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ABSTRACT

In this thesis, we extend the numerical S-matrix bootstrap program to 1+1d theories

with a boundary, where we bootstrap the 1 → 1 reflection matrix (R-matrix). We review

the constraints that a physical R-matrix must obey, namely unitarity, analyticiy and crossing

symmetry. We then carve out the allowed space of 2d R-matrices with the O(N) nonlin-

ear sigma model and the periodic Yang Baxter solution in the bulk. We find a variety

of integrable R-matrices along the boundary of the allowed space both with and without

free parameters. The integrable models without a free parameter appear at vertices of the

allowed space, while those with a free parameter occupy the whole boundary. We also intro-

duce the extended analyticity constraint where we increase the domain of analyticity beyond

the physical region. In some cases, the allowed space of R-matrices shrinks drastically and

we observe new vertices which correspond to integrable theories. We also find a new in-

tegrable R-matrix through our numerics, which we later obtained by solving the boundary

Yang–Baxter equation. Finally, we derive the dual to the extended analyticity problem and

find that the formalism allows for R-matrices which do not saturate unitarity to lie on the

boundary of the allowed region.
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1. INTRODUCTION

The S-matrix Bootstrap is an ambitious program from the 60s, which aimed to obtain the

exact S-matrix of strong nuclear interactions [1 ], starting only from some simple axioms that

all physical theories are expected to obey, thereby bypassing a field theoretic description of

the subatomic particles. However, with the advent of Quantum Chromodynamics which very

successfully described the physics of strong interactions, the S-matrix bootstrap program was

shelved. Recently, motivated by progress in bootstrapping CFTs, the S-matrix bootstrap was

revisited in [2 ]. Since then, there has been a lot of interesting and promising work in this

direction. The basic idea is to use computers to carve out the space of S-matrices which

satisfy the constraints of unitarity, analyticity, and crossing symmetry. This problem can

be posed as a constrained convex optimization problem which has been studied very well

in the literature and can be solved by very fast algorithms. This is a powerful probe of

nonperturbative physics that uses simple numerics.

In the seminal works [2 ], [3 ], the authors addressed the following question - given a

spectrum of massive particles in 1 + 1 dimensions, what is the largest possible coupling to

bound states that one can have? The intuition is that as the coupling grows, more states

from the continuum can be pulled down as bound states, and so, for a fixed spectrum, there

exists a maximal coupling. Surprisingly, the class of theories which maximize this coupling

turned out to be a subsector of the integrable Sine-Gordon model. In [4 ] and [5 ], this idea

of maximizing couplings was applied to theories in higher dimensional and with multiple

amplitudes respectively.

Another problem that we can consider in this context is to look at sections of the infinite

dimensional space of allowed S-matrices that satisfy all the constraints. We can then study

the boundary of such sections where one often encounters special theories as vertices. In [6 ],

the 2d O(N) bosonic S-matrix, without any bound states was bootstrapped. In that paper,

the authors show that the integrable O(N) non-linear sigma model (NLSM), which was first

studied in [7 ] and exactly solved in [8 ], lies at a vertex of the space of allowed S-matrices.

This agrees with our intuition that integrable models without free parameters, being highly

constrained, must occupy distinguished points in the space of theories. In subsequent work
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[9 ], it was shown that the allowed space of O(N) symmetric S-matrices has two other vertices

that correspond to the free theory and another integrable S-matrix called the periodic Yang

Baxter (pYB) solution. In related work [10 ], it was shown that when an integrable theory

has a free parameter, it can show up along a segment of the boundary, instead of at a vertex.

In [9 ], the convex dual of the S-matrix bootstrap problem was studied, which provides a

way to rewrite a convex maximization problem as a minimization problem. This is partic-

ularly useful in scenarios where the convergence is poor with increasing resolution, because

it allows us to place upper bounds on the answer. In [11 ], the dual formulation for 3+1d

scattering amplitudes was presented, and the authors demonstrate that the dual problem

has better convergence even with fewer variables.

Two of the biggest unsolved problems in theoretical particle physics are quantization of

gravity and analytic description of the low energy physics of QCD. Both of these problems are

currently being studied using the S-matrix bootstrap. In [12 ], bounds were obtained on the

couplings in the low energy effective Lagrangian of worldsheet excitations of confining strings

using the S-matrix bootstrap approach. The 3+1d pion scattering amplitude was studied in

[13 ] and interesting features were observed in the scattering lengths and chiral zero positions.

In [14 ], precise bounds were obtained on the low energy effective Lagrangian in consistent

UV complete theories which have a graviton. In [15 ], a lower bound on the coupling constant

for the leading correction to the maximal supergravity action. There have been a plethora

of other works on the S-matrix bootstrap that incorporate spin, consider field theories with

various symmetry groups, supersymmetry, etc [16 ]–[31 ]. The S-matrix bootstrap is clearly

a very useful tool to study both highly symmetric, theoretically interesting models and also

more down to earth questions about the real world.

In this work, motivated by these results, we extend the S-matrix bootstrap to the case

of QFTs with a boundary, which are an important class of theories that show up in many

areas of theoretical physics. Specifically, we bootstrap the reflection matrix (R-matrix) for

a given integrable bulk S-matrix. As in the case of the S-matrix bootstrap, we have certain

unitarity, crossing and analyticity constraints that the R-matrix must obey. One important

difference is that we have a non-trivial crossing equation which involves the bulk S-matrix

and thus crossing is a nonlinear constraint if the S-matrix is allowed vary. In this thesis, we

9



fix the S-matrix to two cases - O(N) NLSM and the pYB solution. An obvious direction

for future work would be to bootstrap both the bulk and boundary scattering amplitudes

together. We obtain an interesting result that integrable R-matrices for the O(N) model

without any free parameters lie at vertices of the allowed space, and those with a free

parameter appear as 1 dimensional segments along the boundary. Another result we present

is the exact R-matrix for the pYB solution, which has not been worked out previously to

our knowledge. Interestingly, we first found this R-matrix numerically and then obtained

the analytic expression by solving the boundary Yang-Baxter equation.

This thesis is organized as follows - in sections 2 , 3 , we define the S-matrix and the

R-matrix and describe the constraints that they must satisfy. We then quote exact results

from the literature which were obtained using integrability. We also derive a new result - the

diagonal R-matrix for the pYB solution. In section 4 , we describe our numerical procedure

and how we can use convex optimization to solve the bootstrap. We then introduce the notion

of convex duality. In the next section, we present the results of the numerical bootstrap. In

section 6 , we present an alternative derivation of the dual problem and show that we can

have theories which do not saturate unitarity along the boundary of the allowed regions.

We present our conclusions in section 7 . The Python code for the numerics is included in

appendix C .
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2. THE S-MATRIX - CONSTRAINTS AND EXACT RESULTS

Before we formally define the S-matrix, we first need to define asymptotic in and out states

in interacting theories. In states are those which have a well defined particle number and

particle momentum at time t = −∞. These generically evolve into non-trivial states in an

interacting field theory at time t = +∞. Similarly, we define asymptotic out states as those

which have a well defined particle number and particle momentum at time t = +∞. Again,

these evolve from non-trivial states at t = −∞. Now, the S-matrix elements are defined as

overlaps of the asymptotic in and out states as follows

Sb1,b2,...
a1,a2,...(pa1 , pb1 , . . . ) = out 〈b1, pb1 ; b2, pb2 ; . . . |a1, pa1 ; a2, pa2 ; . . .〉in , (2.1)

where pi are the momenta of the in and out particles, and the indices ai and bi label any

additional quantum numbers in the theory. We will only be considering 2 → 2 scattering

of identical particles in 2d, which leads to certain simplifications. It will be convenient to

parameterize the on shell momenta p = (ε, k) using a rapidity variable θ as follows

ε = m cosh(θ) , (2.2a)

k = m sinh(θ) , (2.2b)

where m is the mass of the particles. The S-matrix being an observable, can only depend

on Lorentz invariant quantities. For 2 → 2 S-matrices, these are the Mandelstam invariants

which are defined as

s = (p1 + p2)2 = (p3 + p4)2 , (2.3)

t = (p1 − p3)2 = (p2 − p4)2 , (2.4)

u = (p1 − p4)2 = (p2 − p3)2 . (2.5)

Conservation of momentum in 1+1d QFTs implies that we must have either t = 0 and

u = 4m2 − s, or u = 0 and t = 4m2 − s, depending on how we chose to label the particles.
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Figure 2.1. The s-channel amplitude is the same as the t-channel amplitude
when analytically continued to the point 4 − s. This is trivially true in indi-
vidual Feynman diagrams, but can also be shown nonperturbatively using the
LSZ reduction formula.

