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ABSTRACT

This thesis deals with three problems in image analysis and processing: determining

optimal resolution for scanned document raster content, page orientation, and color table

compression.

Determining optimal resolution for scanned document raster content aims to find an

optimal scan resolution for different scan materials. Here the optimal scan resolution means

the lowest resolution that keeps all the information of the scan materials. In this way we can

save a lot of storage. In this study, the resolutions in question are 300 dpi, 150 dpi, and 75

dpi. We start with 300 dpi since this resolution would keep most scanned pages’ information.

75 dpi is usually the smallest scan resolution that a printer has, and 150 dpi is the resolution

in between. We developed an algorithm that extracts features and use SVM to find the

optimal scan resolution. The features include tile standard deviation (STDDEV) structural

similarity index measure mean (tile-STDDEV SSIM), tile STDDEV structural similarity

index measure STDDEV (tile-STDDEV SSIM STDDEV), sample power spectrum MSE, and

spatial activity, edge density, and edge contrast. These features can reflect the truthfulness

between high-resolution images (references) and their low-resolution counterparts and the

intrinsic changes from the high resolution to low resolutions. By feeding these feature into

support vector machine (SVM) classifier, we can have a prediction accuracy of 93.4%.

Determining the scan page orientation can spare people from manually aligning printed

pages before using a scanner. In this thesis, we propose an algorithm based on hand-crafted

features and SVM. The features include vertical document vector (VDV), horizontal docu-

ment vector (HDV), zonal density vector (ZDV) and profile document vector (PDV). Con-

catenating them together, we can have a feature vector for the document page. The feature

vectors are then fed into SVM for training and predicting. This algorithm could work on mul-

tiple scripts, including Chinese, Devanagari, Japanese, Korean, Numeral, English, French,

German, Greek, Italian, Portuguese, Russian, and Spanish. In our algorithm we detect the

script first, and then the orientation of the page. We also build a script detection hierarchy

based on the structure similarities of different scripts. Experimental results show that the

overall script accuracy is 98.2%, and the overall orientation accuracy for all scripts is 99.2%.
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Color Management plays an important role in color reproduction and transformation

of color information among various devices. Device profiles, such as Color look-up tables

(LUTs), provide color management systems with the information necessary to convert color

data between native device color spaces and device-independent color spaces. LUTs are often

embedded in color documents to achieve color fidelity between different devices. The size

of color tables will also increase with finer sampling of the spaces and larger bit depths.

Thus, a method to compress LUTs is desirable for the purpose of conserving memory and

storage, and also reducing network traffic and delay. In this dissertation, we propose a

1D color table lossless compression method based on discrete-time transformation (DCT).

The compressed data consists of four files: the rounded quantized DCT coefficients for the

color table, the residue table whose values are the difference of the original color tables and

the initial reconstructed color tables, the coefficients bit assignment tables (CBAT) and the

residue bit assignment tables (RBAT) that we proposed for quantized DCT coefficients and

residue table, respectively. With these four files, we can perfectly reconstruct original 1D

color tables. Experimental results show that we can achieve a compression ratio of around

3.05.
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1. INTRODUCTION

1.1 Overview

Nowadays, scanners and printers are very common among people’s everyday use. Al-

though single function printers or scanners are enough for some users, most people still

prefer multifunction peripheral (MFP) or all-in-one (AIO) printers, which can both scan

documents and make photocopies. MFPs or AIOs can range from low-end home models

to more powerful office printers. Home printers are built for light duty use. Office MFPs

offer better text quality and faster speeds, with a lower cost of ink or toner. They are also

equipped with automatic document feeders (ADFs), which makes it much faster to scan large

quantity of pages all at once.

With the rise of the paperless office, the days of storing paper copies of documents in

filing cabinets as the archival record of the document are ending. Scanning documents can

free up the office space in a company by saving thousands of files on a single server. Besides,

it is usually quicker to find a specific file in a computer than hunting through the dozens

of file cabinets or mounds of paperwork that clutter the office. Moreover, it also provides a

good way to back up the information written on ancient manuscripts. Further, rather than

mailing a signed copy through USPS or FedEx, it is more commonplace to just scan and

e-mail it or upload it to a cloud. All these make scanning really necessary in our everyday

practice.

However, with the increasing demand for scanning, some problems need to be addressed.

First, if using an ADF, current scan routines will scan all documents to the same resolution.

If we use a high resolution like 300 dpi, the resulting images will occupy more memory than

needed. Besides, it requires a lot of work to align documents to the right orientation before

feeding them into an ADF. Also, there is very limited memory in a color printer; but the

color tables used to do color conversions between color spaces may need a lot of memory.

We also need to compress the color tables.
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1.2 Determining Optimal Resolution for Scanned Document Raster Content

In current scanners, modern scan routines require a predefined scan resolution, whether

it is customer-selected or a default value in the settings. When the scanning process begins,

the resolution cannot be changed. This results in all scanned pages, no matter how much

their contents may vary, having output images of the same size. For example, if one page

has an image area of plain color and another image has many details, the two output images

would have the same size after the scanning process. However, we can clearly see that fine-

detailed images need a larger scan resolution than a plain page. If we scan both pages with

a low resolution like 75 dpi, the scanned plain images would have all the information but

the fine-detailed images will experience a lot of detail loss. However, if we scan them both

at a high resolution like 300 dpi, the plain images would consume much more memory than

needed. As a result, the best strategy for us would be to scan pages with different resolutions

according to their contents, so that we can still maintain good image quality while lowering

the total storage used.

In order to tackle this problem, different scan resolutions for different contents must be

chosen. In this study, the resolutions in question are 300 dpi, 150 dpi, and 75 dpi. We start

with 300 dpi since this resolution would keep most scanned pages’ information. Undoubtedly,

higher scan resolutions would keep more details and yield higher-quality images. The quality

of scanned images degrades as the scan resolution decreases, which may cause blurriness. And

this is quite obvious in scanned text documents, since blurriness can cause a document to

be unreadable.

We developed an algorithm to automatically select the optimal scan resolution based on

document contents. The algorithm is based on some hand-crafted features and the support

vector machine (SVM) classifier. The features can be classified into two categories: full-

reference (FR) features and no-reference (NR) features. The FR features, which include

tile standard deviation (STDDEV) structural similarity index measure mean (tile-STDDEV

SSIM), tile STDDEV structural similarity index measure STDDEV (tile-STDDEV SSIM

STDDEV), sample power spectrum MSE, and spatial activity, reflect the truthfulness be-

tween high-resolution images (references) and their low-resolution counterparts. The NR
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features exploit the changes of images from the high resolution to lower resolutions. The

features include transition density, edge density, and edge contrast. Combining the features

together, we can get a feature vector for each page. By feeding these feature vectors into a

support vector machine (SVM) classifier, we can have a prediction accuracy of 93.4%.

1.3 Determining Scanned Page Orientation

With the trend of the paperless office, lots of documents are being scanned every day.

Also, the need to preserve old ancient books or other materials requires a lot of scanning.

When scanning, a page could be in one of the 4 orientations: 0, 90, 180, and 270 degrees.

When there are large quantity of pages to scan, it is difficult or even impossible to know all

pages’ orientations while scanning. Manually aligning them could be tedious and very time-

consuming. So it would great if the scanner could automatically detect their orientations.

Moreover, it would be best if the scanner could detect the orientation of pages in various

language scripts.

To determine one page’s orientation, we developed an algorithm to find features of text

characters, and predict its script and orientation using a support vector machine (SVM).

The algorithm starts by turning a scanned color image into a grayscale image, and then

partitions it into 16 sub-images with equal width and height. Then, Otsu’s method [1 ]

is applied to each sub-image to get 16 binary sub-image. Assembling them together, we

can get a big binary image. Then we do connected components (CC) labeling using 8-

neighborhood, followed by CC analysis to get text characters and reject non-text CCs. The

features are calculated on text CCs only. The features include vertical document vector

(VDV), horizontal document vector (HDV), zonal density vector (ZDV) and profile document

vector (PDV). These features can reflect different information of a connected component

(CC). Concatenating them together, we can have a feature vector for the document page. The

feature vectors are then fed into an SVM for training and prediction. This algorithm can work

on multiple scripts, including Chinese, Devanagari, Japanese, Korean, Numeral, English,

French, German, Greek, Italian, Portuguese, Russian, and Spanish. In our algorithm we

propose to first detect the script, and then the orientation of the page. We also build a script
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detection hierarchy based on the structural similarities of different scripts. Experimental

results show that the overall script accuracy is 98.2%, and the overall orientation accuracy

for all scripts is 99.2%.

1.4 Color Table Compression

Color Management plays an important role in color reproduction and transformation

of color information among various devices. Device profiles, such as Color look-up tables

(LUTs), provide color management systems with the information necessary to convert color

data between native device color spaces and device-independent color spaces. LUTs are

often embedded in color documents to achieve color fidelity between different devices, which

increases the total size of these documents. The size of color tables will also increase with

finer sampling of the spaces and larger bit depths. Thus, a method to compress LUTs is

desirable for the purpose of conserving memory and storage, and also reducing network traffic

and delay.

Our work is based on the work of Chuohao Tang et al. [2 ] on lossy compression of 3D

and 4D color tables through the discrete cosine transform (DCT). Their algorithm used a

specific lossy method, followed by a general lossless method to compress the color tables.

The specific lossy method was tailored to the specific characteristics of the color tables to

be compressed. The general method was generic, and could be used to compress a variety

of different types of data streams.

While their work does a good job in compressing 3D and 4D LUTs, they didn’t try

to do a lossless compression. So here we propose a lossless compression method on 1D

LUTs. The compressed data consists of four files: quantized DCT coefficients from color

tables, quantized DCT Coefficients Bit Assignment Tables (CBAT) , a residue table whose

values are the difference between the original color tables and the initial reconstructed color

tables, and the residue table bit assignment tables (RBAT). With these four files, we can

perfectly reconstruct original 1D color tables. Experimental results show that we can achieve

a maximum compression ratio of 3.05.
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1.5 Summary

This dissertation deals with three problems in image analysis and processing: determining

optimal resolution for scanned document raster content, page orientation, and color table

compression. These are three important topics in modern MFPs, with the first two aiming

at scanners, and the last one focusing on printers. Determining the optimal scan resolution

can help reduce the total memory used to store all scanned images while keeping all the

information. Determining the scanned page orientation automatically can free the manpower

that would be needed to align all the pages before scanning. Further, since color tables are

vastly used in printers to do conversion between color spaces, compressing them can save a

lot of storage.

The dissertation is organized as follows:

• Chapter 2 proposes an algorithm to determine the optimal scan resolution based on

the document’s raster content.

• Chapter 3 develops a method to determine the orientations of scanned pages of various

scripts.

• Chapter 4 introduces a method of lossless compression of color tables.

• Chapter 5 talks about my major contributions in the work described in this dissertation.
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2. DETERMINING OPTIMAL RESOLUTION FOR SCANNED

DOCUMENT RASTER CONTENT

2.1 Introduction

Modern scan routines require a predefined scan resolution, whether it is customer-selected

or a default in the scanner’s settings. When the scanning process begins, the resolution

cannot be changed. This results in all scanned pages, no matter how much their contents

may vary, having output images of the same size. For example, if one page has an image

area of plain color and another image has many details, as shown in Fig. 2.1 , the two images

will have the same size after the scanning process. However, we can clearly see in Fig. 2.1 

that picture (b) needs a larger scan resolution than picture (a). If we scan both pages with

a low resolution like 75 dpi, picture (a) will have all the information but picture (b) will lose

some details. However, if we scan them both at a high resolution like 300 dpi, picture (b)

will have all the details, but we also need more space to store picture (a). As a result, the

best strategy for us would be to scan images with different resolutions according to their

contents, so that we can still maintain a good image quality while lowering the total used

storage.

In order to tackle this problem, different scan resolutions for different contents must be

chosen. Undoubtedly, higher scan resolutions would keep more details and yield scanned

images with higher quality. The quality of scanned images degrades as the scan resolution

decreases, which may cause blurriness and jaggedness. And this is quite obvious in scanned

text documents, since blurriness can cause a document to be unreadable.

Scan resolution is measured in DPI or dpi, which is short for dots per inch. In printing,

it is used to measure the number of dots that can be placed in a line whose length is 1 inch.

Usually, the bigger the dpi is, the more details can be printed on the page [3 ]. However,

monitors don’t have dots, but do have digital pixels. As a result, some may prefer to use

PPI or ppi, short for pixels per inch, when referring to image resolutions. But the use of

DPI or PPI is often equivalent to each other. If we use dpi in scanning, one ’dot’ actually

equals to one digital image pixel [4 ] in a monitor. In this thesis, we choose to use dpi when

referring to scan resolutions.
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(a) flat image (b) cat image

Figure 2.1. Example of two pages with different contents. We can see that
picture (a) contains a plain blue area, while picture (b) has more detail. So
we can see that they need different scan resolutions.

When choosing different scan resolutions like 300 dpi, 150 dpi, and 75 dpi, the resulting

scanned images will have different sizes. Suppose we want to scan a page of size 8.5 by 11

inches at 300 dpi, the result digital image would have a size of 2550 (8.5×300) by 3300 (11×

300) pixels. If the scan resolution is 150 dpi, the image size would be 1275 (8.5 × 150) by

1650 (11 × 150) pixels, half of the size of the 300 dpi image. And the image size using a scan

resolution of 75 dpi would be 637 (8.5 × 75) by 825 (11 × 75), half the size of the 150 dpi

image, and 1/4 the size of the 300 dpi image. The size differences are be seen in Figure 2.2 .

As a result, for raw images using the same bit depth, the 150 dpi image occupies 1/4 of the

memory used to store its 300 dpi counterpart, while the 75 dpi image requires only 1/16 of

300 dpi image’s memory. As we can see from Figure 2.2 , the big size difference makes it very

difficult to compare the image quality among different scan resolutions directly. Further, the

zooming habits of people when viewing large or small images on screens make the problem

more complicated.
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(a) 300 dpi image (b) 150 dpi image (c) 75 dpi im-

age

Figure 2.2. Size comparison of 300 dpi, 150 dpi, and 75 dpi scan resolutions.
We can see that the 75 dpi image is half the size of the 150 dpi image, and
1/4 the size of the 300 dpi image.

We propose a traditional machine learning based method to find the optimal lowest scan

resolution for each scan document. We collected a large number of documents, and scanned

them into 300 dpi, which are used as benchmarks for good image quality. The images

are stored as ’TIFF’ without any compression. Then we use an area-based down-sampling

method to get images of 150 and 75 dpi. To compare the image quality, we open images

of all resolutions in the same image-reading software, and view them at 100% to determine

the lowest acceptable scan resolution. With all these data, we extracted some hand-crafted

features and fed them into a support vector machine (SVM) to do training and testing.

