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ABSTRACT 

On-demand mobility has drastically changed the way transportation systems are operated 

and greatly improved people’s access to transportation services. Meanwhile, autonomous driving 

technology has matured over time, and driverless vehicles have already been operated in real life. 

Replacing traditional taxi fleet with reliable autonomous taxi fleet would improve the service 

quality of transportation systems even further. However, with a large fleet of fully controllable 

objects, the operational optimization of such system becomes challenging as well. Existing studies 

fail to address both the realisticness of system simulation and the advantage of optimization-based 

algorithms at the same time. To precisely measure the benefits of operating an AV taxi fleet, this 

thesis integrates a reinforcement learning algorithm into to an agent-based simulation model of a 

ride hailing system. A real-world scale simulation of New York City (NYC) taxi fleet is conducted, 

and the system performance with the algorithm is compared with the common rule-based and 

heuristic dispatch algorithms in relevant literatures. It was observed that (1) DQN dispatched 

vehicles conservatively but achieved similar rider service level with proactive dispatch methods; 

and (2) DQN outperformed all other dispatch methods evaluated in this study with significantly 

higher dispatch efficiency. 
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 INTRODUCTION 

Autonomous vehicles (AV) are receiving increasing attention as self-driving technologies 

being rapidly developed. By October 2020, more than 30 states have been testing or already 

permitted the operation of personal or commercial AVs on public roads under different regulations 

(Insurance Institute for Highway Safety, 2020). Using a fleet of fully automated (Level 5) AVs to 

provide mobility services have several potential benefits. First, since no driver is involved, vehicle 

operation in the fleet system is more controllable. AVs are expected to reduce accidents and the 

overall cost of operating an autonomous taxi fleet can be cheaper than that of a traditional taxi fleet 

due to the reduced labor costs (Martinez et al., 2015). Additionally, with vehicle-to-control-center 

and vehicle-to-vehicle connectivity, autonomous taxis can be managed more cooperatively as a 

system than human-driving taxis.  

Many researchers have built models to quantify the potential impacts of autonomous vehicle 

adoption. Pavone et al. (2012) constructed a transportation system with autonomous vehicles 

serving riders who travel among a set of stations, which is analogized as the door-to-door style 

mobility service. They proposed a system operation model by balancing the idle vehicle supply at 

the station level with real-time system feedback and observed that it reduced the number of average 

waiting riders by more than ten times while doubling the vehicle dispatch trips than the naïve fix-

rate fluid operation model (Korte and Vygen, 2008). Similarly, Zhang and Pavone (2016) 

formulated the autonomous on-demand mobility system as a closed Jackson network model and 

further proposed a system operation algorithm considering possible rider loss and road congestion. 

They tested the algorithm using a simulation experiment in the Manhattan and concluded that 

8,000 autonomous vehicles (70% of the current taxi fleet size) are needed to serve the existing 

Manhattan trip demand without introducing additional traffic congestion. Moreover, Spieser et al. 

(2016) generalized the system operation algorithm by Zhang and Pavone (2016) to accommodate 

predictions of future riders and evaluated the benefit of enhanced rebalancing algorithm versus 

different fleet sizes using simulations of Seattle and Calgary. They proposed a framework to 

determine optimal fleet size as a trade-off of multiple system performance metrics and observed 

that the benefit of rebalancing is significant in both cities even for small fleet sizes. Wallar et al. 

(2018) estimated the regional rider arrival rates as non-homogeneous Poisson process and 

proposed a fleet rebalancing algorithm using integer linear programming. They tested their 
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algorithm using simulations in Manhattan and concluded that 3,000 autonomous vehicles (with 

ride sharing) could reduce rider waiting time by 37% and unserved riders by 95% at the cost of 

increased fleet travel distance compared with the current 13,500 traditional taxi fleet. Similar 

prediction-based optimization methods, including spatiotemporal forecasting (Dandl et al., 2019) 

and long-short-term-memory (LSTM) neural network prediction (Iglesias et al., 2018), also 

consolidated the superiority of autonomous on-demand mobility systems over traditional ones. 

While these methods leveraged classic optimization approaches for fleet management, the nature 

of these algorithms is centralized and generally does not scale well versus the problem size (e.g., 

number of vehicles, resolution of stations/grids). In addition, these algorithms depend on the 

assumptions about the system (e.g., homogeneous riders’ preferences, simplified vehicle 

movement and routing), which are not realistic enough to represent modern autonomous on-

demand mobility systems.  

To account for the heterogeneous rider demands and preferences, agent-based models (ABM) 

have been increasingly used to quantify the impacts of autonomous fleets. Researchers have 

modeled autonomous taxi operation in many cities such as Austin (Fagnant (2016)), Berlin 

(Maciejewski and Bischoff (2018)), Bloomington (De Souza et al. (2020)), Lisbon (Martinez and 

Viegas (2017)), New York City (Lokhandwala and Cai, 2018; Zhang and Pavone, 2016), 

Melbourne (Javanshour et al. (2019)), Singapore (Shen et al., 2018; Spieser et al., 2014), Stuttgart 

(Heilig et al. (2017)), and Zurich (Boesch et al. (2016)) and concluded that autonomous taxis can 

help reduce taxi fleet size, alleviate traffic congestion, and improve fleet efficiency. Fagnant and 

Kockelman (2014) built a hypothetical transportation system and served this system using private 

vehicles and AV. They concluded that one AV can replace about ten private vehicles on average 

while introducing 11% extra vehicle travel distance. They also suggested that hidden benefits such 

as vehicles’ life-cycle management might further increase the value of AV fleet. Maciejewski and 

Bischoff (2018) compared the congestion effect of private vehicle system and autonomous taxi 

system in Berlin. They found that if all private vehicles were changed to autonomous taxis and the 

road capacity were doubled to accommodate the extra AV rebalance trips, there would be no 

congestion even in downtown Berlin. De Souza et al. (2020) compared the agent-based 

autonomous taxi simulations with and without vehicle rebalancing in Bloomington and observed 

that vehicle rebalancing lowered average rider waiting time and increased fleet service rate and 

coverage at the cost of extra vehicle travel distance. Martinez and Viegas (2017) simulated two 
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fleet systems with different AV capacities and compared the system-level performances with the 

current Lisbon transportation system. Their results show that total CO2 emissions can be reduced 

by 40% and system congestion can be reduced by 30% by completely adopting AV fleet. 

Lokhandwala and Cai (2018) conducted a comparative case study between traditional taxi fleet 

and autonomous taxi fleet in New York City using an agent-based model considering riders’ 

heterogeneity acceptance to sharing and trip delays. They concluded that autonomous taxi fleet 

(with ride sharing) outperformed traditional taxi fleet by more than 50% in terms of fleet sizing, 

vehicle travel distance, and vehicle occupation under different scenarios, but their autonomous taxi 

fleet operation algorithm prioritized high-demand regions (Manhattan) while under-served other 

regions comparing with traditional taxi fleet. Javanshour et al. (2019) conducted an agent-based 

simulation of AV fleet system in Melbourne considering uncertain rider demands and concluded 

that about 84% of current private vehicles can be replaced by AVs at the cost of extra vehicle 

mileage. Shen et al. (2018) proposed a novel AV-Bus hybrid service system and analyzed the 

effect of this hybrid system in Singapore under different fleet sizes, rider preferences, and synergy 

modes using agent-based models. They found that this hybrid system outperforms the current 

system in terms of service level, transportation efficiency, and financial sustainability only in 

selected situations and further attentions are needed on system operation, regulation, and design. 

Heilig et al. (2017) analyzed the benefits of autonomous taxis in the situation of multi-modal 

transportation systems in Stuttgart and observed that 85% of private vehicles can be replaced by 

autonomous taxis (with ride sharing) and that public transit usage also increased along with the 

adoption of autonomous taxis. Boesch et al. (2016) explored the autonomous taxi fleet sizing 

potentials using agent-based simulation of the current Zurich transportation patterns and concluded 

that 90% of current fleet can be replaced if the same trips were served by autonomous taxis with 

proactive vehicle rebalancing without significant increase of rider service level. 

