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ABSTRACT 

 Embryonic development is a complicated phenomenon influenced by genetic regulation 

and biomechanical cellular behaviors. However, the relative influence of these factors on 

spatiotemporal morphogen distributions is not well understood. Bone Morphogenetic Proteins 

(BMPs) are the primary morphogen guiding the dorsal-ventral (DV) patterning of the early 

zebrafish embryo, and BMP signaling is regulated by a network of extracellular and intracellular 

factors that impact the range and signaling of BMP ligands.  Recent advances in understanding the 

mechanism of pattern formation support a source-sink mechanism, however, it is not clear how 

the source-sink mechanism shapes patterns in 3D, nor how sensitive the pattern is to biophysical 

rates and boundary conditions along both the anteroposterior (AP) and DV axes of the embryo. 

 Throughout blastulation and gastrulation, major cell movement, known as epiboly, 

happens along with the BMP mediated DV patterning.  The layer of epithelial cells begins to thin 

as it spreads toward the vegetal pole of the embryo until it has completely engulfed the yolk cell. 

This dynamic domain may influence the distributions of BMP network members. This project aims 

to investigate the multiscale regulatory network of the BMP signaling dynamics along with the 

biophysical deformation of the embryo tissue during epiboly.  

 In this study, we present a three-dimensional (3D) growing domain mathematical modeling 

framework to simulate the BMP patterning and epiboly process during the blastula to gastrula 

stage zebrafish embryo, with both finite difference and finite element approaching. These models 

provide a starting point to elucidate how different mechanisms and components work together in 

3D to create and maintain the BMP gradient in the zebrafish embryo. We are interested in how the 

cellular movements impact the formation of gradients by contributing an advective term whereby 

the morphogens are swept with the moving cells as they move vegetally. Dynamic cell imaging 

data are used to quantify the cell movement during the epiboly. We evaluated the accuracy of the 

mesh updating compared to the advection caused by cell movement and its role in embryonic 

patterning. Quantitative whole-mount RNA scope data of BMP2b, Chordin, Noggin, Sizzled, and 

phosphorylated-SMAD data are collected and analyzed precisely to test the hypotheses of the 

gradient formation mechanism in our model. We also present a novel approach of Neuro Network 

model to accelerate the computationally intensive PDE simulations. Our goal is to develop a 

complete advection-diffusion-reaction model that incorporates all stages of zebrafish embryonic 
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development data. By combining the biophysics of epiboly with the regulatory dynamics of the 

BMP network, we can test complex models to investigate the consistent spatiotemporal DV 

patterning in the early zebrafish embryo. 
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1  INTRODUCTION 

Nature’s beauty blends in the formation of different structures and patterns of organisms. 

Amazed by nature’s astonishing designs, people have studied the underlying phenomena and 

mechanisms of patterns throughout history. Pattern formation by morphogens drives the normal 

development of various processes such as limb development and organogenesis in animals [1]–

[5]. ‘Morphogen’ is a term coined by Alan Turing in 1952 when he predicted a chemical 

mechanism for biological pattern formation [6]. Now, morphogens are defined as signaling 

molecules that transport by diffusion [7] and act directly on cells to introduce intracellular signal 

transduction depending on their local concentrations [8]. Recent studies of morphogenesis highly 

focus on the chemical basis of morphogens, using the diffusion-reaction model and positional 

information model. These show us a glimpse of how morphogens contribute to the development 

and pattern formation of living tissue[9].  In zebrafish, patterns of gene expression along the dorsal-

ventral (DV) body axis were regulated by Bone Morphogenetic Proteins (BMPs) [10].  In early 

embryonic development, BMP signaling patterns DV axis formation in both invertebrates and 

vertebrates [11], [12]. Recent advances in understanding the mechanism of pattern formation 

support a source-sink mechanism, however, it is not clear how the source-sink mechanism shapes 

patterns in 3D, nor how sensitive the pattern is to biophysical rates and boundary conditions along 

both the anteroposterior (AP) and DV axes of the embryo. 

Throughout blastulation and gastrulation, major cell movement, known as epiboly, happens 

along with the BMP mediated DV patterning.  This dynamic domain may influence the 

distributions of BMP network members. This project aims to investigate the multiscale regulatory 

network of the BMP signaling dynamics along with the biophysical deformation of the embryo 

tissue during epiboly.  
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1.1 Early-stage Zebrafish embryo development 

 Zebrafish, Danio rerio, has emerged as an essential model for studying pattern 

formation in developmental biology. One of the ultimate goals of developmental biology is to 

understand diseases better, and because zebrafish share approximately 75% similarity with the 

human genome[13], they are beneficial for studying human disease. Zebrafish also make great 

models for experimentation. Their embryos develop rapidly, are transparent, and are large 

enough to manipulate and observe through microscopic imaging during the entire embryonic 

stage. By using fluorescent markers, specific cells or regions can be detected by microscopic 

fluorescent imaging equipment. Thus, observing different mutants of zebrafish with fluorescent 

imaging can help explain how normal functions are affected by various factors during disease 

processes. These characteristics of zebrafish make them very suitable for generating data to apply 

in mathematical models and investigate the background mechanisms under the scope of BMP-

mediated patterning in vertebrates. 

 

 

For a zebrafish embryo starting at the blastula stage, with the continuation of epiboly, cells 

proliferate and differentiate then move through involution, convergence, and extension until 

covering the whole sphere-like embryo [14]. The gastrula stage finishes at the end of the epiboly 

[14]. BMP signaling begins the patterning of ventral tissues at the onset of gastrulation [10]. 

During gastrulation, coordinated cell movements organize the germ layers and establish the major 

body axes of the embryo [15]. The most important and distinct cell movements during the gastrula 

Figure 1.1.  Epiboly process in the zebrafish embryo adapted from  [15]  d, dorsal; dc, deep 
cells; dcm, deep cell margin; e-ysn, external yolk syncytial nuclei; ep, epiblast; hyp, hypoblast; i-
ysn, internal yolk syncytial nuclei; vp, vegetal pole; yc, yolk cell. Black arrows show the general 
cell movement direction. Deep cells are shown in white, the EVL and YSL in blue and the yolk 

cells are shown in yellow. 
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stage are epiboly. Epiboly begins at the end of the blastula stage and continues through the whole 

gastrula stage which is characterized as a thinning and expanding of cell layers [16]. Figure 1.1 

describes the overall cell movement trend during epiboly. (A) At the later blastula stage, the 

enveloping layer (EVL) and yolk syncytial layer (YSL) has been created and the deep cells form 

a flat interface with the underlying yolk cell. (B) Upon epiboly initiation, the yolk cell domes, and 

deep cells move radially outwards, forming a cap of cells over the yolk. (C-E) During the 

progression phase, the blastoderm continues to thin, expanding its surface area to envelop the yolk 

cell. (D) Once the blastoderm has covered approximately 50% of the yolk, deep cell epiboly 

temporarily pauses as cells begin to converge dorsally and gastrulation begins. (E) Concurrent with 

the other gastrulation movements, the deep cells, EVL and YSL move towards the vegetal pole in 

a coordinated manner, eventually closing the blastopore. The significant cell movement during 

epiboly might play a role in BMP gradient formation since the cells secreting BMPs and their 

regulators are moving as well. Additionally, the advection of extracellular fluid caused by cell 

movement may also influence the BMP gradient. 

1.2 Bone morphogenetic proteins (BMPs) and Dorsal-Ventral (DV) patterning 

Pattern formation in zebrafish is regulated mainly by Bone Morphogenetic Proteins 

(BMPs), a kind of morphogen. By regulating the activities of series-downstream genes, BMPs play 

a significant role in tissue patterning throughout the body (both in vertebrates and 

invertebrates)[17]. BMPs are a critical member of the TGF (transforming growth factor β, TGF- 

β) superfamily, which was originally discovered for their bone formation capabilities. More than 

fifteen BMPs have been discovered. Depending on the amino acid or nucleotide similarity, these 

BMPs can be divided into different subcategories: BMP2/4, BMP5-8, BMP9/10, and BMP12-

14[18]. BMP2/4/7 have been proven to play an essential role during the embryogenesis of 

zebrafish [19]–[21]. BMP signaling is essential for early embryonic development and patterning 

processes, cell proliferation, differentiation, and even apoptosis [22]–[27]. As a result, the study 

of BMP-mediated regulation during development is a vital part of developmental biology. 
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Figure 1.2.  Illustration of BMP signaling pathway, adapted from J. A. Dutko and M. C. Mullins 
[26] 

 

BMP signaling is propagated by the binding of BMP dimers to serine/threonine kinase 

receptors on the cell membrane. Figure 1.2 gives an overall illustration of the extracellular to the 

intracellular BMP-signaling pathway. Activated Type I and II receptors form higher order 

tetrameric complexes further phosphorylates Smad proteins (Smad1, Smad5 in zebrafish, and 

Smad8), promoting Smad molecule release from the cell membrane receptors. Then Smad binds 

Smad4 molecules in the cytoplasm, and the bound complex accumulates in the nucleus and 

regulates differential gene expression. Inside the nucleus, the Smad complex binds with other 

DNA-binding proteins and directly regulates the transcription of target genes[17], [25], [27], [28].  

The normal BMP signaling pathway is similar between invertebrates (e.g., Drosophila) 

and vertebrates (e.g., zebrafish). However, the regulation mechanism of the BMP signaling can be 

slightly different in various species. The first stage of early embryonic development that both 

invertebrates and vertebrates require BMP signaling is the patterning of the Dorsal-Ventral (DV) 

axis[11], [12]. Researchers have shown that BMPs affect the DV patterning of zebrafish, Xenopus, 
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and Drosophila embryos by using a gradient-based mechanism, in which different levels of BMP 

signaling can activate different expressions of the gene[29]. However, BMP signaling affects the 

DV patterning differently in different species. In Drosophila, BMP signaling has been found to 

pattern dorsal cell fate. In contrast, in zebrafish and Xenopus, BMP signaling patterns ventral cell 

fate, and the patterning of the dorsal side requires suppression of BMPs[30].  

It has been reported that dorsoventral pattern mutants have mutations in genes encoding 

BMPs or proteins involved in the modification or transduction of BMP signaling[31]. Table 1.1 

lists some mutants and their phenotypes related to BMP signaling regulators. Null mutations cause 

the strong dorsalization of swirl (swr), snailhouse (snh), lost-a-fin (laf), and somitabun (sbn) 

mutants in Bmp2b[32], Bmp7[31], [33], the Bmp type I receptor Alk8 [34] and the Bmp-regulated 

transcription factor Smad5 [35], respectively. The strong ventralization of dino (din) mutants, on 

the other side, is caused by a null mutation in Chordin[36]. The weak dorsalization of minifin (mfn) 

mutants is due to null mutations in Tolloid[33], [37] 

 

 

Figure 1.3.  A-F Mutants of dorsalization strength from C1 to C5 according to their strength, 
with 1 being the weakest and 5 the strongest. The strength of the phenotype is based on the 

degree to which the notochord, somites, and tail are affected. G, Ventrlazation mutant (picture 
adapted from Mullins (1996) [33] and Little (2004) [38]) 
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Table 1.1.  BMP signaling related mutants and phenotypes in zebrafish 

Mutant name Alleles Relative Gene Phenotype References 

swirl (swr) tc300 
ta72 bmp2b Dorsalization (C5) [31]–[33], [39] 

somitabun (sbn) dtc24 smad5 Dorsalization (C5) [31], [33] 
snailhouse 

(snh) ty68a bmp7 Dorsalization (C4) [31], [33] 

aubergine sb1aub bmp7a Dorsalization (C5) [40] 

piggytail (pgy) 

dty40 
dti216 
tc227a 
tm124a 
ta206 
tx223 

smad5 

Dorsalization (C3-C4) 
Dorsalization (C2-C3) 
Dorsalization (C1-C2) 

Dorsalization (C1) 
Dorsalization (C1) 
Dorsalization (C1) 

[33], [41] 

minifin (mfn) 

tv9b 
tc263a 
tt203a 
ty130a 
tb241c 
tf211a 
tf215a 
tn217b 

tolloid Dorsalization (C1) [31], [33], [37] 

lost-a-fin (laf) tm110b 
Alk8 

(Bmp type I 
receptor) 

Dorsalization (C2) [31]–[34] 

wirligig dta72 
tc300a bmp2b Dorsalization [33] 

Mercedes (mes) tz209 
tm305 sizzled Ventralization [42], [43] 

dino (din) tm84 
tt250 chordin Ventralization [36], [39], [42] 

 

In the zebrafish embryo, the BMP signaling is significantly modulated by its extracellular 

modulators, Chordin, Noggin1, Follistatin-like1b (Fstl1b), and ADMP on the dorsal side, and 

Bmp1a, Tolloids, Twsg1a, CV-2, and Sizzled on the ventral side. Chordin, Noggin1, and 

Follistatin-like 1b (Fstl1b) work as antagonists. Tolloids and ADMP work as activators; Twsg1a 

and CV-2 can play the roles of both antagonist and activator; sizzled can attune BMP signaling in 

an indirect way [26].  
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1.3 Extracellular regulation of BMP 

BMP signaling regulation in zebrafish embryos is a complex network.  Despite advances 

in the understanding of individual regulators of BMP signaling, the interaction network of how 

these factors regulate and interact with each other spatially and temporally to generate the robust 

BMP gradient that patterns DV tissues is not well understood.  The primary goal of our study is 

the characterization of the contribution of extracellular modulators and intracellular feedback 

regulators in establishing and controlling BMP signaling along the dorsal-ventral (DV) embryonic 

axis, and the determination of BMP signaling corresponds to the space and time-dependent 

patterns of gene expression.   

 

 

Figure 1.4.  BMP gradient distribution and potential mechanism of BMP modulators in zebrafish 
embryo. [blue box (BMP), red box (inhibitor), green box (activator), green/red box 

(inhibitor/activator), redline (inhibition), green line (promotion), green/red line 
(inhibition/activation), dashed line (potential interaction)]. 
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In the zebrafish embryo, the BMP signaling is significantly modulated by its extracellular 

modulators, Chordin, Noggin 1, Follistatin-like 1b (Fstl1b) and ADMP on the dorsal side, and 

Bmp1a, Tolloids, Twsg1a, CV-2 and Sizzled on the ventral side. Chordin, Noggin 1, and 

Follistatin-like 1b (Fstl1b) work as antagonists. It has been proven that the depletion of antagonists 

can cause the Xenopus tropicalis to lose neural tissue and dorsal mesoderm completely[44]. 

Bmp1a and Tolloids work as activators; Twsg1a and CV-2 can play the roles of both antagonist 

and activator; sizzled can attune BMP signaling also in an indirect way[26]. The details of each 

modulator and background mechanism are listed below. 

Chordin (Chd), the antagonist, Chordin (homolog of Sog in Drosophila) modulates BMP 

signaling by blocking with receptors for ligand binding extracellularly, thus the signal transition 

is obstructed[29], [45], [46]. Chordin is secreted before the start of gastrulation, which is a key 

modulator since it also interacts with other extracellular modulators (Sizzled, Twisted gastrulation 

(Tsg), CV-2, and Tolloid) to affect the BMP signaling gradient and DV patterning. It is also 

suggested that the BMP2b/Chordin gradient guides the anteroposterior patterning of endoderm in 

zebrafish embryos by regulating the expression of gene her5[20].  

Noggin (Nog) & Follistatin-like 1b (Fstl1b) are both antagonists, which are not found in 

invertebrate genomes. Noggin and Follistatin work similarly to Chordin which can bind with BMP 

ligand to modulate BMPs. However, unlike Chordin, they cannot be modulated by additional 

extracellular regulators. Besides, Noggin is also produced by the organizer at the start of 

gastrulation[46].  

Tolloid (Tld) works as the antagonist of the BMP antagonist. As BMP antagonists can degrade 

the accumulation of BMPs, other molecules are also needed to prevent the over-accumulation of 

antagonists. Consequently, Tolloid promotes BMP signaling and ventral cell fate by mediating 

cleavage of Chordin. Wagner and Mullins suggested that tolloid acts upstream of chordin; the 

strongest phenotype of Tolloid overexpression is equivalent to a chordin mutant[47] (Table 3). 

Nevertheless, Tolloid cannot inhibit other BMP antagonists such as Noggin. Thus other than as a 

regulator of Chordin, Tolloid plays no other role in the early zebrafish embryo[45]. Furthermore, 

experiments have proven that knock-downs of both tll1 and bmp1a lead to a result in strongly 

dorsalized phenotypes[48].  

Sizzled (Szl), another antagonist of BMP signaling, depends on the presence of Chordin and 

Tolloid for function. Sizzled is a competitive inhibitor of Tolloid, by binding Tolloid, Sizzled can 
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inhibit the activator Tolloid and prevent Tolloid-mediated degradation of Chordin. In this way, 

Sizzled can drop the level of BMP signaling indirectly[49]. Inomata et al studied scaling of DV 

patterning in Xenopus embryo and suggested that chordin degradation is dynamically controlled 

by secreted Chordin proteinase inhibitor Sizzled through an axis-wide feedback mechanism 

[50] .  Tuazon et al investigate the Sizzled role in zebrafish embryo DV patterning and proved that  

sizzled being induced by BMP signaling and Sizzled’s role as a feedback inhibitor of 

Bmp1a/Tolloid.[51] However, they found that Sizzled alone may not play a role in establishing 

the early BMP gradient，  and Sizzled and Tolloid likely shape the BMP gradient later in 

gastrulation to correctly pattern tail tissues. 

Antidorsalizing Morphogenetic Protein (ADMP), a BMP family member, is produced on the 

dorsal side and could cause this specification. De Robertis gives a hypothesis in 2006 that a 

dorsally produced BMP plays a role in the specification of ventral fate[52]. The gene of ADMP is 

expressed at the gastrulation stage of zebrafish along the dorsal axis. Through a mechanism similar 

to BMPs, ADMP can bind Chordin and Tsg. Thus by the degradation of dorsal BMP antagonist, 

ADMP can work as an activator of the function of BMP signaling[53]. Table 2 gives a summary 

of the major extracellular modulators and their known mechanisms in regulating BMP signaling. 

Crossveinless-2 (CV-2), a member of the cysteine-rich (CR) domain family is also known as 

BMPER in vertebrates[54]. Despite significant research, the mechanism of CV-2 is still not clear. 

A widely accepted view is that CV-2 can act both as an activator and an inhibitor in vertebrate 

BMP signaling pathways depending on the species and molecular environment [26], [55]–[57]. 

There are two types of existing models to explain that how CV-2 modulates BMP signaling. One 

is presented by Serpe et al., who suggests that by the complex interaction with BMP and BMP 

receptor, CV-2 can either prevent or promote BMP binding to their receptor, depending on the 

concentration and binding affinities of CV-2 [55], [57]. Another hypothesis indicates that the CV-

2 can interact with Chordin and Tsg to achieve the function of promoting or inhibiting BMP 

signaling[58], [59].  

Twisted gastrulation (Tsg1) is similar to CV-2, Tsg could also play the roles of both activator 

and antagonist on a biochemical basis[5], [38], [55]. Tsg can bind to Chd and BMP ligand 

independently or in a BMP-Chd-Tsg complex[60]. Tsg can promote BMP signaling by promoting 

the process of Tolloid cleavage Chordin. However, if Tolloid is absent it can inhibit the BMP 

signaling. Furthermore, in different organisms and environments, the working function of Tsg can 
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be different. Little and Mullins found that increased Tsg leads to relatively dorsalized phenotypes 

in wild-type zebrafish embryos[38]. Thus,  it leads to the conclusion that instead of playing the 

role of both activator and inhibitor, in zebrafish, Tsg only promotes the ventral cell fate[30]. 

