters, λ and T. We argue that

distilling information from the teacher model to the student model overcomes the catastrophic

forgetting problem [38 ], which is the tendency of a model to forget the information learned in

the previously trained tasks when it is trained on new tasks. PersFL mitigates this problem

by first initializing the student model with the teacher model’s weights and then distilling

the teacher model’s information to the student model.

Figure 4.1 shows the training data distribution of a user k (solid line) and the distribution

of the FedAvg model in the global communication rounds (dashed lines). The global model’s

distribution comes close to approximating the user’s distribution and starts moving away

from it. This divergence of distributions is caused due to the non-IID data distribution
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across users. PersFL’s teacher model is unique to each user, and there is maximal overlap

with their data distribution, which helps address the statistical heterogeneity problem and

mitigate its negative transfer effect. Our extensive experiments in Section 6 validate this

hypothesis.

4.3 Convergence and Complexity Analysis

Convergence of PersFL. Convergence of an algorithm is defined as the algorithm’s ability

to converge to the global optimum, which is defined as the region in the loss landscape with

the lowest possible loss (global minima). Equation 4.3 represents the core objective of the

FL setting. Here, fi(.) denotes the loss over user i’s data distribution when there are N

users, and w refers to the weights of the FedAvg model being learned.

min
w∈Rd

f(w) := 1
N

N∑
i=1

fi(w)

 (4.3)

Unlike other personalized FL methods such as pFedMe and FedPer, the convergence

analysis for PersFL is not needed since PersFL does not modify the FL core objective.

To detail, PersFL is a two-stage discrete algorithm in which the users join the FL training

in the first stage to learn a separate optimal teacher model. Each user then independently

distills the optimal teacher to their local dataset. Therefore, the convergence of PersFL is

the same as the convergence of the FedAvg algorithm [39 ].

Complexity of PersFL. We analyze the complexity of PersFL in terms of the number

of epochs executed locally at each user during the training phase. The worst-case com-

plexity of PersFL when all users are computationally involved in every round is given by

O(EGEL + |T|C|λ|CE). EG is the number of global communication rounds, EL is the number of

local epochs, |T|C and |λ|C are the class complexity measures of the search space and E is the

number of epochs that we set to distill information from the optimal teacher model into the

personalized model.
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5. EVALUATION METRICS FOR PERSONALIZED FL

5.1 Need for Alternative Metrics in FL

From our study of personalization methods in Chapter 2 , we identified two problems in

the evaluation of personalized models. Below, we provide an example scenario and present

the issues through this scenario.

Motivating Example. Consider that 9 users collaboratively learn a common model for

the task of the next-character prediction on the keypad of their mobile phones. The dataset

is distributed to each user according to a particular data-split strategy to mimic the non-IID

nature of the real world’s data distributions. We refer to DS-1, DS-2, and DS-3 as different

strategies for splitting the dataset, and distributing them among all the users. Each user

learns a local model, a global (common) model (FedAvg), and a personalized model using four

different personalization approaches. These personalized algorithms aim to learn a model

specific to each user and better than both the local and the global FedAvg model. Table 5.1 

presents the accuracy of the per-user local models, FedAvg model, and four personalized

models on the data-splits. With this example scenario, we present the problems below.

Problem 1 - Incomplete Results. The personalization approaches solely report the

personalized models’ average accuracy across all the users to measure model effectiveness.

Turning to Table 5.1 , we ask the question, Which personalization algorithm performs the best

in terms of accuracy across all the users?, and Which personalization algorithm is the fairest

amongst all of them? To answer this question, the research community uses the average

accuracy. In this example, Alg.4 is relatively better than the other approaches, and it gives

the highest average accuracy of 79.3%. However, upon closer inspection, we observe that

with respect to the local/FedAvg model, Alg.4 only leads to an increase in performance

for 2 out of 9 users. This observation also points to the lack of fairness evaluation of the

personalized methods, despite the tremendous interest in the machine learning community to

develop fair methods. We define fairness from an equitable notion, i.e., the concept of users

getting similar improvements [25 ]. An ideal personalization algorithm is one which leads to

a similar QoI (defined in Section 5.2.3 ) for all users compared to the local/global FedAvg

models. Although Alg.2 is the best performing algorithm, Alg.1 is the fairest among all
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Table 5.1. Example scenario to help motivate the need for alternative metrics
in Personalized FL.

Local Model FedAvg Alg.1 Alg.2 Alg.3 Alg.4
Datasplit(s) DS-1 DS-1 DS-1 DS-2 DS-3 DS-1

Users
User0 73% 78% 82% 79% 76% 75%
User1 71% 75% 82% 74% 72% 72%
User2 61% 69% 82% 75% 68% 68%
User3 55% 71% 75% 79% 82% 96%
User4 69% 74% 74% 78% 85% 97%
User5 65% 77% 75% 89% 87% 75%
User6 74% 80% 77% 74% 78% 76%
User7 68% 82% 77% 76% 79% 78%
User8 75% 85% 78% 79% 79% 77%

Avg Acc 67.89% 76.78% 78% 78.11% 78.44% 79.33%

the algorithms. This leads to an interesting observation that an algorithm that is the best

performing need not necessarily be the fairest.

Problem 2 - Inconsistent Datasets and Data-splits. A data-splitting strategy is used

to split the dataset across participating users such that each of them receives a fraction

of the data which is not identically distributed. This is termed as a non-IID distribution

which is frequently the case in the real-world. The characteristics of the data in FL settings

are important because if the data is distributed IID, personalization cannot offer any bene-

fits [15 ], the global FedAvg model would perform the best in this case. On the other hand,

if the data is distributed non-IID, then personalization helps combine the local and shared

(global) information. We observe in Table 5.1 that all approaches use the same dataset yet

the data-splits (abbreviated as DS-x) are different. For instance, Alg.1, and Alg.4 are

trained on DS-1, whereas Alg.2 is on DS-2 while Alg.3 is on DS-3. The use of different

data-splits on the same dataset makes it hard to compare personalized models. Additionally,

we observe that when personalized models are compared with each other, each paper often

reports results on a new (different) data-split than the one used in the compared paper.

For example, Alg.1 and Alg.2 cannot be directly compared as they have been trained on

different data-splits, and their performance might be different on another data-split.

Study of Related Works. We have studied 12 recent personalization methods to identify

the datasets and data-splits they use, whether they report metrics other than those commonly
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used in the FL settings, which approaches they are compared to, and whether a fairness

analysis is performed. Table 2.1 presents our analysis results in five different personalization

categories, as elaborated in Chapter 2 .

