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ABSTRACT

Square Form Factoring is an O(N1/4) factoring algorithm developed by D. Shanks using

certain properties of quadratic forms. Central to the original algorithm is an iterative search

for a square form. We propose a new subexponential-time algorithm called SQUFOF2, based

on ideas of D. Shanks and R. de Vogelaire, which replaces the iterative search with a sieve,

similar to the Quadratic Sieve.
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1. INTRODUCTION

1.1 History of Square Forms Factoring

Quadratic equations have been used for factoring numbers since early in their history,

and are present in many factoring algorithms including several of the fastest in use, such

as the quadratic sieve proposed by Pomerance in [1 ]. One algorithm, called SQUFOF or

Square Forms Factoring, was invented by Daniel Shanks at some point around 1980, though

never published in his lifetime. SQUFOF was described in an unpublished manuscript [2 ]

found in his office after his death. Nearly 30 years later, Gower and Wagstaff [3 ] published

a description of the algorithm and a completed version of the heuristic argument presented

in the manuscript. This algorithm is exponential, taking O(N1/4) time to factor an integer

N . However, discussions between R. de Vogelaire and Shanks noted at the end of section

3 of the manuscript lead to a new algorithm, which we call SQUFOF2, which factors N in

expected subexponential time O(exp(1.02
√

logN log logN)), similar to modern factorization

methods.

As the names suggest, SQUFOF and SQUFOF2 rely heavily on the theory of quadratic

forms in their operation. Both algorithms work in the space of indefinite forms, that is, forms

of positive discriminant. Both algorithms use the idea of a square form, that is, a quadratic

equation s2x2 + bxy + cy2 of discriminant ∆ = N or ∆ = 4N , to locate an “ambiguous”

quadratic form with a coefficient dividing the discriminant. The main difference between the

algorithms is in how the square form is found. SQUFOF finds the square form by searching a

sequence of forms iteratively. SQUFOF2 uses polynomial sieving techniques akin to those in

the Quadratic Sieve, together with the arithmetic of quadratic forms, to construct a square

form in significantly less time on average.

There are more algorithms which construct these “ambiguous” forms. In 1992, Lenstra

and Pomerance in proposed a factoring algorithm (algorithm 10.4 in [4 ]) using the arithmetic

of “positive definite” quadratic forms, that is, forms of negative discriminant, together with

matrix techniques. We will briefly discuss similarities and differences between this and

SQUFOF2 in section 2.3.2 .
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2. BACKGROUND

2.1 Square Forms

The algorithm SQUFOF2 relies, as the original SQUFOF does, on the theory of primitive

integral binary quadratic forms of discriminant ∆, here referred to as quadratic forms, or

simply forms. These are given as triples f = (a, b, c), representing the function f(x, y) =

ax2 + bxy + cy2, with discriminant b2 − 4ac = ∆. f is primitive if gcd(a, b, c) = 1, and

integral if a, b, c ∈ Z. We will be restricting our discussion to indefinite quadratic forms, that

is, quadratic forms with discriminant ∆ = b2 − 4ac positive. It is worth noting that there

are a few common, slightly different, notations for quadratic forms in the literature and it is

worth being careful in comparing sources.

There are, for a given discriminant, infinitely many quadratic forms, with arbitrarily

large coefficients. However, we will be able to focus mainly on a finite number of forms,

called reduced forms, the finite set of forms satisfying the inequalities:

∣∣∣√∆− 2|a|
∣∣∣ < b <

√
∆

For small discriminant, it is a simple task to enumerate the reduced forms. We will use, for

demonstration, the forms with ∆ = 40. Written in decreasing order of 0 < b <
√

∆ ≈ 6.325,

we have 8 which satisfy the bounds:

(1, 6,−1) (−1, 6, 1) (3, 4,−2)

(−3, 4, 2) (2, 4,−3) (−2, 4, 3)

(3, 2,−3) (−3, 2, 3)

For a given ∆ we will write the set of forms F and the set of reduced forms R. We next

will need to explore how to convert, in a useful way, from a general form of discriminant ∆

to a reduced form.
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2.1.1 Equivalence of Forms

One concept central to quadratic forms is an action by SL2(Z) on the quadratic forms

of discriminant ∆. Suppose we have a matrix

M =

α β

γ δ


Then we can transform (x, y) using this M :

α β

γ δ


x
y

 =

αx+ βy

γx+ δy


Substituting into f gives us a quadratic form:

f ′(x, y) = f(αx+ βy, γx+ δy)

= a(αx+ βy)2 + b(αx+ βy)(γx+ δy) + c(γx+ δy)2

= f(α, γ)x2 + (2(aαβ + cγδ) + b(αδ + βγ))xy + f(β, δ)y2

It can be convenient, especially when considering the action of a matrix on a form, to

conceptualize the form as a symmetric matrix:

 a b/2

b/2 c

 ∈ GL2(Q)

of determinant ac− b2/4 = −∆/4, evaluated at x, y by:

(
x y

) a b/2

b/2 c


x
y

 = ax2 + bxy + cy2

Applying the definition of the action by M above, we see that Mf is given by:

(
x y

)
MT

 a b/2

b/2 c

M
x
y

 = a′x2 + b′xy + c′y2

9



From this it is clear that the determinant of this matrix is −∆/4, and so the form Mf

has discriminant ∆. This operation, then, defines an action by SL2(Z) on quadratic forms

of discriminant ∆. We say f is equivalent to g if they are in the same SL2(Z) orbit, that is,

if there is some M ∈ SL2(Z) with Mf = g.

SL2(Z) is generated by the matrices

0 −1

1 0

 and

1 1

0 1

. We will also consider the

action by the set of powers of this second generator, which we will call Γ =


1 λ

0 1


∣∣∣∣∣∣∣λ ∈ Z

.

The action of these generators will prove useful to us when dealing with a few properties of

quadratic forms, and so we will write them out:

 0 1

−1 0


 a b/2

b/2 c


0 −1

1 0

 =

 c −b/2

−b/2 a


 0 1

−1 0

 (a, b, c) = (c,−b, a)

1 0

λ 1


 a b/2

b/2 c


1 λ

0 1

 =

 a aλ+ b
2

aλ+ b
2 aλ2 + bλ+ c


1 λ

0 1

 (a, b, c) = (a, b+ 2aλ, aλ2 + bλ+ c)

2.1.2 Reduction Operators

We define an operator ρ : F → F, applied to a form (a, b, c), by the action of

0 −1

1 0


mapping to the form (c,−b, a), followed by the action of

1 λ

0 1

 mapping to the form

(c,−b+ 2cλ, cλ2− bλ+a) with λ ∈ Z chosen to get a reduced form quickly; When |c| >
√

∆,

we choose λ such that the new middle coefficient is as small as possible, that is, −|c| <

−b + 2cλ < |c|. Note that this choice is unique. When |c| <
√

∆, we choose λ such that
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√
∆ − 2|c| < −b + 2cλ <

√
∆, attempting to reach a reduced form. Note that ρ(f) is not

necessarily reduced, even in the second case.

By Proposition 5.6.6 of Cohen [5 ], repeated applications of ρ will yield a reduced form

from a form (a, b, c) in less than
⌈

log |c|√
∆

⌉
+ 2 steps. We denote k repeated applications of ρ

by ρk. On reduced forms, we can also let k be negative by noting that, with the operation

τ : (a, b, c) 7→ (c, b, a), ρ(τ(ρ(τ(f)))) = f , that is, τρτ is the inverse of ρ and so ρ−k = τρkτ .

Write ρ0 : F → R to be the operator taking a form f to the form ρk(f) for the smallest

nonnegative integer k such that ρk(f) is reduced.

One notable fact is that, if f is a reduced form, ρ(f) is a reduced form. Notably, in all

cases with positive nonsquare ∆, ρ(f) is a different reduced form than f . One easy way to

see this fact is that, for a reduced form, as b2 − 4ac = ∆ with b <
√

∆, −4ac > 0 and thus

a, c must be of opposite sign. Thus we can partition the forms into cycles under ρ.

As an example of reduction, consider the reduction operator applied to (−2, 4, 3). First,

we apply the matrix

0 −1

1 0

 to obtain the form (3,−4,−2). Next, we pick an integer λ

such that, under the action by

1 λ

0 1

, the new middle coefficient −4 + 2 · 3 · λ is in the

interval (
√

∆− 2|c|,
√

∆), that is, the closest possible positive integer to
√

∆ ≈ 6.32 without

exceeding it. In this example, λ = 1, giving the form (3, 2,−3).

