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ABSTRACT

With the growing demand of air traffic, it becomes more important and critical than

ever to develop advanced techniques to control and monitor air traffic in terms of safety and

efficiency. Especially, trajectory prediction can play a significant role on the improvement

of the safety and efficiency because predicted trajectory information is used for air traffic

management such as conflict detection and resolution, sequencing and scheduling.

Recently, there have been extensive efforts for the development of trajectory prediction

algorithms, which can be categorized into two approaches: (i) in physics-based approaches,

a model describing the behaviors of an aircraft is developed based on the aircraft dynamics

or governing physics, which is then used in Kalman filtering or its variants, and (ii) in

data-driven approaches, collected flight data is used to learn a data-driven model that can

be used to predict the future trajectory of an aircraft. Both of the approaches, however,

have limitations: Without assistance of dataset, the physics-based approaches use only the

aircraft dynamics for its trajectory prediction without correction by the measurement since

no measurements will be available in the future; on the other hand, the data-driven methods

do not explicitly use the aircraft dynamics at the current time (e.g., an aircraft is performing

a coordinated turn).

In this work, we propose a new framework that can overcome these limitations by inte-

grating the two methods, called hybrid data-driven and physics-based trajectory prediction.

The proposed algorithm is applied to real air traffic surveillance data to demonstrate its per-

formance. Results show that our new algorithm has a higher trajectory predicting accuracy

than the two baseline methods, which could help enhance the safety and efficiency of air

traffic operations.
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1. INTRODUCTION

In this chapter, a literature survey of trajectory prediction algorithms is presented along with

the motivation that propels us to propose a hybrid data-driven and physics-based trajectory

prediction algorithm. This is followed contributions and objectives of this thesis.

1.1 Background and motivation

The global Air Traffic Management (ATM) system is one of the most complex and rapidly

developing systems, in order to accommodate the growth of the air traffic demand which has

doubled in recent 15 years [ 1 ]. The goal of air traffic control (ATC) is to control the aircraft’s

operation for the safety and efficiency of airspace, which consists of en-route, terminal, and

surface operations, as shown in Figure  1.1 . Among such components, the terminal airspace

is the most complex and has the highest traffic density. According to the data published

by Boeing [  2 ], 75 percent of the fatal accidents have occurred in terminal airspace, which

comprises only 6 percent of total flight time. To improve the efficiency and safety of ATM

in terminal airspace, several decision supporting tools have been developed to help ATC’s

decision making processes. Among such tools, trajectory prediction plays an important role

as the predicted trajectory information is used in ATC’s tasks for the air traffic management

purpose, such as conflict detection, sequencing, and scheduling. The algorithms proposed

for trajectory prediction can be broadly categorized into the physics-based method and the

data-driven method, as follows.

Physics-based method

The physics-based methods characterize the behavior of an aircraft based on its dynamics

to predict the future trajectory by using the tools such as Kalman filtering or its variants.

Liu and Hwang [  3 ] proposed a stochastic linear hybrid system (SLHS) with a state-dependent

transition model or a Markov transition model to represent the aircraft dynamics with flight

modes such as constant velocity (CV) and coordinated turn (CT) modes. The SLHS is

combined with flight intents to more accurately predict the aircraft’s future states. Hu et

11



Figure 1.1. National Airspace System (NAS)

al. [ 4 ] introduced a trajectory prediction method using a stochastic differential equation to

represent the aircraft motion perturbed by wind disturbances and approximated the distri-

bution of the solutions to the stochastic differential equation as the evolution of a Markov

chain. Yepes et al. [  5 ] proposed an estimation method for a hybrid system and an intent

inference algorithm, both of which were combined to predict future trajectory of aircraft.

Zhang et al. [  6 ] proposed an online four-dimensional trajectory prediction method by using

a point-mass model with aircraft performance data for trajectory prediction, combined with

a conformance monitoring and aircraft intent update process for more accurate trajectory

prediction. Baklacioglu et al. [ 7 ] proposed an approach to predict the future trajectory based

on aerodynamics and propulsive models, especially considering the effects of the compress-

ible drag which occur above the critical Mach number. The models were used to predict the

flight trajectory during the descent phase. Wiest et al. [ 8 ] proposed a probabilistic trajectory

prediction based on Gaussian Mixture Models (GMM). The motion of a vehicle was modeled

as a probability distribution inferred from previously observed motion patterns. The mo-

tion model was then used to predict the future position conditioned on the motion pattern

observed at the current time. Ayhan et al. [ 9 ] proposed a stochastic trajectory prediction

algorithm. The spatio-temporal characteristics of aircraft trajectories were represented in a

set of four-dimensional cubes. For each 4D cube, the weather information of airspace was

also considered by using Hidden Markov Model (HMM) for trajectory prediction.
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Data-driven method

In the data-driven method, collected data is used to learn a model to predict the trajec-

tory. Collective behavior of a trajectory pattern can be captured from vast amounts of data.

In this regard, several data-driven methods using machine learning techniques have been de-

veloped. Duca et al. [  10 ] proposed an algorithm based on a K-Nearest Neighbor classifier to

predict routes in which the current status was takes as input and the matrix of probabilities

of the next status over a grid was returned as output, using the features such as latitude,

longitude, heading, speed over ground, and aircraft type. Xiao et al. [ 11 ] proposed a vehi-

cle trajectory prediction method using support vector regression (SVR) based on the input

from GPS for position information and on-board devices for in-vehicle driving information,

such as steering direction. The parameters of SVR were optimally selected using a particle

swamr optimization algorithm. Liu and Hansen [  12 ] proposed an approach to predict the

actual aircraft 4D trajectories using meteorological data and flight plans. GMMs were used

to model aircraft trajectory, which were learned by using an encoder-decoder network. The

weather information was represented using convolutional layers.

1.2 Objectives and contributions

Though many trajectory prediction algorithms have been proposed, these methods have

limitations in their performance when used alone, and thus the accuracy of these methods

could be relatively low, especially in the terminal airspace: if a data-driven model is used

alone, the aircraft’s current motion cannot be explicitly accounted for because the model

is learned sorely from historical data; on the other hand, if a physics-based model is used

alone, since no measurements will be available in the future time-steps, the trajectory of an

aircraft is predicted by propagating the aircraft dynamics into the future, without correction

by the measurements. In this regard, we propose a new trajectory prediction framework

that combines the both approaches: a data-driven trajectory prediction model is learned

from the historical flight data to represent the aircraft trajectories under a specific operating

condition; and then, for incoming track points of an aircraft under monitoring, the data-

driven model is used to predict the aircraft’s future states, such as position and speed, which

13



serve as pseudo-measurements for a physics-based prediction method, such as Kalman filter

or its variants, thereby incorporating the expected future behaviors (learned from data) with

the current status or dynamics (from physics), as shown in Figure  1.2 .

