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ABSTRACT

Confined particulate systems, particularly powder compacts, are widely used in various

applications in industries such as pharmaceutical, automotive, agriculture, and energy

production. Due to their extensive applications, characterization of these materials is

of great importance for optimizing their performance and manufacturing processes. Modeling

approaches capable of capturing the heterogeneity and complex behavior are effective at

predicting the macroscopic behavior of granular systems. These modeling approaches utilize

information about the microstructure evolution of these materials during compaction processes

at the mesoscale (particle-scale). Using these types of modeling depend on accurate contact

formulation between inter-particle contacts. The challenge comes in formulating these

contact models that accurately predict force-area-deformation relationships. In this work,

contact laws are presented for elastic-ideally plastic particles and plastic particles with power-

law hardening under unconfined (simple compression) and confined (die and hydrostatic

compaction) compression. First, material properties for a set of finite element simulations are

obtained using space-filling design. The finite element simulations are used for verification

and building an analytical framework of the contact radius and contact pressure which allows

for efficient determination of the contact force. Semi-mechanistic contact laws are built

for elastic-ideally plastic spherical particles that depend on material properties and loading

configuration. Then, rigid-plastic assumption is used to modify the contact laws to consider

power-law hardening effects while keeping loading configuration dependency. Finally, after

building and verifying the contact laws, they are used to estimate hardening properties,

contact radius evolution, and stress response of micro-crystalline cellulose particles under

different loading configurations using experimental data from simple compression.
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1. INTRODUCTION

1.1 Motivation

Confined particulate systems have a wide range of applications in many industries such as

pharmaceutical, automotice, agriciulture, ceramic, construction, and energy production. The

applicability of these materials makes them of great interest in research, particularly predicting

and modeling the mesoscopic and macroscopic behavior under confinement. Developing these

predictive models allows for more efficient manufacturing processes and the optimization of

performance in all applications.

1.2 Background

Confined granular systems and powder compacts experience heterogenous behavior (Ma-

jmudar & Behringer, 2005 ) which greatly affects their macroscopic behavior. Mechanistic

continuum modeling, on a macroscopic scale, has proved to be capable of describing mi-

crostructure evolution during powder compaction (Puri, Tripodi, Manbeck, and Messing,

1995 ; Sun and Kim, 1997 , Chtourou, Guillot, and Gakwaya, 2002 , Cunningham, Sinka, and

Zavaliangos, 2004 ; DiMaggio and Sandler, 1971 ; Han et al., 2008 ; Sinha, Curtis, Hancock,

and Wassgren, 2010 ; Sinka, Cunningham, and Zavaliangos, 2004 , and A. Bakhshiani, Khoei,

and Mofid, 2004 , 2002 ; Khoei, Mofid, and Bakhshiani, 2002 ). The issue with these models is

they consider the materials to be homogeneous, negelecting crucial behavior present at the

mesoscale (or particle-scale). A dynamic modeling approach called Discrete Element Method

(DEM) can accurately predict behavior at the mesoscale during compaction (Belheine, Plas-

siard, Donzé, Darve, and Seridi, 2009 ; Harthong, Jérier, Dorémus, Imbault, and Donzé, 2009 ;

Jerier et al., 2011 ; C.L. Martin and Bouvard, 2003 ; C.L Martin, Bouvard, and Shima, 2003 ;

C. L. Martin, Bouvard, and Delette, 2006 ; Rojek et al., 2016 ; Sheng, Lawrence, Briscoe, and

Thornton, 2002 ; Skrinjar and Larsson, 2004 ). Recently, another discrete modeling approach

called discrete particle mechanics (M. Gonzalez and Cuitiño, 2016 ; Marcial Gonzalez, 2019 ;

Marcial Gonzalez, Poorsolhjouy, Thomas, Liu, and Balakrishnan, 2018 ; Poorsolhjouy and

Gonzalez, 2018 ; Yohannes et al., 2016 , 2017 ) has been proposed that is more computationally
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efficient. Because discrete modeling considers the significant heterogeity of the materials,

it is the superior method for predicting behavior of powder compacts. The use of discrete

modeling requires the development of contact formulation between inter-particles contacts.

These contact formulations describe the force-area-deformation relationship of the particles

during confinement.

1.3 Research Goals

As mentioned in the previous section, the use of discrete modeling requires the development

of contact formulation. For discrete modeling to be effective, the contact formulation must

accurately determine force-area-deformation relationships during compaction. Contact laws

have been proposed for elasto-plastic spheres assuming rigid-plastic power-law (Biwa &

Stor̊akers, 1995 ; Tabor, 1951 ) and contact of inelastic solids of revolution (B. Stor̊akers,

Biwa, & Larsson, 1997 ). These contact models are only effective at small deformations and

are unable to capture complex behavior such as softening and confinement effects at large

deformations. There has been contact models that are predictive for small-moderate-large

deformations (Frenning, 2013 , 2015 ; Harthong et al., 2009 ; Harthong et al., 2012 ; E. Olsson

and Larsson, 2016 ; Erik Olsson and Larsson, 2013a , 2013b , however, these contact models

lack consistent loading condition dependency, prediction of contact radius, or wide range of

material properties.

Finding predictive mechanistic contact formulation for large deformation contact behavior

of elasto-plastic particles under general loading conditions remains an issue. In this thesis,

efforts are made towards the development of such contact formulation. In chapter 2 (Agarwal,

Shahin, & Gonzalez, 2021 ), a semi-mechanistic contact law for elastic-ideally plastic spherical

particles under confined and unconfined loading configurations is introduced. In chapter

3 (Shahin, Agarwal, & Gonzalez, 2021 ), the contact law is extended to capture power-law

hardening behavior of plastic spherical particles. Both contact laws are verified using finite

element simulations. Finally, in chapter 4, concluding remarks and future work are presented.
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2. SEMI-MECHANISTIC CONTACT LAW FOR LARGE

DEFORMATION UNCONFINED AND CONFINED

COMPRESSION OF ELASTO-PLASTIC PARTICLES

The content of this chapter and associated appendices A, B, C, and D will be submitted to
Journal of the Mechanics and Physics of Solids.

2.1 Introduction

Compacted granular systems, particularly powder compacts, are one of the most com-

monly used types of materials, with extensive applications in manufacturing processes of

critical industries like pharmaceuticals, ceramics, energy, automotive, construction, food, and

metallurgy. The versatility and wide application of these materials have made them a subject

of active research in the scientific community, particularly in the area of predictive modeling

of meso and macroscopic behavior of these materials under confinement. In these applications,

confined granular media typically consist of a disordered blend of powder particles with

different properties and size distributions. During compaction, these particles deform by

coming into contact with neighboring particles as forces get transmitted throughout the

system, essentially forming a heterogeneous contact network of force chains (Majmudar &

Behringer, 2005 ). The significant heterogeneity of these systems at the granular scale has,

therefore, a fundamental impact on their macroscopic behavior.

Conventionally, the macroscopic behavior of confined granular systems has been described

by continuum models, such as Cam-Clay (Puri et al., 1995 ; Sun & Kim, 1997 ), Cap (Chtourou

et al., 2002 ), Drucker-Prager Cap (DPC) (Cunningham et al., 2004 ; DiMaggio & Sandler, 1971 ;

Han et al., 2008 ; Sinha et al., 2010 ; Sinka et al., 2004 ), and endochronic (A. Bakhshiani et al.,

2004 , 2002 ; Khoei et al., 2002 ) plasticity models, which consider granular media as homoge-

neous materials, thereby neglecting the critical behavior at meso-scale (or particle-scale), such

as particle rearrangement and non-affine deformations. More recently, macroscopic discrete

models have been proposed. The capability of these models to incorporate microstructural

evolution and properties of the granular system into its global behavior has increased their

popularity and usage in recent years. A commonly used numerical method in this category

18



is the Discrete Element Method (DEM) proposed by (Cundall & Strack, 1979 ), which is a

dynamic modeling approach that has been employed extensively to successfully study and

predict densification due to particle rearrangement and particle-particle elasto-plastic defor-

mation during powder compaction (Belheine et al., 2009 ; Harthong et al., 2009 ; Jerier et al.,

2011 ; C.L. Martin & Bouvard, 2003 ; C.L Martin et al., 2003 ; C. L. Martin et al., 2006 ; Rojek

et al., 2016 ; Sheng et al., 2002 ; Skrinjar & Larsson, 2004 ). The discrete particle mechanics

approach (M. Gonzalez & Cuitiño, 2016 ; Marcial Gonzalez, 2019 ; Marcial Gonzalez et al.,

2018 ; Poorsolhjouy & Gonzalez, 2018 ; Yohannes et al., 2016 , 2017 ) is another computationally

efficient numerical technique for modeling of highly confined granular systems. This approach

models the compaction process as a sequence of quasi-static loading steps, where a set of

nonlinear equations for the equilibrium configuration of each particle is formulated and solved

during each loading step, thus avoiding the limitations imposed on the time step by the

conditional stability of any time integration scheme used in DEM.

While the superiority of discrete models over continuum models in describing the macro-

scopic behavior of confined granular systems is evident, it is worth mentioning that the

predictability of discrete models relies heavily on the employed contact formulation to de-

scribe the contact force-area-deformation relationship between inter-particle contacts formed

before and during the compaction process. Understanding the contact mechanics between

deformable particles has been a problem of interest for several decades. While contact of

elastic particles within the regime of small deformations is fairly understood, thanks to

the classical work of (Hertz, 1882 ), the problem becomes more involved and complex with

consideration of large deformations and inelastic material behavior. As an initial step towards

formulating an analytical contact law for elasto-plastic particles under large deformations, we

attempt to understand the deformation mechanisms that govern the particle response under

large compression. Figure 2.1 presents the normalized contact pressure-deformation, contact

radius-deformation and contact force-deformation responses derived from finite element (FE)

simulations of a single spherical particle, with elasto-plastic von Mises type power-law harden-

ing behavior, under three types of loading configurations in a simple cubic cell, namely simple

axial compression, die compression (axial compression and lateral confinement between four

rigid walls) and hydrostatic compression (isostatic axisymmetric loading). Schematics of
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these loading configurations are depicted in Fig. 2.2 . The material’s yield surface evolves

according to the following power law (Ludwik, 1909 )

σ = σy +Kε
1/n
pl (2.1)

where σ is the current stress, σy is the yield stress, K is a representative strength, n is the

hardening exponent, and εpl is the plastic strain calculated as

εpl = ε− σ

E
(2.2)

where ε is the current strain and E is the Young’s modulus. To perform the simulations,

material properties corresponding to those reported by (Chen, Imbault, & Dorémus, 2007 )

for lead were used, i.e., K = 15.5 MPa, n = 2.857, E = 10 GPa and ν = 0.435. To ensure

consistency with the assumption of rigid-plastic power law hardening behavior by previous

works on contact models for spherical indentation (Biwa & Stor̊akers, 1995 ; Tabor, 1951 ) and

contact of inelastic solids of revolution (B. Stor̊akers et al., 1997 ), the Hollomon’s power law

(Hollomon, 1945 ) is additionally considered

σ = κε1/m (2.3)

where κ is a representative strength and m is the hardening exponent. By equating power

laws given by Eqs. (2.1 ) and (2.3 ) and adjusting the coefficient values to obtain similar

response curves, (Harthong et al., 2009 ) obtained κ = 20.5 MPa and m = 4.167 for lead.

This value of κ was used to normalize the contact force and the contact pressure in Fig. 2.1 .
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(a) (b)

(c)

Fig.2.1. Finite element simulation results of normalized (a ) contact pressure-
deformation, (b ) contact radius-deformation, and (c ) contact force-deformation
behavior of an elastic-plastic power law hardening sphere of radius R = 10 mm
under three types of loading configurations, namely simple compression (solid
curve with circle markers), die compaction (solid curve with pentagram markers)
and hydrostatic compaction (solid curve with cross markers). The similarity
solution proposed by (Biwa & Stor̊akers, 1995 ) is also plotted for comparison,
and is shown as dashed curve in all the plots. The material properties used
here correspond to lead (Chen, Imbault, & Dorémus, 2007 ; Harthong, Jérier,
Dorémus, Imbault, & Donzé, 2009 ), with Young’s modulus E = 10 GPa,
Poisson’s ratio ν = 0.435, representative strength κ = 20.5 MPa and hardening
exponent m = 4.167.
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Fig.2.2. Schematics of loading configurations considered in this study.

Fig.2.3. Comparison of the evolution of normalized contact pressure (top)
with the evolution of normalized energy (bottom) versus deformation during
FE simulation of the hydrostatic compaction of a lead sphere. The various
deformation stages are depicted by different symbols as follows: elastic (©),
‘contained’ or elastic-plastic (�), ‘uncontained’ or plastic (♦), ‘low compress-
ibility’ (9), and elastic volumetric (4) deformations. In the bottom plot, the
total work done, Wtotal, is depicted by filled symbols while the elastic strain
energy, Welastic, is depicted by empty symbols.
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Fig.2.4. Contour plots of the equivalent plastic strain (ε̄p) for hydrostatic
compaction of a lead sphere obtained from FE simulation of (1/8)th of the
sphere. The different plots represent different stages of particle compression
with increasing deformation or γ/2R.

It is evident from Fig. 2.1 that the contact behavior is strongly dependent on the

loading configuration, especially at moderate-to-large deformations. Further insight into

the deformation mechanisms governing such contact behavior is obtained by the analysis

of the evolution of external work and stored energy (Fig. 2.3 for hydrostatic compaction)

as well as the equivalent plastic strain (Fig. 2.4 for hydrostatic compaction) in the particle

during compression. It is observed that during intial compression, deformations are purely

elastic and total external work is stored as strain energy in the particle. With further

compression, local plastic deformation is observed at the vicinity of each contact where

yielding occurs for the first time. Initially, the plastic zone is fully contained within the

surrounding material which remains elastic. Therefore, the contact deformation mode within

this regime is termed as a ‘contained’ or elastic-plastic deformation mode (K. L. Johnson,

1987 , 1970 ; Stronge, 2018 ). On the onset of this deformation mode, the contact pressure

and energy curves become non-linear with a decreasing slope, and the external work and

strain energy curves start to diverge due to plastic dissipation. The plastically deforming
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zone quickly expands and breaks out to the free surface, resulting in plastic flow of the

material surrounding the contact area. This is called an ‘uncontained’ or plastic mode of

deformation (K. L. Johnson, 1987 , 1970 ; Stronge, 2018 ), and it is designated by a slight

softening or a reduction in the contact pressure and a lowering of the rate of increase in

stored energy with further deformation. It is worth mentioning that this deformation regime

has been previously studied by Frenning and co-workers (Frenning, 2013 ; Jonsson, Gr̊asjö, &

Frenning, 2017 ) and (Tsigginos, Strong, & Zavaliangos, 2015 ), who attribute the softening

effect to the full mergence of plastically deforming zones around the contacts. A different

interpretation is offered by Jackson, Green, and co-workers (Jackson & Green, 2005 , 2006 ;

Quicksall, Jackson, & Green, 2004 ), who postulate that the flattening or indentation of a

sphere onto a surface causes its geometry to approach that of a compressed column and its

contact pressure to approach the material’s yield or representative strength. Until this point,

contacts can be assumed independent of each other, yielding similar force, area and pressure

evolution regardless of the loading configuration (see Fig. 2.1 for deformations under 10%).

With further deformation, the void volume around the particle gets increasingly filled by

the material displaced by plastic deformation. For simple compression, the void volume is

infinitely large and material displacement in the lateral direction does not affect the contact

pressure which, in turn, continues to reduce and approach the representative strength of

the material. However, for die and hydrostatic loading conditions, the void volume is finite

and the contact pressure increases with increasing particle deformation. This phenomenon,

termed ‘geometrical hardening’ by (Sundstrom & Fischmeister, 1973 ) and ‘low compressibility’

regime by (Tsigginos et al., 2015 ), is characterized by a rising rate of increase in the elastic

strain energy of the particle, indicating that further particle deformation is predominantly

governed by the elastic response of the material. Finally, at very large deformations, when the

local relative density of the particle is close to 1, deformations are purely elastic volumetric,

requiring a very high compaction pressure to achieve a small volumetric reduction. Due to

the higher degree of confinement, void filling occurs at a faster rate during hydrostatic loading

as compared to the die loading condition, resulting in the contact pressure rising at a smaller

contact deformation for the hydrostatic as compared to the die configuration (see Fig. 2.1 ).
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a
<latexit sha1_base64="ODkqpsw3DH235TRK0O/nvAQMaiI=">AAACDnicbVDLSgNBEOz1GeMr6tHLYCJ4kLCbix4DXjxGNA9IltA7mU2GzM4uM7NCDPkEwZP+iTfx6i/4I56dJHswiQUNRVU3VFeQCK6N6347a+sbm1vbuZ387t7+wWHh6Lih41RRVqexiFUrQM0El6xuuBGslSiGUSBYMxjeTP3mI1Oax/LBjBLmR9iXPOQUjZXuS1jqFopu2Z2BrBIvI0XIUOsWfjq9mKYRk4YK1LrtuYnxx6gMp4JN8p1UswTpEPusbanEiGl/PIs6IedW6ZEwVnakITP178UYI61HUWA3IzQDvexNxX89g0E6WVT48GkpjQmv/TGXSWqYpPMwYSqIicm0G9LjilEjRpYgVdz+Q+gAFVJjG8zborzlWlZJo1L23LJ3VylWL7PKcnAKZ3ABHlxBFW6hBnWg0IdneIU358V5dz6cz/nqmpPdnMACnK9ffRicXQ==</latexit><latexit sha1_base64="ODkqpsw3DH235TRK0O/nvAQMaiI=">AAACDnicbVDLSgNBEOz1GeMr6tHLYCJ4kLCbix4DXjxGNA9IltA7mU2GzM4uM7NCDPkEwZP+iTfx6i/4I56dJHswiQUNRVU3VFeQCK6N6347a+sbm1vbuZ387t7+wWHh6Lih41RRVqexiFUrQM0El6xuuBGslSiGUSBYMxjeTP3mI1Oax/LBjBLmR9iXPOQUjZXuS1jqFopu2Z2BrBIvI0XIUOsWfjq9mKYRk4YK1LrtuYnxx6gMp4JN8p1UswTpEPusbanEiGl/PIs6IedW6ZEwVnakITP178UYI61HUWA3IzQDvexNxX89g0E6WVT48GkpjQmv/TGXSWqYpPMwYSqIicm0G9LjilEjRpYgVdz+Q+gAFVJjG8zborzlWlZJo1L23LJ3VylWL7PKcnAKZ3ABHlxBFW6hBnWg0IdneIU358V5dz6cz/nqmpPdnMACnK9ffRicXQ==</latexit><latexit sha1_base64="ODkqpsw3DH235TRK0O/nvAQMaiI=">AAACDnicbVDLSgNBEOz1GeMr6tHLYCJ4kLCbix4DXjxGNA9IltA7mU2GzM4uM7NCDPkEwZP+iTfx6i/4I56dJHswiQUNRVU3VFeQCK6N6347a+sbm1vbuZ387t7+wWHh6Lih41RRVqexiFUrQM0El6xuuBGslSiGUSBYMxjeTP3mI1Oax/LBjBLmR9iXPOQUjZXuS1jqFopu2Z2BrBIvI0XIUOsWfjq9mKYRk4YK1LrtuYnxx6gMp4JN8p1UswTpEPusbanEiGl/PIs6IedW6ZEwVnakITP178UYI61HUWA3IzQDvexNxX89g0E6WVT48GkpjQmv/TGXSWqYpPMwYSqIicm0G9LjilEjRpYgVdz+Q+gAFVJjG8zborzlWlZJo1L23LJ3VylWL7PKcnAKZ3ABHlxBFW6hBnWg0IdneIU358V5dz6cz/nqmpPdnMACnK9ffRicXQ==</latexit><latexit sha1_base64="ODkqpsw3DH235TRK0O/nvAQMaiI=">AAACDnicbVDLSgNBEOz1GeMr6tHLYCJ4kLCbix4DXjxGNA9IltA7mU2GzM4uM7NCDPkEwZP+iTfx6i/4I56dJHswiQUNRVU3VFeQCK6N6347a+sbm1vbuZ387t7+wWHh6Lih41RRVqexiFUrQM0El6xuuBGslSiGUSBYMxjeTP3mI1Oax/LBjBLmR9iXPOQUjZXuS1jqFopu2Z2BrBIvI0XIUOsWfjq9mKYRk4YK1LrtuYnxx6gMp4JN8p1UswTpEPusbanEiGl/PIs6IedW6ZEwVnakITP178UYI61HUWA3IzQDvexNxX89g0E6WVT48GkpjQmv/TGXSWqYpPMwYSqIicm0G9LjilEjRpYgVdz+Q+gAFVJjG8zborzlWlZJo1L23LJ3VylWL7PKcnAKZ3ABHlxBFW6hBnWg0IdneIU358V5dz6cz/nqmpPdnMACnK9ffRicXQ==</latexit>

R1<latexit sha1_base64="At/bXUBy6moWJpRIm1Qkz5/h3mo=">AAACEHicbVDLSsNAFL3xWeur6tJNsBVcSEm60WXBjcsqpi20oUymk3boZBJmboQa+g2CK/0Td+LWP/BHXDtts7CtBy4czrkXzj1BIrhGx/m21tY3Nre2CzvF3b39g8PS0XFTx6mizKOxiFU7IJoJLpmHHAVrJ4qRKBCsFYxupn7rkSnNY/mA44T5ERlIHnJK0Ehe5b7nVnqlslN1ZrBXiZuTMuRo9Eo/3X5M04hJpIJo3XGdBP2MKORUsEmxm2qWEDoiA9YxVJKIaT+bhZ3Y50bp22GszEi0Z+rfi4xEWo+jwGxGBId62ZuK/3pIgnSyqPDR01IaDK/9jMskRSbpPEyYChtje9qO3eeKURRjQwhV3Pxj0yFRhKLpsGiKcpdrWSXNWtV1qu5drVy/zCsrwCmcwQW4cAV1uIUGeECBwzO8wpv1Yr1bH9bnfHXNym9OYAHW1y+etZzy</latexit><latexit sha1_base64="At/bXUBy6moWJpRIm1Qkz5/h3mo=">AAACEHicbVDLSsNAFL3xWeur6tJNsBVcSEm60WXBjcsqpi20oUymk3boZBJmboQa+g2CK/0Td+LWP/BHXDtts7CtBy4czrkXzj1BIrhGx/m21tY3Nre2CzvF3b39g8PS0XFTx6mizKOxiFU7IJoJLpmHHAVrJ4qRKBCsFYxupn7rkSnNY/mA44T5ERlIHnJK0Ehe5b7nVnqlslN1ZrBXiZuTMuRo9Eo/3X5M04hJpIJo3XGdBP2MKORUsEmxm2qWEDoiA9YxVJKIaT+bhZ3Y50bp22GszEi0Z+rfi4xEWo+jwGxGBId62ZuK/3pIgnSyqPDR01IaDK/9jMskRSbpPEyYChtje9qO3eeKURRjQwhV3Pxj0yFRhKLpsGiKcpdrWSXNWtV1qu5drVy/zCsrwCmcwQW4cAV1uIUGeECBwzO8wpv1Yr1bH9bnfHXNym9OYAHW1y+etZzy</latexit><latexit sha1_base64="At/bXUBy6moWJpRIm1Qkz5/h3mo=">AAACEHicbVDLSsNAFL3xWeur6tJNsBVcSEm60WXBjcsqpi20oUymk3boZBJmboQa+g2CK/0Td+LWP/BHXDtts7CtBy4czrkXzj1BIrhGx/m21tY3Nre2CzvF3b39g8PS0XFTx6mizKOxiFU7IJoJLpmHHAVrJ4qRKBCsFYxupn7rkSnNY/mA44T5ERlIHnJK0Ehe5b7nVnqlslN1ZrBXiZuTMuRo9Eo/3X5M04hJpIJo3XGdBP2MKORUsEmxm2qWEDoiA9YxVJKIaT+bhZ3Y50bp22GszEi0Z+rfi4xEWo+jwGxGBId62ZuK/3pIgnSyqPDR01IaDK/9jMskRSbpPEyYChtje9qO3eeKURRjQwhV3Pxj0yFRhKLpsGiKcpdrWSXNWtV1qu5drVy/zCsrwCmcwQW4cAV1uIUGeECBwzO8wpv1Yr1bH9bnfHXNym9OYAHW1y+etZzy</latexit><latexit sha1_base64="At/bXUBy6moWJpRIm1Qkz5/h3mo=">AAACEHicbVDLSsNAFL3xWeur6tJNsBVcSEm60WXBjcsqpi20oUymk3boZBJmboQa+g2CK/0Td+LWP/BHXDtts7CtBy4czrkXzj1BIrhGx/m21tY3Nre2CzvF3b39g8PS0XFTx6mizKOxiFU7IJoJLpmHHAVrJ4qRKBCsFYxupn7rkSnNY/mA44T5ERlIHnJK0Ehe5b7nVnqlslN1ZrBXiZuTMuRo9Eo/3X5M04hJpIJo3XGdBP2MKORUsEmxm2qWEDoiA9YxVJKIaT+bhZ3Y50bp22GszEi0Z+rfi4xEWo+jwGxGBId62ZuK/3pIgnSyqPDR01IaDK/9jMskRSbpPEyYChtje9qO3eeKURRjQwhV3Pxj0yFRhKLpsGiKcpdrWSXNWtV1qu5drVy/zCsrwCmcwQW4cAV1uIUGeECBwzO8wpv1Yr1bH9bnfHXNym9OYAHW1y+etZzy</latexit>

