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ABSTRACT 

Bovine respiratory disease (BRD) is an ongoing health and economic issue in the dairy and beef 

cattle industry. Also, there are multiple risk factors that make an animal susceptible to BRD and 

it's diagnosis and treatment is a challenge for producers. Four bacterial species, Mannheimia 

haemolytica, Pasteurella multocida, Histophilus somni, and Mycoplasma bovis have been 

associated with BRD mortalities. Hence, this study aims to characterize the cattle nasal 

microbiome as a potential additional diagnostic method to identify animals suspected to have a 

lung infection.  Quantitative PCR and 16S rRNA gene sequencing were used to determine the 

bacterial load of these four bacterial pathogens in the nasal microbiome of apparently healthy 

(N=75) and (N=58) affected by BRD Holstein steers. We then sought to  identify a value or 

equation that could be used to discriminate between BRD and healthy animals using a Linear 

Discriminant Model (LDA). Additionally, co-occurrence between commensal bacterial and BRD-

pathogens were also identified. Cattle diagnosed with BRD presented lower richness, evenness 

and phylogenetic diversity than healthy pen-mates. Bacterial species and genera Truperella 

pyrogenes and Bibersteina were increased in the BRD group, and the species Mycoplasma 

bovirhinis and Clostridium sensu stricto increased in the healthy group. Prevalence of H. 

somni (98%) and P. multocida (97%) were the highest regardless of disease diagnosis in all the 

samples. Prevalence of M. haemolytica (81 vs. 61%) and M. bovis (74 vs. 50.7%) were higher in 

the BRD group. The bacterial density of M. haemolytica and M. bovis was also higher in the BRD 

group, whereas Histophilus somni was lower in the BRD group. Five different models were tested 

using LDA, and one model produced a sensitivity and specificity of 60% and 81% agreement with 

diagnosis based on animal symptoms. Co-occurrence analysis demonstrated that the nasal 

microbiome members are more likely to interact with each other than associations between BRD-

pathogens and nasal microbiome members. This study offers insight into the BRD-pathogens 

prevalence and difference in nasal microbiome between healthy and BRD animals and provides a 

potential platform for future studies and potential pen-side diagnostic testing. 
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 INTRODUCTION 

1.1 Background and Significance 

Bovine respiratory disease (BRD) is an ongoing health issue in the dairy and beef cattle industries. 

BRD treatment represents a high expense to producers, and it’s been estimated that the annual 

BRD expenses in the US to be $800-900 M  (Buckham et al., 2008; Chirase & Greene, 2000). The 

development of this disease is associated with multiple risk factors (i.e., predisposing, 

environmental, and epidemiological factors) that make the animal susceptible to BRD (Snowder 

et al., 2006). In the cattle industry, the most common way to diagnose an animal with BRD relies 

on visual observations of animal behavior and measuring rectal temperature (Griffin et al., 2010). 

Nevertheless, sometimes a sick animal will not present common clinical signs because of the 

predatory/prey behavior in which they mask early symptoms; therefore, it cannot be identified or 

treated  (Duff & Galyean, 2007; Timsit et al., 2011). Because of this, different methods that include 

white blood cell counts, thoracic ultrasonography, and others, had been studied to identify and 

classify a sick animal from a healthy animal (Wolfger et al., 2015; Schaefer et al., 2007, 2012; Al-

Ani et al., 2015). Unfortunately, the results in BRD diagnosis are inconsistent and more research 

is needed to quickly and accurately identify animals in need of antibiotic therapy.  

 

As previously discussed, BRD can be caused by multiple factors such as predisposing, 

environmental, and epidemiological factors. Among the epidemiological factors, studies have 

identified the bacterial pathogens Mannheimia haemolytica, Pasteurella multocida, Histophilus 

somni, and Mycoplasma bovis are related to BRD (Klima et al., 2014; Mosier, 2014). These 

bacteria are considered commensal microbes in the respiratory tract, but under stressful conditions 

(e.g., weaning, transport, or stress), they can become pathogenic and cause BRD (Mosier, 2014). 

Because of this, different molecular methods, including 16S rRNA gene sequencing and qPCR, 

had been developed to characterize and quantify the bacteria present in the cattle’s respiratory tract 

between healthy and sick cattle (Pardon & Buczinski, 2020).  Even though the use of molecular 

techniques can be utilized for the detection and measurement of the specific bacterial load in a 

sample, the issue arises when the BRD-associated bacteria are present in healthy and BRD animals, 

making challenging to differentiate pathogenic from commensal bacteria (Pansri et al., 2020).  
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Also, it is known that within the microbial community, bacteria are in constant competition to 

survive in the environment (Corbeil et al., 1985). Different studies reported that bacteria 

like Mycoplasma dispar, Lactococcus lactis, and Lactobacillus casei were significantly higher in 

healthy animals than BRD-animals. In contrast, sick animals present a higher abundance 

of Mycoplasma bovis, Mannheimia haemolytica, and Pasteurella multocida (Timsit et al., 

2018).  Therefore, these differences in the microbiome composition between healthy and sick 

animals could reveal bacteria-bacteria relationships occurring in the cattle respiratory tract 

between commensal and pathogenic bacteria during disease and why some animals do or not 

develop BRD. 

1.2 Objectives 

Objectives for this study are: 

Objective 1: Perform a 16S rRNA gene amplicon sequencing using the DNA extracted from nasal 

swabs to characterize the microbial community present in the nasal cavity between healthy and 

BRD pen-mates.  

Objective 2: Perform a qPCR reaction using the extracted DNA to target and quantify the relative 

abundance of Mannheimia hemolytica, Pasteurella multocida, Histophillus somni, Mycoplasma 

bovis and 16S rRNA gene in the nasal cavity of healthy and BRD pen-mates to identify a possible 

equation or model that could be used to discriminate BRD from healthy animals. 

Objective 3: Perform a co-occurrence to identify species pairs that are common among BRD and 

healthy groups and any co-occurrence between BRD-pathogens and nasal microbiome. 

1.3 Organization of the Thesis 

This thesis is organized following the Purdue Graduate School traditional style format. Chapter 2 

provides a literature view about the BRD background, and molecular techniques used to identify 

the bacteria in the respiratory tract from healthy and those diagnosed with BRD. Chapter 3 provides 

the material and methods used in conducting the experiments. Chapter 4 provides the experimental 

results. Lastly, chapter 5 contain the discussion of the results and summarizes the important 
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findings in the study as well as future research ideas that can be perform with the knowledge 

obtained by this research.   
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 LITERATURE REVIEW 

2.1 Bovine Respiratory Disease 

Bovine respiratory disease (BRD) is an ongoing and vital problem in dairy and beef cattle. It is 

defined as an infectious pneumonia, which can cause pulmonary lesions (Muggli-Cockett et al., 

1992). BRD affects the health of cattle of all ages, including feedlot, dairy calves, nursing beef 

cattle, post-weaned cattle by compromising its immune system and causing morbidity and 

mortality (Babcock et al., 2010; Holman et al., 2015a). BRD can account for different ranges of 

illnesses such as 1) peracute, which account for animals with acute fibrinous pneumonia, 2) acute, 

which refers to active pneumonia lesion, 3) subacute, which refers to chronic and active pneumonia 

lesion 4) bronchiolar, chronic and active pneumonia lesion with "bronchiolar" pattern, and 5) 

chronic pneumonia, animals who received at least 3 BRD treatments (Booker et al., 2008). 

2.2 BRD economic impact in the dairy and beef industry 

Bovine respiratory disease represents a critical economic problem to farms (Buckham et al., 2008). 

The economic impact of a BRD treatment has been estimated to be $800-$900 M  related to animal 

death, reduction of feed efficiency, and treatment costs (Chirase & Greene, 2000). It has been 

reported that BRD is responsible for approximately 75% of the morbidity and 57% of mortality in 

the feedlots (Vogel et al., 2015). In dairy cattle, BRD cause 24% of death in pre-weaned heifer and 

58.9% death in weaned heifers (USDA, 2014). Also, 89% of sick cattle with BRD are treated with 

injectable antibiotics, but in 33% of the cases, the treatment fails,  resulting in additional treatment 

is required or animal death (Avra et al., 2017).  A study reported that producers lose $40.46/calf 

for one BRD treatment, $58.35/calf for two treatments, $291.93/calf for three or more treatments 

from the net value (carcass value- total cost in feedlot) (Fulton et al., 2002). 

2.3 BRD development 

2.3.1 Factors that cause BRD 

Different studies had identified that BRD could be developed by the action of multiple 

predisposing, environmental, and epidemiological factors that make it harder to diagnose and treat 
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a sick animal. The predisposing factors include animal age, handling stress, and transport from one 

farm to another. The environmental risk factors include stocking density, ambient temperature, 

humidity, and ventilation (Edward, 1996; Snowder et al., 2006). The epidemiological factors 

include bacterial and viral agents, the interaction between viruses, mode of transmission, as well 

as the infectious, latent, and carrier periods (Bowland & Shewen, 2000; Edward, 1996; Snowder 

et al., 2006). Common BRD-associated bacterial species are Mannheimia haemolytica, Pasteurella 

multocida, Histophilus somni and Mycoplasma bovis (Klima et al., 2014; Mosier, 2014). 

2.3.2 Disease development 

The animal’s respiratory system possesses different line of defenses (e.g. nasopharynx mucosal 

layer, mucosal epithelium and network signaling and communication). These line of defenses 

produce antimicrobial peptides, glycoproteins, IgA proteins, luminal and mucosal surface 

macrophages and dendritic cells that regulates microbial homeostasis between commensals and 

pathogenic bacteria,  clearance of potential pathogens and recruit immune cells to protect the 

animal’s health (Ackermann et al., 2010; Uehara et al., 2007; Zeineldin et al., 2019). In addition 

to the animal susceptibility, it has been reported that viruses present in the respiratory tract 

predispose animals to bacterial infections. The viral infection can damage the respiratory and lung 

parenchyma, which facilitates the translocation of bacterial pathogens and the viral infection 

causes a delay in the animal immune response to the bacterial infection (McMullen et al., 2019; 

Taylor et al., 2010; Timsit et al., 2016). A healthy animal presents a stable community, in which 

the microbes are compartmentalized and neutralized within the lumen by the antimicrobial 

peptides (Zeineldin et al., 2019). Nevertheless, when the animals suffer from stress caused by 

multiple predisposing and environmental factors, these defenses fail making them susceptible to 

BRD (Caswell, 2014; Timsit et al., 2016). Once a distribution in the stable state occurs in the 

respiratory tract, the pre-disease state begins in which there is a loss of mucosal barrier function 

as a result of bacterial dysbiosis and pathogen colonization in the epithelium; Nonetheless, at this 

stage, with the action of proinflammatory cytokines, chemokines and activation of local immune 

cells, the health of the animals can be restore. However, if the disease progress, the mucosal barrier 

is lost which results in microbial translocation across the mucosal epithelium and failure in 

immune regulation (Zeineldin et al., 2019). Once the bacterial pathogens move to the lungs, they 
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adhere and colonize the epithelial surface, provoking pulmonary inflammation, and gross 

pathology (Caswell, 2014).  

2.3.3 Animal Susceptibility 

In feedlots, recently weaned, transported, non-vaccinated, lightweight, commingled, and auction-

market derived cattle are considered high-risk cattle to suffer BRD (Holman et al., 2019; Timsit et 

al., 2017). Snowder (2006) analyzed BRD incidence in calves from 9 different cattle beef breeds 

over a 15-yr period (1987-2001) and identified that the BRD incidence was significantly different 

between heifers and steers. In the study, steers reported 20% of BRD incidence compared heifers 

in which only 14% had BRD. Also, Snowder (2006) reported that castration before feedlot entry 

could cause male calves to be more susceptible to developing BRD.  

 

Another critical factor that can increase the animal susceptibility to BRD is the failure of passive 

transfer (FPT) (Gorden & Plummer, 2010). FPT refers to the failure in the absorption of 

immunoglobulin (Ig) from the consumption of colostrum by the calf after birth and can increase 

mortality until week 10 of the animal age (Hogan et al., 2015; Tyler et al., 1999). Colostrum 

consumption is crucial to the calves because it provides passive immunity, which reduces the 

animal's morbidity and mortality (Roy, 1980). Thus, providing colostrum to newborn calves might 

increase the animal's immunity and decrease the development of diseases like BRD at a young age.  

 

In addition, it has been reported that cattle at parturition and lactation state might play a role in the 

offspring from older animals to suffer from BRD (Gorden & Plummer, 2010). This is due to the 

negative energy balance of the cow, decreased dry matter intake, nutrient absorption, as well as 

health conditions like ketosis or hypocalcemia during lactation and parturition (Goff & Horst, 1997; 

Kimura et al., 2006; NRC, 2001). 

2.4 Detection of animals with BRD  

Most farmers rely on animal behavior and appearance observations to diagnose cattle with 

respiratory disease. The most commonly targeted clinical signs are depression, appetite loss, 

respiratory character change, and increased rectal temperature, commonly referred to as the DART 
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method (Griffin et al., 2010). Nevertheless, the observation of clinical signs is often not accurate 

to diagnose an animal with BRD, evidenced by the method's low sensitivity (62%) in correctly 

identifying individuals with the disease and low specificity (63%) in identifying animals without 

the disease (Loong, 2003; White & Renter, 2009; Wolfger et al., 2015). For example, Timsit et al. 

(2011) indicated that 74% of 449 cattle fever episodes were not visually detected by the feedlot 

personal. Due to the inconsistency in BRD signal detection, cattle with BRD are often detected 

late or not detected at all (Timsit et al., 2011). Because of this, different methods had been studied 

to identify truly sick animals with BRD from a healthy animal. A group measured the acute phase 

proteins in the animal's blood and identified that animals with BRD presented a higher 

concentration of haptoglobin (HP) and lipopolysaccharide-binding protein (LBP) in the blood than 

healthy animals (Idoate et al., 2015). In the same study, a concentration of ≥0.81 mg/ml of HT 

(method sensitivity and specificity: 92.86 and 85.71%) and ≥ 0.33 μg/ml of LBP (method 

sensitivity and specificity: 92.86 and 92.86%) in the blood were proposed to be used as an indicator 

of BRD. 

 

Also, white blood cell counts (WBC) and neutrophil/lymphocyte ratio have been used to detect 

BRD (Schaefer et al., 2007, 2012). In these studies, the WBC sensitivity and specificity were 

between 25% and 77.8% and between 77.4% and 94%. For the neutrophil/lymphocyte ratio, the 

sensitivity and specificity were 38%-66.7% and 67.9%-86.5. Nevertheless, due to the wide 

sensitivity and specificity results, WBC and neutrophil/lymphocyte ratio have limited value in 

differentiating truly BRD animals from healthy animals. Another method used to detect BRD is 

thoracic ultrasonography. With thoracic ultrasonography, it is possible to determine the lung 

lesions and consolidation of the animal that refers to the pathological process when the alveoli are 

full with fluids, pus, blood, cells, protein, and not air (Al-Ani et al., 2015). Ultrasonography 

detected lung lesions at least one time during the study in 28% of the BRD animals, in 16% of the 

control groups (Abutarbush et al., 2012). Also, in a different study, lung lesions identified with 

Ultrasonography presented a sensitivity and specificity 94 and 100% in cases associated with BRD 

(Ollivett et al., 2015). A new method being studied is metabolomics that measures small molecules 

in cells, tissue, and biofluids and can be used as biomarkers to indicate disease (Goldansaz et al., 

2017; Moore et al., 2007). The combination of blood metabolome profile with BRD visual 

diagnosis and visual-clinical diagnosis had sensitivity between 82-88%, a specificity between 74-
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87%, and accuracy between 81-85% in BRD detection (Blakebrough-Hall et al., 2020). In the same 

study, the metabolites identified that help classify the animals as BRD or non-BRD were tyrosine, 

citrate, and hydroxybutyrate, as well as some unknown metabolites. Although multiple methods 

had been tested to diagnose BRD, further evaluation is needed to confirm the sensitivity, 

specificity, and accuracy of each method in BRD diagnosis. 

2.5 BRD management practices 

2.5.1 Vaccination 

Dairy and beef producers vaccinate their cattle to enhance animal immunity to pathogens by 

increasing the antibody concentration in the body (Wilson et al., 2017). In the U.S, two thirds of 

feedlots vaccinate for common BRD-bacterial agents Histophilus somni, Mannheimia 

haemolytica, and Pasteurella multocida as means of BRD prevention (NAHMS, 2013). Producers 

may use modified-live viral vaccines (MLV),  killed virus (KV) vaccines or a combination of 

BRD-associated bacteria bacterin/toxoids that are commercially available against BRD-associated 

viruses and bacteria (Chamorro & Palomares, 2020; Edwards, 2010). The benefits of MLV 

vaccines include a long-lasting immune response, fewer doses, less reliance on adjuvants, vaccine 

antigens that resemble the pathogenic organism and stimulated the effector component of the cell-

mediated immunity. The benefits of KV vaccines include longer shelf life, reduced virulence 

reversion, storage stability, and less likely to be contaminated with another organism (Edwards, 

2010). In a study, cattle at feedlot arrival were divided into two different vaccination programs. 

Group one were vaccinated with MLV containing two BRD-associated viruses: infectious bovine 

rhinotracheitis virus (IBRV), types I and II bovine viral diarrhea virus (BVDV), and Mannheimia 

haemolytica  with Pasteurella multocida bacterin-toxoid whereas group 2 received a vaccine 

containing only IBRV, type I BVBV, bovine respiratory syncytial virus, parainfluenza-3 virus, 

and Mannheimia haemolytica bacterin-toxoid, a less complex vaccine. Animals in group one 

presented a significant decrease in BRD treatment, overall chronicity defined as animals with 

chronic disease divided by the total number of animals present in the study, wastage defined as 

animals considered chronic but did not die divided by the number of animals present in the study, 

mortality, and BRD-specific mortality than the animals that received the second vaccination 

program (Wildman et al., 2008). Also, studies demonstrated that vaccination of beef calves during 
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weaning with MLV alone or with Mannheimia haemolytica/Pasteurella multocida bacterins could 

reduce BRD morbidity and mortality after weaning. However, the vaccination effect in young beef 

and dairy calves with MLV or with Mannheimia haemolytica/Pasteurella multocida bacterins is 

uncertain, or there is conflicting evidence of its efficacy (Chamorro & Palomares, 2020). Another 

study summarized that the vaccination efficacy against Mannheimia haemolytica, Pasteurella 

multocida, and Histophilus somni is inconsistent (Griffin et al., 2010). The inconsistency of the 

vaccination effect has been attributed to 1) some studies with natural BRD occurrences tend to mix 

the vaccinated and non-vaccinated calves in the same pen, which underestimate the effect of 

vaccination, 2) other studies report the crude mortality and morbidity of the pen, while others 

report only BRD-mortality and morbidity (Larson & Step, 2012). Therefore, it is complicated to 

determine if vaccination against BRD-associated pathogens may reduce BRD-specific morbidity 

and mortality.  

2.5.2 Antibiotic treatment  

In the feedlot industry, the use of antibiotic therapy represents a vital management activity to 

control and treat BRD (Holman et al., 2019; Watts & Sweeney, 2010). Metaphylaxis, which 

corresponds to the timely mass medication of a group of animals to eliminate or decrease the 

outbreak of a disease, has been used in the feedlots to control bacterial pathogens related to BRD 

outbreaks (Edwards, 2010; Zeineldin et al., 2020a). The injectable antimicrobials ceftiofur 

crystalline free acid, florfenicol, oxytetracycline, tilmicosin, tulathromycin, as well as feed grade 

antimicrobials such as chlortetracycline (CTC) and chlortetracycline plus sulfamethazine are 

approved to be used for metaphylaxis in the feedlots (Edwards, 2010; Holman et al., 2019). 

Additionally, diagnosis of an animal with BRD is sometimes challenging to producers making the 

efficacy of antibiotic treatment to be inconsistent due to infection misdiagnosis and ineffective use 

of antibiotics as prophylaxis, metaphylaxis and growth promoters (Ives & Richeson, 2015). One 

concern that has arisen with the antibiotic treatment is the antibiotic resistance in BRD pathogens 

(Call et al., 2008; Griffin et al., 2010; Rice et al., 2008). BRD associated pathogens had been 

identified to be resistant to antibiotic like tetracyclines, fluoroquinolones, beta-lactams, macrolides, 

sulfonamides, lincosamides, phenicols, and aminoglycosides (Dedonder & Apley, 2015). 

 



 
 

22 

Antibiotic administration is associated with decreased bacterial richness and disruption in the 

respiratory microbial community structure because of their bactericidal or bacteriostatic effect on 

pathogenic or commensal microbes or both (Zeineldin et al., 2020a; Zhang et al., 2019). Holman 

et al. (2019) demonstrated that a single injection of oxytetracycline and tulathromycin caused a 

perturbation in the bovine nasopharyngeal (NP) and fecal microbiota at 2 and 5 days after giving 

them the single injection. Also, animals that received the single injection of oxytetracycline had 

an increase in genes conferring resistance to tetracycline, sulfonamide, and 

erythromycin: erm(X), sul2, tet(H), tet(M) and tet(W) in NP samples and tet(M) and tet(W) in the 

fecal samples on day 12 after receiving the single antibiotic injection; whereas animals that 

received the tulathromycin injection had an increase of erm(X), sul2 and tet(M) 34 days after the 

injection in the NP samples (Holman et al., 2019).   

2.6 Molecular methods used to identify BRD-associated pathogens as a means of diseases 
diagnostic 

As previously described, BRD can be caused by epidemiological agents such as the 

species Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, and Mycoplasma 

bovis (Dabo et al., 2008; Griffin et al., 2010; Klima et al., 2014) Because of this, different studies 

had focused on the use of molecular methods such as microbial culture, single polymerase chain 

reaction (PCR), real-time quantitative PCR (qPCR), and bacterial 16S rRNA gene PCR amplicon 

sequencing to identify the BRD-associated bacteria in bovine nasal, nasopharyngeal and lung 

tissue samples (Pardon & Buczinski, 2020). 

2.6.1 Microbial culture 

Microbial culture can be used to isolate and identify the bacteria from nasal, nasopharyngeal swabs, 

transtracheal wash, or lungs necroscopy (Fulton & Confer, 2012). In a study performed by  Seker 

et al. (2009), nasal swabs from 100 healthy and sick animals with nasal discharge, cough and 

dyspnoea and 220 bacteria were isolated using a Columbia blood agar culture plate. In this study, 

the authors could isolate Staphylococcus epidermis (32.9%) and S. aureus (24.3%) on 70 healthy 

animals, whereas, in the bacterial cultures from 30 unhealthy animals, they 

identified Pseudomonas aeruginosa (40.0%), P. multocida (40.0%), and M. 

haemolytica (100.00%). Mycoplasma bovis was not identified in this study, which is considered a 
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BRD-associated bacteria. Parker et al. (2018) mentioned that Mycoplasma species have a simple 

structure and cannot synthesize fatty acids, and because of this, it requires a specific and highly 

enriched media to grow. When using microbial cultures, fastidious growers like Histophilus 

somni can be quickly overgrown, causing false negatives (Pardon & Buczinski, 2020). These 

results indicate that depending on the type of media selected to culture the microbes, false negative 

over positive results are common. One disadvantage of using culture-based methods is that even 

though it is possible to identify BRD-associated pathogens, a relatively small fraction of bacteria 

can be cultivated (Rappé & Giovannoni, 2003). Additionally, the sensitivity and specificity of the 

microbial culture for some BRD-associated pathogens had not been determined; thus, it’s not 

possible to determine the presence of other BRD-associated pathogens (Pardon & Buczinski, 2020).  

2.6.2 Microbial culture and Polymerase Chain Reaction (PCR) 

A combination of culture-based methods and 16S rRNA gene amplification has been performed 

to enhance the detection of BRD-associated pathogens from the cattle respiratory tract. Polymerase 

Chain Reaction is considered a common method used to identify BRD-associated bacteria due to 

the capacity to detect culturable and unculturable bacteria and viruses (Dickson et al., 2014; Pardon 

& Buczinski, 2020). For this method, specific primers are needed to identify the pathogens of 

interest. In most studies, the 16S rRNA gene is used to identify the BRD-associated bacteria or 

characterize the microbial community. Holman et al., (2015b), collected nasopharyngeal samples 

of apparently healthy cattle at entry and during feedlot placement, plated the samples in Brain 

Heart Infusion agar (BHI),  de Man, Rogosa and Sharpa agar (MRS), and 5% sheep blood agar 

followed by the extraction of DNA from the isolates and PCR amplification of near the full length 

of the 16S rRNA gene. By combining the culture-based method and PCR amplification, the authors 

could identify from the nasopharyngeal samples the BRD-associated 

genera Pasteurella and Mannheimia during feedlot entry and after 60 days, by culturing samples 

on the BHI and blood media while on the MRS media, the genera Lactobacillus, Enterococcus, 

Rummeliibacillus, and Pediococcus were identified in the animal nasopharyngeal samples. Again, 

no members of the genera Mycoplasma and Histophilus were identified using the culture-based 

methods.  
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In another study performed by  Bell et al., (2014), DNA was extracted from 150 samples of cattle 

pneumonic lung tissue. PCR assays were performed to target M. haemolytica, H. somni, and P. 

multocida, then, the results were compared to culture-based methods to detect BRD-associated in 

the samples. In the study, the authors detected M. haemolytica in 51 (34%) cases by PCR and in 

33 (22%) cases by culture-based methods, H. somni was detected in 35 (23.3%) samples using 

PCR than the 6 cases (4%) detected by culture, M. bovis was detected in 53 (35.3%) cases using 

PCR, and in 29 cases (19.3%) by culture; lastly, P. multocida was detected in 42 (28%) cases using 

PCR and only in 31 (20.7%) cases by culture. These results indicated that culture-based methods 

and PCR amplification can help detect the BRD-associated pathogens; however, the results depend 

on the type of sample collected and the type of growth media selected. 

 

2.6.3 Conventional PCR 

PCR gene amplification is a common method selected for BRD-associated pathogen detection. 

The principle behind PCR focused on the amplification of a known generic region. The most 

common gene used to characterize a microbial community is the bacterial 16S rRNA gene due to 

its presence in almost all bacteria (Janda & Abbott, 2007). Nevertheless, PCR can also be used to 

amplifying the genes that are specific to a bacteria group. One advantage of using PCR is capturing 

more information about the microbial community composition than culture-based methods. PCR 

amplification using specific primers increases the sensitivity and specificity for detecting the 

bacteria of interest. (Pardon & Buczinski, 2020). Nevertheless, once the primers are designed, it is 

a time consuming and difficult process to validate the primers that could be used to detect the 

desired bacteria (Thanthrige-Don et al., 2018).  

 

One disadvantage of conventional PCR is the incapacity to measure the bacterial density in the 

samples. The products from the PCR are compared to a known positive and negative controls using 

gel electrophoresis. This step serves as a quality point because it indicates if the desired fragment 

was amplified and if the bacteria is present or not, but it does not specify the bacterial load for each 

of the targets. A problem arises when BRD-associated bacteria are present in healthy and sick 

cattle, but there is no accurate way to measure the difference in bacterial density between them 

(Pansri et al., 2020). 
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2.6.4 Real-time quantitative PCR (qPCR) 

Real-time quantitative PCR (qPCR) can detect and quantify the bacterial species' density in the 

samples. What makes qPCR able to measure bacterial density is the inclusion of a fluorescent 

probe at the 5' end and a quenching dye at the 3'end (Jerome, 2010). The principle focused on that 

during amplification, specimens with a higher density in the sample will amplify sooner than 

specimens will a low bacterial load. The amplification is detected by the fluorescent signal (or 

earlier threshold cycle "Ct"). Using the threshold cycle value, it is possible to quantify the number 

of amplicon copies per mL (Fulton & Confer, 2012). Thomas et al. (2019) performed a Real Time 

TaqMan PCR (qPCR) assay to target the presence and measure the BRD-associated bacteria's 

carriage from 299 cattle's nasal swabs over time. The group designed specific primers to target the 

genes sodA and the 16S rRNA gene. Pasteurella multocida was detected in 227/299 swabs 

(75.9%), Histophillu somni was detected in 80/299 swabs (26.8%), and Mannhemia 

haemolytica was detected in 17/299 nasal swabs (5.7%). Also, the carriage density of H. 

somni ranged between 10-100 genome copies/ml in the majority of the swabs (82.5%). For M. 

haemolytica the carriage density ranged between 100 and 1,000,000 genome copies/ml and P. 

multocida ranged between 1,000-100,000 genome copies/ml. Also, Kishimoto et al. (2017) 

developed a one-run qPCR to detect the BRD-bacterial pathogens from nasal samples taken of 40 

animals collected at six different farms. This study targeted the bacterial genes sodA, kmt-1, and 

16S rRNA and identified M. haemolytica in 12 samples, P. multocida in 23 samples, H. somni in 

18, and M. bovis in 20 samples. Nevertheless, the carriage or the total number of copies of each 

bacterium in the nasal swabs were not calculated. In a different study, quantification of BRD 

associated pathogens was perform using the bacterial cells from tracheal aspirate samples pure 

culture collected from healthy and cattle with pneumonia (Pansri et al., 2020). For M. haemolytica, 

the bacterial load was between 0.4-4.7 log10 CFU/0.5 mL, for P. multocida was 0.5-5.9 log10 

CFU/0.5 mL, for H. somni the density was 1.1-4.8 log10 CFU/0.5 mL, and for M. bovis the density 

was 1.1-3.3 log10 CFU/0.5 mL. Nonetheless, one pitfall of this study is that no comparison in the 

BRD-associated bacterial load were compared between the samples collected from healthy and 

cattle with pneumonia.   

 

Even though qPCR can be useful in detecting and measuring the bacterial load of specific species 

in a sample, it is also important to determine the relative abundance of the desired bacteria in the 
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whole microbial community. By analyzing the relative abundance and number of copies per 

sample of the BRD-associated pathogen within an environment, it can provide more information 

on how these bacteria might interact with other non-BRD associated microbes in the cattle 

respiratory tract. It can also be an indicator of how the abundance of BRD-associated bacteria 

might be different from healthy and sick animals, a parameter that can be used to diagnose cattle 

with BRD. 

2.6.5 Bacterial 16S rRNA gene PCR amplicon sequencing.  

Next-generation sequencing of 16S rRNA gene PCR amplicons has been the most recently used 

method to characterize the cattle respiratory tract microbial community. The advantage of using 

this method is that it is possible to identify the bacteria present in the sample without relying upon 

in microbial culture. Additionally, 16S rRNA gene sequencing allows for the determination of 

microbial community diversity and relative abundance of individual taxa, while also allowing for 

the parallel sequencing of multiple samples at the same time (Gupta et al., 2019; Sontakke et al., 

2009). Once the amplicons have been sequenced, the taxonomical classification of each sequence 

can be assigned using nearest-neighbor or naïve Bayesian classifier (Mizrahi-Man et al., 2013) 

algorithms.  

 

Because microbial community diversity can be determined using 16S rRNA gene amplification, 

different studies identified that BRD animals had lower alpha diversity (that indicates the richness 

and evenness of the community) in the upper and lower respiratory tract than their healthy pen-

mates (Holman et al., 2015a; McMullen et al., 2019; Timsit et al., 2018). These results elucidate 

the status of the bacterial community in the animal’s respiratory microbiome during BRD. Because 

it is believed that a more diverse and stable microbial community is more likely to resist 

colonization from pathogens, and low diversity commonly causes low stability and reduced 

functional diversity (Cardinale et al., 2012; Dunlap, 2001). Thus, measuring diversity could be 

used as an indicator of sickness and could lead to a better understanding of how the disease 

develops. Different studies using 16S rRNA sequencing method in DNA extracted from nasal and 

nasopharyngeal swabs, had identified that cattle diagnosed with BRD, presented a lower bacterial 

richness and evenness that healthy animals (Zeineldin  et al., 2020b; Timsit et al., 2018; Holman 

et al., 2015a) and it’s believed that low microbial diversity could lead to pathogen colonization 
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(Cardinale et al., 2012; Knapp et al., 2017). These results could explain another animal 

susceptibility to BRD.  

 

The 16S rRNA gene amplicon sequencing helped identify the commensal microbial community 

found in the respiratory tract of healthy cattle. At a phyla level, Proteobacteria, Firmicutes, 

Bacteroidetes, Tenericutes, Actinobacteria, and Fusobacteria are the most common; whereas at the 

genus level, the most common bacteria are Mycoplasma, Acinetobacter, Filobacterium, 

Psychrobacter, and Moraxella (Holman et al., 2017; Zeineldin et al., 2020a). Nonetheless, 

changes in specific taxa can be observed in different locations in the respiratory tract. The 

microbial community present in the cattle’s hard palate, floor of the mouth and oropharynx has 

been shown to be mostly composed of bacterial genera Streptococcus. Then, the bacterial 

community in the cattle’s nostrils and nasopharynx are mostly composed of Moraxella and 

Mycoplasma. The bacterial community on the tonsils are mainly composed of Fusobacterium, 

whiled the trachea and lung microbiome is composed mostly of bacteria from the Mycoplasma 

genera (McMullen et al., 2020). Thus, the 16S rRNA gene sequencing provides information of the 

commensal respiratory microbiome in cattle, information that could be used to identified microbes 

that are not commensal but pathogenic and that might be associated in the BRD development.  