The proposed method, called Hybrid Data-driven and Physics-based Trajectory Predic-

tion, is demonstrated with air traffic surveillance data from the repository of real historical

flight datasets, comprising of departure and arrival operations at Incheon International Air-

port (ICN) and Gimpo International Airport (GMP) in South Korea. The demonstration is

presented via two case studies: prediction for estimated time of arrival (ETA) and short-term

trajectory prediction.

1.3 Organization

The rest of this thesis is organized as follows: In Chapter  2 , we describe an architecture

and a concept of the proposed hybrid trajectory prediction algorithm and discuss how to

utilize the algorithm in detail for predicting aircraft trajectory and present background in-

formation of data source. In Chapter  3 , through extensive analysis with actual flight data,

the performance of the proposed hybrid trajectory prediction algorithm is demonstrated.

Finally, in Chapter  4 , the summary and possible extensions are discussed.
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2. PROPOSED TRAJECTORY PREDICTION

METHODOLOGY

In this chapter, we present the development of an algorithm for hybrid data-driven and

physics-based trajectory prediction method. Figure  2.1 represents the architecture of the

proposed algorithm, which consists of data preparation, learning of a data-driven prediction

model, and prediction by combining the learned data-driven prediction model and a physics-

based prediction model.

• Data preparation: For the flights classified as departure or arrival at GMP or ICN

airports, we perform trajectory clustering using a density-based method, called

Density-based Spatial Clustering of Applications with Noise (DBSCAN) [ 13 ]. By

examining each group with similar properties individually, trajectory prediction

can be made more efficiently.

• Learning: For each trajectory cluster identified by trajectory clustering, the pro-

posed framework first learns a data-driven trajectory prediction model by using

the Long Short-Term Memory (LSTM) [ 14 ] which is a special kind of neural net-

work well suited for time-series data due to its recurrent structure that can well

represent temporal dependency and spatial patterns, thus demonstrating high

predictability for time-series data.

• Prediction: For an aircraft under monitoring, its future states are then predicted

by the learned network (data-driven), combined with a Kalman filter-based es-

timation technique (physics-based). At time-step T ′, the aircraft’s track points

up to T ′, {zt}T ′

t=0 where zt is an observed track point at time-step t, are used to

predict the trajectory for future N time-steps, {ẑt}T ′+N
t=T ′+1 where ẑt is a predicted

track point at time-step t.

– Data-driven Prediction: At t = T ′, . . . , T ′ + N − 1, the predicted

state ẑt with its covariance R̂t, denoted as
(
ẑt, R̂t

)
, is first fed into the
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learned data-driven trajectory prediction model to generate a data-

driven prediction (µt+1, Σt+1) at t + 1.

– Physics-based Prediction: Given the data-driven prediction
(
ẑt, R̂t

)
at

t, a physics-based prediction method, such as Kalman filter or its vari-

ants, then computes the prediction (ẑt+1, Pt+1) at t + 1 by combining

physics-based models for propagation and the data-driven prediction

as a pseudo-measurement (µt+1, Σt+1) for the measurement update

(or correction of the propagated prediction by the measurement).

2.1 Data preparation

This section describes the inputs and data pre-processing required for effective application

of the proposed algorithm. To understand the air traffic operations in Korea, we have

performed a preliminary study of aviation data, which consists of Aeronautical Information

Publication (AIP) data [ 15 ] (which includes airspaces and routes) and Automatic Dependent

Surveillance-Broadcast (ADS-B) data [ 16 ] (or recorded flight trajectories), as shown in figure

 2.2 .

Figure 2.2. Aviation data used for this research

The airspace information including military areas, sectors, terminal maneuvering areas

(TMA), prohibited areas is visualized in Figure  2.3 , 2.4 , 2.5 , 2.6 .

18



Figure 2.3. Airspace information of military area

Figure 2.4. Airspace information of sector

With Automatic Dependent Surveillance-Broadcast (ADS-B) data, we demonstrate the

proposed hybrid trajectory prediction algorithm. The collected ADS-B was recorded from

19



Figure 2.5. Airspace information of TMA

Figure 2.6. Airspace information of prohibited area

January to June in 2020, around the two major airports in South Korea, Incheon Interna-

tional Airport (ICN) and Gimpo International Airport (GMP) as shown in Table  2.1 .
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Table 2.1. Specification of ADS-B data
Period Detection range Sampling rate Number of flights

ADS-B January to June in 2020 200nm 1 second 107,908

With ADS-B technology, an aircraft determines its position through satellite navigation

and broadcasts it to a ground station or other aircraft in the proximity as shown in Figure

 2.7 . Each trajectory traveled for around 15 - 20 minutes in terminal airspace.

Figure 2.7. An ADS-B system

2.1.1 Routes

In the given aviation dataset, a route is represented as a sequence of fixes, e.g., ‘RNAV

REBIT 1N’, as shown in Table  2.2 , where the horizontal position (latitude and longitude) of

each fix can be found in a separate file, e.g., REBIT is located at 37.20083300 125.48694400.

A corresponding altitude, e.g., 15,000 feet for REBIT, together defines the three-dimensional

position of a fix. A segment connecting two consecutive fixes (Fix 1 and Fix 2) is charac-

terized by a lateral limit (allowed deviation in cross-track) (nmi) and direction (‘Forward’

if only a travel from Fix 1 to Fix 2 is allowed; ‘Reverse’ for the other way around; and

‘Both’ if no restrictions in travel directions). It is noted that some segment allows Direct-To,

which means that taking a shortcut is allowed, e.g., for ‘SI931-SI932’ segment, an aircraft on

this segment can directly go to its last fix, ‘DANAN.’ We have visualized all the routes on
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the geographical map, as shown in Figure  2.9 for the arrival routes to ICN as an example,

(the rest of the routes are given in Appendix) where the prohibited areas are represented

as black lines. It is noted that there exists a set of representative fixes: a flight arriving

at ICN must pass through either of the fixes in red (REBIT, OLMEN, GUKDO, KARBU,

and SEL) and then either of the fixes in blue (DANAN, TIMON, PULUN, and KOTRA).

