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ABSTRACT

Mobile devices have become increasingly ubiquitous as they serve many important func-

tions in our daily lives. However, there is not much research on remote threats to the battery

and power systems of these mobile devices. The consequences of a successful attack on the

power system of a mobile device can range from being a general nuisance, financial harm, to

loss of life if emergency communications were interrupted. Despite the relative abundance

of work on implementing chemical and physical safety systems for battery cells and power

systems, remote cyber threats against a mobile battery system have not been as well studied.

This work created a framework aimed at auditing the power systems of mobile devices and

validated the framework by implementing it in a case study on an Android device. The

framework applied software auditing techniques to both the power system and operating

system of a mobile device in a case study to discover possible vulnerabilities which could

be used to exploit the power system. Lessons learned from the case study are then used

to improve, revise, and discuss the limitations of the framework when put in practice. The

effectiveness of the proposed framework was discovered to be limited by the availability of

appropriate tools to conduct vulnerability assessments.
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1. INTRODUCTION

As the world we live in becomes increasingly dependent on technology, so has our depen-

dency on reliable sources of power to our devices. Of these technologies, smartphones and

cell phones in general have become perhaps the most important of them all. Smartphones

have become integral to modern day life as they enable people to communicate, socialize,

access financial information, take pictures of their surroundings, do business, make emer-

gency calls, and many other tasks that improve our quality of life, safety, and productivity.

Security of operating systems, servers, applications, and websites have all improved over-

time as companies harden their networks to prevent costly data breaches and loss of public

trust. Given the benefits to productivity and quality of life that mobile devices represent, a

successful attack that disrupts the accessibility and operation of a mobile device could have

far-reaching consequences.

1.1 Significance and Motivation

There are numerous reasons why power systems are significant and deserving of further

study. Past product defects which caused smartphone batteries to catch fire have posed

serious health risks to the user [ 49 ]. These events were not caused by a remote threat, but

it poses an important question in what damage may be caused by a remote attacker and

how can they be prevented. Recent research has also proposed emergency response systems

for automobile drivers who enter a medical emergency while driving [ 62 ]. This system relies

on mobile devices as a critical component which could potentially save a life [ 62 ]. However,

security vulnerabilities in power systems could also allow an attacker to cause a Denial-of-

Service style attack, endangering human life. Normally, power system compromises tend

to only result in the loss of availability of resources. However, the potential impact of a

compromised power system goes beyond the realm of accessibility and could also impact

confidentiality. Deliberate under-voltage of a CPU can be used to retrieve encryption keys

[ 48 ], posing an additional threat to the confidentiality, and potentially even the integrity of

data if keys related to RSA certificates are stolen.
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There is comparatively little research into the BMS of mobile devices from a security

perspective. However there has been research which looks at BMS systems in other domains,

such as electric vehicles. These systems aim to protect a battery from physical or chemical

danger like overheating, voltage, stress, and [ 39 ]. Past research also considered operational

issues related to battery management systems that preserve battery life to ensure a battery

has the longest life possible [ 37 ].

Other research into batteries look for better management and monitoring capabilities [ 18 ,

 57 ]. Unfortunately, the safety of these systems is usually only considered after the product

has been developed [  23 ]. Of course, there is also constant ongoing research into the battery

cells themselves to boost performance [  20 ]. Research for BMS has also progressed into the

development of systems that are reliant on wireless communications. These wireless BMS

(WBMS) rely on wireless communication protocols such as Bluetooth for data communica-

tion and management operations [ 42 ,  66 ]. WBMS do not only exist in theory, researchers

have implemented WBMS systems and found their performance to be comparable to wired

BMS systems, while also improving safety [ 66 ]. However, the vulnerability of battery man-

agement systems and batteries themselves to deliberate attacks from a remote adversary is

not as well researched. While the physical safety of battery cells and their management sys-

tems have been explored, there is not much literature on how modern smartphone operating

systems (OS) use the stored power or how they are managed. There is also a noticeable lack

of frameworks designed for auditing and assessing the security of this crucial cyber-physical

system, or other related use cases. It is generally taken for granted that no harm could be

done to a mobile battery system (MBS).

There is some research into the security aspects of BMS. BMS has been divided into ab-

stract layers, and each layer was then examined for possible threats [ 45 ]. Of particular note

is that claims have been made where BMS software can be replaced remotely via wireless

communications technology using cross-layer attacks from higher layers [ 45 ]. Blockchain has

also been a widely proposed solution to secure BMS systems for a variety of applications in

IoT and EV [ 4 ,  14 ,  25 ,  28 ,  52 ]. A very recent article from 2020 explored the cybersecurity

aspect of BMS and identified blockchain technology as a promising solution to defend against

cyber-physical attacks [ 40 ]. The attack surfaces of BMS have been identified as “1) network
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vulnerability; 2) software/firmware vulnerability; 3) data storage vulnerability; 4) on-board

interface vulnerability; and 5) hardware component security vulnerability” [ 40 ]. Solutions

that address these issues have also been identified, such as the removal of unnecessary in-

terfaces during the latter development stages, use of secure compilers, and encryption of

data-at-rest [  40 ]. However, an in-depth evaluation of the current security of BMS, and MBS,

in particular, from a cyber-physical and cybersecurity perspective, has not been conducted

yet to the best of our knowledge.

To address this gap in research, I created an auditing framework which would improve

MBS security by finding vulnerabilities.

1.2 Research Question

The research question I have is “How effective of a framework can I currently

create to discovery and identify real vulnerabilities in the power systems of

mobile devices?”

Effectiveness is operationally defined as “the number of true vulnerabilities that are found

as a percentage of all known vulnerabilities”. The true goal of the framework is to discover

new vulnerabilities that are currently unknown. However, this is a difficult measurement to

use as it is impossible to know how many unknown vulnerabilities exist within a system. A

weighting method of granting a numerical value to each unknown vulnerability discovered

during our case study does not take into account whether they are truly exposed to remote

actors, and thus represent real threats to system security, or whether they are “secured”

thanks to other layers of defense. As such, I only consider known vulnerabilities as our way

of measuring the success of this framework.

1.3 Assumptions

Some assumptions that were made for this research are:

• Different Android versions rely on the same set of core libraries
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• Not using a factory reset device will pose no difference to the recovered firmware and

library files.

• A bitstream forensic copy of the device is sufficient in collecting the relevant data

• Dependencies of libraries with similar names are used in the same way by the same

other libraries, regardless of the architecture they were compiled for

• Dependencies of a library exist as headers in the binary file

• Users of this framework have a similar level of knowledge, skills, and abilities as the

researcher; relatively inexperienced at software auditing but possesses general and basic

IT knowledge including basic scripting, Excel proficiency, and digital forensics.

1.4 Delimitations

Given the in-depth and exploratory nature of this work, it may not be feasible in terms

of time to conduct this research on multiple devices. As such, only one example device

was examined. Only software libraries and firmware which are directly involved in the

power system or management of the power system were included for vulnerability scanning.

Apps with a power related function, which include libraries for user experience, internet

connectivity, or functions unrelated to the power system, were only being examined to the

extent of the power related functions present. Additional features and their related libraries

used by the app were not be examined; however, they do present a feasible attack surface

and possible entry points from a security perspective, which this work does not address due

to limitations in scope and time.

• The lower levels of the Android power system are within scope.

• The higher application layers are within scope.

• The Automotive Power Management system is not within scope.

• Files and libraries which are not directly related to the power system are not in the

scope for vulnerability assessment.
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• Non-executable files are not within scope. For example, data made available by the

sysfs file system, logs, and databases.

• Dynamic analysis methods will not be used due to limitations in time.