While these models have the merit of containing real-world details of road networks and 

rider demands, vehicle dispatching is often simplified based on predetermined rules. For example, 

Heilig et al. (2017) assumed that the next day’s demand is perfectly known and calculated the 

minimal needed vehicles to serve the riders of the entire next day in each zone. Then, they added 

vehicles to zones lacking vehicles and did nothing to zones with extra vehicles only once during 

the midnight as vehicle dispatching and did not proactively relocate vehicles in-between. Fagnant 

and Kockelman (2014) and Fagnant (2016) meshed the service region at different levels, and 
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vehicles heuristically searched for dispatch locations with the fewest net vehicle supply 

progressively from coarser to finer grids. De Souza et al. (2020) rebalanced the idle vehicles to 

region centroids so that the idle vehicle supply at each region centroid is proportional to a linear 

combination of the area of the region and the number of riders in the region. Martinez et al. (2015) 

and Martinez and Viegas (2017) navigated idle vehicles to the nearest taxi stand/bus station for a 

hybrid public and taxi transportation system. Huang et al. (2020) defined similar rules, but they 

relocated idle taxis to rail stations along a congestible road network. Although parking the idle 

taxis to nearby parking lots was intended to adjust idle vehicle supply, Yan et al. (2020) compared 

no relocation with relocation to the nearest parking lot as in Huang et al. (2020) and found that the 

average rider waiting time in the no relocation case was actually shorter. The authors expressed 

the view that this counterintuitive result was due to the additional congestion induced by the 

relocation trips. Lokhandwala and Cai (2018) stored five “preferred” waiting locations (sampled 

based on historical rider demand densities) for each vehicle and when vehicles become idle, they 

were dispatched towards one of their “preferred” locations (selected randomly from the list). These 

dispatching rules are summarized in Table 1.1. 
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Table 1.1. Summary of dispatch rules. 

Reference Dispatch Rule Region Results 

Heilig et al. (2017) 
Add vehicles during 
midnight and no dispatch 
during the day 

Stuttgart 
85% private vehicles can be 
replaced (with ride sharing); 
public transit usage increased. 

Fagnant and 
Kockelman (2014) 

Search to balance rider-
vehicle mismatch among 
neighboring regions from 
coarser to finer level. 

Artificial 
One AV (with ride sharing) can 
replace ten private vehicles with 
11% extra distance. 

De Souza et al. 
(2020) 

Move vehicles to pre-
selected region centroids. Bloomington 

AV rebalancing reduces rider 
waiting time, increase service 
rate and coverage while 
increasing fleet travel distance. 

Martinez and 
Viegas (2017) 

Move vehicles to nearest 
taxi stand/bus station. Lisbon 

CO2 emissions can be reduced 
by 40% and system congestion 
can be reduced by 30% when 
fully adopt AV. 

Huang et al. (2020) Move vehicles to nearest 
rail station. Austin 

Larger fleet size leads to more 
AV adoptions in first-mile last-
mile transit connection.  

Yan et al. (2020) Move to nearest parking lot. Minneapolis-
Saint Paul 

Vehicle relocation generates 8% 
more travel distance. 

Lokhandwala and 
Cai (2018) 

Randomly sample from 
rider demand. NYC 

AV drastically outperforms 
traditional taxi in fleet sizing, 
vehicle travel distance, and 
vehicle occupation. 

 

Although these rules and heuristics usually are less computationally intensive and intuitively 

realistic approximations of real-life human dispatching strategies, they are generally less 

mathematically formulated and rigorous than optimization approaches and might not consistently 

and robustly function across different scenarios. 

Recently, reinforcement learning (RL) algorithms have been introduced by the computer 

science community to optimize vehicle dispatching. Instead of modeling the transportation system 

with specific mathematical structure and solving an optimization problem using the mathematical 

model (model-based approach), RL algorithms do not rely on strong assumptions on the specific 

dynamics of transportation systems and generally learn to adopt a strategy by consecutively 

interacting with decision-makers and gaining benefits from the decisions (model-free approach). 

Some recent studies show remarkable improvements in system efficiency by using distributed 

Deep Q-Network (DQN), a type of RL algorithm. Oda and Joe-Wong (2018) proposed a 

framework called Model-free Optimization of Vehicle dIspatch (MOVI), where they built a ride 
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hailing fleet simulator and learned an optimal dispatch policy by fitting a neural network to gain 

long-term system benefits. They assumed that vehicles globally shared information of the fleet 

system via a dispatch center but independently and identically elicited rebalancing destinations 

without coordinating with each other. These setups make DQN distributed in nature thus scalable 

computation-wise, which greatly enables real-time feedback on a large system through leveraging 

the power of parallel computing. They observed that MOVI improves rider service rate by 20% 

and 76% compared with a benchmark long-term optimization case and a no-dispatch case, 

respectively. Al-Abbasi et al. (2019) further proposed a DeepPool framework, which generalized 

MOVI to ride sharing scenario, and concluded that the DQN algorithm outperforms centralized 

algorithms in system performances in both with and without ride-sharing systems. Wen et al. (2018) 

implemented the DQN algorithm in three different demand scenarios and showed that DQN overall 

reduced fleet size by 14% while inducing minor extra vehicle travel distances but was 2.5 times 

faster than the local anticipatory method while preserving similar system performance. Similar 

studies include the optimization of people-goods hybrid transportation system (Manchella et al., 

2020), the joint-optimization of vehicle matching, pricing and dispatching (Haliem et al., 2020) 

and the pursuit of enhanced mathematical representation of the transportation system using similar 

framework (Holler et al., 2019). 

Although these studies showed that DQN algorithms improved vehicle dispatching 

performance, the simulation models used in these studies generally are over-simplified compared 

to those agent-based models built by the researchers in the transportation community. For example, 

Al-Abbasi et al. (2019) and Oda and Joe-Wong (2018) both assumed that all riders enter the system 

at the beginning of a simulation time step and impatiently leave the system at the end of this time 

step if they are not matched with a vehicle. In real world scenarios, some riders could be more 

patient and are willing to wait longer for this matching process. Agent-based models, such as De 

Souza et al. (2020) and Lokhandwala and Cai (2018), typically set a deterministic waiting time 

threshold or use a stochastic distribution that spans multiple simulation time steps to reflect this 

waiting process and heterogeneous rider patience.  Additionally, Al-Abbasi et al. (2019) and Oda 

and Joe-Wong (2018) also approximated the trip time along the road network with a pair-wise 

grid-to-grid trip time matrix for computation efficiency. Wen et al. (2018) even assumed vehicles 

move towards the destinations at a fixed speed without considering an actual road network. 

Because of the path dependency nature of the transportation system, inaccurate vehicle arrival 
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times may lead to accumulated inaccurate vehicle availability information over the long simulation 

horizon, causing biased results. The models developed by the transportation community typically 

have more detailed representation of the road network and vehicle travel path and speed. For 

example, the model developed by Lokhandwala and Cai (2018) moved vehicles on high-fidelity 

road networks and estimated travel speed in different regions based on historical data. As a result, 

the rooted mean squared error (RMSE) of predicted travel time in Lokhandwala and Cai (2018) is 

0.867 minutes, much lower than the 4.739 and 3.75 minutes of RMSE in Oda and Joe-Wong (2018) 

and Al-Abbasi et al. (2019), respectively. Levin et al. (2016) further considered congestible road 

networks and accounted for the impact of traffic volumes on trip time. In terms of simulation 

resolution, Al-Abbasi et al. (2019) and Oda and Joe-Wong (2018) discretized the simulation into 

multiple time steps and updated the behavior and status of all vehicles and riders at the beginning 

of each time step. However, this procedure might induce bias, and the interval of each time step 

needs to balance simulation efficiency and realisticness. When the interval is too small, the 

frequent dispatching is not always necessary. When the interval is too large, decision input of the 

dispatching algorithm may not be updated in time, which can bottleneck the influence of 

dispatching algorithm on the system. By contrast, Lokhandwala and Cai (2018) modeled both 

vehicles and riders as independent entities with their own timelines of events, and the events of 

rider and vehicles are triggered by their own encountered events with a resolution to 0.01 second. 

This is a more accurate and realistic setup to the real-life transportation systems. 

