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PREFACE

This research is the master’s thesis as a conclusion of my master’s program at School of

Mechanical Engineering, Purdue University. The basis of this research stemmed from my

interest in the applications of deep learning techniques in real-world engineering problems.

With the suggestion from my advisor, Professor Guang Lin, and my learning of flow dynamics,

the idea of applying neural network for regression to simulate the dynamics of multiphase

flows came to my mind.

Although researches on multiphase flows benefit a wide-range of fields, the mechanism

is so complex that it is still difficult to build a complete mathematical model to describe

different kinds of multiphase flows, as well as to solve those models efficiently and accurately.

In this research, a predictive model based on deep learning has been developed to help on

the multiphase flows simulation. With a consideration of implicit and explicit constraints,

the model can simulate multiphase flows governed by physical laws.
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ABSTRACT

Due to strong interactions among various phases and among the phases and fluid mo-

tions, multiphase flows (MPFs) are so complex that lots of efforts have to be paid to predict

its sequential patterns of phases and motions. The present paper applies the physical con-

straints inherent in MPFs and enforces them to a physics-informed neural network (PINN)

model either explicitly or implicitly, depending on the type of constraints. To predict the

unobserved order parameters (OPs) (which locate the phases) in the future steps, the con-

ditional neural processes (CNPs) with long short-term memory (LSTM, combined as CNP-

LSTM) are applied to quickly infer the dynamics of the phases after encoding only a few

observations. After that, the multiphase consistent and conservative boundedness mapping

(MCBOM) algorithm is implemented the correction the predicted OPs from CNP-LSTM so

that the mass conservation, the summation of the volume fractions of the phases being unity,

the consistency of reduction, and the boundedness of the OPs are strictly satisfied. Next,

the density of the fluid mixture is computed from the corrected OPs. The observed veloc-

ity and density of the fluid mixture then encode in a physics-informed conditional neural

processes and long short-term memory (PICNP-LSTM) where the constraint of momentum

conservation is included in the loss function. Finally, the unobserved velocity in future steps

is predicted from PICNP-LSTM. The proposed physics-informed neural processes (PINPs)

model (CNP-LSTM-MCBOM-PICNP-LSTM) for MPFs avoids unphysical behaviors of the

OPs, accelerates the convergence, and requires fewer data. The proposed model successfully

predicts several canonical MPF problems, i.e., the horizontal shear layer (HSL) and dam

break (DB) problems, and its performances are validated.
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1. INTRODUCTION

Multiphase flows (MPFs) include the motions of various phases, each of which forms moving

and deforming interfaces. The motion of each phase and the interactions among them are

all non-linear and complex. Although it is possible to predict MPFs by collecting their

historical information, such as the flow rate, temperature, pressure, and position of the

phases, the mechanism is so complex that it is still difficult to build a complete mathematical

model to describe different kinds of MPFs, as well as to solve those models efficiently and

accurately. Researches on MPFs benefit a wide-range of fields, e.g., the chemical industry [1 ],

[2 ], environmental protection [3 ], life sciences [4 ]. Therefore, the simulation of MPFs becomes

a popular topic and many researchers have focused on it.

In recent years, the development of neural network (NN) technology promotes time series

modeling, which also contributes to predicting MPFs. With the use of self-organizing NN, Mi

et al. [5 ] simulated the vertical bubbly, slug, churn, and annular flows for the impedance of the

multiphase admixture, and the flow patterns were successfully predicted. Based on the given

experimental and theoretical velocity data, Valero and Bung [6 ] identified the characteristic

shapes of the fluid phases and explored the behaviors of the air-water flow. Rashid et al.

[7 ] developed a radical basis function NN to predict MPFs under critical conditions and

discovered negative relationships between the upstream pressure and gas-liquid ratio, and

between the choke bin size and liquid flow rate. Serra et al. [8 ] proposed a randomized hough

transform with a NN to predict the void fraction measurement given image samples. Their

experiments indicated a high consistency with increasing the void fraction of the proposed

model. More works on MPFs simulation with the help of NNs was summarized in Yan′s

review [9 ].

To simulate MPFs, the parameters inside the NN will be updated until the similar and even

the same flow characteristics can be predicted by the network. Some popular optimization

algorithms, such as stochastic gradient descent [10 ], [11 ], RMSprop [12 ], and adaptive moment

estimation [13 ], will be applied to update the parameters. However, when applying those

algorithms to find a suitable parameter space that can predict dynamics of MPFs, previous
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works did not consider the physical laws that should be strictly satisfied by the prediction.

As a result, the NN can easily produce unphysical results, especially when the number of

samples is insufficient to train a complex NN with a large parameter space. Thus, recent

studies are considering including PIC to improve the performance of NNs so that not only

available data are used more effectively but also the burden of data acquisition is alleviated.

The physics-informed constraints (PICs) can be enforced either implicitly and explicitly.

For implicit constraints, physics-informed penalties are added in the loss function [14 ]. For

explicit constraints, the prediction from the NN is modified to satisfy the physical laws [15 ].

