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ABSTRACT  

Pedestrian detection and tracking plays an essential role in autonomous vehicles and 

mobile service robots. This thesis presents a novel solution to pedestrian detection and tracking 

for urban scenarios based on Doppler LiDAR that records both position and velocity of the targets. 

The workflow consists of two stages. In the detection stage, the input point cloud is first segmented 

to form clusters frame by frame. A subsequent re-clustering process is introduced to further 

separate pedestrians close to each other. While a simple speed classifier is capable of extracting 

most of the moving pedestrians, a supervised machine learning-based classifier is adopted to detect 

pedestrians with insignificant radial velocity. In the tracking stage, pedestrian’s state is estimated 

by a Kalman filter, which uses the speed information to measure the pedestrian’s dynamics. Based 

on the similarity between the predicted and detected states of pedestrians, a greedy algorithm is 

adopted to associate the trajectories with the detection results. The presented detection and tracking 

methods are tested on two datasets collected in San Francisco, California by a mobile Doppler 

LiDAR system. The results of pedestrian detection show that the proposed two-step classifier can 

improve the detection performance, particularly for detecting pedestrians far from the sensor. For 

both datasets, the speed information increases the F1-score and the recall by 10% and 20%, 

respectively. Moreover, the quantitative evaluation of tracking results shows the Kalman filter with 

speed information is able to enhance the accuracy of the position estimation and improve the 

multiple object tracking accuracy (MOTA) by 5% for both datasets. 
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 INTRODUCTION 

1.1 Background 

Almost 6,000 pedestrians were killed in 2017 in traffic crashes in the U.S., which was 

about one death every 1.5 hours. In addition, more than 130,000 pedestrians were treated in 

hospital emergency departments for nonfatal crash-related injuries in 2017 (Retting 2017). It is 

also known that pedestrians are more likely to be killed during a car crash than the crashed 

vehicle’s passengers. For these reasons, pedestrian detection and tracking has become a significant 

and essential task for many traffic-related applications, such as autonomous vehicles (AV), 

advanced driving assisted systems (ADAS), and traffic management. For AV and ADAS, reliable 

detection and tracking of pedestrians aims to make vehicles aware of potential danger in their 

vicinity and thereby improve traffic safety. Such a system provides spatial-temporal information 

for vehicles to plan and adapt their subsequent actions. For traffic management, precise detection 

and tracking of pedestrians could assist in optimizing traffic control and scheduling in order to 

achieve high levels of safety and efficiency.  

For the purpose of pedestrian detection and tracking, vision-based approaches are prevalent 

(Cao et al. 2008; Dehghan et al. 2014; Stewart et al. 2016). These approaches recognize and track 

pedestrians in images and videos by extracting the texture, color, and contour features of the 

targets. However, such approaches have difficulty in collecting accurate position information 

about humans due to their limited accuracy in depth estimation. Some researchers have tried to 

deal with this problem using RGB-D cameras, which combine information from images and 2D 

rangers to collect color information and dense point clouds simultaneously (Jafari et al. 2014; 

Premebida et al. 2014; Liu et al. 2015). However, RGB-D cameras usually have a narrow field of 

view both horizontally and vertically and limited sensor ranges (Chen et al. 2018). As such, 

applications that incorporate 3D LiDAR sensors in pedestrian detection and tracking have 

experienced dramatic development in recent years (Haselich et al. 2014; Cabanes and Senouci 

2017; Wu et al. 2021). Compared to cameras or RGB-D cameras, LiDAR is a direct 3D 

measurement technology without the need for image matching. Another significant advantage of 

3D LiDAR sensors is their ability to generate long-range and wide-angle point clouds. In addition, 

LiDAR point clouds are quite accurate and not affected by lighting conditions (Yan et al. 2017).  
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 Currently, most LiDAR-based studies utilized point cloud datasets acquired by a LiDAR 

sensor which only collects spatial information of data points. But when pedestrians are far from 

the sensor, fewer points of them are collected by the scanner, which may cause missing or wrong 

recognition of pedestrians (Li et al. 2016; Zhang et al. 2019).  Doppler LiDAR (Royo and Ballesta-

Garcia 2019), which not only provides spatial information but precise radial velocity of each data 

point, can possibly help to address this problem. For example, as a pedestrian moves away from 

the sensor, its point cloud becomes sparse while its velocity would not change a lot. 

 This thesis aims to take advantage of the Doppler LiDAR to propose a new detection-based 

tracking method to detect and track pedestrians in urban scenes. The contribution of this thesis 

includes the following aspects. (1) A re-clustering process based on the mean shift algorithm is 

utilized to further segment pedestrian candidates. This process can increase the true positive rate 

for candidates who become too close to other objects. (2) We use speed information from the 

Doppler LiDAR to improve both detection and tracking performance. Specifically, for pedestrian 

detection, the pedestrian classifier with the speed information is robust to classify pedestrians at 

any distance. In the tracking step, the speed information provides a more accurate prediction of the 

pedestrian’s location, leading to better tracking performance. 

1.2 Related work 

1.2.1 Pedestrian detection 

Current pedestrian detection studies can be broadly classified into two approaches: model-

free and model-based. Model-free methods have no restrictions on or assumptions about the shape 

and size of the objects to be detected. As such, they can detect pedestrians and other dynamic 

objects on the road, such as vehicles and bicyclists, simultaneously. Pomerleau et al. (2014) 

outlined a system for long-term 3D mapping in which they compared an input point cloud to a 

global static map and then extracted dynamic objects based on a visibility assumption. Azim and 

Aycard (2012) modeled the dynamic environment by an octree-based occupancy grid and 

segmented the dynamic objects on the basis of discrepancies between consecutive frames. They 

then generated 3D bounding boxes for the dynamic objects and classified them according to the 

geometric properties of their bounding boxes, such as their size and the ratio between their height, 

width, and length. Wang et al. (2015) presented a Bayesian framework for detection and tracking 
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pedestrians with data obtained by a 2D LiDAR sensor, in which the motion states and shape 

information of dynamic objects, the sensor pose, and the local static background were estimated 

by using a joint state representation. Dewan et al. (2015) implemented a model-free approach for 

pedestrian detection that relies on multiple motion cues. They first detected motions sequentially 

using RANSAC and then proposed a Bayesian approach to segment objects. Most of the proposed 

model-free methods are mainly based on motion cues, so they can fail if the motion of an object 

between consecutive frames is small. Therefore, the performance of model-free approaches for 

detecting pedestrians has never been as good as its detection of other objects, such as vehicles and 

bicyclists, since pedestrians always move slowly. The approach proposed by Dewan et al. (2015) 

did not work well for pedestrians; in fact, their approach entirely missed pedestrians if they 

continually walked at a low speed. Ma et al. (2019) proposed a model-free approach that achieved 

high performance for pedestrian detection using point clouds acquired by a Doppler LiDAR. Their 

approach first detected and clustered all the moving points by ST-DBSCAN to generate a set of 

dynamic point clusters. Then, the dynamic objects were completed from the detected dynamic 

clusters by region growing. The Doppler LiDAR provided speed information with a precision of 

±0.1 𝑚/𝑠. As such, most pedestrians could be detected successfully except those with zero radial 

speed. 

Model-based approaches are preferred when some information about the object to be 

detected is known and therefore can be modeled a priori. Liu et al. (2019) proposed a pedestrian 

detection algorithm named single template matching with kernel density estimation (STM-KDE) 

clustering. Their algorithm first segments the point clouds by KDE, and the candidate clusters are 

projected into its main plane, which is determined by eigenvectors corresponding to the two large 

eigenvalues derived from the principal component analysis (PCA). Then, the minimum distance 

of the points to the main plane is regarded as the pixel value, and the locally adaptive regression 

kernel (LARK) feature of this projected candidate is adopted to estimate the contour of the 

pedestrians. If the cosine similarity between the LARK feature from a candidate cluster and the 

template is less than a pre-defined threshold, this cluster is recognized as a pedestrian.  

Currently, a large number of studies on pedestrian detection from LiDAR rely on machine 

learning strategies. In traditional machine learning, pedestrians are represented numerically by 

hand-crafted features. Many studies detected people mainly by relying on the detection of the legs 

of people because legs are quite distinctive of the human figure. Lee et al. (2006) detected the 
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position of people using the geometric characteristics of human legs and proposed a human 

walking model based on the velocity of each leg and the frequency of steps. Cui et al. (2007) 

extracted each leg of persons by their pattern of rhythmic leg swing, from which people then were 

tracked by a final tracker composed of a dependent Kalman filter and a Rao-Blackwellized Monte 

Carlo data association filter. Chen et al. (2019) modeled the human leg by extracting 12 features 

that describe the geometric and statistical characteristics of the human leg numerically and 

constructed a machine learning-based human leg classifier to detect pedestrians. However, these 

approaches did not work well if the collected point clouds cannot provide detailed information 

about the legs. Thus, detection of pedestrians in many studies was done by extracting features 

which present the entire person. Navarro-Serment et al. (2010) proposed 11 features based on the 

property of clusters and PCA to describe human geometry and then classified the pedestrian 

candidates by a classifier composed of two independent SVMs. Based on this work, Kidono et al. 

(2011) improved the performance of the classifier by adding two new features: a slice feature for 

the cluster and a distribution pattern for the reflection intensity of the cluster. Their results showed 

that these two new features improved classification performance significantly even if their 

dimensions were relatively low. Wang and Posner (2015) presented a sliding window approach to 

3D point data for pedestrian detection, wherein the point cloud was divided into a grid at a fixed 

resolution and each cell was represented by a vector of six features related to the scatter of points 

within the cell, the reflectance values of these points, and the occupancy of the cell. A 3D window 

detector of a given size slid down all three dimensions to stack up all the feature vectors falling in 

its bound into a single vector; then, a classifier was used to determine whether the current detection 

window contains a pedestrian. Navarro et al. (2017) applied a machine learning-based approach to 

detect pedestrians using high-definition 3D range data, whereby each candidate pedestrian cluster 

is first projected into three main planes, and a corresponding binary image for each projection is 

generated to extract the feature vectors. Then, k-Nearest Neighbor, Naive Bayes, and SVM 

classifier were used to detect pedestrians based on the above features.  