The system performance of an autonomous taxi fleet can be significantly affected by the 

vehicle dispatching algorithm, and evaluating the benefit of dispatching algorithms accurately in 

a realistic simulation environment as a testbed, is also crucial. For most RL literatures, the 

algorithms are evaluated using simplified simulators without detailed modeling of the 

transportation systems. Whereas in the realistic agent-based transportation models, the dispatching 

rules are not optimized. Implementing the RL algorithm in a realistic ABM simulator can 

potentially provide a solution to the above discussed limitations to better model an autonomous 

fleet.  

In this thesis, the simulator by Lokhandwala and Cai (2018) was integrated with a distributed 

DQN algorithm for vehicle dispatching, and a new reward function definition was proposed. 

Specifically, the thesis aimed to optimize vehicle dispatch efficiency by maximizing the net 

dispatch benefit of each vehicle. The developed algorithm was tested using a ride hailing system 
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of NYC as a case study and the DQN algorithm was compared with rule-based dispatching 

methods commonly used in agent-based AV modeling literatures.  

The rest of this paper is organized as follows. Section 2 mathematically defines the dispatch 

problem and the framework of DQN algorithm. Section 3 describes the simulation setup of the 

case study. Section 4 presents the results. Section 5 concludes the study and discusses limitations 

and future work. 
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 PROBLEM DEFINITION AND DQN FRAMEWORK 

2.1 Problem Setup and Objective 

This study evaluates a ride hailing system with AVs serving the travel demands. The system 

is simulated using an agent-based model adopted from Lokhandwala and Cai (2018) with the 

modification that vehicle rebalancing decision is formulated as a distributed reinforcement 

learning (RL) problem similar to the one proposed by Oda and Joe-Wong (2018) and Al-Abbasi 

et al. (2019). The idle AV dispatching aims to optimize the net dispatching benefit (defined in 

more detail in Section 2.2.3) of the entire fleet by maximizing each individual AV’s net dispatching 

benefit. The agent-based model includes three types of agents as shown in Figure 2.1: 

1) Riders who enter the system at their trip origins at specific time according to historical trip 

data and request rides from vehicles to be delivered at their trip destinations (ride pooling 

is not considered in this study); 

2) Vehicles that pick up riders from their trip origins and drop them off at their trip 

destinations while in service and relocate themselves to certain regions (based on 

rebalancing actions received from the control center) in anticipation of future demands 

while idle (in this study, all vehicles are assumed to be autonomous); 

3) A control center that has real-time geographic information and status of all vehicles and 

ride-requesting riders. The control center dispatches all vehicles, matching them with riders 

to serve requested demands, relocating the vehicles for fleet rebalancing, and routes the 

vehicles to their destination. The control center is fully aware of current system information 

and sends the information to the reinforcement learning (RL) agent to make fleet 

rebalancing decisions. 
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Figure 2.1. Model framework and the interactions between the agents-based simulation model 
and the reinforcement learning (RL) agent. 

 

It may be noted that the control center serves as a platform to communicate with vehicles 

and to conduct fleet rebalancing. Here, the study separates the RL-related computation module as 

a RL agent from the control center to better represent the interactions between the algorithm and 

the simulation environment as in a general RL setup. Furthermore, it is assumed that all RL-related 

computations are conducted inside the RL agent, and the outcome of such computations are sent 

back to each vehicle via the control center. This setup does not appear to be distributed in 

architecture; however, the RL problem is actually solved in distributed manner, and the framework 

is equivalently distributed (each vehicle is making its own decision without central coordination). 

Also, for consistency and clarity, the study refers to the operation of moving idle vehicles to new 

locations as vehicle dispatching specifically from here onwards. Details of the interactions between 

the RL agent and the simulator are discussed in Section 2.3. Generally speaking, at each simulation 

step (e.g., 1 second), occupied vehicles will move along the identified route to continue delivering 

riders; idle vehicles that are close to rider requests will be matched with the requests and pick up 

the riders; and the other idle vehicles will be dispatched for rebalancing. Because too frequent 

vehicle redistribution does not benefit system efficiency, I define ∆T (e.g., 15 minutes) as the 

rebalancing interval similar to Oda and Joe-Wong (2018) and Al-Abbasi et al. (2019) and 

discretize the simulation period into a time series T = (T0, T0 + 1×∆T, T0 + 2×∆T, … , T0 + t×∆T, 

…) with even spacing of ∆T starting from T0 (∆T is greater than the simulation step). At each 

dispatching interval (t), the control center receives system status information (st), sends the 

information to the RL agent to make dispatching decisions, and communicates the relocating 

actions (at) to idle vehicles that need to be rebalanced. After executing the relocating actions, the 
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simulation of the fleet system progresses with vehicle and rider interactions until reaching the next 

dispatching interval (t+1) and obtain a new system status (st+1). At the beginning of this new 

interval, the dispatching decisions made in the previous interval are given rewards (rt), which 

quantitatively measure the benefits gained by the dispatched vehicles during the period of ∆T (from 

t to t+1). The value of the reward is determined by a reward function r(.) using st and at (more 

details in Section 2.2.3).  

The complexity of jointly optimizing multiple vehicles scales exponentially with the number 

of vehicles, considering the possible permutations of vehicles’ actions. Therefore, following the 

same setup as in Oda and Joe-Wong (2018) and Al-Abbasi et al. (2019), I assume that the operation 

strategy of each vehicle is independent and identical, and the vehicles share the same knowledge 

on system transitions but not on each other’s actions. The optimization of the entire fleet is 

therefore simplified to the optimization of multiple identical entities. Although no centrally 

managed coordination among the vehicles is considered, this distributed setup greatly boosts the 

computation efficiency which benefits overall system performance (Al-Abbasi et al., 2019; Oda 

and Joe-Wong, 2018).  

Additionally, considering the path dependence nature of transportation systems (the feasible 

location of a vehicle in the next time step depends on the location of the vehicle at the current step), 

the long-term rewards of the system needs to be optimized, instead of just independently 

optimizing rewards at each time step. The long-term benefit can be defined as a Q value (Eq. (1), 

Sutton and Barto (2012)), which discounts future rewards exponentially and then measures the 

long-term benefit as the sum of all current and discounted future rewards. 

𝑄𝑄𝑡𝑡 = � γj-trj

∞

j=t

(1) 

Here γ < 1 is the discount factor of future rewards and rj is the reward value at time step 

(dispatching interval) j. By maximizing Qt rather than rt at time step t, the effects of at on future 

system transitions are also included in the decision-making at time step t. However, due to the 

complexity of the system, the relationship between the Q value and the system’s states (st) and 

actions (at) could not be explicitly described (Sutton and Barto (2012)).Without the explicit 

transition probabilities, it is hard to determine future states and actions and to further obtain future 

rewards. Therefore, instead of directly calculating the transition probabilities, deep neural 

networks (Q-network) are used to empirically estimate the expected Q value given current st and 
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at over possible future system transitions (Q-learning, Sutton and Barto (2012)). The Q-network 

can be denoted as 𝑄𝑄𝑡𝑡�(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡;𝜃𝜃), where θ is the parameter set of the deep neural networks. Because 

calculating the future rewards over a variable and infinite time steps is not computationally viable 

(Sutton and Barto (2012)), a second Q-network is used to estimate the future reward (more details 

in Section 2.2.3). The entire algorithm is commonly referred to as Deep Q-Network (DQN) and 

the dispatching strategy learned by DQN is referred to as DQN policy.  

The Q-networks need to be trained to learn the Q values given st and at by simulating the 

system operations and interactions iteratively until the RL agent learns an optimal and stable 

strategy. With the trained DQN, the dispatching decisions can be made based on choosing actions 

corresponding to the maximum Q value (DQN policy). Detailed definitions of st, at, rt, and the 

framework of DQN are presented in Sections 2.2 and 2.3, and the agent-based simulation model 

is explained in Section 3.2. 

2.2 Mathematical Definitions of State, Action, and Reward 

2.2.1 State 

Adopting the st definition and setup from Oda and Joe-Wong (2018) and Al-Abbasi et al. 