One can check this straightforwardly by going to the center of mass frame. So, the S-matrix

is only a function of the Mandesltam s variable. It is also useful to note that

s = 4m2 cosh2
(
θ1 − θ2

2

)
. (2.6)

This makes manifest the fact that physical scattering states have s ≥ 4m2. Putting all this

together, we have the following definition of the 2 → 2 S-matrix

Scdab(θ1 − θ2) = out 〈c, θ1; d, θ2|a, θ1; b, θ2〉in . (2.7)

The S-matrix of unitary QFTs must obey an important constraint namely, the sum of

probabilities add to unity. Following the simple argument in [6 ], consider unitarity constraint

on the full multiparticle S-matrix

SS† = I , (2.8)
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where I is the identity operator in the appropriate dimensions. Now consider the 2 particle

subsector D spanned by some set {|ψα〉}. We have

∑
|ψβ〉

〈ψα|S|ψβ〉 〈ψβ|S†|ψα〉 = 1 , (2.9)

∑
|ψβ〉∈D

〈ψα|S|ψβ〉 〈ψβ|S†|ψα〉 +
∑

|ψβ〉6∈D
〈ψα|S|ψβ〉 〈ψβ|S†|ψα〉 = 1 . (2.10)

The second term of the last equation is clearly a non-negative quantity. So, the S-matrix

restricted to a subspace D satisfies the following semidefiniteness constraint

SDS
†
D 4 I . (2.11)

A crucial consequence of relativistic invariance in field theories is crossing symmetry. In

2-to-2 scattering, crossing is an equivalence between the S-matrix in the s-channel and in the

t-channel as illustrated in fig.2.1 . One can show that crossing is a symmetry of scattering

amplitudes using the LSZ reduction formula which can be found in any standard text on

QFTs. For 2d S-matrices, this implies

Scdab(s) = S b̄cd̄a(t = 4m2 − s) . (2.12)

Now, we consider in brief the analyticity of the S-matrix. Just as in nonrelativistic

scattering, when the S-matrix is analytically continued beyond the physical scattering region,

the poles we encounter indicate the presence of resonances and bound states. Bound states

correspond to subthreshold poles (s < 4m2), while complex poles correspond to Breit-Wigner

resonances.

Apart from these, field theory amplitudes have one other source of non-analyticity,

namely the threshold branch cuts. In perturbation theory, we can see that individual Feyn-

man diagrams have branch cuts via the Cutkosky cutting rules which evaluate the discon-

tinuity across said branch cuts with a simple prescription. However, it can also be shown

non-perturbatively that whenever intermediate particles in a scattering process have suffi-

cient energy to go on shell (the inelastic threshold), a branch cut is opened up (for a simple

13



s = 4s = 0

s

Figure 2.2. The physical S-matrix is the boundary value of an analytic func-
tion with threshold branch cuts running from s = 4 to ∞, and a corresponding
crossed cut from t = 4 (i.e. s=0) to ∞. The arrow indicates crossing symmetry
of the S-matrix from s → 4 − s.

explanation, see chapter 1 of [1 ]). So, in our case of 2-to-2 scattering in 2d, we have a branch

cut running from s = 4m2 to ∞. The physical S-matrix is defined as the boundary value of

an analytic function in the following way

Sphys(s) = lim
ε→0

S(s+ iε) . (2.13)

There can also be branch cuts at other particle production thresholds such as s = 9m2, 16m2, . . .

which correspond to more number of particles going on shell. Note that crossing symmetry

requires crossed branch cuts running from s = 0 to ∞, s = −5m2 to ∞, and so on.

In the numerical S-matrix bootstrap literature, the analyticity constraints imposed are

motivated by work from the 60s on axiomatic S-matrix theory [1 ]. Specifically, the “maximal

analyticity” assumption is made, which states that the S-matrix is an analytic function of

the Mandelstam variables on the physical sheet upto bound states and threshold cuts. Poles

in the higher sheets are allowed by this assumption. The analytic structure of a 2d S-

matrix is shown in fig.2.2 . It is easy to check that eq.(2.6 ) maps the first sheet to the strip

0 ≤ Im θ ≤ π, and maps the branch cuts onto the boundaries of the said strip.

14



In this thesis, we are interested in theories with O(N) symmetry. This symmetry allows

us to write down the S-matrix as

Scdab(θ) = δabδ
cdσA(θ) + δcaδ

d
bσT (θ) + δdaδ

c
bσR(θ) , (2.14)

where σA(θ), σT (θ) and σR(θ) are the annihilation, transmission and reflection amplitudes

respectively. It’s also useful to define the following isospin channels which diagonalize the

unitarity constraint

SI(θ) = (N − 1)SA(θ) + ST (θ) + SR(θ) , (2.15)

S−(θ) = ST (θ) − SR(θ) , (2.16)

S+(θ) = ST (θ) + SR(θ) , (2.17)

where SI(θ) is the O(N) isospin singlet and S−(θ) and S+(θ) are the antisymmetric and

symmetric channels. In terms of these S-matrix elements, the unitarity constraints are

|Si(θ)|2 ≤ 1, for i = I,−, and + . (2.18)

2.1 Exact results

The constraints stated above do not uniquely determine the S-matrix. However, in

the case of integrable theories, we have an infinite set of symmetries and one can show

that the multi-particle S-matrix can be factorized into a product of 2 particle S-matrices.

Factorization implies a highly non-trivial cubic constraint on the S-matrix, which is obtained

by considering the factorization of a 3 → 3 scattering into product of 2 → 2 S-matrices. This

can be done in two ways as shown in fig.2.3 which must lead to the same result. So, we have

the following constraint called the Yang-Baxter equation

Sc1c2
a1a2(θ1)Sb1c3

c1a3(θ1 + θ2)Sb2b3
c2c3 (θ2) = Sc2c3

a2a3(θ2)Sc1b3
a1c3(θ1 + θ2)Sb1b2

c1c2 (θ1) . (2.19)

Another consequence of integrability is the absence of particle production i.e., the 2 → 2

15



=

a1(θ1) a2(0)

a3(−θ2)

b1

b2b3

a3(−θ2)a2(0)

a1(θ1)

b3

b2 b1

Figure 2.3. A pictorial depiction of the Yang-Baxter equation, which shows
the equivalence of two ways of factorizing a 3 → 3 S-matrix into a product of
2 → 2 S-matrices. The indices of the intermediate particles are omitted.
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S-matrix saturates the unitarity constraint. Once we include the factorization constraint

and unitarity saturation, the S-matrices are restricted enough that we can compute them

exactly. Several of these have been found in the literature including the integrable O(N)

model, sinh-Gordon model, sine-Gordon model, various spin chain S-matrices etc. Here, we

quote the results for the O(N) nonlinear sigma model (NLSM) and the periodic Yang-Baxter

(pYB) solution.

2.1.1 O(N) Nonlinear sigma model

This S-matrix corresponds to a physical model with N fields φa(x) with the following

Lagrangian

L = 1
2g∂µφa(x)∂µφa(x) + λ(φa(x)φa(x) − 1) , (2.20)

where g is a coupling constant and λ is a Lagrange multiplier which imposes the constraint

that the vector φa(x) has unit length. This is a strongly coupled field theory and is a

useful tool in studying QCD since it exhibits features like dynamical mass generation and

asymptotic freedom [7 ]. NLSM can be solved perturbatively in the large N limit [32 ]. In

[8 ], Zamolodchikov and Zamolodchikov obtained the exact S-matrix of the theory for finite

N by solving the Yang-Baxter equation.

SNLSM+ (θ) = θ − iλ
θ + iλ

θ − iπ
θ + iπ

SNLSMI (θ) , (2.21a)

SNLSM− (θ) = θ − iπ
θ + iπ

SNLSMI (θ) , (2.21b)

SNLSMI (θ) = −Fπ+λ(θ)F2π(θ) , (2.21c)

where

λ = 2π

N − 2 , (2.22)

and the function Fa(θ) is defined as (see [9 ])

Fa(θ) =
Γ
(
a+iθ

2π

)
Γ
(
a−iθ

2π
+ 1

2

)
Γ
(
a−iθ

2π

)
Γ
(
a+iθ

2π
+ 1

2

) . (2.23)
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2.1.2 Periodic Yang-Baxter solution

This solution of the Yang-Baxter equation was discovered in [33 ] and later found through

the S-matrix bootstrap in [34 ]. The transmission amplitude in this S-matrix is zero, and

it exhibits periodicity to arbitrarily high energies. A physical model for this S-matrix is

currently not known.

SpY B+ (θ) = Hν/2

(
ν + iθν

π
, 2ν − iθν

π
; ν − iθν

π
, 2ν + iθν

π

)
, (2.24a)

SpY B− (θ) = −SpY B+ (θ) , (2.24b)

SpY BI (θ) =
sinh

(
ν(1 − iθ

π
)
)

sinh
(
ν(1 + iθ

π
)
)SY B+ (θ) , (2.24c)

with

Hν(α, β; γ, δ) = lim
N→∞

N∏
j=−N

Γ(γ+iπj
4ν )Γ( δ+iπj

4ν )
Γ(α+iπj

4ν )Γ(β+iπj
4ν )

. (2.25)

In this S-matrix, the parameter ν = cosh−1(N/2). We present another form of the function

Hν in appendix B which has better convergence in the infinite product. We also study

some properties of this function which are useful in verifying the crossing constraint and the

Yang-Baxter equation.

