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ABSTRACT 

Vehicle crashes on roads are caused by many factors. However, the influence of these factors 

is not necessarily homogenous across locations, which is a challenge for non-stationary modeling 

approaches. To address this problem, this thesis not only evaluated the safety performance of high 

friction surface treatment (HFST) installations throughout Indiana using empirical Bayes (EB) 

analysis, but also adopted two types of methods that allowed the parameters to fluctuate among 

observations (the random parameter approach and the geographically weighted regression or GWR 

approach). With road curvature, curve length, pavement friction, and traffic volume as the 

independent variables, this thesis modeled vehicle crash frequencies using two non-spatial models 

(the negative binomial (NB) model and the random parameter negative binomial (RPNB)), as well 

as three spatial models (the GWR approach including geographically weighted Poisson regression 

(GWPR), the geographically weighted negative binomial regression (GWNBR), and the global 

geographically weighted negative binomial regression (GWNBRg). These models then were 

calibrated at the macro-level and micro-level using a dataset of 9,415 horizontal curve segments 

with a total length of 1,545 kilometers for a period of three years (2016-2018) throughout Indiana. 

The results revealed that the GWR approach successfully captured spatial heterogeneity and 

thereby significantly outperformed the conventional non-spatial approach. Among the GWR 

models, the GWNBR model performed better for the Akaike Information Criterion (AICc) and the 

spatial distribution of the coefficients. This thesis also found that pavement friction and curve 

length had less influence on crash frequency in forest areas than in plain areas. Furthermore, 

pavement friction tended to have the most considerable impact on crash frequency in unpopulated 

areas with sparse curve distributions. It is expected the findings of the thesis can be used for Indiana 

highway curve safety improvement and other transportation applications that need to consider 

spatial heterogeneity. 
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 INTRODUCTION 

1.1 Background 

Road horizontal curve is a known critical factor for vehicle crashes due to its 

disproportionate number of crashes compared to other geometric features. Traffic crashes cost over 

30,000 lives in America every year. According to the U.S. Federal Highway Administration 

(FHWA), more than 25% of those fatal crashes are related to horizontal curves, which occur on 

only 10% of the total system of mileage (FHWA 2011). 

To explore the intrinsic law of this phenomenon, several prediction models have been 

developed for curve crashes over the past decades. In terms of pavement condition, Buddhavarapu 

et al. (2013) developed a crash injury severity model on two-lane horizontal curves in Texas and 

found that curve segments with smoother pavements appeared to be more likely to be high-risk 

while longitudinal skid measurements showed little correlation with curve crash injury severity. 

To explore the influence of geometric features on curve crash frequency, an NB model was 

developed by Schneider et al. (2010) for single-vehicle motorcycle crashes that occurred on curve 

segments of rural two-lane highways in Ohio. The authors determined that the geometric feature 

variables that significantly influenced motorcycle crash frequency were the curve radius, curve 

length, and curve shoulder width. Moreover, Musey and Park (2016) proposed a model for 

predicting horizontal curve crash severity using pavement friction and road curvature. Their results 

revealed that serious injuries occurred on curves with a higher degree of curvature and that lower 

friction was closely correlated to wet pavement crashes. Meanwhile, Gooch et al. (2016) found 

that the correlation of crash frequency at adjacent curves was significant. 

All the aforementioned models were global, i.e., they assumed that the parameter estimates 

were fixed across the geographical region of analysis. However, in reality, as location information 

is collected for reference to crash data, some of the predicting variables may not be stationary. For 

example, the geometry features (e.g., radius and length) of horizontal curves may cause 

observation heterogeneity from unobserved factors such as various driver responses on curves, 

time-varying traffic, and weather conditions (Venkataraman et al. 2014). The effects of pavement 

friction also may vary across observations due to friction variations, heterogeneous driver behavior 

responses, and climate influences. In terms of the effect of traffic volume on crash likelihood, 



 

 

11 

heterogeneous driver reactions to traffic may exist as well as environmental factors (Mannering et 

al. 2016). Hence, modeling the relation between crash count and such explanatory variables with 

overall fixed coefficients for the entire study area could cause biased estimates of the individual 

parameters. Thus, adding spatial variance to non-stationary models, such as geographically 

weighted regression (GWR) and random parameter approaches, may provide a better view for 

developing spatial dependency over space.  

Traffic safety spatial studies are categorized as two levels of spatial aggregation: macro-

level and micro-level. Conventionally, micro-level analysis focuses on specific road entities of the 

road network, such as intersections, railways, corridors, and road segments (Cai et al. 2018, 

Schneider IV et al. 2010; Wan 2018). However, macro-level analysis, which focuses on zonal level 

crashes with various spatial units, is becoming popular as part of the transportation planning 

process in research studies. The spatial units that have been comprehensively developed recently 

include traffic analysis zones (TAZs) (Duddu and Pulugurtha 2012; Lee et al. 2014; Gomes et al. 

2017; Soroori et al. 2020); counties (Aguero-Valverde and Jovanis 2006; Huang et al. 2010); 

census tracts (Abdel-Aty et al. 2013); wards (Quddus 2008; Wang et al. 2009); and statistical area 

levels (Amoh-Gyimah et al. 2016a). One of the advantages associated with macro-level crash 

modeling is that it does not count on detailed data as much as micro-level crash models (Amoh-

Gyimah et al. 2017). However, it has been proven that micro-level models with less detailed data 

still provide an acceptable accuracy when applied to non-stationary models (Anastasopoulos and 

Mannering 2011). It is reasonable and promising, therefore, to employ non-stationary models (i.e., 

GWR and random parameter) for micro-level safety analysis. 

As previously stated, the additional centripetal force that is exerted on vehicles by friction 

and radius is one of the most important reasons for the vulnerability of highway curves for crash 

occurrence. One of the current popular methods for improving the friction of pavement in the U.S. 

is to apply a high friction surface treatment (HFST), which consists of a high-quality and durable 

aggregate on top of a resin binder to help prevent drivers from losing control of their vehicles. The 

most promising proven effect of HFST has been a significant reduction in crashes, injuries, and 

ultimately fatalities in wet weather and high-speed situations. Hence, HFST has been proactively 

promoted by FHWA as a cost-effective solution to pavement friction-related vehicle crashes, 

including run-off-road, tailgating, and head-on crashes, particularly on two-lane roads or at 

intersections and under wet pavement conditions. Figure 1.1 shows the status of HFST 
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implementation on curves in the U.S. as of December 2018 (FHWA 2021). To further improve 

traffic safety, the Indiana Department of Transportation (INDOT) launched an initiative to carry 

out HFST projects with a total value of more than $1 million in the state of Indiana at designated 

potentially high-crash areas in 2018. 

 

 

Figure 1.1. Locations of Major HFST Installations in the U.S. (FHWA 2018). 

1.2 Objectives 

This thesis aimed to conduct a comprehensive review and analysis of the relationship of 

highway curve crash frequency and curve segment features as a proof of concept in order to further 

explore the safety performance of HFST in Indiana. The objectives of this thesis were as follows. 

• Perform a before-after analysis of HFST installations. 

• Develop statewide highway curve crash frequency models along with exposure parameters, 

pavement friction, and radius from macro-level and micro-level datasets. 

• Compare the performance of conventional stationary and non-stationary models in terms 

of goodness of fit. 

• Explore the capability of capturing the spatial heterogeneity occurring in the relationship 

of the GWR approaches and further discuss local patterns presented. 

With respect to the HFST safety performance evaluation, conventional before-after 

comparisons always have a “regression-to-the-mean” problem. This thesis applied empirical 
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Bayes (EB) analysis to provide a reliable Indiana HFST safety assessment. To offer a different 

view of the selection of the construction location, this thesis further modeled the statewide INDOT 

highway curve crash data provided. Considering the fact that previous research studies were 

mostly conducted at the macro-level (zonal level) or the micro-level (each observation), this 

research explored different strategies for modeling local variations of over-dispersed crash count 

data in statewide highway horizontal curves in relation to the curve segment characteristics at both 

levels. From the results of nonstationary modeling, the local pattern of the variables’ relationships 

and spatial heterogeneity can display factors that influence variance over space, which needs 

further investigation. 

1.3 Previous work 

Since the first installations of HFST in the U.S. in the early 2000s, scholars and state 

departments of transportation (DOTs) have continued to explore its safety performance. As HFST 

is a relatively high-cost treatment and currently has limited applications, i.e., ramps and curves, 

evaluating its safety performance is not yet precise. The performance of safety improvement 

countermeasures is always presented by crash modification factors (CMFs), the theory of which 

is introduced in Chapter 2. Recently, Wilson et al. (2016) conducted a naïve before-after 

comparison in Florida and concluded that HFST only showed superior crash reduction on tight 

curves and wet weather crash occurrence. However, Merritt et al. (2015) and Lyon et al. (2020) 

insisted that a regression-to-the-mean problem should not be neglected and suggested that EB 

analysis is the best option. 

Compared to other states that implemented HFST, Indiana has much less experience both 

conducting and evaluating their program. Retrospective research conducted by other states provide 

a reference and big picture of HFST’s effect on crash reduction. Kentucky was one of the earliest 

states to install HFST and several studies observed a significant reduction in crash occurrence with 

HFST. Albin et al. (2016) observed a crash reduction of about 70% on 30 curves since 2009; Von 

Quintus & Mergenmeier (2015) found that crashes declined about 73% since 43 HFST projects 

between 2009 and 2012. California has implemented over 100 HFST projects since 2011, and 

Peterson et al. (2016) found an over 50% annual crash reduction. In Pennsylvania, HFST has been 

installed since 2007; and Musey (2017) did a thorough safety evaluation on 68 statewide sites and 

observed a CMF of 0.67. 
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Observations with too many zero counts present a challenging research problem of great 

importance. Miaou (1994) and Shankar et al. (1997) developed and applied zero-inflated methods 

on crash modeling, which separate models into two-state regimes, i.e., a zero-count state and a 

normal count state. Some recent studies developed diverse zero-inflated types of models. For 

example, Dong et al. (2014) studied Tennessee intersection crash frequency using a multivariate 

zero-inflated Poisson model and found that it could provide more accurate estimating. Kim et al. 