First, we found that all the personalized FL approaches either use all or a subset of the

metrics used in the FL settings, such as training loss, average validation accuracy, prediction

error, number of communication rounds to measure the communication complexity. This

means that none of the surveyed works report a per-user accuracy for the personalization

algorithms, as depicted in the Only FL metrics column of Table 2.1 . Additionally, we found

that none of the surveyed works except for FedMeta perform a fairness analysis. FedMeta

analyzes the fairness of the algorithm’s final performance distribution averaged over multiple

runs.

Second, we observe that 9 out of the 12 surveyed works use standard datasets including

(1), (2), (3), (4), (6), and (7). The other 3 works use a subset of the following additional

datasets: (5), (8), (9), (10), (11), (12), (13), (14), and (15).

Third, we found that all works use different custom data-splits on these datasets. We

show this in the Use of Custom Datasplit column of Table 2.1 . Further, we describe some of

the data-splits used in the literature, which we henceforth refer to as DS-#, in Section 5.2.1 .

FedPer uses DS-1, pFedMe uses DS-3, Per-FedAvg uses DS-4, and all the other works use

other kinds of data-splits.

Lastly, we found that 8 out of the 12 works compare their algorithm to the base FedAvg

algorithm, and not other existing personalization algorithms, as depicted in the Comparison

column of Table 2.1 . This makes it difficult to evaluate how different personalization algo-

rithms perform with respect to each other. APFL, pFedMe, FedAMP, and LotteryFL compare

their method with other existing personalization algorithms whereas the others do not. Even

though some works compare their method with other approaches such as AGNOSTIC [40 ],

SCAFFOLD [41 ], and FEDPROX [42 ], these are not personalization algorithms in FL; hence,

they do not fall under the purview of our discussion.

Subsequently, we introduce a framework for personalized FL, and also propose new metrics

to alleviate the aforementioned problems.
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5.2 System Architecture

In this section, we explain the proposed system framework in more detail. Figure 5.1 

provides an overview of the system components. Initially, the system selects the dataset and

divides it according to the chosen data-split strategy among the chosen number of clients

(Section 5.2.1 ). The system then trains the FedAvg model and the other personalization

algorithm-based models with the chosen model architecture (Section 5.2.2 ). Finally, the

performance of the trained models from the previous step are evaluated on a defined set of

metrics (Section 5.2.3 ). These metrics are divided into the following two groups: a perfor-

mance perspective and a fairness perspective.

5.2.1 Data Generator

The Data Generator module is responsible for two tasks: (1) selecting the dataset to

be used based on the user’s choice and then (2) subsequently generating a data-split on this

dataset, also based on the user’s choice. The user also provides the number of clients to

simulate, and after this process, the data is now split to mimic the FL setting.

Datasets. We currently support the CIFAR-10 and MNIST datasets, widely used in FL

training in the literature. MNIST is a dataset of 28× 28 images of handwritten digits from

0-9 consisting of 10 labels and 70, 000 instances. CIFAR-10 is a dataset of 32× 32 color

images with 10 classes and 60, 000 instances. Other well-known datasets such as CIFAR-100

and Imagenet, and custom datasets can be easily integrated to the framework.

Data-splitting Strategies. The data splitting module supports the following four different

data-splitting techniques.

In data-split 1 (DS-1), each user has the same total number of samples but may have

different classes and a different number of samples per class. The statistical heterogeneity

is varied by controlling the parameter k, which controls the number of overlapping classes

between each user. For example, a highly non-IID partition will arise when k = 4 compared

to a highly IID partition when k = 10. In our experiments, we set k to 4 to have non-IID

data across users.
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Figure 5.1. System Architecture Diagram.

In DS-2, all users have samples from all classes, but the number of samples per class

they have is different, and hence the total number of samples per user is also different across

users. In order to replicate a non-IID distribution, we assign samples from each class to

the users following a Dirichlet distribution with α = 0.9, following the previous work [43 ].

Each class is parameterized by a vector q where q ≥ 0, i ∈ [1, N], where q is sampled from

a Dirichlet distribution with parameters α and p. The parameter p refers to the prior class

distribution among all the classes, and α refers to the concentration parameter that controls

the data similarity among the users. If α→∞, all users have an identical distribution to

the prior. If α→ 0, each user only has samples from one class randomly chosen.

For DS-3, each user has two of the ten class-labels. Additionally, the total number of

samples per user is different, i.e., all the users do not have the same number of total samples.

The samples assigned to users are drawn from a log-normal distribution with the parameters

µ = 0 and σ = 2. A variable u has a log-normal distribution if log(u) is normally distributed.

The probability density function for the log-normal distribution is computed as:

p(u) = 1

σu
√

(2π)
e−( (ln(u)−µ)2

2σ2 ) (5.1)
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These parameters correspond to the underlying normal distribution from which we draw

the samples.

DS-4 is introduced in Per-FedAvg [3 ]. In this technique, assuming there are n users, the

data is split as explained below. Half of all the users (n
2), have k images from each of the

first five classes, and the remaining users (n
2), have k

2 images from only one among first five

classes and 2k images from only one among the remaining five classes. The parameter k is

set as k = 68 for CIFAR-10, and k = 196 for MNIST.

5.2.2 Federated Model Generation

In this module, the FedAvg model and the personalized FL algorithms supported (Sec-

tion 5.2.4 ) are trained, and their inferences on the test set are obtained for evaluation and

comparison.

Model Architectures. Currently, we support the following model architectures commonly

used in the literature. For the CIFAR-10 dataset, we use a CNN-based model with two 2-D

convolutional layers separated by a MaxPool layer between them and followed by three fully

connected (FC) layers. The fully connected layers have 400, 120, and 84 hidden neurons.

We use ReLu activations after every layer excluding the last fully connected layer. For the

MNIST dataset, the architecture used is a two-layer deep neural network (DNN) with 100

hidden-layer neurons, and with a ReLu activation applied on the hidden layer. The output

layer has 10 nodes with a softmax function to get the class probabilities. The architectures

we use for both datasets are similar to those in pFedMe for conformity. Extensions to support

other architectures is straightforward.

5.2.3 Evaluation Metrics

In this module, we introduce new metrics to evaluate the personalized FL algorithms from

the performance and fairness perspective. To quantify the performance of the algorithms,

we compute the metrics on the Quantum of Improvement (QoI), defined in Equation 5.2 . P,

G, and L refer to the performances of the personalized algorithm, the global FedAvg model,
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and the local model, respectively for a user i. Subsequently, all metrics introduced in the

following sub-sections are applied on the QoI to answer the questions raised previously.