An aircraft reaching either of these blue fixes then follows a straight line in the horizontal

plane to land at ICN airport in which there are six runways (15L/R, 16, 33L/R, and 34).

Since DANAN and TIMON are located at the Northwest of ICN, an aircraft reaching either

of them uses runways 15L/R and 16, and similarly runways 33L/R and 34 are used for the

flights passing through KOTRA and PULUN. In Figure 3 (right), the structure of the routes

is shown using the representative fixes. The red fixes can be viewed as locations where a

flight enters a terminal airspace from en-route airspace, thus starting its arrival, and the blue

fixes as locations where a flight begins its (final) approach.

(a) Arrival routes

(b) Representative fixes

Figure 2.8. Arrival routes to ICN and representative fixes

In Figure  2.9 , the arrival routes passing through each of the red fixes along with the

approach routes are presented and the number of routes for each pair of the red and blue

fixes are shown in Table  2.3 , from which the followings are observed:

• A route from each red fix provides (i) at least one path to either of the blue fixes

in the Northwest of ICN (DANAN and TIMON), thus to runways 15L/R and
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16 and (ii) at least one path to the Southeast blue fixes (KOTRA and TIMON),

thus to runways 33L/R and 34. This implies that the no matter what red fixes a

flight passes through, it can reach ICN from both the Northwest and Southeast.

• The routes from DANAN (Northwest) and PULUN (Southeast) provide a Direct-

To option, which is represented as the arcs in Figure  2.9 . Specifically, there are

two routes to PULUN from each red fix where one is with Direct-To arcs and

the other is no such arcs (thus it is rather ‘straight’).

• A blue fix KOTRA is used only for the routes from REBIT.

• A blue fix TIMON is used only for the route from SEL and vice versa. This

route is close to the prohibited area, which therefore requires a special attention

to avoid violating this area.

2.1.2 Trajectories

In the given aviation data, the ADS-B data includes the flight trajectories recorded

around ICN and GMP during the period of January 2020 – June 2020 (6 months). For each

flight trajectory, the recorded variables are four-dimensional information (time, latitude,

longitude, and altitude), speed (the horizontal and vertical speeds), and track angle, as

shown in Table  2.4 .

There are 107,908 flights in total. As an example, the total of 1,758 flights recorded on

January 10, 2020 are visualized in Figure  2.10 where the red and blue dots represent ICN

and GMP, respectively.

Table 2.3. Number of routes for each pair of red and blue fixes
From red fix to blue fix PULUN KOTRA DANAN TIMON TOTAL

REBIT 2 1 1 0 4
GUKDO 2 0 1 0 3
OLMEN 2 0 1 0 3
KARBU 2 0 1 0 3

SEL 0 0 0 1 1
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(a) ICN arrival routes through REBIT (b) ICN arrival routes through GUKDO

(c) ICN arrival routes through OLMEN (d) ICN arrival routes through KARBU

(e) ICN arrival routes through SEL

Figure 2.9. ICN arrival routes through representative points
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Figure 2.10. All flight trajectories on January 10, 2020 (left: the horizontal
plane; right: three-dimensional space)

It is noted that the given data does not provide any information about the flight plan of

each flight trajectory, such as (i) whether it is departure or arrival, (ii) which airport is its

origin (for departure) or destination (for arriva), and/or (iii) which specific route is used for

departure or arrival.

• To identify (i) for a flight trajectory, we have used the difference in altitude

between the first and last timestamps, δh = h (T ) − h (0), where h is altitude,

0 and T are the first and last timestamps, and δh is the difference. We classify

a flight trajectory as departure if δh > 0 and as arrival if δh < 0. However,

there could exist some overflights that pass over the area of our interest, which

are neither departure nor arrival. To filter them out, any flights whose minimum

Table 2.4. A sample of ADS-B data (January 7, 2020)
Time Lat (deg) Lon (deg) Alt (ft) Hspd (knots) Vspd (fpm) Trk (deg)

23:46:41 36.9655 127.7680 19,075 418 -1,088 307
23:46:42 36.9667 127.7661 19,050 419 -1,088 308
23:46:44 36.9690 127.7625 19,025 421 -1,152 309
23:47:19 37.0150 127.6976 18,425 426 -960 313
23:47:20 37.0162 127.6959 18,400 426 -960 313
23:47:31 37.0204 127.6901 18,225 425 -1,024 313
23:47:34 37.0348 127.6705 18,175 425 -960 314
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altitude is above some threshold are removed where the threshold was set as

8,000 ft by inspection, resulting in classifying overflights. For the rest 107,908

flights, we have identified 54,301 arrival flights and 53,607 departure flights from

the altitude difference.

• For (ii), the distances between an airport (ICN or GMP) and the first/last hori-

zontal position for departure/arrival are used to identify the origin/destination,

resulting in Table  2.5 and Figure  2.11 . It is observed that:

– The numbers of arrival and departure flights are comparable each other

for each airport, as well as in total (the number of arrival flights is

slightly higher than that of departure).

– The number of flights from/to ICN is about 1.8 times greater than that

of GMP, possibly due to ICN’s higher demand and capacity, which

therefore leads to more complex operations at ICN for both arrival

and departure.

– For both airports, the arrival flights are seemingly more complex than

the departure flights, due to its inherent complexity such as sequencing

and spacing.