18



3. THE R-MATRIX - CONSTRAINTS AND EXACT RESULTS

In this chapter, we define the R-matrix in boundary QFTs and lay out the constraints that

this quantity must obey. Once again, we need to define the asymptotic scattering states in

the theory. In this case, for a theory defined on the right half line (see fig.3.3 ), we have

left moving asymptotic in states which have well defined particle number at t = −∞ and

similarly, right moving out states which have well defined particle number at t = +∞. We

can parameterize the on shell momenta using eqns.(2.2 ) once again. We can now define the

R-matrix for a theory with N particles with the same mass m, as the following amplitude

Rb1,b2,...
a1,a2,...(θa1 , θb1 , . . . ) = out 〈b1, θb1 ; b2, θb2 ; . . . |a1, θa1 ; a2, θa2 ; . . .〉in , (3.1)

where the a = 1 . . . N labels the particle flavor and the θ variables denote rapidities of the

particles. The superscripts “in” and “out” indicate asymptotic in and out states. In this

thesis, we shall only consider the 1 → 1 subsector of the reflection processes. Assuming that

the boundary condition is time translation invariant, we see that the rapidity of the outgoing

particle must be the negative of the rapidity of the incoming particle. We define the 1 → 1

R-matrix Rb
a(θ) as

Rb
a(θ) = out 〈θ, b| − θ, a〉in . (3.2)

As in the case of the S-matrix, the R-matrix must obey unitarity, analyticity and cross-

ing constraints. Following the same argument as in section 2 , we arrive at the following

semidefinite unitarity constraint

RR† 4 1 . (3.3)

The inequality accounts for possible particle production. Now, note that this constraint can

be rewritten as the following condition

 I R̂

R̂† I

 < 0 . (3.4)
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Crossing

Imθ = π

2

Imθ = 0 θ = 0

θ

Figure 3.1. The R-matrix is analytic in the shaded region which corresponds
to Re ε ≥ 0. The positive and negative real axes in the rapidity plane corre-
spond to the data on the two sides of the branch cut. The crossing constraint
eq.3.10 can be imposed at the boundary of the strip. We could have bound
state poles on the dashed line along the imaginary axis. Resonances would
appear as poles in the second sheet (with corresponding zeros in the physical
sheet).

It is now easy to see that the unitarity constraint is convex because the space of positive

semidefinite matrices is convex (i.e. if M1 < 0 and M2 < 0, then αM1 + (1 − α)M2 < 0

for all α ∈ [0, 1]). The convexity of this constraint facilitates the use of convex optimization

methods as alluded to in the introduction.

Causality implies that the R-matrix has to be analytic in the region Re ε ≥ 0 which maps

to the “physical strip” 0 ≤ Im θ ≤ π

2 , depicted in fig.3.1 . As in the case of the S-matrix, there

exist threshold branch cuts that are formed when the inelastic threshold is crossed i.e. we

have sufficient energy for an intermediate particle to go on shell. Note that the first inelastic

threshold for 1-to-1 R-matrices is at ε = m (as opposed to s = 4m2 for the S-matrix). We

could also have additional branch cuts that correspond to more number of particles going

on shell. Any bound states in the theory will show up as poles on the imaginary axis of the

physical strip. In this thesis, we only consider theories without bound states poles. As in

the case of the S-matrix, we can have resonances that show up as poles in the second sheet.

Later on, we will impose a stricter constraint called extended analyticity, which requires the
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R-matrix to be analytic in a larger region as in fig.3.2 . This turns out to be a useful tool in

better understanding the analytic structure of the allowed space of R-matrices.

Ghoshal and Zomolodchikov [35 ] introduced a crossing equation for boundary scattering

in 2d theories. This crossing equation involves the bulk S-matrix which is assumed to be

integrable. Consider 1+1d boundary QFT with space and time coordinates denoted by x

and t. Let the theory be defined in the region x ≥ 0. To derive the crossing equation, we first

perform a double Wick rotation, τ = −ix, and y = it that effectively swaps space and time

(see fig.3.3 ). In these new coordinates, the boundary which was originally at x = 0 is now

encoded in an initial state, say |B〉 of the theory at τ = 0. The time evolution now is simply

given by the bulk Hamiltonian. The quantity we are interested in is the 1 → 1 reflection

amplitude which can be related to a pair creation process by the initial state |B〉. In the

rest of this thesis, we will assume that the particles are their own anti-particles. Working

through this transformation carefully, and using Hermitian analyticity, one can show that

out 〈a,−θ; b, θ|B〉 = Rb
a(

iπ
2 − θ) , (3.5)

in 〈a, θ; b,−θ|B〉 = Rb
a(

iπ
2 + θ) . (3.6)

Note that this is the sort of equation we would naively expect because boosts by an imaginary

rapidity parameter is a rotation by that amount. Now, using the fact that the in-states form

a complete basis, we can rewrite eq.(3.5 ) as

Rb
a(

iπ
2 − θ) =

∑
c1,c2,...

∫
dθ1dθ2 . . .

out 〈a,−θ; b, θ|c1, θ1, c2, θ2, . . .〉in

in 〈c1, θ1, c2, θ2, . . . |B〉 , (3.7)
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In an integrable theory, the intermediate states are restricted only to 2-particle states because

of absence of particle production. Also, momentum conservation fixes the allowed rapidities

of the intermediate states as follows

Rb
a(

iπ
2 − θ) =

∑
cd

out 〈a,−θ; b, θ|d, θ; c,−θ〉in in 〈d, θ; c,−θ|B〉 , (3.8)

= Sbadc(2θ)Rc
d(

iπ
2 + θ) , (3.9)

where in the second line, we used the definition of the 2-particle S-matrix. Now, using parity

invariance of bulk S-matrix, we have

Rb
a(

iπ
2 − θ) = Sabcd(2θ)Rc

d(
iπ
2 + θ) . (3.10)

Note that we are only assuming integrability of the bulk S-matrix, not of the R-matrix. We

can straightforwardly generalize this equation for when the bulk exhibits particle production

starting from eq.(3.7 ). The crossing equation relates the values of the R-matrix on the

positive imaginary axis (ε = m cosh( iπ
2 + θ)) in the energy plane to those on the negative

imaginary axis (ε = m cosh( iπ
2 −θ)). Both these regions are on the boundary of the analyticity

domain and so, we need to impose analyticity in a region at least as big as the physical strip

to have a meaningful crossing constraint. Also, note that the analyticity of the R-matrix in

the physical strip does not imply that it is also analytic in the region π

2 ≤ Im θ ≤ π because

we can have additional poles from the S-matrix in eq.(3.10 ).

3.1 Exact Results

There are several R-matrices which have been exactly computed in the literature using

integrability. By requiring that the boundary conditions preserve bulk integrability, we retain

the property of factorization of scattering amplitudes. Assuming we have such an integrable

boundary condition, we can factorize a 2 → 2 boundary reflection amplitude in two different
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Imθ = π

2

Imθ = 0

Imθ =b2

Imθ = b1
θ = 0

θ

Figure 3.2. Extended analyticity constraint - we impose analyticity of the
R-matrix in the shaded region b1 ≤ Im θ ≤ b2 where b1 ≤ 0 and b2 ≥ π

2

t

x

y (= it)

τ (= −ix)

a

b

p1

p2

b ā

p̃2 p̃1

|ψ( t̃ = 0)〉 = |B〉

Figure 3.3. On the left, we have a 1 → 1 R-matrix for a particle a to reflect
off the boundary into particle b. This amplitude is related to a pair creation
process in the double Wick rotated frame as depicted on the right.
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a1(−θ1)

a2(−θ2)

a3(θ2)
a4(θ1)

a1(−θ1)
a2(−θ2)

a3(θ2)

a4(θ1)

=

Figure 3.4. A pictorial depiction of the equivalence of the two ways of fac-
torizing a 2 → 2 reflection process which yields the boundary Yang-Baxter
equation. The blue circles denote 1 → 1 reflection processes and the red
circles denote the bulk 2 → 2 S-matrix.

ways, shown in fig.3.4 . Equating them, we get the boundary Yang-Baxter equation which

reads

Rc1
a1(θ1)Sc2c3

c1a2(θ1+θ2)Rc4
c3(θ2)Sa3a4

c4c2 (θ2−θ1) = Sc1c2
a1a2(θ2−θ1)Rc3

c2(θ2)Sa3c4
c3c1 (θ1+θ2)Ra4

c4 (θ1) . (3.11)

In this section, we quote some exact results from the literature for theories with O(N)

symmetry. Additionally, we present an analytic R-matrix for diagonal reflection for the

periodic Yang Baxter model, which, to our knowledge, has not been worked out previously.

