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Effect of Eötvös and Reynolds numbers . . . . . . . . . . . . . . . . 71

6.3.3 Bubble rise velocities . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.3.4 Temporal bubble velocity correlations and bubble dispersion . . . . . 79

6.3.5 Pair Distribution functions . . . . . . . . . . . . . . . . . . . . . . . 86

6.3.6 Velocity fluctuations: Liquid and bubbles  . . . . . . . . . . . . . . . 89

6.4 Modeling using Gaussian Process regression . . . . . . . . . . . . . . . . . . 94

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7 TRANSIENT SINGLE BUBBLE DYNAMICS IN STABLY STRATIFIED FLUIDS 99

7.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.3.1 Non-stratified flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.3.2 Energy equation solver . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5



7.4.1 Effect of Stratification . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Bubble Wake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Drift Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Drag Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.4.2 Effect of Reynolds and Eotvos numbers . . . . . . . . . . . . . . . . . 116

Rise velocity and Drag coefficient . . . . . . . . . . . . . . . . . . . . 117

Drift Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.5 Partial Stratification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8 TOPOLOGICAL CHANGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.1 Free surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.1.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.2 Bubble coalescence and breakup in stratified liquids . . . . . . . . . . . . . . 127

8.2.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

9 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

A CONVERGENCE TESTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

A.1 3D simulations using front tracking method . . . . . . . . . . . . . . . . . . 142

A.2 Axisymmetric simulations using volume of fluid method . . . . . . . . . . . . 143

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6



LIST OF TABLES

6.1 List of cases simulated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.2 Comparison of velocity fluctuations with previous experimental and numerical
work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.1 Comparison of bubble aspect ratio and terminal velocity non-dimensionalized by
(gd)1/2 with results by [ 79 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.2 Comparison of Nu1/2, vmax, umax with results by [ 83 ] . . . . . . . . . . . . . . . 105

7



LIST OF FIGURES

4.1 Eulerian and front grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 (a) Interface represented as a front (b) Structure of the 3D front. . . . . . . . . 24

4.3 Curvature calculation for front-tracking method . . . . . . . . . . . . . . . . . . 28

4.4 PLIC reconstruction of the interface . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1 Schematic of the computational set-up (a) view of the bubbles rising in the do-
main (b) y − z view of a single bubble which is confined between two solid walls 36

5.2 Contours of non-dimensional vorticity for a single bubble in computational do-
main at t=1.57s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3 Spatial velocity correlation for the domain in the (a) Vertical direction (b) Hori-
zontal direction for α = 13.4% . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.4 Bubble center displacements for α = (a) 3.35%, (b) 8.37% and (c) 13.4% at
Fr = 6.37 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.5 (a-f)Vorticity (g-l) temperature contours superimposed on bubble trajectory for
rise of a single bubble upto t=1.57s . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.6 Bubble trajectories for α = (a) 3.35%, (b) 8.37% and (c) 13.4% at Fr = 6.37 . . 42

5.7 Flow field for α = 8.37% at Fr = 6.37 (a) Non-dimensional z-vorticity contours
(b) Temperature contours normalized by its highest value at t=0 . . . . . . . . 44

5.8 Streamlines within the bubble (a) y − x view at t = 1.57s (b) y − x view t=1.79s
and (c) y − z view at t = 1.57s . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.9 Bubble Reynolds number for different void fraction at Fr=6.37 (a)Instantaneous
vs time (b)Time averaged vs void fraction . . . . . . . . . . . . . . . . . . . . . 45

5.10 Bubble Reynolds number for different Froude numbers at α = 3.35% (a)Instan-
taneous vs time (b)Time averaged vs void fraction . . . . . . . . . . . . . . . . . 46

5.11 (a) Instantaneous bubble Reynolds number over time for different domain sizes.
Cluster Formation shown in (b) 8×16 domain at t = 1.1s and (c) 16×16 domain
at t = 1.54s.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.12 Cluster size index with corresponding Reynolds number for α = (a) 8.37% and
(b) 13.4% at Fr=6.37 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.13 Variance of bubble center displacements with time; (a) and (b) correspond to
vertical and horizontal variance at different void fractions at Fr=6.37 respectively 50

8



5.14 Autocorrelation functions at (a) different void fractions for Fr = 6.37 (b) different
stratification strengths at α = 3.35%. The inset figures in (a) show the time of
minimum amplitude in the first oscillation (tmin,1) and the time of maximum
amplitude in the second oscillation (tmax,2) as a function of α  . . . . . . . . . . 51

5.15 Semi-log plot of mixing parameters for varying α at Fr = 6.37 (a) COX number
(b) Diapycnal eddy diffusivity (non-dimensionalized by 15cm2/s) (c) Normalized
viscous dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.16 Semi-log plot of mixing parameters for varying Fr at α = 3.35% (a) COX number
(b) Diapycnal eddy diffusivity (non-dimensionalized by 15cm2/s) (c) Normalized
viscous dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.17 Time averaged (a,d) Diapycnal eddy diffusivity (b,e) COX number (c,f) Mixing
efficiency, plotted against α for two different Froude numbers and plotted against
Fr for α = 3.35% respectively. Red −− and −·− correspond to lower and upper
bounds respectively predicted by [ 45 ] in (a), [ 48 ] in (b) and (c)  . . . . . . . . . 56

5.18 Total scalar diffusivity normalized by molecular diffusivity versus the normalized
viscous dissipation. Fit to data taken from [ 48 ]: −−, (Kρ + κ)/κ = 0.2Prε/νN2;
· · ·, (Kρ + κ)/κ = 5Pr(ε/νN2)1/3; —, (Kρ + κ)/κ = 2Pr(ε/νN2)1/2

 . . . . . . . 57

5.19 Variation of Kρ with bubble velocity fluctuations. Same colors correspond to
same α. Same shapes correspond to same Fr  . . . . . . . . . . . . . . . . . . . 59

5.20 (a) Contours of concentration of low-diffusive passive scalar for α = 3.35%.(b)
Temperature contours for α = 8.37% . . . . . . . . . . . . . . . . . . . . . . . . 60

6.1 Spatial velocity autocorrelation for the domain in the Vertical (a) and horizontal
(b) directions for α = 5.86%, F r = 14.1 . . . . . . . . . . . . . . . . . . . . . . . 66

6.2 Mixing parameters (a) COX number (b) Diapycnal eddy diffusivity (c) Mixing
efficiency as a function of α for Fr = 14.1, Re = 44, Eo = 1.55 . . . . . . . . . . 69

6.3 Mixing parameters (a) COX number (b) Diapycnal eddy diffusivity (c) Mixing
efficiency as a function of Fr for α = 5.86%, Re = 44, Eo = 1.55 . . . . . . . . . 70

6.4 Mixing parameters (a,d) COX number (b,e) Diapycnal eddy diffusivity (c,f) Mix-
ing efficiency as a function of (a,b,c) Eo and (d,e,f) Re at constant α = 3.66%
and Fr = 14.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.5 (a) Liquid velocity fluctuations (b) Bubble velocity fluctuations at constant α =
3.66% and Fr = 14.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.6 Temperature stratification at alpha = 3.66%, F r = 14.1, Re = 100 and Eo = (a)
1.55, (b) 4.95 at t∗ = 50  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.7 Velocity fluctuations normalized by (gd)1/2 (left:u and right:v) near bubbles at
α = 3.66%, F r = 14.1, Re = 100 and Eo = (a) 1.55, (b) 4.95. (c): Temperature
perturbation near bubble averaged over all bubbles normalized by Tmax for Eo =
4.95. Vectors show average velocity field  . . . . . . . . . . . . . . . . . . . . . . 74

9



6.8 Bubble rise Reynolds number at constant Re = 44 and Eo = 1.55 as a function
of (a) void fraction at Fr = 14.1 and (b) Froude number at α = 5.86%  . . . . . 76

6.9 Bubble rise Reynolds number for initial Reynolds numbers of (a)Re = 25 (b)Re =
44 (c)Re = 74 (d)Re = 100 (e)Re = 200 for varying Eötvös numbers at α = 3.66%
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ABSTRACT

Mixing of stratified fluids due to motion of bubble swarms can happen through two major

mechanisms. The first is the capture and transport of heavier liquid into the lighter layers

by the bubble wake. The second is the mixing due to turbulent dispersion. Stratification

also affects bubble dynamics in various ways, namely by reducing the horizontal and vertical

bubble fluctuations and extent, altering the drag experienced by rising bubbles, and changing

the wake dynamics. The objective of this study is to understand these explained phenomena

by decoupling their effects from each other and studying them individually. CFD offers

powerful capabilities to achieve the decoupling and perform in-depth analysis of the fluid

flow.

Firstly, the study of mixing induced in stratified fluids by bubbly flow in a Hele-Shaw Cell

will be performed. Simulations are run for a range of void fractions and Froude numbers.

The confinement prevents turbulence production, and mixing occurs primarily due to trans-

port of colder liquid into the hotter layers by the bubble wake. Bubbles move in a zigzag

motion attributed to the periodic vortex shedding in their wake. We report the formation of

horizontal clusters and establish a direct correlation between the size of clusters and the rise

velocity of the bubbles. We report an increase in the buoyancy flux across the isopycnals

as the void fraction increases. The fraction of energy production due to the buoyancy flux

increases with the strength of stratification, giving rise to a higher mixing efficiency. At the

same time, cross isopycnal diffusion is higher at weaker stratification strengths.

Subsequently, direct numerical simulations of up to 146 bubbles rising in unbounded

stratified fluids are performed. Both the bubble dynamics and destratification effects caused

by the bubble motion are analyzed. The importance of bubble deformability and bubble

Reynolds numbers on the induced background mixing are studied by varying the Eötvös

number in the range 1.55 to 4.95 and Reynolds number in the range 25 to 200. Highly

deformable, high Reynolds number bubbles undergo path instabilities and give rise to higher

levels of mixing. Liquid and bubble velocity fluctuations and pseudo-turbulence caused by

the bubble motion in the unconfined setting are examined and are seen to play an important

role in mixing statistics. An increase in turbulent kinetic energy (TKE) levels with void
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fraction is noted. TKE levels are seen to decrease slightly as the stratification strength is

increased, indicating increasing stability and resistance to destratification. Regardless of

the stratification strength, a kinetic energy spectrum slope value between −3 ∼ −3.25 is

reported depending on Reynolds number. The dependence of mixing parameters on the

void-fraction of bubbles and stratification strength of the liquid is also presented.

Next, the study of buoyancy driven motion of a single air bubble in stratified liquid is

undertaken. A range of parameters including Froude number, Reynolds number and Bond

number are explored. The Reynolds and Bond numbers will be maintained at values where

the bubble motion and wake can be assumed to be axisymmetric. Wake dynamics and drift-

volumes associated with the bubble rising in the stratified fluid are analyzed. The presence of

secondary and tertiary vortices, which are alternating in direction, in the wake of the bubble

due to the negative buoyant force experienced by the isopycnals is reported. The isopycnals

oscillate before coming back to their stable state and the frequency of oscillations increases

with stratification strength. The dependence of drag coefficient, determined by an unsteady

force balance, and steady state bubble velocities, on the above mentioned parameters are

studied. Analysis of bubble rise in partial stratification reveals the differences between

homogeneous and stratified mediums.

Since most stratified bubbly flows occur near the free surface, an attempt is made at

modeling the bubble rise up-to the free surface and subsequent bubble bursting. A brief

study of in-line bubble coalescence is also attempted and potential future work for bubbly

flows with topological changes is discussed.

16



1. INTRODUCTION

The rising motion of bubbles occurs ubiquitously in nature. They are commonly found in

natural, chemical and biological processes. The fact that the fluctuations created by bubble

motion can help in mixing the background fluid without external mechanical agitation has

significant applications. Some examples include chemical reactors and heat exchangers con-

sisting of bubble columns, injection of bubbles for homogenization of liquid metal bath in

secondary steelmaking process and applications in metallurgy and food processing industry.

Rising bubbles are also prone to wake-induced oscillations, which can contribute to efficient

mixing. Furthermore, we need to understand how mixing and agitation are affected by tem-

perature or salt stratification in liquids since we encounter stratified fluids like oceans and

lakes more often than not in nature. Bubble plume mixers are used for destratification of

temperature stratified lakes and reservoirs, in order to preserve freshwater. The destratifi-

cation also improves the chemical quality of water. Bubble plumes are also used as bubble

curtains for containment of oil spills in oceans, which are inherently temperature stratified.

Besides the numerous applications of studying mixing in stratified fluids, the bubble dy-

namics is also influenced by the stratification. The vertical motion of bubbles rising in a

stratified environment, with a background density gradient β, depends on a variety of factors

including Reynolds number Re = ρlvbd/µ, Eotvos number Eo = (ρl − ρg)gd2/σ and Froude

number, Fr = vb/(Nd), where N =
√

βg/ρ◦, d, σ, Nb, VT are the buoyancy frequency, bub-

ble diameter, surface tension, number of bubbles and total domain volume, respectively. ρ,

µ, g, vb are the density, viscosity, gravity and bubble velocity calculated apriori, respectively.

Void fraction α = Nb
πd3/6

VT

, also plays a role through bubble interactions.

Confined bubbly flow is used in the cooling process in microelectronic devices [1 ]. Gas-

liquid flow in narrow channels is also important in nuclear industries for cooling purposes

[2 ]. Many heat exchangers and chemical reactors involve bubble columns [3 ]. Having bubbly

flow is useful in causing liquid agitation and consequently, liquid mixing without the need

for any moving mechanical parts and at relatively low Reynolds number.

Although the number of studies involving bubble motion and bubble induced turbulence

have gained tremendous significance, we find that there are still not many studies focusing
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on characterizing the mixing mechanisms in stratified fluids due to the bubble motion in

confined and unconfined settings. The confined case is of importance because we are able

to isolate the effects that bubble wake transport has on mixing. This would otherwise

be impossible in an unconfined domain where mixing happens both due to transport by

bubble wake as well as bubble induced turbulent fluctuations. Although stratified flows are

widely encountered in nature, there existed a notion that the scale (ρl/β ∼ O(m)) in which

stratification varied in lakes and oceans cannot affect bubbles of millimetric and lesser size.

This was proved to be incorrect [4 ], where it was established that the appropriate lengthscale

to determine whether motion is affected by stratification is Ls = (µlD/βg)1/4, where µl,

D, β and g are the liquid viscosity, diffusivity of stratifying agent, density gradient and

gravitational acceleration, respectively. In fact, we not only find that the bubble motion is

affected by stratification, but also the background velocity fluctuations, thermal mixing and

liquid energetics are affected by the bubble motion through varying degrees of stratification.

Apart from mixing properties, we find that there is a lack of comprehensive literature on

bubble motion characteristics spanning wide range of Reynolds, Eotvos and Froude numbers

in stratified fluids, particularly near the free surface. Valuable information about the bubble

dynamics can be obtained by considering a single rising bubble as evidenced by studies of

single rising drop [5 ] and falling sphere [6 ] in stratified fluids. Topological changes in bubbles

could also significantly alter the bubble and liquid dynamics and is an important factor to

consider in bubbly flows.
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2. OBJECTIVE AND SCOPE

Our objective is to investigate the bubble and liquid dynamics in the rise of bubbles in

temperature stratified Newtonian fluids. Computational fluid dynamics is used to construct

the different geometries and boundaries in order to solve for the fluid flow. The computational

technique allows us to isolate the different coupled effects between stratification and bubble

motion, which can then be individually studied. We achieve this by investigating mixing

properties when bubbles rise near wall and in unbounded settings. We also study the effect

of stratification on the motion of a single bubble. The three studies undertaken to address

our objectives are:

1. Induced mixing by rising bubbles in stratified fluids in a Hele-shaw Cell

a. Mixing occurring primarily due to transport by bubble wake is analyzed by looking

at liquid fluctuations and mixing parameters like diapycnal eddy diffusivity, mixing

efficiency and Cox number.

b. Bubble dynamics will be investigated using various physical parameters including

bubble velocity fluctuations and autocorrelation, path instabilities and wake flow.

c. A parametric study in the void fraction - Froude number space is performed.

2. Bubble induced liquid dynamics in unbounded stratified fluids

a. Liquid dynamics including mixing, TKE levels, liquid velocity fluctuations and

spatial/ temporal correlations and flow visualization will be analyzed.

b. Bubble dispersion, microstructure and bubble velocity fluctuations will be computed

and used to interpret the mixing results.

c. Wide range of parameters will be explored, including void fraction (3.5% ∼ 8%),

Froude (10 ∼ 28), Reynolds (25 ∼ 200) and Eotvos numbers(1.5 ∼ 5).

3. Transient single bubble dynamics in stably stratified fluids

a. Terminal velocities, bubble shapes and drag estimation on a single air bubble rising

in stratified fluids are reported

b. Wake dynamics, including drift volumes and presence of any secondary and tertiary

vortices due to negative buoyant force in stratified fluids is studied.

c. A comprehensive parametric study in the Re − Eo − Fr space is performed.
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d. Rising bubble in partial stratification is analyzed

4. Topological Changes

a. A preliminary study of bubble rising in a stratified fluid and merging with the free

surface is performed.

b. Importance of bubble coalescence/break-up is discussed along with a preliminary

simulation to validate in-line bubble coalescence.
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3. GOVERNING EQUATIONS

We perform fully resolved direct numerical simulations in stratified fluids. Our problem

of interest is solved numerically through the continuity, momentum and energy conser-

vation equations. We use the Boussinesq approximation and ignore density differences

due to stratification except in the buoyancy term. The equations are as follows:

ρ◦
Du
Dt

= −∇p + ∆ρg + ∇ · µ(∇u + (∇u)T ) + fσ, (3.1)

∇ · u = 0, (3.2)

ρ◦Cp
DT

Dt
= ∇ · (k∇T ). (3.3)

The viscosity, µ and density, ρ0, are defined as µ = µb(1 − Φ) + µlΦ and ρ0 =

ρb(1 − Φ) + ρlΦ, respectively. Subscripts b and l refer to the bubble and the liquid

phase respectively. Φ, the color function, is defined as 1 in the liquid phase and 0

inside the bubble. The color function is also used to update the thermal conductivity,

k and also the value of ρ◦Cp similar to how µ, ρ0 are defined. The second term on

the right hand side of equation 3.1 includes the stratification effect. Here ρ is defined

as ρ = ρ◦(1 − γ∆T ), where γ is the thermal expansion coefficient and ∆T is the

temperature difference with a reference temperature. A constant linear temperature

gradient, T0 = dT
dx

x, is imposed at t = 0 which translates to a linear density gradient.

The density at the bottom of the domain is ρ = ρ◦ and it decreases linearly upwards

initially. In case of periodicity in the vertical direction (as in the case of the confined

and unconfined studies), the quantity ρg is subtracted from ρg to so that there is no net

flow through the domain and the net force on the domain is 0. This gives ∆ρ = (ρ−ρ).

This is done to ensure that the domain is not accelerating downward. Here, ρ is the

mean density of the entire computational volume. If there are walls at the top and

the bottom (as in the case of the study of single bubble dynamics), ∆ρ will simply be
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ρ. The term fσ indicates the surface tension forces between the two phases and its

calculation is explained in chapter 4 .
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4. NUMERICAL FRAMEWORK

4.1 Confined and unconfined studies

The governing equations are solved by a finite volume/front tracking method which

was initially introduced by Unverdi and Tryggvason [7 ] and improved by Tryggvason et.

al [8 ]. This is a one-fluid approach to solve the Navier-Stokes equations where a single

set of equations is solved in the dispersed and the continuous phase. The equations are

solved on a staggered Eulerian grid. The bubbles are represented by “fronts”, which

are a set of interconnected points formed by an unstructured mesh. Both the Eulerian

and front grid are shown in figure 4.1 . The front is translated by interpolating the fluid

velocity from the Eulerian onto the front grid. The surface tension and color function

are computed on the front and interpolated back on to the structured grid. With this

Figure 4.1. Eulerian and front grid
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(a)

(b)

Figure 4.2. (a) Interface represented as a front (b) Structure of the 3D front.

approach, we are mostly interested in the statistically steady state flow. The range

of parameters we would like to study does not include cases of bubble coalescence or

breakup.

The projection method [9 ] is used to enforce continuity. This gives rise to an explicit

Poisson Equation for the pressure, which is solved using the HYPRE library [10 ]. The

third order QUICK (Quadratic Upstream Interpolation for Convective Kinetics) [11 ]

scheme is used for the momentum convection terms, while the second-order central

differencing scheme is used for diffusive terms. A second-order Runge-Kutta scheme is

used for time advancement.