Calculating the reduction for all reduced forms of discriminant 40, we can partition R

into cycles under reduction:
(1, 6,−1) (−2, 4, 3)

(−1, 6, 1) (3, 2,−3)

(−3, 4, 2)

(2, 4,−3)

(−3, 2, 3)

(3, 4,−2)

One easy way to partially verify these cycles, given the list of points, is to use the fact

that the c coefficient for each form will be the a coefficient for the next. Note, however,

there are multiple forms with a coefficient 3, so this does not fully determine the order. Note
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that these cycles are not necessarily of the same length for a given discriminant ∆, as in this

example we have one cycle of length 2 and another of length 6.

2.1.3 Representation of Integers

For a given form f = (a, b, c), f represents an integer k if there exist some x, y such that

F (x, y) = ax2 + bxy+ cy2 = k. f primitively represents k if there exist an x, y pair which are

relatively prime at which f represents k. When f primitively represents k, we can construct

integers s, t such that (k, s, t) is a form equivalent to f , as follows. As gcd(x, y) = 1, there

exist integers w, z such that xw − yz = 1. Then we construct the matrix

x z

y w

 ∈ SL2(Z)

Consider its action on a form f . This produces a form (f(x, y), b(xw + zy) + 2(axz +

cyw), f(z, w)) = (k, s, t). This construction was known to Gauss, and discussed in [6 ] at the

start of section 4.1.

2.1.4 Ambiguous Forms

An ambiguous form is defined to be a form (a, b, c) which satisfies a|b. For the purpose

of integer factorization, it is notable that an ambiguous form must satisfy a|b2− 4ac = ∆. If

the form is reduced, then we know that a <
√

∆, and so gcd(a,∆), when a has an odd prime

factor, will be a proper divisor of an odd N when ∆ = 4N or ∆ = N . Gower and Wagstaff

establish in [3 ] that, for fundamental discriminant ∆, at least half of reduced ambiguous

forms will lead to a proper divisor. For this reason, both SQUFOF and SQUFOF2 work by

finding such an ambiguous form.

Proposition 3.8 of [6 ] notes the structure of ambiguous forms in cycles of quadratic forms.

In any cycle which contains an ambiguous form, it always contains precisely two ambiguous

forms. Ambiguous forms occur as the second of a pair of adjacent forms (a′, b, a) and (a, b, a′),

immediately following each other. Such a form can be recognized easily, when traversing the
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cycles by reduction, by comparing the computed middle coefficients. When they match, then

we have reached this symmetry point and thus an ambiguous form.

2.1.5 Composition of Forms

We cannot directly multiply two quadratic equations and expect to get a quadratic

equation of the same degree. However, something quite similar to multiplication proves

useful; undergoing a change of variables allows for an operation based on multiplication, on

the forms. Form composition is a binary operation F×F → F , defined mechanically. We will

follow the algorithm given in theorem 4.10 of Buell [6 ]. Suppose we have forms of the same

discriminant f1 = (a1, b1, c1), f2 = (a2, b2, c2), computing a form f3 = (a3, b3, c3) which in a

sense equals (a1, b1, c1) · (a2, b2, c2). We calculate some intermediate values; β = (b1 + b2)/2,

n = gcd(a1, a2, β), and t, u, v such that a1t+a2u+βv = n. This choice of t, u, v unfortunately

matters for the resulting form, offsetting by a multiple of 2a3 added or subtracted from b3.

However, in all theoretical applications, we will be considering the operation on the space of

forms modulo Γ, where the differences by multiples of 2a3 in b3 disappears. For our practical

purposes, we will compute this greatest common divisor as gcd(gcd(a1, a2), β), choosing the

smallest nonnegative coefficient for the first term in each extended gcd.

These values are used to compute a new middle coefficient

B = a1b2t+ a2b1u+ v(b1b2 + ∆)/2
n

The referenced theorem gives the substitution:

x3

y3

 =

1 b2−B
2a2

b1−B
2a1

b1b2+∆−B(b1+b2)
4a1a2

0 a1 a2
b1+b2

2




x1x2

x1y2

y1x2

y1y2


Under which the direct multiplication holds:

(a1x
2
1 + b1x1y1 + c1y

2
1) · (a2x

2
2 + b2x2y2 + c2y

2
2) = a1a2x

2
3 +Bx3y3 + Cy2

3
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with C computed according to the discriminant formula. Written in the notation of forms,

(a1, b1, c1) · (a2, b2, c2) =
(
a1a2, B,

B2 −∆
4a1a2

)

We will only be performing two specific compositions which are both squarings of forms,

and as such simpler cases. First, we will be composing the reduced form F1 = (1, b, c), known

as the principal form, with itself. Note that if a1 = 1, then B = b2, and the form returned

is (a2, b2, c2); that is, any form with leading coefficient 1 is an identity under this definition

of composition. However, we will want to take the product of representations of integers by

the form, and this definition of composition allows us to do just that. When composing the

identity form with itself, substituting appropriately, we have several cancellations resulting

in a simplified matrix for the new coordinates:

x3

y3

 =

1 0 0 −c

0 1 1 b




x1x2

x1y2

y1x2

y1y2


=

 x1x2 − cy1y2

x1y2 + y1x2 + by1y2



This allows us to construct, given a representation of z1 and z2, a representation of z1z2.

Note, however, that this newly constructed representation is not necessarily a primitive

representation, even if z1 and z2 are represented primitively. This will not be an obstacle

for our algorithm, however, as we find the primitive representation of z3/ gcd(x3, y3)2 by

(x3/ gcd(x3, y3), y3/ gcd(x3, y3)) as useful.

The other composition we will need is the squaring of a form f = (a, b, c) other than the

identity. We will not need to track representations for this, and the operation is almost as

simple. With n = gcd(a, b), and t, v such that at+ bv = n, we have

B = b− 2acv/n

14



Giving a square operation

(a, b, c)2 = (a2/n2, b− 2acv/n, C)

A natural question is whether this operation makes the space of forms into a group.

It has an identity, and a concept of inverses; for a form (a, b, c), the form (a,−b, c) has in

the composition n = gcd(a, a, 0) = a, and thus leading coefficient a2/a2 = 1. The next

question is whether it is associative. This can be seen a variety of ways, but here we will

show by direct example. First, we evaluate the composition of (−2, 4, 3) and (3, 2,−3). We

compute β = 3, n = gcd(−2, 3, 3) = 1, and are given a choice for the t, u, v; we will choose

t = 1, u = 1, v = 0 for simplicity. Then B = −2 · 2 + 3 · 4 = 8, A = −6, and computing

C = (82 −∆)/(4 · −6) = −1, for a composed form

(−2, 4, 3) · (3, 2,−3) = (−6, 8,−1)

We can perform the same sorts of computations to get:

[(−2, 4, 3) · (3, 2,−3)] · (−3, 4,−2) = (−6, 8,−1) · (−3, 4,−2) = (2, 8, 3)

(−2, 4, 3) · [(3, 2,−3) · (−3, 4,−2)] = (−2, 4, 3) · (−1, 8,−6) = (2, 4,−3)

The operation is thus not associative, so the space of forms is not a group under this

operation. However, by theorem 4.16 of Buell [6 ], this operator acts as an abelian group

operation on the class group F/SL2(Z), taking the sets of equivalent forms to each other.

This operation has as an identity the class containing the principal form, called the principal

class. One particularly useful fact is that classes of order 2, called ambiguous classes, all

contain two reduced ambiguous forms.

In fact, as shown in [7 ], this operation forms a group on the infinite set F/Γ, from which

the useful concept of infrastructure distance will be extracted in section 2.2.4 .

Even without explicitly forming a group on R, equation 5.1 in [7 ] describes a relationship

F · (G ·H) = ρn((F ·G) ·H)
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With |n| small. In a sense, then, this operation behaves similarly to a group operation on

the space of reduced forms.

2.1.6 Square Forms and Square Roots

A square form is defined to be a form (a, b, c) where a = s2 is a square. For squarefree

discriminant, the form must satisfy gcd(s, b) = 1. These forms are notable in that they have

a simple to construct square root form under composition; the form (s, b, sa). This can be

verified by composing it with itself; if gcd(s, b) = 1, under the squaring operation, we get

(s2, b−2as2v, C) which is equivalent to (s2, b, c) by the matrix

1 av

0 1

. When gcd(s, b) 6= 1,

these values will be off by the square of the common factor.

Note that if we take the square root of a element in the principal cycle, then the square

root form will be in an ambiguous class, and thus the cycle contains a reduced ambigu-

ous form. This is the mechanism by which both SQUFOF and SQUFOF2 construct their

ambiguous forms.