1.5 Limitations

The limitations of this work represent some of the issues regarding this framework when

implemented in practice, as well as its limitations as a guide for its target audience. The

limitations of this work are as follows:

• File discovery may not be comprehensive

• Effectiveness of the framework dependent on available tools

• False positives are likely to be generated by any procedure being followed, posing a

cost to users of the framework

• False negatives are unavoidable

• Lack of domain knowledge in Android OS and software auditing from the researcher

could lead to a less effective framework which misses important components

1.6 Hypothesis

The hypotheses for this research are:

H 0: The proposed framework is no better than the random chance at identifying vulner-

abilities at 50%

H 1: The proposed framework is able to detect vulnerabilities at 50% or greater

1.7 Contributions

The contributions of this work are:

1. Proposal of a novel auditing framework designed to ensure the security of mobile bat-

tery systems.
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2. Creation of a practical set of guidelines that can be followed by academic and inde-

pendent security researchers interested in examining mobile subsystems for possible

vulnerabilities

3. Identify components related to MBS for Android devices

4. A process to create diagrams of the intercomponent communication to understand

BMS and highlight possible high-risk areas of vulnerability.
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2. LITERATURE REVIEW

To develop this framework for assessing possible vulnerabilities in MBS, numerous compo-

nents that are integral for investigation have been identified. As this research crosses a few

different domains, namely, software security, power management systems and batteries, and

Android operating system (OS) security, a relatively large corpus of background informa-

tion is required to understand the different components that were involved in the auditing

process. As such, relevant works in the following domains have been consulted:

• Security auditing - To understand current practices and limitations related to security

auditing. Understand the software auditing techniques that were used.

• Power and battery management systems (and security) - Understand how BMS systems

function in general.

• Android operating system security - The focus of this research lies in mobile devices.

The selected test case is Android due to its open source nature providing research

opportunities which can be feasibly conducted as compared to a proprietary closed

source mobile platform like Apple.

2.1 Security Auditing

As the proposed framework is focused on assessing the security of a subsystem, the

software used to run the said system is of paramount importance. As such, security auditing

frameworks and research were reviewed for potential ideas and solutions.

Security auditing can be broken down into two categories. The first category is infor-

mation systems auditing. Information systems(IS) auditing will be defined as primarily

concerned with auditing general IT systems and infrastructure of a corporation. Common

issues found using this type of audit are noncompliance with company security policies, de-

fault passwords being unchanged, incorrect firewall rules, and unnecessary ports and services

being made available on servers. Information systems auditing is mainly concerned with the

configuration of various IT infrastructure components to ensure that unauthorized access is

not granted to a threat actor due to oversight or misconfiguration. The second category is
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software security auditing which is concerned with vulnerabilities which exist in the code

of certain applications and systems. Software audits are primarily concerned with company

coding preferences and vulnerabilities which cause the program to behave unexpectedly.

2.1.1 Information Systems Auditing

There have been numerous works in IS auditing that created practical frameworks to

guide people in conducting a full security audit. These frameworks aid system adminis-

trators and IT staff in conducting audits to ensure regulatory compliance, corporate policy

compliance, as well as adequate security. The goals of information systems auditing include

regulatory compliance, critical asset protection, security processes are in place and contin-

uously improved, and controls issued by the company are regularly enforced[ 53 ,  55 ]. Infor-

mation security auditing is challenging to conduct because of the nonexistent of a generally

accepted methodology or approach to use when conducting information security audits[ 53 ].

High level conceptual frameworks for conducting information systems audits have been

proposed with 5 core components which constitute the major objectives of any IS audit [  53 ].

The 5 core components are the goals, that IS audits aim to satisfy. Together, they cover a

companies[ 53 ]:

• regulatory compliance

• incident response plan

• email and hiring policy

• artifacts, software and devices which must be considered during an IS audit

• business and security processes

• policies and protocols used to administer technical standards

Designing an audit procedure that addresses these core components will benefit the com-

pany by ensuring protection of a business’s IT infrastructure, continued business operations,

and preparedness for a Computer Emergency Response Team(CERT). Other frameworks

17



proposed for IS audits focus on the need for auditors to identify assets, potential threats to

those assets, and then evaluate risk and impact factors to develop appropriate policies [ 55 ].

Frameworks have also been proposed that specifically look at the networking infrastruc-

ture also have proposed frameworks [ 9 ]. Frameworks that target the networking infrastruc-

ture focus on identifying services and systems exposed to the internet, evaluating the risks

posed by these exposed systems, testing them using a simulated attack, checking networking

logs for evidence of a breach, and continuous research procedures for the organization to

follow.

More detailed or practical auditing frameworks include a mix of both auditing networking

infrastructure, hosts, and company policies and have been validated using real life case

studies [  44 ]. A framework by Lo and Marchand proposes using a top-down, external to

internal approach [ 44 ]. First, remote threats are considered, and various tools such as IP

port scans and vulnerability scanners are launched. Then the system and company policies

are checked for compliance and reasonableness. Individual systems and services are then

examined, and finally people are surveyed and interviewed to ensure proper training has

been done and password security is maintained.

These forms of IS security auditing is conducted to improve the security of a system.

One possible way to define “security” is the preservation of the three core principles of

confidentiality, integrity, and availability. The CIA triad, as it is more commonly known

by “is a widely used benchmark for evaluating information system security effectiveness”

[ 26 ]. Each component of the triad refers to a distinct, but important aspect of what it

means to keep a system secure. Confidentiality means that data should not be seen and

interpreted by users who are not authorized. Integrity means that data cannot be tampered

with without authorized users of a system being made aware. Availability means that the

system being evaluated is operational when needed and can continue to serve the needs of

its users. Usually, security threats will attack one of these three components of the CIA

triad. When vulnerabilities or exploits are discovered, they usually compromise one or more

of the triad. The vulnerabilities that this framework seeks to identify in MBS also fall into

this classification. Therefore, this framework seeks to find vulnerabilities in MBS that could

lead to the compromise of any of the principles of the CIA triad.
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IS audits are generally concerned with meeting high level objectives that are set by the

company conducting or preparing themselves for auditing. They focus on ensuring that

configurations for the various components in the system are properly set, and policies are

adhered to. General tools that check for vulnerabilities and other potential points of entry are

run to give auditors an idea of what attack vectors remain open. The high level considerations

and perspective on what makes an audit successful and the top-down approach are used in

the development of my framework.

2.1.2 Software Security Auditing

Software security auditing is primarily focused on the identification of vulnerabilities.

As this framework being developed is aimed at assessing the security of MBS, the tools

and techniques used by software testers and in software audits are essential to understand.

Software has a crucial role to play in information systems, not least MBS. Some software is

critical and cannot be allowed to fail due to catastrophic repercussions, such as those found

in automotive or aerospace applications [  15 ]. For the purposes of MBS security, software

vulnerabilities are the primary way that adversaries interact and cause harm to the assets

that need to be secured and as such reliable methods of assessing software security are

needed.

Software auditing can be difficult to do as there is a a lack of requisite skills in quality

assurance testing [  58 ]. The focus of quality assurance testing on software functionality or

features is also prioritized, while security is often not thought of as important or considered

second to functionality [ 58 ]. There are resources published which aim to train people in

performing software security testing to meet this potential gap.

Available software auditing books and other resources teach how to plan and formulate

attacks against a variety of software by taking into consideration some of the most common

attack patterns, such as identifying data inputs and analyzing them for input sanitization

[ 6 ,  34 ]. These techniques include the use of debuggers to step through a software execution

to understand how data is manipulated and passed between functions, understanding the

19



technical implementation of a variety of common exploits such as buffer overflows, input

fuzzing, and exploiting known vulnerabilities in certain software libraries.

One specific book, “The Art of Software Security Assessment - Identifying and Preventing

Software Vulnerabilities”, examines three important aspects of software auditing: code com-

prehension, candidate point, and design generalization [ 24 ]. Code comprehension is when an

auditor simply looks at the source code and tries to discover vulnerabilities by [ 24 ]:

• tracing malicious input to see if it has unintended effects

• analyzing specific modules and classes

• analyzing algorithms used by the program that could be exploited

However, this approach can be long and tedious. Aside from the fact that it requires a

person to do the analysis, it is also inefficient as there are no filters in place to limit the

code that needs to be audited. Candidate points serve as a potential remedy to this. A

list of potential issues or dangerous snippets the code is first created [ 24 ]. Then the auditor

looks through the code for the target application in an attempt to find instances of these

potentially problematic code snippets [  24 ]. The final strategy is to work from a top-down

approach, similar to some frameworks proposed in IS auditing. Design generalization has the

auditor looking at the high level code to figure out how the software operates, then works

from the high level functionality of each module, class, main function, to the individual

function calls to determine how they need to be constrained(or sanitized) to enforce only

expected behaviors [ 24 ]. I used a variety of tools which employ these techniques to scan for

vulnerabilities within the MBS.