 

It is believed that cattle experience BRD due to an increase of pathogenic bacteria in the respiratory 

tract (Holman et al., 2015a). Thus, the use of 16S rRNA gene sequencing has been able to 

determine the bacteria present in sick from healthy animals. Lima et al. (2016) identified that the 

relative abundance of the bacteria genera Mannheimia, Moraxella and Mycoplasma were 

significantly higher in the animals with pneumonia than healthy animals.  In a different study 

comparing the nasopharyngeal microbiota community of BRD and healthy animals 0 and 60 days 

after feedlot entry, BRD animals on day 0 had either Mannheimia haemolytica and Pasteurella 

multocida; however, after treating the animals for BRD, no BRD species were detected in day 60 

(Holman et al., 2015a). As previously described, differences in the microbiome composition could 

depend on the sampling site in the animal. A study compared the upper and lower respiratory 

microbiome between healthy and BRD animals (Zeineldin et al., 2020b). In the upper respiratory 

microbiome, BRD animals presented significant higher predominance of Acinetobacter, 

Mannhemia, Psychrobacter, Flavobacterium and Solibacillus than the healthy animals. In the 
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lower respiratory microbiome, the genera Mannheimia and Pasteurella were significantly 

increased in the BRD animals than healthy. Nonetheless, presence of BRD-associated bacteria is 

sometimes not identified as differentially abundant between BRD and healthy cattle. Zeineldin et 

al. (2017) collected  nasopharyngeal samples from healthy and BRD-affected cattle. In this study, 

BRD animals had many differentially abundant taxa compared with healthy animals.  

Proteobacteria, Pseudomonadales, Moraxellaceae, Acinetobacter were the best bacterial 

biomarkers of BRD-affected cattle; however, no BRD-associated pathogen were identified as 

biomarkers of the BRD group.  In conclusion, it is possible to conclude that next-generation 

sequencing using 16S rRNA gene amplicon sequencing is a method that can be used to detect and 

identify differential bacterial abundance in the cattle's respiratory tract between BRD affected and 

healthy cattle.  

2.7 Relations between the presence of BRD-bacteria and commensal bacteria 

Nasopharyngeal microbiome plays an essential role in the animal's health status. When the animal 

is under stress, opportunistic bacteria found in the nasopharyngeal tract can translocate to the host 

cells, causing BRD (Amat et al., 2019a; Mosier, 2014). Also, there is a hypothesis that the resident 

microbial community in the respiratory tract might enhance or prevent BRD-associated bacteria 

from increasing in their abundance, causing an infection (Corbeil et al., 1985; Timsit et al., 2018). 

Probiotic bacteria strains like Lactobacillus strains, Lactococcus locus, Paenibacillus 

polymixa were shown to have had higher adhesion to the bovine bronchial epithelial (BBE) cells 

than the bacteria genera Mannheimia haemolytica, as well as the genera  Lactobacillus, 

Streptococcus, and Enterococcus were able to inhibit the growth of Mannheimia 

haemolytica when using culture-based methods (Amat et al., 2017, 2019b; Timsit et al., 2020) 

Negative correlations had been detected between lactic-acid producing bacteria with the 

Pasteurellaceae family in the nasopharyngeal microbiome of cattle transported to the feedlot (Amat 

et al., 2019a). In a different study, the nasopharyngeal microbiota of healthy and animals with 

bronchopneumonia (BP) were compared across four different feedlots (Timsit et al., 2018). 

Animals with BP had Mycoplasma bovis, Mannheimia haemolytica, and Pasteurella multocida, 

while healthy animals had mostly Mycoplasma dispar, Lactococcus lactis, and Lactobacillus casei. 

These results might give an insight into the bacterial competition occurring in the cattle’s 
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respiratory microbiota and could be used to understand the reason behind why some cattle do or 

do not develop BRD.   

2.8 Relationship of the nasal microbiome to the lower respiratory tract 

BRD development has been linked to the presence of pathogens in the respiratory tract. Thus, 

intensive research had been developed to identify these and characterize the cattle’s respiratory 

microbiome. Anatomically speaking, the cattle respiratory tract can be divided into two sections: 

upper respiratory tract (URT) that includes nasal cavities, paranasal sinuses, nasal passages, 

nasopharynx, oropharynx, tonsils, and the upper portion of the larynx and the lower respiratory 

tract (LRT) that includes the lower portion of the larynx, trachea, bronchi, bronchioles, and alveoli  

(Beers, 1999). The process of characterizing the LRT in cattle has been dependent on culture-

based methods of lung tissue and only pathogens that can be cultured had been identified (Griffin 

et al., 2010; Fulton & Confer, 2012); on the contrary, URT is more easily sampled. The most 

common method is through the use of nasal or nasopharyngeal swabs, and these approaches are 

less invasive and take less time than collecting lung tissue (Pardon & Buczinski, 2020). Studies 

had identified correlations in specific taxa between the URT and LRT that give a sense of 

mutualistic interrelationship between the two microbial communities (Zeineldin et al., 2017). Also, 

Zeineldin et al., (2020b) identified 50 taxa to possess strong correlations between their presence 

in the URT and LRT. Doyle et al., (2017) identified agreement in BRD pathogens isolated 

regardless of the sample type collected: nasal, nasopharyngeal, bronchoalveolar lavage and 

transtracheal wash . Thus, these results bring supportive information that characterizing the nasal 

microbiome could be used to predict the microbiome in the LRT; however, more research is needed 

in this area.  Unfortunately, it is important to emphasize that nasal swabs are susceptible to be 

contaminated; hence, it is necessary to clean the cattle’s nasal cavity before sampling and use 

negative controls (clean swabs) as a way to identify any contaminant present in the swabs (Fulton 

& Confer, 2012; Zeineldin et al., 2019). 

2.9 Summary 

In recent years, intensive research has been developed to diagnose cattle with BRD from healthy 

animals. One common method utilized is molecular techniques (e.g., PCR, qPCR, 16S rRNA gene 
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sequencing) to identify BRD-associated bacteria in the respiratory tract of healthy and BRD-

animals. Even though these methods could detect and measure BRD-associated bacteria between 

the two groups, a gap in these studies is the interaction and relation of BRD bacteria with other 

microbes, such as commensal bacteria, viruses, and fungus, have not been taken into consideration. 

So far, studies were able to measure the BRD bacterial load in the cattle respiratory tract; 

nevertheless, no threshold of the bacterial load has been established to diagnosed BRD animals. 

We hope that with the finding from this study, we will identify an interaction of BRD-associated 

pathogen within the cattle respiratory tract and what other interactions might occur with 

commensal bacteria. To determine if a bacterial load threshold exists between BRD-associated 

bacteria present in healthy and BRD animals to use as BRD diagnosis. Finally, it is necessary to 

understand that Bovine Respiratory Disease can be caused by multiple factors (e.g., predisposing, 

environmental, and epidemiological).  Thus, the analysis of these factors and their interactions 

with the respiratory microbiome can bring more information on when the disease begins and how 

it can be treated efficiently. 
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 MATERIALS AND METHODS 

3.1 Cattle nasal swab collection 

3.1.1 Animal population and selection 

A total of 133 Holstein steers of approximately 6-7 months old, housed in the same environment 

were sampled in our study from July to December 2020 at the Ault Farm located in Indiana, US. 

Animals with BRD were identified following the DART approach that focuses in the clinical signs 

as depression, appetite loss, respiratory character change, and increased rectal temperature (Griffin 

et al., 2010). We will refer to animals identified to have BRD according to the DART method as 

BRD animals. Once an animal was identified as positive for BRD, healthy pen mates were also 

selected for nasal swab sampling. The animals selected for the study could not had been previously 

treated for BRD with antibiotics (individually or mass-medicated) or treated for any disorder with 

antibiotics for the previous 100 days. A total of 75 healthy and 58 BRD-positive animals were 

included in the study. Animal records were checked 3 months after sampling and if any animal 

that initially was considered a health animal was treated with antibiotics, it was removed from the 

study. 

3.1.2 Cattle nasal swab collection 

After identifying the healthy and BRD-animals, two nasal swabs were collected per animal. Before 

sampling, the nostrils were cleaned with wipes to remove any nasal discharge and dirt. Two 

unguarded swabs were inserted simultaneously about 3-5 cm deep into the right nostril and then 

into the left nostril. Nasal swabs were inserted into an empty tube labelled with the animal ID and 

date and then, transported to the lab on ice for processing. During sampling, rectal temperature, 

prescribed treatment, date of sample, and pen ID were collected per animal for further data analysis.  

3.2 Nasal swab DNA extraction  

Nasal swabs collected from healthy, and BRD-animals were transported to the lab. The bacterial 

and mucosal content was extracted from the swab’s prior DNA extraction. The tip of the swab was 

cut and inserted into new tube and 1 mL of Nuclease-free water was added. Then, the tubes 
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containing the swab’s tip were vortexed horizontally for 5 min, the swab tip was discarded, and 

the tubes were centrifuge 6000 x g for 10 min, this allowed the separation of the supernatant and 

the pellet. The pellets and supernatant were stored at -20°C and -80°C respectively until further 

processing.  

 

Total DNA was extracted from the pellets using the DNeasy Blood & Tissue Kit (Qiagen, 

Germantown, MD, USA) following Holman et al., (2015) protocol. The extraction process 

combines physical, chemical and enzymatic lysis methods to extract the DNA from the bacterial 

cells. In the protocol, the pellets were re-suspended in 180 μl of enzymatic lysis buffer containing 

the enzymes mutanolysin (300 U mL-1) and lysozyme (20 mg ml-1). The mixture was vortexed for 

20 s and incubated at 37°C for 1 h in a thermomixer at 300 rpm. Proteinase K (25 μl) and 200 μl 

of Buffer AL (provided in the kit) were added; the mixture was vortexed and incubated at 56°C 

for 30 min. After incubation, the mixture was transferred into a PowerBead Tubes containing 0.1 

mm glass beads (Qiagen, Germantown, MD, USA, not provided in the kit) and mixed using the 

TissueLyser II (Qiagen) at 30 Hz for 5 min, followed by centrifugation at 13,000 x g for 5 min. 

The supernatant was transferred into a new tube and 200 μl of ethanol were added to the mixture. 

From this point on, the DNeasy Blood & Tissue Kit was used following the manufacturer’s 

instructions. After extraction, the DNA quality was measured using Nanodrop 2000/2000c 

Spectrophotometer and the concentration was measured with Qubit 4 (Thermo Fisher Scientific, 

PA, USA). DNA was stored at -20°C until further processing. An empty tube was extracted and 

sequenced along with the samples to determinate the presence of contaminants (DNA extraction 

and sequencing negative control). 

3.3 16S rRNA gene amplicon library preparation and sequencing 

The extracted DNA samples from the animal and empty tubes, were used to create a 16S rRNA 

gene amplicon library. This library was constructed using a barcode indexed amplification product 

from the V4 region of the 16S rRNA gene following the protocol described by Kozich et al., 2013. 

PCR amplification was performed using AccuPrime™ Pfx SuperMix (Thermo Fisher Scientific, 

MA, USA) following Kozich et al., 2013 protocol. PCR-grade water was used as negative control 

and a mock community (20 Strain Even Mix 138 Genomic Material; ATCC® MSA-1002TM) as 

positive control. PCR amplification quality was checked via gel electrophoresis. Amplified DNA 
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was normalized using SequalPrep Normalization Kit, and 5 μl of the amplified DNA was used to 

create a pool at equal concentration. The amplicons were sequences via Illumina MiSeq Sequences 

(2x250 paired-end) at the Purdue Genomic Core Facility.  

3.4 Bioinformatics analysis 

3.4.1 16S rRNA gene library analysis 

Raw sequences data obtained from the 16S rRNA gene fragment's amplification were analyzed 

using Quantitative Insight Into Microbial Ecology (QIIME2) v.2020.2. With QIIME2, it is possible 

to identify how many sequences were obtained per sample. In the study, using the DADA2 

(Callahan et al., 2016)  denoising step, the forward and reverse sequences were trimmed at position  

0, and the forward and reverse sequences were truncated at position 251 and 223, respectively, to 

obtained sequences with a quality > Q30. A total of 15,287,698 sequences were identified before 

the denoising step (DADA2) and 13,127,373 sequences after denoising. All the sequences were 

clustered into Amplicon Sequence Variants (ASVs) with 100% similarity.  

 

To calculate the alpha and beta microbial diversity in the nasal swab samples, the ASV table was 

rarefied to 40,420 sequences per sample. In this step, nine samples were lost due to low sequence 

count. Alpha diversity measures the richness and evenness of an environment. Richness is an 

indicator of how many different species are present in the sample whereas, evenness is an indicator 

of the abundance distribution of species within each sample  (Hagerty et al., 2020; Whittaker, 

1960). Alpha diversity was estimated in QIIME2 using the Observed OTUs and Chao1 metrics for 

richness, Pielou index as a measure of evenness and Faith phylogenetic diversity (Faith_Pd) was 

also calculated (Chao, 1984; DeSantis et al., 2006; Faith, 1992; Pielou, 1966).  

 

The beta-diversity estimates the pairwise microbial community structure dissimilarity. Beta 

diversity between animals were analyzed using Bray-Curtis Dissimilarity Index and Weighted 

UniFrac (incorporates phylogenetic relation) (Lozupone & Knight, 2005) methods and plotted as 

principal coordinate analysis (PCoA) using RStudio (v1.3.1093). To test the difference in beta 

diversity, a permutational multivariate analysis of variance test (PERMANOVA; P ≤ 0.05) using 

the vegan package (Oksanen et al., 2019). In addition, a dispersion test was performed to determine 
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the distance of the samples of the two groups (BRD or healthy animals) using the vegan package 

(Oksanen et al., 2019), followed by a permutation test of multivariate homogeneity of groups 

dispersion using the vegan package (Oksanen et al., 2019). 

 

The taxonomy was assigned using SILVA 13_8, 515F/806 region database. A negative binomial 

distribution method, DESeq, was used to determined differentially abundant taxa between BRD 

and healthy animals. The test was performed using the package DESeq2 (Anders & Huber, 2010) 

in RStudio. ASVs with a log2 fold change > 2 and statistical significance of P ≤ 0.05 were selected 

as differentially abundant ASV between BRD and healthy animals.  

3.4.2 Mock Community and Empty Swab sequencing analysis 

Mock community analysis 

A mock community (ATCC® MSA-1002TM) was used as a positive control for the amplification 

and sequencing step. To determine the amplification and sequencing quality, we compared the 

sequences obtained from the mock community with a reference containing the correct sequences 

for the 20 known strains. The reference file contains the 16S rRNA gene sequences of all 16S 

rRNA copies from the 20 strains present in the mock community sample.  

 

The raw sequence data was analyzed using Quantitative Insight Into Microbial Ecology (QIIME2) 

v.2020.2. The raw reads were trimmed using DADA2 to remove any sections with a low-quality 

score (< Q30). To evaluate the sequencing quality, we used the Qiime2 (v.2-2020.2) function 

evaluate_seqs, which aligns the observed sequences to the set of expected or reference sequences, 

and determined the matches and mismatches (Camacho et al., 2009).  

Empty tubes DNA sequencing analysis. 

Raw sequence data obtained from the empty tubes used as a negative control during DNA 

extraction and sequencing were also analyzed using QIIME2 following the procedure explained 

above. Forward and reverse sequences were trimmed at 0, and truncated at positions 250 and 220 

respectively. The taxonomy was assigned using SILVA 13_8, 515F/806 region database.  
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Presence of contaminants during DNA extraction and sequencing. 

DNA contamination can arise from many sources such as sample collection, laboratory equipment, 

DNA extraction kits (reagents), amplification and sequencing reagents (Nguyen et al., 2015). 

Because of this, an empty tube was extracted and sequenced along with the samples. This helped 

determine if contamination occurred during the process. To determine the ASVs that are 

considered contaminants, the mock community (positive control) taxonomical composition was 

compared to the mock community reference that contains 32 known bacterial strains. Any ASVs 

in the mock community (positive control) that did not match mock community reference were 

considered contamination. Then, the contaminants were compared to the ASVs present in the 

empty tubes; any ASVs shared between the two groups were considered contaminants. Lastly, the 

taxonomical composition of the empty tube was compared to the samples; any ASVs matched to 

the samples and when combined, present a relative abundance >10% of the community in the 

empty tubes were considered contaminants and were removed from the data. 

3.5 qPCR analysis 

Gene amplicon generation for BRD-pathogens and qPCR standard curve generation   

DNA extracted from pure isolates of Pasteurella multocida, Histophilus somni, and Mannheimia 

haemolytica acquired from the Indiana Animal Disease Diagnostic Laboratory (ADDL) at Purdue 

University and DNA from Mycoplasma bovis strain 25523 (ATCC) was used to generate the qPCR 

standard curve and as bacterial positive control. PCR assays were performed to target sodA for M. 

haemolytica, 16S rRNA gene for H. somni and P. multocida and the gene oppD for M. bovis using 

previously published primers and fluorescent probes (Table 1) (Sachse et al., 2010; Thomas et al., 

2019). Amplicon DNA concentration was determined by Qubit 4 (Thermo Fisher Scientific, PA, 

USA) and number of copies was calculated using the concentration and length of the amplicon.  

 

The PCR assays for Pasteurella multocida, Histophilus somni, Mannheimia haemolytica, and 

Mycoplasma bovis were performed in a 50 μl volume consisting of 25 μl of iTaq™ Universal 

Probes Supermix (BioRad, CA, USA), 12.5 μl Primer/Probe mix (IDT) listed above, 10 μl 

Nuclease-free water and 2.5 μl of nucleic acid template. The concentrations for the primers and 

probes for the four bacteria were 300 nM and 100 nM as reported in Thomas et al. (2019). PCR 
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assays were performed in an Eppendorf Mastercycler Gradient Model 533 and the cycling 

conditions for H. somni and P. multocida were 95°C for 3 min followed, by 40 cycles of 95°C for  

3 s and 60°C for 60 s. Cycling conditions for M. haemolytica were as follows: 95°C for 3 min, 

followed by 40 cycles of 95°C for 3 s and 69°C for 60 s. Cycling conditions for Mycoplasma bovis 

were 95°C for 10 min, followed by 45 cycles of 95°C for 30 s, and 60°C for 60 s.  

Table 1. BRD-associated bacteria primers and probes sequences for PCR and qPCR reactions.  

 

PCR-grade water was used as negative control each PCR assay. PCR amplification quality was 

checked via gel electrophoresis. Pasteurella multocida, Histophilus somni, Mannheimia 

haemolytica and Mycoplasma bovis gene amplicons were cleaned and purified using Monarch 

PCR & DNA Cleanup kit (New England BioLabs, MA, USA). Purified gene amplicons were 

stored at -20°C until further use.   

 

For the qPCR standard curve generation, 10-fold serial dilutions (108 to 100) were created for each 

BRD-associated bacterial amplicon. The qPCR technical triplicate assays were performed in 20 μl 

total volume containing 10 μl iTaq™ Universal Probes Supermix (BioRad, CA, USA), 5 μl 

Primers/Probes and 5 μl of each BRD-associated bacteria amplicon. The qPCR assays were 

performed in CFX96 Real-Time System Thermal Cycler (BioRad, CA, USA). Pasteurella 

multocida, Histophilus somni, Mannheimia haemolytica and Mycoplasma bovis cycling conditions 

Target  Target 
gene 

Primer 
name 

Sequence (5’-3’) Size 
(bp) 

Ref 

M. haemolytica sodA Mh-SGF AGCAGCGACTACTCGTGTTGGTTCAG 26 1 
M. haemolytica sodA Mh-SGR AAGACTAAAATCGGATAGCCTGAAACGCCTG 31 1 
M. haemolytica sodA Mh-BV1P* TTCAACCGCTAACCAGGACAACCCAC 26 1 
P. multocida 16S rRNA Pm-TMF CGCAGGCAATGAATTCTCTTC 21 2 
P. multocida 16S rRNA Pm-TMR GGCGCTCTTCAGCTGTTTTT 20 2 
P. multocida 16S rRNA Pm-TMP* ACTGCACCAACAAATGCTTGCTGAGTTAGC 30 2 
H. somni 16S rRNA Hs-TMF AGGAAGGCGATTAGTTTAAGAGATTAATT 29 2 
H. somni 16S rRNA Hs-TMR TCACACCTCACTTAAGTCACCACCT 25 2 
H. somni 16S rRNA Hs-TMP* ATTGACGATAATCACAGAAGAAGCACCGGC  30 2 
M. bovis oppD PMB996-F TCAAGGAACCCCACCAGAT 19 3 
M. bovis oppD PMB1066-R AGGCAAAGTCATTTCTAGGTGCAA 24 3 
M. bovis oppD Mbovis1016* TGGCAAACTTACCTATCGGTGACCCT 26 3 

1Guenther et al., 2008 
2 Mahony et al., 2007 
3 Sachse et al., 2010 
* Fluorescence probes  
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as well as the primers and probe concentration were the same as the BRD-associated bacteria PCR 

conditions as described above.  

 

The standard curve was generated using a linear regression of technical triplicate average cycle 

quantification (Cq) and log10 amplicon copies/μl as known from each dilution. Amplification 

efficiency (E) was calculated using the slope of the standard curve and the formula: E (%) = (-

1+10^(-1/slope)) x 100. When performing the qPCR assays for each of the bacterium and 16S 

rRNA,  one dilution used to create the standard curve  was used as the positive control and PCR-

grade water as the negative control in each of the replicates per qPCR assay. 

Gene amplicon generation for 16S rRNA and qPCR standard curve generation   

Because the 16S rRNA gene is present in all bacteria, qPCR targeting the 16S rRNA gene was 

performed to quantify the abundance of the total bacterial microbial community in the nasal 

samples from the healthy and BRD-positive animals. DNA extracted from the cattle nasal samples 

was used as the nucleic acid template in the PCR reaction. 16S rRNA gene PCR assay was 

performed in a Eppendorf Mastercycler Gradient Model 533, using the bacteria specific primer 8F 

(5’ AGAGTTTGATCCTGGCTCAG 3’) and universal primer 1492R (5’ 

ACGGTTACCTTGTTACGACTT 3’) to obtain the bacterial 16S rRNA gene amplicon that was 

used as the qPCR nucleic acid template (Galkiewicz & Kellogg, 2008). PCR assays were 

performed in 50 μl volume reaction consisting of 42.5 μl of AccuPrime™ Pfx SuperMix (Thermo 

Fisher Scientific, MA, USA), 2.5 μl of each primer (8F/1492R), 1.5 μl of Nuclease-free water and 

1 μl DNA template. The primer concentration and PCR cycling conditions were performed as 

stated in Kozich et al., 2013 protocol.  PCR-grade water was used as negative control and a mock 

community (20 Strain Even Mix 138 Genomic Material; ATCC® MSA-1002TM) as positive 

control. PCR amplification quality was checked via gel electrophoresis. 16S rRNA gene amplicons 

were cleaned and purified using Monarch PCR & DNA Cleanup kit (New England BioLabs, MA, 

USA). Purified 16S rRNA gene amplicons were stored at -20°C until next step.   

 

For the qPCR standard curve generation, 9-fold serial dilutions (108 to 100) were performed with 

the 16S rRNA gene amplicons. The qPCR assays were performed in 20 μl total volume containing 

10 μl LightCycler 480 SYBR Green I Master (Thermo Fisher Scientific, PA, USA), 5 μl 
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Primers/Probes and 5 μl of the gene amplicons. The qPCR assays were performed in a CFX96 

Real-Time System Thermal Cycler (BioRad, CA, USA) using the universal bacteria primers 1132F 

and 1108R (Leigh et al., 2007). Each primers concentration was 6 pmol and the cycling conditions 

for qPCR were 40 cycles of 95°C for 15s and 60°C for 1 min as stated in Leigh et al. (2007). The 

standard curve was generated using a linear regression of cycle quantification (Cq) versus log10 

#amplicon copies/μl value obtained from each dilution. Three technical replicates were performed 

at each dilution to obtain the Average Cq value needed for the standard curve generation. 

Amplification efficiency (E) was calculated using the slope of the standard curve and the formula: 

E(%) = (-1+10^(-1/slope)) x 100. In each replicate, a standard dilution was used as the positive 

control and PCR-grade water as the negative control. 

BRD-pathogens and relative abundance. 

The prevalence of Pasteurella multocida, Histophilus somni, Mannheimia haemolytica and 

Mycoplasma bovis were calculated from the animals that tested positive in each qPCR assay from 

the total numbers of samples. To consider an animal positive to the bacterium, the Cq value 

corresponding to the endpoint of the standard curve was used as a threshold (Table 2). The 

prevalence of the BRD-pathogens was also calculated for the healthy and BRD-animals. The 

relative abundance of the four bacteria was calculated by dividing the total number of gene copies 

for each bacterium by the sum of Pasteurella multocida, Histophilus somni, Mannheimia 

haemolytica and Mycoplasma bovis gene copies in the samples.  

 

Table 2. Evaluation of Pasteurella multocida, Histophilus somni, Mannheimia haemolytica and 
Mycoplasma bovis qPCR assay using nucleic acids templates generated form PCR reactions. 

qPCR assay 
 

Pasteurella 
multocida 

Mannheimia 
haemolytica 

Mycoplasma 
bovis 

Histophilus 
somni 

16S rRNA 
gene 

Standard equation Slope -3.300 -3.145 -3.343 -3.596 -3.011 
 

Intercept 36.921 35.920 37.098 39.723 35.770 
 

Replicates 3 3 3 3 3 
Efficiency (%) 

 
100.94 107.96 99.13 89.71 114.84 

Dilutions 
 

9 9 9 9 9 

Cq cut-off valueY 
 

33.53 31.76 32.1 36.77 30.52 
Y Cq value corresponding to the last dilution in the standard curve (100) at which samples tested positive. 
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3.6 Linear Discriminant Analysis to classify BRD and Healthy animals 

As previously described, BRD is caused by multiple factors, making the process of BRD diagnosis 

a challenge to producers. This study aims to identify a possible combination of BRD-associated 

pathogen copy number and any other factor that could help discriminate BRD-positive animals 

from healthy animals. A linear discriminant analysis using the MASS package (Ripley et al., 2021) 

in RStudio was performed to identify a possible combination between BRD-associated bacteria 

gene copy number, animal age, rectal temperature, and 16S rRNA gene copy number that could 

be used to classify BRD-positive and healthy animals. To determine the best model combination, 

the sensitivity (Equation 1), specificity (Equation 2), percentage of true positives that indicates the 

agreement between the LDA model and visualization of clinical signs in classifying BRD animals, 

and true negatives that indicates the agreement between the LDA and visualization of clinical signs 

in classifying healthy animals, and misclassification rate were evaluated for each of the 

combinations. The best possible model was selected using the following criteria: high sensitivity, 

specificity, true positive percent (TP%) that indicates the true positive animals identified by LDA 

model when using the visual observation as the reference, true negatives percent (TN%) that 

indicates the true negative animals identified by LDA model when using the visual observation as 

the reference, and low misclassification rate. 

Two types of Linear Discriminant Analysis were performed. The first analysis included all 

available samples. Three samples were not included due to missing rectal temperature data, the 

LDA model could not be run if there is missing data. The second analysis only included the 

samples that tested positive to Pasteurella multocida, Histophilus somni, Mannheimia 

haemolytica, and Mycoplasma bovis. 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦	(𝑆𝑒𝑛) = #	#$	%&'(	)#*+%+,(*
#	#$	%&'(	)#*+%+,(*-#	#$	$./*(	0(1.%+,(*

    (1) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦	(𝑆𝑝𝑒𝑐) = 	 #	#$	2&'(	0(1.%+,(*
#	#$	2&'(	0(1.%+3(*	-#	#$	$./*(	)#*+%+,(*

    (2) 

3.7 Statistical analysis for 16S rRNA gene sequencing and qPCR data 

Alpha diversity metrics (Observed ASVs, Chao1, Pielou, and Faith_Pd) and BRD-associated 

pathogen’s gene copy number and relative abundance were analyzed using a General Linear Mixed 

Model with the random factor specified to only include random slopes using the afex package 
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(Singmann et al., 2021) in RStudio. Health status (BRD or Healthy) was included as a fixed factor 

and Pen as a random factor. The age and date of sampling were included as continuous factors in 

the model. Assumptions of normality of the residuals and homogeneity of variance were checked 

using the afex package. Dependent variables that did not meet the assumptions were log-

transformed. Statistical significance was defined as P ≤ 0.05.  

All the statistical involving the microbiome composition were performed in RStudio (v. 1.3.1093. 

The codes and metadata are included in the Appendix B section of this study. Additional files used 

in this study are available at https://github.com/EuniceCenteno/BRDNasal for reference and 

reproducibility. 

3.8 Microbial community co-occurrence analysis  

In addition to the taxonomical analysis, a co-occurrence analysis was performed to identify ASV 

pairs present and most prevalent in the BRD and healthy microbial community and the ASV pairs 

that are less likely to co-exist in the samples. The table containing all the observed ASVs identified 

in the samples was subset into two tables: samples from BRD-positive and healthy animals. ASVs 

with an average relative abundance < 0.0001 were removed from the dataset, and the reads count 

were rarified to 40,420 reads per sample; this process removed rare ASVs that contributed noise 

to the dataset. A total of 1236 ASVs were used in the analysis. To perform the co-occurrence 

analysis, the ASV tables were converted to a binary format: presence or absence. Any ASV with 

an abundance greater than 0 was converted to 1, indicating that the ASV was present in the sample; 

any ASV with an abundance of 0 remained 0, indicating absence. Co-occurrence analysis was 

performed with the package cooccur (Griffith et al., 2016) in RStudio (v1.3.1093) with R (v. 4.0.3). 

This function identifies species pairs with positive,  and negative associations, and random 

associations. Positive association indicates the AVS that are more likely to co-occurred in more 

locations greater that what would be expected if they were randomly distributed relative to the 

other one. Negative associations indicated AVSs pair combinations that co-occurred in fewer 

location that what was expected. Random that indicates two species are distributed randomly or 

independent from one another, and it identifies in how many sites (samples) the pairs were 

observed. Once the species pairs with positive association, were identified for the BRD and healthy 

dataset, a set of rules were followed to determine how common it is to observe the pairs in the 

groups: 
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1. ASV pairs must be present in at least 60% of the total number of samples: BRD n > 34 

samples and Healthy n > 45 samples. 

2. The probability that the two species will occur in the sample greater than 0.9. 

With the negative associations, a different set of rules were applied to identify the ASVs pair 

combination that were less likely to co-occurred in the BRD and healthy groups: 

1. Probability that the two species would co-occur at a frequency less than the observed 

number of co-occurrence sites if the two species were distributed randomly 

(independently) of one another lower than 0.01. 

2. The probability that the two species will occur in the sample lower than 0.05. 

3. ASVs pair combinations observed co-occurrence must be lower than <1 samples.  

Once the species pairs combinations were identified, any pairs combination with the BRD-

pathogens were selected. This allowed us to see the level of association of the pathogens with any 

other bacteria present in the nasal cavity of healthy and BRD-positive animals.  
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 RESULTS  

4.1 16S rRNA gene sequencing analysis 

4.1.1 Mock community and empty tubes analysis 

Three mock communities were amplified and sequenced, along with the DNA extracted from the 

cattle’s nasal swabs. A total of 54 amplicon sequence variants (ASVs) were identified in the three 

mock communities used in the study, with 648,634 sequences. After comparing the unknown 

ASVs to the 20 known bacteria strains, 18 out of 20 of the reference bacteria were identified, with 

an E-value between 3.93 E-33 and 1.23 E-135. A total of 758 mismatches and 87 gaps were found 

between the query and the 20 known strains. For the empty tubes, a total of 719 ASVs and 

2,706,853 sequences were observed in the study. Based on the taxonomical identity, the combined 

relative abundance of Pseudoalteromonas and Vibrio composed >50% of community in empty 

tubes (Fig. A1). 

4.1.2 Contaminant during DNA extraction and sequencing. 

The mock community's taxonomical composition was compared to a mock community reference 

file containing 20 known bacterial strains. From the 54 ASVs observed in the mock community, 

50 matched the mock reference, and 4 ASVs did not match the reference. The mock contaminant 

ASVs were assigned to the class Chloroplast, order Ruminococcaceae, and species Lysobacter 

enzymogenes. No shared ASVs were observed between the mock contaminants ASVs and empty 

tubes taxonomical composition. Only one ASV belonging to the order Chloroplast was shared 

between the mock contaminants and nasal samples. After comparing the taxonomical composition 

of the empty tubes and the samples, a total of 299 ASVs were shared between the two groups. As 

mentioned above, the genera Pseudoalteromonas and Vibrio each presented a relative abundance 

greater than 10% in the empty swabs. Because of this, the two genera were considered 

contaminants and were removed from the samples. 
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4.1.3 Nasal microbiome alpha diversity 

The 16S rRNA gene sequencing is one of the most common methods used to study the bacterial 

community and composition within a set of samples. In this study, DNA extracted from nasal 

swabs of 124 samples isolated from pen-mates’ cattle were sequenced targeting the 16S rRNA V4 

gene region. A total of 15,287,698 sequences were identified before the denoising step (DADA2) 

and 13,127,373 sequences after denoising. A total of 18,010 Amplicon Sequence Variants (ASVs) 

were observed in the study. After rarefying the total number of reads to 40,420 per sample, 16,376 

different ASVs remained and were used to quantify the nasal alpha and beta diversity. 

 

In this study, the richness predicted by Observed ASVs (F 1, 114.18 = 13.375, P < 0.0001; Fig. 

4.1) and Chao 1 (F 1, 114.38= 12.0456, P < 0.0001, Fig. 4.1) significantly decreased in the BRD 

animals compared to healthy animals. Also, the evenness predicted by Pielou_e was significantly 

decreased in BRD animals compared to healthy animals (F 1, 113.67= 7.3700, P < 0.007; Fig. 

4.1). In addition, the phylogenetic diversity predicted by Faith_pd was also significantly decreased 

in BRD animals compared to healthy animals (F 1, 112.82= 10.212, P <0.001; Fig. 4.1).   

 

We also found in this study, that microbial richness measured with Observed ASVs (F 1, 120.00= 

18.740, P < 0.0001; Fig. 4.2) and Chao 1 (F 1, 120.00=16.5301, P < 0.0001; Fig. 4.2), was 

decreased in nasal samples collected later in the time of the study. The same effect was observed 

for the microbial evenness (F 1, 119.99= 37.0722, P < 0.0001; Fig. 4.2)  and phylogenetic diversity 

(F 1,119.89=15.047, P< 0.0001; Fig. 4.2), as both significantly decreased in nasal samples 

collected later in the time of the study. Lastly, the richness, Observed AVSs (F 1,119.87= 5.424, 

P <0.02) and Chao 1 (F 1,119.70= 4.9954, P <0.02), was significantly affected by the age of the 

animals. Also, age of the animals significantly affected the evenness (F 1, 119.99=6.6816, P <0.01) 

and phylogenetic diversity (F 1,119.34=4.007, P<0.04) of the nasal microbiome.  