(2019), the system state includes four vehicle-related variables and one rider-related variable: all 

idle vehicles, idle vehicles that are on the way to previously dispatched locations, vehicles that will 

become available within 1 ∆T, vehicles that will become available within 2 ∆T, and predicted 

future rider distribution. These five variables are formulated as matrices by gridding the system 

(to create variables of similar shapes as DQN inputs). Using the case study of New York City 

(NYC) as an example, the study area is defined as from 40.5° N to 40.95° N and from 74.1° W to 

73.65° W (Figure 2.2). I define the study area to be slightly larger than the one in Oda and Joe-

Wong (2018) (from 40.6003° N to 40.9003° N and 74.0407° W to 73.7501° W) to better cover the 

entire NYC and its outskirt. The main grid system comprises of 40×40 major grids (gray lines in 

Figure 2.2).  The future rider demand is predicted using a finer system that comprises of 200×200 

minor grids (too small to show) and then being aggregated into the 40×40 major grids. A random 

forest model is fitted using the observed rider distributions of the previous 1 ∆T and 2 ∆T as inputs 

to predict the future rider distribution within the next 2 ∆T. Each major grid is approximately 

1.25km×1.25km, and each minor grid is approximately 250m×250m. Based on the grids, the count 
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of different vehicles and riders in each grid during the specified time period is calculated to form 

the variable matrices. Combining all five variables together, st is described by a 40×40×5 tensor, 

which is the main input of DQN. In Figure 2.2, the vertical and horizontal gray lines are grid 

boundaries of the 40×40 major grids, and black lines are boundaries of NYC boroughs. For an 

example vehicle located in the red grid, its action space is the yellow grids (15×15 major grids 

centered at the vehicle’s current location). 

 

Figure 2.2. Major grid system. 

2.2.2 Action 

Similar to Oda and Joe-Wong (2018) and Al-Abbasi et al. (2019), an idle vehicle can be 

dispatched within a sub-region (15×15 major grids, which is approximately 19km×19km) centered 

around its current location (as illustrated by the yellow grids for a vehicle located in the red grid 

in Figure 2.2). The size of the sub-region is determined based on the average distance that a vehicle 

can travel within 1 ∆T. I denote at,i as the dispatch action of vehicle i at dispatching cycle t, and 

At,i as the set of all possible dispatch actions of vehicle i at dispatching cycle t. Because some grids 

in the action space may not be reachable, such as geographically disjointed locations or water 

regions, I pre-determined all reachable grids through evaluating the feasibility of routing from 

locations in one grid to those in other grids based on OpenStreetMap. At,i only includes reachable 

grids that are within the action space. Vehicles that have not yet reached the previously dispatched 

destinations are ineligible to be dispatched again.    
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A series of auxiliary variables are also needed to provide the context of the dispatch action 

so both local action space and their actual locations with respect to the entire region can be captured 

by Q-network. A total of 11 15×15 matrices are used to describe the day of week, hour of day, 

position, coordinate, move coordinate, distance, and sensibleness features. Four constant matrices 

are used to describe the sine and cosine value of the day of week and the hour of day (such 

transformation can better describe time than the original variables (Oda and Joe-Wong (2018) and 

Al-Abbasi et al. (2019)). One zeros matrix with only the vehicle’s center grid set to 1 documents 

the vehicle’s current position in the action space. Two constant matrices are used to record the 

vehicle’s current location in the global space, with another two matrices documenting the location 

of the vehicle after taking different actions. One matrix is used to document the distance of all 

grids in the action space to the center grid, which indicates dispatch cost; and one indicator matrix 

is used to record the sensibleness feature -- whether each grid in at is reachable or not. All elements 

in the auxiliary matrices are normalized to be within the range of -1 to 1. These 11 matrices are 

then concatenated into a 15×15×11 tensor as the auxiliary input of the Q-network.  

2.2.3 Reward 

Generally, one can expect a good dispatch action to timely relocate idle vehicles to locations 

near possible future requests so that the future riders are more likely to be served with shorter 

waiting time. In this study, to promote the benefit of being dispatched (reflected in the total 

duration providing service to riders) and demote the cost of dispatching (in terms of dispatch trip 

duration and time spent to pick up the next passenger), the study defined the reward received by 

an idle vehicle i at time step t+1 for the action taken in time step t as rt,i, which is calculated using 

a reward function r as defined in Eq. (2). 

𝑟𝑟𝑡𝑡,𝑖𝑖 = 𝒓𝒓�𝑠𝑠𝑡𝑡,𝑖𝑖 ,𝑎𝑎𝑡𝑡,𝑖𝑖� = 𝛽𝛽0 + 𝛽𝛽1𝑑𝑑𝑡𝑡,𝑖𝑖
(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ) + 𝛽𝛽2𝑑𝑑𝑡𝑡,𝑖𝑖

(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑢𝑢𝑢𝑢) + 𝛽𝛽3𝑑𝑑𝑡𝑡,𝑖𝑖
(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) (2)  

where 𝑑𝑑𝑡𝑡,𝑖𝑖
(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ)  is the trip duration needed to reach the dispatched location given at,i; 

𝑑𝑑𝑡𝑡,𝑖𝑖
(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑢𝑢𝑢𝑢) is the time taken for the vehicle to travel from the dispatched location to the matched 

rider’s pick-up location if one or more riders are matched to vehicle i between time step t and time 

step t+1 and zero if not matched; 𝑑𝑑𝑡𝑡,𝑖𝑖
(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) is the total duration of the trips that the vehicle served 

if one or more riders are matched to vehicle i between time steps t and t+1 and zero if not matched; 

and βs are the coefficients. I chose to use duration rather than distance in the reward function 
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because trip time can better reflect the travel cost than distance in the case study city NYC (e.g., 

trips in Manhattan are often short in distance and but relatively long in duration due to congestion). 

The determination of βs is covered in Section 2.3. 

2.3 DQN Framework 

The Q-network needs to be trained before it can be used to generate effective dispatching 

actions. During the training phase, I start with a randomly initialized Q-network, run the simulation 

over the training period, and tune the Q-network parameters (𝜃𝜃, the weights and biases in every 

layer of the DQN architecture) using the observed system transitions described by the (st, at, rt, 

st+1) tuple. I refer to such a system transition tuple as a piece of experience. At each dispatching 

cycle, one piece of experience is observed. To make more efficient use of the collected experience, 

the most recent pieces of experience are stored as experience memory D using a queue of fixed 

length. When optimizing the Q-network parameters, a batch of experience is randomly sampled 

from D (a.k.a. experience replay) to tune the parameters.  

At the beginning of the training, the randomly initialized Q-network is a poor estimator of 

Q values, and only limited experience has been stored in D for the Q-network to learn. To explore 

possible new actions and exploit already observed actions, I use an ε-greedy strategy (Sutton and 

Barto, 2012) that dispatching vehicles to random locations with probability 1-ε and to “optimal” 

locations based on the current Q-network with probability ε. Based on the Q-network 𝑄𝑄�(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡;𝜃𝜃𝑡𝑡), 

the optimal action given the current system status st can be identified by computing the Q-values 

for all possible actions in the action space and choose the action that generates the greatest Q-value. 

The value of ε will be linearly increased from 0 to near 1 over time for the DQN policy to converge 

as more experience being observed.  

While the reward gained from the actions at time t (𝑟𝑟𝑡𝑡) can be directly obtained from the 

agent-based model, it is impossible to directly compute all future rewards. Therefore, a second Q-

network (𝑄𝑄�(𝑠𝑠𝑡𝑡+1,𝑎𝑎;𝜃𝜃𝑡𝑡−)) is used as an approximator for future rewards. According to Eq. (1), 𝑄𝑄𝑡𝑡 

can be viewed as the sum of 𝑟𝑟𝑡𝑡  and γ𝑄𝑄𝑡𝑡+1 . Therefore, using 𝑄𝑄�(𝑠𝑠𝑡𝑡+1, 𝑎𝑎;𝜃𝜃𝑡𝑡−)  to estimate the 

𝑄𝑄𝑡𝑡+1value, the “true” value of 𝑄𝑄𝑡𝑡 can be estimated as the target Q-value (TQ) using Eq. (3). 