Besides, BMP signaling can also be regulated by the extracellular matrix, cell membrane co-

receptors, and inhibitory pseudo receptors. For the TGF-β family of ligands, there are a total of 

seven Type I receptors (ALK1-7) and four Type II receptors. Three Type I receptors, BMPR-1A 

(ALK3), BMPR-1B (ALK6), and ActR-1A (ALK2), bind BMPs. Also, three of the four Type II 

receptors, BMPR-2, ActR-2A, and ActR-2B, interact with BMPs [61]. The Type-Ⅱ receptor 

BMPR2 is capable of activating the Type I receptor BMPR1 and further transducing the signal to 

Smad molecules within the cell.  

 Table 1.2.  Major extracellular regulators of BMP signaling in zebrafish embryo 

Regulator 
Known effects 

on BMP 
signaling 

Position Mechanisms Reference 

Chordin (Chd) Antagonist Dorsal Binds BMPs [20], [30], 
[45], [46] 

Noggin (Nog) Antagonist Dorsal Binds BMPs [46] 

Sizzled  (Szl) Antagonist Ventral 
Binds the Tolloid-
related enzymes to 

inhibit Tolloid 
[49] 

Tolloid (Tld) Activator Ventral Cleaves of Chordin [45], [47] 

ADMP Activator Dorsal Binds Chordin and Tsg [52], [53] 

Pinhead Activator Ventral Binds Chordin and Tsg [62] 

Follistatin (Fst) Antagonist Dorsal Binds BMPs [46] 

Cvl2 (BMPER) Antagonist 
Activator Ventral 

Hypothesis 1: either 
prevents or promotes 
BMP binding to their 
receptor 
Hypothesis 2:  interacts 
with Chordin and Tsg 

[26], [54]–
[59] 

Tsg1 Antagonist 
Activator Ventral 

Promotes BMP binding 
to Chordin or cleaves 
Chordin through 
Tolloid 

[5], [30], 
[38], [55], 

[60] 
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1.4  Mathematical Modeling of Pattern Formation 

Mathematical models have been employed for decades to help understand biological 

development. Modeling of biochemical networks can help to integrate experimental knowledge 

into a coherent picture and to test, support, or falsify hypotheses about the underlying biological 

mechanisms [63]. For a system as complex as a developing animal embryo, it is almost impossible 

to analyze every single spatiotemporal element and give a meaningful prediction. A common 

strategy is to omit some details of the system and give an overall simple mathematical modeling, 

which can still be effective in describing a complex system[64]. Mathematical studies of BMP 

morphogen effects on patterning development have been rigorously performed for decades, but a 

comprehensive spatiotemporal model of zebrafish is still lacking.  

There is a long history of studying the mechanism underlying the developmental pattern 

formation through the spatial distribution of an extracellular morphogen, which works as a 

navigator for a naïve cell to find their fate by transducing at a distinct level[7], [65], [66]. The 

reaction-diffusion model which is established by Alan Turing is the first morphogen-based 

mathematical modeling that can rationalize the development of spatial patterns [64]. Normally, we 

consider a morphogen that is produced on a source and spreads to target tissues by diffusion and 

is degraded by modulators[67]. The morphogen (BMP) concentration gradient can be defined as 

spatially and temporally by the reaction-diffusion equation. In Turing’s reaction-diffusion model, 

he describes the concentration of morphogens over time by a partial differential equation, which 

obeys Fick’s law of diffusion.  
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Figure 1.5.  French flag model 
(high morphogen concentration in blue, the medium in white, and low in red). 

 

The Positional Information (PI) model developed by Wolpert in 1969 is a mechanism that 

gives a concept of cells, which have their knowledge of their specific positional information, and 

this information is independent of molecular differentiation[66]. Wolpert illustrated his concept of 

positional information by adopting the image of the tri-colored French flag, where high morphogen 

concentration is closest to the source and low morphogen concentration is furthest from the source. 

Show as Figure 1.5, the different stripes of the “flag” represent the different thresholds by which 

various concentrations affect the cell state differently [66]. This model is widely used to explain 

the mechanism of pattern development [68], [69].  

Mathematical models of BMP signaling focus on finding the mechanism of BMP 

concentration gradient formation. As more molecules are involved in the processes of pattern 

formation and BMP signal transduction, an increased need is found for understanding the 

mechanism between BMP regulators and how the components work together to regulate gene 

expression and phenotype of an organism[70], [71].  

To model the BMP signaling network we need to model the embryo tissue as well. The 

complexity of the embryo structure, and its internal interactions between the living cells, is difficult 

to render into a relatively simple mathematical model. Therefore, the description of the cell 

behaviors inside the embryo directly decides the quality and consistency of the mathematical 



27 

model.[72] Generally, there is two main approaches: continuous and discrete model. Continuous 

signaling models use reaction-diffusion equations to model large biochemical networks by 

describing the cell interactions without precisely depicting single cells[72]. Resolving cells, and 

possibly subcellular structures explicitly requires complex meshing and moving boundaries, thus 

leading to relatively high computational complexity[73]. The typical widely applied discrete 

model of cellular modeling is the agent-based model; the cells are treated as distinct objects or 

agents and are allowed to move, divide, and die individually according to biophysically-based 

rules[74]. Normally, the agent-based model restricts the positions and orientations of the cells in 

regular lattices to save on computational cost, though some the agent-based methods may not 

restrict[74]. In this review, I focus on the continuous model, specifically the reaction-diffusion-

equation-based model since it is more widely applied to the pattern formation mechanism. 

Some mathematical models of morphogenesis focus on the morphogen transport mechanism 

itself. Muller gives an overall description of seven types of mechanisms that may happen during 

morphogen transport: (1) free diffusion, (2) hindered diffusion, (3) tortuosity combined with 

transient binding, (4) facilitated diffusion, (5) shuttling, (6) transcytosis, and (7) transport with 

cytonemes [75], [76]. Not only is the diffusion of BMP complex, but how the regulators degrade 

or promote the BMP gradient is also a complex process; it may include several mechanisms, like 

linear or nonlinear degradation and feedback process through different loops. Next, some existing 

models of the BMP signaling will be analyzed to give a view of the current state of the art in this 

area. 

Compared to zebrafish, BMP signaling regulation and its mathematical models have been 

extensively studied in Drosophila. As mentioned before, gradient-based mechanisms for BMP 

gradient are similar between zebrafish and Drosophila embryos. Even though the BMP patterning 

in Drosophila patterns dorsal cell fate but the underlying mechanisms share commonalities, for 

instants, Screw (Scw) and Decapentaplegic (Dpp) in Drosophila are BMP class ligands, short 

gastrulation (Sog) is a Chordin homolog, and Tld and Tsg also exist in Drosophila embryo. Due 

to the leak of literature in the mathematical model of BMP signaling in zebrafish, the study of 

Drosophila systems still can reasonably support the zebrafish system.   

Drosophila, commonly known as fruit flies, is one of the most useful organisms in biological 

studies [68], [77], [78]. In this system, mathematical modeling has been especially valuable in 

explaining a variety of experimental results. The development of Drosophila can be divided into 
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two phases: the embryonic phase and the larval phase. Pattern formation in both of these phases 

has been studied by using mathematical models. Bicoid, the first protein proved to act as a 

morphogen in Drosophila, has been considered to be involved in early anterior-posterior (AP) 

patterning [79]. Dpp is involved in both the embryonic dorsal-ventral (DV) patterning and the AP 

patterning of wing imaginal disc[80], [81]. Here, I only focus on the models relative to BMPs and 

its homologs.  

Early models have focused on extracellular regulators only [78], [82], [83]. Eldar presented a 

model of transport of the Scw and Dpp into the dorsal midline. The regulators include Sog, Tld, 

and Tsg. Similar to Chordin, Sog works as an inhibitor and is a key point in this model. The model 

explained the robustness under the BMP gradient under the condition of partial loss of molecules 

in the system. It concluded that the robustness relies on the excess store of BMPs and the shuttling 

of BMP by inhibitors[78]. Later in 2005, Lou presented a similar model about Dpp/Sog system 

and focused more on the steady-state configuration. These two mathematical models both 

described the extracellular patterning network and were developed to identify the parameter 

regions and what types of biophysical parameters are needed. However, no experiments have been 

done to validate the model[77].  

Researchers have found that intercellular feedback is also important to the regulation of BMP 

signaling. Wang and Ferguson presented a model including intercellular feedback, which 

encourages ligand binding that relies on previous signaling levels. By introducing the intracellular 

feedback, spatial bistability of two stable states of BMP-receptor interaction can be observed[82]. 

The concept of bistability was then improved by Umulis et al. in 2006 by including positive 

feedback of a cell surface BMP-binding protein (SBP), such as CV-2 [83]. As mentioned in the 

earlier section, CV-2 can act as both an antagonist and an activator, which have been proved both 

experimentally and mathematically by Serpe in modeling the BMP signaling of Drosophila wing 

disc pattern formation [57]. The contribution of a feedback function included in the model is an 

increased understanding of how cells modify both their own interpretation of the signal and the 

signal levels of other cells in the tissue. 

As the models of BMP signaling grow more complex and incorporate more components, the 

limitations of the geometry are revealed.  The importance of geometry in mathematical models has 

been widely studied. Thus, there is an increased need for 3D models in studying both the spatial 

and temporal aspects of embryo-scale modeling [84]. In 2010, Umulis et al. presented a three-
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dimensional organism-scale model of BMP-based patterning in Drosophila embryo. Different 

mechanisms combined with geometry and scale-invariances have been tested in this model. The 

results show high agreement with experimental image data, leading to the conclusion that a three-

dimensional model is essential to understanding the mechanisms that guide tissue patterning [68]. 

The inclusion of three-dimensional geometry is important for the realistic modeling of a complex 

embryonic shape. 

The mathematical study of BMP signaling intensively studies in Drosophila, however, fewer 

models have been studied in zebrafish. In our previous work, we developed a data-based 1-D 

model to investigate the mechanisms of BMP-mediated DV patterning in blastula embryos to early 

gastrula embryos at 5.7 h post-fertilization (hpf) before the initiation of BMP-mediated feedback 

[85].  In this study, we simulated BMP gradient formation along the margin line at the embryo and 

used the quantitative measurements of spatial-temporal P-Smad5 profile to inform our model 

selection. This study support Chordin majorly sharping BMP gradient by a source-sink mechanism 

rather than a counter gradient mechanism.   

Geometric Previous work in Drosophila focused on a three-dimensional organism-scale 

model of BMP and gap gene patterning in the  Drosophila embryo [8], [68], [86]. To date, there 

are few mathematical models for zebrafish embryonic development and only one that developed a 

3D approximation by Zhang et al. to study the role of Chordin in regulating BMP signaling in 

zebrafish [87]. This model focused on the blastula stage from 30% epiboly to the early gastrula 

shield stage (around 50% epiboly), however, it did not include growth, was not compared to data, 

and suggested a mechanism of BMP shuttling that has now been shown not to function in the 

embryo [85]. 

In our current study, we seek to add growth and 3D patterning to the model to test mechanisms 

of patterning in 3D. The 3D model provides multiple advantages to 1D models [51], [88] which 

allows us to use all the data from imaging instead of a subset and improves model discrimination. 

To consider the cell movement during epiboly; this problem turns to be a moving domain and 

advection active problem. The simulation of time-dependent advection-diffusion-reaction 

equations is required in various applications. A typical simulation of processes that involve a 

chemical reaction in a flow field is modeled by a non-linear system of time-dependent advection-

diffusion-reaction equations for the concentrations of the reactants and the products. These 

equations are strongly coupled such that inaccuracies in one concentration directly affect all other 
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concentrations. We present two different methods to solve this problem. My first approach is using 

a mass adding finite difference scheme, to represent the realistic embryo geometries my other 

approach is a finite element scheme in ALE formulations with moving boundaries and interfaces. 

In the Chapter 3 and Chapter 5, we will discuss these two types of mathematical approaches 

separately.  

Our proposed 3D feedback models for later stages of development will be critical in 

understanding the mechanisms of BMP pattern formation in the zebrafish embryo, the role of 

feedback, and provide new insight into how morphogen gradients evolve in a rapidly changing 

tissue. 

1.5 Scaling invariance in Zebrafish embryo 

 Generally, scale invariance represents a key feature of a system that keeps consistent when 

scale by size or other factors. In organisms, within the same or relative species, the tissues and 

organs may vary by size but similar in morphology, which appears to be scaled in a pattern. In 

pattern formation, a morphogen forms a non-uniform spatial distribution over a field of cells and 

the concentration gradient further triggered the underlying gene expression eventually control the 

forming of the tissue and organ pattern. The pattern scale invariance is maintained through the 

signaling network robustness during the morphogen gradient formation under perturbations. It has 

been an enduring question in current biology that what mechanism leads to the robustness of that 

regulate scaling of patterns in the organism during development. In our current case of BMP 

meditate DV patterning, a Recent study shows scale invariance has been found in both vertebrates 

and invertebrates, including Drosophila and Xenopus [90], [91], however, the mechanisms that 

regulate gradient scaling remain controversial. 

 In the Drosophila embryo, dorsal exterior patterning by Decapentaplegic (Dpp), the fly 

homolog of the secreted mammalian BMP2/4 signaling molecules, reveals scaling between closely 

related species and between individuals within a species [68]. Particularly, between Drosophila 

melanogaster and related species, the larger Drosophila virilis, and the smaller Drosophila busckii. 

the ratio of average Dpp/BMP- induced pMad pattern constantly width-to-embryo length [91], 

considering as interspecies scaling invariance. Meanwhile, individual embryos with different sizes 

within those species maintain this constant ratio as well [68]. Also, the study of scaling invariance 

in the zebrafish embryo shows that the intraspecies embryos maintain scaling of the Dpp/BMP 
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signaling gradient in the face of experimental reductions in embryo size of up to 30% [92].  To 

understand the underlying mechanism for the scaling invariance, Inomata, etc. performs 

Computational and experimental studies in Xenopus embryos, show that the scaling mechanisms 

in early Xenopus embryos highly depend on the stabilizes of Chordin degradation which is 

controlled by embryo-size-coupled Sizzled accumulation dynamically [50]. BMP-mediated 

pattern formation is valuable for understanding the mechanisms and requirements of scale 

invariance, an example of biologically achieved robustness. 
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2 QUANTIFYING SPATIOTEMPORAL BMP SIGNALING, FEEDBACK 
TARGET GENE EXPRESSION IN ZEBRAFISH BLASTULA AND 

GASTRULA EMBRYOS 

2.1 Quantifying spatiotemporal cell movement 

 BMP signaling plays a crucial role in patterning the ventral cell fate through gastrulation 

where the regions of the embryo over which BMP is patterning are rapidly changing as the cells 

stream and converge (Figure 1.1). Cell flow may contribute to morphogen dispersion through 

active transport, where we consider the influence of advection on reaction-diffusion dynamics.  

Morphogen transport is influenced by advection in addition to the diffusion of the ligand as a 

potential source of gradient shaping dynamics. One of the core questions we want to answer 

through this study is how the cell movement during epiboly affects the BMP gradient formation. 

We first estimated the potential role of advection in shaping the gradient-based on our estimates 

for diffusion and the rates of cell movement in early development. Keller et al. presented a 

digital embryo of zebrafish embryos during the first 24 hours of development, and it provides a 

database of cell position, divisions, and migratory tracks [93].  Cell migration trace data from 3.5 

to 9.6hpf has been collected through the digital embryo dataset, including time-dependent cell 

positional data and a MATLAB cell tracking code provided by Keller et al.  We created our 

framework to analyze the cell movement trend and the significance of advective transport. We 

also calculated the average instantaneous cell velocities during the early blastula and gastrula 

stages and created a general cell velocity map which can be read by our growing domain finite 

element model to generate the advective transport of the proteins through the cell movement in 

our advection-diffusion and reaction model.  
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Figure 2.1.  Cell movement trace fitting during epiboly, (A) Individual Cell traces map on the 
sphere, (B) Smoothed cell trace, (C) Overall cell movement map 

 

To ignore the individual differences of embryo shape, we consider the embryo as a 

spherical shape ideally (Figure 2.1).  Individual cell traces have been mapped to the standard 

sphere and fitted to a smooth parametric function to extract the overall trend of the cell movement 

during epiboly.  

We then calculated the cell movement along the azimuth and elevation directions through 

spherical coordinates and found that the average velocity on elevation direction is much higher 

than the velocity on azimuth direction. This indicates that the majority of cells move directly from 

the animal pole toward the vegetable pole during the epiboly. Figure 2.2 shows the map of the 

instantaneous angular velocity on azimuth and elevation direction based on all the cell traces data 

we have obtained. We also found that before 30% epiboly the cells close to the animal pole are 

more like to move randomly. After 40% epiboly and with the start of gastrulation, the cell velocity 

has a dramatic increase, and the majority of the cells are moving straight toward the vegetal pole. 

Also, after 50% epiboly, the cell movement polarized along with the DV patterning is ongoing. In 

particular, the cells in the dorsal region move relatively faster than the cells located in the ventral 

region. Thus, the closed point of epiboly does not locate exactly 180 degrees from the vegetal pole.  
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Figure 2.2.  Cell velocity map of velocity components on azimuth (A) and elevation (B) direction 
during epiboly. Use the azimuth angle, az, and the elevation angle, el, to define the spherical 

coordinates. 

2.1.1 Diffusion vs Advection 

 To decide whether the advective transport caused by the cell movement or diffusive 

transport dominates the BMP concentration profile during blastula stages, we estimated the 

average Péclet number based on the cell tracing data from 4.7 to 5.3 hpf.  

 The Péclet number (Pe) is a dimensionless number that represents the ratio of the advection 

rate over the diffusion rate in an advection-diffusion transport system [94]. The Péclet number (in 

terms of timescales for each process) is defined as: 

 𝑃𝑒 =
𝑎𝑑𝑣𝑒𝑐𝑡𝑖𝑣𝑒	𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡	𝑟𝑎𝑡𝑒
𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑒	𝑡𝑎𝑛𝑠𝑝𝑜𝑟𝑡	𝑟𝑎𝑡𝑒 =

𝜏!
𝜏"

  

 

where	𝜏! =
#!

!
 and 𝜏" =

#
$
, Thus  

 𝑃𝑒 =
𝐿𝑣
𝐷   

𝑣	represents linear flow velocity; L represents the characteristic length of the flow and D is the 

diffusion constant. In this study, one-quarter of the embryo radius was used as the characteristic 
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length due to the average distance traveled for components considering the spatially distributed 

sources. 

 Figure 2.3 illustrates the cell trace by 5.7 hpf on a 2D map of elevation and azimuth 

directions, the color scale represents the Péclet number based on the cell velocity. The median 

blastula stage Peclet number is 0.428 among all trackable cell traces in the embryo, Figure 2.3A. 

Looking at only the region near the margin (where the DV axis specification occurs), it is 0.380. 