QoIi = Pi − max(Gi, Li) (5.2)

Performance Metrics

The following metrics come under the purview of performance. These metrics help us

answer which personalization algorithm is better from a performance perspective on model

accuracy.

Percentage of User-models Improved (PUI). PUI is the percentage of all the users who

have experienced an improvement compared to their local and global models. Ideally, a good

personalization algorithm can improve the per-user accuracy of a maximal set of users.

PUI = COUNT(QoIi > 0)
COUNT(U) × 100, i ∈ U(U : Users) (5.3)

Percentage of User-models Decreased (PUD). PUD is the percentage of all the users

who have experienced a decrease compared to their local and global models. Ideally, a good

personalization algorithm does not lead to any decrease in performance for any user. If this

is not possible, it leads to a minimal set of users whose performance decreases.

PUD = COUNT(QoIi < 0)
COUNT(U) × 100, i ∈ U(U : Users) (5.4)

Median Percentage of Improvement (MPI). MPI is computed as Median(U+) where

Median(.) is the function that returns the median of its input, and U+ is the QoI of the set of

users who obtained an increase in their performance. A good personalization algorithm has

a high median performance value among the users that obtain a performance improvement

from a performance perspective.

Average Percentage of Improvement (API). API is the average percentage improve-

ment among the users who obtained an increase in their performance (U+). In a normally

distributed distribution, the mean is the best measure of central tendency. However, when
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this is not the case, the median might be a better measure of central tendency. Since we do

not know how the QoI distributions will look like, we have both the measures.

API =
∑

i∈U+ QoIi

len(U+) (5.5)

Median Percentage of Decrease (MPD). MPD is computed as Median(U−) where Median(.)

is the function that returns the median of its input, and U− is the QoI of the set of users

whose performance decreased with the application of the personalization algorithm(s).

Average Percentage of Decrease (APD). APD is the average percentage decrease among

the users whose performance decreased (U−).

APD =
∑

i∈U− QoIi

len(U−) (5.6)

Fairness metrics

In this section, we introduce metrics to evaluate personalization algorithms from a fairness

perspective.

Average Variance (AV). For two personalization techniques t and t′, the performance

distribution among K users represented by {F1(t), . . . , FK(t)} is more fair (uniform) under

technique t than t′ if the following holds:

AV(F1(t), ...FK(t)) < AV(F1(t′), ...FK(t′)) (5.7)

where, AV(F1(t), ...FK(t)) is computed as follows.

AV = 1
K

K∑
i=1

(Fi(t)− F̄(t))2 (5.8)

F̄(t) in Equation 5.8 refers to the average model performance across all the users and is

computed as ¯F(t) = 1
K

∑K
i=1(Fi(t)).
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Cosine Similarity (CS). For two personalization techniques t and t′, the performance

distribution among K users represented by {F1(t), . . . , FK(t)} is more fair (uniform) under

technique t than t′ if the following holds:

CS[(F1(t), ...FK(t)), 1] ≥ CS[(F1(t′), ...FK(t′)), 1] (5.9)

where, CS(F1(t), ...FK(t)) is computed as follows.

CS =
1
K

∑K
i=1 Fi(t)√

1
K

∑K
i=1 F2

i(t)
(5.10)

Entropy. For two personalization techniques t and t′, the performance distribution among

K users represented by {F1(t), . . . , FK(t)} is more fair (uniform) under technique t than t′ if

the following holds:

Entropy(F1(t), ...FK(t)) ≥ Entropy(F1(t′), ...FK(t′)) (5.11)

where Entropy is defined as follows.

Entropy = −
K∑

i=1

Fi(t)∑K
i=1 Fi(t)log( Fi(t)∑K

i=1 Fi(t)) (5.12)

Jain’s Index (JI). JI [44 ] is one of the earliest proposed and most widely studied fairness

measures in the domain of computer networks and resource allocation. It is defined as

follows:

JI = [ ∑K
i=1 Fi(t)]2

K
∑K

i=1 Fi(t)2 (5.13)

The performance distribution among K users is represented by {F1(t), . . . , FK(t)}. Also, JI

is bounded, i.e., 0 ≤ JI ≤ 1. A large value of JI represents a fairer distribution from the

system’s perspective.

It is important to note that the QoI can have negative values. This means that the

personalization algorithm has led to a decrease in that particular user’s performance rather

than an expected increase. In such cases, the direct application of the fairness metrics will
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lead to an error. Instead split the QoI into two sets: a set of QoI values made up of users

who have experienced an increase (U+), and a set of absolute QoI values made up of users

who have experienced a decrease (U−). Then the fairness metrics can be applied to both

these sets independently, and interpreted accordingly.

Generalization of Metrics to FL. The evaluation metrics introduced in this section are

not restricted to personalized FL. They can also be applied in the FL setting. There have

been diverse federated optimizers proposed in FL as an alternative to the base FedAvg, such

as FedBoost [45 ], STC [46 ], FedAT [47 ], Overlap-FedAvg [48 ].

In these works, a new optimizer’s performance is compared against FedAvg and other

FL algorithms using only average accuracy. The evaluation metrics introduced for personal-

ized FL approaches can be used to evaluate fairness across the users and also measure the

performance of federated optimizers other than solely reporting the average accuracy.

5.2.4 Framework Implementation

The Data Generator module of our framework currently supports two datasets (CIFAR-

10 and MNIST), and four data-splits (DS-1, DS-2, DS-3, and DS-4). In the Evaluation

Metrics module, we implemented the metrics from a performance perspective and a fairness

perspective. We integrated the following FL algorithms into our framework: PersFL,

PersFL-GD, FedPer, pFedMe, and Per-FedAvg. We are limited by the non-availability of

the code and the hyper-parameter details to replicate the other personalization algorithms’

reported results. Thus, we have not included them in the current work. Our framework is

implemented on Python 3.7, and a PyTorch version of v1.3.1 and runs on an NVIDIA Tesla

T4 GPU with 16GB memory with a CUDA version of 10.0 and a driver version of 410.104.
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6. EXPERIMENTATION

We evaluate the performance of PersFL using two datasets, each with three data-splits,

and compare its results with FedAvg and three recent personalization approaches, FedPer,

pFedMe, and Per-FedAvg. Table 6.1 describes the compared approaches with PersFL, in-

cluding the datasets used in their evaluation, data-splits (detailed below), and the algorithms

that they compare with their techniques. In Section 6.1 the degree of personalization of each

personalization algorithm as well as FedAvg is analyzed. In Section 6.2 , we study the eq-

uitable notion of fairness among users across all personalization algorithms. The impact of

optimal teachers on performance is studied in Section 6.3 . The selection of optimal param-

eters for the distillation process is presented in Section 6.4 . We study a variant of PersFL,

namely PersFL-GD, and compare the difference in performances between the two formula-

tions in Section 6.5 . In Section 6.6 , we study the number of global communication rounds

required for all the personalized algorithms. In Section 6.7 we visualize the averaged values

of the distillation parameters over the different experimental runs, across all users.