The features are: tile standard deviation (STDDEV) structural similarity index measure

mean (tile-STDDEV SSIM), tile STDDEV structural similarity index measure STDDEV

26



(tile-STDDEV SSIM STDDEV), sample power spectrum mean squared error (MSE), spatial

activity, transition density, edge density, and edge contrast. Combining the features together,

we can get a feature vector for each page. By feeding these feature vectors into a support

vector machine (SVM) classifier, we can have a prediction accuracy of 93.4%.

2.2 Related work

Finding the optimal scan resolution is to find the smallest scan resolution with acceptable

image quality. Image quality assessment (IQA) is a widely-researched topic [5 ][6 ]. Typically,

there are three categories of quality estimators (QEs): full reference (FR) QEs, reduced ref-

erence (RR) QEs, and no reference (NR) QEs. FR QEs exploit the “perfect” reference image

and examine the truthfulness that a new image has with the reference image. Maybe the sim-

plest measure is the mean squared error (MSE) or peak signal-to-noise ratio (PSNR). But its

nature of heavily relying on pixel correspondences cannot reflect a human’s subjective view.

Other QEs, like structural similarity index (SSIM) [7 ][8 ], multi-scale structural similarity [9 ],

visual information fidelity (VIF) [10 ], most apparent distortion (MAD) [11 ], are better to

reflect a human’s perceptual assessment. With the rise of deep learning research, perceptual

features, or feature maps of deep convolutional neural networks [12 ] are widely used and are

considered to resemble the human visual system (HVS) much better. But they all require

a reference image of the same resolution, size and good pixel correspondence. There are

also some FR QEs that don’t require the same size of the test and reference images. The

Multiscale Image Quality Estimator (MIQE) [13 ] was developed to assess images of different

resolutions from various viewing devices like laptops, televisions, and smart phones. It is

based on the wavelet transform and mutual information to assess the quality of a distorted

image with a lower resolution compared with the reference image with a higher resolution.

A cross spatial resolution image QE [14 ] is proposed to estimate the quality of interpolated

high-resolution images compared to their low-resolution counterparts. The QE is based on a

natural scene statistics (NSS) framework, which contains frequency energy falloff, dominant

orientation, and spatial continuity statistics.
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Reduced reference (RR) approaches are used if the reference image is available, but is

too costly to get. Most RR QEs are based on NSSs models [15 ]. For example, the “divisive

normalization” QE [16 ] uses the Gaussian scale mixture (GSM) model on the wavelet coef-

ficients of the reference image and the image to be tested. Also, the “quality-aware image”

QE [17 ] exploits information in a general Gaussian distribution (GGD) model. But since

some of the images under study in our work like line drawings are not natural scenes, RR

QEs are not suitable for our study.

When there is not any information from a reference image, IQA must be processed on

the test image only. This is referred to as the no reference (NR) IQA. NR QEs exploit

properties of test images directly, like the blocking from JPEGs [18 ][19 ], ringing from JPEG

2000 [20 ][21 ] and blurring [22 ][23 ]. Some QEs exploit the NSS properties like BRISQUE

(Blind/Referenceless Image Spatial Quality Evaluator) [24 ]. There are also some training

based NR IQAs that learn the human judgements on a large database of human opinion

scores [10 ]. Some features are specifically designed to assess text-related image quality.

These features include stroke line width [25 ], edge raggedness [26 ][27 ], small speckles [28 ][29 ],

sharpness [30 ][31 ], or features based on deep neural networks [32 ]. Although our problem

has reference images, they cannot be used directly as in FR QEs. As a result, we can use

some NR QEs to help assess the image quality.

In this thesis, we propose some QEs that can help perform IQA of images at different

resolutions. Although the reference images cannot be used directly as in FR IQA, our QEs

can use their information to help assess qualities changes among different scan resolutions.

We also explore NR QEs since they can reflect image qualities without reference images.

Further, the image resolutions in consideration are 300 dpi, 150 dpi, and 75 dpi. We chose

these resolutions because after some research and investigation, we found that 300 dpi can

preserve image qualities that are good enough for most scanned materials. Besides, most

scanners from the high-end to low-end all support these resolutions. Tests on various kinds

of images show that these QEs can achieve a prediction accuracy at 93.4% through SVM.
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2.3 Methodology

2.3.1 Scanner Pipeline Simulation

(a) Scanner pipeline to generate all resolution images

(b) Algorithm pipeline

Figure 2.3. Pipeline to determine the optimal scan resolution. It consists of
two parts. (a) shows the way to generate all three resolution images, and (b)
shows the rough pipeline to get the optimal resolution image from all three
resolution images as the input.

Figure 2.3 shows the overall scanner pipeline for this problem. In reality, to save the scan-

ning time, the scanner only scans the printed page into 300 dpi, and then we do downscaling

to get 150 and 75 dpi images. Then, the three images will be the input to the algorithm to

get the optimal resolution image.

When doing downscaling, after carefully studying the scanning process, we chose to use

the area-based downscaling method or box sampling method. It subsamples an image using

pixel area relations. That is, if we want to downscale a 300 dpi image to the size of 150 dpi,

we would use a 2 × 2 box and calculate the box average as the value of the corresponding

29



output pixel. When downscaling the image to 75 dpi, the average is calculated in a 4 × 4

window. This corresponds well to the scanning process [33 ].

Since the images are finally viewed by people on a computer, we also need to simulate the

real viewing situation after the digital images are generated. Ideally, people would choose to

use an image viewing software application, or a PDF (Portable Document Format) reader

if the scanned result is a PDF file. For small images, people tend to enlarge them for bet-

ter viewing. Since we consider 300 dpi images to be the “perfect” reference, and the 150

and 75 dpi results are smaller than them, we need to resize 75 dpi and 150 dpi images to

the same size as that of the 300 dpi file. There are many image resizing algorithms, like

nearest-neighbor interpolation, bilinear interpolation, trilinear interpolation. Their results

can be very different. So the upsampling methods used in these software applications need

to be studied before we resize the low-resolution images. To solve this problem, we investi-

gated several commonly-used image and pdf viewing software applications and found what

upsampling method they use.
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(a) 75 dpi image viewed at 400%

in Nomacs [34 ]

(b) 75 dpi upscaled by 4×

through bilinear interpolation

(c) 75 dpi upscaled by 4×

through nearest-neighbor inter-

polation

(d) 75 dpi image viewed at 400%

in Windows Photo Viewer

(e) 75 dpi image viewed at 400%

in PhotoShop

(f) 75 dpi image viewed at 400%

in IrfanViewer [35 ]

Figure 2.4. 75 dpi image enlarged by 400% in Nomacs and other image view
software applications. The results of bilinear and nearest-neighbor interpo-
lation show that most of them use the nearest-neighbor interpolation when
zooming in.

Figure 2.4 shows an image viewed in some common image view software like Nomacs [34 ],

Windows Photo Viewer, Photoshop, and IrfanViewer [35 ]. The image is 75 dpi and all are

zoomed in by 400%. We choose 75 dpi over 150 dpi for better view and comparison purposes.

The original image is captured through area-based downsampling from a scanned 300 dpi

image, and saved as an uncompressed ’TIFF’ file. We can see that except for IrfanViewer,

the other software’s results all look very similar to each other. For better comparison, we

also use code to resize the image by 400% using bilinear interpolation and nearest-neighbor

interpolation. The code-generated images are saved in uncompressed ’TIFF’, and viewed

in Nomacs at 100%. Figures 2.4(b) and 2.4(c) are the results of bilinear interpolation and
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nearest-neighbor interpolation, respectively. We can see that most image view software

applications are using nearest-neighbor interpolation while zooming in images. IrfanViewer,

however, actually uses Lanczos’ method [36 ] followed by a filter to generate a result better

than bilinear and nearest-neighbor interpolation.

Besides image files, it is also common for people to save scanned digital files as PDF

files. So we also do the research on what upsampling algorithm PDF viewers are using.

Compared with the many image viewing software used, there are mostly two major PDF

viewers: Adobe Acrobat reader, and Preview on Mac. In order to best simulate the real

situation, we generate the PDF files from 75 dpi images (as we don’t scan in 75 dpi directly)

using two major software applications: Adobe Illustrator and Adobe Photoshop using their

default settings.

Figure 2.5 shows the results of PDF files zoomed in by 400%, bilinear-upsampled by 4×,

and nearest-neighbor upsampled by 4×, all viewed in Adobe Acrobat Reader. The PDF files

are all generated using Adobe Illustrator from the 75 dpi image in Figure 2.4 . Comparing

Figure 2.5(a) with Figure 2.5(c) , we can see that the default zooming-in algorithm used in

Adobe Acrobat Reader is also nearest-neighbor interpolation.

(a) 75 dpi image viewed at 400%

in Adobe Acrobat Reader

(b) 75 dpi upscaled by 4×

through bilinear interpolation

(c) 75 dpi upscaled by 4×

through nearest-neighbor inter-

polation

Figure 2.5. Comparison of PDF files viewed at 400%, and resized by 4×
through bilinear and nearest-neighbor interpolation, all generated using Adobe
Illustrator and viewed in Adobe Acrobat Reader. We can see that Adobe
Acrobat Reader also uses nearest-neighbor interpolation.
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(a) 75 dpi image viewed at 400%

in Adobe Acrobat Reader

(b) 75 dpi upscaled by 4×

through bilinear interpolation

(c) 75 dpi upscaled by 4×

through nearest-neighbor inter-

polation

Figure 2.6. Comparison of PDF files viewed at 400%, and resized by 4×
through bilinear and nearest-neighbor interpolation, all generated using Adobe
Photoshop and viewed in Adobe Acrobat Reader. We can see that Adobe
Acrobat Reader also uses nearest-neighbor interpolation.

Figure 2.6 shows the results of PDF files zoomed in by 400%, bilinear-upsampled by

4×, and nearest-neighbor upsampled by 4×, all viewed in Adobe Acrobat Reader. Unlike

Figure 2.5 , the PDF files here are all generated using Adobe Photoshop from the 75 dpi

image in Figure 2.4 . Comparing Figure 2.6(a) with Figure 2.6(c) we can see that the default

zooming-in algorithm used in Adobe Acrobat Reader is also the nearest-neighbor interpola-

tion method.
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(a) 75 dpi image viewed at 400% in

Mac Preview

(b) 75 dpi upscaled by 4× through bi-

linear interpolation

(c) 75 dpi upscaled by 4× through

nearest-neighbor interpolation

(d) 75 dpi upscaled by 4× through

bicubic interpolation

Figure 2.7. Comparison of PDF files viewed at 400%, and resized by 4×
through bilinear, bicubic, and nearest-neighbor interpolation, all generated
using Adobe Photoshop and viewed in Mac Preview. We can see that Mac
Preview uses a different upsampling algorithm.

Figure 2.7 shows the results of PDF files zoomed in by 400%, bilinear-upsampled by

4×, bicubic-upsampled by 4×, and nearest-neighbor upsampled by 4×, all viewed using

Mac Preview. The PDF files here are all generated using Adobe Photoshop from the 75

dpi image in Figure 2.4 . We don’t test the PDF files generated from Adobe Illustrator

since they appear the same from Figure 2.5 and Figure 2.6 . Comparing Figure 2.7(a) with
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Figure 2.7(c) , Figure 2.7(b) , and Figure 2.7(d) , we can see that the default zooming-in

algorithm used in Mac Preview is not bilinear, bicubic, or nearest-neighbor interpolation. It

is more like bilinear interpolation followed by low-pass filtering.

From Figure 2.4 to Figure 2.7 , we can see that although Mac Preview uses a different up-

sampling method, most of the image and PDF viewing software applications’ default method

when zooming in is nearest-neighbor interpolation. As a result, we will use nearest-neighbor

interpolation when we need to resize low-resolution images to their 300 dpi counterparts.

2.3.2 Overall Algorithm

(a) training pipeline

(b) testing pipeline

Figure 2.8. Training and testing pipeline of the proposed algorithm.

The algorithm workflow is shown in Fig. 2.8 . In the dataset we have training and testing

pages. We extract feature vectors from training pages, and feed the feature vector into the

SVM to get model files. In the testing phase, the testing images would go through the

same feature vector extraction process. The feature vectors are then passed into the SVM

classifier. Using the trained model files, we can finally get the desired scan resolution for the

testing pages.

2.4 Feature Vector Extraction

This section mainly talks about the features we choose, and the detailed process to get

them. These features can be classified into two categories: no-reference and full-reference.

The no-reference features mainly exploit the intrinsic features of the scanned images them-

selves. They include: edge density and edge contrast. By comparing the values at all
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resolutions (300 dpi, 150 dpi, and 75 dpi), we can track the changes of these features, which

can reflect the image quality changes. For the full-reference features, although the reference

images (300 dpi) are much bigger than images at other resolutions, we can still use some

method, like partitioning images into the same number of windows and using one value to

represent each window, or resizing the low-resolution images into the same size as that of the

300 dpi images. The full-reference features include tile-STDDEV SSIM, tile-STDDEV SSIM

STDDEV, sample power spectrum mean squared error (MSE), and spatial activity. These

features are then concatenated into a single feature vector, from which we will use SVM to

do training and testing.

2.4.1 Tile-STDDEV SSIM

SSIM (structural similarity index) [7 ] is the probably the most successful FR QE, and is

widely used in estimating the quality of images. It is composed of three elements over small

patches of two images x, y: a luminance similarity term l(x, y), a contrast similarity term

c(x, y), and a structure similarity term s(x, y). Their computations are [7 ]:

l(x, y) = 2µxµy + c1

µ2
x + µ2

y + c1
(2.1)

c(x, y) = 2σxσy + c2

σ2
x + σ2

y + c2
(2.2)

s(x, y) = σxy + c3

σxσy + c3
(2.3)

Here µx, µy are averages of images x and y, respectively. σx, σy are standard deviations

of x and y, respectively. All these statistics are computed within a local window at the center

pixel. Thus, the elements computed in Equations 2.1 - 2.3 and the final SSIM computed in

Equation 2.4 are maps of the same size as the images x and y. Here, σxy is the covariance of
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x and y. And c1, c2 and c3 are variables to stabilize the division with a weak denominator.

The formula to calculate the SSIM value is

SSIM(x, y) = l(x, y) · c(x, y) · s(x, y) (2.4)

SSIM is very powerful in predicting the structural similarity of a test image to a reference

image. After some research and investigation, we find that the majority of images have good

perceptual quality at 300 dpi. So we can use 300 dpi images as the reference to assess

qualities of lower resolution (150 and 75 dpi) images. But images of different resolutions

have different sizes, which cannot be assessed using SSIM directly. As a result, we need to

do some pre-processing steps before SSIM can be applied.