𝑇𝑇𝑇𝑇𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎∈𝐴𝐴𝑡𝑡

𝑄𝑄�(𝑠𝑠𝑡𝑡+1,𝑎𝑎;𝜃𝜃𝑡𝑡−) (3) 
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For a given time step t, the analysis can compare the Q-value obtained by the current Q-

network (𝑄𝑄�𝑡𝑡 ) and the estimated true value TQt and tune the Q-network’s parameters (𝜃𝜃𝑡𝑡 ) to 

minimize the gap between the two. The gap is measured by the mean squared error between TQt 

and 𝑄𝑄�𝑡𝑡, and is referred to as the loss function Lt (Eq. (4)). Given a non-empty experience memory, 

a batch of experience are sampled from the experience memory and set the value of 𝜃𝜃𝑡𝑡 to minimize 

Lt over the batch. 

𝐿𝐿𝑡𝑡(𝜃𝜃𝑡𝑡) = 𝐸𝐸𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡,𝑟𝑟𝑡𝑡,𝑠𝑠𝑡𝑡+1 ��𝑟𝑟𝑡𝑡 + 𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎∈𝐴𝐴𝑡𝑡

𝑄𝑄�(𝑠𝑠𝑡𝑡+1,𝑎𝑎;𝜃𝜃𝑡𝑡−) − 𝑄𝑄�(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡;𝜃𝜃𝑡𝑡)�
2

� (4)  

Since the Q-network is constructed as a neural network, the minimization of Lt is achieved 

by performing backpropagation and gradient descent along the computation graph on θ. As 

𝑄𝑄�(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡;𝜃𝜃𝑡𝑡) is trained to better estimate Q-value, the 𝑄𝑄�(𝑠𝑠𝑡𝑡+1,𝑎𝑎;𝜃𝜃𝑡𝑡−) also needs to be updated. 

Every certain time steps, the values of 𝜃𝜃− is replaced by the latest θ, while the values of 𝜃𝜃− is fixed 

in-between updates. Decoupling action generation and Q-value estimation through fixed target is 

proven to be effective in preventing overestimation of Q-values (Van Hasselt et al. 2016).  

By progressively improving the quality of the estimator and choosing optimal actions 

accordingly, the DQN policy is learned to maximize the long-term benefits. The training is 

conducted using a consecutive series of simulations. Each simulation (1-day of system operation) 

is referred to as an episode. At the beginning of each episode, the simulator is reinitialized, but the 

Q-network parameters are preserved from the previous episode. At each time step, the agent-based 

model simulates the matching and movement of riders and vehicles and performs vehicle 

dispatching using DQN. After updating θ as described above at each dispatching cycle, DQN 

generates dispatch actions using the updated Q-network and sends them back to the simulator. 

Then, the simulator proceeds to the next time step and repeats the same process until the training 

phase ends. The training phase ends when the loss function defined in Eq. (4) and the average 

values of maximum Q-values generated by the Q-network for all vehicles at each time step 

stabilizes. The procedure of DQN training is summarized in Algorithm 1. 



 
 

25 

 
After the DQN has been trained, I run the agent-based model on other simulation days 

different from the training phase and fully follow the trained DQN policy without memorizing 

experience or modifying the Q-network. I compare the system performance of using the DQN 

policy to make dispatching decisions with those using rule-based dispatching to evaluate the 

benefits of integrating the RL agent into the model.  

I use a similar Q-network architecture as Oda and Joe-Wong (2018) and Al-Abbasi et al. 

(2019) as shown in Figure 2.3. Specifically, the main input st is of size 40×40×5. To condense the 

information that the main input passes to following layers, I apply three two-dimensional average 

pooling layers with pooling sizes of 7×7, 7×7 and 6×6 and strides all of 1×1, and this initial 

condensing procedure result in a tensor of size 23×23×5 and is denoted as main* input. Then, 

information is further condensed using a series of convolution layers. Three convolution layers of 

16 5×5 filters, 32 3×3 filters, and 64 3×3 filters are sequentially followed. The auxiliary input of 

size 15×15×11, containing at, is then convolved using 16 1×1 filters and concatenated with the 

convolved main input before finally being fed into two additional convolution layers, one with 128 

1×1 filters and the other one with 1 1×1 filter. The final output of DQN is a 15×15×1 matrix 

corresponding to the estimated Q values of every action at,i in the action space At,i given st. All 

convolution layers, except the last one, use tanh activation functions. At every iteration during 

training, I use RMSProp algorithm as the optimizer for DQN, and training data is passed to DQN 
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with the batch size of 64. Table 2.1 summarizes the DQN parameters used in this paper and their 

values.  

 

Figure 2.3. DQN neural network architecture and parameters of different layers. 
 

Furthermore, I conduct a series of experiments determining the values of βs, which are levels 

of emphasize on different components, and set the search space of β0 as 0, 1, 5, the search space 

of β1, β2 as 0, -1, -10, and the search space of β3 as 0, 1, 10. I ran 42 cases of experiments in total 

and determined that setting the value of β0, β1, β2 and β3 to be 5, -1, -,1 and 1 is the optimal case 

considering the dispatch cost and benefit of the fleet system. For the rest of this paper, unless 

otherwise stated, these parameter values are used in the DQN algorithm. The results of the 

parameter selection are presented in the Appendix A Figure A.1.  

A random forest model is fitted using the observed rider distributions of the previous 1 ∆T 

and 2 ∆T as input and the future rider distribution within the next 2 ∆T as output. Furthermore, this 

predicted future distribution is aggregated into a 40×40 matrix by summation with a stride of 5×5 

grids. It may be noted that I used trip data of April 2014 as the training set and data of May 7, 2014 

as the test set and achieved the RMSE of 1.571 and 1.663, respectively. 

Because the training phase duration and time step interval in this study are different from 

Oda and Joe-Wong (2018) and Al-Abbasi et al. (2019), I downscale the iteration related DQN 

parameters in this study proportionally to the ratio of training phase iteration in Oda and Joe-Wong 

(2018) and Al-Abbasi et al. (2019) and the training phase iteration in this study. Table 2.1 

summarizes the DQN parameters used in this paper and their values.  
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Table 2.1. Summary of DQN parameters. 

Parameter Value 
Discount factor γ 0.9 

Learning rate of RMSProp 0.0025 
Batch size of DQN training 64 

Exploration steps of ε-greedy 300 
ε at time step 0 in ε-greedy 0 
ε at time step 300 in ε-greedy 0.95 

Stored time steps of experience memory D 300 
Time steps of updating 𝜃𝜃− in fixed target 10 

 

Since vehicles are initially assigned to random locations in the simulator at the beginning of 

the day and this random vehicle distribution is inconsistent with how vehicles typically operate 

during the day, I do not dispatch vehicles for the first hour of each day and allow vehicle 

movements to be fully driven by riders’ travel patterns. By doing so, the starting system status at 

T0 is more similar to real-world vehicle distributions when the vehicle dispatching in the remaining 

23 hours is determined by DQN policy every ∆T minutes. I used 7 days for training and 1 day for 

evaluation. Therefore, the DQN training phase comprises 7×23×60/15 = 644 time steps 

(dispatching cycles), and the DQN evaluation phase comprises 1×23×60/15 = 92 time steps. The 

results of DQN training and evaluation are discussed in Section 4. The entire framework of DQN 

algorithm and simulator was executed on the high-performance computing community cluster 

operated by the research computing team at Purdue University. 
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 SIMULATION SETUP AND CASE STUDY 

3.1 Data 

I set up the simulation model using New York City (NYC) as a case study and used NYC 

taxi trip records (NYC DOT, 2020) to represent the demands. This publicly available dataset 

provides detailed information of taxi trip data in NYC from 2009, including pick-up and drop-off 

date, time, location, trip distance, fare amount, and passenger counts, etc. Trip records of April 1-

7 and May 7, 2014 were used for training and evaluation, respectively. I used 2014 data because 

they better represent taxi travel demands before the introduction of transportation network 

companies (TNC) such as Uber and Lyft. 

3.2 Simulator 

The agent rules and interactions in the system, modified from Lokhandwala and Cai (2018), 

is designed to be as follows. 