Some model-based neural networks for 3D object detection have been developed in recent 

years in an end-to-end manner. These approaches did not rely on hand-crafted features and 

typically followed one of the two pipelines, i.e., either two-stage or one-stage object detection. In 

a two-stage detector, object candidates were first generated by region proposal networks and then 

input to the second stage for refinement. For example, Yang et al. (2018) generated region 
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proposals with multiple scale, angle and shift from predicted foreground points and then used 

intersection-over-union (IoU) and a new criterion named PointsIoU to reduce the redundancy and 

ambiguity of proposals, respectively. Shi et al. (2019) presented a two-stage PointRCNN for 3D 

object detection from a raw point cloud. The 3D proposals were first directly generated from the 

raw point clouds in stage I and then refined by fusing the semantic features and the local spatial 

features in stage II. The one-stage object detection pipeline predicted class probabilities and 

regressed the 3D bounding boxes of objects directly using a single-stage network. It could run at 

a high speed since region proposal and post-processing were not required. Zhou et al. (2018) 

proposed an approach called VoxelNet, which learns feature representation from point clouds and 

predicts the 3D bounding boxes of objects in an end-to-end manner. VoxelNet was composed of a 

feature learning network, convolutional middle layers, and a region proposal network. Lang et al. 

(2019) proposed a 3D object detector named PointPillars that leveraged PointNet (Qi et al. 2017) 

to learn the features of point clouds organized in vertical columns and encodes the learned features 

as a pseudo image. A 2D object detection pipeline was then applied to predict 3D bounding boxes. 

Despite the fact that deep learning-based approaches provided state-of-the-art performance 

in many object detection tasks, this thesis did not adopt them for the following reasons. First, such 

methods typically required considerable fine-tuning with manual intervention, longer training 

time, and high-performance hardware (Yan et al. 2020). Also, pedestrian detection was essentially 

a straightforward binary classification, rather than a complex object detection problem. Moreover, 

most 3D object detection neural networks were evaluated using the KITTI benchmark (Geiger et 

al. 2013), while the amount of data collected by Doppler LiDAR was much less than the KITTI 

dataset. When training data were limited, deep learning strategies did not necessarily outperform 

traditional classification methods (Zhang et al. 2020). 

1.2.2 Pedestrian tracking 

Typical urban scenarios always contained more than one pedestrian, who may be close to, 

overlapping with, or obstructed by other objects, including pedestrians. Thus, a pedestrian tracking 

algorithm must be able to deal with multiple pedestrians, ranging from two well-separated 

pedestrians to small groups of pedestrians. To be specific, the objective of tracking multiple 

pedestrians required locating multiple pedestrians, maintaining their identities, and tracking their 

individual trajectories in a given point cloud sequence. Existing tracking approaches could be 
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grouped into two categories based on their processing mode: offline tracking and online tracking 

(Camara et al. 2020). Offline tracking utilized information both from past and future frames and 

attempts to find a globally optimal solution, which could be formulated as a network flow graph 

and solved by min-cost flow algorithms (Zhang et al. 2008; Brendel et al. 2011; Schulter et al. 

2017). Offline tracking always had a high computational time cost since it dealt with observations 

from all frames and analyzed them jointly to estimate the final output (Luo et al. 2020). In contrast, 

for online tracking, the LiDAR sequence was handled in a step-wise manner and only considered 

detections at the current frame, which was usually efficient for real-time applications. Wang et 

al.(2017) proposed a pedestrian tracking method which was able to improve the performance of 

pedestrian detection. A constant velocity model was adopted to predict the pedestrians’ location, 

and the global-nearest-neighbor algorithm is used to associate detected candidates and existed 

trajectories. Once a candidate is associated with an existed trajectory, it would be classified as a 

pedestrian. Weng and Kitani (2019) proposed an online detection-based tracking method using a 

Kalman filter and Hungarian algorithm. Based on this work, Chiu et al. (2020) calculated the 

covariance matrix in a Kalman filter using statistics results from training data and used a greedy 

algorithm instead of the Hungarian to associate the objects and obtained a better result.  

1.3 Structure of the thesis 

The remainder of this thesis is organized as follows. Chapters 2 and 3 present the proposed 

detection and tracking methods, respectively. Chapter 4 introduces the Doppler LiDAR datasets 

used. Chapter 5 presents the results of the experiments and evaluates the performance of the 

proposed approach. Finally, Chapter 6 discusses the conclusions and limitations of this thesis.  
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 PEDESTRIAN DETECTION 

This chapter describes the proposed pedestrian detection method utilized in this thesis. The 

processing flow from the point cloud segmentation to the human classification is first briefly 

introduced, and the details of the process are explained thereafter.  

Figure 2.1 shows the workflow of the proposed pedestrian detection method. First, all the 

ground points are removed. The remaining non-ground points are then clustered by a density-based 

algorithm, and clusters that satisfy certain conditions are selected as pedestrian candidates. After 

a re-clustering process, the updated pedestrian candidates are input into a two-step pedestrian 

classifier. 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 2.1. Flowchart of the proposed approach for pedestrian detection: (a) input point cloud; 

(b) non-ground points; (c) clustering result; (d-e) cluster selection and re-clustering (red: 

pedestrian candidate, blue: other objects); (f) classification result (red: pedestrians, blue: other 

objects). 
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2.1 Ground filtering  

A given Doppler LiDAR scan 𝑃  can be represented as a set of 3D points:     

                                     𝑃 =  {𝑝𝑖|𝑝𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖, 𝑣𝑟𝑖, 𝑟𝑖), 𝑖 = 1,2,3, … ,𝑀}                     (2-1) 

where 𝑀 is the total number of points in the scan, (𝑥, 𝑦, 𝑧) is the 3D coordinate of a point, 𝑣𝑟 is 

the measured radial velocity, and 𝑟 is the range to the sensor. 

As a portion of the emitted laser beam is reflected by the ground during data collection 

process, ground points constitute a large proportion of the raw point cloud. Such a large number 

of ground points not only slow down the process efficiency but affect the performance of point 

cloud segmentation. To reduce the computational burden and produce a better clustering result, 

the Cloth Simulation Filter (CSF) is applied to remove all the ground points from the raw point 

cloud, obtaining a subset �̅� ∈ 𝑃. In this step, the CSF is selected for the following reasons: (1) 

compared to traditional filtering algorithms, CSF requires fewer parameters, which are easy to set; 

and (2) CSF has shown good performance when dealing with datasets in urban areas (Zhang et al. 

2016).  

2.2 Detection of clusters 

2.2.1 3D point clustering 

Once ground points are removed, non-ground points are grouped to form clusters, some of 

which are possible pedestrians. In this thesis, point clusters are generated by a density-based spatial 

clustering of applications with noise (DBSCAN). DBSCAN requires two parameters: (1) the 

threshold for the number of neighbors, 𝑀𝑖𝑛𝑃𝑡𝑠 and (2) the radius 𝜀 to form a dense region. In the 

clustering process, the points are classified as core points, reachable points, and outliers as follows 

(Ester et al. 1996):  

 1) point 𝑝 is a core point if it has at least 𝑀𝑖𝑛𝑃𝑡𝑠 points in its radius 𝜀;   

 2) point 𝑞 is a reachable point if it is in radius 𝜀 of any core points; and  

 3) all the points that are not reachable from any core points are considered outliers or noise.  

The performance of DBSCAN is susceptible to 𝑀𝑖𝑛𝑃𝑡𝑠  and radius 𝜀 . The purpose of 

𝑀𝑖𝑛𝑃𝑡𝑠 is to smooth the density estimate while the radius parameter 𝜀 is often harder to set. If the 

value of 𝜀 is too small, a single object is likely to be over-segmented to multiple objects while a 
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too large 𝜀 would merge multiple clusters into one cluster. Additionally, the distance between two 

vertical adjacent scan lines can vary a lot when the scan range changes. Therefore, for points in 

different scan ranges, the corresponding value of 𝜀 should be different. The strategy proposed by 

Zhao et al. (2019) is adopted in this thesis to determine 𝜀. That is, the distance 𝜀 between different 

clusters should be at least larger than the vertical distance between two adjacent laser scans, which 

can be formulated by: 

                    𝜀 ≥ 2𝑟 × 𝑡𝑎𝑛
𝑟𝜃

2
                                                        (2-2) 

where 𝑟 is the scan range and 𝑟𝜃 is the vertical angular resolution of the Doppler LiDAR.  

Each cluster C in the scan �̅� should satisfy the following properties: 

   𝐶𝑛 ∈ �̅�, 𝑛 = 1,2,3, … , 𝑁                                                    (2-3) 

 𝐶𝑖 ∩ 𝐶𝑗 = ∅      for 𝑖 ≠  𝑗                                                   (2-4) 

where Equation 2-3 represents a cluster, C, which is a subset of �̅�, and Equation 2-4 indicates that 

there are no common points between two different clusters. 

2.2.2 Selection of pedestrian candidates  

After the clustering process, every cluster is transformed into a local coordinate system to 

identify its statistical pattern. For each cluster, the coordinates of all the points are first normalized 

by subtracting the centroid point coordinates. Generally, pedestrians in urban scenarios remain 

upright, which is the direction of 𝑧-axis. As such, (0,0,1)𝑇 is defined as the 𝑧′-axis of the local 

coordinate system. Then PCA is implemented to the 𝑥𝑦  plane of this cluster. Two pairs of 

eigenvalues and eigenvectors are calculated using PCA, which are sorted according to their 

decreasing eigenvalues. In order to deal with 3D point clouds, the dimension of these two 

eigenvectors is increased to three by adding zero as their 𝑧  component. Eigenvectors 

corresponding to the large eigenvalue and small eigenvalue are defined as the  𝑥′-axis and the 𝑦′-

axis of the local coordinate system, respectively. Then point (0,0,0) is defined as the origin 𝑜′ of 

the local coordinate system and the plane 𝑜′𝑥′𝑧′  is defined as the main plane of the cluster. 