3.1.1 Diagonal ansatz for NLSM

In this subsection, we present an integrable R-matrix with NLSM in the bulk (see [36 ],

[37 ] for this and related results). We pick the following ansatz for the R-matrix,

R = diag{R1(θ), . . . R1(θ)︸ ︷︷ ︸
k

, R2(θ) . . . R2(θ)︸ ︷︷ ︸
N−k

} . (3.12)
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where k = 1 . . . N . Clearly, this ansatz breaks the O(N) symmetry of the bulk theory into

O(k) ×O(N − k). Plugging this ansatz into the crossing eq.(3.10 ), we get

R1(
iπ
2 − θ) = S1(2θ)R1(

iπ
2 + θ) + S2(2θ)R2(

iπ
2 + θ) , (3.13a)

R2(
iπ
2 − θ) = S3(2θ)R1(

iπ
2 + θ) + S4(2θ)R2(

iπ
2 + θ) , (3.13b)

where

S1(θ) = (N − k)SA(θ) + ST (θ) + SR(θ) , S2(θ) = k SA(θ) , (3.14)

S4(θ) = k SA(θ) + ST (θ) + SR(θ) , S3(θ) = (N − k)SA(θ) . (3.15)

Using this equation, in conjunction with the boundary Yang-Baxter equation, we get the

following result [38 ]

R1(θ) = −R0(θ)Fλ+π

2
(θ)Fλ(N−k−1)+π

2
(θ) , (3.16a)

R2(θ) =
λ
4 (N − 2k) + iθ
λ
4 (N − 2k) − iθ

R1(θ) , (3.16b)

R0(θ) =
Γ(1

2 + λ
4π

− i θ2π
)Γ(1 + i θ2π

)Γ(3
4 + λ

4π
+ i θ2π

)Γ(1
4 − i θ2π

)
Γ(1

2 + λ
4π

+ i θ2π
)Γ(1 − i θ2π

)Γ(3
4 + λ

4π
− i θ2π

)Γ(1
4 + i θ2π

)
, (3.16c)

where λ = 2π

N−2 and Fa(θ) was defined in eq.(2.23 ). The case k = N − 1 corresponds

to Dirichlet boundary condition and k = 0 corresponds to Neumann boundary condition.

These two special cases were solved in [38 ]. The R-matrices for the intermediate values of k

were obtained in [37 ] and correspond to mixed boundary conditions.
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3.1.2 Block diagonal ansatz for NLSM

In [37 ], the following block diagonal ansatz was considered for even N

R =



A(θ) iB(θ) 0 0 · · ·

−iB(θ) A(θ) 0 0 · · ·

0 0 A(θ) iB(θ) · · ·

0 0 −iB(θ) A(θ) · · ·
... ... ... ... . . .


, (3.17)

where A(θ) and B(θ) are real analytic functions, and we have the same 2 × 2 block repeated

N/2 times along the diagonal. The alternating signs for off-diagonal terms are required by

Hermitian analyticity. In this case, the crossing eq. (3.10 ) reduces to

A( iπ
2 − θ) = SI(2θ)A( iπ

2 + θ) (3.18)

B( iπ
2 − θ) = −S−(2θ)B( iπ

2 + θ) (3.19)

where SI and S− are the isospin singlet and antisymmetric channels.

The functions A(θ) and B(θ) can then be found using the bootstrap constraints along

with the boundary Yang-Baxter equation to be

B(θ) = −iαθA(θ) , (3.20a)

A(θ) = 1
1 + iαθ

F 1
α
(−θ)R0(θ) . (3.20b)

As we vary the free parameter α, we obtain a family of integrable R-matrices. This R-matrix

has poles at θ = − i
α

and θ = iπ + i
α
. This family of integrable models can be visualized

by looking at a two dimensional slice, as in fig.5.4 . The vertices occur as the poles move

towards the physical strip in the limit α → ∞
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3.1.3 Diagonal ansatz for pYB

In this subsection, we’ll obtain an expression for the integrable, diagonal R-matrix with

pYB in the bulk. To our knowledge, this R-matrix was not worked out previously in the

literature. Once again, we’ll start with the following diagonal ansatz

R = diag{R1(θ), . . . R1(θ)︸ ︷︷ ︸
k

, R2(θ) . . . R2(θ)︸ ︷︷ ︸
N−k

} , (3.21)

with 1 ≤ k ≤ N . We can then plug this expression into the boundary Yang-Baxter eq.(3.11 ).

Simplifying, and using the exact bulk S-matrix for pYB (2.24 ), we get

R1(θ)
R2(θ)

= f(θ) =
sin(ν(θ0−θ)

π
) cos(ν(θ0+θ)

π
+ iα)

sin(ν(θ0+θ)
π

) cos(ν(θ0−θ)
π

+ iα)
, (3.22)

where α = arctanh
(

cosh ν−k
sinh ν

)
. The constant θ0 ∈ iR is not fixed by the boundary Yang-Baxter

equation. Now, plugging in eq.(3.22 ) into the crossing eq.(3.10 ), we get

R1(iπ − θ) = h(θ)
h(iπ − θ)R1(θ) (3.23)

with

h(θ) =
sinh(2iθν

π
)

∞∏
n=−∞

Γ
(

inπ

2ν − iθ
π

)
Γ
(

3
2 + inπ

2ν + iθ
π

)
sinh( iν

π
(θ − θ0)) sinh( iν

π
(θ + θ0) + iπ

2 − α)
. (3.24)

Next, we need to impose unitarity constraint, which in the case of integrable R-matrices

(which have no particle production) is R1(θ)R1(−θ) = 1, for θ ∈ R. It is useful to notice

that the general solution to eq.(3.23 ) for real analytic h(θ), up to CDD factors [39 ], is

R1(θ) =
∞∏

j=0

h(−iπ + θ − 2πij)h(−θ − 2πij)
h(−2iπ + θ − 2πij)h(−θ + iπ − 2πij) . (3.25)
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Putting all this together, we get the following result

R1(θ) =
4∏

a=1
Hνa

(
2iθνa

π
+ αa,−

2iθνa
π

+ βa; −2iθνa
π

+ αa,
2iθνa

π
+ βa

)
, (3.26)

R2(θ) = R1(θ)
f(θ) , (3.27)

where f(θ) is defined in eq.(3.22 ), and the function Hν in eq.(2.25 ). The parameters νa, βa
and αa are as follows

ν1 = ν

2 , α1 = iθ0ν

π
+ iπ

2 − α, β1 = ν + iθ0ν

π
+ iπ

2 − α ,

ν2 = ν

2 , α2 = − iθ0ν

π
, β2 = ν − iθ0ν

π
,

ν3 = ν, α3 = 2ν, β3 = 0 ,

ν4 = ν, α4 = 3ν, β4 = 2ν .

(3.28)

One can easily check that this solution obeys the crossing equation (3.23 ) using the identities

of the Hν function given in appendix B . Also, note that this R-matrix is periodic with the

same period as the bulk S-matrix, namely Ri(θ) = Ri(θ + 2π2

ν
). However, this solution has

poles and common zeros in the physical region 0 ≤ Imθ ≤ π

2 for certain values of θ0 and

thus is not a minimal solution. In order to eliminate them and obtain a minimal solution,

we need to multiply the solution by appropriate prefactors called Castillejo-Dalitz-Dyson

(CDD) factors [39 ] defined as,

fCDD(θ;α) = sinh(θ) − sinh(iα)
sinh(θ) + sinh(iα) . (3.29)

Clearly, this function has poles at θ = −iα+2nπi and zeros at θ = iα+2nπi, for n ∈ Z. CDD

factors satisfy the following two properties: (i) |fCDD(α, θ)|2 = 1, and (ii) fCDD(α, iπ − θ) =

fCDD(α, θ). One can check that multiplying by such a prefactor preserves the integrability

of an R-matrix. Let us now define a CDD factor that is periodic along the real axis as

fP (θ;α) =
∞∏

n=−∞

sinh(θ + nπ2

ν
) − sinh(iα)

sinh(θ + nπ2

ν
) sinh(iα)

. (3.30)
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The periodic CDD factor has a periodicity of 2π2

ν
, however, the poles and zeros in it have a

periodicity of π2

ν
. Say θ0 = 2πiξ0, then we need to multiply our R-matrix with the following

CDD factors as can be checked with some effort,

• if ξ0 < 0 then α = 2π

({
1
4 − ξ0

}
− 1

4

)
.

• if ξ0 > − α
2ν then α = 2π

({
ξ0 + α

2ν + 1
4

}
− 1

4

)
.

where the curly braces denote the fractional part, defined by {ξ0} = ξ0 − [ξ0] (with [ξ0]

being the largest integer smaller than or equal to ξ0). Now, we can plot the coordinates

(R1(θ1; θ0 = iξ0), R2(θ1; θ0 = iξ0) as we vary ξ0 ∈ R, with θ1 being a fixed point on the

imaginary axis of the physical strip. We obtain the three solid curves of fig.5.6 corresponding

to k = 1, 2 and 3, for N = 6. Once again, we have vertices along the curves whenever a new

CDD factor needs to be included, i.e. at ξ0 = 0 and ξ0 = − α
2ν .
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4. NUMERICAL SETUP AND THE DUAL PROBLEM

In this chapter, we will discuss how convex optimization tools can be used to solve the

numerical R-matrix bootstrap and we’ll also introduce the notion of convex duality which

can be used as a check for our numerics. For the numerical bootstrap, the following class of

problems will be of relevance

max
R̂(θ)

F [R̂(θ)] ,

subject to: R̂R̂† 4 1 ,

Rb
a

( iπ
2 − θ

)
= Scdab(2θ)Rd

c

( iπ
2 + θ

)
,

(4.1)

where F is a linear functional of the variables and the maximization is done over the space

of functions analytic in the strip b1 ≤ Im θ ≤ b2. Note that the crossing constraint is linear

(for a fixed bulk S-matrix) and the unitarity constraint is convex, as discussed in section

2 . Therefore, our problem is a bonafide convex optimization problem and we can tackle

it numerically with very efficient solvers [40 ]–[42 ]. However, before we can plug this into

a computer, we need to discretize the space of R-matrices. We do this by picking some

ansatz for the R-matrices and then using a finite number of variables to parameterize the

analytic matrix elements. We can then express the primal functional as a linear combination

of the parameters. The crossing and unitarity constraints can be posed as simple linear and

quadratic constraints. We’ve included the Python code for the bootstrap in appendix C .