 

One possible factor that could had contributed to the decrease of the alpha diversity from the 

beginning to the end of the study is the environmental temperature. As described before, samples 

were collected from July (summer) to December (winter) 2020 in a farm located at Indiana, US. 

To identify if environmental temperature could have an effect on the difference in alpha diversity 

of the nasal cavity, average temperature of the dates when the samples were collected was retrieved 
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form WeatherUnderground.com. Average daily temperature data was retrieved from the closest 

weather station to the farm where the samples were collected. Correlation using Pearson’s 

correlation indicated a significant correlation between the average temperature and date when the 

samples were collected in this study (t 122=12.901; R=0.76, P < 0.0001; Fig. A2). Indicating that 

the samples from the beginning of the study (July) were collected on days with high environmental 

temperature relative to the sampling days at of the study. Average daily temperature was tested to 

identify an effect in the cattle’s nasal alpha diversity. A General Linear Mixed Model was 

performed using average daily temperature as a continuous factor and pen as random factor with 

random slope. The bacterial richness predicted by Observed ASVs (F 1, 110.82,=7.4379, P <0.007; 

Fig 4.3) and Chao1 (F 1, 111.12=6.4313, P < 0.01; Fig 4.3) , evenness predicted by Pielou_e (F 1, 

112.5=13.595, P < 0.0004; Fig 4.3) and phylogenetic diversity predicted by Faith_pd (F 1, 

115.68=5.4671, P < 0.021; Fig 4.3) were all significantly affected by the average temperature, 

indicated high bacterial richness when the environmental temperature is high (summer-July) and 

it decreases as the environmental temperature decreases (winter-December).  
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Figure 4.1. Cattle nasal alpha diversity between healthy and BRD animals. Observed ASVs and 
Chao 1 (A and B) measure the richness of the microbiome community. Evenness was measured 
with Pielou (C) and the phylogenetic relationship was measured with Faith (D). An asterisk (*) 
and horizontal line represent a statistical difference (P ≤ 0.05) between the two groups. Colored 
circles represent the means of the BRD and healthy group and the gray dots represent the raw data 
of each group. 
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Figure 4.2.Variation in the cattle nasal alpha diversity predicted by Observed ASVs (A), Chao1 
(B), Pielou (C) and Faith (D) (± 95% confident bands) relative to the date of collection. High 
values in the x axis represent the dates of samples collected at the beginning of the study (July, 
2020); low values represent the dates of samples collected at the end of the study (December, 
2020).  

 

Figure 4.3. Variation in the cattle’s nasal alpha diversity predicted by Observed ASVs (A), Chao1 
(B), Pielou (C) and Faith (D) (± 95% confident bands) relative to the average daily temperature of 
when then samples were collected.  
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Nasal microbiome Beta Diversity 

Nasal community structure (beta diversity) as determined by Bray-Curtis dissimilarity (F 1, 123= 

2.1804, P < 0.007; Fig. 4.4) and Weighted UniFrac  (F 1, 123= 2.002, P < 0.03; Fig. 4.4), was 

significantly different between BRD-positive and healthy animals. Beta diversity determines the 

community dissimilarity between two communities. Dissimilarities are often expressed as a 

distance between the two groups, and distance is directly proportional to dissimilarity. The distance 

between the group centroids was 0.0089 (Bray-Curtis) or 0.056 (Weighted UniFrac).  

 

 

Figure 4.4. Principal Component Analysis (PCoA) determined by Weighted UniFrac distances (A) 
and Bray-Curtis Dissimilarity (B) between BRD and healthy animals. Ellipses indicate 95% 
confidence interval for each of the health status groups. Axis 1 represent the axis that explains the 
greatest amount of the variation followed by Axis 2. Shape indicates the centroids of the ellipses. 
Distances of the centroids between the two groups is indicated in the caption below each plot. 

Cattle nasal microbiota composition and differentially abundant taxa between BRD and healthy 
animals 

In this study, the top four most abundant phyla in the nasal microbiome from all animals were 

Proteobacteria (~30% of the community on average), Firmicutes (~20%), Bacteroidetes (~20%), 

and Actinobacteria (~10%) regardless of the health status (Fig. A3). At the family 

level, Moraxellaceae (22.23%), Pasteurellaceae (18.75%), Corynebacteriacea (9.68%) were the 

most abundant regardless of health status; followed by Mycoplasmataceae (3.54%) in BRD 

animals and Weeksellaceae (3.68%) in healthy animals (Fig. A4). Interestingly, at a genera 
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level,  Mannheimia (5.19%), Moraxella (4.59%), and Mycoplasma (3.92%) were the most 

abundant in BRD animals, whereas healthy animals contained Corynebacterium 

1 (4.78%), Moraxella (4.48%), and Mannheimia (4.10%) (Fig. A5).  

 

DESeq analysis was used to identify differentially abundant taxa in this study. A total of 15 ASVs 

were increased in BRD compared to healthy animals (log2 fold change >1, P ≤ 0.05), and 8 ASVs 

were increased in healthy animals compared to BRD-positive animals (Fig 4.5). From the 

differentially abundant ASVs, the species Mycoplasma alkalences 14918 and Mycoplasma 

arginini had the highest log2 fold change, 3.081 and 1.987, in the BRD group. On the contrary, 

ASVs classified as unclassified Moraxellaceae, and uncultured Gemmobacter family members 

had the highest log2 fold change (2.807 and 1.529) in the healthy groups. Interestingly, in the BRD 

group, 4 ASVs were identified as members of the Mycoplasma genera. Only 

one Mycoplasma species (Mycoplasma bovirhinis) was increased in the healthy group; no BRD-

associated pathogen species were identified as differentially abundant in the BRD or healthy 

group. However, no BRD-associated species presented a significant abundance between the two 

groups.  
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Figure 4.5. Differentially abundant taxa (ASVs) between BRD and healthy animals. Bar plot 
shows the taxa with a log2 fold change greater than 1 (P ≤ 0.05). Those with a log2 fold change > 
1 were those enriched in BRD animals, while a log2 fold change < 1 were those enriched in the 
healthy animals. Taxa that contain numbers in parenthesis represent multiple ASVs with the same 
taxonomy.  

4.2 Quantification of BRD-associated species by qPCR  

4.2.1 Prevalence of BRD-associated pathogens and relative abundance 

Quantification of Mannheimina haemolytica, Mycoplasma bovis, Pasteurella muloticida, 

Histophilus somni, and total 16S rRNA was performed using the DNA extracted from nasal swabs 
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collected from BRD and healthy pen-mates. The prevalence of the four bacteria in all the samples 

and between the BRD and healthy animals show that H. somni (98%, 129 samples out of 

133) and P. multocida (97%, 130 out of 133 samples) had higher prevalence regardless of disease 

diagnosis in all the samples, relative to M. bovis (61%, 93 out of 133 samples) and M. 

haemolytica (70%, 81 out of 133 samples) (Fig. 4.6). Also, a difference in prevalence was 

observed between BRD and healthy animals for M. haemolytica (81 and 61%, respectively), and 

M. bovis (74 and 50.7%, respectively) (Fig. 4.6). 

 

 

Figure 4.6. Prevalence of Pasteurella multocida (A), Mannheimina haemolytica (B), Mycoplasma 
bovis (C), and Histophilus somni (D) in the nasal microbiota of Holstein steers (N=133) and 
between healthy (N=75) and BRD (N=58) Holstein steer pen-mates.  
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4.2.2 16S rRNA gene copy number 

Interestingly, the 16S rRNA gene that indicate the absolute bacterial load was significantly higher 

in  the  BRD animals than healthy animals (F 1,124.05= 9.5567, P < 0.002, Fig. 4.7).  

 

Figure 4.7. Difference in bacterial load (log10) measured by targeting the bacterial 16S rRNA gene 
between BRD and healthy animals. An asterisk (*) and horizontal line represent a statistical 
difference (P ≤ 0.05) between the two groups. Colored circles represent the means of the BRD, 
and healthy group and the gray dots represent individual samples from each group. 

4.2.3 BRD-associated bacteria gene copy number and relative abundance analysis 

When analyzing the data from all the animals (N=133), the bacterial load density of M. bovis (F 

1,122.72= 15.7327, P < 0.0001; Fig. 4.8) was increased nearly 100-fold and M. haemolytica (F 

1,123.25= 10.9789, P < 0.0001; Fig. 4.8) was increased nearly 10-fold in BRD compared to 

healthy animals. On the contrary, H. somni bacterial density was about 10% lower in BRD animals 

(F 1,124.00= 8.9821, P < 0.003; Fig. 4.8). No significant difference was observed for P. 

multocida bacterial density based on health status. The abundance of M. bovis relative to the total 

abundance of the four BRD pathogens was significantly higher in BRD than healthy animals (F 

1,124.93=16.3239, P<0.0001; Fig. 4.8). On the contrary to H. somni that presented significant 

lower relative abundance in BRD than healthy animals (F 1,123.65= 7.4001, P < 0.007; Fig. 4.8). 

No other significance was observed in the bacterial load of M. bovis, H. somni, P. multocida and 

M. haemolytica due to date of collection or age.  

 

When analyzing the animals that tested positive for the BRD-related species, load density of M. 

bovis (F 1, 73.951= 11.5278, P < 0.001; Fig. 4.9) and M. haemolytica (F 1,84.258= 7.8551, P < 
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0.006; Fig. 4.9) were significantly higher in BRD animals than healthy, while H. somni  was lower 

in BRD animals (F 1, 121.49=9.2203, P < 0.002; Fig. 4.9). No significant difference was observed 

in P. multocida bacterial load and relative abundance values between the two groups.  The 

abundance of Mycoplasma bovis relative to the total abundance of the four pathogens significantly 

increased in the BRD animals than healthy animals (F 1, 75.525= 8.9070, P < 0.003; Fig. 4.9). On 

the contrary, the relative abundance of P. multocida significantly decreased in the BRD animals 

(F 1, 120.23=14.1469, P < 0.0002; Fig. 4.9).  

 

 

Figure 4.8. Difference in bacterial load for Mycoplasma bovis, Mannheimia haemolytica and 
Histophilus somni (A-D) between BRD and healthy animals when including all the samples 
(n=133).  Difference in abundance for Mycoplasma bovis and Pasteurella multocida relative to the 
total abundance of the four pathogens (D-E) between BRD and healthy animals when including 
all the samples. An asterisk (*) and horizontal line represent a statistical difference (P ≤ 0.05) 
between the two groups. Colored circles represent the means of the BRD, and healthy group and 
the gray dots represent individual samples of each group. 
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Figure 4.9. Difference in bacterial load for Mycoplasma bovis, Mannheimia haemolytica and 
Histophilus somni (A-B) between BRD and healthy animals that tested positive for each bacterium. 
Difference in abundance for Mycoplasma bovis and Pasteurella multocida relative to the total 
abundance of the four pathogens (D-E) between BRD and healthy animals that tested positive for 
each bacterium. An asterisk (*) and horizontal line represent a statistical difference (P ≤ 0.05) 
between the two groups. Colored circles represent the means of the BRD, and healthy group and 
the gray dots represent individual samples of each group. 

 

Nonetheless, the relative abundance of M. bovis and P. multocida was significantly affected 

relative to when the samples were collected in the study (from July to December 2020). In this 

study, the relative abundance of M. bovis was significantly lower in the samples collected around 

July than the samples collected around December 2020 (F 1, 124.93=16.3239, P <0.00001; Fig. 

4.10). On the contrary, P. multocida relative abundance was significantly higher in the samples 

collected close to July than the samples collected close to December (F 1, 128.94= 7.9508, P 

<0.005; Fig. 4.10). In addition, when analyzing only the samples that tested positive to M. bovis, 

the relative abundance of this bacteria was significantly lower at the beginning of the study than 

at the end (F 1, 76.899=  8.7658, P < 0.004; Fig. 4.10).  As previously reported that the date when 

the samples were collected was positive associated with the average daily temperature, no 
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significant differences were observed due to environmental temperature in the relative abundances 

of M. bovis and P. multocida.  

 

 

 

Figure 4.10. Variation in  Mycoplasma bovis relative abundance in all samples (A), in samples 
that tested positive (B) and Pasteurella multocida (C) relative abundance in all samples (± 95% 
confident bands) relative to the date of collection. High values in the x axis represent the dates of 
samples collected at the beginning of the study; low values represent the dates of samples collected 
at the end of the study.  

4.2.4 Linear Discriminant Analysis 

In this study, a Linear Discriminant Analysis including BRD-associated pathogens gene copy 

number, 16S rRNA gene copy number, age, and rectal temperature was used to generate an 

equation that could be used to discriminate the animals according to diagnosis by the DART 

method. The BRD-associated bacteria and 16S rRNA gene copy number values were tested first, 

along with the rectal temperature and age data. However, the number of gene copy numbers was 

log10 transformed due to a better result in the model's sensitivity and specificity score than using 

the raw data. Two types of analysis were performed using LDA: 1, including all samples regardless 

of if the samples tested negative or positive to the four BRD-associated bacteria (n=129) and 2, 

only including the samples that tested positive for the four BRD associated bacteria (n=66). The 

best possible model was selected using the following criteria: high sensitivity, specificity, true 

positive percent (TP%) that indicates the true positive animals identified by LDA model when 

using the visual observation as the reference, true negatives percent (TN%) that indicates the true 
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negative animals identified by LDA model when using the visual observation as the reference, and 

low misclassification rate. 

LDA analysis 1: discriminate healthy and BRD animals including all samples (n=129). 

Three possible models were selected for this analysis after applying the criteria mentioned above 

(Equations 3-5); the summary data is presented in Table 3. For model , the LDA identified 23.1% 

of the animals as TPs (12 out of 19 BRD animals present in the testing set), and 48.1% of the 

animals as TNs (25 out of 33 healthy animals present in the testing set) and 28.8% of the animals 

were misclassified when using the visual observations as the reference. For model 2, the LDA 

identified 23.1% of the TPs animals (12 out of 19 BRD animals present in the testing set), 46.2% 

of the TNs animals (24 out of 33 healthy animals present in the testing set) and 30.76% of the 

animals were misclassified. For model 3, the LDA identified 26.9% TPs animals (14 out of 19 

BRD animals present in the testing set), 42.3% of the animals as TNs (22 out of 33 healthy animals 

present in the testing set) and 30.76% of the animals in the testing set were misclassified when 

using the visual observation as the reference. The equations used to create the models are shown 

in Table A2. Visual representation of the classification of BRD and healthy animals are shown in 

Fig. A6.  

 

1. Model 1: Rectal temperature (°C) + animal age (month) + M. haemolytica log10 
gene copy number + H. somni log10 gene copy number + P. multocida log10 
gene copy number + M. bovis log10  gene copy number  

(3) 

2. Model 2: Rectal temperature (°C) + M. haemolytica log10 gene copy number + 
H. somni log10 gene copy number + P. multocida log10 gene copy number + M. 
bovis log10  gene copy number + 16S rRNA log10 gene copy number.  

(4) 

3. Model 3: M. haemolytica log10 gene copy number + H. somni log10 gene copy 
number + P. multocida log10 gene copy number + M. bovis log10  gene copy 
number + 16S rRNA log10 gene copy number 

(5) 
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Table 3. Linear Discriminant Model summary result of the best possible models, including all 
samples (n=129), that could be used to discriminate BRD and healthy animals.  

Criteria Model 1 Model 2 Model 3 
TP (%) 23.1 23.1 26.9 
FN(%) 15.4 17.3 21.2 
TN (%) 48.1 46.2 42.3 
FP (%) 13.5 13.5 9.6 
Misclassification error 0.2884 0.3076 0.3076 
Sensitivity (%) 60 57 60 
Specificity (%) 78 78 81 
TP: True Positives (%) 
FN: False Negatives (%) 
TN: True Negatives (%) 
FP: False Positives (%) 

LDA analysis2 : discriminate healthy and BRD animals including only samples that tested 
positive to BRD-associated pathogen. 

In the dataset that include samples positive to the four BRD-pathogens (n=66), after applying the 

criteria mentioned above, two possible models predicted by LDA were identified (equations 6-7) 

following the criteria mentioned above, summary data is shown in Table 4. Equation used to create 

the models are shown in Table A3.  Model 4, the LDA identified 44.4% of the animals as TPs (12 

out of 16 BRD animals present in the testing set). 25.9% of the animals (8 out of 11 healthy animals 

present in the testing set) and 25.92% of the animals were misclassified when suing the visual 

observations as the reference. Model 5, the LDA model identified 48.1% of the animals as TPs (13 

out of 16 BRD animals present in the testing set), 29.6% of the animals as TNs (8 out of 11 healthy 

animals present in the testing set) and 22.22% of the animals were misclassified in the testing set 

when using the visual observation as the reference. Sample classification into BRD and healthy 

animals are shown in Fig. A7.   

 

1. Model 4: Rectal temperature (°C) + H. somni log10 gene copy number + P. 
multocida log10 gene copy number + M. haemolytica log10  gene copy number 
+ M. bovis log10 gene copy number + 16S rRNA log10 gene copy number. 

(6) 

2. Model 5: M. bovis log10 gene copy number + P. multocida log10 gene copy 
number + 16S rRNA log10 gene copy number. (7) 
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Table 4. Summary of Linear Discriminant Model result of the best possible models, only including 
samples that tested positive to the four BRD-associated bacteria that could be used to discriminate 
BRD and healthy animals.  

Criteria Model 4 Model 5 
TP (%) 44.4 48.1 
FN (%) 11.1 11.1 
TN (%) 25.9 29.6 
FP (%) 14.8 11.1 
Misclassification error 0.2592 0.2222 
Sensitivity (%) 80 81 
Specificity (%) 66 72 
TP: True Positives (%) 
FN: False Negatives (%) 
TN: True Negatives (%) 
FP: False Positives (%) 

 

From the three models presented including all the samples, the highest sensitivity and specificity 

between the diagnosis given by the DART method and the qPCR method were 60% and 81%. On 

the contrary, when only the samples that tested positive for the four bacteria, the specificity and 

sensitivity of the models increased to 80-81% and 66-72%.  One pitfall of these models relies upon 

the fact that the BRD and healthy animal categorization were identified by detecting observable 

BRD clinical signs. Thus, there is a chance that BRD classification was inaccurate in this data set, 

which could lead to a less accurate linear discriminant model. One clear example of the difficulty 

of diagnosing accurately an animal with BRD was observed in this study. Based on BRD detection 

using clinical signs, eight animals were classified as healthy. However, based on the LDA model 

1, these samples were classified as BRD. Looking closely at the rectal temperature collected from 

these animals, one animal classified as Healthy, presented a temperature of  103-106°F were most 

of the healthy animals in the study presented a rectal temperature of 102°F.  

 

Besides, an LDA model was performed to identify which predictors (Mycoplasma bovis, 

Mannheimia haemolytica, Histophilus somni, Pasteurella multocida, 16S rRNA gene copy 

number, animal rectal temperature, and age) have more impact on the classification of BRD and 

healthy animals. Interestingly, when rectal temperature, age and P. multocida are removed from 

the model, the misclassification rate increase to 0.307. On the contrary, when 16S rRNA gene, M, 

bovis, H. somni and M. haemolytica are removed, the misclassification error decrease to 0.2886 

(Table A4). These results suggest that the presence of rectal temperature, age and P. multocida in 
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the model are important to discriminate BRD and healthy animals, whereas the removal of 16S 

rRNA gene, M, bovis, H. somni and M. haemolytica, improves the model. 

 

Also, with the removal of temperature but maintaining M. bovis in the model, the percent of true 

positives identified in the dataset increased to 26.9 in comparison to the 17.3 when M. bovis is 

absent but temperature remains in the model (Table A4). These results also suggest that even 

though the absence of M. bovis in the model improves the misclassification error, its presence give 

more information in discriminating BRD and healthy animals than temperature (26.9 vs 17.3 %).  

4.2.5 Nasal microbiome co-occurrence analysis 

In the study, a total of 18,010 ASVs were identified in the samples. However, after removing any 

rare ASVs with an average abundance below 0.0001, 1,236 AVSs remained in the analysis and 

were used in the co-occurrence analysis. The total number of species pair combinations, species 

pairs that were not included in the model due to an expected co-occurrence <1, positive, negative, 

and random pairs association calculated for the BRD and healthy groups is found in Table 5. 

Positive association indicate the ASVs pairs combination that are more likely to co-exist in the 

same sample, whereas the negative associations represent the ASVs that are less likely to no co-

exist in the same sample. 

 

Table 5. Co-occurrence analysis summary for BRD (n=57) and Healthy (n=74) groups.  

Group 
ASV pair 
combinations 

ASV pair 
combinations 
not included 

ASV 
pairs 
remained 

ASV pair 
associations 
(+) 

ASV pair 
associations 
(-) 

Random 
unclassified 
ASV pair 
combinations 

BRD 763,230 60,569 702,661 92,500 15,313 594,848 
Healthy 763,230 41,783 721,447 147,864 15,177 558,406 

 

After applying the filtering thresholds (ASV pairs present in more than 60% of the samples and a 

probability greater than 0.9, a total of 280 positive species pairs remained in the healthy group 

(n=74) and 90 positive species pairs in the BRD group (n=57). In the healthy group, positive ASV 

pair combinations were mainly composed of bacteria belonging to the phylum Actinobacteria, 

Bacteroidetes, Euryarchaeota, Fibrobacteres, Firmicutes, Patescibacteria, Proteobacteria, and 
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Spirochaetes (Fig. A8). Only  32 ASV pair combinations present in 73 out of 74 Healthy animals 

with a probability greater than 0.9, this result demonstrates the ASVs pair combination that are 

more common to be observed in the nasal microbiome of healthy animals (probability that the two 

ASVs will be observed in the same sample greater than 0.90, Table 6).  

 

Table 6. Co-occurrence analysis with ASV pair combinations present in 73 out of 74 healthy 
samples with a probability of occurrence in the same sample greater than 0.9.  

ASVs  Genus_1 ASVs Genus_2 
ASV10188 Romboutsia ASV16829 Guggenheimella 

ASV10188 Romboutsia ASV2838 Prevotellaceae NK3B31 group 

ASV10188 Romboutsia ASV465 Prevotellaceae NK3B31 group 
ASV1409 Georgenia ASV13816 Parapusillimonas 
ASV1409 Georgenia ASV8900 Uncultured Acidaminococcaceae 
ASV14820 Acinetobacter ASV10188 Romboutsia 
ASV14820 Acinetobacter ASV16829 Guggenheimella 
ASV14820 Acinetobacter ASV17312 Methanobrevibacter 
ASV14820 Acinetobacter ASV2534 Olsenella 
ASV14820 Acinetobacter ASV2838 Prevotellaceae NK3B31 group 
ASV14820 Acinetobacter ASV465 Prevotellaceae NK3B31 group 
ASV16829 Guggenheimella ASV2838 Prevotellaceae NK3B31 group 
ASV16829 Guggenheimella ASV465 Prevotellaceae NK3B31 group 
ASV17312 Methanobrevibacter ASV10188 Romboutsia 
ASV17312 Methanobrevibacter ASV16829 Guggenheimella 
ASV17312 Methanobrevibacter ASV2534 Olsenella 
ASV17312 Methanobrevibacter ASV2838 Prevotellaceae NK3B31 group 
ASV17312 Methanobrevibacter ASV465 Prevotellaceae NK3B31 group 
ASV2534 Olsenella ASV10188 Romboutsia 
ASV2534 Olsenella ASV16829 Guggenheimella 
ASV2534 Olsenella ASV2838 Prevotellaceae NK3B31 group 
ASV2534 Olsenella ASV465 Prevotellaceae NK3B31 group 
ASV3244 Corynebacterium 1 ASV10188 Romboutsia 
ASV3244 Corynebacterium 1 ASV14820 Acinetobacter 
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Table 6 continued 

ASV3244 Corynebacterium 1 ASV16829 Guggenheimella 
ASV3244 Corynebacterium 1 ASV17312 Methanobrevibacter 
ASV3244 Corynebacterium 1 ASV2534 Olsenella 
ASV3244 Corynebacterium 1 ASV2838 Prevotellaceae NK3B31 group 
ASV3244 Corynebacterium 1 ASV465 Prevotellaceae NK3B31 group 
ASV465 Prevotellaceae NK3B31 group ASV2838 Prevotellaceae NK3B31 group 
ASV676 Prevotellaceae NK3B31 group ASV6770 Fermentimonas 

ASV8900 Uncultured 
Acidaminococcaceae ASV13816 Parapusillimonas 

 

In the BRD group, the 90 positive ASV pair combinations were mainly composed of bacteria from 

the phylum Actinobacteria, Bacteroidetes, Euryarchaeota, Fibrobacteres, Firmicutes, 

Patescibacteria, Proteobacteria and Spirochaetes (Fig. A9). Only eight pairs were identified in 56 

out of 57 BRD animals with a probability of 1 (Table 7), these results indicate the ASVs 

associations that are common to co-occur in the nasal cavity of a BRD-affected animal with a 

probability greater than 0.9. This is interesting because it demonstrates that there are more ASVs 

association that are more common to be observed in the Healthy group (32 ASVs associations) 

than in the BRD group (8 ASVs associations). 

 

Table 7. Co-occurrence analysis with ASV pair combinations present in 56 out of 57 BRD samples 
with a probability of occurrence in the same sample of 1.  

ASV Genus_1 ASV Genus_2 
ASV11414 Flavobacterium ASV17834 Halomonas 
ASV5703 Glutamicibacter ASV17834 Halomonas 
ASV17312 Methanobrevibacter ASV2463 Gulosibacter 
ASV8765 Prevotella 1 ASV465 Prevotellaceae NK3B31 group 
ASV465 Prevotellaceae NK3B31 group ASV4663 Prevotellaceae NK3B31 group 
ASV8765 Prevotella 1 ASV4663 Prevotellaceae NK3B31 group 
ASV11 Clostridium sensu stricto 1 ASV5609 Bacteroides 
ASV11414 Flavobacterium ASV5703 Glutamicibacter 

 

After applying the rules that negative associations should be present in sites lower than the 

expected number of sites with a probability <0.01 and with a probability of <0.05 that the two 
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ASVs will be present in <1 samples, a total of 178 negative ASV pair associations were identified 

in the healthy group with bacteria members of the phylum Actinobacteria, BRC1, Bacteroidetes, 

Chloroflexi, Cyanobacteria, Euryarchaeota, Firmicutes, Patescibacteria, Proteobacteria, 

Spirochaetes, Tenericutes, Verucomicrobia, Acidobacteria, Synegistetes, and Planctomycetes (Fig. 

A10).  A total of 49 negative associations in the BRD group were identified with bacterial members 

the Actinobacteria, BRC1, Bacteroidetes, Chloroflexi, Cyanobacteria, Euryarchaeota, Firmicutes, 

Patescibacteria, Proteobacteria, Spirochaetes, Tenericutes, Verucomicrobia, Acidobacteria, 

Fusobacterium and Deinococcus-Thermus phylum (Fig. A11).  

  

In the healthy group, 32 negative ASV pairs associations were identified to less likely to co-exist 

in the samples with a probability <0.04 (Table 8). In the BRD group, 13 negative ASV pair 

associations were identified to less likely to co-exist in the samples with a probability <0.04 (Table 

9).  

 

Table 8. Co-occurrence analysis showing negative ASV pair combinations that are less likely to 
co-exist in the heathy group with a probability <0.04.   

ASV_1 Genus_1  ASV_1 Genus_2 

ASV4603 uncultured Bacteroides sp. ASV11512 uncultured Prevotellaceae 
bacterium 

ASV2463 uncultured Gulosibacter ASV9158 Mycoplasma bovirhinis 

ASV285 uncultured Bifidobacteriaceae ASV11166 Intrasporangiaceae 
ASV13000 Prevotellaceae UCG-003 ASV11166 Intrasporangiaceae 
ASV14432 uncultured Guggenheimella ASV11166 Intrasporangiaceae 
ASV14432 uncultured Guggenheimella ASV15485 Thermomonas 
ASV13000 Prevotellaceae UCG-003 ASV15485 Thermomonas 
ASV285 uncultured Bifidobacteriaceae ASV15485 Thermomonas 
ASV13000 Prevotellaceae UCG-003 ASV1851 uncultured Desulfocaldus sp. 
ASV285 uncultured Bifidobacteriaceae ASV1851 uncultured Desulfocaldus sp. 
ASV14432 uncultured Guggenheimella ASV1851 uncultured Desulfocaldus sp. 
ASV1706 Corynebacterium 1 ASV11166 Intrasporangiaceae 
ASV14362 uncultured Lysinibacillus ASV11166 Intrasporangiaceae 
ASV1706 Corynebacterium 1 ASV15485 Thermomonas 
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Table 8 continued 

ASV14362 uncultured Lysinibacillus ASV15485 Thermomonas 
ASV14362 uncultured Lysinibacillus ASV1851 uncultured Desulfocaldus sp. 

ASV1706 Corynebacterium 1 ASV1851 uncultured Desulfocaldus sp. 
ASV7028 Arthrobacter ASV11166 Intrasporangiaceae 
ASV247 uncultured Oligella ASV11166 Intrasporangiaceae 
ASV12358 uncultured Cellvibrio ASV1237 Microbacteriaceae 
ASV7028 Arthrobacter ASV15485 Thermomonas 
ASV247 uncultured Oligella ASV15485 Thermomonas 
ASV247 uncultured Oligella ASV1851 uncultured Desulfocaldus sp. 
ASV7028 Arthrobacter ASV1851 uncultured Desulfocaldus sp. 

ASV10880 Methanobrevibacter ASV11196 uncultured 
Chthoniobacteraceae 

ASV10880 Methanobrevibacter ASV13602 Paracoccus 
ASV7532 Mycoplasma bovirhinis ASV15514 uncultured Synergistaceae 
ASV10880 Methanobrevibacter ASV16570 Flavobacterium 
ASV5038 Aerococcus ASV4856 Prevotellaceae 
ASV7532 Mycoplasma bovirhinis ASV5038 Aerococcus 
ASV7532 Mycoplasma bovirhinis ASV6977 Taibaiella 
ASV804 Ruminococcus 1 ASV9546 Vitreoscilla 
ASV10259 Chishuiella sp. YIM 102668 ASV11196 uncultured Chthoniobacter 
ASV10259 Chishuiella sp. YIM 102668 ASV16570 Flavobacterium 
ASV10259 Chishuiella sp. YIM 102668 ASV4856 Prevotellaceae 
ASV7754 Paludibacter ASV13602 Paracoccus 

 
Table 9. Co-occurrence analysis showing negative ASV pair combinations that are less likely to 
co-exist in the BRD group with a probability <0.04.   

ASV_1 Genus_1  ASV_1 Genus_2 

ASV10164 uncultured 
Absconditabacteriales (SR1) ASV11196 uncultured Chthoniobacter 

ASV10164 uncultured 
Absconditabacteriales (SR1) ASV15485 Thermomonas 

ASV10164 uncultured 
Absconditabacteriales (SR1) ASV16570 Flavobacterium 

ASV15050 uncultured Jeotgalibaca ASV222 Mycoplasma 
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Table 9 continued 

ASV7680 Corynebacterium sp. C3 ASV7532 Mycoplasma bovirhinis 

ASV1344 Planococcaceae ASV7532 Mycoplasma bovirhinis 

ASV13607 Sphingobacterium jejuense ASV7532 Mycoplasma bovirhinis 

ASV7716 Weissella paramesenteroides ASV1143 uncultured Murdochiella 

ASV3751 Mycoplasma bovoculi 
M165/69 ASV2127 Moraxella boevrei DSM 

14165 
ASV4603 uncultured Bacteroides sp. ASV222 Mycoplasma 

ASV12541 uncultured Rikenellaceae 
RC9 ASV3453 Deinococcus 

ASV10188 Romboutsia ASV7532 Mycoplasma bovirhinis 

ASV12541 uncultured Rikenellaceae 
RC9 ASV8878 Moraxellaceae 

 

 

In addition to identifying the most prevalent ASV pair combinations in the nasal microbiome of 

healthy and BRD animals, ASV pair combination between commensal microbiota and BRD-

pathogens were identified with more relaxed filtering criteria. This allowed us to detect how 

common the BRD-pathogens are associated with other bacteria in the cattle nasal cavity. In the 

healthy group, 96 positive ASV pair combinations; however, the number of samples where these 

combinations were observed ranged between 5-30 samples out of 74, with a probability between 

0.033-0.34 (Table A5). Also, 74 negative ASV pair combinations were observed 

between Mycoplasma bovis and bacteria present in the nasal cavity. These associations were 

observed in a total of 1-26 samples out of 74 with a probability between 0.044-0.383 (Table A6). 

Three negative ASV pair combinations were observed in the Healthy group between Pasteurella 

multocida and Christensenellaceae R-7 group, Lachnospiraceae, and one 

uncultured Moheibacter. They were present in approximately 10 to 14 samples with a probability 

ranging between 0.15 and 0.21. No other positive or negative bacterial association 

with Pasteurella multocida, Histophilus somni, and Mannheimina haemolytica was observed in 

the healthy animals. 