(2016) predicted traffic crashes based on the behaviors of drivers and their past violation records 

in Korea using a zero-inflated negative binomial model (ZINB). Liu et al. (2018) applied a 

multivariate random parameter ZINB that could account for excess zeros and heterogeneity on 

urban midblock segment crash frequency in Nebraska. Raihan et al. (2019) also investigated the 

relationship between bicycle rider behavior and bicycle CMFs in Florida utilizing ZINB models. 

A number of road crash analysis methods have been developed to determine the spatial 

dependency and heterogeneity of the influence of a parameter and to pinpoint high-risk locations 

(Ziakopoulos and Yannis,2020). These methods included GWR (Hadayeghi 2010); Bayesian 

models with conditional autoregressive (Quddus 2008); autoregressive models with spatial 

spillover effects (Cai et al. 2016); full Bayes multiple membership spatial model (El-Basyouny 

and Sayed 2009); and random parameter models (Xu and Huang 2015).  

However, the GWR approach is the most promising technique to reveal the variables’ 

heterogenous effects over space in crash counts modeling (Ziakopoulos and Yannis 2020). To 

address the issue that some variables have more impacts in certain spatial locations but fewer 

impacts in others, the GWR approach was applied in this thesis. For comparison, the random 

parameter approach also was utilized as it also allows parameters varying from each other but no 

spatial relationship is involved. Since Fotheringham et al. (2002) systematically illustrated GWR 

theory, this technique often has been applied to road safety analysis (Hadayeghi et al. 2003). 

Hadayeghi et al. (2010a) explored application of the GWR approach to count data modeling for 

traffic safety analysis at the TAZ level. Li et al. (2013) evaluated the performance of a 

geographically weighted Poisson regression (GWPR) model in comparison to a traditional 

generalized linear model (GLM) on county level crash data. Based on the semi-parametric GWPR 

model study of Nakaya et al. (2005), where some variables may not significantly vary over space 

while others are spatially heterogeneous, Xu and Huang (2015) examined Florida macro-level 

crash data with a random parameter negative binomial model (RPNB) and a semi-parametric 
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GWPR model. Silva and Rodrigues (2014) extended the GWPR to model over-dispersed data by 

a geographically weighted negative binomial regression (GWNBR) model and a GWNBR model 

with global over-dispersion parameters (GWNBRg). Gomes et al. (2017) and Soroori et al. (2020) 

applied a GWNBR to model over-dispersed crashes for traffic zones, which outperformed the 

GWPR and traditional global models. Amoh-Gyimah et al. (2017) found that when compared with 

the RPNB models and a GLM model, the GWR approach provided better performance on 

macroscopic over-dispersed traffic crash frequency modeling. Nevertheless, only a few existing 

studies investigated modeling statewide micro-level regional safety on over-dispersed crash data. 

Statewide non-stationary crash frequency modeling involves a coefficient variance on a larger 

number of observations and spacious areas. Therefore, the spatial heterogeneity of larger-scale 

crash data using the GWR approach needs to be further investigated. 

The RPNB model, which also addresses unobserved heterogeneity in regional safety over-

dispersed data modeling, assumes that the parameters draw from some random distributions and 

vary randomly from case to case. To investigate the unobserved heterogeneity across highway 

segments for crash count prediction, Shaon et al. (2018a and b) and Chen et al. (2019) applied 

random parameter Poisson-based models in their safety studies. As a branch of random parameter 

Poisson-based modeling, the RPNB model has been widely used to account for data over-

dispersion, including Venkataraman et al. (2011, 2013, 2014), Chen and Tarko (2014), and Saeed 

et al. (2019). Also, Xin et al. (2017a, b) developed an RPNB model for Florida horizontal curves 

along two-lane, undivided highways for motorcycle crashes with curve design factors. However, 

very few studies to date have focused on statewide highway curve over-dispersed crash count 

modeling. 

1.4 Structure of the thesis 

This remainder of this thesis proceeds as follows. Chapter 2 presents CMF theory and EB 

analysis principles and introduces the stationary and non-stationary methods that were applied to 

Indiana highway curve crash frequency modeling as well as the model goodness of fit and spatial 

autocorrelation evaluation approaches utilized. Chapter 3 provides information about Indiana’s 

HFST installations, INDOT crash data sources, road network features, polyline geometry 

generator, traffic volume data, and pavement friction measurements. Chapter 4 first presents the 

HFST safety performance and statewide curve crash modeling results. Both the macro and micro 
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level models in stationary as well as nonstationary approaches are presented and compared.  The 

traditional Poisson model and the GWPR model are applied to the macro level dataset, while the 

NB, ZINB, RPNB, and GWR approaches are implemented for a micro-level dataset. The predicted 

HFST CMFs based on these models also are compared with their real CMFs. Chapter 5 presents 

the major findings and suggestions of this thesis along with recommendations for possible future 

improvements. 
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 METHODOLOGIES 

2.1 HFST effect analysis 

2.1.1 Crash Modification Factors 

When considering the implementation of a particular countermeasure, such as HFST at a 

specific site, a CMF may be used to assess its expected safety impact. A CMF value greater than, 

less than, and equal to 1.0 indicate an increase, a decrease, and no change, respectively, in vehicle 

crashes that will result from the treatment (Gross et al. 2010).  

Predicted CMF is generally developed from various crash reduction countermeasures studies. 

Highway Safety Manual (HSM) (AASHTO 2010) and CMF Clearinghouse are the two main 

resources of CMF estimation. Practitioners could apply the facilities parameter to find CMF from 

these resources to get basic understanding of expected impacts on roadway safety. There have been 

multiple methods to develop CMFs. Before-after with comparison group studies use an untreated 

comparison group of sites similar to the treated ones to account for changes in vehicle crashes 

unrelated to the treatment, such as crash trends over time and traffic volume. EB before-after 

studies more precisely estimate the number of crashes that would have occurred at a treated site in 

the after period if a treatment had not been implemented. The effect of the safety treatment is 

estimated by comparing this value to the number of actual crashes after treatment. Full Bayes 

studies use a reference group to estimate the expected crash frequency and its variance from a 

calibrated safety performance function (SPF) (AASHTO 2010). 

2.1.2 Empirical Bayes method 

Since HFSTs are installed at locations that may have higher risk than normal curve segments, 

before-after studies need to account for potential bias due to regression to the mean. One of the 

most popular ways to address the regression-to-the-mean problem is the EB procedure as outlined 

by Hauer (1997). SPFs are an integral part of the EB procedure (Srinivasan et al. 2013). The 

objective of the EB methodology is to more precisely estimate the number of crashes that would 

have occurred at an individual treated site in the after period if HFST had not been implemented. 

The approach to solve regression-to-the-mean is to generate the number of crashes expected in the 

after period if there is no treatment and compare it to the observed after-period crash count. The 
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parameters needed to calculate the number of crashes expected in the after period (𝑁expected,T,A) 

are: 

• The observed number of crashes in the “before” period for the treatment group 

(𝑁expected,T,B). 

• The observed number of crashes in the “after” period for the treatment group (𝑁expected,T,A). 

• The predicted number of crashes (i.e., sum of the SPF estimates) in the “before” period 

(𝑁predicted,T,B). 

• The predicted number of crashes (i.e., sum of the SPF estimates) in the “after” period 

(𝑁predicted,T,A). 

The number of crashes predicted at the treated sites based on the sites with similar 

operational and geometric characteristics (𝑁predicted,T,B ) is derived from the SPF. An SPF is a 

mathematical model that predicts the mean crash frequency for similar locations with the same 

characteristics. These characteristics typically include the traffic volume and may include other 

variables such as traffic control and geometric characteristics. All the HFST pavement sites are 

located on rural two-lane roads with HFST installed in both directions, except C-5, which consists 

of HFST installed only in one direction. The SPF used to estimate road segments in the base 

condition without horizontal curvature is: 

𝑁𝑠𝑝𝑓 𝑟𝑠 = 𝐴𝐴𝐷𝑇 × 𝐿 × 365 × 10−6 × 𝑒−0.312                                  (2-1) 

where 𝑁𝑠𝑝𝑓 𝑟𝑠 is the predicted total crash frequency for a roadway segment in the base condition; 

AADT is the average annual traffic volume; and L is the length of roadway segment (miles). 

The calibration factor for this SPF is the CMF for horizontal curvature: 

𝐶𝑀𝐹 =
(1.55×𝐿𝑐)+(

80.2

𝑅
)−(0.012×𝑆)

(1.55×𝐿𝑐)
                                                  (2-2) 

where 𝐶𝑀𝐹 is the crash modification factor for the effect of the horizontal alignment on the total 

crashes; LC is the length of the horizontal curves (miles) which includes the spiral transition; 𝑅 is 

the radius of the curvature (feet); and 𝑆 is 1 if a spiral transition is present and 0 if a spiral transition 

is not present. 

The predicted number of crashes (i.e., the sum of the SPF estimates) in the before period is 

calculated as: 

𝑁predicted,T,B = 𝑁𝑠𝑝𝑓 𝑟𝑠 × 𝐶𝑀𝐹                                               (2-3) 
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The EB estimate of the expected number of crashes without treatment is computed as: 

𝑁expected,T,B = 𝑤 × 𝑁predicted,T,B + (1 − w) × 𝑁observed,T,B              (2-4) 

where 𝑤 is the SPF weight derived from the over-dispersion parameter in the SPF calibration 

process, but also depends on the number of years of crash data in the period before treatment. If 

the SPF has little over-dispersion, more weight is placed on the crashes predicted from the SPF 

(𝑁predicted,T,B) and less weight on the observed crash frequency (𝑁observed,T,B). However, the 

weight is reduced if many years of crash data are used. 𝑤 is calculated as: 

𝑤 =
1

1+𝑘𝑃
                                                               ( 2-5) 

where 𝑘 is the over-dispersion parameter; and 𝑃 is the sum of the predicted number of crashes in 

the before period. 