2.2 Quadratic Order Correspondence

The language of quadratic forms is closely related with several other formulations. For

the purposes of this paper, we will require facts about the “infrastructure distance” relying

on correspondence between a quadratic form of discriminant ∆ and certain subsets of Q[
√

∆],

discussed in [7 ]. Here is where we find the need for ∆ to be a fundamental discriminant in

the complexity proof. As noted in chapter 5 , this requirement does not hold in practice, and

this correspondence is not used in the actual running of the algorithm.

2.2.1 Fundamental Discriminants

Recall the ring of integers for a quadratic extension by a squarefree integer d:

OQ[
√

d] =


Z
[

1+
√

d
2

]
d ≡ 1 mod 4

Z[
√
d] d ≡ 2, 3 mod 4
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The discriminant of a quadratic extension is defined, for any integral basis e1, e2, and the

nontrivial automorphism σ : a+ b
√
d 7→ a− b

√
d, as

∆ = (e1σ(e2)− σ(e1)e2)2

For Q[
√
d], this gives ∆ = d in the first case and ∆ = 4d in the second. If ∆ is a possible

discriminant of a quadratic extension, we say ∆ is a Fundamental Discriminant; explicitly,

∆ is a fundamental discriminant if either:

• ∆ ≡ 1 mod 4, ∆ a squarefree integer

• ∆ = 4k, k ≡ 2, 3 mod 4, k a squarefree integer

2.2.2 Quadratic Orders

A subset A ⊂ OQ[
√

∆] is called an Order, or, Quadratic Order, if A is a ring with identity

1 and field of fractions OQ[
√

∆]. Note that an order A is finite index as an additive group

in OQ[
√

∆], with index f ∈ Z>0, and generators 1 and f 1+
√

∆
2 if ∆ ≡ 1 mod 4 or f

√
∆/4

otherwise. The concept of discriminant extends to orders, as well, with the discriminant of

A defined as

(1 · σ(fe2)− σ(1)fe2)2 = (σ(e2)− e2)2f 2 = f 2∆

Note that f can be any positive integer. Therefore any number ≡ 0, 1 mod 4 can be a

discriminant of an order in a quadratic extension by its squarefree part.

2.2.3 Invertible Ideals

Suppose we have an invertible order A of discriminant ∆ in a quadratic field K. The

product of two subsets M,M ′ of K, written M ·M ′, is the space of finite sums of elements

m ·m′ with m ∈M,m′ ∈M ′. An invertible A-ideal is a subset M ⊂ K with A ·M = M , and

a subset M ′ ⊂ K with M ·M ′ = A. As K is commutative, note that M ′ is also an invertible

A-ideal. Note that A is an invertible A-ideal, as 1 ∈ A, and A is its own inverse; in fact,

A is the identity under this product. The product of two invertible A-ideals is an invertible
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A-ideal with inverse the product of the inverses, and so the space of invertible A-ideals forms

a group under this set product. Denote this group I. Equation 2.3 in [7 ] explicitly describes

the invertible A-ideals for orders in quadratic fields as:

M =
(
Z + b+

√
∆

2a Z
)
· α

With a, b ∈ Z, a 6= 0, α ∈ K∗. Note that these choices are not unique for a given invertible

ideal; α can be any element in a Z-basis of M . For a given α, we are given a choice of sign for

a; for convention, choose a of the same sign as N(α). Then b is determined up to addition

by a multiple of 2a. Further, these a, b satisfy ∆− b2 ≡ 0 mod 4a, that is, there is a c such

that (a, b, c) is a quadratic form of discriminant ∆.

The freedom of choice of b to be off by factors of 2a aligns with the action by Γ on forms.

In section 8 of [7 ], Lenstra establishes a surjection from choices of generator α, represented

by a coset of Q∗
>0 in K∗, together with invertible ideals, to forms mod Γ:

I ⊗ (K∗/Q∗
>0) � F/Γ

Which is a group homomorphism under the operations of invertible ideal multiplication

with kernel {(Aγ, γQ∗
>0)|N(γ) > 0} ' K∗

>0.

For positive discriminant, this becomes an isomorphism

I/Q∗
>0 ⊗ {±1} ←→ F/Γ

Lenstra establishes this group structure coincides with composition, forming a group

which maps into the ideal class group F/SL2(Z) ' I/{Aα|α ∈ K∗}.

2.2.4 Infrastructure Distance

It is out of this finer structure that Lenstra defines his infrastructure distance, which

is a slight modification of ideas presented by Shanks in [8 ]. The infrastructure distance

is initially defined within the kernel of this map, {(A, γQ∗
>0)K∗

>0|γ ∈ K∗}. Lenstra notes

that two elements (A, γ1Q∗
>0)K∗

>0 and (A, γ2Q∗
>0)K∗

>0 of the kernel are equal if and only if
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γ1 = ζγ2, for some ζ ∈ A∗ with N(ζ) = 1. Let ν ∈ A∗ be the smallest such unit with ν > 1;

the regulator is defined as R = log ν. Lenstra defines the infrastructure distance as

d : {(A, γQ∗
>0)K∗

>0|γ ∈ K∗} → R/RZ

d((A, γQ∗
>0)K∗

N>0) =
(

1
2 log

∣∣∣∣∣ γ

σ(γ)

∣∣∣∣∣ mod R

)

Notably, this distance, together with the sign of a, uniquely determines the form up to

the action of Γ:

d((a, b, c)) = d((a′, b′, c′)) ⇐⇒ |a| = |a′| and b ≡ b′ mod 2a

This distance, as a unary operator, is defined only on the principal cycle. To apply it

within other cycles, Lenstra defines the binary operator:

d(f, g) = d(gf−1)

Note that this is only defined for f, g in the same cycle, as that is precisely when gf−1 will

be in the principal cycle.

In section 11 of [7 ], Lenstra notes that the reduced forms in each cycle, traversed by

the reduction operator from a starting form f , occur in increasing order of distance d(f, g)

until cycling back to the first form, with d(f, f) = R ≡ 0 mod R. This fact allows us to

confidently search for a reduced form in a cycle, within a certain distance of a starting form,

by iterating the reduction operator. This is a key operation in both the original SQUFOF

and in SQUFOF2.

We will need, for estimating the time complexity of SQUFOF2, an estimate for the

number of reduction steps between the reduction of a computed inverse square root form

and the ambiguous forms in its cycle, where these forms are given as quadratic forms (a, b, c).

Lenstra gives an explicit formula for the distance when reducing forms:

19



Theorem 2.2.1. For an indefinite integral binary quadratic form of discriminant ∆

F (X,Y ) = aX2 + bXY + cY 2

The infrastructure distance between F and ρ(F ) is given by

d(F, ρ(F )) = 1
2 log

∣∣∣∣∣b+
√

∆
b−
√

∆

∣∣∣∣∣
For a proof, see section 11 of [7 ]. This explicit formula for the infrastructure distance

leads to an interesting corollary, particularly in the context of the original SQUFOF:

Corollary 2.2.2. For all reduced forms F = (a′, b′, c′) ∈ R, and principal form F1 = (1, b, c),

the distance d(F, ρ(F )) ≤ d(F1, ρ(F1)), with equality if and only if b′ = b.

Proof. By the discriminant formula, ∆ = b′2 − 4a′c′, and so b′ ≡ ∆ mod 2. The principal

form is constructed as a reduced form with a = 1, and thus |
√

∆ − 2| < b <
√

∆, and so b

is uniquely determined. For any reduced F , b′ has the same parity requirement and upper

bound, and so we have b′ ≤ b, and b′ −
√

∆ ≤ b−
√

∆ < 0, giving

d(F, ρ(F )) = 1
2 log

∣∣∣∣∣b′ +
√

∆
b′ −
√

∆

∣∣∣∣∣ ≤ 1
2 log

∣∣∣∣∣b′ +
√

∆
b−
√

∆

∣∣∣∣∣ ≤ 1
2 log

∣∣∣∣∣b+
√

∆
b−
√

∆

∣∣∣∣∣ = d(F1, ρ(F1))

Heuristically, Lenstra estimates the infrastructure distance between two adjacent forms

on a cycle at on average π2/(12 log 2) ≈ 1.18, and so the infrastructure distance adjusted by

this factor will be a good estimate for the number of steps along the reduction cycle.

In the algorithm, we construct the distance from the identity form F1 to a square form

F . For that, we will need the distance of a matrix action:

Theorem 2.2.3. For an indefinite integral binary quadratic form of discriminant ∆

F (X,Y ) = aX2 + bXY + cY 2

and matrix

S =

x z

y w

 ∈ SL2(Z)
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The infrastructure distance between F and S · F is

d(F, S · F ) = 1
2 log

∣∣∣∣∣2ax+ y(b+
√

∆)
2ax+ y(b−

√
∆)

∣∣∣∣∣ mod R

Where R is the regulator of Q[
√

∆].