Software code auditing can be further subdivided into two general categories, static and

dynamic [ 31 ]. Static analysis techniques center around analyzing the source code of the

application itself and can be simple searches for certain function names to more involved

processes which extract specific code segments which could prove dangerous [ 31 ]. It is worth

mentioning that static code auditing can be done on both source code and with only compiled

machine code. Static analysis can be run to look for function calls in high level programming

languages, or a series of assembly instructions that are found in commonly exploited libraries.
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Dynamic audits are used to discover possible vulnerabilities while the application is running

during run-time [  31 ]. Dynamic analysis, as it involves running the software, can potentially

be said to be “easier” for an auditor who is not familiar with code auditing. This is because

static analysis tools may be accurate, but there are still false positives. New auditors may

not be familiar with the source code, or even machine code, and as such may find it difficult

to determine if a flagged code snippet is actually a cause for concern. Dynamic analysis has

the potential to mitigate those concerns. Tools and techniques such as input fuzzers and

vulnerability scanners, which can be run against a running process mean that even relatively

inexperienced IT staff can understand what is occurring, and how it is relevant to the security

of the software being audited.

Static Code Auditing

For software dependency and availability, static analysis frameworks try to abstractify

the source code they have been fed. Static analysis tools can operate using 3 stages: prepro-

cessing, parsing, and analysis [ 15 ]. Numerous low level techniques are used by programmers

and security researchers to check for vulnerabilities in software. Typical problems that occur

at the software level of security audits are vulnerabilities such as buffer overflows, known

vulnerabilities which exist in common software libraries, string formatting, code injection,

symbolic link abuse, and race conditions [  31 ]. A great example of how most static code au-

dits work is with works which used static code analysis to aid in intrusion detection systems.

The system calls of a program are parsed from the source code or machine code and then the

relationships between each are assigned based on a number of factors such as the system calls

potential for harm and the order in which system calls appear in, as well as which functions

call other functions themselves [  73 ]. By creating this model of how a software operates from

only its source, common attack life cycles which involve the retrieval of additional exploit

code from a remote source. By creating a behavioral model of an application from its source

code, then comparing it to a running application whose system calls are being monitored, an

effective intrusion detection system is created. This particular work also happens to show
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how dynamic code auditing, the monitoring of system calls made by running applications,

can work in conjunction with static code analysis to bring better results.

Dynamic Code Auditing

Dynamic code auditing can be less technically challenging. One application of dynamic

code auditing exists in the realm of voting machine software audits, where a different ap-

proach has been proposed. The proposed research dynamic auditing approach involves run-

ning an audit software which screenshots and parses out the UI after ballots are cast and

maintains its own log of votes [ 30 ]. Discrepancies between the audit software and the target

software’s vote tallies are used as an indication that the voting software is not behaving

within expectations. Other dynamic analysis methods run a client-server scheme, applica-

tions are installed and ran on a mobile device, with system calls being tracked to analyze

potentially malicious code in dynamically linked libraries [  76 ]. These dynamic methods of

software auditing still seem to rely at least initially on some static analysis or preprogrammed

baseline so that the abnormal activity recorded can be flagged as suspicious and potentially

malicious.

Reverse Engineering

Reverse engineering is a notable form of software security auditing, however it does

not neatly fit into either static or dynamic analysis as it draws on techniques belonging

to both categories. The aim of reverse engineering was to understand a software or a set

of code. Originally, this was done for software development and maintenance [ 17 ]. Poorly

documented software may need to have their capabilities extended, modified to function on

a new platform, or just re-documented properly [ 17 ]. Reverse engineering techniques were

used by developers to learn how poorly documented software operates so that the necessary

changes and updates could be made.

From a security standpoint, reverse engineering is also a useful tool as it can be used to

identify and patch software vulnerabilities. For example, adversaries use reverse engineer-

ing techniques to learn how software operates to identify and exploit new vulnerabilities.
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Companies may use reverse engineering to steal features from a competitor’s software to

implement themselves.

For this research, reverse engineering techniques are not within scope. Reverse engineer-

ing a system for vulnerabilities could require a highly technical skill set as well as a large

amount of time. As the goal of this framework is a set of procedures which can be used by

an average IT staff member with limited time, resources, knowledge, skillset, and abilities,

including reverse engineering as a step within the proposed framework would be counter

productive.

2.2 Power Management Systems and Battery Management Systems

An abstract model of BMS can can be made out of three layers, the physical layer, battery

management system layer, and finally the application layer[ 45 ]. The abstracted architecture

for BMS systems is shown in Figure  2.1 .

Figure 2.1. Abstracted BMS architecture.

This provides a general understanding of how to logically separate batteries and their

management system from the rest of the device it serves. The battery itself is considered a

part of the physical layer. Any circuitry, software, or other components related to the monitor

and control of the battery within the mobile device is considered the battery management

system layer. Finally, the remaining components of the mobile device, such as the CPU,
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screen, camera, operating system, drivers, software libraries, framework, applications, etc.

are part of the application layer. One limitation of this architecture is that many components

are all grouped into the same layer which may make this layer overly broad to the point where

it is not a useful abstraction of MBS.

BMS systems in general have several key functions they serve at a high level. These func-

tions include: monitoring battery cells, protecting and ensuring battery safety, estimating

the available battery charge, tracking the number of charge cycles to estimate the end-of-life

of the cell, balancing multicell batteries during charging, managing the heat generated by

the cells, and managing the charging rate to be fast yet safe [ 64 ]. At a lower technical level,

numerous technologies and advances have been made to allow the power systems and OS to

operate together seamlessly. The Advanced Power Management (APM) standard was intro-

duced to allow the computer and BIOS system to include power management features [ 16 ].

This was then succeeded by the Advanced Configuration Power Interface (ACPI) standard,

which provided a further layer of abstraction so that operating systems and power manage-

ment software could be developed independently of each other, but still remain compatible

and improve power management capabilities [ 3 ]. This also allowed manufacturers to expand

power management options without having to worry about the higher level systems breaking.

In addition to these technical advances, a system called smart battery data (SMData) was

created that allows rechargeable batteries to communicate via bus to the device to provide

more information allowing device users understand the charge state of the battery [ 16 ,  68 ]

and serves as the first stepping point where possible malicious interference can occur.

From a security perspective, the concept of battery deprivation attacks has been around

for some time. The earliest example found was an attack from 1999 termed “sleep depriva-

tion torture”, where networking devices which are designed to sleep during a period of low

usage are prevented from doing so, draining the battery and causing a denial-of-service [ 69 ].

More generally, the threats posed to the power system are adversaries who seek to subvert

various power saving features that designers and manufacturers implement to extend battery

duration [ 16 ].
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At this level, there does not seem to be remote access capabilities which can be taken

advantage of by adversaries. As such, any attacks against MBS would likely need to begin

at higher layers.

2.2.1 Security Research

Current security focused research in BMS has seen proposals which take advantage of the

reporting capability of modern battery systems to defeat malicious adversaries. In fact, the

advances made with ACPI and expanded battery monitoring have created a variety of defense

possibilities [ 16 ]. A BMS system was used as part of an intrusion detection system (IDS)

[ 36 ]. The proposed system monitors the energy consumption, battery temperature, and other

parameters to detect abnormally high levels of activity which could indicate malicious code

being executed. Other research has discovered that attacks could not only be detected, but

a signature of the attack can be created based on its pattern of battery consumption [ 16 ]

to create an attack detection and classification system. E-Android is a tool which monitors

the energy drain on Android mobile devices [ 29 ]. This tool was created as existing energy

accounting systems in Android do not capture all energy expenditures. E-Android helps

with the monitoring of energy consumption and better reporting, so users understand how

the battery charge is being consumed. This tool extends the existing Android framework to

collect more data that is used by the system to account for collateral energy consumption

[ 29 ]. While this feature is useful for detecting possible malicious activities, it is not able to

find vulnerabilities prior to their exploitation.