4.1.1 Front Tracking

In the front tracking method, the interface is represented by a set of connected

marker points that are moved by the fluid as shown in figure 4.2 . In this method, we

use two grids: (i) Eulerian grid, where the governing equations of the fluid flow are

solved; (ii) Unstructured (front) grid that tracks the interface (figure 4.1 ). The front

grid is used to track the interface accurately and also to apply surface tension forces.
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The structure of the three-dimensional front is shown in figure 4.2b . The triangular

element on the front, ABC, along with the adjacent elements are shown. Each element

carries all the information about the front, including pointers to the corner points (red

arrows) and to the adjacent elements sharing an edge (blue arrows).

Since we deal with deformable bubbles, the interface can be stretched, compressed

and deformed by the flow. In order to accurately capture this, we will resort to adding

and deleting points on the front grid and subsequently reset the connectivity of the

marker points. The resulting sharp corners which might arise from the re-griding is

then smoothed.

4.1.2 Front-grid communications

It is necessary to transfer information between the Eulerian grid and front grid.

For instance, the velocity field with which the front is advected must be communicated

from grid to front and the surface tension force, which is computed on the front needs

to be transfered to the fixed grid. In order to achieve this, we first identify grid points

which are close to a given front point. In one direction of length Lx, if we have Nx

points where i = 0 refers to the point x = 0, then the nearest grid point to the left of

the front point, xf is given by

i = floor(MOD(xf , Lx) ∗ Nx/Lx), (4.1)

where floor is an operation which rounds the number down to the closest integer.

MOD(A, B), which gives the remainder of A ÷ B, is necessary when using periodic

boundaries. An identical method can be used to identify the nearest grid points in the

other two dimensions as well.

Once the grid points nearest to a front point are located, the grid variables needed

on the front, like velocity field, can be obtained by interpolation,

φl
f =

∑
ijk

wl
ijkφijk, (4.2)
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where φl
f and φijk are the variable values on the front at location l and on the grid,

respectively. wl
ijk is the weight of each grid point with respect to location l. Summa-

tion is done over all the neighboring grid points of the front which are considered for

interpolation.

Interpolation of quantities from the front to the grid, such as surface tension, can

also be done as,

φijk =
∑

l

wl
ijkφl

f

∆sl

∆x∆y∆z
, (4.3)

where ∆sl is the area of element l and ∆x, ∆y and ∆z are grid spacings in the three

directions.

The weighting function wl
ijk is the product of one-dimensional functions, wl

ijk(xl
f ) =

d(rx)d(ry)d(rz). Here, rx is the scaled distance rx = (xl
f − i∆x)/∆x. ry and rz are

calculated similarly. The one-dimensional smooth weighting function used was intro-

duced by Peskin [12 ] and readers are referred to this article for more details. Once the

velocity at each point on the front is computed, the new position of the front can be

found by advection using the second order Runge Kutta scheme for time integration.

4.1.3 Constructing the color function

In the front-tracking method, the boundary between the two phases, the front, is

advected. However, fluid properties such as density and viscosity are not advected

directly. We thus construct a color function, Φ, from the front to identify the two

phases and update the fluid properties at each time step. This is done by finding the

gradient of the color function on the fixed grid from the front grid and then integrating

it. The color function is uniform except at the front where it jumps from zero to one.

Therefore, the gradient of the color function is zero everywhere except on the front. On

the front the direction of gradient vector is normal to the interface pointing outward

from the bubble and its magnitude is given by ∇Φ =
∫

∆Φnδ(x − xf)ds, where ∆Φ is

the jump in the value of the color function across the interface and δ is the Dirac Delta

function. The gradient on the fixed grid is obtained using equation 4.3 .
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Once ∇Φ is obtained, Φ itself can be obtained by discretizing

∇2Φ = ∇ · (∇Φ). (4.4)

This equation can be discretized and solved by the Poisson solver.

4.1.4 Surface tension

The surface tension force is calculated as the total force on a small segment of the

front, fσ =
∫

σκ′n′δb(x − x′)dA′. The term is evaluated at point x while x′ is a point

on the interface, leading to the delta function, δb, discontinuous at the interface.

The mean curvature of the surface is κ′n′ = (n′ × ∇) × n′. The force on a surface

segment can be simplified to ∆f = σ
∮

C Pdl, where P is the direction of pull due to

the surface tension force and C is the boundary of the surface segment.

Part of the surface segment for the point X is shown in figure 4.3 in the shaded

region. X can be connected to arbitrary number of elements with each of these elements

containing a part of the surface segment and thus each contributing to the surface

tension force at point X. If we consider the element e, XM , YM and ZM are mid points

of the element and G is the centroid. The force on the side connecting X and YM is

canceled by the equal and opposite force from the other element sharing a border with

XZ. Same is true for the force on X − ZM . We are thus left with two contributing

forces due to element e on point X which are from sides ZM − G and YM − G in the

directions P2 and P1, respectively. The net contribution can thus be simplified to

P1∆s1 + P2∆s2 = 1
2n × ∆xZY , where n is the normal to element e, ∆s1 and ∆s2 are

the lengths of segments ZM − G and YM − G, respectively and ∆xZY is the length of

Y Z. The simplification is done by using the definitions of mid points and centroids.

Thus, the contribution of the surface tension force due to element e on each node can

be found. At each node the contributions of the elements surrounding it must be added

to find the total force.

Once the surface tension force is calculated on the front, it can be smoothed onto

the grid by using equation 4.3 .
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(a)

Figure 4.3. Curvature calculation for front-tracking method

4.2 Single bubble dynamics

For this study, we will use a partial differential equation solver called Basilisk,

which is a code that contains second-order accurate finite volume solver for the Navier-

Stokes equations. It uses an adaptive mesh refinement techniquie and a second order

staggered-in-time discretization, simplified using a time-splitting projection method

[9 ]. The resulting Poisson equation is solved using quadtree-based multilevel solver,

described in [13 ]. An implicit viscosity solver is used. A graded quadtree partitioning

is used for spatial discretization. Readers are again referred to [13 ] for further details.

Volume of fluid (VOF) method is used for interface tracking.

4.2.1 Volume of Fluid

In the VOF method, volume fraction C is used to track the interface. C has a value

of 0 or 1 depending on the fluid phase in cells which are fully occupied by one phase.

At the interface cell C takes values between 0 and 1, which is the volume fraction of
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the cell. In this method the solution for the advection equation of the volume fraction

is approximated.

∂C

∂t
+ ∇ · (Cu) = 0 (4.5)

Since we perform an axisymmetric simulation, we will describe the volume of fluid

method in two dimensions. There are two major steps involved in the Volume of fluid

method:

• Reconstruction of interface shape from the volume fraction

• Advection of the reconstructed interface

The multidimensional VOF scheme is implemented by using dimensional splitting.

The fluxes along one direction are computed and an intermediate C is calculated. This

is repeated for the other direction.

(a)

Figure 4.4. PLIC reconstruction of the interface

In order to reconstruct the interface using the PLIC (Piecewise linear interface

calculation) method, we first need to find the normal n using the volume fraction values
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in the cells. The equation of the interface in the cell is then written, as nxx + nyy = I,

where I is the intercept. Once we know the normal, the line can be moved along the

normal direction and the parameter I can be adjusted, so that the area under the

interface is ∆x∆yCij. Schematic of a reconstructed interface using PLIC method is

shown in figure 4.4 .

The interface normal is calculated by a Mixed-Youngs-Centered method [14 ], where

the best interface is constructed from the Youngs method [15 ], [16 ] and the Centered

Columns method.

In the Youngs method, the normal n is evaluated as the gradient n = −∇hC with

finite differences. The normal vector at the four corners of the cell are first calculated.

For instance, for the top left corner of cell i, j, the normal components would be

nx:i−1/2,j+1/2 = − 1
2h

(Ci,j + Ci,j+1 − Ci−1,j − Ci−1,j+1),

ny:i−1/2,j+1/2 = − 1
2h

(Ci−1,j+1 + Ci,j+1 − Ci,j − Ci−1,j).

Normal components for the other cell corners can be similarly evaluated and the normal

of the cell center is computed as the average of the cell corners.

In the Centered Columns method, the volume fractions can be added columnwise

to give a height function y = f(x) or rowwise to give a width function x = g(y) for

the same block of cells. For example, the height yi−1 at xi−1 placed in the center

of the column is given by hyi−1 = h2∑1
k=−1 Ci−1,j+k, where h is the length of the

side of the cell. The height function in the central block is approximated by the

equation sgn(ny)y = −nxx + I ′. The slope nx is computed using the centered scheme

as nx = − 1
2h

(yi+1 − yi − 1). We also need the sign of ny, since by adding the volume

fraction column-wise, we lose information as to which phase is on top or on the bottom

of the cell block. ny is calculated as ny = −∂C/∂y and the sign can be evaluated using

finite differences. The interface can also be described by a width function as mentioned

previously. Following similar procedure as for the height function, we can construct

the interface line using the width function as well.
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Thus we obtain slopes using the height and width functions using the Centered

Columns method and also the slope using the Youngs method. The best among these

slopes is chosen to reconstruct the interface as outlined in [14 ].

Once the normal is obtained, the intercept can then be computed with the knowl-

edge of C and nx, ny. The volume fraction flux is then calculated from the upwind cell

volume fraction. Following this, the volume fraction field can be updated according to

the advection equation 4.5 .

The surface tension force here is evaluated using the Continuous Surface Force

(CSF) method. The force fσ is computed as σκ′n′δb. In CSF method, the δb distri-

bution is approximated by |∇C|, since the color function approximates the Heaviside

function.
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5. INDUCED MIXING IN STRATIFIED FLUIDS BY RISING

BUBBLES IN A HELE-SHAW CELL

Portions of this chapter, previously published in Physical Review Fluids Journal [17 ]
used with permission from American Physical Society. Copyright ©2020 by American
Physical Society.

5.1 Literature Review

Motion of bubbles in confined Hele-Shaw cells has gained tremendous importance

in recent times. Confinement of bubbles alters the bubble dynamics. There is a thin

liquid film between the bubble and the wall. The bubble wake is subjected to shear

stress at the wall, and the wake length is of the order of a few bubble diameters, which

is less than in unbounded flows. Mixing in the background liquid can occur either

due to the transport by the bubble wake or due to turbulent dispersion [18 ]. In a

configuration where the bubbles are confined in a thin gap, turbulence cannot occur

even at high Reynolds numbers (Re) since the vortices have a short lifetime [19 ], [3 ].

A flattened bubble has a much larger interfacial area, and hence effective diameter,

for a given bubble volume in comparison to an unconfined bubble. Thus, the mixing

in the background fluid is mainly caused by the bubble wakes, despite large Reynolds

numbers. Bush and Eames [20 ] showed through experimental and analytical studies

that the primary wake advects fluid with the bubble generating an enhanced reflux

and promoting longitudinal dispersion. They chose the confined geometry since the

effects of drift and reflux are more pronounced in two dimensions with simpler flow

visualization. Alméras et. al. [18 ] experimentally studied the transport and mixing

of low-diffusivity dye in a homogeneous swarm of bubbles. They observed that at

low void fractions, α, the diffusion coefficient scales as α0.4 in unconfined flows. They

established that in confined flows, mixing could not be modeled as a diffusion process

since it occurs due to the transport by bubble wakes. Bouche et. al. [19 ] also conducted

experiments to study the mixing of a passive scalar with a low diffusivity in a swarm

of bubbles. It was shown that mixing is enhanced in the confined geometry due to the
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dominant role of the bubble wake in the scalar transport. The Fickian law of diffusion

cannot reproduce the mixing since the temporal evolution of the dye concentration in

the observation window was seen to decay exponentially.

The differences in confined and unconfined bubbly flows can further be characterized

by looking at the rise velocity and velocity fluctuations of the bubbles. It was shown

through experiments that for high Reynolds number bubbles rising in a Hele-Shaw cell,

the drag coefficient is constant for a wide range of Reynolds numbers, in contrast to

the unconfined case [21 ]. The vorticity is attenuated due to the confinement. The

combined numerical and experimental studies by Wang et. al. [22 ] showed that with

an increase in the gap width, the drag coefficient decreases accompanied by an increase

in the bubble terminal velocity. They also showed that as the gap width is increased,

the wake length becomes larger. Study of rising motion of bubbles near a vertical

wall [23 ] reported an increase in average rise velocity of bubbles with an increase in

void fraction between 3.75% and 60% due to the formation of vertical clusters. It

was further shown [24 ] that in confined bubbly flows, velocity fluctuations are due to

the disturbances localized near the bubbles, and scale as α0.46 in the vertical direction,

while in the horizontal direction the fluctuations are mainly due to the vortex shedding.

They also reported a slight increase in the vertical rise velocity with an increase in void

fraction. This is in contrast with the unconfined case. Thus the classic hindrance effect

used to explain the bubble rise velocity trend in the unconfined case is not valid here.

The study of agitation in the liquid phase due to rising bubbles in a thin gap further

confirms the fact that vertical fluctuations are governed by hydrodynamic interactions

[3 ]. These fluctuations were attributed to the flow disturbances localized in the bubble

vicinity.

The rising motion of bubbles and drops in a stably stratified fluid causes de-

stratification and mixing of the density layers [25 ], [26 ]. The bubble dynamics is also

affected by the stratification. Bayareh et. al. [27 ] studied the dynamics of two drops

in a density stratified fluid. They reported the suppression of horizontal and vertical

motion for the side-by-side drop configuration. In-line drops are shown to retain their

configuration, unlike the non-stratified case. The rise velocity and velocity fluctuation
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of a swarm of drops rising in a linearly stratified fluid are suppressed compared to the

homogeneous case [25 ]. Dabiri et. al. [25 ] also reported enhanced horizontal cluster

formation. Ardekani et. al. [26 ] reported a similar trend in their study of the mo-

tion of particles and drops in stratified fluids. Chen and Cardoso [28 ] studied mixing

induced in a two-layer density stratification by a bubble plume. They showed that

small bubbles de-stratify the lower layer, while large bubbles increase the density of

the upper layer. In the case of large bubbles rising through a stably-stratified sharp

interface with a zigzag trajectory, it was seen that the drift volume detaches from the

bubble, leaving a trail of heavier fluid in the lighter phase leading to enhanced mixing

[29 ]. In the case of a bubble plume rising through a step density distribution [30 ],

it was shown that the liquid plume impinged on the interface and split. About 20%

of the volume flux followed the bubbles into the upper layer, while the larger volume

flux entrained the upper layer fluid and fell back onto the top of the lower layer, re-

ducing stratification. They further demonstrated that, in the case of a linear density

distribution, three distinct layers are formed. The top and bottom layers are similar

to those formed in the step density distribution, while the middle layer preserves the

linear stratification. This middle layer reduces in length and ultimately vanishes, lead-

ing to the step density configuration. Neto et. al. [31 ] conducted similar experiments

where a bubble plume rising through the ambient fluid with two-layer stratification is

negatively buoyant when the mixture reaches the top layer and forms a fountain. The

speed of the bubbles exceeds the speed of the fountain due to which the lower layer of

the fountain rises a finite distance in the upper layer entraining the upper layer fluid.

After a finite time, the entrained liquid collapses, leading to an intermediate mixing

layer. Blanchette [32 ] used numerical simulations to describe the effects of settling

particles on a temperature stratified fluid. It was seen that for the settling of a single

particle, the time evolution of the height of an isopycnal shows a damped oscillatory

motion with a period of the order of 1/N , where N is the Brunt − V äisälä frequency.

As volume fraction of the particles increases, the stratification is disrupted, giving rise

to a well-mixed fluid. Wang and Ardekani [33 ] studied biogenic mixing of swimmers

in stratified fluids. Mixing was quantified in terms of Cox number, diapycnal eddy dif-
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fusivity and mixing efficiency. Mixing characteristics were seen to increase with higher

volume fractions and higher density stratification.

Despite the above-mentioned studies, the mixing of density stratified fluids due

to bubble motion in a confined geometry is poorly understood. The confined case is

of importance because we are able to isolate the effects that bubble wake transport

has on mixing. In the present numerical study, the effects of density stratification

and confinement on the rising motion of bubbles have been tackled. An insight into

various physical parameters that describes the flow has been presented, and the mixing

induced by the bubble motion has been quantified. Path instability in the confined

domain caused by periodic vortex shedding is observed and quantified. It is seen that

as void fraction, α, increases, the buoyancy flux across the pycnoclines increases. It

is also shown that with an increase in the stratification strength, the fraction of total

energy lost to buoyancy increases.

5.2 Problem Description

Our objective is to simulate the rising motion of air bubbles in a narrow gap between

two rigid walls in a temperature stratified Newtonian fluid. The distance between the

walls is comparable to the effective diameter of the bubbles. The two boundaries in the

z-direction are fixed (see figure 5.1a ) and have no-slip velocity boundary conditions.

The effective bubble diameter, deff , is dependent on the separation between the two

fixed walls, w. In the present simulations, monodisperse distribution of bubbles with

w/d ≈ 0.31, where d is the initial effective bubble diameter, is maintained. A periodic

velocity boundary condition is imposed in the x and y directions. Linear temperature

stratification is initially imposed in the y-direction (vertical). T is the actual tempera-

ture which is given by T = Tm + dT
dy

y, where dT
dy

is the constant background temperature

gradient. The second term gives rise to a temperature field linearly varying in y. Tm

is the temperature perturbation. Thus, in order to maintain the linear background

stratification, a periodic boundary condition is implemented for the temperature per-

turbation, Tm. The temperature stratification leads to a linear density stratification.
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Figure 5.1. Schematic of the computational set-up (a) view of the bubbles
rising in the domain (b) y−z view of a single bubble which is confined between
two solid walls
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Even though we use temperature as the stratifying agent in our study, the analysis for

concentration stratification is similar.

The bubbles are initialized with their z-centers at the midpoint between the two

walls. Since the effective bubble diameter is much larger than the gap between the

walls, the bubbles are initialized as ellipsoids. The effective two-dimensional diameter

of the bubble is calculated as deff =
√

4A/π, where A is the projected area of the bubble

in the x − y plane. The given configuration leads to a free rise of bubbles under the

effect of buoyancy. As the bubbles rise, they become flattened and confined (fig 5.1b )

between the solid walls.

The dimensionless parameters used to characterize the motion of bubbles include

the Archimedes number, Ar = ρf

√
gdd/µf , Reynolds number, Re0 = ρfV0d/µf , Bond

number, Bo = ρfgd2/σ and Weber number, W e = ρfV 2
0 d/σ, which is the ratio of

inertial to interfacial force. These four quantities are kept fixed throughout this study

at Re = 460, Ar = 807, Bo = 3.46 and W e = 1.12. These values essentially rep-

resent air bubbles of diameter 3.8mm in water. Here ρf and µf are the density and

dynamic viscosity of the background fluid, d is the bubble diameter, g is the gravi-

tational acceleration, σ is the interfacial tension and V0 = 0.57
√

gd is the mean rise

velocity of an isolated bubble at 600 ≤ Ar ≤ 1500 [21 ], [24 ]. The stratification of the

background fluid can be characterized by the Froude number Fr = V0/(Nd). Here

N , the Brunt-V äisälä frequency, also known as the buoyancy frequency, is given by

N = (βg/ρ0)1/2. In the expression for N , β is the vertical density gradient in the

background fluid and ρ0 is the background density without the stratification. The void

fraction, α, of Nb number of bubbles in the domain is given by α = 4
3Nbπabc/(LBw)

where a, b and c are the axis lengths of the initially ellipsoidal bubble, w is the gap

between the two walls while L and B are the length and breadth of the computational

domain. Fr and α are varied in the simulations to achieve different levels of back-

ground stratification and different flow configurations. The density and viscosity ratios

of the background fluid to the bubbles are maintained at ρf/ρd = 100 and µf/µd = 10.

Bubble dynamics is analyzed by studying the average velocity of bubbles at dif-

ferent void fractions and stratification strengths, which is quantified by the Froude
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Figure 5.2. Contours of non-dimensional vorticity for a single bubble in
computational domain at t=1.57s

number. Bubble dispersion and trajectories are studied. The autocorrelation function

of horizontal bubble velocity gives interesting insights into the path and behavior of

the bubbles. We also quantify the mixing which takes place in the background fluid,

by computing mixing efficiency, diapycnal eddy diffusivity, and the Cox number.

5.3 Results and Discussion

Simulations are run in a doubly periodic domain with a size of 5d × 10d × 0.31d.

4.19 million grid points are used to resolve the flow, with 51 points across the bubble

diameter initially. Void fractions of 3.35%, 8.37%, and 13.4% are used. The flow

configuration represents air bubbles of diameter 3.8mm in water. Initial Reynolds

number of Re0 = ρf (0.57
√

gd)d
µf

≈ 460 is used for all the simulations.
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Figure 5.3. Spatial velocity correlation for the domain in the (a) Vertical
direction (b) Horizontal direction for α = 13.4%
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5.3.1 Domain size dependence

The computational domain size is tested for domain size dependency. The length

of the domain in the vertical direction is the most important one due to the wake of

the bubble. It must be made sure that any bubble does not interact with its own wake

once it crosses the boundary of the periodic domain and re-enters on the other side.