These numbers support the assumption of diffusion dominance prior to 50% epiboly. With a Péclet 

number in the measured rates for the blastula stage, the time scale for diffusion is about 2-3 times 

lower than for advection, suggesting that the advective term is a minor contributor to flux. Thus, 

for the blastula stage embryo, we can assume this problem as a moving domain non-advection 

problem. However, later during gastrulation, we found that the Péclet number is approximately 

equal to or larger than 1 throughout the entire embryo, suggesting that the advective term is a major 

contributor to flux, suggesting the need to account for both advection and diffusion. 

 

Figure 2.3.  Cell trace map on elevation (el) and azimuth (az) direction around 50% epiboly (A: 
4.7-5.3 hpf) and 90% epiboly (B: 5.7-9hpf), color represents the Péclet number based on the cell 

velocity calculated every 15 min. hpf: hours post fertilization. 0 on the az axis represents the 
ventral end.  
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2.1.2 Apply cell movement map to finite element model 

To translate cell movement data into our growing domain finite element model as the driver 

of advective transport during DV patterning and epiboly, a 3D dynamic cell velocity map on the 

spherical domain was generated based on the analysis in the previous section. This map will 

encompass the mesh growth in our growth domain finite element model. Details related to 

mathematical aspect of embedding cell velocity map into finite element scheme will be discussed 

in Chapter 3.2.   

 

 

Figure 2.4  Lowess fit of the averaged velocity data. v1, velocity on x direction, v2, velocity on y 
direction, v4, velocity on z direction. v4, velocity magnitude. 

 

We calculated the individual cell velocity every 15 min based on the cell traces obtained 

from Chapter 2.1.1. An evenly distributed point cloud was generated for obtaining the average 

velocity trend through the sphere. Then the averaged velocity data was fitted by the Lowess smooth 

function in MATLAB show as Figure 2.4. An overlapping region has been added at the end of 

azimuth direction to keep the consistency of velocity trend after the fitting to spherical coordinates. 

Illustrated in Figure 2.5 C, we obtained a smooth velocity map based on spherical coordinates, and 
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into total 19 frames of the velocity map were generated through 3.5hpf to 9hpf. To apply the 

velocity data in to mesh movement with the finite element mesh, we embedded the velocity map 

to our finite element simulation frame. In the single time increment during the FEM simulation, 

the node will read the closed velocity scale based on its spherical position and calculat the 

displacement for the next time step. Due to the large deformation during epiboly, a remeshing 

scheme will be applied during the simulation. Details about the remeshing method will be 

discussed in Chapter 3.2.1. 

 

 

 

Figure 2.5.  Generation processes of the 3D dynamic cell velocity map at different stages. 
Column A represents the real cell movement data mapped onto a spherical surface. Column B 

represents the averaged spontaneous velocity on an evenly distributed point cloud over the 
surface. Column C represents the functionally fitted and smoothed 3D dynamic cell velocity map 

based on spherical coordinate. Column D shows the finite element mesh movement guided by 
the dynamic cell velocity map. 
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2.2 Quantification of Spatiotemporal P-Smad image data 

 BMP is ligand that binds and activates its transmembrane receptor complex to directly 

phosphorylate the Smad5 (P-Smad5) transcription factor [88].  P-Smad5 subsequently 

accumulates in the nucleus and induces BMP target gene transcription [35], [95], [96]. Thus, the 

Smad5 is directly phosphorylated by the BMP type I receptor in response to BMP signaling, and 

P-Smad5 concentration has been shown to linearly correlate with the concentration of BMP 

ligand[88].  In our study, P-Smad5 fluorescence is used to compare against our model output by 

comparing the BMP gradient profile with the P-Smad5 profile.  

In this study we utilized a quantitative immunofluorescence approach done by Zinski, et al 

at our collaborated group of Dr. Mary Mullins at University of Pennsylvania, to quantify nuclear 

P-Smad5 as the direct intracellular readout of BMP signaling. The data provided can directly 

visualize the P-Smad5 gradient at single-cell resolution embryo-wide and compare differences 

across mutant populations [51], [88], [97], [98]  

Particularly, in our modeling approach, P-Smad5 data will be used to validate the reliability 

of the model. Both wild-type P-Smad and mutant P-Smad levels will be quantified and compared 

with the BMP concentration profile predicted by the mathematical model relatively. Different 

mechanisms will be tested in the mathematical model to assess which mechanism can produce 

predictions that align better with the experimental data. 
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Figure 2.6.  Data processing steps for P-Smad data. Color level indicates the 

intensity level at arbitrary unit. 
 

To compare the P-Smad profile and our model output BMP gradient profile directly, we 

processed their data by fitting the original data to a standard sized hemisphere with different 

coverage along the elevation direction depending on the epiboly stage (4.7hpf for 40% epiboly, 

5.7hpf for 50% epiboly,6.3hpf for 60% epiboly). Different sets of experimental data in the same 

stage have been averaged on the evenly distributed sample points over the spherical domain to 

obtain the representative P-Smad level for this stage. Figure 2.6 demonstrates the details of our P-

Smad data processing steps. Figure 2.7 and Figure 2.8 show the results of averaged P-Smad 

distribution profile over the whole 3D spherical domain for both wild-type and Chd mutant 

embryos. This data set will be directly applied into our modeling framework to validate the output 

BMP gradient and optimize our current model. 
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Figure 2.7.  Averaged P-Smad distribution for wild-type at 4.7hpf, 5.3hpf, 5.7hpf, 6.3hpf and 
6.7hpf 

 

 

 

Figure 2.8.  Averaged P-Smad distribution for chd mutant at 4.7hpf, 5.3hpf, 5.7hpf, and 6.3hpf 
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To have a better understanding of the relative level between different stages, we used a 

band of sample points around the margin and across the central region (from dorsal-most to 

ventral-most through the top of the animal pole) of the embryo to plot the profiles of overall P-

Smad5 gradient between stages and between wild-type and Chd mutant embryos( Figure 2.9 and 

Figure 2.10).  

 

 

Figure 2.9.  P-Smad profile at the margin for wild-type and Chd mutant 
 

 

Figure 2.10.  P-Smad profile at central for wild-type and Chd mutant 
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2.3 Quantification of Spatiotemporal target gene expression with whole-mount mRNA 
scope experimental data   

On the other hand, through different techniques, experimental investigation in the zebrafish 

embryo can offer a wide variety of data mainly through visualizing the phenotypic structure and 

protein expression patterns in a partial or whole embryo. 

Single-molecule fluorescence in situ hybridization (smFISH) has enabled detection of 

multiple mRNA spots in cells or embryos including C. elegans [99], Drosophila [100] and 

zebrafish [101], which is more quantitative than the traditional RNA in situ hybridization method. 

RNAscope, the higher-resolution smFISH method, allows the detection of lower expression levels 

of genes [102].  Quantified confocal fluorescent image data of bmp2b mRNA expression can 

provide the input profile to the BMP source term in the model.   

To determine the values for source terms in the model, we imaged the spatial domains for 

expression of bmp, chd, nog and sizzled mRNA at embryonic stage 4.7hpf, 5.7hpf , 6.3hpf and 

8hpf, throughout the embryo using the RNAscope method. The mRNA whole mount mRNA image 

data was collected by Dr. Xu Wang.  

Figure 2.11 illustrates the whole-mount RNAscope image of bmp2b, chordin, and sizzled 

mRNA at 5.7hpf. Multiple individual mRNAs can be simultaneously detected by the RNAscope 

method at the cellular level in whole-mount embryos. bmp2b mRNA started to express since the 

zygotic stage, showing an obvious gradient pattern higher in the ventral, whereas chd mRNA 

expressed in the dorsal at 5.7hpf. The details of the experimental processes of RNAscope method 

can be found at Appendix A. We use the range of mRNA expression to represent the protein 

secretion of different species. Also, we developed methods to map BMP morphogen gradient 

formation and component gene expression quantitatively.  
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Figure 2.11.  Whole-mount RNAscope image of bmp2b, chordin, and sizzled mRNA 
distribution. 

 

mRNA segmentations, by the thresholding of spot intensity or watershed method, are well-

used to quantify the number and intensity of single cells or tissues [103], [104]. We compared the 

method of both threshold of spot intensity and quantified the number of the single mRNA spots. 

Since the chd mRNA signal is very strong and high-intensity, spots overlapping with each other 

make it very difficult to distinguish a single spot. Thus, we chose to use the intensity threshold 

method to quantify the expression level of each species individually. We ignore considering the 

over lapping of mRNAs through the connect z-stack since the mRNA molecular should smaller 

than 2-3 micrometer in z-stack.  
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 Figure 2.12.  mRNA identification and noise of image processing scheme of the whole 
mount RNAscope experimental image. A. Original confocal image on a specific z-stack. B. 

mRNAs identified through hold method on a same z-stack. C. mRNAs identified over 3D space 
with noise D. Nosie (Red) clearing process E. Noise cleaned data  

 

We created a framework with a MATLAB-based package to identify all 200,000 + mRNA 

in each embryo in three dimensions to extract the BMP2b mRNA intensities. The details of the 

workflow of mRNA identification are shown in supplemental Figure S1. First, prerequisite 

intensity drop-off corrections were applied to the original image based on the drop-off of the 

nuclear intensity level through the depth of stacks which makes signal intensity reduced from the 

top of the image to lower stacks of the image as light is scattered when signal detection deepening 

into the lower layer of the embryos. Supplemental Figure S2 illustrated the original drop off level 

of nuclei channel and correction scheme. Then, single mRNA spots were identified through the 

intensity threshold method. Averaged and peak intensity level inside a single spot was saved with 

the position.   Figure 2.12 shows a single slice of an original 3D image with the individual label 

of a single mRNA spot. Since the mRNA spots are generally densely distributed throughout the 
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expression domain, mRNA density around the single mRNA spot was used to eliminate the noise 

signal out of the range of the embryo region. Individual signal spots surround by distinguishable 

low density of other spots will be recognized as machine noise and eliminated. The red spots shown 

in   Figure 2.12 represent the noise spot identified through this process. Cytoplasmic individual 

mRNAs can connect to one big spot, especially for chd. Potential big spots were extracted and 

separated when the spot intensity and pixel volume are larger than 3 times of the averaged value. 

The separated intensity was evenly distributed into an averaged grid point in the area, shown in 

supplemental Figure S3. 

 

 

Figure 2.13.  Embryo data registration for blastula and gastrula stages 
 

 To register the different embryo data along the DV axis, the dorsally expressed chd 

intensity level is used as a dorsal marker to identify the DV axis. The confocal image acquisitions 

were treated differently between 8hpf embryo with other stages because of the shape differences 

and limitation with the confocal as light is scattered when signal detection deepening into the lower 

layer of the embryo, and the signal is usually lost around 400mm depth at the z-stack level. The 

embryos before and at 6.3hpf were imaged with the upright objective in the same orientation with 

the marginal region facing to the bottom since the cell layer from the animal pole to the marginal 
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end is less than 400mm as the epiboly level is around 60%. However, at 8hpf as the epiboly level 

is over 80%, it is impossible to acquire data for the whole embryo within a single image, as with 

considering the embryo symmetrically dived by the DV axis, we collect the 8hpf data from the 

lateral view and manually mirrored the half embryo data to assemble as a whole embryo. The 

dorsal view of chd and nog expression data was collected and used as a standard to register the 

half embryo data based on the chd expression distribution. The individual embryo has been treated 

manually to register along the DV axis. Figure 2.13 demonstrates the detail of the registration 

processes for both blastula and gastrula stage data.  

 To apply it to our finite element model, we use mRNA data to determine the area of BMP 

expression. The data processing method used for mRNA data is similar to one applied on P-Smad 

data. The sampling area for calculating the average intensity overlapped with its close neighbors 

in order to a smooth expression map though out the spherical domain. To minimize the influence 

of the different nuclear densities, the individual sample intensity has been divided by the nuclei 

number in that sample area, shown in supplemental Figure S4. 

 

 

Figure 2.14.  Averaged mRNA expression map for different proteins at individual development 
stages 
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Totally 98 embryo images have been processed, and different embryo data at the same stage 

were averaged to generate the average expression map. Figure 2.14 demonstrated the overall 

average map for four mRNAs (BMP, Chd, Nog, Szl) at four stages (4.7hpf, 5.7hpf, 6.3hpf and 

8hpf). The list of embryo numbers averaged for individual genes at specific developmental 

stages is in supplemental Table 2. To apply the BMP expression data to our model, a dynamic 

map was created to locate the specific expression level spatially and temporally by linearly 

interpolating the data between different time points in a 2D spherical surface coordinate in 

azimuth and elevation angle, shown in Figure S5. Figure 2.15 illustrates the dynamic map 

interpolated on FEM mesh during the simulation. The dynamic map is used to precisely analyze 

and test the hypotheses of the gradient formation mechanism in our model. 

 

 

Figure 2.15.  Dynamic expression map interpolated on FEM mesh. A, expression map for bmp2b 
mRNA at 4.7hpf on spherical grid. B, Interpolated expression level of BMP on FEM mesh. 
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3 EVALUATION OF BMP-MEDIATED PATTERNING IN A 3D 
MATHEMATICAL MODEL OF THE ZEBRAFISH BLASTULA 

EMBRYO 

The content presented in this chapter is adapted from our work “Evaluation of Bmp-Mediated 
Patterning in a 3D Mathematical Model of the Zebrafish Blastula Embryo”, which was published 
in Journal of Mathematical Biology. Minor edits to the formatting have been made to produce a 
cohesive dissertation. The published version of this chapter is available at the following 
link: https://doi.org/10.1007/s00285-019-01449-x 
Text reuse with permission. 

3.1 Introduction  

Pattern formation by morphogens drives the normal development of various processes such 

as limb development and organogenesis in animals [1]–[5], [105], [106]. In zebrafish, patterns of 

gene expression along the dorsal-ventral (DV) body axis are regulated by Bone Morphogenetic 

Proteins (BMPs) [10]. BMPs are a member of the TGF-𝛽  (transforming growth factor 𝛽 ) 

superfamily. Very early in embryonic development, both invertebrates and vertebrates require 

BMP signaling to pattern the DV axis [11], [12]. BMPs pattern DV tissues of zebrafish, Xenopus, 

and Drosophila embryos by forming a spatially-varying distribution, in which different levels of 

BMP signaling drive differential gene expression [29]. 

BMP signaling is propagated by the binding of BMP dimers to serine/threonine kinase 

receptors on the cell membrane.  Type I and II receptors form higher order tetrameric complexes 

and phosphorylate intracellular Smads (P-Smad5 in zebrafish) that accumulate in the nucleus and 

regulate differential gene expression.  BMP signaling is regulated by different molecules at 

multiple levels: extracellular, intracellular, and on the membrane [17]. These regulators form a 

system that enhances, lessens or refines the level of BMP signaling. One group of regulators are 

the inhibitors of BMP signaling [5], [29], [55]. BMP inhibitors include Chordin (Chd), Noggin 

(Nog), Crossveinless2, Follistatin, Sizzled, and Twisted gastrulation. [26], [44], [55], [107], [108], 

most of which act by binding BMP ligands, preventing them from binding their receptors. In this 

study, we focus on the major antagonists Chordin and Noggin.  Chordin, unlike Noggin and 

Follistatin, can be cleaved by the metalloproteases Tolloid and BMP1a, releasing Chordin-bound 

BMP ligand and allowing it to bind receptors and signal [109], [110]. Downstream intracellular 

regulation of BMP signaling occurs throughout the BMP-Smad pathway [111]. Inhibitory Smads 
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modulate BMP signaling, either by interacting with Type I BMP receptors or by preventing R-

Smads from binding Smad4. Others molecules, such as microRNAs and phosphatases may also 

act as intracellular modulators [112].  

In our previous work, we developed a data-based 1-D model to investigate the mechanisms 

of BMP-mediated DV patterning in blastula embryos to early gastrula embryos at 5.7 hours post 

fertilization (hpf) before the initiation of BMP-mediated feedback (Zinski et al. 2017). We 

quantified BMP signaling in wild-type (WT), chordin mutant, and chordin heterozygous embryos. 

In our previous model screen, we simulated BMP gradient formation along a 1D line at the embryo 

margin and used the quantitative measurements of P-Smad to inform our model selection. We 

concluded that the signaling gradient patterning the vertebrate DV axis is most consistent with 

either a counter gradient or a source-sink mechanism.  Measurements of BMP2 diffusion by 

fluorescent-recovery after photobleaching of ~4um2/sec by ourselves and others, in addition to 

published estimates for the BMP2 lifetime, were more consistent with the source-sink mechanism 

than the counter gradient mechanism [85], [113].  

These models lay the groundwork for our current study where we seek to add growth and 

3D patterning to the model and test mechanisms of patterning in 3D. There is a significant need 

for spatially and temporally accurate 3D models of the early embryo to evaluate reaction-diffusion 

processes of chemical morphogens including BMP ligands. The development of accurate 3D 

models has been limited due to the complexity of embryo structure, and the computational 

resources needed to run parametric screens in 3D models. The work here builds off of previous 

work carried out by us and others. Previous work in Drosophila focused on a three-dimensional 

organism-scale model of BMP and gap gene patterning in the  Drosophila embryo [8], [68], [86].  

In zebrafish, the 3D structure shares some similarities but many differences with Drosophila, 

especially in regard to the growth during epiboly and the potential role of cell movement in shaping 

the gradient in the zebrafish. To date there are few mathematical models for zebrafish embryonic 

development and only one that developed a 3D approximation by Zhang et al. to study the role of 

Chordin in regulating BMP signaling in zebrafish [87]. This model focused on the blastula stage 

from 30% epiboly to the early gastrula shield stage (around 50% epiboly), however, it did not 

include growth, was not compared to data, and suggested a mechanism of BMP shuttling that has 

now been shown not to function in the embryo (Zinski et al. 2017).  
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BMP signaling begins patterning ventral tissues before the onset of gastrulation [10], [114], 

[115]. During gastrulation, coordinated cell movements organize the germ layers and establish the 

primary body axes of the embryo [15]. Epiboly begins during mid blastula stages (30–50% epiboly) 

and continues through the gastrula stage and entails a thinning and expanding of the cell layers 

from the animal pole, where the blastoderm lies, to cover the yolk cells over the vegetal pole [16]. 

The 3D model developed here accounts for this growth from 30 to 50% epiboly. The cell 

proliferation and movement during epiboly lead to a growth-like cell flow in the system. Such 

systems are often considered on a growing domain and many have incorporated domain growth 

into models of pattern formation [116], [117]. There are many ways and levels of detail that can 

be developed into a “growing” domain in a model and the appropriate choice depends on the 

physics of growth, the relative rates for new mass to enter the system, the ratio of processes that 

are involved in the transport of the molecules of interest among other considerations [118], [119]. 

In our first model for early zebrafish development that encompasses up to 50% epiboly, the 

approaches we considered include finite element modeling with a moving mesh or a simplified 

approach that simply adds mass at the leading edge to represent the movement of the cells further 

in the vegetal direction using a finite-difference solution approach. In this study, we used a growth 

domain finite-difference scheme that treats growth of the 3D simulation domain by adding new 

layers of mass near the leading edge of cells at the margin of the embryo at each growth step. 