For rural two-lane road segments, k is calculated as: 

𝑘 =
0.236

𝐿
                                                                (2-6) 

where 𝑘 is the over-dispersion parameter; and 𝐿 is the length of the roadway segment (miles).  

Figure 2.1 illustrates how the SPF estimate is weighted with the observed crash count to 

estimate𝑁expected,T,B. It is shown that the EB estimate falls somewhere between the values from 

the two information sources (𝑁observed,T,B and 𝑁predicted,T,B ). The regression-to-the-mean effect 

is the difference between 𝑁observed,T,B and N 𝑁expected,T,B. Then, it is easy to get the number of 

crashes expected in the after period (𝑁expected,T,A ): 

𝑁expected,T,A = 𝑁expected,T,B ×
𝑁predicted,T,A

𝑁predicted,T,B
                                   (2-7) 

The variance of 𝑁expected,T,A  is estimated from 𝑁expected,T,A  , the before and after SPF 

estimates, and the SPF weight. It is calculated as follows: 

𝑉𝑎𝑟(𝑁𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑,𝑇,𝐴) = 𝑁𝑒𝑐𝑝𝑒𝑐𝑡𝑒𝑑,𝑇,𝐴(
𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑇,𝐴

𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑇,𝐵
)(1 − 𝑤)                      (2-8) 
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Figure 2.1. Illustration of regression-to-the-mean and EB estimate (Gross et al.  2010). 

The CMF of the HFST sites is calculated as: 

𝐶𝑀𝐹 =  
𝑁observed,T,A/𝑁expected,T,A 

1+𝑉𝑎𝑟(𝑁expected,T,A)/𝑁expected,T,A
2                                       (2-9) 

The variance of the CMF is calculated as: 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝐶𝑀𝐹 =
(1/𝑁observed,T,A)+𝑉𝑎𝑟(𝑁expected,T,A)/𝑁expected,T,A

2

1+𝑉𝑎𝑟(𝑁expected,T,A)/𝑁expected,T,A
2 × 𝐶𝑀𝐹2            (2-10) 

2.2 Stationary models 

2.2.1 Negative binomial model 

For non-negative integer crash count data, Poisson regression is the most basic starting point 

(Mannering and Bhat 2014). In the basic Poisson model, the probability of a spatial unit (curve 

segment) 𝑖 having 𝑛𝑖 number of crashes is given by: 

𝑙𝑛(𝜆𝑖) = 𝛽0 + ∑ 𝛽𝑘𝑋𝑖𝑘
𝑝
𝑘=1                                                   (2-11) 

where 𝜆𝑖 is the expected number of crashes in spatial unit 𝑖, 𝛽0, 𝛽1, … , 𝛽𝑘 are the model parameters, 

𝑋𝑖𝑘 is the 𝑘th explanatory variable for spatial unit 𝑖. The most basic assumption to apply a Poisson 

model is that the dependent variable has an equal value of variance and mean (Agresti 2015). 

However, this assumption is often violated in crash count data. An NB regression model is 

generally applied to account for the issue of over-dispersion. To estimate the NB regression model, 
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the Poisson parameter, 𝜆𝑖 is specified as a function of the explanatory variables plus a gamma-

distributed error term. Using a log-linear function, the NB regression model is specified as: 

𝑙𝑛(𝜆𝑖) = 𝛽0 + ∑ 𝛽𝑘𝑋𝑖𝑘
𝑝
𝑘=1 + 𝜃𝑖                                        (2-12) 

Where 𝑒𝜃𝑖 is a gamma-distributed error term with mean 1 and variance α, and the other terms are 

the same as the Poisson model expression. The addition of the gamma-distributed error term allows 

the variance to differ from the mean such that var(𝑛𝑖) = 𝜆𝑖 + 𝛼𝜆𝑖
2. When α approaches zero, the 

NB regression is the same as with Poisson regression. The NB regression model is appropriate 

when 𝛼 significantly differs from zero (Washington et al. 2020). 

2.2.2 Zero-inflated negative binomial model 

When it comes to the situation that the number of zero count observations cannot be 

neglected in a database, it may be attributed to two different conditions during a given time period. 

The first condition can arise from no events occurring during the observed period merely due to 

the statistical possibility of event occurrence. The other condition could result from the qualitative 

inability of suffering any events for certain samples, which is the “excessive” or “inflated” zero 

situation. Hence, the zero-inflated model came along and was applied to transportation, which 

separates models into two-state regimes, a zero-count state and a normal count state (Miaou 1994; 

Shankar et al. 1997). The ZINB model can be specified as two components: 

{
𝑐𝑜𝑢𝑛𝑡 𝑠𝑡𝑎𝑡𝑒: 𝜆𝑖 = 𝑒𝑥𝑝(𝛽0 + ∑ 𝛽𝑘𝑋𝑖𝑘

𝑝
𝑘=1 + 𝜃𝑖)

𝑧𝑒𝑟𝑜 𝑠𝑡𝑎𝑡𝑒: 𝑝𝑖 =
𝑒𝑥𝑝(𝛾0+∑ 𝛾𝑘𝑋𝑖𝑘

𝑝
𝑘=1 )

1+𝑒𝑥𝑝(𝛾0+∑ 𝛾𝑘𝑋𝑖𝑘
𝑝
𝑘=1 )

                              (2-13) 

where 𝜃𝑖 equals to 0 in a zero-inflated Poisson (ZIP) model, 𝜆𝑖 is the expected value of the count 

model for spatial unit 𝑖 in the normal count state, and 𝑝𝑖 is the possibility of an observation being 

qualitatively classified as the zero state  𝛾0, 𝛾1, … , 𝛾𝑘 are the zero model parameters. 

However, to test the appropriateness of the model splitting process rather than a traditional 

model, the Vuong test is commonly applied (Vuong 1989). According to Vuong’s statistics for 

traditional and zero-inflated models, if the z value is greater than 1.96, there is 95% confidence 

level that the statistics favor the zero-inflated model. 
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2.3 Non-stationary models 

2.3.1 Random parameter negative binomial model 

An NB model can depict the over-dispersion characteristic of traffic crash data; however, 

possible spatial dependency among the curve segments may be ignored, as stated previously. By 

incorporating a random term into the NB function, a RPNB model can be employed in response to 

the non-stational explanatory variables in the count models. The model is presented below: 

{
𝑙𝑛(𝜆𝑖) = 𝛽𝑖0 + ∑ 𝛽𝑖𝑘𝑋𝑖𝑘

𝑝
𝑘=1 + 𝜃𝑖

𝛽𝑖𝑘 = 𝛽𝑘 + 𝜑𝑖𝑘

                                         (2-14) 

where 𝛽𝑖𝑘 is the parameter of the 𝑘th explanatory variable for a spatial unit (curve segment) 𝑖, 𝛽𝑘 

is the mean parameter across all observation, and 𝜑𝑖𝑘  is a randomly distributed term with an 

analyst-specified distribution (like normal distribution with mean 0 and variance 𝜎𝑘
2) that describes 

unobserved heterogeneity. If some of the variances of the distribution is tested as not significantly 

different from zero for a certain explanatory variable, the conventional fixed-parameter across all 

observations is statistically appropriate. If the constant term is the only random parameter, a 

random parameter model is equivalent to a random effect model. 

In most cases, observations are structured to analyst-specified groups to capture 

heterogeneity among groups for random parameter models, and 𝜑𝑖𝑘   can be rewritten as 𝜑𝑔𝑘 , 

where 𝜑𝑔𝑘 is a group-specific random term that generates unobserved heterogeneity across groups 

in response to the 𝑘th explanatory variable (Mannering et al. 2016). Namely, an analyst-specified 

group shares the same random term for explanatory variables 

2.3.2 Geographically Weighted Regression (GWR) 

To deal with spatial non-stationarity, a GWR approach was considered in this thesis. The 

basic model to interpret spatial heterogeneity problems is the GWPR model developed by Nakaya 

et al. (2005), which allows estimated regression parameters to vary over space. The following 

framework forms the model: 

𝑙𝑛(𝜆𝑖) = 𝛽0(𝑢𝑖) + ∑ 𝛽𝑘(𝑢𝑖)𝑋𝑖𝑘
𝑝
𝑘=1                                           (2-15) 

where the estimated coefficients 𝛽𝑘  are determined by location 𝑢𝑖  = (𝑢𝑥𝑖, 𝑢𝑦𝑖) denoting curve 

segment midpoint coordinates, and implies that the parameter 𝛽𝑘 varies among the curve segments.  