4.1 Parameterizing analytic functions

In this section, we will discuss the discretization of the space of analytic functions in the

strip 0 ≤ Imθ ≤ b (which is a simple translation of the general analyticity domain for the

R-matrix elements b1 ≤ Im θ ≤ b2). There are several equivalent ways to do this - dispersion

relations, Fourier series, spectral representations, etc. Here, we present the Fourier series

parameterization which is one of the easiest to implement. Consider a function f(θ) analytic

in the aforementioned strip and periodic along the real axis f(θ + 2a) = f(θ). While most
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R-matrices naturally are not periodic, we impose periodicity to facilitate the numerics by

cutting off the energy range. We can expand this function as

f(θ) =
M∑

n=−M
f̃ne

inπθ
a , (4.2)

where we truncate the series at some high-frequency cutoff M ∈ N. The coefficients f̃n must

be real when the function f(θ) is real analytic. Now, consider

f(θ + ib) = f̃0 +
M∑
n=1

[
f̃ne− nπb

a e
inπθ

a + f̃−ne
nπb

a e− inπθ
a

]
. (4.3)

For large n, the last term gets exponentially large for coefficients f̃−n of O(1). To avoid

numerical issues while working with large numbers, we multiply them by an exponential

suppression factor as follows
≈
fn = f̃−ne− nπb

ω . (4.4)

In terms of the new rescaled parameters, f(θ) is given by

f(θ) = f̃0 +
M∑
n=1

f̃ne
inπθ

a +
≈
fne− inπθ

a . (4.5)

In this parameterization, we need to fix the values of M and a. Typically, we used values of

M in the range 100 to 400. In cases where a pole approaches the analyticity domain, we need

larger values of M in order to resolve such features. In order to deal with such situations, we

increase the number of frequencies until the result of the optimization has converged. The

periodicity a is chosen to be large enough that all the features of the R-matrix are clearly

determined, taking into account that beyond |Re θ| ∼ a
2 , we notice unphysical boundary

effects due to the imposed periodicity. The imaginary axis is farthest from the periodic

boundary and therefore, the functions there are determined accurately.
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4.2 Convex duality

In this section, we’ll introduce the dual of a convex optimization problem. Before pro-

ceeding, let us define the notion of a convex cone - a vector space K is called a convex cone

if ∀ v ∈ K, α ∈ R+, we have αv ∈ K. For a given convex cone K, we can also define a dual

convex cone K∗ as

K∗ = { s | s · v ≥ 0, ∀ v ∈ K } , (4.6)

where the dot product is the usual Euclidean inner product. Now, in order to illustrate

convex duality, consider the following convex optimization program

max
vi

N∑
i=1

aivi , (4.7)

subject to :
N∑

j=1
Aijvj + bi = 0, i = 1..M , (4.8)

vi ∈ K , (4.9)

where ai are some coefficients that determine the primal functional, K is a convex cone, and

we have certain equality constraints. Now, to obtain the dual problem, consider the following

quantity, called the Lagrangian

L =
N∑

i=1
aivi +

N∑
i=1

M∑
j=1

λj(Ajivi + bj) +
N∑

i=1
sivi , (4.10)

where λi and si are called the dual variables. λi is simply a Lagrange multiplier which imposes

the unitarity constraint, while s belongs to the dual cone K∗. Note that that whenever vi

satisfies all the equality constraints and lies in the cone K,

L ≥
N∑

i=1
aivi . (4.11)

We can rewrite eq.(4.10 ) as

L =
N∑

i=1

ai +
M∑
j=1

λjAji + si

 vi +
M∑
i=1

λibi . (4.12)
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We can now choose λi and si such that the coefficient of vi is set to zero

ai +
M∑
j=1

λjAji + si = 0 , (4.13)

which implies

L =
M∑
i=1

λibi ≥
N∑

i=1
aivi . (4.14)

We can now say that

min
λi,si

(
FD =

M∑
i=1

λibi

)
≥ max

vi

(
FP =

N∑
i=1

aivi

)
, (4.15)

where FP and FD are called the primal and dual functionals respectively. The convex dual

problem is now defined to be the minimization of FD, subject to the constraint (4.13 ). The

difference between the optimal primal functional and the optimal dual functional is called

the duality gap. An important property of convex optimization problems is that the duality

gap is zero whenever the dual problem is well posed [43 ]. In this manner, one can construct

the dual problem for any primal problem of the type 4.1 . However, in section 6 , we present

a much easier path to the dual problem which is also more intuitive. The two formulations

of the dual problem can be shown to be equivalent [9 ].
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5. RESULTS

Following the methods of the previous section, we bootstrapped R-matrices in the following

cases - O(N) NLSM with diagonal and non diagonal reflections, and periodic Yang Baxter

with diagonal reflection. The case of free theory in the bulk is considered in appendix A .

The results obtained were verified using the convex dual problem introduced in section 4 .

In order to visualize the allowed space of R-matrices, we consider 2 dimensional sections of

this infinite dimensional space and plot the boundary of the allowed region. For example we

can take a point θ1 on the imaginary axis and impose

R1(θ1) = t cosα, R2(θ1) = t sinα , (5.1)

where, R1(θ) and R2(θ) are two elements of the R-matrix and we and maximize t. We

sweep through the values of α in the range [0, 2π) and plot the corresponding R1(θ1) and

R2(θ1). This gives us the projection of the boundary of allowed R-matrices in the 2d plane

R1(θ1) − R2(θ1), as seen in figs.5.1 , 5.3 , 5.4 and 5.6 . In addition to obtaining this allowed

region, we also have information about which functions R1(θ) and R2(θ) lie at the boundary.

We find integrable models at special points along the boundary of the convex domain

and the R-matrices here agree excellently with the exact results of section 3 . This provides

a nontrivial test of the numerics.

5.1 NLSM, diagonal ansatz

We consider the following ansatz for the R-matrix:

R = diag{R1(θ), . . . R1(θ)︸ ︷︷ ︸
k

, R2(θ) . . . R2(θ)︸ ︷︷ ︸
N−k

} , (5.2)

This R-matrix has a symmetry of O(k) ×O(N − k). The functions R1(θ) and R2(θ) can be

parameterized as described in section 4 . We plot a 2 dimensional section of the allowed space

of R-matrices by maximizing in various directions in the plane R1(θ1 = 0.2i)–R2(θ1 = 0.2i)

for the case N = 6 (i.e. the O(6) model), assuming that these functions are analytic in the
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strip 0 ≤ Im θ ≤ π

2 . For the case k = 1, the result is the outer curve of fig.5.1 . Note that

there are two vertices along the boundary of this region. The vertex marked by the red

dashed circle agrees precisely with the integrable Dirichlet boundary condition of NLSM, as

shown in fig.5.2 . We do not know of any exact result that corresponds to the other vertex

on the outer curve.

In order to explore this space of R-matrices further, we introduced the idea of extended

analyticity, which is the assumption that the R-matrix is analytic in a region b1 ≤ Im θ ≤ b2

with b1 ≤ 0 and b2 >
π

2 . We fix b1 = 0 and vary b2 in steps of 0.1. We find that The allowed

region shrinks drastically at b2 = 3π

4 which corresponds to the exclusion of a pole at that

θ = 3πi
4 . The allowed region then stays the same until we hit b2 = π. Beyond this, we set

b1 = π − b2 and increase b2 > π. The allowed region shrinks once more to exclude a pole

at iπ. In this manner, we can use the idea of extended analyticity to better explore the

allowed regions. In fig.5.2 , we plot the allowed region for (b1, b2) = (0, 0.5π), (0, 0.9π), and

(−0.1π, 1.1π). It is interesting to note that the shape for b2 = 0.9π has a new vertex (marked

by a dashed purple circle in the figure) at which R1(θ) = R2(θ) and also the boundary

Yang Baxter equation is obeyed. This turned out to be the integrable Neumann boundary

condition where Rj
i(θ) = δj

iR(θ).

We performed a similar analysis for the cases O(2) × O(4) and O(3) × O(3). These

cases exhibit very similar behaviours with corresponding integrable vertices under extended

analyticity, see fig.5.3 .