2.3 Android Architecture and Security

To comprehensively assess the MBS, all potential attack surfaces need to be identified so

that they can be addressed within the proposed framework. First, an abstract architecture

of Android was created to formulate a plan of attack on how the framework would approach

the various components related to MBS in a mobile device. Android’s official documentation

includes a useful abstract view of the entire Android operating environment and divides

everything into six layers. These layers are shown in Figure  2.2 [ 56 ].
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Figure 2.2. General architecture of Android.

Combining this model with the previous abstract model for BMS, I now have a full model

representing a comprehensive attack surface for MBS. Each component in their respective

layer is then matched with an appropriate analysis methodology which uses a code auditing

technique. The proposed architecture is shown in Figure  2.3 .

Now, I examine each layer to identify what they consist of, where possible vulnerabilities

may exist, and how it may be possible to audit these components in practice.

2.3.1 Applications and High Level Layers

Android developers have access to a number of options made available by Android through

Application Programming Interfaces (API) to allow them to manage the power their apps
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Figure 2.3. Proposed architecture of MBS system for Android representing all
possible attack vectors, relevant components of data at each level, and analysis
methods.

consume[ 54 ]. These features could potentially be taken advantage of by an attacker, either

by creating an app which purposefully ignores the use of these features or by finding methods

to exploit the apps to cause them to stop adhering to the power conservation settings they

are coded for. The Android features related to power saving and management are as follows

[ 54 ].
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Android Power Saving Mode

Decreases performance of the phone by throttling power consumption through normal

app functionality reduction. Attacks using this power saving mode may not be very effective,

but misinformation is also a potential attack outcome and as such this mode needs to be

investigated.

Doze

Doze mode is a feature of Android intended to help preserve a mobile devices battery.

While a mobile device is not charging and the screen is off, the phone enters an idle state

where applications are only periodically allowed to execute tasks [ 19 ].

Application Standby

Android will disable an application from much of its activity and only allow the app to

run processes once a day or until opened manually by users. Only applications which have

not been used by the user for a while will be subject to this form of throttling.

Wake Lock

The phone and applications will continue running even if the screen is off or blank.

Adaptive Battery and Brightness

Android uses a machine learning algorithm in Android Pie and later versions. This

machine learning algorithm feature is called Adaptive Batter and Adaptive Brightness and

is enabled by default on devices which are capable. This feature attempts to predict which

apps are used most often by the user and throttle apps that the algorithm expects will not

be opened. The code for this system is under the Device Health Services subsystem. This

application is also responsible for battery depletion prediction and as a result has a lot of

OS system calls implemented to enable it the functionality it needed.
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All of these features can be potentially leveraged or circumvented to decrease battery life

and increase battery charge consumed by an attacker.

Security Research

For Android applications, there are a number of proposed attacks that have already been

researched. The Doze mode has been subverted by researchers to negate any potential charge

saving benefits the feature provides. Researchers introduced malware would force the phone

to change out of the idle state, thereby causing higher battery load even when the phone was

set to an idle power state [ 19 ]. The experiments results showed the phone’s battery under

attack had lost 32% charge over 3 hours, as compared to 5% without malware interfering

with doze mode.

In a different track, other potential attacks could involve misrepresenting the charge state

to the user. The Toast and system alerts [ 51 ,  71 ] capability of Android has been subverted for

malicious purposes. Android scan and pay is a feature that uses Toasts to display a QR code

to conduct financial transactions between users [ 72 ]. However, fake QR codes of attacker’s

wallets can be injected instead of legitimate wallet addresses using Toasts, causing money to

be sent to the wrong person [  72 ]. These system notifications and Toasts may also be used

to mislead users into believing falsehoods about their battery charge level. For example,

Toasts could notify a user that their battery is low when it is not, forcing them to plug in an

already charged phone. More seriously, a user could be misled into thinking their phone is

fully charged, when it fact it is about to shutoff. This could lead to a more significant impact

if the user was depending on the device for business or important communications. Even

the minor inconvenience’s cumulative effects in aggregate can have a substantial impact if it

affects many people across a long period of time, and the loss in productivity should not be

ignored.

Other high-level battery drain attacks have been researched, such as exploiting the inse-

cure cellular communication protocol MMS [ 63 ] and playing media encoded in energy hungry

formats over web pages [ 27 ]. Some of these attacks are capable of being launched without

user intervention or action being required.
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2.3.2 Java Framework and API’s

This layer of API’s is designed for developers to access underlying Android features and

functionalities. These API’s include various services that can be examined for possible vul-

nerabilities, including: Views, Resource Manager, Notification Manager, Activity Manager,

Content Provider [ 56 ]. Of particular interest is one API called Battery Manager which is

responsible for checking battery information and charging status [ 13 ]. The Power Manager

API is also of special importance as it allows developers to control the power state of the

mobile device [ 59 ]. As these are API’s written in Java, software, auditing techniques would

likely be effective at examining this layer and any components related to MBS.

2.3.3 Native Software Libraries and Android Run-time

This layer of the Android architecture consists of two distinct yet important parts. Native

software libraries are written in C or C++ [ 56 ]. These libraries are used to run the core

components of the Android OS and are of crucial importance when considering the security

of BMS. The Android run-time itself hosts applications in their own virtual machines as

independent processes [ 56 ].

2.3.4 Hardware Abstraction Layer

The Hardware Abstraction Layer (HAL) is an API layer that allows software and hard-

ware to communicate [  47 ]. This layer mainly contains code that was created by the hardware

vendors themselves [ 47 ]. The components at this layer that were examined are comprised

mainly of software and interfaces.

2.3.5 Android Kernel

The Android kernel represents a possible attack surface. The kernel and drivers need to

be examined to determine if they contain possible software vulnerabilities. Consulting the

Google source code for the Android kernel, driver directories related to power can be found.

These relevant directories and their functions are shown in Table  2.1 [ 7 ]:
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Table 2.1. MBS relevant driver directories in Android kernel
Driver Directory Relevance
/acpi Add’s ACPI support to the Linux kernel.

/power Three subdirectories for: advanced voltage scaling,
/reset for device restart and shutdown, and /supply.

/supply Allows power supply (includes batteries, AC, USB)
monitoring by userspace applications via the sysfs and uevent.

/powercap Interface to allow kernel subsystems to expose power
capping settings to the user space with consistency.

/regulator

Generic (within the branch and manufacturer specific)
interface to voltage and current regulators within the Linux
kernel. Provides voltage and current control to client or consumer
drivers and provide status information to user space applications
through a sysfs interface

In addition, there is the sysfs pseudo file system provided by the Linux kernel that

exposes information from lower level firmware, subkernel modules, hardware devices and

their device drivers from the Linux kernel space to the user space using a traditional seeming

file system [ 65 ,  70 ]. While this method of accessing data is available to applications, it is not

recommended [ 65 ]. This system should be taken into consideration when assessing possible

attack surfaces but is out of scope for this research as it is not software, vulnerability based

but related to exposure of possibly sensitive information. However, it should be said that

sysfs is a relatively secure system as it is explicitly designed to be difficult for users and

attackers, to abuse by emphasizing the use of established and secure API’s [  65 ] so as an

attack surface the sysfs file system may not be promising.

Of particular interest in this layer are the Android specific drivers that, among other

things, support the function of power management [ 47 ].In the past, drivers which provide

functionality specific to Android have demonstrated vulnerabilities caused by issues related

to the driver which enables Android Shared Memory (ashmem) [  21 ,  47 ].

2.4 Previous Work and Related Frameworks

In terms of auditing frameworks designed for Android and mobile devices, there are

previous works that can be relied upon for guidance. One work looked at 63 publicly released

Android malware samples and analyzed them to determine their attack vectors and delivery
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methods [  47 ]. This relatively small sample is far from indicative of the true distribution

of exploit attack vectors, however it helps to establish which components within Android

are most likely to be targeted or vulnerable. Of the 63 samples analyzed, 30.6% of exploits

used applications as a delivery method, 59.7% ran through shells, and 9.7% of exploits were

capable of being executed remotely [ 47 ]. The surveyed exploits can be categorized based on

the attack vector used and are shown in Table  2.2 .