The parameters matrix for each spatial unit are estimated as follows: 
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�̂�(𝑢𝑖) = (𝑋𝑇𝑊(𝑢𝑖)𝑋)−1𝑋𝑇𝑊(𝑢𝑖)𝑌                                        (2-16) 

where �̂�(𝑢𝑖) is local regression coefficients for the spatial unit 𝑖, X is the design matrix of the 

explanatory variables, 𝑋𝑇 is the transposed X, Y is the dependent variables, and 𝑊(𝑢𝑖) denotes an 

𝑛 × 𝑛 spatial weighting matrix which is defined as: 

𝑊(𝑢𝑖) = 𝑑𝑖𝑎𝑔(𝑤𝑖1, 𝑤𝑖2, ⋯ , 𝑤𝑖𝑛)                                         (2-17) 

where 𝑤𝑖𝑗(𝑗 = 1,2, … , 𝑛) is the geographical weight of the 𝑗 th observation at the 𝑖 th regression 

point. In GWR approach theory, estimating the parameters of each regression point is based on the 

other observations within an appropriate bandwidth. These nearby observations are assigned 

weight according to the distance from the observations to the regression point in the regression 

process. For each regression point, the observations located from the edge of the bandwidth to the 

regression point would yield more weight. The weight 𝑤𝑖𝑗 is commonly calculated by two types 

of conventional kernels, i.e., the Gaussian and the bi-square (adaptive) functions, which are 

defined as follows: 

Gaussian: 𝑤𝑖𝑗 = 𝑒𝑥𝑝 (−0.5
𝑑𝑖𝑗

2

𝑏2
)                                                   (2-138) 

Adaptive bi-square: 𝑤𝑖𝑗 = {
(1 − (

𝑑𝑖𝑗
2

𝑏𝑖(𝑘)
))2             𝑑𝑖𝑗 ≤ 𝑏𝑖(𝑘)

0                                    𝑑𝑖𝑗 > 𝑏𝑖(𝑘)

                      (2-19) 

where 𝑑𝑖𝑗 is the distance between neighbor observations 𝑖 and 𝑗,  𝑏 is the fixed bandwidth, and 

𝑏𝑖(𝑘) is an adaptive bandwidth size defined by the k-th nearest neighbor distance (Fotheringham et 

al. 2003). The bandwidth is constant in the Gaussian function (fixed kernel), while the bandwidth 

of the adaptive bi-square function varies in response to the sample location density. 

AICc, which is AIC with a correction for small sample sizes, is applied to select the optimum 

bandwidth and model comparison illustrated in the next section. The lower AICc a model can 

generate, the better performance it provides (Fotheringham et al. 2003; Nakaya et al. 2005; 

Hadayeghi et al. 2010a).  

Similar to traditional count models, violation of the Poisson distribution also happens when 

the variance differs from the mean. The NB form is also applied to the GWR approach to account 

for the over-dispersion problem. Silva and Rodrigues (2014) developed an algorithm to model 

over-dispersed data in a non-stationary way by GWNBR. The proposed GWNBR model is defined 

as:  
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𝑙𝑛(𝜆𝑖) = 𝛽0(𝑢𝑖) + ∑ 𝛽𝑘(𝑢𝑖)𝑋𝑖𝑘
𝑝
𝑘=1 + 𝜃𝑖                                   (2-20) 

where gamma-distributed error term 𝑒𝜃𝑖  is the same with Equation 2-12, but only α(𝑢𝑖) varies 

over the spatial units. The other terms are as defined in Equation 2-15. A modified Iteratively 

Reweighted Least Squares procedure is used to estimate the parameters 𝛽𝑘 and α. Applying the 

Newton-Raphson algorithm, a subroutine with the maximum likelihood method can be carried out 

in this procedure. (Silva and Rodrigues 2014). 

Set the predicted mean as 𝜇𝑖, parameterizing this model in terms of 𝜇𝑖/𝑡𝑖, 𝑡𝑖 gives the offset 

variables. Thus, this model can be expressed as 𝜆𝑖~𝑁𝐵[𝑡𝑖 𝑒𝑥𝑝(∑ 𝛽𝑘(𝑢𝑖)𝑘 𝑋𝑖𝑘) , 𝛼(𝑢𝑖)]  or 

𝜆𝑖~NB[𝜇𝑖, α(𝑢𝑖)]. The parameter vector for each spatial unit is determined by: 

�̂�(𝑢𝑖) = (𝑋𝑇𝑊(𝑢𝑖)𝐴(𝑢𝑖)(𝑚)𝑋)−1𝑋𝑇𝑊(𝑢𝑖)𝐴(𝑢𝑖)
(𝑚)𝑧(𝑢𝑖)                   (2-21) 

where 𝐴(𝑢𝑖)
(𝑚) is an n×n GLM diagonal weighting matrix for iteration m, and locations 𝑖, 𝑧(𝑢𝑖) 

are the adjusted dependent variables. The other terms are as defined earlier in the GWPR model. 

The effective number of parameters of the GWNBR (𝑘) can be calculated by adding the effective 

numbers of parameters in response to 𝛽 and 𝛼. 

To simplify the calculation of GWNBR, GWNBRg introduces a global over-dispersion 

parameter. It can be noted as 𝜆𝑖~𝑁𝐵[𝑡𝑖 𝑒𝑥𝑝(∑ 𝛽𝑘(𝑢𝑖)𝑘 𝑋𝑖𝑘) , 𝛼]  or 𝜆𝑖~𝑁𝐵[𝜇𝑖, 𝛼] , where the 

parameters are the same as in GWNBR. The estimation of the over-dispersion parameter in 

GWNBRg is the same as that obtained from the non-spatial NB model.  Because there is no spatial 

variation for α, the effective number of parameters contributed from 𝛼 equals 1. 

2.4 Model evaluation methods 

2.4.1 Measures of goodness of fit 

To provide the average magnitude of the variability of prediction, the median absolute 

deviation (MAD) is employed: 

𝑀𝐴𝐷 =
1

𝑛
∑ |�̂�𝑖 − 𝑦𝑖|𝑛

𝑖=1                                                (2-22) 

where 𝑛 is the number of observations (i.e., the number of curve segments in this research), and 

�̂�𝑖 is the predicted crash frequency and 𝑦𝑖 is the observed crash frequency. The smallest value of 

MAD is the best result in prediction.  
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Another goodness of fit measure,  𝐴𝐼𝐶𝑐, was also adopted to consider the model complexity 

as follows: 

𝐴𝐼𝐶𝑐 = 𝐷 + 2𝐾 +
2𝐾(𝐾+1)

𝑛−𝐾−1
                                             (2-23) 

where 𝐷 represents the deviance, 𝐾 is the number of parameters estimated in the model, 𝑛 is the 

number of observations. The deviance of the Poisson regression model can be expressed as in 

(Greene 2011): 

𝐷 = 2 ∑ [𝑦𝑖𝑙𝑛 (
𝑦𝑖

�̂�𝑖
) + (�̂�𝑖 − 𝑦𝑖)]𝑛

𝑖=1                                        (2-24) 

With regard to spatial regression estimation, the number of parameters is replaced to the 

effective number of parameters, which can be defined as in (Fotheringham et al. 2002): 

𝐾 = 𝑡𝑟𝑎𝑐𝑒(𝑆)                                                         (2-25) 

where matrix 𝑆 is computed by (Nakaya et al. 2005): 

𝑆 = 𝑋(𝑋𝑇𝑊(𝑢𝑖)𝐴(𝑢𝑖)𝑋)−1𝑋𝑇𝑊(𝑢𝑖)𝐴(𝑢𝑖)                                (2-26) 

The model with the minimum 𝐴𝐼𝐶𝑐  value is considered to have the best goodness of fit 

among the candidate models. 

2.4.2 Spatial autocorrelation 

Spatial autocorrelation is a basic theory in spatial analysis that can be quantified with indices. 

From a microscopical perspective, it represents the correlation among adjacent observations on a 

two-dimensional surface. From a macroscopical perspective, it describes how mapped variables 

with similar values are clustered, randomly distributed, or dispersed. Features with similar values 

tend to cluster together, and positive spatial autocorrelation occurs; when they distribute 

dispersedly, negative spatial autocorrelation occurs. 

One of the most widely applied indexes is the Moran Global Index (Moran’s I) (Moran 1950), 

which can be expressed as follows: 

𝐼 =
𝑛 ∑ ∑ 𝑤𝑖,𝑗(𝑟𝑖−�̅�)(𝑟𝑗−�̅�)𝑛

𝑗=1
𝑛
𝑖=1

𝑆0 ∑ (𝑟𝑖−�̅�)𝑖
2𝑛

𝑖=1

      (2-27) 

𝑆0 = Σ
𝑖=1

𝑛

Σ
𝑗=1

 
𝑛

𝑤𝑖𝑗        (2-28) 

where 𝑛 is the number of spatial units indexed by 𝑖 and 𝑗 ,  𝑤𝑖,𝑗 is the spatial weight between unit 

𝑖 and unit 𝑗, 𝑟 is the residual of model for each unit, and �̅� is the mean of 𝑟. Moran's 𝐼 value varies 
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between -1 to 1, where 0 indicates perfect random spatial distribution. However, only when the p-

value is statistically significant (p-value≤ 0.05) can the null hypothesis be rejected. A positive 

value implies similarity among the neighbors and the residuals are concentrated, while a negative 

value means discrepancy among the neighbors and the residuals are dispersed. In summary, the 

higher the absolute value Moran's 𝐼 is, the stronger the spatial autocorrelation data. 
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 DATA COLLECTION 

3.1 Crash data 

Crash data for the state of Indiana was utilized in this thesis to evaluate the proposed HFST 

safety performance and different models. The data, which was collected during 2016 through 2018 

and includes all U.S. and state highways in Indiana, was retrieved from the Automated Reporting 

Information Exchange System (ARIES) portal. As there are commonly errors in GPS coordinates 

recorded by police officers (Imprialou et al. 2019), this thesis applied the CLIP software developed 

by the Purdue University Center for Road Safety (Romero et al. 2017) to correct crash occurrence 

locations by geocoding the position description for each crash record.  

