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ABSTRACT

Young football players are hypothesized to experience damage to the brain and brain

function from repeated subconcussive head acceleration events (HAEs) during practices and

games. Such damage may cause delayed cognitive and mental problems. Resting state

fMRI (rs-fMRI) is an effective non-invasive method to detect alterations in brain functional

connectivity. Seed-based rsfMRI analysis using the central node of the default mode network

(DMN) as the seed is a common approach to measuring intrinsic changes of the DMN,

accepted as a key network in brain function. Seed-based rs-fMRI analysis of the DMN

was used to explore how age, HAE intensity, and HAE counts influence brain connectivity in

youth athletes (ages 12-18). Middle school and high school football players and peer controls

were studied using rs-fMRI before and after one season of competition. An identifiability

matrix was generated from the seed-based connectivity matrix, allowing measurement of

similarity between pre-season and post-season functional connectivity. The consistency of

seed-based brain functional connectivity we observed across the season of play for players

has no statistically significant difference from controls. The identifiability matrix exhibited

no relation to the number and magnitude of any subset of HAEs experienced which rejected

our hypothesis. Another finding is that high school football players exhibited the largest

percentage increase in identification from middle school football players in the somatomotor

network over other resting-state networks.
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1. INTRODUCTION

High intensity contact sports, like football, soccer, rugby et al., are typified by repet-

itive impacts. Concussion is a mild form of traumatic brain injury (TBI) that damages

brain function. Some serious brain injuries due to concussions such as Chronic Traumatic

Encephalopathy (CTE) [1 ] can last lifelong and even be life threatening if untreated. Un-

like diagnosable concussions, asymptomatic sub-concussive impacts can be easily ignored,

especially for young players. Over half of high school football players were reluctant to re-

port injuries due to unawareness or other reasons [2 ], [3 ]. However, in 2013 Bailes JE et

al. [4 ] demonstrated that sub-concussive head acceleration events (HAEs) which is usually

unknown by players would also lead to neurodegenerative pathology along with CTE. The

influence of sub-concussive HAEs has thus received more and more attention and stimulated

widespread interests.

For adolescent football players, research has been conducted to analyze whether con-

cussion impacts are related to age factor, but relations between impacts of sub-concussive

HAEs and age factors have not been analyzed. Even the answer to whether age influences

sports concussion is not clear yet. Empirical studies believe that young players need a longer

recovery time after concussions than older players [5 ]–[7 ], but statistical analysis of recovery

times are small [8 ]. Brain white matter analysis can also fail to prove younger players are

more susceptible than older ones [9 ]. Therefore, the influence of age on brain damage from

HAEs needs to be researched.

HAE intensity and counts is another factor we want to consider. Studies have shown

that the amount of impacts is significantly related to ensuing neurophysiological behavior

of players [10 ]. Also, the effect of repetitive exposure is cumulative, which means 10 low

acceleration blows have a stronger influence than one high acceleration blow [11 ], [12 ]. Due

to the cumulative property of HAEs, an assumption has been made that players who received

large counts of HAEs would have stronger functional connectivity alteration across the season

of competition.

To measure brain functional connectivity, resting state fMRI (rs-fMRI) is an effective non-

invasive method. Seed-based functional connectivity analysis is one of the most commonly
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used functional integration rs-fMRI analyses method, which observes intrinsic changes in

specific brain networks or regions of interest (ROIs) [13 ]. Of all the resting state brain

networks, default mode network (DMN) is probably the most rudimentary one [14 ]. In 2015,

Zhu et al. [15 ] illustrated that long-term variation of DMN can be used as a biomarker to

detect functional brain changes of contact sport players. Using the central node of the DMN

which is the posterior cingulate cortex (PCC) as the seed region, neurophysiological changes

of high school players can be observed [16 ]. The identifiability matrix is also an effective

measurement of functional connectivity alteration [17 ].

In this study, we analyzed functional connectivity alterations in male football players

and peer controls in both middle school and high school across one season of play. Age and

HAE counts of different intensity subsets were hypothesized to affect the alteration. Seed

based rs-fMRI functional connectivity analysis and identifiability measurements were used

to do age group and HAE intensity group comparison.
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2. BACKGROUND

2.1 Resting State fMRI and Functional Connectomes

Functional MRI is a technique to capture brain regions which are activated by specific

tasks or are low frequency fluctuation. The key principle of functional MRI is blood oxygen

level dependent (BOLD) imaging, which is an imaging approach to detect changes in oxygen

level and carbon dioxide level [13 ], [18 ]. Because brain neurons are not able to keep en-

ergy internally, all the strength of stimulation come from capillaries nearby. The process of

capillaries providing energy to neurons is called haemodynamic response, which always ap-

pears along with oxyhemoglobin and deoxyhemoglobin. These processes can be successfully

detected by BOLD imaging.

Functional MRI can be divided into two categories: rs-fMRI and task-based fMRI. Most

of fMRI studies were task-based where participants are required to perform specific tasks

(cognitive, language, or motor tasks) while scanning. This method helps analyze specific

activated brain network corresponding to a certain experimental task, but actual detail

variation in task implementation is difficult to evaluate, so operating error would be difficult

to omit if task is not well designed. Some special instructions of tasks are even difficult for

patients with neurologic or psychiatric problems to follow.

Compared to task-based method, rs-fMRI would be easier to realize. Participants need to

stay awake and relax without doing any required task while scanning, so only asleep subjects

need to be excluded. Besides, rs-fMRI takes shorter time for scanning which is a great benefit

for participants with neural diseases such as attention deficit hyperactivity disorder. It is

also convenient for researchers or clinicians because information can be collected within one

fast scan. Biswal et al.in 1995 first figured out that low frequency oscillation (0.01-0.1Hz)

reveals brain functional connectivity well, which makes rs-fMRI a realizable and broadly

used method [19 ]. Studies have also shown that measurement of low frequency fluctuation

magnitude has test-retest reliability, so rs-fMRI can be used as a stable brain feature [20 ],

[21 ].