While our final goal is to develop a complete advection-diffusion-reaction model that 

incorporates all stages of zebrafish embryonic development, our current data and the development 

of the model herein that is tested against the data covers the first half up through 50% epiboly. It 

also serves as a greater test of the source-sink mechanism.  Herein, we find that a Partial 

Differential Equation (PDE)-based model for BMP patterning of a zebrafish embryo with growth 

through epiboly demonstrates that the source-sink mechanism patterns well in 3D, however, 

sensitivity analysis suggests that the prepatterns of mRNA expression of BMP ligands and the 

inhibitor Chordin play a large role in dictating the overall shape and dynamics of the BMP gradient.  

Additional work is needed to quantify the gene expression domains and map them into the 3D 

modeling environment to improve the model for greater understanding of the inhibitors’ roles in 

shaping the gradient in 3D. 
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3.2 Method 

We adopted our previous 1D model for the reaction-diffusion system simulated along a 

line for the margin [85] to our 3D geometry for the embryo growing domain model. The regulatory 

network in this study includes four individual components (BMP, Chd, Nog, Tld) and two bound 

complexes (BMP-Chd (BC), BMP-Nog (BN)). Figure 3.1H illustrates the regulatory network 

between different components: antagonists Chd and Nog inhibit BMP signaling by binding BMP 

ligands, and Chordin and BC complexes are cleaved by the metalloprotease Tolloid. To develop 

the model equations, a number of assumptions and simplifications are needed that are based on the 

biology and the questions being investigated.  At minimum, we needed to determine if the mass-

balance equations require both advective and diffusive terms for molecular transport, the structure 

of the reaction rate equations, and quantification of the sources of each of the components that may 

change over space and time. 

We first estimated the potential role of advection in shaping the gradient based on our 

estimates for diffusion and the rates of cell movement in early development.  We quantified the 

cell movement during epiboly by using the digital embryo data presented by Keller et al. [120] and 

quantified individual cell traces from 30% to 50% epiboly. To decide whether the advective 

transport caused by the cell movement or diffusive transport dominates the BMP concentration 

profile during blastula stages, we estimated the average Péclet number based on the cell tracing 

data from 4.7 to 5.3 hpf. As described in Chapter 2.1, we found that the median blastula stage 

Peclet number is 0.428 among all trackable cell traces in the embryo, thus, for the blastula stage 

embryo, we can assume this problem as a moving domain non-advection problem. 
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Figure 3.1.  Whole mount experimental result of bmp2b (A), chd (B), nog (C) mRNA expression 
and nucleus positions (D), view from the animal pole. (E-G) Simulation input of expression area 

in WT for BMP, Chd and Nog, respectively. Yellow color indicates an area of production for 
each species. (H) Simplified BMP regulatory network used in this study. 

 

Based on the regulatory network in our model Figure 3.1H, we firstly developed five-

coupled non-linear partial differential equations (PDEs) model for BMP ligand, Chordin, Noggin, 

and the complexes of BMP-Chordin, BMP-Noggin. The model solves the spatial-temporal 

diffusion problem in spherical coordinates using the derivative in expanded form:    
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Note, C here represents a generic concentration, where C in the following equations represents the 

concentration of Chordin. The reactions between the different components are listed below: 

The reaction of BMP ligand and Chordin ligand forming BMP-Chordin (BC) complex, 

𝐵𝑀𝑃 + 𝐶ℎ𝑑	 ↔ 𝐵𝑀𝑃/𝐶ℎ𝑑 

 𝑟% = 	𝑘1 ∙ 𝐵 ∙ 𝐶 − 	𝑘_1 ∙ 𝐵𝐶FFFF (4) 

BMP ligand and Noggin form a BMP- Noggin (BN) complex, 

𝐵𝑀𝑃 + 𝑁𝑜𝑔	 ↔ 𝐵𝑀𝑃/𝑁𝑜𝑔 

 𝑟& = 	𝑘2 ∙ 𝐵 ∙ 𝑁 − 	𝑘_2 ∙ 𝐵𝑁FFFF (5) 

(𝑘'and 𝑘(' are the forward and reverse reaction rates, respectively).  

The metalloproteases Tolloid (Tld) and BMP1a are lumped together and called Tld in this model 

and they function by cleaving Chd and Chd in the BMP-Chd complex.  
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The model for all the species involved is given by Equations below, 
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Since we limited the domain to the sphere surface, the diffusion in the r direction can be ignored. 

The above equation holds in the growing spatial domain 𝛺+  for all 0	 < 	𝑡	 < 	𝑇, where f and 

q	Î	𝛺+.  B, C, N, BC, BN and Tld represent the concentration of BMP, Chordin, Noggin, BMP-

Chordin complex, BMP-Noggin complex, and relative Tolloid, respectively.  Tolloid is scaled and 

therefore dimensionless with a maximum of 1.  𝐷. 	 represents the diffusion rate for each species, 

𝑆. 	is the constant term of source for original expression of the specific gene which varies by its 

spatial distribution and reflects the experimental gene expression data for different species (Figure 

3.1E, F, and G), 𝜆. 	is the Tld processing rate for Chd and BC complex, and 𝐾. 	 is the decay rate 

for specific ligands.  

 We approximated simple expression regions from confocal images to build the model. 

Various expression regions were tested for all three components (BMP, Chd, and Nog). Figure 

3.1A illustrates a set of expression regions for BMP, Chd, and Nog that were tested. Notably, we 

applied a general gene expression data instead our gene expression map to the finite difference 

approach since we didn't finish the development of the image collection and processing framework 

at that time. For the simulations, the image data were converted into binary regions of expression 

and no expression. As shown in Figure 3.1, the BMP production region is limited to the ventral 

region, and Chd and Nog are limited to the dorsal side. As shown in Figure 3.1C, the Nog 

production region is smaller than the Chd production region.  

 The zebrafish embryo is approximated as a perfect hemisphere and the reaction-diffusion 

process happens on the surface of the sphere. Solutions were computed using the finite difference 

scheme based on the elevation and azimuth angles in spherical coordinates. Since the experimental 

result indicates that the development of the zebrafish embryo is symmetrical during the blastula 
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and gastrula stage, we only calculated our model in a quarter-sphere domain to decrease the 

computation and storage load. No-flux boundary conditions were applied for all species on both 

the ventral and dorsal boundaries, shown in Figure 3.2A. To avoid the singularity that happens on 

the top points where the elevation angle q is equal to zero, we used a hollow-shaft approximation 

method presented by Thibault et al [121]. With this approximation, the mesh point 𝜃 = 0 is 

eliminated by introducing a small but finite interior surface 𝜃 = 𝑓/∆𝜃, and we used 𝑓/ = 0.1 in 

this study. The growth of the domain is achieved by adding finite-difference layers at the margin 

region in the elevation direction. Figure 3.2B illustrated the initial domain region (blue) compared 

to the growth domain region (orange) at 50% epiboly. Figure 3.2C shows the finite difference 

decentralization scheme based on elevation and azimuth angle on the spherical coordinate. The 

growth steps depend on the initial mesh density in the elevation direction and the smaller the mesh 

size in the elevation direction, the smaller the step size is used to model growth.  We calculated 

the majority of solutions to the problem with step sizes for growth that balance model accuracy 

with computational cost. For faster screening within the large parameter space, we balanced at a 9 

(elevation direction) by 15 (azimuth direction) mesh grid on the initial domain. Mass is added to 

the system by matching the concentration of the newly added node with the closest margin node 

of the previous time point. Example geometries and a time-lapse of a single solution are shown in 

Figure 3.3A. 

 

 

Figure 3.2.  (A)Spatial domain at 3.5 hpf, Red open edges represent the non-flux boundary 
condition. (B) Initial domain (blue) vs later stage embryo domain (orange).  Here we illustrate a 

14 (elevation) by 31(azimuth) initial mesh that requires 7 growth steps from 30% to 50% 
epiboly. (C) Finite difference discretization 
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To test the Partial Differential Equation (PDE)-based models developed herein, we used 

the previously published point cloud data for P-Smad5 (readout of BMP signaling) that is available 

online at  Zinski et al. [85]. To apply these data to our model, we processed the data by fitting the 

original data to a standard size hemisphere with different levels of coverage along the elevation 

direction based on the embryonic stage of development. Different sets of experimental data in the 

same stage were averaged on the sample points over the globular domain to obtain the 

representative P-Smad level for each stage as shown in Figure 3.3 B.  

To evaluate the system over a wide range of possibilities, we developed a computational 

model-based screen of over 300,000 combinations of biophysical parameters of the major 

extracellular BMP modulators. We applied a Monte Carlo parameter sampling strategy 

wherein parameters were randomly selected from a uniform distribution in log space that covered 

four orders of magnitude within the physiological range for each parameter.  Each parameter was 

selected independently of the other parameters. The parameter ranges for sampling are listed in 

Table 1. After an initial wild-type simulation for each parameter vector, the model was re-

simulated with Chordin production set to zero to simulate the BMP signaling gradient in a chordin 

loss-of-function (LOF) scenario. Based on previous studies [85], [113], the diffusion rate and 

decay of BMP ligand and Chd are fixed as constant, 4.4𝜇𝑚&/𝑠 and 8.7 × 10(5/𝑠	for BMP, and 

7𝜇𝑚&/𝑠 and 9.6 × 10(5/𝑠	 for Chd, respectively. The parameter space for the rest of the unknown 

parameters is shown in Table 3.1. The model is solved for the developmental window that spans 

from 3.5 to 5.7 hpf, and all measurements of model error are calculated at 4.7, 5.3, and 5.7 hpf. 
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Table 3.1.  List of the parameter ranges used in the computational model-based screen. Values 
range between the upper and lower bound. 

Parameters Range Best Fit Unit 

𝐷# (BMP Diffusivity) 4.4 4.4 𝜇𝑚$/𝑠 

𝐷%  (Chd Diffusivity) 7 7 𝜇𝑚$/𝑠 

𝐷& (Nog Diffusivity) 10'$~10$ 0.58 𝜇𝑚$/𝑠 

𝐷#%  (BC Diffusivity) 10'$~10$ 25.89 𝜇𝑚$/𝑠 

𝐷#& (BN Diffusivity) 10'$~10$ 5.09 𝜇𝑚$/𝑠 

𝑘1	(Forward reaction rates for BMP and Chd) 10'(~10) 0.14 1/𝑛𝑀 ∙ 𝑠 

𝑘_1 (Reverse reaction rates for BMP-Chd) = 𝑘2 0.14 1/𝑠 

𝑘2 (Forward reaction rates for BMP and Nog) 10'(~10) 2.56 × 10'( 1/𝑛𝑀 ∙ 𝑠 

𝑘_2 (Reverse reaction rates for BMP-Nog) = 0.1𝑘3 2.56 × 10'* 1/𝑠 

𝑘# (Decay rate of Ligand BMP) 8.7 × 10'* 8.7 × 10'* 1/𝑠 

𝑘%  (Decay rate of Ligand Chd) 9.6 × 10'* 9.6 × 10'* 1/𝑠 

𝑘&  (Decay rate of Ligand Nog) 10'*~10'+ 0.05 1/𝑠 

𝑘#%  (Decay rate of Ligand BC) 10'*~10'+ 0.0015 1/𝑠 

𝑘#& (Decay rate of Ligand BN) 10'*~10'+ 6.87 × 10'( 1/𝑠 

𝑆# (Production rate of BMP) 10'$~10$ 0.41 𝑛𝑀/𝑠 

𝑆%  (Production rate of Chd) 10'$~10$ 17.34 𝑛𝑀/𝑠 

𝑆& (Production rate of Nog) 10'$~10$ 0.02 𝑛𝑀/𝑠 

𝜆%  (tld processing rate of Chd) 10'(~10) 0.0016 1/𝑠 

𝜆#%  (tld processing rate of BC) 10'(~10) 0.0022 1/𝑠 

3.3 Results 

 We identified the simulations generating BMP profiles that fit the P-Smad5 gradient at 4.7, 

5.3, and 5.7 hpf as measured by a low normalized root mean squared deviation (NRMSD) for both 

WT and Chd LOF. Figure 3.3A.demonstrates a simulation result for a WT case at these time points. 

The simulated BMP concentration level and measured P-Smad5 profiles (Figure 3.3B) are 

normalized between 0 and 1 to calculate the relative error (Figure 3.3C) between each profile for 

the entire domain. In our current simulations, we find good agreement throughout the embryo, 
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except on the ventral-anterior side and the lateral region between ventral and dorsal, that exhibits 

a relative error of ~12% (Figure 3.3C). The current best-fit parameter set is listed in Table 3.1.  

List of the parameter ranges used in the computational model-based screen. Values range between 

the upper and lower bound.. Compared with the biophysical requirements and fitness from the 1D 

model screen of Zinski et al., the result is consistent with the source-sink mechanism in which 

BMP diffuses from its distributed source to a sink of dorsal Chd. Overall, the simulation results 

match the trend with the experimental P-Smad5 profiles throughout the entire 3D domain. As the 

simulation processes, the difference accumulates in the ventral-anterior region and at the lateral 

portion of the margin for later stages. The likely source for this error is the assumption of binary 

expression domains (Figure 3.1E-G). 

 

 

Figure 3.3.  A, A’ and A”, Normalized simulation result of a wild type case at 4.7 hpf, 5.3 hpf, 
and 5.7 hpf. B, B’ and B”, Averaged and normalized P-Smad5 profile of 4.7 hpf, 5.3 hpf, and 5.7 
hpf embryos. C,C’ and C”, Relative differences between simulation results and P-Smad5 level. 
Positive error indicates the experimental data are higher than simulation results, negtive error 

indicates the experimental data are lower than simulation results. The results show in this figure 
illustrated with 9x15 mesh in the initial domain. 
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To clarify the differences between simulation results and P-Smad profiles, we isolated the 

profiles along the embryo’s margin and central region for WT and Chd LOF in Figure 3.4 for the 

current best-fit model. The central region is defined as the region connecting over the animal pole 

the ventral- and dorsal-most points of the embryo. Thus, for different growth stages, the number 

of indices measured radially along the margin remains the same, but the central region covers 

increasing radial portions with progress through epiboly. The relative level of BMP ligands on the 

margin region agrees with the experimental P-Smad5 profile for different time points ( Figure 3.4A 

and C).  However, the central profile shows a gap for the Chd LOF model. Compared to the 

experimental profile, which has a nearly linear drop from the ventral to dorsal region, the 

simulation results’ profiles show a stronger sigmoidal shape. Again, this may be caused by the 

sharp boundary of BMP production in the lateral region between ventral and dorsal or the sudden 

appearance of inhibiting Chd ligands. Based on the current data [85] the P-Smad5 gradient in 

chordin mutants showed a statistically significant increase in lateral regions of the embryo during 

these time points. Our results demonstrate the WT model has relatively better fitness on the central 

line compared to the Chd LOF model (in Figure 3.4 A-D) where the Chd LOF simulation 

overestimates at the early time points.  The fitness at 4.7, 5.3, and 5.7 hpf for WT exhibits an 

overall consistency and solutions lay within one standard deviation of the measured mean, 

however, the earlier 4.7 hpf timepoints between the model predictions and P-Smad data for the 

Chordin mutants show greater differences along the line that travels through the animal pole 

(central, in Figure 3.4 D).  This phenomenon appeared in all reasonable fits from the screen. 
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Figure 3.4.  BMP distribution of a single modeling simulation result compared with the P-Smad 
5 profile. A, WT case profile in the margin region. B, WT case profile in the central region. C, 

Chordin LOF case on margin region. D, Chordin LOF case on the central region. All graphs are 
from ventral to dorsal as indicated below x-axis in C, D. Black color represents 4.7 hpf, Blue 
color represents 5.3 hpf, Red color represents 5.7 hpf. The shaded region indicates standard 

deviation for individual experimental data, represented by the dotted line. The x-axis indicates 
the radial position. 

 

 To determine how sensitive the solutions are to the model parameters and identify the likely 

contributors to the data-model mismatch, we developed a local sensitivity analysis and we also 

carried out principal component analysis (PCA). In our work, PCA did not identify clear 

correlations amongst parameters to principal components in models that fit the available data.  We 

relied more heavily then, on parametric sensitivity, and Figure 3.5 A-D shows the parameter space 

for different unknown parameters vs. error between normalized simulation results and P-Smad5 

averaged intensities. The best parameters among 300,000 random sets were chosen as the starting 

point to test the local sensitivity. Compared to other unknown parameters, the production-related 

parameters demonstrate the greatest sensitivity for the simulation error. As shown in Figure 3.5A, 
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the model fitness changed most in response to BMP and Chd production rate changes, where the 

smallest error of 5% occurred with BMP production at 0.4	𝑛𝑀/𝑠  and Chd at 17.7	𝑛𝑀/𝑠 . 

Interestingly, model fitness does not vary with Nog production rate. The current best fit parameter 

set is a Chd dominant model, where the production rate of Chd (17.34	𝑛𝑀/𝑠) is much higher than 

the Nog production rate (0.02𝑛𝑀/𝑠). Thus, the WT model sensitivity shows that Chd dominates 

the sharp BMP gradient profile rather than Nog, consistent with previous 1D modeling results [85].   

Since the decay rates and diffusivities of BMP and Chd are fixed based on measurements 

[85], [113], the local sensitivity for the decay rates and diffusivities of Nog, BMP-Chd complex, 

and BMP-Nog complex are compared in Figure 3.5B and C. The model shows limited sensitivity 

to the decay rate of BMP-Chd. The model fitness is not sensitive to the decay rate and diffusivity 

of Nog. The Tld processing rate of Chd and the BMP-Chd complex show similar and relatively 

large sensitivities. The best Tld processing rate of Chd appears at 1.6 × 10(6/𝑠, and model fitness 

worsens considerably when the Tld processing rate of BMP-Chd complex increases beyond 

4.1 × 10(6/𝑠. Also, the model shows less sensitivity to the association constant for BMP/Chd and 

is insensitive to the association constant for BMP/Nog.  The parameters related to Noggin show 

minimal effects on model fitness based on our current results. On the contrary, the model is 

sensitive to the Chd-related activities (Chd production, Decay rate of BC complex, BC diffusivity, 

and Tld processing rate of Chd and BC complex).  This also indicates that a precise production 

region of the major components (BMP, Chordin, Noggin and Tld) and production rate of them 

could be the critical factors that increases the fitness quality of our current model. The high 

sensitivity to the current Tld model (linearly dependent on rate and concentration) also suggests 

that a more detailed protease model is needed to know how Chordin is restricted to the dorsal side 

required for shaping the BMP gradient.    

 Since, we use the range of mRNA expression to represent the spatial organization of protein 

secretion of different components and due to our previous work showing sensitivity to the spatial 

distributions in the 1D model, we carried out a deeper sensitivity analysis of these terms. To relate 

the model to the observed phenotypes, we tested how the secretion range of BMP, Chd, and Nog 

will influence the maximum concentration level of BMP ligands by using the same best-fit 

parameter set. Shown in Figure 3.5E, as the range of BMP secretion increases, the maximum BMP 

ligand concentration increases. On the other hand, as Chd decreases, the maximum concentration 

level of BMP ligand increases and leads to a dramatic increase when Chd range is less than 10% 
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of the embryo length. Shown in Figure 3.5F, we compared the changes of the normalized BMP 

profile in the margin and central region with respect to changes in the ranges of secretion. As BMP 

expression widens, the BMP ligand concentration profile widens in the margin but does not lead 

to a substantial difference in the central region.  Alternatively, as Chd expression widens, it 

sharpens the BMP ligand concentration profile and limits the BMP ligand range for both the 

margin and central region (Figure 3.5G). 