Subsequently, in Section 6.8 and Section 6.9 we first evaluate the personalized FL algo-

rithms from a performance perspective and then from a fairness perspective, respectively.

Using the per-user accuracies, we apply the metrics that we introduced in Section 5.2.3 to

answer the following questions:

1. Which algorithm performs the best in terms of accuracy across all the users?

2. Which algorithm is the fairest amongst all of them?

We conduct all the experiments with 10 users. We make three assumptions in line with

the assumptions made in compared approaches. First, we assume that all users are active

during the entire training phase to speed up the model convergence. Second, the data of

each user does not change between the global aggregations. Lastly, the hyper-parameters,

batch-size (B), and local epochs (E), are invariant among the participant users. We conduct

all experiments with a 60%-20%-20% train-validation-test split on an NVIDIA Tesla T4

GPU with 16GB memory.
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Table 6.1. The details of the personalized federated learning methods com-
pared with PersFL.

# Method Datasets Comparison Datasplit
1 Per-FedAvg [3 ] MNIST, CIFAR10 FedAvg Custom
2 pFedMe [4 ] MNIST, Synthetic dataset FedAvg, Per-FedAvg DS-3
3 FedPer [5 ] FLICKR-AES, CIFAR-10, CIFAR-100 FedAvg DS-1

6.1 Degree of Personalization across Users

To study the degree (extent) of personalization of PersFL and to compare it with the

other personalization approaches, we average experiments of CIFAR-10 and MNIST datasets

over 5 experimental runs for each data-split. Table 6.2 and Table 6.3 show the per-user

accuracy of Fed-Avg, PersFL, FedPer, pFedMe, and Per-FedAvg on different datasplits of

CIFAR-10 and MNIST. Below, we present the performance of PersFL with the FedAvg

model and the best performing algorithm on the average accuracy across users.

Our analysis of CIFAR-10 in Table 6.2 shows that PersFL performs better than other per-

sonalization techniques across all data-splits. In comparison to the FedAvg model, PersFL

leads to a percentage increase of 82%, 22.3%, and 76.6% on DS-1, DS-2, and DS-3. For

the compared approaches, for all data splits, PersFL improves the on average accuracy by

4.7%, 0.6% and 3.9% across users compared to FedPer, pFedMe, and FedPer respectively.

The absolute improvement of PersFL over other techniques on DS-1, DS-2 and DS-3 is

3.7%, 0.4% and 3.1%, compared to FedPer, pFedMe, and FedPer.

The results of our experiments on MNIST in Table 6.3 show that, in comparison to

the FedAvg model, PersFL improves the accuracy on average by 7.1%, 2.9%, and 3.1% on

DS-1, DS-2, and DS-3. PersFL performs similar to the other approaches. In DS-1, the

best-performing approach Per-FedAvg gives 98.9% accuracy, which performs slightly better

than 98.6% accuracy of PersFL. In DS-2, PersFL gives a 0.4% increase in accuracy across

users compared to Per-FedAvg. In DS-3, both PersFL and FedPer gives 99.4% accuracy.
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Table 6.2. Accuracy per user for the different personalization algorithms on
the different data-splits on the CIFAR-10 dataset.

FedAvg PersFL FedPer pFedMe Per-FedAvg

Users DS-1 DS-2 DS-3 DS-1 DS-2 DS-3 DS-1 DS-2 DS-3 DS-1 DS-2 DS-3 DS-1 DS-2 DS-3

User 0 43.6 50.8 48.2 85.5 61.3 94.5 83.2 57.2 93.1 74.3 61.7 94.2 69.2 58.2 92.5
User 1 50.9 45.3 40.8 78.2 56.9 79.9 74.5 51.4 77 64.1 57.3 79.2 65 56.1 73.7
User 2 44.5 49.4 31.2 82.2 57.3 68.9 78.4 53.2 64.7 69.6 57.3 64.4 67.9 57.2 64.6
User 3 51.3 46.5 31.5 82.1 60.1 82.5 77.9 55.4 77.5 69.4 58.9 72.5 67.2 58.8 77
User 4 45.3 50.8 49.4 79.4 59.1 82.5 76.1 54.4 78.6 67.2 59.5 80 65.8 59.4 82.5
User 5 44.2 50.7 47.8 77.1 61.9 79.9 72.1 57.6 76.9 62.1 60.6 77.5 62.7 59.3 77.9
User 6 35.8 46.5 56.8 75.6 58.9 90.3 70.9 53.3 88.5 59.9 58.6 88.3 58.2 57.7 89.1
User 7 37.9 49.5 58.1 79.7 61.2 87.6 75.6 56.9 84.6 65.8 60.2 84 64.3 58 83.7
User 8 47.7 48.7 49 87.7 60 76.7 84.4 57.5 73.5 75.5 59.6 66.9 72.5 55.8 64.1
User 9 48.6 49.1 53.5 91 58.8 80.3 88.5 54.3 77.9 81.7 58.3 73.8 76.6 55.3 72.7

Avg Acc 45 48.7 46.6 81.9 59.6 82.3 78.2 55.1 79.2 69 59.2 78.1 66.9 57.6 77.8

Std Dev 5.1 2 9.4 4.9 1.7 7.2 5.6 2.1 7.9 6.7 1.4 9.2 5.1 1.5 9.5

Table 6.3. Accuracy per user for the different personalization algorithms on
the different data-splits on the MNIST dataset.