Functional connectomes is a typical type of rs-fMRI analysis, using Pearson correlation

coefficient to measure functional connectivity between spatial brain region pairs [19 ].Func-

13



tional connectivity is the temporary correlation between brain regions that share functional

properties. Correlation analysis methods like seed-based functional connectivity analysis

(SCA) and independent component analysis (ICA) was further derived from [19 ] to analyze

brain functional connectivity [16 ], [22 ]. As more and more datasets had been collected, re-

searchers realized the consistency at the level of network topology in functional connectivity

[23 ], [24 ]. Therefore, attentions gradually transferred from pair-wise functional connectivity

analysis to rs-fMRI network evaluation.

2.2 Resting State Networks

Resting state networks (RSNs) are functional brain regions which fluctuate synchronously

in resting state, these networks almost cover the whole brain cortex. RSNs have been verified

to own prospective clinical value and provide potential biomarkers of diseases [25 ]. RSNs

include dorsal attention network [30], memory network [26 ], motor network [19 ], default

mode network [23 ] etc. In 2011, Yeo et al. parcellated brain cortex into seven functional

networks: visual network, somatomotor network, default mode network, dorsal attention

network, ventral attention network, frontoparietal control network, limbic network [27 ]. This

parcellation was further adopted by neuroimaging processing and analysis software FMRIB

Software Library (FSL) (www.fmrib.ox.ac.uk/fsl) toolbox, and broadly used in many studies

[28 ]–[30 ].

Among RSNs, DMN is first identified by Raichle et al. [23 ]. DMN is composed of PCC,

medial prefrontal cortex (MPFC) and angular gyrus (AG), where PCC is the central and

prominent node of DMN at resting state [31 ]. MPFC is highly related to mental status and

connections between MPFC and PCC differ in distinct social circumstances [32 ]. AG is a

network hub across three separable network modules, thus attention, semantic processing

and many other functions are affecting connection around [33 ]. Even while participants

imagine performing music, modulation of functional connectivity near AG can be observed

[34 ]. However, these performances are obvious while doing task-based experiments, so it is

difficult for them to influence our resting-state imaging result when participants are healthy

individuals.
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DMN at rest can be affected by factors like aging and brain concussions. Normal aging

would make changes to DMN functional connectivity, studies have shown that part of in-

trinsic brain functional activity inside DMN would be more intense for younger than elderly

subjects [35 ], [36 ]. The age difference between middle school players and high school players

of our dataset are not that obvious as in previous studies, but the assumption of various

functional connectivity performance is still reasonable. For brain concussions, DMN func-

tional connectivity can be affected by asymptomatic HAEs across one season of competition

[16 ].

2.3 Seed based Functional Connectivity Analysis

SCA is a effective and robust functional connectivity analysis method [37 ]. SCA has also

been collected as one module of the Functional Connectivity Toolbox CONN (http://www.conn-

toolbox.org), which is a widely used functional connectivity analysis tool. It has been used

to successfully detect functional connectivity properties of many seed regions including pos-

terior insula [38 ], PCC [39 ], anterior cingulate cortex (ACC) [40 ]. For example, SCA based

on PCC is able to observe functional connectivity changes around DMN [39 ].

The process of SCA is correlating time series of functional connectivity of selected seed

brain region (such as ROI or a special voxel) with that of the whole brain, highly correlated

result represents coherent time series of two regions. We can get straight answer of whether

one region or voxel is strongly bounded with the selected seed or not from SCA, which is

a great benefit to setup some clinical problems [41 ]. SCA and ICA are two widely used

method to analyze rs-fMRI and valuable results have been generated [16 ], [22 ]. Compared

to another typical analysis method ICA , which separates cortex into independent spatial

components based on time course correlation [42 ], SCA is also beneficial because of its low

cost and complexity.

One property of SCA is that two coactivating brain networks would confound the bound-

ary of networks recognized, connectivity of any synchronous voxels pairs is irrelevant to which

brain network they belong to [43 ]. Therefore, the clusters SCA detected are not the same

concept as functional networks, seed-based region is a temporary brain network centered at

seed region. So instead of a strict DMN region, seed-based region of SCA using PCC as
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seed is a local brain connections area around the central node of DMN. How much difference

between PCC seed-based region and DMN depends on characteristics of the target group.

Extremely large deviation would lead to abnormal brain function.

2.4 The Identifiability Matrix

The identifiability matrix, also called the similarity matrix in some studies [44 ], [45 ], is

another functional connectivity analysis method. It is a reliable way to measure the extent

of identification of functional connectivity variation in some brain regions [46 ]. The word

”identification” means individuals can be accurately identified from a group using functional

connectivity changing pattern. In other words, some functional connectivity profiles can

be regarded as ”fingerprint” of a subject group. Many studies have shown that functional

connectome is a reliable individual brain fingerprinting which can keep stable for years, the

robustness is verified using several fMRI datasets including healthy people and patients [46 ],

[47 ].

The identifiability matrix is generated from functional connectivity of specific brain re-

gions of two scans, measuring functional connectivity correlation between each other. The

brain region can be one ROI, one functional network or the whole brain, depending on which

participant group we focus on. Both functional connectivity alteration between two sessions

and between task-based and resting state scans can be used as identification. Identifiability

matrix between sessions measures consistency of functional connectivity in certain period of

time, for example, [46 ] exhibited test-rest reliability using high identification between resting

sessions.