Physics-informed neural networks (PINNs) are universal function approximators that aim

to enforce underlying PIC governed by data sets [14 ] in the loss function. The regulariza-

tion enforced by PICs can reduce the hypothesis space of parameters and thus can learn the

model with fewer observations. Moreover, a NN model with desired physical properties is

more acceptable for epxerts in this area when it applies to physical science research because

it can be more generalizable to out-of-sample scenarios [16 ]. Pang et al. [17 ] developed

fractional physics-informed neural networks (fPINNs) to encode fractional-order partial dif-

ferential equations (PDEs), which can be specified as time, space and space-time fractional

advection-diffusion equations. Yang and Perdikaris [18 ] proposed probabilistic PINNs to ap-

proximate arbitrary conditional probability densities, which is capable of generating samples

similar to the one given by PDEs. Goswami et al. [19 ] proposed a PINN algorithm to solve

brittle fracture problems and optimize its loss by decreasing the variational energy of the sys-

tem. The above and other related works [20 ], [21 ] indicate the performance of modeling data

sets governed by physical information. In the present study, we also consider physical insights

from the scientific system [14 ], [22 ] and characterize loss function with PIC. Besides, many

works indicated that a NN with PICs contributes to improving prediction accuracy [23 ]–[25 ],

discovering PDEs and governing equations [22 ], [26 ], modeling inverse problems [27 ], [28 ], and

solving uncertainty quantification [18 ], [29 ]. Some works also focus on considering general

deep learning framework to learn diverse continuous nonlinear operators [30 ]–[32 ]. Therefore,
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adding physics-informed penalization in loss function becomes more and more acceptable and

interpretable when considering the research of both NNs and physical science.

1.1 Our Contribution: Novelties and Outline

We consider the simulation of MPFs, where the location of each phase is indicated by

a set of order parameters (OP) related to the volume fractions of the phases. For MPFs,

there are several PIC that the OPs should follow [15 ]. The first one is called the summation

constraint. The OPs are not independent of each other because the summation of the volume

fractions needs to be unity [33 ]. The second one is called the conservation constraint. The

mass (or volume) of each phase is conserved without considering any sources of the phases

either in or at the boundary of the domain [15 ]. The third one is called the consistency of

reduction [34 ]. If a phase is absent at the beginning, it should remain absent and behaviors

of the other phases should not influenced by the absent phase. The last one is called the

boundedness constraint. The OPs should produce the volume fractions in between zero and

one. When applying NNs to simulation MPFs, they usually do not commit physical law,

which results in unphysical solutions. Violating those constraints results in the presence of

fictitious phases, local voids or overfilling, mass loss, or negative density or viscosity. The

inconsistent errors occurred from unphysical solutions are positively related to the density

contrast of the fluids. The physical behaviors of the results will be propagated into the

training process, and gradually accumulated, leading to large errors in the prediction, as

simulation time goes on. Considering the consistent and conservative form of the inertial

term, a scheme for flow motion regulation is obtained. This is a practical tool to correct

potential errors in NN predictions. Therefore, we encode these PICs and modify the results

after each model training to enforce the predictions exactly and explicitly.

For the NN structure, we consider the conditional neural processes and long short-

term memory (CNP-LSTM), to improve the estimation of MPFs. Long short-term memory

(LSTM) [35 ] is a specific form of recurrent neural networks (RNNs) that aims to solve ex-

ploding or vanishing gradient problems in the process of model training [36 ], [37 ]. It is able
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to memorize previous information selectively via changing the status of the forget gates, to

apply the memorized information to the output calculation of the current neuron through

memory cells, and to continuously update with the latest inputs. As one of the most famous

modified RNN model, LSTM has been widely known in solving natural language processing

[38 ]–[40 ], weather prediction [41 ], and human activity recognition [42 ], etc. A large scale

study on variants of the LSTM architecture was presented by Greff et al. [40 ] and the con-

clusion that vanilla LSTM [43 ] performs well on various data was finally drwan. Cornia et al.

[44 ] designed attentive convolutional LSTM to improve saliency predictions successively and

applied in predicting human eye fixations on natural images. Al-Shedivat et al. [45 ] proposed

Gaussian processes and long short-term memory (GP-LSTM) model that fully encapsulates

the inductive biases of recurrent networks while keeping possession of the non-parametric

probabilistic properties of Gaussian processes (GPs). The GP-LSTM model indeed performs

well in time series prediction, yet the computational efficiency of the model is limited by

the highly intensive kernel functions, thus CNPs are applied here to improve the predictive

performance of traditional GPs. The conditional neural processes (CNPs) perform well when

dealing with independent and identically distributed random variables [46 ]. Also, it avoids

training from scratch by extracting prior knowledge and thus can make predictions after ob-

serving only a small number of datasets. It is possible to predict MPFs with a small number

of samples thanks to CNPs.

The OPs are first predicted from the CNP-LSTM model. The time-dependent dynamics

of MPFs are encoded by LSTM. Combined with the characteristics of CNPs and LSTM,

a sequential prediction of MPFs can be made with high efficiency. The predicted multi-

phase then modified by the multiphase consistent and conservative boundedness mapping

(MCBOM) algorithm [47 ] to strictly satisfy the four PICs. The density and velocity are then

predicted from the physics-informed CNP-LSTM model (PICNP-LSTM), which considers a

PIC of momentum conservation in the loss function. For velocities and densities are strictly

governed by momentum conservation laws, a physics-informed penalty term can shrink the

available regression coefficient space towards initial momentum in respect to the maximum
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likelihood estimates. With the constraints, PICNP-LSTM can simulate the phase-field flow

trend while do not deviate from the actual settings. We simplify this complex CNP-LSTM-

MCBOM-PICNP-LSTM structure as physics-informed neural processes (PINPs).

The remaining sections is structured as follows to introduce PINPs. In section 2 , the

research problem is specified. Section 3 introduces the PINP model for predicting MPFs,

including the CNP-LSTM, the MCBOM algorithm, and PICs with momentum conserva-

tion. Then in section 4 , we verify the feasibility and practicability of PINPs through two

applications. Finally, conclusions are drawn in section 5 .
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2. PROBLEM DEFINITION

In this section, a mathematical description of multiphase flows with physical constraints and

time series analysis are defined here.