Table 2.5. Distribution of the number of flights along departure/arrival and
corresponding origin/destination

Type ICN GMP Total
Arrival 34,829 19,472 54,301

Departure 34,261 19,346 53,607
Total 69,090 38,818 107,908

2.1.3 Trajectory clustering

Since airspace are highly structured based on the routes (or flight plans), flight trajectories

in the ADS-B data can be grouped into a set of clusters (similar trajectories that followed a
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(a) Classified flight trajectorie: ICN arrival (b) Classified flight trajectories: ICN departure

(c) Classified flight trajectories: GMP arrival (d) Classified flight trajectories: GMP departure

Figure 2.11. Classified flight trajectories for the entire recording period (red
and blue dots are ICN and GMP, respectively)

specific route). By examining each group with similar properties individually, data analysis

and anomaly detection can be made more efficiently and accurately. In this sense, the flight

trajectories can be divided into clusters by using a clustering algorithm such as DBSCAN

(Density-Based Spatial Clustering of Applications with Noise) [  17 ], which numerically finds

clusters from flight trajectories (not using routes information) based on a density-based

method. In this regard, for the flights identified as ICN departure or arrival, we performed

trajectory clustering by using a density-based method (DBSCAN). As shown in Figure  2.12 ,

23 different trajectory clusters were identified. It is noted that using a clustering algorithm
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is numerically efficient but the routes information is not used in the process, thus requiring

a post-analysis to explicitly identify the route used for a trajectory.

It is noted that the objective of data preparation is to group similar trajectories as

accurately as possible to effectively reveal hidden behaviors or capture the pattern from

trajectories. Therefore, the quality of trajectory clustering would impact the performance of

a trajectory prediction.

2.2 Data-driven trajectory prediction method

In this section, we investigate the data-driven method for trajectory prediction, which

consists of learning and prediction.

2.2.1 Data-driven trajectory prediction method: Learning

Recurrent Neural Network (RNN)

In the air traffic surveillance data, a flight trajectory is represented as a temporal se-

quence. To efficiently handle such sequential data, the Recurrent Neural Network (RNN)

[ 18 ], [  19 ], a variant of Neural Network, has been proposed by introducing a recurrent mech-

anism to keep a memory of the information in previous time-steps, as shown in Figure  2.13 .

Suppose that an input time-series {xt}T
t=0 and an output time-series {yt}T

t=0 are given. At

time-step t, the RNN uses the current input element xt, as well as the previous elements

x0, . . . , xt−1 to predict the current output element ŷt. The previous elements can be ac-

counted for by using a hidden state, at, computed based on xt and the hidden state at the

previous time-step, at−1, so that it can contain all the previous information (or memory).

The output at time-step t is then computed from the hidden state at as

at = ga (waaat−1 + waxxt + ba) (2.1)

ŷt = gy (wyaat + by) (2.2)

where ga and gy are activation functions (such as hyper-tangent or sigmoid), and w’s and

b’s are the weight and bias parameters, respectively, to be computed from the data by
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minimizing the difference between the predicted output ŷt and the (true) output yt for all

t = 0, · · · , T .

Figure 2.13. Structure of recurrent neural networks (RNN)

Long short-term memory

It has been shown that the standard RNN cannot learn long-term temporal dependency

in time-series data due to the problem known as gradient vanishing/exploding which occurs

during the learning of the parameters w’s and b’s [ 20 ], [  21 ]. To address this issue, a variant of

the RNN, called, Long Short-Term Memory (LSTM), has been proposed [  22 ] by introducing

the memory cell (c), as shown in Figure  2.14 . In LSTM, the current memory at the current

time-step t is obtained by fusing the previous memory ct−1 and the current pseudo memory

cell c̃t,

ct = Γfct−1 + Γuc̃t (2.3)

where Γf ∈ [0, 1] and Γu ∈ [0, 1] are the forget and update gates, respectively, which are given

as

Γ(·) = g(·)
(
w(·)aat−1 + w(·)xxt + b(·)

)
for (·) ∈ {u, f} (2.4)
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and the pseudo memory cell is given as

c̃t = gc̃ (wc̃aat−1 + wc̃xxt + ba) (2.5)

The current hidden state at is then updated by using the current memory ct,

at = Γo ga (ct ) (2.6)

where Γo = go (woaat−1 + woxxt + bo) ∈ [0, 1] is the output gate and ga is an activation

function. Finally, the output yt is computed from the current hidden state

yt = gy (wyaat + by) (2.7)

In the proposed framework shown in Figure  2.1 , the data-driven prediction model is learned

by using the LSTM, as follows:

• A data-driven prediction model is learned from a large amount of data to predict

one-step ahead track point given a stream of track points up to the current time.

In this regard, the input and output are constructed with one-step shift, as shown

in Figure  2.15 .

• The parameters in LSTM (w’s and b’s) are computed to minimize the Mean

Square Error (MSE) between the predicted output z̃t and the actual output zt

for t = 1, . . . , T by using Backward Propagation Through Time (BPTT) algo-

rithm [ 23 ].

• We stack multiple layers of LSTMs, which enables more complex representation

of time-series data, thus improving the accuracy in time-series prediction.

2.2.2 Data-driven trajectory prediction method: Prediction

Figure  2.16 demonstrates how the learned data-driven trajectory prediction model works.

Suppose that a trajectory cluster consists of l trajectories,
{
Z(i)

}l

i=1
where Z(i) is an i-th
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Figure 2.14. Structure of Long Short-Term Memory (LSTM)

trajectory in the cluster. A data-driven trajectory prediction model is learned (i.e., all the

parameters w’s and b’s are computed) from the cluster to represent the aircraft trajectories

under a specific operating condition. For incoming track points of an aircraft under moni-

toring, at time-step T ′, the data-driven model is used to predict the aircraft’s states, such

as position and speed, (µT ′+1, ΣT ′+1), using the aircraft’s track points, {zt}T ′

t=0, observed

up to current time-step T ′. The data-driven prediction (µT ′+1, ΣT ′+1) is then fed into the

physics-based prediction model as a pseudo-measurement, and this process is repeated up

to future N time-steps.
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Figure 2.15. The proposed LSTM-based learning framework

Figure 2.16. Data-driven prediction method

2.3 Physics-based trajectory prediction

The data-driven prediction model can well represent the behavior of aircraft in a specific

cluster. Using the data-driven prediction as a pseudo-measurement, we propose to use an

estimation algorithm, which consists of (i) the propagation of the aircraft states (such as

position and speed) through dynamics, and (ii) the correction of the propagated states by the

pseudo-measurement. To accurately account for the aircraft’s current status, its dynamics

is modeled as the stochastic linear hybrid system (SLHS) [ 24 ],[ 25 ] in which
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• The discrete dynamics describes the transitions in the flight modes, such as

Constant Velocity (CV) and Coordinated Turn (CT) modes; and

• The continuous dynamics represents how the aircraft’s states evolve along time

in each mode.