This implies that the length of the domain must be greater than the length of the wake.

The length of the wake behind the bubble decreases as the void fraction increases due

to the interaction between the bubbles [3 ]. Thus looking at the wake for a single bubble

is appropriate when testing for domain size dependency.

Simulations are run with a single bubble in the computational domain at an α =

0.84% with Ly = 10d. The non-dimensional vorticity contours are plotted (figure 5.2 ).

Non-dimensionalization is done by dividing vorticity by vb,avg/d, where vb,avg is the

average rise velocity of the bubbles. Periodic vortex shedding consisting of counter-

rotating vortices can be seen behind the bubble. The vortices which are detached from

behind the bubble die out rapidly. Simulations are also run with Ly = 20d, and the

bubble Reynolds numbers in the vertical direction are compared. It was found that the

difference in average Reynolds number between the two cases is 0.8%. Hence, Ly = 10d

is used for the rest of the results.

We further look at the spatial autocorrelations of both vertical (v) and horizontal

(u) velocities with spacing in the vertical (ry) (figure 5.3a ) and horizontal(rx) (figure

5.3b ) directions for α = 13.4%. Both rx and ry have been non-dimensionalized by Lx

and Ly, respectively, and the autocorrelation has been time-averaged after the flow has

reached a statistically steady state. Figure 5.3 shows that as the spacing is increased

both in the horizontal and vertical directions, the autocorrelation dies to 0 as rx and

ry approach Lx/2 and Ly/2, respectively. Thus we can conclude that for the periodic

boundaries, the domain size is sufficiently large.
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Figure 5.4. Bubble center displacements for α = (a) 3.35%, (b) 8.37% and
(c) 13.4% at Fr = 6.37
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Figure 5.5. (a-f)Vorticity (g-l) temperature contours superimposed on bubble
trajectory for rise of a single bubble upto t=1.57s
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Figure 5.6. Bubble trajectories for α = (a) 3.35%, (b) 8.37% and (c) 13.4% at Fr = 6.37

5.3.2 Bubble trajectories

The dispersion of bubbles in the horizontal direction can be observed by superim-

posing the displacements of each bubble center with respect to its own location. Figure

5.4 shows that the dispersion increases with an increase in α. For a void fraction of

3.35%, a regular oscillation of bubbles about the center is seen. As α increases, the

interactions between the bubbles also increase, and the motion of the bubbles becomes

more chaotic, causing more dispersion.

The evolution of the bubble wake vortical and stratification structures with time,

when the bubble is moving in a zigzag pattern, is shown in figure 5.5 for a single bubble.

The trajectories of bubbles at different void fractions are plotted in figure 5.6 to capture

their zigzag motion. It has been experimentally shown [34 ] that bubbles rise in a zigzag

fashion in a Hele-Shaw cell and it was established that it is due to the periodic vortex

shedding. This was observed in our simulations, where the counter-rotating nature of

the vortices is seen for the case of a single bubble (figure 5.5 ).
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5.3.3 Flow field

Looking at the flow field around the bubbles gives interesting insights into their

behavior. Figure 5.7 a shows the flow field on the y − x plane with a contour plot

of vorticity at a particular time instant. As before, periodic vortex shedding can be

observed. At this void fraction (α = 8.37%), the wake of the bubbles interact with each

other causing the wake length to be even shorter than the single bubble case. Figure

5.7 b shows the temperature contours which are non-dimensionalized by the highest

temperature value at t=0. The linearity of the temperature profile in the y-direction

has been disrupted by the bubbles. The transport of lower, denser layers of fluid into

the upper layers by the bubble wake can be clearly seen.

The flow pattern inside the bubble is realized by plotting the planar streamlines

in a frame of reference moving with the bubbles (figure 5.8 ). Figures 5.8a ,b show the

streamlines on the y − x plane at z = zc, while figure 5.8c shows the same on the

y − z plane at x = xc, where zc and xc are the z and x coordinates of the volumetric

centroid of the bubble respectively. The streamlines in the y − z plane show the two

major toroidal vortices along with recirculation zones at the top and bottom within the

bubble. The secondary vortices rotate in a direction opposite to the primary vortices.

The recirculation zones appear in the y − z planes to the right of xc when the bubble

has a positive u-velocity and vice versa. This shows that the flow is highly three-

dimensional within the bubble. This asymmetry can also be observed in figure 5.8a ,

where the bubble is moving to the right and 5.8b , where it is moving to the left. The

presence of toroidal vortices along with recirculation zones was previously reported

by [35 ], where they analyzed the flow phenomena in a laminar Taylor bubble flow in

square mini-channel. In their study, they analyzed the motion of a slug bubble which

is confined in two directions as opposed to confinement in a single direction in our case.
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(a) (b)

Figure 5.7. Flow field for α = 8.37% at Fr = 6.37 (a) Non-dimensional
z-vorticity contours (b) Temperature contours normalized by its highest value
at t=0

(a) (b) (c)

Figure 5.8. Streamlines within the bubble (a) y − x view at t = 1.57s (b)
y − x view t=1.79s and (c) y − z view at t = 1.57s
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5.3.4 Rise Velocity

The slip velocity of the bubble swarm is calculated as

vb(t) = 1
Nb

Nb∑
i=1

vb,i(t) − 1
Vf

∫
Vf

v(x, y, z, t)dV, (5.1)

where vb,i(t) stands for the instantaneous vertical velocity of the ith bubble. The second

term in equation 5.1 is the volume-averaged velocity of the background fluid, where Vf

is the volume of the background fluid and v(x, y, z, t) is the vertical liquid velocity field

of the domain. The steady-state average rise velocity of the bubble swarm is obtained

by

vb,avg = 1
T − t0

∫ T

t0
vb(t)dt, (5.2)

where the time interval T − t0 is chosen such that the slip velocity of the swarm has

crossed the transient stage and is at a statistical steady state.
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Figure 5.9. Bubble Reynolds number for different void fraction at Fr=6.37
(a)Instantaneous vs time (b)Time averaged vs void fraction

Figure 5.9a gives the time variation of Reynolds number of the bubbles for different

void fractions at Fr = 6.37. We see a slight drop in velocity from α = 3.35% to

α = 13.4% (a 11% decrease). This is more apparent from the plot of time-averaged

Reynolds number against void fraction (figure 5.9b ). Several simulations with slightly

45



0.0 0.5 1.0 1.5 2.0
t (s)

0
100
200
300
400
500
600
700

Re

Fr=4.5
Fr=6.37
Fr=12.74
Homogeneous

(a)

6 8 10 12
Fr

0

100

200

300

400

500

600

Re

(b)

Figure 5.10. Bubble Reynolds number for different Froude numbers at α =
3.35% (a)Instantaneous vs time (b)Time averaged vs void fraction

different initial conditions are used to calculate the time-averaged bubble rise velocity

with error bars corresponding to the lowest and highest average velocity obtained from

these simulations. The error bars show that the variations of velocity for different

void fractions overlap, and thus we cannot infer a clear trend. In the unconfined case,

a steady and more pronounced (a 30% decrease) drop in rising velocity is observed

with an increase in void fraction [36 ]. This can be explained by the hindrance effect,

where there is a downward liquid velocity between the bubbles, which increases as

the void fraction increases. We see in the confined domain that the hindrance effect is

counteracted by a phenomenon where the bubbles get caught in the wake of neighboring

bubbles and are accelerated. This phenomenon happens because, in a confined domain,

the number of degrees of freedom of the bubbles is less than an unconfined case leading

to more wake interactions.

Figure 5.10a gives the time variation of the Reynolds number of the bubbles for

different Froude numbers at α = 3.35%. The time-averaged Reynolds number (figure

5.10b ) again does not show a clear trend, and there is almost no change in the fluc-

tuating bubble velocities as the Froude number increases. This is in contrast to the

trend observed for drops rising in water [25 ]. This is because the density difference

between the background fluid and air bubbles is large. The change in density in the
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Figure 5.11. (a) Instantaneous bubble Reynolds number over time for differ-
ent domain sizes. Cluster Formation shown in (b) 8 × 16 domain at t = 1.1s
and (c) 16 × 16 domain at t = 1.54s.

fluid created by the stratification is small compared to the density difference between

the bubbles and the non-stratified fluid. Since buoyancy force causes the bubbles to

rise, the rise velocity of the bubbles does not change significantly with stratification at

a constant void fraction.

We see from figure 5.9a and 5.10a that the rise velocity shows large fluctuations and

drastic dips at isolated times. This happens due to the brief formation of horizontal
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clusters. Horizontal clusters have been reported in unconfined bubbly flows in homo-

geneous density fluids [37 ],[38 ] and stratified background fluid [25 ]. They block the

flow and hence cause a drop in the average rise velocity of the bubbles. The velocity

dip can happen even when just two bubbles come in close contact in a side-by-side

configuration [39 ].

Figure 5.11a shows the bubble Reynolds number for two different domain sizes

8 × 16 × 0.5 and 16 × 16 × 0.5 (where lengths are non-dimensionalized by 0.625d). In

the second case the domain has been doubled in the horizontal direction, which is the

direction in which bubble clusters were observed. This is done in order to see whether

the formation of clusters is related to the horizontal size of the periodic domain. The

large fluctuations and sudden dips in velocity are observed even in the bigger domain.

Figure 5.11b and 5.11c show the formation of horizontal clusters in both the 8×16×0.5

and 16 × 16 × 0.5 domains at t = 1.1s and t = 1.54s, respectively. At t = 1.1 s, we

see a horizontal cluster in the 8 × 16 domain in figure 5.11b and a corresponding dip

at 1.1s is observed in the Reynolds number (see figure 5.11a at the blue dotted line).

Similarly, for the 16 × 16 domain at t = 1.54s, a horizontal cluster (figure 5.11c ) and

corresponding velocity dip (see figure 5.11a at the black dotted line) can be seen.
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Figure 5.12. Cluster size index with corresponding Reynolds number for α =
(a) 8.37% and (b) 13.4% at Fr=6.37
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The formation of horizontal clusters can be quantified by the cluster size index.

The marker function is defined as φ = 0 in the dispersed phase and φ = 1 in the

continuous liquid phase. We define a cluster size index as follows. Across any horizontal

line, the marker function is averaged over the x − z plane, and the minimum through

all y locations is taken at each time step. At any time step, a lower value of the

cluster size index would imply a higher presence of the gas phase on the horizontal

line corresponding to the biggest cluster. This means a larger cluster size. Figure

5.12 shows a plot of the cluster size index and the corresponding Reynolds number

(Re) for different void fractions. We see that whenever there is a drop in the cluster

size index, there is also a corresponding drop in Re at a slightly later time. This is

because the cluster is first formed and then the drop in Re happens (see t ≈ 0.4s−0.5s

in figure 5.12a and t ≈ 0.1s−0.2s in figure 5.12b ). A similar cluster formation and

immediate breakup have also been observed in literature in the context of bubbly flow

in Hele-Shaw cells by [40 ].

5.3.5 Velocity Autocorrelation

Autocorrelation of horizontal velocity is defined as follows

Cxx(t) = 〈v′
bx(T )v′

bx(T + t)〉
〈v′2

bx〉
, (5.3)

where vbx refers to the horizontal bubble velocity, and primed quantities refer to

fluctuations. The autocorrelation function determines the behavior of bubbles in the

vertical and horizontal directions, gives a measure of whether there are enough bubbles

in the domain, and is used to ensure that the statistics calculated are independent of

the number of bubbles initialized.

To calculate the autocorrelation function, we need to determine the Lagrangian

time scale. To determine this, we look at the bubble center displacements.

x′(t) = x(i)(t) −
〈
x(i)(t)

〉
, (5.4)
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where superscript i refers to the ith bubble. From analysis by [41 ] we have

1
2

d 〈x′2(t)〉
dt

=
〈
v′2

bx

〉
Tx, (5.5)

where 〈〉 refers to averaging over Nb bubbles, and the variances of bubble center dis-

placements are considered for a significant amount of time. Equation 5.5 is used to find

the Lagrangian time scale so that all statistics are calculated for time intervals much

greater than Tx.
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Figure 5.13. Variance of bubble center displacements with time; (a) and (b)
correspond to vertical and horizontal variance at different void fractions at
Fr=6.37 respectively

Tx is thus obtained by plotting 〈x′2(t)〉 normalized by 〈v′2
bx〉 vs time and obtaining

the slope of the graph (figure 5.13 ). We see that the vertical timescale, calculated to

be Ty = 0.17s, is approximately the same for different void fractions (figure 5.13a ), a

trend also observed by Bouche et. al. [24 ]. The horizontal timescale increases as void

fraction increases (figure 5.13b ), and at the highest void fraction, we have Tx = 0.04s.

Similar values for the horizontal and vertical Lagrangian timescale were also obtained

by Bouche et. al. [24 ]. They have shown that the horizontal Lagrangian integral

timescale varies with α as Tx = 0.33αs. Thus, for the highest α of 13.4% in our

simulations, we have Tx = 0.045s, which is very close to the value obtained from our

calculations. We also see that the horizontal variance shows oscillations at lower void
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Figure 5.14. Autocorrelation functions at (a) different void fractions for
Fr = 6.37 (b) different stratification strengths at α = 3.35%. The inset figures
in (a) show the time of minimum amplitude in the first oscillation (tmin,1) and
the time of maximum amplitude in the second oscillation (tmax,2) as a function
of α

fractions similar to what was observed by Bouche et. al. [24 ]. Cxx is obtained for

time intervals larger than Tx. We thus plot the horizontal correlations till t = 0.6s.

Figure 5.14a shows the plot of Cxx for different void fractions. It can be seen that for

all void fractions, the autocorrelation function gradually dies down with time, which

helps in deducing that the domain size is large enough so that the velocities become

uncorrelated after a finite amount of time. The behavior of Cxx is also similar to a

damped sine wave, which helps to reiterate the fact that the bubbles are moving in a

zigzag motion. In fact, in their numerical study of bubbly flow in a Hele-Shaw cell,

Wang et. al. [42 ] quantified this horizontal vibration of bubbles using a sine function

and investigated the relation between the shape and size of the bubbles and the period

of vibration.

It is also seen from figure 5.14a that, as void fraction increases, the autocorrelation

function dies to zero more rapidly. The periodic vortex shedding drives the zigzag

bubble path. As void fraction increases, bubbles interact with the wake of neighboring

bubbles, leading to suppression of the orderliness exhibited in the low void fraction

region. This, in turn, results in the x-velocities of the bubbles being uncorrelated at a

smaller time interval as α increases. The frequency of oscillation increases mildly with
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void fraction. From the insets of figure 5.14a , the first minimum and second maximum

amplitude occurs at lower times as α increases. The zigzagging of the bubbles occur

at higher frequency at higher void fractions.

A comparison of Cxx for different stratification cases is presented in figure 5.14b .

The time periods of oscillation for all the cases are almost the same with a value of

approximately 0.15s. The amplitudes of Cxx for the cases also do not vary significantly.

This is again attributed to the fact that the density difference between air bubbles and

the background liquid is large, because of which the stratification does not have a

significant effect on the bubble dynamics.

5.3.6 Mixing

The vortex shedding behind the bubbles, which gives them the zigzag trajectory,

also induces mixing in the background fluid. It has been shown [29 ] that a bubble

moving in a zigzag path causes instability and enhances mixing compared to a bubble

moving in a rectilinear path. As they move up, the bubbles entrain the background

fluid, and the isopycnals get displaced. Once disturbed, the displacement of the isopy-

cnals can be modeled as a damped oscillation with a frequency N , and the time taken

for the isopycnals to come back to their stable state is of the order of 1/N . Mixing

occurs when the isopycnals get disturbed repeatedly before they come back to their

stable state. Osborn [43 ] defined the mixing efficiency and related measurements of

energy dissipation to the rate of cross-isopycnal turbulent mixing. In order to quantify

the strength of mixing in the background fluid, the following physical parameters are

used.

Diapycnal eddy diffusivity gives the vertical mass flux (it represents the cross isopy-

cnal diffusion) and is defined [43 ] as

Kρ = − gρ′v′

ρ0N2 , (5.6)

where the overbar represents an ensemble average. This term helps quantify the amount

of work done by the buoyancy force.
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Cox Number gives the variance of the temperature gradient in the background fluid

[44 ], [45 ] and is defined as

COX = (∇T ′)2

(∂T/∂y)2 , (5.7)

where ∇T ′ gives the gradient of the temperature fluctuation or deviation from the

linear temperature distribution, and is normalized by the uniform vertical gradient in

the mean temperature imposed due to stratification.

Mixing efficiency gives the ratio of the buoyancy flux to the total energy available

for mixing [46 ],[47 ] and is defined as [43 ], [48 ]

Γ = −gρ′v′

−gρ′v′ + 2µE : E
, (5.8)

where E represents the strain rate tensor term. The denominator denotes the sum of

the viscous dissipation and the loss to buoyancy. There is viscous dissipation in every

direction but a loss to buoyancy only in the vertical component, due to which we have

very low values of the mixing efficiency.

Even though we do not have turbulence in our domain, we have velocity fluctua-

tions induced by the bubbles. As we have already shown, the motion of the bubbles

produces counter-rotating vortices. The bubble wakes also interact with each other.

Through the calculation of the diapycnal eddy diffusivity, we are effectively looking at

the transport and diffusion of density layers due to bubble induced velocity fluctua-

tions in the background fluid. The capture and transport of fluid in the bubble wake

is responsible for the mixing process, and hence looking at these mixing quantities is

relevant here.

Effect of void fraction

Figure 5.15 shows the semi-log plot of mixing parameters as a function of time at

different void fractions at a Froude number of 6.37. The normalized viscous dissipation

is also plotted in figure 5.15 c. The diapycnal eddy diffusivity, Cox number and viscous
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Figure 5.15. Semi-log plot of mixing parameters for varying α at Fr =
6.37 (a) COX number (b) Diapycnal eddy diffusivity (non-dimensionalized by
15cm2/s) (c) Normalized viscous dissipation

dissipation reach a steady state with time. We can thus obtain an ensemble average

for these parameters. This can also be done for the mixing efficiency, where we get the

ensemble averages separately for the numerator and denominator.

Figures 5.17 a-c show the variation of the time-averaged mixing quantities with α

for two different Froude numbers. The time averaging is done after omitting the initial

transient phase. It can be seen that as the void fraction increases, the COX number

and eddy diffusivity increase while mixing efficiency decreases slightly. Thus, it can

be concluded that as void fraction increases, the buoyancy flux across the pycnoclines

increases. However, the viscous dissipation also increases proportionally (figure 5.15 c).

The competing effects of the viscous dissipation and the vertical mass flux lead to a

slightly decreasing trend in Γ. The trends observed for the COX number and the eddy

diffusivity are similar. The change in the mixing efficiency with the void fraction is

orders of magnitude less than the change in COX number and eddy diffusivity.

The trend in eddy diffusivity, being the measure of cross isopycnal diffusion, can be

compared to the diffusion coefficient of a low diffusive dye calculated at different void

fractions by Alméras et. al. [49 ]. They performed experiments to study the mixing

induced by bubbles in a Hele-shaw cell. They reported the existence of asymmetry in

the concentration profiles, even though the concentration distribution tends towards a

normal distribution. They attributed this to the fact that the mixing mechanism in a

two-dimensional column is mainly due to capture and transport by bubble wakes, and
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turbulent fluctuations are virtually absent. They also observed that an increase in α

to 10% resulted in an increase in the diffusion coefficient. Any further increase in α

resulted in plateauing of the diffusion coefficient. We also obtain a similar trend in the

diapycnal eddy diffusivity where the increase from α = 3.35% to α = 8.37% is more

pronounced than from α = 8.37% to α = 13.4% (see figures 5.15 b and 5.17 a).