There are many ways to evaluate identification from the identifiability matrix. If we pick

peak correlation coefficient as predicted identity, use binary scores to evaluate identification,

then the final score would determine the success rate of identification. Based on this mea-

surement, the differential identifiability matrix was proposed by Amico et al. in 2018 [48 ].

We can also compare diagonal values of identifiability matrix with mean value of off-diagonal

elements, difference between them manifests identification level of the group [17 ].
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Further, identification can be enhanced by reorienting the identifiability matrix, such as

using principal component analysis (PCA) [17 ], [48 ]. Stronger fingerprint can be extracted

from functional connectivity.

2.5 Repetitive HAEs

Functional connectivity analysis methods mentioned in previous sections helps investi-

gating the impacts of HAEs. Changes in brain functional connectivity across the season of

competition can be observed using rs-fMRI [49 ]–[51 ]. With SCA, significant decrease also

exists in functional connectivity of the highly correlated regions with ACC and PCC of ath-

letes compared to peer controls [52 ]. Since rs-fMRI analysis methods are effective ways to

measure the impact of HAEs, we would expected to see some properties related to repetitive

HAEs in rs-fMRI analysis.

The reason why repetitive HAEs is important is that brain damage from HAEs turns

out to be cumulative [10 ]–[12 ]. The long term influence of HAEs to young football players,

especially those who exposed to this sport in very young age, can be severe [53 ]. Even for

high school players, accumulative property can be proved by analysis of biomechanical data

[12 ]. So not only the HAE intensity, but also the count of HAEs matters for potential brain

injuries.

There were many studies focus on influence of different magnitude of HAEs. The xPatch

(X2 Biosystems, Seattle, WA) is an effectively monitor for acceleration while football players

receive blows. Peak linear acceleration (PLA) is a good indicator for the magnitude of

HAEs. Research has shown that those have PLA larger than 80g would be regarded as

high intensity concussive motions [54 ]. High magnitude HAEs can be highly related to

cerebrovascular reactivity [55 ]. While for lower intensity HAEs, different impairment was

observed by clinician and by functional analysis while PLA varies in the range of 15g to 150g

[10 ], so brain connectivity performance varies in player group receiving subsets of HAEs

with different PLA magnitude. About the range of PLA, some studies have shown that the

average PLA for young athletes is 62.4g±29.7g, which is much lower than adult athletes

[56 ]. Thus, the statistics can be even lower for middle and high school players instead of

professional athletes.
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3. METHODS

3.1 Participants

Participants of this study were football players and peer controls in US. middle school

and high school, male students in age 12-18. Each individual was scanned once before season

and once after season. There are 11 middle school football players and 2 middle school non-

collision controls, who were in 12-14 years old. 6 of the players were 8th grade students

(mean=13.5) and the other 5 players were in 7th grade (mean=12.6). Controls were both

in 8th grade. High school students include 15 football players and 9 controls. Players were

from 15 to 18 years old (mean=16.6), 8 of them in 15-16 years old (mean=15.9) and the

others in 17-18 years old (mean=17.4). Controls were from 14 to 18 years old (mean=16.1).

3.2 Data collection

All of the participants were scanned before and after one season by a GE Discovery

MR750 3T Scanner located at the Purdue MRI facility. T1 and T2-star weighted images

generated from an Echo-Planar Imaging (EPI) sequence were stored as Digital Imaging and

Communications in Medicine (DICOM) files. T1 structural images were 1mm isotropic and

TR were 5.7msec. T2-star images were assigned a 3.8mm slice thickness, a field-of-view

(FOV) of 3.125mm×3.125mm and TR of 2sec. The number of time points of the T2-star

images were 294 for high school students and 240 for middle school students. In this study,

we used T2-star images to achieve functional MRI.

Players wore an xPatch sensor which attached to their head (behind their right ear) during

each practice and game to monitor the impacts that they received. Data of HAEs were then

collected from the Head Impact Monitoring System software (X2 Biosystems; Seattle, WA),

including PLA data. Any acceleration event with PLA above 20g was recorded.
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3.3 Data processing pipeline

Data processing of rs-fMRI images relied on Analysis of Functional NeuroImages (AFNI)

and FSL. The overall processing pipeline was coded in MATLAB and proposed in [17 ]. This

pipeline can be divided into three steps.

The first step is registration of gray matter (GM) in T1 brain images. We used the

FSL anatomical processor fsl_anat to do bias correlation and first step registration. Then

the Marker Based WaterShed Scalper toolbox (MBWSS) [57 ] was used to extract the brain

from the skull. Individual brain images were aligned with the MNI space and used the same

transformation to align with the shen278 parcellation [58 ], the yeo7 parcellation [27 ], and

the left and right PCC regions. Images went through further intensity normalization with

AFNI 3dUnifize, and then the GM was extracted using FSL FAST.

The second step is processing rs-fMRI BOLD images based on T1 templates. Because

for each object measurement, there are several bad scans at the beginning before tissue’s

magnetization goes to a steady state [59 ]. The artefacts due to the wrong position history of

objects are called spin-history artefacts. To remove the effects of spin history, we deleted the

initial 4 volumes from each BOLD timeseries, so that the final volumes of the middle school

rs-fMRI scans were 236 and the volumes of the high school scans were 290. rs-fMRI images

went through outlier detection, despiking and slice timing correction using AFNI functions

and then were registered to volumes with minimal outliers. Based on the T1 images from

step one, the rs-fMRI timeseries were warped to the MNI template. Then we added a GM

mask to rs-fMRI images and did spatial smoothing with a 4mm full-width-at-half-maximum

(FWHM) Gaussian kernel. We then scaled the BOLD timeseries and removed any volumes

with motion derivative norms over 0.4. The GM timeseries was then divided into the shen278

ROIs, which is a basic parcellation of the brain. Because part of the cerebellum was not

covered in scans initially, we removed the 42 ROIs within the cerebellum to keep the result

consistent so that the number of ROIs totaled 236.