2.3.1 Continuous Dynamics

For each discrete state or mode q(t) ∈ Q := {1, . . . , nd} where nd is the total number of

modes, the SLHS model is given by:

x(t + 1) = Aq(t)x(t) + Eq(t)wq(t)(t) (2.8)

z(t) = Cq(t)x(t) + vq(t)(t) (2.9)

where, at a given time-step t, x(t) ∈ Rn is the continuous state, z(t) ∈ Rp is the measurement,

and wq(t)(t) and vq(t)(t) are the process noise and the measurement noise, assumed to be

zero-mean white Gaussian noises with the covariances Qq(t) Rq(t), respectively. The system

matrices Aq(t), Eq(t) and Cq(t) are with proper dimensions for each mode q(t).

2.3.2 Discrete Dynamics

To represent the transition between the modes, several hybrid estimation algorithms have

been proposed, including:

• The Interacting multiple model (IMM) [  26 ], [ 27 ]: constant mode transition prob-

ability matrix;

• The residual-mean interacting multiple model (RM-IMM) [  28 ]–[ 30 ]: constant

mode transition probability matrix with the use of the residual mean of each

mode; and

• The state-dependent-transition hybrid estimation (SDTHE) [  24 ], [  31 ]: mode

transitions based on a set of stochastic guard conditions
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We use the residual-mean interacting multiple model for the following reasons:

• In SDTHE, a transition between the modes is represented as a linear inequality

guard condition using flight plans. Since such information is not readily avail-

able for our application, we have extracted flight plan from the data by finding

breakpoints to use as the guard conditions. However, even for a single cluster,

a single guard condition cannot well represent the transition due to the wide

variations in, e.g., a turning point.

• In RM-IMM, the difference between the likelihoods of the correct and other

modes is increased by using the residual mean of each mode. This leads to more

distinction in mode probabilities, thereby yielding more accurate mode estimate,

as well as continuous state estimates.

In RM-IMM, the flight mode transitions is represented by a constant mode transition

probability matrix,

Π = [πij]i,j=1,...,nd
(2.10)

where πij is the constant mode transition probability from mode i to mode j and ∑nd
j=1 πij = 1

for i ∈ Q.

Suppose Zt = z (1) , z (2) , . . . , z(t) is the measurement sequence up to time-step t. Let

Pr [·|·] denote a conditional probability density function (pdf). Assume that, at time-step t,

we have the followings for all the modes i ∈ Q:

• The probabilities of the flight mode αi (t) := Pr [q (t) = i|Zt]; and

• a continuous state estimate x̂i (t) with its covariance Pi (t) conditioned on the

measurement Zt and the event q (t) = i.

As shown in Figure  2.17 , at time-step t + 1, a pseudo-measurement z (t + 1) is taken as

an input from the data-driven trajectory prediction model to update the continuous state

estimate and its covariance as:

p (x (t + 1) = x| Zt+1) = N (x; x̂ (t + 1) , P (t + 1)) (2.11)
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where

x̂ (t + 1) =
nd∑

j=1
x̂j (t + 1) αj (t + 1) (2.12)

P (t + 1) =
nd∑

j=1

{
Pj (t + 1) + [x̂j (t + 1) − x̂ (t + 1)] [x̂j (t + 1) − x̂ (t)]T αj (t + 1)

}
(2.13)

αj (t + 1) = Pr
(
q (t + 1) = j|Zt+1

)
(2.14)

In what follows, for j = 1, . . . , nd, the steps for obtaining the mode-conditioned con-

tinuous state estimate x̂j (t + 1) and its covariance Pj (t + 1) (Step 2 in the below), the

(posterior) mode probability αj (t + 1) (Step 3 in the below), and final output x̂ (t + 1) and

P (t + 1) are described (Step 4 in the below).

Step 1: Mixing

In the SLHS, the number of mode histories grows exponentially along time. To address

this issue, a method called mixing [ 32 ] is used by computing the initial conditions of the

state xj0(t) and its covariance Pj0(t), which are fed into each Kalman filter j, as:

x̂j0 (t) := E
[
x (t) |q (t + 1) = j, Zt

]
=

nd∑
i

x̂i (t) γji (t)

Pj0 (t) := E
[
(x (t) − x̂j0 (t)) (x (t) − x̂j0 (t))T |q (t + 1) = j, Zt

]
=

nd∑
i=1

{
Pi (t) + (x̂i (t) − x̂j0 (t)) (x̂i (t) − x̂j0 (t))T

}
γji (t)

(2.15)

where

γji (t) := Pr
[
q (t) = i|q (t + 1) = j, Zt

]
= 1

cj

λij (t) αi (t) (2.16)

and cj is a normalizing constant.
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Step 2: Continuous states update

For every j ∈ Q, Kalman filter j computes the innovation νj(t + 1):

νj (t + 1) = z (t + 1) − CjAjx̂jo(t) (2.17)

and then updates the continuous state estimates x̂j(t + 1) and its covariance Pj (t + 1) as:

x̂j (t + 1) =Ajx̂j0 (t) + Kj (t + 1) νj(t + 1) (2.18)

Pj (t + 1) = [I − Kj (t + 1) Cj] Pj (t + 1|t) (2.19)

where

Pj (t + 1|t) =AjPj0 (t) AT
j + Qj (2.20)

Sj (t + 1) =CjPj (t + 1|t) CT
j + Rj (2.21)

Kj (t + 1) =Pj (t + 1|t) CT
j S−1

j (t + 1) (2.22)

Step 3: Discrete states update

The (posterior) mode probabilities are updated by

αj (t + 1) = Pr
[
q (t + 1) = j|Zt+1

]
(2.23)

=1
δ

p
[
z (t + 1) | q (t + 1) = j, Zt

]
Pr

[
q (t + 1) = j|Zt

]
(2.24)

where the prior mode probability αj (t + 1|t) and the likelihood function for Kalman filter j

are given as

αj (t + 1|t) := Pr
[
q (t + 1) = j|Zt

]
=

nd∑
i=1

Λij (t) αi (t) (2.25)

Λj(t + 1) :=N (ri(t + 1); 0, Si(t + 1)) (2.26)
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where ri(t + 1) is the residual produced by Kalman filter i, Si(t + 1) is the corresponding

residual covariance, and N (a; b, c) is the probability at a of a normal distribution with mean

b and covariance c.