Effect of Froude Number

0.0 0.5 1.0 1.5 2.0
t (s)

10−5

10−3

10−1

101

CO
X

Fr=4.5
Fr=6.37
Fr=12.74

(a)

0.0 0.5 1.0 1.5 2.0
t (s)

10−7

10−6

10−5

10−4

10−3

10−2

K ρ

(b)

0.0 0.5 1.0 1.5 2.0
t (s)

102

103

104

105

ε/
νN

2

(c)

Figure 5.16. Semi-log plot of mixing parameters for varying Fr at α =
3.35% (a) COX number (b) Diapycnal eddy diffusivity (non-dimensionalized
by 15cm2/s) (c) Normalized viscous dissipation

Figure 5.16 shows that, as Froude number increases (i.e., the strength of stratifica-

tion decreases), the mixing quantities once again reach a statistically steady state with

time. The time-averaged quantities are plotted in figures 5.17 d-f. In this study, the

stratification is controlled by the thermal expansion coefficient, γ, while the background

temperature gradient is not changed. Since the COX number quantifies the temper-

ature gradient in the liquid, it does not change much with a change in the Froude

number when we retain the same initial temperature profile. The only change we see

is due to the turbulent transport of temperature due to fluctuations, which increases

as we weaken the stratification. In the case of the eddy diffusivity, a change in γ pro-

duces a linear change in N2 and also a linear change in the density perturbation in the

background fluid. This leads to an increase in the eddy diffusivity with an increase

in Fr. The increase in eddy diffusivity as the strength of the stratification decreases

happens because, at high stratifications, the isopycnals come back to their stable state
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Figure 5.17. Time averaged (a,d) Diapycnal eddy diffusivity (b,e) COX num-
ber (c,f) Mixing efficiency, plotted against α for two different Froude numbers
and plotted against Fr for α = 3.35% respectively. Red −− and − · − corre-
spond to lower and upper bounds respectively predicted by [45 ] in (a), [48 ] in
(b) and (c)

before thermal diffusion can take place. This is because the force pulling the disturbed

isopycnal back to its stable state is high, which is also reflected in a high buoyancy

frequency. As the strength of stratification decreases, time taken to come back to the

original state increases (since the buoyancy frequency is lower), and this facilitates

thermal diffusion, enhancing mixing. Since the mixing efficiency increases with an in-

crease in the stratification strength, it can be inferred that the percentage of the total

energy lost to buoyancy increases as stratification increases. In a nearly homogeneous

fluid, mixing efficiency is almost zero. This is because the fluctuations mix fluids of

the same density [46 ]. Even though the vertical mass flux at higher Froude numbers is

more leading to more thermal diffusion, the stratification is weak to begin with. Thus,

the extent of homogeneity compared to the original state is less, since we start with a

more mixed fluid. Mathematically, we can see that the mixing efficiency is governed

by the competing effect of the buoyancy flux and the viscous dissipation. Even though
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the eddy diffusivity is increasing as we weaken the stratification, the buoyancy fre-

quency is decreasing. Since the numerator of Γ is simply KρN2, the competing effects

explained previously cancel out. The increase in viscous dissipation (figure 5.16 c) is,

thus, directly translated into a decrease in Γ.

Discussion and Scaling

Eddy diffusivity due to turbulent activities in the ocean was estimated by Moum

and Osborn [50 ]. They observe that for depths ≈ 900m, Kρ < 10−5 m2s−1, for depths

less than 2000m, Kρ < 5 × 10−5 m2s−1 and the deep estimate for Kρ approaches a

value of 10−4 m2s−1. The lower and upper bounds of the diapycnal eddy diffusivity

have been plotted in figure 5.17 a. Similarly, the range of COX numbers in the central

North Pacific region were found to vary between 100 and 2 × 102 by Gregg [45 ]. They

also found that the most intense activity occurs above and below the main thermocline.

Once again, we plot the upper and lower bounds in figure 5.17 b and find that our values
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lie within these bounds. Mixing efficiency in oceanography is of the order of 0.17-0.2

[48 ]. We have plotted the lower bound in figure 5.17 c. Mixing efficiency levels present

in the ocean scales due to turbulence is not achieved here. The COX number and

mixing efficiency variation with α are plotted on a semi-log scale (figure 5.17 b,c) so

that the upper and lower bounds can be incorporated in the same plot.

Experiments on stably stratified grid turbulence have suggested that Kρ can be

expressed in terms of ε/νN2, where ε is the viscous dissipation [48 ]. Shih et. al. [48 ]

examined these results for homogeneous shear stratified turbulence and find the scaling

between Kρ and ε/νN2. They found that the calculated Kρ values collapsed very well

over the entire range of ε/νN2. A plot of Kρ versus ε/νN2 is shown in figure 5.18 

where we collapse all our data along with the data from [48 ]. We find that we are able

to achieve similar levels of eddy diffusivity as shear induced turbulence, although it

is important to note that we use stronger levels of stratification (N ≈ O(100)). The

mixing due to motion of confined bubbles can generate eddy diffusivities as strong as

turbulent mixing, but it occurs at much larger values of energy dissipation compared

to turbulent mixing. The eddy diffusivity values could be higher for unbounded cases.

From figure 5.18 , we can see clearly that the scaling of eddy diffusivity obtained for

turbulent mixing is not applicable for our data.

In order to further quantify mixing and how it is affected by the bubble dynamics,

we look the scaling of the diapycnal eddy diffusivity with average bubble velocity

fluctuations, v′2
b , which is defined as

v′2
b =

(
v

(i)
b −

〈
v

(i)
b

〉)2
(5.9)

where the overbar refers to averaging over time and also over the bubbles. We collapse

all the cases of void fractions and Froude numbers, as shown in figure 5.19 .

We see that as the vertical bubble velocity fluctuations increase, the diapycnal

mixing also increases, while at high values of fluctuations, it starts to plateau. An-

other interesting observation from this figure is that at the two lower void fractions,

an increase in Fr leads to an increase in both the bubble fluctuations and the eddy
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Figure 5.19. Variation of Kρ with bubble velocity fluctuations. Same colors
correspond to same α. Same shapes correspond to same Fr

diffusivity. At the highest void fraction, we see that the fluctuation increases with

Fr, but Kρ has attained a plateau. We also see that at a constant Fr, increasing α

increases the fluctuation and the mixing monotonically.

Another way to visually observe mixing is to look at stratification levels once the

bubble plume has repeatedly passed through the domain (5.20 b). The unique vortical

wake structures can also be visualized by studying the diffusion of a passive scalar

with low molecular diffusivity (5.20 a). This is done by introducing a circular patch

of the passive scalar at a time when the flow has reached steady state and letting the

bubbles pass through the dye. The concentrations are characterized by thin, stretched

structures, which are curved by the velocity field near the bubbles.

5.4 Summary

The bubble dynamics and mixing induced in stratified fluids by the bubble motion

in a Hele-Shaw cell have been studied. The confinement keeps turbulence at bay, and

thus the mixing produced primarily due to transport by the bubble wake is studied.
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(a) (b)

Figure 5.20. (a) Contours of concentration of low-diffusive passive scalar for
α = 3.35%.(b) Temperature contours for α = 8.37%
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The trends observed in the rise velocity for different void fractions are different in the

confined environment compared to the unconfined case. The bubbles are seen to follow

a zigzag motion due to the periodic vortex shedding. The zigzag motion has been

quantified by looking at the trajectories and autocorrelation of the horizontal bubble

velocity. Formation and subsequent breakup of clusters are observed. The size of these

clusters has been quantified by the cluster size index, and this index is directly corre-

lated to the instantaneous Reynolds number of the bubbles. An increase in the cluster

size results in an instantaneous rise in the bubble Reynolds number. Mixing induced

by the bubbles in stratified fluids is quantified through the COX number, diapycnal

eddy diffusivity, and mixing efficiency. It is seen that as α increases, the buoyancy

flux across the pycnoclines also increases, giving rise to a better mixed fluid. When

the stratification strength is increased, the fraction of total energy lost to buoyancy

increases while the cross isopycnal diffusion decreases. Dependence of diapycnal eddy

diffusivity on the bubble velocity fluctuations is also studied.
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6. BUBBLE INDUCED LIQUID DYNAMICS IN UNBOUNDED

STRATIFIED FLUIDS

6.1 Literature Review

A comprehensive study of bubble motion and resulting liquid agitation has been

made in literature [39 ], [51 ], [36 ]. However, in order to study mixing characteristics

in stratified fluids, we also need an understanding of how stratification affects the

bubble dynamics and vice versa. It has been observed that stratification suppresses the

vertical and horizontal velocities and velocity fluctuations of drops, which in turn lead

to formation of horizontal clusters [27 ], [25 ], [26 ]. Drop deformation is also suppressed

by strong stratification [5 ], [27 ]. Bayareh et. al. [5 ] observed that a single drop rising in

a stratified medium experiences drag enhancement compared to a homogeneous fluid

and thus the travel time of a drop of crude oil increases by 7% in moderate stratification.

They also report the formation of secondary vortex and resulting buoyant jet. In the

study of rise of two drops in a linearly stratified fluid [27 ], drop configuration is retained

for the in-line configuration in contrast to the drafting-kissing-tumbling behavior in a

homogeneous fluid. Díaz-Damacillo et. al. [29 ] experimentally investigated the rising

motion of a single bubble across two different-density liquids. They report that for

larger bubbles, the drift volume becomes unstable and detaches from the bubble due

to path instabilities of bubble. This results in dense fluid patches in the lighter fluid,

leading to mixing between the two layers.

Although bubble induced mixing can happen either due to transport by bubble

wake or due to turbulent dispersion, it is seen that in homogeneous unbounded sys-

tems, the latter plays a major role [18 ]. The pseudoturbulence generated by bubble

motion has been quantified previously in various studies [52 ], [53 ], [54 ], [55 ], [56 ]. Lance

and Bataille [57 ] have extensively studied the turbulence in the liquid phase of a bub-

bly air-water flow experimentally. They observe that for α < 1%, the turbulent kinetic

energy (TKE) of the liquid is a linear sum of TKE due to grid generated turbulence

and bubble-induced turbulence. When α > 1%, TKE is amplified even more due to

hydrodynamic interactions between bubbles. They report that the classical -5/3 power
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law of the 1D spectra is replaced by another power law of exponent -8/3 when bubble

void fraction increases. Martínez-Mercado et. al. [52 ] have shown that the pseu-

doturbulence intensity increases almost linearly as α increases, while bubble velocity

fluctuation stagnates for α > 0.02. Riboux et. al. [58 ] have decomposed the liquid

fluctuation in bubbly flows into a spatial part and a temporal part and have shown that

the temporal part increases faster than the spatial part at higher α values. This results

in the reduction of asymmetry in the probability density function of velocity fluctu-

ation as α increases, since the asymmetry arises from the spatial fluctuation (wake

contribution). The liquid fluctuations are also dependent on the deformability of the

bubbles. The vertical velocity variance is higher for the deformable system than the

nearly spherical system, with the anisotropy also following the same trend [53 ]. In their

study of bubble motion in a periodic box, Smereka [59 ] have shown that bubbles tend

to form horizontal clusters when the bubble velocity variance is low. However, this

tendency reduces if the bubble velocity and consequently the liquid velocity variance

is large [59 ], [37 ].

Although the number of studies involving bubble motion and bubble induced turbu-

lence are aplenty, we find that there is still a dearth of studies focusing on characterizing

the mixing mechanisms in stratified fluids due to the pseudo-turbulence. In this study,

we will attempt to characterize the motion of bubble in unbounded stratified liquids

and study the induced mixing due to bubble-induced turbulence. We explore a wide

range of parameters including void fraction, Froude number, Reynolds and Eötvös

numbers. Bubble dynamics including bubble dispersion, microstructure and bubble

velocity fluctuations and correlations will be studied. Mixing induced will be analyzed

through TKE levels, liquid fluctuations, flow visualizations and mixing efficiencies.

6.2 Problem Description

We perform fully resolved direct numerical simulations of up to 146 bubbles in the

unbounded stratified domain. Our problem of interest is solved numerically through

the continuity, momentum and energy conservation equations.

63



The velocity in the domain is periodic in all directions. Temperature on the other

hand, is periodic only in the two horizontal directions. In order to maintain the linear

temperature gradient in the vertical direction, we apply the periodic boundary condi-

tion on temperature perturbation, Tm. Tm is the perturbation from linearity given by

Tm = T − dT
dx

x, where dT
dx

is the constant, imposed temperature gradient.

The important non-dimensional numbers for the study and their ranges are given

here. Reynolds number based on the bubble velocity, Re = ρl

√
gdd/µl varies between

25 and 200 and Eötvös number, Eo = (ρl − ρb)gd2/σ ranges from 1.55 to 4.95. The

variation of Re and Eo lead to bubble path instabilities leading to different levels of

mixing. Here ρl and ρb are the densities of liquid and bubble, respectively and d is

the bubble diameter. The other dimensionless parameters include the Froude number,

Fr = V0/(Nd) varied between 9.96 and 28 and void fraction α = 1
6Nbπd3/(LBW )

varied in the range 3.66% to 7.64%. N =
√

βg/ρ◦ is the buoyancy frequency which gives

the frequency of oscillation of a disturbed isopycnal, where β is the density gradient

in the domain. L, B, W are the dimensions of the domain. The density and viscosity

ratios are kept constant at ρl/ρb = 100 and µl/µb = 10.

Our objective is to investigate the bubble and liquid dynamics in the rise of bubbles

in temperature stratified Newtonian fluids. We explore a wide range of parameters, to

find the physical conditions under which background mixing is enhanced. We analyze

the bubble dynamics by studying the rise velocity and velocity fluctuations of the

bubbles. We quantify both the temporal and spatial fluctuations and interpret their

significance. We characterize bubble dispersion through the dispersion coefficient, and

visualize the flow. Likewise, we quantify the liquid agitation and background mixing

by looking at turbulent kinetic energy levels and also the mixing parameters.

6.3 Results and Discussion

The results are organized as follows. First, we will look at domain size independence

and discuss the meshing of the computational domain. Subsequently, we will discuss

the mixing induced in the liquid by looking at parameters including diapycnal eddy
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diffusivity, mixing efficiency and Cox number. We then discuss the bubble dynamics by

studying bubble rise velocities, velocity fluctuations, temporal bubble velocity correla-

tions, bubble dispersion and pair probability distributions. The bubble dynamics are

used to explain trends and anomalies in thermal mixing behaviors. We also visualize

the flow field and study the flow pattern around bubbles in order to explain the mixing

results. This is followed by a discussion on liquid agitation, including liquid velocity

fluctuations and turbulent kinetic energy spectra, to give a comprehensive analysis of

bubble and liquid dynamics. In this study we will be varying several parameters to

study their impact, namely, the void fraction, α, Froude number, Fr, initial Reynolds

number, Re, and Eötvös number, Eo. List of simulated cases is given in table 6.1 . In

the study of void fraction variation, Fr, Re and Eo are kept constant at 14.1, 44 and

1.55, respectively. In the Froude number study, α, Re and Eo are kept constant at

5.86%, 44 and 1.55, respectively. When Re and Eo are varied, α and Fr are fixed at

3.66% and 14.1, respectively.

6.3.1 Computational Domain and Mesh size

In order to establish that the chosen domain size is long enough, we look at the

spatial liquid velocity autocorrelation in the vertical and the two horizontal directions.

The autocorrelation is defined as

Rux(rx) = 〈u′
l(x, y, z)u′

l(x + rx, y, z)〉
〈(u′2

l (x, y, z))〉 , (6.1)

where u′
l is the vertical velocity of the liquid and 〈〉 refers to ensemble averaging.

This has been used in many turbulence simulations to determine the optimal length of

the domain. Since we have a periodic domain in all directions, we expect the spatial

autocorrelation to die out at the the mid-point in every direction. In a periodic domain,

the first and last points are 100% correlated. Beyond the mid-point, we expect the

correlation to increase back up. We thus look at the correlations only till the mid-

point in all directions. We plot the spatial autocorrelation of each velocity component

(u, v, w) in directions (x, y) in figure 6.1 . The two horizontal directions y and z are
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Table 6.1. List of cases simulated
α% F r Re Eo

3.66 14.1 44 1.55
5.86 14.1 44 1.55
7.64 14.1 44 1.55
5.86 9.96 44 1.55
5.86 28.17 44 1.55
3.66 14.1 25 1.55
3.66 14.1 74 1.55
3.66 14.1 100 1.55
3.66 14.1 200 1.55
3.66 14.1 25 2.48
3.66 14.1 44 2.48
3.66 14.1 74 2.48
3.66 14.1 100 2.48
3.66 14.1 200 2.48
3.66 14.1 25 3.3
3.66 14.1 44 3.3
3.66 14.1 74 3.3
3.66 14.1 100 3.3
3.66 14.1 200 3.3
3.66 14.1 25 4.95
3.66 14.1 44 4.95
3.66 14.1 74 4.95
3.66 14.1 100 4.95
3.66 14.1 200 4.95
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Figure 6.1. Spatial velocity autocorrelation for the domain in the Vertical
(a) and horizontal (b) directions for α = 5.86%, F r = 14.1
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isotropic. For the domain length we consider, the velocities get uncorrelated at the

mid-point of the domain in each direction as expected. We thus conclude that the

domain length (16d × 8d × 8d) is long enough.

We use a uniform mesh, 256 × 128 × 128 for Re up to 100 and we double the points

in every direction for Re = 200. For these cases we have 16 and 32 points across the

bubble diameter, respectively. We find that the grid size is sufficient to resolve the

momentum (δm) and thermal (δt) boundary layers on the bubble. The thickness can

also be numerically estimated as δm ∼ O(d/
√

Re) and δt ∼ O(d/
√

Re · Pr) [60 ]. Both

the boundary layers are resolved if we use this definition as well.

6.3.2 Mixing

The liquid velocity fluctuations caused due to bubble motion are responsible for

irreversible mixing in the background liquid. In the stratified liquid, when two differ-

ent density liquids are stirred due to the bubble motion, thermal diffusion takes place

leading to thermal mixing. The motion of bubbles through the isopycnals causes dis-

placement of the density line from its stable state. The displaced isopycnal experiences

a negative buoyancy force back towards its stable state. This restoring force causes the

isopycnal to oscillate about the stable state with a frequency of N . The time taken for

these oscillations to die out scales as 1/N . Repeated motion of bubbles through the

liquid causes the isopycnals to take longer to come back to the stable level, facilitating

thermal mixing. There are two important mechanisms of mixing due to bubble motion.

The first is the transport of liquid by capture within bubble wakes and the second is due

to bubble induced turbulent dispersion. It has been shown that whereas in a confined

geometry, mixing happens through the former way [19 ], [17 ], in an unbounded domain,

the main mixing mechanism is the latter [18 ]. We characterize the background mixing

with three parameters, namely the mixing efficiency (Γ), the diapycnal eddy diffusivity

(Kρ) and the Cox number.
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The fundamental definition of mixing efficiency [61 ] is given by

Γ = Change in background potential energy
Total expended energy

. (6.2)

This is also known as the flux Richardson number. In a stratified fluid, if we can

find the buoyancy flux and viscous dissipation in the flow we can define Γ as [48 ], [46 ]

Γ = −g〈ρ′u′〉
−g〈ρ′u′〉 + 2µ〈E : E〉

, (6.3)

where E represents the strain rate tensor term. The denominator denotes the sum of

the viscous dissipation and the loss to buoyancy. In a general sense the denominator

represents the net supply of TKE to sustain turbulent motions in a statistically steady

state. Thus, Γ essentially gives the efficiency with which the energy input is converted

to buoyancy flux [47 ]. The energy input in this case is the disturbance induced by

the motion of bubbles. In order to draw a parallel with a truly turbulent case, we

can think of a parallel shear flow case where there is a balance between production

(u′
iu

′
j
∂ui
∂xj

), the dissipation (2νEijEij) and the work against buoyancy (u′ρ′g
ρ

) as was done

in [43 ]. There is viscous dissipation in every direction but a loss to buoyancy only in

the vertical component, due to which we have very low values of the mixing efficiency.

Typical value of mixing efficiency in the ocean scale in a turbulent mixing event is

approximately Γ ∼ 0.17 [43 ].

Diapycnal eddy diffusivity gives the vertical mass flux or the cross isopycnal diffu-

sion, and was defined by [43 ] as

Kρ = −g〈ρ′u′〉
ρ◦N2 , (6.4)

where the 〈·〉 represents an ensemble average. This is obtained much similar to eddy

viscosity, by assuming 〈ρ′u′〉 = Kρ
d〈ρ〉
dx

. This term helps quantify the amount of work

done by the buoyancy force. It gives a measure of vertical transport and diffusion of

density layers due to the bubble induced velocity fluctuations. Since the diapycnal eddy
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Figure 6.2. Mixing parameters (a) COX number (b) Diapycnal eddy diffusiv-
ity (c) Mixing efficiency as a function of α for Fr = 14.1, Re = 44, Eo = 1.55

diffusivity is a dimensional quantity, we normalize it with the molecular diffusivity in

our results.

In order to quantify the temperature microstructure at the thermocline, we use the

Cox number defined as [44 ], [45 ], [62 ]

COX =
〈(∂T ′

∂x
)2 + (∂T ′

∂y
)2 + (∂T ′

∂z
)2〉(

∂〈T 〉
∂x

)2 , (6.5)

which gives the variance of the temperature gradient averaged over all directions nor-

malized by the mean temperature gradient in the vertical direction due to the strat-

ification. The vertical stratification is linear and thus the denominator of the Cox

number just remains a constant in this case. We are thus effectively looking at the

average variation of temperature from linear stratification due to background fluctua-

tions.The temperature microstructure is mainly caused due to the motion of bubbles

and subsequent disturbance of thermoclines followed by thermal diffusion.