Similarly, planes 𝑜′𝑦′𝑧′ and 𝑜′𝑥′𝑦′ are defined as the secondary plane and the tertiary plane. A 

sample of the segmented pedestrian in its local coordinate system is shown in Figure 2.2, where 

Figure 2.2(a) is the 3D point cloud and Figure 2.2(b) through 2.2(d) are the projection results in 
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the three planes. Based on these projected images, the size of the cluster can be defined by the 

following equations: 

    ℎ =  𝑧𝑚𝑎𝑥
, − 𝑧𝑚𝑖𝑛

,
       

𝑙 =  𝑥𝑚𝑎𝑥
, − 𝑥𝑚𝑖𝑛

,
     (2-5) 

     𝑤 = 𝑦𝑚𝑎𝑥
, − 𝑦𝑚𝑖𝑛

,
                                                              

where ℎ, 𝑙, 𝑤 are height, length, width of the cluster, respectively. Then, all clusters are divided 

into three categories on the basis of their size: single pedestrian candidates, multiple pedestrians’ 

candidates, and non-pedestrians. Candidates of multiple pedestrians are segmented further in the 

following step. 

 

  
(a) (b) 

  
(c) (d) 

Figure 2.2. Example of a pedestrian candidate: (a) point cloud; (b) through (d) the projected 

images in the main plane, secondary plane and tertiary plane. 

2.2.3 Multiple pedestrians re-clustering 

If the distance between two pedestrians is less than the vertical height between two adjacent 

laser scans, it is not easy to separate them by a distance-based clustering algorithm in 3D space. 

For example, as can be seen in Figure 2.3(a), the distance between the two pedestrians is less than 

the set radius 𝜀, so they are regarded as one cluster in the clustering process. However, as clearly 
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shown in the projected image in the tertiary plane (Figure 2.3(b)), there are two pedestrians that 

correspond to the two maxima of the density function (Figure 2.3(c)). Therefore, it is feasible to 

separate multiple pedestrians by recognizing the number of regions with high point densities.  

 

  
 

(a) (b) (c) 

Figure 2.3. Two pedestrians walking close-by: (a) point cloud; (b) the projected image in the 

tertiary plane; (c) point density distribution. 

To segment such clusters, another density-based algorithm named mean shift clustering is 

introduced (Fukunaga and Hostetler, 1975). Mean shift is a centroid-based algorithm, which 

involves shifting the kernel iteratively to a higher density region until convergence. Although mean 

shift could not segment the whole point cloud as efficiently as DBSCAN due to its higher time 

complexity (𝑂(𝑛2)), it works well for locating the density peaks corresponding to pedestrians. 

Given 𝑛 d-dimensional points 𝑥𝑖, 𝑖 = 1,2,3, … , 𝑛, the multivariate kernel density estimator with 

kernel 𝐾(𝒙) and window radius ℎ is: 

𝑓(𝒙) =
1

𝑛ℎ𝑑
∑ 𝐾 (

𝒙−𝒙𝑖

ℎ
)𝑛

𝑖=1      (2-6) 

Every shift is defined by a mean shift vector 𝒎(𝒙) , which is expressed as: 

𝒎 (𝒙) =
∑ 𝒙𝑖𝑔(‖𝒙−𝒙𝑖‖

2/ℎ2)𝑛
𝑖=1

∑ 𝑔(‖𝒙−𝒙𝑖‖
2/ℎ2)𝑛

𝑖=1

− 𝒙                                                      (2-7) 

where 𝑔(𝑥) = −𝐾′(𝒙). The mean shift clustering algorithm is executed in the following steps 

(Comaniciu and Meer, 2002): 

 1) start by defining an arbitrary data point as the centroid of a cluster; 

 2) calculate the mean shift vector based on the current centroid; 

 3) update the location of centroids based on the mean shift vector obtained in step 2); and 

 4) iterate the above process so that the centroid then moves to the higher density region.  
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The process stops once the centroid reaches a position from which it cannot move further; and the 

points located in a given boundary of this centroid are then regarded as a part of this cluster.  

After the re-clustering process, all single pedestrian candidates are then input to a 

pedestrian classifier. 

2.3 Pedestrian classification  

2.3.1 Feature selection  

The proposed algorithm combines both speed information and static features to recognize 

pedestrians. Most of the previous studies (Kidono et al. (2011); Navarro et al. (2017); Yan et al. 

(2017)) only use static features to represent pedestrians numerically. The static feature vector 

usually consists of several features because a single static feature is not sufficient for determining 

whether a cluster is a pedestrian. In contrast, the speed information is more straightforward for 

pedestrian detection as the speed of a pedestrian is unique compared to the static background and 

other moving objects. The velocity histograms of some typical objects in a street scene are shown 

in Figure 2.4. For a rigid object, such as a road sign (Figure 2.4(a)), all of its points have the same 

radial velocity; and due to the measurement noise, the radial velocity distribution is approximately 

normal. In contrast, the radial velocity distribution of a pedestrian is more complex because 

different parts of a pedestrian may show different motion patterns (Figure 2.4(b)). Overall, the 

average velocity of a cluster effectively shows whether or not a cluster is moving. However, 

pedestrian detection with only speed information may fail in some cases. For example, if a 

pedestrian is static, his average radial velocity would always be zero (Figure 2.4(c)); or another 

scenario may be that the moving direction of a pedestrian is almost vertical to the laser beam in 

which the Doppler LiDAR cannot detect the velocity (Figure 2.4(d)). However, these two 

categories of pedestrians can be recognized by their static features. Therefore, it is necessary to 

utilize both speed information and static features to achieve better pedestrian detection 

performance. In this thesis, a static feature vector composed of 28 features is calculated to describe 

a pedestrian numerically. The description and dimension of the proposed features are listed in 

Table 2.1.  

Feature 𝑓1  is the number of points belonging to a given cluster, and feature 𝑓2   is the 

average range to the sensor for the points in a cluster. As can be seen in Figure 2.5, the number of 
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points belonging to a candidate cluster of pedestrians varies a lot with different ranges of clusters 

to sensors. Therefore, combining these two features can describe the properties of candidates better 

compared to only using the number of points or range thereof.  

 

 
 

 
 

(a) (b) 

 
 

 
 

(c) (d) 

Figure 2.4. Different objects and their velocity histograms: (a) a road sign; (b) a moving 

pedestrian; (c) a static pedestrian; (d) a pedestrian moving perpendicular to the beam.   

Table 2.1. Features of a cluster for pedestrian classification 

Features Description Dimension 

𝑓1 Number of points in the cluster 1 

𝑓2 Average range of points to the sensor 1 

𝑓3 − 𝑓8 
Covariance matrix (3D) of the points in 

the cluster 
6 

𝑓9 − 𝑓14 Normalized moments of inertia tensor 6 

𝑓15 − 𝑓26 Slice feature for the cluster 12 

𝑓27 − 𝑓28 
Mean and standard deviation of the 

intensities 
2 

 

Feature 𝑓3 − 𝑓8 and 𝑓9 − 𝑓14 are the cluster’s 3D covariance matrix Σ𝑋𝑋 and normalized 

moment of inertia tensor 𝑀, which represent the overall distribution of all points and can be 

expressed as: 
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Σ𝑋𝑋 = 
1

𝑛
∑ (𝒙𝑖 − 𝒙𝑐)(𝒙𝑖 − 𝒙𝑐)

𝑇𝑛
𝑖=1                         (2-8)  

𝑀 = [

∑ (𝑦𝑖
2 + 𝑧𝑖

2)𝑛
𝑖=1 −∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1 −∑ 𝑥𝑖𝑧𝑖

𝑛
𝑖=1

−∑ 𝑥𝑖𝑦𝑖
𝑛
𝑖=1 ∑ (𝑥𝑖

2 + 𝑧𝑖
2)𝑛

𝑖=1 −∑ 𝑦𝑖𝑧𝑖
𝑛
𝑖=1

− ∑ 𝑥𝑖𝑧𝑖
𝑛
𝑖=1 −∑ 𝑦𝑖𝑧𝑖

𝑛
𝑖=1 ∑ (𝑥𝑖

2 + 𝑦𝑖
2)𝑛

𝑘=1

]   (2-9)                                    

  
(a) (b) 

Figure 2.5. Pedestrians at (a) 10m (b) 37m to the sensor. 

 

Figure 2.6. The slice feature determined through voxels.  

Feature 𝑓15 − 𝑓26, named the slice feature, which was first proposed by Kidono et al. (2011), 

is used to describe the shape of a human body. As the distance to the sensor increases, some of the 

features of pedestrian clusters are less detailed, but the general contour of the human body from 

the head to the feet does not change a lot. As shown in Figure 2.6, the target cluster is first divided 

into six voxels along the height direction. Then, for each voxel, a 3D bounding box is generated 

for the points located in this space. The length and width of the 𝑖th bounding box are 𝑙𝑖 and 𝑤𝑖 so 

this feature could be expressed as: 
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𝑓15−26 = (𝑙1, 𝑤1, … , 𝑙6, 𝑤6)                                                           (2-10) 

If the point cloud of a pedestrian is too sparse, some elements of this feature will be zero. 

To address this issue, the concave hull, which is the non-convex enclosure on a set of points, is 

created for such point clouds to estimate their rough shapes. 

𝑓27 − 𝑓28 are the mean and standard deviation of the intensities of the candidate cluster. 

2.3.2 Classification methods 

Two different strategies were adopted in this thesis to utilize the speed information. The 

first strategy generates a simple speed classifier based on the average radial velocity 𝑣𝑟 of the 

candidate clusters. The speed classifier discriminates the pedestrian candidates in the test datasets 

based on their speed information; and all the pedestrian candidates whose average radial velocity 

satisfies a pre-defined velocity threshold 𝑣𝑇 are classified as pedestrians. Then a machine learning-

based classifier trained by the static features is utilized to classify the remaining clusters. Another 

method is to count 𝑣𝑟 as 𝑓29 and merge it with other features to form a 29-dimensional feature 

vector. Then, the machine learning-based classifier trained by this feature vector is utilized to 

classify the pedestrian candidates in the test datasets.  

In this thesis, the performance for pedestrian detection of two different machine learning 

algorithms (MLAs) is evaluated: SVM and random forest (RF). These two MLAs were selected 

for the following reasons: (1) they are easy to implement and able to reproduce the results as it is 

found in most machine learning algorithm libraries, and (2) many previous studies related to 3D 

LiDAR-based object classification were implemented by them and have shown good performance 

(Navarro et al. (2017); Yan et al. (2017); Luo et al. (2021)).  

SVM is a popular machine learning algorithm first proposed by Cortes and Vapnik (1995). 