The last step is functional connectivity matrix calculation from the averaged value of

each region of rs-fMRI parcellation. This part was modified from the pipeline designed by

[17 ] in that seed-based analysis were also added. By cross correlating the mean timeseries of
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all 236 ROIs of rs-fMRI, we generated a 236*236 functional connectivity matrix. The matrix

is symmetric since changing the order of a ROI pair does not change the correlation value

between them.

3.4 Data analysis

3.4.1 Consistency and identification analysis

In order to compare pre-season and post-season functional connectivity, identifiability

matrices are generated from functional connectivity matrices. Because functional connectiv-

ity matrices are symmetric, upper triangular elements are enough to represent connection

between all ROI pairs. We transformed upper triangular values to vector and correlated pre-

season vector with post-season vector, we finally calculated 13 by 13 identifiability matrix

for middle school participants and 24 by 24 matrix for high school group. Diagonal values of

identifiability matrices are inter-person functional connectivity correlation value across the

season and non-diagonal values are correlation value between pre-season scan of one person

and post-season scan of another.

Identifiability difference (Idiff ) is a value to measure how much difference is between diag-

onal values and non-diagonal values, which manifests identification. While self-identifiability

(Iself ) value represents diagonal values and indicates consistency of functional connectivity

across the season [17 ].

Iself (k) = Ikk, ∀k = 1, 2, ..., N (3.1)

Iothers(k) = 1
N − 1

∑
i6=k

Iik + 1
N − 1

∑
i6=k

Iki, ∀k = 1, 2, ..., N (3.2)

Idiff (k) = Iself (k) − Iothers(k), ∀k = 1, 2, ..., N (3.3)

The higher Idiff values are, the stronger difference is between inter-subject correlation

and cross-subject correlation. The higher Iself value is, the more consistent functional con-

nectivity is across the season.
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3.4.2 Yeo resting state networks analysis

As seven RSNs proposed by Yeo et al. are generated from the parcellation based on

intrinsic brain connectivity [27 ], We used the identifiability matrix based on intrinsic func-

tional connectivity of each RSN to measure the identification of individuals of our participant

group. Because the network models are not generated from our dataset, potential parcella-

tion deviation might exists. The seven networks are visual network, somatomotor network,

dorsal attention network, ventral attention network, limbic network, frontoparietal control

network and DMN, and their sizes are respectively 26, 33, 22, 19, 13, 33, 54 ROIs after

mapping to 236 regions. As we can see, DMN is the largest network of all.

The Idiff value of each identifiability matrix for 7 networks indicates whether the inter-

subject functional connectivity correlation of players are higher than cross-subject correlation

across the season of play, identification (or ”fingerprinting”) based on each RSN could be

different for middle school and high school football players.

Variation ratio is defined as the percentage of increase from the mean Idiff of middle

school players to that of high school players.

variation ratio = high school Idiff − middle school Idiff

middle school Idiff

The higher variation ratio is, the larger increase exists from middle school player group

identification to high school player group identification. If variation ratio is negative, then

identification decrease from middle school to high school.

3.4.3 Seed based region of interests

Then we focus on DMN and analyze how the intrinsic functional connectivity change

across the season base on our dataset. The performance is more adaptive to our participant

group than the DMN analysis in the previous section.

We fist picked 5mm radius circular region at both left and right PCC as seed ROI, and

then by correlating the seed ROI with all the 236 ROIs, we picked the ROIs highly correlated

with two seeds at the same time (p<0.05) for each player’s pre-season session, which is called
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seed-based ROIs for each subject. Changes of seed-based ROIs between pre-season scan and

post-season scan could reveal the influence of concussion in players.

For SCA, we would only consider about the highly correlated region with seed for the

entire group. However, from the map of common highly correlated ROIs for all players

which indicates a common brain functional connectivity network around PCC of the group,

we would get a very small number of ROIs in the map. Because our aim is to find a

more general correlation region with PCC instead of strictly limit ROIs to be the common

correlated region for every player, we relax the limitation to common correlated ROIs for

some of the players. From the relation of the threshold of player count and the number of

common highly correlated ROIs among the certain number of players, we picked a point at

around the middle of descent curve and set a threshold for the player number. As is shown

in Figure3.1, the x-axis is the number of players. If x is 5, then corresponding y value is the

number of ROIs correlated with seed for 5 players at the same time. There are 11 middle

school players and the number of highly correlated ROI is decreasing since x is larger than

3. We pick the middle of this decreasing slope as our threshold which is 6, so that the

seed-based ROIs are highly correlated with seed for most of the players but not everyone.

The threshold we picked is 6 out of 11 middle school players and 9 out of 15 high school

players. If the ROI is the common highly correlated ROI over the threshold number of players

and is correlated to both left and right PCC, then we mark it as seed based ROI for the

group. The final number of seed based ROIs is 150 for middle school group and 170 for high

school group. Seed-based functional connectivity matrix is generated from cross correlation

value of these seed based ROIs, diagonal elements are self correlation of ROIs which are all 1,

and off diagonal values are correlation between two ROIs. Seed-based functional connectivity

matrix is also symmetric.

Further three subsections are all analysis methods based on the seed-based functional

connectivity matrix.