We noticed that for images of different resolutions, the ratio of their sizes corresponds

to the ratio of their resolutions. For example, the 300 dpi image’s width/height is twice the

width/height of the 150 dpi images, the same as 300/150. The 300 dpi image’s width/height

is four times the width/height of the 75 dpi images, which is the ratio of 300 over 75. As a

result, we can generate images of the same size by utilizing these ratios. Then we can apply

the SSIM to assess quality changes across different resolutions.

We propose a QE called tile-STDDEV SSIM. According to the size ratios, we partition

different resolution images into the same number of non-overlapping tiles. In each tile, we

calculate the standard deviation (STDDEV) of it. And then we combine all the values to

form a STDDEV map, as is shown in Figure 2.9 . We choose STDDEV to represent each

tile because low resolution images (150 and 75 dpi) can be approximated by area-based

downsampling from high resolution (300 dpi) images. The number of gray levels decreases

in this process, which can result in a decrease of the activity in the corresponding tiles. At

the end of the preprocessing, since all images, whatever their resolutions are, have the same

number of tiles, their STDDEV maps must be the same size.

37



Figure 2.9. Steps to generate the STDDEV map. The above block shows
the original image and the tile size of 3×3. After calculating the STDDEV of
each tile, we form a new STDDEV map, which has the same size across all
resolutions.

Table 2.1. Scan resolutions and their corresponding tile sizes
Resolution (dpi) Tile size (pixel number)

300 12

150 6

75 3

The image resolutions and their corresponding tile sizes can be found in Table 2.1 . The

tile sizes are proportional to their resolutions so that the images have the same number of

tiles regardless of their resolutions.

38



(a) 300 dpi image (b) 150 dpi image (c) 75 dpi im-

age

(d) 300 dpi STD-

DEV map

(e) 150 dpi STD-

DEV map

(f) 75 dpi STD-

DEV map

Figure 2.10. Original 300 dpi, 150 dpi and 75 dpi images; and their STDDEV
maps. All STDDEV maps are enlarged for better view. We can see that
the STDDEV maps keep most of the structural information of their original
images.

Figure 2.10 shows the original 300 dpi, 150 dpi, and 75 dpi images; and their STDDEV

maps, respectively. We can see that although the original images are of different sizes, their

STDDEV maps have the same size, and keep most of the structural information.
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Figure 2.11 shows the workflow of tile-STDDEV SSIM. We have a grayscale image as the

input. If an image is a color image, we will turn it to grayscale before passing it into the

workflow. Then, the input image are separated into non-overlapping tiles according to their

resolutions (Table 2.1 ), so that the number of tiles will be the same across all resolutions.

In each tile, we calculate its STDDEV value. In this way, we have STDDEV maps of the

same size. Then, we can calculate the SSIM values between low-resolution STDDEV map

and the high resolution STDDEV map, namely the (300 dpi, 150 dpi) and (300 dpi, 75 dpi)

image pairs. Note that we are computing the SSIM between the STDDEV maps of the two

images, not the pixel gray values of the two images.

Figure 2.11. tile-STDDEV SSIM workflow.

On the STDDEV maps, the SSIM values are calculated on 7 × 7 image patches with the

stride equal to 1 pixel to get the full SSIM map. Traditionally, we use its average to assess

the structural similarities of two images. But when people look at an image, we hypothesize

that they are mainly focused on the foreground areas. The background areas, like the large

white area in a document image, or the plain flat areas in a natural scene image, usually

attract much less attention. As a result, it would not be reasonable to calculate the average

over all these foreground areas.

In order to find the foreground pixels, we binarize the 300 dpi STDDEV map through

the Otsu’s method [1 ], as is shown in Figure 2.12 . By averaging over foreground pixels only,

we can have the tile-STDDEV SSIM. With the decreasing scan resolution, we should expect

a continuous drop in tile-STDDEV SSIM values from the (300 dpi, 150 dpi) to the (300 dpi,

75 dpi) pairs.
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(a) Full tile STDDEV SSIM map between

300 and 150 dpi images

(b) Binary STDDEV image mask

Figure 2.12. Full tile-STDDEV SSIM map and the binary image of the
STDDEV map. From (a) and (b) we can tell that the binary map provides
a good mask to locate foreground pixels, so that background pixels will not
affect the quality assessment.

Table 2.2. Tile-STDDEV SSIM values of different resolution pairs of the
image shown in Figure 2.10 .

Resolution pair Tile-STDDEV SSIM

(300 dpi, 150 dpi) 0.71

(300 dpi, 75 dpi) 0.19

Table 2.2 shows the tile-STDDEV SSIM values calculated over the foreground pixels only.

From it we can see that the value decreases a lot from (300 dpi, 150 dpi) pair to (300 dpi,

75 dpi) pair.
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In addition to tile-STDDEV SSIM which is the averaged value over the foreground SSIM

of the full-SSIM maps, we can also use the STDDEV of the foreground SSIM values in the

full-SSIM maps as a feature. The workflow is shown in Figure 2.13 ,

Figure 2.13. tile-STDDEV SSIM STDDEV workflow.

As is shown in Figure 2.13 , the workflow is very similar to tile-STDDEV SSIM (shown

in Figure 2.11 ). We also start with grayscale images, and get the full tile-STDDEV SSIM

map from the STDDEV maps. The difference is that, instead of the average, we calculate

the STDDEV of the foreground pixel values of the full tile-STDDEV SSIM map. Here, we

call it the tile-STDDEV SSIM STDDEV. As the scan resolution goes down, image patches

with high variations will see a lot of decrease in variation values, thus resulting in a decrease

in tile-STDDEV SSIM values. In the mean time, the smooth areas will not change much.

They can maintain relatively high values across all resolutions. As a result, as the scan

resolution goes down, the tile-STDDEV SSIM STDDEV of image foreground patches will

tend to increase. This can be used as an indicator of the relation between scan resolution

and image quality.
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(a) Test image: beetle (b) Test image: plant (c) Test image: animal

Figure 2.14. Three example images.

(a) Tile-STDDEV SSIM of example images in

Figure 2.14 . We can see that the values between

(300 dpi, 150 dpi) and (300 dpi, 75 dpi) are de-

creasing.

(b) Tile-STDDEV SSIM STDDEV of example

images in Figure 2.14 . We can see that the values

between (300 dpi, 150 dpi) and (300 dpi, 75 dpi)

are increasing.

Figure 2.15. Tile-STDDEV SSIM and Tile-STDDEV SSIM STDDEV results
of example images in Figure 2.14 .

Figure 2.14 shows three example images. Figure 2.15 shows the values of Tile-STDDEV

SSIM and Tile-STDDEV SSIM STDDEV under different resolution pairs. We can clearly see

that for all three images, the Tile-STDDEV SSIM values are decreasing, and Tile-STDDEV
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SSIM values are increasing. Also, the different changes among them may indicate that they

correspond to different optimal scan resolutions.

2.4.2 Sample Power Spectrum MSE

With the decrease of scan resolution, one can clearly see the loss of high frequency details,

such as the blurring of edges. As we can see from Figure 2.16 , the characters are clearly

distinguishable when scanned in 300 dpi. Although we can identify the words in 150 dpi

images, the small-sized words in the top are a little bit blurry. The situation is even worse in

the 75 dpi images, as the characters seem to have merged together, and it becomes impossible

to tell the words.

(a) 300 dpi image (b) 150 dpi image (c) 75 dpi image

Figure 2.16. Changes of scanned character images from 300 dpi to 75 dpi.
For a better viewing experience, the lower resolution images are resized to the
same size as that of 300 dpi.

The loss of frequency information can be reflected in the frequency domain using discrete-

time Fourier transform (DTFT) [37 ]. The equation to calculate 1D DTFT is

F (u) = 1/L
L−1∑
i=0

S[i]e−j2π(ui/L) (2.5)

where L is the length of the input signal S, and i is the index of S. u is the index of the

output 1D Fourier Transform F .

Similarly, the way to calculate the 2D DTFT is

F (k, l) = (1/(MN)
M−1∑
m=0

N−1∑
n=0

I[m, n]e−j2π(km/M+ln/N) (2.6)
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where M and N are width and height of the input image I, respectively, m and n are the

horizontal and vertical indices of I, respectively, and k and l are the indices of the horizontal

and vertical indices of the output Fourier Transform F .

To simulate power spectrum changes, we plotted the power spectrum changes in Fig-

ure ??. Here, to better visualize the power spectrum changes, we use a simulated 1D signal

instead of 2D images. The simulated signal is sinc(8 × x), with x in range of −8, 8. The

sampling interval is 0.125. The transforms are calculated using Equation 2.5 . As introduced

in Section 2.3.1 , we use the area-based downsampling to get the low resolution signals, and

use nearest neighbor interpolation to resize the signals to their original length.

We can consider using the sample power spectrum MSE to indicate the image quality

changes. As one can expect, the value will increase with the decrease in scan resolutions.

Figure 2.17. Workflow to calculate sample power spectrum MSE.

The workflow to calculate the sample power spectrum MSE is shown in Figure 2.17 . The

images are converted to grayscale before passing into the workflow. Before calculating the

discrete-time Fourier-transform, we need to resize the low-resolution images (150 dpi and 75

dpi) to the same size as that of 300 dpi reference images. This again is to simulate the true

viewing situation.
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Figure 2.18. MSE of sample spectrum of example images. We can see
that the values between the (300 dpi, 150 dpi) and the (300 dpi, 75 dpi) are
decreasing.

Figure 2.18 shows the mean of sample spectrum under different resolution pairs for ex-

ample images in Figure 2.14 . We can clearly see that the MSE of the sample spectra increase

from the (300 dpi, 150 dpi) pair to the (300 dpi, 75 dpi) pairs.

2.4.3 Spatial Activity

In the paper [38 ], the spatial activity is defined as the root mean square (RMS) differ-

ence between the edge maps of two images. In the paper, the authors use the Sobel edge

detector [39 ] to get the edge map.
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Figure 2.19. Workflow to calculate spatial activity.

The workflow to calculate the spatial activity is shown in Figure 2.19 . Here, the color

images are turned into grayscale before passed into the workflow. Since this is a FR feature,

we also need to resize the low-resolution image to the size of the high-resolution image. The

Sobel edge detector is also applied here to get the edge map. The detailed process are as

follows:

E =
√

(S ∗ I)2 + (ST ∗ I)2 (2.7)

where I is the input grayscale image, and E is the output edge map. ∗ denotes the

cross-correlation operation. S is the horizontal Sobel filter, which is

∣∣∣∣∣∣∣∣∣∣∣
1 0 −1

2 0 −2

1 0 −1

∣∣∣∣∣∣∣∣∣∣∣
(2.8)

And ST is the transpose of S, which is

∣∣∣∣∣∣∣∣∣∣∣
1 2 1

0 0 0

−1 −2 −1

∣∣∣∣∣∣∣∣∣∣∣
(2.9)

47



After we get the two edge maps E1 and E2, then we calculate the difference D as

D = E1 − E2 (2.10)

The final spatial activity value SA is calculated as

SA =
√

1/(MN)
∑
i,j

(D[i, j])2 (2.11)

where M and N are image width and height of edge maps, respectively, and i and j are

horizontal and vertical indices of D, respectively.

Figure 2.20. Spatial activity of example images in Figure 2.14 . We can see
that the values between (300 dpi, 150 dpi) and (300 dpi, 75 dpi) are increasing.

Figure 2.20 shows the spatial activity values for different resolution pairs of example

images in Figure 2.14 . We can clearly see the increase of spatial activity values from the

(300 dpi, 150 dpi) to the (300 dpi, 75 dpi) resolution pair.
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2.4.4 Edge Density

As the scan resolution decreases, we can clearly see that the images become more and

more blurry. Some sharp edges may even disappear. This is much more obvious with

document images or line drawings, as their edges are more distinct and maybe very close

to each other. As the resolution decreases, two edges are likely to merge into one edge or

become visibly indistinguishable. All of this would cause some of the characters to become

unidentifiable, and drawings to become blurry, as shown in Figure 2.21 . With this motivation

in mind, we define a new NR QE that can take both the foreground and background pixels

into consideration, and thus better reflect the local pixel changes.

(a) Original 300 dpi image and part of its enlarged area (b) 75 dpi image with the

same area enlarged

Figure 2.21. Change of line drawing with decreasing resolutions. The 300
dpi image in (a) has very good details with distinct lines, while the 75 dpi
image of (b) has very blurry edges. For better comparison, we enlarge the
same area, the upper right corner, to be the same size. From the enlarged
area, we can barely even see any edges in the 75 dpi image.
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Figure 2.22. Workflow to calculate edge density.

Figure 2.22 shows the workflow to calculate edge density. Color images are converted to

grayscale before being passed into the workflow. Then we apply the Canny edge detector [40 ]

to get the edge map, on which we calculate the edge density. In order to be able to capture

the changes in detail, we partition the edge map into small windows. In order to assure

the pixel correspondences and window numbers from different scan resolutions, we choose

different window sizes according to their resolutions. The window sizes are the same as in

Table 2.1 . Then edge densities are calculated in each window, and we take the average value

as the edge density of the image.

Figure 2.23. An example of horizontal edge density.
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The edge density is comprised of two parts: horizontal edge density and vertical edge

density. Figure 2.23 shows an example of how we compute edge density. The process is as

follows:

(1) Imagine a horizontal line (red line) passing through the center of the small window

(the green box).

(2) Count the number of horizontal transitions along the horizontal line. A transition

is defined as sudden change from background to foreground. In this case, the number of

horizontal transitions ht_num is 2.

(3) Following the horizontal line, count the number of consecutive foreground pixels, and

then number of consecutive background pixels, and then the number of consecutive fore-

ground pixels, and so on. In this case, the numbers are 1, 2, 1, 3, denoted in the figure as

ht_fg_1, ht_bg_1, ht_fg_2, ht_bg_2, respectively. In Figure 2.23 , the number of consec-

utive foreground and background pixels are color-coded as black and blue, respectively. Note

that the smallest number of foreground or background pixels is 1, since the counting process

is based on pixels, and one pixel belongs either to the foreground or the background.

(4) The horizontal edge density ht_density is calculated using the formula

ht_density = ht_num ·

 I∑
i

1(ht_fg_i > 0) 1
ht_fg_i

+
J∑
j

1(ht_bg_j > 0) 1
ht_bg_j


(2.12)

where 1 is the indicator function. I is the total number of sequences of foreground pixels,

and J is the total number of sequences of background pixels. ht_fg_i is the number of

consecutive foreground pixels in the i-th sequence of foreground pixels, and ht_bg_j is the

number of consecutive background pixels in the j-th sequence of foreground pixels. Their

values are all larger than 0. In Figure 2.23 , the horizontal edge density is 2 · (1/1 + 1/2 +

1/1 + 1/3) = 5.67.

