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ABSTRACT

The past few years have seen an increasing focus on fairness and the long-term impact of

algorithmic decision making in the context of Machine learning, Artificial Intelligence and

other disciplines. In this thesis, we model hiring processes in enterprises and organizations

using dynamic mechanism design. Using a stochastic block model to simulate the workings

of a hiring process, we study fairness and long-term evolution in the system.

We first present multiple results on a deterministic variant of our model including conver-

gence and an accurate approximate solution describing the state of the deterministic variant

after any time period has elapsed. Using the differential equation method, it can be shown

that this deterministic variant is in turn an accurate approximation of the evolution of our

stochastic block model with high probability.

Finally, we derive upper and lower bounds on the expected state at each time step,

and further show that in the limiting case of the long-term, these upper and lower bounds

themselves converge to the state evolution of the deterministic system. These results offer

conclusions on the long-term behaviour of our model, thereby allowing reasoning on how

fairness in organizations could be achieved. We conclude that without sufficient, systematic

incentives, under-represented groups will wane out from organizations over time.

7



1. INTRODUCTION

With the growth of the importance of Algorithmic decision making in everyday life through

Machine learning, Artificial Intelligence and other disciplines, there has been an increasing

emphasis on the fairness of the algorithms used for making these decisions. An important

area where fairness is critical, is in hiring policies - they deeply affect the dynamics of most

organizations and consequently, society as a whole.

The traditional under-representation of various under-privileged communities in business

and other organizations results in a pernicious feedback loop when biased hiring practices

are included into the situation. Hiring processes are often driven by prior professional or

personal contacts, and this results in a significant reduction of upward mobility amongst

such communities.

In addition, it is also essential to examine any policy implemented to promote fairness

in terms of whether it establishes fairness in the long term. Liu et al. [1 ] demonstrates that

static fairness criteria do not actually produce lasting improvement over the long-term. They

show that for classification systems (e.g. for loan eligibility), static constraints introduced

to promote fairness can lead to a worsening of the disadvantaged group’s situation in the

long term. Thus, when examining any dynamic, it is necessary to look at it in the context

of its long term behaviour.

The stochastic block model is a generative model for random graphs. The nodes in these

graphs are split into communities and occurrences of connections/collaborations (edges)

between any two nodes are dependent on the community they belong to. This is relevant for

our purposes for it can account for the different likelihoods of two people working together,

given which communities they belong to. For instance, considering we have two communities

A and B, the existence of a similarity bias can be encoded in such a model using a higher

probability for the occurrence of A − A edges than A − B edges. The weighted version of

the stochastic block model also allows encoding different values of utility from collaboration

between different groups of people. In addition to our work on hiring processes, the model

we developed can also capture natural phenomena such as the variation of populations of a
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pair of symbiotic species in a biome, organizational dynamics between experts and novices

who may learn from each other, etc.

The hiring process can be equated to adding new nodes to the graph generated by the

stochastic block model. In each step, one node is added, and the identity of the incoming

node is based on how established the corresponding community is inside the graph. i.e. if

community A has a greater number of edges with higher weights, then the new node joining

the graph is likelier to belong to community A.

A new engineer who is hired into a tech company is likelier to belong to the community

that is more influential and established inside the company. Further biases cause collabo-

rations (and hence positive results) between engineers with similar communal identities to

be likelier. We show in this thesis that in such a system, this behavior would reinforce the

existing implicit biases about that community, result in a hiring environment where the new

engineers who are hired are more likely to belong to the majority community. Over time, the

majority community’s representation will increase while that of the minority is diminished.

Thus, it is essential that incentives are provided to ensure fairness.

We model these incentives as additional weight (the utility of the collaboration) for

edges between two nodes of different communities - this represents additional funding or

other institutional support for diverse collaborations. We define a deterministic variant of

our model that provides several insights into the behaviour of our model. We analytically

derive the system evolution of this determinstic system, and hence the exact circumstances

under which this system will converge to a fair proportion of majority and minority and when

it would lead to an unfair result in the long term. We then use the Hoeffding inequality to

show that this deterministic system is a good representation of our stochastic block model

in the long term. Finally, we present an outline to use the differential equation method to

prove that with high probability, the deterministic variant is a good approximation for the

stochastic system’s temporal evolution.
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1.1 Organization

Chapter 2  gives an overview of related work in fairness in general. Chapter 3  goes into the

required background knowledge in mathematics and probability theory. Chapter 4 introduces

and defines our model along with notation, nomenclature and preliminary equations that are

frequently used in the rest of this thesis. Chapter 5  introduces the deterministic variant of our

stochastic block model and derives numerous results on its temporal evolution. Chapter 6  

goes into detail on the stochastic system and proves that it can be approximated by the

deterministic system.

Chapter 7  concludes the thesis and offers a discussion of potential directions in which our

work may be built upon and improved.

Chapter 8 is a summary of the notation used across this thesis. It is to be used as a reference

whenever the reader is in doubt about the meaning and value of a specific variable, function

or a constant.
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2. RELATED WORK

2.1 Fairness in Algorithmic decision making

The rapid growth of machine learning and algorithmic decision making in the last few

years has made analysis of fairness of these techniques crucial. Informally, fairness means

to ensure that such techniques do not suffer bias against or towards particular population

groups. Gajane and Pechenizkiy [2 ] present a survey of various formalizations of fairness and

a theoretical as well as empirical critique over these notions. Chouldechova and Roth [3 ],

Mehrabi et al. [4 ] provide a survey of theoretical work aimed at understanding algorithmic

bias and fairness in machine learning.

There has been significant research on achieving fairness in the hiring process, mostly

focusing on altering the nature of the hiring process to achieve fairness. Hu and Chen [5 ]

propose a dual labor market with a temporary labor market (TLM) - where constraints are

placed to ensure statistical parity of workers granted entry, and a permanent labor market

(PLM) where the the top performers are hired. The constraints in the TLM achieve an

equitable long-term equilibrium in the PLM.

Liu et al. [6 ] discuss interventions in the broader context of classification algorithms. It

stages interventions in two forms: by decoupling the decision rule for classification by group

and by subsidizing the cost of investment to acquire a qualification (such as the tuition cost

of a university program) in order to motivate more individuals from a disadvantaged groups

to invest in obtaining said qualifications. They also lay special focus on situations where

investment cost is different for each group (such as higher rate of interest for a low income

family). These interventions are aimed at improving the equilibrium qualification rate of

disadvantaged groups.

These results in general alter the nature of the hiring process, in addition to targeting

benefits to a specific community. In contrast to these results, our work focuses on altering

the internal dynamics of the organization. By only incentivizing collaborations between two

communities, we demonstrate that it is possible to indirectly influence the hiring process

in a way that promotes fair representation in the organization that is preserved over the

long-term.
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Liu et al. [1 ] demonstrates that many static fairness criteria do not necessarily promote

improvement over the long term. They show that for classification systems (e.g. for loan

eligibility), static constraints introduced to promote fairness can lead to a worsening of the

disadvantaged group’s situation in the long term. In addition, they show measurement

errors may mislead us into overestimating the effectiveness of these criteria and depict the

importance of measurement in evaluation of fairness criteria. Taking these observations into

account, we also examine the long term impact of providing incentives in this thesis.

2.2 The differential equation method

There are a number of random graph processes that are useful in a variety of situations.

For instance, one such process is the degree bound graph process where we take an edgeless

graph of n vertices and keep adding edges to it until we obtain a graph where the subgraph

induced by the vertices of degree less than d is a clique. The differential equation method

approximates the trajectories of a random process by the solutions to differential equations.