2.1 Multiphase flows

In the present study, the incompressible MPFs are considered, where there are N (N ≥ 1)

phases, each phase has a fixed density and viscosity, denoted by ρp and µp, respectively, for

Phase p, and each two phases has a surface tension, denoted as σp,q for Phases p and q. The

locations of the phases are determined from the volume fraction contrast {φp}N
p=1, such that

φp = 1 represents pure Phase p while Phase p is absent at φp = −1.

Four physical constraints need to be strictly satisfied by the OPs. The first one is called

the summation constraint, i.e.,

N∑
p=1

1 + φp

2 = 1, or
N∑

p=1
φp = 2−N. (2.1)

The summation constraint requires that the summation of the volume fractions of all the

phases is one so that local voids or overfilling is not produced.

The second constraint is the mass (or volume) conservation, i.e.,

d

dt

∫
Ω

φpdΩ +
∫

∂Ω
(n · u)φpdΓ = 0, 1 ≤ p ≤ N, (2.2)

where Ω is the domain of interest, ∂Ω is the domain boundary, n is the outward normal at

the domain boundary, and u is the flow velocity. If there is no normal velocity at the domain

boundary, the integral of φp (1 ≤ p ≤ N) over the domain of interest should not be changed.

As a result, the volume of each phase, i.e.,
∫

Ω
1+φp

2 dΩ, 1 ≤ p ≤ N , does not change with time

either.
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The third constraint is the consistency of reduction, whose definition is in [48 ], [49 ], and

its necessary condition is
∂φp

∂t
|φp≡−1 = 0, (2.3)

so that Phase p remains absent if it was absent at the beginning. The consistency of reduction

eliminates the production of fictitious phases.

The fourth constraint is the boundedness constraint, which is

|φp| ≤ 1,∀t > 0, 1 ≤ p ≤ N. (2.4)

One can physically explain {φp}N
p=1 as volume fraction contrasts only when they are in [−1, 1].

This corresponds to the volume fractions {1+φp

2 }
N
p=1 in [0, 1].

The density and viscosity of the fluid mixture are

ρ =
N∑

p=1
ρp 1 + φp

2 , (2.5)

µ =
N∑

p=1
µp 1 + φp

2 . (2.6)

Therefore, if φp is outside [ − 1, 1], both the density and viscosity of the fluid mixture can

become negative.

The flow velocity is divergence-free, i.e.,

∇ · u = 0. (2.7)

2.2 Time series prediction

Time series is a sequence of data set arranged in chronological order [50 ], [51 ]. The time

series are analyzed to predict future behaviors of the observation object, so as to propose

better decisions. Except fluid simulation [52 ], [53 ], time series prediction has already been
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widely applied in many different areas, such as economics [54 ], meteorology [55 ], [56 ], and

industry [57 ].

Given the time series of the observed data {xi}m
i=1, the goal is to predict the unobserved

data in the future, i.e., {xj}n
j=m+1. Here, m and n are the numbers of the observed and

total (including both observed and unobserved) data, respectively. The subscripts i and j are

timestamp indexes for the data.

To achieve the goal, we specify a projection from x to y with a Borel measurable function

f such that:

y = f(x) + ε, (2.8)

where x = {xk}t+i
k=i, y = {xk+1}t+i

k=i, and ε = {εk}t+i
k=i (1 ≤ i ≤ n−t−1) is the bias vector. Here

t (1 ≤ t ≤ m) is the sequence length. We first assume that the elements in ε are independent

and identically distributed, and follow the Gaussian distribution:

εi ∼ N (0, σ2
i ), (2.9)

where σ2
k is the variance of εk. We further assume that f is linear with respect to x, i.e.,

f(x) = xT θ, (2.10)

where θ is the parameter space of the proposed model. Thanks to the above two assumptions,

we can derive the following likelihood for y:

p(y|x, θ) = N (f(x), σ2I) = N (xT θ, σ2I), (2.11)

where σ2 is the variance vector that represents {σ2
k}t+i

k=i.

To determine θ and σ, we minimize the risk, denoted by RL(f), and its definition is

RL(f) =
∫
L(y, f(x))dµ(x, y). (2.12)
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Here L(y, f(x)) is a loss function to measure the difference between y and f(x), and µ(x, y)

is a probability measure given by observations x and y. With the given x and y, we apply

Kaiming initialization strategy [58 ] to initialize θ, and then update the parameters θ and

variances σ2 during the training, until we find θ̂ and σ̂2 that minimize the risk in Eq.(2.12 ).

Correspondingly, we obtain f̂(x) from Eq.(2.10 ) with θ̂, and the prediction ŷ from f̂(x) has

the following distribution:

ŷ = f̂(x) ∼ N (xT θ̂, σ̂2I), (2.13)

from Eq.(2.11 ) with σ̂. It should be noted that both θ̂ and σ̂ are obtained from a finite

number of observation data. Suppose the exact solution of minimizing RL(f) in Eq.(2.12 )

with infinite observation data is f ∗
L(x), we assume that f̂(x) is consistent with f ∗

L(x), i.e.,

RL(f̂)→ RL(f ∗
L), when m→∞, (2.14)

When the model is trained well, i.e., f̂(x) ≈ f ∗
L(x), the expectation of the unobserved

data, i.e., x′ = {xk}t+i
k=i (m + 2 ≤ i ≤ n− t), will be predicted from f̂(x′), and its distribution

follows

f̂(x′)|x′, x, y ∼ N ((x′)T θ̂, σ̂′2I), (2.15)

where σ̂′2 = {σ2
k}t+i

k=i.