 While our final goal is to develop a complete advection–diffusion-reaction model that 

incorporates all stages of zebrafish embryonic development, within our first approach and data the 

development of the model herein that is tested against the data cover the first half up through 50% 

epiboly. It also serves as a greater test of the source-sink mechanism. Herein, we find that a Partial 

Differential Equation (PDE)-based model for BMP patterning of a zebrafish embryo with growth 

through epiboly demonstrates that the source-sink mechanism patterns well in 3D, however, 

sensitivity analysis suggests that the pre patterns of mRNA expression of BMP ligands and the 

inhibitor Chordin play a large role in dictating the overall shape and dynamics of the BMP gradient. 

Additional work is needed to quantify the gene expression domains and map them into the 3D 

modeling environment to improve the model for a greater understanding of the inhibitors’ roles in 

shaping the gradient in 3D. 
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Figure 3.5.  Local sensitivity analysis for unknown parameters. A, the production rate for BMP, 
Chd, and Nog. B, the Decay rate for Nog, BMP-Chd complex, and BMP-Nog complex. C, 

Diffusivity of Nog, BMP-Chd complex, and BMP-Nog complex. D, Tld processing rate of Chd 
and BMP-Chd complex (1/s), 2nd order constant for BMP/Chd (k1) and BMP/Nog (k2) (1/nM∙s).  

For Figure A-D, the x-axis represents the parameters’ value in the log scale. The y-axis 
represents the error of the simulation result for the normalized BMP ligand concentration 
compared to the normalized experimental P-Smad intensity.  E, Relative maximum BMP 
concentration changes as secretion domains change with BMP, Chd, and Nog. The X-axis 

represents the proportion of secretion domain vs embryo length (SD/L). F. Normalized BMP 
profile at the margin and central line changed by a proportional range of BMP secretion. G. 
Normalized BMP profile on margin and central line changed by a proportional range of Chd 

secretion.  X-axis represents the radial position from Ventral (left) to Dorsal (right). The Red line 
indicates a wider range of BMP or Chd secretion, respectively.  

3.4 Discussion 

One advantage of simulating the model on the 3D geometry proposed here is that it enables 

observation of the variation of the levels of components throughout a more realistic whole embryo 

domain. Though morphogen activity along the margin has offered preliminary insight into DV 

axis patterning, we observed greater differences between model and data along the margin vs. the 

meridian line that passes through the animal pole.  

The major challenge for this study is the vast unknown parameter space and 

computationally expensive simulation. The 3D growing embryo scheme is considerably more 

complex compared to a fixed 1D or 3D model. Using the finite difference scheme, the model 
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growth increments are at a constant radial rate along the longitudinal direction and also along a 

regular shape, which limits our capability to introduce a more realistic embryo shape and 

incorporate the advection caused by the cell mobility during later epiboly. However, by controlling 

the mesh size and growth duration in 3D that considers both the spatial and temporal aspects of 

embryo-scale modeling, this system allows for a closer surrogate to the actual embryo geometry 

to test different mechanisms that 1D and fixed domain models cannot support. 

 Local sensitivity analysis provides evidence that the BMP gradient is sensitive to the 

parameters related to Chordin and Tld activities. Since the BMP gradient is most sensitive to the 

gene expression inputs for BMP ligand, Chordin, and Tld processing, future work is needed to 

determine the relative expression of each of these proteins and the relative levels and spatial 

distributions of their expression. We are collecting bmp, chordin, noggin, and tld quantitative 

mRNA wholemount expression profiles at different stages to directly address this question. Even 

though we constrained some of the biophysical parameters based on experimental evidence that 

we and others have collected, there are likely more optimal parameter sets that may have different 

local sensitivities than shown here.  Resources for increasing the size of the computational screen 

as well as greater determination of the in vivo rate constants will narrow down the study further 

and overcome a primary weakness of the work presented here.   

 This work contributes to our long-term goal of developing 3D models of the embryo with 

growth and advective cell movement, quantitative gene expression, and feedback to determine the 

interplay of these processes on pattern formation.  The study here is the first step and provides a 

3D mathematical model on a growing domain and provides a computational framework to 

elucidate how the components work together to establish the BMP gradient at multiple time-points 

in the blastula embryo.  
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4 ACCELERATION OF PDE-BASED BIOLOGICAL SIMULATION 
THROUGH THE DEVELOPMENT OF NEURAL NETWORK 

METAMODELS 

The content presented in this chapter is adapted from our work “Acceleration of PDE-Based 
Biological Simulation Through the Development of Neural Network Metamodels”, which was 
published in Current Pathobiology Reports. Minor edits to the formatting have been made to 
produce a cohesive dissertation. The published version of this chapter is available at the following 
link: https://doi.org/10.1007/ s40139-020-00216-8 
Text reuse with permission. 

4.1 Introduction 

Mathematical modeling is widely used to interrogate mechanisms of signaling in biological 

systems. Spatiotemporal control of biological signaling is constrained by physical laws such as 

conservation of energy, mass and momentum. These physical laws, under a continuum assumption, 

are represented through partial differential equations (PDEs). Mechanism-based PDEs of 

biological signaling networks involve many coupled variables through nonlinear relations and 

many parameters. Model calibration often requires the screening of a massive parameter space due 

to the complexity of the system and the limitations of experimental evidence. During embryo 

development, regulation of the body plan can be described by nonlinear systems of reaction-

advection-diffusion PDEs of relevant proteins. Due to the complexity of the regulatory system and 

the physics involved, experiments alone are not enough to gain mechanistic understanding of 

pattern formation in embryos or to understand how cells pass information to each other over long 

distances. Rather, identifying the correct parameters of the PDE system that explain the observed 

data is essential to our understanding of the biology[8], [122]. Unfortunately, solving PDE models 

can be a computationally intensive task. The type of nonlinear PDEs appearing in morphogenesis 

and pattern formation have to be solved numerically with methods such as the finite difference 

method or the finite element method. Because of the high dimensionality of the input parameters 

specifying the PDEs, parameter calibration through random search involves running millions of 

PDE simulations[88]. Even with the unrealistic assumption that a single PDE evaluation takes on 

the order of seconds, the computational cost for the calibration task quickly adds up to weeks or 

longer. For more detailed PDE models accounting for realistic geometries, more proteins, other 

physical phenomena, and geometric and constitutive nonlinearities, the brute-force approach is 
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simply infeasible. Due to these problems, alternatives to direct PDE simulations are needed. One 

approach is to approximate the numerical simulation of a PDE system by another, simpler model 

- a metamodel. 

Machine learning and data analytics have yielded transformative results across multiple 

scientific fields due to the explosive growth of available data and computing resources. In this 

review, we discuss the ability of powerful machine learning methods to accelerate the parametric 

screening of biophysical informed- PDE systems.  Training a deep learning algorithm enables us 

to accurately identify a nonlinear map between high-dimensional input and output data pairs that 

replaces the direct numerical simulation of the PDEs. We propose to use neural network (NN) 

proxies to build these metamodels. Figure 4.1 illustrates the differences between the traditional 

PDE model approach versus the proposed NN meta-model. A NN proxy can give results that are 

very close to those of a PDE model while providing significant speedups for model evaluation. 

Here we review literature where these methods were utilized and then focus on an example system 

that models zebrafish embryonic patterning through an extracellular reaction-advection-diffusion 

system represented by PDEs for chemical components that evolve over space and time. This model 

is a prototypical example of a signaling network that can explain how complex patterns emerge in 

organisms during development. We show that the NN metamodel is capable of replacing the PDE 

solver over a wide and high-dimensional parameter space, while at the same time requiring a much 

smaller computational cost. As a consequence, we are able to do parameter calibration against a 

set of experimental data using the NN metamodel. The example shown here is a specific 

application of machine learning to replace physics solvers by inexpensive surrogates, but the 

methodology described in this manuscript extends to other models of morphogenesis and pattern 

formation which can be described in terms of PDEs. Finally, even though we focus on the reaction-

advection-diffusion PDEs and on NNs, we review alternative machine learning algorithms and 

their application to different classes of physics solvers.    
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Figure 4.1 PDE modeling (blue) and meta-modeling (yellow) 

4.2 Machine learning and deep learning 

 Machine learning encompasses a class of algorithms where a given task can be learned 

through implicit pattern recognition rather than by relying on explicit instructions. Machine 

learning can be split into subcategories: supervised learning, unsupervised learning and 

reinforcement learning[123]. Supervised learning involves fitting a function between inputs and 

outputs where the outputs have clearly defined labels that are to be exactly predicted by a machine 

learning model. It can be done either in the form of classification or regression. Some popular 

examples of methods used in supervised learning are Support Vector Machines (SVM), Naive 

Bayes classifiers, Gaussian Processes and Neural Networks [124]. Unsupervised learning involves 

finding patterns in data that does not have any labels. It can be done with k-means clustering, 

Gaussian Mixture Models (GMM) or also with Neural Networks [125]. Reinforcement learning 

(RL) involves an agent exploring an environment and attempting to find a sequence of actions that 

leads it to obtaining a highest reward based on reward function that was crafted by a human. 

Popular approaches to RL include policy gradient [126]and Q-learning [127] and usually use 
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Neural Networks. For other reviews about recent machine learning developments specially in the 

context of biological systems modeling, we refer the reader to [128], [129]. 

In recent years a subfield of machine learning called deep learning [130] has been gaining 

popularity due to advances in big data and massively parallel computer hardware[131]. Deep 

learning involves training NN with many layers. The number of layers needed in a NN model 

depends on the complexity of the task. Adding multiple layers allows the network to learn more 

detailed and more abstract relationships within the data and how the features interact with each 

other on a non-linear level. The networks are trained through backpropagation [132] and stochastic 

gradient descent (SGD) optimization. Some common SGD algorithms that implement an adaptive 

learning rate include Adagrad [133], RMSprop [134] and Adam [135]. The simplest NN 

architecture is a Multilayer Perceptron (MLP) where all nodes are fully connected. If the data 

involves sequences, then usually Recurrent Neural Networks (RNN) are used[136], [137]. A 

generic RNN diagram is shown in Figure 4.2. As shown on the diagram, the input at time 𝑠	is 

combined with the hidden state ℎ at time 𝑠 − 1	to give output 𝑦 at time	𝑠. Training RNNs is a bit 

more complex since it involves backpropagation through time where gradients are summed up for 

all time steps. Standard RNNs struggle with long sequences as gradients start to vanish if they are 

backpropagated though a long graph. To deal with this problem, Long Short-Term Memory 

Networks (LSTM) [138] were proposed where some gradients are allowed to be passed almost 

undisturbed. LSTMs are much more computationally expensive to train compared to MLPs. 
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Figure 4.2 MLP vs LSTM model architecture 

 

 Input and output data type identification is critical to choosing the type of neural network.  

If the data involves 1D or 2D correlations to be explored like in speech signal or images, then 

Convolutional Neural Networks (CNN)[139] are used. Unlike in MLP, nodes of a CNN are 

sparsely connected to focus on spatial interdependencies. 

4.3 Applications of machine learning to mathematical modeling 

 A major advantage of NN models is that nesting layers leads to the ability to interpolate 

highly nonlinear functions with a sequence of mostly linear steps. They are built primarily on basic 

linear algebra operations like matrix multiplications and convolutions which are highly 

parallelizable and run on the order of milliseconds unlike many scientific simulations. Hence if a 

NN metamodel could emulate a given mathematical model running on a computer then it could 

offer major advantages in terms of speed. Such use of NN has been seen in materials science, 

chemistry, physics, robotics and recently biology[140]. Furthermore, the predictions of the NN 

model includes scalars, prediction of a small set of discrete variables over all time, and prediction 

of spatial-temporal fields. 
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 In the simpler cases, a NN model can be used to predict a single scalar. In the context of 

physics models, energy quantities are a common target for machine learning. For instance, take 

Schrodinger's Equation (SE), a fundamental tool in quantum mechanics. A problem of interest is 

to predict the potential energy as predicted by solving SE from particle positions. Similarly, 

potential energy for atomistic simulations or molecular dynamics simulations can be calculated as 

a single scalar output taking particle positions as input. Yet exact solutions are only possible for 

the smallest systems and otherwise expensive numerical approximations have to be used. To 

overcome this limit, [141] use a sum of weighted Gaussians to predict molecular energy based on 

the distance between molecules. The regression coefficients are found through kernel ridge 

regression on data generated with Density Functional Theory (DFT) which is taken as the ground-

truth. They circumvent the task of explicitly solving the SE by training the machine learning 

algorithm on a finite subset of known solutions. Since many interesting questions in physics 

require repeated solutions of SE or molecular dynamics equations, the highly competitive 

performance of the ML approach is a boon for larger-scale exploration of molecular energies in 

chemical compound space[142]. The efficiency of the machine learning approach paves the way 

for large scale exploration of chemical compounds and their energies[143]. In [144] an MLP is 

used to predict the potential energy of a molecular system based on DFT calculations. What’s 

notable is the authors carefully crafted a molecular representation as an input to the MLP. They 

took into account that the representation needs to be compact while maximizing resolution of the 

local atomic environment and covering all the relevant space the molecule occupies. They termed 

the resulting input as the Atomic Environment Vector (AEV). That is in line with other work in 

deep learning that shows that input representation matters. For example [145] shows they are able 

to narrow the gap in 3D object detection between stereo and LIDAR vision data by generating a 

pseudo-LIDAR representation from stereo data. One of major problems within materials discovery 

is to be able to identify stable compositions of chemical compounds. It is mostly done through 

expensive DFT calculations. In [146] they train an MLP to predict formation energy of a crystal 

based on Pauling electronegativity and ionic radius of species. They achieve very accurate results 

on garnets and perovskites. The ability of machine learning tools in predicting single scalars from 

the state of a complex multi-dimensional input space can help in accelerating the modeling of 

biological systems. For example, given a set of input parameters, a single scalar metric of interest 
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might be predicting the maximum expression of a given morphogen, or the total expression of a 

molecular species.   

 In some studies, NN models are used to predict a small set of discrete variables rather than 

a scalar, and in many cases the dynamics of these quantities are needed. In other words, predictions 

are needed over all time (or some time frame) for the set of discrete quantities. Dynamics 

simulators of this type are common in robotics. However, the rigid body dynamics models they 

employ can be very time consuming due to complex nature of the physics they are trying to capture. 

In [147] the authors use experimental data to train MLP and RNN to predict motion and sensory 

outputs of a robot based on its current positioning and kinematics. They developed various 

Simulator Neural Networks (SNNs) to capture different type of simulators. Depending on the 

specific simulator the prediction can either be a scalar or a set of motion locations over time. 

Accuracy tests indicated that NN simulators created for these robots generally trained well and 

could generalize well on data not presented during simulator construction. This approach increases 

effectiveness of building robust control system for robots. Even when part of the model is known, 

deep learning approaches can be used to learn unknown nonlinearities[148]. Another crucial yet 

very computationally costly problem in science is a three-body problem. In [149] the authors train 

an MLP to predict location of particles 1 and 2 given input of time t and initial location of particle 

2. Location of particle 3 follows from problem symmetry. To acquire data, they used the Brutus 

numerical integrator and the time saved by using a NN is on the order of 100 million-fold. Such 

fast and accurate three-body solver has major implications for research into dynamical systems, 

especially to capture chaotic dynamics[150]. The ability of machine learning tools to predict the 

dynamics of complex systems might help accelerate discovery in biological systems. For example, 

instead of dealing directly with the PDE, the regulatory network can be considered as a 0-

dimensional system leading to a system of ordinary differential equations (ODE). The ODE 

dynamics, including derivatives, can be captured through machine learning tools. This type of 

metamodel can either be used in the PDE solver to replace part of the computations, or it can be 

used by itself to at least delineate plausible parameter ranges before running the PDE solver[151].  

 The last type of ML algorithms we would like to showcase are those related to our problem 

of interest of accelerating PDE simulation for biological systems. For prediction of spatial-

temporal fields, Wang applies neural networks to a mechanistic PDE model of pattern formation 

in bacteria[152]. Wang et al. trained an LSTM for a PDE system that calculates cell and molecular 



71 

concentrations for pattern formation in Escherichia coli.  The model was non-linear and complex 

and simulated E. coli programmed by a synthetic gene circuit and the outputs of the model are cell 

growth and movement, intercellular signaling and circuit dynamics and transport and these outputs 

depended on PDE input parameters like the cell growth rate, cell motility rate and the kinetics of 

gene expression. Training data was generated by a PDE solver and their neural network achieved 

an R2 of around 0.99 and provides speedup of about 30,000x. That carries great potential for 

efficiently exploring the parameters space of the PDE model and finding spatial distributions not 

easily seen before. Physics-constrained machine learning approaches have also received 

significant attention recently in the context of fluid and solid mechanics[153]–[155]. 

 Most of the above work uses deep learning which scales better with increasing data sizes 

than more traditional machine learning approaches like SVMs and Gaussian Processes[156], [157]. 

For biological systems modeling, the number of chemical species that needs to be considered is 

large because regulatory networks are complex. In turn, a large set of parameters is needed. The 

output is also high dimensional. Deep NN have a fixed number of parameters (the weights and 

biases of the neurons) to represent these high dimensional input spaces and the nonlinear outputs. 

Thus, deep NN are a good choice considering the data here comes from simulation and is 

automatically labeled. Since it does not require strenuous manual annotation like vision, speech 

and text data, there is no limit other than time in generating training data through solution of the 

PDE systems. There are also multiple options for the type of NN used for acceleration.  In some 

cases where data is sequential, as occurs in the simulation of physical systems over time, we can 

use RNNs to solve the problem. One thing that also weighs into the selection of NN is the tradeoff 

between speed and accuracy.  RNNs operate in sequences and involve multiple linear layers in a 

single module which considerably slows them down compared to standard MLPs. Since inference 

latency is a crucial concern when emulating scientific simulations with neural networks, this 

disparity between MLP and RNN with MLP often having lower latency but potentially lower 

accuracy.  

4.4 Mathematical modeling in developmental biology 

 One of the fundamental problems in developmental biology is how complex patterns in 

organisms emerge from a group of nearly identical cells. A major tool in understanding such 
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complex pattern emergence is to use reaction-diffusion mathematical models which model how 

molecular concentrations change over space and time [158]. Three major components of reaction-

diffusion models are molecular transport, production and clearance. The reaction-diffusion PDEs 

involve many parameters, for example diffusion rate, production rate and decay rate of each protein. 

In order to get insight into the dynamics and interactions of the different molecules, the parameters 

of the PDEs have to be identified such that the simulations match experimental data. Moreover, 

we frequently want to find parameters that optimize the system for multiple different species or 

mutations in which case multi-objective or Pareto optimization is used[159].  

 Out of many proteins important for pattern formation in tissues, we are interested in Bone 

morphogenetic protein (BMP). In this review, we focus on the PDE model of BMP signaling 

network which patterns of gene expression along the dorsal-ventral (DV) body axis in early 

development of zebrafish embryo[38], [88]. BMPs pattern DV tissues of zebrafish, Xenopus, and 

Drosophila embryos by using a gradient-based mechanism, in which different levels of BMP 

signaling drive differential gene expression [29].  