R2<latexit sha1_base64="9T0ntbT5hPSwuD8q+pAuBJmHdw0=">AAACEHicbVDLTgJBEOz1ifhCPXqZCCYeDNnlokcSLx7RuEACGzI7zMKE2Udmek1wwzeYeNI/8Wa8+gf+iGcH2IOAlXRSqepOqstPpNBo29/W2vrG5tZ2Yae4u7d/cFg6Om7qOFWMuyyWsWr7VHMpIu6iQMnbieI09CVv+aObqd965EqLOHrAccK9kA4iEQhG0Uhu5b5Xq/RKZbtqz0BWiZOTMuRo9Eo/3X7M0pBHyCTVuuPYCXoZVSiY5JNiN9U8oWxEB7xjaERDrr1sFnZCzo3SJ0GszERIZurfi4yGWo9D32yGFId62ZuK/3pI/XSyqIjR01IaDK69TERJijxi8zBBKgnGZNoO6QvFGcqxIZQpYf4hbEgVZWg6LJqinOVaVkmzVnXsqnNXK9cv88oKcApncAEOXEEdbqEBLjAQ8Ayv8Ga9WO/Wh/U5X12z8psTWID19QugXpzz</latexit><latexit sha1_base64="9T0ntbT5hPSwuD8q+pAuBJmHdw0=">AAACEHicbVDLTgJBEOz1ifhCPXqZCCYeDNnlokcSLx7RuEACGzI7zMKE2Udmek1wwzeYeNI/8Wa8+gf+iGcH2IOAlXRSqepOqstPpNBo29/W2vrG5tZ2Yae4u7d/cFg6Om7qOFWMuyyWsWr7VHMpIu6iQMnbieI09CVv+aObqd965EqLOHrAccK9kA4iEQhG0Uhu5b5Xq/RKZbtqz0BWiZOTMuRo9Eo/3X7M0pBHyCTVuuPYCXoZVSiY5JNiN9U8oWxEB7xjaERDrr1sFnZCzo3SJ0GszERIZurfi4yGWo9D32yGFId62ZuK/3pI/XSyqIjR01IaDK69TERJijxi8zBBKgnGZNoO6QvFGcqxIZQpYf4hbEgVZWg6LJqinOVaVkmzVnXsqnNXK9cv88oKcApncAEOXEEdbqEBLjAQ8Ayv8Ga9WO/Wh/U5X12z8psTWID19QugXpzz</latexit><latexit sha1_base64="9T0ntbT5hPSwuD8q+pAuBJmHdw0=">AAACEHicbVDLTgJBEOz1ifhCPXqZCCYeDNnlokcSLx7RuEACGzI7zMKE2Udmek1wwzeYeNI/8Wa8+gf+iGcH2IOAlXRSqepOqstPpNBo29/W2vrG5tZ2Yae4u7d/cFg6Om7qOFWMuyyWsWr7VHMpIu6iQMnbieI09CVv+aObqd965EqLOHrAccK9kA4iEQhG0Uhu5b5Xq/RKZbtqz0BWiZOTMuRo9Eo/3X7M0pBHyCTVuuPYCXoZVSiY5JNiN9U8oWxEB7xjaERDrr1sFnZCzo3SJ0GszERIZurfi4yGWo9D32yGFId62ZuK/3pI/XSyqIjR01IaDK69TERJijxi8zBBKgnGZNoO6QvFGcqxIZQpYf4hbEgVZWg6LJqinOVaVkmzVnXsqnNXK9cv88oKcApncAEOXEEdbqEBLjAQ8Ayv8Ga9WO/Wh/U5X12z8psTWID19QugXpzz</latexit><latexit sha1_base64="9T0ntbT5hPSwuD8q+pAuBJmHdw0=">AAACEHicbVDLTgJBEOz1ifhCPXqZCCYeDNnlokcSLx7RuEACGzI7zMKE2Udmek1wwzeYeNI/8Wa8+gf+iGcH2IOAlXRSqepOqstPpNBo29/W2vrG5tZ2Yae4u7d/cFg6Om7qOFWMuyyWsWr7VHMpIu6iQMnbieI09CVv+aObqd965EqLOHrAccK9kA4iEQhG0Uhu5b5Xq/RKZbtqz0BWiZOTMuRo9Eo/3X7M0pBHyCTVuuPYCXoZVSiY5JNiN9U8oWxEB7xjaERDrr1sFnZCzo3SJ0GszERIZurfi4yGWo9D32yGFId62ZuK/3pI/XSyqIjR01IaDK69TERJijxi8zBBKgnGZNoO6QvFGcqxIZQpYf4hbEgVZWg6LJqinOVaVkmzVnXsqnNXK9cv88oKcApncAEOXEEdbqEBLjAQ8Ayv8Ga9WO/Wh/U5X12z8psTWID19QugXpzz</latexit>

x1<latexit sha1_base64="U89y0uo2okxFEahqUoQHBVtAMw8=">AAACGXicbVDLSsNAFJ3UV62vqks3g63gQkrSjS4LblxWsA9oY5lMJ+3QySTM3Ig15D8EV/on7sStK3/EtZM2C9t64MLhnHvh3ONFgmuw7W+rsLa+sblV3C7t7O7tH5QPj9o6jBVlLRqKUHU9opngkrWAg2DdSDESeIJ1vMl15ncemNI8lHcwjZgbkJHkPqcEjHRf7QcExp6fPKYDpzooV+yaPQNeJU5OKihHc1D+6Q9DGgdMAhVE655jR+AmRAGngqWlfqxZROiEjFjPUEkCpt1kljrFZ0YZYj9UZiTgmfr3IiGB1tPAM5tZSL3sZeK/HhAvThcVPnlaSgP+lZtwGcXAJJ2H8WOBIcRZTXjIFaMgpoYQqrj5B9MxUYSCKbNkinKWa1kl7XrNsWvObb3SuMgrK6ITdIrOkYMuUQPdoCZqIYoUekav6M16sd6tD+tzvlqw8ptjtADr6xeLIKE4</latexit><latexit sha1_base64="U89y0uo2okxFEahqUoQHBVtAMw8=">AAACGXicbVDLSsNAFJ3UV62vqks3g63gQkrSjS4LblxWsA9oY5lMJ+3QySTM3Ig15D8EV/on7sStK3/EtZM2C9t64MLhnHvh3ONFgmuw7W+rsLa+sblV3C7t7O7tH5QPj9o6jBVlLRqKUHU9opngkrWAg2DdSDESeIJ1vMl15ncemNI8lHcwjZgbkJHkPqcEjHRf7QcExp6fPKYDpzooV+yaPQNeJU5OKihHc1D+6Q9DGgdMAhVE655jR+AmRAGngqWlfqxZROiEjFjPUEkCpt1kljrFZ0YZYj9UZiTgmfr3IiGB1tPAM5tZSL3sZeK/HhAvThcVPnlaSgP+lZtwGcXAJJ2H8WOBIcRZTXjIFaMgpoYQqrj5B9MxUYSCKbNkinKWa1kl7XrNsWvObb3SuMgrK6ITdIrOkYMuUQPdoCZqIYoUekav6M16sd6tD+tzvlqw8ptjtADr6xeLIKE4</latexit><latexit sha1_base64="U89y0uo2okxFEahqUoQHBVtAMw8=">AAACGXicbVDLSsNAFJ3UV62vqks3g63gQkrSjS4LblxWsA9oY5lMJ+3QySTM3Ig15D8EV/on7sStK3/EtZM2C9t64MLhnHvh3ONFgmuw7W+rsLa+sblV3C7t7O7tH5QPj9o6jBVlLRqKUHU9opngkrWAg2DdSDESeIJ1vMl15ncemNI8lHcwjZgbkJHkPqcEjHRf7QcExp6fPKYDpzooV+yaPQNeJU5OKihHc1D+6Q9DGgdMAhVE655jR+AmRAGngqWlfqxZROiEjFjPUEkCpt1kljrFZ0YZYj9UZiTgmfr3IiGB1tPAM5tZSL3sZeK/HhAvThcVPnlaSgP+lZtwGcXAJJ2H8WOBIcRZTXjIFaMgpoYQqrj5B9MxUYSCKbNkinKWa1kl7XrNsWvObb3SuMgrK6ITdIrOkYMuUQPdoCZqIYoUekav6M16sd6tD+tzvlqw8ptjtADr6xeLIKE4</latexit><latexit sha1_base64="U89y0uo2okxFEahqUoQHBVtAMw8=">AAACGXicbVDLSsNAFJ3UV62vqks3g63gQkrSjS4LblxWsA9oY5lMJ+3QySTM3Ig15D8EV/on7sStK3/EtZM2C9t64MLhnHvh3ONFgmuw7W+rsLa+sblV3C7t7O7tH5QPj9o6jBVlLRqKUHU9opngkrWAg2DdSDESeIJ1vMl15ncemNI8lHcwjZgbkJHkPqcEjHRf7QcExp6fPKYDpzooV+yaPQNeJU5OKihHc1D+6Q9DGgdMAhVE655jR+AmRAGngqWlfqxZROiEjFjPUEkCpt1kljrFZ0YZYj9UZiTgmfr3IiGB1tPAM5tZSL3sZeK/HhAvThcVPnlaSgP+lZtwGcXAJJ2H8WOBIcRZTXjIFaMgpoYQqrj5B9MxUYSCKbNkinKWa1kl7XrNsWvObb3SuMgrK6ITdIrOkYMuUQPdoCZqIYoUekav6M16sd6tD+tzvlqw8ptjtADr6xeLIKE4</latexit>

x2<latexit sha1_base64="NauIQ2iXRWeJXTl5Tb8x7ha1luA=">AAACGXicbVDLSsNAFJ3UV62vqks3g63gQkrSjS4LblxWsA9oY5lMJ+3QySTM3Ig15D8EV/on7sStK3/EtZM2C9t64MLhnHvh3ONFgmuw7W+rsLa+sblV3C7t7O7tH5QPj9o6jBVlLRqKUHU9opngkrWAg2DdSDESeIJ1vMl15ncemNI8lHcwjZgbkJHkPqcEjHRf7QcExp6fPKaDenVQrtg1ewa8SpycVFCO5qD80x+GNA6YBCqI1j3HjsBNiAJOBUtL/ViziNAJGbGeoZIETLvJLHWKz4wyxH6ozEjAM/XvRUICraeBZzazkHrZy8R/PSBenC4qfPK0lAb8KzfhMoqBSToP48cCQ4izmvCQK0ZBTA0hVHHzD6ZjoggFU2bJFOUs17JK2vWaY9ec23qlcZFXVkQn6BSdIwddoga6QU3UQhQp9Ixe0Zv1Yr1bH9bnfLVg5TfHaAHW1y+MyaE5</latexit><latexit sha1_base64="NauIQ2iXRWeJXTl5Tb8x7ha1luA=">AAACGXicbVDLSsNAFJ3UV62vqks3g63gQkrSjS4LblxWsA9oY5lMJ+3QySTM3Ig15D8EV/on7sStK3/EtZM2C9t64MLhnHvh3ONFgmuw7W+rsLa+sblV3C7t7O7tH5QPj9o6jBVlLRqKUHU9opngkrWAg2DdSDESeIJ1vMl15ncemNI8lHcwjZgbkJHkPqcEjHRf7QcExp6fPKaDenVQrtg1ewa8SpycVFCO5qD80x+GNA6YBCqI1j3HjsBNiAJOBUtL/ViziNAJGbGeoZIETLvJLHWKz4wyxH6ozEjAM/XvRUICraeBZzazkHrZy8R/PSBenC4qfPK0lAb8KzfhMoqBSToP48cCQ4izmvCQK0ZBTA0hVHHzD6ZjoggFU2bJFOUs17JK2vWaY9ec23qlcZFXVkQn6BSdIwddoga6QU3UQhQp9Ixe0Zv1Yr1bH9bnfLVg5TfHaAHW1y+MyaE5</latexit><latexit sha1_base64="NauIQ2iXRWeJXTl5Tb8x7ha1luA=">AAACGXicbVDLSsNAFJ3UV62vqks3g63gQkrSjS4LblxWsA9oY5lMJ+3QySTM3Ig15D8EV/on7sStK3/EtZM2C9t64MLhnHvh3ONFgmuw7W+rsLa+sblV3C7t7O7tH5QPj9o6jBVlLRqKUHU9opngkrWAg2DdSDESeIJ1vMl15ncemNI8lHcwjZgbkJHkPqcEjHRf7QcExp6fPKaDenVQrtg1ewa8SpycVFCO5qD80x+GNA6YBCqI1j3HjsBNiAJOBUtL/ViziNAJGbGeoZIETLvJLHWKz4wyxH6ozEjAM/XvRUICraeBZzazkHrZy8R/PSBenC4qfPK0lAb8KzfhMoqBSToP48cCQ4izmvCQK0ZBTA0hVHHzD6ZjoggFU2bJFOUs17JK2vWaY9ec23qlcZFXVkQn6BSdIwddoga6QU3UQhQp9Ixe0Zv1Yr1bH9bnfLVg5TfHaAHW1y+MyaE5</latexit><latexit sha1_base64="NauIQ2iXRWeJXTl5Tb8x7ha1luA=">AAACGXicbVDLSsNAFJ3UV62vqks3g63gQkrSjS4LblxWsA9oY5lMJ+3QySTM3Ig15D8EV/on7sStK3/EtZM2C9t64MLhnHvh3ONFgmuw7W+rsLa+sblV3C7t7O7tH5QPj9o6jBVlLRqKUHU9opngkrWAg2DdSDESeIJ1vMl15ncemNI8lHcwjZgbkJHkPqcEjHRf7QcExp6fPKaDenVQrtg1ewa8SpycVFCO5qD80x+GNA6YBCqI1j3HjsBNiAJOBUtL/ViziNAJGbGeoZIETLvJLHWKz4wyxH6ozEjAM/XvRUICraeBZzazkHrZy8R/PSBenC4qfPK0lAb8KzfhMoqBSToP48cCQ4izmvCQK0ZBTA0hVHHzD6ZjoggFU2bJFOUs17JK2vWaY9ec23qlcZFXVkQn6BSdIwddoga6QU3UQhQp9Ixe0Zv1Yr1bH9bnfLVg5TfHaAHW1y+MyaE5</latexit>
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Fig.2.5. Schematic of the two-particle contact problem, depicting the contact
between two spherical particles of radii R1 and R2. The particles are made
of rigid-plastic power law hardening material with strengths κ1 and κ2 and a
common power-law hardening exponent m. A displacement γ of the centers of
mass of the particles located at positions x1 and x2 results in a contact force P
and contact area of radius a.

For deformations in the ‘contained’ mode, spherical cavity expansion models of elasto-

plastic indentation of a half space have been proposed for both small (Gao, Jing, & Subhash,

2006 ; Hardy, Baronet, & Tordion, 1971 ; K. L. Johnson, 1987 ; Mata, Casals, & Alcalá, 2006 ;

Studman, Moore, & Jones, 1977 ) and large deformations (Liu et al., 2014 ). For materials

undergoing negligible elastic deformations and predominant ‘uncontained’ plastic deformations

(i.e., for materials described by a rigid-plastic power law hardening), Biwa and Stor̊akers

(Biwa & Stor̊akers, 1995 ; B. Stor̊akers et al., 1997 ) formulated a contact model by reduction of

a moving boundary contact problem to a self-similar stationary one. The model was derived

by first solving the fundamental contact problem of a curved rigid indenter in contact with

a deformable half space (Hill, Stor̊akers, & Zdunek, 1989 ), from which the solution of two

contacting spheres of different radii and strengths, but same hardening exponent, could be
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obtained. Specifically, the contact force P between two spheres (Fig. 2.5 ) of radii R1 and R2,

strengths κ1 and κ2, and plastic power-law hardening exponent m, is given by

P = ηPa
2+1/m (2.4)

and the contact radius a is given by

a =
(

2c2

A

)1/2

γ1/2 (2.5)

where γ is the relative displacement of the particles

γ = R1 +R2 − ||x1 − x2|| (2.6)

In the above equation the geometric parameter A and the plastic law coefficient ηP are given

by

A = 1
R1

+ 1
R2

(2.7)

ηP = πkA1/m
(

1
κm1

+ 1
κm2

)−1/m

(2.8)

with k = 3 × 6−1/m and c2 = 1.43e−0.97/m (Bertil Stor̊akers & Larsson, 1994 ). Figure 2.1 

illustrates that this solution is independent of the loading configuration and diverges from

the response curves at small deformations (∼3%). This behavior stems from the simplifying

assumption of small-strain kinematics and independent contacts.

The formulation of a mechanistic contact law capable of describing the contact behavior

at large deformation regimes of particle compression is particularly challenging, since it

involves relaxing the assumptions of independent contacts and small-strain kinematics. The

contact formulation must also account for complex phenomena such as softening at moderate

strains and the significant increase in contact pressure in confined loading conditions at large

strains. (Harthong et al., 2009 ; Harthong et al., 2012 ) made initial progress in this regard

and proposed a semi-mechanistic DEM contact law for spherical particles with rigid plastic
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power-law hardening material behavior through curve fitting of force-deformation FE data

of particle compression under simple, die and hydrostatic loading conditions. The model

employs a local relative density dependent stiffness to capture the rise in contact force for

confined loading conditions due to plastic incompressibility at large deformations. While the

model is highly predictive at large deformations, it does not provide an estimation of the

contact radius and it neglects elastic deformations, leading to infinite force as the relative

density tends to unity. (Frenning, 2013 ) proposed a truncated sphere model applicable to

small-to-moderate deformations of a spherical particle under a general loading configuration.

The model assumes plastic incompressibility to relate the average pressure in the particle due

to elastic volumetric strain, to the mean pressure generated at the particle contacts. For the

specific case of hydrostatic loading condition, (Frenning, 2015 ) later extended the model to

account for contact impingement and low compressibility at large deformations. (E. Olsson &

Larsson, 2016 ; Erik Olsson & Larsson, 2013a , 2013b ) proposed semi-analytical contact laws

for elasto-plastic spherical particles under simple loading configuration that are predictive at

large deformations. The formulation extends a correlation between indentation depth and

contact radius proposed by (K. Johnson, 1970 ) for elasto-plastic materials.

Despite the recent developments, the formulation of a mechanistic contact model for

large deformation contact behavior of elasto-plastic spherical particles under general loading

conditions remains an open problem. We make progress towards achieving this goal by

developing a formulation for both contact force and contact radius of elasto-plastic particles

under unconfined and confined compression in a simple-cubic packing. This paper presents a

semi-mechanistic contact formulation for elastic-perfectly plastic spherical particles under

simple, die and hydrostatic loading configurations. Specifically, contact laws for the evolution

of contact pressure and contact radius with deformation are proposed. Contact radius is

derived as a three-term expansion of the curvature-corrected similarity contact law (Agarwal

& Gonzalez, 2018 ), where each term adds to the contact response under small, moderate

and large deformations, respectively. Contact pressure is a piecewise C1-continuous function,

described in each deformation regime by distinct laws. The proposed semi-mechanistic contact

formulation is both material and loading-condition dependent, accounting for initial elastic

and elasto-plastic deformations and for limited elastic compressibility in confined loading
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conditions (i.e., die and hydrostatic conditions) at large deformations. This is accomplished

by calibrating (thus, the semi-mechanistic nature of the formulation) the various model

parameters to a sufficiently large set of finite element simulations, where the set of elasto-

plastic material properties used to perform the simulations is obtained through a space-filling

design over a sufficiently large range of material properties.

The paper is organized as follows. Section 2.2 describes the space-filling design problem

for acquiring mechanical properties used in the finite element simulations. The finite element

results are then presented and discussed in Section 2.3 . A detailed description of the semi-

mechanistic contact formulation is presented in Section 2.4 , followed by its verification through

a comparison of model predictions with the finite element results in Section 2.5 . An analysis

of lateral contacts in the die loading configuration is presented in Section 2.6 . Finally, a

summary and concluding remarks are presented in Section 2.7 .

2.2 Space-filling design of experiments for finite element analysis

A diverse set of elasto-plastic material properties for the finite element simulations is

obtained as the solution of a space-filling design problem (Santner, Williams, & Notz, 2013 ).

The factors that characterize the design space are three mechanical properties, namely,

Young’s modulus (E), Poisson’s ratio (ν), and uniaxial yield stress (σy), as well as the loading

configuration (LC). Table 2.1 provides bounds for the quantitative factors, i.e., the mechanical

properties E, ν and σy. The bounds are selected to encompass the observed properties of most

elasto-plastic materials (thermoplastic polymers, metals, alloys, pharmaceutical powders, etc.)

and to ensure that the mechanical properties used in the FE simulations are representative

of real materials. The loading configuration (LC), being a qualitative (categorical) factor, is

Table 2.1. Bounds for the independent variables and nonlinear constraint
considered in the space-filling design problem

Minimum Value Maximum Value
E (MPa) 2, 000 200, 000
σy (MPa) 1 500

ν 0.2 0.48
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assigned three levels, i.e., simple, die and hydrostatic, which are the loading configurations

considered in this study.

Fig.2.6. Scatter plot of the design points obtained from the space-filling design
of mechanical properties and loading configurations for the FE study.

The formulated design problem was solved in the statistical software (“SAS Institute

Inc”, 2018 ) using the Fast Flexible Filling (FFF) algorithm, which is capable of incorporating

categorical factors (SAS Institute Inc., 2018 ). Specifically, the FFF algorithm generates a

large number of points within the design space, and groups them into N/k primary clusters

using a fast Ward’s algorithm (Ward Jr., 1963 ), were N is the total number of requested design

points and k is the number of categorical levels. It then creates k sub-clusters per primary

cluster, and calculates a design point within each sub-cluster by minimizing a maximum

projection (MaxPro) criterion (Joseph, Gul, & Ba, 2015 ). Finally, it randomly assigns one of

the k categorical levels to each sub-cluster, yielding the total of N design points. For the FE

study, a total of 51 design points were obtained, i.e., 17 points for each of the three loading

configurations. Figure 2.6 shows the set of design points obtained for the three symmetric

loading configurations, while Table A.1 in A provides a complete list of the mechanical

properties obtained by solving the design problem. In Table A.1 , the mechanical properties
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for each loading configuration are arranged in the increasing order of the material-dependent

dimensionless parameter E/(1− ν2)σy, which has been shown to significantly influence the

contact behavior during initial stages of particle compression (Mesarovic & Fleck, 2000 ). It

is evident from the table that a sufficient spread of this parameter is also obtained, along

with fairly-spaced material properties over a wide range of values as apparent from Fig. 2.6 .

2.3 Finite element analysis

On the account of geometric and loading symmetries, finite-element simulations were

performed on one-eighth of a sphere of radius R = 10 mm in ABAQUS, Version 6.14. The

mesh is comprised of 500,000 linear hexahedral elements of type C3D8R and 515,201 nodes.

For representational purposes, a coarser mesh of 62,500 elements and 66,351 nodes is depicted

in Fig. 2.7 . The material is elastic-ideal plastic (i.e., a hardening exponent m→∞ in Eq.

(2.3 )) with the following constitutive law

σ =

 Eε ε ≤ εy

σy ε > εy
(2.9)

A total of 51 FE simulations were performed with this model, 17 for each loading configuration

(simple, die and hydrostatic) using the material properties obtained from the space-filling

design.
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Fig.2.7. Finite element mesh consisting of linear hexahedral elements of type
C3D8R, created for one-eighth of a sphere in ABAQUS. The depicted mesh
is coarser than the final converged mesh, and consists of 62,500 elements and
66,351 nodes.
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(a) Die Compaction
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(b) Hydrostatic Compaction

Fig.2.8. Schematic of the voronoi cell for (a ) die and (b ) hydrostatic loading
configurations.

To simulate the extensive particle deformation conditions during powder compaction

process, the contact response for simple compression was evaluated until 50% deformation

at the particle level (i.e., γ/2R = 0.50). For hydrostatic and die configurations, a state of

complete closure of porosity is achieved with continued particle deformation and material

flow. This stage is termed as the zero porosity limit (Tsigginos et al., 2015 ), following which

the stresses required for further deformation are very high and are goverened by the bulk

modulus of the material. The volume of the particle’s radical voronoi cell (Aurenhammer,

1987 ; Gellatly & Finney, 1982 ), which is the polyhedron formed by the rigid contact planes

of the particle, becomes equal to the particle volume at the zero porosity limit. Therefore, by
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neglecting the elastic volume reduction during initial stages of particle compression, this limit

can be geometrically computed and it is equal to γ/2R = 1−π/6 and to γ/2R = 1− (π/6)1/3,

for die and hydrostatic compaction, respectively (see Fig. 2.8 ). The contact response was then

evaluated until the deformation at the particle level surpasses the geometric zero porosity limit

by a small margin, i.e., beyond 47.6% for die and 19.4% for hydrostatic loading configurations.
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(a) (b)

(c)

Fig.2.9. Finite element simulation results of normalized (a ) contact pressure-
deformation, (b ) contact radius-deformation, and (c ) contact force-deformation
behavior of an elastic- perfectly plastic sphere of radius R = 10 mm under
simple compression. Contact response is depicted for 5 out of the 17 material
properties obtained from the space-filling design, ranging from minimum to
maximum value of the material parameter λ = E/(1− ν2)σy.
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(a) (b)

(c)

Fig.2.10. Finite element simulation results of normalized (a ) contact pressure-
deformation, (b ) contact radius-deformation, and (c ) contact force-deformation
behavior at the primary (axial) contacts of an elastic- perfectly plastic sphere
of radius R = 10 mm under die compression. Contact response is depicted for 5
out of the 17 material properties obtained from the space-filling design, ranging
from minimum to maximum value of the material parameter λ = E/(1− ν2)σy.
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(a) (b)

(c)

Fig.2.11. Finite element simulation results of normalized (a ) contact pressure-
deformation, (b ) contact radius-deformation, and (c ) contact force-deformation
behavior of an elastic- perfectly plastic sphere of radius R = 10 mm under
hydrostatic compaction. Contact response is depicted for 5 out of the 17 material
properties obtained from the space-filling design, ranging from minimum to
maximum value of the material parameter λ = E/(1− ν2)σy.
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2.3.1 Primary contacts

Figures 2.9 , 2.10 and 2.11 show the normalized contact pressure (P/σyπa2), contact radius

(a/R) and contact force (P/σyR2) response plotted against contact deformation (γ/2R), for

5 out of the 17 particles simulated under simple, die and hydrostatic loading configurations,

respectively. These particles cover the wide range of E/(1 − ν2)σy values (referred to as

parameter λ in the rest of this paper) obtained from the space-filling design. For the simple

loading configuration, the contact pressure during the elastic and the elastic-plastic regimes

depends on material properties, exhibiting higher stiffness and larger maximum contact

pressure at larger values of λ (see Fig. 2.9a ). This trend converges at higher values of λ,

indicating an asymptotic relationship with respect to material properties. Following the

onset of the plastic regime, the contact pressure is independent of material properties and

it decreases with deformation. Similar observations are made in the response of contact

radius (Fig. 2.9b ) and contact force (Fig. 2.9c ), with contact stiffness rising asymptotically

with increasing λ for small-to-moderate particle deformation (∼ 20%) and converging to a

common response at larger deformation. The effect of material properties becomes increasingly

apparent under hydrostatic loading (Fig. 2.11a ), where the contact pressure follows the trend

of simple loading until 15% deformation (cf. Fig. 2.9a ), following which the contact pressure

increases rapidly with increasing particle confinement. Elasticity becomes relevant again

during last stage of compression, where stiffness, pressure, contact radius and force increase

with increasing λ and follow an asymptotic behavior as in all other stages of compression.
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(a) (b)

(c)

Fig.2.12. Finite element simulation results of normalized (a ) contact pressure-
deformation, (b ) contact radius-deformation, and (c ) contact force-deformation
behavior at the secondary (lateral) contacts of an elastic- perfectly plastic sphere
of radius R = 10 mm under die compression. Contact response is depicted for 5
out of the 17 material properties obtained from the space-filling design, ranging
from minimum to maximum value of the material parameter λ = E/(1− ν2)σy.
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(a) (b)

(c)

Fig.2.13. Finite element simulation results of normalized contact pressure-
deformation behavior of an elastic- perfectly plastic sphere of radius R = 10 mm
during ‘low compressibility’ regime (Tsigginos, Strong, & Zavaliangos, 2015 ),
under (a ) hydrostatic compaction, (b ) die compression (primary contacts) and
(c ) die compression (secondary contacts). Contact response is depicted for 5
out of the 17 material properties obtained from the space-filling design, ranging
from minimum to maximum value of the material parameter ζ = B/σy.
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2.3.2 Secondary contacts

The contact response of secondary contacts of the die loading configuration, i.e., contact

interactions formed with lateral stationary walls, is shown in Fig. 2.12 . While primary

contacts of die compression exhibit, in the initial stages of deformation, a response similar to

those in the simple loading configuration (cf. Fig. 2.10 up to ∼ 30%). It is worth noting that

secondary contacts, despite not being subjected to any kinematic deformation (i.e., lateral

walls are stationary), exhibit an evolution of contact pressure, area, and force that increases

with increasing deformation of the primary contact. Furthermore, contact pressures of primary

and secondary contacts are similar at later stages of compression. It bear emphasis that local

contact formulations, such as the similarity contact law, treat contacts as independent from

each other and, thus, do not predict these secondary contacts. In sharp contrast, nonlocal

contact formulations are capable of predicting secondary contacts by estimating the nonlocal

lateral deformation in the secondary contacts (see M. Gonzalez and Cuitiño, 2012 , 2016 

and Agarwal and Gonzalez, 2018 ) for an nonlocal contact formulation for elastic particles).

The systematic development of a nonlocal contact formulation for elasto-plastic particles is

beyond the scope of this paper and it is currently being pursued by the authors. However, a

foundational semi-mechanistic analysis of the secondary contacts is presented in one of the

later sections of this paper.