Effect of void fraction

For the given computational domain size, we test the effect of void fraction on

mixing by changing the number of bubbles in the domain, while keeping the size of the

bubbles constant. Figure 6.2 shows the variation of time averaged mixing quantities

at a constant Froude number of 14.1. The time averaging is performed once the flow
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Figure 6.3. Mixing parameters (a) COX number (b) Diapycnal eddy diffusiv-
ity (c) Mixing efficiency as a function of Fr for α = 5.86%, Re = 44, Eo = 1.55

reaches a quasi steady state, by omitting the initial transient phase. Figure 6.2 a, b show

that the Cox number and the diapycnal eddy diffusivity show a similar increasing trend

with an increase in α. An increase in α increases the variation of temperature gradient

improving the thermal homogeneity of the liquid. This is because a higher number

of bubbles leads to a higher vertical buoyancy flux. On the other hand, the mixing

efficiency stays more or less constant for a change in α (figure 6.2c ). The increase in the

number of bubbles leads to a higher vertical mass transport, but simultaneously gives

rise to a higher input of energy into the system. From the definition of Γ, this leads to an

increase of both the numerator and denominator with an increase in α, thus nullifying

their effects. It should be noted that [18 ] did a similar study for non-stratified liquid

where they study mixing by calculating the diffusion of a low-diffusivity dye. They

observe a similar rise in vertical diffusion coefficient for the range of α considered here.

The trend in the vertical diffusion coefficient that they observe can be compared to the

evolution of the diapycnal eddy diffusivity. They also conclude that at void fractions

higher than 7%, the diffusion coefficient starts to stagnate. We note that even though

the liquid fluctuations in our domain are steadily increasing with α (figure 6.15a ), the

increase of Kρ between α = 5.68% to α = 7.64% is not as sharp as the rise between

α = 3.66% and α = 5.68%.
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Effect of Stratification

Stratification in the liquid is controlled by the Froude number. An increase in

Froude number signifies a decrease in the buoyancy frequency and a corresponding

decrease in stratification strength. We change the stratification by changing the thermal

expansion coefficient of the liquid while the temperature gradient is kept constant.

Thus, the variance in temperature gradient or the Cox number is a good way to measure

the background mixing. We see in figure 6.3a that a decrease in stratification leads to an

increase in Cox number. The buoyancy flux also increases as we relax the stratification

as can be seen in the diapycnal eddy diffusivity plot in figure 6.3b . This can be

explained by noting that at strong stratifications, the resistance of the isopycnals to

disturbances is higher because of which vertical mass transport is lower. The negative

buoyancy experienced by the displaced isopycnal is higher in magnitude at these low

Froude numbers. As Fr increases, the buoyancy frequency reduces, which gives more

time for thermal mixing to take place. The mixing efficiency decreases as stratification

decreases (figure 6.3c ). This happens because, as explained previously, the energy

input to the system is increasing with Fr due to more liquid fluctuations. We can

also interpret the mixing efficiency as a measure of liquid homogeneity compared to

the initial state. At large Froude numbers the liquid is quite homogeneous to begin

with and thus mixing efficiency is low and will go to zero for a non-stratified liquid, by

definition.

Effect of Eötvös and Reynolds numbers

An increase in Eo indicates higher bubble deformability. The bubbles have a

spheroidal shape and are flattened in the direction of motion. This leads to path

instabilities in the bubble motion, which has the potential to increase the background

mixing. We see an almost monotonic increase in the Cox number and diapycnal eddy

diffusivity with increase in Eo at different constant Reynolds numbers (see figure 6.4 a,

b). For Re = 25, the mixing parameters seem to stagnate at high Eo. Mixing efficiency

also increases with an increase in Eo (see figure 6.4c ) and the trend is similar to the
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(a) (b)

Figure 6.6. Temperature stratification at alpha = 3.66%, F r = 14.1, Re =
100 and Eo = (a) 1.55, (b) 4.95 at t∗ = 50
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(a) (b) (c)

Figure 6.7. Velocity fluctuations normalized by (gd)1/2 (left:u and right:v)
near bubbles at α = 3.66%, F r = 14.1, Re = 100 and Eo = (a) 1.55, (b)
4.95. (c): Temperature perturbation near bubble averaged over all bubbles
normalized by Tmax for Eo = 4.95. Vectors show average velocity field

trend in Kρ. This leads to the conclusion that the change in Eo is not producing a

change in the energy production in the system. One interesting observation we can

make from figure 6.4c is that the curves of constant Re are close together at low Eo

while at the highest Eo = 4.95, the curves diverge to very different values.

Comparing our results with the ones obtained for the rise of bubbles in a thin

gap [17 ], we see that the unbounded domain gives rise to much larger values Kρ (figure

6.4b ) for a much lesser Reynolds number of 200. The effect of bubble induced turbulent

dispersion, which is absent in a Hele-Shaw cell, is seen to produce more thermal mixing

than transport in the wake. This was an expected result, since the bubble wake is highly

attenuated and the liquid fluctuations are limited to the bubble vicinity in case of a

confined domain. The unconfined domain also gives rise to a free, unrestricted rise

of bubbles, while the motion in the wall normal direction is restricted in the confined

case.
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An increase in Re leads to increase in the Cox number, Kρ as well as Γ (figure

6.4 ). This trend is most pronounced for the highest Eo of 4.95. This could possibly

be attributed to the much higher levels of bubble dispersion in the vertical direction

for Eo = 4.95 compared to Eo = 3.3, which we will discuss in a later section. Higher

vertical dispersion can be related to a more asynchronous relative bubble motion leading

to more thermal diffusion in the liquid. The mixing parameters are sensitive to Eo

especially nearer to bubble breakup values of Eo. Even at a low Re = 44, the value of

Γ ∼ 0.058 for Eo = 4.95. The trend in mixing efficiency and eddy diffusivity can also

be explained by looking at averaged liquid and bubble velocity fluctuations normalized

by
√

gd (figure 6.5 ). The bubble and liquid fluctuations are increasing monotonically

for Eo = 4.95. For Eo = 3.3, we see a drop in < u′
bu

′
b > from Re = 25 to Re = 44.

There is then a steady rise and finally saturation near Re = 200. This trend could

explain the stark difference in variation in mixing as a function of Re at these two Eo.

This shows that bubble fluctuations and bubble interactions play a huge role in liquid

mixing.

Figure 6.6 shows the flow field at t∗ = 50. A single slice with the temperature

contours and velocity field is portrayed, along with the bubble locations at Re = 100 for

Eo = 1.55 and Eo = 4.95. A noticeable difference between the two cases is seen in the

bubble wake by observing the velocity field around the bubbles. For the lower Eo (figure

6.6a ), we see that the path of the bubbles is mostly rectilinear which is evident from the

wake of the bubble shown by both the velocity vector and the pattern of stratification.

For a higher Eo, the bubbles show path instabilities causing the pycnoclines to be

disrupted in a zigzag manner. This behavior promotes mixing properties, reflected in

the trend in mixing parameters (see figure 6.4 ). The temperature stratification shows

more homogeneity at Eo = 4.95 indicating higher mixing levels.

The difference in flow around bubbles is better depicted by plotting the average

domain velocity vector and contour of vertical and horizontal fluctuation velocity (see

figure 6.7 ). The velocity field around the bubbles is averaged over time and all bubbles

by assuming the relative location of all bubbles to be at the origin. The fluctuation is

obtained by calculating the root mean squared value of velocity fluctuation around each
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bubble and then averaging over time in steady state. Vertical velocity shows higher

fluctuations around the bubble for Eo = 4.95, which plays a key role in determining

the mixing rate. The average temperature perturbation around bubbles is also shown

in figure 6.7 c. The maximum perturbation occurs around the bubble and in its wake.

6.3.3 Bubble rise velocities
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Figure 6.8. Bubble rise Reynolds number at constant Re = 44 and Eo = 1.55
as a function of (a) void fraction at Fr = 14.1 and (b) Froude number at
α = 5.86%

The slip velocity of the bubble swarm is calculated as

ub(t) = 1
Nb

Nb∑
i=1

ub,i(t) − uf (t), (6.6)

where ub,i(t) stands for the instantaneous vertical velocity of the ith bubble and uf (t) is

the average liquid velocity. The steady-state average rise velocity of the bubble swarm

is obtained by

ub,avg = 1
T − t0

∫ T

t0
ub(t)dt, (6.7)

where the time interval T − t0 is chosen such that the velocity of the swarm has crossed

the transient stage and is at a statistically steady state. The bubble rise Reynolds

numbers are calculated as Reb = ρlubd/µl. Figures 6.8 and 6.9 show both the time
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Figure 6.9. Bubble rise Reynolds number for initial Reynolds numbers of
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evolution of Reb as well as the time averaged values as an inline plot. We see from

figure 6.8a that the bubble velocity decreases with an increase in the void fraction.

This is a trend also observed in several past studies [36 ], [55 ], [52 ]. It is attributed

to the hindrance effect, which is the counterflow liquid velocity generated between the

bubbles to balance the flow entrained by the bubbles.

Figure 6.8b shows the variation of bubble velocity with Fr. We note that a stronger

stratification suppresses the rise velocity as seen on the inline figure in figure 6.8b . One

possible explanation for this phenomenon could be that a counter-current is generated

in the liquid due to bubble motion. The displaced isopycnals try to revert back to their

neutrally buoyant levels creating a force on the bubble competing with the buoyancy

force. This competing force is higher for higher stratification since the isopycnals are

more resistant to deflections, leading to a decrease in the rise velocity of the bubbles.

Next, we look at the average bubble velocities as a function of Re and Eo (see figure

6.9 ). We work with a range of Re between 25 and 200 and Eo between 1.55 and 4.95.

The first trend we observe is that an increase in deformability of the bubble leads to a

decrease in the rise velocity. This can be explained by the higher drag experienced by

more deformable bubbles [63 ], [64 ]. This trend is uniform regardless of the Reynolds

number. This can be seen from the inline figures in figure 6.9 , which depict the time

averaged bubble Reynolds number as a function of Eo number. For Re = 25, we see

that this decrease is almost linear upto an Eo of 4.95 (see figure 6.9a ). As we increase

Re, the decrease is pronounced upto Eo = 3.3. Between Eo = 3.3 and Eo = 4.95,

the decrease in rise velocity is much less pronounced (figures 6.9 b-d). Bubble shapes

greatly influence the rise velocity. At low Reynolds number, for instance at Re=25, the

shape change from nearly spherical to deformable bubbles, reduces Reb by 10% from

Eo = 1.55toEo = 4.95. For the same Eo range, for an Re of 74, Reb reduces by 20%.

This is because at higher Re, the shape change is more drastic in the considered Eo

range [65 ]. If we increase Eo, for Re = 25, we expect that Reb will not show a very linear

trend anymore, since Reb cannot indefinitely decrease with Eo. The shape alterations

in the bubble will lead to more complex flow features (including breakup/coalescence)

which will affect the bubble Re. For the case of Re = 200 and Eo = 4.95, we need

78



higher computational power since we believe that bubble break-up might occur. For

a single rising bubble, bubble break-up regime is described in previous studies [66 ].

It has also been reported that the presence of high liquid shear and liquid turbulence

can accelerate the break-up process [67 ], [68 ]. Due to the presence of bubble-induced

turbulence, for Re = 200, the highest Eo we consider is 3.3 to avoid break-up, since

we are focusing on a mono-disperse swarm of bubbles.

We also observe that the plot of Reb shows a transient part where the bubbles are

initially accelerating. The transient part reaches a peak value after which the velocity

settles to a statistically steady state. The rise of the bubbles in unison causes the

existence of the peak in the average bubble rise Reynolds number. Beyond the peak

the initial configuration of the bubble breaks up, the bubble wakes are fully developed,

bubble interactions are enhanced and the flow is more randomized. This behavior is

especially pronounced at low Re (figure 6.9a ,6.9b ). An interesting thing to note here is

that this transient peak occurs at a later time for highly deformable bubbles compared

to low-deformability bubbles. The transient phase, where the bubble array retains its

original configuration, exists for a longer time for the high Eo cases. This observation

was also made by [54 ] and was attributed to the longer time taken for the development

of the larger wake of deformable bubbles. Another observation we make from here is by

looking at the velocity fluctuations from the statistical mean with increasing Reynolds

number. For example, if we look at the red-dashed curve corresponding to Eo = 1.55 in

figures 6.9 a-e, we see that the bubble velocity fluctuations are higher and more rapid

as Re increases. This can be explained by the path instabilities experienced by the

bubbles with increasing Reynolds number. We will look at the bubble paths in more

detail in the following sections.

6.3.4 Temporal bubble velocity correlations and bubble dispersion

Temporal bubble velocity autocorrelation is defined as

Cxx(t) = 〈v′
bx(T )v′

bx(T + t)〉
〈v′2

bx〉
, (6.8)
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Figure 6.10. Temporal bubble velocity auto-correlation at a constant for
varying α at Fr = 14.1, Re = 44, Eo = 1.55 (a,b), varying Fr for α =
5.86%, Re = 44, Eo = 1.55 (c,d) varying Re at α = 3.66%, F r = 14.1, Eo =
4.95 (e,f) in the vertical (a,c,e) and horizontal (b,d,f) directions
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Cyy(t) =
〈v′

yy(T )v′
by(T + t)〉

〈v′2
by〉

, (6.9)

where vbx and vby refer to the vertical and horizontal bubble velocity respectively,

and the primed quantities refer to fluctuations. The temporal velocity autocorrelation

is an important tool in studying the bubble paths and interaction between bubbles. It

is also helpful in determining the differences in bubble behavior in the horizontal and

vertical directions. The autocorrelation functions of horizontal and vertical velocities

are shown in figure 6.10 . For zero separation in time the velocities are perfectly cor-

related as expected by definition and the correlation dies down as the time separation

increases due to bubble dispersion. We see that there are always some residual oscilla-

tions about 0 even after the velocities become uncorrelated. This can be attributed to

the small number of samples we have as we approach the end time step, which leads to

an increased uncertainty. Besides this, the system size is also seen to have an impact

on the temporal velocity correlations [51 ]. A few general observations are made from

the results.

Firstly, we see that the vertical velocity is correlated for longer than the horizontal

velocity. This can be explained by the fact the vertical motion is predominant in a

buoyancy driven bubble rise flow and the velocities tend to remain correlated for longer

unless there are bubble or wake interactions. There is no driving force in the horizontal

direction and thus the bubble velocities get uncorrelated faster in this direction. We

also notice small oscillations in Cyy before dying to 0, whereas Cxx shows a steady,

exponential decay. The small oscillations in the measurement of Cyy can be attributed

to horizontal path instabilities and zigzag/spiralling motion of the bubbles as they

rise. We note that these initial small scale oscillations are absent when bubbles rise in

a mostly rectilinear fashion at Re = 25 (figure 6.10f ).

Second, we notice that Cxx becomes negative and approaches zero from below.

This has been attributed to the “correlation effect” which happens due to the back-

flow of liquid as the bubbles rise [51 ], [25 ]. This type of back-flow was observed in

measurements of particle velocity autocorrelation functions in turbulent flows [69 ]. If
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we look closely, we see in figure 6.10c that the maximum negative correlation is higher

for more strongly stratified fluids (lower Fr). This is because a highly stratified fluid

will experience a more drastic back-flow due to the negative buoyancy experienced by

the displaced isopycnal. This in-turn leads to a more negative temporal autocorrelation

of velocity. Figure 6.10e shows that the correlation effect is more pronounced in lower

Re = 25. It has been shown in literature that at low Re, the vertical correlation

becomes negative and approaches zero from below [51 ], while this is not seen for high

Reynolds numbers close to 100 [53 ]. Even with low Re (nearly spherical bubbles), but

higher void fraction, [51 ] observe that the correlation effect is less pronounced compared

to low void fraction cases.

We can also characterize the trends in the correlation times when we vary α, Fr

and Re. We see that both Cxx and Cyy get uncorrelated faster for higher void fractions.

This can be attributed to the increase in bubble-bubble interactions, leading to more

randomness. The correlation time also decreases when we increase Fr, although this

trend is mild. This is because the bubble fluctuations increase at higher Froude numbers

causing more interactions. The flow is stabilized at high stratifications, a phenomenon

also observed in [25 ] and [26 ]. At high stratification, the natural buoyancy frequency

of the isopycnals is high. This is because the negative buoyant force experienced by

the displaced isopycnals is larger in case of higher stratifications. The frequency of

oscillation of isopycnals is high. However, due to the strong restorative force, the

amplitude of oscillation is low and subsequently the time taken for the isopycnal to

revert back to its stable state is low. Higher restorative force inherently increases the

stability of the flow. For the same level of perturbations the highest stratification will

stabilize and go back to the original configuration faster.

The correlation time also decreases as we increase Re. At low Reynolds numbers the

bubbles are nearly spherical and follow rectilinear paths leading to longer correlation

times. The bubble interactions are almost absent at low Re.
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Figure 6.11. Variance of bubble center displacements in the (a) Horizontal
and (b) Vertical directions at α = 3.66%, F r = 14.1, Eo = 4.95

Variance of bubble center displacements is calculated as

〈x′2(t)〉 =
〈(

x(i)(t) − x(t)
)2
〉

, (6.10)

〈y′2(t)〉 =
〈(

y(i)(t) − y(t)
)2
〉

, (6.11)

where superscript i refers to the ith bubble, angle brackets imply an average over the

bubbles and
(
x(t), y(t)

)
=
(
1/NbΣNb

i=1x
(i)(t), 1/NbΣNb

i=1y
(i)(t)

)
is the mean position of all

bubbles at any given time. The bubble center displacements for Eo = 4.95 and varying

Re are shown in the horizontal (figure 6.11a ) and vertical (figure 6.11b ) directions.

t = 0 here refers to the time when the flow reaches a statistically steady state. A

steady increase in 〈x′2(t)〉 and 〈y′2(t)〉 implies that the bubbles become more scattered

with time. We see that in this quasi-steady state, 〈x′2(t)〉 and 〈y′2(t)〉 have a linear

trend with time.

The bubble dispersion process can be approximated as a diffusion process and

an estimate for the dispersion coefficients can be found by performing a linear fit to
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Figure 6.12. Horizontal (a,b,c) and Vertical (d,e,f) Diffusion coefficients for
α = 3.66%, Fr = 14.1 as a function of Re (a,d), α = 5.86%, Re = 44,
Eo = 1.55 as a function of Fr (b,e) and Fr = 14.1, Re = 44, Eo = 1.55 as a
function of α, non-dimensionalized by gd3/2
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(a) (b)

Figure 6.13. Bubble dispersion for α = 3.66%, F r = 14.1, Re = 100 and
Eo = (a) 1.55 (b) 4.95 at t∗ = 112

the bubble center displacements and finding their slopes. The non-dimensionalized

dispersion coefficient is thus given by

D∗
x = 1

2
d〈x′2(t)〉∗

dt∗ , (6.12)

D∗
y = 1

2
d〈y′2(t)〉∗

dt∗ , (6.13)

where a superscript ∗ refers to a non-dimensional quantity. Dx and Dy are both non-

dimensionalized by gd3/2. D∗
x and D∗

y give a measure of how dispersed the bubbles

are with respect to each other or the rate at which the mean-square displacements

of the bubbles increases in a quasi-steady state. We see from figure 6.12 that the

dispersion in the vertical direction is much higher than the horizontal direction (roughly

5 times). Figure 6.12a and 6.12d shows that the dispersion increases as Re increases
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for Eo = 4.95. The variation in vertical dispersion with Re is much lesser for Eo = 3.3,

which can have an effect on mixing levels. We can explain this based on the bubble

shapes and formation of horizontal rafts. It has been established in previous studies

that bubbles closer to sphericity (lower Eo) have more tendency to form horizontal

clusters which reduces vertical and horizontal dispersion [53 ]. The bubble shape and

path instability variation as Re is changed for lower Eo is less dramatic than the

variation for the higher Eo (=4.95). This results in a more drastic variation in bubble

dispersion for Eo 4.95. We also plot the bubble locations for Re = 100 for two Eo in

figure 6.13 . We see that for Eo = 1.55, the bubbles are confined to a single periodic

box, while for Eo = 4.95, the vertical extent of the bubbles is close to two periodic

boxes.

An increase in bubble dispersion is seen when we decrease stratification (figure

6.12 b,d). This happens because an increase in stratification leads to a suppression of

bubble fluctuations in both directions. A similar observation was made for drops in

[25 ], where the vertical and horizontal extend of a swarm of drops were hampered by

density stratification. Increasing the void fraction leads to an almost linear increase

in the dispersion coefficient in both directions. It was seen in [51 ], that the dispersion

coefficient in the vertical direction increases with α and reaches a maximum value.