Wormald [7 ] provides a general framework for applying the differential equation method to

discrete-time randomized algorithms and random combinatorial structures. This powerful

technique can be applied in a large variety of problems. As a specific example, in the degree

bound graph process mentioned above, using the differential equation method and some

other arguments, it was shown that asymptotically almost surely the final graph is regular

if dn is even, and almost regular, with one vertex of degree d − 1 and the rest of degree

d, otherwise. Warnke [8 ] provides a simplified and slightly improved version (with better

accuracy and less error probability) of the primary result in [7 ] which we can use for the

model described in this thesis.

We now present a number of articles which use the differential equation method for their

results. The H-free process is a random graph process defined by starting with an empty

graph on n vertices and then adding edges one at a time, chosen uniformly at random

subject to the constraint that no H subgraph is formed (where H is a fixed graph). Bohman

and Keevash [9 ] present multiple results for the H-free process including the independence

number, Ramsay number and the Turan number for specific classes of graphs by using the
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differential equation method. Amini and Minca [10 ] analyse the epidemic process among a

population that interacts through a network. They show that in the random regular graphs,

voluntary social distancing will always be sub-optimal and they use the differential equation

method from [8 ] and [7 ] as a key part of their proof. More instances of the application of

the differential equation method can be found in Branzei and Peres [11 ], Manurangsi and

Suksompong [12 ], Yang and Yeung [13 ].

2.3 The stochastic block model

The stochastic block model is a generative model for random graphs. It is often used to

study clustering and community detection. Loosely, community detection is about partition-

ing the vertices of a graph into clusters that are more densely connected. Abbe [14 ] provides

a detailed survey of recent results in community detection using the stochastic block model.

Heimlicher, Lelarge and Massoulié [15 ] present results for community detection in a labelled

version of the stochastic block model. This labelled version is essentially similar to the reg-

ular stochastic block model except for an assignment of labels to the edges in the graph and

can be useful in a number of specialized applications such as protein-protein interactions

which may be exothermic (release energy) or endothermic (require energy).

The community detection (community recovery) in stochastic block model could be clas-

sified into multiple categories based on the guaranteed optimality properties: Exact recovery

where the communities are recovered with high probability i.e., with probability tending to

one as n− the number of vertices tends to infinity and minimum misclustering error rate

are some of them. Exact recovery is studied by Abbe, Bandeira and Hall [16 ], Jog and

Loh [17 ], Abbe and Sandon [18 ]. Gao, Ma, Zhang and Zhou [19 ] present a polynomial time

algorithm to achieve optimal results in misclustering proportion for stochastic block model

under weak regularity conditions. Xu, Jog and Loh [20 ] study a weighted version of the

community detection problem using the stochastic block model where the weight of each

edge is generated independently from an unknown probability density determined by the

community membership of its endpoints and the observations are collected in a weighted

adjacency matrix.
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Our usage of the stochastic block model is not for community detection, but rather to

model connections and collaborations in an organization.
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3. BACKGROUND

3.1 Weighted Stochastic block model

The stochastic block model is a model used to generate random graphs. This model

is usually used to produce graphs containing communities, which are subsets characterized

by being connected with one another with particular edge densities. For example, edges

between two specific communities might be more common than edges between any other

pair of communities.

In the stochastic block model there are n nodes labelled {1, . . . , n}. Each node i has

a color ci ∈ {c1, . . . , cr}. A graph is generated as follows: each edge (i, j) is formed with

probability Pci,cj , where P is a symmetric matrix of size r × r.

In the weighted stochastic block the model, the edges have weights. If edge (i, j) exists,

then it gets weight wci,cj .

In a real world scenario, the color of a node could represent the community or type of

that node. In much of the literature, the problem is: given a graph G that was generated

according to the stochastic block model, recover the underlying model (i.e. the probability

matrix P and weights w).

3.2 Hoeffding inequality

Theorem 3.2.1. By the Hoeffding inequality([21 ]), if X1, X2..., Xn are independent random

variables such that ai ≤ Xi ≤ bi for all i and X = ∑i=n
i=1 Xi, µ = E[X], ci = bi − ai. Then, for

all ∆ > 0

Pr[|X − µ| > ∆] ≤ 2e
−2∆2

n
∑i=n

i=1 c2
i (3.1)

3.3 σ−field

A σ−field is a collection of subsets of sample space which satisfy certain properties and

are used to establish a formal definition of probability.

15



Let X be some set and P(X) be it’s power set. Then, if Σ ⊆ P(X), then Σ is a σ−field

if it satisfies the following properties:

• X is in Σ.

• Σ is closed under union operation.

• Σ is closed under the complement operation.

Note that the combination of the first and third properties means that the null set must

be in Σ for it to be a σ−field.

3.4 The differential equation method

Given that we wish to track a derived random sequence associated with an underlying

discrete-time stochastic process, Wormald’s differential equation method shows that this

random sequence can be PAC-approximated (Probably Approximate Correct) by the solution

to a differential equation. The following is a refined version of Wormald’s theorem by Warnke

([8 ]).

Theorem 3.4.1. ([8 ]) Given integers a, n ≥ 1, a bounded domain D ⊆ Ra+1, functions

(Fk)1≤k≤a with Fk : D → R, and σ−fields F0 ⊆ F1 ⊆ · · · , suppose that the random variables

((Yk(i))1 ≤ k ≤ a are Fi-measurable for i ≥ 0. Furthermore, assume that, for all i ≥ 0 and

1 ≤ k ≤ a, the following conditions hold whenever (i/n, Y1(i)/n, ..., Ya(i)/n) ∈ D:

•
∣∣E[Yk(i + 1) − Yk(i) | Fi] − Fk(i/n, Y1(i/n), . . . , Ya(i/n))

∣∣ ≤ δ, where the function Fk is

L−Lipschitz continuous on D,

•
∣∣Yk(i + 1) − Yk(i)

∣∣ ≤ β

and the following condition holds initially:

• max1≤k≤a

∣∣Yk(0) − ŷkn
∣∣ ≤ λn for some (0, ŷ1, . . . , ŷa) ∈ D

16



Then there are R = R(D, (Fk)1≤k≤a, L) ∈ [1, ∞) and T = T (D) ∈ (0, ∞) such that,

whenever λ ≥ δmin{T, L−1} + R/n, with probability at least 1 − 2ae−nλ2/(8T β2) we have

max0≤i≤σn max1≤k≤a

∣∣∣∣∣Yk(i) − yk

( i
n

)
n

∣∣∣∣∣ < 3eLT λn (3.2)

where (yk(t))1≤k≤a is the unique solution to the system of differential equations

yk'(t) = Fk(t, y1(t), . . . , ya(t)) with yk(0) = ŷk for 1 ≤ k ≤ a (3.3)

and σ = σ(ŷ1, . . . , ŷa(t)) ∈ (0, T ] is any choice of σ ≥ 0 with the property that (t, y1(t), . . . , ya(t))

has `∞ -distance at least 3eLT λ from the boundary of D for all t ∈ [0, σ).
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4. THE MODEL

4.1 Weighted Stochastic Block Model

Let [n] = {1, . . . , n} be a set of nodes, such that each node i has color ci ∈ {red, blue}.

A random undirected graph is generated by creating each edge (i, j) with probability Pci,cj .

The probability matrix P is symmetric, with Pi,j = Pj,i = a if nodes i and j have the same

color, and Pi,j = Pj,i = b otherwise.

If edge (i, j) is formed, its weight is wci,cj , the weight matrix w is symmetric, with wci,cj =

α > 0 if i and j have the same color and wci,cj = β > 0 if they have different colors.

4.2 Dynamics

We study a dynamic process where at each step, a random graph is generated according

to the weighted stochastic block model. Then a new node arrives, taking color red (blue)

with probability equal to the edge weight of red (blue).