1) Riders enter the system according to the raw trip data and wait to be matched with an idle 

vehicle. If a rider-vehicle pair is matched by the control center, the rider will wait to be 

picked up by the vehicle. If no match is found within the rider’s maximum acceptable 

waiting time, the rider will leave the system unserved. 

2) Vehicle activities, including matching and dispatching, are determined by the control 

center. 

a. Matching activities follow a deterministic algorithm. The closest idle vehicle within 

the rider’s pick-up location is assigned to the rider. A maximum acceptable waiting 

time was also designed to reflect rider heterogeneity. This maximum waiting 

threshold for each rider was assumed to independently and identically follow a 

uniform distribution between 300 and 500 seconds similar to Lokhandwala and Cai 

(2018). 

b. Dispatch activities, generated by the DQN policy, occur at every ∆T. When a dispatch 

cycle is triggered, all eligible idle vehicles are directed to new destinations and start 

moving immediately or stay idle at their current locations. Moving vehicles, no matter 

occupied or not, are excluded from being dispatched or matched. 
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As an example, Figure 3.1 illustrates how riders and vehicles interact in this simulated 

system. When the vehicle is idle, it is given a new dispatch destination and moves toward the new 

location. Before reaching the assigned dispatched location, the vehicle is not allowed to be 

matched with a rider or to be dispatched to another location. Based on the vehicle’s location and 

system state, it is possible that the vehicle is not assigned to another location while idle, but in this 

specific example, the vehicle is dispatched. Meanwhile, a rider enters the system and requests an 

idle vehicle through the control center. After the vehicle reaches the new location, it becomes idle 

again and waits to be matched by the control center, which matches the rider with the vehicle. The 

vehicle starts moving to the rider’s pick-up location, and the matched rider waits to be picked-up 

by the vehicle. The ride-hailing service starts when the vehicle arrived at the pick-up location, and 

the vehicle, together with the rider, moves toward the rider’s trip destination location to drop off 

the rider. When the vehicle reaches the drop-off location, the rider leaves the system, and the 

vehicle becomes idle again.  

 

 

Figure 3.1. Example of how a vehicle is dispatched and then serves a rider. 
 

Following the system dynamics defined above, there are three major components in vehicle 

and rider behaviors related to fleet system efficiency: vehicle dispatch, rider wait-for-pick-up, and 

service. In Section 4, I collected simulation logs and analyzed system efficiency from the 

perspectives of these three components, which are referred to as dispatch, pick-up, and service 

behaviors in the following discussions. The simulation model is programmed using AnyLogic 

software. 

3.3 Benchmark Dispatch Rules 

In this study, I used a fleet size of 8,000 AVs because this fleet size is sufficient to serve 

NYC taxi demands (Lokhandwala and Cai, 2018). I did not consider ride pooling in this study 
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because the focus is on improving vehicle dispatching, but the developed model can be applied to 

study ride pooling in future research. To compare the dispatching performance of DQN policy 

with the heuristic rule-based dispatching, I developed five benchmark dispatching rules. All 

benchmark dispatching rules relocate idle vehicles every ∆T to have consistent dispatching cycle 

with the DQN policy. 

 To set the lower bound of the system performance, the “No-Dispatch” rule performs no 

rebalancing and assumes idle vehicles will park on roadside. Because the drop-off locations may 

not always have roadside parking available, the “Nearest-All” dispatch rule direct idle vehicles to 

the nearest parking lots. Common choices of parking lots are curbside parking slots (Yan et al. 

(2020)) and selected parking depots (De Souza et al., 2020; Huang et al., 2020; Martinez and 

Viegas, 2017). In this study, I considered all NYC curbside parking slots (NYC Open Data, 2016). 

For a centrally managed commercial AV taxi fleet, it is also possible to set up parking depots. The 

“Nearest-Cluster” dispatching rule directs idle vehicles to one of the 10 parking depots selected as 

the centroids of rider pick-up locations on the evaluation day using k-means algorithm (relocating 

idle vehicles to nearby parking depots where riders are more likely to appear). The distributions of 

“Nearest-All” and “Nearest-Cluster” parking lots are shown in the Appendix A Figure A.2 and 

A.3. The “Hotspot” dispatch refers to the heuristic dispatch algorithm modified from Lokhandwala 

and Cai (2018) that idle vehicles randomly choose from pre-sampled dispatch locations from the 

spatial frequency distribution of historical trip pickup locations.  

 I also implemented the heuristic dispatch algorithm by Fagnant and Kockelman (2014), 

denoted as “Hierarchical-Fill”. There are four sequentially applied dispatch strategy (R1 to R4) in 

Hierarchical-Fill. The method starts with the most rider-vehicle imbalanced region (either with 

idle vehicles surplus or shortage) and then either moves surplus idle vehicles from surrounding 

regions to this region or move surplus idle vehicles in this region towards surround regions from 

coarser level (R1) to finer level (R2). After the initial rebalancing at macro level, Hierarchical-Fill 

spreads the densely distributed idle vehicles to surrounding local regions with no idle vehicles (R3 

and R4) at micro level, aiming for faster rider pick up in these regions when there are requests. 

Note that I used the 40×40 major grid in this study as the finer grid as in the R2 strategy of 

“Hierarchical-Fill” and a 5×5 grid aggregated from the 40×40 major grid as the coarser grid in the 

R1 strategy of “Hierarchical-Fill”. The coarser and finer grid are shown in the Appendix A Figure 

A.4.  
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Because these dispatch methods relocate idle vehicles differently, their impacts on the fleet 

system are different as well. To quantify and compare both the temporal and the spatial impact of 

dispatch trips on the fleet system, a set of system performance metrics are defined to measure the 

impacts of different dispatch methods. To compare vehicle performance of the fleet system, I 

summarized the distributions of dispatch, pick-up, and service trips, including the mean values and 

the total values. To compare rider service level of the fleet system, I summarized the rider service 

rate and rider mean waiting time. System-wise, I show the fleet traveled distance of different 

components and average in-operation proportion (average proportion of vehicle in-operation time 

out of the entire day) as measurement of fleet utilization. Moreover, to compare the temporal 

pattern of rider service level, I analyzed the time series of the number of served riders in NYC and 

the number of idle vehicles in Manhattan during the evaluation day, since most NYC trips are in 

Manhattan (Lokhandwala and Cai, 2018). Furthermore, to specifically quantify the efficiency of 

dispatch methods, I set No-Dispatch as the baseline and defined fleet dispatch efficiency of a 

dispatch method m as in Eq. (5). 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑚𝑚 =
#𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑚 − #𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁−𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑚𝑚
(5) 

Here, the benefit of dispatch is measured as the number of extra served riders of method m 

compared with No-Dispatch and the cost of dispatch as the extra fleet dispatch distance using 

method m (the fleet dispatch distance of No-Dispatch is set to be zero). Generally speaking, the 

fleet dispatch efficiency is defined to be the average dispatch benefit over dispatch cost. Lastly, 

using the definition of fleet dispatch efficiency, I evaluated the trade-off of fleet dispatch efficiency 

and rider service rate of different dispatch methods. 
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 RESULTS AND DISCUSSION 

As mentioned in Section 2.3, I denote the average value of Q-network loss function as “loss” 

and the average value of maximum Q-values as “Q max”, and I determine whether the DQN policy 

stabilizes and converges by checking if Q max and loss change smoothly to their optimums. Figure 

4.1 shows how the two learning curves progresses throughout the iterations in the training phase. 

The Q max curve increases rapidly to the value of 52 and remains at approximately 51 for the rest 

of the training. The loss curve gradually decreases from a very large number owing to the 

initialization to around 0.7 by the end of the training. The stability in learning curves suggests that 

the DQN parameters are reasonable. 

 

 

Figure 4.1. Q value and loss curves during training for optimal case. 
 