Proof. Write F ′(X,Y ) = S ·F = a′X2 + b′XY + c′Y 2. To F, F ′ we can write representatives

for the invertible ideals corresponding to them:

M =
(
Z + b+

√
∆

2a Z
)

M ′ =
(
Z + b′ +

√
∆

2a′ Z
)

We can use the substitution F (xX + zY, yX + wY ) = F ′(X,Y ) to verify that γ = (2ax +

y(b −
√

∆))/(2a′) ∈ Q[
√

∆] satisfies M ′ = γM . Letting X and Y stand in for arbitrary

integers:

γM =

(
2ax+ y(b−

√
∆)
)

2a′ ·M

=

(
2ax+ y(b−

√
∆)
) (

(xX + zY ) + b+
√

∆
2a

(yX + wY )
)

2a′

=

2 (ax2 + bxy + cy2)︸ ︷︷ ︸
=F (x,y)=a′

X +

2(axz + cwy) + b(wx+ yz)︸ ︷︷ ︸
=b′

+ (xw − yz)︸ ︷︷ ︸
=1

√
∆

Y
2a′

=
(
X + b′ +

√
∆

2a′ Y

)
= M ′

This allows calculation of the infrastructure distance using the definition:

d(F, S · F ) = d((M, 1), (γM, 1)) = d((M, 1), (M,σ(γ)))

= d((M,σ(γ)) · (M−1, 1)) = d((A, σ(γ)))

= 1
2 log

∣∣∣∣∣σ(γ)
γ

∣∣∣∣∣ = 1
2 log

∣∣∣∣∣2ax+ y(b+
√

∆)
2ax+ y(b−

√
∆)

∣∣∣∣∣ mod R

21



Corollary 2.2.4. For an indefinite integral binary quadratic form of discriminant ∆

F (X,Y ) = aX2 + bXY + cY 2

and primitive representation F (x, y) = v, the infrastructure distance between F and the form

G with leading coefficient v, constructed as in section 2.1.3 , is

d(F,G) = 1
2 log

∣∣∣∣∣2ax+ y(b+
√

∆)
2ax+ y(b−

√
∆)

∣∣∣∣∣ mod R

Where R is the regulator of Q[
√

∆].

Proof. The matrix for this transformation is given as

x z

y w

, for some w, z with xw−yz =

1, which exist as F (x, y) is a primitive representation of v. The distance follows from theorem

2.2.3 .

The form produced by the matrix action is not on the reduced cycle, so we will also need

a bound on the distance to the nearby reduced form ρ0(g). A suitable bound is discussed

in section 12 of [7 ], which states that the reduction of a form is one of the forms closest in

infrastructure distance above or below with the same a sign, or the form with opposite a

sign between them. This means the reduction adds at most two steps along the cycle over

what would be expected from infrastructure distance before reduction.

2.3 Other Quadratic Form Factoring Algorithms

There have been a few factoring algorithms explicitly relying on the construction of

ambiguous forms. Two relevant algorithms are the original SQUFOF, and and algorithm

due to Lenstra and Pomerance in [4 ].
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2.3.1 SQUFOF

We now have everything we need in order to discuss the original SQUFOF algorithm,

which in its simplest form consists of two searches by reduction. For an in depth analysis of

SQUFOF, see [3 ].

To factor a squarefree composite positive integer N , SQUFOF begins by initializing the

principal form F1 of fundamental discriminant ∆ = 4N if N ≡ 2, 3 mod 4, and ∆ = N if

N ≡ 1 mod 4. SQUFOF then traverses the principal cycle of forms from F1 by reduction

until it finds a square form Fn = (u, v, w2). Such a form occurs after O(N1/4) reduction

steps.

SQUFOF then considers the ambiguous cycle containing the inverse square root form

(−w, v,−uw). Traversing this cycle finds an ambiguous form, and thus a divisor of N , in

roughly half as many steps as traversed in the principal cycle. In the simplest form, subject

to some reasonable assumptions, this factor is nontrivial for at least 1/2 of the square forms.

This can be improved; through careful caching of intermediate results in the initial search,

SQUFOF can select only square forms which lead to nontrivial factors by avoiding square

forms which have ambiguous form on the principal cycle.

One notable advantage of SQUFOF is that, in its simplest form, it only needs to store

the integer to be factored, and up to two reduced quadratic forms with three coefficients of

size < 2
√
N . This space is negligible compared to many other factoring algorithms, however

its time complexity is O(N1/4), the estimated distance to the first square form leading to a

factor, makes it less useful in practice.

To illustrate SQUFOF, we will give a brief example. Consider factoring the integer N =

4187. We first construct the identity form F1.
√
N ≈ 64.71, and so b = 2 b64.71c = 128. c is
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computed according to the discriminant formula, c = (1282−4187 ·4)/4 = 642−4187 = −91.

We begin walking the principal cycle by reduction until we find a square form:

a b c

F1 1 128 −91

F2 −91 54 38

F3 38 98 −47

F4 −47 90 46

F5 46 94 −43

F6 −43 78 62

F7 62 46 −59

F8 −59 72 49

After 7 reduction steps, we find the form F8 = (−59, 72, 72). We convert this to the

inverse square root form (−7, 72,−7 · −59) = (−7, 72, 413). This form is not reduced, and

so we reduce it in two reduction steps to the form (−7, 128, 13). We can refer to this form as

G0, and walk this ambiguous cycle of reduced forms from G0 until we reach the symmetry

point:

a b c

F−1 −7 72 413

G0 −7 128 13

G1 13 106 −106

G2 −106 106 13

After roughly half as many steps as the square form in the principal cycle, we find an

ambiguous form (−106, 106, 13). Taking gcd(106, N) = 53, we factor N = 53 · 79.

2.3.2 Lenstra and Pomerance’s Algorithm

Similar to both SQUFOF and SQUFOF2, Lenstra and Pomerance’s algorithm in [4 ]

constructs forms of discriminant a multiple of N , and constructs a form with a coefficient

24



dividing the discriminant. However, the structure of positive definite forms is quite different.

SQUFOF and SQUFOF2 both rely on cycles of equivalent reduced forms. The definite

reduced forms, however, are unique up to equivalence, and are isomorphic to ideal class

group under composition.

Lenstra and Pomerance’s algorithm constructs and solves a matrix of factorizations over a

factor base, as does SQUFOF2. However, where SQUFOF2 is factoring values of a particular

quadratic form at points in a region, Lenstra and Pomerance factor randomly chosen reduced

forms themselves, expressed as a product of generators of the class group. Both algorithms

solve these systems over GF2, and obtain a square root of a form, and thus an ambiguous

class. For Lenstra and Pomerance, an ambiguous class is represented by an ambiguous form,

and they can upon construction obtain their divisor of ∆ and check if it is a nontrivial divisor

of N . However, SQUFOF2 operates in the space of indefinite forms, and has the additional

step of traversing the ambiguous cycle in search of a reduced ambiguous form. This search,

however, is reliably quite short.

Both algorithms have the same heuristic complexity, and each have their own advantages.

SQUFOF2, notably, can completely avoid explicit computations in the class group, nearly all

of the arithmetic of quadratic forms in general, and can use the efficient polynomial sieving

methods for sieving values.
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3. SQUFOF2

The main work in the original SQUFOF is in the iterative search for the first square form

in the principal sequence, found at roughly O(N1/4) reduction steps. This makes SQUFOF

an O(N1/4) algorithm.

However, Shanks wrote in [2 ] that:

Gauss [9 ] proved that any form F in the principal genus has a square root f such

that f · f (under composition and reduction) = F . His constructive proof gives

a remarkable algorithm for computing f .

The w2 in (u, v, w2) is the value of a form with x = 0 and y = 1. If, for any Fn,

its value is a square for certain values of x and y, then one can easily construct

an equivalent form (probably not reduced) that is a square form.

This variation on SQUFOF was suggested by R. de Vogelaire when I first spoke

on SQUFOF in [10 ]. He calls it the “fat” SQUFOF. One tries small pairs (x, y)

in Fn to see if it has a small square value.

3.1 Algorithm Description

This method from Gauss provides an efficient way to transform a square value into a

square form, suggesting a perhaps faster path to a solution. In SQUFOF2, we will construct

a rather large square value at the principal form F1 of discriminant 4N if N ≡ 2, 3 mod 4

and N if N ≡ 1 mod 4. A square value of any form in the principal cycle would work, but

using the principal form itself simplifies many of the computations; under composition of

forms, F1 ◦ F1 = F1, considerably simplifying the arithmetic we will have to perform and

shortening the distance between the inverse square root and ambiguous form. In addition,

having the first coefficient 1 simplifies a few of the equations as well.