In practice, the training stopped when either some stop criteria are met or the number

of training times reaches the specified one. In sections 3.1 and 3.3 , we will elaborate the

method we used to find the distribution f̂(x′) in Eq.(2.15 ). It should be noted that more

specific notations will be used in section 3 for predicting the OPs φ = {φp}N
p=1 and the flow

velocity v = {vp}N
p=1. The sequence length t is set to 1 in the proposed neural network, unless

otherwise specified.
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3. THE PROPOSED PHYSICS-INFORMED NEURAL

PROCESSES

This section will elaborate on the model that we developed for multiphase flow prediction,

including the CNP-LSTM model to predict the OPs in Section 3.1 , the boundedness mapping

(MCBOM) from [15 ] to correct the order parameters in Section 3.2 , and the PICNP-LSTM

model to predict the flow velocity in Section 3.3 .

3.1 The neural processes to predict the order parameters
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×
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Figure 3.1. A general framework of CNP-LSTM to predict order parameters.
The order parameters (φi, i = 1, 2, · · · , m) are processed by LSTM cells and
get ri. Then a commutative operation transform a combination of r1, r2, · · · ,
r1 to Ri ∈ R. Then Ri and φj will be used to predict φj+1 (j = m, m + 1, · · · ,
n − 1). The red diagram in the middle (LSTM cell) represents mathematical
operations in a LSTM cell.

The following operations is applied to φp (1 ≤ p ≤ N) independently. Therefore, we skip

the superscript for convenience. Given a set of OPs {φi}m
i=1, a CNP-LSTM is a NPs [59 ], [60 ]

that developed to predict the OPs {φj}n
j=m+1. The workflow of LSTM is shown in Figure 3.1 .
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Each LSTM cell maps inputs φi and φi+1 to hidden state hi and cell state Ci through several

mathematical operations. LSTM cells are then connected by the hidden states and cell states

to form a complete LSTM network.

LSTM is effective to solve long-term dependent problems because it introduces the forget

gate fi in each LSTM cell, see Figure 3.1 , to help controlling the circulation and loss of

features of the data. For each LSTM cell, the input of a LSTM cell includes the output

of its previous cell, and all LSTM cells share the same structure and parameters. In the

following content, we will demonstrate the structure of a LSTM cell and then explain how

LSTM cells connect with each other to construct a CNP-LSTM network. Inside LSTM cell

i (1 ≤ i ≤ m− 1), a forget gate fi ∈ [0, 1] is defined as a sigmoid unit [35 ],

fi = S(bf + Uf · φi + Wf · hi−1), (3.1)

where S(·) is the sigmoid function, hi−1 is the hidden state in the previous LSTM cell. Here,

b, U , and W are the bias, input weight, and cycle weight, respectively, and their subscript f

represents the forget gate. The same format is used in the rest of the equations. Then an

input gate Ii decides which information needs to be updated from

Ii = S(bi + Ui · φi + Wi · hi−1), (3.2)

To obtain the candidate value C̃i, a hypertangent activation function is applied,

C̃i = tanh(b
C̃

+ U
C̃
· φi + W

C̃
· hi−1). (3.3)

Then, we obtain the current cell state Ci, incorporating the previous cell state Ci−1 and the

candidate value C̃i in Eq.(3.3 ),

Ci = fi · Ci−1 + Ii · C̃i. (3.4)
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The cell states can be understood as the memory of LSTM, which connects the previous,

current, and future LSTM cells. Next, we move to an output gate oi, which decides the

general state of the next hidden state, Here we use a sigmoid function to activate previous

hidden state hi−1, and project φi to the output gate oi by

oi = S(bo + Uo · φi + Wo · hi−1). (3.5)

Finally, hidden state hi is computed from the current cell state Ci in Eq.(3.4 ) and the output

gate oi in Eq.(3.6 ) with.

hi = tanh(Ci) · oi. (3.6)

So far, we have completed the operations in a LSTM cell. Once the hidden state hi is

computed, we encode it with input via a modified CNP model. Traditional CNP uses multiple

dense layers to encode inputs. Here the dense layers are replaced with LSTM to reflect the

dependencies among time series data. Different from the dense layers in traditional CNP,

the present hidden state hi depends on not only the observations but also the previous

hidden state hi−1. Same as the procedure of CNPs, the present neural networks define the

representation ri as a projection of hidden state hi (1 ≤ i ≤ m− 1), OPs φi and φi+1:

ri = H1 (φi, φi+1, hi) , (3.7)

where H(·) is an affine transformation followed by a non-linear activation (usually this is a

sigmoid function):

H1 (φi, φi+1, hi) = S (A1 · [φi φi+1 hi] + b1) . (3.8)

Then a commutative operation maps all the representations {ri}m−1
i=1 into a one-dimensional

element Ri with the following rules:

Ri = r1 ⊕ r2 ⊕ · · · ⊕ ri, (3.9)
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where ⊕ here is the mean operation. Then we use another affine transformation with a

non-linear activation to map the elements Ri and the unobserved data φi+1 into φi+2:

φi+2 = H2 (φi+1, Ri) = S (A2 · [φi+1 Ri] + b2) , (3.10)

where φi+2 can be expressed as a Gaussian distribution f̂(φi+1), which stores both the mean

of m̂(φi+1) and the variance of σ̂2
i+2:

φi+2 = f̂(φi+1) ∼ N (m̂(φi+1), σ̂2
i+2). (3.11)

It should be noted here that since m̂(·) and σ̂2
i+2 are predicted by separating the outputs of

neural networks into two parts, the variance σ̂2
i+2 here is a prediction given by the neural

network rather than the one in statistics. Therefore, comparing σ̂ is not a good way to judge

the predictive accuracy.