The reason why we sum the reciprocals of consecutive foreground/background pixel num-

bers are that it can better reflect the merging of foreground/background line segments.

Clearly, image quality degrades most when foreground and background pixels are inter-

leaved by one pixel. Namely, one foreground pixel is followed by one background pixel, and
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then followed by one background pixel, and so on. In this situation, simply downsampling

the image from 300 dpi to 150 dpi would make the resultant image lose a lot of information.

With large pixel numbers, like a 10-pixel-width foreground line segment followed by a 10-

pixel-width background segment, the image quality would not be affected much even when

downsampled to 75 dpi. As a result, we use the reciprocals of line segments to reflect drastic

changes in the number of foreground and background pixels.

Figure 2.24. An example of vertical edge density.

The vertical density is calculated in a similar way, as shown in Figure 2.24 . We draw

a vertical line through the window center, and count the number of consecutive foreground

and background pixels. The equation to calculate the vertical edge density vt_density is

vt_density = vt_num ·

 I∑
i

1(vt_fg_i > 0) 1
vt_fg_i

+
J∑
j

1(vt_bg_j > 0) 1
vt_bg_j


(2.13)

where 1 is the indicator function. I is the total number of sequences of foreground

pixels, and J is the total number of sequences of background pixels. vt_num is the number

of vertical transitions. vt_fg_i is the number of consecutive foreground pixels in the i-th

sequence of foreground pixels along the vertical line, and vt_bg_j is the number of consecutive
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background pixels in the j-th sequence of foreground pixels. Their values are all larger than

0. In Figure 2.24 , the horizontal edge density is 2 · (1/2 + 1/2 + 1/2 + 1/1) = 5.

Clearly, the direction that would achieve the maximum edge density value is the most

vulnerable to suffer from changes in scan resolution. So the final edge density edge_density

is

edge_density = max(vt_density, ht_density) (2.14)

Accordingly, the edge density for the window shown in Figure 2.23 and Figure 2.24 is

max(5.67, 5) = 5.67

Figure 2.25. Edge density of example images in Figure 2.14 .

Figure 2.25 shows the edge density mean of the example images in Figure 2.14 . We can

see that the value generally decreases with the decrease in scan resolution. The values in the

’beetle’ image drop the most, while the changes in the other two images are very subtle, and

even increase slightly in going from 150 dpi to 75 dpi. These can indicate different optimal

scan resolutions for the example images.
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2.4.5 Edge Contrast

As shown in Figure 2.21 , blurry edges are the most apparent quality degradation when

the scan resolution goes down from 300 dpi to 75 dpi. The separated edges merged together.

Some areas with high frequency alternation between black and white become gray. Although

the edge density can reflect the merging of edges, they cannot represent the changes of pixel

values around edges. Those pixel value changes around edges are important since they reflect

the contrast, which is a very important QE. As a result, we propose a QE based on Michelson

contrast [41 ].

Contrast is the difference in color or intensity that makes an object distinguishable from

its surrounding background. The human visual system (HVS) is more sensitive to contrast

than absolute intensity; and this enables us to see a world similarly despite the big intensity

changes from day to night. There are many ways to define contrast [42 ], but some of the

most commonly used are Weber contrast [43 ], Root mean square (RMS) contrast [44 ], and

Michelson contrast.

Weber contrast is based on the Weber’s law, in which the amount of noticeable change

in intensity is proportional to the value of the intensity. It is defined as

c_weber = I − Ib

Ib

(2.15)

where c_weber is the Weber contrast. I and Ib are the intensity of the foreground and

background, respectively. Weber’s contrast is mostly used in cases where the foreground’s

intensity is very similar to the background, or the background is very uniform [45 ].

RMS contrast is defined as the STDDEV of pixel intensities:

c_rms =
√

1/(MN)
∑
i,j

(Iij − Iavg)2 (2.16)

where c_rms is the RMS contrast. M and N are the width and height of the region

of interest in the input image, respectively, and i and j are horizontal and vertical indices,

respectively. Iij is the ij-th element of the image, and Iavg is the average intensity of the

region of interest in the image.
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Michelson contrast is the contrast used in to calculate an imaging system’s modulation

transfer function (MTF) [46 ], in which the value is calculated as the ratio of output contrast

over twice the input intensity midpoint. Michelson contrast is defined as

c_michelson = Imax − Imin

Imax + Imin
(2.17)

where c_michelson is the Michelson contrast. Imax and Imin are the maximum and min-

imum intensity values, respectively, of the areas in question. Since it is easier to calculate

than the RMS contrast, and lowering scan resolution would simultaneously affect the maxi-

mum and minimum intensity values, we choose Michelson contrast to calculate the contrast

changes from 300 dpi to 150 and 75 dpi images.

Figure 2.26. Workflow to calculate edge contrast.

Figure 2.26 shows the workflow to calculate edge contrast. Since it is a NR QE, we only

need one input image. Color images are converted to grayscale before being fed into the

pipeline. We use the Canny edge detector [40 ] to detect edges since it can result in 1-pixel-

width edge maps. After getting the edge pixels, we map them back to the grayscale image.

Specifically we will use the coordinates of edge pixels in the edge map to identify the edge

pixels in the grayscale image, and to calculate the Michelson contrast in a small window. The

window sizes are based on the scan resolutions (shown in Table 2.3 ); so that the calculated

contrast values correspond to roughly the same area, independent of the resolution of the

image.
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Table 2.3. Scan resolutions and their corresponding window sizes
Resolution (dpi) Window width/height (pixel number)

300 13

150 7

75 3

Figure 2.27. Edge contrast of example images in Figure 2.14 .

Figure 2.27 shows how edge contrast changes with respect to different resolutions of the

example images in Figure 2.14 . As expected, we can see that the values decrease from 300

dpi to 75 dpi. Also, at any fixed resolution, the edge contrast decreases as the image becomes

less binary and more continuous-tone.
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2.4.6 Support Vector Machine

After the feature vector is obtained, we employ a support vector machine (SVM) to

classify each page according to its desired resolution.

The SVM is useful for data classification. It maps the data into a higher dimensional

space, and finds a linear separating hyperplane with the maximal margin in it [47 ]. The

SVM is a binary classifier. When used for multi-class classification, there are three methods:

one-against-all, one-against-one, and directed acyclic graph (DAG). In the one-against-all

method, a k-class classifier has k models. The i-th SVM is trained with all examples in the

i-th class with positive labels, and all other examples with negative labels [48 ]. But this

method may be biased by a big size difference between the numbers of positive and negative

labels. The one-against-one method requires an SVM model between every two classes. So

a k-class classifier needs k(k − 1)/2 models. A test sample will be fed into all models and

each model will output a result. The final result is the one with the maximum number of

votes [49 ]. The DAG has the same training process as the one-against-one method. But

in the testing phase, it uses a rooted binary directed acyclic graph. A k-class classifier has

k(k − 1)/2 internal node classifers and k leaf classifiers. A test sample will need to pass all

classifiers to get the prediction result [50 ]. Research has shown that one-against-one and

DAG are more suitable for practical use [51 ].

In this project, we choose the one-against-one method. We use the LIBSVM [52 ] and

radial basis function (RBF) kernel to do the training and prediction.

2.5 Experiment Results

2.5.1 Data Collection

We collect our own data for training and testing. The collection process follows the

routine below.

(1) PDF files are collected from the internet, and printed using an HP LaserJet 500 color

MFP M575.
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(2) Pages are scanned into 300 dpi digital images using HP Officejet Enterprise Color

Flow MFP X585 with the HP-internal w_scan routine. W_scan is chosen instead of regular

scanning because it doesn’t include post-processing steps like edge enhancement and JPEG

compression, which may unnecessarily affect our judgement.

(3) In order to augment the data set, the 300 dpi images are partitioned into 300 pixel

×300 pixel sub-images. Duplicated sub-images are removed. Each sub-image is treated

separately as an individual image. In this dissertation we don’t consider stitching the sub-

images together.

(4) Images of other resolutions are achieved from 300 dpi sub-images using area-based

downsampling as introduced in Section 2.3.1 .

We also include image rotation for data augmentation. We do not use flipping because

most of our features are flipping-invariant.

In this dissertation, we mainly focus on line drawings and cartoon images, as shown in

Figure 2.28 .
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(a) (b) (c)

(d) (e) (f)

Figure 2.28. Some of the example images in the dataset.

Figure 2.29. Demonstration of how sub-images are obtained.
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Figure 2.29 shows how we get the sub-images. The big image on the left is the scanned

whole image. We then partition it into small sub-images of size 300 dpi ×300 dpi, as shown

using the black grid. The right part is an enlarged sub-image.

Optimal scan resolution is quite an ambiguous term. Although we explain it as the

lowest scan resolution with acceptable image quality, we still need to make it clear what

the acceptable image quality is. In the scope of this thesis, we have defined two criteria for

acceptable image quality:

(1) For 75 dpi and 150 dpi images, we resize them to the size of their 300 dpi counterpart.

Since bluriness and jaggedness are two most obvious degradations in our scope (Figure 2.30 ).

The bluriness or jaggedness is either imperceptible, or perceptible but not annoying in the

resized image. Clearly, this is a NR criterion, as we don’t need a reference image.

(a) Blurriness (b) Jaggedness

Figure 2.30. Examples of blurriness and jaggedness.

(2) If we resize the low-resolution image to the size of the 300 dpi reference, the resized

image must contain all the details that the reference image contains. For example, if there

is a circle in the 300 dpi image, there must be also a circle (not a square, or not sure if it’s

a circle or square) in the resized image, as is shown in Figure 2.31 .
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(a) 300 dpi image (b) Resized low-resolution image

Figure 2.31. An example of detail loss. We can clearly see three circles in
the red oval in (a). But in the same area of (b), we are not very sure if they
are circles.

Figure 2.32 shows the workflow of how we label the optimal scan resolution for an image.

The high-resolution image is the 300 dpi reference image, and the low-resolution images

are 150 dpi and 75 dpi images. As is stated in Section 2.3.1 , 300 dpi images are achieved

through scanning, and low-resolution images are captured using the area-based downsam-

pling method. The low-resolution (150 dpi and 75 dpi) images are resized by nearest-neighbor

interpolation to the same size as that of their 300 dpi reference image. All images, the refer-

ence image, and the two resized images are opened in the same image viewing software like

Nomacs, at 100% of image size. The viewer then looks at the three images side by side, and

picks the optimal scan resolution based on the criteria mentioned above. All sub-images are

viewed on a 14-inch HP Elitebook 840 G3 laptop. The display resolution is 1366 pixels × 768

pixels. The subject was seated straight in front of the laptop, slightly below the eye height.

The distance between the laptop and the subject’s eyes is around three times the height of

the laptop screen. The subject is asked to wear glasses or contact lenses if needed. For the

work reported in this dissertation, there was only one subject; and that was the author.
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Figure 2.32. Workflow to label optimal scan resolution. Each low-resolution
(150 dpi and 75 dpi) image is resized to the same size as that of its 300
dpi reference image. The reference image and both of the resized images are
opened in the same image viewing software. Finally, the optimal resolution
for the input image is chosen.

The resolutions and their corresponding number of scanned sub-images collected are

shown in Table 3.1 . For each resolution, we have 537 sub-images and the data set has in

total 1, 611 sub-images. These sub-images are achieved from 45 scanned whole pages.

Table 2.4. Scan Resolution and the Number of Sub-images
Scan Resolution Sub-Image#

300 dpi 537

150 dpi 537

75 dpi 537

Overall 1,611

2.5.2 Test Results

After getting the features, we use SVM to help train and test the accuracy of our model.

In practice, we use LIBSVM [52 ] with radial basis function (RBF) as the kernel, to help the

training and testing process. LIBSVM uses grid search and is very efficient in finding the

optimal parameters. In order to get a more compelling result, we use 5-fold cross-validation

to test our model. Precisely, we split the training data equally into five folders. For each

experiment, we pick four of them as the training set to get the SVM model, and the remaining

62



one folder as the testing set to get the testing accuracy. We repeat this process four times,

each time with a different folder as the testing set. The final accuracy is the average of all

five experiments. We also test the training accuracy by running the model on the training

data.

Table 2.5 shows the training and cross-validation results. We see that we achieve a

training accuracy of 95.2%, and validation accuracy of 93.4% with a STDDEV of 1.2%.

Table 2.5. Training and validation results.
Accuracy STDDEV

Training 95.2% 0.3%

Cross-validation 93.4% 1.2%

We conduct Support Vector Machine Recursive Feature Elimination (SVM-RFE) [53 ] to

rank the importance of the features we defined. We start by removing only one feature of

the feature vector, and examine the accuracy of the model. The feature that results in the

least accuracy loss will be removed. This process will continue until we only have one feature

left. Table 2.6 shows the rank of importance of our features. From the table, we can see

that edge contrast is the most important, followed by tile-STDDEV SSIM, sample power

spectrum MSE, and tile-STDDEV SSIM STDDEV. Spatial activity and edge density are

the two least important features.

Table 2.6. The rank of importance for features.
Rank of Importance Feature

1 edge contrast

2 tile-STDDEV SSIM

3 sample power spectrum MSE

4 tile-STDDEV SSIM STDDEV

5 spatial activity

6 edge density
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Figure 2.33 shows the accuracy changes with the number of features. The features are

added in the order of importance. That is, ’1’ means edge contrast only with the accuracy of

87%; ’2’ means edge contrast and tile-STDDEV SSIM with the accuracy of 89.6%; ’3’ means

edge contrast, tile-STDDEV SSIM and sample power spectrum MSE, with the accuracy of

’91.8%’; and ’6’ means all features together with an accuracy of ’93.4%’.

Figure 2.33. SVM-RFE analysis result based on 5-fold cross validation.

2.5.3 Light Weight Neural Networks

Recently, convolutional neural networks (CNN) or deep neural networks (DNN) have seen

a rapid development in computer vision areas like classification [54 ], object detection [55 ][56 ],

image or video super-resolution [57 ], and image segmentation [58 ]. NIMA (Neural Image

Assessment) [59 ] is one CNN proposed to predict the distribution of human ratings on

image quality. The proposed method uses pretrained VGG16 [60 ], Inception-v2 [61 ], or

MobileNet [62 ] as the base network. The last layer is replaced by a fully-connected (FC)

layer which indicates the final rating.
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Inspired by NIMA, we also tried different base CNNs on our task. But as we only have

three resolutions, the output of the final FC layer has three nodes, followed by the softmax

function in Equation 2.18 , as shown in Figure 2.34 .

δ(zi) = ezi∑K
j=1 ezj

, i = 1, 2, ..., K (2.18)

where δ(zi) is the probability of the value zi, and i is the index of the input values.

Figure 2.34. Proposed CNN structure. The 300 dpi input image is passed
into a baseline network with the last layer replaced by a FC layer. Then
softmax outputs a probability that will decide the optimal scan resolution.