We will construct this square value out of B-smooth values at points (x, y), that is, values

which factor into primes no larger than B, for a bound B tuned to the problem as described

in section 4.3.8 . We will also require gcd(x, y) = 1. We will also define a factor base, that

is, a set of primes together with −1, over which the B-smooth values factor. In this case,
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we will use all primes less than B which may occur as factors of F1, which is in general not

all the primes less than B; note that a prime p can divide F1(x, y) = x2 + bxy + cy2, with

gcd(x, y) = 1, only if the discriminant D is a quadratic residue mod p as by the quadratic

formula, any solution (x, y) must satisfy 2x ≡ y(−b± r) mod p where r2 ≡ D mod p. We

take as our factor base −1 together with all primes p ≤ B for which 1 =
(

D
p

)
. Note that in

either case
(

D
p

)
=
(

N
p

)
.

This same quadratic formula allows us to sieve for smooth values efficiently. We fix some

bound S on the largest x, y-values sieved, tuned to the problem as with B, and at each y

value, starting from 1, we perform a sieve for smooth values. To perform this sieve, initialize

an array of zeroes of length 2S + 1 representing the x-values in [−S, S]. For each odd prime

in the factor base, p|f(x, y) ⇐⇒ 2x ≡ y(−b ± r) mod p where r2 ≡ D mod p. For a

given N and y, the right hand side of this equation is fixed, and gives two x values at regular

intervals of length p. This makes it relatively simple to, for each p, at each possible x value,

add log(p) to the sieve vector at that position.

At the end of the sieving process, then, for all squarefree B-smooth values F1(x, y) with

gcd(x, y) = 1, the xth entry in the array will be:

∑
p<B,p|F1(x,y)

log(p) = log
 ∏

p<B,p|F1(x,y)
p

 = log(|F1(x, y)|)

In practice, these computations can be done using floating point arithmetic, with a small

tolerance, allowing us to quickly check which values are likely to be B-smooth. We also filter

out any values with gcd(x, y) > 1. We can then verify the sieved values by trial division

over our factor base, storing these factorizations for use in the next step. This trial division

catches repeated prime powers missed by the simple version of the sieve.

The algorithm identifies collections of these smooth values which have a square product.

To do this, for each smooth value F1(x, y) we construct a vector over GF (2), of length the

size of the factor base, with a 1 in the ith position whenever the ith prime divides F1(x, y)

to an odd power. In this way, a vector of all 0s represents a square B-smooth value. We

can add these vectors, with sums of vectors representing the products of the corresponding

values, and be guaranteed at least one solution vA = 0 so long as we have more “rows” than
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“columns”, that is, at least as many smooth values as there are primes in our factor base.

SQUFOF2 can fail to find a proper factor from a square value, with estimated probability

less than 1/2 as discussed in 2.1.4 , so we may need a small number of different square values.

We construct a matrix of these rows, sieving until we have a few more rows than columns,

and compute the left null space of the matrix using techniques of linear algebra.

A solution to this system corresponds to a list of (x, y) pairs with product ∏F1(x, y) a

square. We can reduce this list of (x, y)-values to a single point on F1 with square value

using composition of forms. Such a constructed pair can be fairly large compared to the

original bounds, and is likely not reduced. From this square value, by the technique of

Gauss mentioned above, we convert to a corresponding inverse square root form. This form

will also have large coefficients, and the next step is to apply the reduction operator until

we get a reduced form. As we will see in 4.3.7 , a square form with large coefficients will

reduce to a form very close on the cycle to an ambiguous form, and thus a factor of N . If

this factor is not proper, we simply select another solution to the linear system and try again

until successful. As each attempt has estimated probability of finding a factor at least 1/2,

we will typically only need to do this process a small number of times before successfully

factoring N .
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3.2 Examples

We will demonstrate the algorithm with two examples.

3.2.1 A Small Example of SQUFOF2

Let us first consider factoring the integer N = 4819, with a smoothness bound of 20,

and a bound on the sieve of 20. First we compute the identity form F1 of discriminant

∆ = 4 · 4819 = 19276.
√
N ≈ 69.42, so b = 2 b69.42c = 138. By the discriminant formula,

c = b2 −∆
4 = −58, and F1 = (1, 138,−58). Next, we build our factor base of primes with(

N
p

)
= 1, together with −1, getting the set {−1, 2, 3, 5, 11, 13, 17}. Sieving, we get the values:

F1(−2, 1) = −330 = −1 · 2 · 3 · 5 · 11

F1(4, 1) = 510 = 2 · 3 · 5 · 17

F1(1, 2) = 45 = 32 · 5

F1(−1, 3) = −935 = −1 · 5 · 11 · 17

The product of these values is the square (2 · 3 · 52 · 11 · 17)2. We compose (−2, 1) and

(4, 1), using the formula described in section 2.1.5 :

 −2 · 4− (−58) · 1 · 1

−2 · 1 + 4 · 1 + 138 · 1 · 1

 =

 50

140


Note that the representation of the product

F1(50, 140) = −168300 = −1 · 22 · 32 · 52 · 11 · 17

is no longer primitive, and we can divide the pair by gcd(50, 140) = 10, dividing the value

by 102:

F1(5, 14) = −1683 = −1 · 32 · 11 · 17

29



We can compose the other smooth values similarly:

F1(5, 14) · F1(1, 2) = F1(1629, 3888) = 92F1(181, 432)

F1(181, 432) · F1(−1, 3) = F1(74987, 178959) = 1872F1(401, 957)

f(401, 957) = 25 = 52

giving a final square value 25 primitively represented by (401, 957). We calculate the extended

greatest common divisor to get coefficients 284 · 401− 119 · 957 = 1, and form the matrix

401 119

957 284

 ∈ SL2(Z)

whose action takes F1 to the square form (25,−124,−39), which we can convert to the

inverse square form (195,−124,−5). We apply the reduction operator to get the reduced

form (−5, 134, 66). Another application of the reduction operator takes us to (66, 130,−9),

and then (−9, 122, 122), and finally (122, 122,−9), where we find the symmetry point. Taking

gcd(122, 4819) = 61, we factor 4819 = 61 · 79.

3.2.2 A Larger Example of SQUFOF2

For our second example of SQUFOF2, we will factor N = 72224443 with the parameters

(described in chapter 4 ) α = 0.7, β = 0.8, giving a smoothness bound of 158 and sieve bound

of 327.

Computing the identity form F1, we have
√
N ≈ 8498.5, so b = 2 b8498.5c = 16996. By

the discriminant formula, c = −8439. There are 24 primes in the factor base, the numbers

−1, 2, 3, 7, 11, ..., 113, 137, 149, 151, 157.

We begin the sieve at y = 1, and find 40 smooth values. We can perform elimination on

the matrix, already finding the solution

{(−198, 1), (−179, 1), (−93, 1), (−84, 1)}
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We begin composing, dividing by any nontrivial common divisor:

F1(−198, 1) · F1(−179, 1) = F1(43881, 16619)

F1(43881, 16619) · F1(−93, 1) = F1(136166808, 280954838) = 83622 · F1(16284, 33599)

F1(16284, 33599) · F1(−84, 1) = F1(282174105, 568242572) = 83572 · F1(33765, 67996)

F1(33765, 67996) = 4655196441 = 682292

Now we compute the inverse square root form (−1791814782933,−699296020,−68229).

This form reduces, in just 4 steps, to the form (8439, 16996,−1). This form is ambiguous,

with the next form in the cycle (−1, 16996, 8439). Unfortunately, gcd(−1, N) = 1, so this

solution to the linear system led to a trivial factor.

When we find a trivial factor, we backtrack to the linear algebra and find another solution

to the linear system. Composing the smooth values at

{(−315, 1), (−292, 1), (−222, 1), (−179, 1), (−118, 1), (−39, 1), (−21, 1), (−8, 1)}

Gives a square value of 2283555355384592, and an inverse square root form

(−1532816398049234557371740272557943443546399,

37418022901199079712249857344,

−228355535538459)

Which reduces in 10 reduction steps to (−5439, 15158, 2718). After 9 reduction steps along

the ambiguous cycle, we reach the symmetry point (−15362, 15362, 861), with gcd(−16362, N) =

7681 and we have factored N = 7681 · 9403.
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4. SQUFOF2 COMPLEXITY PROOF

We now will provide a heuristic proof of the algorithm’s running time, subject to a few

reasonable assumptions.

We will present this proof in a few sections. First we will establish the complexities of

the various operations involved in the algorithm, and a convention to keep the equations

simple. Next we will establish some reasonable assumptions needed for the proof to work.