The underlying idea of RM-IMM is that if the mode i is highly likely to be the correct

one, then the residual mean r̄i(k+1) := E[ri(k+1)] would be small. Therefore, by modifying

the likelihood of the mode as

Λj (t + 1) =


Nj(t)Λj(t)∑N

i=1 Ni(t)Λi(t)
if r̄j(t) 6= 0

Λj(t) otherwise
(2.27)

where Ni(t) = ||r̄i(t)||−1 if ||r̄i(t)|| 6= 0; Ni(t) = 1, otherwise, the difference between the

likelihoods of the (highly likely) correct mode and the other modes becomes large, thus

giving more distinctive mode probabilities.

Step 4: Combination

The final output is calculated as follows through the combination process:

x̂ (t + 1) =
nd∑

j=1
x̂j (t + 1) αj (t + 1) (2.28)

P (t + 1) =
nd∑

j=1

{
Pj (t + 1) + [x̂j (t + 1) − x̂ (t + 1)] [x̂j (t + 1) − x̂ (t + 1)]T αj (t + 1)

}
(2.29)

2.4 Hybrid data-driven and physics-based trajectory prediction

In this section, we present how to combine the data-driven method and the physics-based

method presented in the previous sections. Note that the data-driven prediction takes input

and generates input in a deterministic manner, i.e., as a point estimation, µt+1. The Physics-

based prediction method, however, takes as input the measurements in a stochastic form,

that is, mean and covariance, or a probability density function (pdf), under the Gaussian
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assumption. In the proposed framework, the two methods are integrated as shown in Figure

 2.18 :

• Physics-based to data-driven: from the output of the physics-based method

(given as a pdf), a set of points are sampled, which is fed into the data-driven

method as input.

• Data-driven to physics-based: with the output of the data-driven method ob-

tained by a Monte-Carlo method [ 33 ],[ 34 ] (given as a set of points), we perform

a fitting to a Gaussian pdf, which is fed into the physics-based method as input.

The Monte-Carlo method used in the connection from data-driven to physics-based is

performed as follows:

• We sample from the output of the physics-based method (the pdf) to feed the

samples to the data-driven method.

• For each sample, Monte-Carlo Dropout randomly selects connections in LSTM

to be dropped out (or removed) and then the corresponding sampled output is

obtained.

Figure  2.19 shows how the integrated framework works for trajectory prediction. Suppose

that we have incoming track points of an aircraft, z0, . . . , zT ′ , at the current time-step T ′.

We denote the pseudo-measurement as z̃ (from the data-driven model) and the prediction as

ẑ (from the physics-based method). The data-driven prediction model and the physics-based

prediction method are denoted as fd and fp, respectively. At T ′, the predicted track points

at the future time-steps T ′ + k for k = 0, . . . , N − 1 are computed as follows:

• For k = 0

– The data-driven prediction model generates a pseudo-measurement as

(
z̃T ′+k+1, R̃T ′+k+1

)
= fd

(
{zt}T ′

t=0

)
(2.30)

where {zt}T ′

t=0 is the sequence of the incoming track points.
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Figure 2.19. Framework of integration

– The physics-based prediction method then computes the prediction by

taking the pseudo-measurement

(
ẑT ′+k+1, R̂T ′+k+1

)
= fp

(
z̃T ′+k+1, R̃T ′+k+1

)
(2.31)

• For k = 1, . . . , N − 1, the input to the data-driven prediction model becomes the

mixture of the deterministic track points up to T ′ and the stochastic (predicted)

track points from T ′ + 1 to T ′ + k,

(
z̃T ′+k+1, R̃T ′+k+1

)
= fd

(
{zt}T ′

t=0 ,
{(

ẑT ′+i, R̂T ′+i

)}k

i=1

)
(2.32)

The physics-based method is the same as Eq. ( 2.31 ).
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3. CASE STUDY

In this chapter, the proposed hybrid data-driven and physics-based trajectory prediction is

demonstrated with two case studies: short-term trajectory prediction and Estimated Time

of Arrival (ETA) prediction.

• Short-term trajectory prediction is to predict a future trajectory over short time

duration, ranging from 1 to 10 minutes. Short-term trajectory prediction is

important for air traffic operation in the sense that it can improve the situational

awareness of ATCs.

• ETA prediction is to calculate the expected arrival time of a trajectory from a

starting point (e.g., an entry fix) to a destination (e.g., a runway threshold). ETA

prediction can have a benefit to air traffic management, especially in terminal

airspace, such as spacing and scheduling.

In what follows, each case study is presented and illustrated with two baseline methods:

a physics-based method alone and a data-driven method alone.

3.1 Short-term trajectory prediction

3.1.1 Illustrative examples

For illustration, the proposed framework is applied to two representative trajectories (an

arrival trajectory at GMP and a departure trajectory from ICN), as shown in Figures  3.1 

and  3.2 . The prediction is performed for the prediction horizon of 20 time-steps (a time

interval is 5 seconds). Since prediction errors tend to be large around a turning point, we

mainly focus on the part of the trajectories where the aircraft take turn. The black line

represents the true trajectories, the blue line represents the predicted results of the proposed

method, the red line represents the predicted results of the data-driven method alone, and

the green line represents the predicted results of the physics-based method alone. The

performance of each method is measured by the prediction error, i.e., the difference between

the predicted trajectory and the true trajectory.
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Figure 3.1. Prediction of trajectory for arrival at GMP (left) and prediction error (right)

Figure 3.2. Prediction of trajectory for departure from ICN (left) and pre-
diction error (right)

Tables  3.1 and  3.2 compare the performance measures of the proposed method and the

two baseline methods for the arrival trajectory at GMP and the departure trajectory from

ICN, respectively, where the mean, minimum, and maximum of the error are computed

over the prediction horizon. The results show that the proposed method outperforms the

baseline methods. For the arrival trajectory at GMP, the mean error of the proposed method

is reduced by 41% = (813.84 − 483.29)/813.84 compared to the data-driven method and by

58% = (1148.92−483.29)/1148.92 compared to the physics-based method. For the departure

trajectory from ICN, the mean error of the proposed method is reduced by 26% = (634.21 −
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471.75)/634.21 compared to the data-driven method and by 52% = (973.02−471.75)/973.02

compared to the physics-based method.