Beyond this, it starts to decrease. In our simulations, we have not reached the maximum

dispersion to start seeing the decreasing trend.

6.3.5 Pair Distribution functions

At lower Reynolds numbers, from Re = 25 to Re = 44, we see a dip in the mixing

parameters for all except the highest Eo. We explain this behavior by considering

the microstructure of the bubble swarm. The relative bubble locations and clustering

can be understood by looking at the radial and angular pair probability distributions.

The radial distribution is an indicator of the probability that the centroids of any two

bubbles are at a distance r apart. It is computed by counting and normalizing the
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Figure 6.14. (a) Radial and (b,c) Angular pair probability distribution at
(b) r = 1.8d, (c) r = 4.0d (d) r = 6.0d for α = 3.66%, F r = 14.1

number of bubbles present at a distance r from the reference bubble in a spherical shell

of thickness ∆r. It is defined as

G(r) = VT

∆V (r)
1

Nb(Nb − 1)

Nb∑
i=1

Nb∑
j=1
j 6=i

δ(r − ∆r/2 ≤ Rij < r + ∆r/2), (6.14)

where VT is the total volume of the domain, ∆V (r) is the volume of the spherical shell

and Rij is the distance between the two considered bubbles.

The angular pair distribution indicates the probability that the angle between the

line joining the bubble centroids and the vertical axis is θ at a particular r. It is
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computed by counting the number of bubbles present at an angle θ from the reference

bubble in a spherical sector of angle ∆θ. It is defined as

Gr(θ) = VT

∆V (θ)
1

Nb(Nb − 1)

Nb∑
i=1

Nb∑
j=1
j 6=i

δ(θ − ∆θ/2 ≤ Θij < θ + ∆θ/2; Rij < r), (6.15)

where ∆V (θ) = 2/3πr3 (cos(θ − ∆θ/2) − cos(θ + ∆θ/2)) is the volume of the sector,

Θij is the angle between the line joining the centroids of the two considered bubbles.

We normalize Gr(θ) such that
∫ 1

0 Gr(θ∗)dθ∗ = 1, where θ∗ = θ/π.

Both the radial and angular pair probability distributions are averaged over time

during steady using 250 time steps. Doubling and halving the time-steps showed almost

no change in the pair probability distribution plots. We use 50 bins for the radial and

40 bins for the angular pair probabilities. We checked that changing the bin size does

not have a significant impact either.

G(r) calculated for the two Reynolds numbers at Eo = 3.3 is shown in figure 6.14a .

We note a few differences here. Firstly, G(r) increases to a non-zero value at lower r

value (for r/d < 1) for Re = 25. The peak is also higher for Re = 25, indicating more

bubbles at a short range compared to Re = 44. The differences are more apparent in

the angular pair distributions. At a short range, r = 1.8d, (see figure 6.14b ) we see

that the probability of finding horizontal bubbles streams is almost the same as the

probability of finding vertical ones for Re = 25, since we see peaks at θ = 0, π/2, π.

Coexistence of vertical and horizontal clusters could mean that a subset of the bubbles

is moving faster due to vertical streaming while another subset is moving slower owing

to horizontal rafts. This potentially leads to high bubble velocity fluctuations, which

in turn influences mixing characteristics. On the other hand, for Re = 44, we see a

peak only at θ = π/2. Presence of only horizontal rafts gives rise to lower bubble

fluctuations. At long range, r = 4d, (see figure 6.14c ), Gr(θ) approaches a uniform

value of 1.0 for both the cases as expected [39 ], [25 ], [54 ]. The uniformity is better for

r = 6.0d (figure 6.14d ). Apart from time over which the solution is averaged and bin
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size, the number of bubbles also plays a role in the smoothness of the plot. Averaging

spatially over more number of bubbles would give smoother results.

6.3.6 Velocity fluctuations: Liquid and bubbles
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Figure 6.15. Non-dimensional liquid and bubble velocity fluctuations for
(a) varying α at Fr = 14.1, Re = 44, Eo = 1.55 and (b) varying Fr for
α = 5.86%, Re = 44, Eo = 1.55

The velocity fluctuations in the domain are characterized by the fluctuation Reynolds

number in this study. Fluctuation Reynolds number is defined as Reu′u′ = ρl

√
< u′u′ >d/µl,

where the averaging operator, <>, denotes spatial as well as temporal averaging in the

statistically steady state of flow. In figure 6.15 , we calculate this quantity for both

the liquid as well as bubbles to show a comparison. The motion of the bubbles causes

pseudo-turbulence in the liquid phase. One observation we note here is that the fluctu-

ations in y and z, that is the horizontal directions, are almost coincident for both liquid

and the bubbles. This suggests that the flow is isotropic in the two horizontal directions

for both the liquid as well as bubble motion. The fluctuations in the vertical direction

are larger than in the horizontal plane as expected due to the inherent anisotropy of the
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Figure 6.16. Non-dimensional liquid velocity fluctuations in vertical (a,b)
and horizontal (c,d) directions. (e): Non-dimensional bubble velocity fluctua-
tions in vertical direction for α = 3.66%, F r = 14.1
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bubble motion in the vertical direction. We expect the cross-correlation components

of liquid velocity fluctuations to be zero due to symmetry.

An increase in α leads to an expected increase in bubble velocity fluctuations due

to the increased probability of interactions (figure 6.15a ). We also see that these

fluctuations are likewise transferred to the liquid, where we see a similar rising trend in

liquid fluctuations with α. As explained earlier, an increase in stratification strength

suppresses bubble velocity fluctuations and this can be seen in figure 6.15b . The

liquid velocity fluctuations are also suppressed due to the high buoyancy frequency

and resistance to disturbances by the isopycnals.

The non-dimensionalized liquid velocity fluctuations for a variation in Re and Eo

are shown in figure 6.16 . Figures 6.16 a,c show the variation of fluctuations as a function

of Eo in the vertical and horizontal directions respectively. For the lower Re = 25, 44

and 74, the liquid fluctuations are almost constant between Eo = 1.55−3.3 and show a

rise at Eo = 4.95. At higher Re = 100 and 200, we in fact see a decreasing trend in the

fluctuations till Eo = 3.3 and a similar jump at Eo = 4.95. This could be attributed

to the fact that at the Reynolds numbers considered, the bubble deformation is very

high for Eo = 4.95, which causes drastic liquid fluctuations. Another observation we

make from these plots is that a change in Re has a higher impact on the vertical

fluctuations than the horizontal fluctuations. This trend is clearly visible in figures

6.16 b,d. Plotting the fluctuations against Re shows a remarkable collapse of all the

data points and an almost linear increase in the fluctuations with Re can be seen. The

slope of the curve is higher for the vertical than the horizontal fluctuations. Bubble

velocity fluctuations monotonically increase with Reynolds number, showing a trend

similar to the liquid fluctuations (6.16e ). An increase in the Re causes the formation

of larger turbulent structures thereby increasing the velocity fluctuations.

The bubble and liquid velocity fluctuations for a high Fr = 44.5, Re = 80 and

Eo = 4 are compared with previous work on homogeneous bubbly flows. We first look

at the normalized bubble velocity fluctuations, Tb = 〈u′
bu

′
b〉/u2

b,avg. The average bubble

fluctuations match quite well with the experimental results from [52 ] carried out at

Re between 400 − 535 and Eo between 0.229 − 0.78 (see table 6.2 ). Next, we also
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Table 6.2. Comparison of velocity fluctuations with previous experimental
and numerical work

Present simulation at Fr = 44.5 Experimental results [52 ]
Tb 0.047 0.045

Present simulation at Fr = 44.5 Numerical results [53 ]
τ̃11 2.774 2.868
τ̃22 0.522 0.6016
τ̃33 0.533 0.6023

compare three components of liquid Reynolds stresses, τ̃11 = 〈u′
lu

′
l〉

u2
b,avgα

, τ̃22 = 〈v′
lv

′
l〉

u2
b,avgα

and

τ̃33 = 〈w′
lw

′
l〉

u2
b,avgα

with results from [53 ] simulated at Re ≈ 90, Eo = 4, α = 5.83%. Again,

a good match is seen for all three components. The slightly higher values obtained by

[53 ] can be attributed to the slightly higher Re that they used. It could also be due

to the small stratification we have as opposed to a fully homogeneous fluid used in the

simulations by [53 ]. We also observe that τ22 and τ33 are approximately equal, since

the flow is isotropic in the horizontal directions.

The bubble induced turbulence can also be characterized by looking at the isotropic

turbulent kinetic energy spectrum at steady state where the production of energy by

bubbles is balanced by dissipation by the liquid. The energy spectrum is calculated

by first taking a discrete three dimensional Fourier transform of the liquid velocity

fluctuations over space. The spectrum is then calculated as UÛ + V V̂ + WŴ , where

U, V, W are the Fourier transforms of the liquid velocity fluctuations and .̂ stands for

the complex conjugate. Energy is then summed in spherical shells of width δk and

normalized as ΣkE(k)δk = 1
2
∫

Vl
ρ||u||2dV , where Vl is the volume of liquid alone. This

is done for multiple time-steps and we found that the spectrum does not change in the

statistically steady regime. The kinetic energy spectrum at one particular time instant

is shown in figure 6.17 . We calculate the slope of the energy cascade by fitting a line to

the linear portion of the log-log graph. The energy cascade shows a slope close to -3.

We see a slightly higher slope of -3.25 for low Reynolds number cases while Re = 100,

shows a slope of -3 (figure 6.17c ). Various experimental [36 ], [70 ] and numerical [71 ]
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Figure 6.17. Turbulent kinetic energy spectrum for (a) varying α at Fr =
14.1, Re = 44, Eo = 1.55 (b) varying Fr for α = 5.86%, Re = 44, Eo = 1.55
and (c) varying Eo and Re at α = 3.66%, F r = 14.1

investigations of high Reynolds number bubbly flows report a kinetic energy spectrum

slope of -3. [72 ] report a slope of -3.2 at Re = 1000 and 3 < Eo < 4. On the other hand,

[51 ] study low Reynolds number bubbles (≈ 36) with low deformability (Eo ≈ 1) and

report the energy spectrum slope of -3.6, suggesting that the spectrum slope can vary

slightly depending on Reynolds numbers and bubble deformabilities. In figure 6.17a ,

we see that the curves of lower α are shifted downward compared to the higher α due to

a decrease in kinetic energy of the liquid. We also visualize the effect of stratification on

the energy spectrum in figure 6.17b . We find that the weakly stratified liquid has more

energy overall, since the bubble motion through the isopycnals causes more velocity

fluctuations. The energy spectrum for Re = 25 and Re = 100 for two different Eo
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are plotted in figure 6.17c . We note that for a constant Re, an increase in Eo, i.e,

higher deformability, leads to higher energy levels at low wavenumbers. At higher

wavenumbers, the curves of constant Re collapse due to the fluctuation lengthscale

being very small compared to bubble size as noted before. When comparing the two

different Re, we see that the curve is shifted significantly up for the higher Re due to

higher energy levels.

6.4 Modeling using Gaussian Process regression

We also try to come up with a preliminary model for the data by means of us-

ing Gaussian Processes (GP). The obtained model could also be useful in construct-

ing surrogate models for the data which can be used for uncertainty analyses using

MC simulations. Presently, we have data for a range of bubble Reynolds numbers,

Re = ρl

√
gdd/µl and Eötvös number, Eo = (ρl − ρb)gd2/S which controls the bub-

ble deformability. We try to generate a response surface in these 2 dimensions using

Gaussian Processes.

We assume a GP prior on the function approximating the data ,i.e, f(·) ∼ GP (m(·), k(·, ·))

with mean vector: m(x1:n) = (m(x1), . . . , m(xn)) , and covariance matrix:

K(x1:n, x1:n) =


k(x1, x1) . . . k(x1, xn)

... . . . ...

k(xn, x1) . . . k(xn, xn)

 .

We also assume a Normal likelihood for the data with mean f(xi) and variance σ2. By

applying Baye’s rule we get the posterior f∗, which is also a GP, at inputs x∗ as

p(f∗
1:n∗|x∗

1:n∗ , D) = N (f∗
1:n∗|mn(x∗

1:n∗), Kn(x∗
1:n∗ , x∗

1:n∗)) , (6.16)

where posterior mean function and the posterior covariance function respectively are ,

mn(x) = m(x) + k(x, x1:n)
(
K(x1:n, x1:n) + σ2In

)−1
(y1:n − m(x1:n)) , (6.17a)

kn(x, x′) = k(x, x′) − k(x, x1:n)
(
K(x1:n, x1:n) + σ2In

)−1
kT (x, x1:n). (6.17b)
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Figure 6.18. (a,d) Mean and uncertainty from 24 GP runs (b,e) Ensemble
mean and uncertainty for Re=100, (c,f) Observation vs prediction. (a,b,c)
corresponds to eddy diffusivity, (d,e,f) corresponds to mixing efficiency

We extend the same concept to 2 dimensions, our dimensions consisting of Re and Eo.

We use the GPy package to carry out Gaussian Process regression. In our simulations,

we use a squared exponential kernel function in two dimensions and use ARD to pick

the lengthscales for each dimension.

Another step in the Gaussian proccess training is to make sure the training proce-

dure is not merely memorizing the data and is able to predict correct values at unknown

inputs. In order to do this, we divide our data into training and testing sets. Since we

have a limited data set, the splitting of data is done randomly and multiple times. In

the present analysis we use 24 non-repetitive training and testing sets by shuffling the

data. The final mean and covariance prediction is an average of all the 24 training pro-

cedures. In order to perform diagnostics, we plot the predictions vs observations as well

as find the coefficient of determination R squared, defined as, R2 = 1−
∑nv

i=1

[
yv

i −mn(xv
i )
]2∑nv

i=1

[
yv

i −ȳv
]2 ,

where ȳv is the mean of the observed data ȳv = 1
nv

∑nv

i=1 yv
i .
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(a) (b)

Figure 6.19. Posterior predictive distribution of (a) eddy diffusivity (b) mixing efficiency

(a) (b)

(c) (d)

Figure 6.20. Two dimensional response surfaces for (a,b) eddy diffusivity
(c,d) mixing efficiency where (a,c) give the mean and (b,d) give the variance
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Using the GP method discussed above, we perform regression on Kρ and Γ in the

Re − Eo plane. We shuffle the available data into 24 training + testing sets and we

obtain the mean and variance from these 24 regressions (see figure 6.18 a, d). We take

an average of all these outputs to get the mean, epistemic uncertainty and noise. One

of the cases (Re = 100) is shown in figures 6.18 b, e. From these 24 regression sets, with

each set composed of 4 training points, we plot the observation vs prediction plot of

Kρ and Γ in figures 6.18 c and f respectively. We see that at low values of Kρ and Γ the

points lie very close to the y = x line. The higher values do show some discrepancies.

This could be because at higher Reynolds numbers, where we expect higher mixing

levels, we only have sparse data due to high computational cost. We believe that

the analysis can be improved by adding more points to our data. Nevertheless, we

also compute the R2 value which gives a measure of how well the observed outcomes

are replicated by the model, based on the proportion of total variation of outcomes

explained by the model. As defined before R2 = 1 −
∑nv

i=1

[
yv

i −mn(xv
i )
]2∑nv

i=1

[
yv

i −ȳv
]2 , where the

numerator of the second term on the right hand side, gives the variance of the mean

prediction from the observed quantity. For a perfect model, this term would go to 0

leading to R2 = 1. For the present analysis, we obtained an R2 value of 0.88 for Γ and

0.854 for Kρ which come close to 1.

We then get the posterior predictive distribution for the two quantities as a function

of Eo at different Re (figure 6.19 ). We see that at low Eo the mixing strength is

stagnant and increases rapidly for higher Eo. This trend is captured by the posterior

GP well. We also get the 2D response surface plotted as a contour plot (see figure

6.20 ). The mean values are given in figure 6.20 a and c, while the variances are plotted

in figure 6.20 b and d. The dots on the figures correspond to the observed quantities.

We see that the uncertainty at the right top corner, corresponding to high Eo and

high Re, is high for both the mixing quantities. This is because we have very sparse

data near these points. The mean trend at these points may also be misrepresented.

However, the trend at low Re and Eo have been captured quite well by the GP.
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6.5 Summary

In this study, we numerically investigated the rise of bubbles in a stratified flow in an

unconfined domain. We run simulations for a range of void fractions, Froude numbers,

Reynolds numbers and bubble deformabilities. The bubble dynamics is studied by

looking at the rise velocities and temporal velocity autocorrelations of the bubbles. We

find that the vertical velocity is correlated for longer than the horizontal in general and

also record trends for the correlation times as we change various physical parameters of

the system. Bubble dispersion in the vertical and horizontal directions is quantified by

the dispersion coefficient. The dispersion increases as we increase Reynolds number,

void fraction or the Froude number. We quantify the mixing induced in the background

liquid by the motion of bubbles through the diapycnal eddy diffusivity, Cox number

and mixing efficiency. We find that the vertical buoyancy flux increases when we

decrease the stratification due to lesser resistance to disturbance by the isopycnals.

This allows for more time for thermal mixing. We see that increasing the number

of bubbles in the domain has a similar effect. We also quantify mixing in terms of

energetics of the background liquid. An increase in Eo has almost no effect on liquid

velocity fluctuations, but we see that the vertical eddy diffusivity increases. This leads

to the inference that the energy input to the system is constant, but more of it goes into

vertical mixing of the liquid than viscous dissipation as we increase Eo. Similarly, when

we increase Re, we see a near linear increase in liquid fluctuations. However, this is

not the case with the mixing efficiency trend, suggesting that most of the extra energy

input upon increasing Re is dissipated. We also gain interesting insights by looking

at the energy spectrum and see that the energy cascade follows a slope of ∼ −3.0.

Finally, preliminary modeling of the data using Gaussian Process regression has been

performed. We report an R2 value of 0.880 and 0.854 for the mixing efficiency and the

diapycnal eddy diffusivity, respectively. We get a very good prediction vs observation

plot for lower mixing values where we have a good amount of data.
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7. TRANSIENT SINGLE BUBBLE DYNAMICS IN STABLY

STRATIFIED FLUIDS

7.1 Literature Review

Rising motion of a bubble and the bubble dynamics are significantly affected by

density gradients in the background liquid produced by temperature and salinity gra-

dients in oceans and lakes. Numerous studies have been made in understanding the

physics behind settling spheres [6 ], [73 ], [74 ], [75 ] and rising drops [27 ], [5 ], [25 ] in a

density gradient.

Settling of sphere through sharp density gradients results in enhanced drag on the

sphere [74 ]. As the sphere moves from lower to higher density, it entrains liquid, which

experiences buoyant forces when it enters the high density region. Stratification effects

can lead to oscillating velocity of particles with the formation of secondary and tertiary

vortices behind the primary vortex [76 ]. In extreme cases, particles experience such

high levels of drag that levitation and bounce back of sphere has been reported in sharp

gradients [77 ].

Stratification effects in the rise and settling of drops has gained significant impor-

tance in recent times. Blanchette and Shapiro [78 ] analyzed the descent of nearly

spherical drops in density gradients. For a Reynolds number of 10, they found that

if the two background fluids had the same surface tension, the fluid entrained by the

drop becomes buoyant and slows down the drop temporarily. When the surface ten-

sions are different, the tangential flows or the Marangoni effect becomes important in

determining the drop’s motion. Bayareh et. al. [5 ] observed that a single drop rising in

a stratified medium experiences drag enhancement compared to a homogeneous fluid.

They also report the formation of secondary vortex and resulting buoyant jet in wake

of the drop.

Díaz-Damacillo et. al. [29 ] experimentally investigated the rising motion of a

single bubble across two different-density liquids. For smaller bubbles moving in a

rectilinear fashion, they find that the drift volume returns to the bottom fluid with

almost no mixing. The drift volume in this case was found to be stable and inversely
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proportional to the bubble Reynolds number. On the other hand, for larger bubbles

moving in a zigzag manner, the drift volume became unstable. Patches of dense fluid

are left behind in the lighter fluid, leading to mixing. To the best of our knowledge,

the effects of stratification, Reynolds number and interface deformability on the rising

motion of a bubble in stratified fluids is a problem that has not been widely tackled in

literature.

In this study, we will study the transient rising motion of a bubble in density strat-

ified fluids. The organization of different sections is as follows. The problem set up

and initial and boundary conditions are first discussed. Next, the validation of the

code written in Basilisk using AMR is presented for both non-stratified flow and the

implementation of the energy equation solver. We then move on to the results. The

effect of stratification on bubble dynamics is first analyzed. The modified bubble wake,

drift volume associated with the bubble and drag estimation for different stratification

strengths is discussed. Following this, the role of bubble Reynolds number and de-

formability effects on the above-mentioned physical parameters are analyzed. Finally,

the behavior of the bubble when it rises in a fluid with only partial stratification is

touched upon briefly, since this comes closer to the real world density gradients present

in lakes and reservoirs.