Then we will give an analysis of each broad step to establish some common bounds in terms

of L(N)1+o(1), the parameter α which determines the size of the factor base, the parameter

β which determines the size of the sieve, and an elimination exponent r ∈ (2, 3] representing

the complexity of the chosen algorithm for solving a m × m linear system over GF (2) in

O(mr) time. We will then solve for theoretical optimal parameter choices in terms of r for

very large N , and finally arrive at the overall time and space complexity of the algorithm

given existing elimination methods.

4.1 Preliminaries

We will make extensive use of the “unusual convention” L = L(N)1+o(1) from Pomerance

[1 ] , where L(N) = exp(
√

logN log logN), to greatly simplify the presentation and analysis.

This convention allows us to write some useful statements which at first glance seem absurd:

kL = e
√

log(N) log log(N)(1+o(1))+log(k) = L

log(N)kL = ek log log(N)e
√

log(N) log log(N)(1+o(1))

= e

√
log(N) log log(N)

(
1+o(1)+k

√
log log(N)

log(N)

)
= e

√
log(N) log log(N)(1+o(1)) = L

log log(N)kL = e

√
log(N) log log(N)

(
1+o(1)+k

√
log log log(N)

log(N)

)
= L

L log(L) = L
√

log(N) log log(N) = L

π(L) ≈ L

log(L) = L

As a result, we are able write and compare the estimates in terms of only powers of L.
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We will need to perform a few standard operations on integers. Addition or subtraction

of two k-digit integers is O(k).

We will need to multiply pairs of k-digit integers, the time complexity of which is

denoted M(k). While traditional methods take O(k2) time, there are techniques such

as Schönhage-Strassen, Discussed in section 9.5 of Crandall and Pomerance [11 ], which

perform multiplication in M(k) = O(k log k log log k). Notably, if k = Lα, this takes

M(Lα) = Lα logLα log logLα = Lα time, by the same convention for L. During the compo-

sition and reduction in the algorithm, integers of such size may be constructed, and these

fast techniques will help keep the computation time bounded by the difficulty of the sieve.

We will need to divide and take square roots, and take remainders from division; the same

chapter of [11 ] provides algorithms for these in O(M(k)) time. Similarly, the chapter provides

an algorithm due to Stehlè and Zimmermann for taking the greatest common divisor of two

k-digit numbers in O(M(k) log(k)) time, which as noted for integers of size Lα is O(Lα)

time.

We will, in analyzing the factor base, need to compute quadratic residues mod p for primes

less than the bound Lα. For this analysis the naive method of testing each 1 < r < p/2,

taking time bounded by LαM(log(Lα))) = Lα, suffices. See 5 for some discussion of an

algorithm to use in practice.

We have discussed two parameters, α, β ∈ (.1, 1), used as exponents of L in constructing

the bound on the factor base B = Lα and on the size of the x, y ranges sieved Lβ. For

the course of this discussion, we will be using those parameters to estimate each step, and

selecting a theoretical optimal value at the end.

4.2 Assumptions

As noted above, the proof is heuristic, and relies on a few assumptions. First, we will

require a lower bound on the proportion of primes in the factor base. One can construct

N , via the Chinese Remainder Theorem, which are not quadratic residues mod p for any

p < L(N)α for a small α, giving a factor base consisting of only −1 and 2, making the sieve

very difficult. Such examples are rare, as the expected portion of p < Lα for which
(

N
p

)
= 1
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is 1/2, and so the expected number of primes p in the factor base is π(Lα)/2. To enable the

proof, we assume for α not too small that we have enough of the primes in the factor base:

Hypothesis 1. There is a constant n1 such that if N > n1, then for any α ∈ (0.1, 1) the

number of primes p < Lα for which p - N and (N/p) = +1 is at least π(Lα)/3.

To analyze the sieve, we will need some idea of how many of the x, y values we sieve will

be smooth. For this, we rely on another assumption:

Hypothesis 2. There is a constant n2 such that if N > n2, then for any α ∈ (0.1, 1) and

any β ∈ (0.1, 1) the values |F1(x, y)| with −Lβ < x < Lβ, 0 < y < Lβ and gcd(x, y) = 1

have the same probability of being Lα-smooth as all integers in (1,max |F1(x, y)|).

Note that, as we are discarding points with gcd(x, y) 6= 1, as they provide the same

factorization mod 2 as the earlier value F1(x/ gcd(x, y), y/ gcd(x, y)) = F1(x, y)/ gcd(x, y)2

which will all ready be recorded, we include that in the assumption. This is reasonable, as

when gcd(x, y) = 1, there is no reason to expect |F1(x, y)| to be different in factorization

from general numbers of this size. However, when gcd(x, y) > 1, we have noted that F1 will

be guaranteed to have square divisors, and thus likely more prime factors than a typical

number of the same size.

We have noted that, for all x, y with gcd(x, y) = 1, then no prime with
(

N
p

)
= −1 can

divide F1(x, y). However, this is less of a concern, as we have also noted that for a given y,

primes with
(

N
p

)
= 1 give two solutions x to the equation F1(x, y) ≡ 0 mod p, and these

two cases occur in roughly equal proportion, by assumption 1 . The case p|N corresponds

to only one solution, 2x ≡ −b mod p, though for the algorithm this would be sufficient to

return a factor of N .

We will need the proportion of integers with gcd(x, y) = 1, as well, for which we will use

the following lemma:

Lemma 1. Let m be a large integer. Let G(m) be the number of pairs (x, y) of integers

with 1 ≤ x ≤ m, 1 ≤ y ≤ m and gcd(x, y) = 1. Then G(m) = (6/π2)m2 + O(m logm) as

m→∞.
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Proof. Note that there is only one pair with x = y and gcd(x, y) = 1, the pair (1, 1). Next

we will count the pairs with x < y; there will be the same number of pairs with y < x.

For a given y ∈ [2,m], the number of x-values with x ≤ y, gcd(x, y) = 1 is given by Euler’s

totient function φ(y), so the total number of pairs is ∑m
y=2 φ(y) = (3/π2)m2 +O(m logm) by

Theorem 330 of [12 ] or Theorem 3.7 of [13 ].

Accounting for pairs with y < x, we double the sum to obtain 6
π2m

2 +O(m logm).

The infrastructure distance to the computed square form, given by theorem 2.2.3 , may be

quite large when the denominator 2ax+ y(b−
√

∆) is close to 0. This is unlikely in practice,

as x, y are not chosen for their closeness to solutions to F1 such as the denominator; in fact,

F1(x, y) = s2 is in the algorithm typically much larger than 0. To formalize this intuition in

lieu of a more rigorous justification, we assume:

Hypothesis 3. For pairs (x, y) with square value F1(x, y) computed as in SQUFOFII, at

least 1
2 of the pairs satisfy |2ax+ y(b−

√
∆)| > 1.

We will need one last assumption. We discussed in section 2.1.4 the set of reduced

ambiguous forms, and how each leads to a factor of D, with at least half leading to a proper

factor. We will assume, for our purposes, that each of these is equally likely to be the one

found in the execution of SQUFOF.

Hypothesis 4. Each of the reduced ambiguous forms of the fundamental discriminant ∆

has an equal chance of being the one at the symmetry point in the execution of SQUFOF2.

This is similar to 4.19 in [3 ], and reasonable, as the square roots of forms on the principal

cycle can appear in any ambiguous cycle.

4.3 Overview of the Algorithm Complexity

We will now give an analysis for a given squarefree odd composite N with no prime

factors less than L(N)α = exp
(
α
√

log(N) log log(N)
)
.
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4.3.1 Construction of the Form

We begin the algorithm by constructing the identity form of discriminant ∆ = 4N if

N ≡ 3 mod 4, and ∆ = N if N ≡ 1 mod 4. This form F1 = (1, b, c) is constructed slightly

differently in each case. In the case N ≡ 3 mod 4, then ∆ = 4N , and the form has b chosen

to be the largest even number less than
√

∆, that is, b = 2
⌊√

N
⌋
, with c computed according

to the formula for the discriminant, c = (D − b2)/4 = N −
⌊√

N
⌋2

.

Alternately, the case N ≡ 1 mod 4, we have ∆ = N , we choose b as the first odd number

less than
√
D =

√
N , that is, 2

⌊√
N−1
2

⌋
+ 1. The proof for the two cases differ only slightly,

but as the expressions are slightly simpler for the case N ≡ 3 mod 4, we will demonstrate

on that case. Interestingly, as we will note in chapter 5 , in practice it suffices to use this

discriminant for all odd non-square composite N .

These coefficients are of size less than 2
√
N , and so these initial computations take

O(M(log(N))) time to take the integer square root of N, square, and multiply.