 

In the BRD group, a total of 43 positive ASV pair combinations between Mycoplasma bovis and 

bacteria in the nasal cavity were observed. These associations were observed in a total of 4-35 
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samples out of 57 total samples with a probability between 0.025 and 0.547 (Table A7). Also, only 

one pair combination was observed between Pasteurella multocida and Escherichia-Shigella in 

55 samples with a chance of occurring in the same sample of 0.948. Also, a total of 96 negative 

ASV pair combinations were observed in the BRD group with presence in approximately 1-27 

samples out of 57 total samples with a probability between 0.04 to 0.524 (Table A8). One negative 

association was also observed between Pasteurella multocida and an uncultured Tissierella sp. In 

10 samples with a probability of 0.203. No other bacterial association with Histophilus 

somni and Mannheimina haemolytica was observed in the BRD animals. 
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 DISCUSSION AND CONCLUSIONS 

5.1 Discussion 

Bovine Respiratory Disease (BRD) is ongoing health and economic problem to the dairy and beef 

industry and it is mostly developed by multiple factors that make animals susceptible to BRD 

(Chirase & Greene, 2000; Snowder et al., 2006). Four major pathogens had been identified to have 

a relation with BRD development: Pasteurella multocida, Histophilus somni, Mannheimia 

haemolytica, and Mycoplasma bovis (Klima et al., 2014; Mosier, 2014). Thus, in this study, nasal 

samples collected from healthy and BRD-affected animals diagnosed by the detection of clinical 

signs were used to identify a difference in the nasal microbiome between the two groups, 

prevalence and bacterial load density of the four BRD-associated pathogens, and any interaction 

of co-occurrence between the commensal nasal microbiome or between the BRD-associated 

pathogens and nasal microbiome. 

 

Nasal microbiome between BRD and healthy animals 

The 16S rRNA gene sequencing is one of the most common methods used to study the bacterial 

community and composition within a set of samples. The 16S rRNA gene is common and 

conserved among bacteria; thus, it can be used as a target to identify culturable and unculturable 

bacteria in a different set of samples. Hence, this approach allowed us to visualize the full picture 

of the nasal microbiome community present within a sample or between two communities, identify 

different community traits (e.g., microbial richness, evenness) that could be used to discriminate 

BRD and healthy animals, and identify differentially abundant taxa between BRD and healthy 

animals The 16S rRNA gene is common and conserved among bacteria; thus, it can be used as a 

target to identify culturable and unculturable bacteria in a different set of samples (Gupta et al., 

2019; Janda & Abbott, 2007; Sontakke et al., 2009). Also, it's possible to calculate the alpha 

diversity that measures community richness; evenness, and the phylogenetic relationship found 

within the samples (Gupta et al., 2019; Sontakke et al., 2009).  

  

Interestingly, in this study, BRD- animals presented lower alpha diversity than healthy animals. 

Other studies found a similar decrease in alpha diversity, in BRD animals compared to healthy 
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animals (Timsit et al., 2018; Holman et al., 2015a) In our study, we identified a decrease of 

approximate 20% in the richness of BRD animals compared to healthy animals. A similar trend 

was observed in Timsit et al (2018) in which the richness median of BRD animals decrease almost 

50% than the median of the healthy animals and in Holman et al. (2015a), the richness of the BRD 

animals decrease approximate 52% when compared to the healthy animals. Also, is important to 

mention that these two studies collected nasopharyngeal samples and no nasal swabs, but it 

interesting that the same pattern (decrease in richness in BRD-affected animals) is observed 

regardless of the type of sample collected. In our study, it was identified that BRD animals 

presented a decrease of approximately 11% in the phylogenetic diversity when compared to 

healthy animals. There is evidence that a greater phylogenetic diversity confers more stability to 

the ecosystem and resistance to pathogen colonization (Cardinale et al., 2012; Knapp et al., 2017). 

Ecosystem stability is determined by the resistance, resilience, and functional redundancy that the 

microbial community could possess (Bissett et al., 2013). Resistance refers to the capacity of a 

system to change following a disturbance and resilience refers to the capacity of a system to return 

to its original state after perturbation (Pimm, 1984). Functional redundancy refers to the number 

of taxa present in a community performing a given or similar function (Konopka et al., 2015). 

Additionally, a mechanism in which diversity confers stability to the ecosystem includes statistical 

averaging and compensatory dynamics (Cardinale et al., 2012). Statistical averaging refers to a 

variation in the abundance of different species that decreases the variability of aggregating more 

ecosystem variables (Doak et al., 1998). Compensatory dynamics refers to the competitive 

interactions or differential responses of an ecosystem to environmental fluctuations that could lead 

to asynchrony in their responses (Tilman et al., 2001). Thus, it could be hypothesized that the 

greater phylogenetic diversity, richness, and evenness observed in healthy animals provided 

greater microbial stability to the environment which conferred the capacity to recover from 

disruption and compensate the loss of a member that perform a common function (functional 

redundancy), a capacity that could have decreased in the microbial community of BRD animals. 

Additionally, a combined effect of statistical averaging (i.e., increase in the abundance of particular 

community members while avoiding the aggregation of other members) conferred a different 

compensatory dynamic response (e.g. how the system respond to distributions) could have resulted 

in susceptibility to pathogen colonization in the BRD animals than healthy animals; nevertheless, 

more research is needed to test this hypothesis.  
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Additionally, differences in the alpha diversity were observed in this study relative to when the 

samples were collected with higher alpha diversity in samples collected in July 2020 and it 

decreases towards the end of the study (December 2020). Because the region in which the samples 

were collected changes in environmental temperature and humidity throughout the year, higher 

temperatures in summer (July) than winter (December), the change in the alpha diversity could be 

a result of the animal susceptibility or stress in response to changes in environmental temperatures. 

Several studies had identified that temperature has an impact on the gut bacterial community 

leading to a decrease in diversity or specific changes in bacterial members such as Firmicutes 

(Hylander & Repasky, 2019; Sepulveda & Moeller, 2020). Thus, it is possible that the temperature 

could contribute to the low alpha diversity values in the samples collected towards the end of the 

study.  

 

Taxonomical composition of the nasal samples collected from BRD and healthy animals were 

mostly composed at phylum level of Proteobacteria, Firmicutes, Bacteriodetes, and Actinobacteria 

regardless of the health status and agrees with previous studies that had been identified as common 

nasal microbiota members regardless of the health status (McMullen, et al., 2020). However, 

differences at the Genera level were observed between BRD and healthy animals. Healthy animals 

presented bacteria genera Clostridium sensu stricto 1, members of the Moraxellaceae family, the 

genera Mycoplasma bovirhinis and Moraxella boevrei DSM 14165. In a previous study analyzing 

the microbial community of different sites in the upper and lower respiratory of healthy cattle, the 

presence of Moraxella, Mannheimia, Clostridium senso stricto 1, and Mycoplasma were 

identified as members of the cattle’s nostrils microbiome (McMullen et al., 2020). Our results 

show that Mycoplasma sp. was significantly enriched in BRD animals, results that are in 

agreement with findings in previous studies (McDaneld et al., 2018). This study collected nasal 

swabs from animals diagnosed with BRD and from healthy cohorts. The group identified that in 

the BRD-affected animals, the genera Mycoplasma sp, Psychrobacter sp and Mannheimia sp. were 

the most predominant in comparison with the healthy group. Also, in this study, Truperella 

pyogenes, the genera Bibersteinia, Streptococcus and Moraxella significantly increased (1.230, 

1.754, 1.42 and 1 log2 fold change) in the BRD compared to healthy animals. Other studies 

identified Truperella pyrogenes as a secondary pathogen for BRD, and Bibersteinia strains that 

can produce leukotoxin tend to be related to pneumonia cases in bighorn sheep (Dassanayake et 
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al., 2010; Klima et al., 2014; Pardon & Buczinski, 2020). Also, the species Bibersteinia 

trehalosi was isolated from the lung of cattle that died of acute pneumonia (Cortese et al., 2012), 

suggesting that this species could also be related to BRD cases. Also, the genera Moraxella and 

Streptococcus had been identified as a commensal member of the cattle’s nostril and nasopharynx 

(McMullen, et al., 2020).  A Mycoplasma species (Mycoplasma bovirhinis) and Clostridium sensu 

stricto were also enriched in the healthy animals; nonetheless, these bacteria have been categorized 

as commensal or opportunistic bacterial pathogens (Angen et al., 2009; Pardon & Buczinski, 2020, 

McMullen et al., 2020). These results provide more insight into possible bacteria that could be 

related to the development of BRD and that could be used in the process of BRD diagnosis.  

  

Prevalence and Quantification of BRD-associated bacteria and  bacterial 16S rRNA gene 

Characterization of the nasal microbiome community provides knowledge of the community 

structure present in animals diagnosed with BRD compared to healthy animals. Nonetheless, this 

method has low phylogenetic power to identify the specific species taxonomical levels and poor 

discrimination of some particular genera (Janda & Abbott, 2007). A different approach to identify 

specific species within the samples is the real-time quantitative polymerase chain reaction (qPCR). 

This method’s advantage is that bacterial species can be targeted and quantified in different types 

of samples (Fulton & Confer, 2012) and the sensitivity of the method is much higher than 16S 

rRNA gene amplicon sequencing. This method was used to quantify BRD-associated 

species Mannheimina haemolytica, Mycoplasma bovis, Pasteurella multoicida, Histophilus somni, 

as well as the quantification of the total bacterial community determined by bacterial 16S rRNA 

gene between BRD and healthy animals.  

 

In this study, the16S rRNA gene abundance was significantly increased in the BRD animals than 

the healthy animals.  This could be an indication that the bacterial load in nasal cavity of BRD is 

higher than the healthy animals or that a larger mucosal sample was collected from sick animals.  

Also, Pasteurella multocida, Histophilus somni were present in nearly all the samples regardless 

of health status, whereas species Mannheimina haemolytica and Mycoplasma bovis were more 

prevalent and presented higher load density in the BRD animals than healthy animals. A similar 

result was observed in a study in which nasal swabs were collected only from healthy animals, and 

qPCR was used to target H. somni, P. multocida, and M. haemolytica (Thomas et al., 2019). In 
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that study, H. somni, P. multocida were the bacteria with the highest prevalence in the samples 

(75.6% and 26.8% among all samples); whereas M. haemolytica was only present in 5.7% of the 

samples. These results suggest that H. somni and P. multocida could be part of the core nasal 

microbiome (McMullen et al., 2020). Nonetheless, these bacteria are still considered BRD 

pathogens. In the case of P. multocida, this bacterium has been linked with respiratory disease in 

dairy calves due to isolation from lung tissues, nasopharyngeal swabs, and transtracheal washes 

from sick animals and there is strong evidence of its relation with cattle’s shipping fever (Dabo et 

al., 2008). In a study, P. multocida was the bacterium most isolated from trans-tracheal aspiration 

samples of BRD-affected cattle (54.8%) followed by M. haemolytica (30.5%) and lastly H. 

somni (22.9%) (Timsit et al., 2017). H. somni has been isolated from 10% of the lungs of animals 

that died of BRD and it has been also associated to produce infection in conjunction with the 

bovine respiratory syncytial virus (BRSV) (Fulton 2003; Agnes et al., 2013). In future studies, it 

will be important to determine the causative agent of BRD to determine if the nasal microbiome 

composition indicates the causative agent in the lung. 

  

Another finding in this study is that M. haemolytica and M. bovis presented higher prevalence and 

load density in BRD animals than healthy animals and could be associated with disease 

development. In previous studies, Mycoplasma bovis and Mannheimia haemolytica have been 

identified to play a crucial role in chronic pneumonia in cattle. Both of these bacteria are 

recognized as commensal members of the nasal microbiome, and in situations where the host 

defense is compromised by stress, bacterial or viral infection, they can access and colonize the 

lung (Caswell & Archambault, 1996; Rice et al., 2008). Interestingly, M. bovis has been identified 

as a primary pathogen for BRD (Pardon & Buczinski, 2020). Timsit et al (2018) identified that M. 

bovis was significantly enriched in deep nasopharyngeal and transtracheal aspiration from BRD-

affected cattle. Also, M. haemolytica, had been identified in nasopharyngeal swabs and lung tissue 

samples of animal that died of acute fibrinous pneumonia (Klima et al., 2014). The authors 

identified the presence of Mannheimia sp. in 91% of the cattle sampled in the study, followed 

by Mycoplasma bovis (63%) and H. somni (57%). An interesting finding in this study is that 

combinations between Mycoplasma bovis, Mannheimia sp. and Bovine Viral Diarrhea Virus 

(BVDV) were found in 97% of the BRD cases. With these results, it is evident that M. bovis and M. 

haemolytica play a role in BRD development; unfortunately, the majority of these studies did not 
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collect nasal samples to identify the presence of the BRD-associated bacteria. In our study, since 

both M. bovis and M. haemolytica were enriched in the sick animals, it is possible that they both 

infected the lung, but this hypothesis would need to be tested in future animals to draw a connection 

between the lung and nasal microbiomes. 

 

Linear Discriminant Analysis (LDA) to discriminate BRD and healthy animals 

Bovine Respiratory Disease (BRD) development is associated with multiple factors (i.e., 

predisposing, environmental, and epidemiological factors), making its diagnosis and treatment a 

challenge for producers. Visual observation of animals with BRD symptoms is the method that 

producers use to diagnose an animal with BRD. However, not all animals present the symptoms 

with the same intensity. Evidence demonstrates the diagnosis based on visualization of BRD 

clinical signs possess low sensitivity (62%) in correctly identifying individuals with the disease 

and low specificity (63%) in identifying animals without the disease (Loong, 2003; White & 

Renter, 2009; Wolfger et al., 2015). For this reason, a Linear Discriminant Analysis including the 

BRD-associated bacteria load density, 16S rRNA gene density, rectal temperature, and animal age 

were performed to discriminate between BRD and healthy animals. Five models were identified 

in this study with a sensitivity ranging between 60-80% and specificity ranging between 66-82%. 

However, one pitfall of this approach is that the animals used to create the model were diagnosed 

according to their visual symptoms; thus, there is a possibility of having misdiagnosed animals in 

the study. 

 

Nasal Microbiome Co-occurrence 

Bacteria present in an environment will interact with one another, and depending on the signal 

detected, can change their behavior on a population-wide scale (Waters & Bassler, 2005). Because 

of this behavior, there is a hypothesis that commensal members of the nasal microbiome could 

play a role in the host health by decreasing or enhancing the chance of pathogenic bacterial 

colonization (Corbeil et al., 1985; Timsit et al., 2018). Most BRD studies had focused only on 

identifying the microbial community as predicted by 16S rRNA gene sequencing and 

quantification of BRD-associated pathogens present in the nasal cavity of BRD and healthy 

animals. Few studies had looked into nasal microbiome bacterial interactions or associations. Thus, 
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a co-occurrence analysis was performed to identify any ASV pairs specific to the BRD and healthy 

groups.  

 

In this study, it was identified that the nasal microbiome of healthy animals presented more positive 

associations (species pairs that co-exist in the same sample) and negative associations (species 

pairs that do not co-exist in the same sample) than the BRD animals. It has been shown that 

microbes that often coexist close to each other, increase the likelihood to interact with each other 

(Gentry et al., 2015). Thus, the difference in the number of co-occurrence could be attributed to 

the higher diversity observed in the healthy animals than BRD in this study. Nonetheless, more 

research is needed to determine the type of co-occurrence or interaction present in the nasal cavity 

of BRD and healthy animals (e.g., commensalism, synergism, competition, amensalism, and 

predation) (Gentry et al., 2015) that could provide more information regarding how BRD develops. 

Also, as previously described, a more diverse community provides a more stable environment to 

the community (Cardinale et al., 2012; Knapp et al., 2017). Thus, the higher diversity in the healthy 

than BRD animals provides the community the capacity to recover from disruption and while 

maintaining the functional redundancy after an alteration, characteristics that could have decreased 

in the BRD nasal microbiome. On the contrary, the fewer associations observed in the BRD groups 

could be associated with microbial dysbiosis, indicating an alteration in the microbiota 

composition as a result of perturbations of the environment (Zeineldin et al., 2020b). Even though 

microbial dysbiosis in the nasal cavity is associated with BRD, it could not be specified as the 

causality of the disease (Faner et al., 2017). 

 

From this study, the nasal positive and negative co-occurrence in the healthy and BRD animals 

was mostly between bacteria from the phylum Actinobacteria, BRC1, Bacteroidetes, Chloroflexi, 

Cyanobacteria, Deinococcus-Thermus, Euryarchaeota, Fibrobacteres, Firmicutes, 

Patescibacteria, Proteobacteria Spirochaetes, Tenericutes, Verrucomicrobia, Acidobacteria, 

Synegistetes, and Planctomycetes. As previously described, the phylum Proteobacteria, 

Firmicutes, Bacteroidetes, Tenericutes, Actinobacteria, Fusobacteria, Verrucomicrobia, 

Cyanobacteria, Chlorflexi, and Spirochaetae compose the upper respiratory tract of cattle 

regardless of the health status (Zeineldin et al., 2020b). Only one study had look into microbial co-

occurrence patterns present in BRD and healthy animals. In this study, the bacterial genera 
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Mannheimia and Histophilus were substantially linked to BRD animals and the genera 

Fusobacterium and Caviibacter were associated with BRD-affected animals (Zeineldin et al., 

2020b). In our study, we did not find common associations of the nasal microbiome with BRD-

associated pathogens. Also, Amat et al., (2019a) collected Nasopharyngeal samples from cattle 

transported to the feedlot. In this study, negative associations between Moraxella, 

Corynebacterium, Methanobrevibacter, and Pasteurella with Mycoplasma were observed. 

Nonetheless, in our study, we found positive associations between Mycoplasma 

bovis and Corynebacterium (samples with observed co-occurrence: 17 and 23, and probability of 

0.153 and 0.236). No other associations with previously identify species pairs associations (Amat 

et al., 2019a) were observed in the study. Another interesting result in this study is that bacteria 

genera  Acinetobacter, Methanobrevibacter, and Corynebacterium 1 that were associated with 

other members of the nasal microbiome in healthy, had been identified as the cattle nostril 

members (Amat, et al, 2019a; Holman et al., 2015b; McMullen et al., 2020). In the case of 

association in the BRD animals, bacteria genera Flavobacterium, Methanobrevibacter, 

Clostridium sensu stricto 1, and Bacteroides were the bacteria most likely to be associated with 

nasal microbiome members and again, these bacteria had been identified a member of the core 

nasal microbiome in cattle (McMullen et al., 2020).  

 

Additionally, what was surprising in this study, is that no BRD-associated bacteria were identified 

to have common associations with members of the nasal microbiome. From the four BRD-

associated bacteria, Mycoplasma bovis was the bacterium that presented associations in the nasal 

cavity of healthy and BRD animals; however, positive associations were only observed between 

5-30 samples out of 74 in the healthy animals and 4-35 samples out of 57 in the BRD group. Only 

one positive and negative association was observed between Pasteurella 

multocida with Escherichia-Shigella and Tissierella sp. Three possible ideas could explain the 

absence of co-occurrence between BRD-associated bacteria and members of the nasal microbiome. 

The first idea focuses on the fact that sometimes one bacterial member can enhance or avoid the 

growth of another bacteria (Gentry et al., 2015). Thus, it is possible that members of the nasal 

microbiome community are not enhancing or interacting with BRD-associated members. In a study, 

performing cultures of BRD-associated bacteria with other bacteria, it was observed that the 

presence of specific species like S. epidermis, Rhodococcus sp, Moraxella sp, Coryne sp, C, 
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murium, Micrococcus, and S. viridans enhanced the growth of P. multocida, H. somni, and M. 

haemolytica (Corbeil et al., 1985); nonetheless, no other studies had looked into bacterial 

interaction and growth in the nasal cavity of healthy and BRD animals. A second idea proposed is 

that BRD-associated bacteria present a neutralism interaction, which means that two spacially 

separated population that have no interaction (Gentry et al., 2015). The last idea focused on the 

fact that BRD-associated bacteria could produce metabolites that decrease their capacity to co-

exist with other commensal members. As an example, Mycoplasma bovis can produce multiple 

immunomodulatory responses against macrophages, neutrophils, lymphocytes, and cytokine 

secretion that could affect the host cells (Rosengarten et al., 2000). Mannheimia 

haemolytica present virulence factors such as adhesin, capsular polysaccharide, fimbriae, iron-

regulated outer member proteins, leukotoxin, lipopolysaccharide (LPS), lipoproteins, 

neuraminidase, sialoglycoprotease, and transferrin-binding proteins that help to overcome host 

immune response (Rice et al., 2008). Pasteurella multocida present other types of virulence factors 

such as adherence, colonization factors, iron-regulated and acquisition proteins had been identified 

(Dabo et al., 2008). Nonetheless, these are some examples of virulence factors that affect the host 

immune response; unfortunately, no studies had looked into how the presence of these pathogens 

and generation of metabolites could affect the growth or presence of the nasal microbiome in 

cattle.  

 

Contribution of this work to the field of Bovine Respiratory Disease research 

In the field of bovine respiratory disease research, most of the studies working with the nasal 

microbiome had focused on characterizing the respiratory microbiome using Next-generation 

sequencing of 16S rRNA gene PCR amplicons (Holman et al., 2015; McMullen et al., 2019; Timsit 

et al., 2018) or the quantification of BRD-associated pathogens in the respiratory tract (Thomas et 

al., 2019; Klima et al., 2014). However, few or almost no studies had combined the benefits of the 

two approaches in characterizing the nasal microbiome and quantifying the presence of the BRD-

associated bacteria and few of them had looked into the interactions that might be occurring in the 

nasal microbiome. One positive outcome of the study presented is that it combines the two 

approaches which give insight to the full picture of the nasal microbiome composition in BRD-

affected cattle and healthy pen-mates and the bacterial load density of the BRD-associated bacteria 

present in the samples. Even though the BRD-associated bacteria were not differentially abundant 
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in the nasal cavity of BRD-affected cattle present in this study, by the use of specific qPCR, it was 

possible to identify that M. haemolytica and M. bovis were the bacteria most prevalent and 

abundant in the nasal cavity whereas P. multocida and H. somni were present in all the samples 

regardless of the health status. In conclusion, it was possible to detect the presence of BRD-

pathogens by collecting nasal swabs from BRD-affected and healthy animals, a type of sample 

that could be used in the process of developing a method to diagnose animals with BRD. 

5.2 Conclusions 

In this work, bacterial DNA was extracted from nasal swabs collected from animals diagnosed 

with BRD and healthy pen-mates. The objectives of this study focused on, i) identify the nasal 

microbial community diversity between BRD and healthy animals and taxonomical composition 

through 16S rRNA gene sequencing, ii) detect and quantify the BRD-associated 

species Mannheimina haemolytica, Mycoplasma bovis, Pasteurella multoicida, Histophilus 

somni, and quantification of the absolute bacterial community determined by bacterial 16S rRNA 

gene and use the bacterial load values to generate a linear discriminant model that could be used 

to classify BRD and healthy animals, iii) perform a co-occurrence analysis to identify bacterial 

ASV pairs that are more prevalent in BRD or healthy animals.  

 

Bacterial 16S rRNA gene sequencing demonstrated that BRD animals present lower alpha 

diversity values (richness and evenness) than healthy animals. Also, healthy animals showed 

higher phylogenetic diversity than BRD, which could be translated to healthy animals having a 

more stable community that resists colonization of pathogen than the microbial community present 

in BRD animals. Nasal microbiota composition was mostly composed of bacteria from the 

Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria phylum regardless of the health 

status. Nonetheless, specific changes at genera and species level, Mycoplasma, Truperella 

pyrogenes, Bibersteinia in BRD, and Mycoplasma bovirhinis and Clostridium sensu stricto in 

healthy animals marked a difference between BRD and healthy animals. Unfortunately, no BRD-

associated pathogens were identified as differentially abundant in BRD animals than healthy 

animals by 16S rRNA amplicon sequencing.  
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Detection and quantification of BRD-associated pathogens revealed that Histophilus 

somni and Pasteurella multocida are primarily present in the nasal microbiome regardless of 

health status. However, the prevalence of Mannheimina haemolytica and Mycoplasma bovis was 

more highly prevalent in BRD animals, demonstrating a possible connection between the presence 

of these two bacteria and BRD development. Also, BRD animals presented higher total bacterial 

load than healthy animals. The linear discriminant analysis, including BRD-associated pathogens 

gene copy number, animal age, and rectal temperature proposed in this study, classified BRD and 

healthy animals but with few improvements in the sensitivity and specificity compared to detection 

of BRD based on clinical signs visualization. Nevertheless, this method could improve its detection 

if the model is constructed using true BRD and true healthy animals.   

 

Co-occurrence analysis demonstrated that the bacteria considered core members of the cattle nasal 

microbiome are the most common to interact and co-occurred regardless of the health status. On 

the other hand, BRD-associated bacteria are less likely to have associations with the members of 

the cattle nasal microbiome. 

 

The application of this study can be extended further by the following three steps i) expanding the 

list of other microbes like viruses, bacteria, fungi  that could be related to BRD development 

(e.g., Trueperella pyrogenes and Bibersteinia) ii) generation of a model (LDA) that could be used 

in addition to BRD diagnosis using clinical signs that could increase the accuracy in correctly 

classifying BRD and healthy animals, iii) detection of possible co-occurrence between BRD-

associated pathogens and members of the nasal microbiome.   
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APPENDIX A 

  

Figure A1. Taxonomical composition showing the top 10 Genera present in the empty tubes used 
as negative control in the DNA extraction and sequencing step.  

 

 

Figure A2. Pearson’s correlation with the days relative to the end of the study and average 
temperature (°F) of when the samples were collected. High values in the x axis represent the dates 
of samples collected at the beginning of the study; low values represent the dates of samples 
collected at the end of the study.  
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Figure A3. Stacked bar graph showing the average relative abundance of the top 21 phylum present 
in the nasal microbiome of BRD and healthy animals.  
 

 

Figure A4. Stacked bar graph showing the average relative abundance of the top 20 family present 
in the nasal microbiome of BRD and healthy animals.  
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Figure A5. Stacked bar graph showing the average relative abundance of the top 20 genera present 
in the nasal microbiome of BRD and healthy animals.  
 

 

 

Figure A6. Visual representation of LDA models used to classify BRD and healthy animals using 
all samples (Analysis 1). Values lower than 0 represent animals classified as BRD, and values 
above 0 represent animals classified as healthy.  
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Figure A7. Visual representation of LDA models used to classify BRD and healthy animals using 
samples that tested positive to the four BRD-associated bacteria (Analysis 2). Values lower than 0 
represent animals classified as BRD, and values above 0 represent animals classified as healthy.  

  



 
 

80 

 

 

 

 

 

Figure A8. Visual representation of the co-occurrence analysis showing the abundant positive 
bacterial ASV pair combinations in the healthy group (n=74) with a probability of occurrence in 
the same sample greater than 0.9. Box sizes represent the total samples where the co-occurrence 
was observed (min value 69 and max value 73 samples). Color indicates the phylum level. Lines 
indicate how many associations each ASV had in the samples.  
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Figure A9. Visual representation of the co-occurrence analysis showing the abundant positive 
bacterial ASV pair combinations in the BRD group (n=57) with a probability of occurrence in the 
same sample greater than 0.9. Box sizes represent the total samples where the co-occurrence was 
observed (min value 54  and max value 56 samples). Color indicates the phylum level. Lines 
indicate how many associations each ASV had in the samples. 
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Figure A10. Visual representation of the co-occurrence analysis showing the negative ASV pair 
combinations in the healthy group (n=74) with a probability of occurrence in the same sample less 
than 0.05. Color indicates the phylum level. Lines indicate how many associations each ASV had 
in the samples. 
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Figure A11. Visual representation of the co-occurrence analysis showing the negative ASV pair 
combinations in the BRD group (n=57) with a probability of occurrence in the same sample less 
than 0.05. Color indicates the phylum level. Lines indicate how many associations each ASV had 
in the samples. 
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Table A1. Sample average distance to the centroids of the BRD and healthy groups. 

 

 

 

Table A2. Linear Discriminant equation including all samples (n=129) used to discriminate BRD 
and healthy animals. 

Linear Discriminant equation including all samples (n=129) used to discriminate BRD 

and healthy animals 

Model 1 y=(-0.69415309*temp)+ (-1.46355431*Age)+(-0.32076803*Mb)+ 
 (-0.09199251*Pm)+(1.08364767*Hs)+(-0.09380103*Mh) 

Model 2 y=(-0.61621605*temp)+(-0.26230464*Mb)+ 
(0.05039419*Pm)+(0.90808658*Hs)+(-0.15137936*Mh)+(-0.27842520*16S 
rRNA) 

Model 3 y=(-0.2790393*Mb)+(0.1654951*Pm)+ (1.0097024*Hs)+    
(-0.2494981*Mh)+(-0.3915291*16S rRNA) 

Temp = Rectal temperature 
Mb= Mycoplasma bovis gene copy number (log10) 
Pm= Pasteurella multocida gene copy number (log10) 
Hs= Histophilus somni gene copy number (log10) 
Mh= Mannheimina haemolytica gene copy number (log10) 
16S rRNA= 16S rRNA gene copy number (log10)   

 

 

Table A3. Linear Discriminant equation including only the samples that tested positive for the 
BRD-associated pathogens (n=66) used to discriminate BRD and healthy animals. 

Linear Discriminant equation including only samples that tested positive for the BRD-
associated pathogen (n=66) used to discriminate BRD and healthy animals. 
Model 1 y=(-0.5782106*16S rRNA) + (0.3368869*Pm) + (-3.9012453*Hs) + 

(0.2489542*Mh) + (-0.4398731*Mb) + (-0.7233586*Rectal temperature) 
Model 2 y=(-0.7269952*Mb)+(0.9415095*Pm)+(-0.4415002*16S) 
Mb= Mycoplasma bovis gene copy number (log10) 
Pm= Pasteurella multocida gene copy number (log10) 
Hs= Histophilus somni gene copy number (log10) 
Mh= Mannheimina haemolytica gene copy number (log10) 

16S rRNA= 16S rRNA gene copy number (log10)   
 

 

 

Beta diversity metric BRD Healthy P Value 
Distance (Bray-Curtis) 0.5001 0.4743 0.058 
Distance (Weighted UniFrac) 0.3369 0.3099 0.085 
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Table A4. Summary of the Linea Discriminant Analysis showing the variation in the model 
misclassification error, percent of true positive (TP) and true negative (TN) identified and the 
sensitivity and specificity of the model when a predictor is removed from the analysis. 

Possible 
combinations 

Predictor 
not 

included 
Misclassification 

error  TP(%) TN(%) 
Sens 
(%) 

Spec 
(%) 

Temperature, Age, M. 
bovis, P. multocida, 
H. somni, M. 
haemolytica, 16S 
rRNA NA 0.30769923 23.1 46.2 57 77 
Age, M. bovis, P. 
multocida, H. somni, 
M. haemolytica, 16S 
rRNA Temperature 0.30769923 26.9 42.3 56 81 
Temperature, M. 
bovis, P. multocida, 
H. somni, M. 
haemolytica, 16S 
rRNA Age 0.30769923 23.1 46.2 57 77 
Temperature, Age, M. 
bovis, H. somni, M. 
haemolytica, 16S 
rRNA 

P. 
multocida 0.30769923 23.1 46.2 57 77 

Temperature, Age, M. 
bovis, P. multocida, 
H. somni, M. 
haemolytica 16S rRNA 0.2884615 23.1 48.1 60 78 
Temperature, Age, P. 
multocida, H. somni, 
M. haemolytica, 16S 
rRNA M. bovis 0.2884615 17.3 53.8 64 73 
Temperature, Age, M. 
bovis, P. multocida, 
M. haemolytica, 16S 
rRNA H. somni 0.2884615 23.1 48.1 60 78 
Temperature, Age, M. 
bovis, P. multocida, 
H. somni, 16S rRNA 

M. 
haemolytica 0.2884615 23.1 48.1 60 78 
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Table A5. Co-occurrence analysis with positive ASV pair combinations between Mycoplasma 
bovis and member of the nasal microbiome present in healthy animals.  