35



Figure 5.1. The three lines shown here correspond to (b1, b2) = (0, 0.5π),
(0, 0.9π) and (−0.1π, 1.1π) for NLSM with N = 6, k = 1. We can clearly
see the drastic shrinking of the allowed region as we increase the domain of
analyticity. The inset shows a rotated and rescaled boundary which makes the
vertex more obvious. The vertex denoted by red is the Dirichlet boundary and
the one in purple is Neumann boundary condition.
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(a) R1(θ), Dirichlet (b) R2(θ), Dirichlet

(c) R1(θ), Neumann

Figure 5.2. Plot of R1(θ) and R2(θ) for θ on the real axis for the integrable
vertices. Figs.(a) and (b) correspond to the red vertex of fig.5.1 which matches
with the Dirichlet R-matrix while fig.(c) shows the agreement of purple vertex
with the Neumann R-matrix (plot of R2(θ) is omitted because at that vertex,
R1(θ) = R2(θ)).
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(a) k = 2 (b) k = 3

Figure 5.3. Plot of the allowed regions for NLSM with N = 6 and k = 2, 3
and θ1 = 0.9879i. As before, we have one integrable vertex for analyticity in
the physical region, and extended analyticity an additional one
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5.2 NLSM, block diagonal ansatz

Next, we bootstrapped a non-diagonal R-matrix, again with NLSM in the bulk. The

following ansatz was chosen,

R =



A(θ) iB(θ) 0 0 · · ·

−iB(θ) A(θ) 0 0 · · ·

0 0 A(θ) iB(θ) · · ·

0 0 −iB(θ) A(θ) · · ·
... ... ... ... . . .


, (5.3)

with A(θ) and B(θ) being two analytic functions in the strip 0 ≤ Im θ ≤ π

2 . Once again, we

plot the intersection of the allowed space of R-matrices with the plane A(θ1 = 0.2i)–B(θ1 =

0.2i) in fig.5.4 . Remarkably, the entire boundary of the allowed region corresponded to

the integrable R-matrix described in section 3 . In fig.5.4 , we can see that the boundary

of allowed region matches with eq.(3.20 ) as we vary the parameter α from 0 to ∞. The

vertex in this figure corresponds to α → ∞, and in this limit, the poles at θ = − 1
α

and

θ = π + 1
α

approach the physical strip. Moreover, we plotted the components A(θ) and B(θ)

for particular directions in fig.5.5 and the agreement with the integrable reflection is very

precise.

5.3 Periodic Yang-Baxter, diagonal ansatz

Now, let us fix S-matrix in the bulk to be the pYB and pick the diagonal ansatz

R = diag{R1(θ), . . . R1(θ)︸ ︷︷ ︸
k

, R2(θ) . . . R2(θ)︸ ︷︷ ︸
N−k

} . (5.4)

We can again obtain the boundary of the allowed region in the R1(θ1) − R2(θ1) plane for

k = 1, 2 and 3 as shown in fig.5.6 . The boundary agrees precisely with the integrable R-

matrix of eq.(3.26 ) (after we include the appropriate CDD factors eq.(3.30 )) as we vary the

parameter θ0 ∈ iR. For any given point along the boundary, the numerical R-matrix is in
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Figure 5.4. The allowed region in A(θ1) − B(θ1) plane for θ1 = 0.9879 i and
NLSM in the bulk. The dots are the numerical results from the bootstrap,
while the solid curve is the integrable R-matrix of eq.(3.20 ) for different values
of the free parameter α.
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(a) The function A(θ) and B(θ) on the imaginary axis for α = 0.5

(b) The functions A(θ) and B(θ) on the real axis for α = 0.5

Figure 5.5. Plot of A(θ) and B(θ) for θ along the real and imaginary axis
of the physical strip for NLSM in the bulk and the off-diagonal ansatz for the
R-matrix. We find that the numerical results and the integrable modes agree
very well. 41



very good agreement with the exact result, as illustrated in fig.5.7 . It is interesting to note

that the vertices correspond to those values of θ0 at which we need to change the CDD factor,

namely ξ0 = 0,− α
2ν . When N = 6, k = 3, we have α = arctanh(N/2−k

sinh ν ) = 0, and so we have

only one vertex.
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Figure 5.6. The allowed region for NLSM with N = 6, k = 1, 2 and 3,
in the R1(θ1) − R2(θ1) plane for θ1 = 0.9879i. The dots are the numerical
result and the solid lines are the integrable R-matrix. The encircled vertices
correspond to locations where the CDD factor changes. All the curves intersect
at R1(θ) = R2(θ) because this point is a common solution to all three cases.
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(a) N = 6, k = 1

(b) N = 6, k = 2

(c) N = 6, k = 3

Figure 5.7. This figure shows the agreement between the numerical and
analytical R-matrices for N = 6, k = 1, 2, 3 and θ0 = iπ

4 ,−0.329i, 0.
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6. AN ALTERNATIVE DERIVATION OF THE DUAL

PROBLEM

In this chapter, we discuss an alternative derivation of the dual problem using complex

analysis which gives us an intuition for the dual constraints. We will first discuss the dual

for the physical region, which is quite similar to the case of the S-matrix [9 ]. Then, we

will present the dual for extended analyticity, where we find some new features. We do not

provide numerical results for the dual problem because they agree with the primal results of

the previous section.

6.1 The dual problem in the physical strip

The primal problem we considered in the previous sections involves constructing the R-

matrices which satisfy the constraints and maximize the distance to the origin along various

directions. As we increase the size of the basis for the primal variables, the allowed region

expands and reaches the boundary from the inside. In the dual formulation of the problem,

we instead exclude points that violate our constraints. So, as we increase the size of the

basis, we approach the boundary from the outside and end up with the same allowed region

[9 ]. Now, consider the the following primal functional to be maximized

FP = Re
[
cbaR

a
b (θ1)

]
, (6.1)

where cba are some fixed real coefficients and θ1 is any point in the region of analyticity

(0 ≤ Im θ ≤ π

2). Now, we can rewrite this functional as a contour integral by introducing

dual analytic functions Kb
a(θ) which have a simple pole at θ = θ1 with resides cba,

FP = Re
[ 1
2πi

∮
C
dθRa

b (θ)Kb
a(θ)

]
, (6.2)

= Re
[ 1
2πi

∫ ∞

−∞
dθ
(
Ra
b (θ)Kb

a(θ) −Ra
b (

iπ
2 − θ)Kb

a(
iπ
2 − θ)

)]
, (6.3)
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where C is a counterclockwise contour which encircles θ1. In the second line, we expanded the

contour until it hugs the boundary of the domain of analyticity and dropped the contribution

from the vertical lines at infinity. Using the crossing equation (3.10 ), we get

FP = Re
[ 1
2πi

∫ ∞

−∞
dθ
(
Ra
b (θ)Kb

a(θ) − Sabcd(2θ)Rd
c(

iπ
2 + θ)Kb

a(
iπ
2 − θ)

)]
. (6.4)

We now impose the following “anti-crossing constraint” on the dual functions Kb
a(θ)

Kc
d(

iπ
2 + θ) = −Sabcd(2θ)Kb

a(
iπ
2 − θ) . (6.5)

Plugging this into eq.(6.4 ), and changing the integration variable for the second term θ → −θ,

FP = Re
[ 1
2πi

∫ ∞

−∞
dθ
(
Ra
b (θ)Kb

a(θ) +Ra
b (

iπ
2 − θ)Kb

a(
iπ
2 − θ)

)]
. (6.6)

Adding eqns. (6.3 ) and (6.6 ), we get

FP = Re
[ 1
2πi

∫ +∞

−∞
dθRa

b (θ)Kb
a(θ)

]
. (6.7)

When the R-matrix is diagonal, we can also choose diagonal Kb
a(θ). In that case, it is

straightforward to put a bound on the right hand side, as in [9 ]. For more general R-matrices,

we will use the von Neumann trace inequality [44 ] which reads

|Tr(AB)| ≤
∑

i
αiβi , (6.8)

where αi and βi are the singular values (arranged in decreasing order) of finite dimensional

matrices A and B (recall that singular value decomposition of A is A = U1Σ1V
†

1 where U1 and

V1 are unitary and Σ1 is a diagonal matrix with the entries being the singular values). One

can check that when this inequality is saturated, and the matrices A and B are non-singular

[44 ],

V †
2 U1 = U †

2V1 . (6.9)
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where U1, V1, U2 and V2 are the unitaries such that A = U1Σ1V
†

1 and B = U2Σ2V
†

2 . Now,

consider the following application of this inequality,

|Tr(K(θ)R(θ))| ≤
∑
a

ka(θ)σa(θ) , (6.10)

where ki(θ) are the singular values of Kb
a(θ) and σi(θ) are those of Rb

a(θ). Using the unitarity

constraint, we get1
 σa(θ) ≤ 1, which implies

|Tr(K(θ)R(θ))| ≤
∑
a

ka(θ) . (6.11)

Putting all this together, we have

FP = Re
[ 1
2πi

∫ +∞

−∞
dθRa

b (θ)Kb
a(θ)

]
, (6.12)

≤ 1
2π

∫ +∞

−∞
dθ |Tr(R(θ)K(θ))| (6.13)

≤ 1
2π

∫ +∞

−∞
dθ

N∑
a=1

ka(θ) = FD . (6.14)

The right hand side of the last inequality is called the dual functional, and we define

the dual problem to be the minimization of it subject to the anti-crossing constraint (6.5 ).