The horizontal curve segments were generated as the primary data. To do so, the road 

network database provided by the FHWA Highway Performance Monitoring System (HPMS) was 

used to detect and extract horizontal curve segments using the ROCA (ROad Curvature Analyst) 

tool in ESRI ArcGIS (Bíl et al. 2018). Figure 3.1 shows the statewide curve segment distribution 

and two typical road curve identification examples at the plain areas and the hilly areas. Out of the 

entire 17,381 km Indiana road network for Indiana state routes and U.S. highways, 1,545 km curve 

segments were identified and adopted as the base units. Four independent variables were selected 

for crash count modeling; and among them, the radius and length of each curve were calculated 

using the ROCA software as the geometric variables. Although the curve radius and length were 

designed according to a certain correlation in the planning process, in this thesis, the curve 

segments were identified from the road network shapefile, meaning that the length of a curve 

segment was not correlated with its radius, i.e., the correlation coefficient between them was 0.337. 

The third independent variable considered was pavement friction. The pavement friction 

data, which was measured at 40 mph with standard smooth tires, was retrieved from INDOT’s 

network pavement friction database.  

The fourth independent variable was AADT. The AADT shapefiles between 2016 and 2018 

were downloaded from the INDOT traffic flow website, where the road sections having relatively 

uniform travel characteristics are assigned the same value. 
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Figure 3.1. Curve segments distribution in Indiana (left) and typical examples on SR-114 (upper 

right) and SR-450 (lower right). 

Crashes were filtered with a horizontal curve segment 50 m buffer. The crash counts were 

totaled for three years of crash frequency for each curve segment. The curve segments were 

aggregated with the nearest pavement friction shapefile and the AADT shapefile using ArcGIS. 

Table 3.1. Variable description and summary statistics of micro-level dataset. 

Variables Description Mean Std. dev Min Max 

𝑁 Number of crashes occurred during 2016-2018 per curve segment 0.740 1.755 0 34 

𝑅 (𝑚) Radii of curve segments in meter 354.10 199.61 25.21 999.64 

𝐹 Friction of pavement on curve segments at 40 mph 43.80 15.12 8.2 104.2 

𝐿 (𝑚) Length of curve segments in meter 104.05 109.92 30.49 1249.77 

𝐴 Mean of AADT in 2016-2018 4214.16 5393.82 32.21 82,244.85 

 

The variables used for micro-level model specification and their descriptive statistics are 

summarized in Table 3.1. Because a closer linear relationship with the dependent variable was 

observed on the logarithmic scale, logarithmic transformation was applied to the independent 

variable. The VIF was employed to assess the multicollinearity among the variables in the data; 



 

 

29 

and the VIFs of all the variables had values lower than two, indicating that there was no significant 

multi-collinearity (Heiberger and Holland 2015). 

To model crash frequency at the macro level, the crashes were counted for all 92 counties in 

Indiana because the county level is the lowest zonal level at which each county has highway road 

segments located; and the spatial model weight matrix calculations were based on their centroid 

coordinates. Because the INDOT highway network used in this thesis does not include all the 

state’s highways, the highway curve segment crash frequency was intuitively irrelevant to the 

demographic and climatic variables. Therefore, the exposure parameter of yearly VMT per county 

was considered a major influential variable. Given that the average curve radius and pavement 

friction of each county would not show any significance in this model, it was reasonable to split 

the total VMT into VMTs for different type of curve segments by their radius and friction to 

analyze their influence. The variables used for micro-level model specification and their 

descriptive statistics are summarized in Table 3.2. Referring to Musey (2017), the horizontal 

curves were classified as follows: 

                         gentle curve: radius > 350 m; sharp curve: radius < 350 m 

                         low friction curve: friction < 40; high friction curve: friction > 40 

Table 3.2. Variable description and summary statistics of micro-level dataset. 

Variables Description Mean Std. dev Min Max 

𝑁 Number of crashes occurred during 2016-2018 per county 75.71 54.73 2 256 

𝑉𝑀𝑇_𝑔ℎ Total yearly VMT of high friction gentle curve segments  5.59 4.34 0.33 21.08 

𝑉𝑀𝑇_𝑔𝑙 Total yearly VMT of low friction gentle curve segments 5.48 5.01 0 24.11 

𝑉𝑀𝑇_𝑠ℎ Total yearly VMT of high friction sharp curve segments 2.19 1.95 0.06 9.78 

𝑉𝑀𝑇_𝑠𝑙 Total yearly VMT of low friction sharp curve segments 2.93 2.62 0.06 11.04 

Note: VMT value is in million miles 

3.2 HFST information 

To obtain the most precise HFST pavement segment shapefiles, digitization was conducted 

to record their satellite images and construction information. These images, which were published 

in 2014 with a pixel size of 3 m, was obtained from the National Agriculture Imagery Program 

(NAIP). Overall, 3.696 miles of 25 HFST pavement segments were digitized for crash counting. 

Crash data was collected during 2016 through 2019 occurred within 25 meters of the centerline of 
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an HFST curve segment. The crash data before HFST installation is for year 2016 to 2018, while 

the post HFST crash data covers year 2019. Not including the crash data for year 2020 is a result 

of unusual traffic volume during COVID-19 pandemic. The decreasing number of crashes in 2020 

would likely be not due to HFST. Table 3.3 shows the detailed crash counts and other information 

about each HFST site. Figure 3.2 shows the geographical locations and digitization of the HFST 

sites. 

     

 

Figure 3.2. HFST installations in Indiana.  
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Figure 3.2. Continued 
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Figure 3.2. Continued 

 

 

 



 

 

33 

 

Figure 3.2. Continued 
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Figure 3.2. Continued 
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Table 3.3. Indiana HFST site before (2016-2018) and after (2019) crash counts. 

HFST 

 Site 

Length 

(mile) 

FN@40 mph  
Wet Weather 

Crashes 
Injury Crashes  All Crashes 

Before After Before After Before After Before After 

F-1 0.25 34.9 81.5 9 0 6 0 16 3 

F-2/2 0.157 31.7 79.8 1 0 0 0 2 0 

G-5/3 0.28 35.2 93.1 0 0 0 0 0 0 

L-1/2 0.18 25.1 81.2 2 1 1 0 6 2 

L-1/1 0.16 26.0 84.9 4 1 2 0 10 1 

L-2 0.11 47.5 82.7 0 1 0 0 1 1 

V-17 0.21 52.4 84.4 1 0 0 0 2 0 

V-2 0.14 23.1 75.3 1 0 1 0 2 1 

V-4 0.15 23.4 72.3 0 0 0 0 0 0 

V-5,6 0.61 38.1 87.6 2 0 1 0 3 0 

V-9 0.1 44.5 82.4 0 0 1 0 2 1 

V-10 0.11 46.7 81.9 0 0 3 1 7 3 

V-11 0.13 51.5 84.0 0 0 0 0 0 0 

V-12 0.11 52.4 88.2 0 0 0 0 3 0 

V-3 0.14 53.5 86.0 0 0 0 0 1 0 

L-11 0.05 24.3 87.1 2 0 0 0 2 0 

S-1 0.09 28.6 67.9 1 1 1 0 3 1 

S-2 0.33 19.9 83.1 2 0 1 1 3 2 

F-2/1 0.08 29.1 81.2 4 0 0 0 4 0 

C-1 0.17 42.2 87.2 0 0 0 1 0 1 

C-2 0.06 52.3 87.2 1 0 1 0 3 0 

C-4 0.06 52.3 85.9 3 3 3 1 17 5 

G-3 0.2 41.1 88.9 2 0 1 0 4 0 

C-5 0.049 44.5 71.2 1 0 1 0 1 1 

C-3 0.17 43.8 87.7 1 0 1 0 6 1 

Sum 4.096 - - 37 7 24 4 98 23 
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 RESULTS AND EVALUATION 

This chapter presents the evaluation of 25 HFST sites in Indiana as well as a comparison 

conducted with other state results. The local analysis and findings for the specific micro-level 

GWNBR model then are presented to conclude the chapter. 

4.1 Analysis of before-after HFST 

Since estimating CMFs is not a trivial task, the estimate in this evaluation is an 

approximation that applies to an ideal comparison group with yearly trends identical to the 

treatment group, which is a highly unlikely situation. Therefore, this thesis recognizes that this 

estimate could be a conservatively low approximation. The results of the EB analysis of the CMFs 

for all 25 HFST sites are shown in Table 4.1. 

Table 4.1. Aggregated CMF results for Indiana HFST sites. 

Crash Type Observed Crash After EB Expected After CMF (std. dev) 

Total 23 31.93 0.701 (0.184) 

Injury 4 7.87 0.496 (0.195) 

Wet weather 7 11.61 0.563 (0.172) 

 

As shown in Table 4.1, the estimate of the HFST CMFs using the EB method was 0.701 

with a standard deviation of 0.184. A key feature of the EB method is that it reduces uncertainty 

in CMF estimates because it uses more information and a more rigorous methodology. There have 

been HFST CMF research studies in other states (see Table 4.2). A comparison of the results of 

this thesis with those studies revealed that the HFSTs installed in Indiana demonstrated a safety 

impact well within the proven range found by other states. 

Table 4.2. Estimated HFST CMF value comparison with other states.   

Crash Type Indiana 
CMF by Merritt et al. (2015) CMF by Lyon et al. (2020) 

(CO, KS, KY, MI, MT, SC, TN) (PA, WV, KY, AR) 

Total 0.701 0.759 0.428 

Wet weather 0.563 0.481 0.167 
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4.2 Macro-level crash frequency modeling 

Macro-level modeling was estimated by Poisson and GWPR, as the over-dispersion showed 

no significance. A GWPR model was implemented using GWR4 software (Nakaya et al. 2009). 

4.2.1 Model estimation 

The optimum AICc of the global Poisson model was 829.67 while the optimum AICc of the 

GWPR model was 627.53, indicating that the GWPR model presented better goodness of fit over 

the Poisson model. The lowest AICc was searched through a bandwidth of a fixed Gaussian and 

adaptive bi-square kernel function, and the fixed Gaussian bandwidth of best performance was 

61807 m. The effective number of parameters of the GWPR model was 25.0, which indicated an 

extension of the parameters from the Poisson model. When the RPNB model was applied for 

potential heterogeneity, none of these parameters were shown to be significant on the variance of 

the random parameter. 