3.4.4 ICC analysis

Intraclass correlation coefficient (ICC) is a statistical model to assess measurement of

reliability, the basic concept is evaluating reliability of observations on objects from different
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Figure 3.1. Middle School seed based ROI count and the threshold of player
count. If x is 5, then corresponding y value is the number of ROIs correlated
with seed for 5 players at the same time.

judges [60 ]. ICC analysis has been used in fMRI to evaluate test-retest reliability on brain

functional activations, where we treated functional connectivity as the observation, test

and retest as two judges and measure whether judges make reliable observations for all the

participants. ICC successfully provided evidence for fMRI reproducibility [61 ].

Though ICC is also called correlation coefficient, it is different from the Pearson corre-

lation we used in functional connectivity matrix. The difference between the two is that

Pearson’s r manifests stability of voxel activation compared to other voxels, ICC shows

stability of individual session activation compared to other individuals in the group [62 ].

While applying to SCA, we regarded functional connectivity of seed based ROIs as the

observations and players as the objects, ICC analysis gave an assessment on seed-based region

functional connectivity variation from pre-season to post-season [17 ]. Result of ICC model

is called ICC matrix, which is in the same dimension as functional connectivity matrix. The

higher value corresponding to the lower group difference for the changes in each ROI across

the season. This analysis bases on MATLAB ICC model proposed by [63 ].
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3.4.5 Seed-based identification analysis

The second analysis on seed-based functional connectivity matrix is identification anal-

ysis. Similar to the identifiability matrices calculated in section 3.4.2 for Yeo networks, we

would generate a 13 by 13 matrix from middle school data and a 24 by 24 matrix from high

school data for PCC seed-based region too. By here we need to do a quality control further.

As we mentioned in section 3.4.1, the higher Idiff values are, the stronger difference is

between inter-subject correlation and cross-subject correlation. If diagonal value in identifi-

ability matrix is lower than the mean of non-diagonal values for a particular row/column or

subject, then that means functional connectivity of post-season scan of this person is more

similar to that of other individual’s pre-season scan than that of himself [44 ]. This individual

can not be identified from the group. If this abnormal situation happens, we would assume

that there are some errors in the time series of pre-season scan of this participant and remove

this sample from the dataset. The 13 participants of middle school and 24 participants of

high school mentioned are good quality samples after quality check, in total 2 high school

samples (one player and one control) are discarded during this step.

Age difference is expected to be observed in Iself values. Here we have five groups:

controls, 7th grade middle school players, 8th grade middle school players, 15-16 years old

high school players and 17-18 years old high school players. Because we have a small number

of data and no experimental Iself probability distribution is given, only non-parametric

statistic test can be used. Kruskal-Wallis test is similar to one way ANOVA (parametric

method), it tests null hypothesis for several independent groups. Here we used it to compare

distribution of Iself between controls (baseline) and other player groups. Given the null

hypothesis that two sample groups come from the same distribution, if p value is smaller

than significance value 0.05, then the null hypothesis can be rejected. Kruskal-Wallis test is

based on MATLAB function.

3.4.6 PLA data analysis

PLA data analysis is based on the seed-based identifiability matrix. Iself is a measure-

ment of functional connectivity consistency of subjects across the season of play and we
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made an assumption that functional connectivity consistency is negatively correlated with

the intensity of HAEs. The magnitude of HAEs is quantified by PLA, each player has a

corresponding PLA data from the xPatch sensor along the season. Every acceleration with

PLA larger than 20g is recorded. Since we want to analysis a wide range of accelerations,

we considered the subsets of HAEs with PLA larger than 20g, 30g, 40g, 50g, 60g, 70g and

counted the number of events in these ranges. The data shows that how many light HAEs

and heavy HAEs did the players receive in practices and games during the season of play. A

scatter plot of HAE counts of 6 subsets with different PLA thresholds and Iself directly pic-

tures the relation between HAEs acceleration data and functional connectivity consistency,

and we try to validate our hypothesis with the distribution.
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4. RESULTS

Table 4.1 and 4.2 present middle school and high school in-network identifiability matri-

ces. The reason why it is called ”in-network” is that we picked the intrinsic ROIs of each Yeo

network and then generated corresponding functional connectivity matrices and identifiabil-

ity matrices. Iself and Idiff values indicate the inter-subject and cross-subject correlation

of connectivity each network between pre-season and post-season scans. Here we use the

general model of 7 functional resting-state networks to compare the performance with each

other [27 ].

The seven Yeo networks respectively are visual network, somatomotor network, dorsal

attention network, ventral attention network, limbic network, frontoparietal network and

default mode network. The number of ROI of each network is 26, 33, 22, 19, 13, 33, 54. The

comparison of mean Idiff value of the seven networks between middle school players and

high school players is shown in Figure 4.1.

However, one network of them is of bad quality for our dataset. Yeo5 is not only the

smallest one but also the most blurring part of rs-fMRI images. Many young subjects wear

brace which blocked the signal for almost half of the region of yeo5. Therefore it has a

corresponding lowest Idiff (Figure 4.9) and we can hardly see diagonal feature in Table 4.3

first line. As to its bad data quality, further Table 4.4 would skip yeo5 (Limbic network).
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Table 4.1. Middle school and high school in-network identifiability matrix yeo1 to yeo4
Network name middle school high school

visual network
(yeo1)

somatomotor
network
(yeo2)

dorsal attention
network
(yeo3)

ventral attention
network
(yeo4)
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Table 4.2. Middle school and high school in-network identifiability matrix yeo5 to yeo7
Network name middle school high school

limbic network
(yeo5)

frontoparietal
network
(yeo6)

default mode
network
(yeo7)
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Figure 4.1. Yeo identifiability matrices Idiff comparison between middle
school and high school players

Table 4.3 indicates the variation ratio, which is the percentage of increase from middle

school mean Idiff to high school mean Idiff , of six Yeo networks. We can observe different

variation from middle school to high school of these networks.