Table 3.1. Performance comparison with baseline methods for trajectory for
arrival at GMP

Method Minimum error Mean error Maximum error

Hybrid method 17.09 ft 483.29 ft 800.42 ft

Data-driven method 31.27 ft 813.84 ft 1364.17 ft

Physics-based method 64.64 ft 1148.92 ft 2,235.19 ft

Table 3.2. Performance comparison with baseline methods for trajectory for
departure from ICN

Method Minimum error Mean error Maximum error

Hybrid method 29.16 ft 471.75 ft 798.35 ft

Data-driven method 49.33 ft 634.21 ft 1174.32 ft

Physics-based method 83.11 ft 973.02 ft 1,821.42 ft

The followings are observed from Figures  3.1 and  3.2 and Tables  3.1 and  3.2 :

• The physics-based method is not able to accurately predict the track points

around a turning point since no measurements is available for the future time-

steps and thus the correction by measurement is not possible.

• In general, the prediction error tends to increase along the prediction horizon.

As shown in Tables  3.1 and  3.2 , the maximum error is relatively larger than the

minimum error in both cases.

3.1.2 Performance metrics

To measure the performance of the short-term trajectory prediction in detail, we intro-

duce four metrics that are widely used in trajectory prediction [  9 ], [  35 ], [  36 ], as follows:
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along-track error, cross-track error, horizontal error, and vertical error, as shown in Fig-

ure  3.3 . The definitions of the performance metrics are given below:

Figure 3.3. Illustration of along-track, cross-track, horizontal and vertical error

• Along-track error: difference between the actual location and expected location

projected onto the actual course.

• Cross-track error: difference between the actual location expected location pro-

jected onto a vector perpendicular to the actual course.

• Horizontal error: difference between the actual location and expected location

in the horizontal dimension.

• Vertical error: difference between the actual location and expected location in

the vertical dimension.

For illustration, we present the above metrics for an arrival cluster at GMP in Figure  3.4 

and Table  3.3 , and for a departure cluster at ICN in Figure  3.5 and Table  3.4 , from which

the followings are observed:
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• The along-track error is larger than the cross-track error and thus the horizontal

error is mainly due to the along-track error. This is possibly due to the fact

that in the data preparation process, the trajectories are grouped together as

a cluster if their spatial patterns (in the cross-track direction) are similar, and

therefore the similarity in the temporal patterns (in the along-track direction) is

not explicitly considered.

• The horizontal error is larger than vertical error. This is possibly because there

are many movements of the aircraft in the horizontal dimension than in the

vertical dimension.

(a) Horizontal error (b) Along-track error

(c) Cross-track error (d) Vertical error

Figure 3.4. Histograms of performance metrics for an arrival cluster at GMP
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Table 3.3. Performance comparison of performance metrics for an arrival cluster at GMP
Total error Horizontal error Along-track error Cross-track error Vertical error

688.5 ft 667.5 ft 639.1 ft 192.4 ft 164.1 ft

(a) Horizontal error (b) Along-track error

(c) Cross-track error (d) Vertical error

Figure 3.5. Histograms of performance metrics for a departure cluster at ICN

Table 3.4. Performance comparison of performance metrics for a departure cluster at ICN
Total error Horizontal error Along-track error Cross-track error Vertical error

690.1 ft 667.4 ft 639.0 ft 192.3 ft 167.4 ft
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Tables  3.5 and  3.6 show the results for 15 clusters obtained from ICN and 8 clusters

from GMP, respectively. It is noted that a typical separation standard in the horizontal

in terminal airspace is 3 nm [ 37 ],[ 38 ]. Since our results show the average prediction error

in the horizontal of 694.6 ft (≈ 0.114 nm) and 689.7 ft (≈ 0.113 nm) for ICN and GMP,

respectively, which thus could help improve the performance of conflict detection in terminal

airspace, thus enhanching the safety.

3.2 Estimated Time of Arrival (ETA) prediction

The performance of ETA prediction is measured by the ETA prediction error, which

is defined as, given a starting point and a destination point, the difference between the

predicted and true times of arrival at the destination. For the air traffic surveillance data

used in this work, the total travel time ranges from 7.5 minutes to about 12 minutes for

different clusters. For a given starting point of an aircraft, its trajectory is predicted up to

its destination point to compute the predicted ETA, as shown in Figure  3.6 .

Figures  3.7 and  3.8 show the histograms of the ETA prediction errors for an arrival cluster

of ICN and an arrival cluster at GMP, respectively. The proposed method is compared with a

data-driven only method as a baseline method. A physics-based method is not used For ETA

prediction because it does not have a correction by measurement, and thus the prediction

diverges. For the ICN cluster, as shown in Figure  3.7 , the RMS error of the proposed

method is reduced by 19.5% (from 37.0 seconds to 29.8 seconds) compared to the baseline

method. The maximum error of the proposed method is also significantly reduced: it is 70.1

seconds, which is a 33.7% improvement over the 105.8 seconds from the baseline method.

For the GMP cluster, as shown in Figure  3.8 , the RMS error of the proposed method is

reduced by 19.6% (from 37.8 seconds to 30.4 seconds) compared to the baseline method.

The maximum error of the proposed method is also reduced: it is 52.9 seconds, which is a

32.1% improvement over the 77.9 seconds from the baseline method.

For the 15 clusters of ICN and the 8 clusters of GMP presented in Section  3.1.2 , Tables  3.7 

and  3.8 show the RMS errors of ETA prediction, respectively. In each row, the cluster

numbering is presented with its total travel time in the first column; the prediction errors of
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Figure 3.6. Prediction of trajectory for arrival at GMP (left) and arrival at ICN (right)

the proposed method and the baseline method are shown in the second and third columns,

respectively, where the percentage in the parenthesis is the ratio of the prediction error with

respect to the total travel time; and the reduction in the prediction error from the baseline

method to the proposed method is given in the fourth column as a percentage. As the

total travel time increase, the prediction error becomes larger. For example, cluster 7 at

ICN has the total travel time of 450 seconds with the prediction error of 23.5 seconds by

the proposed method; on the other hand, cluster 2 at ICN shows the increased prediction

error of 36.1 seconds (53.6% increased) by the proposed method where its travel time is 700

seconds (55.5% increased). In average, the proposed method shows the reduced prediction

error compared to the baseline method, by 24.3% for ICN cluster and 20.7% for GMP cluster.
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(a) Proposed method (b) Baseline method