4.3.2 Initialization of the Factor Base

The next step is preparing the factor base. It consists of −1, together with the primes

p < Lα such that
(

N
p

)
= 1, starting with 2, as discussed in 3 . It will be useful to store,

alongside each odd prime in the factor base, a quadratic residue for the prime for use in the

sieve.

As discussed above, each step takes Lα time, takes π(Lα)Lα = L2α time. Storing these

takes Lα space.

4.3.3 Constructing and Performing the Sieves

We next perform a sieve for each y in (0, Lβ). Fixing y, we initialize a list for x-values

in the interval (Lβ, Lβ), each with value 0. For each prime p in the factor base, we compute

the x values at which p|F1(x, y) by the quadratic formula discussed above, that is, x ≡

−b/2± r mod N where r2 ≡ N mod p. At each such position, we know p|F1(x, y), and so

we add log(p) at the value in the position at that x. If the entry at that position is close to
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log(|F1(x, y)|), then we know that F1(x, y) is likely Lα-smooth. We check the smoothness by

trial division over the factor base, which catches the repeated prime powers missed by the

algorithm. We can store the factorizations, paired with the points (x, y), for the next step.

This will take Lβ evaluations of F1 at each y, for L2β complexity in initialization of the

rectangle. It will also take an addition at each of the Lα primes in the factor base to find the

roots, as well as Lβ divisions of complexity M(log(Lα)) which is absorbed into the powers

of L by the convention, giving a time complexity of LαLβ for performing the sieve, with an

overall complexity of Lmax{αβ,2β}, bounded by Lmax{2α,2β}, for the full sieve.

4.3.4 Linear Algebra

We can stop the sieve prematurely when we have a few more solutions than the size of

the factor base. We convert these factorizations into rows over GF (2) of length the size of

the factor base Lα. At each position in the row we place a 1 if p divides F1(x, y) to an odd

power, and a 0 if not.

We now have a matrix that is nearly square, with a number of columns equal to the

size of the factor base, Lα. Our goal is to obtain subsets of the columns where the product

of the values is square, that is, elements of the left null space of the matrix over GF (2).

This problem can be solved via Gaussian Elimination in O((Lα)3) = O(L3α) time; other

elimination methods solve the problem in time O((Lα)r) for some elimination exponent

r ∈ (2, 3]. One of the best general elimination methods available at time of writing is the

Coppersmith-Winograd method [14 ] with an exponent of roughly 2.49. For the purpose of

this algorithm, we will write the complexity of solving the system as O(Lrα), and discuss the

effect of the elimination exponent in more detail.

4.3.5 Assembling the Square Form

Each solution S = {(x0, y0), . . . , (xn, yn)} represents a list of (x, y) pairs for which the

product of values ∏(x,y)∈S F1(x, y) is a square. The next task is turning this into a single

x, y pair with a square value, by the techniques discussed in section 2.1.5 . Starting with

(x, y) = (x0, y0), each composition consists of replacing (x, y) with (xxi−cyyi, xyi+yxi+byyi),
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and then dividing both new values by their greatest common divisor. As F1 is a reduced

form, the coefficients are bounded by
√
D = 2

√
N . Because the pairs are chosen from

within the sieving rectangle, we know −Lβ < xi < Lβ, 0 < yi < Lβ. and so the updated

x, y grow in absolute value by no more than 2
√
NLβ. The largest possible solution to

the linear system is Lα rows, and so the final (x, y) are no larger in absolute value than

Lβ(2
√
NLβ)Lα = (2

√
NLβ)Lα .

The arithmetic of numbers of size log((2
√
NLβ)Lα) = Lα log((2

√
NLβ) = Lα digits takes

Lα time by the techniques discussed in section 4.1 . As we compose at most Lα different pairs

(x, y), the composition takes time bounded by L2α.

4.3.6 Constructing the Reduced Inverse Square Root Form

Now that we have a square value s2 = F1(x, y) for F1, we will construct a square form,

and its inverse square root, using the techniques of Gauss discussed in 2.1.1 . To construct

the square form, find w and z such that xw − yz = 1, via an extended euclidean algorithm

in time Lα. We then construct the form (F1(x, y), b(xw + zy) + 2(xz + cyw), F1(z, w)), and

its inverse square root form (s,−b(xw + zy) − 2(xz + cyw), sF1(z, w)) in time Lα for the

computations on Lα-digit integers.

As discussed in section 2.1.2 , reducing this inverse square root form takes at most 2 +⌈
log |sF1(z,w)|√

∆

⌉
reduction steps of the modified reduction algorithm. sF1(z, w) is Lα digits, and

as such, operations take Lα time. The other coefficients are also no larger than Lα digits at

each step, so each reduction takes at most Lα time, and overall computing the equivalent

reduced form takes no more than L2α time.

4.3.7 Returning and Checking for Success

In order to estimate the length of the return, we must estimate the infrastructure distance

between F1 and the square form f = (s2, B, C). The distance from the identity to the square

form can be computed explicitly using corrolary 2.2.4 as

d(F1, f) = 1
2 log

∣∣∣∣∣2ax+ y(b+
√

∆)
2ax+ y(b−

√
∆)

∣∣∣∣∣
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By assumption 3 , we have a positive proportion of the solutions with denominator at

least 1, and so rejecting solutions with smaller denominator, for the remaining solutions this

quantity is bounded above by the logarithm of the numerator, Lα.

This distance is twice the distance between the inverse square form g and reduced am-

biguous form h, as

d(g, h) + d(g, h) = d(hg−1) + d(hg−1)

= d(hhg−1g−1)

= d(g · g, h · h)

= d(f−1, F1)

= d(F1, f)

The reduction of the inverse square root form will add at most two reduction steps

to the walk to the reduced ambiguous form. The number of steps is proportional to the

infrastructure distance, in this case bounded by Lα.

It remains to check whether the ambiguous form yields a proper factor by taking the

greatest common divisor of the middle coefficient and N . If this greatest common divisor is

1, then we simply try another solution to the linear system. By hypothesis 4 , each solution

has at least a 1/2 chance of returning a nontrivial factor of N ; sieving for 10 solutions gives

a less than 0.1% chance of failure.

4.3.8 Selecting Parameters

Theorem 4.3.1. Assuming Hypotheses 1 , 2 , 3 , and 4 , the expected time complexity of

SQUFOF2 to factor a large square free integer N using an elimination method with an

exponent r is L(N)r/
√

4r−4+o(1). The space complexity is L(N)1/
√

r−1+o(1).

Proof. As we have just seen, the time complexity is dominated by the sieve construction,

taking L2β, and the solving of the linear system, taking Lrα with r > 2. Other portions of

the algorithm take less time, such as the construction and reduction of the inverse square

form from the solution which take at most L2α operations.
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The remaining question is how small we can choose α and β and still have a reasonable

confidence that we can get enough solutions. For a given α, we need Lα smooth values in

order to guarantee a solution to the linear system. By lemma 1 , 6
π2L

2β = 2β of the (x, y)

pairs have gcd(x, y) = 1. By hypothesis 2 , the probability that a given (x, y) pair satisfying

gcd(x, y) = 1 is Lα-smooth will be the same as for integers less than the maximum value

of |F1(x, y)| = |x2 + bxy + cy2| on the sieved region. As b, c < 2
√
N , and x, y ≤ Lβ, this

maximum value will be bounded by 4
√
NL2β =

√
NL2β. The number of B-smooth values

less than some M is given by Dickman’s function ψ(M,B). By Dickman’s theorem, given

as 1.4.9 in [15 ], the probability of a smooth value can be computed using:

ψ(
√
NLβ, Lα) ≈

√
NL2βu−u

where

u = log(
√
NL2β)

log(Lα) = logN
2α
√

log(N) log log(N) + o(1)
+ 2β

α
≈ 1

2α

√
logN

log logN = log(L)
2α log log(N)

And so

u−u =
(
Llog(u)/ log(L)

)−u
= L− log(u)/(2α log log N) = L−1/(4α)+o(1) = L−1/(4α)

This probability gives an estimated number of solutions at L2βL−1/(4α). Solving this for

the desired number of solutions, Lα, gives the result

β = α

2 + 1
8α

Giving the time complexity as

Lmax{2β,2α} = Lmax{α+ 1
4α

,rα}

Minimizing that exponent, we get α = 1
2
√

r−1 , and time complexity Lrα = L(N)
r√

4r−4 +o(1),

matching the complexity of the Quadratic Sieve. Similar to the Quadratic Sieve, rα =
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r
2
√

r−1 = 1 + O((r − 2)2), and so the algorithm is not sensitive to small differences in the

elimination exponent r ∈ (2, 3].