Table 4.3. Variation ratio of six Yeo networks. Variation ratio represents
percentage of increase from middle school mean Idiff to high school mean
Idiff .

Yeo network visual somatomotor dorsal ventral frontoparietal DMN
attention attention

variation ratio(%) 33.36 38.44 27.60 -6.35 15.12 6.50
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Further result figures and tables are related to seed-based functional connectivity. the

ROIs that highly correlated with seed region (PCC) for all players are shown in the following

map. The grey background of Figure 4.2 and 4.3 is a parcellation of GM (shen278 parcellation

[58 ]), in total 278 ROIs. The yellow regions are DMN mask and the red regions are ROIs

that highly correlated with PCC (here we call the red region as seed-based map).

The seed-based map is different from the region which seed-based functional connectivity

matrices based on, because functional connectivity matrices need to be a more general case

and include more possibly related connections. Here we mapped the common ROI region

of all players in order to view the intersection of seed-based functional connectivity of this

player group. Abnormal group intrinsic DMN functional connectivity could be found if we

compare it with the commonly used DMN map.

(a) Middle school pre-season seed-based map

(b) Middle school post-season seed-based map

Figure 4.2. Yellow regions are DMN network and red regions are ROIs highly
correlated with PCC for all players (p<0.05). Grey background is shen278
parcellations and there are 278 ROIs with different grey level. (a): there are
16 ROIs in red regions, 10 overlap with the DMN mask(yellow regions); (b):
there are 14 ROIs in red regions, 7 overlap with DMN mask(yellow regions).
There are 6 different ROIs between pre-season and post-season seed-based
maps.
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(a) High school pre-season seed-based map)

(b) High school post-season seed-based map

Figure 4.3. Yellow regions are DMN network and red regions are ROIs highly
correlated with PCC for all players (p<0.05). Grey background is shen278
parcellations and there are 278 ROIs with different grey level. (a): there are
18 ROIs in red regions, 11 overlap with the DMN mask(yellow regions); (b):
there are 18 ROIs in red regions, 11 overlap with DMN mask(yellow regions).
There are 5 different ROIs between pre-season and post-season seed-based
maps.

ICC matrices of high school players and controls are shown in Figure 4.4 to compare

functional connectivity test-retest reliability of players with controls. Because we only have

2 middle school controls, the number of controls is not comparable with middle school players.

Therefore, high school participants are observed in this part.

Each pixel indicates test-retest reliability of functional connectivity within one ROI pair

(236 ROIs in total, mentioned in methods3.3). As diagonal values are corresponding to con-

nectivity between ROIs and themselves, diagonal values of ICC matrices are all 1. Besides,

ICC matrices are symmetric as elements above diagonal correspond to the same ROI pairs

as those below diagonal.

In order to see whether there is any feature in ICC matrices, we reduced the range of

values in Figure 4.4.
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(a) Reducecd range ICC matrix of high school players

(b) Reduced range ICC matrix of high school controls

Figure 4.4. ICC matrix for high school players(a) and controls(b). Both are
reduced to range from -0.1 to 0.3 in order to see detail matrix pattern. Any
pixel value larger than 0.3 is marked as yellow, and that smaller than -0.1 is
blue here.
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Because diagonal values are all 1 and ICC matrices are symmetric, in Figure 4.5, we

focused on the upper triangular values and their distribution.

Figure 4.5. Distribution of high school ICC upper triangular values

Figure 4.6 and 4.7 base on the ROIs that highly correlated with seed region PCC, Identi-

fiability matrices show the changes of functional connectivity within these seed-based ROIs

across the season. Each element represents correlation value between two scans. Diago-

nal value represents the across-season changing for each person and off-diagonal values are

difference between pre-season scan of one person and post-season scan of another.

Idiff indicates difference between inter-subject correlation (diagonal values) and cross-

subject correlation (off-diagonal values), also manifests whether each individual can be iden-

tified from the group using functional connectivity. The identifiability matrix and Idiff values

of participants are shown in Figure 4.6 (high school) and Figure 4.7 (middle school).
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(a) High School seed-based identifiability matrix

(b) Idiff

Figure 4.6. High school seed-based identifiability matrix (a) and Idiff (b).
(a): this matrix is a similarity comparison of post-season scan with pre-season
scan. The horizontal axis represent post-season scans and the vertical axis
represent pre-season scans. Rows and columns labeled with p are players,
with c are controls. In total 15 players and 9 controls.
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(a) Middle school seed-based identifiability matrix

(b) Idiff values

Figure 4.7. Middle school seed-based identifiability matrix (a) and Idiff (b).
In total 11 players and 2 controls
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Distribution of diagonal value of identifiability matrices is shown in Figure 4.8. Here

we seperated all participants into 5 groups: controls of middle school and high school,

middle school 7th grade players, middle school 8th grade players, high school 15-16 years old

players and high school 17-18 years old players. The distribution of all groups is statistically

equivalent. Table 4.4 proves the equivalence using Kruskal-Wallis test.

Figure 4.8. Boxplot distribution of Iself in Figure 4.5 and 4.6. The five
groups here are controls of middle school and high school, middle school 7th
grade players, middle school 8th grade players, high school 15-16 years old
players and high school 17-18 years old players

Table 4.4. Kruskal-Wallis test between Iself values in identifiability matrix
of control group and that of other player groups in Figure 4.7

KW test middle school middle school high school high school
(with controls group) 7th grade 8th grade 15-16 years old 17-18 years old

p value 0.6917 0.6877 0.6203 0.5561

Figure 4.9 scatter plots show the relation between count of events with PLA larger than

20g, 30g, 40g, 50g, 60g, 70g and Iself of seed-based identifiability matrix.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.9. Count of events exceeding the indicated acceleration threshold
and Iself scatter plot: (a-f) are the distribution of the number of events whose
PLA larger than 20g, 30g, 40g, 50g, 60g and 70g. Red dots represent 17-18
years old high school data, magenta dots represent 15-16 years old high school
data, blue dots represent 8th grade middle school data and cyan dots represent
7th grade middle school data. Correlation values in the titles are calculated
from all the data points in the figure
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5. DISCUSSION

5.1 Brief Summary

Brain systems subserve our functions such as memory function, motor function, sensory

function and so on. In 2011, Yeo et al. proposed a parcellation of brain cortex based

on rs-fMRI and each part is potentially related to some functions [27 ]. The seven parts

represent seven functional brain networks, changes in functional connectivity have been

observed in task based fMRI studies related to corresponding cognitive functions [64 ], [65 ].