ASV_1 ASV_2 obs_sites probability 
Mycoplasma bovis uncultured Prevotellaceae UCG-003 30 0.373 
Mycoplasma bovis Prevotella 9 30 0.373 
Mycoplasma bovis uncultured Gulosibacter 30 0.367 
Mycoplasma bovis uncultured Sphingobacteriaceae 30 0.362 
Mycoplasma bovis uncultured AKAU3644 30 0.362 
Mycoplasma bovis uncultured Succinivibrio sp. 29 0.351 
Mycoplasma bovis uncultured Rikenellaceae RC9 gut group 29 0.351 
Mycoplasma bovis Arthrobacter 29 0.351 
Mycoplasma bovis uncultured W5053 29 0.34 
Mycoplasma bovis uncultured Fermentimonas 30 0.34 
Mycoplasma bovis Sphingomonadaceae 29 0.34 
Mycoplasma bovis uncultured Sphingobacterium 28 0.334 
Mycoplasma bovis Sanguibacter 29 0.334 
Mycoplasma bovis Aerococcus 28 0.334 
Mycoplasma bovis uncultured Bacteroides 28 0.329 
Mycoplasma bovis unidentified Oceanobacter 29 0.323 
Mycoplasma bovis unidentified Sphingobacterium 27 0.318 
Mycoplasma bovis unidentified Fastidiosipila 28 0.318 
Mycoplasma bovis uncultured Timonella 27 0.318 
Mycoplasma bovis Prevotellaceae UCG-003 29 0.318 
Mycoplasma bovis Pseudomonas saudiphocaensis 27 0.312 
Mycoplasma bovis Pseudomonas pertucinogena 28 0.307 
Mycoplasma bovis Methylophaga 27 0.301 
Mycoplasma bovis Leucobacter 26 0.301 
Mycoplasma bovis Fluviicola 27 0.296 
Mycoplasma bovis uncultured Ruminobacter 27 0.29 
Mycoplasma bovis Acholeplasma 28 0.29 
Mycoplasma bovis uncultured Tissierella 27 0.285 
Mycoplasma bovis Staphylococcus 26 0.285 
Mycoplasma bovis Ochrobactrum 26 0.285 
Mycoplasma bovis uncultured Muribaculaceae 25 0.279 
Mycoplasma bovis Myroides 25 0.268 
Mycoplasma bovis Azoarcus 24 0.268 
Mycoplasma bovis Cellvibrionaceae 24 0.263 
Mycoplasma bovis uncultured Proteiniphilum 24 0.257 
Mycoplasma bovis uncultured Prevotellaceae UCG-003 24 0.257 
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Mycoplasma bovis uncultured Bacteroides sp. 23 0.257 
Mycoplasma bovis Acinetobacter 23 0.257 
Mycoplasma bovis Christensenellaceae R-7 group 24 0.247 
Mycoplasma bovis uncultured Succinivibrio sp. 22 0.241 
Mycoplasma bovis Stenotrophomonas 22 0.241 
Mycoplasma bovis Filobacterium 22 0.236 
Mycoplasma bovis Corynebacterium 1 23 0.236 
Mycoplasma bovis uncultured Fastidiosipila 21 0.23 
Mycoplasma bovis uncultured Proteiniphilum 21 0.225 
Mycoplasma bovis uncultured Coprococcus 3 21 0.225 
Mycoplasma bovis uncultured Carnobacteriaceae 22 0.225 
Mycoplasma bovis Marinococcus sp. GSP31 21 0.225 
Mycoplasma bovis uncultured Pseudoramibacter 21 0.208 
Mycoplasma bovis Lactococcus  21 0.208 
Mycoplasma bovis Treponema 2 19 0.203 
Mycoplasma bovis Sphingobacterium 19 0.203 
Mycoplasma bovis uncultured Ruminococcaceae  20 0.197 
Mycoplasma bovis uncultured Aerococcaceae 20 0.197 
Mycoplasma bovis Dysgonomonas 21 0.197 
Mycoplasma bovis uncultured Bacteroidales 21 0.192 
Mycoplasma bovis Erysipelothrix 19 0.192 
Mycoplasma bovis Ureaplasma diversum 21 0.186 
Mycoplasma bovis Carnobacteriaceae 18 0.186 
Mycoplasma bovis Acetobacter 19 0.186 
Mycoplasma bovis uncultured Salibacter sp. 19 0.181 
Mycoplasma bovis Facklamia 19 0.181 
Mycoplasma bovis uncultured Ruminococcaceae 19 0.175 
Mycoplasma bovis uncultured Thiopseudomonas 19 0.17 
Mycoplasma bovis uncultured Atopostipes 18 0.17 
Mycoplasma bovis Planococcaceae 20 0.17 
Mycoplasma bovis Leucobacter  18 0.17 
Mycoplasma bovis uncultured Akkermansia 19 0.164 
Mycoplasma bovis Pseudomonas 17 0.159 
Mycoplasma bovis Flavonifractor 18 0.159 
Mycoplasma bovis uncultured Peptococcaceae 16 0.153 
Mycoplasma bovis Corynebacterium 17 0.153 
Mycoplasma bovis Bacteroidetes bacterium ADurb.Bin217 16 0.153 
Mycoplasma bovis uncultured Salibacter sp. 15 0.148 
Mycoplasma bovis uncultured Atopostipes 16 0.142 
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Mycoplasma bovis Lachnospiraceae 15 0.137 
Mycoplasma bovis Acholeplasma 14 0.137 
Mycoplasma bovis uncultured Leucobacter 15 0.131 
Mycoplasma bovis uncultured Halomonas 14 0.131 
Mycoplasma bovis uncultured compost Brumimicrobium 15 0.131 
Mycoplasma bovis Peptoniphilus 15 0.126 
Mycoplasma bovis Mycoplasma 17 0.126 
Mycoplasma bovis Treponema succinifaciens DSM 2489 12 0.104 
Mycoplasma bovis Mycoplasma 11 0.099 
Mycoplasma bovis uncultured Proteiniphilum 10 0.088 
Mycoplasma bovis uncultured Fastidiosipila 10 0.088 
Mycoplasma bovis uncultured Tissierella sp. 11 0.082 
Mycoplasma bovis uncultured Fluviicola 8 0.066 
Mycoplasma bovis Erysipelothrix 10 0.066 
Mycoplasma bovis Staphylococcus 8 0.06 
Mycoplasma bovis uncultured Alloprevotella 9 0.055 
Mycoplasma bovis uncultured Treponema 2 6 0.044 
Mycoplasma bovis Mycoplasma sp. LR5794 5 0.033 
Mycoplasma bovis Mycoplasma arginini 6 0.033 
Mycoplasma bovis Moheibacter stercoris 5 0.033 
Mycoplasma bovis uncultured Alysiella 5 0.027 

 

Table A6. Co-occurrence analysis with negative ASV pair combinations between Mycoplasma 
bovis and member of the nasal microbiome present in healthy animals. 

ASV_1 ASV_2 obs_sites probability 
Mycoplasma bovis uncultured Clostridiales 26 0.383 
Mycoplasma bovis Streptococcus 19 0.318 
Mycoplasma bovis uncultured Thermomicrobiales 18 0.301 
Mycoplasma bovis uncultured Arenimonas 17 0.285 
Mycoplasma bovis Megasphaera elsdenii 16 0.268 
Mycoplasma bovis uncultured Saprospiraceae 14 0.268 
Mycoplasma bovis Ruminococcaceae UCG-005 15 0.263 
Mycoplasma bovis Hydrogenophaga 14 0.257 
Mycoplasma bovis uncultured Persicitalea 14 0.252 
Mycoplasma bovis uncultured Olsenella 13 0.252 

Mycoplasma bovis 
human gut metagenome-  
Clostridium sensu stricto 1 14 0.247 

Mycoplasma bovis Streptococcus henryi 13 0.247 
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Mycoplasma bovis Arenimonas 11 0.236 
Mycoplasma bovis uncultured compost Pusillimonas 12 0.225 
Mycoplasma bovis Lachnospiraceae bacterium 11 0.214 
Mycoplasma bovis uncultured Altererythrobacter 11 0.203 
Mycoplasma bovis Agathobacter 11 0.203 
Mycoplasma bovis Gordonia 11 0.203 
Mycoplasma bovis uncultured Advenella 11 0.203 
Mycoplasma bovis uncultured Planctomyces sp. 11 0.203 
Mycoplasma bovis uncultured Verrucomicrobium 10 0.197 
Mycoplasma bovis uncultured Faecalibacterium sp. 9 0.197 
Mycoplasma bovis Rhodobacteraceae 10 0.192 
Mycoplasma bovis Clostridium sensu stricto 1 10 0.192 
Mycoplasma bovis uncultured Mogibacterium 10 0.192 
Mycoplasma bovis uncultured Roseimaritima 9 0.192 
Mycoplasma bovis Fusicatenibacter 9 0.186 
Mycoplasma bovis uncultured Taibaiella 9 0.181 
Mycoplasma bovis Enterococcus 9 0.181 
Mycoplasma bovis Aquiflexum 7 0.181 

Mycoplasma bovis 
uncultured Thermus/Deinococcus group 
bacterium 9 0.175 

Mycoplasma bovis uncultured Ornithinimicrobium 9 0.175 
Mycoplasma bovis uncultured Chitinophagales 9 0.175 
Mycoplasma bovis Paraburkholderia tropica 8 0.17 
Mycoplasma bovis Paraburkholderia tropica 7 0.159 
Mycoplasma bovis Blautia 6 0.153 
Mycoplasma bovis uncultured Rhodobacteraceae 7 0.148 
Mycoplasma bovis uncultured Cellvibrio 7 0.148 
Mycoplasma bovis uncultured Syntrophococcus 6 0.148 
Mycoplasma bovis Rhodobacteraceae 5 0.148 
Mycoplasma bovis Absconditabacteriales (SR1) 6 0.142 
Mycoplasma bovis uncultured anaerobic bacterium 6 0.137 
Mycoplasma bovis Cellulomonas 6 0.137 
Mycoplasma bovis Staphylococcus lentus 6 0.137 

Mycoplasma bovis 
Flavobacterium sp. enrichment culture clone 
SA_NR2_1 6 0.131 

Mycoplasma bovis Petrimonas 6 0.131 
Mycoplasma bovis uncultured Verrucomicrobium 6 0.131 
Mycoplasma bovis Dietzia 6 0.131 
Mycoplasma bovis Veillonella magna 6 0.131 
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Mycoplasma bovis Fermentimonas 6 0.131 
Mycoplasma bovis uncultured Prevotellaceae UCG-001 5 0.131 
Mycoplasma bovis Roseimaritima 4 0.126 
Mycoplasma bovis Pseudomonas thermotolerans J53 4 0.126 
Mycoplasma bovis Stenotrophomonas 5 0.121 
Mycoplasma bovis Hyaloperonospora arabidopsidis 5 0.121 
Mycoplasma bovis hydrothermal vent metagenome 5 0.121 
Mycoplasma bovis Christensenellaceae R-7 group 4 0.115 
Mycoplasma bovis Leucobacter 4 0.115 
Mycoplasma bovis JG30-KF-CM45 4 0.115 
Mycoplasma bovis Microbacteriaceae 4 0.104 
Mycoplasma bovis uncultured Chelatococcus sp. 4 0.104 
Mycoplasma bovis Christensenellaceae R-7 group 4 0.104 
Mycoplasma bovis Flavobacterium 3 0.099 
Mycoplasma bovis uncultured Proteiniborus 3 0.099 
Mycoplasma bovis Cellulomonas 3 0.088 
Mycoplasma bovis uncultured Proteiniborus 2 0.082 
Mycoplasma bovis Paracoccus 2 0.071 
Mycoplasma bovis uncultured Sanguibacter 2 0.071 
Mycoplasma bovis Leucobacter 1 0.071 
Mycoplasma bovis uncultured Glutamicibacter 1 0.06 
Mycoplasma bovis Sphingobacterium 1 0.06 
Mycoplasma bovis Sphingobacterium 1 0.055 
Mycoplasma bovis uncultured Acidobacteria  0 0.044 
Mycoplasma bovis Luteimonas 0 0.033 

 

Table A7. Co-occurrence analysis with positive ASV pair combinations between Mycoplasma 
bovis and member of the nasal microbiome present in BRD animals. 

ASV_1 ASV_2 obs_sites probability 
Mycoplasma bovis Filobacterium 35 0.547 
Mycoplasma bovis Clostridiaceae SK061 34 0.547 
Mycoplasma bovis uncultured Prevotella 2 34 0.547 
Mycoplasma bovis uncultured AKAU3644 34 0.524 
Mycoplasma bovis Aerococcus 31 0.478 
Mycoplasma bovis uncultured Succinivibrio 30 0.456 
Mycoplasma bovis uncultured Tissierella 28 0.433 
Mycoplasma bovis Ureaplasma diversum 29 0.433 
Mycoplasma bovis uncultured Anaerosporobacter 28 0.421 
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Mycoplasma bovis Bacteroides 27 0.41 
Mycoplasma bovis uncultured Succinivibrio sp. 23 0.342 
Mycoplasma bovis Acetitomaculum 22 0.319 
Mycoplasma bovis uncultured Marvinbryantia 22 0.307 
Mycoplasma bovis Mycoplasma 22 0.285 
Mycoplasma bovis Lactococcus 20 0.273 
Mycoplasma bovis uncultured Lachnospiraceae UCG-007 19 0.251 
Mycoplasma bovis Mycoplasma 20 0.251 
Mycoplasma bovis Lachnospiraceae 20 0.251 
Mycoplasma bovis Mycoplasma 21 0.251 
Mycoplasma bovis Ochrobactrum 17 0.239 
Mycoplasma bovis uncultured Bacteroidales  17 0.239 
Mycoplasma bovis Aliidiomarina 16 0.216 
Mycoplasma bovis Mycoplasma 16 0.216 
Mycoplasma bovis Mycoplasma alkalescens 14918 17 0.205 
Mycoplasma bovis Moraxellaceae 13 0.171 
Mycoplasma bovis Alloprevotella 13 0.159 
Mycoplasma bovis Christensenellaceae R-7 group 11 0.137 
Mycoplasma bovis Methanobrevibacter 11 0.137 
Mycoplasma bovis Mycoplasma arginini 11 0.137 
Mycoplasma bovis Prevotella 9 10 0.125 
Mycoplasma bovis Paraburkholderia tropica 10 0.125 
Mycoplasma bovis uncultured rumen Prevotellaceae UCG-001 10 0.114 
Mycoplasma bovis Ruminococcus sp. YE281 10 0.114 
Mycoplasma bovis uncultured Prevotella 9 10 0.114 
Mycoplasma bovis Brachybacterium 9 0.102 
Mycoplasma bovis uncultured Coprococcus 3 8 0.091 
Mycoplasma bovis Idiomarina 8 0.091 
Mycoplasma bovis uncultured Jeotgalicoccus 8 0.091 
Mycoplasma bovis Lachnospiraceae 7 0.08 
Mycoplasma bovis Pasteurellaceae 7 0.08 
Mycoplasma bovis Lachnospiraceae 7 0.08 
Mycoplasma bovis Staphylococcus 7 0.08 
Mycoplasma bovis uncultured Muribaculaceae 4 0.025 
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Table A8. Co-occurrence analysis with negative ASV pair combinations between Mycoplasma 
bovis and member of the nasal microbiome present in BRD animals. 

ASV_1 ASV_2 obs_sites probability 
Mycoplasma bovis uncultured Firmicutes  27 0.524 
Mycoplasma bovis Arthrobacter 24 0.478 
Mycoplasma bovis uncultured Oligella 22 0.456 
Mycoplasma bovis uncultured Porphyromonadaceae  21 0.433 
Mycoplasma bovis Intrasporangiaceae 20 0.433 
Mycoplasma bovis uncultured Clostridiales  20 0.421 
Mycoplasma bovis Hydrogenophaga 20 0.41 
Mycoplasma bovis uncultured Bacteroidales 19 0.399 
Mycoplasma bovis Sphingo sp. 773B2_12ER2A 18 0.387 
Mycoplasma bovis Tissierella 18 0.376 
Mycoplasma bovis Corynebacterium 16 0.376 
Mycoplasma bovis Christensenellaceae R-7 group 18 0.376 
Mycoplasma bovis Chishuiella sp. YIM 102668 15 0.376 
Mycoplasma bovis Burkholderiaceae 16 0.364 
Mycoplasma bovis Actinomyces 16 0.364 
Mycoplasma bovis Acinetobacter 16 0.364 
Mycoplasma bovis uncultured compost Pusillimonas 16 0.353 
Mycoplasma bovis Rhodobacteraceae 16 0.353 
Mycoplasma bovis uncultured Proteiniclasticum 15 0.342 
Mycoplasma bovis uncultured Leucobacter sp. 16 0.342 
Mycoplasma bovis uncultured Clostridium sp. 16 0.342 
Mycoplasma bovis Planococcaceae 14 0.342 
Mycoplasma bovis Methanobrevibacter 16 0.342 
Mycoplasma bovis Devosia 16 0.342 
Mycoplasma bovis Aquiflexum 15 0.33 
Mycoplasma bovis uncultured Advenella 14 0.319 
Mycoplasma bovis Fluviicola 14 0.319 
Mycoplasma bovis Streptococcus henryi 13 0.307 
Mycoplasma bovis Brevibacterium 14 0.307 
Mycoplasma bovis uncultured Truepera 13 0.296 
Mycoplasma bovis uncultured Treponema 2 13 0.296 
Mycoplasma bovis uncultured Moheibacter 13 0.296 
Mycoplasma bovis Psychrobacter maritimus 13 0.296 
Mycoplasma bovis Filobacterium 13 0.296 
Mycoplasma bovis Chryseobacterium sp. A5 13 0.296 
Mycoplasma bovis uncultured Alistipes 12 0.285 
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Mycoplasma bovis Prevotellaceae 12 0.285 
Mycoplasma bovis Peptoniphilus 11 0.285 
Mycoplasma bovis Gordonia 12 0.285 
Mycoplasma bovis uncultured Chitinophagales 12 0.273 
Mycoplasma bovis Stenotrophomonas 12 0.273 
Mycoplasma bovis Rhodocyclaceae 11 0.273 
Mycoplasma bovis Family XI 12 0.273 
Mycoplasma bovis uncultured Verrucomicrobiaceae 11 0.262 
Mycoplasma bovis uncultured Ornithinimicrobium 11 0.262 
Mycoplasma bovis uncultured Chitinophagales 11 0.262 
Mycoplasma bovis Flavobacteriales 11 0.262 
Mycoplasma bovis Bifidobacterium 11 0.262 
Mycoplasma bovis uncultured Oceanobacter 10 0.251 
Mycoplasma bovis Leucobacter 10 0.251 
Mycoplasma bovis uncultured Paludibacter sp. 10 0.239 
Mycoplasma bovis uncultured Christensenellaceae R-7 group 10 0.239 
Mycoplasma bovis uncultured AKAU3644 8 0.239 
Mycoplasma bovis uncultured Petrimonas 8 0.228 
Mycoplasma bovis Rhodobacteraceae 9 0.228 
Mycoplasma bovis Clostridium sensu stricto 1 9 0.228 
Mycoplasma bovis uncultured Thermus/Deinococcus group  9 0.216 
Mycoplasma bovis uncultured rumen Mogibacterium 9 0.216 
Mycoplasma bovis uncultured gamma proteo Alcanivorax 9 0.216 
Mycoplasma bovis uncultured Flavobacterium 8 0.216 
Mycoplasma bovis uncultured Camelimonas 9 0.216 
Mycoplasma bovis uncultured BRC1 9 0.216 
Mycoplasma bovis uncultured Atopostipes 9 0.216 
Mycoplasma bovis Leucobacter 9 0.216 
Mycoplasma bovis Leadbetterella byssophila DSM 17132 9 0.216 
Mycoplasma bovis Brachybacterium 8 0.216 
Mycoplasma bovis uncultured Taibaiella 8 0.205 
Mycoplasma bovis uncultured Gammaproteobacteria 8 0.205 
Mycoplasma bovis uncultured Flaviflexus 8 0.205 
Mycoplasma bovis Mannheimia 8 0.205 
Mycoplasma bovis BD1-7 clade 8 0.205 
Mycoplasma bovis uncultured Prevotella 1 6 0.194 
Mycoplasma bovis uncultured Paludibacteraceae 6 0.194 
Mycoplasma bovis uncultured Microtrichaceae 7 0.194 
Mycoplasma bovis uncultured Cellvibrio 7 0.194 
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Mycoplasma bovis Christensenellaceae R-7 group 6 0.194 
Mycoplasma bovis uncultured Mogibacterium 6 0.182 
Mycoplasma bovis uncultured Clostridium sp. 7 0.182 
Mycoplasma bovis uncultured Helcococcus 6 0.171 
Mycoplasma bovis Sphingobacterium sp. 35 6 0.171 
Mycoplasma bovis Nocardioides 6 0.171 
Mycoplasma bovis hydrothermal vent metagenome 6 0.171 
Mycoplasma bovis uncultured Leucobacter 5 0.159 
Mycoplasma bovis uncultured Burkholderiaceae 6 0.159 
Mycoplasma bovis uncultured Bogoriella 6 0.159 
Mycoplasma bovis Christensenellaceae R-7 group 5 0.148 
Mycoplasma bovis uncultured Bacteroidetes  4 0.137 
Mycoplasma bovis Rhodobacteraceae 4 0.125 
Mycoplasma bovis Burkholderiaceae 4 0.125 
Mycoplasma bovis Ruminococcaceae 3 0.102 
Mycoplasma bovis uncultured Clostridiales  2 0.08 
Mycoplasma bovis Paracoccus 2 0.08 
Mycoplasma bovis Microbacteriaceae 2 0.08 
Mycoplasma bovis Desulfovibrio piger 1 0.057 
Mycoplasma bovis uncultured Muribaculaceae 0 0.043 
Mycoplasma bovis Lachnospiraceae 0 0.04 
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APPENDIX B 

Table B1. Metadata containing the cattle’s sample information used in this study. 

ID Cattle ID BRD Date/Collection Ave.temp Temp Age PenCode 
Dairy1 Black 151 Healthy 8/12/20 43.71 103.2 0.88 10 
Dairy2 Black 17 Healthy 7/21/20 74 104.4 0.82 11 
Dairy3 Black 192 BRD 7/14/20 72.71 104.3 0.8 10 
Dairy4 Black 220 Healthy 7/14/20 72.71 103.7 0.8 10 
Dairy5 Black 25 Healthy 7/21/20 74 104.7 0.82 11 
Dairy6 Black 337 Healthy 7/14/20 72.71 102.7 0.76 8 
Dairy7 Black 340 BRD 7/14/20 72.71 105.6 0.76 8 
Dairy8 Black 350 Healthy 7/14/20 72.71 104 0.76 10 
Dairy9 Black 377 Healthy 7/14/20 72.71 102.9 0.76 8 
Dairy10 Black 387 Healthy 7/21/20 74 103.3 0.78 7 
Dairy11 Black 388 BRD 7/21/20 74   0.78 4 
Dairy12 Black 454 BRD 7/21/20 74 102.7 0.78 7 
Dairy13 Black 458 BRD 7/21/20 74 102.9 0.78 7 
Dairy14 Black 492 BRD 7/14/20 72.71 103.8 0.76 8 
Dairy15 Black 566 BRD 7/21/20 74 103.3 0.68 4 
Dairy16 Black 603 BRD 9/30/20 54.88 104.6 0.88 4 
Dairy17 Black 659 Healthy 7/14/20 72.71 103 0.71 6 
Dairy18 Black 661 BRD 7/14/20 72.71 105.2 0.71 6 
Dairy19 Black 665 Healthy 7/14/20 72.71 102.5 0.71 6 
Dairy20 Black 709 Healthy 8/12/20 43.71 102.7 0.74 10 
Dairy21 Black 769 Healthy 12/2/20 33.04 103.7 1.05 10 
Dairy22 Black 884 Healthy 8/26/20 80.29 105 0.74 6 
Dairy23 Black 899 Healthy 9/10/20 62.08 102.9 0.78 8 
Dairy24 Black 901 Healthy 8/19/20 66.25   0.8 5 
Dairy25 Black 903 Healthy 8/19/20 66.25   0.8 6 
Dairy26 Black 917 Healthy 9/10/20 62.08 104 0.78 8 
Dairy27 Black 921 BRD 8/12/20 43.71 102.4 0.7 6 
Dairy28 Black 969 BRD 8/19/20 66.25 104.4 0.8 6 
Dairy29 Black 973 BRD 8/12/20 43.71 104.8 0.7 6 
Dairy30 Black 985 Healthy 8/26/20 80.29 105.1 0.74 6 
Dairy31 Black 986 Healthy 8/19/20 66.25 103.3 0.8 5 
Dairy32 Black 989 Healthy 8/12/20 43.71 103.4 0.7 5 
Dairy33 Blue 10 Healthy 11/18/20 40.08 103.7 0.67 5 
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Dairy34 Blue 102 Healthy 11/18/20 40.08 102.5 0.585 1 
Dairy35 Blue 105 BRD 11/4/20 60.5 104.1 0.55 3 
Dairy36 Blue 121 Healthy 11/18/20 40.08 103.6 0.585 3 
Dairy37 Blue 122 Healthy 10/28/20 41.11 103.6 0.53 3 
Dairy38 Blue 129 BRD 10/28/20 41.11 107.4 0.53 3 
Dairy39 Blue 139 Healthy 11/18/20 40.08 103.3 0.585 3 
Dairy40 Blue 167 Healthy 10/28/20 41.11 102.5 0.53 1 
Dairy41 Blue 180 Healthy 11/11/20 40 102.9 0.57 2 
Dairy42 Blue 181 BRD 10/28/20 41.11 104.9 0.53 1 
Dairy43 Blue 183 Healthy 11/18/20 40.08 102.4 0.585 1 
Dairy44 Blue 187 Healthy 11/4/20 60.5 102.7 0.55 3 
Dairy45 Blue 192 Healthy 10/28/20 41.11 103.4 0.53 3 
Dairy46 Blue 271 BRD 11/4/20 60.5 105.6 0.55 3 
Dairy47 Blue 371 Healthy 10/28/20 41.11   0.45 0 
Dairy48 Blue 373 BRD 10/28/20 41.11 106.2 0.45 0 
Dairy49 Blue 374 BRD 10/28/20 41.11 106 0.45 0 
Dairy50 Blue 383 BRD 11/4/20 60.5 104.6 0.47 0 
Dairy51 Blue 384 Healthy 11/4/20 60.5 102.2 0.47 0 
Dairy52 Blue 385 Healthy 11/4/20 60.5 103.4 0.47 0 
Dairy53 Blue 386 BRD 11/4/20 60.5 104.1 0.47 0 
Dairy54 Blue 415 BRD 12/2/20 33.04 103 0.54 1 
Dairy55 Blue 416 Healthy 12/2/20 33.04 102.9 0.54 1 
Dairy56 Blue 417 Healthy 12/2/20 33.04 103.5 0.54 1 
Dairy57 Blue 43 Healthy 10/28/20 41.11 103.3 0.525 3 
Dairy58 Blue 62 BRD 11/18/20 40.08 105.2 0.58 1 
Dairy59 Blue 64 Healthy 11/18/20 40.08 102.5 0.58 3 
Dairy60 Blue 8 BRD 11/11/20 40 106.5 0.56 4 
Dairy61 Blue 86 Healthy 11/11/20 40 106.6 0.56 2 
Dairy62 Green 905 Healthy 7/21/20 74 103.3 1.45 0 
Dairy63 Green 918 Healthy 7/21/20 74 102.3 1.45 0 
Dairy64 Orange 106 Healthy 8/12/20 43.71 103.1 0.7 5 
Dairy65 Orange 11 BRD 8/12/20 43.71 106.3 0.7 5 
Dairy66 Orange 110 Healthy 8/26/20 80.29 103.4 0.74 2 
Dairy67 Orange 118 BRD 8/26/20 80.29 104.2 0.74 6 
Dairy68 Orange 16 BRD 7/14/20 72.71 104.6 0.62 3 
Dairy69 Orange 205 BRD 9/30/20 54.88 104.1 0.755 6 
Dairy70 Orange 220 Healthy 8/26/20 80.29 102.7 0.61 3 
Dairy71 Orange 234 Healthy 9/30/20 54.88 102.7 0.71 4 
Dairy72 Orange 241 BRD 8/26/20 80.29 102.7 0.61 3 
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Dairy73 Orange 246 Healthy 9/30/20 54.88 103.1 0.71 6 
Dairy74 Orange 248 BRD 9/10/20 62.08 103.6 0.65 4 
Dairy75 Orange 253 Healthy 8/26/20 80.29 103.5 0.61 1 
Dairy76 Orange 26 Healthy 7/14/20 72.71 102.5 0.62 3 
Dairy77 Orange 262 BRD 8/26/20 80.29 105.2 0.61 2 
Dairy78 Orange 282 BRD 8/26/20 80.29 102.9 0.61 3 
Dairy79 Orange 293 BRD 9/10/20 62.08 103 0.65 4 
Dairy80 Orange 311 Healthy 9/10/20 62.08 103.1 0.65 4 
Dairy81 Orange 327 Healthy 9/30/20 54.88 102.9 0.71 6 
Dairy82 Orange 361 Healthy 8/26/20 80.29 103.3 0.61 1 
Dairy83 Orange 4 Healthy 7/14/20 72.71 102.6 0.62 3 
Dairy84 Orange 425 Healthy 8/26/20 80.29 104.1 0.61 3 
Dairy85 Orange 466 BRD 8/26/20 80.29 103.4 0.61 1 
Dairy86 Orange 489 Healthy 8/26/20 80.29 103.4 0.61 2 
Dairy87 Orange 505 BRD 9/30/20 54.88 103.6 0.645 3 
Dairy88 Orange 519 BRD 7/21/20 74 104.7 0.45 0 
Dairy89 Orange 534 Healthy 9/30/20 54.88 102.9 0.645 3 
Dairy90 Orange 549 Healthy 9/30/20 54.88 103 0.645 3 
Dairy91 Orange 577 Healthy 10/14/20 57.63 102.7 0.68 6 
Dairy92 Orange 581 BRD 10/14/20 57.63 103.4 0.68 6 
Dairy93 Orange 587 BRD 10/14/20 57.63 104.7 0.68 6 
Dairy94 Orange 6 BRD 8/19/20 66.25 103.2 0.72 5 
Dairy95 Orange 604 BRD 9/10/20 62.08 104.6 0.72 3 
Dairy96 Orange 605 Healthy 9/10/20 62.08 103.4 0.72 3 
Dairy97 Orange 606 Healthy 9/10/20 62.08 102.8 0.72 3 
Dairy98 Orange 607 BRD 9/10/20 62.08 102.5 0.72 3 
Dairy99 Orange 628 Healthy 10/14/20 57.63 103.3 0.68 6 
Dairy100 Orange 63 BRD 9/10/20 62.08 103.2 0.78 8 
Dairy101 Orange 634 BRD 9/30/20 54.88 106.5 0.645 3 
Dairy102 Orange 641 Healthy 10/14/20 57.63 102.7 0.68 5 
Dairy103 Orange 653 BRD 10/14/20 57.63 105.2 0.68 5 
Dairy104 Orange 655 Healthy 9/30/20 54.88 102.9 0.645 2 
Dairy105 Orange 682 Healthy 9/30/20 54.88 102.5 0.645 2 
Dairy106 Orange 705 BRD 9/30/20 54.88 103.3 0.645 2 
Dairy107 Orange 713 BRD 9/30/20 54.88 103.9 0.645 2 
Dairy108 Orange 736 Healthy 10/14/20 57.63 105.4 0.68 5 
Dairy109 Orange 747 Healthy 11/11/20 40 102.9 0.76 4 
Dairy110 Orange 765 BRD 12/2/20 33.04 104 0.71 8 
Dairy111 Orange 77 BRD 8/19/20 66.25 103.8 0.72 6 
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Dairy112 Orange 778 Healthy 11/11/20 40 103.8 0.65 6 
Dairy113 Orange 782 BRD 11/18/20 40.08 104.8 0.67 5 
Dairy114 Orange 789 BRD 11/11/20 40 104.4 0.65 6 
Dairy115 Orange 83 Healthy 8/12/20 43.71 102.7 0.7 6 
Dairy116 Orange 838 BRD 12/2/20 33.04 104.9 0.71 9 
Dairy117 Orange 841 Healthy 11/11/20 40 103.2 0.65 4 
Dairy118 Orange 847 Healthy 12/2/20 33.04 102.5 0.71 8 
Dairy119 Orange 865 Healthy 11/18/20 40.08 102.9 0.67 5 
Dairy120 Orange 88 Healthy 8/12/20 43.71 103.2 0.7 6 
Dairy121 Orange 909 Healthy 11/4/20 60.5 102.9 0.63 5 
Dairy122 Orange 919 Healthy 12/2/20 33.04 104.9 0.71 9 
Dairy123 Orange 922 BRD 11/18/20 40.08 105.8 0.67 5 
Dairy124 Orange 924 Healthy 11/11/20 40 104 0.65 6 
Dairy125 Orange 939 BRD 12/2/20 33.04 103.8 0.71 8 
Dairy126 Orange 941 Healthy 12/2/20 33.04 103 0.71 9 
Dairy127 Orange 988 BRD 11/4/20 60.5 105.1 0.63 5 
Dairy128 Orange 990 Healthy 12/2/20 33.04 102 0.71 8 
Dairy129 Orange 994 BRD 11/11/20 40 104.8 0.65 6 
Dairy130 Purple 234 BRD 12/2/20 33.04 102.7 0.33 10 
Dairy131 Yellow 119 BRD 8/12/20 43.71 103.5 1.15 10 
Dairy132 Yellow 591 BRD 8/12/20 43.71 103.3 1 10 
Dairy133 Yellow 869 BRD 7/21/20 74 104 0.82 11 
*BRD: indicates the cattle health status 
*Ave.Temp: Daily Average Temperature of the date when the nasal swab was collected 
*Temp: Rectal temperature of the cattle that was sampled 
*Age: Age of the cattle that was sampled 
*PenCode: Pen number from which the animal was selected 

 
Code A. 16S rRNA gene sequencing statistical analysis.  
library(afex) 
library(lme4) 
library(emmeans) 
library(lubridate) 
library(ggplot2) 
library("cowplot") 
theme_set(theme_grey()) 
#install.packages("jtools") 
library(jtools) 
library(ggpubr) 
library(sjstats) 
rm(list = ls ()) 
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setwd("~/Desktop/eunice/Thesis/Scripts/PaperScript/Metadata/")  
metadata <- read.csv("16Smetadata.csv", na.strings = c("","NA"), header=TRUE) 
#assign numerical values to factors 
metadata$BRD <- as.factor(metadata$BRD) 
levels(metadata$BRD) <- list("Healthy"="Healthy", "BRD"="BRD") 
metadata$PenCode <- as.factor(metadata$PenCode) 
str(metadata) 
 
# Converting date of collection to numeric values 
metadata$date <- metadata$Date.Collection 
metadata$Date.Collection <- as.Date(metadata$Date.Collection, "%m/%d/%y") 
d<- as.Date('12/31/2020', "%m/%d/%y") #use to calculate the days 
metadata$Date.Collection <- as.Date(d) -as.Date(metadata$Date.Collection)  
metadata$Date.Collection <- as.numeric(metadata$Date.Collection) 
str(metadata$Date.Collection) 
#the highest day value is the date of the samples collected first  
plot(metadata$Date.Collection, metadata$Age) 
set_sum_contrasts() # important for afex 
# full model 
str(metadata) 
 
#For dependent variable Observed OTUs 
#install.packages("piecewiseSEM") 
M1 <- mixed(observed_otus ~ BRD + Date.Collection + Age + (1|PenCode), data = metadata,method 
= "KR", control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) 
anova(M1) 
M2 <- mixed(pielou_e ~ BRD + Date.Collection + Age + (1|PenCode), data = metadata,method = 
"KR", control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) 
anova(M2) 
M3 <- mixed(chao1 ~ BRD + Date.Collection + Age + (1|PenCode), data = metadata,method = "KR", 
control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) 
anova(M3) 
M4 <- mixed(faith_pd ~ BRD + Date.Collection + Age + (1|PenCode), data = metadata,method = 
"KR", control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) 
anova(M4) 
 
#checking assumptions 
# way 1: 
plot(M1$full_model) 
plot(M2$full_model) 
plot(M3$full_model) 
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plot(M4$full_model) 
# this is for testing the normality of the residuals 
qqnorm(residuals(M1$full_model)) 
qqnorm(residuals(M2$full_model)) 
qqnorm(residuals(M3$full_model)) 
qqnorm(residuals(M4$full_model)) 
 