Table 2.2. Exploits in Android by attack vector as a percentage of 63 total
samples. Data sourced from [ 47 ].

Exploit attack vector Percentage
File system 9.5
System component 25.3
Linux kernel 17.4
Vendor driver 39.6
Trusted execution environment 7.9

A large proportion of exploits surveyed used vendor drivers, system components, and

the Linux kernel. Specifically, vendor driver exploits took advantage of memory corruption

attacks, Linux kernel attacks used kernel libraries and driver interfaces to cause memory

corruption and start services [ 47 ]. System component exploits has a slightly more nuanced

history and future. Abuse of daemons for exploitation generally stopped by 2014, while all

other system component exploits took advantage of native libraries from 2015 onwards [ 47 ].

The Linux kernel and vendor drivers, as well as native libraries, are important elements that

have been taken into account in the proposed framework.

Other work in Android security auditing developed a framework to analyze Android

applications for application vulnerabilities using reverse engineering and gives insight on

what tools could be used for this process. VAnDroid is proposed as an effective tool which

is capable of detecting sensitive information leaks, intent spoofing, and unauthorized intent

receipt [ 50 ]. In addition to the proposed VAnDroid framework, a variety of other related

works and tools capable of detecting similar vulnerabilities were also explored that can be

considered for inclusion in the new framework [ 50 ].
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Other proposed security frameworks operate by using data from the National Vulnerabil-

ity Database (NVD) to evaluate projects on the Maven repository to detect vulnerabilities

[ 5 ]. Using the framework, vulnerabilities are detected by extracting features from projects

and vulnerabilities and inferences are drawn between them using a semantic web [ 5 ].

2.5 Summary

To recap, in this chapter a comprehensive overview of various system auditing techniques

and the two systems which were audited was made. The various frameworks from literature

aimed at discovering software vulnerabilities were used to develop the proposed framework.
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3. FRAMEWORK AND METHODOLOGY

Based off the information gained from literature and previous work, a general framework is

created to audit MBS. The framework is then refined to the point where it can be used in

practical applications.

3.1 Framework

The framework for analyzing MBS was constructed based on current knowledge of BMS

and MBS. Each component of MBS was matched with an appropriate auditing techniques

to find vulnerabilities. From the information gathered, the basic procedure for applying the

framework is laid out in Figure  3.1 .

Figure 3.1. Proposed general framework to conduct power system audit

This generalized procedure has a high level of abstraction which makes it limited in

usefulness for practical application. The proposed general framework is thus further refined

and expanded on to include the tasks that were be performed in order to find vulnerabilities

in the power system of a mobile device. This detailed framework which is much more

practically useful is shown in Figure  3.2 .
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Figure 3.2. Detailed framework to conduct audit developed from General framework.

3.2 Methodology

The following details the steps taken to conduct the case study where the framework is

applied.

3.2.1 Data Acquisition

To obtain the firmware, libraries, and drivers needed to conduct the security audit, I

acquired a physical image of a Samsung Galaxy A50. This forensic copy of the mobile device

should contain all the relevant files to be audited. UFED Cellebrite 4PC was used to acquire

an image of a Samsung A50 mobile device. As the firmware of the device is the focus of

this research, there is no need to factory reset the device to clear user data. Instead, the

device was powered on to ensure it was operational, then an image was taken to acquire the

firmware files needed for investigation. The procedure followed is listed below:

1. Obtained an already rooted Samsung A50. The Samsung device was rooted previously

using Magisk.

2. Launched UFED Cellebrite 4PC

35



3. Recorded build number and other device details

4. Imaged device using UFED Cellebrite 4PC with following procedure:

(a) Started UFED Cellebrite 4PC application on workstation

(b) Selected acquire a mobile image

(c) Attached mobile device to workstation via USB cable

(d) Selected the A50 device that was detected by UFED Cellebrite 4PC

(e) Selected the full image option

(f) Followed all on screen prompts given by UFED Cellebrite 4PC to image the device

Information related to the acquired device is listed in Appendix  A.1 .

Two factors are important to discuss regarding data acquisition. The first is the effect

of rooting the device. Rooting the device grants tools and the user access to parts of the

device which require special privileges. This could be a valuable and important step to take,

as certain files are usually only available or readable when using special privileges. These

files are usually important to the operation of the mobile device and as such may be stored

in protected areas. As such, rooting the device so that the acquisition tool may copy all

files in these protected locations is a requirement. This work does use a rooted device. The

second factor to consider is the acquisition type used being logical or physical. Generally

speaking, the files being studied come preinstalled on the user’s device, or were manually

installed by the users themselves. With this in mind, a logical acquisition should be sufficient

in gathering all the required data as a logical image is able to capture all non-deleted files

on the file system. However, as the appropriate tools were available, a physical image was

taken of the device anyway. The supposedly benign software being auditing most likely does

not rely on these deleted files to operate, thus recovered deleted files are likely not necessary.
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3.2.2 Analysis Procedure

These are the steps taken during the case study to perform the vulnerability assess-

ment. Any code or data processing step has been made available at the Github repository:

 Repository Link  .

With the actual device data in hand, it was valuable to revisit the detailed framework to

further refine it based on the raw data available. The refined procedure for conducting the

audit after the data was acquired and previewed is shown in Figure  3.3 

Figure 3.3. Further refined set of procedures to follow taking the acquired
data into account

As this work seeks to answer the research question as well as provide a framework to

be used as a roadmap for future research in this domain, the detailed process of how the

investigation is conducted will be reported in Section  4 .
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4. FRAMEWORK EVALUATION AND EXPERIMENTAL

RESULTS

This section will go over the results of applying the framework. I first explain the investigative

process that application of the framework resulted in. This process consists of a series of

steps and tasks which can be used by others. Followed by the results of the vulnerability

scanning completed on both the high and low level components.

4.1 Framework Evaluation and Analysis

When the procedure in Figure  3.3 was followed, there were two distinct workflows for both

the high level and low level components that were used in order to obtain the components

necessary for analysis. Due to the different types of files in either level, separate vulnerability

analysis tools had to be used as well.

4.1.1 High Level Investigation

There are numerous applications available on the Google Play store which purports to

increase battery life [  2 ,  10 ,  11 ,  12 ,  38 ]. The large variety of battery and power system related

apps made it difficult to choose one over another when deciding on an application to audit.

As such I looked for and found a preinstalled application which contained functionality

related to the power system.

The device image was searched for all files with the .apk extension. A short list of

candidate applications was created based on the names of the packages, then further online

research was conducted to find an application with power system relevance. The SamsungDe-

viceHealthManagerService.apk package was a preinstalled, power system relevant application

and was used for the high level vulnerability assessment. The package was found at the path

/vol vol28/system/priv-app/SamsungDeviceHealthManagerService/SamsungDeviceHealthM

anagerService.apk. This package seems to be an application installed by Samsung which

monitors and manage various aspects of the mobile device’s health, the most relevant aspect

for this audit being battery usage [ 43 ,  75 ].
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I first used qark, the Quick Android Review Kit, a tool “designed to look for several

security related Android application vulnerabilities...in source code or packaged APKs” [ 61 ].

The tool claims to look for 17 types of security vulnerabilities, including but not limited to:

improper certificates, data leaks from Activities, Intents whose data can be intercepted, and

use weak encryption [ 61 ]. However, after installing the tool, technical issues prevented it

from successfully decompiling and scanning the .apk file.

Oversecured was then used to scan the application for vulnerabilities. Oversecured is

an online based mobile application security scanner [ 8 ]. After signing up, it allows users to

submit up to 3 APK files for free vulnerability scanning. More critically, the Oversecured

interface also shows the user code snippets from the disassembled APK file that it detected

as vulnerability risks. This feature was important as it would allow the researcher to further

validate each vulnerability by showing where the vulnerability exists in the code. The results

of this tool’s vulnerability scan are explained in Section  4 .