I measure the system performance of the fleet system by inspecting the average behavior 

of vehicles and riders in the system during the evaluation day. Specifically, I define different 

metrics of describing vehicle service performance and rider service level. Overall, DQN dispatch 

introduced similar extra vehicle travel distance with the conservative algorithms (Nearest-All and 

Nearest-Cluster) but achieved similar rider service level with the proactive algorithms 

(Hierarchical-Fill and Hotspot). I explain the discrepancy of vehicle service performance and rider 

service level and compare the system-level performance of benchmarks and DQN in Sections 4.1, 

4.2, and 4.3. 
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4.1 Vehicle Performance 

As explained in Section 3.2, vehicle behavior includes three major components: dispatch, 

pick-up, and service. Table 4.1 summarizes the count, mean distance traveled by each vehicle, 

fleet total distance, and the proportion of total distance out of the fleet total travel distance for each 

component in the benchmarks and DQN. Note that continuous dispatch actions (i.e., being 

dispatched again after a previous dispatch without serving riders in between) are counted 

separately as two dispatching. Moreover, because the pattern of vehicle time and distance metrics 

are highly similar, I only present vehicle distance metrics.  
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Table 4.1. Vehicle performance comparison. 

Dispatch 
Method 

Fleet 
Traveled 
Distance 
(km) 

Dispatch Pick-up Service 

Count Mean 
(km) Total (km) Proportion 

(%) Count Mean 
(km) 

Total 
(km) 

Proportion 
(%) 

Mean 
(km) Total (km) Proportion 

(%) 
No-
Dispatch 1,771,996 0 0.00 0.00 0.00 343,410 0.99 339,976 19.18 4.17 1,432,020 80.82 

Nearest-All 1,797,249 34,733 0.55 19,103 1.06 344,602 1.00 344,602 19.17 4.16 1,433,544 79.77 
Nearest-
Cluster 1,707,355 15,375 4.56 70,110 4.11 309,498 1.15 355,923 20.85 4.14 1,281,322 75.04 

Hotspot 3,707,890 274,002 6.31 1,728,953 46.63 418,380 0.53 221,741 5.98 4.20 1,757,196 47.39 
Hierarchica
l-Fill 2,613,284 158,060 4.79 757,107 28.97 411,569 0.56 230,479 8.82 3.95 1,625,698 62.21 

DQN 1,972,327 19,202 3.95 75,848 3.85 400,101 0.83 332,084 16.84 3.91 1,564,395 79.31 
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Overall, the fleets following the Hotspot and Hierarchical-Fill dispatching rules travelled 

about twice of the distances than the other methods, and the dispatching trips are the major 

contributor of the extra travel in both cases with ten-times more total dispatch distance. The pattern 

for pick-up trips is opposite to dispatch trips. Hotspot and Hierarchical-Fill fleet spent less distance 

picking up riders than the other methods. However, the reduction of pick-up distance in Hotspot 

and Hierarchical-Fill is not large enough to compensate the extra distance caused by dispatching. 

4.1.1 Vehicle Dispatch 

For the dispatching component, the vehicle performance of Nearest-All is highly similar 

with No-Dispatch, because NYC curbside parking slots are widely distributed across the entire 

city and the additional dispatch trip is trivial (1.06% of total distance, 19,103km dispatch trip). 

Because the only difference among all methods is the dispatch component, both the pick-up and 

service component of Nearest-All are highly similar with those of No-Dispatch because of similar 

dispatch component. Nearest-Cluster and DQN promote fewer dispatch trips in number but longer 

trip in distance, and the fleet total dispatch distance of these two methods are about three times 

longer than Nearest-All. Despite the longer fleet dispatch distance of Nearest-Cluster and DQN 

compared with Nearest-All, they are still conservative dispatch methods with dispatch distance 

proportion less than 5%. By contrast, Hotspot and Hierarchical-Fill are much more proactive in 

vehicle dispatching. Hotspot fleet spent 1,728,953 km in dispatch trips, which is 46.63% of its 

fleet total travel distance, and Hierarchical-Fill fleet spent 757,107 km in dispatch trips, which is 

28.97% of its fleet total travel distance. While the mean dispatch distance of Hotspot and 

Hierarchical-Fill are similar with conservative methods, the main reason of extra dispatch distance 

comes from the number of dispatch trips, which are larger by one order of magnitude. I illustrate 

the probability density distribution of dispatch trips’ distance for each method in Figure 4.2. The 

dispatch trips of Nearest-All are observably shorter than all other methods, followed by DQN, 

Nearest-Cluster, Hierarchical-Fill, and Hotspot. The dispatch trip distance distributions of DQN 

and Nearest-Cluster are more concentrated than the rest and show slightly bimodal pattern, 

suggesting that there might be some typical dispatch modes.  
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Figure 4.2. Probability density distribution of dispatch trip distance. 

 
I further visualize the spatiotemporal distribution of dispatch origination and destination 

for each method. To be consistent with Lokhandwala and Cai (2018) and to better compare the 

spatiotemporal patterns, I divided a day into four periods: 0:00-7:00 (early morning), 7:00-15:00 

(morning peak), 15:00-17:00 (afternoon), and 17:00-23:59 (evening peak). I chose to show the 

dispatch origination distribution during morning peak only as a representation of the entire day. 

Owing to the significant dispatch frequency differences among different dispatch methods, 

different color scales are used to represent the number of dispatches in each grid. Figure 4.3a to e 

show the dispatch origination distribution during morning peak for Nearest-All, Nearest-Cluster, 

Hotspot, Hierarchical-Fill, and DQN respectively. Similarly, Figure 4.3f to j show the dispatch 

destination distribution for corresponding methods.  

 

Figure 4.3. Distributions of dispatch originations and destinations for different dispatch methods. 
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As explained in Section 3.3, the curbside parking slots in NYC are widely distributed over 

the entire city, and vehicles can easily find a nearby parking slot without driving too far, which 

explains why Nearest-All dispatch originations are similar with Nearest-Cluster dispatch 

destinations. The pattern of dispatch origination distribution is similar with Nearest-All, but the 

dispatch destination distributions are different. Since I use scattered parking depots as dispatch 

destinations rather than the widely spread curbside parking slots as in Nearest-All, the idle vehicles 

headed towards the selected depots as expected. The dispatch destinations of Hotspot are randomly 

sampled from the same NYC taxi demands throughout the entire day. As result, the density 

distributions of dispatch destinations are highly similar over the four periods, but the number of 

dispatch trips varies over the four periods as the number of idle vehicles is different. The 

distribution of dispatch destinations is highly concentrated in Manhattan compared with Nearest-

All and Nearest-Cluster, which implies that the idle vehicle supply in Manhattan should be higher 

for Hotspot. I show this pattern in Section 4.3. Compared with Hotspot, the dispatch destinations 

are less focused on Manhattan and are more spread-out over the entire NYC. The reason is that in 

the case of NYC, trip demand is heavily concentrated in Manhattan, which means that Manhattan 

will mostly absorb idle vehicles from surrounding regions according to the rule of R1 and R2. 

With the locally search restriction and the awareness of rider-vehicle imbalance, Hierarchical-Fill 

should prioritize shorter and fewer dispatch trips than Hotspot, where idle vehicles mostly move 

towards Manhattan regardless of how far they are from Manhattan and how many vehicles are 

already in Manhattan. This is consistent with the actual observation from Table 4.1 that 

Hierarchical-Fill dispatch about 40% less frequently and 24% shorter trips than Hotspot. Similar 

with Hotspot and Hierarchical-Fill, DQN heavily focuses on moving vehicles to high-demand 

regions (mainly Manhattan and JFK region) as well. However, DQN only chooses to relocate 

surrounding vehicles that are close enough (Manhattan borders, like Bronx and north Brooklyn). 