This parcellation has considerable impact on network neuroscience, many studies have used

Yeo seven networks as a template [28 ], [29 ], [64 ]. Therefore, we also used that as a template

in our study.

For seven Yeo RSNs, in-network identifiability matrices indicate different identification

level of each network. Dorsal attention network and frontaprietal network have relatively

higher identification, while visual network and somatomotor network have a relatively lower

value. The difference between the mean identification of middle school data and that of

high school data is also interesting. Identification of somatomotor network has the largest

increase from middle school players to high school players, matching with the development

of adaptive physical activity skills for young football players.

For SCA on DMN, seed-based ROI maps of middle school group and high school group

manifest the influence of age factor on functional connectivity. Post-season highly correlated

brain region with PCC is different from that of pre-season, and the change of number and

position of seed-based ROIs is larger for middle school players than high school players.

Another finding is that ICC analysis on seed-based functional connectivity matrix exhibits a

narrower range of individual difference in functional connectivity variation across the season

for player group than control group, showing the influence of HAEs.

However, seed-based identifiability matrix turns out not a good indicator for HAEs in our

dataset. There is no statistically significant difference in functional connectivity consistency

across season between controls and players, which fits for players in different age group. Also,

against our hypothesis, functional connectivity consistency is not related to the number of
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HAEs received, nor to the intensity of HAEs. Therefore, there is no relation found between

HAE counts, intensity and seed-based identifiability matrix.

5.2 Yeo networks identification comparison

Identifiability matrices in Table 4.1 and 4.2 base on ROIs within each brain network

and exhibit the consistency and identification of intrinsic network functional connectivity.

Seven Yeo networks respectively are visual network, somatomotor network, dorsal attention

network, ventral attention network, limbic network, frontoparietal network and default mode

network. As to the bad quality of yeo5 network data, further discussion part would skip yeo5

(Limbic network).

From Table 4.1 and 4.2, we have a broadly observation that identifiability matrices of

yeo1 and yeo2 network of middle school data do not have a clear diagonal feature compared

to the other four networks, this observation get verified in bar plot Figure 4.1. Yeo1 and

yeo2 turn out to be the two networks with lowest Idiff , and thus post-season visual network

and somatomotor network are more likely to resemble others’ pre-season scans. While yeo3

and yeo6 have relatively higher Idiff values, which is more apparent for high school data, so

intrinsic functional connectivity of dorsal attention network, and frontoparietal network are

more of the individual brain fingerprints than other networks.

Variation of Idiff from middle school to high school data is also different for each network.

Statistics in Table 4.3 shows the percentage of Idiff variation (how much proportion of

variation is in middle school Idiff ). High school data generally have higher Idiff than middle

school except for yeo4 (ventral attention network). Ventral attention network identification

is weaker for the older group of our dataset. Of the other 5 networks, fingerprinting variation

of visual network, somatomotor network and dorsal attention network are relatively stronger.

Somatomotor network even has the highest variation proportion among them, which matches

with our football player participant group. As players develop adaptive physical skills after

repetitive practice, distinct Somatomotor network intrinsic connectivity could also generated

during brain maturation.
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5.3 Age dependence in seed based ROI

Figure 4.2 and 4.3 are respectively middle school and high school seed-based ROI map.

Here we mapped the common ROI region of all players and observed the intersection of seed-

based functional connectivity of this player group. We then compared it with the commonly

used DMN map to find if there is any abnormal group intrinsic DMN functional connectivity.

For both middle school and high school, pre-season and post-season, over half of the seed-

based maps overlap with the DMN map. Besides, the DMN map is also from a broad

functional network parcellation template [27 ] and there could be some personal variation

for that. Thus, our seed-based maps have no obvious deviation from the DMN map, and

intrinsic DMN brain functional connectivity is verified to be in a normal case.

Also apparent difference between pre-season and post-season maps can be observed. The

number of ROIs in those seed-based maps are included in the captions of Figure 4.2 and 4.3.

For middle school data, there are 3 more ROIs of the pre-season seed-based map overlap

with the DMN map than that of the post-season map, in total 6 ROIs are different between

pre-season and post-season maps. For high school data, the number of overlap ROIs is the

same but in total 5 ROIs are different between pre-season and post-season maps. From the

number of overlap ROIs and variation of ROIs, alteration of seed-based ROI region for middle

school turns out heavier than for high school. Thus, high school group common seed-based

region is more stable than that of middle school group across the season, age dependence is

observed.

5.4 HAE influence to ICC

ICC matrix in this study is used to observe the consistency of judgement from different

subjects on the variation of functional connectivity of each ROI pairs across the season

of play. Or we can say it measures the test-retest reliability of functional connectivity.

Because self functional connectivity is always one which is constant, ICC value of diagonal

elements also equal one. For off-diagonal elements, the higher ICC number is, the more

similar the variation of functional connectivity is across subjects, so the variation is more

of a group feature. Low or even negative ICC value suggests that connectivity judgement
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among subjects are diverse, the changing law from pre-season to post-season of the functional

connectivity is random in this group.