Since our algorithm is targeted for use in multifunction peripheral (MFP) devices, the

performance in terms of required computation and model size must be put in high pri-

ority. We choose to use some light-weight CNNs. Specifically, we use MobileNetV2 [63 ],

MobileNetV3 [64 ], and GhostNet [65 ] as the baseline network, with their weights pretrained

using ImageNet [66 ] and the last layer replaced by a FC layer.

MobileNetV2 came up with the structure “Inverted Residuals with Linear Bottleneck”,

where shortcut connections are between the bottleneck layers, and the intermediate expan-

sion layer uses lightweight depthwise convolutions [62 ] to reduce the computations. Besides,

the ReLU (rectified linear unit) functions at the end of the bottlenecks are removed. This can

help preserve information in the data for small networks. MobileNetV3 is achieved through

NAS (network architecture search) and the NetAdapt algorithm. They also add SE (squeeze

and excitation) [67 ] modules in the structure that use a hard-swish function to be the activa-

tion function at some layers. Two models: MobileNetV3-Large and MobileNetV3-Small were

released, which correspond to high and low resource use cases, respectively. Since we are

most concerned with the speed, we chose to test the MobileNetV3-Small model. Ghostnet
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applies a series of cheap linear transformations instead of traditional convolution operations.

This can reduce the computation cost while maintaining good classification accuracy.

As we don’t have enough data to train the CNN models, we use the pre-trained models

trained on ImageNet [66 ], and fine-tuned the baseline models using our dataset. In the

training process, we train each model for 100 epochs and choose the model parameters

corresponding to the best validation accuracy. The results are shown in Table 2.7 . For

better comparison, we also show the SVM results in the table.

Table 2.7. Comparison of SVM and light-weight CNNs with different baseline networks.
Latency/s Model Size /Mb Accuracy /%

SVM 0.92 0.16 93.4

MobileNetV2 0.02 8.9 92.2

MobileNetV3-large 0.02 17.0 91.6

MobileNetV3-small 0.01 6.2 92.2

GhostNet 0.02 15.8 91.9

The latency is tested on an HP laptop Elitebook 840 G3 with a CPU: Intel Core i7-8700

@3.20GHz × 12. The CNNs are written using highly-optimized PyTorch, while the SVM code

is written in Python. We cannot compare the CNNs directly with the SVM algorithm since

they are written in different programming frameworks and the SVM code is not optimized.

But from Table 2.7 we can see that in the scope of light-weight CNNs, MobileNetV3-small

has the smallest latency, while other baseline networks have similar speed.

For all CNN models, the model size is the actual memory used in a computer. For the

purpose of saving memory, only the state_dict is saved. The state_dict is a Python dictio-

nary object that maps each layer to its parameter tensor. The saved model only contains

state_dict from convolutional layers, linear layers, and registered buffers like batchnorm’s

running_mean. From the table, we can see that SVM has the smallest model size, and

MobileNetV3-large occupies the most memory, followed by GhostNet, which is 15.8 Mb.
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MobileNetV2 and MobileNetV3-small occupies much less memories, with 8.9 Mb and 6.2

Mb, respectively.

The performance is further tested using Raspberry Pi 4 Model B @1.5 GHz × 4, as this

is much closer to the computation power in current MFPs. As is shown in Table 2.7 , we

only test the results of CNNs.

Table 2.8. Latency of light-weight CNNs on Raspberry Pi.
Latency/s

MobileNetV2 1.91

MobileNetV3-large 3.32

MobileNetV3-small 3.29

GhostNet 2.08

From Table 2.8 we can see that the smallest latency is 1.91s from MobileNetV2. This is

actually too slow to scan a single image. As a result, we need to do model quantization [68 ]

to achieve better performance.

Typically, the weights in DNNs or CNNs are 32-bit floating numbers (FP32). If we can

convert them to 8-bit integer, we can both reduce the memory and increase the inference

speed by 4×. In PyTorch, there are two types of quantization: quantization to unsigned

8-bit integers (UINT8) or signed 8-bit integers (INT8). The former is mainly for activation

functions, and the latter is mainly for weights.

When quantizing the activation function, batches of data are fed through network and

the resulting distributions of the different activations are calcualted. These distributions are

then used to determine how specifically the different activations should be quantized at the

inference time.

The formula is

xq = round

(
(xf − minxfs

) ·
(

2n − 1
maxxfs

− minxfs

))
(2.19)
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where xq is the quantized value. xf is the input floating point value. minxfs
and maxxfs

denote the minimum and maximum values of all the floating values from the same layer or

all layers. n is the number of bits used for quantization. Usually n is 8. round denotes the

rounding to the nearest integer operation.

Quantization to INT8 is mainly for weights. The equation is

xq = round

(
xfs ·

(
2n − 1

2 · max|xfs|

))
(2.20)

where |xfs| is the absolute value of all floating point weights.

There are three types of model quantization: dynamic quantization (DQ), post training

quantization (PTQ), and quantization aware training (QAT).

In DQ, the weights are quantized ahead of time, but the activation functions are quantized

during inference. This is for situations where inference time is dominated by loading weights

rather than matrix computations, like LSTM (long short-term memory) and Transformer

with small batch sizes.

PTQ is for situations where the memory and computation power is limited. It actually

quantizes the model weights and activation functions after the model is trained. For weights,

it can globally quantize all weights, or quantize all weights on a per-channel basis using

Equation 2.20 . Usually the second method can achieve better accuracy than the first one,

although both would experience an accuracy loss.

QAT [69 ] goes another round of training after the model is trained using FP32. In QAT

training’s back-propagation step, the weights are stored in FP32; so that they can be easily

nudged by small amounts. But the forward propagation simulates quantized inference by

implementing the quantization as follows:

(1) Weights are quantized before they are convolved with the input

(2) Activations are quantized at points where they would be during inference.

Since there is more training involved, and the training process is ’aware’ that the model

would be quantized in inference time, QAT usually achieves better accuracy than DQ and

PTQ.
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Table 2.9. Different quantized models of MobileNetV2.

MobileNetV2 Model Latency /s Model Size /Mb Accuracy /%

FP32 1.91 8.89 92.2

PTQ with global quantization 0.13 2.34 55.5

PTQ with per-channel quantization 0.13 2.65 88.2

QAT 0.13 2.65 93.7

Table 2.9 shows the result using different quantization methods for MobileNetV2 model.

Here, we choose MobileNetV2 over other CNN models because of its high accuracy and low

latency. The latency is tested using Raspberry Pi 4 Model B @1.5 GHz × 4. We didn’t use

DQ since it does not apply for our situation here. We tested the PTQ with both global and

per-channel quantization. We can see that in Table 2.9 , The inference time is reduced a lot,

from 1.91s per image to 0.13s per image. Moreover, the sizes of quantized models are much

smaller that of the FP32 model. PTQ with global quantization occupies the least storage,

with only 2.34 Mb. But the accuracy is only 55.5%. PTQ with per-channel quantization

achieves much better accuracy at 88.2%, although model size is a little bit bigger (2.65 Mb)

than PTQ with global quantization. QAT has the same model size as that of PTQ with

per-channel quantization. With more training, it gets an accuracy at 93.7%.

2.6 Conclusion

Current scanning mechanisms scan all pages into the same resolution. If the scan resolu-

tion is 300 dpi or higher, the resulting images may waste some memory. If the scan resolution

is 75 dpi, many scanned materials, like fine drawings, may lose a lot of details. Moreover, a

scan resolution between 75 and 300 dpi, like 150 dpi, may make part of images very blurry,

while part of images occupy more memory than needed.

To tackle this problem, we first simulate the real viewing scenarios when people enlarge

images on their computers, and find out that most image viewing software uses nearest-
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neighbor interpolation when zooming in an image. Then, we define the criteria based on

which to judge an image’s quality. That is, when resized to the same size as that of 300

dpi, the bluriness or jaggedness is either imperceptible, or perceptible but not annoying in

the resized image. Also, the resized image should keep all details that its 300 dpi reference

image has. The resolution that meets both criteria is called the optimal scan resolution.

In this section, we propose a traditional machine learning-based method. We first extract

some FR features, like tile-STDDEV SSIM, tile-STDDEV SSIM STDDEV, sample power

spectrum MSE, and spatial activity to reflect how truthful a low-resolution image is to its

300 dpi counterpart. We also find some NR features, like edge density and edge contrast.

These features can reflect the view quality at different resolutions. Concatenating these

features and feeding them into an SVM, we can have a prediction accuracy at 93.4%.

We also test some light-weight CNN models like MobileNetV2, MobileNetV3-large, Mo-

bileNetV3-small, and GhostNet, and their prediction accuracies are 92.2%, 91.6%, 92.2%,

and 91.9%, respectively. These results show that our SVM model has the best result.

Also, in order to solve the problem that CNN models consume a lot of memory and

computation power, we quantize the original FP32 models to integers. The quantization is

tested on MobileNetV2 model. Results show that QAT quantization can reduce the memory

and increase the inference speed.

2.7 Major Contributions

My major contributions for this project are as follows:

• Generate the dataset to compare images at different scan resolutions, and define ground

truth optimal resolution for each tile image.

• To the best of our knowledge, this is the first study that feeds both FR and NR QEs

to an SVM to estimate the quality of different resolution images.

• To the best of our knowledge, this is the first study that uses different window size-

based edge density as the QE to estimate the quality of different resolution images.

• Introduce a brand new NR QE: edge density.
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• Introduce two brand new FR QEs based on SSIM: tile-STDDEV SSIM and tile-

STDDEV SSIM STDDEV.
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3. DETERMINING SCANNED PAGE ORIENTATION

3.1 Introduction

Recently, with the trend of the paperless office, lots of documents are being scanned

every day. Also, the need to preserve old ancient books or other materials requires a lot

of scanning. Moreover, correct orientation is very important before further processing, like

optical character recognition (OCR). When scanning, the page can be in one of the four

orientations: 0, 90, 180, and 270 degrees. Fig. 3.1 shows one page in all four orientations

mentioned above. Sometimes it is difficult or even impossible to know all pages’ orientations

while scanning. Manually aligning all pages can be tedious and very time-consuming. As

a result, it would be great if the scanner can automatically detect the pages’ orientations

and align them accordingly during the scanning process. Since the page can be in portrait

or landscape mode, as shown in Fig. 3.2 , the scanner should be able to work well in either

of the two modes. Further, since this demand is worldwide, it would be best if the scanner

can detect the orientation of pages in various language scripts, such as Roman, Chinese,

Devanagari, Japanese, and Korean. Furthermore, for some documents like annual reports

which contain a lot of numbers, we also need the scanner to detect their orientations correctly.

(a) 0 degree (b) 90 degrees (c) 180 degrees (d) 270 degrees

Figure 3.1. An example of one page in four orientations.
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(a) portrait (b) landscape

Figure 3.2. Examples of portrait and landscape pages.

To accurately detect one page’s orientation, we developed an algorithm to find features

of text characters, and predict its script and orientation using a support vector machine

(SVM). The algorithm starts by turning the scanned image into a grayscale image, and then

partitioning it into 16 sub-images with equal width and height. Then, Otsu’s method [1 ] is

applied to each sub-image to get a binary image. After getting the binary image, connected

components labeling and analysis are applied to the whole page to get connected components

(CC) of text characters and reject non-text CCs. Once all text CCs are identified, some text

features are calculated for each of them, and their average is the page’s feature vector. Finally

the feature vector is then fed into an SVM to do training and prediction.

13 scripts are taken into consideration in this work, namely, Chinese, Devanagari, Japanese,

Korean, Numeral, English, French, German, Greek, Italian, Portuguese, Russian, and Span-

ish. Based on their similarities and differences, a script hierarchy is developed to better

decide the script of a page for the SVM. To reduce the number of script classes, we consider

English, French, German, Greek, Italian, Portuguese, Russian, and Spanish as one script:

Roman, since they look very similar to each other. After the script of the image is identified,

its orientation will be determined afterwards.
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3.2 Related work

Several methods have been proposed to detect the orientation of document pages. Guo et

al. [70 ] used three vertical component runs to get a 96-dimensional feature vector, which was

then fed into an SVM to determine the text pages’ Up/Down orientations. van Beusekom

et al. [71 ] proposed a model to find the text line, the number of ascenders and descenders

to determine one page’s orientation. They tested their model on Batin script and achieved

an overall accuracy of 98.8% on all orientations. They also tested the method on Japanese

script but only got an accuracy of 85.7%. Roy et al. [72 ] proposed an algorithm to detect

one page’s up/down orientation based on text-asymmetry ratios computed from strip-based

projection files. Their algorithm also needs to find the ascenders and descenders based on

text lines. But for some pages written in traditional Chinese, where text characters are

written vertically, these text line based methods might not work well. And also for some

Asian scripts like Chinese and Japanese, there are no obvious ascenders or descenders. Fan

et al. [73 ] invented a method that utilized the OCR method to find characters of ’i’ or ’T’

to determine the page’s orientation. Ghosh et al. [74 ] proposed a method to identify the

script and orientation of 11 official scripts in India. Their feature vector is composed of a

reservoir area, a white hole area, and horizontal and vertical white-black transitions. They

also designed a complex hierarchy to detect the script. Their method achieved fairly high

accuracies; but it is specially designed for Indian languages. Rashid et al. [75 ] proposed to

use a convolutional neural network (CNN) to identify scripts. They achieved above 95%

recognition accuracy at the connected component level on datasets of Greek-Latin, Arabic-

Latin, and Antiqua-Fraktur documents. Their CNN contains two convolutional layers with

four and eight feature maps, followed by two sub-sampling layers. For the three script pairs,

they achieved an accuracy of 98.40%, 95.61%, and 96.61%, respectively. But they did not

try detecting the orientation.

Lu et al. [76 ] proposed an algorithm to detect document images’ up/down orientation

through document vectorization. They also used the same feature vector to detect page

script. The idea is to find a feature vector vertically on a text character, and then convert it

into a vector. Orientation and script detection of a document image are determined based on
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distances between the detected document vector and pre-constructed vector templates. The

algorithm was tested on Chinese, Roman, Arabic, and Chinese scripts and achieved good

results. Based on their work, Jain et al. [77 ] developed an algorithm that can detect the

four orientations mentioned above and multiple scripts using an artificial neural network. In

their algorithm, they constructed features from the horizontal direction as well as the vertical

direction. They also introduced foreground pixel densities as part of the feature vector. Their

method achieved fairly good accuracies on Chinese, Japanese, and Korean, but performed

rather badly on Devanagari, Numeral, and some Roman scripts. Our work is mainly based

on Jain’s algorithm. While keeping their features, we also introduce features from the side

background areas in a text character’s bounding box. Moreover, we develop new methods

to rule out non-text connected components that might affect detection accuracy.