The space requirement is L2α = L(N)
1

r−1 +o(1) for the matrix and Lβ < L2α for each row

of the sieve.

For Gaussian Elimination, the exponent r = 3, giving α = 1/(2
√

2) ≈ 0.35, β =

3/(4
√

2) ≈ 0.53, and a time complexity approximately L1.06. For the Coppersmith-Winograd

method, we have r ≈ 2.49, and α ≈ 0.41 and β ≈ 0.51 and a time complexity L1.02. As

r → 2, we have complexity approaching L with parameters approaching α = 0.5, β = 0.5.

These calculations are for very large N , and the convention on L makes selecting practical

values for factoring reasonably sized integers based on these calculations difficult. These

values are not optimal for N of a size likely to be factored on a modern computer, and in

many cases are too small to find a solution. One should experiment with α and β values

which work for the size of N to be factored. For factoring several example random composite

N between 10 and 30 decimal digits, our implementation performed best with α ≈ 0.7 and

β ≈ 0.8.
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5. IMPLEMENTATION OF THE ALGORITHM

In this chapter we cover several details relevant to implementations of the algorithm, which

are not relevant to theorem 4.3.1 . The end performance can be better than this theorem may

suggest, through some quirks of the algorithm and some optimizations that can be made.

5.1 General Implementation Notes

Practical implementations of SQUFOF2 can differ in many ways from the theoretical.

Notably, we have found ∆ need not be a fundamental discriminant; the algebraic simplifi-

cations noted in section 4.3.1 when ∆ = 4N can be used even in the N ≡ 1 mod 4 case,

and we do not worry about whether N is squarefree; on sample N , the algorithm performed

similarly on non-squarefree N as for N of the same size with the same number of distinct

prime factors. The algorithm does require, of course, that N is odd, and is not square.

However, as we are taking a square root of N in the implemented algorithm, this is easy to

check.

We often find ourselves using the fraction b/2. As is common in programs using the arith-

metic of quadratic forms, we will be storing the middle coefficient as half of that described

in section 2.1 , and doubling where necessary instead of dividing. Discriminant calculations

will be done in terms of ∆/4 = N = (b/2)2− ac. Some literature on quadratic forms defines

the forms similarly, but that notation is not as compatible with the odd discriminant cases

used here.

In SQUFOF2, the sieve starts with small x, y, which are likely to have smaller values of

the form, and thus likely to have smaller prime factors. This density means the vectors in

SQUFOF2 are in practice more likely than random pairs in the range to produce a smooth

value. When they are smooth, they are also more likely to provide small solutions, and so

the probability of a small prime in the factor base dividing F1(x, y) to an odd power is much

larger than for a large prime. This makes finding the solutions significantly more likely with

fewer than Lα rows. Some elimination algorithms can work on a single row, or batches of

rows, allowing the algorithm to sieve for smooth values only until enough linear solutions

are found, well before the point at which the solutions are guaranteed.
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There are faster algorithms than the ones used in the proof for some of the stages. For our

implementation, when computing the quadratic residues, we use Tonelli-Shanks algorithm.

For arithmetic and greatest common divisors, our implementations rely on the GMP library’s

internal functions, which select from the leading algorithms based on thresholds of size on

the inputs.

SQUFOF2 will not work on prime numbers, and so it should be applied only to numbers

which have failed a suitable pseudoprime test. In practice, it will terminate in failure after

having found a chosen number t square values which do not lead to square results; each

failure, as estimated in chapter 4 subject to the assumptions, will have probability at most

1/2, and so a given composite number would fail with probability 2−t; rejecting a prime

input, then, would be significantly more work than factoring a composite number and would

not be a proof of primality.

Alternately, SQUFOF2 will fail if it exhausts the rectangle of possible x, y values. This,

too, is very unlikely for effective bounds; the algorithm tends to run faster sieving at fewer

y values, and thus finding smaller y values than x values by a factor of roughly
√
N . This

helps keep the growth smaller in the composition step, by a factor of roughly
√
N at each

composition, saving work there and in the subsequent reduction.

The sieve can be done in the logarithm, with addition or subtraction instead of division

or multiplication, and a tolerance. In practice the algorithm is not particularly sensitive to

the tolerance, with similar numbers of smooth values found in the same amount of time.

5.2 Large Primes Variant

The sieve tolerance can allow for one quite useful benefit. For the purposes of the square

form construction, we do not require the integers to be Lα-smooth, only the end product

to be a square value. Similar to the Quadratic Sieve, SQUFOF2 can benefit from a Large

Primes variant, where values which do not factor completely over the factor base and have a

reasonably small remainder are stored in a separate list. When two potential rows have the

same remainder, their values can be multiplied as in the algorithm, producing a pair x, y with

the square-free part of F1(x, y) Lα-smooth, and thus able to be used in the linear algebra
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and subsequent construction. This provides similar time advantages to the Quadratic Sieve,

with a similarly small additional storage requirement. In addition, dividing each x, y by

gcd(x, y) often reduces the size of the value and pair, reducing the losses from this variant

from a larger square value and thus longer reduction step.

5.3 Elimination over GF (2)

Elimination over GF (2), particularly Gaussian elimination, can be done efficiently on

computers using a slightly different representation of the matrix. Row addition can be done

as a bitwise XOR, allowing us to run the elimination algorithm with Lα integers of bit length

Lα instead of a L2α-entry matrix. In addition, using multiprecision integers, this allows for

the size of the matrix to grow dynamically, requiring significantly less space for a typical

solution and fewer computations than for the matrix interpretation for a typical solution.

Gaussian over GF (2) is also slightly faster than over a general field, as there is no need for

the division step when eliminating values from the pivot column.
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6. FUTURE WORK

6.1 Elimination Improvements

Adapting the algorithm to use the more specific study of elimination over GF (2) could

improve one of the main bottlenecks of the algorithm, and may result in a minor reduction

in the exponent of L(N).

6.2 Sparse Solutions using Compressive Sensing

A matrix over GF (2) with more rows than columns permits sparser solutions as the

number of independent solutions increases. At the small end, because we can linearly combine

solutions over GF (2), we know if we have at least 2 solutions then we have a solution of

0-norm at most 2/3rds the number of columns. One minor but potentially useful insight

from this line of thought is that, in the unlikely event of finding a solution that uses a large

proportion of the rows, we can save ourselves much work in the reduction by finding at

least one more solution. Gains for smaller solutions are less pronounced. For even sparser

solutions, we are not aware of a specific study of this over GF (2), but have found some

literature in the domain of Compressive Sensing, which deals with the finding of sparse

solutions to linear systems where they are guaranteed to exist.

The sieve being one of the dominant portions of the algorithm, and the reductions seeming

likely to be a constant factor for reasonably many rows, this will likely not reduce the

theoretical complexity. However, it may result in some performance gains in practice.

6.3 Multipliers

One useful consequence of Hypothesis 4 is that SQUFOF2, similar to SQUFOF, is equally

likely to find any factor of a given squarefree N . For N at which the algorithm would be

relatively slow, one could factor a multiple of N . This modification is analyzed by Gower

for the original SQUFOF in section 5 of [3 ]. A similar analysis may produce similar results

for SQUFOF2.
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6.4 Parallelization of the Algorithm

One thing to note about SQUFOF2 is that much of it parallelizes particularly well. Some

of the most expensive portions of the algorithm - the sieve and the composition - are easily

partitioned into tasks and distributed. Various parallel elimination algorithms for general

matrices exist, including parallelized Gaussian elimination. As is common with parallel

algorithms, there are some drawbacks in terms of order of operations, but that is not much

of a loss compared to the gains from paralellization.

There are expensive steps in the algorithm which do not have obvious parallel implemen-

tations. Most notable is the reduction of the composed form. At time of writing, we are not

aware of a published parallel algorithm for this, but the algorithm used here bears a strong

similarity euclidean algorithm for the computing of greatest common divisors, and there is a

reasonable hope such a parallel algorithm could be adapted from that well-studied problem.

As one small benefit, the reduction is not expected to be done more than a small number of

times, and likely only once or twice, and the reduction and walk can be done in a separate

process to the rest of the program allowing the continued search for other candidates even

while solutions are being analyzed.

A full description and analysis of a parallel version of the algorithm may be of interest,

especially with a parallel algorithm for form reduction.
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7. CONCLUSION

SQUFOF2 represents a lineage of factoring algorithms that has been largely forgotten. How-

ever, it is no faster than the Quadratic Sieve and, for large integers, slower than the Number

Field Sieve. In the modern world of subexponential factoring algorithms, it is more of a

curiosity than a useful tool for factoring particularly large numbers.
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