Figure 3.7. Histograms of the ETA prediction errors for an arrival cluster at
ICN (RMSE denotes rms error)

(a) Proposed method (b) Baseline method

Figure 3.8. Histograms of the ETA prediction errors for an arrival cluster at
GMP (RMSE denotes rms error)

Note that a typical separation standard between consecutive arrivals at the runway is about

2 minutes [  39 ], the reduced error in the predicted ETA by the proposed method could imply

practical benefits in airport operations.
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Table 3.7. RMS error in ETAs of proposed method and baseline method for ICN clusters

Cluster number Proposed method Baseline method Reduction

cluster 1 (510 sec) 25.6 sec (5.0 %) 33.8 sec (6.6 %) 28.1

cluster 2 (700 sec) 36.1 sec (5.1 %) 46.2 sec (6.7 %) 27.9

cluster 3 (625 sec) 32.1 sec (5.1 %) 36.6 sec (5.8 %) 14.2

cluster 4 (630 sec) 32.7 sec (5.2 %) 38.1 sec (6.0 %) 16.6

cluster 5 (610 sec) 31.9 sec (5.3 %) 37.2 sec (6.1 %) 16.1

cluster 6 (605 sec) 31.8 sec (5.3 %) 37.0 sec (6.1 %) 20.0

cluster 7 (450 sec) 23.5 sec (5.2 %) 29.8 sec (6.6 %) 26.8

cluster 8 (695 sec) 35.2 sec (5.0 %) 42.1 sec (6.0 %) 19.6

cluster 9 (510 sec) 26.4 sec (5.2 %) 34.0 sec (6.6 %) 25.0

cluster 10 (520 sec) 25.9 sec (4.9 %) 33.5 sec (6.4 %) 25.4

cluster 11 (500 sec) 26.3 sec (5.3 %) 34.7 sec (6.9 %) 35.4

cluster 12 (530 sec) 26.9 sec (5.1 %) 35.7 sec (6.7 %) 32.7

cluster 13 (520 sec) 26.7 sec (5.2 %) 33.3 sec (6.4 %) 20.9

cluster 14 (650 sec) 33.9 sec (5.2 %) 38.5 sec (5.9 %) 13.5

cluster 15 (660 sec) 33.5 sec (5.1 %) 39.1 sec (5.9 %) 16.7

Average 29.8 sec 37.0 sec 24.3 %
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Table 3.8. RMS error in ETAs of proposed method and baseline method for
GMP clusters

Cluster Proposed method Baseline method Reduction

cluster1 (675 sec) 35.1 sec (5.2 %) 45.9 sec (6.6 %) 23.6 %

cluster2 (685 sec) 34.9 sec (5.1 %) 48.3 sec (7.0 %) 27.8 %

cluster3 (640 sec) 33.8 sec (5.3 %) 36.6 sec (5.8 %) 7.6 %

cluster4 (625 sec) 31.9 sec (5.2 %) 39.4 sec (6.3 %) 19.1 %

cluster5 (570 sec) 29.0 sec (5.0 %) 36.8 sec (6.4 %) 21.2 %

cluster6 (595 sec) 30.4 sec (5.1 %) 37.1 sec (6.2 %) 18.1 %

cluster7 (680 sec) 35.3 sec (5.2 %) 46.0 sec (6.7 %) 23.3 %

cluster8 (635 sec) 31.1 sec (5.0 %) 41.5 sec (6.5 %) 25.1 %

Average 32.6 sec 41.45 sec 20.7%
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4. CONCLUSION

In this chapter, summary and potential extensions of the research presented in this thesis

are discussed.

4.1 Summary

In this thesis, a trajectory prediction algorithm in air traffic management (ATM), aimed

at improving the efficiency and safety of operations in the terminal airspace has been pro-

posed. The proposed trajectory prediction algorithm has been shown to provide air traffic

controllers (ATCs), pilots, airlines, and policymakers insights into making air traffic opera-

tions safer and more efficient. This was achieved through integrating two trajectory predic-

tion methods: the data-driven method and the physics-based method. The proposed method

can make more accurate trajectory predictions by taking advantage of the two methods incor-

porating the expected future behaviors of the aircraft (from data) with its current status or

dynamics (from physics). With Long Short-Term Memory (LSTM) as a data-driven method

and Residual-Mean Interacting Multiple Models (RM-IMM) as a physics-based method, the

proposed method integrates different types of input and output of each method. For the

demonstration of the proposed algorithm, extensive tests were performed using air traffic

surveillance data from the repository of real historical flight datasets, comprising of arrival

and departure operations at Incheon International Airport (ICN) and Gimpo International

Airport (GMP) in South Korea, applied to two cases: estimated time of arrival (ETA) predic-

tion and short-term trajectory prediction. The accurate ETA prediction is important since

it can improve the airspace operations, especially in the terminal airspace, such as schedul-

ing and spacing; and the accurate short-term trajectory prediction can improve situational

awareness of ATCs by analyzing the current state of the aircraft and the future state of the

aircraft under the control of ATCs. The test results have shown that the proposed hybrid

trajectory prediction algorithm yields better accuracy than widely used baseline methods,

the data-driven method and the physics-based method.
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4.2 Future Work

Among potential follow-up research efforts to the work presented in this thesis, the fol-

lowing can be highlighted:

Domain extension: En-route airspace

This thesis has focused on trajectory prediction in terminal airspace. It is expected that

en-route airspace presents a completely new environment for the algorithm to learn. The

effectiveness of the proposed algorithm applied to the terminal airspace can lead to a possible

extension of applying the algorithm to predict flight trajectories in the en-route airspace.

Prior work + trajectory prediction + posterior work

From the literature review, we found that there are three types of works related to

trajectory prediction:

• Prior work + trajectory prediction: e.g., trajectory clustering or trajectory mod-

eling

• Trajectory prediction + posterior work: e.g., conflict detection or conformance

monitoring

• Trajectory prediction only

As an example for the combination with posterior work, we can consider conformance

monitoring [ 40 ][ 41 ]: the predicted aircraft states obtained from the proposed hybrid trajec-

tory prediction can be used to compute the conformity/anomaly score of an aircraft under

monitoring, which measures how confomring/non-conforming the predicted trajectory of the

aircraft is with respect to the expected behavior observed from the historical data.
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