# interpreting results 
# BRD plots 
a <- afex_plot(M1, x = "BRD", id = "PenCode", dodge = 0.4, point_arg = list(size = 4), 
mapping="color") +theme_bw() + theme(legend.position="bottom") + labs(y = "Observed ASVs", x 
= "Health Status") + theme(legend.position="none")  
c <- afex_plot(M2, x = "BRD", id = "PenCode", dodge = 0.4, point_arg = list(size = 4), 
mapping="color") +theme_bw() + theme(legend.position="bottom") +labs(y = "Evenness (Pielou)", x 
= "Health Status") +theme(legend.position="none") 
b <- afex_plot(M3, x = "BRD", id = "PenCode", dodge = 0.4, point_arg = list(size = 4), 
mapping="color") +theme_bw() + theme(legend.position="bottom") +labs(y = "Chao 1", x = "Health 
Status") +theme(legend.position="none") 
d <- afex_plot(M4, x = "BRD", id = "PenCode", dodge = 0.4, point_arg = list(size = 4), 
mapping="color") +theme_bw() + theme(legend.position="bottom") +labs(y = "Faith_pd", x = 
"Health Status") +theme(legend.position="none") 
plot_grid(a, b, c , d, labels = "AUTO") 
### Date collection plots 
e <- ggplot(data = metadata, aes(x = Date.Collection, y = observed_otus)) + geom_point() + 
geom_smooth(method = "lm", se=TRUE) + scale_color_brewer(palette = "Dark2") + theme_classic() 
+  ylab("Observed ASVs") +xlab ("Days relative to the end of the study") +theme(axis.title.x = 
element_text(color="black", size=14, face="bold"), axis.title.y = element_text(color="black", size=14, 
face="bold")) + theme(axis.text.x = element_text(color = "black", size = 14), axis.text.y = 
element_text(color = "black", size = 14))  
f <- ggplot(data = metadata, aes(x = Date.Collection, y = chao1)) + geom_point() + 
geom_smooth(method = "lm", se=TRUE) + scale_color_brewer(palette = "Dark2") + theme_classic() 
+  ylab("Chao1") +xlab ("Days relative to the end of the study") +theme(axis.title.x = 
element_text(color="black", size=14, face="bold"), axis.title.y = element_text(color="black", size=14, 
face="bold")) + theme(axis.text.x = element_text(color = "black", size = 14), axis.text.y = 
element_text(color = "black", size = 14))  
g <- ggplot(data = metadata, aes(x = Date.Collection, y = pielou_e)) + geom_point() + 
geom_smooth(method = "lm", se=TRUE) + scale_color_brewer(palette = "Dark2") + theme_classic() 
+  ylab("Evenness (Pielou)") +xlab ("Days relative to the end of the study") +theme(axis.title.x = 
element_text(color="black", size=14, face="bold"), axis.title.y = element_text(color="black", size=14, 
face="bold")) + theme(axis.text.x = element_text(color = "black", size = 14), axis.text.y = 
element_text(color = "black", size = 14))  
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h <- ggplot(data = metadata, aes(x = Date.Collection, y = faith_pd)) + geom_point() + 
geom_smooth(method = "lm", se=TRUE) + scale_color_brewer(palette = "Dark2") + theme_classic() 
+  ylab("Faith_pd") +xlab ("Days relative to the end of the study") +theme(axis.title.x = 
element_text(color="black", size=14, face="bold"), axis.title.y = element_text(color="black", size=14, 
face="bold")) + theme(axis.text.x = element_text(color = "black", size = 14), axis.text.y = 
element_text(color = "black", size = 14))  
ggarrange(e,f,g,h, labels = c("A", "B", "C", "D"),ncol = 2, nrow=2, font.label = list(family = "Times 
New Roman"))  
 
## Correlation between average temperature and date of collection 
str(metadata) 
cordata = metadata[,c(3,5)] 
corr <- round(cor(cordata), 1) 
corr 
str(cordata) 
cor(cordata$Date.Collection, cordata$Ave.temp) 
cor.test(cordata$Date.Collection, cordata$Ave.temp) 
library("ggpubr") 
ggscatter(cordata, x = "Date.Collection", y = "Ave.temp", add = "reg.line", conf.int = TRUE, cor.coef 
= TRUE, cor.method = "pearson",xlab = "Days relative to the end of the study", ylab = "Average 
temperature (°F)") 
## testing temperature 
str(meta) 
set_sum_contrasts()  
M1 <- mixed(observed_otus ~ Ave.temp + (1|PenCode), data = metadata,method = "KR", control = 
lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) 
anova(M1) 
M2 <- mixed(pielou_e ~ Ave.temp + (1|PenCode), data = metadata,method = "KR", control = 
lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) 
anova(M2) 
M3 <- mixed(chao1 ~ Ave.temp + (1|PenCode), data = metadata,method = "KR", control = 
lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) 
anova(M3) 
M4 <- mixed(faith_pd ~ Ave.temp + (1|PenCode), data = metadata,method = "KR", control = 
lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) 
anova(M4) 
 
##Checking assumptions 
#checking assumptions 
# way 1: 
plot(M1$full_model) 
plot(M2$full_model) 
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plot(M3$full_model) 
plot(M4$full_model) 
# this is for testing the normality of the residuals 
qqnorm(residuals(M1$full_model)) 
qqnorm(residuals(M2$full_model)) 
qqnorm(residuals(M3$full_model)) 
qqnorm(residuals(M4$full_model)) 
 
# Plots 
i <- ggplot(data = metadata, aes(x = Ave.temp, y = observed_otus)) + geom_point() + 
geom_smooth(method = "lm", se=TRUE) + scale_color_brewer(palette = "Dark2") + theme_classic() 
+  ylab("Observed ASVs") +xlab ("Average daily temperature (°F)") +theme(axis.title.x = 
element_text(color="black", size=14, face="bold"), axis.title.y = element_text(color="black", size=14, 
face="bold")) + theme(axis.text.x = element_text(color = "black", size = 14), axis.text.y = 
element_text(color = "black", size = 14))  
j <- ggplot(data = metadata, aes(x = Ave.temp, y = chao1)) + geom_point() + geom_smooth(method 
= "lm", se=TRUE) + scale_color_brewer(palette = "Dark2") + theme_classic() +  ylab("Chao1") +xlab 
("Average daily temperature (°F)") +theme(axis.title.x = element_text(color="black", size=14, 
face="bold"), axis.title.y = element_text(color="black", size=14, face="bold")) + theme(axis.text.x = 
element_text(color = "black", size = 14), axis.text.y = element_text(color = "black", size = 14))  
k <- ggplot(data = metadata, aes(x = Ave.temp, y = pielou_e)) + geom_point() + geom_smooth(method 
= "lm", se=TRUE) + scale_color_brewer(palette = "Dark2") + theme_classic() +  ylab("Evenness 
(Pielou)") +xlab ("Average daily temperature (°F)") +theme(axis.title.x = element_text(color="black", 
size=14, face="bold"), axis.title.y = element_text(color="black", size=14, face="bold")) + 
theme(axis.text.x = element_text(color = "black", size = 14), axis.text.y = element_text(color = "black", 
size = 14))  
l <- ggplot(data = metadata, aes(x = Ave.temp, y = faith_pd)) + geom_point() + geom_smooth(method 
= "lm", se=TRUE) + scale_color_brewer(palette = "Dark2") + theme_classic() +  ylab("Faith") +xlab 
("Average daily temperature (°F)") +theme(axis.title.x = element_text(color="black", size=14, 
face="bold"), axis.title.y = element_text(color="black", size=14, face="bold")) + theme(axis.text.x = 
element_text(color = "black", size = 14), axis.text.y = element_text(color = "black", size = 14))  
ggarrange(i,j,k,l, labels = c("A", "B", "C", "D"),ncol = 2, nrow=2, font.label = list(family = "Times 
New Roman")) 
 
Code B. qPCR statistical analysis 
library(afex) 
library(lme4) 
library(emmeans) 
library(lubridate) 
library(psych) 
library(sjstats) 
library(tidyverse) 
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library(ggfortify) 
library(pwr) 
library(ggpubr) 
# clear memory 
#rm(list = ls ()) 
# load data 
 
setwd("~/Desktop/eunice/Thesis/Scripts/PaperScript/Metadata/") 
metadata <- read.csv("qPCRMetadata.csv", na.strings = c("","NA"), header=TRUE) 
#assign numerical values to factors 
metadata$BRD <- as.factor(metadata$BRD) 
levels(metadata$BRD) <- list("Healthy"="Healthy", "BRD"="BRD") 
metadata$PenCode <- as.factor(metadata$PenCode) 
metadata$MbPre_Abs <- as.factor(metadata$MbPre_Abs) 
metadata$MhPres_Abs <- as.factor(metadata$MhPres_Abs) 
metadata$HsPres_Abs <- as.factor(metadata$HsPres_Abs) 
metadata$PmPres_Abs <- as.factor(metadata$PmPres_Abs) 
# Converting date to numeric value 
metadata$date <- metadata$Date.Collection 
metadata$Date.Collection <- as.Date(metadata$Date.Collection, "%m/%d/%y") 
d<- as.Date('12/31/2020', "%m/%d/%y") #use to calculate the days 
metadata$Date.Collection <- as.Date(d) -as.Date(metadata$Date.Collection)  
metadata$Date.Collection <- as.numeric(metadata$Date.Collection) 
str(metadata$Date.Collection) 
#the highest day value is the date of the samples collected first  
str(metadata) 
#levels(metadata$Date) 
plot(metadata$Date.Collection, metadata$Age) 
set_sum_contrasts() # important for afex 
 
## 16S data 
str(metadata) 
S1 <- mixed(X16S_copies ~ BRD + Date.Collection + Age + (1|PenCode), data = metadata,method = 
"KR", control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) 
anova(S1) 
#Checking assumptios 
plot(S1$full_model) 
# this is for testing the normality of the residuals 
qqnorm(residuals(S1$full_model)) 
##Transform data 
metadata <- mutate(metadata, X16S_log = log10(X16S_copies + 1)) 
metadata <- mutate(metadata, X16S_sqrt = sqrt(X16S_copies + 0.5)) 
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S1.1 <- mixed(X16S_log ~ BRD + Date.Collection + Age + (1|PenCode), data = metadata,method = 
"KR", control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) 
anova(S1.1) 
S1.2 <- mixed(X16S_sqrt ~ BRD + Date.Collection + Age + (1|PenCode), data = metadata,method = 
"KR", control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) 
anova(S1.2) 
 
#checking 
plot(S1$full_model) 
plot(S1.1$full_model) 
plot(S1.2$full_model) 
# this is for testing the normality of the residuals 
qqnorm(residuals(S1$full_model)) 
qqnorm(residuals(S1.1$full_model)) #better 
qqnorm(residuals(S1.2$full_model)) 
str(metadata) 
afex_plot(S1.1, x = "BRD", id = "PenCode", dodge = 0.4, point_arg = list(size = 4), mapping="color") 
+theme_bw() + theme(legend.position="bottom") +labs(y = "16S rRNA gene copy (log10)", x = 
"Health Status") +theme(legend.position="none")   
 
#For dependent variable ---------qPCR 
M1 <- mixed(Mbovis_copies ~ BRD + Date.Collection + Age + (1|PenCode), data = metadata,method 
= "KR", control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) 
anova(M1) 
M2 <- mixed(Pm_copies ~ BRD + Date.Collection + Age + (1|PenCode), data = metadata,method = 
"KR", control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) 
anova(M2) 
M3 <- mixed(Hs_copies ~ BRD + Date.Collection + Age + (1|PenCode), data = metadata,method = 
"KR", control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) 
anova(M3) 
M4 <- mixed(Mh_copies ~ BRD + Date.Collection + Age + (1|PenCode), data = metadata,method = 
"KR", control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) 
anova(M4) 
 
#checking assumptions 
# way 1: 
plot(M1$full_model) 
plot(M2$full_model) 
plot(M3$full_model) 
plot(M4$full_model) 
# this is for testing the normality of the residuals 
qqnorm(residuals(M1$full_model)) #weird 
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qqnorm(residuals(M2$full_model)) #weird 
qqnorm(residuals(M3$full_model)) 
qqnorm(residuals(M4$full_model)) #weird 
##transformation 
metadata <- mutate(metadata, Mbovis_log = log10(Mbovis_copies + 1)) 
metadata <- mutate(metadata, Mbovis_sqrt = sqrt(Mbovis_copies + 0.5)) 
metadata <- mutate(metadata, Pm_log = log10(Pm_copies + 1)) 
metadata <- mutate(metadata, Pm_sqrt = sqrt(Pm_copies + 0.5)) 
metadata <- mutate(metadata, Mh_log = log10(Mh_copies + 1)) 
metadata <- mutate(metadata, Mh_sqrt = sqrt(Mh_copies + 0.5)) 
 
## Test new variables 
#For dependent variable  
M1.1 <- mixed(Mbovis_log ~ BRD + Date.Collection + Age + (1|PenCode), data = metadata,method 
= "KR", control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) 
anova(M1.1) 
M1.2 <- mixed(Mbovis_sqrt ~ BRD + Date.Collection + Age + (1|PenCode), data = metadata,method 
= "KR", control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) 
anova(M1.2) 
M2.1 <- mixed(Pm_log ~ BRD + Date.Collection + Age + (1|PenCode), data = metadata,method = 
"KR", control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) 
anova(M2.1) 
M2.2 <- mixed(Pm_sqrt ~ BRD + Date.Collection + Age + (1|PenCode), data = metadata,method = 
"KR", control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) 
anova(M2.2) 
M4.1 <- mixed(Mh_log ~ BRD + Date.Collection + Age + (1|PenCode), data = metadata,method = 
"KR", control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) 
anova(M4.1) 
M4.2 <- mixed(Mh_sqrt ~ BRD + Date.Collection + Age + (1|PenCode), data = metadata,method = 
"KR", control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) 
anova(M4.2) 
 
#checking assumptions 
plot(M1$full_model) 
plot(M1.1$full_model) #better 
plot(M1.2$full_model) 
plot(M2$full_model) 
plot(M2.1$full_model) 
plot(M2.2$full_model) #better  
plot(M4$full_model) 
plot(M4.1$full_model) #better 
plot(M4.2$full_model)   
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# this is for testing the normality of the residuals 
qqnorm(residuals(M1$full_model))  
qqnorm(residuals(M1.1$full_model)) #better log 
qqnorm(residuals(M1.2$full_model)) 
qqnorm(residuals(M2$full_model))  
qqnorm(residuals(M2.1$full_model)) #better log 
qqnorm(residuals(M2.2$full_model))  
qqnorm(residuals(M4$full_model))  
qqnorm(residuals(M4.1$full_model)) #better log 
qqnorm(residuals(M4.2$full_model))  
## new variables, Mbovis_log, Pm_sqrt, and Mh_log 
M1.1 <- mixed(Mbovis_log ~ BRD + Date.Collection + Age + (1|PenCode), data = metadata,method 
= "KR", control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) 
anova(M1.1) 
M2.1 <- mixed(Pm_log ~ BRD + Date.Collection + Age + (1|PenCode), data = metadata,method = 
"KR", control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) 
anova(M2.1) 
M3 <- mixed(Hs_copies ~ BRD + Date.Collection + Age + (1|PenCode), data = metadata,method = 
"KR", control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) 
anova(M3) 
M4.1 <- mixed(Mh_log ~ BRD + Date.Collection + Age + (1|PenCode), data = metadata,method = 
"KR", control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) 
anova(M4.1) 
 
# interpreting results 
afex_plot(M1.1, x = "BRD", id = "PenCode", dodge = 0.4, point_arg = list(size = 6), mapping="color") 
+theme_bw(base_size = 15) + theme(legend.position="bottom", panel.grid.major.x = element_blank()) 
+  labs(y = "M. bovis copies (log10)- All Samples", x = "Health Status") 
+theme(legend.position="none")  
afex_plot(M3, x = "BRD", id = "PenCode", dodge = 0.4, point_arg = list(size = 6), mapping="color") 
+theme_bw(base_size = 15) + theme(legend.position="bottom", panel.grid.major.x = element_blank()) 
+ labs(y = "H. somni copies- All Samples", x = "Health Status") +theme(legend.position="none") 
afex_plot(M4.1, x = "BRD", id = "PenCode", dodge = 0.4, point_arg = list(size = 6), mapping="color") 
+theme_bw(base_size = 15) + theme(legend.position="bottom", panel.grid.major.x = element_blank()) 
+ labs(y = "M. haemolytica copies (log10)-All Samples", x = "Health Status") + 
theme(legend.position="none") 
## Relative abundance values 
m1 <- mixed(Mbovis_RelAbunBacteria ~ BRD + Date.Collection + Age + (1|PenCode), data = 
metadata,method = "KR", control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) 
anova(m1) 
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m2 <- mixed(Pm_RelAbunBacteria ~ BRD + Date.Collection + Age + (1|PenCode), data = 
metadata,method = "KR", control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) 
anova(m2) 
m3 <- mixed(Hs_RelAbunBacteria ~ BRD + Date.Collection + Age + (1|PenCode), data = 
metadata,method = "KR", control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) 
anova(m3) 
m4 <- mixed(Mh_RelAbunBacteria ~ BRD + Date.Collection + Age + (1|PenCode), data = 
metadata,method = "KR", control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) 
anova(m4) 
###Plots 
afex_plot(m1, x = "BRD", id = "PenCode", dodge = 0.4, point_arg = list(size = 6), mapping="color") 
+ theme_bw(base_size = 15) + theme(legend.position="bottom", panel.grid.major.x = 
element_blank()) +  labs(y = "M. bovis- Rel.Abun (All Samples)", x = "Health Status") 
+theme(legend.position="none")  
afex_plot(m2, x = "BRD", id = "PenCode", dodge = 0.4, point_arg = list(size = 6), mapping="color") 
+theme_bw(base_size = 15) + theme(legend.position="bottom", panel.grid.major.x = element_blank()) 
+ labs(y = "P. multocida- Rel.Abun (All Samples)", x = "Health Status") 
+theme(legend.position="none") 
#Date plots 
a <- ggplot(data = metadata, aes(x = Date.Collection, y = Mbovis_RelAbunBacteria)) + geom_point() 
+ geom_smooth(method = "lm", se=TRUE) + scale_color_brewer(palette = "Dark2") + theme_classic() 
+  ylab("M. bovis- Rel.Abun (All Samples)") +xlab ("Days relative to end of the study") 
+theme(axis.title.x = element_text(color="black", size=14, face="bold"), axis.title.y = 
element_text(color="black", size=14, face="bold")) + theme(axis.text.x = element_text(color = 
"black", size = 14), axis.text.y = element_text(color = "black", size = 14))  
b <- ggplot(data = metadata, aes(x = Date.Collection, y = Pm_RelAbunBacteria)) + geom_point() + 
geom_smooth(method = "lm", se=TRUE) + scale_color_brewer(palette = "Dark2") + theme_classic() 
+  ylab("P. multocida- Rel.Abun (All Samples)") +xlab ("Days relative to end of the study") 
+theme(axis.title.x = element_text(color="black", size=14, face="bold"), axis.title.y = 
element_text(color="black", size=14, face="bold")) + theme(axis.text.x = element_text(color = 
"black", size = 14), axis.text.y = element_text(color = "black", size = 14))  
ggarrange(a,b, labels = c("A", "B", "C", "D"), ncol = 2) 
 
#checking assumptions 
plot(m1$full_model) 
plot(m2$full_model) 
plot(m3$full_model) 
plot(m4$full_model) 
# this is for testing the normality of the residuals 
qqnorm(residuals(m1$full_model)) #weird 
qqnorm(residuals(m2$full_model)) #weird 
qqnorm(residuals(m3$full_model)) 
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qqnorm(residuals(m4$full_model)) #weird 
 
## Only animals that tested positive 
MbYes <- subset(metadata, subset=MbPre_Abs %in% c("1")) 
HsYes <- subset(metadata, subset=HsPres_Abs %in% c("1")) 
MhYes <- subset(metadata, subset=MhPres_Abs %in% c("1")) 
PmYes <- subset(metadata, subset=PmPres_Abs %in% c("1")) 
#Copy number 
y1 <- mixed(Mbovis_copies ~ BRD + Date.Collection + Age + (1|PenCode), data = MbYes,method = 
"KR", control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) 
anova(y1) 
y2 <- mixed(Pm_copies ~ BRD + Date.Collection + Age + (1|PenCode), data = PmYes,method = "KR", 
control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) 
anova(y2) 
y3 <- mixed(Hs_copies ~ BRD + Date.Collection + Age + (1|PenCode), data = HsYes,method = "KR", 
control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) 
anova(y3) 
y4 <- mixed(Mh_copies ~ BRD + Date.Collection + Age + (1|PenCode), data = MhYes,method = 
"KR", control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) 
anova(y4) 
 
#checking assumptions 
plot(y1$full_model) 
plot(y2$full_model) 
plot(y3$full_model) 
plot(y4$full_model) 
# this is for testing the normality of the residuals 
qqnorm(residuals(y1$full_model)) #weird 
qqnorm(residuals(y2$full_model)) #weird 
qqnorm(residuals(y3$full_model)) 
qqnorm(residuals(y4$full_model)) #weird 
str(metadata) 
y1.1 <- mixed(Mbovis_log ~ BRD + Date.Collection + Age + (1|PenCode), data = MbYes,method = 
"KR", control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) 
anova(y1.1) 
y1.2 <- mixed(Mbovis_sqrt ~ BRD + Date.Collection + Age + (1|PenCode), data = MbYes,method = 
"KR", control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) 
anova(y1.2) 
y2.1 <- mixed(Pm_log ~ BRD + Date.Collection + Age + (1|PenCode), data = PmYes,method = "KR", 
control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) 
anova(y2.1) 
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y2.2 <- mixed(Pm_sqrt ~ BRD + Date.Collection + Age + (1|PenCode), data = PmYes,method = "KR", 
control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) 
anova(y2.2) 
y4.1 <- mixed(Mh_log ~ BRD + Date.Collection + Age + (1|PenCode), data =MhYes,method = "KR", 
control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) 
anova(y4.1) 
y4.2 <- mixed(Mh_sqrt ~ BRD + Date.Collection + Age + (1|PenCode), data =MhYes,method = "KR", 
control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) 
anova(y4.2) 
 
#checking assumptions 
plot(y1$full_model) 
plot(y1.1$full_model) #better 
plot(y1.2$full_model) 
plot(y2$full_model) 
plot(y2.1$full_model) 
plot(y2.2$full_model) #better  
plot(y4$full_model) 
plot(y4.1$full_model) #better 
plot(y4.2$full_model)   
# this is for testing the normality of the residuals 
qqnorm(residuals(y1$full_model))  
qqnorm(residuals(y1.1$full_model)) #better log 
qqnorm(residuals(y1.2$full_model)) 
qqnorm(residuals(y2$full_model))  
qqnorm(residuals(y2.1$full_model)) #better log 
qqnorm(residuals(y2.2$full_model))  
qqnorm(residuals(y4$full_model))  
qqnorm(residuals(y4.1$full_model)) #better log 
qqnorm(residuals(y4.2$full_model))  
##log values are better 
 
# interpreting results 
afex_plot(y1.1, x = "BRD", id = "PenCode", dodge = 0.4, point_arg = list(size = 6), mapping="color") 
+ theme_bw(base_size = 15) + theme(legend.position="bottom", panel.grid.major.x = 
element_blank()) +  labs(y = "M. bovis-(log10)- Positive", x = "Health Status") + 
theme(legend.position="none")  
afex_plot(y3, x = "BRD", id = "PenCode", dodge = 0.4, point_arg = list(size = 6), mapping="color") 
+ theme_bw(base_size = 15) + theme(legend.position="bottom", panel.grid.major.x = 
element_blank()) + labs(y = "H. somni copies - Positive", x = "Health Status") + 
theme(legend.position="none") 
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afex_plot(y4.1, x = "BRD", id = "PenCode", dodge = 0.4, point_arg = list(size = 6), mapping="color") 
+ theme_bw(base_size = 15) + theme(legend.position="bottom", panel.grid.major.x = 
element_blank()) +labs(y = "M. haemolytica-(log10)-Positive", x = "Health Status") 
+theme(legend.position="none") 
c <- ggplot(data = MbYes, aes(x = Date.Collection, y = Mbovis_log)) + geom_point() + 
geom_smooth(method = "lm", se=TRUE) + scale_color_brewer(palette = "Dark2") + theme_classic() 
+  ylab("M. bovis-Rel.Abund (log10)-Positive") +xlab ("Days relative to end of the study") 
+theme(axis.title.x = element_text(color="black", size=14, face="bold"), axis.title.y = 
element_text(color="black", size=14, face="bold")) + theme(axis.text.x = element_text(color = 
"black", size = 14), axis.text.y = element_text(color = "black", size = 14))  
ggarrange(a,c,b, labels = c("A", "B", "C"),ncol = 3) 
 
## Relative abundance 
Y1 <- mixed(Mbovis_RelAbunBacteria ~ BRD + Date.Collection + Age + (1|PenCode), data = 
MbYes,method = "KR",  control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) 
anova(Y1) 
Y2 <- mixed(Pm_RelAbunBacteria ~ BRD + Date.Collection + Age + (1|PenCode), data = 
PmYes,method = "KR", control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) 
anova(Y2) 
Y3 <- mixed(Hs_RelAbunBacteria ~ BRD + Date.Collection + Age + (1|PenCode), data = 
HsYes,method = "KR", control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) 
anova(Y3) 
str(MhYes) 
Y4 <- mixed(Mh_RelAbunBacteria ~ BRD + Date.Collection + Age + (1|PenCode), data = 
MhYes,method = "KR", control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) 
anova(Y4) 
#Plots 
afex_plot(Y1, x = "BRD", id = "PenCode", dodge = 0.4, point_arg = list(size = 6), mapping="color") 
+theme_bw(base_size = 15) + theme(legend.position="bottom", panel.grid.major.x = element_blank()) 
+  labs(y = "M. bovis. Rel.Abund-(log10)- Positive", x = "Health Status") 
+theme(legend.position="none")  
afex_plot(Y2, x = "BRD", id = "PenCode", dodge = 0.4, point_arg = list(size = 6), mapping="color") 
+theme_bw(base_size = 15) + theme(legend.position="bottom", panel.grid.major.x = element_blank()) 
+ labs(y = "P. multocida. Rel.Abund-(log10)- Positive", x = "Health Status") 
+theme(legend.position="none") 
 
### Average temperature and relative abundance 
str(metadata) 
set_sum_contrasts()  
M1 <- mixed(Mbovis_RelAbunBacteria ~ Ave.temp + (1|PenCode), data = metadata,method = "KR", 
control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) 
anova(M1) 
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M2 <- mixed(Pm_RelAbunBacteria ~ Ave.temp + (1|PenCode), data = metadata,method = "KR", 
control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) 
anova(M2) 
M3 <- mixed(Mbovis_RelAbunBacteria ~ Ave.temp + (1|PenCode), data = MbYes,method = "KR", 
control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) 
anova(M3) 
 
##Checking assumptions 
#checking assumptions 
plot(M1$full_model) 
plot(M2$full_model) 
plot(M3$full_model) 
plot(M4$full_model) 
# this is for testing the normality of the residuals 
qqnorm(residuals(M1$full_model)) 
qqnorm(residuals(M2$full_model)) 
qqnorm(residuals(M3$full_model)) 
qqnorm(residuals(M4$full_model)) 
 
Code C. Co-occurrence analysis  
library(Hmisc) 
library(plyr) 
library(fdrtool) 
library(intergraph) 
library(ggplot2) 
library(tidyr) 
library(lubridate) 
library(cooccur) 
library(qiime2R) 
library(phyloseq) 
library(naniar) ##for replace_with_na_all function 
# this is the data 
 
setwd("~/Desktop/eunice/Thesis/Qiime/Samples/OnlySamples/Filtered/network/") 
#OTU table (shared file) 
#The OTU table as exported from qiime has a pound sign before the header row. You need to delete 
that pound sign in a text editor. 
metadata <- 
read.delim("~/Desktop/eunice/Thesis/Qiime/Samples/OnlySamples/Filtered/DESeq/DESeqmetadata.
txt", sep = "\t", header = T, quote = "", stringsAsFactors = F) 
#metadata <- metadata2[-1,] 
str(metadata) 
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metadata$BRD <- factor(metadata$BRD)  
order_groups <- metadata$ID 
row.names(metadata) = metadata[,1] 
metadata = metadata[,-1] 
 
ASVs <- read_qza("~/Desktop/eunice/Thesis/Qiime/Samples/OnlySamples/Filtered/Qiime/table-
filtered2.qza") 
ASV_s <- as.data.frame(ASVs$data) 
ASV_table <- as.data.frame(ASVs$data) #18010 ASVs 
ASV_table$ASVnos <- paste0("ASV", 1:nrow(ASV_table)) 
ASV_table$ASVstring <- rownames(ASV_table) 
rownames(ASV_table) <- ASV_table$ASVnos ##We change the ASV name created in Qiime to 
ASVn 
ASVkey <- ASV_table[, (ncol(ASV_table)-1):ncol(ASV_table)] #the key withe the names 
ASV_table <- ASV_table[,-(ncol(ASV_table)-1):-ncol(ASV_table)] 
ASV_table <- t(ASV_table) 
 
#Taxonomy of each OTU 
tax <-
read_qza("~/Desktop/eunice/Thesis/Qiime/Samples/OnlySamples/Filtered/Qiime/taxonomy.qza") 
tax <- as.data.frame(tax$data) 
tax2 = separate(tax, Taxon, into = c("Domain", "Phylum", "Class", "Order", "Family", "Genus", 
"Species"), sep=";") 
#All the strings that need to be removed and replaced with NA 
na_strings <- c(" s__", " g__", " f__", " o__", " c__") 
tax3 = replace_with_na_all(tax2, condition = ~.x %in% na_strings) 
#Next, all these `NA` classifications with the last level that was classified 
tax3[] <- t(apply(tax3, 1, zoo::na.locf)) 
tax3 <- as.data.frame(tax3) 
row.names(tax3) <- tax3[,1] 
tax3 = tax3[,-c(1:2)] 
tax.clean <- as.data.frame(tax3) 
tax.clean$OTUs <- rownames(tax.clean) 
###Remove all the OTUs that don't occur in our OTU.clean data set 
tax.final = tax.clean[row.names(tax.clean) %in% row.names(ASV_s),] 
##Remove unnecessary information from the taxonomy names 
tax.final$Phylum <- sub("D_0__*", "", tax.final[,1]) 
tax.final$Phylum <- sub("D_1__*", "", tax.final[,1]) 
tax.final$Class <- sub("D_0__*", "", tax.final[,2]) 
tax.final$Class <- sub("D_1__*", "", tax.final[,2]) 
tax.final$Class <- sub("D_2__*", "", tax.final[,2]) 
tax.final$Order <- sub("D_0__*", "", tax.final[,3]) 
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tax.final$Order <- sub("D_1__*", "", tax.final[,3]) 
tax.final$Order <- sub("D_2__*", "", tax.final[,3]) 
tax.final$Order <- sub("D_3__*", "", tax.final[,3]) 
tax.final$Family <- sub("D_0__*", "", tax.final[,4]) 
tax.final$Family <- sub("D_1__*", "", tax.final[,4]) 
tax.final$Family <- sub("D_2__*", "", tax.final[,4]) 
tax.final$Family <- sub("D_3__*", "", tax.final[,4]) 
tax.final$Family <- sub("D_4__*", "", tax.final[,4]) 
tax.final$Genus <- sub("D_0__*", "", tax.final[,5]) 
tax.final$Genus <- sub("D_1__*", "", tax.final[,5]) 
tax.final$Genus <- sub("D_2__*", "", tax.final[,5]) 
tax.final$Genus <- sub("D_3__*", "", tax.final[,5]) 
tax.final$Genus <- sub("D_4__*", "", tax.final[,5]) 
tax.final$Genus <- sub("D_5__*", "", tax.final[,5]) 
tax.final$Species <- sub("D_0__*", "", tax.final[,6]) 
tax.final$Species <- sub("D_1__*", "", tax.final[,6]) 
tax.final$Species <- sub("D_2__*", "", tax.final[,6]) 
tax.final$Species <- sub("D_3__*", "", tax.final[,6]) 
tax.final$Species <- sub("D_4__*", "", tax.final[,6]) 
tax.final$Species <- sub("D_5__*", "", tax.final[,6]) 
tax.final$Species <- sub("D_6__*", "", tax.final[,6]) 
TaxASV <- merge(tax.final, ASVkey, by.x = 0, by.y = "ASVstring") 
row.names(TaxASV) <- TaxASV[,10] 
TaxASV = TaxASV[,-c(1,10)] 
 
### Creating the Phyloseq Object 
OTU.physeq = otu_table(as.matrix(ASV_table), taxa_are_rows=FALSE) 
tax.physeq = tax_table(as.matrix(TaxASV)) 
#meta.physeq = sample_data(meta) 
meta.physeq = sample_data(metadata) 
 
#We then merge these into an object of class phyloseq. 
physeq_deseq = phyloseq(OTU.physeq, tax.physeq, meta.physeq) 
physeq_deseq 
colnames(tax_table(physeq_deseq)) 
## Filter any non-baxteria, chloroplast and mitochondria 
physeq_deseq %>%subset_taxa(Family != "Mitochondria" & Genus != "Mitochondria" &Species != 
"Mitochondria" &Order != "Chloroplast" &Family != "Chloroplast" &Genus != "Chloroplast" 
&Species != "Chloroplast") -> physeq_deseq 
physeq_deseq 
 