Steps were taken to attempt to validate the discovered vulnerabilities by testing the re-

liability of the tool itself. Two known malicious and safe APK files were taken from online

sources and uploaded to Oversecured in order to attempt to establish a baseline for how

many vulnerabilities should be expected. A copy of a known malicious apk file was re-

trieved from  https://github.com/ashishb/android-malware/blob/master/malbus/19162b06

3503105fdc1899f8f653b42d1ff4fcfcdf261f04467fad5f563c0270.apk  , a github repository which

hosts samples of Android malware. A copy of an application known to be relatively safe,

and security aware, Signal was then downloaded from  https://www.apkmirror.com/apk/si

gnal-foundation/signal-private-messenger/signal-private-messenger-5-7-5-release/  .

To double check that both of these files can be relied upon as a malicious and non-

malicious baseline .apk file, they were uploaded to VirusTotal, a popular website which scans

uploaded files for malware [ 1 ]. The Signal application APK was cleared as containing no mal-

ware, while the malicious APK triggered a positive malware identification result from 32 out

of 62 of VirusTotal’s security vendors scanners. The reports for the malicious and Signal APK

scan results from VirusTotal can be seen at:  https://www.virustotal.com/gui/file/19162b06

3503105fdc1899f8f653b42d1ff4fcfcdf261f04467fad5f563c0270/detection  and  https://www.vi

rustotal.com/gui/file/0b7399e22215959dfe2a02a46c7d11ceb26f2e281d01433744c498ca272c7b
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ce/detection  . With confirmation that the files are truly malicious and non-malicious, they

were uploaded to Oversecured to scan for vulnerabilities. The vulnerability analysis reports

for these baseline files are shown in Section  4.2 . At this point, all investigative steps nec-

essary to get from device image to vulnerability scanning for the high level component is

completed.

4.1.2 Low level Investigation

The low level components include all the components in the red section of Figure  2.3 .

These were the steps taken to identify them within the forensic image and use them for

vulnerability analysis and scanning.

Partition Discovery

The forensically acquired device image contained multiple partitions, a total of 34, any

of which could contain relevant power system files that need to be examined.

It would be difficult and unfeasible to manually review and analyze each and every single

partition to locate the files needed. As such, online research was done to identify the functions

and differences between each partition within the device image. Information available on

the Android Developers website details the purpose of each partition, which identified the

system and vendor partitions as the most likely candidates for where the relevant power

system components could be found [ 60 ].

File Discovery

Within the power system relevant partitions, there are many files which are not relevant

to power systems. As such, further steps were taken to figure out which files within both

partitions should be included for vulnerability auditing.

Android uses the the bootstrap process: Boot ROM, BootLoader, Kernel, Init Process,

zygote, system server [ 46 ]. A more detailed breakdown of the boot process shows that the

first service directly related to the power system is the kernel, followed by init processes, and
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finally system services such as the power manager. From this bootsequence’s use of power

manager, I decided to look for instances of this in the device.

On top of tracing the boot sequence to find relevant services and libraries, I also manually

reviewed the contents of the partitions to find relevant files for auditing purposes. The

contents of the partitions were exported from the data source into a folder while retaining

the directory structure of the original image. The Ubuntu utility tool tree was then used

to print out the directory and file names. Because Autopsy is able to perform file carving,

deleted files and slack space for files were also exported as a separate independent files.

However, these files do not truly exist and are products of Autopsy’s forensic analysis so

they were ignored. A small excerpt of the results from the tree tool is shown in Figure  4.1 .

Figure 4.1. Curated excerpt of tree tool output showing some of the files
discovered in the exported system partition. Many more files with varying
filenames and extensions were found but are not shown in the image.

From this data file, I created a list of all file extensions which was used to determine which

files would contain executable code which could contain vulnerabilities. The file extensions

that were found are shown in Table  4.1 .
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Table 4.1. Extensions of files found within the partitions
.so .spi .qmg .apk
.tlbin -slack .dbg .pem
-service-exynos -service .hcf .xml
.bin -service-slack .gz .cil
.rc -service-armnn

Of these file extensions discovered, Shareable Object (.so) files [ 74 ] are are likely to be

the strongest candidate for auditing as they are shared library files that other programs

reference and use to import functionality. Looking at the .so fileheader, the string “ELF” is

visible which denotes a commonly used Linux binary executable format [ 33 ]. A process is

needed to find the .so files related to the power system for further security analysis.

I created such a process to automate as much file discovery as possible. The full file

discovery process that was used is illustrated in Figure  4.2 . An explanation for each step is

provided below.

There are many .so files found which perform various important functions in the phone,

however some files have filenames which are obviously related to or used by the power system

and so were included in the vulnerability assessment. Some examples of these power system

relevant files are shown in Figure  4.3 

There seemed to be a naming convention being used with several keywords denoting

a power system relevant file. A list of all the power system keywords, such as “battery”,

“charging” or “power” was compiled. This list was expanded upon as new file dependencies

were discovered. The full list of keywords used for the first round of file discovery are shown

in Table  4.2 .

Table 4.2. List of keywords used in first round of file discovery.
android.hardware.power battery batterymanager
batteryservice charge energy
power health

After running the keyword search, non-useful files, such as graphics files like “bat-

tery fail.png” were included in the results. Also included in the results were various useful
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Figure 4.2. The full file discovery process used to find files which need to be
audited using automated Android security scanners

file types such as databases, logs, executables, that could contain information related to

the power systems operation. However, these files are out of scope for this research. After

removing the irrelevant files, there were 37 files remaining that became the main focus of the

auditing efforts and are referred to in this research as the critical power files or critical
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Figure 4.3. Curated examples of obvious power system related files found in
the tree output of the system partition

files for investigation. Figure  4.4 depicts a subset of the critical files that were found using

this method.

Figure 4.4. Example of discovered power system related critical files

I looked at the critical files to discover what their dependencies were. The dependen-

cies of each executable critical power file are included as strings close to the beginning of
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each file. The Figure  4.5 illustrates the dependency being recorded as a string for the an-

droid.hardware.power@1.0.so file.

Figure 4.5. Within each shareable object library file, dependencies are
recorded as a string

Further sub-dependencies of some files such as libc.so are more granular and consist of

references to other compiled standard library files and C++ interface files designated with

the .cpp extension. Figure  4.6 shows these C++ references within the standard library files.

Searching for these .cpp files does not find them anywhere on the image. It can be

assumed then that these files are not standalone library files which can be extracted and

audited. As such, no further steps were taken with regard to dependency references to .cpp

files.

A bash script was created to automate this process and is shown in Figure  4.8 . The bash

script looked for dependencies in each .so file, and dumped the data to a CSV file. Excel
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Figure 4.6. Dependencies of standard library files are largely reliant on .cpp files

was used to process the CSV data to identify new dependencies which have not yet been

analyzed. An example of the Excel worksheet used is shown in Figure  4.7 .

The Excel worksheet uses the Excel functions: concat, countif, unique, if, search, and

isnumber functions to create dependency - origin pairs, and find novel dependencies which

had not yet been encountered. The novel dependencies were then added into Autopsy as

new keywords to extract the relevant .so files from the forensic image.

This file discovery process was repeated to find the dependencies of dependencies until

I reached a total of 558 origin-dependency relationships and 36 dependency files. During

the final round of file discovery, there were 7 more novel dependencies that could have been

followed, however this round of discovery resulted in many of the same dependencies being

found from previous rounds. With the number of files already included, there is sufficient
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Figure 4.7. Excel worksheet to process dependency data.

power system relevant files to perform automated scans. There are a total of 138 .so files to

scan, including duplicate libraries compiled for different architectures. .

Dependency Mapping

The list of dependencies in CSV format generated from the file discovery process was

used for creating a dependency map. However, due to the large number of critical power

files, as well as their dependencies, it would be unfeasible to draw the diagrams by hand.

For this dependency mapping it should be noted that there are multiple critical power

files with the exact same filenames, but seem to serve the same purpose. Take the following

examples of files along with their MD5 hashes as shown in Table  4.3 .