2.3.3 Low compressibility regime

The low compressibility regime occurs under confined loading conditions and it is mainly

governed by the elastic compressibility of the material, and it leads to rising contact pressure

values during the final stages of compression. Fig. 2.13 shows a magnified view of this regime

for the hydrostatic loading configuration and for the primary and secondary contacts of the

die loading configuration for different values of ζ = B/σy, where B is the elastic bulk modulus

of the material. An apparent asymptotic relationship of the contact pressure with respect to

ζ is observed in all the plots, with the response stiffness and pressure values rising rapidly

with increasing ζ and converging to a single curve for larger values of ζ.
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2.3.4 Asymptotic behavior

We close this section by pointing out the evident asymptotic relationship between the

contact response and dimensionless material parameters λ and ζ, during both the initial

and the final stages of particle compression. This observation provides key insight into the

material dependence of the contact behavior in confined granular systems, which is essential

for the development of accurate and predictive contact models, as we will demonstrate next.

2.4 Formulation of a semi-mechanistic contact law

We have demonstrated that a semi-mechanistic contact law for elastic-ideally plastic

spherical particles under large deformation must account for the dependency on material

properties (i.e., E, ν, σy) and loading conditions (i.e., in this work, simple, die, and hydrostatic

compression). Therefore, we first revisit the contact problem described by the similarity

solution explained in Section 2.1 , where the contact force (Eq. (2.4 )) for an ideally plastic

material (m→∞) reduces to

P = 3σyπa2 (2.10)

From the above equation, the average contact pressure, or Brinell hardness H of the material

for the case of a deformable flat surface indented by a rigid spherical indenter, is recovered as

H = P

πa2 = 3σy = H̄σy (2.11)

where H̄ is the normalized hardness (E. Olsson & Larsson, 2016 ; Erik Olsson & Larsson,

2013a , 2013b ). This result is in good agreement with the empirical findings of (Tabor, 1951 ),

who proposed the hardness of materials from Brinell indentation tests to be given by 2.84σy.

However, FE simulations presented in section 2.3 suggest that the average contact pressure

is not a constant but a function of (i) material parameters λ and ζ, and (ii) the loading

configuration. Therefore, we propose a contact law of the form

P (γ;R,E, ν, σy,LC) := H̄(γ/2R;λ, ζ,LC) σy π a(γ;R, λ,LC)2 (2.12)
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where LC corresponds to the loading configuration. In the next sections, we present semi-

mechanistic functional relationships for the contact radius a and H̄ (referred to as normalized

contact pressure in this paper, as the term hardness is applicable exclusively for indentation)

using an analytical framework based on the similarity contact law and the FE data.

2.4.1 Semi-mechanistic formulation for the contact radius

Fig.2.14. Estimation of parameters D1, D3, and D5 for simple loading con-
figuration. Symbols correspond to values calibrated to FE data. Solid curves
correspond to Di − λ relationships obtained from curve fitting.

The similarity contact law (2.4 )-(2.5 ), as well as Hertz contact law for elastic spheres

(Hertz, 1882 ), not only assume small-kinematics but they also approximate the spherical profile

of the contacting surfaces by paraboloids of revolution. The latter assumption was relaxed

for elastic particles by (Agarwal & Gonzalez, 2018 ), who proposed the method of curvature

correction to consider higher order terms in the Taylor series expansion of the spherical profile.

In this study, we adopt this analytical framework to derive a semi-mechanistic contact radius

formulation for spherical particles. A detailed derivation of a 2-term curvature corrected

similarity solution is presented in B . We next adopt the first three terms of the Taylor
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expansion of the relationship between contact radius a and particle relative displacement γ,

i.e., (B.25 ), and generalize the expression as follows

a = D1

( 1
A1/2

)
γ1/2 −D3

(
B

A5/2

)
γ3/2 +D5

(
B2

A9/2

)
γ5/2 (2.13)

where A is given by Eq. (2.7 ), B = 1/R3
1 + 1/R3

2, and parameters D1, D3, and D5 account

for the dependency on material properties and the loading configuration. The first term

corresponds to small plastic deformations and it is similar to the a− γ relationship derived

by (Biwa & Stor̊akers, 1995 ) using the self-similar approach. The second term describes the

contact response during moderate plastic deformations, where the overall response undergoes

softening and a dip in the slope of a − γ curve is observed. The third term describes the

large plastic deformations, i.e. the ‘low compressibility’ regime of confined loading conditions,

where the slope of a− γ curve rises again. It is worth noting that proposed law is similar to

the stress-strain contact model proposed for large unconfined compression of microcrystalline

cellulose particles by (Bommireddy, Agarwal, Yettella, Tomar, & Gonzalez, 2019 ).

It is evident from the FE simulations that dependency of D1, D3, and D5 on material

properties and loading condition can be captured by

Di =
(
bLC

i

) i
2
[
αi tanh

(
βiλ

δi
)]

(i = 1, 3, 5) (2.14)

where each parameter Di is expressed as an asymptotic material function of parameter λ,

with coefficients αi, βi and δi, and a parameter bLC
i that solely depends on loading condition.

Simple compression (SC), being the most fundamental loading configuration where the particle

remains unconfined, is assigned a loading condition parameter value of bSC
i = 1 (i = 1, 3, 5).

The FE simulation data for simple compression is used first to estimate bSC
i , βi and δi (Fig.

2.14 ). Next, the values of bDC
i and bHC

i are estimated using the FE simulation data for die

and hydrostatic compression. The estimated values and their corresponding 95% confidence

intervals are listed in Table 2.2 . It is interesting to note that D1 is asymptotic to 1.7527,

which is very close to
√

2c2 = 1.6911 in Eq. (2.5 ) for λ → ∞ (Bertil Stor̊akers & Larsson,

1994 ). Therefore, the small deformation predictions of the proposed contact law is consistent
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with predictions of the similarity contact law as the material behavior approaches rigid

plasticity. It is also interesting to note that bSC
i < bDC

i < bHC
i , which demonstrates the right

loading-condition dependency of the proposed semi-mechanistic formulation for the contact

radius.

Table 2.2. Estimated values of material function coefficients αi, βi and δi,
and of parameters bLC

i for simple (SC), die (DC) and hydrostatic (HC) loading
configurations.

i αi βi δi bSC
i bDC

i bHC
i

1 1.7527 0.3540 0.2633 1 1.048± 0.00477 1.1701± 0.0276

3 2.3702 0.0411 0.5366 1 1.1818± 0.00873 2.4002± 0.096

5 3.3715 0.0634 0.4766 1 1.2352± 0.00641 2.9376± 0.0452

2.4.2 Semi-mechanistic formulation for the normalized hardness

As already discussed in the previous sections, particle contacts undergo five major

deformation regimes during large compression, namely elastic, elastic-plastic, plastic, and,

for confined loading configurations, low compressibility and elastic volumetric. Since the

evolution of normalized hardness H̄ is found to be significantly different in each of these

regimes, we propose distinct contact laws for each regime in a way that C1 continuity is

attained at the transition from one regime to another. Hence, the proposed semi-mechanistic

formulation is continuous and differentiable at any given level of particle deformation.

During the elastic regime at small deformations, the well-known Hertz contact theory

(Hertz, 1882 ) is capable of sufficiently describing the contact response. According to the

theory, normalized hardness H̄ for contact between particles of radii R1 and R2 and material

parameter λ as a function of displacement γ is given by

H̄e = 2
3π
λA1/2γ1/2 (2.15)
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where A is given by Eq. (2.7 ), and the superscript “e” is used to denote the elastic regime.

Using Eq. (2.15 ), the slope of H̄ with respect to γ, i.e., ∂H̄/∂γ in the elastic regime is given

by
∂H̄e

∂γ
= 1

3π
λA1/2γ−1/2 (2.16)

The elastic regime transitions to the elastic-plastic regime when yield occurs at a point

beneath the contact surface at H̄ = 1.1 (K. L. Johnson, 1987 ). Using Eq. (2.15 ), the contact

displacement at yield, γy, is given by

γy = 1
A

(3.3π

2λ

)2
(2.17)

During the elastic-plastic regime, the non-linear evolution of H̄ with respect to displacement

γ is well-represented by the following relationship

H̄ep = H̄max − c1

[
ln
(
γ|H̄max

γ

)]c2
(2.18)

where the superscript “ep” is used to denote the elastic-plastic regime. The proposed

relationship is in spirit of a similar formulation proposed by (Erik Olsson & Larsson, 2013b )

for the elastic-platic regime, where H̄ is represented as a function of the Johnson’s parameter

(K. Johnson, 1970 ). In the above equation, H̄max and γ|H̄max are, respectively, the maximum

value of normalized hardness and the contact displacement observed at the transition between

elastic-plastic and plastic regimes. Fig. 2.15 shows these values plotted against material

parameter λ for all 51 FE simulations. Evidently, H̄max has an asymptotic increasing trend,

while γ|H̄max has an asymptotic decreasing trend with respect to the parameter. From fitting

of the plotted values, we propose the following relationships for H̄max and γ|H̄max with λ

H̄max = 3.101 tanh
{

0.6746λ0.0829
}

(2.19)

γ|H̄max = (R1 +R2)
[
exp

(0.7073
λ0.6547

)
− 1

]
(2.20)
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The proposed relationships are also plotted in Fig. 2.15 (solid curves), and provide very good

estimates of the values obtained from FE simulations.

(a) (b)

Fig.2.15. Estimation of (2.15a ) H̄max and (2.15b ) γ|H̄max as functions of
parameter λ. Plotted discrete values correspond to values obtained from FE
data, while solid curves correspond to relationships obtained from curve fitting.

Additionally, the elastic-plastic H̄ formulation comprises a coefficient c1 and an exponent

c2, both of which are determined from the condition of C1 continuity at the transition between

elastic and elastic-plastic regimes. Using Eq. (2.18 ), the slope of H̄ with respect to γ in the

elastic-plastic regime is given by

∂H̄ep

∂γ
= c1c2

γ

[
ln
(
γ|H̄max

γ

)]c2−1

(2.21)

which gives the condition c2 ≥ 1 for the slope given by the above equation to be equal to

zero at γ = γ|H̄max . To achieve C1 continuity for the evolution of H̄ between elastic and

elastic-plastic regimes, the values of H̄ (Eq. (2.15 ) for elastic and Eq. (2.18 ) for elastic-plastic)

and its first derivatives with respect to displacement γ (Eq. (2.16 ) for elastic and (2.21 ) for
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elastic-plastic) at the transition displacement γy (Eq. (2.17 )) are equated to finally obtain

two equations with two unknowns c1 and c2. By solving the equations, we get

c2 = ln
(
γ|H̄max

γy

)[
λA1/2γ1/2

y

3π(H̄max − 1.1)

]
(2.22)

and

c1 = (H̄max − 1.1)
[
ln
(
γ|H̄max

γy

)]−c2
(2.23)

To determine the permissible values of material parameter λ for the fulfillment of the condition

c2 ≥ 1, we substitute the expressions for γy, H̄max and γ|H̄max given by Eqs. (2.17 ), (2.19 )

and (2.20 ) in the expression for c2 given by Eq. (2.22 ) to obtain

c2 =
0.1774 ln

[
0.0372A(R1 +R2)λ2 exp

(
0.7073
λ0.6547 − 1

)]
tanh {0.6746λ0.0829} − 0.3547 ≥ 1 (2.24)

For contacting particles of equal radii (R1 = R2 = R), which is the case for our considered

loading configurations, A = 1/2R and R1 +R2 = 2R cancel out each other, making Eq. (2.24 )

a nonlinear equation in λ. Using Newton Raphson’s method, the solution to the equation

is determined to be λ ≥ 22.08. Therefore, the elastic-plastic H̄ − γ relationship given by

Eq. (2.18 ), and thus the proposed semi-mechanistic contact formulation, is valid for material

parameter λ values greater than or equal to 22.08.

On the onset of the plastic regime, the normalized hardness H̄ starts decreasing gradually

from its previously achieved maximum value of H̄max. While we acknowledge that a number

of contact models have been proposed to predict the evolution of hardness in this regime

(see (Ghaednia et al., 2017 ) and references therein), we propose a contact formulation that

incorporates dependence on material properties and loading configuration while maintaining

C1 continuity with other deformation regimes. With this consideration, the normalized

hardness in the plastic regime is given by

H̄ fp = H̄max − p
[
tanh

{
q

(
γ − γ|H̄max

R1 +R2

)}
cos

{(
γ − γ|H̄max

R1 +R2

)
− s(γ|H̄min , q)

}]r
(2.25)
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where

s(γ|H̄min , q) =
(
γ|H̄min − γ|H̄max

R1 +R2

)
− tan−1

[
2q csch

{
2q
(
γ|H̄min − γ|H̄max

R1 +R2

)}]
(2.26)

In the above equations, γ|H̄min is the value of contact displacement at the minimum value of

normalized hardness, i.e., H̄min, while p, q, and r are positive model parameters. According

to the proposed equations, the value of H̄ fp at γ = γ|H̄max is equal to H̄max, while its slope

with respect to γ, given by

∂H̄ fp

∂γ
= −

(
pr

R1 +R2

) [
tanh

{
q

(
γ − γ|H̄max

R1 +R2

)}
cos

{(
γ − γ|H̄max

R1 +R2

)
− s(γ|H̄min , q)

}]r−1

×
[
q sech2

{
q

(
γ − γ|H̄max

R1 +R2

)}
cos

{(
γ − γ|H̄max

R1 +R2

)
− s(γ|H̄min , q)

}

− tanh
{
q

(
γ − γ|H̄max

R1 +R2

)}
sin

{(
γ − γ|H̄max

R1 +R2

)
− s(γ|H̄min , q)

}]
(2.27)

is equal to zero at γ = γ|H̄max for r ≥ 1. Therefore, when the condition r ≥ 1 is true, the

H̄ fp − γ relationship given by Eqs. (2.25 ) and (2.26 ) is C1 continuous with the H̄ep − γ

relationship given by Eq. (2.18 ).
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(a) (b)

(c) (d)

Fig.2.16. Analysis of the influence of model parameters (a ) q, (b ) r, (c ) p
and (d ) γ|H̄min on H̄ fp model response. Solid curves correspond to the reference
curve obtained by setting q = 8, r = 2, p = 1.5 and γ|H̄min/(R1 + R2) = 0.8,
while the other curves (dashed-dotted and dashed) correspond to those obtained
by perturbing one of the parameter values while keeping other values constant.
The value of H̄max and γ|H̄max/(R1 +R2) corresponds to λ = 1721.55.

Fig. 2.16 shows the influence of model parameters q, r, p and γ|H̄min on the response of

H̄ fp. In all figures, the reference model curve (solid line) is obtained by setting p = 1.5, q = 8,
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r = 2 and γ|H̄min/(R1 + R2) = 0.8. The other curves (dashed and dashed-dotted lines) are

obtained by perturbing one of the parameter values while keeping the other values constant.

The value of H̄max and γ|H̄max/(R1 +R2) in the plots is obtained by setting λ = 1721.55, which

corresponds to the material properties with E/σy = 1500.97 for simple loading case obtained

from the space-filling design (ref. Table A.1 ). From the study, it is evident that parameters q

and r predominantly influence the rate of softening of H̄, with r mainly controlling the rate

at the onset of the plastic regime and q governing the rate of descent thereafter until the

attainment of a minimum. Parameter γ|H̄min , as per its definition, predominantly influences

the level of deformation at the minimum, while p regulates the value of H̄min. It is important

to note that the proposed equation models the evolution of H̄ until the point of minimum,

following which the loading condition effects predominate and another formulation is required

to predict the rising pressure values for confined loading configurations.

From the observations of normalized hardness versus deformation data obtained from

FE simulations, it is quite evident that the initial softening response from the onset of the

plastic regime is primarily dependent on the material properties and fairly independent of the

loading configuration. Therefore, parameters q and r are identified to be material-dependent

parameters. However, the minimum value of H̄ and the level of deformation at the minimum

is heavily dependent on the loading configuration as well as the initial rate of softening.

Therefore, γ|H̄min and p are identified to be both material and loading condition-dependent

parameters.

For the case of a simple loading configuration, it is theorized that the contact response

softens until contact pressure approaches the material’s yield strength as the particle geometry

approaches that of a flat disk at γ → R1 +R2 = 2R. Therefore, we obtain γSC|H̄min =

R1 +R2 = 2R. For confined loading configurations, the contact pressure rises again during

the ‘low compressibility’ regime due to void filling, as well as occupation of the voronoi cell

faces by the contact surfaces. While void filling causes the elastic energy of the particle to

increase due to material compression, the voronoi cell faces limit the evolution of contact

49



areas, both of which lead to the increase in pressure. In accordance with this analysis, we

propose the following condition to be true at the minimum:

ρLC,contact
V × ρLC,contact

S = Γ (2.28)

Thus, for a particular contact of a particle under a given loading condition, the product of

relative volume density (ρLC,contact
V ) and relative surface area density (ρLC,contact

S ) is equal to a

parameter Γ at the minimum. The relative volume density for a contact is given by

ρLC,contact
V = ρLC

V ×
(
V LC

contact
V LC

voro

)
=
(
Vparticle

V LC
voro

)(
V LC

contact
V LC

voro

)
(2.29)

where ρLC
V =

(
Vparticle/V

LC
voro

)
is the relative density of the particle’s voronoi cell (Harthong

et al., 2009 ), Vparticle = (4/3)πR3 is the volume of the spherical particle, V LC
voro is the volume

of the voronoi cell, and V LC
contact is a section of the voronoi cell volume associated with the

contact, which is estimated as the volume of a pyramid with the base as the contact’s voronoi

cell face and apex as the particle’s center of mass. The relative surface area density is given

by

ρLC,contact
S = SLC

contact
SLC

face
(2.30)

where SLC
contact is the contact area and SLC

face is the area of the contact’s voronoi cell face. Table

2.3 provides expressions for V LC
voro, V LC

contact and SLC
face in terms of particle radius R and contact

displacement γ for all contacts under hydrostatic loading and primary contacts under die

loading configuration.

Table 2.3. Expressions for various volume and surface quantities in the
minimum H̄ condition given by Eq. (2.28 ) for all contacts under hydrostatic
and primary contacts under die loading configuration.

DC HC

V LC
voro 8R2 (R− γ/2) 8 (R− γ/2)3

V LC
contact (4/3)R2 (R− γ/2) (4/3) (R− γ/2)3

SLC
face 4R2 4 (R− γ/2)2
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Fig. 2.17 shows the values of Γ obtained from FE simulations of die (primary contacts)

and hydrostatic loading conditions, plotted against material parameter λ. From the figure, it

is evident that Γ has a weak dependence on both material properties and loading condition,

which results from the material and loading dependence of the contact area. We neglect these

weak effects by proposing a value of Γ averaged across all the obtained numerical values for

die and hydrostatic loading conditions, which is Γ = 0.0593.

Using Eq. (2.28 ), a detailed derivation of the solution of γ|H̄min for primary contacts of

die (γDC|H̄min) and all contacts of hydrostatic (γHC|H̄min) conditions is presented in C . It

essentially entails substituting various volume and surface quantities (Vparticle, V LC
voro, V LC

contact

and SLC
face), and contact area SLC

contact = πa2 in Eq. (2.28 ) with their respective expressions for

die and hydrostatic conditions to finally obtain a solvable quintic in terms of the unknown

variable γ|H̄min .

As discussed previously, the parameter p governs the minimum value of normalized

hardness, i.e., H̄min. For the case of simple loading configuration, the contact pressure

Fig.2.17. Plot of Γ values against material parameter λ for die (primary
contacts) and hydrostatic loading conditions. Discrete values correspond to
values obtained from FE data, while the solid plot corresponds to the average
Γ value determined for the confined loading conditions.
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approaches material’s yield strength, and hence H̄SC
min = 1 at γSC|H̄min = R1 + R2 = 2R.

Consequently, using Eqs. (2.25 ) and (2.26 ), we have

H̄SC
min = H̄max − pSC

[
tanh

{
q

(
1− γ|H̄max

2R

)}
cos

{(
1− γ|H̄max

2R

)
− s(2R, q)

}]r
= 1 (2.31)

Rearranging the above equation, we get

pSC = H̄max − 1[
tanh

{
q
(

1− γ|H̄max
2R

)}
cos

{(
1− γ|H̄max

2R

)
− s(2R, q)

}]r (2.32)

(a) (b)

Fig.2.18. Plots of H̄LC
min against material parameter λ for (a ) die and (b )

hydrostatic loading conditions. Discrete plots (squares for die and diamonds
for hydrostatic) represent values obtained from FE simulation data. H̄LC

min,1
and H̄LC

min,2 are represented by dashed and dashed-dotted curves respectively.
The analytical value of H̄LC

min, given by the average of H̄LC
min,1 and H̄LC

min,2, is
represented by a solid curve.

For die and hydrostatic loading conditions, determination of H̄min is not straightforward,

since the contact pressure starts rising at γ = γLC|H̄min (LC→{DC, HC}) before reaching

the material’s yield strength. However, two prospective values of H̄min can be obtained from
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different analysis. The first value is determined as the value of H̄ for the simple loading case

at γLC|H̄min , i.e.

H̄LC
min,1 =H̄max − pSC

[
tanh

{
q

(
γLC|H̄min − γ|H̄max

2R

)}

× cos
{(

γLC|H̄min − γ|H̄max

2R

)
− s(2R, q)

}]r (2.33)

Considering that the initial evolution of normalized hardness during the plastic regime is

similar for all loading conditions, a second prospective value of H̄min can be evaluated by

determining an intermediate value of pLC, such that the slope of H̄LC for die and hydrostatic

cases is equal to the slope of H̄SC for the simple case at their points of inflection, i.e. at the

point where the second derivative of H̄ with respect to γ/(R1 +R2) (= γ/2R) is zero. This

inflection point is evident in the H̄ vs. γ/2R curves obtained from FE simulations for all

loading conditions (Figures 2.9a , 2.10a and 2.11a ) during the initial softening response, when

the curve changes from concave donward to concave upward. A detailed approximate solution

for this point, denoted by the contact deformation γLC|H̄=0/2R (LC→{SC, DC, HC}) at the

point, is presented in D , where the highly nonlinear equation H̄ = 0 is solved using Taylor

series expansion. The approximate solution is obtained as

γLC|H̄=0
2R ' γ|H̄max

2R +

3r tan
{
s(γLC|H̄min , q)

}
+ [3(2q2 + 3)(r − 1)(2r + 1)

+9(2r2 − 1) tan2
{
s(γLC|H̄min , q)

}]1/2
(2q2 + 3)(2r + 1) + 3(r + 1) tan2

{
s(γLC|H̄min , q)

} (2.34)
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By equating the slope of H̄LC (LC→{DC, HC}) at γLC|H̄=0/2R to the slope of H̄SC at

γSC|H̄=0/2R, and rearranging the equation, we obtain the intermediate value of pLC (LC→{DC,

HC}), denoted by pLC
o , as

pLC
o =pSC



2qcsch
{

2q
(
γSC|H̄ =0−γ|H̄max

2R

)}
− tan

{(
γSC|H̄ =0−γ|H̄max

2R

)
− s(2R, q)

}
2qcsch

{
2q
(
γLC|H̄ =0−γ|H̄max

2R

)}
− tan

{(
γLC|H̄ =0−γ|H̄max

2R

)
− s(γLC|H̄min , q)

}



×



tanh
{
q
(
γSC|H̄ =0−γ|H̄max

2R

)}
× cos

{(
γSC|H̄ =0−γ|H̄max

2R

)
− s(2R, q)

}
tanh

{
q
(
γLC|H̄ =0−γ|H̄max

2R

)}
× cos

{(
γLC|H̄ =0−γ|H̄max

2R

)
− s(γLC|H̄min , q)

}



r (2.35)

The second value of H̄min at γLC|H̄min is then given by

H̄LC
min,2 =H̄max − pLC

o

[
tanh

{
q

(
γLC|H̄min − γ|H̄max

2R

)}

× cos
{(

γLC|H̄min − γ|H̄max

2R

)
− s(γLC|H̄min , q)

}]r (2.36)
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(a) (b)

Fig.2.19. Estimation of material-dependent parameters (a ) q and (b ) r as
functions of parameter λ for normalized hardness H̄ fp in the plastic regime.
Plotted discrete values correspond to values obtained from FE data, while solid
curves correspond to relationships obtained from curve fitting.

Fig. 2.18 shows the plots of H̄LC
min for die and hydrostatic loading conditions against

material parameter λ. The discrete values (square plots for die and diamond plots for hydro)

are obtained from FE simulation data, while H̄LC
min,1 (dashed curve) and H̄LC

min,2 (dashed-dotted

curve) are plotted using Eqs. (2.33 ) and (2.36 ) respectively for permissible values of λ ≥ 22.08.

From the figure, it is evident that H̄LC
min,1 undepredicts the numerical values of H̄LC

min, while

H̄LC
min,2 overpredicts the values. An average of the two prospective values, plotted as a solid

curve in the figure, accurately predicts the minimum normalized hardness for both confined

loading conditions. Therefore, we represent H̄LC
min as

H̄LC
min =

H̄LC
min,1 + H̄LC

min,2

2 (2.37)

Consequently, using Eqs. (2.25 ) and (2.26 ), parameter pLC (LC→{DC, HC}) is given by

pLC = H̄max − H̄LC
min[

tanh
{
q
(
γLC|H̄min

−γ|H̄max
2R

)}
cos

{(
γLC|H̄min

γ|H̄max
2R

)
− s(γLC|H̄min , q)

}]r (2.38)
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The remaining parameters q and r, determined to be material-dependent parameters, are

calibrated from the H̄ vs. γ/2R FE simulation data of the simple loading case. Fig. 2.19 

shows the plots of calibrated q and r values against material parameter λ. From fitting of

the plotted values, we propose the following relationships for q and r with λ

q = 14.1819 tanh
(
0.3729λ0.1013

)
(2.39)

r = exp
(1.6199
λ0.3232

)
(2.40)

For confined loading conditions, following the attainment of a minimum normalized

hardness H̄LC
min at contact deformation γLC|H̄min , the contact pressure rises steadily during

the ‘low compressibility’ regime. During this regime, contact behavior is heavily dependent

on the loading condition due to significant contact interactions. Therefore, contacts in this

regime cannot be treated independent of each other; rather, the contact behavior should be

directly related to the overall particle response under compression. With this consideration,

we propose to model contact response in this regime as a function of the relative density of

the vornoi cell, ρLC
V , where the normalized hardness H̄ is given by

H̄ lc = H̄LC
min − u ln

1− l
(
χLC − χLC|H̄min

χLC
zp − χLC|H̄min

)2
 (2.41)

where the superscript “lc” denotes the ‘low compressibility’ regime, u and l are the model

parameters and χLC = 1/ρLC
V =

(
V LC

voro/Vparticle
)

is the inverse of the relative density. Using

the expressions for V LC
voro in terms of particle radius R and contact displacement γ from Table

2.3 , and Vparticle = (4/3)πR3, the contact deformation γLC/2R (LC→ {DC,HC}) in terms of

χLC is given by
γDC

2R = 1− πχDC

6 ,
γHC

2R = 1−
(

πχHC

6

)1/3

(2.42)

Additionally, χLC|H̄min is the value of χ attained at H̄LC
min, while χLC

zp is the value of χ attained at

the zero porosity limit (Tsigginos et al., 2015 ), which is the limit of full closure of porosity and
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beyond which the contact pressure is governed by the particle’s elastic volume compressibility.

It is given by

χLC
zp = Vparticle − V LC

el
Vparticle

(2.43)

where V LC
el is the elastic reduction in particle volume until the zero porosity limit is reached.

It is important to note that the normalized hardness given by Eq. (2.41 ) attains its minimum

value equal to H̄LC
min at χLC = χLC|H̄min , making it C1 continuous with the normalized hardness

in the plastic regime given by Eq. (2.25 ) .