7.2 Problem Description

The objective here is to simulate the rise of a single bubble in infinite stratified fluids

and study the resulting bubble dynamics in the axisymmetric limit. A schematic for

the problem is shown in figure 7.1 . We have rigid walls on the left, top and right and we

have a symmetry boundary at the bottom. The gravity acts in the x direction. We will

restrict ourselves to rise of bubbles in the axisymmetric Re − Eo range. The bubble

motion and wake is reported to be axisymmetric in the range 0.1 < Bo < 100 and

5 < Re < 200 [79 ], [65 ]. Axisymmetric shape oscillations were observed for Re = 200

when 5 < Bo < 20 [79 ]. Experimental work have also shown wobbling bubbles [80 ],

[81 ] for Re ≥ 200. Bhaga and Weber [82 ] report cases where bubble shapes oscillate
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Figure 7.1. Schematic
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from the base, but the bubble moves rectilinearly. However, in these cases, the bubble

wake is no longer axisymmetric. We will thus explore the parameter space where the

bubble motion is rectilinear.

We have a linear temperature stratification leading to a density stratification in

the x direction. On the left wall the temperature perturbation, Tm = 0, on the right,

Tm = dT
dx

Lx and on top, Tm = dT
dx

x. All the walls have zero slip and are far from the

bubble to mimic the flow in an infinite liquid. We will use d/L = 40 ∼ 80, depending

on the length of the domain needed to study the bubble wake. The initial location of

the bubble is at x = 2di from the left wall and it rises from rest due to gravitational

effects.

Similar to the previous studies we will solve the Navier-Stokes Equations along

with the energy equation. In this study we will use a partial differential equation

solver called Basilisk, which encompasses a numerical solver for two-phase flows using

the Volume of fluid method. We parallelize this code to be run on the Purdue Research

cluster. Along with the momentum equation we also implement the energy equation.

Since we neglect phase change and compressibility, we use the advection and diffusion

solvers in tandem to solve for the temperature. We also implement a jump condition

for κ and ρCp for the gas-liquid interface using the volume fraction, C. The Boussinesq

approximation is done by simply adding a force term to the momentum equation, thus

coupling the momentum and energy equations.

The density and viscosity ratios will be maintained at ρl/ρb = 842 and µl/µb = 48.1,

respectively. These values correspond to the properties of air-water. The relevant non-

dimensional parameters which we will consider in this study include Reynolds number,

Eötvös number, and Froude number.

7.3 Validation

This section will be devoted to validation of the code. This will be done in two

parts; (a) the two-phase flow momentum solver in the absence of stratification (b)

energy equation solver and Boussinesq approximation
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Figure 7.2. Bubble shape validation for (a) Re = 10, Bo = 10 (b) Re = 50, Bo = 20

7.3.1 Non-stratified flow

Table 7.1. Comparison of bubble aspect ratio and terminal velocity non-
dimensionalized by (gd)1/2 with results by [79 ]

Case χ χp v∗ v∗
p

Re = 100, Bo = 10 3.197 3.19 0.873 0.92
Re = 50, Bo = 20 3.275 3.23 0.69 0.72
Re = 10, Bo = 10 1.322 1.34 0.51 0.52
Re = 50, Bo = 1 1.262 1.27 1.374 1.41

We validate the homogeneous case by comparing bubble shapes, aspect ratio and

bubble terminal velocities for different cases with existing literature. Figure 7.2 shows

the bubble shapes for Re = 10, Bo = 10 (figure 7.2a ) and Re = 50, Bo = 20 (figure

7.2b ), where Bo is the Bond number, Bo = ρf gd2

σ
. Comparison of the shape is made

with the paper by Hua and Lou [65 ] and we find that both these cases visually show

a very good match. In order to express this more quantitatively, a comparison with

the results by Cano-Lozano et. al. [79 ] is shown in table 7.1 . Here χ and v∗ refer to

the bubble aspect ratio and non-dimensionalized bubble terminal velocity, respectively.

The subscript, p, refers to the results taken from [79 ]. We find that for the diverse cases
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(a) (b) (c)

(d) (e) (f)

Figure 7.3. (a,d) Temperature (b,e) horizontal velocity (c,f) vertical velocity
contours in a differentially heated cavity. (a,b,c) correspond to the present
work (d,e,f) results from existing study [83 ]

that we considered, our results match very closely with the study by Cano-Lozano et

al. [79 ].

7.3.2 Energy equation solver

In order to validate the energy solver, we consider the problem of a differentially

heated square two-dimensional cavity with a Boussinesq fluid of Prandtl number Pr =

ν/D = 0.71, where D is the thermal diffusivity. All the four boundaries have zero

tangential and normal velocities. Top and bottom walls are insulated. Left wall is

maintained at a T = 0.5 and the right wall at T = −0.5. We obtain the velocities and

temperatures at steady state for a Rayleigh number of Ra = γ∆TL3g

νD
= 1000. We

compare our results with the solution from de Vahl Davis [83 ] in figure 7.3 .
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The isotherms (figure 7.3a ) and isocontours of velocity (figures 7.3 b, c) show a good

match qualitatively with the existing results in [83 ] (figures 7.3 d-f). We also make a

quantitative matching of the maximum horizontal (umax) and vertical (vmax) velocity

and the average Nusselt number on the vertical mid-plane, Nu1/2 = qx=0L

Th − Tc

(see table

7.2 ).

Table 7.2. Comparison of Nu1/2, vmax, umax with results by [83 ]
Current Simulation De Vahl Davis (1983) [83 ]

Nu1/2 1.289 1.118
umax 3.669, y=0.82 3.649, y=0.813
vmax 3.719, x=0.18 3.697, x=0.178

7.4 Results and Discussion

The validated code is now used to study the transient motion of a single bubble

in density-stratified fluids. The effect of stratification (in the range 9 < Fr < 50,

Reynolds number (5 < Re < 124) and Eötvös number (1 < Eo < 20) are presented.

7.4.1 Effect of Stratification

Stratification offers resistance to disturbance by rising bubbles and this can have a

significant impact on the bubble dynamics

Bubble Wake

Thermal stratification leads to a density stratified background liquid which influ-

ences the bubble shapes, deformation and wake dynamics. The first phenomenon we

will discuss here is the collapse of the standing vortex and generation of negative buoy-

ant jet. Figure 7.4 shows the vorticity (top) and temperature (bottom) contours for

a rising bubble at different Fr. We notice that as the stratification gets stronger, the

standing vortex usually present in the rectilinear rise of bubble starts to collapse. The

negative buoyant jet on the symmetry axis at the rear of the bubble is responsible for
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(a) (b) (c)

Figure 7.4. Vorticity and temperature contours for (a) Fr = 9 (b) Fr = 15 (c) Fr = 25
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(a) t∗ = 0.00

(b) t∗ = 21.90

(c) t∗ = 43.82

(d) t∗ = 65.73

(e) t∗ = 87.65

(f) t∗ = 109.57

Figure 7.5. Time snapshots of vorticity plotted along with temperature
streamlines for Fr = 9 at Re = 124, Eo = 20 where t∗ = t/(d1/2/g1/2). The
non-dimensional vorticity ω/(g1/2d3/2) goes from −0.9 to 0.9

this behavior. The formation of the negative buoyant jet is explained as follows. As

the bubble rises up, the isopycnals get disturbed. The displaced isopycnals experience

a negative buoyancy force or a restorative force since they are in stable equilibrium.

This force creates a velocity field pointing in the direction opposite to the motion of

the bubble, thereby generating a rear buoyant jet. The rear buoyant jet is stronger

for low Froude numbers, since the isopycnals experience stronger forces. Due to this,

the stagnation point on the symmetry axis moves closer to the bubble rear for low Fr

(figure 7.4 ). The separation point on the interface also moves towards the rear of the

bubble as Fr is decreased. From the temperature contours (bottom half of figure 7.4 )

we see that the recirculation zone is most prominent for Fr = 25
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The temperature isolines and vorticity contours during the passage of a single bub-

ble through the density stratified liquid are plotted in figure 7.5 . The displacement

of the isopycnals due to entrainment by the bubble wake is depicted well in the fig-

ures. The restoration of the displaced isopycnals downstream of the bubble causes the

buoyancy induced secondary vortex as seen, with the stagnation point located close

to the bubble rear. The displaced isopycnals oscillate about their stable state before

restoration to the original configuration. This behavior is also seen by observing the

temperature isoline. For instance, at around x = 5 in figure 7.5 e, the isotherms peak

to the right in the positive x direction, while in figure 7.5 f, they peak towards negative

x, showing that the lines are oscillating.

The restoration of isopycnals causes a secondary vortex at the rear of the bubble.

The evolution of this secondary vortex is depicted in figure 7.5 a-f. The isopycnal

tends to oscillate with a frequency proportional to the buoyancy frequency, N , before

returning to its stable state. This induces not just a single secondary vortex, but

multiple counter-rotating vortices in the rear of the bubble. In figure 7.5 f, we see the

original standing vortex, a secondary vortex behind it and more tertiary vortices which

keep changing directions due to the oscillatory isopycnals.

The strength of negative jet increases as we increase the stratification. In figure 7.6 a

at Fr = 9, the velocity behind the bubble is oscillatory. At the same time instant, for

Fr = 25, we only see one negative jet. The positive jet behind it is yet to form. This

is because Fr = 25 has a lower buoyancy frequency or higher buoyancy time period

of oscillation compared to Fr = 9. Thus, the isopycnals take longer to complete one

cycle of oscillation. If we were to increase the domain size and let the bubble rise for

longer, we expect to see tertiary vortices in the rear of the bubble for Fr = 25 as well.

The oscillatory nature of the density lines can be better explained by looking at the x

velocity on the symmetry axis behind the bubble (figure 7.7 a). For Fr = 9, the velocity

oscillates about zero before dying down. Farther from the bubble rear, the amplitude

of oscillation reduces, bringing the velocity closer to zero. The isopycnals farthest from

the bubble have undergone multiple oscillations and are closer to coming back to their
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(a)

(b)

Figure 7.6. x velocity contours for Re = 124, Eo = 20 at (a)Fr = 9 (b)
Fr = 25 at t∗ = 109.57 with u/(d1/2g1/2) going from −0.18 to 0.18
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Figure 7.7. (a)Liquid velocity behind bubble on the axis (b,c) Height of
isopycnal at x/d = 4 for Re = 124, Eo = 20

original configuration. As Fr increases, the frequency of oscillation increases. The

restorative force weakens, thereby increasing the lengthscale of oscillation.

The height of one particular temperature isoline is plotted as a function of time for

different Froude numbers (figure 7.7 b). When time is normalized by a constant value for

all Froude numbers, we see that the oscillation frequency reduces as Fr increases, with

Fr = 4 having the highest number of cycles by the end of the simulation. We already

know that this frequency is governed by the buoyancy frequency of the system. When

time is thus normalized by 1/N , we see that the isopycnal for all the Froude numbers

collapse at the beginning of the oscillation cycles (figure 7.7 c). This strengthens our

proposition that the isopycnals in liquids of all stratification strengths will exhibit the

oscillatory motion on a large enough timescale.
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Figure 7.8. Illustration of partial drift volume
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Figure 7.9. Drift Volume for (a)Eo = 5, (b)Eo = 20

Drift Volume

When considering the deformation of a plane of marked fluid, drift volume is defined

as the volume between the initial and final plane of marked fluid after the passage of

any body, when the body is infinitely far from the initial plane [84 ]. A schematic

defining the drift volume is shown in figure 7.8 .

Drift volume can also be interpreted as the time integrated flux through a kinematic

surface within the fluid domain. In order to calculate this, we pick a transverse surface

x = x0 (undisturbed isopycnal line) through which bubble has not yet passed. Volume

flow rate through the surface can be calculated as Q =
∫

u+
f dA, where u+

f is the x

velocity on the surface as a function of space and time. We take into account only
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the positive liquid velocity, since reflux will involve negative velocity too. Through

material balance,
∫ t

0 Qdt will give the partial drift volume as a function of time.

When the drift volume stagnates with time, it means that there is no more positive

velocity through the kinematic surface. The stagnation value is the total drift volume

of the bubble. We calculate the partial drift volume for different Froude numbers at

Eo = 5 and Eo = 20 (figure 7.9 ). For the lowest Fr = 9, we see that Vdrift initially

increases, stagnates and then starts to increase again, following an oscillatory pattern

between stagnation and increase. The stagnation first happens when the isopycnals

in the vicinity of the original plane start to experience negative buoyant force and fall

back towards their stable state. In this time period, the velocity on the plane x = x0

is mostly negative and thus positive drift stagnates. However, since the isopycnals

oscillate before returning to their stable state, there is positive flow rate through x = x0

once again when the second cycle of oscillation starts, leading to an increase in Vdrift.

This cycle continues periodically until the density lines close to x = x0 are at rest. The

value at the initial stagnation can be considered as the drift volume associated with

the bubble.

For Eo = 5, the drift volume at first stagnation does not change much with Fr

(figure 7.9 a). For Eo = 5, we see that initially the drift increases with Fr (figure 7.9 b).

This is because dragging lighter fluid is easier, coupled with the fact that at low Fr

the bubbles are more spherical due to high stratification strength leading to decreased

drift. Beyond this initial phase, Vdrift increases for lower Fr, since the tertiary jets

behind the bubble are forming at a faster rate. For highest Fr = 50, the tertiary jets

are not formed till the end of simulation and we do not see much increase in the drift

volume beyond the initial stagnation.

Drag Estimation

Figures 7.10 b,c show the transient evolution of rise velocity of bubbles for different

stratification strengths. For nearly homogeneous liquid, the bubble velocity increases

and reaches a constant steady state value. As Froude number decreases, the bubble
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velocity is continuously changing. This happens due to the changing density levels and

the heavier liquid dragged by the bubble. The bubble deformation also has a role to

play in the changing rise velocity of the bubbles. The bubble deformation in this case

is calculated as χ = dy/dx, where dy and dx are the diameter of the bubble in the y and

x direction, respectively (figure 7.10 a). The bubble deformation reduces and bubble

becomes more spherical as the bubble rises through stratified layers (figures 7.10 d, e)

and the reduction is more pronounced for strongly stratified liquids.

The rise velocity oscillates about a mean value for nearly homogeneous liquids, i.e,

Fr > 30, (figure 7.10 b), while the oscillations are absent for high levels of stratification.

The velocity oscillations are an artifact of shape oscillations. The entire system is more

stabilized at high Fr, due to the stabilizing buoyant force. This suppresses the shape

oscillations of the bubble, in-turn leading to an absence of velocity oscillations.

Presence of stratification modifies the motion of particles, drops and bubbles. An

important parameter to consider is the terminal velocity and drag experienced by the

dispersed phase. A strong drag enhancement with an increase in stratification strength

for 25 < Re < 100 and Fr ≤ 200 has been previously reported [6 ] for a sphere

moving vertically in a stratified diffusive fluid. Rising particles and settling drops can

even experience levitation when they cross a strong enough stratified layer [77 ], [78 ].

Drag enhancement was also reported for a rising drop in stratified fluids [5 ], where the

normalized drag coefficient was shown to scale as Fr−2.28.

Drag coefficient can be estimated by performing a simple force balance on the rising

bubble. Some factors which need to be considered when calculating drag coefficient on

a bubble in a stratified liquid are

• Changing bubble shape while passing through the stratified layers

• Changing buoyancy force

• Resulting non-constant terminal velocity

• Acceleration and added mass term in force balance
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Figure 7.10. Bubble deformation definition(a). Rise velocity and bubble
deformation for Eo = (b,f) 5 (c,e) 20
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Figure 7.11. Drag coefficient at Re = 124 for (a) Eo = 5,(b) Eo = 20.

Considering the above factors, the analytical expression for the drag coefficient can be

derived as

CD = 2d3
i

3dy(t)2

1 − γ
dT

dx
xb(t)

1
2ρl,0v2

b (t)


(

(ρl,0 − ρb,0)g − ρb,0
dvb

dt
− CAMρl,0

dvb

dt

)
, (7.1)

where the first term is the buoyancy term, the second is the bubble velocity acceleration

and the third is the added mass term. Here, we calculate the buoyancy force based on

the density of the liquid and bubble at the location of the center of mass of the bubble

at any given time instant. At the location of center of mass of the bubble, xb(t), the

liquid density is given by ρl = ρl,0(1 − γ
dT

dx
xb(t)). di is the initial bubble radius and

the bubble volume is calculated based on this. The projected area perpendicular to

the flow, on the other hand is calculated based on dy(t), which is the bubble diameter

in the y direction (see figure 7.10 a) or the axis perpendicular to the symmetry axis.

dy(t) is constantly changing when the bubble shape changes as it rise up through the

stratified liquid.

Drag coefficient based on the expression given by equation 7.1 is obtained for varying

Fr, for Eo = 5 (figure 7.11 a) and Eo = 20 (figure 7.11 b). Since we account for changing

buoyancy and bubble shape deformation, a constant CD is obtained. For the lower Eo,

drag enhancement for stratified fluids is less pronounced and we obtain a scaling of

CD ∼ Fr−0.02. Drag enhancement is more pronounced for Eo = 20, with a scaling of
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(a)

Figure 7.12. Bubble shapes at Fr = 20

CD ∼ Fr−0.164. This can possibly be attributed to the bubble shape deformation. The

bubble shape is much more sensitive to the stratification strength at Eo = 20 than

at Eo = 5. For instance, at t∗ = t/
√

d/g = 30, the percentage reduction in χ from

Fr = 20 to Fr = 12.5 for Eo = 5 is approximately 8%, while for Eo = 20 it is 20%.

Since we already accounted for changing buoyancy and shape, the drag enhancement

obtained here is purely because of the heavier fluid being dragged by the bubble.

7.4.2 Effect of Reynolds and Eotvos numbers

Bubble Reynolds number and deformability play an important role in determining

the rise velocity, drag coefficient and bubble wake dynamics. In our simulations we

vary Re = ρl,0
√

gdd/µl between 5 and 124 and Eo = (ρl,0 − ρb,0)gd2/σ between 1 and
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(a) (b) (c) (d)

Figure 7.13. Vorticity and temperature contours for Fr=20 (a,c) Re = 20
(b,d) Re = 75. The rows have same Eo, i.e, (a,b) Eo = 1 (c,d) Eo = 20

20. The bubble shapes for the various cases are shown in figure 7.12 . An increase in

Re and Eo lead to flattening of the bubble in the flow direction, giving it an oblate

ellipsoid shape.

The bubble shapes become very important because they influence the bubble wake

pattern, which subsequently affects the displacement and motion of the isopycnals.

This becomes more clear by looking at the vorticity and temperature contours for

Re = 20, 75 for two different Eo = 1, 20 (figure 7.13 ). The thermal and velocity

boundary layer are thinner for the higher Re resulting in differences in the temperature

pattern.The beginning of the formation of the negative jet can be observed for the

higher Eo of 20 (figure 7.13 c,d).

Rise velocity and Drag coefficient

The transient evolution of bubble rise velocity and bubble deformation is depicted

for one particular Eötvös number to show that the system reaches a steady state

(figure 7.14 a,b). At the high Fr that we consider, the transient effects are minimal

and a steady rise velocity is obtained for the different Reynolds numbers. It is also seen

that the higher Reynolds numbers reach steady state faster, since the wake develops

more slowly for lower Re. The bubble deformation is also drastically affected by Re

(figure 7.14 b).

Since the bubble reaches a steady state, we are able to plot the average deformation

of the bubble for different Re and Eo ((figure 7.14 c). An increase in Re produces

an almost linear increase of χ. The dependence on Eo can also be interpreted from
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Figure 7.14. (a)Rise velocity and (b) bubble deformation for Fr = 20, Eo =
20 as a function of Re. (c) Average bubble deformation

this plot. At low Re, an increase in Eo causes only a mild increase in the bubble

deformation. However, as Re increases, the sensitivity of χ to Eo increases drastically.
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Figure 7.15. Drag coefficient for Fr = 20 as a function of Eo and Re
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Drag coefficient is calculated using equation 7.1 . CD reduces as Re increases (figure

7.15 a). Viscous effects are dominating at low Re giving rise to a reduced rise velocity

(figure 7.14 a) and higher drag. The curves for different Eo almost collapse on top of

each other.