3.3 Methodology

3.3.1 Overall Algorithm

Figure 3.3. Overall algorithm workflow.

The algorithm workflow is shown in Fig. 3.3 . A document page is first scanned into a color

image, and then transformed into a grayscale image. Then Otsu’s binarization is applied

to get a binary image. After connected components (CCs) labeling, we apply methods to

remove non-text CCs. Finally, a feature vector is extracted and fed into an SVM to do
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training and prediction. After training, we save all the parameters into a self-defined header

file. In prediction, the algorithm determines the image’s script first, and then the orientation

based on these header files.

3.3.2 Image Binarization

The image is binarized based on Otsu’s method [1 ]. We choose this method because it is

fast and effective with document images. The algorithm assumes that the image contains two

classes of pixels following a bi-modal histogram (foreground pixels and background pixels).

It computes the histogram and probabilities of each intensity level, steps through all possible

thresholds from the lowest to highest intensity level, and calculates each threshold’s intra-

class variance. The optimum threshold separating the two classes is the one with minimal

intra-class variance. In this case, because the sum of pairwise squared distances is constant,

their inter-class variance is maximal.

In order to get better local details, the image is equally separated into 16 (4×4) sub-

images and Otsu’s method is applied to each sub-image independently. The foreground and

background areas are determined based on the assumption that the background area always

constitutes a larger portion than the foreground area.
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(a) (b)

(c) (d)

Figure 3.4. Examples of gray-scale images and their binary images after
applying Otsu’s algorithm. (a)-(b) are the gray-scale images, and (c)-(d) are
binary images generated by Otsu’s algorithm
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Fig. 3.4 shows two grayscale images and their binary images after applying Otsu’s algo-

rithm. We can see that the algorithm can identify the texts whether they are inverted or

not. For an image that contains only text characters, like (a), its binary output also contains

only text characters. But for images like (b), which contains large portion of pictures and

drawings, its binary image contains a lot of non-text CCs. These non-text CCs would have

a bad effect on the document’s feature vector, and may lead to unknown results. So we need

to get rid of them in the connected components analysis part.

3.3.3 Connected Components Labeling

After obtaining the binary image, our next step is to apply connected components label-

ing to the whole image. Its input is a binary image and the output is a symbolic image in

which the label assigned to each pixel is an integer uniquely identifying the connected com-

ponent to which that pixel belongs [78 ]. Connectivity is usually determined by 4-connected

neighborhood or 8-connected neighborhood [79 ]. In order to better deal with Numeral im-

ages whose pixels might only be connected in the diagonal or anti-diagonal direction, we

chose 8-connected neighborhood to do connected components labeling.

Fig. 3.5 shows an example of 8-connectivity. For the center pixel examined (color red),

its West, North-West, North, and North-East pixels are considered as its neighbors.

Figure 3.5. 8-connectivity. The middle pixel in the second row is the pixel
under study. The 8-connectivity examines pixels in its West, North-West,
North, and North-East pixels in connected components labeling.
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Based on the number of passes an algorithm goes through the image, connected compo-

nents algorithms can be catergorized into one-pass and two-pass algorithms. The one-pass

algorithm goes through the image only once. It is based on graph traversal methods in graph

theory. Once the first pixel of a CC is found, all pixels of that CC are labeled before going to

the next CC [80 ], [81 ]. This method always requires a linked-list to implement. The two-pass

algorithm iterates through an image twice [82 ]: the first pass is to assign temporary labels

and record equivalences; the second pass replaces each temporary label by the smallest label

of its equivalence class. Since we want an algorithm that scans the image in raster order,

we choose the two-pass connected components labeling method and use a stack to store

equivalent labels. The process is as follows [83 ]:

First pass:

(1) Iterate through each pixel by row, then by column;

(2) If the pixel is not the background, check its neighbor pixels. If there are no foreground

pixels in them, give the pixel examined a unique label and continue. If there are at least one

foreground pixels in them, find the neighbor with the smallest label, assign that label to the

pixel, and store the equivalence between the neighboring pixels.

Second pass:

(1) Iterate through each pixel by row, then by column;

(2) Relabel the pixel with the lowest neighboring label, if it is foreground.

After the second pass, we will have an image map with all CCs with different labels.

3.3.4 Connected Components Analysis

Since our feature vector is extracted from text characters, in this part we will remove

non-text CCs and keep text CCs.

A document page may contain pictures, tables, or other non-text areas. Normally, some

of them will stay as foreground pixels after Otsu’s algorithm. In this work, several constraints

are introduced to remove non-text areas, based on their characteristics that are distinct from

texts.
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Size Limit

Since the sizes of text characters are usually in a small range, we can remove very large

or small CCs by setting limits on their width and height. Explicitly, the size limits are (all

parameters are determined empirically):

(a) Lower limits. Among width and height, one must be larger than 0.01 × resolution

and the other must be larger than 0.03 × resolution. We set two thresholds because some

text CCs have different lengths or widths.

(b) Upper limits. We set hard and dynamic limits on maximum size of CCs. For hard

limits, one CC’s width should not be larger than 0.45555 × image width. Similarly, its

height should not be larger than 0.45555 × image height. For dynamic limits, a CC’s size

must not exceed 2.775 × average of (width + height).

Density Limit

The density of a CC, defined as the ratio of foreground pixel number / bounding box area,

should be less than 1. This rules out blocks which have only foreground pixels, which are

unlikely to be text characters.

Also, as to some CC’s which have a very large ratio of foreground / bounding box area, we

reverse them since their foreground and background pixels are likely to be inverted. But in

order to speed the algorithm, this method is only applied when there are not enough CC’s for

feature vector extraction. Here enough means at least 20 text CC’s. And the threshold to

apply this method is empirically set to be 0.725. Note that after doing the contrast reversal,

we need re-do connected components labeling to the resulting image.
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Figure 3.6. An example of a CC with large foreground-background ratio.
Here, the white pixels represent background, and the black pixels represent the
foreground.We can see that the characters here are classified to be background.

Transition Limit

Normally, a text character in any script should contain both foreground and background

pixels. Usually, the number of foreground-background transitions is under a certain thresh-

old. So we can employ this to rule out non-text CCs. This can also be used to eliminate

text CCs which have multiple characters bonded together when the scanning resolution is

low or the page has low quality.

For a connected component, imagine that there is a line passing through it vertically or

horizontally. We call it a transition if the line encounters a foreground pixel from background

pixels.

In this work, we count the number of transitions through the center of a CC both hor-

izontally and vertically. Empirically, the limit is set to be eight in both directions. And a

CC is to be removed if the transition number in either direction exceeds the limit.

Besides, in document images where text characters are written on a large picture, like a

magazine cover, the picture is often rendered with halftone patterns. As a result, when we

apply Otsu’s method, we can often find CCs with a halftone pattern, and these CCs often

meet the size limits, as shown in Fig. 3.7 . Although applying a low-pass filter to the whole

image might be the easiest to remove them, it can also blur the edges [84 ], making some text
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characters bound together when the scanning resolution is low. So a new method is required

to remove these CCs.

Figure 3.7. Examples of CCs rendered with a halftone. We can see a lot of
interleaved pixels in these CCs after binarization; and they cannot be identified
by the size limits.

Considering the fact that in CCs rendered with a halftone pattern, foreground and back-

ground pixels are always interleaved, a notion of horizontal or vertical transition density is

advocated. The way to calculate horizontal transition density is: first horizontally count the

total number of transitions along all rows in the bounding box, then divide this number by

bounding box height. The vertical transition density is calculated similarly, except that the

transitions are counted along the vertical direction, and the denominator is the bounding

box width.

Empirically, the thresholds are set to be 1.5 in both directions. Any CCs with either

transition density larger than 1.5 will be removed.

Also, considering the fact that some halftone-rendered CCs have only one pixel at each

bounding box edge, while text characters have multiple foreground pixels on at least one

edge, we can also eliminate these CCs.

Isolate CCs

Since text characters always occur along a text line or in a paragraph, CCs which appear

isolated can be considered as non-text and will be removed. Here, we call a CC “isolated” if

no other foreground pixels exist within a bounding box area from the top, bottom, left and
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right of the connected components. Fig. 3.8 shows an example of an isolated CC. Each of

the four boxes to the left, right, bottom and top has the same width and height as those of

the center bounding box. We can see that it is isolated as there are no foreground pixels in

the four surrounding boxes.

Figure 3.8. Examples of an isolated CC. We can see that there are no fore-
ground pixels in one bounding box area to its left, right, upper, and lower
directions.

Aspect Ratio

Since text characters’ aspect ratios are within a certain range, we set the ratio to be

within the range of 1
6 to 6 to rule out non-text connected components.

CC Analysis Hierarchy

Fig. 3.9 shows the hierarchy for CC analysis. For a CC, we first check if it has a density

less than one, and will reverse the foregound and background if the density value is larger

than 0.75. Then we check if it satisfies the size limit. If the answer is ’no’, we remove it,

otherwise we test it with transition limit. If it passes, the CC is then tested with the aspect

ratio limit. If it is in the range of the smallest and largest aspect ratios, we check if it only

has one pixel on every edge of its bounding box, followed by testing if the transition density

is less than the threshold. Finally, we test if it is isolated. A CC is called text CC if it passes

all the tests, and it can be used for feature vector extraction.
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Figure 3.9. CC analysis hierarchy.

CC Analysis Result

Fig. 3.10 shows two binary images after Otsu’s algorithm and their final images after

connected component analysis (CCA). From (a) and (c), we can see that CCA keeps almost

all the text characters in the binary document. But in cases like (b), where the image

contains a lot of non-text CCs, CCA removes most of them while keeping most of the text

characters; and these will be enough to do feature vector extraction.
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(a) (b)

(c) (d)

Figure 3.10. Examples of binary images and their final images after con-
nected components analysis. (a)-(b) are the binary images after Otsu’s al-
gorithm, and (c)-(d) are final images generated after connected components
analysis.
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3.4 Feature Vector Extraction

After the text CCs are found, our next step is to extract the feature vector representing

the document image. The feature vector is a concatenation of four vectors: vertical document

vector (VDV), horizontal document vector (HDV), zonal document vector (ZDV), and profile

document vector (PDV). These four vectors are achieved by averaging four features of every

text CC: vertical component run (VCR), horizontal component run (HCR), zonal document

run (ZDR) [77 ], and profile component run (PCR), respectively. In this section, we will talk

about how to get these features.

3.4.1 Vertical Document Vector

The method to calculate vertical component run (VCR) is first described by Lu et al. [76 ]

to detect script like Arabic, Chinese, Korean and Roman. The idea is to separate the

bounding box into three equal areas, called top zone, middle zone, and bottom zone. Then,

we assume that there is a virtual scanning line passing through the center of a CC. We define

a transition as the event in which the line passes to a foreground pixel from background pixel.

Finally, we record the number of transitions and where the transitions appear, as shown in

Fig. 3.11 .

Figure 3.11. Examples of vertical transitions on connected components. The
bounding boxes are separated into three equal zones vertically. The vertical
dashed line in the middle is the imaginary line through the CC’s center. And
the arrows in the picture show locations of transitions.
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If the line starts from a foreground pixel on the edge of bounding box, we still record it

as a transition. So from Fig. 3.11 We can see that the first Chinese character has in total

three vertical transitions, one in top zone, one in middle zone, and one in bottom zone; the

number 0 has in total two vertical transitions, one in top zone and one in bottom zone; the

character R has in total two vertical transitions, one in top zone and one in middle zone.

In practice, we assume that the number of transitions in a CC cannot exceed eight.

The upper limit 8 is set because most scripts under study have no more than 8 vertical

transitions. If indeed a character of more than eight vertical transitions is found, it is

statistically insignificant. The extra vertical transitions can be ignored without affecting our

results [76 ]. The steps to get a CC’s VCR are:

(1) Identify its bounding box, and vertically divide it into three equidistant zones: the

top zone T on the top, the middle zone M in the middle, and the bottom zone B at the

bottom.

(2) Find the horizontal center of the CC, and draw a vertical line through it.

(3) We have eight elements, N1, N2, ..., N8, to record the total number of transitions in a

CC. If the number is n. Set the index Nn to be 1, set the others to 0.

(4) Have another eight elements, T1, T2, ..., T8, to record the occurrences of transitions in

the top zone. For example, if only the 1st transition is in the upper part, we put T1 be 1,

the others to 0; if both the 1st and 2nd transitions are in the upper part, we put T1 and T2

be 1, the others to 0; if all n transitions occur in the top zone, we put T1, ..., Tn to be 1, the

others to 0; if there are no transitions in the top zone, we keep T1, T2, ..., T8 to be 0.

(5) Form eight more elements M1, M2, ..., M8 for the middle zone, and B1, B2, ..., B8 for

the bottom zone. Repeat step (4) for these two zones.

(6) Combining all elements in (3) to (5) we will have a VCR that has 32 dimensions:

V CR = [N1, N2, ..., N8, T1, T2, ..., T8, M1, M2, ..., M8, B1, B2, ..., B8] (3.1)

And we have Ni = 1 if

i =
8∑

j=1
Tj +

8∑
j=1

Mj +
8∑

j=1
Bj (3.2)

87



Referring to the three examples mentioned in Fig. 3.11 , for the first Chinese character,

its VCR is [00100000 10000000 01000000 00100000]. Because it has in total three vertical

transitions, we set the third element of the first eight elements the value 1. The top zone has

its first transition, so we put 1 at the beginning of the second eight elements. The middle

zone has the second transition, so we put the value 1 at the second place of the third eight

elements. And the bottom zone has its third transition, so the third place of the last eight

elements has the value 1, and others 0. Similarly, for the number 0, its VCR is [01000000

10000000 01000000 00000000], since it has in total two vertical transitions and they appear

in the upper and middle zones, respectively, while no transitions appear in the bottom zone.

For the character R, its VCR is [01000000 10000000 00000000 01000000], since it has in

total two vertical transitions and they appear in the upper and bottom zones, respectively.

And there are no transitions in the middle zone.

Normally, a document contains a large number of text characters. Each of them has

its own VCR. Next we calculate the sum of them as a feature vector for the whole page.

The feature vector is called vertical document vector (VDV); and the formula to get it is as

follows:

V DV =
N∑

i=1
V CRi (3.3)

where N is the total number of CCs in the document under study. V CRi is the VCR of

i-th CC.
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Figure 3.12. Illustration of constructing the VDV from VCRs. Each row in
the upper table shows VCRs of the character to the left side. The row in the
bottom is the VDV, which is the the sum of all rows.

Fig. 3.12 illustrates an example to get the VDV from VCRs. Suppose a document has

only one word “ENGINEER”; and each character is correctly segmented. Each character is

converted into a VCR, which corresponds to one row in the upper table. So in total we have

eight VCRs. The last row in Fig. 3.12 is the VDV of the document, which equals to the sum

of all VCRs in the upper table.