The contact pressure beyond the zero porosity limit is given by the elastic volumetric

stress on the particle. Therefore, the normalized hardness in this regime is given by

H̄ev = B

σy

(
1− Vvoro

Vparticle

)
= ζ(1− χLC) (2.44)

where the superscript “ev” denotes the elastic volumetric regime. By equating the value

and slope of H̄gh given by Eq. (2.41 ) and H̄ev given by (2.44 ) at χLC = χLC
zp to achieve C1

continuity between the contact formulations for H̄ in the ‘low compressibility’ and elastic

volumetric regimes, we obtain the following relationships between model parameters u and l

and elastic volume reduction V LC
el

u = VparticleH̄
LC
min − ζV LC

el
Vparticle ln(1− l) (2.45)

V LC
el =

Vparticle
{

2lH̄LC
min + ζ(1− χLC|H̄min)(1− l) ln(1− l)

}
ζ {2l + (1− l) ln(1− l)} (2.46)

From the above equations, it is evident that u and V LC
el can be evaluated from a known value

of l. Fig. 2.20 shows a plot of the natural log of (1− l) against material parameter ζ, where

the l values are calibrated from H̄ vs. γ/2R FE simulation data of die and hydrostatic loading

cases. It is interesting to note that the parameter l is independent of the loading condition,

since the ln(1− l) values for both die and hydrostatic loading conditions fall on a single trend

curve that is a function of ζ. Therefore, it is fair to conclude that l is a material-dependent

parameter.
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Fig.2.20. Estimation of model parameter l as a function of material parameter
ζ for normalized hardness H̄ lc in the ‘low compressibility’ regime. Plotted
discrete values correspond to ln(1− l) values obtained from calibration of FE
data, while the solid curve represents the relationship obtained from curve
fitting.

From curve fitting of the plotted values, we propose the following relationship between l

and ζ

ln(1− l) = ln
(

1
1 + 0.2335ζ

)

=⇒ l = 1−
(

1
1 + 0.2335ζ

) (2.47)
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To conclude the analysis, we provide below a summarized form of the semi-mechanistic

contact law for the normalized hardness H̄

H̄ =



= H̄e = 2
3π
λA1/2γ1/2 γ ∈ [0, γy]

= H̄ep = H̄max − c1

[
ln
(
γ|H̄max

γ

)]c2
γ ∈

(
γy, γ|H̄max

]

= H̄ fp = H̄max − pLC
[
tanh

{
q
(
γ−γ|H̄max

2R

)}
γ ∈

(
γ|H̄max , γ

LC|H̄min

]
× cos

{(
γ−γ|H̄max

2R

)
− s(γLC|H̄min , q)

}]r
LC→ {SC,DC,HC}

= H̄ lc = H̄LC
min − u ln

{
1− l

(
χLC−χLC|H̄min
χLC

zp −χLC|H̄min

)2
}

γ ∈
(
γLC|H̄min , γ

LC
zp

]
LC→ {DC,HC}

= H̄ev = ζ(1− χLC) γ ∈
(
γLC

zp ,∞
)

LC→ {DC,HC}

(2.48)

2.5 Verification of the semi-mechanistic contact law

The semi-mechanistic contact formulation developed in the previous section was verified

by comparing the contact law predictions of normalized contact radius (a/R), normalized

contact pressure or hardness (H̄ = P/σyπa
2) and normalized contact force (P/σyπR2) with

data obtained from FE simulations. Figures 2.21 , 2.22 and 2.23 present this comparison

for simple, die (primary contacts) and hydrostatic loading configurations respectively. To

verify the material property dependence of the contact formulation, comparative plots for all

loading configurations are provided for the lowest and the highest value of material parameter

λ obtained from the space-filling design. The figures show an excellent agreement between the

numerical FE data and the analytical contact law predictions, with an accurate representation

of material and loading condition - dependence of the contact behavior.
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(a) (b)

(c)

Fig.2.21. Comparison of the predictions of normalized (a ) contact pressure,
(b ) contact radius, and (c ) contact force evolution with respect to contact
deformation from the proposed semi-mechanistic contact formulation with FE
simulation data for a particle under simple compression. FE data for the lowest
value of λ = 123.41 obtained from space-filling design are denoted by circles,
with corresponding contact law predictions denoted by a dashed curve. FE
data with the highest value of λ = 5933.40 are denoted by diamonds, with
corresponding contact law predictions denoted by a solid curve.
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(a) (b)

(c)

Fig.2.22. Comparison of the predictions of normalized (a ) contact pressure,
(b ) contact radius, and (c ) contact force evolution with respect to contact
deformation from the proposed semi-mechanistic contact formulation with FE
simulation data for primary contacts of a particle under die compression. FE
data for the lowest value of λ = 163.08 obtained from space-filling design are
denoted by circles, with corresponding contact law predictions denoted by a
dashed curve. FE data with the highest value of λ = 4954.40 are denoted by
diamonds, with corresponding contact law predictions denoted by a solid curve.
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(a) (b)

(c)

Fig.2.23. Comparison of the predictions of normalized (a ) contact pressure,
(b ) contact radius, and (c ) contact force evolution with respect to contact
deformation from the proposed semi-mechanistic contact formulation with FE
simulation data for a particle under hydrostatic compression. FE data for the
lowest value of λ = 117.24 obtained from space-filling design are denoted by
circles, with corresponding contact law predictions denoted by a dashed curve.
FE data with the highest value of λ = 5854.69 are denoted by diamonds, with
corresponding contact law predictions denoted by a solid curve.
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2.6 Preliminary semi-mechanistic analysis of the secondary contacts of die load-
ing configuration

For the case of die loading configuration, we have shown the evolution of contact behavior

at the lateral or ‘secondary’ contacts from the FE simulations presented in Section 2.3 . These

contacts, despite being subjected to zero applied or ‘local’ deformation, develop solely due

to the lateral or ‘nonlocal’ deformation of the particle resulting from axial compression. In

this section, we attempt to lay the foundation of a nonlocal contact formulation capable of

predicting such contact behavior by proposing semi-mechanistic laws relating the deformation

at primary and secondary contacts.

To obtain an estimate of the lateral deformation, we utilize the FE simulations for the

simple loading configuration and post-process the average nodal displacements at the lateral

edge of the (1/8)th sphere (Fig. 2.24 ). Therefore, for a displacement γ/2 at the particle-plate

axial contact (γ for a two-particle contact), we obtain an average nodal displacement of

γs/2 at the lateral edge, where the subscript ‘s’ denotes the equivalent displacement at the

secondary contact in the die loading configuration. It is important to note that, according to
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2
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Fig.2.24. Schematic of the simple compression of (1/8)th sphere, showing an
axial contact displacement of γ/2 resulting in a lateral edge displacement of
γs/2.
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the nonlocal contact formulation (ref. (M. Gonzalez & Cuitiño, 2012 , 2016 ) and (Agarwal &

Gonzalez, 2018 )), each particle contact acquires nonlocal displacement contributions from all

other contacts on the particle. Therefore, as the lateral secondary displacements γs evolve

and become larger, their nonlocal contributions to the primary and other secondary contacts

become significant. Since the development of a complete nonlocal contact formulation for

elasto-plastic particles is beyond the scope of this paper, we restrict our estimation of the

secondary displacements to the small deformation regime to safely neglect any nonlocal

contributions from the secondary contacts.

Fig.2.25. Plots of lateral secondary contact displacement (γs) vs. axial primary
contact displacement (γ) obtained from FE simulations of the simple loading
configuration. Plots are depicted for 5 out of the 17 material properties obtained
from the space-filling design, ranging from minimum to maximum value of the
material parameter λ. The units of displacement on both axes is millimeters
(mm).

From the observation of FE simulation results of normalized hardness for secondary die

contacts (Fig. 2.12a ), we find that the contact behavior remains within the small deformation

elastic-plastic regime until the primary contact deformation γ/2R reaches 0.1. Therefore,

the lateral secondary displacements are evaluated until the primary contact displacement

reaches γ = 0.1× 2R = 2 mm for R = 10 mm. The obtained displacements are plotted in
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Fig. 2.25 for 5 out of the 17 material properties for simple configuration obtained from the

sapce filling design, ranging from minimum to the maximum value of material parameter

λ. From the figure, we observe that the evolution of lateral displacement follows a power

law, with the rate of evolution increasing with increasing material compliance (decreasing

λ). Accordingly, we propose the following relationship between the secondary and primary

contact displacement

γs = τγω (2.49)

where τ and ω are material-dependent parameters. Fig. 2.26 shows a plot of the discrete

values of these parameters against material parameter λ, obtained by fitting the above

relationship to the secondary vs. primary displacement data for all 17 material properties.

From curve fitting of these calibrated values, we propose the following relationship for τ and

ω with λ

τ = 1
1480.8863 tanh {(5.0261× 10−5) · (λ1.2889)} (2.50)

ω = 5.7775 tanh
{

0.0159
(
λ0.6146

)}
(2.51)
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(a) (b)

Fig.2.26. Estimation of material-dependent parameters (2.26a ) τ and (2.26b )
ω as functions of parameter λ for the relationship between secondary and
primary contact displacements γs and γ. Plotted discrete values correspond to
values obtained from FE data, while solid curves correspond to relationships
obtained from curve fitting.

The above relationships are also plotted in Fig. 2.26 , and provide excellent estimates of

the calibrated parameter values. Finally, by using these relationships in the γs − γ power

law given by Eq. (2.49 ), the evaluated secondary displacements are plotted and compared

with the FE values for the minimum and miximum λ in Fig. 2.27 . The figure confirms

the accuracy of the proposed power law, with an excellent agreement obtained between the

modeled and FE results.
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Fig.2.27. Comparison of secondary displacement (γs) vs. primary displacement
(γ) obtained from the power law given by Eq. (2.49 ) and FE simulations of the
simple loading configuration. Plots are depicted for minimum and maximum
value of λ obtained from the space-filling design. The units of displacement on
both axes is millimeters (mm).

The secondary contact displacement model from Eq. (2.49 ) can now be used to obtain the

contact radius (Eq. (2.13 )), normalized hardness (Eq. (2.15 ) for elastic and Eq. (2.18 ) for

elastic-plastic regime) and contact force (Eq. (2.12 )) until the primary contact deformation

reaches 0.1, which denotes the limit of elastic-plastic regime for the secondary contacts.

Additionally, we have proposed in the previous section that during the ‘low compressibility’

regime, the contact response is a function of the overall particle compression due to significant

contact interactions. Therefore, it is fair to assume that beyond the ‘low compressibility’

regime, all particle contacts are subjected to the same pressure, which is given by Eq. (2.41 )

in the ‘low compressibility’ regime and Eq. (2.44 ) in the elastic volumetric regime. For

the secondary contacts, the onset of ‘low compressibility’ regime is predicted by using the
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minimum hardness condition given by Eq. (2.28 ), where the product of volume and surface

relative densities is given by

ρDC,contact
V × ρDC,contact

S =
(
Vparticle

V DC
voro

)(
V DC

contact
V DC

voro

)(
SDC

contact
SDC

face

)

=
4
3πR3

8R2
(
R− γ

2

) × 4
3R

2
(
R− γ

2

)
8R2

(
R− γ

2

) × SDC
contact

4R
(
R− γ

2

)
= πSDC

contact

144R2
(
1− γ

2R

)2

(2.52)

The value of primary deformation γ/2R at the onset can be obtained by interpolating the

γ/2R vs. ρDC,contact
V × ρDC,contact

S data generated by using FE values of the secondary contact

area SDC
contact. Fig. 2.28 presents this data for 5 out of the 17 material properties for die

configuration, ranging from minimum to maximum λ. According to Eq. (2.28 ), the ‘low

compressibility’ regime starts when the product of volume and surface relative densities

equals Γ = 0.0593. The deformation values at the fulfillment of this condition are obtained

by cubic interpolation between points on either side of the Γ value, and are listed in Table

2.4 for the five plotted material properties.
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Fig.2.28. Plot of primary deformation (γ/2R) vs. the product of volume and
surface relative densities ρDC,contact

V ×ρDC,contact
S for the secondary contacts of die

loading configuration. Plots are depicted for 5 out of 17 material properties for
die configuration, ranging from minimum to maximum value of λ. The marked
points (bold cross markers) correspond to the points between which the value
of γ/2R at ρDC,contact

V ρDC,contact
S = Γ = 0.0593 is interpolated for λ = 163.08.

Table 2.4. Values of primary contact deformation γ/2R at the onset of ‘low
compressibility’ regime for secondary die contacts. Values are provided for 5
out of the 17 material properties for die loading configuration.

λ γ/2R (Low Compressibility)

163.08 0.4159

386.40 0.4115

1045.79 0.4102

2841.32 0.41

4954.40 0.4098

Observation of the large deformation normalized contact pressure response of secondary

die contacts from finite element simulations (Fig. 2.13c ) suggests that while the normalized

hardness H̄ at the onset of ‘low compressibility’ regime (γ/2R ∼ 0.41 from Table 2.4 ) does

not attain a minimum value, it does fall on an inflection point, following which the evolution

69



(a) (b)

Fig.2.29. Comparison of the predictions of small-deformation normalized
(a ) contact radius (Eq. (2.13 )) and (b ) contact force (Eq. (2.12 )) evolution
at the secondary contacts with respect to primary contact deformation with
FE simulation data for a particle under die compression. FE data for the
lowest value of λ = 163.08 are denoted by circles, with corresponding contact
law predictions denoted by a dashed curve. FE data with the highest value
of λ = 4954.40 are denoted by diamonds, with corresponding contact law
predictions denoted by a solid curve.
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Fig.2.30. Comparison of the predictions of small and large deformation nor-
malized hardness evolution at the secondary contacts with respect to primary
contact deformation with FE simulation data for a particle under die compres-
sion. FE data for the lowest value of λ = 163.08 are denoted by circles, with
corresponding contact law predictions denoted by a dashed curve. FE data with
the highest value of λ = 4954.40 are denoted by diamonds, with corresponding
contact law predictions denoted by a solid curve.
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of contact pressure is visibly similar to that of the primary contacts (Fig. 2.13b ). This

observation confirms the accuracy of our predictions of the onset of the ‘low compressibility’

regime for secondary die contacts.

Fig. 2.29 presents a comparison of the predicted evolution of normalized secondary contact

radius and contact force in the small-deformation (elastic and elastic-plastic) regime with the

finite element simulation results. Additionally, Fig. 2.30 shows the predicted vs. FE results

of the evolution of normalized hardness in both small and large (beyond ‘low compressibility’)

deformation regimes. Comparative plots are provided for the minimum and the maximum

value of λ for die configuration. Even though an excellent agreement is not achieved, the

predicted results at small deformations are still comparable with the FE data and of the

same order of magnitude. Concurrently, a good agreement between the predicted and FE

results is obtained for normalized hardness in the large deformation regime.

2.7 Summary and discussion

We have developed a semi-mechanistic contact formulation for material and loading

condition-dependent contact behavior of an elastic-perfectly plastic spherical particle, as

it is compressed in a simple cubic packing under unconfined (simple axial compression) or

confined (die and hydrostatic compression) loading conditions. Contact laws for the evolution

of contact radius and normalized contact pressure (or hardness) have been proposed, while

the contact force is efficiently determined from the product of contact pressure and area. The

material-dependence is systematically incorporated in the formulation through calibration

of model parameters to a set of 51 single-particle finite element simulations (17 for each of

simple, die and hydrostatic loading conditions), where the diverse set of material properties

is obtained from a space-filling design.

The contact radius is determined as a three-term nonlinear function of the contact

displacement, where each term corresponds to the evolution of contact area during a specific

deformation regime, i.e., small, moderate and large deformations. The analytical framework

for the three-term function is obtained by applying the method of curvature-correction to

the small-deformation similarity contact law. The normalized hardness, due to its complex
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and distinct evolution in each deformation regime, is modeled as a piecewise differentiable

function, with distinct contact laws proposed for each regime in a way that the function

remains continuous and differentiable with respect to the contact deformation at all stages of

particle compression. A salient feature of the proposed contact law is its capability to predict

the rise in contact pressure for confined loading conditions during the ‘geometrical hardening’

or ‘low compressibility’ regime as a function of the particle’s elastic compressibility, thus

unraveling critical material-dependent behavior at large deformations. The capabilities of the

contact formulation are successfully verified by attainment of an excellent agreement between

the model and finite element predictions of the evolution of contact radius, pressure and force

with contact deformation for the three considered loading configurations.

Finally, we have presented a foundational semi-mechanistic analysis of the lateral walled

(secondary) contacts in the die loading configuration. The secondary contacts, despite not

being subjected to any applied deformation, evolve as a result of the lateral expansion of

the axially compressed particle. The induced deformation at the secondary contacts, termed

as nonlocal deformation, is determined by post-processing the nodal displacements at the

lateral edge of the particle from finite element simulations of the simple loading configuration.

Although, this analysis is limited to small deformations to safely neglect any nonlocal

contributions from the secondary contacts themselves. The relationship between primary

and nonlocal secondary contact displacements is modeled as a power law, which is shown to

accurately represent the material-dependent evolution of the secondary displacements. By

using this relationship, the contact response is evaluated at small deformations from the

proposed semi-mechanistic contact formulation. Additionally, by utilizing the assumption of

equal contact pressure at all particle contacts beyond the ‘low compressibility’ regime, the

contact pressure at large deformations for the secondary contacts is determined from the

proposed normalized hardness law. A comparison of the model and finite element predictions

of the secondary contact response shows that while an excellent agreement is not achieved,

the model predicted response is comparable and of the same order of magnitude as the

numerical FE data. With regard to this observation, it is worth mentioning that since the

FE simulations performed in this study were set up for an accurate determination of the

large deformation contact response, a separate finite element study with a finer mesh may be
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needed for proper convergence of contact behavior at small deformations. Such a study will

enable a more reliable verification of the modeled response at the secondary contacts, and is

a worthwhile direction of future research.
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3. SEMI-MECHANISTIC CONTACT LAW FOR LARGE

DEFORMATION UNCONFINED AND CONFINED

COMPRESSION OF SPHERICAL RIGID-PLASTIC

PARTICLES WITH POWER-LAW HARDENING

The content of this chapter and associated appendices C and E will be submitted to Interna-
tional Journal of Solids and Structures.

3.1 Introduction

Compaction of granular materials and powder compaction are central to many industries,

such as pharmaceutical, energy production, and agriculture. The commercial applications

makes the characterization of these materials of great importance. Current research has been

particularly focusing on the area of predictive modeling of mesoscopic and macroscopic behav-

ior of powders and granular materials under confinement. The fundumental understanding of

the compaction behavior allows for optimization of the performance in all applications of these

materials. These materials are heterogenous in nature which greatly effects the macroscropic

behavior. Mechanistic continuum modeling, on a macroscopic scale, are capable of describing

microstructure evolution during compaction processes of these materials (Puri et al., 1995 ;

Sun and Kim, 1997 , Chtourou et al., 2002 , Cunningham et al., 2004 ; DiMaggio and Sandler,

1971 ; Han et al., 2008 ; Sinha et al., 2010 ; Sinka et al., 2004 ,and A. Bakhshiani et al., 2004 ,

2002 ; Khoei et al., 2002 ). Such models assume the granular systems as homogenrous materials

ignoring fundamental behavior at the partice-scale. These assumptions are relaxed in the use

of Discrete Element Modeling (DEM), a numerical method proposed by (Cundall & Strack,

1979 ). DEM is a dynamic modeling approach that is capable of predicting behavior from

deformation of elasto-plastic particles in powder compaction at the mesoscale (or particle-

scale) (Belheine et al., 2009 ; Harthong et al., 2009 ; Jerier et al., 2011 ; C.L. Martin and

Bouvard, 2003 ; C.L Martin et al., 2003 ; C. L. Martin et al., 2006 ; Rojek et al., 2016 ; Sheng

et al., 2002 ; Skrinjar and Larsson, 2004 ). Recently, a more computationally efficient approach

called discrete particle mechanics (M. Gonzalez and Cuitiño, 2016 ; Marcial Gonzalez, 2019 ;
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Marcial Gonzalez et al., 2018 ; Poorsolhjouy and Gonzalez, 2018 ; Yohannes et al., 2016 , 2017 )

has been proposed. The use of discrete modeling to describe the macroscopic behavior of

granular systems during compaction depend on contact formulation between inter-particle

contacts occuring prior and during compaction processes. Contact formulations describe the

contact force-area-deformation relationships between inter-particles contacts. In our work, we

focus on developing contact formulation for unconfined and confined compression of plastic

particles with power-law hardening.

In our formulation, we adopt a rigid-plastic flow formulation considering two widely used

power-law hardening behavior. We first consider the power-law from (Ludwik, 1909 ), where

stress evolve according to the following power-law relationship

σ = σy +Kε
1/n
pl (3.1)

where σ is the true stress, σy is the yield stress, K is the strength coefficient, 1/n is the

hardening exponent, and εpl is the plastic strain determined from

εpl = ε− σ

E
(3.2)

where ε is the total strain and E is the Young’s modulus. To stay consistent with previous work

on contact models for elasto-plastic spheres assuming rigid-plastic power-law hardening (Biwa

& Stor̊akers, 1995 ; Tabor, 1951 ) and contact of inelastic solids of revolution (B. Stor̊akers

et al., 1997 ), we also consider Hollomon’s stress-strain power-law relationship (Hollomon,

1945 )

σ = κε1/m (3.3)

where κ is the strength coefficient and 1/m is the hardening exponent. For considering

both power law relationships, Eqns.(3.1 ) and (3.3 ) are set equal to one another (Harthong

et al., 2009 ) and the hardening properties from Eqn.(3.1 ) are calibrated to fit Eqn.(3.3 ) using

least-square error optimization. In our study, the relationships from the rigid-plastic contact

model proposed by Biwa and Stor̊akers is utilized where the contact of two spheres of radii
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R1 and R2, strength coefficients κ1 and κ1, and hardening exponent 1/m, the contact force

(P )-radius (a)-displacement (γ) relationships are given by

P = ηPa
2+ 1

m (3.4)

and

a =
(

2c2

A

)1/2

γ1/2 (3.5)

where γ is the relative displacement of the particles

γ = R1 +R2 − ||x1 − x2|| (3.6)

and geometric parameter A and plastic law coefficient ηP are given by

A = 1
R1

+ 1
R2

(3.7)

ηP = πkA1/m
(

1
κm1

+ 1
κm2

)−1/m

(3.8)

with k = 3× 6−1/m and c2 = 1.43e−0.97/m. The similarity contact law uses the assumption

of independent contacts and small-strain kinematics. These assumptions make the solution

of the contact law only predictable for small deformations and the solution is independent

from loading configuration. Contact models must be able to predict complex behaviors of

materials during moderate deformation such as softening and capture the dependence on

loading configuration at large deformations. There has been a proposed semi-mechanistic

DEM contact law built on curve fitting of force-deformation FE data (Harthong et al.,

2009 ; Harthong et al., 2012 ), however, the contact model does not provide prediction of

contact radius and there has been no extension on using the contact law for a general loading

condition. Semi-analytic contact law for elasto-plastic spherical particles has been proposed

by (E. Olsson & Larsson, 2016 ; Erik Olsson & Larsson, 2013a , 2013b ) where the solution is

predictive for large deformation, however,the formulation lacks prediction of the full range of

hardening exponent.
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In spite of all recent work, finding a predictive mechanistic contact law for large deformation

contact behavior of elasto-plastic particles under general loading conditions is difficult. In light

of this issue, we propose a semi-mechanistic contact law for plastic particles with power-law

hardening under unconfined and confined loading configurations. This paper extends the

efforts made towards formulating a semi-mechanistic contact law for elastic-ideally plastic

particles under unconfined and confined loading configurations (Agarwal et al., 2021 ) to

consider strain-hardening effects.

The paper is organized as follows. The rigid-plastic limit of the elastic-ideally plastic

formulation is examined in Section 2.2 . The space-filling design problem and finite element

simulations are presented in Section 2.3 . Modifications to the rigid-plastic limit of the

elastic-ideally plastic formulation to consider hardening effects are discussed in Section 2.4 .

The predictions of the contact model are verified by making a comparison with the finite

element results are presented in Section 2.5 . Then in Section 2.6 , the contact model is

used to estimate hardening properties, contact radius, and stress response under confined

loading configuration of micro-crystalline cellulose particles under large deformation using

experimental data. Finally, a conclusion of the paper is presented in Section 2.7 .

3.2 Rigid-plastic limit of the perfect plasticity semi-mechanistic formulation

To formulate contact laws for rigid-plastic matieral adopting strain-hardening behavior,

we began by taking the rigid-plastic limit of the perfect plasticity formulation (Agarwal et al.,

2021 ). The rigid-plastic limit of the equations that define the contact radius-displacement

and contact pressure-displacement relationships are taken by finding the limit as the material

properties ratio E/σy approaches ∞. In the formulation, the contact law proposed has the

form

P (γ;λ, ζ,LC) := H̄(γ/2R;λ, ζ,LC)σyπ{a(γ;λ,LC)}2 (3.9)

where λ = E/(1− ν2)σy and ζ = B/σy, where B is the elastic bulk modulus of the material.

λ and ζ are dimensionless material parameters, LC denotes loading configuration dependency,

and H̄ is the normalized Brinell hardness (E. Olsson and Larsson, 2016 ; Erik Olsson and
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Larsson, 2013a , 2013b ) which will be referred to as normalized contact pressure. The similarity

contact law and perfectly plastic FE simulations were used to formulate the framework of

the normalized contact radius and contact pressure relationships.

3.2.1 Rigid-plastic limit of the contact radius formulation

The semi-mechanistic contact radius formulation was derived from an analytical framework

where the curvature correction method was used for the approximation of the spherical profile

of the contact surfaces descibed by the similarity contact law given by Eqn. 3.5 (Agarwal

& Gonzalez, 2018 ). A 2-term curvature corrected similarity solution from the Taylor series

expansion was used to derive the following form of the contact radius formulation

a = D1

( 1
A1/2

)
γ1/2 −D3

(
B

A5/2

)
γ3/2 +D5

(
B2

A9/2

)
γ5/2 (3.10)

where A is from Eqn. 3.7 , B = 1/R3
1 + 1/R3

2, and Di (i = 1, 2, 3) are material properties

and loading condition dependent parameters. The rigid-plastic limit of the contact radius

formulation does not change the form in Eqn. 3.10 as it only affects the definition of

parameters Di. At the limit, these parameters become only loading condition dependent

where the values are presented in Table 3.1 .