 Previously, we developed both 1-D and 3-D modeling approaches to investigate the 

mechanisms of BMP-mediated DV patterning in blastula embryos through 5.7 hpf (hours post 

fertilization) before the initiation of BMP-mediated feedback[88], [160]. For the 1D approach, we 

assume the patterning region is on the margin line. For the 3D approach, the zebrafish embryo is 

approximated as a perfect hemisphere and the reaction-diffusion process happens on the surface 

of the sphere, shown in Figure 4.3. Using a hemisphere allows us to discretize the model using the 

spherical coordinate system. We solved the coupled non-linear partial differential equations (PDEs) 

for BMP ligand, Chordin, Noggin, Sizzled (in the 1D model only) and the complexes of BMP-

Chordin, BMP-Noggin using finite difference method in MATLAB [160]. No-flux boundary 

conditions are applied for all species on both the ventral and dorsal boundaries for both 1D and 

3D model. 
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Figure 4.3 Illustration of the 1D vs 3D approach of PDE simulations on BMP concentration 
profile on Margin region/whole embryo region 

 
 As a general definition, the advection-diffusion-reaction PDE describing the changes in the 

concentration field of a chemical species 𝐶(𝑿, 𝑡) in space 𝑿 ∈ ℝ' and time 𝑡 can be stated as 

𝜕𝐶
𝜕𝑡 = 𝐷Δ𝐶 − 𝒖 ⋅ 𝛻𝐶 + R + P 

 
The first term in the right-hand side is the change in concentration due to diffusion. The Laplace 

operator acting on the concentration Δ𝐶	establishes that the concentration will flow in the direction 

of the negative gradient. Diffusion is parameterized by the constant 𝐷. The second term in the 

right-hand side is the advection term corresponding to the velocity field 𝒖(𝑿, 𝑡)  and the 

concentration gradient ∇𝐶. The velocity field is assumed to be known and to satisfy the continuity 

equation. The last two terms on the right-hand side are functions describing reaction and 

production of 𝐶. These functions could depend on 𝐶 itself, could also depend on position and time, 

or even be functions of other fields.  

 For illustration, we consider a simple system of BMP regulation. Let 𝐵(𝑿, 𝑡) denote the 

concentration field of BMP over some domain 𝑿 ∈ Ω ⊂ ℝ', and 𝑅(𝑿, 𝑡) the concentration of a 

regulator protein. The field 𝐵𝑅(𝑿, 𝑡) is the concentration of the BMP-regulator compound. In this 

example we ignore the advection term assuming that the tissue and cell populations are stationary 

and 𝒖(𝑿, 𝑡) = 𝟎 . The system of equations describing local mass balance are  

𝜕𝐵
𝜕𝑡 = 𝐷*Δ𝐵 − 𝑘1𝐵 ⋅ 𝑅 + 𝑘71𝐵𝑅	
𝜕𝑅
𝜕𝑡 = 𝐷8Δ𝑅 − 𝑘1𝐵 ⋅ 𝑅 + 𝑘71𝐵𝑅	
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𝜕𝐵𝑅
𝜕𝑡 = 𝐷*8Δ𝐵𝑅 + 𝑘1𝐵 ⋅ 𝑅 − 𝑘71𝐵𝑅 

 This system is parameterized by three diffusion parameters 𝐷* , 𝐷8 , 𝐷*8 and two reaction 

rates 𝑘1 , 𝑘71. In order to actually compute the change in the concentration fields 𝐵(𝑿, 𝑡), 𝑅(𝑿, 𝑡) 

and 𝐵𝑅(𝑿, 𝑡) over time and space, a few more ingredients need to be defined. First of all, the 

domain of interest Ω ⊂ ℝ'  has to be introduced. For example, as we will see later, we are 

interested in a surface that is a portion of a sphere. Boundary conditions also need to be specified. 

No-flux conditions at the boundary of the domain are a common and reasonable assumption. Lastly, 

the initial conditions 𝐵(𝑿, 0), 𝑅(𝑿, 0),	𝐵𝑅(𝑿, 0) are also needed.  

 Once the boundary value problem is fully specified, the next challenge is to solve it. 

Analytical solutions are not an option beyond extreme simplifications and assumptions. Instead, 

numerical methods are used to solve the PDE. There are several alternatives, depending on the 

characteristics of the PDE. We won’t dive into the details of all possible approaches here. For the 

case of solid elastic or viscoelastic domains like the ones we are interested in, material points can 

be followed throughout the simulation. For these cases, structured grids or unstructured 

discretization are the most common. Structured grids allow the use of finite difference schemes to 

discretize the derivatives in the PDE but are limited to regular domains. Among unstructured grids, 

the finite element method allows to represent functions and derivatives on arbitrary geometries but 

increases computational cost. The time derivative also allows for different discretization strategies. 

Explicit time integration schemes bypass the solution of a linear system of equations but are only 

conditionally stable and may require extremely small-time steps depending on the nonlinearities 

of the PDE. Implicit time integration results in a possibly nonlinear system that needs to be solved 

for every time step but has the benefit of being stable for large time steps. The system of 3 

equations introduced above for BMP regulation consists of only constant linear operators and 

therefore can be efficiently solved with implicit time integration schemes. More realistic models 

are often nonlinear. 

 In specific, we consider a PDE model of reaction-diffusion in zebrafish development that 

is represented by equations below. There are six proteins: BMP, Chordin, Noggin, BMP-Chordin, 

BMP-Noggin and Sizzled that interact with each other.  

 
)*
)+

 = 𝐷*Δ𝐵	 +	𝜙* 	+ 	𝜆+*2 ∙
%

%9:/<.+9(29*2)/<?+
∙ 𝐵𝐶 + 𝜆@*2 ∙

%
%9:/<.@9(29*2)/<?@

∙ 𝐵𝐶 −	𝑘A'2𝐵 ∙
𝐶 + 	𝑘ABB2𝐵𝐶 − 	𝑘A'4𝐵 ∙ 𝑁 +	𝑘ABB4𝐵𝑁 − 𝑑𝑒𝑐*𝐵                                                 
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 = 𝐷2Δ𝐶	 +	𝜙2 	 −	𝜆+2 ∙
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 The model has 23 unknow parameters and to learn the overall system behavior, a common 

approach is to screen a distribution of these parameters. Furthermore, for each set of parameters 

there are seven mutations for which experimental data is available: (wild type (WT), Chordin loss 

of function (CLF), Noggin loss of function (NLF), Bmp1a loss of function (ALF) , Tolloid loss of 

function (TLF) , Bmp1a and Tolloid loss of function (TALF), Sizzled loss of function (SLF)). 

Thus, a separate set of PDEs, each for a given mutation, is needed.  The mutation simulation is 

based on the turning on/off of some specific parameters, for example in CLF simulation the 

Chordin expression is set to  φC	 = 	0. The model has unknown and tunable parameters. Most of 

the variable parameters have to be randomly searched according to their ranges so that the outputs 

of the simulation match the experimental data. The fitness of the parameters is determined by 

Normalized Root Mean Square Error (NRMSE) between the final BMP distribution from the 

simulation and the experimental values. The values of Smax that are used to find appropriate 

reaction rate kit and kia ranges are determined based on other simulations not discussed here.  

4.5 Application on PDE acceleration through neural networks 

 In this section, we will discuss how we applied the neural network approach in PDE 

acceleration of the specific PDE system of BMP patterning in two different ways based on the type 

of data input and output. For this problem, this biological process happens on a developing 
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zebrafish embryo during blastulation and gastrulation. By assuming the patterning only happens 

on the margin of the cell group, this problem can be considered as a one-dimensional problem with 

the input of unknown parameters and output of 1D concentration profiles. On the other hand, by 

considering the spatial distribution of the cells and their movement, this problem can be considered 

as a three-dimensional moving domain problem with the input of unknown parameter space and 

3D concentration profiles are generated at each node. For the 1D approach, we assume the 

patterning region is on the margin line. The inputs to the neural network are the PDE model 

parameters that are generated randomly according to the specific ranges. The output is the final 

distribution of BMP concentration in a 1D line with 36 nodes. Since the parameter values can take 

on an unknown number in the screen, and often over a very large range, both inputs and outputs 

are normalized by taking a logarithm of base 10 of all the values and then dividing the resulting 

values by 10. Also, any value less than 10-8, including 0, is approximated to 10-8. This way we 

ignore concentrations too small to be significant and avoid taking a logarithm of zero. To collect 

data for neural network training we run 100,000 parameter sets, each consisting of 7 different 

mutation for a total of 700,000 unique simulation data points. 90% of data is used for training and 

10% is used for validation. We consider two neural network architectures: MLP and LSTM. In the 

MLP model, the PDE parameters are passed through a sequence of linear layers, each followed by 

Rectified Linear Unit (ReLU) activation function. The output layer gives the 1D distribution of 

BMP concentrations on the margin in 36 nodes at once. That is in contrast to an LSTM model, 

shown in Figure 4.2, where the BMP concentrations are output in a sequence over spatial locations, 

one by one through the calculation domain. Here the PDE parameters are passed first through a 

linear layer that gives a higher dimensional parameter embedding. Then the parameter embedding 

is concatenated with an LSTM output at a previous step in sequence and passed to an LSTM 

module which outputs the BMP concentration at the current point in sequence. A BMP 

concentration of 0 (-0.8 after normalization) is given as a dummy input at the first step of a 

sequence. The sequence length of LSTM is 36 since there are 36 points in space for the PDE model. 

 To match neural network outputs with actual PDE simulation outputs an L1 loss is 

calculated between the two. (Both L1 and L2 loss have been tested, L1 loss has better performance 

than L2 loss in our case) It is then backpropagated through the neural network to calculate the 

gradient at each weight of the neural network. Then the weights are optimized through the Adam 

algorithm with an initial learning rate of 0.001. The training is run for 100 epochs. In addition to 
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the L1 loss we consider another metric (NRMSE between NN prediction and direct PDE 

simulation result) to evaluate the performance of the neural network.  

4.6 Results 

 Tables 4.1 and 4.2 show the validation set results of training different MLP and LSTM 

model for the 1D case. The MLPs are named with the format: MLP-number of layers-number of 

units. For example, MLP-3-256 means the model has 3 layers, first with 256 outputs, second with 

256 outputs and third with 36 outputs. MLP-4-256 would have one more layer with 256 outputs. 

For LSTMs we consider modules with output sizes of 256 and 512. In addition to accuracy metrics 

like R2 and relative error we also consider number parameters and computational cost metrics like 

number of floating-point operations (FLOPs), latency on a standard Intel CPU and latency on Titan 

X Pascal GPU. Among MLP models, MLP-4-1024 has the best accuracy while among LSTM 

models it is LSTM-512. We can also see that LSTMs models slightly outperform MLP models in 

accuracy. For example, LSTM-512 has the same number of learnable parameters as MLP-4-1024 

with a relative error lower by over 1%. That is due to LSTM’s ability to understand sequences. 

However, that also comes with a bigger computational cost. All of FLOPs, CPU latency and GPU 

latency are more than 10x larger for LSTM- 512 than for MLP-4-1024. From here on we only 

consider the best MLP and LSTM models hence we refer to the MLP-4-1024 model as MLP and 

to the LSTM-512 model as LSTM. 

Table 4.1.  Comparing MLP models 

 MLP - 3 -256 MLP - 3 -1024 MLP - 4 -256 MLP - 4 -1024 

Parameters 0.0812M 1.11M 0.147M 2.16M 

FLOPs 0.162M 2.22M 0.294M 4.32M 

CPU latency 0.092ms 0.120ms 0.125ms 0.319ms 

GPU latency 0.187ms 0.189ms 0.237ms 0.237ms 

Rel.error 12.19% 9.57% 8.34% 6.99% 
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Table 4.2.  Comparing LSTM models 

 LSTM - 256 LSTM -1024 

Parameters 0.533M 2.11M 

FLOPs 37.9M 151M 

CPU latency 5.96ms 12.4ms 

GPU latency 5.51ms 5.67ms 

R2 0.9994 0.9996 

Rel.error 7.67% 5.74% 

 

 Next, we investigate how the neural network model responds to the amount of data it is 

fed and how its error changes as training progresses. We only consider the MLP model here 

since the LSTM model is expected to give very similar trends. As expected, the accuracy 

improves as more samples are used. Using 100,000 samples gives satisfactory results. Results are 

acceptable for 10,000 samples and not good for 1000 samples. Such differences in accuracy 

based on number of samples are quite standard compared to other deep learning application 

where usually 10,000 training samples are needed for this number of inputs and the degree of 

nonlinearity. This table also shows importance of our relative error metric. For 1000 samples we 

get a high relative error while still a respectable R2. That is because R2 is calculated on 

normalized log values since calculating it on actual values would make those of larger magnitude 

dominate which we avoid.  
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Figure 4.4 Comparison of protein distributions obtained by direct PDE simulation, MLP 
metamodel and LSTM metamodel plotted over the 1D domain parameterized by the 

nondimensional x coordinate, with 𝑥 = 0 (0 micrometer) the ventral end and 𝑥 = 35	(700 
micrometers) the dorsal end on margin. 

 
Figures 4.4 shows how MLP, and LSTM model respectively reproduce the PDE 

simulations results on seven randomly chosen samples, one for each mutation. We can see that 

generally the neural networks provide a final BMP distribution that is very similar to the one given 

by a direct PDE simulation. Since LSTM gives outputs in the form of a sequence, one by one, we 

would expect that its plots would generally be smoother than those of MLP.  
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Figure 4.5 Comparison of RMSD distribution among 70,000 validation MLP metamodel and 
LSTM metamodel 

 
 Both quantitative and qualitative evaluations slightly favor the LSTM model. It gives 

higher R2, lower relative error, produces smoother BMP distributions and reproduces the mutation 

data with less variation. The RMSD between simulation results and metamodel results was 

calculated, and Figure 4.5 shows the histogram of the case number of RMSD distribution for both 

the MLP and LSTM metamodel. Predicted results of only a slight improvement over the MLP.   

However, those improvements come at a significantly higher computational cost of at least 20x. 

Since we would like to use the neural network metamodel for rapid exploration of PDE parameter 

space, the MLP may often be the better choice.  

 We further applied the neural network approach to a more complex PDE system that 

contains 3D dynamics on the surface of a hemisphere geometry. Previous simulations of a growing 

domain 3D simulation were used as the training and validation data in the MLP model (Li et al. 

2020). To handle the large input and output data size in the prediction of the results for the entire 

embryo (over 1000 spatial locations in 3D compared to 36 spatial points in 1D), adjustments to 

the structure of the neural network were needed resulting in a more complicated model with 

multiple layers and output points that increased the CPU latency and decreases the accuracy of the 

model prediction relative to the 1D simulation. To train the neural networks to solve supervised 
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learning tasks as an alternative to the PDE solver, we used the input data with the structure as 

[parameters + coordinates + time] and the output data structure as [concentrations of different 

species], which is similar to the inputs and outputs of a PDE solver.  To train the neural network 

for the 3D hemisphere, the MLP model was given the individual calculation points extracted from 

the grid (see Figure 4.6).  Ten thousand WT simulation results were used to test the model, provide 

4,051,234 points for the training set (9000 whole embryo simulation results) and 450,000 (1000 

whole embryo simulation results) points are used for the validation set. Train accuracy remains 

99% after 100 epochs. Figure 4.6 shows the comparison of multi-objective plots between 

simulation and NN model of 3D growing domain model results with the MLP network.   

 

 
Figure 4.6 Comparison between simulation and NN model of 3D growing domain model results 

with MLP model 
 

 In this review, we summarize and show an example for how neural network metamodels 

are effective in accelerating PDE-based biological simulations. The acceleration offers speedups 

of about 1000x while preserving accuracy with R2 above 0.99. We considered a specific PDE 

model from zebrafish development, but the neural network models discussed here can be applied 

to many other PDE systems. Compared to [152] we train both LSTM and MLP models and show 

that MLP offers advantages in speed without sacrificing much accuracy.  

 The key contribution in the approach presented is the acceleration of PDE evaluation via 

NN metamodel, which enables the inverse problem of identifying the parameters of the PDE that 

best explain experimental data. With the proposed NN metamodel, we can now replace the direct 

PDE solver and explore the entire input space thanks to the computational efficiency of the NN 

metamodel. However, brute force parameter exploration may not be the most efficient approach, 

even with a fast metamodel. Another advantage of NN is that they are fully differentiable and thus 
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open the possibility for gradient descent which would be much more complicated when the direct 

PDE solver is used. For direct PDE solvers, gradient optimization entails either costly and 

inaccurate numerical approximations based on more function evaluations, or solution of the adjoint 

problem. Finally, NN and other machine learning methods could also contribute to the inverse 

problem by employing reinforcement learning (RL) to find optimal parameters. The actions from 

RL could be the parameters searched and reward could be the inverse of error between PDE 

simulation or NN metamodel and experiments. In a similar fashion, reinforcement learning has 

already been used in Neural Architecture Search (NAS) [161]. Another application that can expand 

the use of the NN model-based acceleration of PDE is multi-objective optimization. Multi-

objective optimization is an area of multiple criteria decisions making that is concerned with 

mathematical optimization problems involving more than one objective function to be optimized 

simultaneously. It is a useful tool for quantitative biology (Pargett et al. 2014). However, it may 

require a large number of parameter screens among the different types of simulation. We expect 

that the approaches discussed here will improve the capabilities of AI-based surrogate models and 

accelerate scientific research and discovery in biology.  
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5 FINITE ELEMENT GROWING DOMAIN MODEL OF BMP-
MEDIATED SIGNALING IN ZEBRAFISH EMBRYO 

  We are interested in how the cellular movements impact the formation of gradients by 

contributing an advective term whereby the morphogens are swept with the moving cells as they 

move vegetally. Our goal in this chapter is to develop a complete advection-diffusion-reaction 

model that incorporates all stages of zebrafish embryonic development data to investigate 

mechanisms in underlying BMP-driven DV patterning during epiboly. The finite difference 

approach described in Chapter 3 has limits in reflexing the advection due to the cell movement 

during epiboly and the mess conservation. 

5.1 Methods 

 In this chapter, we propose an improved model with the finite element method to solve the 

coupled advection-diffusion-reaction equations in a smoother growth domain fashion. Figure 5.1 

gives an overall flow of how we construct the FEM model and incorporate it with the experimental 

data. Compare to the previous finite different approach, the couple PDE system would be solved 

by mess-conservative growing mesh finite element scheme.  The experimental data collected and 

analyzed in Chapter 2 were applied to this approach. Dynamic cell imaging data are used to 

quantify the cell movement during the epiboly, and the velocity map described in chapter 2.1 will 

be applied in the finite element model as the guide of mesh movement. We evaluated the accuracy 

of the mesh updating compared to the cell movement driven advection and its role in embryonic 

patterning. Quantitative whole-mount RNA scope data of BMP2b and phosphorylated-SMAD data 

are collected and analyzed precisely to test the hypotheses of the gradient formation mechanism 

in our model. By combining the biophysics of epiboly with the regulatory dynamics of the BMP 

network, we can test complex models to investigate the consistent spatiotemporal DV patterning 

in the early zebrafish embryo. 
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Figure 5.1.  Flow chart of FEM model construction 

5.1.1 Remeshing scheme 

To keep the quality of the mesh during the large deformation, we adopt a previous study 

on the mesh tangling problem in surface tracking [162], the powerful C++ library tracks dynamic 

surfaces with triangle meshes in 3D. Triangles with small areas or poor aspect ratios can adversely 

affect collision detection, topological operations, and any boundary-integral-based simulation 

[162]. Simple common operations like edge flip, edge split, and edge collapse, etc. are used to 

improve the quality of the surface discretization. Table 5.1 shows the detail of the remeshing 

method used in this study. This powerful remeshing library can provide an environment that our 

simulating embryo surface meshes remain their quality during epiboly. 
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Table 5.1.  Remeshing scheme 

Edge flip 

 

𝑓_𝑖 are nodal values of some function 𝑓 
 

𝑓_𝑖 do not change with edge flips 

Edge split 

 
 

New nodal value 
 

Edge 
collapse 

 

New nodal value 
 

 

5.1.2 FEM formula for convention-diffusion-reaction system 

Arbitrary Lagrangian-Eulerian (ALE) methods is a method that allows the mesh to move 

arbitrarily, with the two limiting cases reducing to the Lagrangian and Eulerian formulations. In 

the Eulerian-based finite element formulation, the computational system is fixed in space, on the 

other hand, in the Lagrangian-based finite element formulation, the computational system is 

attached to the material. An ALE mesh that conforms to the Lagrangian mesh for the structure 

along part of its boundary while the rest remains fixed providing a convenient transition between 

the fluid and the structure [163], [164] . 