Before using the VDV for training an SVM, we need to normalize it to reduce the effect

of document length. The normalized value V DV norm is calculated using the following

equation [76 ]:

V DV normi =


V DV i · 100 / numCC if i ≤ 8

V DV i · 100 / numV ertTransitions if i > 8
(3.4)

where

numCC =
8∑

i=1
V DVi (3.5)
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and

numV ertTransitions =
32∑

i=9
V DVi (3.6)

Here, V DV normi is the i-th element in the normalized vector V DV norm. V DVi is the

i-th element in the vector V DV . numCC is the total number of CCs in the document under

study, and numVertTransitions is the total number of vertical transitions in the document.

Through the above equations, we normalize the VDVs to the range of [0, 100].

3.4.2 Horizontal Document Vector

Based on the idea of VCR and VDV, the idea of horizontal component run (HCR) and

horizontal document vector (HDV) are introduced to detect document pages in 90 or 270

degree orientations. The steps to get the HCR of a CC are:

(1) Identify the its bounding box, and horizontally divide it into three equidistant zones:

the left zone L, the center zone C in the middle, and the right zone R.

(2) Find the center of the CC, and draw a horizontal line through it.

(3) We have eight elements, H1, H2, ..., H8, to record the total number of transitions in a

CC. If the number is n, we set the Hn index to be 1, others to 0.

(4) Have another eight elements L1, L2, ..., L8, to record the occurrences of transitions

in the left zone. Then, form eight more elements C1, C2, ..., C8 for the center zone, and

R1, R2, ..., R8 for the right zone, to record the occurrences of transitions in these two zones,

respectively.

(5) Combine all elements in (3) to (4) to get an HCR that has 32 dimensions:

V CR = [H1, H2, ..., H8, L1, L2, ..., L8, C1, C2, ..., C8, R1, R2, ..., R8] (3.7)

And we have Hi = 1 if

i =
8∑

i=j
Lj +

8∑
j=1

Cj +
8∑

j=1
Rj (3.8)

Fig. 3.13 shows examples of getting an HCR and HDV. On the top row are three char-

acters with three horizontal zones and center horizontal lines shown on them. We can see

that the first Chinese character has in total three horizontal transitions, one in the top left,
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one in the center zone, and one in the right zone; the character p has in total two vertical

transitions, one in the left zone and one in the right zone; the number 7 has in total one

vertical transition in the center zone. Their HCRs are listed in the table in the middle.

Summing them up, we get the HDV at the bottom.

Figure 3.13. Examples of HCR and HDV of connected components. In
the top row are three characters. Each of their bounding boxes is separated
horizontally into three equal zones. And the horizontal line in the middle
travels through centers of these characters. The table in the middle shows
HCRs of the three characters in the top row. The last row is the HDV, which
is the sum of all rows of the middle table.

Similar to what we did to get VDV, we calculate the sum of all HCRs of a document as

a feature vector for the whole page, and call it the horizontal document vector (HDV). We

also need to normalize the HDV to get rid of the effect of document length like Equations

3.4 - 3.6 .

3.4.3 Zonal Density Vector

We also introduce the zonal density vector (ZDV) as part of the feature vector. The ZDV

is obtained via the zonal density run (ZDR), which reflects the distribution of foreground

pixel densities. The steps to get the ZDR are:

(1) Divide a CC’s bounding box area equally into 9 (3 ×3) small areas.
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(2) For each small area, calculate its foreground pixel density (fd) following this equation:

fd = numForeP ixel

numAreaP ixel
· 100 (3.9)

where numForePixel refers to the number of foreground pixels in a certain area, and nu-

mAreaPixel is the number of pixels in the area. Here we multiply by 100 to put the value

to the range of [0, 100]. The small areas are iterated first row-wise, and then column-wise.

Their fds are denoted as fd1, fd2, ..., fd9.

(3) Concatenate all values calculated in (2); and we will get a ZDR with 9 elements.

Figure 3.14. Examples of ZDRs of connected components. Each of the
character’s bounding box in the top row is separated equally into three parts,
and their pixel densities are listed in the table below the top row.

Fig. 3.14 shows ZDR examples of a Chinese character, the letter ’a’ and the number ’9’.

The ZDV for the document is formed by summing the ZDRs obtained from all CCs in

the document. Since each document has a different number of text characters, we also need

to normalize the ZDV using following equation:

ZDVnorm =
N∑

i=1
ZDRi / N (3.10)

Here, N is the total number of CCs in the document, and ZDRi is the ZDR of the i-th

CC.

Notice that ZDVnorm is also in range [0, 100].
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3.4.4 Profile Component Run

So far the features found from a single CC are mainly focused on the foreground pixels

in its bounding box. The background areas surrounding the foreground pixels, however, also

contain important information of the character [85 ]. And this information is very important

for relatively simple-structured scripts like Numeral. As a result, the profile component run

(PCR) of a CC and profile document vector (PDV) of a document are utilized to better

detect the document’s script and orientation.

The four side profiles are the four surrounding background areas in a CC’s bounding

box, namely, the leftward, upward, rightward, and downward background areas, as shown in

Fig. 3.15 . While black pixels represent the foreground pixels, the four-side profiles are the

white pixel areas seen from the left, right, up, and down directions until they hit a foreground

pixel.
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(a) CC with bounding

box

(b) CC’s leftward pro-

file.

(c) CC’s rightward pro-

file.

(d) CC’s upward profile. (e) CC’s downward pro-

file.

Figure 3.15. Example of a CC’s four-side profiles. Here, the black pixels
show the foreground, and the white pixels are the background.

The PCR is obtained from the four side profiles. The steps to get the PCR from a CC

are:

(1) Identify the CC’s bounding box.
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(2) On the left edge, identify 5 points on each edge of the bounding box, namely, the two

vertices, the middle point, and two points whose distance from the nearest vertex is 1/6 of

the length of the left edge.

(3) For each point found in (2), count the number of consecutive background pixels before

hitting a foreground pixel along the line that is perpendicular to the left edge.

(4) For each number obtained in (3), multiply it by 100, and then divide it by the

bounding box’s width, to remove the effect of the CC’s bounding box size. Denote them as

Pl1, P l2, ..., P l5.

(5) Repeat steps (2) - (4) for other three edge. Note that the denominator for the right

edge is also the bounding box’s width, but for the top and bottom edges, the denominator

is the bounding box’s height. So we get Pr1, P r2, ..., P r5 for the right edge, Pt1, P t2, ..., P t5

for the top edge, and Pb1, P b2, ..., P b5 for the bottom edge.

(6) Combining all the values obtained in (4) and (5), we will get a PCR for the CC,

which is

PCR = [Pl1, P l2, ..., P l5, P r1, P r2, ..., P r5, P t1, P t2, ..., P t5, P b1, P b2, ..., P b5] (3.11)

Figure 3.16. Examples of PCR of a CC. The arrow lines in the figure show
the distance from the bounding box edges to the foreground pixels in the four
side profiles.
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The PDV is achieved by summing all PCRs of the document. In order to reduce the

effect of document length, we also need to normalize it

PDVnorm =
N∑

i=1
PCRi / N (3.12)

Here, N is the total number of CCs in the document, and PCRi is the PCR of the i-th

CC.

Notice that PDVnorm is also in the range of [0, 100].

Concatenating all features from Sections 3.4.1 to 3.4.4 , we have a 93-dimensional feature

vector containing VDV, HDV, ZDV and PDV that represent one single document page.

Then, the feature vector will be used in a support vector machine for training and prediction.

3.4.5 Support Vector Machines

After the feature vector is obtained, we employ a support vector machine (SVM) to

classify the document into different script and orientation.

SVM is useful for data classification. It maps the data into a higher dimensional space,

and finds a linear separating hyperplane with the maximal margin in it [47 ]. In this project,

we used the LIBSVM [52 ] and radial basis function (RBF) kernel to do the training, and we

use the parameters found to build a header file used for prediction.

3.4.6 Script Detection Hierarchy

We use support vector machine (SVM) to detect the script before the orientation. So

a script detection hierarchy is built (shown in Fig. 3.17 ). It is based on the similarity of

different scripts. First, we treat Numeral and Roman as a group, and tell them apart from

other scripts, which include Devanagari, Korean, Chinese, and Japanese. Then a model is

developed to distinguish Numeral from Roman. Since Devanagari is a lot different from

Korean, Chinese, and Japanese, we distinguish it first. Then Korean is identified from

Chinese and Japanese. Finally, Chinese and Japanese are distinguished from each other.
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Figure 3.17. Script Detection Hierarchy.

3.5 Experimental Results

3.5.1 Data Collection

We collect our own data for training or testing. The collection process follows the routine

below.

(1) Pdf files are found from the internet, and only pages with a considerable number of

text characters are collected.

(2) Pages are printed using an HP LaserJet 500 color MFP M575.

(3) Pages are scanned using an HP Officejet Enterprise Color Flow MFP X585, and

scanned at 300 dpi.

(4) For pages in other resolutions, 150 dpi and 200 dpi for example, we use the Unix

“pamscale” [86 ] command with the default method “pixel mixing” to convert pages of 300

dpi into the resolutions mentioned above.

The scripts and their corresponding number of scanned images collected are shown in

Table 3.1 .
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Table 3.1. All scripts and the number of pages
Script Page#

Chinese 455

Devanagari 360

Japanese 378

Korean 438

Roman 2,476

Numeral 638

Overall 4,745

In this algorithm, Roman script contains English, French, German, Greek, Italian, Por-

tuguese, Russian, and Spanish. Their corresponding image numbers are listed in Table 3.2 .

Table 3.2. Roman script and the number of pages
Script Page#

English 324

French 315

German 271

Greek 408

Italian 263

Portuguese 300

Russian 296

Spanish 299

Overall 2,476

Note that pages we collected are all in 0 degree, and by simple rotations we can have

images in 90, 180, and 270 degrees. So the total number of images in our data set is

4, 745 × 4 = 18, 980.
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3.5.2 Test Results

We first use the whole data set as the training set. After getting the training parameters

generated by SVM, we test their prediction accuracy on the whole data set. Table 3.3 shows

the prediction results of script and orientation detection for all scripts.

Table 3.3. Training prediction accuracy of script and orientation for all scripts.

Script Orientation detection accuracy(%) Script detection accuracy(%)

Chinese 99.7 100.0

Devanagari 98.3 98.4

Japanese 100.0 100.0

Korean 99.9 99.8

Roman 99.7 99.8

Numeral 100.0 99.8

Overall 99.7 99.7

From Table 3.3 we can see that for the whole training set, our algorithm can achieve

an accuracy of 99.7% in both orientation and script detection. It even gets 100% accuracy

when detecting the orientations of Japanese and Numeral. We also achieve an accuracy of

99.7% in orientation and 99.8% in script detection for all Roman scripts. For each individual

script, we have Table 3.4 showing their prediction accuracy.
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Table 3.4. Training prediction accuracy of script and orientation for Roman scripts.

Script Orientation detection accuracy (%) Script detection accuracy (%)

English 100 99.8

French 99.8 100.0

German 99.8 100.0

Greek 99.4 99.8

Italian 99.3 99.5

Portuguese 99.2 99.6

Russian 100.0 99.7

Spanish 100.0 99.9

Overall 99.7 99.8

From Table 3.4 we can see that the algorithm has a good performance on all Roman

scripts. It also achieves 100% in detecting the orientation of pages in Russian and Spanish.

After getting the prediction accuracy of the training set, we use 3-fold cross-validation

to test the accuracy of our algorithm. Namely, we separate the whole data set into three

equal-numbered folders, and use two of them for training, and one for testing. And we will

switch folders used for training and testing. The accuracy is computed as the average of

three testing accuracies. Images here are all in 200 dpi.

Table 3.5 shows the cross-validation result of script and orientation detection for all

scripts. From this table we can see that for script detection, the overall accuracy for all

scripts and four orientations is 98.2%. The best result is 99.1% with Japanese, while the

lowest accuracy is 96.2% with Numeral. For orientation detection, the overall accuracy for

all scripts of all four orientations is 99.2%. The best orientation accuracy is 99.8% with

Japanese script, while the lowest accuracy is 98.3% with the numeral script.
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Table 3.5. Cross-validation result of script and orientation detection for all scripts

Script Orientation detection accuracy (%) Script detection accuracy (%)

Chinese 99.0 96.8

Devanagari 99.4 99.1

Japanese 99.8 98.2

Korean 99.2 98.3

Roman 99.4 98.7

Numeral 98.3 96.2

Overall 99.2 98.2

The Roman script actually is comprised of eight scripts: English, French, German, Greek,

Italian, Portuguese, Russian, and Spanish. Its detection result is obtained by summing the

detection results of all eight scripts. Table 3.6 shows the detailed detection results of these

eight scripts. From it we can see that, although Greek and Russian look quite different from

other scripts, they do get fairly good detection results, with both at 99.5% in orientation

accuracy, and 99.1% and 99.2% in script accuracy, respectively. The lowest orientation

accuracy happens with German, at 98.5%, and the lowest script accuracy happens with

Portuguese at 98.3%. Spanish has the best orientation and script detection accuracies, with

the values being 100% and 99.9%, respectively.
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Table 3.6. Cross-validation result of script and orientation detection for Roman scripts

Script Orientation detection accuracy (%) Script detection accuracy (%)

English 99.5 98.9

French 99.6 99.8

German 98.5 98.9

Greek 99.5 99.1

Italian 99.4 99.4

Portuguese 99.1 98.3

Russian 99.5 99.2

Spanish 100 99.9

Overall 99.4 98.7

Experimental results shows that our algorithm is very fast, too. Its mean of processing

time is 0.34 seconds, with a standard deviation of 0.07 seconds for all pages in our data set.

3.6 Low-resolution Connected Components Labeling Method

In Fig. 3.3 , we used the original image to do the connected components labeling and

analysis. If the image is in high resolution, 300 dpi, for example, the algorithm may need

a lot of memory to store these images. And this may not work well with low-end printers.

Therefore, a new version of the algorithm, ‘lowres-label (low resolution labeling)’ version, is

proposed. It generates an image, which is half the resolution of the input image, and uses it

for connected components labeling and analysis. The workflow of this algorithm to get the

feature vector is shown in Fig. 3.18 .
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Figure 3.18. The lowres-label algorithm workflow to obtain feature vector.

As shown in Fig. 3.18 , after the original color image is converted to grayscale image,

we downscale the image by two and get the lowres grayscale image. Then Otsu’s method

is applied to the lowres grayscale image and thresholds of each sub-image are calculated.

Using the same thresholds we threshold both the original and lowres image and get their

corresponding binary images, respectively. The connected components labeling is applied on

the lowres binary image and rules are also conducted to get rid of non-text CC’s. In this

way we can save a lot of memory, compared with using the image of the original resolution.