More formally, we slightly override notation and denote by wi,j(t) the weight of edge (i, j)

at time t. We have:

wi,j(t) =


wci,cj with probability Pci,cj

0 otherwise
(4.1)

The sum of weights at time t is w(t) = ∑n
i,j=1 wi,j(t). We refer to w(t) as the total weight at

time t. The weight of each color at time t is

wred(t) =
∑

i:ci=red

∑
j

wi,j(t) and wblue(t) =
∑

i:ci=blue

∑
j

wi,j(t) .

18



The dynamical system we study is formally defined as follows.

Dynamical system definition: At each time step t = 0, 1, 2, . . .,

• a random graph Gt is generated according to probability matrix P and weights w.

• a new node arrives. If w(t) > 0, the node takes color red with probability pt = wr(t)
w(t)

and blue with probability 1 − pt. If w(t) = 0, then the new node takes each of the

colors with probability pt = 1/2.

Notation: We use the following notation through the rest of this thesis. In addition, we

also define a few more variables whenever they are required in each section.

Let ρ = ν
λ

where ν = a
b

and λ = β
α
.

Without loss of generality, we assume that when the dynamic begins, the color red is the

minority if one exists. We also assume that we start with more than zero nodes i.e., n > 0

for the problem fails to be interesting otherwise. Let nr(t) and nb(t) denote the number of

red and blue nodes at time t, respectively. Since one node arrives at each point in time, we

have n + t nodes in total at time t, with

nr(t) = X(t) · (n + t) (4.2)

nb(t) =
(
1 − X(t)

)
· (n + t) (4.3)

4.3 Questions

For the dynamic we defined earlier, we investigate the following questions :

• A deterministic system that can be useful for understanding the random one is obtained

by considering the update rule obtained as n → ∞. At what threshold λ∗(P ) is there

a phase transition? It seems that at ρ = 0 the minority will vanish in the long run,

while at λ = ∞ it will achieve fair representation (50%). What is the threshold for

this change?

• In the stochastic system, how long does it take for the minority to achieve a certain

minimum representation?
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• Understand the stochastic system and show what happens with high probability.

4.4 An update rule for the stochastic system

Let Y (t) be an indicator random variable, such that Y (t) = 1 if the color of the incoming

node at time t is red, and Y (t) = 0 otherwise. Thus we have

Y (t) =




1 with probability wr(t)

w(t)

0 with probability 1 − wr(t)
w(t)

if w(t) 6= 0


1 with probability 1

2
0 with probability 1

2

if w(t) = 0

(4.4)

Let {Ft}t≥0 be a set of increasing σ−fields which denote the history of the stochastic process

where Ft denotes the history after t rounds i.e., after t new nodes are added to the system.

It follows that, if w(t) 6= 0,

E[Y (t) | Ft] = E
[

wr(t)
w(t)

∣∣∣∣∣ Ft

]
(4.5)

Recall the fraction of red nodes at time t is

X(t) = nr(t)
n + t

(4.6)

From the definition of our dynamic, we have the following update rule:

X(t + 1) = X(t) · (n + t) + Y (t)
n + t + 1 (4.7)

20



(a)ρ = 10 (b)ρ = 2.5

(c)ρ = 0.1 (d)ρ = 0.01

Figure 4.1. Trial runs of the stochastic system for a range of values of ρ. We
start with 200 nodes in all cases.
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(a)ρ = 1 (b)ρ = 1.0000025

(c)ρ = 0.9999

Figure 4.2. Trial runs of the stochastic system when ρ is close to 1. There
is some fluctuation initially as each coin flip greatly affects the fraction. But
over time the system stabilizes around a specific point.
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4.5 Motivation

We believe that this dynamic will be a good representation of the hiring process in

organizations where a newly inducted employee is more likely to belong to the more influential

community. Our model aspires to study and also promote fairness in organisations. In

addition, we also believe that this model or it’s variants can be applied to several interesting

problems such as the variation of populations of a pair of symbiotic species in a biome,

organizational dynamics between experts and novices who may learn from each other and

so forth. Finally, we hope that our work in this model could inspire research in similar

dynamics that have a lot of applications in the real world.
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5. A DETERMINISTIC SYSTEM

In order to understand the stochastic system, we will first pick and study a deterministic

system. Later, we will see that this deterministic system is with high probability a good

approximation to the stochastic system.

5.1 The update rule

We consider the deterministic dynamical system given by the following update rule:

Xd(t + 1) = Xd(t) · (n + t) + Yd(t)
n + t + 1 (5.1)

where

Yd(t) = ρ ·
(
Xd (t)

)2 + Xd (t) ·
(
1 − Xd (t)

)
ρ ·
((

Xd (t)
)2 +

(
1 − Xd (t)

)2)+ 2Xd (t) ·
(
1 − Xd (t)

)
Any variable which has the subscript d denotes that the variable is for the deterministic

system.

Let wrr(t) denote the sum of weights of all edges between two red nodes at time t. Then

E[wrr(t) | Ft] = aα(nr(t))2 = aα(X(t))2(n + t)2 (5.2)

The above expression comes because there are nr(t) · nr(t) edges that can form between two

red nodes. And each of those edges is formed with a probability of a and has a weight of α.

Finally, we use (4.2 ) to rewrite nr(t) in terms of X(t).

Similarly, if wrb(t) denotes the sum of weights of all edges between a red node and a blue

node at time t, then

E[wrb(t) | Ft] = bβ(nr(t))(n + t − nr(t)) = bβ(X(t))(1 − X(t))(n + t)2 (5.3)
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Combining (5.2 ) and (5.3 ) we get

E[wr(t) | Ft] = E[wrr(t) + wrb(t) | Ft] = aα(n + t)2(X(t))2 + bβ(n + t)2(X(t))(1 − X(t))

(5.4)

where wr(t) denotes the sum of weights of all edges which are incident on at least one red

node at time t.

Similarly, we get the following sets of expressions for the color blue:

E[wbb(t) | Ft] = aα(nb(t))2 = aα(1 − X(t))2(n + t)2 (5.5)

Then, E[wb(t)|X(t)] will be given by

E[wb(t) | Ft] = E[wbb(t) + wrb(t) | Ft] (5.6)

= aα(n + t)2(1 − X(t))2 + bβ(n + t)2(X(t))(1 − X(t))

Finally, combining (5.6 ) and (5.4 ), we can see that

E[w(t) | Ft] = E[wr(t) + wb(t) | Ft] (5.7)

= aα(n + t)2
(
(X(t))2 + (1 − X(t))2

)
+ 2bβ(n + t)2(X(t))(1 − X(t))

We obtain Yd(t) by taking (4.5 ) and approximating it as

Yd(t) = E[wr(t) | Ft]
E[w(t) | Ft]

(5.8)
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(a) (b)

Figure 5.1. Minority Proportion vs Time. In both cases we start with 200 nodes of
which 50 are red. In case (b) the value of ρ is 4(> 1) and the minority diminishes over time,
while in (a) we have ρ = 0.25.