FedAvg PersFL FedPer pFedMe Per-FedAvg

Users DS-1 DS-2 DS-3 DS-1 DS-2 DS-3 DS-1 DS-2 DS-3 DS-1 DS-2 DS-3 DS-1 DS-2 DS-3

User 0 91.2 84.2 98.3 98.3 88.6 99.6 98.2 84.2 99.9 94.8 88.2 99 97.3 87.5 98.6
User 1 92.2 85.2 97.9 98.8 86.3 99.3 98.8 85.2 99.3 95.8 86.1 98.3 99 86.1 97.6
User 2 88 83.5 96.2 99.5 86 98.7 98.3 83.5 98.2 93.2 85.4 97.5 99.7 86.2 96.8
User 3 93.2 84.4 94.8 98.2 87.9 99.6 97.8 84.4 99.6 94.3 86.7 97.6 98.7 87.5 96
User 4 92.3 86.6 96.3 98.7 88.1 99.6 98.2 86.6 99.6 93.7 87.4 98.1 99 88 97.1
User 5 92.2 84.5 97.3 98.3 86.4 99.2 97.8 84.5 99.1 94.2 85.3 98.5 98.8 86.8 97.7
User 6 93.8 87 97.7 98.7 88.8 99.8 98.5 87 99.9 95 88 98.8 99.2 87.9 98.2
User 7 91.5 86.8 95.7 98.7 88.7 99.6 98.5 86.8 99.4 95.8 87.7 98 99.3 88.2 96.9
User 8 94.3 85.8 94.3 98.3 89.1 99.2 98.3 85.8 98.9 94.5 87.9 97.8 98.8 88.5 96.5
User 9 91.3 86.7 95.9 98.5 89.7 99.7 98.5 86.7 99.6 96.2 88.6 98.3 99.2 89.1 97.4

Avg Acc 92 85.5 96.4 98.6 88 99.4 98.3 85.5 99.4 94.8 87.1 98.2 98.9 87.6 97.3

Std Dev 1.7 1.3 1.3 0.4 1.3 0.3 0.3 1.3 0.5 1 1.2 0.5 0.6 1 0.8

Table 6.4. Average Accuracy across all the users for personalized models
initialized with the weights of FedAvg model vs. Optimal Teacher model for
each user on (a) CIFAR-10 and (b) MNIST datasets.

DS-1 DS-2 DS-3
Users FedAvg Opt Teacher FedAvg Opt Teacher FedAvg Opt Teacher
User 0 84.5 85.5 59.5 61.3 94.6 94.5
User 1 77.6 78.2 55.9 56.9 78.7 79.9
User 2 81.2 82.2 55.7 57.3 68.2 68.9
User 3 81.4 82.1 58.6 60.1 81 82.5
User 4 78.7 79.4 58.1 59.1 82 82.5
User 5 75.2 77.1 60.9 61.9 79.6 79.9
User 6 74.4 75.6 56.6 58.9 90.1 90.3
User 7 79.4 79.7 59.6 61.2 86.9 87.6
User 8 86.6 87.7 58.4 60 75.8 76.7
User 9 90.4 91 56.3 58.8 79.5 80.3

Avg Acc 80.9 81.9 58 59.6 81.6 82.3
Std Dev 5 4.9 1.8 1.7 7.5 7.2

(a) CIFAR-10

DS-1 DS-2 DS-3
Users FedAvg Opt Teacher FedAvg Opt Teacher FedAvg Opt Teacher
User 0 98.3 98.3 89 88.6 99.6 99.6
User 1 98.8 98.8 86.3 86.3 99.3 99.3
User 2 99.3 99.5 86.3 86 98.7 98.7
User 3 98.2 98.2 87.9 87.9 99.6 99.6
User 4 98.7 98.7 88.1 88.1 99.6 99.6
User 5 98.3 98.3 86.7 86.4 99.2 99.2
User 6 98.7 98.7 89 88.8 99.8 99.8
User 7 98.7 98.7 89 88.7 99.6 99.6
User 8 98.3 98.3 89 89.1 99.2 99.2
User 9 98.5 98.5 89.6 89.7 99.7 99.7

Avg Acc 98.6 98.6 88.1 88 99.4 99.4
Std Dev 0.3 0.4 1.2 1.3 0.3 0.3

(b) MNIST
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6.2 Equitable Notion of Fairness among Users

To understand the distribution of the personalized models’ performance across users, we

compute the standard deviation (SD) of the per-user accuracy. From an equitable notion

of fairness, this helps us understand how fair the personalization improvements are across

users [25 ]. We use AV defined in Section 5.2.3 for this.

We compare PersFL with the best performing method in terms of average accuracy. In

CIFAR-10 experiments (Table 6.2 ), PersFL yields a SD of 4.9 among the average accuracy of

users on DS-1, which is the least deviation compared to the other approaches. This yields

a reduction of 1.14x in SD compared to FedPer. For DS-2, pFedMe yields an SD of 1.4,

slightly better than 1.7 SD of PersFL. For DS-3, PersFL achieves a reduction of 1.10x in

SD compared to FedPer.

For MNIST (Table 6.3 ), we observe similar results compared to the experiments on

CIFAR-10. For DS-1, although Per-FedAvg with an average 98.9% accuracy is better than

PersFL’s 98.6% accuracy, PersFL leads to a 1.5x reduction in SD compared to it. For DS-2,

we find that the SD of Per-FedAvg at 1.0, is lower than the SD of PersFL at 1.3. On DS-3,

the reduction factor for PersFL in SD stands at 1.67x compared to FedPer. Overall, PersFL

often leads to a reduction in the SD of the average accuracy across users, thus leading to a

more uniform (fair) distribution than the compared methods.

6.3 Impact of Optimal Teachers on Accuracy

We claim that each user’s optimal teacher model (Ok) has maximal overlap with their local

data distribution. To understand the impact of optimal teachers on the degree of personal-

ization of the personalized models, we conduct the following experiment. We compare two

different ways of choosing the teacher model, i.e., global FedAvg and optimal teacher models

used in Stage-2 of PersFL as the teacher for distillation. We observe that choosing the

optimal teacher model as the teacher and performing distillation leads to more personalized

solutions and a lower standard deviation in the per-user accuracy.

Table 6.4a and Table 6.4b show the results of using FedAvg and optimal teacher for

CIFAR-10 and MNIST datasets. We make the following observations in terms of the av-
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Figure 6.1. Average epoch numbers when users’ optimal teacher models are
selected across data-splits.

erage per-user accuracy. On DS-1, initializing with the optimal teacher model leads to a

percentage increase of 1.2% and an absolute increase of 1%. On DS-2, the optimal teacher

initialization leads to a percentage increase of 2.7% and an absolute increase of 1.6%. In the

case of DS-3, there is a 0.8% percentage and 0.7% absolute increase attributed to initial-

ization with optimal teachers. Additionally, we observe that PersFL yields slightly lower

standard deviations of per-user accuracy. We conduct the same experiments on the MNIST

dataset and present the results in Table 6.4b . The average accuracy across users and the

standard deviations of the average accuracy are very similar across all the methods. We

argue that this variation can be attributed to the lack of inter-class variations in the MNIST

dataset.