The results of the local parameters are described by the 5-number summaries, which 

represent the minimum, lower quartile, median, upper quartile, and maximum values in Table 4.3. 

From Table 4.3, it can be seen that the mean coefficients of the GWPR model were close to the 

Poisson coefficients. All four variables showed positive signs in the Poisson model, indicating that 

increasing the VMT always resulted in more crash occurrence. The coefficients of the sharp curve 

VMT were higher than the gentle curve VMT, which matched the assumption of this thesis. 

However, friction did not show a similar pattern on the gentle and sharp curves, reflecting that 

friction may not play an important role on the safety performance of gentle curves. Note that there 

was a counterintuitive sign on the minimum value of 𝑙𝑜𝑔 (𝑉𝑀𝑇𝑔ℎ), as its overall coefficients were 

close to zero. However, the t-values of observations with a negative sign all were lower than 1.984, 

meaning that their confidence level of significance was lower than 97.5%. 

To quantify the change in the model residual spatial autocorrelation, Moran’s I statistics 

were calculated for both models. The Moran’s I of the Poisson model was 0.1857 with a p-value 

of 0.00, indicating that the counties with similar residuals were clustered. The Moran’s I of the 

GWPR model was -0.0319 with a p-value of 0.708, which was a large improvement from the non-

spatial model. However, the p-value of the Moran’s I significance did not reach the 90% 
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confidence level so it could not be concluded yet that the GWPR model’s residuals were randomly 

distributed over all 92 counties. 

Table 4.3. Estimated parameters of Poisson and GWPR models. 

Model Poisson GWPR 

  Mean Min Lwr Med Upr Max 

Intercept 3.376 3.312 2.428 3.266 3.359 3.436 3.547 

𝑙𝑜𝑔 (𝑉𝑀𝑇𝑔ℎ) 0.219 0.254 0.090 0.168 0.240 0.323 0.587 

𝑙𝑜𝑔 (𝑉𝑀𝑇𝑔𝑙) 0.122 0.121 -0.045 0.060 0.135 0.177 0.320 

𝑙𝑜𝑔 (𝑉𝑀𝑇𝑠ℎ) 0.229 0.247 0.065 0.167 0.231 0.330 0.399 

𝑙𝑜𝑔 (𝑉𝑀𝑇𝑠𝑙) 0.300 0.278 0.059 0.231 0.288 0.333 0.408 

4.2.2 Model interpretation 

The distributions of the 92 Indiana counties’ coefficient estimates and their t-values are 

shown in Figure 4.1 and Figure 4.2, respectively. An obvious nonstationary spatial pattern of 

parameters can be seen in these figures. The observations with significant coefficients were 𝑉𝑀𝑇𝑔ℎ, 

𝑉𝑀𝑇𝑔𝑙 , 𝑉𝑀𝑇𝑠ℎ, and 𝑉𝑀𝑇𝑠𝑙, which accounted for 95.7%, 77.2%, 94.6%, and 96.74%, respectively. 

The GWPR model was able to capture the spatial heterogeneity between the frequency of the curve 

crashes and the explanatory variables, which was hidden in the Poisson model. 

Figure 4.1 and Figure 4.2 also show a clear established pattern. For the gentle high friction 

curve VMT, the parameters gradually decreased from the eastern counties to the other counties, 

except for the southwest corner counties. As the safest type of road, the high coefficients of 𝑉𝑀𝑇𝑔ℎ 

may reflect that factors other than friction and radius were influencing highway curve safety in 

those counties. Only four counties in the lakeshore area did not show significance at 99% 

confidence level for this variable. With respect to the gentle low friction curve VMT, the mean 

coefficient was similar with its small value in the global Poisson model. A total of 21 eastern 

counties showed low significance, and the other counties’ values decreased to the east. This result 

indicates that to improve curve safety, the counties with high coefficients may require new 

installations of HFST. The sharp high friction curve VMT coefficient distribution shows a trend 

of decreasing from the center belt to the north and the south. Only three counties in the northeast 

and Posey County in the southwest showed low significance. Flattening curves could be a helpful 

implementation to improve traffic safety for the counties in the “high coefficient belt.” The most 
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high-risk type of curve, i.e., sharp low friction, showed the highest value for the central northern 

to eastern counties. Two counties on the west edge and one county on the northeast corner had a 

significance confidence level lower than 99%, which indicated that those counties with a high 

coefficient need to pay more attention to their low friction sharp curves from a safety perspective. 

In summary, this model’s results provide suggestions as to which counties INDOT should focus 

on when trying to improve the safety on certain types of highway curves. 

    

(a)                                (b)                                    (c)                                     (d) 

Figure 4.1. Coefficient distribution of (a) gentle high friction curve VMT, (b) gentle low friction 

curve VMT, (c) sharp high friction curve VMT, and (d) sharp low friction curve VMT. 

     

(a)                                (b)                                    (c)                                     (d) 

Figure 4.2. The 𝑡 value of (a) gentle high friction curve VMT, (b) gentle low friction curve 

VMT, (c) sharp high friction curve VMT, and (d) sharp low friction curve VMT. 
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4.3 Micro-level crash frequency modeling 

The micro-level modeling of this thesis was estimated using both spatial (GWPR, GWNBR, 

and GWNBRg) and non-spatial (NB, ZINB, and RPNB) models in conjunction with the dataset 

described in Chapter 3. The estimation of the RPNB model and the GWR approach were performed 

by NLOGIT6 and Golden macro in SAS®9.4 (Silva et al. 2016), respectively.  

4.3.1 Model comparison 

As the crash frequency studied in this thesis occurred between 2016 and 2018 showed a 

significant over-dispersion parameter (1.88), an NB model was proposed as the basic conventional 

nonstationary model with which to begin the process. Other than the over-dispersion that was 

exhibited by the micro-level dataset, another characteristic was its “inflated” zero count 

observations. A total of 6,329 curve segments out of 9,415 did not experience any crashes in those 

three years. A ZINB model was then specified, which resulted in a Vuong statistic of 3.313; and 

this value was greater than 1.96, meaning that the ZINB model outperformed the traditional NB 

model. All the parameters were significant in the zero state except friction, which indicated that 

friction was not a dominant factor in determining the likelihood of these curve segments to ever 

suffer any events. 

We estimated the RPNB model by using the normal distribution as a parameter density 

function, which was accomplished using 100 Halton plots of simulation-based maximum 

likelihood. This model was applied to account for the heterogeneity among the individual curve 

segments in order to compare its results with the GWR approach that assumes the parameters vary 

among the curve segments. Although specifying groups in random parameter models is popular, 

as mentioned earlier, there was no need to divide the data into groups in this thesis. 

For the GWR approach, a fixed Gaussian function was applied as the kernel function curve 

segments were identified from the road network. Assuming that the unobserved heterogeneity of 

curve crashes resulted from climate, terrain, and driver behavior, their spatial correlation matrix 

was assumed to be independent of the number of neighbors. Thus, the bandwidth was set to be 

Gaussian fixed kernel functions as defined in Equation 2-18, and the distance between a pair of 

curve segments’ midpoints was set as the Euclidean distance in the kernel function. Moreover, the 
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optimum bandwidths with the lowest AICc for the GWR approach were selected using the SAS 

Golden macro. 

The results of the model estimations are presented in Table 4.4. Several general observations 

are worth noting. The GWNBR model produced the lowest AICc value and the highest log 

likelihood value, which indicated that by accounting for the spatial heterogeneity of all the 

variables and dispersion parameters, the curve crash frequency was depicted best by the GWNBR 

model. The RPNB model had a larger AICc value than the ZINB model, implying that even a non-

stationary model without addressing the spatial factors could outperform an advanced stationary 

model. Concerning the MAD metric, the GWPR model surprisingly observed a smaller MAD 

value than the GWNBR model. One explanation for this result is that the GWPR model with the 

smallest MAD tended to have a bandwidth much smaller than that of the GWNBR model. A 

smaller bandwidth size allowed the GWPR model to depict local varying parameters while making 

it less vulnerable to extreme values. Furthermore, the RPNB and GWNBRg models had similar 

performances for log likelihood and AICc, wherein both assumed that the dispersion parameter 

did not vary over space. Finally, the traditional NB model, as expected, performed worst for every 

goodness of fit measure. 

Table 4.4. Goodness of fit and residual spatial dependency for different models. 

Model 
Bandwidth 

(km) 

# of 

parameter 
MAD 

Log 

likelihood 
AICc 

Dispersion 

Parameter 
Moran’s 𝐼 𝑝-value 

NB - 5 0.881 -9,978.4 19,968.0 1.88 0.1542 10−43 

ZINB - 9 0.878 -9,950.0 19,918.2 1.39 0.1553 10−44 

RPNB - 11 0.847 -9,917.1 19,856.2 1.31 0.0753 10−41 

GWPR 15.45 295.1 0.845 -10,805.9 22,219.9 - 0.0297 10−7 

GWNBR 34.65 76.5 0.859 -9,780.7 19,715.6 - 0.0569 10−24 

GWNBRg 76.01 22.7 0.869 -9,900.9 19,847.4 1.88 0.0634 10−30 

Note: 𝑝-value is the possibility of model residual random distribution over space 

To quantify the spatial autocorrelation of the predicted residuals for these models over curve 

segments, Moran’s I was employed. The results are presented in Table 4.4. 