To update parameters in the CNP-LSTM network, we defined a loss function to calculate

the difference between the predicted φ and their observations here. Given the observed time

series φ = {φi}m
i=1 and the distribution of φj+1 (= f̂(φj), m ≤ j ≤ n − 1), a conditional

stochastic processes:

Qθ(f̂(φ′)|φ, φ′) =
∏

j
f̂θ(φj|φ, φ′) (3.12)

defines distributions over {f̂(φj)}n−1
j=m. Here, φ′ = {φj}n−1

j=m. Given Qθ, the loss value L(θ) in

Eq.(2.12 ) is expressed as the expected value of the sum of the log likelihood function of Qθ:

Lφ(θ) = −Eφ,φ′

{
Ef̂

[∑
φ′ log Qθ(f̂(φ′)|φ, φ′)

]}
. (3.13)

In practice, we minimize Lφ(θ) by Adam optimizer [13 ].
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3.2 The multiphase consistent and conservative boundedness mapping algorithm

After predicting {φp
k}N

p=1 (m + 1 ≤ k ≤ n) from all the previous data before timestamp

k by CNP-LSTM in Section 3.1 , there is no guarantee that {φp
k}N

p=1 satisfy the summation

constraint, the mass conservation, and the boundedness constraint, which are the physical

constraints on the OPs, as discussed in Section 2 . Even though those errors are small after

performing one time step, it will accumulate and become significant as the computation

proceeds. The MCBOM algorithm proposed in [15 ] is developed to correct those small errors

in each time step. The resulting {φp
b}N

p=1 not only satisfy the summation constraint, the

mass conservation, and the boundedness constraint, but also are reduction-consistent with

the given data {φp
k}N

p=1. Then, we replace {φp
k}N

p=1 with {φp
b}N

p=1, and continue the rest of the

process. MCBOM works for every timestamp, and therefore it is skipped in the following

descriptions in this section.

Given a set of volume fraction contrasts {φp}N
p=1 and a set of scalars {Φp}N

p=1 that rep-

resents total amounts of {φp}N
p=1 inside the domain of interest, the boundedness mapping

includes three steps. The first one is the clipping step:


1, φp ≥ 1,

−1, φp ≤ −1,

φp, else.

(3.14)

The second one is the re-scaling step

Cp
b∗ = 1 + φp

b∗
2 , Cp

b∗∗ = Cp
b∗∑N

q=1 Cq
b∗

, φp
b∗∗ = 2Cp

b∗∗ − 1. (3.15)

The last step is the conservation step

φp
b = φp

b∗∗ +
N∑

q=1
W p,q

b∗∗Bq, (3.16)
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where W p,q is the weight function

W p,q =

 −(1 + φp)(1 + φq), p 6= q,

(1 + φp)(1− φp), p = q,
(3.17)

and {Bp}N
p=1 are obtained from solving the linear system

[∫
Ω

W p,q
b∗∗dΩ

]
[Bp] =

[
Φp −

∫
Ω

φpdΩ
]

. (3.18)

In practice, the integral is approximated by the mid-point rule. The resulting {φp
b}N

p=1 has

the following properties

N∑
q=1

1 + φq
b

2 = 1, |φp
b | ≤ 1,

∫
Ω

φp
bdΩ = Φp, φp

b |φp≤−1, 1 ≤ p ≤ N. (3.19)

MCBOM modifies the prediction given by CNP-LSTM so that the properties of the OPs

are strictly satisfied by the final prediction.

3.3 Loss function with physics-informed constraints

Once the OPs are predicted from CNP-LSTM in Section 3.1 and corrected by MCBOM in

Section 3.2 , the density and viscosity of the mixture are computed from Eq.(2.5 ) and Eq.(2.6 ),

respectively. Thanks to satisfying the boundedness constraint of the OPs, the density and

viscosity of the fluid mixture will stay in their physical interval as well, no matter how large

the density/viscosity ratio of the problem could be. The remaining task is to predict the flow

velocity {vj}n
j=m+1 given the observations {vi}m

i=1, which is finished by the proposed PICNP-
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LSTM. The structure of CNP-LSTM network here is the same as the one in section 3.1 , but

the input becomes the flow velocity rather than the OPs:



f ′
i = S(b′

f + U ′
f · vi + W ′

f · h′
i−1),

I ′
i = S(b′

i + U ′
i · vi + W ′

i · h′
i−1),

C̃ ′
i = tanh(b′

C̃
+ U ′

C̃
· vi + W ′

C̃
· h′

i−1),

C ′
i = f ′

i · C ′
i−1 + I ′

i · C̃ ′
i ,

o′
i = S(b′

o + U ′
o · vi + W ′

o · h′
i−1),

h′
i = tanh(C ′

i) · o′
i,

r′
i = H ′

1 (vi, vi+1, h′
i) ,

R′
i = r′

1 ⊕ r′
2 ⊕ · · · ⊕ r′

i,

vi+2 = H ′
2 (vi+1, R′

i) ,

(3.20)

and our prediction vi+2 is expressed as a Gaussian distribution with mean m̂′(vi+1) and

variance σ̂′2
i+2:

vi+2 = f̂ ′(vi+1) ∼ N (m̂′(vi+1), σ̂′2
i+2). (3.21)

Here we use the prime symbol ( ′ ) to distinguish the symbols in In Eqs.(3.20 )-(3.21 ) from

the ones in Section 3.1 because the parameter spaces of neural networks are not the same.