From (5.4 ), (5.7 ) and (5.8 ), it follows that

Yd(t) = aα(n + t)2(Xd(t))2 + bβ(n + t)2(Xd(t))(1 − Xd(t))
aα(n + t)2 ((Xd(t))2 + (1 − Xd(t))2)+ 2bβ(n + t)2(Xd(t))(1 − Xd(t)) (5.9)

= ρ(Xd(t))2 + (Xd(t))(1 − Xd(t))
ρ
(
(Xd(t))2 + (1 − Xd(t))2)+ 2(Xd(t))(1 − Xd(t)) (5.10)

Finally, combining (5.1 ) and (5.8 ), we obtain,

Xd(t + 1) = 1
n + t + 1

(
Xd(t) · (n + t) + ρ(Xd(t))2 + (Xd(t))(1 − Xd(t))

ρ
(
(Xd(t))2 + (1 − Xd(t))2)+ 2(Xd(t))(1 − Xd(t))

)
(5.11)

Note that this Yd(t) can be a fraction. To get an intuitive feel, consider that every node

can be a mix of red and blue. So, when a new node is added, it could be partially red and

partially blue. In addition, Xd(t) is obtained by adding the fraction of red in every node and

normalizing it.
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5.2 The fixed points of the deterministic system

Lemma 1. If, ρ 6= 1 then the fixed points of the deterministic system given by (5.11 ) are at

Xd(t) ∈ {0, 1
2 , 1}. If, ρ = 1, then every point Xd(t) ∈ [0, 1] is a fixed point of the deterministic

system given by (5.11 )

Proof. In order to find the fixed points of (5.11 ), we need to find Xd(t) satisfying

Xd(t + 1) = Xd(t)

Using, (5.11 ), we instead need

Xd(t) = 1
n + t + 1 ·

(
Xd(t) · (n + t) + ρ(Xd(t))2 + (Xd(t))(1 − Xd(t))

ρ
(
(Xd(t))2 + (1 − Xd(t))2)+ 2(Xd(t))(1 − Xd(t))

)

Simplify the above equation and we get

Xd(t) = ρ(Xd(t))2 + (Xd(t))(1 − Xd(t))
ρ
(
(Xd(t))2 + (1 − Xd(t))2)+ 2(Xd(t))(1 − Xd(t)) (5.12)

Cross-multiply and simplify (5.12 ) and we instead need a Xd(t) that satisfies

(
Xd(t)

)3 (2ρ − 2) +
(
Xd(t)

)2 (−2ρ + 2) + ρXd(t) = ρ
(
Xd(t)

)2 + Xd(t)
(
1 − Xd(t)

)
= 0

(5.13)

Simplify and factorise (5.13 ) and we obtain,

(1 − ρ)Xd(t)
(
Xd(t) − 1

) (
2Xd(t) − 1

)
= 0

Thus, as long as ρ 6= 1, the fixed points are at Xd(t) = 1,Xd(t) = 1
2 and Xd(t) = 0.

However, if ρ = 1, then every point Xd(t) ∈ [0, 1] is a fixed point of the deterministic

system.
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5.3 Convergence of the deterministic system

Lemma 2. Consider the function G : [0, 1] → R given by

G(x) = (1 − ρ)(x − 1) · x · (2x − 1) (5.14)

Then G(Xd(t)) has the same sign as Xd(t + 1) − Xd(t).

Proof. From (5.11 ) we have

Xd(t + 1) − Xd(t) = 1
n + t + 1 ·

(
−Xd(t) + ρ(Xd(t))2 + (Xd(t))(1 − Xd(t))

ρ
(
(Xd(t))2 + (1 − Xd(t))2)+ 2(Xd(t))(1 − Xd(t))

)

Then we get

Xd(t + 1) − Xd(t) = −2(Xd(t))3ρ + 2(Xd(t))3 + 3(Xd(t))2ρ − 3(Xd(t))2 − (Xd(t))ρ + (Xd(t))(
ρ
(
2(Xd(t))2 − 2(Xd(t)) + 1

)
+ 2(Xd(t))

(
1 − (Xd(t))

))
(n + t + 1)

(5.15)

The denominator in the above expression is always positive and hence it does not affect the

sign. Hence, the sign of Xd(t + 1) − Xd(t) is the same as the sign of the numerator in (5.15 ),

that is:

−2(Xd(t))3ρ + 2(Xd(t))3 + 3(Xd(t))2ρ − 3(Xd(t))2 − (Xd(t))ρ + (Xd(t)) (5.16)

Factorising (5.16 ), we obtain (1−ρ)(Xd(t)−1)Xd(t)(2Xd(t)−1) = G(Xd(t)) as required.

Lemma 3. Consider the deterministic system (Xd)n≥0. Then Xd(t + 1) > Xd(t) when one

of the following conditions holds

1. ρ > 1 and 1
2 < Xd(t) < 1

2. ρ < 1 and 0 < Xd(t) < 1
2

Proof. We have Xd(t+1) > Xd(t) when Xd(t+1)−Xd(t) > 0. From Lemma 2 , the inequality

is satisfied when G(Xd(t)) = (1−ρ)(Xd(t)−1)Xd(t)(2Xd(t)−1) > 0. We have G(Xd(t)) > 0

when one of the conditions 1 and 2 holds.
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Lemma 4. Consider the deterministic system (Xd)n≥0. Then Xd(t + 1) < Xd(t) when one

of the following conditions holds

1. ρ < 1 and 1
2 < Xd(t) < 1

2. ρ > 1 and 0 < Xd(t) < 1
2

Proof. We have Xd(t+1) < Xd(t) when Xd(t+1)−Xd(t) < 0. From Lemma 2 , the inequality

is satisfied when G(Xd(t)) = (1−ρ)(Xd(t)−1)Xd(t)(2Xd(t)−1) < 0. We have G(Xd(t)) < 0

when one of the conditions 1 and 2 holds.

Lemma 5. Consider the deterministic system (Xd)n≥0. Recall that Xd(0) ≤ 1
2 . then the

minority never becomes an absolute majority i.e., Xd(t) ≤ 1
2 ∀t ≥ 0

Proof. In any round, we have from (5.9 ),

Yd(t) = ρ(Xd(t))2 + (Xd(t))(1 − Xd(t))
ρ
(
(Xd(t))2 + (1 − Xd(t))2)+ 2(Xd(t))(1 − Xd(t)) (5.17)

= ρ(Xd(t))2 + (Xd(t))(1 − Xd(t))
ρ(Xd(t))2 + (Xd(t))(1 − Xd(t)) + ρ(1 − Xd(t))2 + (Xd(t))(1 − Xd(t)) (5.18)

If Xd(t) ≤ 1
2 , then

ρ(Xd(t))2 ≤ ρ(1 − Xd(t))2

The above expression is true because 1 − Xd(t) ≥ Xd(t) and in addition, Xd(t) as well as

1 − Xd(t) are positive. Thus, it follows that

ρ(Xd(t))2 + (Xd(t))(1 − Xd(t)) ≤ ρ(1 − Xd(t))2 + (Xd(t))(1 − Xd(t)) (5.19)

From (5.19 ), we can see that

2
(
ρ(Xd(t))2 + (Xd(t))(1 − Xd(t))

)
≤ ρ

(
(Xd(t))2 + (1 − Xd(t))2

)
+ 2(Xd(t))(1 − Xd(t))
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and thus when we also use (5.17 ), we have

Yd(t) ≤ 1
2

The above expression means that in any step, if we add a new node, the new node always

has a fraction of the majority color that is at least as big as the fraction of the minority

color. Extending this over multiple steps, we can see that the fraction of the majority color

added over multiple steps as at least as big as the fraction of the minority color added.

Thus, the number of majority nodes is always at least as big as the number of minority

nodes and the lemma is proved.

Theorem 5.3.1. Assume that the deterministic system does not start at Xd(0) ∈ {0, 1
2 , 1}.

Then,

• If ρ > 1, the deterministic system converges to 0,1 (i.e the minority moves to 0 and

the majority to 1)

• if ρ < 1, the deterministic system converges to 1
2

• if ρ = 1, the deterministic system stays wherever it is.

Proof. Recall that 0 ≤ Xd(0) ≤ 1
2 from our model definition (as red is the minority at the

start of the dynamic if one exists). In addition, using our assumptions, we have 0 < Xd(0) <

1
2 .