Figure 6.1 shows the averaged epoch numbers across the different experimental runs for

both CIFAR-10 and MNIST, across all data-splits. The users choose their optimal teacher

model after participating in the global communication rounds. We observe that the averaged

epoch numbers in which the optimal teacher models are chosen are predominantly different.

This observation validates our hypothesis that each user has a unique optimal teacher model,

and all users should not use the same teacher model. Turning to Figure 4.1 , the dashed curve

closest to the solid curve corresponds to the optimal teacher model for a particular user k.

The averaged epoch number across all experimental runs at which this optimal teacher model

is chosen is shown in Figure 6.1 .
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Table 6.5. Average optimal values of λ and T for each user across different
experimental runs on CIFAR-10 and MNIST.

CIFAR-10 MNIST

DS-1 DS-2 DS-3 DS-1 DS-2 DS-3

Users T λ T λ T λ T λ T λ T λ

User 0 12.2 0.45 8.2 0.6 6.6 0.25 1 0 11.4 0.45 1 0
User 1 8.2 0.4 25 0.7 12.2 0.5 1 0 5.8 0.6 1 0
User 2 7.4 0.45 12.2 0.65 2.6 0.3 1.8 0.1 15.4 0.4 1 0
User 3 17 0.3 21 0.6 17 0.35 1 0 10.6 0.45 1 0
User 4 17 0.5 11.4 0.75 11.4 0.15 1 0.05 11.4 0.6 1 0
User 5 12.2 0.55 16.2 0.6 20.2 0.35 1 0.05 1.8 0.65 5.8 0.05
User 6 20.2 0.6 17 0.7 7.4 0.2 1 0.05 11.4 0.4 1 0
User 7 12.2 0.4 2.6 0.65 4.2 0.1 1 0 11.4 0.45 1 0
User 8 12.2 0.5 21 0.75 2.6 0.35 1 0.1 3.4 0.6 1 0
User 9 20.2 0.3 17 0.75 8.2 0.6 1 0 6.6 0.5 1 0

6.4 Optimal Parameter Selection

We conduct experiments to understand distillation’s effectiveness by investigating the

values of the optimal distillation parameters chosen by each user’s student model. Table 6.5 

shows the average values of distillation parameters, imitation (λ) and temperature (T), aver-

aged out over the five experimental runs on CIFAR-10 and MNIST datasets. For CIFAR-10,

we observe that the λ parameter values are non-zero across users and data-splits. This ob-

servation means that distillation is effective, and the teacher model’s knowledge is useful in

learning the student model. In contrast, in the case of MNIST, we observe that λ parameter

values are mostly very close to 0 in the case of DS-1 and DS-3. We believe that this is

because of the nature of the MNIST dataset i.e., due to the lack of inter-class variations. We

show a detailed analysis of the variation of the classification accuracy on the test-set across

users depending on the values of the distillation parameters λ and T in Section 6.7 .

6.5 Variants of PersFL

The distillation objective of PersFL in Equation 4.2 can be implemented with different

objective functions defining how to distill the information from the optimal teacher model

into the user’s local model. To demonstrate the generalization of PersFL to different dis-
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tillation objectives, we perform the distillation with a different loss function and compare it

with Equation 4.2 .

We define the following objective function between the soft labels and the student’s soft

predictions:

Ak = arg min
λ∈|λ|C,T∈|T|C

Ak∈|Ak|C

hard-loss︷ ︸︸ ︷
(1− λ)(Lcross(σ(Ak(xtrain

k )), ytrain
k ))

+

soft-loss︷ ︸︸ ︷
(λT2)× Lcross(σ(Ak(xtrain

k )
T

), σ(Ok(xtrain
k )
T

)) (6.1)

The soft predictions of a student are defined as the predictions of the student model,

which are scaled by the temperature parameter, σ(Ak(xtrain
k )/T). Equation 6.1 is different

from the original formulation of PersFL in Equation 4.2 . Here we do not use KL-divergence

to enforce the similarity of logits between the teacher and student model. In contrast, we

compute the cross-entropy between the models. We refer to this variant of PersFL to

PersFL-GD. We note that other distillation methods can be easily integrated into PersFL.

Table 6.6 shows the results of both variants of PersFL across all data-splits on both

CIFAR-10 and MNIST datasets. We make the following three observations. First, in MNIST,

both variants of PersFL on DS-1 and DS-3 have a very similar performance in terms of

average accuracy across all users. In DS-2 PersFL has an absolute performance improve-

ment of 0.7% compared to PersFL-GD. Second, the performance difference is relatively

more in CIFAR-10 experiments. PersFL has an absolute improvement of 1.4% on DS-2

of CIFAR-10 and an improvement of 0.6% on DS-3. In all cases, PersFL performs better

than or at least equal to PersFL-GD. Lastly, in terms of the standard deviations between

the per-user accuracy, both PersFL and PersFL-GD yield very similar performance.
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Table 6.6. Performance comparison of variants of PersFL.
1 is for PersFL, and 2 is for PersFL-GD objective functions.

CIFAR-10 MNIST
DS-1 DS-2 DS-3 DS-1 DS-2 DS-3

Users 1 2 1 2 1 2 1 2 1 2 1 2

User 0 85.5 85.5 61.3 60 94.5 94.1 98.3 98.3 88.6 88.1 99.6 99.8
User 1 78.2 77.8 56.9 56.4 79.9 78.8 98.8 99 86.3 85.3 99.3 99.4
User 2 82.2 81.6 57.3 56.2 68.9 68.2 99.5 99.2 86 85.5 98.7 98.7
User 3 82.1 81.5 60.1 58.4 82.5 82 98.2 98.2 87.9 87.2 99.6 99.8
User 4 79.4 79.2 59.1 58.2 82.5 82.4 98.7 98.5 88.1 87.5 99.6 99.7
User 5 77.1 76.3 61.9 61 79.9 78.8 98.3 98.7 86.4 85.6 99.2 99.3
User 6 75.6 75.5 58.9 57.9 90.3 90.1 98.7 98.5 88.8 88.3 99.8 99.9
User 7 79.7 79.5 61.2 58.8 87.6 87 98.7 99 88.7 88.2 99.6 99.7
User 8 87.7 87.1 60 58.4 76.7 75.6 98.3 98.8 89.1 88.4 99.2 99.3
User 9 91 90.5 58.8 56.3 80.3 79.5 98.5 98.8 89.7 88.7 99.7 99.8