Also, the loss function are different from Section 3.1 , and an additional penalty is considered

to account for the momentum conservation. The momentum of the multiphase flow is

Mj =
∑
nC

[ρjvj∆Ω]nC
, (3.22)

whereMj is the total momentum of the multiphase flow at timestamp j, and j = m + 1, m +

2, · · · , n. We can get the flow density ρj from the predicted OPs:

ρj =
N∑

p=1

φp
j + (N − 1)

2 · ρp
j , (3.23)
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where ρp
j is the density for the phase flow p at time step j. The loss function for predicting

the flow velocity is

Lv(θv) = −Ev,v′

{
E

f̂ ′

[∑
v′ log Qv(f̂ ′(v′)|v, v′)

]}
+λ

∣∣∣∣∑nC

[∑
ρ′v′ ρ′f̂ ′(v′)∆Ω

]
nC

−∑
jMj

∣∣∣∣ , j = m + 1, m + 2, · · · , n,
(3.24)

where v′ = {vi}m
i=1, v = {vj}n−1

j=m, ρ′ = {ρk}n
k=m+1, and λ is the Lagrange multiplier. Here,

ρ′ and v′ form a PIC and penalize an unphysical solution. Right now, the loss function in

Eq.(3.24 ) not only includes the part to maximize the log likelihood (the one in Eq.(3.13 )),

but also has the penalty due to violating the momentum conservation. We call this model

physics-informed conditional neural processes and long short-term memory (PICNP-LSTM).

A flowchart of the whole process in sections 3.1 -3.3 is shown in Figure 3.2 . The methods

to update neural network parameters and predictions are elaborated in Algorithm ?? . The

consideration of PICs can alleviate errors of the predictions deviated from the actual situation

to some extent, and the effects will then be shown in the next section.
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Figure 3.2. A general framework of PINP model. The observations {φ1, φ2,
· · · , φm} are encoded in the encoder in CNP-LSTM to update Ri and then the
CNP-LSTM approximates a prediction of φ′

i+1 at first. This prediction will be
modified by MCBOM algorithm and get φi+1. The modified φi+1 will constrain
the update of vi+1 as a form of regularization term in the loss function of the
second neural network. vi+1 will be predicted by the PICNP-LSTM.
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Table 3.1. An algorithm to update strategy using Adam optimization. This algorithm
first update parameter space θ1 with Adam optimizer. Then the MCBOM algorithm is
applied to obtain the modified order parameters. The modified current order parameters
and flow velocities in the last time step are applied to update parameter space θ2 with
the use of Adam optimizer and implicit physical constraints in the loss function.

Require: Observations: order parameters {φ1, φ2, · · · , φm} and velocities {v1, v2, · · · , vm}.
Require: Learning rate for order parameters and velocities: η, η′.
Require: Exponential decay rates: β1, β2.
Require: Small constant for stabilization: ε.

Initialize time stamp: i = 1.
Initialize the first and second moment: s = 0, r = 0, s′ = 0, and r′ = 0.
while stopping criterion not met do

while i 6= n− 1 do
procedure update f̂(φi, θ1):

Compute gradient: g ← 1
m

∆θ1ΣiL(f̂(φi, θ1)).
Update the first moment estimate: s← β1 · s + (1− β1)g.
Update the second moment estimate: r ← β2 · r + (1− β2)g � g.

. � is the Hadamard product [

61 

61 ].
Correct the first moment estimation: ŝ s

1−β1
.

Correct the second moment estimation: r̂ r
1−β2

.
Update parameters: θ1 ← θ1 − η ŝ√

r̂+ε
.

Update prediction: φ′
i+1 ← φT

i θ1.
Modification: φi+1 ← φ′

i+1. . Eqs.(

3.14 

3.14 )-(

3.19 

3.19 ).
Transformation: ρi+1 ← φi+1. . Eq.(

3.23 

3.23 ).
procedure update f̂ ′(vi, θ′

2):
Compute gradient: g′ 1

m
(∆θ2ΣiL(f(vi, θ′

2))+λ|∑nC
[ ∑

ρv ρi+1f̂
′(vi)∆Ω]nC

−∑
iMi|.

Update the first moment estimate: s′ ← β1 · s′ + (1− β1)g′.
Update the second moment estimate: r′ ← β2 · r′ + (1− β2)g′ � g′.
Correct the first moment estimation: ŝ′ ← s′

1−β1
.

Correct the second moment estimation: r̂′ r′

1−β2
.

Update parameters: θ′
2 θ′

2 − η′ ŝ′
√

r̂′+ε
.

Update prediction: vi+1 vT
i θ′

2.
Update time step: i i + 1.

return {φm+1, φm+2, · · · , φn} and {vm+1, vm+2, · · · , vn}.
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4. EXPERIMENTS

We will elaborate on two experiments here to prove the efficiency and practicability of PINPs.

The first experiment is the horizontal shear layer problem and the other one is the dam break

(DB) problem. A general summary of the data set is given in Table 4.1 , including the number

of phases, simulation duration, number of time steps, number of grid of the simulation.

Table 4.1. A general summary of data set. The number of phases, number of
available time steps, total simulation time, and their grid sizes are provided in
this table.

Dataset # of phase # time steps available Total time Grid size
HSL 3 160 2.0 [128 × 128]
DB 3 200 10.0 [512 × 128]

4.1 Horizontal shear layer simulation

Horizontal shear layers (HSLs) with small-scale turbulence happen under a variety of con-

texts [62 ]: e.g., along coastal fronts, at the edges of energetic ocean currents, in oceans and

atmospheric currents around the terrain. The study of the diffusion patterns of horizontal

shear flows and the prediction of their propagation trends can be widely applied to hemody-

namic analysis [63 ], ocean circulation [64 ], etc. However, due to its external disturbance, it

may develop into turbulence in mixed layers over large horizontal distances, which makes the

prediction tasks more difficult.