# Step 1: subset the samples based on healthy or sick 
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#Pruning the data 
# Set prunescale  
prunescale = 0.0001 
minlib = 40420 # rarefying to 1500 reads 
# Prune out rare OTUs by mean relative abundance set by prunescale 
tax.mean <- taxa_sums(physeq_deseq)/nsamples(physeq_deseq) 
sites.prune <- prune_taxa(tax.mean > prunescale*minlib, physeq_deseq) 
sites.prune 
prunetable4<- phyloseq_to_df(sites.prune, addtax = T, addtot = F, addmaxrank = F, sorting = 
"abundance") 
#Subseting the OTU table based on healthy and sick 
OTUtable <- prunetable4[,-c(2:9)] 
row.names(OTUtable) <- OTUtable[,1] 
OTUtable<- OTUtable[,-c(1)] 
OTUtable <- t(OTUtable) 
# Taxonomy table 
TaxaPrune<- prunetable4[,-c(10:140)] 
## Merging metadata and OTU table to then divide the data 
str(metadata) 
data <- merge(metadata, OTUtable, by.x = 0, by.y = 0) 
str(data) 
 
## Subset the data into healthy and sick 
dataHealthy <- subset(data, BRD=="0") 
dataHealthy<- dataHealthy[,-c(2:3)] #to remove any unnecessary columns 
row.names(dataHealthy) <-dataHealthy[,1] 
dataHealthy<- dataHealthy[,-c(1)] 
dataHealthy <- t(dataHealthy) 
#write.table(dataHealthy,"dataHealthy.txt",sep=",", row.names = TRUE)  
dataHealthy[dataHealthy > 1] <- 1 ## we transpose because for the co-occur function, it needs the rows 
be ASVs and colums sites (ID) 
#write.table(dataHealthy,"dataHealthyPresence.txt",sep=",", row.names = TRUE)  
dataBRD <- subset(data, BRD=="1") 
dataBRD<- dataBRD[,-c(2:3)] #to remove any unnecessary columns 
row.names(dataBRD) <-dataBRD[,1] 
dataBRD<- dataBRD[,-c(1)] 
dataBRD<- t(dataBRD) 
#write.table(dataBRD,"dataBRD.txt",sep=",", row.names = TRUE)  
 
dataBRD[dataBRD > 1] <- 1## we transpose because for the co-occur function, it needs the rows be 
ASVs and colums sites (ID) 
#write.table(dataBRD,"dataBRDPresence.txt",sep=",", row.names = TRUE)  
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### The co-occurrence step was run using the Purdue cluster   
## Running co-occur  
B <- cooccur(mat=dataBRD, type="spp_site", thresh=TRUE, spp_names=TRUE) 
summary(H1co) 
plot(H1co) 
print(B) 
prob.table(B) 
H <- cooccur(mat=dataHealthy, type="spp_site", thresh=TRUE, spp_names=TRUE) 
summary(H1co) 
plot(H1co)  
print(H) 
prob.table(H) 
 
##Cooocurrence data Healthy 
CooccurH <- read.csv("printHealthy.txt", na.strings = c("","NA"), header=TRUE) 
CoocpronH <- read.csv("prob.tableHealthy.txt", na.strings = c("","NA"), header=TRUE) 
### CooccurH contains only the positive and negative pairs 
# p_lt =1 positive  
# p_gt= negative 
positivepairs <-subset(CooccurH, p_lt > 0.9)  
positivepairs <- merge(TaxaPrune, positivepairs, by.x = "OTU", by.y = "sp1_name") 
colnames(positivepairs) <- c("sp1_name", "Phylum_1", "Class_1", "Order_1", "Family_1", 
"Genus_1", "Species_1", "Confidence_1", "OTUs_1", "sp1", "sp2", "sp1_inc", "sp2_inc", 
"obs_cooccur", "prob_cooccur", "exp_cooccur", "p_lt", "p_gt", "sp2_name") 
positivepairs <- merge(TaxaPrune,positivepairs, by.x = "OTU", by.y = "sp2_name") 
colnames(positivepairs) <- c("sp2_name", "Phylum_2", "Class_2", "Order_2", "Family_2", 
"Genus_2", "Species_2", "Confidence_2", "OTUs_2","sp1_name", "Phylum_1", "Class_1", 
"Order_1", "Family_1", "Genus_1", "Species_1", "Confidence_1", "OTUs_1", "sp1", "sp2", "sp1_inc", 
"sp2_inc", "obs_cooccur", "prob_cooccur", "exp_cooccur", "p_lt", "p_gt") 
#write.table(positivepairs,"positivepairsHealthy.txt",sep=",", row.names = FALSE)  
positiveH<-subset(CooccurH, p_lt > 0.999999) ##only the ones with high positive probability 
positiveH <- subset(CooccurH, obs_cooccur > 45) ### probability that the species will be in at least 
60% of the total samples 
positiveH <- subset(CooccurH, prob_cooccur > 0.9) ### probability that the two species will be in the 
same site 
str(positiveH) 
PosTax <- merge(TaxaPrune, positiveH, by.x = "OTU", by.y = "sp1_name") 
colnames(PosTax) <- c("sp1_name", "Phylum_1", "Class_1", "Order_1", "Family_1", "Genus_1", 
"Species_1", "Confidence_1", "OTUs_1", "sp1", "sp2", "sp1_inc", "sp2_inc", "obs_cooccur", 
"prob_cooccur", "exp_cooccur", "p_lt", "p_gt", "sp2_name") 
PosTax <- merge(TaxaPrune,PosTax, by.x = "OTU", by.y = "sp2_name") 



 
 

116 

colnames(PosTax) <- c("sp2_name", "Phylum_2", "Class_2", "Order_2", "Family_2", "Genus_2", 
"Species_2", "Confidence_2", "OTUs_2","sp1_name", "Phylum_1", "Class_1", "Order_1", 
"Family_1", "Genus_1", "Species_1", "Confidence_1", "OTUs_1", "sp1", "sp2", "sp1_inc", "sp2_inc", 
"obs_cooccur", "prob_cooccur", "exp_cooccur", "p_lt", "p_gt") 
#write.table(PosTax,"PosTax.txt",sep=",", row.names = FALSE)  
negativepairs <-subset(CooccurH, p_lt < 0.01) 
negativepairs <-subset(negativepairs, obs_cooccur <1) 
negativepairs <-subset(negativepairs, prob_cooccur <0.05) 
negativepairs <- merge(TaxaPrune, negativepairs, by.x = "OTU", by.y = "sp1_name") 
colnames(negativepairs) <- c("sp1_name", "Phylum_1", "Class_1", "Order_1", "Family_1", 
"Genus_1", "Species_1", "Confidence_1", "OTUs_1", "sp1", "sp2", "sp1_inc", "sp2_inc", 
"obs_cooccur", "prob_cooccur", "exp_cooccur", "p_lt", "p_gt", "sp2_name") 
negativepairs <- merge(TaxaPrune,negativepairs, by.x = "OTU", by.y = "sp2_name") 
colnames(negativepairs) <- c("sp2_name", "Phylum_2", "Class_2", "Order_2", "Family_2", 
"Genus_2", "Species_2", "Confidence_2", "OTUs_2","sp1_name", "Phylum_1", "Class_1", 
"Order_1", "Family_1", "Genus_1", "Species_1", "Confidence_1", "OTUs_1", "sp1", "sp2", "sp1_inc", 
"sp2_inc", "obs_cooccur", "prob_cooccur", "exp_cooccur", "p_lt", "p_gt") 
write.table(negativepairs,"negativepairsHealthy.txt",sep=",", row.names = FALSE)  
negaH<-subset(CooccurH, p_lt < 0.05) ##only the ones with high positive probability 
negaH <- merge(TaxaPrune, negaH, by.x = "OTU", by.y = "sp1_name") 
colnames(negaH) <- c("sp1_name", "Phylum_1", "Class_1", "Order_1", "Family_1", "Genus_1", 
"Species_1", "Confidence_1", "OTUs_1", "sp1", "sp2", "sp1_inc", "sp2_inc", "obs_cooccur", 
"prob_cooccur", "exp_cooccur", "p_lt", "p_gt", "sp2_name") 
negaH <- merge(TaxaPrune,negaH, by.x = "OTU", by.y = "sp2_name") 
colnames(negaH) <- c("sp2_name", "Phylum_2", "Class_2", "Order_2", "Family_2", "Genus_2", 
"Species_2", "Confidence_2", "OTUs_2","sp1_name", "Phylum_1", "Class_1", "Order_1", 
"Family_1", "Genus_1", "Species_1", "Confidence_1", "OTUs_1", "sp1", "sp2", "sp1_inc", "sp2_inc", 
"obs_cooccur", "prob_cooccur", "exp_cooccur", "p_lt", "p_gt") 
write.table(negaH,"negativeHealthy.txt",sep=",", row.names = FALSE)  
 
##Cooocurrence data BRD 
CooccurB <- read.csv("printBRD.txt", na.strings = c("","NA"), header=TRUE) 
CoocpronB <- read.csv("prob.tableBRD.txt", na.strings = c("","NA"), header=TRUE) 
### CooccurH contains only the positive and negative pairs 
# p_lt =1 positive  
# p_gt= negative 
positivepairsB <-subset(CooccurB, p_lt > 0.9)  
positivepairsB <- merge(TaxaPrune, positivepairsB, by.x = "OTU", by.y = "sp1_name") 
colnames(positivepairsB) <- c("sp1_name", "Phylum_1", "Class_1", "Order_1", "Family_1", 
"Genus_1", "Species_1", "Confidence_1", "OTUs_1", "sp1", "sp2", "sp1_inc", "sp2_inc", 
"obs_cooccur", "prob_cooccur", "exp_cooccur", "p_lt", "p_gt", "sp2_name") 
positivepairsB <- merge(TaxaPrune,positivepairsB, by.x = "OTU", by.y = "sp2_name") 
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colnames(positivepairsB) <- c("sp2_name", "Phylum_2", "Class_2", "Order_2", "Family_2", 
"Genus_2", "Species_2", "Confidence_2", "OTUs_2","sp1_name", "Phylum_1", "Class_1", 
"Order_1", "Family_1", "Genus_1", "Species_1", "Confidence_1", "OTUs_1", "sp1", "sp2", "sp1_inc", 
"sp2_inc", "obs_cooccur", "prob_cooccur", "exp_cooccur", "p_lt", "p_gt") 
#write.table(positivepairsB,"positivepairsB.txt",sep=",", row.names = TRUE)  
positiveB<-subset(CooccurB, p_lt > 0.999999) ##only the ones with high positive probability 
positiveB <- subset(CooccurB, obs_cooccur > 34) ### probability that the species will be in at least 
60% of the total samples 
positiveB <- subset(CooccurB, prob_cooccur > 0.9) ### probability that the two species will be in the 
same site 
str(positiveB) 
PosTaxB <- merge(TaxaPrune, positiveB, by.x = "OTU", by.y = "sp1_name") 
colnames(PosTaxB) <- c("sp1_name", "Phylum_1", "Class_1", "Order_1", "Family_1", "Genus_1", 
"Species_1", "Confidence_1", "OTUs_1", "sp1", "sp2", "sp1_inc", "sp2_inc", "obs_cooccur", 
"prob_cooccur", "exp_cooccur", "p_lt", "p_gt", "sp2_name") 
PosTaxB <- merge(TaxaPrune,PosTaxB, by.x = "OTU", by.y = "sp2_name") 
colnames(PosTaxB) <- c("sp2_name", "Phylum_2", "Class_2", "Order_2", "Family_2", "Genus_2", 
"Species_2", "Confidence_2", "OTUs_2","sp1_name", "Phylum_1", "Class_1", "Order_1", 
"Family_1", "Genus_1", "Species_1", "Confidence_1", "OTUs_1", "sp1", "sp2", "sp1_inc", "sp2_inc", 
"obs_cooccur", "prob_cooccur", "exp_cooccur", "p_lt", "p_gt") 
#write.table(PosTaxB,"PosTaxB.txt",sep=",", row.names = TRUE)  
negativepairsB <-subset(CooccurB, p_lt < 0.01) 
negativepairsB <-subset(negativepairsB, obs_cooccur <1) 
negativepairsB <-subset(negativepairsB, prob_cooccur <0.05) 
negativepairsB <- merge(TaxaPrune, negativepairsB, by.x = "OTU", by.y = "sp1_name") 
colnames(negativepairsB) <- c("sp1_name", "Phylum_1", "Class_1", "Order_1", "Family_1", 
"Genus_1", "Species_1", "Confidence_1", "OTUs_1", "sp1", "sp2", "sp1_inc", "sp2_inc",  
"obs_cooccur", "prob_cooccur", "exp_cooccur", "p_lt", "p_gt", "sp2_name") 
negativepairsB <- merge(TaxaPrune,negativepairsB, by.x = "OTU", by.y = "sp2_name") 
colnames(negativepairsB) <- c("sp2_name", "Phylum_2", "Class_2", "Order_2", "Family_2", 
"Genus_2", "Species_2", "Confidence_2", "OTUs_2","sp1_name", "Phylum_1", "Class_1", 
"Order_1", "Family_1", "Genus_1", "Species_1", "Confidence_1", "OTUs_1", "sp1", "sp2", "sp1_inc", 
"sp2_inc", "obs_cooccur", "prob_cooccur", "exp_cooccur", "p_lt", "p_gt") 
write.table(negativepairsB,"negativepairsBRD.txt",sep=",", row.names = FALSE)  
negaB<-subset(CooccurB, p_lt < 0.05) ##only the ones with high positive probability 
negaB <- merge(TaxaPrune, negaB, by.x = "OTU", by.y = "sp1_name") 
colnames(negaB) <- c("sp1_name", "Phylum_1", "Class_1", "Order_1", "Family_1", "Genus_1", 
"Species_1", "Confidence_1", "OTUs_1", "sp1", "sp2", "sp1_inc", "sp2_inc", "obs_cooccur", 
"prob_cooccur", "exp_cooccur", "p_lt", "p_gt", "sp2_name") 
negaB <- merge(TaxaPrune,negaB, by.x = "OTU", by.y = "sp2_name") 
colnames(negaB) <- c("sp2_name", "Phylum_2", "Class_2", "Order_2", "Family_2", "Genus_2", 
"Species_2", "Confidence_2", "OTUs_2","sp1_name", "Phylum_1", "Class_1", "Order_1", 



 
 

118 

"Family_1", "Genus_1", "Species_1", "Confidence_1", "OTUs_1", "sp1", "sp2", "sp1_inc", "sp2_inc", 
"obs_cooccur", "prob_cooccur", "exp_cooccur", "p_lt", "p_gt") 
write.table(negaB,"negativeBRD.txt",sep=",", row.names = FALSE)  
 
##Function 
https://rdrr.io/github/vmikk/metagMisc/src/R/phyloseq_to_df.R 
phyloseq_to_df <- function(physeq, addtax = T, addtot = F, addmaxrank = F, sorting = "abundance"){ 
  # require(phyloseq) 
  ## Data validation 
  if(any(addtax == TRUE || sorting == "taxonomy")){ 
    if(is.null(phyloseq::tax_table(physeq, errorIfNULL = F))){ 
      stop("Error: taxonomy table slot is empty in the input data.\n") 
    } 
  } 
  ## Prepare data frame 
  if(taxa_are_rows(physeq) == TRUE){ 
    res <- data.frame(OTU = phyloseq::taxa_names(physeq), phyloseq::otu_table(physeq), 
stringsAsFactors = F) 
  } else { 
    res <- data.frame(OTU = phyloseq::taxa_names(physeq), t(phyloseq::otu_table(physeq)), 
stringsAsFactors = F) 
  } 
  ## Check if the sample names were silently corrected in the data.frame 
  if(any(!phyloseq::sample_names(physeq) %in% colnames(res)[-1])){ 
    if(addtax == FALSE){ 
      warning("Warning: Sample names were converted to the syntactically valid column names in 
data.frame. See 'make.names'.\n") 
    } 
    if(addtax == TRUE){ 
      stop("Error: Sample names in 'physeq' could not be automatically converted to the syntactically 
valid column names in data.frame (see 'make.names'). Consider renaming with 'sample_names'.\n") 
    } 
  } 
  ## Add taxonomy 
  if(addtax == TRUE){ 
    ## Extract taxonomy table 
    taxx <- as.data.frame(phyloseq::tax_table(physeq), stringsAsFactors = F) 
    ## Reorder taxonomy table 
    taxx <- taxx[match(x = res$OTU, table = rownames(taxx)), ] 
    ## Add taxonomy table to the data 
    res <- cbind(res, taxx) 
    ## Add max tax rank column 
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    if(addmaxrank == TRUE){ 
      ## Determine the lowest level of taxonomic classification 
      res$LowestTaxRank <- get_max_taxonomic_rank(taxx, return_rank_only = TRUE) 
      ## Reorder columns (OTU name - Taxonomy - Max Rank - Sample Abundance) 
      res <- res[, c("OTU", phyloseq::rank_names(physeq), "LowestTaxRank", 
phyloseq::sample_names(physeq))] 
    } else { 
      ## Reorder columns (OTU name - Taxonomy - Sample Abundance) 
      res <- res[, c("OTU", phyloseq::rank_names(physeq), phyloseq::sample_names(physeq))]  
    } # end of addmaxrank 
  }   # end of addtax 
  ## Reorder OTUs 
  if(!is.null(sorting)){ 
    ## Sort by OTU abundance 
    if(sorting == "abundance"){ 
      otus <- res[, which(colnames(res) %in% phyloseq::sample_names(physeq))] 
      res <- res[order(rowSums(otus, na.rm = T), decreasing = T), ] 
    } 
    ## Sort by OTU taxonomy 
    if(sorting == "taxonomy"){ 
      taxtbl <- as.data.frame( phyloseq::tax_table(physeq), stringsAsFactors = F ) 
      ## Reorder by all columns 
      taxtbl <- taxtbl[do.call(order, taxtbl), ] 
      # taxtbl <- data.table::setorderv(taxtbl, cols = colnames(taxtbl), na.last = T) 
      res <- res[match(x = rownames(taxtbl), table = res$OTU), ] 
    } 
  } 
  ## Add OTU total abundance 
  if(addtot == TRUE){ 
    res$Total <- rowSums(res[, which(colnames(res) %in% phyloseq::sample_names(physeq))]) 
  } 
  rownames(res) <- NULL 
  return(res) 
} 
 
 
Code D. LDA analysis  
library(tidyverse) 
library(modelr) 
library(broom) 
library(ISLR) 
library(ROCR) 
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library(MASS) 
#install.packages("ISLR") 
## Test the data 
 
setwd("~/Desktop/eunice/Thesis/qPCR/LDA_with0/") 
qPCR <- read.csv("LDAMetadata.csv", na.strings = c("","NA"), header=TRUE) 
str(qPCR) 
##Data with 0 
qPCR <- mutate(qPCR, Mbovis_copies = log10(Mbovis_copies + 1)) 
qPCR <- mutate(qPCR, Pm_copies = log10(Pm_copies + 1)) 
qPCR <- mutate(qPCR, Hs_copies = log10(Hs_copies + 1)) 
qPCR <- mutate(qPCR, Mh_copies = log10(Mh_copies + 1)) 
qPCR <- mutate(qPCR, X16S_copies = log10(X16S_copies + 1)) 
QPCR<- qPCR 
 
#change the columns depending on the variables you will use to construct the model 
qPCR <- QPCR[c(1,7,8)] 
str(qPCR) 
set.seed(123) 
#training_sample2 <- sample(c(TRUE, FALSE), nrow(qPCR), replace = T, prob = c(0.6,0.4)) 
sample <- sample.int(n = nrow(qPCR), size = floor(.60*nrow(qPCR)), replace = F) 
train <- qPCR[sample, ] 
train$rownames <- rownames(train) 
test  <- qPCR[-sample, ] 
 
#Apply LDA to the training set 
str(train) 
train2<- train[c(1:3)] 
lda.BRD <- lda(BRD ~ ., train2) 
lda.BRD #show results 
plot(lda.BRD) 
 
# See if the model fits the data -- we use the predict function 
#we have to use the vector we created when we run the LDA  
lda.BRD2 <- predict(lda.BRD, newdata=test) 
#Validation, how well the model predicts the true positives and true negatives (%) 
str(test) 
#chao and shannon are number 
test %>% tally() 
test %>% count(BRD) 
train2 %>% count(BRD) 
Tlda <- lda.BRD2[["class"]] 
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Tlda <- as.data.frame(Tlda) 
Tlda %>% tally() 
Tlda %>% count(Tlda) 
lda.cm <- table(test$BRD, lda.BRD2$class) 
cm <- as.data.frame(lda.cm) 
cm 
 
#Clasification rate 
LDA_model = lda.cm %>% prop.table() %>% round(3) 
LDA_model ### percent of true positives and true negatives 
#Misclasification rate 
test %>%mutate(lda.pred = (lda.BRD2$class)) %>%summarise(lda.error = mean(BRD != lda.pred)) 
# Confusion matrices 
#Confusion matrix 
LDA_model = lda.cm 
LDA_model 
 
Code E. DESeq analysis  
library("DESeq2") 
library(dplyr) 
library(tidyr) 
library(ape) 
library(ggpubr) 
library(dplyr) 
library(ggplot2) 
library(phyloseq) 
library(plotly) 
library(tidyr) 
library(naniar) 
library(zoo) 
library(lubridate) 
library(qiime2R) 
#OTU table (shared file) 
 
#The OTU table as exported from qiime has a pound sign before the header row. You need to delete 
that pound sign in a text editor. 
metadata <- read.delim("DESeqmetadata.txt", sep = "\t", header = T, quote = "", stringsAsFactors = F) 
#metadata <- metadata2[-1,] 
str(metadata) 
metadata$BRD <- factor(metadata$BRD)  
order_groups <- metadata$ID 
row.names(metadata) = metadata[,1] 
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metadata = metadata[,-1] 
 
ASVs <- read_qza("~/Desktop/eunice/Thesis/Qiime/Samples/OnlySamples/Filtered/Qiime/table-
filtered2.qza") 
ASV_s <- as.data.frame(ASVs$data) 
ASV_table <- as.data.frame(ASVs$data) #18010 ASVs 
ASV_table$ASVnos <- paste0("ASV", 1:nrow(ASV_table)) 
ASV_table$ASVstring <- rownames(ASV_table) 
rownames(ASV_table) <- ASV_table$ASVnos ##We change the ASV name created in Qiime to 
ASVn 
ASVkey <- ASV_table[, (ncol(ASV_table)-1):ncol(ASV_table)] #the key withe the names 
ASV_table <- ASV_table[,-(ncol(ASV_table)-1):-ncol(ASV_table)] 
ASV_table <- t(ASV_table) 
#ASV_table2 <- ASV_table * 2 + 1 
 
#Taxonomy of each OTU 
tax <- 
read_qza("~/Desktop/eunice/Thesis/Qiime/Samples/OnlySamples/Filtered/Qiime/taxonomy.qza") 
tax <- as.data.frame(tax$data) 
tax2 = separate(tax, Taxon, into = c("Domain", "Phylum", "Class", "Order", "Family", "Genus", 
"Species"), sep=";") 
#All the strings that need to be removed and replaced with NA 
na_strings <- c(" s__", " g__", " f__", " o__", " c__") 
tax3 = replace_with_na_all(tax2, condition = ~.x %in% na_strings) 
#This code is great because an ASV that is unclassified at a certain level are all listed as `NA`. 
#Next, all these `NA` classifications with the last level that was classified 
tax3[] <- t(apply(tax3, 1, zoo::na.locf)) 
tax3 <- as.data.frame(tax3) 
row.names(tax3) <- tax3[,1] 
tax3 = tax3[,-c(1:2)] 
tax.clean <- as.data.frame(tax3) 
tax.clean$OTUs <- rownames(tax.clean) 
#Would be good to check here to make sure the order of the two data frames was the same. You should 
do this on your own. 
###Remove all the OTUs that don't occur in our OTU.clean data set 
tax.final = tax.clean[row.names(tax.clean) %in% row.names(ASV_s),] 
##Remove unneccesary information from the taxonomy names 
tax.final$Phylum <- sub("D_0__*", "", tax.final[,1]) 
tax.final$Phylum <- sub("D_1__*", "", tax.final[,1]) 
tax.final$Class <- sub("D_0__*", "", tax.final[,2]) 
tax.final$Class <- sub("D_1__*", "", tax.final[,2]) 
tax.final$Class <- sub("D_2__*", "", tax.final[,2]) 
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tax.final$Order <- sub("D_0__*", "", tax.final[,3]) 
tax.final$Order <- sub("D_1__*", "", tax.final[,3]) 
tax.final$Order <- sub("D_2__*", "", tax.final[,3]) 
tax.final$Order <- sub("D_3__*", "", tax.final[,3]) 
tax.final$Family <- sub("D_0__*", "", tax.final[,4]) 
tax.final$Family <- sub("D_1__*", "", tax.final[,4]) 
tax.final$Family <- sub("D_2__*", "", tax.final[,4]) 
tax.final$Family <- sub("D_3__*", "", tax.final[,4]) 
tax.final$Family <- sub("D_4__*", "", tax.final[,4]) 
tax.final$Genus <- sub("D_0__*", "", tax.final[,5]) 
tax.final$Genus <- sub("D_1__*", "", tax.final[,5]) 
tax.final$Genus <- sub("D_2__*", "", tax.final[,5]) 
tax.final$Genus <- sub("D_3__*", "", tax.final[,5]) 
tax.final$Genus <- sub("D_4__*", "", tax.final[,5]) 
tax.final$Genus <- sub("D_5__*", "", tax.final[,5]) 
tax.final$Species <- sub("D_0__*", "", tax.final[,6]) 
tax.final$Species <- sub("D_1__*", "", tax.final[,6]) 
tax.final$Species <- sub("D_2__*", "", tax.final[,6]) 
tax.final$Species <- sub("D_3__*", "", tax.final[,6]) 
tax.final$Species <- sub("D_4__*", "", tax.final[,6]) 
tax.final$Species <- sub("D_5__*", "", tax.final[,6]) 
tax.final$Species <- sub("D_6__*", "", tax.final[,6]) 
TaxASV <- merge(tax.final, ASVkey, by.x = 0, by.y = "ASVstring") 
row.names(TaxASV) <- TaxASV[,10] 
TaxASV = TaxASV[,-c(1,10)] 
### Creating the Phyloseq Object 
OTU.physeq = otu_table(as.matrix(ASV_table), taxa_are_rows=FALSE) 
tax.physeq = tax_table(as.matrix(TaxASV)) 
#meta.physeq = sample_data(meta) 
meta.physeq = sample_data(metadata) 
#We then merge these into an object of class phyloseq. 
physeq_deseq = phyloseq(OTU.physeq, tax.physeq, meta.physeq) 
physeq_deseq 
colnames(tax_table(physeq_deseq)) 
## Filter any non-baxteria, chloroplast and mitochondria 
physeq_deseq %>% subset_taxa(Family != "Mitochondria" & Genus != "Mitochondria" &Species != 
"Mitochondria" &Order != "Chloroplast" & Family != "Chloroplast" &Genus != "Chloroplast" 
&Species != "Chloroplast") -> physeq_deseq 
physeq_deseq 
#You need to run the phyloseq_to_df function 
prunetable<- phyloseq_to_df(physeq_deseq, addtax = T, addtot = F, addmaxrank = F,sorting = 
"abundance") 
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## no mitochondria or chloroplast in the data 
NewTax <- prunetable[,c(1:9)] 
row.names(NewTax) <- NewTax[,1] 
NewTax = NewTax[,-c(1)] 
NewASVTable <- prunetable[,c(1,10:140)] 
row.names(NewASVTable) <- NewASVTable[,1] 
NewASVTable = NewASVTable[,-c(1)] 
NewASVTable = t(NewASVTable) 
 
### Checking how the data looks 
## Make a plot to see the community in the two groups 
# this prunes the taxa with abundance <2% 
### CALCULATION OF THE ABUNDANCE OF EACH OTU   
otu.summary <- prop.table(as.matrix(NewASVTable), 1)  
str(otu.summary) 
otu_abund <- colSums(otu.summary) 
otu_abund2 <- as.data.frame(otu_abund) 
otu.summary <- rbind(otu_abund, otu.summary) 
otu.summary_sorted <- otu.summary[,order(otu.summary[1,], decreasing = TRUE)] 
str(otu.summary_sorted) 
melt_otu <- reshape2::melt(otu.summary_sorted[, c(1:17931)]) ###TOTAL NUMBER OF OTUS 
colnames(melt_otu) <- c("Sample", "ASV", "Abundance") 
str(melt_otu) 
levels(melt_otu$Sample) 
#merging the abundance of each OTU with the metadata and the taxonomy file 
meta_otu <- merge(metadata, melt_otu, by.x = 0, by.y = "Sample") 
meta_otu_tax <- merge(meta_otu, NewTax, by.x = "ASV", by.y = 0) 
levels(meta_otu_tax$BRD) 
meta_otu_tax$Row.names <- factor(meta_otu_tax$Row.names, levels = order_groups) 
summary(meta_otu_tax$Row.names) ###to check that all the samples have the same number of OTUs 
(6199 total, same value from the taxonomy file)  
meta_otu_tax$Family <- factor(meta_otu_tax$Family) 
meta_otu_tax$Status <- factor(meta_otu_tax$BRD) 
levels(meta_otu_tax$Status) <- list("Healthy"="0", "BRD"="1") 
meta_otu_tax$Genus <- factor(meta_otu_tax$Genus) 
meta_otu_tax$Phylum <- factor(meta_otu_tax$Phylum) 
meta_otu_tax$ASV <- factor(meta_otu_tax$ASV) 
str(meta_otu_tax) 
 
### Checking the abundance of the most common taxa 
## The abundance at a family level 
family <- meta_otu_tax %>% group_by(Family) %>% summarise(Abundance = sum(Abundance)) 
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attach(family) 
family <- family[order(-Abundance),] 
## Familly abundance only taking in consideration treatment effect in both days 
family.2 <- meta_otu_tax %>% group_by(Family, Status) %>% summarise(Abundance = 
sum(Abundance)) 
attach(family.2) 
family.2 <- family.2[order(-Abundance),] 
### Abundance at a phlyum level 
phylum <- meta_otu_tax %>% group_by(Phylum) %>% summarise(Abundance = sum(Abundance)) 
attach(phylum) 
phylum <- phylum[order(-Abundance),] 
## Phylum abundance only taking in consideration treatment effect in both days 
phylum.2 <- meta_otu_tax %>% group_by(Phylum, Status) %>% summarise(Abundance = 
sum(Abundance)) 
attach(phylum.2) 
phylum.2 <- phylum.2[order(-Abundance),] 
## Phylum abundance only taking in consideration season effect in both days 
phylum13.3 <- meta_otu_13 %>% group_by(phylum, season) %>% summarise(Abundance = 
sum(Abundance)) 
attach(phylum13.3) 
phylum13.3 <- phylum13.3[order(-Abundance),] 
### Abundance at a genus level 
genus <- meta_otu_tax %>% group_by(Genus) %>% summarise(Abundance = sum(Abundance)) 
attach(genus) 
genus <- genus[order(-Abundance),] 
## Genus abundance only taking in consideration treatment effect 
genus.2 <- meta_otu_tax %>% group_by(Genus, Status) %>% summarise(Abundance = 
sum(Abundance)) 
attach(genus.2) 
genus.2 <- genus.2[order(-Abundance),] 
 
## PHYLUM LEVEL 
num_genera <- 97 # we need 100 OTUs in order to get the 25 most abundant Genus 
melt_otu1 <- reshape2::melt(otu.summary_sorted[, c(1:num_genera)]) 
colnames(melt_otu1) <- c("Sample", "OTU", "Abundance") 
#Putting it all together: merge melt_otu, metadata, taxonomy tables 
meta_otu1 <- merge(metadata, melt_otu1, by.x = 0, by.y = "Sample") 
meta_otu_tax1 <- merge(meta_otu1, NewTax, by.x = "OTU", by.y = 0) 
meta_otu_tax1$Row.names <- factor(meta_otu_tax1$Row.names, levels = order_groups) 
summary(meta_otu_tax1$Row.names) ###to check that all the samples have the same number of 
OTUs (346 total)  
meta_otu_tax1$Family <- factor(meta_otu_tax1$Family) 
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meta_otu_tax1$Status <- factor(meta_otu_tax1$BRD) 
levels(meta_otu_tax1$Status) <- list("Healthy"="0", "BRD"="1") 
meta_otu_tax1$Phylum <- factor(meta_otu_tax1$Phylum) 
meta_otu_tax1$Genus <- factor(meta_otu_tax1$Genus) 
meta_otu_tax1$Family <- factor(meta_otu_tax1$Family) 
levels(meta_otu_tax1$Phylum) 
 
##Whole phylum abundance  
### Calculation of the Phylum relative abundance for each time and treatment 
PhylumAB <- meta_otu_tax1 %>% group_by(Row.names, Status, Date.Collection, Phylum) %>% 
summarise(taxa.sum = sum(Abundance)) %>%group_by(Status, Date.Collection, 
Phylum) %>%summarise(taxa.average = mean(taxa.sum)) ### relative abundance 
str(PhylumAB) 
PhylumAB$Phylum <- factor(PhylumAB$Phylum) 
PhylumAB$Date.Collection <- factor(PhylumAB$Date.Collection) 
levels(PhylumAB$Phylum) 
levels(PhylumAB$Date.Collection) 
levels(PhylumAB$Date.Collection) <- list("7/14"="7/14/20","7/21"="7/21/20","8/12"="8/12/20", 
"8/19"="8/19/20","8/26"="8/26/20", "9/10"="9/10/20", "9/30"="9/30/20", "10/14"="10/14/20", 
"10/28"="10/28/20","11/4"="11/4/20", "11/11"="11/11/20", "11/18"="11/18/20", "12/2"="12/2/20") 
my_colors <- 
c('#a6cee3','#1f78b4','#b3df8a','#33a03c','#fb9a99','#e31a1c','#fdbf6f','#ff7f00','#cab3d6','#6a3d9a','#f
fff99','#b15938',  "#CBD588", "#5F7FC7", "orange","#DA5734", "#508578", 
"#CD9BCD","#AD6F3B", "#673770","#D14385", "#653936", "#C84348", "#8569D5", 
"#5E738F","#D1A33D", "#8A7C64", "#599861", "black") 
#Plot the graph  
ggplot(PhylumAB, aes(x = Date.Collection, y = taxa.average, fill =Phylum)) + geom_bar(stat = 
"identity") +theme_bw()+scale_fill_manual(values = my_colors) +facet_grid(Status~.)+  guides(fill = 
guide_legend(reverse = F, keywidth = 1.5, keyheight = .6, ncol = 1)) 
+theme(legend.text=element_text(size=8)) +theme(strip.text = element_text(size = 13, face = "bold")) 
+ theme(legend.text = element_text(size=13)) +theme(legend.title = element_text(size = 13, face= 
"bold")) +theme(legend.key.size = unit(8, "point")) +theme(axis.title.x = element_text(color="black", 
size=13, face="bold"), axis.title.y = element_text(color="black", size=13, face="bold")) + 
theme(axis.text.x = element_text(color = "black", size = 13), axis.text.y = element_text(color = "black", 
size = 13)) +ylab(paste0("Relative Abundance Phylum (Top 8)")) +  labs(x='Date of Collection') 
 