Table 4.3. Example of similarly named dependency with different contents.
Filepath and filename MD5 Hash
/system/lib/android.hardware.power@1.0.so 2e4bc658f8315645113e367e0906c4b0
/system/lib64/android.hardware.power@1.0.so 57ccc2aaf5a42ffbb78c80477889eb5e

While both files have the same filename, “android.hardware.power@1.0.so”, they are

stored in different locations. More importantly, their contents are also different, as shown by
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Figure 4.8. Script used to pull dependencies from all critical files and sub-dependencies

the difference in their respective MD5 hashes. The different files are also stored in separate

directories, “lib” and “lib64”. It is reasonable to assume that one set of files would be used for

32 bit systems, while the other would be used by systems with 64 bit architectures. Regard-

less of which specific architecture the so file is for, the dependencies should remain consistent
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for the various compiled binaries across architectures. As such, dependency mapping only

includes one instance of each file and ignore duplicates with separate architectures.

The CSV file of dependencies from the file discovery process was used to create the

diagram using Maltego after converting the data to an .xlsx format. The finished diagram

was checked for accuracy and extra, erroneous data points were manually removed as they

were clearly artifacts generated by the data extraction process. An example of an erroneous

data point is shown in Figure  4.9 .

Figure 4.9. Boxed in red, two examples of erroneous dependencies manually
removed from final diagram. Erroneous entries were introduced by the bash
script’s extraction of dependency information from .so files

A few .so were randomly selected and their diagrams were manually verified to ensure

accuracy. For this research, the following files were checked: libm.so, ld-android.so, and

libutils.so. This was accomplished by checking the dependencies of the file being audited

were extracted properly from the original .so file, then using Maltego’s “Select Children”

and “Select Parent” functions to view all dependencies and parents of the audited file itself.

With this procedure, a map of all dependencies and how they interact was created and is

shown in Figure  4.10 .
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With this graph, I identified the top 5 most dependent libraries are the common libraries

libc.so, ld-android.so, libdl.so, libm.so, and libc++.so. These files are the most critical for

vulnerability assessment as they are highly referenced by all other power relevant files dis-

covered.

With this diagram, the interdependencies between the critical files are extracted from

the mobile device. These diagrams were used to quickly identify which libraries are most

commonly used and referenced to gain an understanding of the low level MBS.

File Analysis

Before conducting the audit of these critical files, a validation check was performed to en-

sure these files contained the relevant MBS drivers. The 6023-android.hardware .power@1.0.so

files was loaded into an online binary disassembler,  https://onlinedisassembler.com/odawe

b/ , which claims to support a wide range of Object file formats [ 22 ].

From the disassembled file, I noticed a large number of references to a string “HIDL”.

HIDL is the “[HAL]... interface description language (IDL) to specify the interface between a

HAL and its users” [  32 ]. Considering these were supposed to include the main power system

drivers, which should be responsible for the operations of the hardware itself and not neces-

sarily the communication bridge between hardware and the OS, so many references to HIDL

was not expected. I found the source code for this file at  https://android.googlesource.com/p

latform/hardware/interfaces/+/master/power/1.0/default/Power.cpp  . An inline comment

which states that methods from the android.hardware.power@1.0.so file are included in this

C++ file. The method names were also consistent between the source code and strings

present in the disassembled file. Two examples are shown in Figure  4.12 of the methods

setInteractive and powerHint in Figure  4.11 . There is a strong likelihood that the source

code seen here is the source code used to compile the binary .so files which were believed

to be drivers. Review of the source code shows that this code is still quite abstract and

simple. The setInteractive and powerHint methods are good examples as they contain very

little logic which would be capable of operating hardware as drivers are supposed to.
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Figure 4.11. Some of the HIDL references present in the file 6023-
android.hardware.power@1.0.so

Figure 4.12. Method names from source code match strings discovered in the .so file
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At this stage, it seemed that more discovery was necessary to locate and extract the

driver files.

Drivers and Kernel Analysis

Conducting further online research on the Android kernel itself, I found a possible answer

as to where the missing power driver files may be located. The Android operating system,

based on the Linux kernel, is a monolithic kernel [  67 ].

The Android kernel being monolithic means that all necessary hardware drivers, including

the drivers for the battery and power systems, have been compiled and integrated with the

core kernel executable itself [ 67 ]. The drivers for the battery, charger, and overall power

management system that were needed have been compiled into the same binary file, along

with the kernel.

I extracted what I believe to be the kernel file from the device image. Internet forum

posts claim that the kernel itself is normally stored on the boot partition of the device [ 35 ,

 41 ]. Investigating the boot partition on the image of the device reveals a data carved file

which seems very likely to be the kernel and seems to corroborate the answers found online.

String artifacts found in this carved file, shown in Figure  4.13 , refer to the kernel information

as well.

This kernel file was extracted and added to the list of 138 critical files for vulnerability

scanning.

Scanning and Auditing

There were 139 files in total which were extracted from the device image. These files

represent what I believe to be the kernel, hardware drivers, and most of the middleware of

C and C++ libraries that are used by higher level applications to interact with the kernel

and OS. The files were analyzed using a vulnerability scanner for binary executables.

Unfortunately, there was difficulty in sourcing a free tool capable of performing the

vulnerability scanning for these 139 files. While this framework necessitates the user to

conduct their own research, due to the limited time of the researchers, it is not possible to
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Figure 4.13. Carved data from boot partition contains a file with the ELF
binary header and references to a “kernel”
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conduct an extensive and comprehensive review of all tools currently available for binary

vulnerability scanning. The list of tools that were discovered and attempted are:

• vuls - Difficult to scan arbitrary files; the main purpose is to scan live machines and

running services

• vulnscan - Vulnerability database not retrievable

• cwe checker - Installed, but freezes when the scan starts, no error messages

• bap (Binary Analysis Platform) - Tool for manual static analysis, cannot automatically

find vulnerabilities

• BugScam - Unable to process ELF files

• Oversecured - Free scan limit prohibits scanning the necessary files; not designed for

arbitrary executable files but APK files

4.2 High Level Vulnerability Results

The vulnerability reports from Oversecured for the target Samsung Device Health Man-

ager application are shown in Table  4.4 . The reports for the baseline malicious and benign

applications are shown in Tables  4.5 and  4.6 respectively.

Table 4.4. Security scan results from Oversecured for SamsungDeviceHealth-
Service.apk file

Category Instances Percent of Total
High Severity 12 0.63
Medium Severity 0 0.00
Low Severity 7 0.37

Table 4.5. Security scan results from Oversecured for malicious file
Category Instances Percent of Total
High Severity 12 0.04
Medium Severity 100 0.34
Low Severity 188 0.62
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Table 4.6. Security scan results from Oversecured for Signal
Category Instances Percent of Total
High Severity 41 0.06
Medium Severity 403 0.48
Low Severity 365 0.46

From the raw numbers of vulnerabilities reported by Oversecured, it is difficult to say

how many of these flagged high severity vulnerabilities are real. Looking at the Signal

application, known for being reasonably secure and privacy focused, the application has more

vulnerabilities reported than the others. The number of reported high severity vulnerabilities

between the battery application and the malicious application was exactly the same at 12

occurrences. While this framework is supposed to find vulnerabilities in MBS, the number

of vulnerabilities being reported in these three applications may indicate that false positives

are being reported. As such, these numbers alone are not sufficient in determining whether

these are real vulnerabilities.

Another attempt at validating the discovered vulnerabilities was to create a POC for

each one to determine if they were truly exploitable security gaps. Oversecured reports

vulnerabilities in the manner shown in Figures  4.14 and  4.15 .

Figure 4.14. Detailed vulnerability report for a hard coded token vulnerability

It is likely possible for an experienced software developer and security researcher to

understand the vulnerable code being depicted in Figures  4.14 and  4.15 , understand where

this code is located, how this function is accessed within the the program, and have the
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Figure 4.15. Detailed vulnerability report for a dynamic broadcast receiver registration

skills necessary to create an exploit which takes advantage of the depicted vulnerability.