In our task, the numerical domain of the problem is in a [1 × 1] box with the periodic

boundary condition, and the cell size is 1
128 in both horizontal and vertical directions. The

time step is set to be ∆t = 0.0125. The viscosity and density of each flow here are: µ1 = 0.01,

µ2 = 0.10, µ3 = 0.05, ρ1 = 50.0, ρ2 = 10.0 and ρ3 = 1.0. The surface tensions are σ1,2 = 0.05,

σ1,3 = 0.01, and σ2,3 = 0.1. We set η = 0.01 and M0 = 10−7. When t=0, phase 1 occupies

the region y ∈ (y0, y2] and keeps stationary. Phase 2 is between y ∈ (y1, y0] and moving
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to the right with a unity speed. Phase 3 is at the rest of the domain (y ∈ [0, y1] ∪ (y2, 1.0])

and is moving to the left with a unity speed. Here we have y0=0.5, y1=0.25, and y2=0.75.

A sinusoidal vertical velocity is applied here to model the perturbation with an amplitude of

0.05 and wavelength of 2π.

For the deep neural networks, the LSTM consists of a single feed-forward layer followed

by a recurrent LSTM layers with 64 LSTM cells, a combination of two hidden layers with 32

neurons each, and ReLU as their activation functions to construct the CNPs. The learning

rate is set to 10−5, and weights are initialized from a uniform distribution over the range

[-0.05, 0.05]. The dataset within the first half time is set as the training set, the rest half of

the dataset as the validation set. The predictive results is shown in Fig. 4.1 .

Figure 4.1. Phase values indication of the three-phase shear layer simulation.
For example, in the top left figure, the left blue one, middle red one, and the
right blue one represent three different phase flow separately. The red one
represents one of the phases (its phase is close to 1), and the remaining blue
ones are the rest of other two phases (their values are close to -1). Therefore,
three side-by-side pictures indicate the position information of multiphase flows
at a certain time. From top to bottom, from left to right, the results show the
change of shear layer over time t from 0.8s to 2.0s with 0.3s increment.
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We first illustrate the necessity of MCBOM in Section 3.2 . For a clear presentation,

we only show the results of the first phase in Fig. 4.2 . We run the CNP-LSTM model in

Section 3.1 until its training loss converges, which, in our experiment, is about 400 epochs.

Fig. 4.2(a) shows the mass change of the phase in the entire domain versus time. It is clear

that the mass of the phase is time-independent, after applying MCBOM, while the mass is

fluctuating from the output of CNP-LSTM in Section 3.1 only. In other words, mass gain or

loss appears without using MCBOM, which violates the principle of mass conservation. This

issue is successfully addressed with the help of MCBOM algorithm. Fig. 4.2(b) indicates

the time history of the maximum absolute value of the phase. The OPs is limited between

−1 and 1, as mentioned in Section 2 , so that the density and viscosity of the fluid mixture

computed from the OPs are also in their physical intervals, respectively. Without performing

MCBOM, the prediction from CNP-LSTM exceeds the interval [−1.1] even after a long time

of training. This out-of-bound issue does not appear in the results of the proposed model

using MCBOM. Further, we count the number of locations where the OP of the phase is

beyond [ − 1, 1], or max|φp| > 1, and the results are shown in Fig. 4.2(c) . As time goes on,

more and more locations have an out-of-bound OP in the prediction from CNP-LSTM, and

the number finally reach around 34,000. With MCBOM, out-of-bound OPs are not observed,

as expected. Finally, we check the summation of the OPs, which related to the production of

local viod or overfilling, and the results are shown in Fig. 4.2(d) . As mentioned in Section 2 ,

the sum of the OPs should always be 2−N , which is −1 in the present case. However, the

prediction from CNP-LSTM dose not have this property because it is not enforced in CNP-

LSTM model. The summation of the OPs predicted from CNP-LSTM is observed oscillating

between 0 and 0.04. On the orther hand, the summation property of the OPs is strictly

obeyed with the help of MCBOM.

Figs. 4.3(a) and 4.3(b) compares the mean square error (MSE) between the prediction

from CNP-LSTM or CNP-LSTM-MCBOM and the validation data. It seems that the pre-

diction from CNP-LSTM has a smaller error, because minimizing MSE is the only training

goal in CNP-LSTM. However, this process does not considering any physical constraints im-
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Figure 4.2. a) Validation of mass conservation: the sum of order parameters
of a specific phase should be consistent over time (∑

nC
[φp]nC

). p is the indices
of phase and we show results of the first phase here; b) Validation of phase
range constraints: all phase values should fall between [-1, 1] (max|φp| ≤ 1); c)
Number of values exceed the physical boundary with respect to time t (number
of max|φp| > 1); d) Validation of summation for the order parameters: sum of
order parameters is restricted to -1 (max|∑N

p=1 φp − (2−N)|).
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plied in the training data. These physical constraints are explicitly and exactly enforced by

MCBOM, which modifies the prediction having minimum MSE. As a result, MSE from the

prediction including MCBOM is enlarged to some extent.

Loss value

Time

(a)

 CNP-LSTM

(b)

Figure 4.3. (a) Comparison of loss values over time between PINPs and
traditional model; (b) Comparison of loss values over epochs between PINPs
and traditional model.