The objective of SVM is to find the optimal separable hyperplane by maximizing the margin of 

the data to be separated. Given 𝑛 training samples with feature vector 𝒙 and label 𝑦, the decision 

surface of an SVM classifier can be expressed as: 

𝒘𝑇𝒙 + 𝑏 = 0      (2-11) 

where 𝒘 is the normal vector to the hyperplane and 𝑏 is the intercept term. Thus, the objective 

function of a hard-margin SVM can be calculated as follows: 

 min
(𝒘,𝑏)

1

2
‖𝒘‖2 s.t.  𝑦𝑖(𝒘

𝑇𝒙𝒊 + 𝑏) ≥ 1, 𝑖 = 1,2, . . . , 𝑛  (2-12) 
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 The soft-margin SVM allows some training samples to violate the constraint in Equation 

2-12 by introducing a penalty cost 𝐶 and slack variables, 𝜉1, . . . , 𝜉𝑛, then Equation 2-12 can be 

modified to： 

min
(𝒘,𝑏)

1

2
‖𝒘‖2 + 𝐶 ∑ 𝜉𝑖

𝑛
𝑖=1  s.t.  𝑦𝑖(𝒘

𝑇𝒙𝒊 + 𝑏) ≥ 1 − 𝜉𝑛, 𝑖 = 1,2, . . . , 𝑛  (2-13) 

  The dual problem of the soft-margin SVM is: 

   ∑ 𝛼𝑖
𝑛
𝑖=1 −

1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖

𝑇𝑦𝑗𝒙𝑖
𝑇𝒙𝑗

𝑛
𝑖=1  s.t. ∑ 𝛼𝑖𝑦𝑖 = 0𝑛

𝑖=1 , 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1,2, … , 𝑛 (2-14) 

 When SVM is used to perform a non-linear classification, the input data are mapped to a 

high-dimension feature space by a kernel function 𝑲𝜃(𝒙𝑖, 𝒙𝑗). Common kernel functions include 

polynomial basis function, sigmoid function, and radial basis function (RBF). This thesis chose 

RBF as the kernel function: 

𝑲𝜃(𝒙𝑖, 𝒙𝑗) = exp(−𝛾|𝒙𝑖 − 𝒙𝑗|
2
),       𝛾 > 0   (2-15) 

where 𝛾 is the kernel parameter. 

 

   
(a) 

   
(b) 

Figure 2.7. Some training samples for pedestrian classification: (a) positive samples; (b) negative 

samples (from left to right: a sign board, a part of a building and a part of a vehicle). 
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The RF classifier is composed of a set of decision trees (Shalev-Shwartz and Ben-David 

2014).  For a given sample, each decision tree would give its class prediction and the class with 

the most votes becomes the RF prediction. Generally, the RF classifier requires two parameters: 

the number of trees 𝑀 and the number of features 𝑁. For each individual decision tree,  it randomly 

selects 𝑁 features from all features and makes decisions by splitting nodes into sub-nodes. The 

priority of the features used to split the tree is usually determined by the splitting measures like 

Gini Index and information gain (Zhang et al. 2020).  

Before training a classifier, both positive and negative samples are needed. As can be seen 

from Figure 2.7, in urban road environment, the positive samples are pedestrians and the negative 

samples include parts of buildings, road signs, etc.  

2.3.3 Evaluation metrics 

There are several metrics that can be used to evaluate the performance of SVM; and these 

values can be calculated based on the confusion matrix. 

 

    Actual class 

    Positive Negative 

Predicted 
class 

Positive TP FP 
Negative FN TN 

Figure 2.8. The confusion matrix 

As can be seen from Figure 2.8, the confusion matrix presents the number of samples that are 

correctly classified by a machine learning algorithm (true positives (TP) and true negatives (TN)) 

against those which are not (false positives (FP) and false negatives (FN)). As pedestrian detection 

requires a binary classifier, several values can be calculated from the confusion matrix, such as 

accuracy, precision, recall and F1-score. Specifically, accuracy is the proportion of correctly 

classified samples and can be expressed by: 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
      (2-16) 

Precision is the predictive power of the algorithm to evaluate its effectiveness in detecting a 

single class. It can be expressed as: 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
      (2-17) 

Recall evaluates the effectiveness of the algorithm in detecting a single class and can be 

expressed as: 

  𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
      (2-18) 

F1-score is the harmonic mean of precision and recall and can be expressed as: 

   𝐹1– 𝑠𝑐𝑜𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
     (2-19) 
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 PEDESTRIAN TRACKING 

The objective of the multiple objects tracking stage is to separate pedestrians from each 

other and associate them with existed trajectories. Since this thesis adopted a sequential method, 

at every frame only the detected pedestrians at the current frame 𝑘 and associated trajectories from 

the previous frame 𝑘 − 1  are required. At frame 𝑘 , all the 𝑀  detected pedestrians can be 

formulated as 𝐷𝑘 = (𝐷1
𝑘, 𝐷2

𝑘 , 𝐷3
𝑘, … , 𝐷𝑀

𝑘 ) where 𝐷𝑖
𝑘 is the 𝑖-th pedestrian in this frame. Similarly, 

all the 𝑁  associated trajectories from the previous frame 𝑘 − 1  can be denoted as 𝑇𝑘−1 =

(𝑇1
𝑘−1, 𝑇2

𝑘−1, 𝑇3
𝑘−1, … , 𝑇𝑁

𝑘−1) where 𝑇𝑖
𝑘−1 is the 𝑖-th associated trajectories.  

The workflow of the proposed pedestrian tracking approach, which is illustrated in Figure 

3.1, consists of the following steps: (1) the detection step provides 𝐷𝑘 at the current frame 𝑘; (2) 

the Kalman filter predicts the  state of 𝑇𝑘−1 to the current frame; (3) the data association steps 

matches the detections with their predicted trajectories; (4) the birth and death memory step 

initializes new trajectories and eliminates unmatched trajectories; and (5) the Kalman filter updates 

the states of the pedestrians based on their predicted and measured states.  

 

 

Figure 3.1. Flowchart of the proposed approach for pedestrian tracking. 

3.1 Kalman filter for state prediction 

The proposed pedestrian tracking algorithm was built on a Kalman filter (Yilmaz and Shah, 

2006). A Kalman filter is a probabilistic inference model that estimates the state of a system from 
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predictions and measurements and produces values closer to the real values by analyzing the 

uncertainty of the predictions and measurements. These uncertainties are factored in when making 

final decisions on the values of the current state. In other words, the Kalman filter assumes that 

either the prediction or measurement is not perfectly accurate. Combining the predictions and 

measurements increases the accuracy of the state description. In the prediction step, a constant 

velocity model is adopted to describe the evolution of the state of 𝑇𝑘−1 from the previous frame 

to the current frame to generate the predicted detections. Then, the predicted detections are 

associated with the detections provided by the pedestrian classifier in the current frame. Finally, 

the state vectors of the matched pairs of tracks and detections are combined to update the current 

object state estimates. 

3.1.1 Pedestrian state 

In the detection step, one assumption is that pedestrians in urban scenarios remain upright, 

so pedestrians move in the 𝑥𝑦 plane. Thus, the state vector 𝜇 of a detected pedestrian consists of 

eight parameters:  

𝜇 = (𝑥, 𝑦, 𝑤, 𝑙, ℎ, 𝜃, 𝑣𝑥 , 𝑣𝑦)𝑇     (3-1) 

where (𝑥, 𝑦) are the 𝑥𝑦  coordinates of a pedestrian’s position; (𝑤, 𝑙, ℎ, 𝜃) represent the width, 

length, height, and orientation of the pedestrian’s 3D bounding box, respectively; (𝑣𝑥, 𝑣𝑦) 

represent the velocity of the pedestrian in 𝑥𝑦 direction. 

 

 

Figure 3.2. Estimate the speed in 𝑥, 𝑦 direction with the measured radial velocity. 
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In detail, the position of a pedestrian is computed by using the mean position of all the 

points belonging to this detected pedestrian, and the width, length, height, and orientation can be 

derived from its 3D bounding box. Velocity 𝑣𝑚 is estimated by the measured radial velocity 𝑣𝑟, 

the scanner position 𝑃𝑜
𝑘, and the pedestrian’s moving direction �̂�𝑚. As can be seen in Figure 3.2, 

for a given detection 𝐷𝑖
𝑘 with its position 𝑃𝑖

𝑘, the vector of beam direction can be expressed as: 

�̂�𝑟 = 𝑃𝑖
𝑘 − 𝑃𝑜

𝑘       (3-2) 

Thus, the total speed of a pedestrian can be formulated as: 

 ‖𝑣𝑚‖ =
‖�̂�𝑚‖‖�̂�𝑟‖

�̂�𝑚∙�̂�𝑟
‖𝑣𝑟‖      (3-3) 

3.1.2 Process model 

The process model defines the propagation of the state from the previous frame to the 

current frame. To model the dynamics of pedestrians, this thesis adopts a constant velocity model 

as the process model. All the associated trajectories 𝑇𝑘−1 from frame 𝑘 − 1 are propagated to 

frame 𝑘 by the following equation: 

{
𝑥𝑘 = 𝑥𝑘−1 + 𝑣𝑥

𝑘−1∆𝑡 +
1

2
𝑎𝑥

𝑘−1∆𝑡2

 𝑦𝑘 = 𝑦𝑘−1 + 𝑣𝑦
𝑘−1∆𝑡 +

1

2
𝑎𝑦

𝑘−1∆𝑡2
    (3-4) 

where  (𝑎𝑥
𝑘−1, 𝑎𝑦

𝑘−1) are the linear accelerations, which are regarded as process noise in this model, 

∆𝑡 is the time interval between two adjacent frames (0.2 s in this thesis). Also, the dimensions and 

orientation of a pedestrian are assumed to be constant, so they do not change during the prediction 

step. Then, the Kalman filter prediction step is formulated in matrix form as:  

    �̅�𝑘 = 𝐹𝜇𝑘−1 + 𝜔      (3-5) 

                                                 Σ̅𝑘 = 𝐹Σ𝑘−1𝐹𝑇 + 𝑄      (3-6) 

where 𝜇𝑘−1 and Σ𝑘−1 are the state vector and its covariance matrix at frame 𝑘 − 1; �̅�𝑘 and Σ̅𝑘are 

the predicted state and the covariance matrix at frame 𝑘; 𝐹 is the state transition matrix, and 𝜔 is 

the process noise vector that is assumed to be zero-mean Gaussian with the covariance 𝑄. 𝐹, 𝜔, 𝑄 

can be expressed by: 