Avg Acc 81.9 81.5 59.6 58.2 82.3 81.7 98.6 98.7 88 87.3 99.4 99.5
Std Dev 4.9 4.9 1.7 1.6 7.2 7.4 0.4 0.3 1.3 1.3 0.3 0.4

Table 6.7. Comparison of # of global communication rounds
CIFAR-10 MNIST

Method DS-1 DS-2 DS-3 DS-1 DS-2 DS-3
FedAvg 50 25 100 100 50 100
PersFL 50 25 50 100 25 100
FedPer 50 25 100 100 50 100
pFedMe 800 1000 800 800 800 800
Per-FedAvg 800 800 1000 800 800 800

6.6 Global Communication Rounds

In this set of experiments, we compare the number of global communication rounds taken

by each personalization algorithm. Table 6.7 shows the number of global communication

rounds for each algorithm. Below, for each dataset’s data-splits, we compare the number of

global communication rounds required by PersFL with the best performing method. We

observe that, in CIFAR-10 for DS-1, PersFL takes 50 communication rounds similar to

FedPer. For DS-2, PersFL takes 0.03x less communication rounds than pFedMe, and for

DS-3, PersFL takes 0.5x less communication rounds than FedPer. In MNIST experiments,

we observe that for DS-1 PersFL needs 0.13x less communication rounds required by Per-
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FedAvg. In DS-2, PersFL requires 0.03x less communication rounds compared to Per-

FedAvg, and PersFL needs the same number of communication rounds as FedPer in DS-3.

6.7 Optimal Distillation Parameters

We present a detailed analysis of the selection of the optimal parameters introduced

in 6.4 . Figures 6.2 , 6.3 , and 6.4 show the classification accuracy on the test set of each

user for a combination of values of λ and T averaged out over the five experimental runs on

CIFAR-10. Figures 6.5 , 6.6 , and 6.7 show the classification accuracy in the case of MNIST.

The x-axes in these plots represent different values of the imitation parameters, and the

y-axes represent the classification accuracy. We do not include the imitation parameter of 1

in these figures because it is never the case in our experiments that the optimal value of λ

turns out to be 1.

Figure 6.2. Per-user interaction plots between λ and T on DS-1 of CIFAR-10
averaged over the experimental runs.

Figure 6.3. Per-user interaction plots between λ and T on DS-2 of CIFAR-10
averaged over the experimental runs.
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6.8 Performance Perspective Analysis

Instead of solely using average accuracy, we use average accuracy in conjunction with

other metrics to make a more informed decision on evaluating personalized approaches.

Table 6.8 shows the performance metrics applied to the QoI of the different personalization

Figure 6.4. Per-user interaction plots between λ and T on DS-3 of CIFAR-10
averaged over the experimental runs.

Figure 6.5. Per-user interaction plots between λ and T on DS-1 of MNIST
averaged over the experimental runs.

Figure 6.6. Per-user interaction plots between λ and T on DS-2 of MNIST
averaged over the experimental runs.
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Table 6.8. A subset of the applicable performance metrics applied to the QoI
of different personalization algorithms on CIFAR-10.

PersFL FedPer pFedMe PerFed
Metrics DS-1 DS-2 DS-3 DS-1 DS-2 DS-3 DS-1 DS-2 DS-3 DS-1 DS-2 DS-3
PUI 100 100 100 100 100 100 100 100 100 100 100 100
MPI 38.74 11.23 33.29 34.53 6.59 30.43 24.58 10.81 31.06 22.9 8.55 32.65
API 36.87 10.83 35.67 33.18 6.41 32.59 23.98 10.47 31.44 21.95 8.85 31.17
AA† 81.85 59.56 82.29 78.16 55.13 79.21 68.95 59.19 78.07 66.93 57.57 77.79

AA† is the average accuracy across all users.

algorithms across different data-splits of CIFAR-10. Not all the metrics are applicable in

this case, and hence we only apply a subset of the metrics for performance. Metrics such

as PUD, MPD, and APD are not applicable since all the personalization algorithms lead to an

increase in the per-user performance. Therefore, the PUI for each personalization algorithm

is 100%.

In terms of MPI and API, on DS-1, PersFL and PersFL-GD perform the best at 38.74%

and 36.87% for PersFL, and 38.23% and 36.47% for PersFL-GD, respectively. On DS-2,

PersFL and pFedMe yield the highest MPI at 11.23% and 10.81%, respectively. Similarly

these algorithms lead to an API of 10.83% and 10.47%, respectively. We observe that on

DS-3, PersFL has the highest MPI and API, at 33.29% and 35.67%, respectively.

In terms of average accuracy, we observe that, PersFL and PersFL-GD perform the

best at 81.85%, and 81.45% on DS-1. On DS-2, PersFL and pFedMe are the best perform-

Figure 6.7. Per-user interaction plots between λ and T on DS-3 of MNIST
averaged over the experimental runs.
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(a) DS-1 (b) DS-2 (c) DS-3

Figure 6.8. Density plot of QoI values for CIFAR-10.

Figure 6.9. Fairness metrics applied to the personalized algorithms on differ-
ent data-splits of CIFAR-10. The first row is for DS-1, second row for DS-2,
and the last row for DS-3.

ing at 59.56%, and 59.19%, respectively, and on DS-3, PersFL and PersFL-GD are the

top-performing techniques at 82.29% and 81.64%.

From PUI, MPI, API, and the average accuracy, we conclude that PersFL is indeed the

best performing algorithm on DS-1. Similarly, from these metrics, we observe that pFedMe

and PersFL are the best performing algorithms on DS-2 and DS-3, respectively.
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Remark 1. We observe that the algorithm that has the best performance need not necessarily

be the fairest algorithm for a particular data-split. This is indeed the case on DS-2, where

PersFL is the better performing algorithm, whereas pFedMe is the fairer solution.