Here we discuss the FEM solution for the diffusion-reaction system problem on the fixed 

mesh at each single time interval. In the case of the advection-diffusion-reaction system problem 

we consider an ALE formulation 

 

 𝜕𝜙
𝑑𝑡 qHI

+ (𝒖 − 𝒖r) ⋅ ∇𝜙 − ∇ ⋅ 𝑘∇𝜙 − 𝑓 = 0		  

 

Where  

𝜙 is a scalar field denoting the concentration of certain species  

𝑓∗	 =
1
2 (𝑓* + 𝑓+) 

𝑓∗	 =
1
2
(𝑓+ + 𝑓*) 
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𝑥	s  are the coordinates of the reference mesh (the mesh at time t)  

𝒖 is the velocity of the fluid  

𝑢t  is the velocity of the mesh 

𝑘 is the diffusion coefficient 

𝑓 is the source term (include all the expression term and reactions term) 

 

We applied the cell velocity map to guide the mesh update in every single time increment. 

By assuming that the cell flow in which 𝜙 is transported moves with the mesh, thus, we can make 

the approximation that the velocity of the fluid 𝒖 is equal to the velocity of the mesh movement, 

which canceled the advection term in the equation. In other words, the mesh movement can be 

considered to represents the advection in the system.  

Then, we have the general for of reaction- diffusion system with, 

 𝜕𝜙
𝑑𝑡 qHI

− ∇ ⋅ 𝑘∇𝜙 − 𝑓 = 0  

5.1.3 Finite element approximation 

 For the finite element approximation of the diffusion-reaction system, considering a time-

dependent diffusion of a single species with concentration Ci 

 
 

 

 
 

 

where 
 

 

Di is the diffusion rate of the specific species. 

 

Multiplying the differential equation by a test function w and integrating over the domain gives 

the weak formulation of the problem is: 

 

 
 

 

Thus, the residue is  
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To compute surface derivatives on a triangulated surface, we need to define a map which 

converting the symmetric weak form equation from the global Cartesian coordinates to natural 

coordinates system. To define a map M: (ξ, η) → (x, y, z) from a reference triangle in the local 

coordinate system (ξ, η) to Tm in the physical coordinate system (x, y, z) we define the surface 

point xΓ = xΓ(ξ, η). 

 
 

 

where xi is one of the n nodal points of the triangle Tm of the surface, and Ni (ξ, η) is the finite 

element shape functions of order m on the reference element. 

 

 

 

Shown in Figure 5.2, 𝑔1FFFF and	𝑔2FFFF are two tangent vectors of the surface 

 

 

 

𝑒1FFF is the unit vector of	𝑔1FFFF 

 

 
 

𝑛F is the orthonormal vector of the surface 

 

 

 

𝑒2FFF is the basis vector orthonormal to	𝑒1FFF and 𝑛F 
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𝑒1FFF, 𝑒2FFF, and 𝑛F  are the orthonormal unit basis for the surface. Then the transformation matrix 

between Cartesian coordinates to natural coordinates is: 

   

Thus, the mapped coordinate of the mesh is  

  

 

 

Figure 5.2.  Surface mapping 

 

The diffusion and reaction system are solved on a fixed domain in a specific time increment, 

and the Newton-Raphson method is applied to finding the exact solution for the particular time 

interval. After solving the reaction-diffusion system in a single time increment, the cell velocity 

will be applied to calculate the nodal movements, the remeshing processes will be applied if the 

mesh quality is low. At the case of a new node was generated, the concentration of the node will 

be interpolated through the other close nodes. 

5.1.4 Governing equations 

 The improved model is solved by finite element formulation in the moving domain. 

Coupled continuous partial differential equations (PDEs) include transport by diffusion and 

advection, chemical reactions between secreted components, and cellular feedback, in the form of 

non-linear Hill-like functions for cooperative repression activation of feedback targets. While our 
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previous mathematical model described in chapter 3.1, used a simple linear proteolysis model of 

Chordin by Tolloid alone, to simulate the feedback mechanism for sizzled at gastrula stage, we 

updated the model to explicitly simulate the enzyme saturation kinetics to model Chordin 

proteolysis by Tolloid and the distinct competitive inhibition of Tolloid by Sizzled. The governing 

equation solved through blastula to gastrula stage list below: 

 

 𝜕𝐵
𝜕𝑡 = ∇ ⋅ 𝐷!𝛻𝐵 + 𝑢 ⋅ ∇𝐵 + 𝜙! − 𝑘"𝐵 ∙ 𝐶 + 		𝑘#"𝐵𝐶 − 𝑘$𝐵 ∙ 𝑁 + 𝑘#$𝐵𝑁 + 𝜆" ∙

1

1 + 𝑆
𝑘𝑖𝑡 +

𝐵𝐶 + 𝐶
𝑘𝑚𝑡

∙ 𝑇𝑙𝑑 ∙ 𝐵𝐶 − 𝑘%𝐵 

 

 

 𝜕𝐶
𝜕𝑡 = ∇ ⋅ 𝐷&𝛻C + 𝑢 ⋅ ∇C + 𝜙& − 𝑘"𝐵 ∙ 𝐶 +  	𝑘#"𝐵𝐶 − 𝜆$ ∙

1

1 + 𝑆
𝑘𝑖𝑡 +

𝐵𝐶 + 𝐶
𝑘𝑚𝑡

∙ 𝑇	𝑙𝑑 ∙ 𝐶 − 𝑘'𝐶 
 

 𝜕𝑁
𝜕𝑡 = ∇ ⋅ 	𝐷(𝛻N + 𝑢 ⋅ ∇N + 𝜙( − 𝑘$𝐵 ∙ 𝑁 + 𝑘#$𝐵𝑁 − 𝑘)𝑁 

 

 𝜕𝐵𝐶
𝜕𝑡 = ∇ ⋅ 𝐷!&𝛻𝐵𝐶 + 𝑢 ⋅ ∇𝐵𝐶 + 𝑘"𝐵 ∙ 𝐶 −  	𝑘#"𝐵𝐶 − 𝜆" ∙

1

1 + 𝑆
𝑘𝑖𝑡 +

𝐵𝐶 + 𝐶
𝑘𝑚𝑡

∙ 𝑇𝑙𝑑 ∙ 𝐵𝐶 − 𝑘!&𝐵𝐶 
 

 *!(
*+

= ∇ ⋅ 𝐷!(𝛻𝐵𝑁 + 𝑢 ⋅ ∇𝐵𝑁 + 𝑘$𝐵 ∙ 𝑁 − 𝑘#$𝐵𝑁 − 𝑘!(𝐵𝑁 	  
 

 
𝜕𝑆
𝜕𝑡 = ∇ ⋅ 𝐷,𝛻S + 𝑢 ⋅ ∇S +

𝑉- ∙ 𝐵)

𝑘) +𝐵) − 𝑘-𝑆 
 

 𝜕𝑇𝑙𝑑
𝜕𝑡 = ∇ ⋅ 𝐷./0𝛻𝑇𝑙𝑑 + 𝑢 ⋅ ∇𝑇𝑙𝑑 + 𝜙./0 − 𝑘./0𝑇𝑙𝑑 

 

                                      

Similar to the denotations used in Chapter 3.1. BMP ligand, Chordin, Noggin, and Sizzled 

are denoted by B, C, N, and S, and the complexes of BMP-Chordin and BMP-Noggin are denoted 

by BC and BN, respectively. Since Sizzled expression is induced by BMP signaling [50], we 

applied Sizzled expression to the model based on BMP signaling levels represent as then gene 

control feedback term which described by the Hill equation C,∙*%

(J/*K)	%9*%
 , Vs is the maximum of 

Sizzled expression, B0 is the maximum of BMP. In order to estimate the parameter for the 

feedback term (k, kit, and kit), in the parameter screen, we have to run each parameter case with 

Chd mutant and Chd/Szl mutant priory to the WT case to get the maximum BMP level. To 

determine the fixed values of Vs and n, Tuazon et al measured the distribution of sizzled mRNA 

and compared it directly to the stage-matched distribution of P-Smad5 [51].  We applied Vs as 100 

and n as 4 based on their calculation. 
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5.1.5 Model validation 

 We have tested our code for the diffusion-reaction solving method and compared it with 

the commercial FEM package COMSOL for validation. 

 

 

Figure 5.3.  FEM model validation with COMSOL 

 

 To verify the reliability of the finite element model, we tested the same model in COMSOL 

under the same condition. Since COMSOL is not able to solve our problem in growth domain 

condition, the growth rate in our FEM model was set as 0 to represent the same fixed domain with 

COMSOL. The same mesh was applied in both models, the concentration result in every single 

node was compared to calculate the error between our model and COMSOL. The average 

differences between the two models were less than 5%. Thus, we consider our algorithm for the 

finite element scheme in calculating the diffusion-reaction PDES is trustworthy. 

5.2 Result 

 BMP signaling regulation in zebrafish embryos is a complex network. The main goal of 

the study is the characterization of numerous extracellular modulators and intracellular feedback 

regulators function in establishing and controlling BMP signaling along the dorsal-ventral (DV) 

embryonic axis in vertebrates to convince space and time-dependent patterns of gene expression. 

We represent the biophysical driven finite element model can be a start point in testing the different 
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mechanisms in the regulatory network. In this current study, we validate our model against wild 

type P-Smad data, besides that we want to answer two important questions that remain in the study 

of BMP meditate DV patterning during epiboly, first, how the cell flow driven advection plays the 

role of BMP gradient formation? and second, if Sizzled plays a key role in size-dependent scaling 

invariance in zebrafish embryos? 

5.2.1 Wild type parameter screening  

 Figure 5.4Figure 1.2 illustrates the output of concentration profiles for different species 

simulated with the 3D FEM growing domain model. An initial geometry of triangle meshes 

represents the hemispherical cap of the zebrafish embryo at 3.5 hpf and the mesh evolves as the 

embryo shape changes during epiboly. Domain growth reflects the cell migration during epiboly. 

As the edges of the growing membrane move down the yolk, the mesh is continuously updated to 

maintain a high-quality discretization. Firstly, we did parameter screening for the wild-type 

embryo model. The parameter ranges keep consistent with the ranges list in Table 3.1. 

 

Figure 5.4.  Finite elements simulation results in reflex of expression region obtain from mRNA 
expression map, concentrations for different species (BMP, Chd, BC, Nog, BC complex, BN 

complex and Sizzled) normalized individually. 
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 With governing equations described in Chapter 5.1.4, we have a total of 21 unknown 

parameters with a large parameter range. On the other hand, the 3D models are computationally 

intensive, depends on the size of time increment, a single simulation can last from 4 min to hours. 

Adaptive time step is applied to accelerate the simulation. We also applied Latin Hypercube 

Sampling (LHS) scheme to evenly sample the parametric space. LHS samples only one sample in 

each row and each column in a square grid containing sample positions represents a Latin square. 

LHS generalized samples the parametric space with a given number of samplers in an arbitrary 

number of dimensions, whereby each sample is the only one in each axis-

aligned hyperplane containing it. This can ensure that relatively smaller sampling parameter sets 

can represent the variability of the parametric space. A total of 5000+ parameter sets have been 

tested with the power of the supercomputer clusters at Purdue University.  

 Quantitative data with P-Smad image data that we analyzed in Chapter 2.2 contains specific 

information of BMP signaling in space and time. The P-Smad data at 4.7, 5.3, 5.7,6.3 and 6.7hpf 

applied as a scaler for the data-model comparisons against the wild-type signaling profiles. Figure 

5.5 demonstrates a simulation result for a WT case at different time points. The simulated BMP 

concentration level and measured P-Smad5 profiles are normalized between 0 and 1 to calculate 

the relative error between each profile for the entire domain. For direct comparison, BMP 

simulation results were interpolated on evenly distributed simply point consisted of experimental 

P-Smad results, normalized root mean squared deviation (NRMSD) was calculated pointwise to 

measure the difference. Contrary to expectations, we were not been able to find a best-fitted 

parameter along with all the sample points over the spatiotemporally. As shown in Figure 5.5C, 

we found that many cases of the simulation results show good fits on the marginal region and have 

a consistent maximum BMP level against the P-Smad5 profile at all the testing stages. However, 

the larger errors happen in the ventral-animal region for the majority of the simulation results.  
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Figure 5.5.  Column A, Averaged and normalized P-Smad5 profile at 4.7 hpf, 5.3 hpf, and 5.7 
hpf and 6.3 hpf. Column B, Normalized simulation result of a wild type case 4.7 hpf, 5.3 hpf, 

and 5.7 hpf and 6.3 hpf. Column C, Relative differences between simulation results and P-Smad5 
level. Positive error indicates the experimental data are higher than simulation results, negative 

error indicates the experimental data are lower than simulation results. 

 

 To analyze the possible pitfalls in our system, we found that the BMP profile on the ventral-

animal region highly sensitive to the BMP expression level between the marginal region and 

ventral-animal region. The limitation of the imaging acquisition for collecting the whole-mount in 

situ hybridization mRNA data could be the reason. As shown in Figure 2.14, for the early 

development stage through 5.7hpf, the BMP mRNA expression map show a relatively higher level 

of expression on the marginal region than the ventral-animal region. However, at 6.3hpf the 

expression level shows a huge drop off at the marginal region. By examining the original confocal 

image, we found some limitations of the image acquisition, first, the signal level drop-off as the z-

stack goes deep, second, the signal lost mainly occurs at the region that embryo shape 

perpendicular to the imaging plane where the laser light needs to pass a thicker tissue, third, the 

BMP mRNA signal is relatively weak compares to Chd mRNA signal.  By reimaging the samples 

from different angles of view, we found that the marginal region should have a relatively higher 

expression level of BMP compare to the ventral-animal region.   
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Figure 5.6.  Test of expression regions for finding the possible expression patterning induces the 
best-fitting simulation result on 3.5,4.7,5.7,6.3, and 8 hpf. A. Original BMP expression map 

obtained from the imaging of RNAscope experiment, B-D, the example of three different testing 
BMP expression map. E. Best-fitted result on marginal region, F, Best fitting result on the central 

region. Smooth lines represent the FEM simulation results interpolate on the experimental data 
location, triangle indicated the averaged and normalized P-Smad5 level. 

 

 We try to test the possible BMP expression profiles that can lead to a better-fitted result 

against the P-Smad 5 profile. We run a parameter screening over 182 sets of parameters represent 
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the best-fitting results in our previous 1D model [51] over seven different map of BMP expression 

which we consider may reflex the real expression pattern. Figure 5.6 B-D illustrated three 

examples of the test regions on 3.5,4.7,5.7,6.3, and 8 hpf. We found that the region shown in Figure 

5.6 D gives the smallest NRMSD for majority the parameter set we screened. Shown in Figure 5.6  

E-F, the normalized BMP profile on both of marginal region and central region against the P-

Smad5 profile in the best-fitted case. We are developing new experimental approaches to validate 

this hypothesis. 

5.2.2 Domain change and advection play a role in BMP gradient formation  

 During epiboly, the regions of the embryo where BMP is patterning are rapidly changing 

as the cells stream and converge during gastrulation. In addition to the diffusion of the ligand, 

advection may be a potential source of the gradient shaping dynamics. Besides the questions that 

remain with the mechanism of the extracellular regulation network, another question is how the 

advection's role in BMP gradient formation. For testing the contribution of advective transport 

during epiboly, we exam our model over two types of mesh schemes under the same simulation 

setting, the growing domain mesh with advection, and the fixed domain mesh (8 hpf) without 

advection. As shown in Figure 5.7, as the input expression profiles and the parameters in the 

governing equations remain the same, both the growing-domain advection model and the fixed-

domain diffusion only model, reaches the same max level of BMP concentration by the end of the 

simulation at 8hpf, the total mass conservative in the system. However, the BMP gradient over the 

domain has an obvious different profile between these two scenarios. Compare Figure 5.7 B, 

Figure 5.7 A has a clear wider range of BMP concentration, this should contribute by both the 

domain growth and the active transport in the horizontal direction. Figure 5.7 C and D 

demonstrated a detailed comparison of margin and central profile though 4.7 hpf to 6.3 hpf.  

Notably, the BMP on margin level is much lower for the fixed-domain case than the grown domain 

case while the central profile remains slightly lower but not as lower as the margin profile. This 

should cause by the relatively larger domain for the fixed-domain case at the beginning of the 

simulation. The same amount of the BMP ligand could diffuse further with a larger domain. Thus, 

the domain change and the advection that reflex the epiboly and cell flow in the early development 

contributed to the formation of BMP concentration gradient, the effectiveness should not be 

ignored when modeling the BMP meditate patterning in the zebrafish embryo. 
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Figure 5.7.  Comparison of growing domain advection model (A) vs fixed domain diffusion only 

model (B) of BMP concentration profile in 3D lateral view. Red lines represent the gowning 
domain simulation result of BMP concentration on marginal region and central region, Blue lines 

represent the fixed domain diffusion only simulation result of BMP concentration on marginal 
region and central region, for 4.7,5.3,5.7,6.3 hpf. 
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5.2.3 Examination the scaling invariance in BMP gradients formation along dorsal-ventral 
axis 

 As discussed in Chapter 1.5, scaling invariance remains as a topic of intense debate in how 

feedback and scaling work undergoing embryo development. Obviously, without considering the 

real shape of the organism in its real-life size and scale realistically it will be difficult to examine 

this question effectively. Our current 3D growing domain model provides a framework for testing 

the BMP regulation network with multiple feedback mechanisms to decipher the underlying 

mechanism of interspecies and intraspecies scaling invariance. It has been reported through the 

experimental evidence that the zebrafish embryo maintains scaling of the BMP signaling gradient 

in embryo size of up to 30% [92]. Computational and experimental studies in Xenopus have 

determined that the mechanism of Sizzled-regulated Tolloid cleavage of Chordin is the key for 

BMP signaling scale invariance [50]. In this section, we will discuss our result in testing scaling 

invariance in the zebrafish embryo.  

 

Figure 5.8 A. Comparison between embryo size in real scale. Points cloud indicates the FEM 
mesh nodes on the specific embryo size. B. Relative BMP gradient reflex in real embryo length 

C, Relative BMP gradient reflex in normalized embryo length. For clear plotting, only the results 
from embryos with the radius of 250 µm, 300 µm, and 350 µm were shown in the figure. 
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 To test the Sizzled's role in scaling invariance, we simulated our current seven species 

model (Chapter 5.1.4) in different size embryos (in the radius of 250µm, 280µm, 300µm, 330µm, 

and 350µm) with a parameter screen over 500 parameter sets in each embryo size (Figure 5.8A).  