• If ρ > 1, by Lemma 4 , Xd(t + 1) < Xd(t). We have a decreasing sequence which is

bounded below (at Xd(t) = 0). Thus, it has to converge. Apply Lemma 1 and it

follows that Xd(t) has to converge at Xd(t) = 0.

• If ρ < 1, by Lemma 3 , Xd(t + 1) > Xd(t). We have a increasing sequence which is

bounded above (at Xd(t) = 1
2 - using Lemma 5 ). Thus, it has to converge. Apply

Lemma 1 and it follows that Xd(t) has to converge at Xd(t) = 1
2 .
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Theorem 5.3.2. The deterministic system (Xd)n≥0 is monotonic.

Proof. We can split this into three cases, depending on whether ρ > 1, ρ = 1, or ρ < 1. We

consider them case by case.

• When ρ > 1, we can split this further into three sub cases. When 0 < Xd(t) < 1
2 , we

can apply Lemma 4 to see that Xd(t + 1) < Xd(t). Further, when 1
2 < Xd(t) < 1,

we can use Lemma 3 to see that Xd(t + 1) > Xd(t). Finally, when Xd(t) ∈ {0, 1
2 , 1},

Xd(t + 1) = Xd(t) using Lemma 1 . Thus, in this case, Xd(t) is monotonic as long as

it does not cross a fixed point. By Lemma 5 , the system never crosses the fixed point

Xd(t) = 1
2 and in addition it cannot cross Xd(t) = 0 or Xd(t) = 1 because it’s domain

is restricted to [0, 1] (since it is a fraction.)

• When ρ = 1, by Lemma 1 , Xd(t + 1) = Xd(t) and thus the system is monotonic.

• When ρ < 1, we can split this further into three sub cases. When 0 < Xd(t) < 1
2 , we

can apply Lemma 3 to see that Xd(t + 1) > Xd(t). Further, when 1
2 < Xd(t) < 1,

we can use Lemma 4 to see that Xd(t + 1) < Xd(t). Finally, when Xd(t) ∈ {0, 1
2 , 1},

Xd(t+1) = Xd(t) using 1 . Thus, in this case, Xd(t) is monotonic as long as it does not

cross a fixed point. By Lemma 5 , the system never crosses the fixed point Xd(t) = 1
2

and in addition it cannot cross Xd(t) = 0 or Xd(t) = 1 because it’s domain is restricted

to [0, 1] (since it is a proper fraction.)

Thus, the system is monotonic in all three cases and is monotonic overall.

5.4 A continuous approximation of the deterministic system

We now look at a continuous time approximation of (5.11 ) specified by the following set

of equations.


ξ(t + h) = 1

n + t + h
·
(
ξ(t) · (n + t) + ρ(ξ(t))2 + (ξ(t))(1 − ξ(t))

ρ
(
(ξ(t))2 + (1 − ξ(t))2)+ 2(ξ(t))(1 − ξ(t)) · h

)
ξ(0) = Xd(0)

(5.20)
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Theorem 5.4.1. The solution to the continuous system specified at (5.20 ) is given by the

solution of the differential equation:


dξ(t)

dt
= − 2 (ρ − 1)

(
ξ(t) − 1

)
ξ(t) + ρ

(ρ − 1)
(
ξ(t) − 1

)
ξ(t)

(
2ξ(t) − 1

) · 1
n + t

ξ(0) = Xd(0)
(5.21)

The solution to the differential equation described in (5.21 ) satisfies the following expres-

sion.

(ρ + 1) ln
(∣∣2ξ(t) − 1

∣∣)− ρ
(

ln
(∣∣ξ(t)

∣∣)+ ln
(∣∣ξ(t) − 1

∣∣))
ρ − 1

∣∣∣∣∣∣
ξT

ξ0

= ln|t + n|

∣∣∣∣∣∣
tT

t0

(5.22)

Proof. First, notice that

dξ(t)
h

= ξ(t + h) − ξ(t)
h

(5.23)

Then, using (5.23 ) and (5.20 ), we can see that

dξ(t)
h

= 1
n + t + h

·
(
−ξ(t) · (h) + ρ(ξ(t))2 + (ξ(t))(1 − ξ(t))

ρ
(
(ξ(t))2 + (1 − ξ(t))2)+ 2(ξ(t))(1 − ξ(t)) · h

)
· 1

h

Simplifying the above expression, we can see that

dξ(t)
h

= 1
n + t + h

· − (ρ − 1)
(
ξ(t) − 1

)
ξ(t)

(
2ξ(t) − 1

)
2 (ρ − 1)

(
ξ(t) − 1

)
ξ(t) + ρ

Take the limit of the above equation as h approaches 0 and we have

lim
h→0

dξ(t)
h

= dξ(t)
dt

= lim
h→0

( 1
n + t + h

· − (ρ − 1)
(
ξ(t) − 1

)
ξ(t)

(
2ξ(t) − 1

)
2 (ρ − 1)

(
ξ(t) − 1

)
ξ(t) + ρ

)
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Applying the limit, we get

dξ(t)
dt

= 1
n + t

· − (ρ − 1)
(
ξ(t) − 1

)
ξ(t)

(
2ξ(t) − 1

)
2 (ρ − 1)

(
ξ(t) − 1

)
ξ(t) + ρ

which is the first result of the theorem.

Next, we will obtain the solution to this differential equation. First, cross multiply and

we get a new equation

− 2 (ρ − 1)
(
ξ(t) − 1

)
ξ(t) + ρ

(ρ − 1)
(
ξ(t) − 1

)
ξ(t)

(
2ξ(t) − 1

) · dξ(t) = dt

n + t
(5.24)

Using partial fractions, the left-hand-side of (5.24 ) can be rewritten as

1
ρ − 1 ·

(
(−2ρ − 2) · 1

2ξ(t) − 1dξ(t) + ρ · 1
ξ(t)dξ(t) + ρ · 1

ξ(t) − 1dξ(t)
)

Integrate each of these terms and we obtain the following

(2ρ + 2) · ln|2ξ(t) − 1|
2 (ρ − 1) − ρln|ξ(t)|

(ρ − 1) − ρln|ξ(t) − 1|
(ρ − 1) + C1

where C1 is some constant.

Simplify it and then apply limits and we obtain the left-hand-side in (5.22 ).

Integrating the right hand side of (5.21 ), we get

ln|t + n|

∣∣∣∣∣∣
tT

t0

+ C2

where C2 is some constant. Applying limits and we obtain the right hand side of (5.22 ).

Thus, we obtain the solution of the differential equation described at (5.21 ).

The solution of this differential equation is a good approximation to our deterministic

system. We do not present a formal result on the accuracy of the system described by this

continuous equation. However, our experiments suggest that this approximation is very close

to the original deterministic system.
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The expression given in Theorem 5.4.1 gives us an approximation of the deterministic

system with very good accuracy. Using the differential equation method [8 ], one could also

see that it gives a good approximation of the stochastic system with high probability.

Although Theorem 5.4.1 does not let us find ξ(t) directly, one could use a root-finding

algorithm like the Newton-Raphson method to get the value of ξ(t) for any time interval

from t0 to tT . However, proper care needs to be taken to ensure that in the case of multiple

roots, we take the correct root i.e., the root which satisfies our results in the earlier sections.

For instance, in the event that ξ(0) < 1
2 , if we have two roots for ξ(t) with one root more

than 1
2 and another less than 1

2 , then the correct root which fits the original deterministic

system would be then one less than 1
2 .