The Moran's I results show that the non-spatial models (NB, ZINB, and RPNB) always had 

a higher value than the GWR model, which reflected a relatively high spatial autocorrelation 

without considering spatial variation. The GWPR, GWNBR, and GWNBRg models showed 
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decreasing Moran's I values, which may be related to their different optimum bandwidth 

(GWPR<GWNBR<GWBNRg), i.e., the local patterns depicted from the model strongly reduced 

residual prediction autocorrelation. However, none of these models showed significance for the 

non-autocorrelation of the prediction residuals. Table 4.4 shows that the reduction of the residual 

autocorrelation from the NB to GWNBR models had 99% significance, indicating that the 

GWNBR model was capable of producing a relatively non-biased estimation compared to the 

global model. 

4.3.2 Statistics of estimated parameters 

The estimated parameters are summarized in Table 4.5. The parameters are denoted as 

LOGR, LOGL, LOGF, and LOGA, representing the logarithms of radius, length, friction, and 

AADT, respectively. The local parameters in the RPNB and GWR models were described by the 

minimum, lower quartile, median, upper quartile, and maximum of values, while only the point 

estimation of the coefficients in the NB model was provided. The parameters of the global NB 

model showed positive signs for curve length and traffic volume (LOGL and LOGA), which 

indicated that crash frequency rose with an increase in the curve segment length and the traffic 

count. The estimations of the curve radius and pavement friction (LOGR and LOGF) showed 

negative global parameters, which made sense and agreed well with recent research findings 

(Geedipally et al. 2019, Himes et al. 2019). All the parameters in the normal state of the ZINB 

model showed identical signs with the NB model but had a smaller absolute value than the NB 

model as its zero state explained part of the crash occurrence. The signs of the parameters of the 

ZINB model’s zero state showed a different sign from the normal state because it represents the 

possibility of being qualitatively set as zero state.  As shown in Table 4.5, the parameter statistics 

revealed the following: (1) the mean and median values of the estimated parameters generated 

from all these non-stationary models were close to that obtained with the global NB model, 

indicating that the global model generally reflected the average impact of these factors in the non-

stationary models; and (2) the range of varying parameters could be ranked as GWPR> GWNBR> 

GWNBRg> RPNB, which is in agreement with the discussion in the next section. 
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Table 4.5. Estimated parameters of NB, ZINB, RPNB, GWPR, GWNBR, and GWNBRg models. 

Model NB RPNB                                    GWPR  

  Mean Min Lwr Med Upr Max Mean Min Lwr Med Upr Max 

Intercept -5.96 -6.25 -6.33 -6.26 -6.25 -6.23 -5.82 -6.14 -22.17 -8.21 -6.00 -4.32 3.56 

LOGR -0.24 -0.30 -0.33 -0.31 -0.30 -0.29 -0.14 -0.23 -1.04 -0.36 -0.24 -0.10 0.61 

LOGL 0.87 0.96 0.94 0.95 0.96 0.96 1.07 0.87 0.137 0.68 0.85 1.05 1.98 

LOGF -0.36 -0.40 -0.46 -0.42 -0.41 -0.39 0.08 -0.29 -2.24 -0.44 -0.25 -0.04 0.94 

LOGA 0.49 0.48 0.46 0.48 0.48 0.49 0.61 0.47 -0.34 0.35 0.51 0.61 1.24 

 

Model ZINB  GWNBR                                                                                    GWNBRg  

 Count Zero Mean Min Lwr Med Upr Max Mean Min Lwr Med Upr Max 

Intercept -4.31 6.36 -5.80 -9.19 -6.82 -5.64 -5.16 -1.79 -5.82 -7.07 -6.42 -6.01 -5.66 -3.45 

LOGR -0.14 0.52 -0.24 -0.55 -0.30 -0.25 -0.18 0.04 -0.24 -0.33 -0.27 -0.24 -0.23 -0.15 

LOGL 0.59 -1.57 0.85 0.46 0.76 0.85 0.93 1.18 0.84 0.73 0.80 0.83 0.87 0.94 

LOGF -0.36 - -0.31 -0.97 -0.33 -0.28 -0.24 -0.03 -0.33 -0.68 -0.34 -0.30 -0.27 -0.26 

LOGA 0.42 -0.38 0.46 0.07 0.36 0.47 0.57 0.73 0.48 0.24 0.40 0.51 0.55 0.60 

Note: all parameters in this table are over 99% significance level 

It is also worth noting that there were counterintuitive signs in the GWPR and GWNBR 

models. The GWPR model had counterintuitive signs of coefficients for some observations for the 

regression intercept and the LOGR, LOGF, and LOGA. The GWNBR model also had a few 

counterintuitive signs of coefficients for the LOGR. Since the spatial coefficient multicollinearity 

has been proven not to be responsible for counterintuitive signs (Fotheringham and Oshan 2016), 

this result can be explained by the hypothesis that some variables may not be significant in certain 

areas. These local areas may have insignificant counterintuitive signs for some variables (Gomes 

and Cunto et al. 2017). This can be seen by observing the coefficient spatial distribution of the 

GWPR and GWNBR models in Figure 4.3. Unexpected significant counterintuitive signs among 

the variables in the GWPR model could be caused by failing to consider data over-dispersion (Xu 

and Huang 2015). 

4.3.3 Spatial heterogeneity of estimated parameters 

The distributions of the local coefficient estimates and their significance interpolated by 

inverse distance weighted (IDW) for GWPR, GWNBR, and GWNBRg are plotted in Figure 4.3. 

Using the known parameter values for the 9,415 curve segments, the IDW algorithm predicted the 

values for the unmeasured locations using the values of the surrounding measured locations. The 
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areas with a significance level of less than 90% were not considered in the parameter analysis and 

are shown in gray on the maps. Generally, the coefficient distributions of the GWPR, GWNBR, 

and GWNBRg models were more homogeneous as a result of their different optimum bandwidths; 

and the larger their optimum bandwidth was, the more homogeneous their coefficient distributions. 

 

 

 
(a)LOGR                                 (b)LOGL                              (c)LOGF                               (d)LOGA 

 

Figure 4.3. Distribution of (a) LOGR, (b) LOGL, (c) LOGF, and (d) LOGA in different 

GWPR (top), GWNBR (middle), and GWNBRg (bottom). 
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Since the GWNBR model performed best with regard to the goodness of fit in terms of AICc, 

the parameter estimations are mainly illustrated according to the GWNBR model. Observations 

with significant coefficients accounted for 54.9%, 100%, 22.0%, and 96.2% for LOGR, LOGL, 

LOGF, and LOGA, respectively. A high percentage of parameter significance of LOGL and 

LOGA appeared as expected due to the predominant influence of the exposure factors in crash 

frequency prediction. 

Observing from the curve radius (LOGR) coefficient distribution from the GWPR model in 

Figure 4.3(a), the central area presented the highest coefficients with only a small area showing 

positive signs. However, the central and northwestern regions with high coefficients did not 

present enough significance to be considered in the GWNBR model. The lower values mainly 

were distributed in the southern part of the state, indicating a significant influence of the curve 

radius in that region. Figure 4.3(a) also shows several significant regions where it was difficult to 

summarize the spatial patterns of the radius coefficient for the GWNBR model. The GWNBRg 

model in Figure 4.3(a) shows a smooth decrease from the northwest to the southwest, which may 

have been caused by some extreme values. Hence, although 93% of the observations show 

significant coefficients for the GWNBRg model of LOGR, the coefficient varying trend may not 

be reliable. 

For the curve segment length (LOGL) in Figure 4.3(b), the GWNBR model’s coefficient 

distribution presents two relatively lower coefficient regions in southern Indiana and an area close 

to Chicago in northwestern Indiana. Similar to the LOGR coefficient distribution, Figure 4.3(b) 

shows that the GWPR model demonstrated a broken distribution of the LOGL coefficient with no 

apparent pattern and the GWNBRg model showed a decrease in the coefficient from the central 

counties to the north and the south. 

When analyzing the spatial distribution of the GWNBR model’s coefficients for curve 

friction (LOGF) in Figure 4.3(c), it was observed that there were only two separate regions that 

showed significant coefficients. For the region located in the southern area that almost coincides 

with the LOGL southern low coefficient area in Figure 4.3(b), the GWNBR model showed 

coefficient values of about -0.25, while the other region located in the northern area had 

significantly lower friction coefficients. Figure 4.3(c) shows that the significant areas were 

dispersed and further that there was a homogeneous coefficient variation while only northwestern 

Indiana had low values.  
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In Figure 4.3(d), the AADT (LOGA) coefficient distribution of the GWNBR model 

indicated high values in southern and southeastern Indiana as well as a small non-significant 

coefficient area in northeastern Indiana.  Figure 4.3(d) shows that the GWPR model indicated an 

insignificant coefficient area mainly located in northwestern Indiana. The GWNBRg model 

(bottom row) indicated a more general coefficient decreasing trend from south to north. 

In summary, the coefficient distributions in the GWPR and GWNBRg models identified the 

disadvantages associated with parameter explanation. All the coefficients displayed a very 

heterogeneous pattern in the GWPR model while the distribution of the coefficient of the 

GWNBRg model was very homogeneous. Even without considering the GWPR model having the 

worst goodness of fit, its coefficient distributions were very detailed for analysis. On the other 

hand, the GWNBRg model’s coefficient distributions showed a statewide smooth surface with 

small variations, and almost all the observations had significant coefficients for the four parameters. 

However, this characteristic drove the GWNBRg model closer to the global model, which could 

not elaborate the spatial heterogeneity of the parameters.  The optimum bandwidth of the GWNBR 

model was moderate and therefore showed a more explainable parameter distribution map than the 

other two GWR models. 

4.3.4 Local analysis of GWR results 

The differences between the coefficient distributions in northern and southern Indiana made 

it necessary to analyze local examples to determine possible factors that caused the heterogeneity. 