After the final CC image in lower resolution is achieved, we map their bounding boxes’

coordinates to the original binary image, so we can get the final CC map in the original

resolution. Finally, we get the feature vector that is used for training and testing.

Table 3.7. Memory usage of lowres-label and original algorithms
Resolution (DPI) Lowres-label (MB) Original (MB)

300 24.28 34.80

200 11.42 16.10

150 6.92 9.55

Table 3.7 shows the memory usage of the lowres-label and original algorithms. Here, the

image is assumed to be standard letter size. From this table we can see that for images in

103



150, 200 or 300 dpi, the low-res algorithm can save approximately 30% of the total memory,

compared with the original algorithm.

Table 3.8. Training orientation detection results of lowres-label and original algorithms
Script Lowres-label accuracy (%) Original accuracy (%)

Chinese 98.9 99.0

Devanagari 99.9 99.4

Japanese 99.6 99.8

Korean 98.5 99.2

Roman 99.0 99.4

Numeral 97.2 98.3

Overall 98.8 99.2

Table 3.8 shows the training orientation detection accuracy of the lowres-label algorithm

and the original algorithm. From the table we can see that of all pages, the lowres-label

achieves an accuracy of 98.8%, which is a little bit lower than the original algorithm’s 99.2%.

Combining the result of Table 3.7 , we can say that lowres-label algorithm is a good replace-

ment on low-end scanners with limited memory.

3.7 Major Contributions

My major contributions for this project are as follows:

• Generate a large dataset containing 13 different scripts and 4, 745 pages in each orien-

tation.

• To the best of our knowledge, this is the first work to identify halftone patterns. We

also introduce two new features: transition limit and transition density limit, to remove

them.

• Introduce a brand new feature: profile component run, to record the background

information in bounding boxes of connected components.
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• Introduce brand new features: isolated connected components, and one pixel on each

edge, to eliminate non-text connected components.

• Application of these new features has greatly increased the detection accuracy of simple

numeral scripts.

• Application of these features has a high overall orientation detection accuracy in our

dataset.

105



4. COLOR TABLE COMPRESSION

4.1 Introduction

Color Management plays a crucial role in reproduction and transformation of color in-

formation among various devices. Color look-up tables (LUT) embedded in devices provide

color management systems with the information necessary to convert color data between

native device color spaces and device-independent color spaces. But it also consumes much

memory. The size of these color tables will also increase with finer sampling of the spaces

and larger bit depths. Thus, a method to compress these LUTs is desirable for the purpose

of conserving memory and storage in devices, and also reducing network traffic and delay.

Lossy and lossless compression are two forms of compression. In lossless compression,

no digital difference exists between the original data and the reconstructed data from com-

pressed files. In contrast, a portion of the original data is lost upon reconstruction of lossy

compressed files [87 ]. Compression methods usually exploit two separate characteristics of

data: irrelevance and redundancy. Its objective is to reduce the irrelevance and redundancy

of the data in order to be able to store or transmit the data effectively. Irrelevance refers

to information that does not need to be kept for the reconstruction. Redundancy refers to

the repetitive or statistical dependencies in the data. Lossy methods exploit irrelevance, and

lossless methods do not. Redundancy refers to the repetitive or statistical dependencies in

the data, and can be removed via both lossless and lossy methods.

A variety of methods have been proposed to compress images and videos. But few

methods are used to compress color tables. Balaji et al. [88 ] proposed a preprocessing method

for lossless compression of color LUTs. Their method is based on hierarchical differential

encoding and cellular interpolative predictive coding methods. Some lossy methods used for

videos and images can also be applied to this problem. Sudhakar et al. [89 ] summarized

image compression methods using coding of wavelet coefficients. Shapiro et al. [90 ] and

Said et al. [91 ] each proposed an efficient wavelet compression method that has been proven

very successful in still image coding. Kim et al. [92 ], and Tang et al. [93 ] each proposed

a three-dimensional wavelet compression method to efficiently encode 3D volumetric image
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data and video data. Besides wavelet-based methods, the Discrete Cosine Transform (DCT)

has also been widely used in image compression [94 ] and video compression [95 ].

Our work is based on the work of Chuohao Tang et al. [2 ] on lossy compression of 3D and

4D color tables through the DCT. Their method used a specific lossy method, followed by a

general lossless method to compress the color tables. The specific lossy method was tailored

to the specific characteristics of the color tables to be compressed. The general method was

generic, and can be used to compress a variety of different types of data streams.

While their work does a good job in compressing 3D and 4D LUTs, they did not try to do

a lossless compression. So here we propose a lossless compression method on 1D LUTs. The

compressed data consists four files: quantized DCT coefficients from color tables, quantized

DCT Coefficients Bit Assignment Tables (CBAT), a residue table whose values are the

difference between the original color tables and the initial reconstructed color tables, and

the residue table bit assignment tables (RBAT).

4.2 Methodology

Fig. 4.1 provides a high-level view of the color table compression-reconstruction process.

The compression process consists of two stages: a specific lossless stage that exploits specific

characteristics of the color table data to be compressed, followed by a general lossless stage

that is designed to compress any kind of data. The reconstruction process mainly consists

of a decoding step that inverts the encoding steps [2 ].

Figure 4.1. Compression-reconstruction process.

Fig. 4.2 contains a detailed block diagram of the compression method. Our method can

simultaneously compress multiple tables together. We assume there are N color tables to

compress: LUT1, LUT2, ..., LUTN . For 1D color tables, there is one channel in the input
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color space, and one channel in the output color space. For each output channel, we assume

that the LUT contains M nodes.

At the start of our specific lossless compression stage, we compute the color tables under

study minus a reference color table, and get the difference tables. Usually, for 1D color

tables, the reference table also contains M nodes, the same as the original tables to be

compressed. But its values are all integers growing monotonically from 0 to M − 1. After

applying the 1-dimensional DCT transform to the difference color tables, we obtain as many

DCT coefficients as the number of nodes in the original color tables. In the next step, we

quantize the DCT coefficients using a fixed step size ∆, and round them to the nearest

integer, as shown in Equation 4.1 .

DCTcoefq =
⌊

DCT Coeff icient

∆

⌉
, (4.1)

where b·e denotes the rounding operation.

For the rounded 1D quantized DCT coefficients, we multiply them by the same step size

∆ used above, and then do the inverse DCT. After rounding the inversed DCT results to

integers and adding back the reference table values, we get the initial reconstructed color

Figure 4.2. Workflow of the compression method.
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tables. But this would not guarantee that the initial reconstructed color tables we get are

exactly the same as the original LUTs, since we have lost some information in the two

rounding processes, and the truncation of the DCT coefficients. So we need to subtract the

initial reconstructed color tables’ nodes values from original color tables’ nodes, and we will

get the residue tables. If we add the residue table and initial reconstructed tables, we will

perfectly get the original color tables. In this way, our specific compression stage is lossless.

After obtaining the rounded 1D quantized DCT coefficients and residue tables, we can

write each of them to a binary file. We do not apply LZMA to these two files, because

their values are small and have little redundancy. As a result, the LZMA compression would

have a bad compression performance on the two files. Then we use the quantized DCT

coefficients to calculate its coefficients bit assignment table (CBAT), and residue tables to

get the residues bit assignment table (RBAT). These two files would help identify how many

bits each quantized DCT coefficient or residue table value needs, and they will be used for

the decoding process. We then write the CBAT and RBAT values to binary files, followed

by a general compression method like LZMA. That is because for the CBAT and RBAT

tables, the values in them are highly redundant (details on how to get them can be found in

next section). So LZMA compression would have good performance.

4.2.1 Coefficients Bit Assignment Table and Residues Bit Assignment Table

The coefficients bit assignment table (CBAT) and the residues bit assignment table

(RBAT) are used to store how many bits each rounded quantized DCT coefficient and

residue table value uses, respectively. The are calculated in the same way. So here we use

CBAT as an example to illustrate how they are calculated.

CBAT stores the information of how many bits are assigned to each coefficient. Suppose

a rounded quantized DCT coefficient is L, then we will need dlogLe bits to store it. As an

alternative to implementing the logarithm function directly, Fig. 4.3 [2 ] shows the method

for determining dlogLe that can be implemented very efficiently in an embedded system. As

the coefficient can be a negative number, we need one more bit for the sign.
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The nodes in the CBAT are the same as those in the original color tables. Now we will

discuss how to calculate each CBAT. We will use the quantized DCT coefficients to calculate

the CBAT. For a certain output channel, we denote the rounded quantized DCT coefficient

as Qi,j, where i = 1, 2, ..., N is the color table number, and j = 1, 2, ..., M is the node number.

The number of bits needed for Qi,j is calculated using Equation 4.2 

Bi,j =

 dlog|Qi,j|e + 1 if |Qi,j| > 0

0 if |Qi,j| = 0
. (4.2)

We use Lj to represent the CBAT value in node location j, and it can be calculated by

Lj = max
1≤i≤N

(Bi,j). (4.3)

Figure 4.3. Algorithm to count bits needed for a given DCT coefficient.
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The remaining question about the CBAT is the total size needed to store it. For the

CBAT, we assign a fixed number of bits for every node. Assume we assign a bits for every

node in the CBAT, then

a = max
1≤j≤M

(dlogLje). (4.4)

So the total size of one CBAT is aM bits. Although it is a fixed number, the neighboring

nodes tend to have similar values. Thus the total CBAT size can be reduced significantly by

the general lossless compression (such as the LZMA) stage. The RBAT is calculated in the

same way as the CBAT, and its size can also be reduced greatly by the LZMA algorithm.

Also, the way CBAT and RBAT are calculated can give us a promising way to reduce

the size of the rounded quantized DCT coefficients and residue values if we are compressing

one LUT a time. Suppose we have a value v and v 6= 0. Accoring to Equation 4.2 , we will

need dlog|Qi,j|e + 1 bits to store it; and we will put the number of bits used in the CBAT

or RBAT. Since the highest bit (except for the sign bit) is always “1”, we can just leave it

out when storing the rounded quantized DCT coefficient or residue table value in the binary

files. Correspondingly, when reconstructing the original color table, we need to put “1” back

to the DCT coefficient or residue table value to get the true value back. We can not apply

this method to compress multiple tables since their rounded quantized DCT coefficients may

vary by a large amount from one coefficient to the other. Thus there is no guarantee that

they all have the value “1” after the sign bit.

4.2.2 Determine the Step Size ∆

Another question is how to choose the parameter ∆ used in DCT coefficient quantization.

If ∆ is large, we can achieve smaller quantized DCT coefficients; but the residue table values

will become larger at the same time. If ∆ is small, the residue table values are small; but the

quantized DCT coefficients will be large. The compression ratio is calculated as the result of

the size of the original color tables divided by the size of all compressed files. So in order to

achieve a high compression ratio, we need to balance the size of quantized DCT coefficients

and the residue table.
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For a fixed ∆, we compress the color tables using the method discussed above. After

inverting this compression process, we obtain the reconstructed color tables. Fig. 4.4 shows

how to calculate the compression ratio for a given ∆.

Figure 4.4. Process to calculate compression ratio for a given ∆.

Fig. 4.5 shows the relationship between compression ratio and step size ∆ when we store

the quantized DCT coefficients and residue table. The color tables on which this data is

based are described in the results section.

We can see from the figure that as ∆ increases, the compression ratio first increases,

and then decreases after a peak compression ratio value is reached. That is because when

∆ increases, the quantized DCT coefficients decrease aggressively, and the residue values of

color tables and initial reconstructed tables get larger. Thus, the storage needed for residue

tables will increase, thereby reducing the efficiency of our specific lossless stage. Therefore,

the peak value is the optimal balance between the compression ratio and the color difference.
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Our final output consists of four files: rounded quantized DCT coefficients, residue table,

CBAT, and RBAT. When ∆ increases, the size of rounded quantized DCT coefficients will

decrease but the residue table values will increase. So we want to find a balance between

the two parts, which is the optimal ∆opt that achieves the maximum compression ratio in

the compression ratio delta curve.

Figure 4.5. Compression ratio curve with different step sizes.

4.3 Decoding Process

The decoding process extracts the CBAT and RBAT, the rounded quantized DCT coef-

ficients, and the residue table from the compressed data.

Fig. 4.6 shows the workflow of the decoding process. First, we apply the standard lossless

decompression technique, such as inverse LZMA, to the CBAT and RBAT files to get the

binary stream. Next, we use the CBAT for the quantized DCT to tell how many bits

of the binary stream belong to each node location. Then, we can get the reconstructed

DCT coefficients. We apply the inverse DCT transform to the coefficients, multiply by the
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quantized step size ∆, round them to the nearest integer, and add them back to the reference

table values to obtain the initial reconstructed color tables. The same method is used for

residue table file and the RBAT, except that we do not need to add back the reference table.

In this way, we will get the residue table. Adding the initial reconstructed color tables and

residue tables, we can get the final reconstructed color tables, which are the same as the

original color tables that were to be compressed.

Figure 4.6. Decoding process.

4.4 Results

We present experimental results for the compression of two 1D LUTs from HP Inc. The

reference table contains 256 nodes, which take on the values 0, 1, 2, ..., 255. As a result,

there is no need to store the reference table in final compressed files. Here M = 256. The

byte depth of the table is b = 1. In total, there are bM = 1×256 = 256 bytes in one table,

and 512 bytes in all 2 tables.

From Fig. 4.5 we can see that the maximum compression ratio of 3.05 can be achieved

at step size ∆ = 2. Table 1 shows the size of the four compressed files and their total size
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in bytes. Note that the rounded quantized DCT coefficients and residue table are stored

directly as binary files, while the CBAT and RBAT are stored as compressed by LZMA.

Table 4.1. Storage Needed for Compressed Files
Compressed Files Size/bytes
Residue Table 35
RBAT 76
Rounded Quantized DCT Coefficients 23
CBAT 34
Total Size 168

In total, we only need 168 bytes to store the compressed files of two color tables above

(instead of 512 bytes for original tables), and we can perfectly reconstruct them. This proves

that our method achieves good performance.

4.5 Conclusion

We have proposed a lossless compression framework for 1D color look-up tables. Our

compression method enables the encoding of color tables by storing the information in four

parts: rounded quantized DCT coefficients, residue table, CBAT, and RBAT. By decoding

these four files we can get the perfect reconstruction of the 1D tables to be compressed.

4.6 Major Contributions

My major contributions for this project are as follows:

• Employ a simple reference table, which we do not need to store, to help compress color

tables.

• Introduce a method to use the difference between original and initial reconstructed

color tables to get the lossless compression.

• Introduce residue tables, and residue bits assignment tables.
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• For the task of compressing only one table, we propose a method to use one less bit to

store each rounded quantized DCT coefficient and residue value.
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