𝐹 = [
𝐼2×2 ∆𝑡𝐼2×2 𝐼2×4

02×2 𝐼2×2 𝐼2×4

04×3 04×2 𝐼4×4

]     (3-7) 
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𝜔 = [
1

2
𝑎𝑥

𝑡∆𝑡2,
1

2
𝑎𝑦

𝑡 ∆𝑡2, 𝑎𝑥
𝑡∆𝑡, 𝑎𝑦

𝑡 ∆𝑡, 𝑝𝑤
 , 𝑝𝑙

 , 𝑝ℎ
 , 𝑝𝜃

 ]
𝑇

   (3-8) 

  𝑄 =

[
 
 
 
 
 
 
 
 
1

4
𝜎𝑎

2∆𝑡4𝐼2×2
1

2
𝜎𝑎

2∆𝑡3𝐼2×2 02×4

1

2
𝜎𝑎

2∆𝑡3𝐼2×2 𝜎𝑎
2∆𝑡2𝐼2×2 02×4

04×2 04×2

𝜎𝑝𝑤
 

2 0 0 0

0 𝜎𝑝𝑙
 2 0 0

0 0 𝜎𝑝ℎ
 2 0

0 0 0 𝜎𝑝𝜃
 2 ]
 
 
 
 
 
 
 
 

  (3-9) 

where 𝜎𝑎
2
 

 
 is the variance of acceleration, 𝑝𝑤

 , 𝑝𝑙
 , 𝑝ℎ

 , 𝑝𝜃
  and 𝜎𝑝𝑤

 
2 , 𝜎𝑝𝑙

 2 , 𝜎𝑝ℎ
 2 , 𝜎𝑝𝜃

 2  are the process noise 

and its variance of 𝑤, 𝑙, ℎ, 𝜃. Since their variance could not be modeled by the constant velocity 

model, the strategy proposed by (Weng et al. 2019) is adopted to determine these values. That is, 

the variance of process noise of 𝑤, 𝑙, ℎ and 𝜃  are same as the variance of process noise of 𝑥 and 

𝑦.  

3.2 Data association 

In frame 𝑘, 𝑀 pedestrians are detected by the proposed detection algorithm and the state 

vector of 𝑁 existed trajectories are propagated from frame 𝑘 − 1.  Then, a data association strategy 

is designed to decide which detected pedestrian belongs to which track. For this purpose, the 

similarities between detections and tracks are calculated and the optimal pairing is determined by 

a greedy algorithm. After this process, a birth-and-death step (Kampker et al. 2018) is adopted to 

deal with unmatched detections and tracks by initializing new tracks and terminating unmatched 

tracks. 

3.2.1 Measurement model 

For each detected pedestrian, the sensor can provide its position and velocity so the 

dimension of measurement vector of a detected pedestrian would be the same as its state vector 

and the measurement model is: 

𝑧̅𝑘 = 𝐻�̅�𝑘 + 𝑣      (3-10) 

    𝑆𝑘 = 𝐻Σ̅𝑘𝐻𝑇 + 𝑅       (3-11) 
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where �̅�𝑘 and 𝑆𝑘 are the predicted measurement and its innovative matrix; 𝐻 is the measurement 

matrix, and 𝜈 is the measurement noise vector that is assumed to be zero-mean Gaussian with the 

covariance 𝑅. 𝐻 and 𝑅 could be expressed as: 

 𝐻 = 𝐼8×8     (3-12) 

𝑅 =

[
 
 
 
 
 
 
 
𝜎𝑝

2𝐼2×2 02×2 02×4

02×2 𝜎𝑣
2𝐼2×2 02×4

04×2 04×2

𝜎𝑚𝑤
 

2 0 0 0

0 𝜎𝑚𝑙
 2 0 0

0 0 𝜎𝑚ℎ
 2 0

0 0 0 𝜎𝑚𝜃
 2
]
 
 
 
 
 
 
 

   (3-13) 

where 𝜎𝑝
  and 𝜎𝑣

  are the position and velocity variance;  𝑚𝑤
 , 𝑚𝑙

 , 𝑚ℎ
 , 𝑚𝜃

  and 𝜎𝑚𝑤
 

2 , 𝜎𝑚𝑙
 2 , 𝜎𝑚ℎ

 2 , 𝜎𝑚𝜃
 2  

are the measurement noise and its variance of 𝑤, 𝑙, ℎ and 𝜃. Similarly, the variance of measurement 

noise of these four parameters are same as the variance of measurement noise of 𝑥 and 𝑦. 

3.2.2 Bipartite matching 

To associate 𝐷𝑘  at frame 𝑘  with the tracks from 𝑇𝑘−1 frame 𝑘 − 1 , the Mahalanobis 

distance (Maesschalck et al. 2000) is adopted to measure the similarity between the predicted 

detections from the trajectories and measured detections. The Mahalanobis distance between the 

predicted measurement of a trajectory 𝑧�̅�
𝑘and the real measurement of a detection 𝑧𝑗

𝑘 is formulated 

by the following equation: 

  𝑑𝑚
𝑘 (𝑖, 𝑗) = √(𝑧𝑗

𝑘 − 𝑧�̅�
𝑘)

𝑇
 (𝑆𝑖

𝑘)
−1

(𝑧𝑗
𝑘 − 𝑧�̅�

𝑘)
 
     (3-14) 

where 𝑑𝑚
𝑘 (𝑖, 𝑗) is the Mahalanobis distance between the predicted detection 𝑖 and the measured 

detection 𝑗. Given the Mahalanobis distance between each pair of predictions and detections, a 

greedy algorithm (Algorithm 1) is used to match the detections and trajectories. 
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Algorithm 1: Greedy Algorithm for Data Association (Chiu et al. 2020) 

Input: 

𝑀 detections at current frame 

𝑁 associated trajectories from previous frame 

Similarity threshold 𝑆𝑇 

Output:  

𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑎𝑛𝑑 𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔𝑠 

Initialize 

𝑀𝑎𝑡𝑐ℎ𝑒𝑑𝐷 = ∅  

𝑀𝑎𝑡𝑐ℎ𝑒𝑑𝑇 = ∅ 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = ∅ 

𝑀𝑎𝑡𝑐ℎ𝑒𝑑𝑃𝑎𝑖𝑟𝑠 = ∅ 

for 𝑖  in 1 to 𝑀: 

 for j in 1 to 𝑁: 

  𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦[𝑖][𝑗] = 𝑀𝑎ℎ𝑎𝑙𝑎𝑛𝑜𝑏𝑖𝑠 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛(𝑖), 𝑇𝑟𝑎𝑐𝑘(𝑗)) 

 end 

end 

𝐿𝑖𝑠𝑡𝑜𝑓𝑃𝑎𝑖𝑟𝑠 < −𝑃𝑎𝑖𝑟𝑆𝑜𝑟𝑡𝐵𝑦𝑉𝑎𝑙𝑢𝑒(𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦) 

for 𝑘 in 1 to 𝑙𝑒𝑛𝑔𝑡ℎ(𝐿𝑖𝑠𝑡𝑂𝑓𝑃𝑎𝑖𝑟𝑠) : 

 (𝑖, 𝑗) = 𝐿𝑖𝑠𝑡𝑜𝑓𝑃𝑎𝑖𝑟𝑠[𝑘] 
 if 𝑖 ∉ MatchedD and j ∉ MatchedT: 

               if 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦[𝑖][𝑗] < 𝑆𝑇: 

   𝑀𝑎𝑡𝑐ℎ𝑒𝑑𝐷. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑖)  

   𝑀𝑎𝑡𝑐ℎ𝑒𝑑𝑇. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑗) 

   𝑀𝑎𝑡𝑐ℎ𝑒𝑑𝑃𝑎𝑖𝑟𝑠. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑖, 𝑗) 

  end 

 end 

end 

return 𝑀𝑎𝑡𝑐ℎ𝑒𝑑𝑃𝑎𝑖𝑟𝑠 

 

3.2.3 Initialization and termination 

The proposed initialization and termination module is used to initialize new tracks for the 

unmatched detections and to eliminate unmatched tracks. To avoid false positive tracks, a new 

track is not created for an unmatched pedestrian until it is detected in three consecutive frames. 

The state vector of a new track is calculated according to its most recent detection. Similarly, to 

avoid terminating the true tracks which miss detections at some frames, each track is not deleted 

until it cannot be matched with any detections in three consecutive frames. During this process, 

the state vector of the unmatched pedestrians is also updated with its last known velocity estimation 

by the process model. The tracks with missing detections are recovered by this strategy and only 
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the tracks that leave the scene are terminated. An example is shown in Figure 3.2. The pedestrian 

is detected in the first and third frames while it is missed in the second frame. In the first frame, 

its coordinate and velocity in 𝑥𝑦 -plane is (−15.80 𝑚, 5.88 𝑚)  and ( −0.75𝑚/𝑠, 0.53𝑚/𝑠 ), 

respectively. In the second frame, the location of pedestrian is predicted by Equation 3-4 and 

changed to (−15.95 𝑚, 5.98 𝑚) and this track could not be matched by any detections. However,  

this track is not terminated immediately but propagated to the third frame by the same estimated 

velocity. In the third frame, the predicted location  is (−16.10 𝑚, 6.08 𝑚), which can be matched 

with the detected pedestrian whose measured coordinate center is (−16.03 𝑚, 6.04 𝑚). 

 

   
(a) (b) (c) 

Figure 3.3. Recovery of missing detections. (This pedestrian is not scanned in the second frame, 

but his track is not deleted immediately and recovered when he appears again). 