When we do that and plot the difference between the discrete deterministic system and

the continuous approximation, we notice that the continuous system is an excellent approx-

imation of the deterministic system. Their difference appears to be very less across multiple

experiments.
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(a)

(b) (c)

Figure 5.2. A plot of the continuous approximation against the deterministic system.
In (a), we show the difference between the value as per our continuous approximation and
the deterministic system. (b) shows the values taken by the actual deterministic system,
while (c) shows the values that we predict using the approximation at integer time points.
We start with 200 nodes of which 50 are red. We also have ρ = 0.19.
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6. THE STOCHASTIC SYSTEM

We will now look at the stochastic system that we talked about earlier in the model section.

We will see some bounds for the update rule which give us an idea of how our system behaves

in the long run.

6.1 Upper and lower bounds on the update rule

We use the following notation for this section in addition to more variables to be defined

later:



Mab = max(a, b)

ma,b = min(a, b)

Mαβ = max(α, β)

mα,β = min(α, β)

(6.1)

Lemma 6. For the stochastic system, we have the following set of inequalities,


E[w(t) | Ft] ≤ Mab · Mαβ · (n + t)2

E[w(t) | Ft] ≥ ma,b · mα,β · (n + t)2

Proof. First, from (5.7 ), we have

E[w(t) | Ft] = aα
(
(nr(t))2 + (nb(t))2

)
+ 2bβ · nr(t) · nb(t)

Using the definition of Mab and Mαβ, we get

E[w(t) | Ft] ≤ Mab · Mαβ ·
(
(nr(t))2 + (nb(t))2

)
+ 2MabMαβ · nr(t) · nb(t)
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This can be rewritten as

E[w(t) | Ft] ≤ Mab · Mαβ ·
(
(nr(t))2 + nr(t) · nb(t) + (nb(t))2 + nr(t) · nb(t)

)

which then becomes

E[w(t) | Ft] ≤ Mab · Mαβ

(
nr(t)(nr(t) + nb(t)) + nb(t)(nr(t) + nb(t))

)

followed by

E[w(t) | Ft] ≤ Mab · Mαβ

(
nr(t)(n + t) + nb(t)(n + t)

)

which finally becomes

E[w(t) | Ft] ≤ Mab · Mαβ · (n + t)2

which is the required statement.

We will now see the proof of the other inequality. First, from (5.7 ), we have

E[w(t) | Ft] = aα
(
(nr(t))2 + (nb(t))2

)
+ 2bβ · nr(t) · nb(t)

Using the definition of mab and mαβ, we get

E[w(t) | Ft] ≥ mab · mαβ ·
(
(nr(t))2 + (nb(t))2

)
+ 2mabmαβ · nr(t) · nb(t)

This can be rewritten as

E[w(t) | Ft] ≥ mab · mαβ

(
nr(t)(nr(t) + nb(t)) + nb(t)(nr(t) + nb(t))

)

followed by

E[w(t) | Ft] ≥ mab · mαβ

(
nr(t)(n + t) + nb(t)(n + t)

)
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which finally becomes

E[w(t) | Ft] ≥ mab · mαβ · (n + t)2

which is the required statement.

Lemma 7. For any δ > 0 we have


Pr
[
|wr(t) − E[wr(t) | Ft]| > δ

]
< 2e

−2δ2

nr(t)·n(t)·M2
αβ

Pr
[
|w(t) − E[w(t) | Ft]| > δ

]
< 2e

−2δ2

(n+t)2·M2
αβ

(6.2)

Proof. Recall that wi,j(t) is a random variable that denotes the weight of the edge between

node i and node j at the time t (4.1 ). First, see that

wr(t) =
∑

i∈R(t),j∈R(t)
wi,j(t) +

∑
i∈R(t),j∈B(t)

wi,j(t) (6.3)

where R(t), B(t) is the set of red nodes, blue nodes at time t respectively.

We can interpret wr(t) as the sum of nr(t) · nr(t) + nr(t) · nb(t) = nr(t) · (n + t) variables.

Of these variables, nr(t) · nr(t) variables correspond to edges between two red nodes and

hence take a value between 0 and α ≤ Mαβ while nr(t) · nb(t) variables correspond to edges

between a red node and a blue node and hence takes a value between 0 and β ≤ Mαβ. Using

these observations and the hoeffding inequality (3.1 ) and (6.3 ), we can see that

Pr(|wr(t) − E[wr(t) | Ft]| > δ) < 2e
−2δ2

nr(t)·(n+t)·M2
αβ

which is the first result required in the lemma.

Similarly, we can also see that

w(t) =
∑

i∈R(t),j∈R(t)
wi,j(t) + 2

∑
i∈R(t),j∈B(t)

wi,j(t) +
∑

i∈B(t),j∈B(t)
wi,j(t) (6.4)
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We can interpret w(t) as the sum of nr(t) · nr(t) + 2nr(t) · nb(t) + nb(t) · nb(t) = (nr(t))2 +

(nb(t))2 +2nb(t) ·nr(t) =
(
nr(t)+nb(t)

)2
= (n+ t)2 variables. Of these variables, nr(t) ·nr(t)

variables correspond to edges between two red nodes and hence take a value between 0 and

α ≤ Mαβ while 2nr(t)·nb(t) variables correspond to edges between a red node and a blue node

and hence takes a value between 0 and β ≤ Mαβ and finally nb(t) ·nb(t) variables correspond

to edges between two blue nodes and hence take a value between 0 and α ≤ Mαβ. Using

these observations and (3.1 ) and (6.4 ), we can see that

Pr(|w(t) − E[w(t) | Ft]| > δ) < 2e
−2δ2

(n+t)2·M2
αβ

which is the second result.

Lemma 8. Let D > 0 be some constant to be fixed later and, let Gt(D) - be the event that

both of the following statements


wr(t) ≥ E[wr(t) | Ft] − Mαβ ·

√
D ·

√
(n + t) · nr(t) · log(n + t)

wr(t) ≤ E[wr(t) | Ft] + Mαβ ·
√

D ·
√

(n + t) · nr(t) · log(n + t)
(6.5)

and


w(t) ≥ E[w(t) | Ft] − Mαβ ·
√

D · (n + t) ·
√

log(n + t)

w(t) ≤ E[w(t) | Ft] + Mαβ ·
√

D · (n + t) ·
√

log(n + t)
(6.6)

hold true. Then, Pr[Gt(D)] ≥ 1 − 4
(n+t)2D

Proof. From (6.2 ), substitute δ = Mαβ ·
√

D ·
√

(n + t) · nr(t) · log(n + t) and we have

Pr
[
|wr(t) − E[wr(t) | Ft]| > Mαβ ·

√
D ·

√
(n + t) · nr(t) · log(n + t)

]
< 2e−2Dlog(n+t)

Using the properties of logarithms, this changes to

Pr
[
|wr(t) − E[wr(t) | Ft]| > Mαβ ·

√
D ·

√
n(t) · nr(t) · log(n + t)

]
<

2
(n + t)2D
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Thus, we can say that the following expression


wr(t) ≥ E[wr(t) | Ft] − Mαβ ·

√
D ·

√
(n + t) · nr(t) · log(n + t)

wr(t) ≤ E[wr(t) | Ft] + Mαβ ·
√

D ·
√

(n + t) · nr(t) · log(n + t)
(6.7)

holds with probability 2
(n+t)2D .