When the R-matrix is diagonal, the dual functional is simply the sum of absolute values of

the diagonal elements of Kb
a(θ) as we would expect. Conveniently, most convex optimization

libraries include the Schatten 1-norm (also called the nuclear norm) which is precisely the

sum of the singular values of a matrix, as in eq.(6.14 ).

In a convex optimization problem, the duality gap must go to zero. Therefore, at the

optimal point, all the inequalities in this derivation must become equalities. Firstly, the

equation ∑a ka(θ)σa(θ) = ∑
a ka(θ) implies either ka(θ) = 0, or σa(θ) = 1. Assuming that K

1↑ Say R = Ũ Σ̃Ṽ †. We have RR† = Ũ Σ̃2Ũ† 4 I which implies σ2
a ≤ 1
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is invertible, the latter must be true. This then implies RR† = R†R = I. Now, the saturation

of the von Neumann trace inequality (6.9 ) along with unitarity saturation implies

R = ŨIṼ † = Ũ Ũ †V U † , (6.15)

= V U † . (6.16)

where U and V are the unitaries such that K = UΣV †. We verified that the R-matrix

obtained this way matches the primal results. We also verified that the duality gap closes in

all directions and we end up with the same allowed region.

6.2 The dual problem for extended analyticity

Here, we present a dual formulation of the extended analyticity problem. This case is

quite interesting because it allows for unitarity non-saturation, as opposed to the dual in the

physical region for both the S-matrix and the R-matrix bootstraps. Extending the domain

of analyticity puts more constraints on the primal variables and so we end up with a smaller

allowed region. As we’ll see the dual for extended analyticity has more freedom than for the

physical region and thus leads equivalently to a larger disallowed region.

As before, we start with the primal functional FP = Re
[
cbaR

a
b (θ1)

]
and rewrite it using

analytic functions Kb
a(θ) which have a simple pole at θ = θ1 with residue cba. We then play

the same contour games as before and impose anti-crossing constraint on Kb
a(θ) to arrive at,

FP = Re
[ 1
2πi

∫ +∞

−∞
dθ Kb

a(θ)Rb
a(θ)

]
. (6.17)

Let the extended analyticity constraint be that the R-matrix is analytic in the orange region

of fig.6.1 . To the right hand side of eq.(6.17 ), we add zero in the following form,

0 = 1
2πi

∫
C
K̃b
a(θ)Ra

b (θ) − 1
2πi

∫ +∞

−∞
K̃b
a(θ)Ra

b (θ) , (6.18)
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where K̃b
a are functions analytic in the extended region (see fig.6.1 ). So, we have

FP = Re
[ 1
2πi

∫ +∞

−∞
Rb
a(θ)(Ka

b (θ) − K̃a
b (θ))

]
+ Re

[ 1
2πi

∫
C
K̃a
b (θ)Rb

a(θ)
]

≤ 1
2π

∫ +∞

−∞

∑
a

∆ka + Re
[ 1
2πi

∫
C
K̃a
b (θ)Rb

a(θ)
]
, (6.19)

where in the second line, we have used the von Neumann trace inequality and ∆ka are the

singular values of ∆K with ∆Kb
a = Kb

a − K̃b
a. The second term of the last equation however

cannot be bounded by unitarity. In order to do this, we introduce a regularization condition

for the primal variables Rb
a(θ) on the curve C, namely

RR† � M , (6.20)

where M is a real constant (multiplied by an N ×N identity matrix). Now, we can proceed

to write the dual functional as

FD = 1
2π

∫ ∞

−∞

∑
a

∆ka + M

2π

∫
C
k̃a(θ)

∣∣∣∣∣dθ(sγ)
dγ

∣∣∣∣∣ dγ , (6.21)

where θ(γ) is a parameterization of the curve C and k̃a(θ) are the singular values of K̃(θ).

We can interpret ∆Kb
a to be the jump across the real axis of single analytic function with a

branch cut running from −∞ to ∞ on the real axis. The first term of eq.(6.21 ) is then the

integral of the jump across said cut.

Once again, at the optimal point, we must have zero duality gap. The analysis at this

optimum remains the same as before but with K replaced by ∆K. When ∆K is invertible,

we must have unitarity saturation. However, we could have unitarity non-saturation i.e.

σa(θ) < 1 as long as the corresponding ∆ka(θ) = 0. This means that the singular values of

K and K̃ are analytic continuations of each other through the real axis.
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Physical region

Extended region

Imθ = π

2

Imθ = 0

θ

C
Figure 6.1. The extended analyticity constraint, where we extend the domain
of analyticity upto some arbitrary curve C below the real axis. As described
in the text, we need to regularize the R-matrix on the curve C. The same
analysis goes through for extended analyticity in the strip b1 ≤ Im θ ≤ b2 for
b1 ≤ 0 and b2 ≥ π

2
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7. CONCLUSIONS

We introduced an extension to the S-matrix bootstrap program to boundary QFTs and

successfully reproduced known integrable R-matrices. We also introduced the extended

analyticity constraint which allowed us to identify additional integrable models. This seems

to be a promising way to study the allowed space of amplitudes and can be readily applied

to the case of the S-matrix bootstrap (ongoing work). We also presented the dual to the

extended analyticity problem and show that unlike the case where we have the standard

analyticity domain, here, we can have theories which do not saturate unitarity as results of

our optimization problem. We’ve only explored a few examples of boundary field theories

with our bootstrap and this work can be extended in several ways, by investigating other

theories including supersymmetric ones, theories with bound states, etc.
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A. FREE THEORY

In this appendix, we obtain some analytic results for a free bulk S-matrix (Sklij = δki δ
l
j). In

this case, one can check that the boundary Yang-Baxter equation is trivially satisfied. The

crossing equation is simply

Rj
i(iπ − θ) = Ri

j(θ) . (A.1)

Now, we will obtain the space of allowed R-matrices for the diagonal (3.12 ) and block diagonal

(3.17 ) ansatz.

In the diagonal case, we have two analytic functions R1(θ) and R2(θ) satisfy self crossing,

i.e. Ri(iπ − θ) = Ri(θ) for i = 1, 2, as can be seen from eq.(A.1 ). We also have the following

unitarity constraints |Ri(θ)| ≤ 1, for i = 1, 2 and θ ∈ R. Self-crossing implies that the

absolute value of the R-matrix is bounded by one along the entire boundary. So, the allowed

region in R1(θ1) −R2(θ1) plane for any θ1 in the physical strip must be bounded by a square

with vertices at (±1,±1). These vertices themselves must be in the allowed region because

the function R1(θ) = ±1 and R2(θ) = ±1 satisfy all the constraints. A property of convex

spaces is that the convex hull of any subset of points must lie within the convex space itself.

So, the allowed region must be bounded by the square with vertices at (±1,±1) both from

above and below. Therefore, we conclude that the allowed region is that said square itself.

This result agrees with the numerics, as seen in fig.A.1 .

In the block diagonal case (3.17 ), we also have two analytic functions A(θ) and B(θ)

which, by crossing are equal to A(iπ − θ) and −B(iπ − θ) respectively. The primal maxi-

mization problem can be rewritten in terms of two new functions u(θ) = A(θ) + B(θ) and

v(θ) = A(θ) −B(θ) as

max
u,v

cos(α)u(θ1) + sin(α)v(θ1) ,

s.t. |u(θ)| ≤ 1, |v(θ)| ≤ 1 for θ ∈ R ,

u(iπ − θ) = v(θ) .

(A.2)

We can solve this problem analytically by conformally mapping the strip 0 ≤ Im θ ≤ π to

the unit disk via z(θ) = i−eθ

i+eθ . We can rewrite the optimization problem in terms of a single
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analytic function ũ(z(θ)) = u(θ) which satisfies |ũ(z)| ≤ 1 on the unit circle (|z| = 1). This

function has two poles located at z(θ1) and at −z(θ1). Using the result below eq.(12), page

138 of [45 ], the optimal function is of the form

ũ(z) = iz + a

1 + iaz
, (A.3)

where a is real by real analyticity and lies in the range [-1,1]. As we sweep the angle α in the

range [0, 2π], we can check that the value of a covers the entire domain [-1,1] and therefore

can be used to parameterize the boundary of the allowed region. Finally, the functions A(θ)

and B(θ) at the boundary are given by

A(θ) = 2a sinh(θ)
(a2 + 1) sinh(θ) − i(a2 − 1) , (A.4)

B(θ) = i(a2 − 1) cosh(θ)
(a2 + 1) sinh(θ) − i(a2 − 1) . (A.5)

Once again, we can check that this result agrees with the numerics for the block diagonal

ansatz (see fig.A.1 ).
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(a) Diagonal ansatz

(b) Block diagonal ansatz

Figure A.1. The allowed region of R-matrices with free bulk for diagonal
and block diagonal ansatz in excellent agreement with the numerics. In these
plots, θ1 = 0.9879 i
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B. A USEFUL FUNCTION