3.3 Kalman filter state update 

Once all the tracks are associated, the predicted state mean and its covariance matrix are 

updated by the following equations: 

𝑦𝑘 = 𝑧𝑘 − 𝐻�̅�𝑘     (3-15) 

𝜇𝑘 = �̅�𝑘 + 𝐾𝑘𝑦𝑘     (3-16) 

Σ𝑘 = Σ̅𝑘(𝐼 − 𝐾𝑘𝐻 )     (3-17) 

where 𝑦𝑘 is the measurement residual, 𝐾𝑘 is the optimal Kalman gain which can be calculated by: 

𝐾𝑘 = Σ̅𝑘𝐻𝑇(𝑅 + 𝐻Σ̅𝑘𝐻𝑇)−1    (3-18) 

The Kalman gain is the relative weight given to the measurements and the current state 

estimate. With a high gain, the filter places more weight on the most recent measurements, and 

thus follows them more responsively. With a low gain, the filter follows the model predictions 

more closely (Savtchenko 2011). 
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3.4 Evaluation metrics  

There are several metrics that can be used to evaluate the performance of the proposed 

tracking approach: FP, FN, identity switch (IDSW), and MOTA. A pedestrian that is missed by 

any hypothesis is a FN and a non-pedestrian that is wrongly assigned to a track is a FP. An IDSW 

is counted if a ground truth target 𝑖 is matched to an incorrect track 𝑗. MOTA is used to evaluate a 

tracker’s overall performance by combining all the above sources of errors and could be expressed 

as: 

𝑀𝑂𝑇𝐴 = 1 − 
∑ (𝐹𝑁𝑘+𝐹𝑃𝑘+𝐼𝐷𝑆𝑊𝑘)𝐾

∑ 𝐺𝑇𝑘𝑘
     (3-19) 

where 𝑘 is the frame index and 𝐺𝑇 is the number of ground truths.  
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 DOPPLER LIDAR AND DATASET 

4.1 Doppler LiDAR 

LiDAR is a remote sensing technique that uses visible or near-infrared laser energy to 

measure the distance between the sensor and an object. Currently, one of the most commonly used 

LiDAR techniques is called pulsed LiDAR, or linear mode LiDAR, which emits short but intense 

pulses of laser radiation and measures the distance to a target by recording the time intervals 

between the transmitted and received light pulses (Royo and Ballesta-Garcia 2019). With the 

constant speed of light 𝑐, the distance 𝑅 to the object is directly proportional to the two-way 

traveled time 𝑡:  

𝑅 =
1

2
𝑐𝑡      (4-1) 

Although pulse LiDAR is a very popular and mature light measurement approach, it has 

some drawbacks. Many linear mode LiDAR systems are operated at 905 nm wavelength, which is 

not safe for the human eye and is likely to be affected by ambient light such as bright sunlight, 

other sensor’s light pulse and its own previous pulse. An alternative frequency modulated 

continuous wave (FMCW) LiDAR system has been proposed using a wavelength in the 1550 nm 

band, which has the advantage of lower peak power when compared to pulse technology and is 

safe for human eyes (Kim et al. 2020). 

 

 

Figure 4.1. A standard interferometric circuit of Doppler LiDAR (adapted from Kadlec et al. 

2019). 

Instead of emitting a pulse, FMCW LiDAR emits a beam of coherent radiation to a target 

while keeping a reference signal, also known as a local oscillator (Kadlec et al. 2019). The 

reference signal plays a crucial role in the operation of the FMCW LiDAR. First, it provides a very 

stable reference frequency that can be used to determine velocity accurately. It also rejects 
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radiation from other sources, such as sunlight, to eliminate the effects of background light 

completely. As shown in Figure 4.1, a continuous beam of radiation illuminates the target, and a 

small fraction of the light is backscattered into the receiver. The motion of the target along the 

beam direction leads to a change of light’s frequency due to the Doppler shift (Piggott, 2020); and 

movement towards the LiDAR brings about a compression of the wave increasing in its frequency, 

while movement away stretches the wave and reduce its frequency. As Figure 4.2 shows, the 

difference of outgoing and incoming frequency derives two beat frequencies 𝑓1  and 𝑓2 , which 

could be utilized to calculate the range 𝑅 and radial velocity 𝑣𝑟.  

 

 

Figure 4.2. Modulation of Doppler LiDAR (adapted from Nordin and Kalevi 2002). 

If the range and velocity of a given target are constant during one modulation period, 𝑓1 

and 𝑓2 can be used to calculate the  magnitude of the frequency difference 𝑓𝑅 and the Doppler shift 

𝑓𝐷 (Nordin and Kalevi 2002). If  𝑓𝑅 ≤ |𝑓𝐷|, 𝑓𝑅 and 𝑓𝐷 can be expressed by:    

         𝑓𝑅 =
𝑓1+𝑓2

2
          (4-2) 

   𝑓𝐷 =
𝑓2−𝑓1

2
      (4-3) 

If 𝑓𝑅 > |𝑓𝐷|, 𝑓𝑅 and 𝑓𝐷 can be expressed by: 

     𝑓𝑅 = |
𝑓2−𝑓1

2
|         (4-4) 
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      𝑓𝐷 = {
      

𝑓1+𝑓2

2
,    𝑓1 ≤ 𝑓2

−(
𝑓1+𝑓2

2
) , 𝑓1 > 𝑓2

      (4-5) 

Then the range 𝑅 and radial velocity 𝑣𝑟 can be calculated by: 

𝑅 =
𝑐∙𝑓𝑅∙𝑇𝑚𝑜𝑑

4∆𝑓
      (4-6) 

     𝑣𝑟 =
𝑓𝐷∙λ

2
      (4-7) 

where 𝑇𝑚𝑜𝑑 is the modulation period; ∆𝑓 is the bandwidth of the frequency sweep; and  λ is the 

optical wavelength. According to Equation 4-9, a positive velocity indicates the object is moving 

to the sensor along the beam direction while a negative velocity suggests the object is moving 

away from the sensor along the sensor’s line of sight.  

In summary, the FMCW LiDAR indirectly measures both the distance and velocity from 

the Doppler effect and therefore also is called Doppler LiDAR. 

4.2 Test datasets 

The datasets in this thesis were collected by a mobile Doppler LiDAR system installed on 

top of a vehicle with GPS and an inertial measurement unit (IMU) designed for autonomous 

driving or mapping. The Doppler LiDAR system consists of four co-registered Doppler LiDAR 

scanners; and the horizontal scanning angle range for each scanner is 40º (Figure 4.3(a)). 

Considering the overlapping areas between adjacent sensors, the four scanners provide a 120º 

scanning angle in total. The scanning frequency is 5 Hz, and the maximum scanning range is about 

400 m. The mobile Doppler LiDAR scans were collected in the downtown area of San Francisco, 

California in September 2018 (Figure 4.2(b)). A sample of one frame of the point cloud is shown 

in Figure 4.3(c). The color displayed in this frame is determined by the adjusted radial velocity. 

Yellow indicates the static points while red and blue represent objects that move to or away from 

the sensor, respectively. 
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(a) (b) (c) 

Figure 4.3. (a) The Doppler LiDAR system; (b) the test site (blue dot: the sensor; red arrow: 

moving direction); (c) one frame point cloud color coded by adjusted radial velocity (unit: m/s). 

Table 4.1. Attributes of the collected point cloud 

Attribute Unit 

Range (R) m 

Azimuth Angle (𝜑) rad 

Polar Angle (𝜃) rad 

Relative Position 

(𝑥, 𝑦, 𝑧) 
m 

World Position 

(𝑥𝑤𝑜𝑟𝑙𝑑,  𝑦𝑤𝑜𝑟𝑙𝑑, 𝑧𝑤𝑜𝑟𝑙𝑑) 
m 

Relative speed (𝑣) m/s 

Absolute speed (𝑣𝑎𝑏𝑠) m/s 

 

The attributes of collected point clouds are shown in Table 4.1. 𝑅, 𝜑 and 𝜃 represent the 

polar coordinates of a point in the mobile Doppler LiDAR system. The data points are 

transformed into a 3D Cartesian coordinate system by the following equation: 

      𝑋 = 𝑅 ∙ 𝑠𝑖𝑛𝜃 ∙ 𝑐𝑜𝑠𝜑      

𝑌 = 𝑅 ∙ 𝑠𝑖𝑛𝜃 ∙ 𝑠𝑖𝑛𝜑       (4-8) 

                𝑍 = 𝑅 ∙ 𝑐𝑜𝑠𝜃        

where 𝑥, 𝑦 and 𝑧 represent the 3D coordinates of a point in the sensor coordinate system. With the 

GPS/IMU built in the mobile LiDAR system, 𝑥, 𝑦 and 𝑧 are transformed to the absolute 𝑥𝑤𝑜𝑟𝑙𝑑, 

 𝑦𝑤𝑜𝑟𝑙𝑑 and 𝑧𝑤𝑜𝑟𝑙𝑑, which are the 3D coordinates of a point in a world or global coordinate system. 
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𝑣 is the relative radial velocity between the object and the sensor. After eliminating the effects of 

the moving Doppler LiDAR system, 𝑣𝑎𝑏𝑠 is derived, representing the radial velocity of the point 

relative to the ground.  

Two datasets were collected for this thesis. Dataset I has a total of 90 frames. The vehicle 

equipped with Doppler LiDAR first moved fast along a street and then stopped at a crosswalk. 

Dataset II has a total of 107 frames and the mobile LiDAR system was constantly moving on a 

busy street. Approximately 1,800 pedestrians in these two datasets are labeled manually to evaluate 

the performance of the proposed pedestrian detection and tracking method.  
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 RESULTS AND EVALUATION 

This chapter presents the results of the proposed pedestrian detection and tracking with the 

two datasets introduced in Chapter 4. The performance of the pedestrian detection is evaluated by 

the recall, precision and F1-score. Additionally, this chapter shows that the performance of 

pedestrian classification is clearly varied by distance to the target. The results of the pedestrian 

tracking are presented in this chapter as well while its performance is evaluated by a set of tracking 

quality measures. 

5.1 Pedestrian detection 

5.1.1 Cluster detection 

The objective of cluster detection is to find all the clusters likely to be pedestrians. 