When we substitute δ = Mαβ ·
√

D · (n + t) ·
√

log(n + t) in (6.2 ), we will get

Pr
[
|w(t) − E[w(t) | Ft]| > Mαβ ·

√
D · (n + t) ·

√
log(n + t)

]
< 2e−2Dlog(n+t)

Using the properties of logarithms, this changes to

Pr
[
|w(t) − E[w(t) | Ft]| > Mαβ ·

√
D · (n + t) ·

√
log(n + t)

]
<

2
(n + t)2D


w(t) ≥ E[w(t) | Ft] − Mαβ ·

√
D · (n + t) ·

√
log(n + t)

w(t) ≤ E[w(t) | Ft] + Mαβ ·
√

D · (n + t) ·
√

log(n + t)
(6.8)

holds with probability 2
(n+t)2D .

Combining (6.7 ) and (6.8 ) and applying the union bound, we obtain that Gt(D) holds

with probability 4
(n+t)2D

Lemma 9. On the event Gt(D), if 0 < D <
(
mα,β · ma,b

Mαβ

)2
· ( 1

h(t))
2, then w(t) > 0.

Proof. All of the following expressions hold on the event Gt(D) and D > 0. First, if Gt(D)

holds true, and D > 0, then we can apply Lemma 8 and thus we have

E[w(t) | Ft] − Mαβ ·
√

D · (n + t) ·
√

log(n + t) ≤ w(t)
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Thus, if we can show

E[w(t) | Ft] − Mαβ ·
√

D · (n + t) ·
√

log(n + t) > 0 (6.9)

then we can show that w(t) > 0.

(6.9 ) is true when

E[w(t) | Ft] > Mαβ ·
√

D · (n + t) ·
√

log(n + t)

Apply Lemma 6 and we just need to show

ma,b · mα,β · (n + t)2 > Mαβ ·
√

D · (n + t) ·
√

log(n + t)

Cancelling n + t on both sides and cross multiplying, we instead have

ma,b · mα,β · (n + t)
Mαβ ·

√
log(n + t)

>
√

D

Squaring on both sides, we finally have

D <
(
ma,b · mα,β

Mαβ

)2
·
( n + t√

log(n + t)

)2

and thus the lemma holds true under the assumption 0 < D <
(
mα,β · ma,b

Mαβ

)2
·
(

1
h(t)

)2
.

We define some new notation.


u = Mαβ ·
√

D

ma,b · mα,β

v =
√

D

Mab
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Lemma 10. On the event Gt(D), the following inequalities hold:


wr(t)
w(t) ≥

(
1 + u · h(t)

)−1
·
(
Yd(t) − v · h(t)

)
wr(t)
w(t) ≤

(
1 − v · h(t)

)−1
·
(
Yd(t) + u · h(t)

) (6.10)

Proof. All of the following expressions assume that the event Gt(D) happens.

From (6.5 ) and Lemma 6 

wr(t)
E[w(t) | Ft]

≤ E[wr(t) | Ft]
E[w(t) | Ft]

+
Mαβ ·

√
D ·

√
(n + t) · nr(t) · log(n + t)
d · ε(n + t)2

Thus, fixing u = Mαβ ·
√

D

ma,b·mα,β
and using the above expression, we get a new inequality

wr(t)
E[w(t) | Ft]

≤ E[wr(t) | Ft]
E[w(t) | Ft]

+
u ·
√

log(n + t)
(n + t) (6.11)

Again using (6.5 ) and Lemma 6 , we have

wr(t)
E[w(t) | Ft]

≥ E[wr(t) | Ft]
E[w(t) | Ft]

−
Mαβ ·

√
D ·

√
(n + t) · nr(t) · log(n + t)

Mab · Mαβ (̇n + t)2

Fixing v =
√

D
Mab

and using the above expression, we get a new inequality

wr(t)
E[w(t) | Ft]

≥ E[wr(t) | Ft]
E[w(t) | Ft]

−
v ·
√

log(n + t)
(n + t) (6.12)

We will obtain similar inequalities for w(t).

From (6.6 ) and Lemma 6 , we get

w(t)
E[w(t) | Ft]

≤ E[w(t) | Ft]
E[w(t) | Ft]

+
Mαβ ·

√
D ·

√
log(n + t)

ma,b · mα,β · (n + t)
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Thus, fixing u = Mαβ ·
√

D

ma,b·mα,β
and using the above expression, we get a new inequality

w(t)
E[w(t) | Ft]

≤ 1 +
u ·
√

log(n + t)
(n + t) (6.13)

Finally, following similar steps as earlier, we also get the following inequality

w(t)
E[w(t) | Ft]

≥ 1 −
v ·
√

log(n + t)
(n + t) (6.14)

Combine (6.13 ) and (6.12 ), we have

wr(t)
w(t) ≥

(
1 +

u ·
√

log(n + t)
(n + t)

)−1
·
(E[wr(t) | Ft]
E[w(t) | Ft]

−
v ·
√

log(n + t)
(n + t)

)

Similarly, combining (6.11 ) and (6.14 ), we have

wr(t)
w(t) ≤

(
1 −

v ·
√

log(n + t)
(n + t)

)−1
·
(E[wr(t) | Ft]
E[w(t) | Ft]

+
u ·
√

log(n + t)
(n + t)

)

Thus, we have proved the inequalities hold true on Gt(D). In addition, because we only

made an assumption that Gt(D) happens and Pr[Gt(D)] ≥ 1 − 4
(n+t)2D , we have proved that

the inequalities hold with probability at least 1 − 4
(n+t)2D .

Lemma 11. Let 0 < D <
(
mα,β · ma,b

Mαβ

)2
·
(

1
h(t)

)2
, then on the event Gt(D) the following

inequalities are true:


E[X(t + 1) | Ft] ≥ 1

n + t + 1 ·
(

X(t) · (n + t) + Yd(t) − v · h(t)
1 + u · h(t)

)

E[X(t + 1) | Ft] ≤ 1
n + t + 1 ·

(
X(t) · (n + t) + Yd(t) + u · h(t)

1 − v · h(t)

)

Proof. From, (4.7 ) we have

E[X(t + 1) | Ft] = E
[

X(t) · (n + t) + Y (t)
n + t + 1

∣∣∣∣∣ Ft

]
(6.15)
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By linearity of expectation, we obtain

E[X(t + 1) | Ft] = X(t) · (n + t) + E[Y (t) | Ft]
n + t + 1 (6.16)

By Lemma 9 , on the event Gt(D) if D <
(
mα,β · ma,b

Mαβ

)2
·
(

n+t√
log(n+t)

)2
, then w(t) > 0.

Thus as, w(t) > 0, (6.16 ) can be simplified to

E[X(t + 1) | Ft] =
X(t) · (n + t) + E

[
wr(t)
w(t)

∣∣∣∣ Ft

]
n + t + 1 (6.17)

On the event Gt(D), (6.10 ) will hold true and thus

E[X(t + 1) | Ft] ≥
(

1
n + t + 1 ·

(
X(t) · (n + t) + Yd(t) − v · h(t)

1 + u · h(t)
))

and

E[X(t + 1) | Ft] ≤ 1
n + t + 1 ·

(
X(t) · (n + t) + Yd(t) + u · h(t)

1 − v · h(t)
)

will hold true. Hence the required statement is true.

We now define two new sets of σ−fields {Ht}t≥0 and {H̃t}t≥0 where

• Ht : is a ‘good’ history, i.e. a σ−field which denotes the history of the stochastic

process after t rounds where the event Gt(D) happens.

• H̃t : is a ‘bad’ history, i.e. a σ−field which denotes the history of the stochastic process

after t rounds where the event Gt(D) does not happen.