Dependence of CD on Eo is shown in figure 7.15 b. We only see a very mild increase

with Eo, especially pronounced at high Re. Had we used a constant project area to

calculate the drag force, i.e, FD = CD
1
2ρl,0v

2
b (t)πd2

i
4 , we would have ended up with a

value of CD which increases with Eo. Since we use a projected area which accounts

for the shape change due to surface tension effects, Ap = π
d2

y

4 , the drag coefficient we

obtain does not change much with Eo. The driving factor for the changing drag force

with a change in Eo, is the differences in bubble shapes at higher Eo which offers

higher resistance to the flow.

Drift Volume

0 10 20 30 40 50 60 70 80 90
t/√d/g

0

10

20

30

40

50

V d
rif

t/d
3

Re=5
Re=10
Re=20
Re=50
Re=75
Re=124

(a)

0 20 40 60 80 100
t/√d/g

0

10

20

30

40

50

60

V d
rif

t/d
3

Re=5
Re=10
Re=20
Re=50
Re=75
Re=124

(b)

Figure 7.16. Drift Volume for Fr = 20 (a)Eo = 1, (b)Eo = 20 for varying Re

Drift of heavier fluid by the bubble depends on Reynolds number and bubble de-

formability as well. In order to explore these effects, we look at the drift volume as a

function of Re and Eo (figure 7.16 ). Since the bubble moves slower at lower Re (figure

7.14 a), it takes longer to cross x = x0, because of which increase in Vdrift happens later
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for lower Re. Lower Re shows higher drift volume. Lower Reynolds number bubble

has a larger boundary layer and wider wake leading to higher levels of entrainment.

The higher viscous effects at low Re also leads to slower decay of the disturbance of

the material plane. This results in the larger drift when integrated over time.

The increase in drift volume when the Eo is increased can be seen by comparing

Eo = 1 and Eo = 20 in figures 7.16 a,b, and comparing Eo = 5 and Eo = 20 in figures

7.9 a,b. This happens because at larger Eo, the bubble is more flattened in the flow

direction leading to a wider wake and larger entrainment. Similar trends for the drift

volume for changing Re and Eo have been obtained for a cylindrical body migrating

in a viscous fluid [85 ]. In the Stokes limit, the partial drift volume associated with

a moving body becomes unbounded [86 ]. This happens because the flow decays very

slowly in the far field, causing an infinite volume of fluid to be transported in the

direction of motion of the body.

7.5 Partial Stratification

So far in this section, we have been discussing the study of a single bubble in linearly

stratified fluids. In order to apply our results to the real world, for instance bubble rise

in oceans and lakes, a few other factors have to be accounted for.

Typically, steep vertical temperature gradients are present only in parts of the lakes

and reservoirs. The stratified layers are called metalimnion in which the temperature

changes much more drastically with depth compared to the layers above or below.

The stratification occurs in lakes usually in the summer season. The surface water or

the epilimnion, heats up due to warmer atmospheric conditions and fails to mix with

the colder, lower water layers or the hypolimnion. Water still does circulate within

these regions, maintaining approximately uniform temperatures in this region, but

does not mix between the regions. This creates the steep temperature gradient in the

metalimnion. We will thus need to have a domain which reflects this. We will study the

passage of the bubble through a medium where the bottom and top part of the domain

remain non-stratified. A partial linear stratification, resembling the metalimnion will
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(a) t∗ = 25.29

(b) t∗ = 29.51

(c) t∗ = 33.72

(d) t∗ = 37.94

Figure 7.17. Time snapshots of vorticity contours and isotherms for partial
stratification at Fr = 4, Eo = 5, Re = 124. The non-dimensional vorticity
ω/(g1/2d3/2) goes from −0.9 to 0.9

be initiated. We wish to study the transient evolution of the bubble dynamics as the

bubble transitions from the homogeneous to stratified regions.

The temperature and vorticity patterns after the passage of a bubble through par-

tially stratified medium is shown in figure 7.17 . The domain length is 40di, with

stratification present between x = 16di and x = 24di. The length of stratification is

Lstrat = 8di. Temperature profile in this region is given by T = dT

dx
x. Below and above

this region, the temperatures are constant at T = 0 and T = dT

dx
Lstrat, respectively.

At t = 25.29di (figure 7.17 a), the bubble has passed through and exited the stratified

portion of the liquid. It has the primary vortex followed by the negative buoyant jet in

its wake. Since only part of the liquid is stratified, the negative jet is present only in
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Figure 7.18. (a)Rise velocity and (b) Bubble deformation for partial strati-
fication at Re = 124, Eo = 5

the stratified region due to the negative buoyant force experienced by the isopycnals.

Behind this region, the liquid is still homogeneous and the positive velocity in the

liquid created by the bubble wake is still present. It is important to note, that unlike

the previous cases where we had stratification throughout the domain, the positive jet

behind the negative jet is not due to oscillatory isopycnals. It is the standing vortex

created due to the bubble rising, which still has not dissipated in the homogeneous

liquid (between x = 0 to x = 16di).

The positive and negative jets at the starting point of stratification interact, re-

sulting in roll up (figures 7.17 b,c). Simultaneously the vortices in the homogeneous

part between x = 0 to x = 16di starts slowly dissipating, since this portion is not

influenced by the bubble anymore. Towards the end at t∗ = 37.94 (figure 7.17 d), the

isopycnals in the stratified region starts to oscillate resulting the tertiary vortex behind

the secondary vortex resulting in complex temperature and vorticity patterns at the

beginning of the stratified layers.

It is worth noting that the wake of the bubble has been attenuated due to the

secondary vortex (figure 7.17 a) when the bubble passes through the stratification.

However, when the bubble re-enters the non-stratified region, beyond x = 24di, the

primary wake length once again increases, leading to increased drift (figures 7.17 b-d).
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The stagnation point also moves farther away from the rear of the bubble, when it

moves from stratified to non-stratified layers.

Figure 7.18 shows the rise velocity and bubble deformation for varying Fr, where

the background medium has stratification only in a portion of the domain. The black

dotted lines here correspond to the times when the bubble enters and leave the stratified

layers for the lowest Froude number of Fr = 4. The rise velocity reaches a steady state

before entering the stratified layers, although it is oscillating due to shape instabilities.

Once the bubble enters the stratified liquid, the rise velocity starts decreasing uniformly

for all Froude numbers. Upon exit from the stratified liquid, the velocity increases

mildly before coming to a steady state once again. The velocity and shape oscillations

have also been suppressed due to the stratification. The reduction in the velocity of

the bubble is a function of both the stratification strength and length of stratification

Lstrat.

We see that the bubble deformation also decreases when it is moving through the

stratification and reaches back up to a constant value beyond this region (figure 7.18 b).

The final bubble deformation does not reach the initial deformation level and thus, the

bubble velocity is also affected by the change in the bubble shape.

7.6 Summary

We perform direct numerical simulations of rising motion of a single bubble in

stratified fluids using Basilisk and taking advantage of Adaptive Mesh Refinement. A

temperature stratification in the domain gives rise to a stable density-stratified fluid.

We discuss the bubble wake dynamics in detail and find the presence of secondary

and tertiary vortices, which are alternating in direction, in the wake of the bubble

due to the negative buoyant force experienced by the isopycnals. The other physical

parameters we take into consideration include the bubble shapes, drift volumes and

drag coefficient. Unlike in a homogeneous fluid, the drift volume keeps increasing and

at low Froude numbers, it shows oscillations as it increases due to the oscillatory nature
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of the bubble wake. The drag coefficient is estimated using a simple force balance on

the bubble taking in to account the changing bubble shape and the buoyancy force.

We study the effect of stratification in the range 9 < Fr < 50 and show that it has

a significant role to play in the bubble dynamics. The strength of the negative buoyant

jet increases for higher stratification. The frequency of oscillation of isopycnals also

increases with stratification and scales with the buoyancy frequency, N . The bubble

shape deformation is suppressed greatly as the bubble rises through sharp stratification.

Drag coefficient is also likewise enhanced. We also explore the role of Reynolds and

Eotvos numbers in the bubble rise in the range 5 < Re < 124 and 1 < Eo < 20. We

record bubble shapes and deformations for different cases at Fr = 20. We observe

enhanced CD as Re is reduced. The increase of CD with Eo is mild for low Re and is

most pronounced at Re = 124. The drift volume increase with Eo is attributed to the

bubble shape and resulting wake size. Vdrift is inversely proportional to Re due to the

slower decay of velocity in the far field.

Finally we also look at partial stratification, where we are able to observe the

differences between homogeneous and stratified mediums. We see the development

of complex vorticity patterns at the region between the homogeneous and stratified

liquid, once the bubble has passed through. The stratified region also suppresses the

rise velocity, the length of the bubble wake and the bubble deformation.
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8. TOPOLOGICAL CHANGES

8.1 Free surface

Until now, we have been modeling the rise of bubbles in an infinite domain far away

from boundaries. Typically, since we have the presence of stratification near the free

surface, we will also have to consider the interaction between bubble and the free surface

as the bubbles rise to the top. Free surface flows are in fact something we encounter

everyday, right from drinking, washing and cooking to other major applications like

breaking waves, boiling in nuclear plants and so on. When an air bubble bursts at

an air-water interface, it gives rise to a liquid jet and surface waves [87 ], [88 ]. A

lot of operations in ocean engineering require the consideration of free surface effect.

VOF method has been used previously for simulating bubble interactions with the

free surface [89 ]. We also have the advantage of using the adaptive meshing tool and

can thus resolve the flow well. The use of VOF method also makes it easy to handle

topological changes.

We simulate a bubble which rises from rest (initiated at x = 2di from the left

wall) in a stratified fluid due to gravitational effects and meets the free surface. The

domain length is 20di, with liquid height being 16di. The top 4di is filled with gas phase

with same properties as the bubble. The background liquid is stratified with a Froude

number of 9. Re and Eo corresponding to the flow are 100 and 5, respectively. Time

snapshots are shown in figure 8.1 with the top half showing the vorticity contours

and the bottom half, the temperature. The free surface deforms before the bubble

reaches it (figure 8.1 a), raised in a hat shape. Once the bubble reaches the free surface,

there is a small bounce back of the bubble (figures 8.1 c-f) due to the strong surface

tension force. Following this the upward bubble velocity overcomes the surface tension

effects and the bubble merges with the free surface. This creates a vertical liquid jet

as well as stray droplets in the air (figure 8.1 i-k). The bubble bursting creates surface

waves, which is apparent from the free surface level and vorticity contours in figures

8.1 h-l. The bubble also entrains heavier liquid while rising up. Upon bursting, there

is horizontal intrusion on the free surface, which causes the temperature at the free
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(a) t∗ = 14.17 (b) t∗ = 14.61 (c) t∗ = 15.05

(d) t∗ = 15.49 (e) t∗ = 15.94 (f) t∗ = 16.38

(g) t∗ = 16.47 (h) t∗ = 16.56 (i) t∗ = 16.73

(j) t∗ = 16.82 (k) t∗ = 17.27 (l) t∗ = 17.71

Figure 8.1. Bubble bursting at free surface at Re = 100, F r = 9, Eo = 5.
Top shows the vorticity contours (ω/(g1/2d3/2 in the range −4.52 to 9.03) and
the bottom shows the temperature contours
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surface to reduce quite a bit (figure 8.1 l). Bubbles rising up to the free surface can

thus help in preserving freshwater by lowering surface temperatures and achieve liquid

destratification, especially when plumes of bubbles rise up entraining large amounts of

liquid.

8.1.1 Future Work

We performed preliminary simulation of a bubble rising in temperature stratified

fluid and meeting the free surface. A more detailed analysis is necessary to understand

the complex flow features involved in the bubble interaction with the free surface.

The liquid jet, surface waves and droplet spray created when the bubble reaches the

surface have important applications. For instance, sea spray is responsible for heat and

moisture fluxes between the ocean and the atmosphere and plays a role in determining

climate patterns and storm intensities.

We know that the study of a single bubble gives important insights into the dy-

namics of the bubble motion in the stratified fluid. In order to study large scale mixing

effects by bubbles in lakes and oceans, considering the rise of a plume/swarm of bub-

bles up to the free surface is necessary. Multiple bubbles rising and bursting at the

surface will lead to horizontal intrusions on the surface and create upper and lower

re-circulation zones [90 ]. These effects are not always axisymmetric especially with

multiple bubble and full 3D simulations will need to be developed

8.2 Bubble coalescence and breakup in stratified liquids

Another problem of interest is the coalescence and breakup of bubbles in stratified

liquids. The previous studies based on a swarm of rising bubbles in stratified medium,

do not account for topological changes. In reality, drops and bubbles have been reported

to form clusters and the clustering is even enhanced in stratified flows. The possibility

of coalescence is high in these cases. At high enough Reynolds (≥ 200) and Eotvos

numbers, there is also a possibility of bubble break up due to the high levels of bubble

induced turbulence. Topological changes in bubbles have the potential to change the
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liquid dynamics and is very much a real possibility while dealing with bubbly flow. On

a fine enough grid, topology changes are naturally handled by methods which directly

advect the interface, like the VOF method.

Multiple studies have been carried out on coalescence and breakup of bubbles in

non-stratified liquids [68 ], [91 ], [92 ], [93 ]. Furthermore, it has been shown that drops

rising in line tend to attract each other which in some cases may lead to coalescence

[27 ]. In case of coalescence, the thin film between the two bubbles or drops is ruptured.

This happens due to the short range attractive forces [94 ]. The collision of two drops

has been classified into various categories which include bouncing collision, where drops

separate after collision, coalescence collision, where they merge, separation collision,

where the drops coalesce for a brief period after which they break up and shattering

collision, where strong impact leads to formation of several smaller drops [95 ].

In this work we will briefly look at the in-line bubble coalescence in a homogeneous

liquid and compare qualitatively with experimental results from literature. We look

at the case where two bubbles are placed in-line or one behind the other. The trailing

bubble moves into the wake of the leading bubble and is accelerated. It finally merges

with the leading bubble. The whole process in this case is divided into a contact stage

and a drainage stage as explained in Feng et. al. 2016 [96 ]. The two bubbles have the

same diameter with an initial distance of 24mm between them. They are released in

a quiescent liquid and have an Eo = ρlgR2/σl = 3.936 and Ga = ρl

√
gRR/µl = 0.559,

where R is the initial bubble radius. These are the same values estimated [97 ] for the

experiments conducted by Feng et. al. 2016 [96 ].

A comparison of time snapshots of the bubbles is shown in figure 8.2 with top row

showing the results from Feng et. al. 2016 [96 ] and bottom row showing our simulations

at the same time. ∆t is the time difference between the first snapshot and subsequent

snapshots of the experiment. In general we see a good match with the experimental

results. The trailing bubble gets accelerated in the wake of the leading bubble. The

time of merging is also captured reasonably well by the numerical simulations. The

simulation presented here has been run on a very coarse grid with a maximum resolution

128



(a) 0s (b) 0.15s (c) 0.35s (d) 0.46s (e) 0.606s (f) 0.96s

(g) (h) (i) (j) (k) (l)

Figure 8.2. In-line bubble coalescence (a)-(f) experiments by Feng et. al.
2016 [96 ]. (g)-(l) numerical simulations. The timestamps (∆t) for (g-l) are the
same as (a-f)
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of 1/26. We believe that the spurious daughter bubbles below the coalesced bubble is

an artefact of the coarse mesh and should go away with a finer mesh.

8.2.1 Future Work

We performed a preliminary simulation of in-line bubbles coalescing with each other

in an axisymmetric domain and did a qualitative comparison with existing experimental

work. A full 3D simulation is required to address coalescence of side by side bubbles

and coalescence due to random collisions and bubble clustering in bubble swarms. In

the future this work can also be extended to looking at the impact that enhanced

clustering in stratified fluids has on bubble coalescence.

Documenting the range of parameters (Re, Eo, Fr) at which topological changes

tend to occur is also an interesting and important problem. This will help understand

at what range the simulations can avoid having to account for topological changes since

we expect things to be different for stratified fluids. We also need to know how close

the bubbles have to be for attractive forces to cause coalescence and how this range is

different from the non-stratified case.

The breakup/coalescence is also prone to affect the liquid dynamics. We know that

a polydisperse mixture of bubbles has different properties than a monodisperse swarm

[91 ], [98 ]. We still need to understand how this changes in the context of stratified

fluids.

Overall topological changes play an important role in addressing rise of bubbles

in any stratified water body. Once the problems of bubble interaction with the free

surface and the coalescence/breakup of bubbles are sufficiently addressed, the work

we did on stratified bubbly flows could lead to ground-breaking revelations about real

world destratification effects and bubble plume dynamics in ponds, lakes and even

oceans.
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9. CONCLUSIONS

Rising motion of bubbles through thermally or saline stratified liquids poses a chal-

lenging problem with important physical impacts. Rising bubbles lead to mixing of

stratified fluids through two major mechanisms: (a) the pseudo-turbulence or liquid

agitation which leads to thermal mixing (b) transport in bubble wake, which causes lo-

calized disturbances. Almost every known water body has some level of thermal/saline

stratification and destratification methods become problems of interest.

We numerically investigate the mixing in stratified fluids by bubbles. A confined

study of the rise of a swarm of bubbles in a Hele-Shaw cell with density-stratified

fluids enables us to isolate the mixing effects produced primarily due to transport by

the bubble wake. The zigzag motion of the bubbles results in the bubbles dragging

heavier fluid up in their wake. Due to periodic vortex shedding in the bubble wake,

the heavier fluid dragged by the bubble is deposited in the lighter layers, facilitating

thermal mixing. We explore the void fraction - Froude number space and unravel their

effects on background mixing

The rising of bubbles in unbounded fluids results in the production of liquid agita-

tion and velocity fluctuations, which are primarily responsible for the mixing effects.

On the other hand stratification also plays a major role in determining the bubble

dynamics by enhancing clustering, suppressing vertical and horizontal velocities, re-

ducing bubble dispersion and so on. We study effects of bubble density, stratification

strength, bubble Reynolds number and bubble deformability on the background mixing.

We find that the vertical buoyancy flux increases when we decrease the stratification

due to lesser resistance to disturbance by the isopycnals. This allows for more time

for thermal mixing. We see that increasing the number of bubbles in the domain has

a similar effect. As we increase Eo, the energy input to the system is constant, but

more of it goes into vertical mixing of the liquid than viscous dissipation. On the other

hand, upon increasing Re, most of the extra energy input is dissipated leading to an

almost constant mixing efficiency.
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Following this, we study the rise of a single bubble in stratified fluids under various

conditions, to better understand the bubble dynamics. The uniqueness of the bubble

behavior in stratified as opposed to homogeneous fluids is presented by looking at

the bubble wake, shapes, drift volumes and drag coefficient. A discussion on partial

stratification, similar to thermal stratification in lakes, is done. Finally, we also briefly

touch upon bubble topological changes by performing some preliminary simulations of

a bubble bursting at the free surface and two in-line bubbles coalescing.

In conclusion, we have established the importance and role of bubble plumes in

mixing stratified fluids and the effects of stratification on the bubble dynamics and

interactions. We implemented two different kinds of interface-tracking (front-tracking

and Volume of Fluid) methods depending on our needs and have successfully imple-

mented computational fluid dynamics tools in studying multiphase flows.
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A. CONVERGENCE TESTS

Grid convergence tests are performed for the front tracking code in FORTRAN and

the volume of fluid code in Basilisk (C) to find the optimal grid.

A.1 3D simulations using front tracking method

The grid independence is tested by simulating the rise of a single bubble in a 3D

domain of size 10d×5d×5d at Re = 74, Eo = 3.3 and Fr = 14.1. The total number of

points in the domain are varied between ∼ 6.5 × 104 and ∼ 3.3 × 107. The bubble rise

velocity averaged in time is plotted in figure A.1 a. We note that grid convergence is

achieved for ∼ 4.19 × 106 points which corresponds to 25.6 points across the diameter

of the bubble.
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Figure A.1. (a) Average bubble velocity for different number of grid points.
(b) Error percentage for each grid resolution from the finest grid

The error percentage from the finest grid is also plotted for each of the other four

cases on a semi-log plot in figure A.1 b. The error for the grid that we use is about 4%,

which is acceptable. For the highest Re of 200, we use the finest grid by doubling the

grid points in each direction, with 51.2 points across the bubble diameter. This is done

to ensure that the thermal and momentum boundary layers are appropriately resolved.
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A.2 Axisymmetric simulations using volume of fluid method

The rise of a single bubble in an axisymmetric domain at Re = 124, Eo = 5 and

Fr = 12.5 are tested on three different mesh sizes. Since we use an adapted grid, we

modify the smallest grid size to test the grid independence, while keeping the largest

grid size to be ∆xmax = 2d(20/28). The rise velocities are shown in figure A.2 . They

are almost co-incident on each other and we use the grid ∆xmin = 2d(20/212) for all

our calculations, after confirming that the thermal and momentum boundary layers

are resolved with close to 16 points.
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Figure A.2. Temporal bubble rise velocity for different mesh sizes
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