We screened the simulated BMP profiles of the embryo radius of 350 µm (which we consider to 

be the normal size of the WT zebrafish) over the P-Smad5 profile. Figure 5.8 B and C illustrates 

the BMP morphogen gradient for the best-fitted result on Margin region at 4.7hpf, 5.3hpf, 5.7hpf, 

6.3hpf for both WT and Szl mutant simulation on real embryo size (X plot) and normalized embryo 

size (X/L plot) for embryo radius in 250µm, 300µm, and 350µm. We found in the majority of our 

better-fitted simulation results, the BMP gradient shows no obvious differences between WT and 

Szl mutant.  Instead, there is a clear gap between the profile for different size embryos, especially 

for the later stage embryos.  

 

Figure 5.9 Relative BMP gradient for different size embryos at different development stage, 
4.7hpf,5.3hpf, 5.7hpf, 6.3hpf, 6.7hpf and 8hpf. A, Plot in normalized embryo length B, Plot in 

real embryo length. 

 For a better comparison, Figure 5.9 compares the BMP gradient for different size embryos 

at the different development stages. It is clear to see the BMP gradient in normalized embryo size 
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perfectly overlap with different size at 4.7 hpf but the gap between the profiles trend to get greater 

at later stages. It is also shown that compares to the earlier stage, there are slight differences 

between WT and Szl mutant profiles at 6.7hpf and 8hpf. 

 

Figure 5.10 Pointwise Scaling Error (SE) at different development stages, 4.7hpf,5.3hpf, 5.7hpf, 
6.3hpf, 6.7hpf and 8hpf in WT and Szl mutant embryos results. Error bar indicates the maximum 

and minimum error over five different embryo sizes from 250 µm ~ 350 µm radius. 
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 To further exam the scaling level in detail, we evaluated the pointwise scaling error over 

the different sizes of the embryos in both WT and Szl mutant results. Figure 5.10 shows the 

pointwise Scaling Error (SE) at different development stages, error bar indicates the maximum 

and minimum error over five different embryo sizes from 250 µm ~ 350 µm radius.  The overall 

pointwise scaling error is less than 0.3 for all the tested embryo sizes in both WT and Szl mutant 

results (Figure 5.11). This SE level matching with our earlier experimental study in measuring the 

scaling invariance in early stage zebrafish embryos [92]. It is also observable that the SE is much 

smaller at the blastula stages (4.7hpf - 5.7hpf) compare to the gastrula stages (5.7hpf-8hpf). 

Nevertheless, there is no clear gap between the WT and Szl mutant results in the SE plot.  

 

Figure 5.11 Experimental P-Smad5 gradient profiles of WT and Cut embryo scale. (a) The 
animal and lateral views of P-Smad5 stained 6 hpf embryo point clouds after image processing 

with P-Smad5 labeling intensity in color. (b-c) P-Smad5 gradient profiles of WT (black) and Cut 
(red) embryos after filtration, at x/Lmax scale and x/L scale. Figure adapted from Huang (2019) 

[92] 

5.2.4 Comparation of Finite difference approach and Finite Element approach 

To visualize the simulation result changes in different conditions with mess adding finite 

difference method, and advection driven domain change mess conservative finite element method, 

we used our blastula stage model which is presented in Chapter 3 to test our FEM method, and 

Figure 5.12 is our result in checking the FEM code by utilizing the blastula stage model. Compare 
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to the finite difference model, by assuming that the shell membrane domain is getting thinner with 

growth, without adding the mass to the system, the FEM model keeps the mass conservative during 

the whole simulation and allows a smoother growth. The remeshing scheme keeps the mesh at a 

good quality during the large deformational simulation.  

 

Figure 5.12 Simulation result of FEM model 

 

Figure 5.13 The BMP profile result comparison of FEM model vs Finite difference model 

 

Figure 5.13 shows a comparison between the finite difference model result and the FEM 

model result under the same conditions and tested in an identical parameter set. The margin profiles 

of the BMP gradient between the two methods are very close; however, the profile on the central 

region has a relatively big gap at the animal region. This could be caused by the limitation on the 

approximation of the singularity happening on the pole for the finite difference scheme, or the 

difference of expression level interpolation method between simulation the finite difference model 
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and finite element model. Unless finite-difference model which only interpolates the expression 

level from the experimental dynamic map in each mesh layer growth one, the FEM model requests 

a spontaneous update of expression level for each single time increment, which could better in 

reflexing the real expression level at a specific stage. 

5.3 Discussion 

 In this chapter, we introduced our newly developed framework with a growing domain 

finite element model to simulate the BMP regulation network in the early zebrafish embryo. 

Compare to our earlier approach, this model adapted in cell advective transport due to the large 

cell migration during epiboly over the diffusion-reaction system. We are interested in how the 

cellular movements impact the formation of gradients by contributing as an advective term 

whereby the morphogens are swept with the moving cells as they move vegetally. Quantitative 

whole-mount RNA scope data of BMP2b and phosphorylated-SMAD data are collected and 

analyzed precisely to test the hypotheses of the gradient formation mechanism in our model. We 

screened the unknown parameter space for WT embryos in processible parameter sets by using 

LHS sampling. The current WT screening result does match the P-SMAD data on the animal 

region and highly correlated to the mRNA expression map obtained through whole-mount RNA 

scope data. As the collection of late-stage embryo data through confocal image data was limited 

with the effective imaging range as the epiboly ongoing, we could not find the best fitting 

parameter set in our model reflex the P-SMAD level change spatiotemporally. However, we 

demonstrated the possible expression map that might reveal the real expression level. Further work 

requires of designing new experimental processes to cover this gap, for instants, imaging embryo 

data in multiple directions and assemble the partial image data to obtain the whole embryo data. 

 We also investigate the role of the domain changes and the advection in BMP gradient 

formation during epiboly by comparing the growing domain additive model to the fixed domain 

diffusion only model. The result show strong evidence that the cell movement driven advection 

during epiboly contributes to the formation of BMP gradient and it should not be ignored when 

modeling this system. 

 Investigating the underlining mechanisms in achieving the scaling invariance in the 

zebrafish embryo during DV patterning is one of the main questions we want to answer through 

our study. As the result shown in the earlier section, we currently not be able to identify the key 
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mechanism in keeping the robustness of intraspecies scaling invariance in the zebrafish embryo. 

However, by comparing the WT and Szl mutant embryo data in different embryo sizes, we found 

that the BMP gradient scaled in early stage (before 5.7hpf) though the relatively simple machoism 

as the Chordin 'sink' the BMP ligand at dorsal region and shape the BMP gradient, Sizzled has no 

obvious contribution to the earlier stage scaling invariance.  This corresponding to the recent result 

of Sizzled role of omission to the BMP gradient formation at blastula stage zebrafish embryo [51]. 

However, as the result show the large scaling error in the later stage, it seems this Chordin 

dominant regulation is not sufficient enough to maintain the robustness in the system. Nevertheless, 

the only presence of the Sizzled feedback mechanism is not enough to achieve it either. Another 

possible sicario is since we only screened the results over the P-SMAD5 profile until 6.7hpf, we 

are limited our constrain to the early gastrulation when Sizzled does not start to regulate BMP 

patterning. Further direction of investigating scale invariance in the gastrula stage should focus on 

the experimental data collection for the gastrula stage and adding multi-feedback mechanisms 

including but not limited to the role of Admp, Pinhead, and bmp1b, etc. 

  In the presence of BMP expression. The hill function described the feedback mechanism. 

B0 represents the maximum level of BMP. To calculate B0 in estimate the term K/B0, we have to 

calculate the maxima BMP level in pure expression level without exocellular regulates, which can 

be considering as a Chd/Szl double mutant. For estimating parameter kit and kmt, we have to 

calculate the maximum sizzled level in Chd mutant. This increases the intensively computational 

cost for screening the parameter space in our 3D finite element model in WT embryo. Therefore, 

in the current study, we have been limited by the computational abilities of screening a larger 

parameter space. Our solution might be trapped in a parametric region that fevers the Szl omitted 

model. Our recently developed Neuron Network model may help in filling this gap. Future work 

in developing an accurate and reliable NN model to predict 3D simulation results will be one of 

our main directions to accomplish. 
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6 CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

 In summary, in this study, we present a three-dimensional (3D) growing domain 

mathematical modeling framework to simulate the BMP patterning and epiboly process during the 

gastrula stage zebrafish embryo, with both finite difference and finite element approaching. These 

models are useful to elucidate how different mechanisms and components work together in 3D to 

create and maintain the BMP gradient in the embryo.  

 We are interested in how the cellular movements impact the formation of gradients by 

contributing an advective term whereby the morphogens are swept with the moving cells as they 

move vegetally. Dynamic cell imaging data are used to quantify the cell movement during the 

epiboly. We evaluated the accuracy of the mesh updating compared to the advection caused by 

cell movement and its role in embryonic patterning. Quantitative whole-mount RNA scope data of 

bmp2b, chordin, noggin, sizzled, and phosphorylated-SMAD5 data are collected and analyzed 

precisely to test the hypotheses of the gradient formation mechanism in our model. We also present 

a novel approach of the Neuro Network model to accelerate the computationally intensive PDE 

simulations.  

 We investigate two major biology questions that can be tested with our FEM model. First 

how the cell movement drove advection contributes to the BMP gradient formation during epiboly. 

The result show strong evidence that advection contributes to the formation of BMP gradient and 

it should not be ignored when modeling this system. Finally, by investigating the mechanisms for 

intraspecies scaling invariance, we found that Sizzled may play no role in early-stage scaling 

invariance for the BMP gradient formation. However, there are two major limits in our current 

study that may need to address in future studies.  First, the experimental data collection for the 

later stage embryo mRNA and P-Smad data. As our current imaging acquisition, it is extremely 

difficult to image the whole-mount embryo data for the embryo sample over 50% epiboly. New 

experimental or imaging procedures may need to be considered to obtain the important data at later 

gastrulation.     

 Finally, our goal is to develop a complete advection-diffusion-reaction model that 

incorporates all stages of zebrafish embryonic development data to investigate the mechanisms in 
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underlying BMP-driven DV patterning during epiboly. By combining the biophysics of epiboly 

with the regulatory dynamics of the BMP network, our current 3D growing domain model provides 

a framework in testing multiscale data-driven questions during zebrafish epiboly. Understanding 

dynamic changes in the BMP signaling in three-dimensional space over developmental timescales 

presents another intriguing avenue for future research. our model could be an open sesame to 

investigate multiscale signaling networks in early zebrafish embryo development, for instants 

dynamic scaling during embryonic stages, how the morphogen gradients scale within individual 

embryo as the size of the tissues and organisms are growing, furthermore, multi-objective 

optimization approaches can aid in evaluating competing mechanistic models of BMP gradient 

formation and deciphering the common principles between different species. 

6.2 Future Work  

6.2.1 Stochastic study of downstream gene transcription with BMP signaling regulation 

For future studies, we plan to integrate with the stochastic study of downstream gene 

transcription with BMP signaling regulation. We have constructed a stochastic model of BMP 

receptor oligomerization to investigate the contribution of receptor-ligand interactions to 

positional information flow during BMP pattern formation.  Experimental evidence indicates that 

BMP regulation of morphogenesis during development occurs via heterodimer signaling.  Through 

deterministic modeling, we have demonstrated that the BMP heterodimer complex is not generated 

at higher steady-state levels than other tetrameric signaling complexes.  Therefore, the privileged 

role of BMP heterodimer signaling during development arises from natural selection and is not an 

accident of kinetic rates.  
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Figure 6.1.  Integrate with the stochastic study of downstream gene transcription with BMP 
signaling regulation 

 

Through computational modeling, we have identified several potential advantages for 

signaling through the BMP heterodimer over other tetrameric complexes. To evaluate these 

potential advantages in information transmission, we plan to integrate this stochastic model of 

BMP receptor oligomerization with a 3-D model of cell movement and ligand diffusion. With the 

finite element model results, we can have a dynamic map of BMP ligands level over the whole 

embryo. To obtain dynamic BMP ligands level for individual cells, we used the cell movement 

data from section 2.1. Time-dependent cell location data are analyzed from 3.5hpf to 8.2hpf (30% 

to 90% epiboly). Individual cell traces during this time range are obtained by running the provided 

code from this study. Integration of our stochastic model of receptor oligomerization with the 

model of cell movement and ligand diffusion will allow us to create an atlas of 'extrinsic noise' 

from receptor-ligand interactions during epiboly.  Comparison of that extrinsic noise atlas, with 

real data on total BMP signaling noise, will allow us to understand the relative contribution of 

different sources of noise to the total noise of BMP signaling during development.  Comparisons 

of these noise maps among different tetrameric complexes will confirm the evolutionary advantage 

of BMP heterodimer signaling. 

 

 
Figure 6.2.  Cell level dynamic P-Smad level by the stochastic model 
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6.2.2 Combined with mechanics during epiboly 

 Early since Turing's ground-breaking work in morphogenesis, there have been enormous 

approaches tried to couple the mechanical growth in the organism with protein signaling network. 

Embryogenesis coupled with mechanical growth during the epiboly is another interesting area we 

want to further investigate. There is evidence shows that the enveloping cell layer releases (EVL) 

anisotropic tension which promoting tissue spreading during epiboly [165], thus, there is an 

increase of interest in how the stress and strain field responding to the cell movement during 

epiboly. As we already collected the cell movement map in epiboly and we have a growth domain 

mesh been constructed, we can calculate the mechanical equilibrium of the cell membrane with 

the stress and strain field using the finite element method. To handle the extrema deformation of 

the mesh, we represent the upgraded Lagrangian approach in this part of the study. 

 The total Lagrangian approach of the multiplicative decomposition model is widely 

employed for predicting residual stresses and morphologies of biological tissues due to growth. 

However, it relies on the assumption that the tissue is initially in a stress-free state, which conflicts 

with the observations that any growth state of biological tissue is under a significant level of 

residual stresses that help to maintain its ideal mechanical conditions. Also, the discrete equations 

are formulated with respect to the reference configuration. It requires a reference configuration 

that may not always be available, and numerically it requires a discretization with respect to the 

initial geometry, which might lead to extreme mesh distortion.  

 

 
Figure 6.3.  The multiplicative split of the deformation gradient to model growth 

  



108 

Here, we propose an updated Lagrangian approach, and the discrete equations are 

formulated in the current configuration, which is assumed to be the new reference configuration. 

The independent variables in the total Lagrangian approach are X and t. In the updated Lagrangian 

they are x and t which are with respect to the new reference configuration. In this study, we mainly 

track the stress-free state throughout the deformation and allows for remeshing to handle extreme 

deformations — similar work by Du, et al.[166] who ignore a reference configuration and consider 

a self-equilibrating stress field. Figure 6.3 illustrates the multiplicative split of the deformation 

gradient to model growth. The membrane stress of Neo-Hookean type from elastic deformation is 

 
 

 

Where	𝑏-E = 𝐹-E𝐹-E
M, is the left Cauchy Green deformation tensor of the elastic surface deformation, 

which comes from	𝐹E = 𝐹-E + λ4	n ⊗ N. The elastic deformation is a combination of a surface 

component and a normal stretch, and the normal stretch, in turn, satisfies incompressibility 

 

 
 

And the pressure, 𝑝, enforces the vanishing of the normal stress 𝜎n = 0. For now, we ignore proper 

bending in	𝐹-E, and instead consider a regularization term penalizing bending deformations based 

on Batty et al. which suggest simple bending energy to regularize the formulation and prevent 

buckling 

 

 
 

Growth is assumed in the surface only, and isotropic as 

 
  

And a constitutive equation for the growth increment is needed. For simplicity we first assume 

Δ𝜗𝑔=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. Given the definition of growth and stress, the equilibrium problem for each 

increment is stated in the weak form in the configuration 𝐵𝑡. 
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Where 

 
  

We have already constructed the theoretical basis of this part of the study. However, we are 

experiencing a loss of strain tracking during the update of the configuration. A further plan has 

applied the effect of surface mapping to avoid the vanish of the strain during the simulation.  
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APPENDIX A.  SUPPLEMENTAL TO CHAPTER 2 

RNA staining using RNAscope and Image Acquisition 

The embryos were fixed at the desired developmental stages with 4% PFA at RT for 4 

hours or at 4°C for 24 hours and washed with 0.1% PBSTween 3 times at RT, each for 10 min. 

20-30 embryos were separated into 1.5ml RNase free tube. The chorions were removed, and the 

embryos were gradually dehydrated from 25% methanol in PBST, 50% methanol in PBST, 75% 

methanol in PBST to 100% methanol, each for 5 min at RT. Store the embryos at -20 °C at least 

one day and up to 15 days. Two drops of Pretreat 3 (ACD, #320045) were added at RT for 15 min 

to permeate the embryos. Counterstaining of the probes using the RNAscope Fluorescent multiplex 

detection reagents (ACD, #320851). The user’s manual (323100-USM) is available online, 

however, we made some modifications.  We performed probe hybridization at 40 °C for 16 hours, 

and C2 probes need to be diluted by C1 probes. Detailed information about the probes is shown in 

Table 1.  All wash steps were performed three times using 0.2x SSCT for ten minutes each time. 

DAPI was used to stain the nuclei at 4 °C overnight. We chose AltC for Amp4 in the staining kit.  

Embryos were mounted in 1% low melting agarose on 35mm glass bottom microwell 

dishes (Matek, P35G-1.5-10-C).  Whole-mounted embryos were imaged with a 20×/1.0 Plan-

Apochromat water immersion lens (D = 0.17 M27 75 mm). chd mRNA was imaged by excitation 

at 555 nm wavelength. bmp2b and nog mRNA were imaged by excitation at 647 nm wavelength.  

 

Table S1.  RNA Probe Information 

probe ACD catalog No. Accession No. Target Region Probe dilution 

Bmp2b-C2 456471 NM_131360.1 336 - 1238 1:20 

Chd-C1 440081 NM_130973.2 387 - 1302 1:1 

Nog-C2 476651-C2 NM_130983.2 2 - 1328 1:50 
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APPENDIX B.  SUPPLEMENTAL FIGURES/TABLE 

 

 

 

 

 

 

 

Figure S1.  mRNA whole mount image processing flow 

 

 

 

 

 

 

 

 

 

 

 

 

mRNA whole mount image processing flow

15

Step 1 • Drop-off rescale and mRNA spot identification

Step 2
• Noise spot cleaning

Step 3
• Sphere fit and DV axis rotate (Blastula)
• Sphere fit and DV axis rotate and mirroring (Gastrula)

Step 4
• Average samples at the same time point

Step 5 
• Create grid data file
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Figure S2.  Drop off correction scheme  
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Figure S3.  Big mRNA spots separation 
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Figure S4.  Data processing steps for BMP2b mRNA data 
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Figure S5.  Dynamic map of BMP expression in 2D spherical coordinate 
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Table S2.  Averaged Embryo number for mRNA in different stages  

mRNA 4.7hpf 5.7hpf 6.3hpf 8hpf 

bmp2b 5 4 3 4 

chd 11 15 9 13 

nog 3 4 3 5 

sizzled 3 7 3 4 
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