Theorem 6.1.1. For the stochastic system (X(t))t≥0, if 0 < D <
(
mα,β · ma,b

Mαβ

)2
·
(

1
h(t)

)2
, the

following expressions are satisfied.
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E[X(t + 1) | Ft] ≤ 1

n + t + 1

(
X(t) · (n + t) + Yd(t) + u · h(t)

1 − v · h(t) ·
(
1 − 4

(n + t)2D

)
+
( 4

(n + t)2D

))

E[X(t + 1) | Ft] ≥ 1
n + t + 1

(
X(t) · (n + t) + Yd(t) − v · h(t)

1 + u · h(t) ·
(
1 − 4

(n + t)2D

))

(6.18)

Proof. First, observe that

E[X(t + 1) | H̃t] ≤ X(t) · (n + t) + 1
n + t + 1 (6.19)

Inequality (6.19 ) is true because the indicator variable Y (t) always takes a value between 0

and 1. This also means that

E[X(t + 1) | H̃t] ≥ X(t) · (n + t)
n + t + 1 (6.20)

Since Pr
[
Gt(D)

]
+ Pr

[
Gc

t(D)
]

= 1, we can apply the law of total expectation and we

have

E[X(t + 1) | Ft] = E[X(t + 1) | Ht] · Pr[Gt(D)] + E[X(t + 1) | H̃t] · Pr[Gc
t(D)] (6.21)

Combining, Lemma 8 and Lemma 11 and (6.19 ) and (6.21 ), we finally obtain

E[X(t + 1) | Ft] ≤ 1
n + t + 1

(
X(t) · (n + t) + Yd(t) + u · h(t)

1 − v · h(t) ·
(

1 − 4
(n + t)2D

)
+
(

4
(n + t)2D

))

which is the required result.
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For the other inequality, combine Lemma 8 and Lemma 11 and (6.20 ) and (6.21 ) and

obtain

E[X(t + 1) | Ft] ≥ 1
n + t + 1

(
X(t) · (n + t) + Yd(t) − v · h(t)

1 + u · h(t) ·
(

1 − 4
(n + t)2D

))

Theorem 6.1.1 has great implications. From the following argument, one could see that

it implies that the behaviour of the stochastic system is almost identical to that of the

deterministic system when we have a lot of nodes and thus our earlier results regarding

convergence of the deterministic system apply for the stochastic system as well.

First, from (5.1 ), we have

Xd(t + 1) = Xd(t) · (n + t) + Yd(t)
n + t + 1

and from (4.7 ) we have

X(t + 1) = X(t) · (n + t) + Y (t)
n + t + 1

From the above equations, we can see that if X(t) = Xd(t) then

Y (t) = Yd(t) =⇒ X(t + 1) = Xd(t + 1)

Thus, if X(t) = Xd(t)

lim
t→∞

Y (t) = Yd(t) =⇒ lim
t→∞

X(t + 1) = Xd(t + 1) (6.22)
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Comparing (6.18 ) and (4.7 ), we can see that


E[Y (t) | Ft] ≤ Yd(t) + u · h(t)

1 − v · h(t) ·
(
1 − 4

(n + t)2D

)
+
( 4

(n + t)2D

)
E[Y (t) | Ft] ≥ Yd(t) − v · h(t)

1 + u · h(t) ·
(
1 − 4

(n + t)2D

) (6.23)

From (6.1 ), we have h(t) =
√

log(n+t)
n+t

and thus

lim
t→∞

h(t) = lim
t→∞

√
log(n + t)

n + t

Applying L’Hospital’s rule, we have

lim
t→∞

h(t) = lim
t→∞

1
2 (n + t)

√
ln (n + t)

= 0 (6.24)

Thus, from (6.23 ) and (6.24 ) we have

lim
t→∞

E[Y (t) | Ft] ≤ lim
t→∞

Yd(t) + u · h(t)
1 − v · h(t) ·

(
1 − 4

(n + t)2D

)
+
( 4

(n + t)2D

)
= Yd(t) + u · 0

1 − v · 0 ·
(
1 − 0

)
+
(
0
)

which becomes

lim
t→∞

E[Y (t) | Ft] ≤ Yd(t) (6.25)

Taking the upper bound from (6.23 ), and (6.24 ) we also have

lim
t→∞

E[Y (t) | Ft] ≥ lim
t→∞

Yd(t) − v · h(t)
1 + u · h(t) ·

(
1 − 4

(n + t)2D

)
= Yd(t) − v · 0

1 + u · 0 ·
(
1 − 0

)

which becomes

lim
t→∞

E[Y (t) | Ft] ≥ Yd(t) (6.26)
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Combine (6.25 ) and (6.26 ) we can finally see that

lim
t→∞

E[Y (t) | Ft] = Yd(t)

This shows that in the limit, the stochastic system behaves in a way that is similar to

the deterministic system.
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7. CONCLUSION AND FUTURE WORK

7.1 How accurate an approximation is the deterministic system?

Theorem 3.4.1 by Warnke [8 ] provides a framework for proving that the deterministic

system is a good approximation of the stochastic block model with high probability. Ap-

plication of this theorem is quite involved however and requires a number of pre-conditions

to be satisfied. The most challenging step would be to get a useful Lipschitz-constant L

for the function F which is used to predict the status of the stochastic model after a time

period. We do not show our entire work, but it is possible to show that L ≤ 1
n+1 when

0.1 ≤ X(t) ≤ 0.9 ∀t ∈ [0, T ]. This value of the Lipschitz constant will enable us to get a

very good approximation with high probability as long as the population does not increase

significantly i.e., as long as the population does not increase several fold of it’s initial value.

Unfortunately, when we try to use Wormald’s theorem for the long term, the approximation

is valid only with negligible probability.

7.2 Interpretation of our results

Our concluding discussion in the stochastic system shows that its behaviour would be

very similar to the deterministic system in the limit. Combined with 5.3.1 , this means that

when ρ = aα
bβ

> 1 the minority would essentially vanish from the organization in the long

run. Thus, to ensure that the minority could thrive in the long run, we need to make

β > aα
b

. Recall that β is the weight of an edge between a red node and blue node. Thus,

in this model, one would have to provide incentives (which could be additional funding or

institutional support) for any collaborations to ensure that the minority thrives in the long

run.

7.3 Future Work

There are a number of questions related to this model that we think would be interesting

to look at:
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• Can we formally show that the stochastic system converges in the same way as the

deterministic system?

• What happens when we allow more than two communities?

• What happens if we allow different edge weights for red-red edges and blue-blue edges.

We hypothesize that the system behaviour would be similar, but convergence would

happen to a point other than X(t) = 1
2 .

• Can we obtain theoretical bound on the approximation of the stochastic system in the

short term? Our experiments suggest that a bound much better than what is acheived

by Wormald’s theorem is possible.
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8. NOTATION

8.1 Variables, constants and functions introduced for the model

• c(i) − denotes the color of the node i

• ν = a
b

− where a, b are model parameters

• λ = β
α

where α, β are model parameters

• ρ = ν
λ

• w(t) = ∑n
i,j=1 wi,j(t)

• wr(t) = ∑
i:ci=red

∑
j wi,j(t)

• wb(t) = ∑
i:ci=blue

∑
j wi,j(t)

•

P Red Blue

Red a b

Blue b a

w Red Blue

Red α β

Blue β α

• n + t − number of nodes at time t

• X(t) − fraction of red nodes at time t

• nr(t) = X(t) · (n + t) − number of red nodes at time t

• nb(t) =
(
1 − X(t)

)
· (n + t) − number of blue nodes at time t

8.2 Variables, constants and functions introduced for the deterministic version

• Yd(t) = E[wr(t)]
E[w(t)]

8.3 Variables, constants and functions introduced for Stochastic version

• Mab = max(a, b)

• mab = min(a, b)
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• Mαβ = max(α, β)

• mαβ = min(α, β)

• u = Mα,β ·
√

D

ma,b·mα,β

• v =
√

D
Ma,b

• h(t) =
√

log(n+t)
n+t
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