As is shown in Figure 4.4 and 4.5, ICC analysis was performed to high school players and

controls separately. Most ICC value is less or close to zero, so most functional connectivity

have random variation in high school group. There is hardly any connectivity changes in

the similar way across the season for all players, but there are very few reach ICC>0.5 in

control group. The wider range of ICC of control group indicates that some brain functional

connectivity variations have an increasing individual difference after receiving HAEs, while

some others become more of a group feature after receiving HAEs.

Also, Figure 4.4 show reduced range (-0.1 to 0.3) ICC matrices of players and controls,

which give a detail view of ICC value distribution. While observing off-diagonal elements,

there are obviously more light pixels in control group and the positions of light or high ICC

pixels are different for players and controls. The difference in ICC matrices of players and

controls enhances the statement that functional connectivity variation across the season is

affected by HAEs.

5.5 Identification and consistency measurements for different age group

As is shown in Figure 4.6 and 4.7, seed-based identifiability matrix is the functional

connectivity correlation between pre-season and post-season scans. Diagonal elements are

Pearson’s correlation between pre-season and post-season scan of the same individual, which

we called Iself . As diagonal values show the consistency of self seed-based region correlation,

Idiff values manifest how much functional connectivity similarity between post-season scan

and pre-season scan of himself is higher than similarity between post-season scan and pre-

season scan of others.

From subfigure (b) of the two figures, Idiff values of high school participants are in the

range of 0.03 to 0.33 and that of middle school participants are in the range of 0.01 to 0.27.

This Idiff range matches with the statistics in other research [17 ]. Subjects like high school

p6, p10, p11 and middle school p4, p6 have Idiff lower than 0.05, which shows that their

post-season scans are similar to pre-season scans of other individual. This is a normal case

due to small individual difference while taking one of the scans.
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Distribution of middle school and high school Iself is shown in Figure 4.8, the higher

value Iself is the more consistent seed-based ROI functional connectivity is in the season.

Five groups here are control group including controls of middle school and high school, and

players in middle school 7th grade, middle school 8th grade, 15-16 years old (high school)

and 17-18 years old (high school). Since controls have not received any impacts, we could

use the first group as a baseline to discuss how sub-concussions are influencing functional

connectivity alteration. Middle school 8th grade player group has a wider range of Iself than

controls, while the other three groups have lower or higher Iself range than controls. But

the median value of the four groups are close to each other, so we further do statistical test

to quantify group difference.

Non-parametric Kruskal-Wallis test (Table 4.4) is used to compare distribution of Iself

between controls (baseline) and other player groups. Null hypothesis is that two sample

groups come from the same distribution. Since significance value is 0.05, all the p values

larger than that and are not able to reject null hypothesis. Therefore, seed-based functional

connectivity consistency of player groups in different age are not statistically significantly

different from that of controls.

5.6 PLA related hypothesis

Figure 4.9 describes the distribution of Iself value and the number of events with 6

different PLA thresholds. From the correlation values in titles of figures, we can find a

general weak relation between number of HAEs and Iself for all six figures. High school data

includes two players who received extremely large number of acceleration events. Count of

events and Iself values of player groups are in the similar range as that of control group. 7th

grade middle school players experienced the smallest number of acceleration events.

Originally, our hypothesize is that players with high PLA would have low Iself since HAEs

gradually disorder functional connectivity between nodes. However, two high school players

who received high count of acceleration events have pretty high Iself (larger than 0.5) which

rejects our hypothesis. One possible explanation of this phenomenon is that players who

experienced a large number of HAEs this season also had gotten many impacts before, so

their DMN brain functional connectivity has been altered previously and kept in the stable
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condition since. But this hypothesis is not able to be proved based on our dataset. From the

report of participants, 4 of the high Iself high HAE count players and one of the low Iself

high HAE count players also received concussions before, but reliability of these information

is hard to verify. Besides, we don’t have specific data of how many HAEs they received

before, so further research is needed to observe the long term changing of HAEs count.
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6. CONCLUSION

In this study, the influence of age factor and HAEs to DMN intrinsic functional connec-

tivity of young football players is observed using rs-fMRI seed-based analysis method, where

the seed region is PCC which is the central node of DMN. Experiments show that both

factors make changes to functional connectivity across the season of play. Two age groups

have different performances on seed-based ROI map, the change of number and position of

the seed-based ROIs across the season is larger for middle school players than for high school

players. Also high school player group has a limited ICC range compared to control group,

which shows that HAEs do affect functional connectivity alteration in the season.

Meanwhile, some hypotheses of seed-based identifiability matrix are rejected. Our origi-

nal assumption is that functional connectivity consistency is negatively correlated with count

of HAEs received. However, seed-based identifiability matrix turns out not to be a good in-

dicator for HAEs in our dataset. Consistency and identification of functional connectivity

are measured by identifiability matrix. Seed-based ROI region lays in normal identification

range. But there is no statistically significant difference in connectivity consistency across

season between controls and players (based on Kruskal-Wallis test), which is true for player

groups in different age range. Also, against our hypothesis, the consistency is not related to

the number of acceleration events received, nor to the intensity of any HAEs subsets. There-

fore, there is no relation found between count of HAEs in different intensity HAE subsets

and seed-based identifiability matrix.

Besides the SCA results on DMN, identifiability matrices of in-network ROIs indicate the

different identification level for seven Yeo networks. Dorsal attention network and fronta-

prietal network have relativly high identification, while visual network and somatomotor

network have a relatively low value. Also, the identification of somatomotor network has

the largest increase from middle school players to high school players, matching with the

development of adaptive physical activity skills for young football players.
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