### FAMILY LEVEL 
num_genera <- 44 # s 
melt_otu3 <- reshape2::melt(otu.summary_sorted[, c(1:num_genera)]) 
colnames(melt_otu3) <- c("Sample", "OTU", "Abundance") 
#Putting it all together: merge melt_otu, metadata, taxonomy tables 
meta_otu3 <- merge(metadata, melt_otu3, by.x = 0, by.y = "Sample") 
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meta_otu_tax3 <- merge(meta_otu3, NewTax, by.x = "OTU", by.y = 0) 
str(meta_otu_tax3) 
meta_otu_tax3$Row.names <- factor(meta_otu_tax3$Row.names, levels = order_groups) 
summary(meta_otu_tax3$Row.names) ###to check that all the samples have the same number of 
OTUs (120)  
meta_otu_tax3$Family <- factor(meta_otu_tax3$Family) 
meta_otu_tax3$Status <- factor(meta_otu_tax3$BRD) 
levels(meta_otu_tax3$Status) <- list("Healthy"="0", "BRD"="1") 
meta_otu_tax3$Phylum <- factor(meta_otu_tax3$Phylum) 
meta_otu_tax3$Genus <- factor(meta_otu_tax3$Genus) 
meta_otu_tax3$Family <- factor(meta_otu_tax3$Family) 
levels(meta_otu_tax3$Phylum) 
FamilyAB <- meta_otu_tax3 %>% group_by(Row.names, Status, Date.Collection, Family) %>% 
summarise(taxa.sum = sum(Abundance)) %>%group_by(Status, Date.Collection, , Family) %>% 
summarise(taxa.average = mean(taxa.sum))  
str(FamilyAB) 
FamilyAB$Family <- factor(FamilyAB$Family) 
FamilyAB$Date.Collection <- factor(FamilyAB$Date.Collection) 
levels(FamilyAB$Family) 
levels(FamilyAB$Date.Collection) 
levels(FamilyAB$Date.Collection) <- list("7/14"="7/14/20","7/21"="7/21/20","8/12"="8/12/20", 
"8/19"="8/19/20","8/26"="8/26/20", "9/10"="9/10/20", "9/30"="9/30/20", "10/14"="10/14/20", 
"10/28"="10/28/20","11/4"="11/4/20", "11/11"="11/11/20", "11/18"="11/18/20", "12/2"="12/2/20") 
 
#Plot the graph  
ggplot(FamilyAB, aes(x = Date.Collection, y = taxa.average, fill =Family)) + geom_bar(stat = 
"identity") +theme_bw()+scale_fill_manual(values = my_colors) +facet_grid(Status~.)+ylim(c(0,1)) 
+guides(fill = guide_legend(reverse = F, keywidth = 1.0, ncol = 1)) 
+theme(legend.text=element_text(size=8)) +guides(fill = guide_legend(reverse = F, keywidth = 1.5, 
keyheight = .6, ncol = 1)) +theme(legend.text=element_text(size=8)) +theme(strip.text = 
element_text(size = 13, face = "bold")) +theme(legend.text = element_text(size=13)) 
+theme(legend.title = element_text(size = 13, face= "bold")) +theme(legend.key.size = unit(8, "point")) 
+theme(axis.title.x = element_text(color="black", size=13, face="bold"), axis.title.y = 
element_text(color="black", size=13, face="bold")) + theme(axis.text.x = element_text(color = 
"black", size = 13), axis.text.y = element_text(color = "black", size = 13)) +  ylab(paste0("Average 
Relative Abundance Family (Top 20)")) +  labs(x='Date of Collection') 
 
#Genus level 
num_genera <- 10 # we need 100 OTUs in order to get the 25 most abundant Genus 
melt_otu4 <- reshape2::melt(otu.summary_sorted[, c(1:num_genera)]) 
colnames(melt_otu4) <- c("Sample", "OTU", "Abundance") 
#Putting it all together: merge melt_otu, metadata, taxonomy tables 
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meta_otu4 <- merge(metadata, melt_otu4, by.x = 0, by.y = "Sample") 
meta_otu_tax4 <- merge(meta_otu4, NewTax, by.x = "OTU", by.y = 0) 
str(meta_otu_tax4) 
meta_otu_tax4$Row.names <- factor(meta_otu_tax4$Row.names, levels = order_groups) 
summary(meta_otu_tax4$Row.names) ###to check that all the samples have the same number of 
OTUs (53) t) 
meta_otu_tax4$Family <- factor(meta_otu_tax4$Family) 
meta_otu_tax4$Status <- factor(meta_otu_tax4$BRD) 
levels(meta_otu_tax4$Status) <- list("Healthy"="0", "BRD"="1") 
meta_otu_tax4$Phylum <- factor(meta_otu_tax4$Phylum) 
meta_otu_tax4$Genus <- factor(meta_otu_tax4$Genus) 
meta_otu_tax4$Family <- factor(meta_otu_tax4$Family) 
levels(meta_otu_tax3$Phylum) 
##Whole family abuundance  
GenusAB <- meta_otu_tax4 %>% group_by(Row.names, Status, Date.Collection, Genus) %>% 
summarise(taxa.sum = sum(Abundance)) %>%group_by(Status, Date.Collection, 
Genus) %>%summarise(taxa.average = mean(taxa.sum))  
str(PhylumAB) 
GenusAB$Genus <- factor(GenusAB$Genus) 
GenusAB$Date.Collection <- factor(GenusAB$Date.Collection) 
levels(GenusAB$Genus) 
levels(GenusAB$Date.Collection) 
levels(GenusAB$Date.Collection) <- list("7/14"="7/14/20","7/21"="7/21/20","8/12"="8/12/20", 
"8/19"="8/19/20","8/26"="8/26/20", "9/10"="9/10/20", "9/30"="9/30/20", "10/14"="10/14/20", 
"10/28"="10/28/20","11/4"="11/4/20", "11/11"="11/11/20", "11/18"="11/18/20", "12/2"="12/2/20") 
# PLOT FOR THE FIRST 25 GENUS 
ggplot(GenusAB, aes(x = Date.Collection, y = taxa.average, fill =Genus)) + geom_bar(stat = "identity") 
+ theme_bw()+ scale_fill_manual(values = my_colors) +facet_grid(Status~.)+ylim(c(0,1)) 
+guides(fill = guide_legend(reverse = F, keywidth = 1.5, keyheight = .6, ncol = 1)) + guides(fill = 
guide_legend(reverse = F, keywidth = 1.5, keyheight = .6, ncol = 1)) 
+theme(legend.text=element_text(size=8)) +theme(strip.text = element_text(size = 13, face = "bold")) 
+theme(legend.text = element_text(size=13)) +theme(legend.title = element_text(size = 13, face= 
"bold")) +theme(legend.key.size = unit(8, "point")) +theme(axis.title.x = element_text(color="black", 
size=13, face="bold"), axis.title.y = element_text(color="black", size=13, face="bold")) + 
theme(axis.text.x = element_text(color = "black", size = 13), axis.text.y = element_text(color = "black", 
size = 13)) +  ylab(paste0("Average Relative Abundance Genus (Top 20)")) +  labs(x='Date of 
Collection') 
 
## Running DESeq 
#To use DESeq, we need no zeros in our OTU table. So we will edit the table + 1 
NewASVTable2 <- NewASVTable + 1 
### Creating the Phyloseq Object 
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OTU.physeq = otu_table(as.matrix(NewASVTable2), taxa_are_rows=FALSE) 
tax.physeq = tax_table(as.matrix(NewTax)) 
meta.physeq = sample_data(metadata) 
#We then merge these into an object of class phyloseq. 
physeq_deseq = phyloseq(OTU.physeq, tax.physeq, meta.physeq) 
physeq_deseq 
levels(metadata$BRD) 
# establishing the model 
diagdds = phyloseq_to_deseq2(physeq_deseq, ~ BRD) 
#PenCode needs to be factor 
diagdds = DESeq(diagdds, test="Wald", fitType="parametric") 
head(diagdds) 
resultsNames(diagdds) 
my_contrast = c("BRD", "0", "1") 
res = results(diagdds, contrast = my_contrast, cooksCutoff = FALSE, alpha=0.05) 
summary(res) 
res 
res <- as.data.frame(res) 
alpha = 0.05 
sigtab = res[which(res$padj < alpha), ] 
sigtab = cbind(as(sigtab, "data.frame"), as(tax_table(physeq_deseq)[rownames(sigtab), ], "matrix")) 
sigtab 
sigtab$High_low <- ifelse(sigtab$log2FoldChange < -1.00, 'High in 
Healthy',ifelse(sigtab$log2FoldChange > 1.00, 'High in BRD','Mid Change')) 
#write.table(sigtab,"sigtab.txt",sep=",", row.names = TRUE) 
#To manke the figures 
DeSeq = read.table("DESeqResultsNew.txt", header=TRUE, sep="\t") 
str(DeSeq) 
DeSeq$High_low <- factor(DeSeq$High_low) 
DeSeq$Species <- factor(DeSeq$Species) 
levels(DeSeq$Species) 
levels(DeSeq$Species) <- list("Bacteroides"="Bacteroides", "Bibersteinia"="Bibersteinia", 
"Helcococcus ovis"="Helcococcus ovis", "Moraxella (1)"="Moraxella (1)", "Moraxella 
(2)"="Moraxella (2)", "Moraxella boevrei DSM 14165 (1)"="Moraxella boevrei DSM 14165 
(1)","Moraxellaceae (1)"="Moraxellaceae (1)","Mycoplasma (1)"="Mycoplasma (1)", "Mycoplasma 
(2)"="Mycoplasma (2)", "Mycoplasma alkalescens 14918"="Mycoplasma alkalescens 14918 
","Mycoplasma arginini"="Mycoplasma arginini", "Streptococcus"="Streptococcus" , "Trueperella 
pyogenes" ="Trueperella pyogenes","uncultured Parvimonas"="uncultured Parvimonas", "uncultured 
Bergeyella"="uncultured Bergeyella", "Clostridium sensu stricto 1"="Clostridium sensu stricto 1", 
"Hydrogenophaga"="Hydrogenophaga", "Luteimonas"="Luteimonas", "Moraxella boevrei DSM 
14165 (2)"="Moraxella boevrei DSM 14165 (2)", "Moraxellaceae (2)"="Moraxellaceae (2)", 
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"Mycoplasma bovirhinis"="Mycoplasma bovirhinis", "Salinicoccus"="Salinicoccus", "uncultured 
Gemmobacter"="uncultured Gemmobacter") 
ggplot(data = DeSeq,aes(x = Species, y = log2FoldChange, group = factor(High_low))) + coord_flip() 
+geom_bar(stat = "identity", aes(fill = factor(High_low)), position = position_dodge(width = 0.9)) 
+labs(fill= "Diagnosis") +theme_bw()+ylab("Log2 Fold Change") +xlab ("Differentially ASVs") 
+theme(strip.text = element_text(size = 9, face = "bold")) +theme(legend.text = element_text(size=12)) 
+theme(legend.title = element_text(size = 12, face= "bold")) + theme(legend.key.size = unit(8, 
"point")) + theme(axis.title.x = element_text(color="black", size=12, face="bold"), axis.title.y = 
element_text(color="black", size=12, face="bold")) + theme(axis.text.x = element_text(color = 
"black", size = 12), axis.text.y = element_text(color = "black", size = 12))  
 
#Functions 
phyloseq_to_df <- function(physeq, addtax = T, addtot = F, addmaxrank = F, sorting = "abundance"){ 
  # require(phyloseq) 
  ## Data validation 
  if(any(addtax == TRUE || sorting == "taxonomy")){ 
    if(is.null(phyloseq::tax_table(physeq, errorIfNULL = F))){ 
      stop("Error: taxonomy table slot is empty in the input data.\n") 
    } 
  } 
  ## Prepare data frame 
  if(taxa_are_rows(physeq) == TRUE){ 
    res <- data.frame(OTU = phyloseq::taxa_names(physeq), phyloseq::otu_table(physeq), 
stringsAsFactors = F) 
  } else { 
    res <- data.frame(OTU = phyloseq::taxa_names(physeq), t(phyloseq::otu_table(physeq)), 
stringsAsFactors = F) 
  } 
  ## Check if the sample names were silently corrected in the data.frame 
  if(any(!phyloseq::sample_names(physeq) %in% colnames(res)[-1])){ 
    if(addtax == FALSE){ 
      warning("Warning: Sample names were converted to the syntactically valid column names in 
data.frame. See 'make.names'.\n") 
    } 
    if(addtax == TRUE){ 
      stop("Error: Sample names in 'physeq' could not be automatically converted to the syntactically 
valid column names in data.frame (see 'make.names'). Consider renaming with 'sample_names'.\n") 
    } 
  } 
  ## Add taxonomy 
  if(addtax == TRUE){ 
    ## Extract taxonomy table 
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    taxx <- as.data.frame(phyloseq::tax_table(physeq), stringsAsFactors = F) 
    ## Reorder taxonomy table 
    taxx <- taxx[match(x = res$OTU, table = rownames(taxx)), ] 
    ## Add taxonomy table to the data 
    res <- cbind(res, taxx) 
    ## Add max tax rank column 
    if(addmaxrank == TRUE){ 
      ## Determine the lowest level of taxonomic classification 
      res$LowestTaxRank <- get_max_taxonomic_rank(taxx, return_rank_only = TRUE) 
      ## Reorder columns (OTU name - Taxonomy - Max Rank - Sample Abundance) 
      res <- res[, c("OTU", phyloseq::rank_names(physeq), "LowestTaxRank", 
phyloseq::sample_names(physeq))] 
    } else { 
      ## Reorder columns (OTU name - Taxonomy - Sample Abundance) 
      res <- res[, c("OTU", phyloseq::rank_names(physeq), phyloseq::sample_names(physeq))] 
    } # end of addmaxrank 
  }   # end of addtax 
  ## Reorder OTUs 
  if(!is.null(sorting)){ 
    ## Sort by OTU abundance 
    if(sorting == "abundance"){ 
      otus <- res[, which(colnames(res) %in% phyloseq::sample_names(physeq))] 
      res <- res[order(rowSums(otus, na.rm = T), decreasing = T), ] 
    } 
    ## Sort by OTU taxonomy 
    if(sorting == "taxonomy"){ 
      taxtbl <- as.data.frame( phyloseq::tax_table(physeq), stringsAsFactors = F ) 
      ## Reorder by all columns 
      taxtbl <- taxtbl[do.call(order, taxtbl), ] 
      # taxtbl <- data.table::setorderv(taxtbl, cols = colnames(taxtbl), na.last = T) 
      res <- res[match(x = rownames(taxtbl), table = res$OTU), ] 
    } 
  } 
  ## Add OTU total abundance 
  if(addtot == TRUE){ 
    res$Total <- rowSums(res[, which(colnames(res) %in% phyloseq::sample_names(physeq))]) 
  } 
  rownames(res) <- NULL 
  return(res) 
} 
 
Code F. Qiime2 code to process the 16S rRNA gene sequencing 
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Getting set up 
You will need the necessary modules to run qiime 
$ module load bioinfo 
$ module load mothur 
$ mothur  
 make.file(inputdir=., type=gz, prefix=BRD.stability) 
CHANGe the first row to (use “Tab” to separate it) 
sample-id   forward-absolute-filepath       reverse-absolute-filepath 
$ module load Qiime/2-2020.2 
$ module list 
$ qiime tools import \ 
--type 'SampleData[PairedEndSequencesWithQuality]' \ 
--input-path BRD_onlysamples.stability.files \ 
--input-format PairedEndFastqManifestPhred33V2 \ 
--output-path ./Qiime_new/demux-paired-end.qza 
$ qiime demux summarize \ 
  --i-data ./Qiime_new/demux-paired-end.qza \ 
  --o-visualization ./Qiime_new/demux-paired-end.qzv 
$ qiime dada2 denoise-paired \ 
  --i-demultiplexed-seqs ./Qiime_new/demux-paired-end.qza \ 
  --p-trim-left-f 0 \ 
  --p-trim-left-r 0 \ 
  --p-trunc-len-f 251 \ 
  --p-trunc-len-r 223 \ 
  --o-table ./Qiime_new/table.qza \ 
  --o-representative-sequences ./Qiime_new/rep-seqs.qza \ 
  --o-denoising-stats ./Qiime_new/denoising-stats.qza 
FeatureTable and FeatureData summaries 
$ qiime feature-table summarize \ 
  --i-table ./Qiime_new/table.qza \ 
  --o-visualization ./Qiime_new/table.qzv \ 
  --m-sample-metadata-file BRD.samplesQiime.txt  
$ qiime feature-table tabulate-seqs \ 
  --i-data ./Qiime_new/rep-seqs.qza \ 
  --o-visualization ./Qiime_new/rep-seqs.qzv 
$ qiime metadata tabulate \ 
  --m-input-file ./Qiime_new/denoising-stats.qza \ 
  --o-visualization ./Qiime_new/denoising-stats.qzv 
$ qiime phylogeny align-to-tree-mafft-fasttree \ 
  --i-sequences ./Qiime_new/rep-seqs.qza \ 
  --o-alignment ./Qiime_new/aligned-rep-seqs.qza \ 
  --o-masked-alignment ./Qiime_new/masked-aligned-rep-seqs.qza \ 
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  --o-tree ./Qiime_new/unrooted-tree.qza \ 
  --o-rooted-tree ./Qiime_new/rooted-tree.qza 
$ qiime diversity alpha-rarefaction \ 
  --i-table ./Qiime_new/table.qza \ 
  --i-phylogeny ./Qiime_new/rooted-tree.qza \ 
  --p-max-depth 35119 \ 
  --m-metadata-file BRD.samplesQiime.txt   \ 
  --o-visualization ./Qiime_new/alpha-rarefaction-35119.qzv 
$ qiime diversity alpha-rarefaction \ 
  --i-table ./Qiime_new/table.qza \ 
  --i-phylogeny ./Qiime_new/rooted-tree.qza \ 
  --p-max-depth 40420 \ 
  --m-metadata-file BRD.samplesQiime.txt   \ 
  --o-visualization ./Qiime_new/alpha-rarefaction-40420.qzv 
$ qiime diversity core-metrics-phylogenetic \ 
  --i-phylogeny ./Qiime_new/rooted-tree.qza \ 
  --i-table ./Qiime_new/table.qza \ 
  --p-sampling-depth 40420 \ 
  --m-metadata-file BRD.samplesQiime.txt \ 
  --output-dir ./Qiime_new/core-metrics-results 
Taxonomic analysis 
$ qiime feature-classifier classify-sklearn \ 
  --i-classifier silva-132-99-515-806-nb-classifier.qza \ 
  --i-reads ./Qiime_new/rep-seqs.qza \ 
  --o-classification ./Qiime_new/taxonomy.qza 
$ qiime metadata tabulate \ 
  --m-input-file ./Qiime_new/taxonomy.qza \ 
  --o-visualization ./Qiime_new/taxonomy.qzv 
$ qiime taxa barplot \ 
  --i-table ./Qiime_new/table.qza \ 
  --i-taxonomy ./Qiime_new/taxonomy.qza \ 
  --m-metadata-file BRD.samplesQiime.txt \ 
  --o-visualization ./Qiime_new/taxa-bar-plots.qzv 
## Export the documents from the cluster to the computer 
$ qiime tools export --input-path ./Qiime_new/taxonomy.qza --output-path ./Qiime_new/core-
metrics-results/exported/ 
 
You are in core-metric-results-2 directory  
$ qiime tools export --input-path ./rarefied_table.qza --output-path exported/ 
$ qiime tools export --input-path ./faith_pd_vector.qza --output-path exported/ 
$ mv exported/alpha-diversity.tsv exported/faith_pd.tsv 
$ qiime tools export --input-path ./shannon_vector.qza --output-path exported/ 
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$ mv exported/alpha-diversity.tsv exported/shannon.tsv 
$ qiime tools export --input-path ./observed_otus_vector.qza --output-path exported/ 
$ mv exported/alpha-diversity.tsv exported/observed_otus.tsv 
$ ls exported 
$ qiime tools export --input-path ./evenness_vector.qza --output-path exported/ 
$ mv exported/alpha-diversity.tsv exported/evenness.tsv 
$ biom convert -i exported/feature-table.biom -o exported/rarified-table.tsv --to-tsv 
 
Export beta diversity, you have to move to the OnlySamples directory 
$ qiime tools export \ 
  --input-path ./Qiime_new/core-metrics-results/unweighted_unifrac_pcoa_results.qza \ 
  --output-path ./Qiime_new/core-metrics-results/exported-unweighted_unifrac 
$ mv ./Qiime_new/core-metrics-results/exported-
unweighted_unifrac/ordination.txt ./Qiime_new/core-metrics-results/exported-
unweighted_unifrac/ordination_unweighted.txt 
$ qiime tools export \ 
  --input-path ./Qiime_new/core-metrics-results/bray_curtis_pcoa_results.qza \ 
  --output-path ./Qiime_new/core-metrics-results/exported-bray_curtis 
$ mv ./Qiime_new/core-metrics-results/exported-bray_curtis/ordination.txt ./Qiime_new/core-
metrics-results/exported-bray_curtis/ordination_braycurtis.txt 
$ qiime tools export \ 
  --input-path ./Qiime_new/core-metrics-results/weighted_unifrac_pcoa_results.qza \ 
  --output-path ./Qiime_new/core-metrics-results/exported-weighted_unifrac 
$ mv ./Qiime_new/core-metrics-results/exported-weighted_unifrac/ordination.txt ./Qiime_new/core-
metrics-results/exported-weighted_unifrac/ordination_weighted.txt 
$ qiime tools export \ 
  --input-path ./Qiime_new/core-metrics-results/weighted_unifrac_distance_matrix.qza \ 
  --output-path ./Qiime_new/core-metrics-results/exported-weighted_distance 
$ mv ./Qiime_new/core-metrics-results/exported-weighted_distance/distance-
matrix.tsv ./Qiime_new/core-metrics-results/exported-weighted_distance/weighted-distance-
matrix.tsv 
#### Removing Pseudoalteromonas and Vibrio from the data 
### Revoming the Pseudoalteromonas from the samples 
$ qiime taxa filter-table \ 
     --i-table ./Qiime_new/table.qza \ 
     --i-taxonomy ./Qiime_new/taxonomy.qza \ 
     --p-mode exact \ 
     --p-exclude 
"D_0__Bacteria;D_1__Proteobacteria;D_2__Gammaproteobacteria;D_3__Alteromonadales;D_4__P
seudoalteromonadaceae;D_5__Pseudoalteromonas" \ 
     --o-filtered-table ./Qiime_new/table-no-pseudo.qza 
#removing Vibrio 
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$ qiime taxa filter-table \ 
     --i-table ./Qiime_new/table-no-pseudo.qza \ 
     --i-taxonomy ./Qiime_new/taxonomy.qza \ 
     --p-mode exact \ 
     --p-exclude 
"D_0__Bacteria;D_1__Proteobacteria;D_2__Gammaproteobacteria;D_3__Vibrionales;D_4__Vibrio
naceae;D_5__Vibrio" \ 
     --o-filtered-table ./Qiime_new/table-filtered.qza 
$ qiime taxa filter-table \ 
     --i-table ./Qiime_new/table-filtered.qza\ 
     --i-taxonomy ./Qiime_new/taxonomy.qza \ 
     --p-mode exact \ 
     --p-exclude 
"D_0__Bacteria;D_1__Proteobacteria;D_2__Gammaproteobacteria;D_3__Vibrionales;D_4__Vibrio
naceae;D_5__Vibrio;D_6__Vibrio sp. RCB484" \ 
     --o-filtered-table ./Qiime_new/table-filtered2.qza 
$ qiime taxa filter-table \ 
     --i-table ./Qiime_new/table-filtered2.qza\ 
     --i-taxonomy ./Qiime_new/taxonomy.qza \ 
     --p-mode exact \ 
     --p-exclude 
"D_0__Bacteria;D_1__Proteobacteria;D_2__Gammaproteobacteria;D_3__Vibrionales;D_4__Vibrio
naceae;D_5__Vibrio;D_6__uncultured Shewanella sp." \ 
     --o-filtered-table ./Qiime_new/table-filtered2.qza 
## Creating the new table.qza file 
$ qiime feature-table summarize \ 
  --i-table ./Qiime_new/table-filtered2.qza \ 
  --o-visualization ./Qiime_new/table-filtered2.qzv \ 
  --m-sample-metadata-file BRD.samplesQiime.txt 
## Filtering the representative sequences 
##You need to download first the taxonomy metadata because the ID it’s going to be use for the 
filtering step 
## The id for Pseudoalteromonas 
$ qiime taxa filter-seqs \ 
  --i-sequences ./Qiime_new/rep-seqs.qza \ 
  --i-taxonomy ./Qiime_new/taxonomy.qza \ 
  --p-exclude 
"D_0__Bacteria;D_1__Proteobacteria;D_2__Gammaproteobacteria;D_3__Alteromonadales;D_4__P
seudoalteromonadaceae;D_5__Pseudoalteromonas" \ 
  --o-filtered-sequences ./Qiime_new/rep-seqs-nopseudo.qza 
$ qiime taxa filter-seqs \ 
  --i-sequences ./Qiime_new/rep-seqs-nopseudo.qza \ 
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  --i-taxonomy ./Qiime_new/taxonomy.qza \ 
  --p-exclude 
"D_0__Bacteria;D_1__Proteobacteria;D_2__Gammaproteobacteria;D_3__Vibrionales;D_4__Vibrio
naceae;D_5__Vibrio" \ 
  --o-filtered-sequences ./Qiime_new/rep-seqs-filtered.qza 
$ qiime taxa filter-seqs \ 
  --i-sequences ./Qiime_new/rep-seqs-filtered.qza \ 
  --i-taxonomy ./Qiime_new/taxonomy.qza \ 
  --p-exclude 
"D_0__Bacteria;D_1__Proteobacteria;D_2__Gammaproteobacteria;D_3__Vibrionales;D_4__Vibrio
naceae;D_5__Vibrio;D_6__Vibrio sp. RCB484" \ 
  --o-filtered-sequences ./Qiime_new/rep-seqs-filtered2.qza 
$ qiime taxa filter-seqs \ 
  --i-sequences ./Qiime_new/rep-seqs-filtered.qza \ 
  --i-taxonomy ./Qiime_new/taxonomy.qza \ 
  --p-exclude 
"D_0__Bacteria;D_1__Proteobacteria;D_2__Gammaproteobacteria;D_3__Vibrionales;D_4__Vibrio
naceae;D_5__Vibrio;D_6__uncultured Shewanella sp." \ 
  --o-filtered-sequences ./Qiime_new/rep-seqs-filtered2.qza 
$ qiime taxa filter-seqs \ 
  --i-sequences ./Qiime_new/rep-seqs-filtered2.qza \ 
  --i-taxonomy ./Qiime_new/taxonomy.qza \ 
  --p-exclude 
"D_0__Bacteria;D_1__Proteobacteria;D_2__Gammaproteobacteria;D_3__Vibrionales;D_4__Vibrio
naceae;D_5__Vibrio;D_6__uncultured Shewanella sp." \ 
  --o-filtered-sequences ./Qiime_new/rep-seqs-filtered2.qza 
$ qiime feature-table tabulate-seqs \ 
  --i-data ./Qiime_new/rep-seqs-filtered2.qza\ 
  --o-visualization ./Qiime_new/rep-seqs-filtered2.qzv 
$ qiime phylogeny align-to-tree-mafft-fasttree \ 
  --i-sequences ./Qiime_new/rep-seqs-filtered2.qza \ 
  --o-alignment ./Qiime_filtered/aligned-rep-seqs.qza \ 
  --o-masked-alignment ./Qiime_filtered/masked-aligned-rep-seqs.qza \ 
  --o-tree ./Qiime_filtered/unrooted-tree.qza \ 
  --o-rooted-tree ./Qiime_filtered/rooted-tree.qza 
 
Test the rarefaction number 36221 
$ qiime diversity alpha-rarefaction \ 
  --i-table ./Qiime_new/table-filtered2.qza \ 
  --i-phylogeny ./Qiime_filtered/rooted-tree.qza \ 
  --p-max-depth 40164 \ 
  --m-metadata-file BRD.samplesQiime.txt \ 
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  --o-visualization ./Qiime_filtered/alpha-rarefaction-40164.qzv 
 
### Rarefying at 1897 
$ qiime diversity core-metrics-phylogenetic \ 
  --i-phylogeny ./Qiime_filtered/rooted-tree.qza \ 
  --i-table ./Qiime_new/table-filtered2.qza \ 
  --p-sampling-depth 40164 \ 
  --m-metadata-file BRD.samplesQiime.txt  \ 
  --output-dir ./Qiime_filtered/core-metrics-results 
 
You are in core-metric-NoPseudo2 directory 
$ qiime tools export --input-path ./rarefied_table.qza --output-path exported/ 
$ qiime tools export --input-path ./faith_pd_vector.qza --output-path exported/ 
$ mv exported/alpha-diversity.tsv exported/faith_pd.tsv 
$ qiime tools export --input-path ./shannon_vector.qza --output-path exported/ 
$ mv exported/alpha-diversity.tsv exported/shannon.tsv 
$ ls exported 
$ biom convert -i exported/feature-table.biom -o exported/rarified-table.tsv --to-tsv 
$ qiime tools export --input-path observed_otus_vector.qza --output-path exported/ 
$ mv exported/alpha-diversity.tsv exported/observed_otus.tsv 
$ qiime tools export --input-path evenness_vector.qza --output-path exported/ 
$ mv exported/alpha-diversity.tsv exported/evenness.tsv 
$ qiime tools export --input-path ./Qiime_filtered/taxonomy.qza --output-path ./Qiime_filtered/ 
 
Export beta diversity, you have to move to the OnlySamples directory 
$ qiime tools export \ 
  --input-path ./Qiime_filtered/core-metrics-results/unweighted_unifrac_pcoa_results.qza \ 
  --output-path ./Qiime_filtered/core-metrics-results/exported-unweighted_unifrac 
$ mv ./Qiime_filtered/core-metrics-results/exported-
unweighted_unifrac/ordination.txt ./Qiime_filtered/core-metrics-results/exported-
unweighted_unifrac/ordination_unweighted.txt 
$ qiime tools export \ 
  --input-path ./Qiime_filtered/core-metrics-results/bray_curtis_pcoa_results.qza \ 
  --output-path ./Qiime_filtered/core-metrics-results/exported-bray_curtis 
$ mv ./Qiime_filtered/core-metrics-results/exported-bray_curtis/ordination.txt ./Qiime_filtered/core-
metrics-results/exported-bray_curtis/ordination_braycurtis.txt 
$ qiime tools export \ 
  --input-path ./Qiime_filtered/core-metrics-results/weighted_unifrac_pcoa_results.qza \ 
  --output-path ./Qiime_filtered/core-metrics-results/exported-weighted_unifrac 
$ mv ./Qiime_filtered/core-metrics-results/exported-
weighted_unifrac/ordination.txt ./Qiime_filtered/core-metrics-results/exported-
weighted_unifrac/ordination_weighted.txt 
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qiime tools export \ 
  --input-path ./Qiime_filtered/core-metrics-results/weighted_unifrac_distance_matrix.qza \ 
  --output-path ./Qiime_filtered/core-metrics-results/exported-weighted_distance 
$ mv ./Qiime_filtered/core-metrics-results/exported-weighted_distance/distance-
matrix.tsv ./Qiime_filtered/core-metrics-results/exported-weighted_distance/weighted-distance-
matrix.tsv 
$ qiime tools export \ 
  --input-path ./Qiime_filtered/core-metrics-results/bray_curtis_distance_matrix.qza \ 
  --output-path ./Qiime_filtered/core-metrics-results/exported-bray_curtis_distance 
mv ./Qiime_filtered/core-metrics-results/exported-bray_curtis_distance/distance-
matrix.tsv ./Qiime_filtered/core-metrics-results/exported-bray_curtis_distance/bray_curtis-distance-
matrix.tsv 
Taxonomic analysis 
$ qiime feature-classifier classify-sklearn \ 
  --i-classifier silva-132-99-515-806-nb-classifier.qza \ 
  --i-reads ./Qiime_new/rep-seqs-filtered2.qza \ 
  --o-classification ./Qiime_filtered/taxonomy.qza 
$ qiime metadata tabulate \ 
  --m-input-file ./Qiime_filtered/taxonomy.qza \ 
  --o-visualization ./Qiime_filtered/taxonomy.qzv 
$ qiime taxa barplot \ 
  --i-table ./Qiime_new/table-filtered2.qza \ 
  --i-taxonomy ./Qiime_filtered/taxonomy.qza \ 
  --m-metadata-file BRD.samplesQiime.txt \ 
  --o-visualization ./Qiime_filtered/taxa-bar-plots.qzv 
## Getting Chao1 
qiime diversity alpha \ 
--i-table ./Qiime_filtered/core-metrics-results/rarefied_table.qza \ 
--p-metric chao1 \ 
--o-alpha-diversity ./Qiime_filtered/chao1.qza 
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