However, based on the information provided, the researcher faces substantial difficulty in

generating a working POC for the vulnerabilities. The researcher has limitations due to

available knowledge, skills, and time which prevent them from pursuing the next steps in

developing a working POC.

4.3 Low Level Vulnerability Results

139 files were discovered which likely included the relevant drivers, kernel, native li-

braries, and HAL components. Vulnerability scanning was not successfully performed as the

researcher was unable to find an appropriate tool to conduct the scanning. The methodol-

ogy attempted by applying the framework unfortunately did not produce a list of possible

vulnerabilities within the low level components of MBS. Possible alternative methodologies

which could be worth exploring, both in the file discovery process as well as the vulnerability

scanning process, are suggested in Section  5 to improve the framework’s methodology.
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5. DISCUSSION

In this section, I discuss how the research question was answered and the framework overall.

Challenges faced will also be discussed as well as the limitations and useful aspects of the

framework.

5.1 Research Question

The research question for this study was:

“How effective of a framework can I currently create to discovery and identify

real vulnerabilities in the power systems of mobile devices?”

From the results, I was able to get a list of possible vulnerabilities from the high level

analysis of an Android application. However, this list of vulnerabilities were not validated

by creating a POC exploit due to limitations in the researchers skillset, as well as the time

available for this work. No vulnerabilities were found for low level analysis of the MBS due

to technical limitations faced. Therefore the first hypothesis is accepted, the framework is

no better than random chance at identifying vulnerabilities at 50%.

5.2 Validity

With regards to validity of results, this research has a strong level of validity. In deter-

mining whether a system contains a vulnerability, creating a working POC exploit would

provide strong direct evidence that a detected vulnerability poses a real security threat.

Another aspect of this work that had high validity was the acquisition method for the data

used. A forensic image of a working device would certainly capture all the files relevant to

MBS.

One area of this research which had less validity was the file discovery process used.

Using filenames to find relevant MBS files is an imperfect methodology. This method used

could have missed the power system relevant components which were not captured with the

keyword lists created. This was a known limitation in the work, as the researcher was unable

to find literature which could provide better guidance on how to conduct the file discovery. As

58



such, this methodology was created by the researcher given the knowledge and skills available.

However, improvements to the file discovery methodology used are definitely possible, and

future research could take a look at more comprehensive and reasonable procedures.

5.3 Viability and Usefulness

With more work, this framework can be improved to become more useful. It can be used

as a cost saving measure to allow inexperienced IT staff and researchers to perform the bulk

of file discovery work, saving senior staff many hours. The resulting files can then be passed

on to more senior staff and experienced researchers to conduct the vulnerability analysis and

determine true from false positives.

The discovery process developed for the case study, while limited, does seem capable of

finding some of the necessary dependencies and libraries related to MBS. In addition, the

bash script and Excel worksheet have been made available on Github. These tools can be

used by other researchers to automate the file discovery process.

5.4 Challenges

Valuable lessons were learned about the power system of mobile devices as well as the

proposed framework. These lessons learned can guide future research work in the domain.

File discovery was more difficult than anticipated. The resulting procedure used to

discover files is limited and could be improved by using an application to pull running

processes from a running device.

During the course of this research, there were many tools available to assess vulnerabilities

in high levels of the architecture. Finding a relevant APK file is also relatively simple,

especially when a specific target application is already in mind. Tools are available which

can automate the process of finding vulnerabilities, however, the tools’ reporting capabilities

only results in a list of possible vulnerabilities. It is up to the user to proceed from there

and develop a method to validate each reported vulnerability.

For the investigation of low level files, a limitation that was encountered by the researcher

was the limited availability of tools needed to conduct the vulnerability scan. Two possible
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reasons for this are 1) Android being an open source system means that there is no need

for binary vulnerability scanning tools when the source code could be scanned instead, and

2) There are more pressing issues with regards to mobile security, primarily third-party

application security, that vendors are focusing on developing tools to address instead of

open source shared libraries. From this work, I suggest that vulnerability analysis for low

level files be done by tracing them back to their original source code. The source code can

then be scanned with the much more available source code vulnerability scanners. Validation

of these vulnerabilities may still be required depending on the tool used.
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6. CONCLUSION

This work has established a general auditing framework that can be used to help manufac-

turers and IT staff identify possible vulnerabilities within their products power systems.

The contributions of this work are listed in Table  6.1 .

Table 6.1. Contributions of this work and the discoveries that have been
made toward each

Goal Contribution
Proposal of a novel auditing
framework designed to en-
sure the security of mobile
battery systems.

The proposed framework is limited in ensuring security of
mobile battery systems. However the proposed framework
has produced a reasonable method of discovering and ana-
lyzing mobile data relevant to MBS security which has not
been done before.

Creation of a practical set
of guidelines that can be
followed by academic and
independent security re-
searchers interested in ex-
amining mobile subsystems
for possible vulnerabilities.

A detailed procedure of how to apply this framework has
been created. The steps taken during the case study of a
Samsung device can be used in future research as a starting
point for how to investigate other devices. This work enables
future research and the findings in the case study can guide
new researchers into more promising directions.

Identify components re-
lated to MBS for Android
devices.

This work has identified various components related to the
mobile battery system that has never been done before.
Some of the shared libraries, relevant drivers, and applica-
tions were discovered, identified, and extracted. New meth-
ods for investigating low level files which could be more
promising were also proposed for future work.

A process to create dia-
grams of the intercompo-
nent communication to un-
derstand BMS and high-
light possible high-risk ar-
eas of vulnerability.

A detailed diagram of the interrelated dependencies for vari-
ous components and libraries used by the power system and
management system was created. The methodology used
to create this diagram has not been seen before and can be
scaled up easily through the use of the scripts and proce-
dures used.

The framework has a limited ability to discover vulnerabilities. While it does not discover

vulnerabilities, it does provide a reasonable method to discover relevant files and does obtain

a list of possible vulnerabilities which can be further analyzed.

This research has the potential to guide different forms of future research in the BMS area.

Future work in this area can look at other methodologies at file discovery and vulnerability
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assessment. An improved file discovery methodology could use a custom application to pull

running processes from a device to find power related services. Back tracing these services

to relevant power system files could then be done to perform file discovery. A new method

of vulnerability analysis could also be attempted in future research. This new method would

find the .so files and trace them back to their original, publicly available source code. The

more readily available source code vulnerability scanners could then be used to scan the

original source code of each library file instead of using binary vulnerability scanners. Future

work could also be done to examine the effectiveness of currently available and modern tools

in conducting vulnerability assessments. Other possible future work includes examining the

non-executable power related files on mobile devices, such as databases and logs, for sensitive

data which could pose a security and privacy issue. Finally, research could also look into the

development of new tools which are capable of vulnerability analysis for mobile devices.
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A. APPENDIX

A.1 Device Info

Table A.1. Device information for Samsung A50 used in case study
Device Name Galaxy A50
Model Number SM-A505
Serial Number R58M84CX1QE
Android version 10
Baseband version A505GDXU5BTC4

Kernel Version 4.14.62-RefinedKernel QQ #3 Wed
Mar 18 14:02:14 IST 2020

Build number QO1A.190711.020.A505GUBU5BTC8

SE For Android Status Enforcing; SEPF SM-A505G 10 0010
Tue Mar 24 04:15:09 2020

Knox version Knox 3.5 Knox API level 31 TIMA 4.1.0

Security software version
ASKS v3.1 Release 20200120 ADO v3.0
Release 20191001 SMR Mar-2020
Release 1

Android security patch level March 1, 2020

A.2 Tools used

Acquisition Software

UFED Cellebrite 7.42.0.82 UFED

Forensic Analysis Software

Autopsy 4.17.0

bash - 5.0.17(1)-release

On Windows Subsystem for Linux - Ubuntu running - 4.4.0-19041-Microsoft #488-Microsoft

Mon Sep 01 13:43:00 PST 2020 x86 64 x86 64 x86 64 GNU/Linux

Diagramming and Reporting Software

Microsoft Excel
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Maltego Community Edition v4.2.15

Audit and Analysis

Oversecured -  https://oversecured.com/ 

Online dissassembler -  https://onlinedisassembler.com  
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