As described in the introduction, there were many unobserved factors (e.g., driver behavior, 

climate, and landcover). This thesis found that the landcover pattern coincided with the coefficient 

distribution of the pavement friction and curve length, which was illustrated by two typical regions 

of Indiana with different land covers and topographies. For example, southern Indiana has an area 

of forest while northern Indiana has cultivated crops, but there are some coefficient distribution 

patterns that matched the landcovers in Figure 4.4(a) and Figure 4.5(a). The southern Indiana forest 

region had higher absolute values for the AADT coefficients and low absolute values for the curve 

length and pavement friction coefficients, which reflects the relatively strong influence of traffic 

volume on the curve crash frequency in the forest curve segments. In northern Indiana, with its 

homogenous landcover, the parameters varied over space; and when compared with the southern 

Indiana forest area, the coefficients of AADT and the coefficients of pavement friction in areas 
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with significant coefficients were significantly lower at a 95% confidence level. The absolute value 

of the pavement friction coefficient in the forest area was about 75% less than that of the northern 

plain area. However, the landcover could not serve as a variable in the models as all of the curve 

segments were located in developed open space without varying landcover distributed around them. 

In respect to curve distribution density, there also were patterns observed that can be seen in 

Figure 4.5. For the area with a significant coefficient in Figure 4.5(c), the locations with sparse 

curve segment distribution showed higher absolute values of the pavement friction coefficient than 

the remaining area at a 95% confidence level. Considering that the population density is low where 

there are cultivated crop landcovers and the highways are mostly straight explained why the 

pavement friction highly influenced the curve crash frequency. 

 

        
(a)                                                                           (b) 

          

(c)                                                                           (d)     

Figure 4.4. Landcover (a), distribution of (b) LOGL, (c) LOGF, and (d) LOGA in GWNBR in a 

forest area in southern Indiana. 
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Based on the three years of curve crash records for Indiana, this thesis concluded that the 

crash frequency during that time depended less on friction and curve length but rather was 

influenced by the AADT in the southern forest area. The remainder of Indiana, with mostly a 

cultivated crop landcover still had some other unobserved factors, such as curve density, which 

may have affected the curve crash frequency. This thesis concluded that the installation of HFST 

for curve segments on highways in the Indiana plain area would improve safety.  

Generally, highway planners can directly use the results obtained from the spatial 

distribution analysis of the GWNBR model’s coefficients in this thesis to develop security 

enhancement strategies in curve design and evaluate and prioritize these strategies from the 

perspective of security effects. 

       

(a)                                                                               (b) 

     

(c)                                  (d) 

Figure 4.5. Landcover (a), distribution of (b) LOGL, (c) LOGF, and (d) LOGA in GWNBR in a 

plain area in northern Indiana. 
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4.4 Discussion 

The estimated models in this thesis to determine the crash frequency occurring on the curves 

used the following explanatory variables: curve radius, curve length, pavement friction, and traffic 

volume, which were aggregated in individual curve segments. The GWPR model yielded the 

lowest MAD and the smallest absolute value of Moran's I by overfitting to the extreme values with 

its coefficient heterogeneity while the GWNBR model outperformed the others in terms of log 

likelihood and AICc. Since neither model proved non-autocorrelation of residual spatial 

distribution, the GWNBR model was the best approach that was able to capture the spatial 

heterogeneity between the frequency of curve crashes and the explanatory variables. Although the 

RPNB model incorporated unobserved heterogeneity in the modeling process and has been widely 

employed, it failed to account for the spatial correlation that existed across adjacent observations, 

which may result in biased parameter estimates and incorrect inference. The calibration process of 

the GWR approach is based on the First Law of Geography, which was implemented as all the 

attribute values over the area of interest were correlated, however, the near values were more 

related than the distant values. The GWPR model minimized MAD using a heterogeneous 

coefficient distribution pattern but had a significant number of incorrect signs for radius and 

friction, which may cause overfitting issues. The GWNBR model performed better than the 

GWNBRg model with a global dispersion parameter; and it was selected as the best local model 

depicting the non-stationary curve crash frequency coefficients statewide. In the local analysis of 

the GWNBR model variables distribution, the southern Indiana forest area’s pavement friction and 

curve length played a less critical role in reducing crash occurrence than other landcover regions, 

and the AADT was more crucial in that area. In the Indiana plain areas, the parameters also varied 

over space without considering other unobserved factors such as weather and driver behavior. 

Other than spatial analysis, comparing the models’ CMF predictions and the observed CMF 

of HFST also played an important role. The average pavement friction of the 25 HFST installations 

across Indiana increased from 38.6 to 82.9. Substituting the pavement friction values before and 

after installing HFST into the models in this chapter yielded the predicted CMFs. The prediction 

results are presented in Table 4.6.  
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Table 4.6 HFST CMF predictions. 

Source CMF 

Observation 0.701 

ZINB (NB) 0.759 

RPNB 0.752 

GWPR 0.786 

GWNBR 0.742 

GWNBRg 0.751 

 

Note that the prediction results for the ZINB and NB models were identical due to the 

insignificant friction parameter in the zero state of the ZINB model. Therefore, improving the 

friction only did not make a difference in the CMF calculation between them. The mean CMF 

prediction of these models ranged from 0.742 to 0.786, which all were higher than the CMF 

calculated from the observations. The best prediction in terms of the 25 HFST installations was 

provided by the GWNBR model, which further strengthened its dominant performance. However, 

the overall conservative results from these models also reflect the flaws of this series of models 

and database. Other possible reasons also could have originated from the HFST data collection, 

such as the small number of samples (25 sites) and the limited time period after their installation. 
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 CONCLUSION 

Traffic accident prevention and its spatial analysis have been receiving increased attention 

in recent years. This thesis comprehensively explored spatial modeling approaches along with the 

application of advanced non-spatial models to identify road curve crash frequency. The data used 

in this thesis included INDOT jurisdiction highway curve crash data as well as HFST installation 

information throughout the state. 

The HFST safety performance evaluation of this thesis first identified 25 HFST sites 

installed between September and November of 2018, which then were digitized according to 

satellite images and their geometry features were extracted. As far as the crash analysis portion of 

this thesis, the locations of crashes that occurred between 2016 and 2019 were used to establish 

the crash frequencies for each HFST site in preparation for an EB before-after analysis. The 

estimated CMF of the Indiana HFST installations was found to be 0.701, which was close to the 

results of HFST-related research conducted by other states. But one year after-HFST crash count 

is not convincingly enough to draw solid conclusion about their safety performance. With more 

crash data available over a longer period of time after the HSFT installation, a practical application 

of this work is to do benefit/cost analysis on these HFST installations and offer suggestions for 

decision makers and practitioners from safety and economic perspectives. 

This thesis mainly focused on modeling the curve crash frequency as the major reason for 

installing HFST is crash reduction. Crash frequency with spatial heterogeneity was employed to 

quantitively investigate its relationship with each curve segment’s characteristics aggregated at 

both the macro and micro levels. Two types of models, i.e., non-spatial and spatial, were utilized 

to account for the spatial heterogeneity of the coefficients due to the unobserved factors over space. 

Poisson and GWPR models first were employed for the macro-level dataset. Then, for the micro-

level dataset, the traditional NB model was specified as a basic global model to consider data over-

dispersion, and a ZINB model was applied to solve the excessive zero observation problem. Both 

RPNB and GWR spatial approaches, including GWPR, GWNBR, and GWNBRg, were used to 

determine the preferable model for explaining road crash occurrence. The GWNBR model was 

promising for dispersed crash frequency data at the micro-level for safety planning compared to 

the other model in this thesis, especially for explaining the local coefficient distribution. In terms 

of spatial autocorrelation of the model’s residuals, spatial models increased the p-value of Moran’s 



 

 

52 

I in the macro-level and micro-level datasets, reflecting that it was able to sufficiently randomize 

the spatial distribution for the model residuals. The CMF predictions from all the micro-level 

models were relatively close to the EB analysis results, but all of them underestimated the safety 

performance of HFST, which will require additional crash data collection to verify. 

The GWNBR model produced a moderate fluctuation of the curve segment’s radius and the 

pavement friction’s influence for crash frequency over space, suggesting a more realistic spatial-

varying safety guidance value. These findings will help safety professionals achieve more accurate 

estimates of the safety of horizontal curves, allocate funds to reduce or prevent potential crashes, 

and design better road segments based on existing horizontal curve crash data to minimize crash 

risk. For example, HFST is suggested by this thesis for implementation on highway curves in the 

plain regions. In the hilly areas, some countermeasures such as limiting the traffic volume during 

peak hours, should be considered while implementing HFST if the terrain does not allow curve 

flattening. Note also that the calibration of this model needs to be designed again for regional crash 

modeling in another geographical area since the set of local parameters are not interchangeable 

over other spaces.  

This work has some limitations. Since Indiana is dominated by cultivated crops and forests, 

it is difficult to reliably infer the effects of parameters in other less represented land covers. 

Furthermore, speed limit data are an important factor for a curve safety study. Although a non-

stationary model could compensate for unavailable variables, adding speed limit data would 

possibly lead to more realistic modeling. Last but not least, our findings on both HFST safety 

performance and statewide crash modeling may need further validation through additional data. 

There are several areas recommended for future work. First of all, it is not always true that 

all parameters are spatial-varying when too many variables are involved. Hence, a semi-parametric 

model is recommended for setting those variables without strong spatial variation stationary to a 

simplified model. Furthermore, to account for the local effects in both space and time, the 

extension on the temporal dimension of the GWR approach, i.e., the GTWR model, could be the 

favorable model for traffic safety studies. In addition, as shown in Chapter 4, a ZINB model proved 

to be an effective way to solve the excessive zero count in the micro-level dataset used by this 

thesis. Combined with a RPNB model and a GWNBR model, a zero-inflated random parameter 

negative binomial (ZIRPNB) model and a zero-inflated geographically weighted negative 
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binomial regression (ZIGWNBR) model could be beneficial for conducting spatial analysis of 

traffic crash modeling.  
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