Therefore, the pedestrian candidates should contain ground truth as much as possible since only 

the clusters extracted from the clustering algorithm would be regarded as pedestrian candidates 

and then would be classified by the classier. The size thresholds for potential single pedestrian 

candidates are: 

𝐶𝑝 = {𝐶𝑖|0.8𝑚 < ℎ𝑖 < 2𝑚 , 0.2𝑚 < 𝑙𝑖 < 1.2𝑚 ,0.2𝑚 < 𝑤𝑖 < 0.8𝑚} (5-1) 

 Above criteria are determined according to the height, shoulder width and step length of 

pedestrians. Based on these values, the size thresholds for potential multiple (usually two or 

three) pedestrians’ candidates are: 

 𝐶𝑝 = {𝐶𝑖|0.8𝑚 < ℎ𝑖 < 2𝑚 ,1.2𝑚 < 𝑙𝑖 < 3𝑚 ,0.8𝑚 < 𝑤𝑖 < 3𝑚}  (5-2) 

 

   

(a)      (b) 

Figure 5.1. Segmentation of two pedestrians: (a) before re-clustering; (b) after re-clustering. 
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In this thesis, close pedestrians are segmented into single pedestrians successfully in the 

re-clustering process. As Figure 5.1(a) shows, two pedestrians very close to each other, are far 

from the scanner. Therefore, a relatively large 𝜀 value is assigned to them during the clustering 

process, so they are clustered as one object. After the re-clustering process (Figure 5.1(b)), 

however, they are separated successfully. 

Recall, which is the ratio between the number of pedestrians extracted by the clustering 

process and the ground truth, is adopted to quantitatively evaluate the performance of the proposed 

cluster detection algorithm. As shown in Table 5.1, the recall for both datasets is larger than 92%, 

which indicates that less than 8% of the pedestrians are not extracted during the process of cluster 

detection.   

Table 5.1. Performance of pedestrian candidate detection (Count of pedestrians)    

Dataset #Frames 
#Ground truth  

of pedestrians  

 #Pedestrians in 

candidates 

 #Missing 

pedestrians 
Recall 

I 90 1201 1147 54 0.9550 

II 107 644 593 51 0.9208 

Table 5.2. Summary of missing detections (Count of pedestrians) 

Dataset 

# Partially 

scanned 

pedestrians 

#Mismatched 

pedestrians 

#Unsegmetned 

pedestrians 

I 18 14 22 

II 17 16 18 

 

Missing detections, or FNs, are produced by various causes (Table 5.2). To be specific, 

missing detections can occur in either the clustering or cluster selection processes. In the clustering 

process, if pedestrians are too close to large objects (e.g. buildings), they may not be segmented 

as a single pedestrian. Instead, they can be regarded as a part of the large objects. For example, as 

can be seen from Figure 5.2(a), a pedestrian is passing by a building in three consecutive frames. 

In the first and last frame, the distance between the pedestrian and the building is larger than 𝜀 so 

this pedestrian is segmented to a single cluster and selected as a pedestrian candidate in the 

following step. But in the second frame, this distance becomes less than 𝜀 so the pedestrian is 
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merged into the cluster of the building. In addition, unlike clusters composed of multiple 

pedestrians, the size of such cluster is much larger than the threshold set for multiple pedestrians’ 

candidates; as a result, this pedestrian is not successfully extracted by the re-clustering process.  

 

 

(a) Example of an unsegmented pedestrian (This pedestrian is segmented successfully in the 

first and last frame but not in the middle frame).  

 

(b) Example of partially scanned pedestrians. 

 

(c)  Example of a mismatched pedestrian. 

Figure 5.2. Examples of missing detections of pedestrians.  

In the cluster selection process, both the partially scanned point clouds and the unmatched 

sizes lead to missing detections. An example of partial scanned point clouds is shown in Figure 

5.2(b), where there are six detected pedestrians in the first and last frames. However, in the second 

frame, the point clouds of three pedestrians are only partially collected by the sensor so they are 

not selected in the cluster selection process because their sizes are less than the thresholds set 

a 



 

 

45 

previously. A more extreme case is a pedestrian who totally disappeared in one or more frames. 

Missing detections also happen when one or more dimensions (𝑤, 𝑙, ℎ) of a cluster are not in the 

range of the predefined threshold. As shown in Figure 5.2(c), a pedestrian is detected successfully 

in the first and last frames but is missed in the second frame because its height is smaller than the 

threshold. 

5.1.2 Pedestrian classifier 

As mentioned previously, dataset I and dataset II have 90 frames and 107 frames of point 

clouds, respectively. According to the manually-labeled ground truths, there are 1,147 and 593 

pedestrians in dataset I and dataset II, respectively. For each dataset, 60 percent of the samples are 

used as training data and 40 percent of the samples are used as testing data. The descriptions of 

the two datasets are shown in Table 5.3. 

Table 5.3. Summary of training and testing data   

Dataset I 

Description 
#Positive 

Samples 

#Negative 

Samples 
Total 

Training data 745 1,208 1,953 

Testing data 402 704 1,106 

Dataset II 

Description 
#Positive 

Samples 

#Negative 

Samples 
Total 

Training data 348 1,022 1,370 

Testing data 245 601 846 

 

The proposed two-step classifier is composed of a speed classifier and a machine learning-

based classifier. According to the specifications of the Doppler LiDAR (Ma et al. 2019), the 

precision of the radial velocity is 0.1 𝑚/𝑠, so this value is adopted as the lower bound of the 𝑣𝑇 

of the speed classifier. The upper bound of the  𝑣𝑇 is set as 3 𝑚/𝑠 because generally the walking 

speed of a pedestrian is not likely to be more than it. The quantitative results for each step are 

shown in Table 5.3. After the speed classifier (stage I), the FP rate is less than 0.06 because most 

of the static objects’ average radial velocities are not likely to be larger than the 𝑣𝑇. Most of the 

FPs are over-segmented vehicles while a few FPs are static objects with large average velocities 

resulting from measurement error. As previously mentioned, the FNs are pedestrians with zero 
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measured radial velocity. The remaining clusters are then input to the machine learning-based 

classifier (stage II). The results show that the FNs decrease substantially because the pedestrians 

misclassified in the stage I are classified correctly in stage II by the SVM or RF classifier. In 

contrast, the FPs increase because some of the non-pedestrians are classified as pedestrians 

incorrectly during this process.  

Table 5.4. Quantitative results of each stage of the two-step classifier (Count of pedestrians)    

Dataset I 

MLA Stage TP FP FN TN 

SVM 

I 375 4 27 700 

II 389 25 13 679 

RF 
I 375 4 27 700 

II 395 20 7 684 

Dataset II 

MLA Stage TP FP FN TN 

SVM 
I 219 12 26 589 

II 235 55 10 546 

RF 
I 219 12 26 589 

II 230 55 15 546 

 

  

(a) (b) 

Figure 5.3. Significance of features of RF; the feature ID is referred to Table 2.1. 

Unlike SVM, it is unnecessary to project the features in RF to higher dimension space by 

the kernel trick to find the optimal separable hyperplane. Therefore, the feature importance can be 

ranked according to the GINI index. The importance of features for the RF classifier are shown in 
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Figure 5.3. The average radial velocity of a cluster (𝑓29) is the most important feature among all 

the features. Therefore, it is reasonable to use 𝑓29 as the only feature to form the speed classifier.  

To evaluate the effect of the speed classifier as well as the effect of the speed information, 

we compare the results from two two-step classifiers (named Two-Step SVM and Two-Step RF), 

two one-step classifiers with the speed information (named SVM-Speed and RF-Speed) and two 

one-step classifiers without the speed information (named SVM and RF). As can be seen from 

Table 5.5, all six classifiers perform better on the dataset I because when the vehicle equipped with 

mobile Doppler Lidar stopped at a traffic light, most of the pedestrians were crossing the street; so 

they were fully scanned and had a complete shape. In contrast, for dataset II, most of the 

pedestrians were constantly walking along the street; so they were more likely to be obstructed by 

other pedestrians or objects such as vehicles and poles, resulting in partially scanned point clouds 

and incomplete shapes.  

Table 5.5. Quantitative results of different pedestrian classifiers  

Classifier Dataset Accuracy Precision Recall F1-score 

Two-Step-

SVM 

I 0.9497 0.9023 0.9652 0.9327 

II 0.9173 0.8070 0.9388 0.8679 

SVM-

Speed 

I 0.9647 0.9612 0.9403 0.9509 

II 0.9113 0.8295 0.8735 0.8509 

SVM 
I 0.8843 0.8914 0.7761 0.8298 

II 0.8664 0.8208 0.7143 0.7559 

Two-Step 

RF 

I 0.9737 0.9388 0.9825 0.9649 

II 0.9385 0.8561 0.9470 0.8992 

RF-Speed 
I 0.9792 0.9588 0.9851 0.9718 

II 0.9444 0.8779 0.9388 0.9073 

RF 
I 0.9141 0.9449 0.8109 0.8728 

II 0.8759 0.8431 0.7020 0.7661 

 

Overall, the four classifiers with speed information outperform the two classifiers without 

speed information on all the evaluation metrics, especially the recall. The F1-scores among four 

classifiers with speed information are not significantly different. For SVM-based classifiers, the 
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Two-Step SVM has higher recall and the SVM-speed has higher precision. This is because the 

SVM-speed recognizes pedestrians based on both the speed information and the static features so 

some of the pedestrians with very blurred contours are misclassified even if they are moving. In 

contrast, the speed classifier is able to recognize moving pedestrians only by their average radial 

velocity and therefore is able to detect all of the moving pedestrians. For RF-based classifiers, the 

two-step RF and the RF-speed show similar performance. A possible explanation is that once the 

subset of features selected by an individual tree including the average radial velocity, the role of 

this feature is similar to a simple speed classifier. For the classifiers based on different MLAs, the 

average F1-score of SVM-based and RF-based classifiers are 0.8647 and 0.8970, respectively. 

Thus, it is concluded that the overall performance of the RF-based classifiers outperforms the 

SVM-based classifiers. Therefore, the detection results from Two-Step RF can be used to track 

pedestrians. 