Table 3.1. Estimated values of Di.
SC DC HC

D1 1.7527 1.7943 1.8959
D3 2.3702 3.0451 8.8138
D5 3.3715 5.7169 39.8654

3.2.2 Rigid-plastic limit of the normalized contact pressure formulation

The normalized contact pressure formulation is derived by analysing finite element (FE)

simulations of elastic-ideally plastic particles (1/m→ 0) (Agarwal et al., 2021 ). During large

compression of elasto-plastic particles, there are five main deformation regimes the particles

undergo: elastic, elastic-plastic, plastic, and low compressibility and elastic volumetric regimes
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for confined loading configurations. The formulation is built on different contact laws for

each regime where the transition from each regime is C1-continuous resulting in a continuous

and differentiable semi-mechanistic contact law. The normalized contact pressure for the

elastic regime, occuring at small deformations, is described using Hertz contact theory (Hertz,

1882 ). In the elastic-plastic regimes, the normalized contact pressure can be described by a

nonlinear relationship with displacement. The normalized contact pressure for both of these

regimes are

H̄e = 2
3π
λA1/2γ1/2 (3.11)

H̄ep = H̄max − c1

[
ln
(
γ|H̄max

γ

)]c2
(3.12)

where H̄max and γ|H̄max are the normalized contact pressure and corresponding displacement

value at the point of transition between elastic-plastic and plastic regimes. Parameters c1,

and c2 are obtained by honoring the C1-continuous condition, that is, setting the equations

and their first derivatives with respect to displacement equal to one another at the point of

transition between the two regimes. The values of γ|H̄max are obtained by observing the FE

simulations showing a clear relationships with material properties. For the rigid-plastic limit

the elastic and elastic-plastic regimes do not exist. This is not directly obtained from taking

the limits of the equations, but rather from determining the region of deformation for these

regimes at the rigid-plastic limit. At the limit, γ|H̄max = 0 and H̄max = 3.101 indicating that

elastic and elastic-plastic regime do not have a deformation region, the normalized contact

pressure begins with the plastic regime from H̄max. The plastic regime depends on loading

configuration and material properties and is given by

H̄ fp = H̄max − pLC
[
tanh

{
q

(
γ − γ|H̄max

R1 +R2

)}
cos

{(
γ − γ|H̄max

R1 +R2

)
− s(γ|H̄min , q)

}]r
(3.13)
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with

s(γ|H̄min , q) =
(
γ|H̄min − γ|H̄max

R1 +R2

)
− tan−1

[
2q csch

{
2q
(
γ|H̄min − γ|H̄max

R1 +R2

)}]
(3.14)

In these equations, pLC , q, and r are model parameters and γ|H̄min is the displacement value at

the minimum normalized contact pressure, H̄min. The minimum value of normalized contact

pressure heavily depends on loading conditions and level of softening making γ|H̄min and

parameter pLC loading condition and material dependent, while parameters q and r are only

material dependent. It is important to note that through a parameter study, parameter pLC

was determined to control the minimum value of normalized contact pressure. For determining

the minimum value of normalized contact pressure, the case of two spherical particles with

equal radii is considered (R1 +R2 = 2R). For simple loading condition, the particle can be

deformed to the point where it becomes a flat disk at γ → 2R, at which point, the contact

pressure of the material approaches the material’s yield strength. This means that for the

case of simple loading condition γ|H̄min = 2R. For confined loading conditions, there is a low

compressibility and elastic volumetric regimes where the contact pressure rises due to void

filling. The occupation of the voronoi cell increaes the elastic energy of the particle and the

contact pressure. During this phase, the evolution of contact area is limited. This analysis

led to the proposition that at the minimum in the case of confined loading conditions, the

following condition is true

ρLC,contact
V × ρLC,contact

S = Γ (3.15)

where ρLC,contact
V and ρLC,contact

S are the relative volume density and relative surface area

density, and Γ = 0.0593. The relative volume density is determined from

ρLC,contact
V = ρLC

V ×
(
V LC

contact
V LC

voro

)
=
(
Vparticle

V LC
voro

)(
V LC

contact
V LC

voro

)
(3.16)

In the eqution above, ρLC
V =

(
Vparticle/V

LC
voro

)
is the relative density of the particle’s voronoi

cell (Harthong et al., 2009 ), Vparticle = (4/3)πR3 and V LC
voro are the volumes of the spherical

particle and the voronoi cell. V LC
contact is the volume of the contact section with the voronoi cell
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Table 3.2. Expressions for various volume and surface quantities in the
minimum H̄ condition given by Eq. (2.28 ) for all contacts under hydrostatic
and primary contacts under die loading configuration.

DC HC

V LC
voro 8R2 (R− γ/2) 8 (R− γ/2)3

V LC
contact (4/3)R2 (R− γ/2) (4/3) (R− γ/2)3

SLC
face 4R2 4 (R− γ/2)2

described as a pyramid with the apex being the center of mass of the particle and the base

being the voronoi cell face in contact. The relative surface area density is determined from

ρLC,contact
S = SLC

contact
SLC

face
(3.17)

where SLC
contactand SLC

face are the contact area of the particle and the contact area of the voronoi

cell face. the area of the contact’s voronoi cell face. Expressions for V LC
voro, V LC

contact and SLC
face

for die and hydrostatic loading conditions are shown in Table 3.2 . The value of γ|H̄min for die

and hydrostatic loading conditions is determined from Eqn. (3.15 ) which involves solving a

quintic equation in terms of unknown γ|H̄min , see Appendix C for the derivation.

For the case of simple loading configuration, γ|H̄min = 2R, thus H̄min = 1. Using this

condition and using Eqns. 3.13 and 3.14 , parameter pLC for the simple loading condition is

given by

pSC = H̄max − 1[
tanh

{
q
(

1− γ|H̄max
2R

)}
cos

{(
1− γ|H̄max

2R

)
− s(2R, q)

}]r (3.18)

Determining the value of minimum normalized contact pressure for die and hydrostatic

loading conditions is determined through two methods. The first method suggests that the
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minimum normalized contact pressure for die and hydro is equal to the value of normalized

contact pressure for simple loading condition at γ|H̄min , i.e,

H̄LC
min,1 =H̄max − pSC

[
tanh

{
q

(
γLC|H̄min − γ|H̄max

2R

)}

× cos
{(

γLC|H̄min − γ|H̄max

2R

)
− s(2R, q)

}]r (3.19)

The second method for determinig the minimum value of normalized contact pressure

utlizes the inflection point where the second derivative of the normalized contact pressure is

equal to zero. In the FE simulations of elastic-ideally plastic particles, this inflection point

happens when softening begins. At this inflection point, the slopes from die and hydrostatic

loading conditions is set equal to the slope from simple loading condition giving the second

solution for the value of H̄min

H̄LC
min,2 =H̄max − pLC

o

[
tanh

{
q

(
γLC|H̄min − γ|H̄max

2R

)}

× cos
{(

γLC|H̄min − γ|H̄max

2R

)
− s(γLC|H̄min , q)

}]r (3.20)

where

pLC
o =pSC



2qcsch
{

2q
(
γSC|H̄ =0−γ|H̄max

2R

)}
− tan

{(
γSC|H̄ =0−γ|H̄max

2R

)
− s(2R, q)

}
2qcsch

{
2q
(
γLC|H̄ =0−γ|H̄max

2R

)}
− tan

{(
γLC|H̄ =0−γ|H̄max

2R

)
− s(γLC|H̄min , q)

}



×



tanh
{
q
(
γSC|H̄ =0−γ|H̄max

2R

)}
× cos

{(
γSC|H̄ =0−γ|H̄max

2R

)
− s(2R, q)

}
tanh

{
q
(
γLC|H̄ =0−γ|H̄max

2R

)}
× cos

{(
γLC|H̄ =0−γ|H̄max

2R

)
− s(γLC|H̄min , q)

}



r (3.21)

82



and

γLC|H̄=0
2R ' γ|H̄max

2R +

3r tan
{
s(γLC|H̄min , q)

}
+ [3(2q2 + 3)(r − 1)(2r + 1)

+9(2r2 − 1) tan2
{
s(γLC|H̄min , q)

}]1/2
(2q2 + 3)(2r + 1) + 3(r + 1) tan2

{
s(γLC|H̄min , q)

} (3.22)

The results from the two methods are compared with the FE simulations which showed

that an average of the two solutions provides an accurate prediction of the minimum value of

normalized contact pressure for the confined loading conditions (Agarwal et al., 2021 ). From

this observation, the final value of H̄min is determined to be

H̄LC
min =

H̄LC
min,1 + H̄LC

min,2

2 (3.23)

The rigid-plastic limit of the plastic regime eliminates the dependency on the material

and the equations become only loading condition dependent. For the limit, the normalized

contact pressure for the plastic regime becomes

H̄ fp = H̄max − pLC
[
tanh

{
q
(
γ

2R

)}
cos

{(
γ

2R

)
− sLC

}]
(3.24)

with

sLC =
(
γ|H̄min

2R

)
− tan−1

[
2q csch

{
2q
(
γ|H̄min

2R

)}]
(3.25)

pLC = H̄max − H̄LC
min[

tanh
{
q
(
γLC|H̄min

2R

)}
cos

{
−sLC

}] (3.26)

and

H̄LC
min =

H̄LC
min,1 + H̄LC

min,2

2 (3.27)

where
H̄LC

min,1 =H̄max − pSC
[
tanh

{
q

(
γLC|H̄min

2R

)}

× cos
{
γLC|H̄min

2R − sLC(2R)
}] (3.28)
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H̄LC
min,2 =H̄max − pLC

o

[
tanh

{
q

(
γLC|H̄min

2R

)}

× cos
{
γLC|H̄min

2R − sLC(γLC|H̄min)
}] (3.29)

with

pSC = H̄max − 1 (3.30)

pLC
o =pSC



2qcsch
{

2q
(
γSC|H̄ =0

2R

)}
− tan

{(
γSC|H̄ =0

2R

)
− sLC(2R)

}
2qcsch

{
2q
(
γLC|H̄ =0

2R

)}
− tan

{(
γLC|H̄ =0

2R

)
− sLC(γLC|H̄min)

}



×



tanh
{
q
(
γSC|H̄ =0

2R

)}
× cos

{(
γSC|H̄ =0

2R

)
− sLC(2R)

}
tanh

{
q
(
γLC|H̄ =0

2R

)}
× cos

{(
γLC|H̄ =0

2R

)
− sLC(γLC|H̄min)

}



(3.31)

and
γLC|H̄=0

2R '
3r tan

{
sLC(γLC|H̄min)

} [
9 tan2

{
sLC(γLC|H̄min)

}]1/2
3(2q2 + 3) + 6 tan2

{
sLC(γLC|H̄min)

} (3.32)

where q = 14.1819 and γLC|H̄min is solved for die and hydrostatic loading conditions, see

Appendix C . The methods for determining the minimum normalized contact pressure

remain the same but the equations simplify as they are no longer dependent on material

properties. For confined loading conditions, the normalized contact pressure evolves in the

low compressibility regime which depends heavily on the loading condition. The proposed

form of the normalized contact pressure in this regime is given by

H̄ lc = H̄LC
min − u ln

1− l
(
χLC − χLC|H̄min

χLC
zp − χLC|H̄min

)2
 (3.33)
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where u and l are model parameters and χLC = 1/ρLC
V =

(
V LC

voro/Vparticle
)

is the inverse of the

relative density, where the relationships to displacement for the die and hydrostatic loading

conditions is given by

γDC

2R = 1− πχDC

6 ,
γHC

2R = 1−
(

πχHC

6

)1/3

(3.34)

χLC|H̄min is the value of χ at H̄LC
min and χLC

zp is the value of χ at the zero porosity limit (Tsigginos

et al., 2015 ) which is given by

χLC
zp = Vparticle − V LC

el
Vparticle

(3.35)

where V LC
el is the particle’s elastic reduction in volume until the point of zero porosity. After

the zero porosity limit, the normalized contact pressure evolves in the elastic volumetric

regime given by

H̄ev = B

σy

(
1− Vvoro

Vparticle

)
= ζ(1− χLC) (3.36)

where ζ = E/3σy(1− 2ν). The relationships between u, l, and V LC
el is determined through

the C1 continuity condition between the low compressibility and elastic volumetric regime.

These relationships are given by

u = VparticleH̄
LC
min − ζV LC

el
Vparticle ln(1− l) (3.37)

V LC
el =

Vparticle
{

2lH̄LC
min + ζ(1− χLC|H̄min)(1− l) ln(1− l)

}
ζ {2l + (1− l) ln(1− l)} (3.38)

From FE simulations, it was determined that parameter l is a material dependent

parameter given by

ln(1− l) = ln
(

1
1 + 0.2335ζ

)

=⇒ l = 1−
(

1
1 + 0.2335ζ

) (3.39)
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The rigid-plastic limit of the elastic volumetric regime becomes ∞ whereas the limit of

the low compressibilty regime becomes

H̄ lc = H̄LC
min +

(
1− χLC|H̄min

0.467

)
ln

1−
(
χLC − χLC|H̄min

χLC
zp − χLC|H̄min

)2
 (3.40)

To conclude, the rigid-plastic limit of the semi-mechanistic contact law for normalized

contact pressure becomes

lim
E/σy→∞

H̄ =



limE/σy→∞ H̄
fp = H̄max − pLC

[
tanh

{
q
(
γ

2R

)}
γ ∈

(
0, γLC|H̄min

]
× cos

{(
γ

2R

)
− sLC

}]
LC→ {SC,DC,HC}

limE/σy→∞ H̄
lc = H̄LC

min +
(

1−χLC|H̄min
0.467

)
γ ∈

(
γLC|H̄min , γ

LC
zp

]
× ln

{
1−

(
χLC−χLC|H̄min
χLC

zp −χLC|H̄min

)2
}

LC→ {DC,HC}

limE/σy→∞ H̄
ev =∞ γ ∈

(
γLC

zp ,∞
)

LC→ {DC,HC}

(3.41)

3.3 Space-filling design and FE simulations

For our study, we performed 60 finite element simulations; 20 for each three loading

configuration (simple compression, die compaction, and hydrostatic compaction). The

hardening properties (strength coefficient κ and hardening exponent 1/m from Eqn. (3.3 ))

are randomly chosen to eliminate bias by solving a space-filling design problem set up using

the statistical software (“SAS Institute Inc”, 2018 ). In the software, Fast Flexible Filling

algorithm (Lekivetz & Jones, 2015 ) is utilized where the Number of Runs and Cluster Size are

chosen minimize MaxPro optimality criterion (Joseph et al., 2015 ). Loading configurations

were set as a categorial factor where the created sub-clusters by the algorithm are assigned to.

In the space-filling design problem, the full range of hardening exponent is used (from 0 to

1). The lower bound of the hardening coefficient was chosen based on the fitting of Ludwik’s

power law to Holloman’s power law, whereas the upper limit is chosen based on the range

of common materials. The bounds chosen for the hardening properties in the space-filling
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design problem are in Table 3.3 . Figure 3.1 shows a scatter plot of the hardening properties

obtained from the solution of the space-filling design problem. For a complete list of these

hardening properties, refer to Appendix E .

Table 3.3. Bounds for hardening exponent 1/m and strength coefficient κ
used in the space-filling design problem.

Lower Bound Upper Bound
1/m 0 1

κ (MPa) 50 200

0 0.2 0.4 0.6 0.8 1

Hardening Exponent - (1/m)

50

75

100

125

150

175

200

S
tr
e
n
g
th

C
o
e
ffi
c
ie
n
t
-
(κ

)

Fig.3.1. Scatter plot of the hardening properties obtained from the space-
filling design problem. Simple loading configuration properties are denoted by
solid circle markers. Die loading configuration properties are denoted by cross
markers. Hydrostatic loading configuration properties are denoted by asterick
markers.

The hardening properties from the space-filling design problem were used to run FE

simulation using ABAQUS Version 6.14. This work follows the same setup procedure as the

semi-mechanistic contact law for elastic-ideally plastic particles (Agarwal et al., 2021 ), where

an eighth of a sphere with radius R = 10 mm is deformed. The mesh used in ABAQUS

consists of 500,000 linear hexahedral elements of type C3D8R and 515,201 nodes. To capture
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the particle deformation level present in power compaction processes, the simulated particle

is deformed until 50% for simple compression, 47.6% for die compaction, and 19.6% for

hydrostatic compaction. The deformation level for die and hydrostatic compaction were

determined based on the zero porosity limit caused by confiment, that is, γ/2R = 1− π/6 for

die compaction and γ/2R = 1− (π/6)1/3 for hydrostatic compaction.

Given the focus on plastic regime and hardening behavior of materials for different

hardening properties, all simulations are given the same elastic parameters, namely, Young’s

Modulus E, yield stress σy, and Poisson’s ratio ν. Our study utilizes rigid-plastic analysis for

building the contact law, thus, a large Young’s Modulus and a small yield stress are chosen

to minimize elastic and elastic-plastic regimes. The materials used in the simulations follow

the constituve law in Eqn. (3.1 ). As mentioned in the previous section, parameters K and n

in the consitutive law are calibrated by setting the two power-law hardening equations (Eqns.

(3.1 ) and (3.3 )) equal to one another.

To ensure the validity of rigid-plastic assumption, test set of FE simulations are performed

using the lower and upper bound values for κ. The results show how small the elastic and

elasto-plastic regimes validating our rigid-plastic assumption. These results are presented in

Figure 3.2 for simple, die, and hydrostatic loading configurations. In these plots, the limit of

κ = 20 MPa is used, however, a lower limit of κ = 50 MPa was chosen for the simulations.

The lower bound of κ was increased because we observed that materials having such low κ

in combination with a low hardening exponent (1/m) resulted in inadequate fitting of the

power-law equations.
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Fig.3.2. FE simulations results for normalized contact pressure under simple
compression (3.2a ), die compaction (3.2b ), and hydrostatic compaction (3.2c )
for near perfectly plasticity with 1/m = 0.0001. The figure shows the lower
bound κ = 20 MPa denoted by circle markers and upper bound κ = 200
MPa denoted by cross markers. The figure also includes the results from the
rigid-plastic limit of the perfectly plasticity semi-mechanistic contact law (solid
black lines).
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Fig.3.3. Finite element simulation results for simple loading configuration of
normalized contact radius 3.3a , contact pressure 3.3b , and contact force 3.3c .
The figures show results of 20 simulations where there is a clear trend with
increasing hardening exponent (1/m).
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Fig.3.4. Finite element simulation results for die loading configuration of
normalized contact radius 3.4a , contact pressure 3.4b , and contact force 3.4c .
The figures show results of 20 simulations where there is a clear trend with
increasing hardening exponent (1/m).
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Fig.3.5. Finite element simulation results for hydrostatic loading configuration
of normalized contact radius 3.5a , contact pressure 3.5b , and contact force 3.5c .
The figures show results of 20 simulations where there is a clear trend with
increasing hardening exponent (1/m).
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The normalized contact pressure (P/κπa2), contact radius (a/R), and contact force

(P/κR2) obtained from the FE simulations are shown in Figures 3.3 , 3.4 , and 3.5 for simple,

die, and hydrostatic loading configurations. It is clear that all the results show a decreasing

trend with increasing hardening exponent (1/m). Normalized contact pressure figures for

die and hydrostatic loading configuration show that when the hardening parameter is high

enough (1/m > 0.5), the materials no longer shows any softening and the contact pressure

only increases with no apparent yield. This is also true for simple loading condition, however,

for results with hardening exponent around 0.5, the contact pressure appears to be near a

constant value of 1. Under large deformation for die and hydro loading condition, there is

an apparent rapid increase in contact pressure caused by the confinement of the particle.

From these results, we propose that the simple loading condition only has a plastic regime,

whereas die and hydrostatic loading conditions have plastic, low compressibility, and elastic

volumetric regimes.

3.4 Formulation of the semi-mechanistic formulation contact law

The FE simulations show that dependency on loading condition and hardening parameter

are necessary for formulating a contact law for rigid-plastic particles with power-law hardening.

In our case, we are analysing the contact of two materials with equal hardening properties

(κ1 = κ2 = κ) and radii (R1 +R2 = 2R). Using this information and Eqn. (3.5 ), the similarity

contact law in Eqn. (3.4 ) becomes

P = πk
(
a

R

)1/m
κa2 (3.42)

where k = 3× 6−1/m. Combining the equation above with the contact radius-displacement

relationship in Eqn. (3.6 ), the contact force becomes

P = πk
(
2c2
)1/2m

(
γ

2R

)1/2m
κa2 (3.43)
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where c2 = 1.43e−0.97/m, A = 1/R1 + 1/R2 and B = 1/R3
1 + 1/R3

2. From these definitions,

the normalized hardness H̄ (referred to as contact pressure), from Brinell hardness H from

indentation of flat surface by a spherical rigid indentor, is given by

H̄ = P

κπa2 = k
(
2c2
)1/2m

(
γ

2R

)1/2m
(3.44)

The equation above shows that normalized hardness depends on the hardening exponent and

deformation, however, as seen in the FE simulations, there is a loading condition dependency

that is missing. We propose a contact law in the following form

P (γ;R, 1/m,LC) := H̄(γ/2R; 1/m,LC)κπ{a(γ;R, 1/m,LC)}2 (3.45)

where LC denotes loading configuration. For formulating this contact law, we follow a

similar approach as the one adopted for formulating the contact law for elastic-ideally plastic

particles. We will utitilize the similarity contact law and the FE data to find semi-mechanistic

relationships for contact radius and contact pressure.

3.4.1 Rigid-plastic semi-mechanistic formulation for contact radius

For the contact radius, we begin with the rigid-plastic limit of the perfectly plastic

formulation in Eqn. (3.10 ). To find the dependency on hardening exponent, we revisit the

2-term curvature corrected similarity solution where the first three terms of the Taylor series

expansion was used

a = 21/2c
( 1
A

)1/2
γ1/2 − 2−3/2c3

(
B2/3

A5/3

)3/2

γ3/2 + 7
29/2 c

5
(
B4/5c2

A9/5

)5/2

γ5/2 (3.46)

where c2 = 1.43e−0.97/m. Note that the rigid-plastic limit value of D1 is close to 21/2c when

m → ∞. To keep the dependency of hardening exponent in parameters Di (i = 1, 2, 3) in

the rigid-plastic limit, we propose carrying over the exponential relationship with hardening

exponent from the first and second term in c2. We observed that carrying over the third term
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does not predict the contact radius well, instead the third term was calibrated using the FE

data. We propose the following expression for contact radius-displacement relationship

a = D1e−0.485/m
( 1
A1/2

)
γ1/2 −D3e−1.455/m

(
B

A5/2

)
γ3/2

+D5e−0.5279/m0.4616
(

B2

A9/2

)
γ5/2

(3.47)

where Di (i = 1, 2, 3) depend on loading condition and the values are presented in Table 3.1 .

Note that for ideally plastic case (m→∞), the rigid-plastic limit in Eqn. (3.10 ) is preserved.

3.4.2 Rigid-plastic semi-mechanistic formulation for normalized hardness

The semi-mechanistic formulation for normalized hardness (will be referred to as normal-

ized contact pressure) begins with the rigid-plastic limit of plastic regime in Eqns. (3.24 ),

(3.25 ), and (3.26 ). For the contact pressure in the FE simulations, it is apparent that the

value of H̄max present at small deformations decreases with increasing hardening exponent.

The value of H̄max in the ideally plastic cases represented the maximum normalized contact

pressure and the starting value of normalized contact pressure in the plastic regime, however

in this case, H̄max only represents the contact pressure at where the plastic regime begins as

there is no maximum in the small deformation region for cases with large hardening exponent.

Based on this analysis, we propose a modification to the value of the H̄max consisting of an

exponential function dependent on hardening exponent. Further in Eqn. (3.44 ), the term

(γ/2R)1/2m is 1 for the ideally plastic case, thus, it is also carried over to the definition of the

contact pressure for the three deformation regimes. The normalized contact pressure for the

plastic regime becomes

H̄ fp =
[
H̄maxe−1.748/m

−pLC tanh
{
q
(
γ

2R

)}
cos

{(
γ

2R

)
− sLC

}](
γ

2R

)1/2m (3.48)

with

sLC =
(
γ|H̄min

2R

)
− tan−1

[
2q csch

{
2q
(
γ|H̄min

2R

)}]
(3.49)
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pLC = H̄max − H̄LC
min[

tanh
{
q
(
γLC|H̄min

2R

)}
cos

{
−sLC

}] (3.50)

and

H̄LC
min =

H̄LC
min,1 + H̄LC

min,2

2 (3.51)

where
H̄LC

min,1 =H̄max − pSC
[
tanh

{
q

(
γLC|H̄min

2R

)}

× cos
{
γLC|H̄min

2R − sLC(2R)
}] (3.52)

H̄LC
min,2 =H̄max − pLC

o

[
tanh

{
q

(
γLC|H̄min

2R

)}

× cos
{
γLC|H̄min

2R − sLC(γLC|H̄min)
}] (3.53)

with

pSC = H̄max − 1 (3.54)

pLC
o =pSC



2qcsch
{

2q
(
γSC|H̄ =0

2R

)}
− tan

{(
γSC|H̄ =0

2R

)
− sLC(2R)

}
2qcsch

{
2q
(
γLC|H̄ =0

2R

)}
− tan

{(
γLC|H̄ =0

2R

)
− sLC(γLC|H̄min)

}



×



tanh
{
q
(
γSC|H̄ =0

2R

)}
× cos

{(
γSC|H̄ =0

2R

)
− sLC(2R)

}
tanh

{
q
(
γLC|H̄ =0

2R

)}
× cos

{(
γLC|H̄ =0

2R

)
− sLC(γLC|H̄min)

}



(3.55)

and
γLC|H̄=0

2R '
3r tan

{
sLC(γLC|H̄min)

} [
9 tan2

{
sLC(γLC|H̄min)

}]1/2
3(2q2 + 3) + 6 tan2

{
sLC(γLC|H̄min)

} (3.56)
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where q = 14.1819 and γLC|H̄min is solved for die and hydrostatic loading conditions, see

Appendix C . Note that these modifications to the equations honor the conditions set for

H̄LC
min in the ideally-plastic case. Simlar to the definition of H̄LC

max for the hardening cases,

the definition of H̄LC
min is the minimum value of the low compressibility regime as there is no

minimum in the cases with large hardening exponent.

In the low compressibility regime at the rigid-plastic limit for die and hydrostatic loading

conditions, the value multiplied by ζ in parameter l, Eqn. (3.39 ), shows up at the limit.

We exploit this finding to consider the dependency on hardening exponent in the low

compressibility regime by including hardening exponent dependency in the form of an

exponential function determined from calibration of FE data. Parameter l becomes

ln(1− l) = ln
(

1
1 + 0.2335e−0.5883/mζ

)

=⇒ l = 1−
(

1
1 + 0.2335e−0.5883/mζ

) (3.57)

Adding multiplicative term (γ/2R)1/2m to the normalized contact pressure equation as

done in the plastic regime, then the low compressibility regime equation at the rigid-plastic

limit becomes

H̄ lc =
H̄LC

min +
(

1− χLC|H̄min

0.467e−0.5883/m

)
ln

1−
(
χLC − χLC|H̄min

χLC
zp − χLC|H̄min

)2

( γ

2R

) 1
2m

(3.58)

where χLC = 1/ρLC
V =

(
V LC

voro/Vparticle
)

is the inverse of the relative density, χLC|H̄min is the

value of χ at H̄LC
min, and χLC

zp is the value of χ at the zero porosity limit. The elastic volumetric

regime for die and hydrostatic loading conditions is kept the same as the rigid-plastic limit
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from Eqn. (3.41 ). To conclude, the rigid-plastic semi-mechanistic contact law for contact

pressure is the following

H̄ =



H̄ fp =
[
H̄maxe−1.748/m − pLC tanh

{
q
(
γ

2R

)}
γ ∈

(
0, γLC|H̄min

]
× cos

{(
γ

2R

)
− sLC

}] (
γ

2R

) 1
2m LC→ {SC,DC,HC}

H̄ lc =
[
H̄LC

min +
(

1−χLC|H̄min
0.467e0.5883/m

)
γ ∈

(
γLC|H̄min , γ

LC
zp

]
× ln

{
1−

(
χLC−χLC|H̄min
χLC

zp −χLC|H̄min

)2
}] (

γ
2R

) 1
2m LC→ {DC,HC}

H̄ev =∞ γ ∈
(
γLC

zp ,∞
)

LC→ {DC,HC}

(3.59)

3.5 Rigid-plastic semi-mechanistic contact law verification

To verify the rigid-plastic semi-mechanistic contact law, the results for normalized contact

pressure (P/κπa2), contact radius (a/R), and contact force (P/κR2) are compared with the

FE simulations at five different values of hardening exponent. The results are presented in

Figures 3.6 , 3.7 , and 3.8 for simple, die, and hydrostatic loading configurations. The contact

law shows good prediction of the FE simulations for the full range of hardening exponent.