Figure 6.8 shows the density plots of the QoI for all clients across three data-splits of the

CIFAR-10 dataset. The peaks in a density plot help display where the values are concentrated

over an interval. The x-axes of the plots denote the QoI intervals, whereas the y-axes denote

the density. We observe that in the case of DS-1, the peaks as well as the distribution

of both PersFL and PersFL-GD are very similar, concentrated around a QoI interval of

40. In the case of DS-2, we observe that the peak of PersFL is associated with a higher

QoI interval compared to pFedMe, but the distribution of pFedMe is more normal compared

to PersFL as PersFL has an additional peak corresponding to the QoI interval of 8. On

DS-3, we observe that the QoI interval corresponding to the peaks of PersFL, PersFL-GD,

pFedMe, and Per-FedAvg, are all almost the same value indicating that the QoI of these

algorithms is concentrated around that value across all users.

6.9 Fairness Perspective Analysis

Figure 6.9 shows the different fairness metrics applied to DS-1, DS-2, and DS-3 of

CIFAR-10, respectively. In these figures, the x-axis represents the different personalization

algorithms, and the y-axis refers to the different fairness metrics applied to these algorithms.

We note that for an algorithm to be fair, in addition to being fair, it also needs to have good

performance; just being fair without a good performance is not fair!

From Figure 6.9 on DS-1, we observe that for AV, Per-FedAvg has the lowest AV amongst

all the personalization algorithms. A lower variance means that the performance distribution

because of that algorithm’s application is more uniform than the other algorithms. However,

we observe that Per-FedAvg has a low value across the other fairness metrics. In the case

of the other three metrics CS, Entropy, and JI, we find that PersFL and PersFL-GD are

the best performing. For these metrics, the higher the value of the metric, the fairer the

distribution. Between PersFL and PersFL-GD, PersFL has a slightly higher value than

PersFL-GD across the other fairness metrics. Hence, for DS-1, we conclude that PersFL
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is the fairest amongst all the personalization algorithms as a majority of the fairness metrics

show.

Remark 2. It is not always the case that a personalized FL algorithm is the best across

all the fairness metrics unanimously. An example of this observation is on DS-1, where

Per-FedAvg has the lowest AV, but it is not the best across the other fairness metrics.

In the case of DS-2, from Figure 6.9 , we observe that pFedMe has the least AV. Clearly,

it also has the highest value for the other three metrics CS, Entropy, and JI. We confirm

that it has a good performance across all the users. On DS-2 in Table 6.8 , we see that

pFedMe is very close to PersFL in terms of the performance metrics, and hence it has a good

performance while at the same time being relatively fairer than PersFL. Therefore, pFedMe

is the fairest algorithm on DS-2.

On DS-3, from Figure 6.9 , we find that FedPer has the lowest AV. However, it is not

the fairest algorithm according to the other fairness metrics. In fact, among the other

three metrics, PersFL has the highest value. Hence, it is the fairest solution amongst all

personalization algorithms, as shown by most fairness metrics. We also observe that in terms

of performance, PersFL is the best performing algorithm on DS-3. From these observations,

we conclude that PersFL is the fairest algorithm on DS-3.

Remark 3. We also find that PersFL is both the best performing as well as the fairest

solution among all the algorithms in two cases, i.e., DS-1 and DS-3.
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7. DISCUSSION AND LIMITATIONS

7.1 Personalization for New Participants

PersFL can easily adapt new users participating in the FL framework to learn person-

alized models. To detail, consider that a new user k joins the framework after the training

phase of PersFL in search of a personalized solution. Since each user chooses their optimal

teacher model at the end of the PersFL training phase, the FedAvg model for user k may

serve as the teacher model i.e., Ok (assuming that only the FedAvg model in the final global

aggregation round is stored). If the central aggregator stores the FedAvg model across the

global aggregation rounds, user k can then choose Ok to be the most optimal FedAvg model

across all the global aggregation rounds that has the lowest error on the validation data

of user k. Following this, user k can then easily perform a search over λ and T to find the

optimal values within the search space according to Equation 4.2 . Subsequently, the user can

perform distillation with Ok to learn a personalized model Ak. However, the global FedAvg

model learned over the aggregation rounds may not be the most optimal teacher model for

the new participants when the number of new participants joining the framework increases.

In future work, we will study the trade-off between the number of new participants and the

accuracy of personalized models with respect to the shift in their data distribution.

7.2 Dual Optimization of PersFL

Our work raises some new important questions, such as how to unify distillation with per-

sonalization in FL such that personalized models are jointly learned for all users and how to

incorporate feedback from the student models to learn more optimal teacher models? Future

work will explore the joint learning of the global model and optimal distillation parameters

for each user, i.e., joint optimization rather than the discrete formulation of PersFL. In this

way, we plan to incorporate feedback from the student model after distillation to improve

each user’s optimal teacher model in the subsequent distillation steps.
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7.3 Extension to FL

Apart from the currently used metrics in FL such as number of communication rounds,

number of data nodes etc., we can additionally apply the metrics that we introduce to

incorporate the notion of per-user performance and also fairness, which the metrics currently

used in FL do not capture. This would further help in the evaluation of the FL algorithms.

7.4 Support for Personalization Algorithms

In the future, we will introduce alternative metrics to accuracy such as F1-score, precision,

and recall which is currently not the case. We will also extend the framework to support

more personalization algorithms and datasets and other types of data-split strategies.

57



8. CONCLUSIONS

We present PersFL1
 , a personalized FL algorithm , which addresses the statistical hetero-

geneity issue between different clients’ data to improve the FL performance. PersFL finds

the optimal teacher model of each client during the FL training phase and distills the useful

knowledge from optimal teachers into each user’s local data after the training phase. We

evaluate the effectiveness of PersFL on CIFAR-10 and MNIST datasets using three differ-

ent data-splitting strategies. Experimentally, we show that PersFL outperforms the FedAvg

and three state-of-the-art personalized FL methods, pFedMe, Per-FedAvg and FedPer on the

majority of data-splits with minimal communication cost. We additionally provide a set of

numerical experiments to demonstrate the performance of PersFL on different distillation

objectives, how this performance is affected by the equitable notion of fairness among clients,

and the number of communication rounds between clients and server.

We also introduce a framework for the domain of personalized FL. We have a data-

generator, federated model generation, as well as evaluation metrics module in this

framework. Each module has its specific utility in the framework, ranging from selecting the

dataset and splitting it according to a data-split strategy to applying the different metrics

introduced in this work. We introduce additional metrics alongside the average accuracy

used to evaluate personalized FL models. We split these metrics into two perspectives based

on their utility: Performance, and Fairness. We employ these metrics to find the best

performing algorithm and the fairest solutions across different data-splits of the CIFAR-10

dataset.

1↑ PersFL code is available at https://tinyurl.com/1hp9ywfa .
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