In this appendix, we define and discuss the properties of the function Hν(α, β; γ, δ) which

was introduced in the main body. Let α, β, γ and δ be four complex numbers that satisfy

α + β = γ + δ and ν ∈ R>0. We define

Hν(α, β; γ, δ) = lim
N→∞

N∏
j=−N

Γ(γ+iπj
4ν )Γ( δ+iπj

4ν )
Γ(α+iπj

4ν )Γ(β+iπj
4ν )

(B.1)

= e
αβ−γδ

4ν
(e−2β, e−8ν)∞(e−2α, e−8ν)∞

(e−2δ, e−8ν)∞(e−2γ, e−8ν)∞
, (B.2)

where we have introduced the q-Pochammer symbol (a, q)n = ∏n
j=0(1 − aqj). We can rewrite

the function Hν as

Hν(α, β; γ, δ) = e
αβ−γδ

4ν

∞∏
j=0

sinh(α + 4νj) sinh(β + 4νj)
sinh(γ + 4νj) sinh(δ + 4νj) , (B.3)

where the infinite product is computed in the symmetric limit limN→∞ j = −N . . .N . This

function is analytic on the entire complex plane except for the presence of isolated poles and

zeros. We have zeros when α = inπ − 4νj or β = inπ − 4νj for all n ∈ Z and j ∈ N ∪ {0}.

Similarly, the function has poles when γ = inπ − 4νj or δ = inπ − 4νj for all n ∈ Z and
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j ∈ N∪{0}. We now quote some simple identities of this function which are useful in checking

the crossing and unitarity constraints of the diagonal R-matrix (3.26 ).

Hν(α, β; γ, δ) = Hν(α, β; δ, γ) = 1
Hν(γ, δ;α, β) , (B.4)

Hν(α, β; γ, δ) = Hν(α, β;µ, ρ)Hν(µ, ρ; γ, δ) , (B.5)

Hν(α + iπ, β + iπ; γ + iπ, δ + iπ) = Hν(α, β; γ, δ) , (B.6)

Hν(α, β + iπ; γ, δ + iπ) = e
iπ(α−γ)

4ν Hν(α, β; γ, δ) , (B.7)

Hν(α, β; γ + iπ, δ − iπ) = e
iπ(γ−δ)

4ν
− π

2
4νHν(α, β; γ, δ) , (B.8)

Hν(α + 4ν, β + 4ν; γ + 4ν, δ + 4ν) = sinh γ sinh δ
sinhα sinh βHν(α, β; γ, δ) , (B.9)

Hν(α, β + 4ν; γ, δ + 4ν) = sinh δ
sinh βHν(α, β; γ, δ) , (B.10)

Hν(α, β; γ + 4ν, δ − 4ν) = sinh γ
sinh(δ − 4ν)Hν(α, β; γ, δ) . (B.11)

We also have the following doubling identity

Hν(α, β; γ, δ) = H2ν(α + 4ν, β + 4ν; γ + 4ν, δ + 4ν)H2ν(α, β; γ, δ) , (B.12)

which can be derived from the Gamma function identity Γ(2z) = 22z−1
√

π
Γ(z)Γ(z+ 1

2). In order

to solve the crossing equation, it is useful to define the following function

φα,β;ν(θ) = Hν

(
α + 2iθν

π
, β − 2iθν

π
;α− 2iθν

π
, β + 2iθν

π

)
, (B.13)

which satisfies

φα,β;ν(iπ−θ) = Hν/2

(
α− 2iθν

π
− 2ν, β + 2iθν

π
;α + 2iθν

π
, β − 2iθν

π
− 2ν

)
φα,β;ν(θ) . (B.14)

In particular

φα,α+2ν;ν(iπ − θ) =
sinh(α− 2iθν

π
− 2ν)

sinh(α + 2iθν
π

)
φα,α+2ν;ν(θ) , (B.15)

can be used to solve the crossing equation (3.23 ) directly.
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C. PYTHON CODE FOR THE R-MATRIX BOOTSTRAP

In this appendix, we include the code for our numerics which is written in the Python

programming language. To get it running, one needs to install the “cvxpy” Python package

and the “MOSEK” solver which offers free academic licenses. The following code computes

the allowed region for NLSM in the bulk and a diagonal R-matrix ansatz with N = 6,

k = N − 1.
1 from cvxpy import *
2 import numpy as np
3 import matplotlib.pyplot as plt
4 from scipy.special import gamma
5 from scipy.linalg import toeplitz
6

7 n = 100 #Number of variables
8 N = 6 #O(N) model
9 ap = 15

10 b1, b2 = 0, 0.5*np.pi
11

12 theta = ap/n * (np.arange(-n+0.5, n+0.5))
13 p1 = np.arange(1, n)
14

15 a1 = multiply(Variable(n-1), np.exp(p1*np.pi*b1/ap))
16 a2 = multiply(Variable(n-1), np.exp(p1*np.pi*b1/ap))
17 am1 = multiply(Variable(n-1), np.exp(-p1*np.pi*b2/ap))
18 am2 = multiply(Variable(n-1), np.exp(-p1*np.pi*b2/ap))
19 a01, a02 = Variable(), Variable()
20

21 def R1(theta):
22 th, phi = np.real(theta), np.imag(theta)
23 ktheta, kphi = 1j*np.pi/ap*np.outer(th, p1), np.pi/ap*np.outer(phi, p1)
24 return a01 + np.exp(-kphi+ktheta) @ a1 + np.exp(kphi-ktheta) @ am1
25

26 def R2(theta):
27 th, phi = np.real(theta), np.imag(theta)
28 ktheta, kphi = 1j*np.pi/ap*np.outer(th, p1), np.pi/ap*np.outer(phi, p1)
29 return a02 + np.exp(-kphi+ktheta) @ a2 + np.exp(kphi-ktheta) @ am2
30

31 def Q(theta):
32 return gamma(1/(N-2) - 1j*theta/2/np.pi) / gamma(1/2 + 1/(N-2) - 1j*theta/2/np.pi) *\
33 gamma(0.5 - 1j*theta/2/np.pi) / gamma(-1j*theta/2/np.pi)
34

35 def S_T(theta):
36 return Q(theta) * Q(1j*np.pi-theta)
37

38 def S_A(theta):
39 return -2j*np.pi/(N-2)/(1j*np.pi-theta) * Q(theta)*Q(1j*np.pi-theta)
40

41 def S_R(theta):
42 return -2j*np.pi/(N-2)/theta * Q(theta)*Q(1j*np.pi-theta)
43

44 S1 = lambda theta: (N-1)*S_A(theta)+S_R(theta)+S_T(theta)
45 S2 = lambda theta: S_A(theta)
46 S3 = lambda theta: (N-1)*S_A(theta)
47 S4 = lambda theta: S_A(theta)+S_R(theta)+S_T(theta)
48
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49 R11, R21 = R1(theta), R2(theta)
50

51 constraints = []
52 # Unitarity
53 constraints += [abs(R11) <= 1, abs(R21) <= 1]
54

55 # Crossing upper bdy
56 Rp_th = 1j*b2 + theta
57 Rm_th = 1j*np.pi - Rp_th
58 cross_th = Rp_th - Rm_th
59

60 constraints += [R1(Rm_th) == multiply(R1(Rp_th), S1(cross_th)) + multiply(R2(Rp_th), S2(cross_th))]
61 constraints += [R2(Rm_th) == multiply(R1(Rp_th), S3(cross_th)) + multiply(R2(Rp_th), S4(cross_th))]
62

63 tol = 1e-6
64 mosek_params = {"MSK_DPAR_INTPNT_CO_TOL_PFEAS":tol, "MSK_DPAR_INTPNT_CO_TOL_DFEAS":tol, "

MSK_DPAR_INTPNT_CO_TOL_REL_GAP":tol}
65 cos_a, sin_a = Parameter(), Parameter()
66

67 pt1_3j, pt2_3j = R1(0.2j), R2(0.2j)
68

69 t = cos_a * real(pt1_3j) + sin_a * real(pt2_3j)
70 constraints += [sin_a*real(pt1_3j) == cos_a*real(pt2_3j)]
71

72 objective = Maximize(t)
73 prob = Problem(objective, constraints)
74

75 Nalpha = 100
76 alphaV = np.linspace(0, np.pi, Nalpha)
77 plot_R1, plot_R2 = np.zeros(Nalpha), np.zeros(Nalpha)
78

79 for i, alpha in enumerate(alphaV):
80 cos_a.value, sin_a.value = np.cos(alpha), np.sin(alpha)
81 try:
82 prob.solve(solver=MOSEK, mosek_params=mosek_params, verbose=False)
83 plot_R1[i], plot_R2[i] = real(pt1_3j).value, real(pt2_3j).value
84 print(alpha, plot_R1[i], plot_R2[i])
85 except:
86 print("didnt work")
87 plot_R1[i], plot_R2[i]= np.nan, np.nan
88

89 x = np.append(plot_R1, -plot_R1)
90 y = np.append(plot_R2, -plot_R2)
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