Due to the rigid-plastic assumption, the contact law lacks in prediction of the normalized

contact pressure at small deformations for particles with near perfect plasticity behavior.
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Fig.3.6. Semi-mechanistic contact law results for normalized contact radius
3.6a , contact pressure 3.6b , and contact force 3.6c for simple loading configu-
ration. The figures show results for 4 values of hardening exponent: highest
value, lowest value, and 2 values in between. FE data for 1/m = 0.01147 are
denoted by cross markers with corresponding contact law prediction by a solid
lines. FE data for 1/m = 0.32677 and 1/m = 0.66044 are denoted by circle
and square markers with the correspondig contact law predictions by dashed
line and dash-dot lines. FE data for 1/m = 0.98094 are denoted by triangle
markers and the corresponding contact law predictions by a dotted line.
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Fig.3.7. Semi-mechanistic contact law results for normalized contact radius
3.7a , contact pressure 3.7b , and contact force 3.7c for simple loading configu-
ration. The figures show results for 4 values of hardening exponent: highest
value, lowest value, and 2 values in between. FE data for 1/m = 3.64464E− 05
are denoted by cross markers with corresponding contact law prediction by a
solid lines. FE data for 1/m = 0.37109 and 1/m = 68869 are denoted by circle
and square markers with the correspondig contact law predictions by dashed
line and dash-dot lines. FE data for 1/m = 0.99996 are denoted by triangle
markers and the corresponding contact law predictions by a dotted line.
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Fig.3.8. Semi-mechanistic contact law results for normalized contact radius
3.8a , contact pressure 3.8b , and contact force 3.8c for simple loading configu-
ration. The figures show results for 4 values of hardening exponent: highest
value, lowest value, and 2 values in between. FE data for 1/m = 0.03555 are
denoted by cross markers with corresponding contact law prediction by a solid
lines. FE data for 1/m = 0.30431 and 1/m = 0.66875 are denoted by circle
and square markers with the correspondig contact law predictions by dashed
line and dash-dot lines. FE data for 1/m = 0.99223 are denoted by triangle
markers and the corresponding contact law predictions by a dotted line.
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Fig.3.9. Calibration of MCC particles under large deformation simple compres-
sion. The experimental data points of MCC are denoted by circle markers and
the corresponding calibrated results are denoted by a solid line. The estimated
response under die and hydrostatic loading configuration are denoted by dashed
line and dash-dot line. The response from the similarity contact law is denoted
by a dotted line.
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Fig.3.10. Estimated contact radius evolution of MCC particles under large
deformation. Results for simple compression are denoted by a solid line. Re-
sults for die loading configuration are denoted by a dashed line. Results for
hydrostatic loading configuration are denoted by a dash-dot line.
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3.6 Calibration of micro-crystalline cellulose particles under large deformations

The rigid-plastic semi-mechanistic contact law is tested for experimental data from simple

compression of micro-crystalline cellulose (Avicel PH-200) particles (Bommireddy et al.,

2019 ). MCC particles with diameters ranging from 52.85 − 296.34 µm were characterized

experimentally through diameteric compression using a micro-compression tester. It was

discovered that loading MCC under large deformation results in major permanent plastic

deformation and apparent strain-hardening effects at different strain values. The response of

MCC particles was calibrated using the contact law to determine the hardening properties.

The hardening properties were then used to estimate the response of MCC particles under

die and hydrostatic loading configurations. The results are presented in Figure 3.9 .

The calibrated results showed that MCC particles have a hardening exponent 1/m = 0.6585

and strength coefficient κ = 6.0272 MPa. A large value of hardening exponent is expected

as MCC exhibit observable strain-hardening effects in compression testing. The response

using similarity contact law with these hardening properties is also shown in Figure 3.9 . It is

evident that the similarity contact law is unable to capture the increase in pressure at large

deformation, unlike our developed contact law.

Contact radius cannot be experimentally measured for MCC, however, the estimated

hardening properties and the contact law can be used to predict contact radius evolution

under simple, die, and hydrostatic loading configurations. These results are presented in

Figure 3.10 .

3.7 Conclusion

We built a semi-mechanistic contact law for rigid-plastic particles with power-law hardening

deformed under simple compression, die compaction, and hydrostatic compaction. We

began with the rigid-plastic limit of the semi-mechanistic contact law for elastic-ideally

plastic particles which was modified to consider strain-hardening effects through exponential

relationships with the hardening exponents. We utilized a total of 60 single-particle finite

element simulations, 20 for each of the loading configurations (simple, die, and hydrostatic).

In the contact radius formulation, the dependency on hardening exponent was adopted from
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the three-term curvature-correction solution of the contact radius-displacement relationship

from the similarity contact law. We observed that the third term in the contact radius

equation required a different relationship with hardening exponent which was calibrated using

the FE simulations. In the normalized contact pressure formulation, the plastic deformation

regime and low compressibility regime for confined loading configurations were modified based

on observation and analysis of the FE simulations. We verified the contact law by comparing

the produced responses for normalized contact radius, contact pressure, and contact force

with the FE simulations. Finally, we tested the contact law with experimental data of simple

compression of micro-crystalline cellulose particles to determine hardening properties and

estimated the response for die and hydrostating loading conditions.
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4. SUMMARY AND FUTURE WORK

4.1 Summary

In this thesis, predictive contact law formulations for spherical particles with elastic-ideally

plastic and plastic with power-law hardening behaviors under unconfined and confined loading

configuration are presented. Verification of these contact law formulations is presented by

comparing their results with finite element simulations. Calibration of experimental data from

simple compression of micro-crystalline cellulose particles predicting hardening properties

and stress response under alternate loading conditions is presented. Additionally, prediction

of contact radius evolution for micro-crystalline cellulose particles using the contact law is

presented.

In chapter 2, a semi-mechanistic contact formulation for material and loading condition

dependent contact behavior of elastic-ideally plastic spherical particles is developed. Space-

filling design with the fast-flexible filling algorithm is used to generate material properties

for 51 finite element simulations. Formulation for contact radius is determined by applying

the method of curvature-correction to the small-deformation similarity contact law to obtain

three-terms nonlinear function of displacement. Formulation for normalized contact pressure

is built as a piecewise differentiable function and is split into five deformation regimes. The

results of the proposed contact law are verified by showing excellent agreement with the

finite element simulations. Finally, small-deformation and large-deformation regimes are

properly predicted for the lateral walls (secondary contacts) of die loading condition, creating

a foundation for building a semi-mechanistic contact law for secondary contacts.

In chapter 3, the semi-mechanistic contact law for elastic-ideally plastic formulation is

extended to consider power-law hardening behavior of plastic particles. The formulation

begins by taking the rigid-plastic limit of the ideally plastic contact law, neglecting elastic and

elastic-plastic regimes. Space-filling design with the fast-flexible filling algorithm is used to

obtain hardening properties for 60 finite element simulations. The contact radius formulation

is modified by adopting the dependency on hardening exponent from the curvature-correction

solution of the similarity contact law. The contact pressure formulation is modified to consider

hardening by analyzing the results of the finite element simulations. The contact law is verified
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by showing good agreement with the finite element simulations. Finally, simple compression

experimental data of micro-crystalline cellulose particles and the proposed contact law are

used to estimate hardening properties, evolution of contact radius, and stress responses in

die and hydrostatic loading configuration of micro-crystalline cellulose particles.

4.2 Future Work

The developed contact laws neglect gravitational forces, adhesion, friction, and alternate

particle shapes. Gradually, these assumptions can be relaxed to produce a general contact

law. Additionally, the contact laws assume independent contacts neglecting the nonlocal

effects present in particle compaction. The next step is introducing nonlocal effects (see

M. Gonzalez and Cuitiño, 2012 , 2016 and Agarwal and Gonzalez, 2018 ) and relaxing the

limitation on loading condition dependence in the contact laws as only three symmetric loading

configurations are considered. A closed-form nonlocal contact formulations for plastically

deforming particles will be developed which is capable of predict contact behavior under any

general loading configuration.
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Mata, M., Casals, O., & Alcalá, J. (2006). The plastic zone size in indentation experiments:

The analogy with the expansion of a spherical cavity. International Journal of

Solids and Structures, 43 (20), 5994–6013. doi:10.1016/j.ijsolstr.2005.07.002 

Wolfram Research, Inc. (2019). Champaign, IL.

Mesarovic, S. D., & Fleck, N. A. (2000). Frictionless indentation of dissimilar elastic-

plastic spheres. International Journal of Solids and Structures, 37 (46), 7071–7091.

doi:10.1016/S0020-7683(99)00328-5 

Olsson, E. [E.], & Larsson, P.-L. [P.-L.]. (2016). A unified model for the contact behaviour

between equal and dissimilar elastic–plastic spherical bodies. International Journal

of Solids and Structures, 81, 23–32. doi:10.1016/j.ijsolstr.2015.10.004 

111

https://dx.doi.org/10.1016/j.ijimpeng.2014.04.007
https://dx.doi.org/10.1016/j.ijimpeng.2014.04.007
https://dx.doi.org/10.1007/978-3-662-40293-1
https://dx.doi.org/10.1007/978-3-662-40293-1
https://dx.doi.org/10.1038/nature03805
https://dx.doi.org/10.1038/nature03805
https://dx.doi.org/10.1016/S1359-6454(02)00402-0
https://dx.doi.org/10.1016/S1359-6454(02)00402-0
https://dx.doi.org/10.1016/S0022-5096(02)00101-1
https://dx.doi.org/10.1111/j.1551-2916.2006.01249.x
https://dx.doi.org/10.1016/j.ijsolstr.2005.07.002
https://dx.doi.org/10.1016/S0020-7683(99)00328-5
https://dx.doi.org/10.1016/j.ijsolstr.2015.10.004


Olsson, E. [Erik], & Larsson, P.-L. (2013a). On force–displacement relations at contact

between elastic–plastic adhesive bodies. Journal of the Mechanics and Physics of

Solids, 61 (5), 1185–1201. doi:10.1016/j.jmps.2013.01.004 

Olsson, E. [Erik], & Larsson, P.-L. (2013b). On the appropriate use of representative

stress quantities at correlation of spherical contact problems. Tribology Letters, 50,

221–232. doi:10.1007/s11249-013-0114-1 

Poorsolhjouy, P., & Gonzalez, M. [Marcial]. (2018). Connecting discrete particle me-

chanics to continuum granular micromechanics: Anisotropic continuum properties

under compaction. Mechanics Research Communications, 92, 21–27. doi:10.1016/j.

mechrescom.2018.07.001  

Puri, V. M., Tripodi, M. A., Manbeck, H., & Messing, G. L. (1995). Constitutive model

for dry cohesive powders with application to powder compaction. KONA Powder

and Particle Journal, 13, 135–150. doi:10.14356/kona.1995018 

Quicksall, J. J., Jackson, R. L., & Green, I. (2004). Elasto-plastic hemispherical con-

tact models for various mechanical properties. Proceedings of the Institution of

Mechanical Engineers, Part J: Journal of Engineering Tribology, 218 (4), 313–322.

doi:10.1243/1350650041762604 

Rojek, J., Nosewicz, S., Jurczak, K., Chmielewski, M., Bochenek, K., & Pietrzak,

K. (2016). Discrete element simulation of powder compaction in cold uniaxial

pressing with low pressure. Computational Particle Mechanics, 3 (4), 513–524.

doi:10.1007/s40571-015-0093-0 

Santner, T. J., Williams, B. J., & Notz, W. I. (2013). The design and analysis of

computer experiments. doi:10.1007/978-1-4757-3799-8 

Shahin, M., Agarwal, A., & Gonzalez, M. (2021). Semi-mechanistic contact laws for

large deformation unconfined and confined compression of plastic particles with

power-law hardening. To be determined.

Sheng, Y., Lawrence, C. J., Briscoe, B. J., & Thornton, C. (2002). 3D DEM simulations

of powder compaction. In Discrete element methods: Numerical modeling of discon-

tinua (pp. 305–310). Geotechnical special publication. doi:10.1061/40647(259)54 

112

https://dx.doi.org/10.1016/j.jmps.2013.01.004
https://dx.doi.org/10.1007/s11249-013-0114-1
https://dx.doi.org/10.1016/j.mechrescom.2018.07.001
https://dx.doi.org/10.1016/j.mechrescom.2018.07.001
https://dx.doi.org/10.14356/kona.1995018
https://dx.doi.org/10.1243/1350650041762604
https://dx.doi.org/10.1007/s40571-015-0093-0
https://dx.doi.org/10.1007/978-1-4757-3799-8
https://dx.doi.org/10.1061/40647(259)54


Sinha, T., Curtis, J. S., Hancock, B. C., & Wassgren, C. (2010). A study on the

sensitivity of Drucker-Prager Cap model parameters during the decompression

phase of powder compaction simulations. Powder Technology, 198 (3), 315–324.

doi:10.1016/j.powtec.2009.10.025 

Sinka, I. C., Cunningham, J. C., & Zavaliangos, A. (2004). Analysis of tablet compaction.

II. Finite element analysis of density distributions in convex tablets. Journal of

Pharmaceutical Sciences, 93 (8), 2040–2053. doi:10.1002/jps.20111 

Skrinjar, O., & Larsson, P.-L. [Per-Lennart]. (2004). On discrete element modelling of

compaction of powders with size ratio. Computational Materials Science, 31 (1),

131–146. doi:10.1016/j.commatsci.2004.02.005 

Stor̊akers, B. [B.], Biwa, S., & Larsson, P.-L. (1997). Similarity analysis of inelastic

contact. International Journal of Solids and Structures, 34 (24), 3061–3083. doi:10.

1016/S0020-7683(96)00176-X  

Stor̊akers, B. [Bertil], & Larsson, P.-L. [Per-Lennart]. (1994). On brinell and boussinesq

indentation of creeping solids. Journal of the Mechanics and Physics of Solids,

42 (2), 307–332. doi:10.1016/0022-5096(94)90012-4 

Stronge, W. J. (2018). Impact mechanics (2nd). doi:10.1017/9781139050227 

Studman, C. J., Moore, M. A., & Jones, S. E. (1977). On the correlation of indentation

experiments. Journal of Physics D: Applied Physics, 10 (6), 949. doi:10.1088/0022-

3727/10/6/019 

Sun, X.-K., & Kim, K.-T. (1997). Simulation of cold die compaction densification

behaviour of iron and copper powders by cam—clay model. Powder Metallurgy,

40 (3), 193–195. doi:10.1179/pom.1997.40.3.193 

Sundstrom, B., & Fischmeister, H. F. (1973). Continuum mechanical model for hot and

cold compaction. Powder Metallurgy International, 5 (4), 171–174.

Tabor, D. (1951). The hardness of metals. Clarendine Press, Oxford.

Trott, M., & Adamchik, V. (2001). Solving the qunitic with mathematica. Wolfram

Library Archive, https://library.wolfram.com/infocenter/TechNotes/158  . Accessed:

2020-03-13.

113

https://dx.doi.org/10.1016/j.powtec.2009.10.025
https://dx.doi.org/10.1002/jps.20111
https://dx.doi.org/10.1016/j.commatsci.2004.02.005
https://dx.doi.org/10.1016/S0020-7683(96)00176-X
https://dx.doi.org/10.1016/S0020-7683(96)00176-X
https://dx.doi.org/10.1016/0022-5096(94)90012-4
https://dx.doi.org/10.1017/9781139050227
https://dx.doi.org/10.1088/0022-3727/10/6/019
https://dx.doi.org/10.1088/0022-3727/10/6/019
https://dx.doi.org/10.1179/pom.1997.40.3.193
https://library.wolfram.com/infocenter/TechNotes/158


Tsigginos, C., Strong, J., & Zavaliangos, A. (2015). On the force-displacement law of

contacts between spheres pressed to high relative densities. International Journal

of Solids and Structures, 60-61, 17–27. doi:10.1016/j.ijsolstr.2015.01.024 

Ward Jr., J. H. (1963). Hierarchical grouping to optimize an objective function. Journal

of the American Statistical Association, 58 (301), 236–244. doi:10.1080/01621459.

1963.10500845 

Yohannes, B., Gonzalez, M., Abebe, A., Sprockel, O., Nikfar, F., Kiang, S., & Cuitiño,

A. M. (2016). Evolution of the microstructure during the process of consolidation

and bonding in soft granular solids. International Journal of Pharmaceutics, 503 (1),

68–77. doi:10.1016/j.ijpharm.2016.02.032 

Yohannes, B., Gonzalez, M., Abebe, A., Sprockel, O., Nikfar, F., Kiang, S., & Cuitiño,

A. (2017). Discrete particle modeling and micromechanical characterization of

bilayer tablet compaction. International Journal of Pharmaceutics, 529 (1), 597–

607. doi:10.1016/j.ijpharm.2017.07.032 

114

https://dx.doi.org/10.1016/j.ijsolstr.2015.01.024
https://dx.doi.org/10.1080/01621459.1963.10500845
https://dx.doi.org/10.1080/01621459.1963.10500845
https://dx.doi.org/10.1016/j.ijpharm.2016.02.032
https://dx.doi.org/10.1016/j.ijpharm.2017.07.032


A. TABLE OF MECHANICAL PROPERTIES FOR

ELASTIC-IDEALLY PLASTIC FINITE ELEMENT

SIMULATIONS OBTAINED FROM THE SPACE-FILLING

DESIGN

Table A.1. List of mechanical properties, arranged in the

increasing order of the values of parameter E/(1− ν2)σy,

and corresponding loading configurations obtained from

the solution of the space-filling design problem.

Loading Condition E (MPa) ν σy (MPa) E/(1− ν2)σy

Simple 36961.79 0.4130 361.11 123.41

20639.45 0.2993 148.54 152.62

84752.72 0.3524 452.13 214.03

172086.58 0.2115 472.34 381.38

150500.27 0.4739 499.21 388.78

101785.47 0.2643 225.81 484.61

190003.52 0.2939 304.09 683.89

75517.00 0.4019 92.86 969.91

196617.68 0.4270 178.85 1344.55

161529.29 0.2046 123.92 1360.40

114577.91 0.3579 76.34 1721.55

88565.10 0.4709 42.09 2703.51

139990.73 0.2161 54.84 2677.75

52841.85 0.2003 13.95 3945.19

178811.38 0.2582 45.49 4211.18

16555.89 0.4328 3.48 5852.93

193549.09 0.4078 39.13 5933.40

Continued on next page
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Table A.1 – Continued from previous page

Loading Condition E (MPa) ν σy (MPa) E/(1− ν2)σy

Die 49200.85 0.2251 317.80 163.08

57221.17 0.3899 176.03 383.32

146900.23 0.3247 424.97 386.40

199028.86 0.4392 480.79 512.87

180937.93 0.2001 341.00 552.74

41573.92 0.3058 71.21 644.05

141078.40 0.4640 234.62 766.29

118951.98 0.2124 156.49 796.02

184270.83 0.3440 199.86 1045.79

199785.29 0.2841 129.76 1674.78

21959.27 0.4749 16.08 1762.96

190786.67 0.3829 78.68 2841.34

5314.12 0.2933 2.01 2892.22

78547.20 0.4264 28.38 3382.67

160754.07 0.3213 37.41 4791.88

198038.19 0.4772 51.91 4940.24

110376.78 0.2204 23.42 4954.40

Hydro 2958.14 0.2099 26.39 117.24

57840.71 0.4623 483.90 152.02

65157.56 0.2831 283.64 249.74

135501.57 0.3973 345.15 466.17

194137.98 0.2418 413.75 498.35

79402.31 0.4792 164.35 627.17

198495.80 0.3652 256.71 892.25

143839.36 0.3178 138.24 1157.36

61598.96 0.3370 47.86 1451.86
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Table A.1 – Continued from previous page

Loading Condition E (MPa) ν σy (MPa) E/(1− ν2)σy

187812.04 0.4654 114.89 2086.77

131429.64 0.4187 70.02 2275.87

197086.03 0.2014 92.22 2227.45

174002.47 0.2976 61.27 3115.82

123218.19 0.2344 35.71 3651.55

34338.87 0.4100 11.20 3684.75

95689.98 0.3607 19.17 5739.00

147336.69 0.4576 31.83 5854.69
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B. DERIVATION OF A CURVATURE CORRECTED

SIMILARITY CONTACT LAW

Fig. B.1 shows a magnified view of the contact between two spherical particles of radii R1

and R2, representative strengths κ1 and κ2, and hardening exponent m being pressed along

the normal direction. A cartesian coordinate system xi (i = 1, 2, 3) and a polar coordinate

system (z, r) is adopted, where (z,x3) is the normal direction that is positive downwards,

and x1 − x2 is the plane of contact with r =
√
x2

1 + x2
2. According to (B. Stor̊akers et al.,

1997 ), the boundary condition at the contact region is given by

u
(1)
3 + u

(2)
3 = γ − f1(r)− f2(r) (B.1)

where u(1)
3 and u

(2)
3 are the local displacements of any two corresponding surface points on

the spheres 1 and 2 at a distance r from the contact center, γ is the total displacement of

the centers of mass of the two spheres, and f1(r) and f2(r) are the profile functions of the

undeformed contacting surfaces, given by f1(r) = R1−
√
R2

1 − r2 and f2(r) = R2−
√
R2

2 − r2.

To obtain the similarity solution, the profile functions are approximated by the first term of

their Taylor series expansion about r = 0, i.e.

Rl −
√
R2
l − r2 = r2

2Rl

+O
(
a4

R3
l

)
' r2

2Rl

(l = 1, 2) (B.2)

To control the error associated with this approximation, the profile curvature can be corrected

by including higher order terms of the Taylor expansion. We consider a two term expansion

to approximate the profile functions as

Rl −
√
R2
l − r2 = r2

2Rl

+ r4

8R3
l

+O
(
a6

R5
l

)
(l = 1, 2)

' r2

2Rl

+ r4

8R3
l

(B.3)
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With this correction, the boundary condition given by Eq. (B.1 ) becomes

u
(1)
3 + u

(2)
3 = γ − r2A

2 − r4B
8 (B.4)

where

A = 1
R1

+ 1
R2

and B = 1
R3

1
+ 1
R3

2

�
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r
<latexit sha1_base64="YBucpLiYZi1TAegDw/n3MHz68kc=">AAACF3icbVDLSsNAFL2pr1pfVZduBlvBVUmKoMuCG5cV7AOaUCbTSTt0MgkzE6GG/IbgSv/Enbh16Y+4dtJmYVsPXDiccy+ce/yYM6Vt+9sqbWxube+Udyt7+weHR9Xjk66KEkloh0Q8kn0fK8qZoB3NNKf9WFIc+pz2/Olt7vceqVQsEg96FlMvxGPBAkawNpJbd0OsJ36Qyqw+rNbshj0HWidOQWpQoD2s/rijiCQhFZpwrNTAsWPtpVhqRjjNKm6iaIzJFI/pwFCBQ6q8dJ45QxdGGaEgkmaERnP170WKQ6VmoW8284hq1cvFfz2N/SRbVtj0aSWNDm68lIk40VSQRZgg4UhHKC8JjZikRPOZIZhIZv5BZIIlJtpUWTFFOau1rJNus+HYDee+WWtdFZWV4QzO4RIcuIYW3EEbOkAghmd4hTfrxXq3PqzPxWrJKm5OYQnW1y9BDKCW</latexit><latexit sha1_base64="YBucpLiYZi1TAegDw/n3MHz68kc=">AAACF3icbVDLSsNAFL2pr1pfVZduBlvBVUmKoMuCG5cV7AOaUCbTSTt0MgkzE6GG/IbgSv/Enbh16Y+4dtJmYVsPXDiccy+ce/yYM6Vt+9sqbWxube+Udyt7+weHR9Xjk66KEkloh0Q8kn0fK8qZoB3NNKf9WFIc+pz2/Olt7vceqVQsEg96FlMvxGPBAkawNpJbd0OsJ36Qyqw+rNbshj0HWidOQWpQoD2s/rijiCQhFZpwrNTAsWPtpVhqRjjNKm6iaIzJFI/pwFCBQ6q8dJ45QxdGGaEgkmaERnP170WKQ6VmoW8284hq1cvFfz2N/SRbVtj0aSWNDm68lIk40VSQRZgg4UhHKC8JjZikRPOZIZhIZv5BZIIlJtpUWTFFOau1rJNus+HYDee+WWtdFZWV4QzO4RIcuIYW3EEbOkAghmd4hTfrxXq3PqzPxWrJKm5OYQnW1y9BDKCW</latexit><latexit sha1_base64="YBucpLiYZi1TAegDw/n3MHz68kc=">AAACF3icbVDLSsNAFL2pr1pfVZduBlvBVUmKoMuCG5cV7AOaUCbTSTt0MgkzE6GG/IbgSv/Enbh16Y+4dtJmYVsPXDiccy+ce/yYM6Vt+9sqbWxube+Udyt7+weHR9Xjk66KEkloh0Q8kn0fK8qZoB3NNKf9WFIc+pz2/Olt7vceqVQsEg96FlMvxGPBAkawNpJbd0OsJ36Qyqw+rNbshj0HWidOQWpQoD2s/rijiCQhFZpwrNTAsWPtpVhqRjjNKm6iaIzJFI/pwFCBQ6q8dJ45QxdGGaEgkmaERnP170WKQ6VmoW8284hq1cvFfz2N/SRbVtj0aSWNDm68lIk40VSQRZgg4UhHKC8JjZikRPOZIZhIZv5BZIIlJtpUWTFFOau1rJNus+HYDee+WWtdFZWV4QzO4RIcuIYW3EEbOkAghmd4hTfrxXq3PqzPxWrJKm5OYQnW1y9BDKCW</latexit><latexit sha1_base64="YBucpLiYZi1TAegDw/n3MHz68kc=">AAACF3icbVDLSsNAFL2pr1pfVZduBlvBVUmKoMuCG5cV7AOaUCbTSTt0MgkzE6GG/IbgSv/Enbh16Y+4dtJmYVsPXDiccy+ce/yYM6Vt+9sqbWxube+Udyt7+weHR9Xjk66KEkloh0Q8kn0fK8qZoB3NNKf9WFIc+pz2/Olt7vceqVQsEg96FlMvxGPBAkawNpJbd0OsJ36Qyqw+rNbshj0HWidOQWpQoD2s/rijiCQhFZpwrNTAsWPtpVhqRjjNKm6iaIzJFI/pwFCBQ6q8dJ45QxdGGaEgkmaERnP170WKQ6VmoW8284hq1cvFfz2N/SRbVtj0aSWNDm68lIk40VSQRZgg4UhHKC8JjZikRPOZIZhIZv5BZIIlJtpUWTFFOau1rJNus+HYDee+WWtdFZWV4QzO4RIcuIYW3EEbOkAghmd4hTfrxXq3PqzPxWrJKm5OYQnW1y9BDKCW</latexit>