Figs. 4.4(a) and 4.4(b) shows the momentum in X and Y directions predicted by PINPs

and the tradictional CNP-LSTM. The prediction from PICNP-LSTM is closer to the vali-

dation data, and almost not changing with time. On the other hand, the momentum from

CNP-LSTM gives a very different behavior from the validation data. We can conclude that

PICNP-LSTM can provide a more physically plausible prediction.
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Figure 4.4. (a) Validation of momentum conservation in x direction (in the use
of PICNP-LSTM): ∑

nC
[ρu]nC

vs. t; (b) Validation of momentum conservation
in y direction: ∑

nC
[ρv∆Ω]nC

vs. t.
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4.2 Dam break simulation

Extreme weather associated with rainfall often threatens dam safety. DB problem, as

a low-frequency but high-hazard catastrophic factors that may cause significant losses, has

received increasing attention and is widely studied. In recent years, the development of

computer simulation techniques makes possible modeling the dynamics of DB [65 ]. Also,

DB simulation is a good case of large-density-ratio problem when considering water, oil, and

air. The first phase is considered as water, whose density is 998.207kg/m3 and viscosity is

1.002 × 10−3 Pa · s. The second phase is oil with the density of 557kg/m3 and viscosity of

9.15× 10−2 Pa · s. The third phase is considered as air, whose density is set to be 1.204 and

viscosity to be 1.75 × 10−5Pa · s. Initially, a water square is at the left most of the domain,

while an oil square is at the right most. The problem is non-dimensionalized by the length

of the water square, a density scale 1.204kg/m3, and an acceleration scale 1 m/s2. After

the non-dimensionalization, the numerical domain of the problem is in a [4 × 1] box no-slip

boundary conditions. The cell size is 1
128 in depth H and length L, and then a [512×128]

cells are created here. The time step is set to be ∆t = 5× 10−2 s. η and M0 here are set to

0.01 and 10−7 here. The flows are set to be stationary when t = 0.

The setup for the prediction model is the same as the one in the HSL, except the LSTM

layer are set to 128 LSTM cells. The predictive results are shown in Figs. ??-4.5 .

Fig. 4.6(a) shows the mass of the first phase versus time. According to the conservation of

mass, total amount of φp in the entire domain should not change. This is true in the prediction

given by CNP-LSTM-MCBOM, but the prediction given by traditional CNP-LSTM model

(the grey dashed line with pentagons) violates this principle.

Fig. 4.6(b) shows the maximum absolute value of the OP of the first phase given by the

proposed CNP-LSTM-MCBOM model and the traditional CNP-LSTM model. It is obvious

that the OP predicted by the traditional model exceeds 1, which violates the boundedness

constraints for the OPs. This further indicates the necessity of applying MCBOM, as shown

by the red solid line.
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Figure 4.5. Phase values indication of the water, oil and air three-phase flows
during the dam break procedure. From left to right, the read ones (phase
values close to 1) in figures show the interface of water, oil and air. The blue
one (values close to -1) indicates two other phases. From top to bottom, t is
from 10s to 20s with 2s increment.
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(a)

 CNP-LSTM

(b)

# 
of

  

(c) (d)

Figure 4.6. a) Validation of mass conservation: the sum of order paramaters
of a specific phase should be consistent over time (∑

nC
[φp]nC

). p is the indices
of phase and we show results of the first phase here; b) Validation of phase
range constraints: all phase values should fall between [-1, 1] (max|φp| ≤ 1); c)
Number of values exceed the physical boundary with respect to time t (number
of max|φp| > 1); d) Validation of summation for the order parameters: sum of
order parameters is restricted to -1 (max|∑N

p=1 φp − (2−N)|).
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As shown in Fig. 4.6(c) , there are about 28,000 locations having an out-of-bound OP if

only CNP-LSTM is used for prediction. Fig. 4.6(d) shows the summation of the OPs. PINPs

strictly follow the summation constraint for the OPs, while this is not the case without the

help of MCBOM. The results given by CNP-LSTM oscillate between 0.02 and 0.04. Figs. 4.7 

shows the prediction of the momentum in the x direction. Results predicted by CNP-LSTM

will drop from −0.01 to −0.07. On the other hand, the prediction of the PICNP-LSTM,

including a physical-informed penalization of momentum conservation, is much closer to the

validation data.

 CNP-LSTM

Figure 4.7. Validation of momentum conservation in x direction: ∑
nC

[ρu]nC
vs. t.
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5. CONCLUSION

In the present work, PINPs are developed to predict MPFs. It consists of CNP-LSTM model

to predict the OPs, MCBOM to correct the OPs and then obtain the density and viscosity

of the fluid mixture, and PICNP-LSTM to predict the flow velocity.

Several important physical constraints in MPFs are considered and enforced in different

ways. The physical constraints for the OPs, which are the summation constraint, conser-

vation constraint, boundedness constraint, and the consistency of reduction, are explicitly

and exactly enforced by the MCBOM algorithm [66 ]. MCBOM corrects the OPs, which are

the output of CNP-LSTM. We demonstrate that the prediction of the OPs using only CNP-

LSTM violates all the physical constraints. As a result, unphysical behaviors, such as mass

loss, local voids, or overfilling, appear. However, this issues is successfully addressed after

combining CNP-LSTM and MCBOM.

To predict the flow velocity, another NN model is developed, while the momentum con-

servation is included as a penalization in the loss function of the NNs. This modeled is called

PICNP-LSTM. Although the momentum conservation is not strictly satisfied by the predic-

tion from PICNP-LSTM, the behavior of the prediction is much more close to the validation

data than the one from the traditional CNP-LSTM without the penalization.

In summary, we consider CNP-LSTM model as the basic structure of the model, and

enforce the physical constraints either implicitly by penalization or explicitly by MCBOM.

This model is applied to two realistic MPFs and successfully predicts the dynamics. Therefore,

the proposed PINPs is a powerful tool for MPF simulation.
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