The detection results of the classifiers in varied ranges are listed in Tables 5.6 and 5.7, 

respectively. As shown in Tables 5.6 and 5.7, as the distance between the objects and the sensors 

increase, the overall performance of most classifiers decreases, indicating a decreasing trend for 

pedestrian detection efficiency. However, the four classifiers with speed information generally 

perform better than the classifiers having only static features, especially for pedestrian detection 

at ranges larger than 30 m. To be specific, for close pedestrian detection, static features are 

sufficient to detect most pedestrians. The additional speed information increases all the evaluation 

metrics slightly. Based on these outcomes, it is concluded that both static features and speed 

information are important to detect pedestrians at the range of 30 m. However, most static features 

are sensitive to spatial resolution. When the distance increases, the number of points returned as 

pedestrians decreases so the contour of the candidate pedestrians gradually blurs or is even lost 

(Figure 5.4), which makes the shapes less different between pedestrians and other objects. Unlike 

static features, the effect of speed information is not distance-dependent; therefore, as the distance 

increases, the performance of the two-step classifiers and one-step classifier with speed only 

decreases slightly. In dataset I, the additional speed information increases all the evaluation metrics 

by 10%. In dataset II, the two classifiers with only static features thoroughly fail to detect 

pedestrians in this region because most of the pedestrians that are at the range of 30 m to 50 m do 

not have a clear shape while the two-step classifier and the one-step classifier with speed 
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information still perform robustly. Therefore, it is concluded in this thesis that speed information 

plays a major role in detecting pedestrians, especially when they were far away from the sensor. 

 

   

Figure 5.4. Some failure cases in pedestrian detection without the speed (contours of these 

pedestrians are blurred so they could not be classified correctly by classifiers without speed 

information). 

Table 5.6. Quality of pedestrian detection at the range of 30 m from the sensor 

Classifier Datasets 
Total 

Number 

Truly 

Detected 

False 

Alarms 
Precision Recall 

F1-

score 

Two-Step SVM 
I 196 186 15 0.9254 0.9490 0.9370 

II 195 188 37 0.8356 0.9641 0.8952 

SVM-Speed 
I 196 182 7 0.9630 0.9286 0.9455 

II 195 177 34 0.8389 0.9077 0.8719 

SVM  
I 196 172 15 0.9198 0.8776 0.8982 

II 195 160 35 0.8205 0.8205 0.8205 

Two-Step RF 
I 196 186 14 0.9300 0.9490 0.9394 

II 195 189 35 0.8438 0.9692 0.9021 

RF-Speed 
I 196 191 7 0.9646 0.9744 0.9695 

II 195 85 30 0.8605 0.9487 0.9024 

RF 
I 196 188 13 0.9353 0.9592 0.9471 

II 195 157 33 0.8263 0.8051 0.8156 
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In summary, during the clustering process, the proposed method is able to extract most of 

the pedestrian candidates (over 92%) and separate single pedestrian well. In the pedestrian 

classification, the average radial velocity improves the classification performance significantly, 

especially for pedestrians at the range of 30 m to 50 m to the sensor. The performance of RF is 

slightly better than the SVM. Overall, the highest recall (0.9788 and 0.9450 for dataset I and II 

respectively) is obtained by using the proposed two-step classifiers while the highest precision 

(0.9010 and 0.9125 for dataset I and II respectively) is obtained by adopting the one-step classifiers 

with speed information. For the purpose of pedestrian tracking, a higher recall is more important 

than precision. As a non-pedestrian may not be misclassified as a pedestrian in all consecutive 

frames, its influence could be eliminated by an appropriate tracking management strategy. In 

contrast, pedestrians with only a sparse or partially scanned point cloud are likely to be missed in 

the pedestrian classification step, which will result in increasing tracking errors. 

Table 5.7. Quality of pedestrian detection at the range of 50 m from the sensor 

Classifier Datasets 
Total 

Number 

Truly 

Detected 

False 

Alarms 
Precision Recall 

F1-

score 

Two-Step SVM 
I 206 203 10 0.9531 0.9854 0.9690 

II 50 42 18 0.7 0.8400 0.7636 

SVM-Speed 
I 206 196 8 0.9608 0.9514 0.9561 

II 50 37 10 0.7872 0.74 0.7629 

SVM  
I 206 158 23 0.8729 0.7667 0.8165 

II 50 15 8 0.6522 0.3000 0.4110 

Two-Step 

RF 

I 206 205 7 0.9670 0.9951 0.9809 

II 50 41 14 0.7454 0.8200 0.7810 

RF-Speed 
I 206 203 4 0.9807 0.9854 0.9831 

II 50 44 10 0.8148 0.8800 0.8462 

RF 
I 206 147 1 0.9932 0.7136 0.8305 

II 50 15 4 0.7895 0.3000 0.4348 
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5.2 Pedestrian tracking 

The results of the evaluation of the effects of including speed measurement in the proposed 

tracking algorithm are shown in Table 5.8. Compared to the original KF, KF-Speed is less likely 

to have IDSW errors, especially in crowded scenes.  

Table 5.8. Tracking quality evaluation 

Dataset Method FN FP IDSW MOTA 

I KF-Speed 38 15 16 0.7862 

KF 47 21 28 0.7215 

II KF-Speed 28 13 10 0.7353 

KF 35 16 25 0.6774 

 

Some sample results of pedestrian tracking are shown in Figure 5.5 (a). The red clusters 

represent pedestrians, and the blue points are the static background and other objects. The black 

boxes represent the 3D bounding box of each tracked pedestrian and the corresponding number is 

the unique tracking ID of each pedestrian. 

The results show that the proposed tracking method can track pedestrians on crowded 

streets. For example, in Figure 5.5 (b), two pedestrians have been tracked completely over ten 

frames until they leave the scene. Also, the proposed strategy that manages the initialization and 

termination of the trajectories is able to deal with the FPs and FNs generated during the detection 

step. For example, in Figure 5.6, two close pedestrians are shown walking along the street (tracked 

as #0 and #1). In frame 67 and frame 68(Figure 5.6 (b)-(c)),  these two pedestrians are only partially 

scanned by the sensor and therefore are recognized as one pedestrian (Figure 5.6 (b)-(c)). Thus, in 

the data association step, Track #0 is not associated with any detected pedestrians, but Track #0 is 

not terminated immediately according to the strategy for initializing and terminating tracks. Instead, 

its state vector is updated and propagated to frame 68 and frame 69 by using its current velocity. 

In frame 69, these two pedestrians are separated well again so Track #0 retracks the corresponding 

pedestrians successfully (Figure 5.6(d)). As shown in Figure 5.7, five pedestrians are fully tracked 

in frames 66 through 75 (Figure 5.7(a)). However, in frame 69 and 72, Track #3 and Track #5 are 

too close to a high pole so that those pedestrians could not be detected successfully (Figure5.7(b))  

and are recovered once their corresponding pedestrians are detected again. 
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(a) 

    
(b) 

Figure 5.5. Sample results of pedestrian tracking: (a) tracking results of frame 74 in dataset II 

(Unit: m) (red arrow: direction of the mobile Doppler LiDAR), (b) Track#13 and #14 in frame 

69,74 and 79.  

 

Figure 5.6. Tracks #0 and #1 in frames 66-69 in dataset I (Unit: m). 

    
(a) (b) (c) (d) 
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(a) 

  
(b) 

Figure 5.7. (a)Tracks #3, Track #4, Tracks #5, Tracks #6 and Track #13 in frames 66, 69, 72, 75 

in dataset I (Unit: m); (b) the detail views of the frame 69 and 72.  

Table 5.9. RMSE between predicted locations and true locations 

Pedestrian Method RMSE (m) 

I 
KF 0.145 

KF-Speed 0.113 

II 
KF 0.180 

KF-Speed 0.137 

 

  
(a) (b) 

Figure 5.8. Birds-eye view tracking visualization of two pedestrians: (a) predicted location 

without measured speed; (b) predicted location with measured speed. 

Track#6
Track#5 

Track#6

Track#5 

Track#3 
Track#4 
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Figure 5.8 shows the effect of radial velocity by visualizing the trajectories of the two close 

pedestrians. The red and blue lines represent their predicted and true movement trajectory, 

respectively. Root Means Square Error (RMSE) is adopted to quantitatively evaluate the accuracy 

of the predicted location of two KF models and results are shown in Table 5.9.  It is obvious that 

compared to the KF (Figure 5.8(a)), KF-Speed (Figure 5.8(b)) is able to provide a more reliable 

prediction of the locations of the two pedestrians, leading to better tracking performance. 
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 CONCLUSION 

Reliable pedestrian detection and tracking are crucial for numerous utility areas. This thesis 

presented a new tracking-by-detection approach for detecting and tracking pedestrians from point 

clouds acquired by a mobile Doppler LiDAR. 

The performance of the proposed approach was discussed in terms of both pedestrian 

detection and tracking. Pedestrian detection consisted of cluster selection and pedestrian 

classification. The mean shift-based re-clustering process, which was introduced between the 

clustering process and classification, was shown to be capable of extracting single pedestrian 

candidates from multiple pedestrians’ candidates effectively (Figure 5.1). To evaluate the effect of 

speed information in classification, we compared the performance of the classifiers with the speed 

information to the performance of those without the speed information. In general, the classifiers 

including the speed information outperformed those without the speed information, especially for 

detecting pedestrians that were far from the scanner. With the speed information, missing 

detections only occurred when pedestrians fulfilled both the following conditions: (1) pedestrians 

were occluded or far from the sensor, and (2) their average radial velocity was nearly zero. In 

addition, by utilizing the speed information, the average recall for the two datasets is 0.9620. Such 

a high recall was capable of improving the performance of pedestrian tracking. We also compared 

the performance of SVM-based classifiers and RF-based classifiers. Overall, the performance of 

the RF-based classifiers was better than the SVM-based classifiers no matter whether the speed 

information was included so the detection results from Two-Step RF were selected as input for 

pedestrian tracking. In the tracking step, the state vector of the pedestrians was estimated by not 

only position observations but speed observations as well, which increased the precision of the 

predicted movements of the pedestrians, leading to more robust and reliable tracking performance. 

There are several areas where the proposed method could be improved. First, the detection 

method could only segment pedestrians that are close to other pedestrians or small objects such as 

road signs. When pedestrians are moving to large objects such as buildings or poles, they are often 

regarded as a part of them. Future research could investigate a method of segmenting a pedestrian 

from a larger cluster. Second, there are some pedestrians missed because one or more of their 

dimensions are out of the range of the pre-defined thresholds. Therefore, more adaptive criteria 

should be proposed to include these pedestrians. Third, the proposed approach detects pedestrians 
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frame by frame but does not consider the relationship between consecutive frames. The detection 

results from previous frames may provide useful information for pedestrian detection in the current 

frames. Lastly, even though the constant velocity model achieves high performance in pedestrian 

tracking, there are some more complex and advanced models, such as Constant Turn Rate and 

Velocity (Schubert et al. 2011), could be investigated to improve the tracking performance. 
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