P
<latexit sha1_base64="aNwqu6pIAYPzJp8/7v0QAtjdsxo=">AAACF3icbVDLSsNAFJ3UV62vqks3g63gqiRF0GXBjcsK9gFNKJPppB06mYSZG6GG/IbgSv/Enbh16Y+4dtJmYVsPXDiccy+ce/xYcA22/W2VNja3tnfKu5W9/YPDo+rxSVdHiaKsQyMRqb5PNBNcsg5wEKwfK0ZCX7CeP73N/d4jU5pH8gFmMfNCMpY84JSAkdy6GxKY+EHazurDas1u2HPgdeIUpIYKtIfVH3cU0SRkEqggWg8cOwYvJQo4FSyruIlmMaFTMmYDQyUJmfbSeeYMXxhlhINImZGA5+rfi5SEWs9C32zmEfWql4v/ekD8JFtW+PRpJQ0EN17KZZwAk3QRJkgEhgjnJeERV4yCmBlCqOLmH0wnRBEKpsqKKcpZrWWddJsNx244981a66qorIzO0Dm6RA66Ri10h9qogyiK0TN6RW/Wi/VufVifi9WSVdycoiVYX78IeKB0</latexit><latexit sha1_base64="aNwqu6pIAYPzJp8/7v0QAtjdsxo=">AAACF3icbVDLSsNAFJ3UV62vqks3g63gqiRF0GXBjcsK9gFNKJPppB06mYSZG6GG/IbgSv/Enbh16Y+4dtJmYVsPXDiccy+ce/xYcA22/W2VNja3tnfKu5W9/YPDo+rxSVdHiaKsQyMRqb5PNBNcsg5wEKwfK0ZCX7CeP73N/d4jU5pH8gFmMfNCMpY84JSAkdy6GxKY+EHazurDas1u2HPgdeIUpIYKtIfVH3cU0SRkEqggWg8cOwYvJQo4FSyruIlmMaFTMmYDQyUJmfbSeeYMXxhlhINImZGA5+rfi5SEWs9C32zmEfWql4v/ekD8JFtW+PRpJQ0EN17KZZwAk3QRJkgEhgjnJeERV4yCmBlCqOLmH0wnRBEKpsqKKcpZrWWddJsNx244981a66qorIzO0Dm6RA66Ri10h9qogyiK0TN6RW/Wi/VufVifi9WSVdycoiVYX78IeKB0</latexit><latexit sha1_base64="aNwqu6pIAYPzJp8/7v0QAtjdsxo=">AAACF3icbVDLSsNAFJ3UV62vqks3g63gqiRF0GXBjcsK9gFNKJPppB06mYSZG6GG/IbgSv/Enbh16Y+4dtJmYVsPXDiccy+ce/xYcA22/W2VNja3tnfKu5W9/YPDo+rxSVdHiaKsQyMRqb5PNBNcsg5wEKwfK0ZCX7CeP73N/d4jU5pH8gFmMfNCMpY84JSAkdy6GxKY+EHazurDas1u2HPgdeIUpIYKtIfVH3cU0SRkEqggWg8cOwYvJQo4FSyruIlmMaFTMmYDQyUJmfbSeeYMXxhlhINImZGA5+rfi5SEWs9C32zmEfWql4v/ekD8JFtW+PRpJQ0EN17KZZwAk3QRJkgEhgjnJeERV4yCmBlCqOLmH0wnRBEKpsqKKcpZrWWddJsNx244981a66qorIzO0Dm6RA66Ri10h9qogyiK0TN6RW/Wi/VufVifi9WSVdycoiVYX78IeKB0</latexit><latexit sha1_base64="aNwqu6pIAYPzJp8/7v0QAtjdsxo=">AAACF3icbVDLSsNAFJ3UV62vqks3g63gqiRF0GXBjcsK9gFNKJPppB06mYSZG6GG/IbgSv/Enbh16Y+4dtJmYVsPXDiccy+ce/xYcA22/W2VNja3tnfKu5W9/YPDo+rxSVdHiaKsQyMRqb5PNBNcsg5wEKwfK0ZCX7CeP73N/d4jU5pH8gFmMfNCMpY84JSAkdy6GxKY+EHazurDas1u2HPgdeIUpIYKtIfVH3cU0SRkEqggWg8cOwYvJQo4FSyruIlmMaFTMmYDQyUJmfbSeeYMXxhlhINImZGA5+rfi5SEWs9C32zmEfWql4v/ekD8JFtW+PRpJQ0EN17KZZwAk3QRJkgEhgjnJeERV4yCmBlCqOLmH0wnRBEKpsqKKcpZrWWddJsNx244981a66qorIzO0Dm6RA66Ri10h9qogyiK0TN6RW/Wi/VufVifi9WSVdycoiVYX78IeKB0</latexit>

R1
<latexit sha1_base64="I87bS6kFcyZhOrtZCdOcgtxbNms=">AAACEHicbVDLSsNAFL3xWeur6tJNsBVclaQIuiy4cVnFtIU2lMl00g6dTMLMjVBDv0FwpX/iTtz6B/6Ia6dtFrb1wIXDOffCuSdIBNfoON/W2vrG5tZ2Yae4u7d/cFg6Om7qOFWUeTQWsWoHRDPBJfOQo2DtRDESBYK1gtHN1G89MqV5LB9wnDA/IgPJQ04JGsmr3PfcSq9UdqrODPYqcXNShhyNXumn249pGjGJVBCtO66ToJ8RhZwKNil2U80SQkdkwDqGShIx7WezsBP73Ch9O4yVGYn2TP17kZFI63EUmM2I4FAve1PxXw9JkE4WFT56WkqD4bWfcZmkyCSdhwlTYWNsT9ux+1wximJsCKGKm39sOiSKUDQdFk1R7nItq6RZq7pO1b2rleuXeWUFOIUzuAAXrqAOt9AADyhweIZXeLNerHfrw/qcr65Z+c0JLMD6+gWhHZz6</latexit><latexit sha1_base64="I87bS6kFcyZhOrtZCdOcgtxbNms=">AAACEHicbVDLSsNAFL3xWeur6tJNsBVclaQIuiy4cVnFtIU2lMl00g6dTMLMjVBDv0FwpX/iTtz6B/6Ia6dtFrb1wIXDOffCuSdIBNfoON/W2vrG5tZ2Yae4u7d/cFg6Om7qOFWUeTQWsWoHRDPBJfOQo2DtRDESBYK1gtHN1G89MqV5LB9wnDA/IgPJQ04JGsmr3PfcSq9UdqrODPYqcXNShhyNXumn249pGjGJVBCtO66ToJ8RhZwKNil2U80SQkdkwDqGShIx7WezsBP73Ch9O4yVGYn2TP17kZFI63EUmM2I4FAve1PxXw9JkE4WFT56WkqD4bWfcZmkyCSdhwlTYWNsT9ux+1wximJsCKGKm39sOiSKUDQdFk1R7nItq6RZq7pO1b2rleuXeWUFOIUzuAAXrqAOt9AADyhweIZXeLNerHfrw/qcr65Z+c0JLMD6+gWhHZz6</latexit><latexit sha1_base64="I87bS6kFcyZhOrtZCdOcgtxbNms=">AAACEHicbVDLSsNAFL3xWeur6tJNsBVclaQIuiy4cVnFtIU2lMl00g6dTMLMjVBDv0FwpX/iTtz6B/6Ia6dtFrb1wIXDOffCuSdIBNfoON/W2vrG5tZ2Yae4u7d/cFg6Om7qOFWUeTQWsWoHRDPBJfOQo2DtRDESBYK1gtHN1G89MqV5LB9wnDA/IgPJQ04JGsmr3PfcSq9UdqrODPYqcXNShhyNXumn249pGjGJVBCtO66ToJ8RhZwKNil2U80SQkdkwDqGShIx7WezsBP73Ch9O4yVGYn2TP17kZFI63EUmM2I4FAve1PxXw9JkE4WFT56WkqD4bWfcZmkyCSdhwlTYWNsT9ux+1wximJsCKGKm39sOiSKUDQdFk1R7nItq6RZq7pO1b2rleuXeWUFOIUzuAAXrqAOt9AADyhweIZXeLNerHfrw/qcr65Z+c0JLMD6+gWhHZz6</latexit><latexit sha1_base64="I87bS6kFcyZhOrtZCdOcgtxbNms=">AAACEHicbVDLSsNAFL3xWeur6tJNsBVclaQIuiy4cVnFtIU2lMl00g6dTMLMjVBDv0FwpX/iTtz6B/6Ia6dtFrb1wIXDOffCuSdIBNfoON/W2vrG5tZ2Yae4u7d/cFg6Om7qOFWUeTQWsWoHRDPBJfOQo2DtRDESBYK1gtHN1G89MqV5LB9wnDA/IgPJQ04JGsmr3PfcSq9UdqrODPYqcXNShhyNXumn249pGjGJVBCtO66ToJ8RhZwKNil2U80SQkdkwDqGShIx7WezsBP73Ch9O4yVGYn2TP17kZFI63EUmM2I4FAve1PxXw9JkE4WFT56WkqD4bWfcZmkyCSdhwlTYWNsT9ux+1wximJsCKGKm39sOiSKUDQdFk1R7nItq6RZq7pO1b2rleuXeWUFOIUzuAAXrqAOt9AADyhweIZXeLNerHfrw/qcr65Z+c0JLMD6+gWhHZz6</latexit>

R2
<latexit sha1_base64="z+/+akm2vtA5nOUfP2xmad9rAMo=">AAACEHicbVDLSsNAFL3xWeur6tJNsBVclaQIuiy4cVnFtIU2lMl00g6dTMLMjVBDv0FwpX/iTtz6B/6Ia6dtFrb1wIXDOffCuSdIBNfoON/W2vrG5tZ2Yae4u7d/cFg6Om7qOFWUeTQWsWoHRDPBJfOQo2DtRDESBYK1gtHN1G89MqV5LB9wnDA/IgPJQ04JGsmr3PdqlV6p7FSdGexV4uakDDkavdJPtx/TNGISqSBad1wnQT8jCjkVbFLsppolhI7IgHUMlSRi2s9mYSf2uVH6dhgrMxLtmfr3IiOR1uMoMJsRwaFe9qbivx6SIJ0sKnz0tJQGw2s/4zJJkUk6DxOmwsbYnrZj97liFMXYEEIVN//YdEgUoWg6LJqi3OVaVkmzVnWdqntXK9cv88oKcApncAEuXEEdbqEBHlDg8Ayv8Ga9WO/Wh/U5X12z8psTWID19Quixpz7</latexit><latexit sha1_base64="z+/+akm2vtA5nOUfP2xmad9rAMo=">AAACEHicbVDLSsNAFL3xWeur6tJNsBVclaQIuiy4cVnFtIU2lMl00g6dTMLMjVBDv0FwpX/iTtz6B/6Ia6dtFrb1wIXDOffCuSdIBNfoON/W2vrG5tZ2Yae4u7d/cFg6Om7qOFWUeTQWsWoHRDPBJfOQo2DtRDESBYK1gtHN1G89MqV5LB9wnDA/IgPJQ04JGsmr3PdqlV6p7FSdGexV4uakDDkavdJPtx/TNGISqSBad1wnQT8jCjkVbFLsppolhI7IgHUMlSRi2s9mYSf2uVH6dhgrMxLtmfr3IiOR1uMoMJsRwaFe9qbivx6SIJ0sKnz0tJQGw2s/4zJJkUk6DxOmwsbYnrZj97liFMXYEEIVN//YdEgUoWg6LJqi3OVaVkmzVnWdqntXK9cv88oKcApncAEuXEEdbqEBHlDg8Ayv8Ga9WO/Wh/U5X12z8psTWID19Quixpz7</latexit><latexit sha1_base64="z+/+akm2vtA5nOUfP2xmad9rAMo=">AAACEHicbVDLSsNAFL3xWeur6tJNsBVclaQIuiy4cVnFtIU2lMl00g6dTMLMjVBDv0FwpX/iTtz6B/6Ia6dtFrb1wIXDOffCuSdIBNfoON/W2vrG5tZ2Yae4u7d/cFg6Om7qOFWUeTQWsWoHRDPBJfOQo2DtRDESBYK1gtHN1G89MqV5LB9wnDA/IgPJQ04JGsmr3PdqlV6p7FSdGexV4uakDDkavdJPtx/TNGISqSBad1wnQT8jCjkVbFLsppolhI7IgHUMlSRi2s9mYSf2uVH6dhgrMxLtmfr3IiOR1uMoMJsRwaFe9qbivx6SIJ0sKnz0tJQGw2s/4zJJkUk6DxOmwsbYnrZj97liFMXYEEIVN//YdEgUoWg6LJqi3OVaVkmzVnWdqntXK9cv88oKcApncAEuXEEdbqEBHlDg8Ayv8Ga9WO/Wh/U5X12z8psTWID19Quixpz7</latexit><latexit sha1_base64="z+/+akm2vtA5nOUfP2xmad9rAMo=">AAACEHicbVDLSsNAFL3xWeur6tJNsBVclaQIuiy4cVnFtIU2lMl00g6dTMLMjVBDv0FwpX/iTtz6B/6Ia6dtFrb1wIXDOffCuSdIBNfoON/W2vrG5tZ2Yae4u7d/cFg6Om7qOFWUeTQWsWoHRDPBJfOQo2DtRDESBYK1gtHN1G89MqV5LB9wnDA/IgPJQ04JGsmr3PdqlV6p7FSdGexV4uakDDkavdJPtx/TNGISqSBad1wnQT8jCjkVbFLsppolhI7IgHUMlSRi2s9mYSf2uVH6dhgrMxLtmfr3IiOR1uMoMJsRwaFe9qbivx6SIJ0sKnz0tJQGw2s/4zJJkUk6DxOmwsbYnrZj97liFMXYEEIVN//YdEgUoWg6LJqi3OVaVkmzVnWdqntXK9cv88oKcApncAEuXEEdbqEBHlDg8Ayv8Ga9WO/Wh/U5X12z8psTWID19Quixpz7</latexit>

f1(r)
<latexit sha1_base64="PgUTZ+9gJSKsAkGAPQG2Hd1kdhs=">AAACE3icbVDLSgNBEOyNrxhfUY9eBhMhXsJuEPQY8OIxgnlAsoTZyWwyZPbBTK8Ql/yE4En/xJt49QP8Ec9Okj2YxIKGoqobqsuLpdBo299WbmNza3snv1vY2z84PCoen7R0lCjGmyySkep4VHMpQt5EgZJ3YsVp4Ene9sa3M7/9yJUWUfiAk5i7AR2GwheMopE6Zb/vVNRluV8s2VV7DrJOnIyUIEOjX/zpDSKWBDxEJqnWXceO0U2pQsEknxZ6ieYxZWM65F1DQxpw7abzvFNyYZQB8SNlJkQyV/9epDTQehJ4ZjOgONKr3kz810PqJdNlRYyfVtKgf+OmIowT5CFbhPETSTAis4LIQCjOUE4MoUwJ8w9hI6ooQ1NjwRTlrNayTlq1qmNXnftaqX6VVZaHMziHCjhwDXW4gwY0gYGEZ3iFN+vFerc+rM/Fas7Kbk5hCdbXL3mYne8=</latexit><latexit sha1_base64="PgUTZ+9gJSKsAkGAPQG2Hd1kdhs=">AAACE3icbVDLSgNBEOyNrxhfUY9eBhMhXsJuEPQY8OIxgnlAsoTZyWwyZPbBTK8Ql/yE4En/xJt49QP8Ec9Okj2YxIKGoqobqsuLpdBo299WbmNza3snv1vY2z84PCoen7R0lCjGmyySkep4VHMpQt5EgZJ3YsVp4Ene9sa3M7/9yJUWUfiAk5i7AR2GwheMopE6Zb/vVNRluV8s2VV7DrJOnIyUIEOjX/zpDSKWBDxEJqnWXceO0U2pQsEknxZ6ieYxZWM65F1DQxpw7abzvFNyYZQB8SNlJkQyV/9epDTQehJ4ZjOgONKr3kz810PqJdNlRYyfVtKgf+OmIowT5CFbhPETSTAis4LIQCjOUE4MoUwJ8w9hI6ooQ1NjwRTlrNayTlq1qmNXnftaqX6VVZaHMziHCjhwDXW4gwY0gYGEZ3iFN+vFerc+rM/Fas7Kbk5hCdbXL3mYne8=</latexit><latexit sha1_base64="PgUTZ+9gJSKsAkGAPQG2Hd1kdhs=">AAACE3icbVDLSgNBEOyNrxhfUY9eBhMhXsJuEPQY8OIxgnlAsoTZyWwyZPbBTK8Ql/yE4En/xJt49QP8Ec9Okj2YxIKGoqobqsuLpdBo299WbmNza3snv1vY2z84PCoen7R0lCjGmyySkep4VHMpQt5EgZJ3YsVp4Ene9sa3M7/9yJUWUfiAk5i7AR2GwheMopE6Zb/vVNRluV8s2VV7DrJOnIyUIEOjX/zpDSKWBDxEJqnWXceO0U2pQsEknxZ6ieYxZWM65F1DQxpw7abzvFNyYZQB8SNlJkQyV/9epDTQehJ4ZjOgONKr3kz810PqJdNlRYyfVtKgf+OmIowT5CFbhPETSTAis4LIQCjOUE4MoUwJ8w9hI6ooQ1NjwRTlrNayTlq1qmNXnftaqX6VVZaHMziHCjhwDXW4gwY0gYGEZ3iFN+vFerc+rM/Fas7Kbk5hCdbXL3mYne8=</latexit><latexit sha1_base64="PgUTZ+9gJSKsAkGAPQG2Hd1kdhs=">AAACE3icbVDLSgNBEOyNrxhfUY9eBhMhXsJuEPQY8OIxgnlAsoTZyWwyZPbBTK8Ql/yE4En/xJt49QP8Ec9Okj2YxIKGoqobqsuLpdBo299WbmNza3snv1vY2z84PCoen7R0lCjGmyySkep4VHMpQt5EgZJ3YsVp4Ene9sa3M7/9yJUWUfiAk5i7AR2GwheMopE6Zb/vVNRluV8s2VV7DrJOnIyUIEOjX/zpDSKWBDxEJqnWXceO0U2pQsEknxZ6ieYxZWM65F1DQxpw7abzvFNyYZQB8SNlJkQyV/9epDTQehJ4ZjOgONKr3kz810PqJdNlRYyfVtKgf+OmIowT5CFbhPETSTAis4LIQCjOUE4MoUwJ8w9hI6ooQ1NjwRTlrNayTlq1qmNXnftaqX6VVZaHMziHCjhwDXW4gwY0gYGEZ3iFN+vFerc+rM/Fas7Kbk5hCdbXL3mYne8=</latexit>

f2(r)
<latexit sha1_base64="wWLFfz0VpboGGct4UOAir4ncRAk=">AAACE3icbVDLSsNAFL2pr1pfVZdugq1QNyUpgi4LblxWsA9oQ5lMJ+3QySTM3Ag19CcEV/on7sStH+CPuHbaZmFbD1w4nHMvnHv8WHCNjvNt5TY2t7Z38ruFvf2Dw6Pi8UlLR4mirEkjEamOTzQTXLImchSsEytGQl+wtj++nfntR6Y0j+QDTmLmhWQoecApQSN1ykG/VlGX5X6x5FSdOex14makBBka/eJPbxDRJGQSqSBad10nRi8lCjkVbFroJZrFhI7JkHUNlSRk2kvneaf2hVEGdhApMxLtufr3IiWh1pPQN5shwZFe9Wbivx4SP5kuK3z8tJIGgxsv5TJOkEm6CBMkwsbInhVkD7hiFMXEEEIVN//YdEQUoWhqLJii3NVa1kmrVnWdqntfK9WvssrycAbnUAEXrqEOd9CAJlAQ8Ayv8Ga9WO/Wh/W5WM1Z2c0pLMH6+gV7RJ3w</latexit><latexit sha1_base64="wWLFfz0VpboGGct4UOAir4ncRAk=">AAACE3icbVDLSsNAFL2pr1pfVZdugq1QNyUpgi4LblxWsA9oQ5lMJ+3QySTM3Ag19CcEV/on7sStH+CPuHbaZmFbD1w4nHMvnHv8WHCNjvNt5TY2t7Z38ruFvf2Dw6Pi8UlLR4mirEkjEamOTzQTXLImchSsEytGQl+wtj++nfntR6Y0j+QDTmLmhWQoecApQSN1ykG/VlGX5X6x5FSdOex14makBBka/eJPbxDRJGQSqSBad10nRi8lCjkVbFroJZrFhI7JkHUNlSRk2kvneaf2hVEGdhApMxLtufr3IiWh1pPQN5shwZFe9Wbivx4SP5kuK3z8tJIGgxsv5TJOkEm6CBMkwsbInhVkD7hiFMXEEEIVN//YdEQUoWhqLJii3NVa1kmrVnWdqntfK9WvssrycAbnUAEXrqEOd9CAJlAQ8Ayv8Ga9WO/Wh/W5WM1Z2c0pLMH6+gV7RJ3w</latexit><latexit sha1_base64="wWLFfz0VpboGGct4UOAir4ncRAk=">AAACE3icbVDLSsNAFL2pr1pfVZdugq1QNyUpgi4LblxWsA9oQ5lMJ+3QySTM3Ag19CcEV/on7sStH+CPuHbaZmFbD1w4nHMvnHv8WHCNjvNt5TY2t7Z38ruFvf2Dw6Pi8UlLR4mirEkjEamOTzQTXLImchSsEytGQl+wtj++nfntR6Y0j+QDTmLmhWQoecApQSN1ykG/VlGX5X6x5FSdOex14makBBka/eJPbxDRJGQSqSBad10nRi8lCjkVbFroJZrFhI7JkHUNlSRk2kvneaf2hVEGdhApMxLtufr3IiWh1pPQN5shwZFe9Wbivx4SP5kuK3z8tJIGgxsv5TJOkEm6CBMkwsbInhVkD7hiFMXEEEIVN//YdEQUoWhqLJii3NVa1kmrVnWdqntfK9WvssrycAbnUAEXrqEOd9CAJlAQ8Ayv8Ga9WO/Wh/W5WM1Z2c0pLMH6+gV7RJ3w</latexit><latexit sha1_base64="wWLFfz0VpboGGct4UOAir4ncRAk=">AAACE3icbVDLSsNAFL2pr1pfVZdugq1QNyUpgi4LblxWsA9oQ5lMJ+3QySTM3Ag19CcEV/on7sStH+CPuHbaZmFbD1w4nHMvnHv8WHCNjvNt5TY2t7Z38ruFvf2Dw6Pi8UlLR4mirEkjEamOTzQTXLImchSsEytGQl+wtj++nfntR6Y0j+QDTmLmhWQoecApQSN1ykG/VlGX5X6x5FSdOex14makBBka/eJPbxDRJGQSqSBad10nRi8lCjkVbFroJZrFhI7JkHUNlSRk2kvneaf2hVEGdhApMxLtufr3IiWh1pPQN5shwZFe9Wbivx4SP5kuK3z8tJIGgxsv5TJOkEm6CBMkwsbInhVkD7hiFMXEEEIVN//YdEQUoWhqLJii3NVa1kmrVnWdqntfK9WvssrycAbnUAEXrqEOd9CAJlAQ8Ayv8Ga9WO/Wh/W5WM1Z2c0pLMH6+gV7RJ3w</latexit>

u
(1)
3

<latexit sha1_base64="IICeMTDU7Rb9di6PQYxjAE0rB5k=">AAACFnicbVC7SgNBFL3rM8ZX1NJmMBFiE3ZjoWXAxjKCeUCyhtnJJBkyO7PMzApx2c8QrPRP7MTW1h+xdpJsYRIPXDiccy+ce4KIM21c99tZW9/Y3NrO7eR39/YPDgtHx00tY0Vog0guVTvAmnImaMMww2k7UhSHAaetYHwz9VuPVGkmxb2ZRNQP8VCwASPYWKlTih+SsneR9i5LvULRrbgzoFXiZaQIGeq9wk+3L0kcUmEIx1p3PDcyfoKVYYTTNN+NNY0wGeMh7VgqcEi1n8wip+jcKn00kMqOMGim/r1IcKj1JAzsZojNSC97U/Ffz+AgThcVNn5aSmMG137CRBQbKsg8zCDmyEg07Qj1maLE8IklmChm/0FkhBUmxjaZt0V5y7Wskma14rkV765arFWzynJwCmdQBg+uoAa3UIcGEJDwDK/w5rw4786H8zlfXXOymxNYgPP1C9iTnzE=</latexit><latexit sha1_base64="IICeMTDU7Rb9di6PQYxjAE0rB5k=">AAACFnicbVC7SgNBFL3rM8ZX1NJmMBFiE3ZjoWXAxjKCeUCyhtnJJBkyO7PMzApx2c8QrPRP7MTW1h+xdpJsYRIPXDiccy+ce4KIM21c99tZW9/Y3NrO7eR39/YPDgtHx00tY0Vog0guVTvAmnImaMMww2k7UhSHAaetYHwz9VuPVGkmxb2ZRNQP8VCwASPYWKlTih+SsneR9i5LvULRrbgzoFXiZaQIGeq9wk+3L0kcUmEIx1p3PDcyfoKVYYTTNN+NNY0wGeMh7VgqcEi1n8wip+jcKn00kMqOMGim/r1IcKj1JAzsZojNSC97U/Ffz+AgThcVNn5aSmMG137CRBQbKsg8zCDmyEg07Qj1maLE8IklmChm/0FkhBUmxjaZt0V5y7Wskma14rkV765arFWzynJwCmdQBg+uoAa3UIcGEJDwDK/w5rw4786H8zlfXXOymxNYgPP1C9iTnzE=</latexit><latexit sha1_base64="IICeMTDU7Rb9di6PQYxjAE0rB5k=">AAACFnicbVC7SgNBFL3rM8ZX1NJmMBFiE3ZjoWXAxjKCeUCyhtnJJBkyO7PMzApx2c8QrPRP7MTW1h+xdpJsYRIPXDiccy+ce4KIM21c99tZW9/Y3NrO7eR39/YPDgtHx00tY0Vog0guVTvAmnImaMMww2k7UhSHAaetYHwz9VuPVGkmxb2ZRNQP8VCwASPYWKlTih+SsneR9i5LvULRrbgzoFXiZaQIGeq9wk+3L0kcUmEIx1p3PDcyfoKVYYTTNN+NNY0wGeMh7VgqcEi1n8wip+jcKn00kMqOMGim/r1IcKj1JAzsZojNSC97U/Ffz+AgThcVNn5aSmMG137CRBQbKsg8zCDmyEg07Qj1maLE8IklmChm/0FkhBUmxjaZt0V5y7Wskma14rkV765arFWzynJwCmdQBg+uoAa3UIcGEJDwDK/w5rw4786H8zlfXXOymxNYgPP1C9iTnzE=</latexit><latexit sha1_base64="IICeMTDU7Rb9di6PQYxjAE0rB5k=">AAACFnicbVC7SgNBFL3rM8ZX1NJmMBFiE3ZjoWXAxjKCeUCyhtnJJBkyO7PMzApx2c8QrPRP7MTW1h+xdpJsYRIPXDiccy+ce4KIM21c99tZW9/Y3NrO7eR39/YPDgtHx00tY0Vog0guVTvAmnImaMMww2k7UhSHAaetYHwz9VuPVGkmxb2ZRNQP8VCwASPYWKlTih+SsneR9i5LvULRrbgzoFXiZaQIGeq9wk+3L0kcUmEIx1p3PDcyfoKVYYTTNN+NNY0wGeMh7VgqcEi1n8wip+jcKn00kMqOMGim/r1IcKj1JAzsZojNSC97U/Ffz+AgThcVNn5aSmMG137CRBQbKsg8zCDmyEg07Qj1maLE8IklmChm/0FkhBUmxjaZt0V5y7Wskma14rkV765arFWzynJwCmdQBg+uoAa3UIcGEJDwDK/w5rw4786H8zlfXXOymxNYgPP1C9iTnzE=</latexit>

u
(2)
3

<latexit sha1_base64="wqP0vk416nBu7iFJjHgvVQRSv2A=">AAACFnicbVDLSsNAFJ34rPVVdelmsBXqpiRxocuCG5cV7APaWCbTSTt0kgkzN0IN+QzBlf6JO3Hr1h9x7bTNwrYeuHA451449/ix4Bps+9taW9/Y3Nou7BR39/YPDktHxy0tE0VZk0ohVccnmgkesSZwEKwTK0ZCX7C2P76Z+u1HpjSX0T1MYuaFZBjxgFMCRupWkoe06l5k/ctKv1S2a/YMeJU4OSmjHI1+6ac3kDQJWQRUEK27jh2DlxIFnAqWFXuJZjGhYzJkXUMjEjLtpbPIGT43ygAHUpmJAM/UvxcpCbWehL7ZDAmM9LI3Ff/1gPhJtqjw8dNSGgiuvZRHcQIsovMwQSIwSDztCA+4YhTExBBCFTf/YDoiilAwTRZNUc5yLauk5dYcu+bcueW6m1dWQKfoDFWRg65QHd2iBmoiiiR6Rq/ozXqx3q0P63O+umblNydoAdbXL9pAnzI=</latexit><latexit sha1_base64="wqP0vk416nBu7iFJjHgvVQRSv2A=">AAACFnicbVDLSsNAFJ34rPVVdelmsBXqpiRxocuCG5cV7APaWCbTSTt0kgkzN0IN+QzBlf6JO3Hr1h9x7bTNwrYeuHA451449/ix4Bps+9taW9/Y3Nou7BR39/YPDktHxy0tE0VZk0ohVccnmgkesSZwEKwTK0ZCX7C2P76Z+u1HpjSX0T1MYuaFZBjxgFMCRupWkoe06l5k/ctKv1S2a/YMeJU4OSmjHI1+6ac3kDQJWQRUEK27jh2DlxIFnAqWFXuJZjGhYzJkXUMjEjLtpbPIGT43ygAHUpmJAM/UvxcpCbWehL7ZDAmM9LI3Ff/1gPhJtqjw8dNSGgiuvZRHcQIsovMwQSIwSDztCA+4YhTExBBCFTf/YDoiilAwTRZNUc5yLauk5dYcu+bcueW6m1dWQKfoDFWRg65QHd2iBmoiiiR6Rq/ozXqx3q0P63O+umblNydoAdbXL9pAnzI=</latexit><latexit sha1_base64="wqP0vk416nBu7iFJjHgvVQRSv2A=">AAACFnicbVDLSsNAFJ34rPVVdelmsBXqpiRxocuCG5cV7APaWCbTSTt0kgkzN0IN+QzBlf6JO3Hr1h9x7bTNwrYeuHA451449/ix4Bps+9taW9/Y3Nou7BR39/YPDktHxy0tE0VZk0ohVccnmgkesSZwEKwTK0ZCX7C2P76Z+u1HpjSX0T1MYuaFZBjxgFMCRupWkoe06l5k/ctKv1S2a/YMeJU4OSmjHI1+6ac3kDQJWQRUEK27jh2DlxIFnAqWFXuJZjGhYzJkXUMjEjLtpbPIGT43ygAHUpmJAM/UvxcpCbWehL7ZDAmM9LI3Ff/1gPhJtqjw8dNSGgiuvZRHcQIsovMwQSIwSDztCA+4YhTExBBCFTf/YDoiilAwTRZNUc5yLauk5dYcu+bcueW6m1dWQKfoDFWRg65QHd2iBmoiiiR6Rq/ozXqx3q0P63O+umblNydoAdbXL9pAnzI=</latexit><latexit sha1_base64="wqP0vk416nBu7iFJjHgvVQRSv2A=">AAACFnicbVDLSsNAFJ34rPVVdelmsBXqpiRxocuCG5cV7APaWCbTSTt0kgkzN0IN+QzBlf6JO3Hr1h9x7bTNwrYeuHA451449/ix4Bps+9taW9/Y3Nou7BR39/YPDktHxy0tE0VZk0ohVccnmgkesSZwEKwTK0ZCX7C2P76Z+u1HpjSX0T1MYuaFZBjxgFMCRupWkoe06l5k/ctKv1S2a/YMeJU4OSmjHI1+6ac3kDQJWQRUEK27jh2DlxIFnAqWFXuJZjGhYzJkXUMjEjLtpbPIGT43ygAHUpmJAM/UvxcpCbWehL7ZDAmM9LI3Ff/1gPhJtqjw8dNSGgiuvZRHcQIsovMwQSIwSDztCA+4YhTExBBCFTf/YDoiilAwTRZNUc5yLauk5dYcu+bcueW6m1dWQKfoDFWRg65QHd2iBmoiiiR6Rq/ozXqx3q0P63O+umblNydoAdbXL9pAnzI=</latexit>

1, m
<latexit sha1_base64="sw14bN/j8K9RMQO4P8wuC/Uu7Jg=">AAACF3icbVC7SgNBFJ2NrxhfUUubwUSwkLCbRsuAjWUE84DsEu5OZpMhM7vDzKwQl/yGYKV/Yie2lv6ItZNkC5N44MLhnHvh3BNKzrRx3W+nsLG5tb1T3C3t7R8cHpWPT9o6SRWhLZLwRHVD0JSzmLYMM5x2paIgQk474fh25nceqdIsiR/MRNJAwDBmESNgrORX/TFICX3vSlT75Ypbc+fA68TLSQXlaPbLP/4gIamgsSEctO55rjRBBsowwum05KeaSiBjGNKepTEIqoNsnnmKL6wywFGi7MQGz9W/FxkIrScitJsCzEivejPxX89AmE6XFTZ+WkljopsgY7FMDY3JIkyUcmwSPCsJD5iixPCJJUAUs/9gMgIFxNgqS7Yob7WWddKu1zy35t3XK416XlkRnaFzdIk8dI0a6A41UQsRJNEzekVvzovz7nw4n4vVgpPfnKIlOF+/K9qf7g==</latexit><latexit sha1_base64="sw14bN/j8K9RMQO4P8wuC/Uu7Jg=">AAACF3icbVC7SgNBFJ2NrxhfUUubwUSwkLCbRsuAjWUE84DsEu5OZpMhM7vDzKwQl/yGYKV/Yie2lv6ItZNkC5N44MLhnHvh3BNKzrRx3W+nsLG5tb1T3C3t7R8cHpWPT9o6SRWhLZLwRHVD0JSzmLYMM5x2paIgQk474fh25nceqdIsiR/MRNJAwDBmESNgrORX/TFICX3vSlT75Ypbc+fA68TLSQXlaPbLP/4gIamgsSEctO55rjRBBsowwum05KeaSiBjGNKepTEIqoNsnnmKL6wywFGi7MQGz9W/FxkIrScitJsCzEivejPxX89AmE6XFTZ+WkljopsgY7FMDY3JIkyUcmwSPCsJD5iixPCJJUAUs/9gMgIFxNgqS7Yob7WWddKu1zy35t3XK416XlkRnaFzdIk8dI0a6A41UQsRJNEzekVvzovz7nw4n4vVgpPfnKIlOF+/K9qf7g==</latexit><latexit sha1_base64="sw14bN/j8K9RMQO4P8wuC/Uu7Jg=">AAACF3icbVC7SgNBFJ2NrxhfUUubwUSwkLCbRsuAjWUE84DsEu5OZpMhM7vDzKwQl/yGYKV/Yie2lv6ItZNkC5N44MLhnHvh3BNKzrRx3W+nsLG5tb1T3C3t7R8cHpWPT9o6SRWhLZLwRHVD0JSzmLYMM5x2paIgQk474fh25nceqdIsiR/MRNJAwDBmESNgrORX/TFICX3vSlT75Ypbc+fA68TLSQXlaPbLP/4gIamgsSEctO55rjRBBsowwum05KeaSiBjGNKepTEIqoNsnnmKL6wywFGi7MQGz9W/FxkIrScitJsCzEivejPxX89AmE6XFTZ+WkljopsgY7FMDY3JIkyUcmwSPCsJD5iixPCJJUAUs/9gMgIFxNgqS7Yob7WWddKu1zy35t3XK416XlkRnaFzdIk8dI0a6A41UQsRJNEzekVvzovz7nw4n4vVgpPfnKIlOF+/K9qf7g==</latexit><latexit sha1_base64="sw14bN/j8K9RMQO4P8wuC/Uu7Jg=">AAACF3icbVC7SgNBFJ2NrxhfUUubwUSwkLCbRsuAjWUE84DsEu5OZpMhM7vDzKwQl/yGYKV/Yie2lv6ItZNkC5N44MLhnHvh3BNKzrRx3W+nsLG5tb1T3C3t7R8cHpWPT9o6SRWhLZLwRHVD0JSzmLYMM5x2paIgQk474fh25nceqdIsiR/MRNJAwDBmESNgrORX/TFICX3vSlT75Ypbc+fA68TLSQXlaPbLP/4gIamgsSEctO55rjRBBsowwum05KeaSiBjGNKepTEIqoNsnnmKL6wywFGi7MQGz9W/FxkIrScitJsCzEivejPxX89AmE6XFTZ+WkljopsgY7FMDY3JIkyUcmwSPCsJD5iixPCJJUAUs/9gMgIFxNgqS7Yob7WWddKu1zy35t3XK416XlkRnaFzdIk8dI0a6A41UQsRJNEzekVvzovz7nw4n4vVgpPfnKIlOF+/K9qf7g==</latexit>

2, m
<latexit sha1_base64="5+EKJ2SNBK27E6VKtLnZz6aB/h8=">AAACF3icbVDLSsNAFJ3UV62vqks3wVZwISXJRpcFNy4r2Ac0odxMJ+2QyWSYmQg19DcEV/on7sStS3/EtdM2C9t64MLhnHvh3BMKRpV2nG+rtLG5tb1T3q3s7R8cHlWPTzoqzSQmbZyyVPZCUIRRTtqaakZ6QhJIQka6YXw787uPRCqa8gc9ESRIYMRpRDFoI/l1PwYhYOBdJfVBteY0nDnsdeIWpIYKtAbVH3+Y4iwhXGMGSvVdR+ggB6kpZmRa8TNFBOAYRqRvKIeEqCCfZ57aF0YZ2lEqzXBtz9W/FzkkSk2S0GwmoMdq1ZuJ/3oawmy6rND4aSWNjm6CnHKRacLxIkyUMVun9qwke0glwZpNDAEsqfnHxmOQgLWpsmKKcldrWScdr+E6DffeqzW9orIyOkPn6BK56Bo10R1qoTbCSKBn9IrerBfr3fqwPherJau4OUVLsL5+AS2Fn+8=</latexit><latexit sha1_base64="5+EKJ2SNBK27E6VKtLnZz6aB/h8=">AAACF3icbVDLSsNAFJ3UV62vqks3wVZwISXJRpcFNy4r2Ac0odxMJ+2QyWSYmQg19DcEV/on7sStS3/EtdM2C9t64MLhnHvh3BMKRpV2nG+rtLG5tb1T3q3s7R8cHlWPTzoqzSQmbZyyVPZCUIRRTtqaakZ6QhJIQka6YXw787uPRCqa8gc9ESRIYMRpRDFoI/l1PwYhYOBdJfVBteY0nDnsdeIWpIYKtAbVH3+Y4iwhXGMGSvVdR+ggB6kpZmRa8TNFBOAYRqRvKIeEqCCfZ57aF0YZ2lEqzXBtz9W/FzkkSk2S0GwmoMdq1ZuJ/3oawmy6rND4aSWNjm6CnHKRacLxIkyUMVun9qwke0glwZpNDAEsqfnHxmOQgLWpsmKKcldrWScdr+E6DffeqzW9orIyOkPn6BK56Bo10R1qoTbCSKBn9IrerBfr3fqwPherJau4OUVLsL5+AS2Fn+8=</latexit><latexit sha1_base64="5+EKJ2SNBK27E6VKtLnZz6aB/h8=">AAACF3icbVDLSsNAFJ3UV62vqks3wVZwISXJRpcFNy4r2Ac0odxMJ+2QyWSYmQg19DcEV/on7sStS3/EtdM2C9t64MLhnHvh3BMKRpV2nG+rtLG5tb1T3q3s7R8cHlWPTzoqzSQmbZyyVPZCUIRRTtqaakZ6QhJIQka6YXw787uPRCqa8gc9ESRIYMRpRDFoI/l1PwYhYOBdJfVBteY0nDnsdeIWpIYKtAbVH3+Y4iwhXGMGSvVdR+ggB6kpZmRa8TNFBOAYRqRvKIeEqCCfZ57aF0YZ2lEqzXBtz9W/FzkkSk2S0GwmoMdq1ZuJ/3oawmy6rND4aSWNjm6CnHKRacLxIkyUMVun9qwke0glwZpNDAEsqfnHxmOQgLWpsmKKcldrWScdr+E6DffeqzW9orIyOkPn6BK56Bo10R1qoTbCSKBn9IrerBfr3fqwPherJau4OUVLsL5+AS2Fn+8=</latexit><latexit sha1_base64="5+EKJ2SNBK27E6VKtLnZz6aB/h8=">AAACF3icbVDLSsNAFJ3UV62vqks3wVZwISXJRpcFNy4r2Ac0odxMJ+2QyWSYmQg19DcEV/on7sStS3/EtdM2C9t64MLhnHvh3BMKRpV2nG+rtLG5tb1T3q3s7R8cHlWPTzoqzSQmbZyyVPZCUIRRTtqaakZ6QhJIQka6YXw787uPRCqa8gc9ESRIYMRpRDFoI/l1PwYhYOBdJfVBteY0nDnsdeIWpIYKtAbVH3+Y4iwhXGMGSvVdR+ggB6kpZmRa8TNFBOAYRqRvKIeEqCCfZ57aF0YZ2lEqzXBtz9W/FzkkSk2S0GwmoMdq1ZuJ/3oawmy6rND4aSWNjm6CnHKRacLxIkyUMVun9qwke0glwZpNDAEsqfnHxmOQgLWpsmKKcldrWScdr+E6DffeqzW9orIyOkPn6BK56Bo10R1qoTbCSKBn9IrerBfr3fqwPherJau4OUVLsL5+AS2Fn+8=</latexit>

Fig.B.1. Schematic of the contact between two spherical particles of radii R1
and R2. The total displacement γ generates a radius of contact a between the
two particles.

With consideration of small-strain kinematics, the field equations together with the

boundary conditions can be summarized as:

ε̇
(l)
ij = 1

2

∂u̇(l)
i

∂xj
+
∂u̇

(l)
j

∂xi

 (B.5)

∂σ
(l)
ij

∂xj
= 0 (B.6)

σ(l)
e = κl

(
ε(l)e

)1/m
(B.7)
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u̇
(1)
3 + u̇

(2)
3 = γ̇, σ

(l)
13 = σ

(l)
23 = 0, r ≤ a (B.8)

σ
(l)
13 = σ

(l)
23 = σ

(l)
33 = 0, r > a (B.9)

where l = 1, 2 and equations (B.5 ), (B.6 ) and (B.7 ) correspond to compatibility, equilibrium

and constitutive law respectively.

The solution to this problem can be started by first taking a basic assumption that

σ
(l)
ij (xk) = σoij(xk) (l = 1, 2) (B.10)

in order to ensure continuity of traction at the contact region. This in turn also satisfies the

local equilibrium. In addition, scaling the displacements as

u
(l)
i (xk) =

(
κ̄

κl

)m
uoi (xk) (l = 1, 2) (B.11)

where

κ̄ =
(

1
κm1

+ 1
κm2

)−1/m

(B.12)

satisfies the complete field equations. With these assumptions, the boundary condition, Eq.

(B.4 ) can be expressed as

uo3 = γ − r2A
2 − r4B

8 (B.13)

and the inhomogenous rate boundary conditions (Eqs. (B.8 ) and (B.9 )) can be expressed as

u̇o3 = γ̇, σo13 = σo23 = 0, r ≤ a (B.14)

σo13 = σo23 = σo33 = 0, r > a (B.15)

The above moving boundary problem can now be converted to a stationary one by removing the

dependence on indentation magnitude (contact radius) through appropriate transformations.
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The kinematic variables, namely particle velocities and strain rates are transformed first and

expressed as

xk = ax̃k (B.16)

u̇oi (xk, a) = γ̇ũoi (x̃k) (B.17)

ε̇oij(xk, a) =
(
γ̇

a

)
ε̃oij(x̃k) (B.18)

With the help of the above scaling, the inhomogeneous rate boundary condition, Eq. (B.14 )

now reduces to

ũo3 = 1, x̃3 = 0, r̃ ≤ 1 (B.19)

The vertical velocity field u̇o3, when integrated over time, gives the total vertical displacement

uo3 which must satisfy the boundary condition given by Eq. (B.13 ). Using the transformation

given by Eq. (B.17 ), we get

∫ t

0
ũo3γ̇ dt = γ − r2A

2 − r4B
8 (B.20)

Variable transformation from t to a and the use of reduced rate boundary condition (Eq.

(B.19 )) yields a particular Volterra integral equation for γ = γ(a) given by

γ (r)−
∫ r

0
ũo3(r/s)γ(s) ds = r2A

2 + r4B
8 , γ(a) = dγ

da
(B.21)

the solution to which is given as

γ(a) = 1
c2

(
a2A

2 + a4B
8

)
(B.22)

with the eigenfunction c2 given by

c2 = 1− 2
∫ ∞

1

ũo3
r̃3 dr̃ (B.23)
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Eq. (B.22 ) is a quadratic equation in a2, which can be solved algebraically to obtain the

following a− γ relationship

a =
[( 2

B

){
(A2 + 2Bc2γ)1/2 − A

}]1/2
(B.24)

The above a− γ relationship can be expressed as a Taylor series about γ = 0 as follows

a =
(

2c2

A

)1/2

γ1/2 −
(
B2/3c2

2A5/3

)3/2

γ3/2 +
(

72/5B4/5c2

29/5A9/5

)5/2

γ5/2 +O(γ7/2) (B.25)

where the first term of the series corresponds to the a − γ relationship without curvature

correction, proposed by (B. Stor̊akers et al., 1997 ), while the higher order terms correspond to

the applied curvature correction. Equation (B.25 ) serves as the motivation behind formulation

of the semi-mechanistic contact radius formulation proposed in Section 2.4 of this paper.
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C. DERIVATION OF THE CONTACT DISPLACEMENT AT

MINIMUM NORMALIZED HARDNESS FOR CONFINED

PARTICLE LOADING CONDITIONS

According to the condition of minimum normalized hardness for confined loading configurations

given by Eq. (2.28 ), expressions for various volume and surface quantities in the equation

are provided in Table 2.3 for primary contacts under die and all contacts under hydrostatic

loading configurations. The particle volume is given by Vparticle = (4/3)πR3 and the contact

area is given by SLC
contact = πa2 where contact radius a is given by Eq. (2.13 ). We now proceed

to derive Eq. (2.28 ) for the two confined loading cases in terms of the unknown contact

displacement at the minimum.

Die Compaction (Primary Contacts):

ρDC,contact
V × ρDC,contact

S =
(
Vparticle

V DC
voro

)(
V DC

contact
V DC

voro

)(
SDC

contact
SDC

face

)

=
4
3πR3

8R2
(
R− γ

2

) × 4
3R

2
(
R− γ

2

)
8R2

(
R− γ

2

) × πa2

4R2

= π2a2

144R
(
R− γ

2

) = Γ

(C.1)

Now, substituting a in terms of γ from Eq. (2.13 ) with A = 1/R1 + 1/R2 = 2/R and

B = 1/R3
1 + 1/R3

2 = 2/R3, rearranging and simplifying the above equation, we finally get

(
π2D2

5
32R3

)
γ5 −

(
π2D3D5

8R2

)
γ4 +

(
π2D2

3
8R + π2D1D5

4R

)
γ3 −

(
π2D1D3

2

)
γ2

+
(

π2D2
1R

2 + 72RΓ
)
γ − 144R2Γ = 0

(C.2)
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Hydrostatic Compaction:

ρHC,contact
V × ρHC,contact

S =
(
Vparticle

V HC
voro

)(
V HC

contact
V HC

voro

)(
SHC

contact
SHC

face

)

=
4
3πR3

8
(
R− γ

2

)3 ×
4
3

(
R− γ

2

)3

8
(
R− γ

2

)3 ×
πa2

4
(
R− γ

2

)2

= π2R3a2

144
(
R− γ

2

)5 = Γ

(C.3)

Now, substituting a in terms of γ from Eq. (2.13 ) with A = 1/R1 + 1/R2 = 2/R and

B = 1/R3
1 + 1/R3

2 = 2/R3, rearranging and simplifying the above equation, we finally get

(
π2D2

5
32 + 9Γ

2

)
γ5 −

(
π2D3D5R

8 + 45RΓ
)
γ4

+
(

π2D2
3R

2

8 + π2D1D5R
2

4 + 180R2Γ
)
γ3 −

(
π2D1D3R

3

2 + 360R3Γ
)
γ2

+
(

π2D2
1R

4

2 + 360R4Γ
)
γ − 144R5Γ = 0

(C.4)

The quintic equations in terms of the unknown γ, given by Eqs. (C.2 ) and (C.4 ), are

solvable in radicals for given values of D1, D3, D5, R and Γ by the method proposed by

(Dummit, 1991 ) (please ref. (Trott & Adamchik, 2001 ) for an implementation of the method

in (“Wolfram Research, Inc”, 2019 )). Although the obtained quintic functions have five roots,

there is only one positive real root, the proof of which is described below.

First, we immediately observe that the limits of the quintic functions in Eqs. (C.2 )

(denoted by g(γ)) and (C.4 ) (denoted by h(γ)) at x → −∞ and x → ∞ are −∞ and ∞

respectively, which means that the functions have at least one real root. Then, we calculate

the derivative of the two polynomials with respect to γ to obtain

g(γ) = 72RΓ +
[

π2

32R3

(
D5γ

2 − 2RD3γ + 4R2D1
) (

5D5γ
2 − 6RD3γ + 4R2D1

) ]
(C.5)
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h(γ) = 45
2 Γ(γ− 2R)4 +

[
π2

32
(
D5γ

2 − 2RD3γ + 4R2D1
) (

5D5γ
2 − 6RD3γ + 4R2D1

) ]
(C.6)

If it is proved that g(γ) and h(γ) are positive in R, then g(γ) and h(γ) are monotonic in

R, meaning that they have only one real root. Both g(γ) and h(γ) include an addition of

two terms, where the first term in both functions is evidently positive, while the second term

contains a product of two quadratic functions in γ, given by

F1(γ) = D5γ
2 − 2RD3γ + 4R2D1 (C.7)

F2(γ) = 5D5γ
2 − 6RD3γ + 4R2D1 (C.8)

If these quadratic functions are both positive or negative in R, then the derivative functions

g(γ) and h(γ) are positive in R. We thus calculate the discriminants of the two quadratic

functions, given by

∆F1(γ) = 4R2(D2
3 − 4D1D5) (C.9)

∆F2(γ) = 4R2(9D2
3 − 20D1D5) (C.10)

Fig. ?? presents the plots of ∆Fi(γ)/4R2 (i = 1, 2) against material parameter λ for die

(Fig. ??) and hydrostatic (Fig. ??) loading configurations. The plots evidently show that the

discriminant values remain negative for λ > 0, with the limiting negative values at λ→∞

provided in Table C.1 . This analysis proves that the quadratic functions F1(γ) and F2(γ) are

positive in R, and hence derivative functions g(γ) and h(γ) are monotonic in R. Therefore, it

is proved that the quintic functions g(γ) and h(γ) have only one real root.

Finally, we observe that g(γ = 0) = −144R2Γ and h(γ = 0) = −144R5Γ. Hence, at γ = 0,

both g(γ) and h(γ) are negative. Therefore, it is also proved that the real root of the qunitic

functions is a positive value.
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Table C.1. Limiting values of ∆Fi(γ)/4R2 (i = 1, 2) at λ → ∞ for die and
hydrostatic loading configurations.

DC HC

lim
λ→∞

∆F1(γ)/4R2 −31.76 −300.49

lim
λ→∞

∆F2(γ)/4R2 −121.70 −1191.71
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D. DETERMINATION OF THE INFLECTION POINT IN

NORMALIZED HARDNESS VERSUS CONTACT

DEFORMATION CURVES FOR PARTICLE COMPRESSION

From the observation of normalized hardness (H̄) vs. contact deformation (γ/2R) curves

obtained from FE simulations of simple (Fig. 2.9a ), hydrostatic (Fig. 2.11a ) and die (Fig.

2.10a ) loading configurations, it is evident that the curves experience a change in curvature

from concave downward to concave upward during the plastic deformation regime. The contact

deformation at the inflection point, i.e., the point of curvature change, can be obtained by

setting the second derivative of H̄ with respect to contact deformation γ/R1 +R2 (= γ/2R)

equal to zero, and solving the resulting equation for the unknown deformation.

Using Eqs. (2.22 ) and (2.23 ) with R1 = R2 = R, the second derivative of H̄ with respect

to γ/2R is given by

∂2H̄

∂
(
γ

2R

)2 = −pLCr
[
tanh(qx) cos

{
x− s(γLC|H̄min , q)

}]r [
4q2csch2(2qx) {r − cosh(2qx)}

−2qrcsch(qx)sech(qx) tan
{
x− s(γLC|H̄min , q)

}
+(r − 1) tan2

{
x− s(γLC|H̄min , q)

}
− 1

]
(D.1)

where

x = γ − γ|H̄max

2R (D.2)

Setting ∂2H̄/∂
(
γ

2R

)2
= 0 and simplifying the resulting equation, we get the following nonlinear

equation in unknown x

4q2csch2(2qx) {r − cosh(2qx)}+ (r − 1) tan2
{
x− s(γLC|H̄min , q)

}
− 2qr csch(qx) sech(qx) tan

{
x− s(γLC|H̄min , q)

}
− 1 = 0

(D.3)

Due to the high degree of non-linearity, the above equation cannot be solved analytically.

However, an approximate solution for x can be obtained by reducing the equation to the first

127



term of its Taylor series expansion at x = 0 (γ/2R = γ|H̄max/2R). The resulting equation is

given by

x2 −
6r tan

{
s(γLC|H̄min , q)

}
(2q2 + 3)(2r + 1) + 3(r + 1) tan2

{
s(γLC|H̄min , q)

}x
− 3(r − 1)

(2q2 + 3)(2r + 1) + 3(r + 1) tan2
{
s(γLC|H̄min , q)

} = 0
(D.4)

The two solutions to the above equation are given by

x =

3r tan
{
s(γLC|H̄min , q)

}
± [3(2q2 + 3)(r − 1)(2r + 1)

+9(2r2 − 1) tan2
{
s(γLC|H̄min , q)

}]1/2
(2q2 + 3)(2r + 1) + 3(r + 1) tan2

{
s(γLC|H̄min , q)

} (D.5)

Among the two solutions, the solution involving a difference of the two terms in the numerator

is always negative, since (2r2 − 1) ≥ r2 and 3(2q2 + 3)(r − 1)(2r + 1) > 0. Therefore, x is

given by the second, positive solution. Consequently, from Eq. (D.2 ), γ/2R at the inflection

point, denoted by γLC|H̄=0/2R is approximately given by

γLC|H̄=0
2R ' γ|H̄max

2R +

3r tan
{
s(γLC|H̄min , q)

}
+ [3(2q2 + 3)(r − 1)(2r + 1)

+9(2r2 − 1) tan2
{
s(γLC|H̄min , q)

}]1/2
(2q2 + 3)(2r + 1) + 3(r + 1) tan2

{
s(γLC|H̄min , q)

} (D.6)
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E. TABLE OF HARDENING PROPERTIES FOR POWER-LAW

HARDENING FINITE ELEMENT SIMULATIONS OBTAINED

FROM THE SPACE-FILLING DESIGN

Table E.1. List of hardening properties arranged in

increasing hardening exponent 1/m

Loading Configuration Hardening exponent 1/m Strength Coefficient κ (MPa)

Simple 0.01147 121.82

0.06089 74.63

0.12139 169.89

0.13846 198.92

0.15821 148.42

0.25955 153.20

0.32677 105.35

0.34713 142.32

0.39201 197.31

0.48242 50.01

0.55297 168.22

0.57323 87.51

0.64738 143.82

0.66044 180.02

0.74587 82.54

0.78127 96.79

0.80861 171.60

0.89157 195.59

0.96440 57.69

0.98094 122.90

Continued on next page
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Table E.1 - Continued from previous page

Loading Configuration Hardening exponent 1/m Strength Coefficient κ (MPa)

Die 3.64464E-05 178.365

0.13111 107.55

0.17510 80.62

0.19445 131.65

0.20387 194.01

0.21847 53.14

0.24474 114.70

0.28132 89.74

0.37109 165.35

0.50651 200.00

0.51749 151.16

0.53180 99.93

0.58408 134.80

0.60726 70.95

0.68869 163.13

0.76285 187.57

0.82236 63.53

0.84324 136.95

0.95015 159.97

0.99996 91.52

Hydro 0.03555 101.72

0.05023 189.20

0.08159 157.97

0.10545 61.72

0.23267 173.683

0.30431 185.82

Continued on next page
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Table E.1 - Continued from previous page

Loading Configuration Hardening exponent 1/m Strength Coefficient κ (MPa)

0.38207 65.80

0.41687 93.75

0.44579 124.48

0.47216 182.98

0.49573 138.75

0.59780 190.80

0.62424 117.38

0.66875 54.55

0.71140 127.75

0.73621 155.10

0.87834 111.59

0.90813 146.76

0.92019 76.88

0.99223 176.68
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