For idle vehicles in low-demand regions, DQN does not even rebalance them possibly due to the 

low expected matching possibility of any dispatch action. In addition to the similar features of 

local dispatch restriction and rider-vehicle distribution awareness as in Hierarchical-Fill, DQN 

takes the cost of dispatch trips into consideration and further optimizes vehicle dispatching rather 

than using the rules as in Hierarchical-Fill. With the better problem formulation than Hierarchical-

Fill, DQN dispatch about 90% less trips than Hierarchical-Fill. 
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4.1.2 Vehicle Pick-up 

As explained in Section 4.1.1, the vehicle performance of Nearest-All is highly similar with 

No-Dispatch as well for pick-up component. The mean pick-up distance of Nearest-Cluster is 

longer than No-Dispatch and Nearest-All. Given the observation that the dispatch distance of 

Nearest-Cluster is about three times higher than Nearest-All as explained in Section 4.1.1, Nearest-

Cluster in this study is even worse than Nearest-All and No-Dispatch. Considering the dispatch 

origination and destination patterns of Nearest-Cluster in conjunction with Hotspot, Hierarchical-

Fill, and DQN, I suspect that this is related to the selection of parking depots. While Hotspot, 

Hierarchical-Fill, and DQN all involve moving idle vehicles to Manhattan, Nearest-Cluster 

navigate some idle vehicles around Manhattan to parking depots in Manhattan outskirts as depicted 

in Figure 4.3. I also show that the idle vehicle supply of Nearest-Cluster is indeed even lower than 

Nearest-All in Section 4.3. Hotspot and Hierarchical-Fill are observed to have shortest mean pick-

up distance, and DQN has a mean pick-up distance between the proactive methods and the 

conservative methods. This gap might be related to vehicle dispatch distance and dispatch method 

as explained in Section 4.1.1. I also observed that rider service rate is negatively correlated with 

vehicle pick-up time, and I discuss this pattern in Section 4.3. I illustrate the probability density 

distribution of pick-up trips’ distance for each method in Figure 4.4. The pick-up trips of Hotspot 

and Hierarchical-Fill are similarly distributed and shortest among all methods. While the pick-up 

trips of No-Dispatch, Nearest-All, and Nearest-Cluster all are similarly distributed and longest 

among all methods, DQN is also similarly distributed with them but has a smaller mean value. 

 

Figure 4.4. Probability density distribution of pick-up trip distance. 
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4.1.3 Vehicle Service 

I illustrate the probability density distribution of service trips’ distance for each method in 

Figure 4.5. The distributions of service trip distance are highly similar for all methods, which 

means that none of the dispatch methods prioritizes to serve trips of a certain length. As result, the 

fleet total service distance is linearly dependent on the number of served riders as shown in Table 

4.1. 

 

Figure 4.5. Probability density distribution of service trip distance. 

4.2 Rider Service Level 

I define rider service rate as the proportion of served riders out of all riders entered the system 

and rider waiting time as the duration a served rider spent waiting to be matched with an idle 

vehicle plus the duration the matched vehicle spent picking up the rider. Similar with vehicle 

performance, I compare the rider service level of the benchmarks and DQN in Table 4.2. 
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Table 4.2. Rider service level comparison. 

Dispatch Method Number of 
Served Riders Service Rate (%) 

Mean Waiting 
Time (unit: 
minute) 

No-Dispatch 343,410 67.17 3.94 
Nearest-All 344,602 67.40 3.97 
Nearest-Cluster 309,498 60.54 4.56 
Hotspot 418,380 81.83 2.02 
Hierarchical-Fill 411,569 80.50 2.13 
DQN 400,101 78.26 3.01 

 

As explained in Section 4.1.1, the rider service level of Nearest-All is also highly similar 

with No-Dispatch. For Nearest-Cluster, the rider service level is worse than No-Dispatch and 

Nearest-All. Despite the longer fleet total dispatch distance than No-Dispatch and Nearest-All, the 

dispatch trips of Nearest-Cluster negatively contributed to the fleet, and the method underserved 

the trip demands than the case even without the dispatch trips. By contrast, Hotspot and 

Hierarchical-Fill achieved the best rider service level with the extra dispatch trips, suggesting that 

the dispatch trips contributed positively to the fleet. DQN, with slightly longer fleet dispatch 

distance than conservative methods but much shorter than proactive methods, achieved similar 

rider service level with proactive methods, which suggests that the positive contribution of DQN 

dispatch trips are more efficient than Hotspot and Hierarchical-Fill.  

Moreover, the spatial difference in rider service rate is shown in Figure 4.6. I set No-

Dispatch as the baseline and show the grid-level rider service rate ratio of other dispatch methods 

compared to the baseline values. Note that Figure 4.6a-e correspond to Nearest-All, Nearest-

Cluster, Hotspot, Hierarchical-Fill, and DQN methods, respectively. As explained in Section 4.1.1, 

the spatial pattern of rider service rate of Nearest-All is highly similar with No-Dispatch as 

expected, and Nearest-Cluster is observed to suffer a system-wide underservice in the entire NYC 

region due to poorly selected parking depot. For high-demand regions like Manhattan and JFK 

area, Hotspot, Hierarchical-Fill, and DQN are observed to have better service rate than baseline 

owing to the dispatch focus as depicted in Figure 4.3. For low-demand regions, the Hotspot method, 

without awareness of rider and vehicle distribution nor constraints on dispatch trips, is observed 

to suffer a severe underservice as a result of overly pulling way idle vehicles in low demand regions. 

By contrast, the Hierarchical-Fill method, with a local search constraint (R1 and R2) and a 
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proactive vehicle spread-out mechanism (R3 and R4), focused on high-demand regions less than 

the Hotspot method and achieved decent service rate in low demand regions. With the definition 

of dispatch benefit and cost and the optimization framework, DQN also achieved better service 

rate on high-demand regions. However, DQN did not proactively promote dispatch in low-demand 

regions like Hierarchical-Fill as shown in Figure 4.3. DQN maintained some idle vehicles in these 

regions by not dispatching them, which helped alleviating the severe underservice encountered by 

the Hotspot method but not as effective as Hierarchical-Fill. 

 

Figure 4.6. Grid-level rider service rate ratio. 
 

Moreover, I quantify and compare the dispatch efficiency of these methods in Figure 4.7. In 

addition, I notice that rider service rate is negatively correlated with mean rider waiting time, which 

suggests that the methods with better rider service level not only identified more riders but also 

located vehicles closer to the served riders. 

 

Figure 4.7. Mean rider waiting time versus service rate. 
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4.3 System-Level Comparison 

To quantify the difference in fleet utilization caused by different dispatch methods, I further 

breakdown the different components of fleet traveled distance in Figure 4.8. It is observed that the 

fleet service and pick-up components are similar for all dispatch methods and the major difference 

is the dispatch components. Specifically, Hotspot and Hierarchical-Fill have observably higher 

dispatch components than the rest dispatch methods because of their active dispatch strategies. 

 

Figure 4.8. Components of fleet traveled distance. 
 

Moreover, to reflect the relationship between vehicle in-operation time and rider service rate, 

I compare the average in-operation proportion versus rider service rate for all dispatch methods in 

Figure 4.9. It is observed that the average in-operation proportion is positively correlated with and 

mostly linear to rider service rate, which means that different dispatch methods served riders with 

similar service time and vehicle in-operation time is mainly caused by the number of served riders 

rather than the service time of each rider.  
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Figure 4.9. Average vehicle occupancy versus service rate. 
 

In addition, I notice that the number of served riders in each hour are different for different 

dispatch methods as shown in Figure 4.10. It is observed that the rider service rate advantages of 

Hotspot, Hierarchical-Fill, and DQN are more distinguishable to the other dispatch methods during 

morning peak and evening peak owing to the dispatch focus as explained in Section 4.1.1. 

 

Figure 4.10. Number of served riders per hour. 
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Furthermore, to reflect the idle vehicle distribution of different dispatch methods, I compare 

the number of idle vehicles in Manhattan for different dispatch methods during the evaluation day 

in Figure 4.11. The results show that Hotspot, Hierarchical-Fill, and DQN expectedly maintained 

more idle vehicles in Manhattan than other dispatch methods.  

 

Figure 4.11. Number of idle vehicles in Manhattan. 
 

Lastly, to quantify and compare the net benefit brought by the dispatch trips of different 

dispatch methods to the fleet system, I compare the dispatch efficiency among dispatch methods 

as in Figure 4.12. With fewer served riders than No-Dispatch, Nearest-Cluster is negative in fleet 

dispatch efficiency as expected. Nearest-All achieved slightly positive fleet dispatch efficiency 

(around 0.1 extra rider/meter) with dispatch trips to nearest parking lots, which suggests that the 

minor extra dispatch distance is contributing positively and not very effectively. Despite that 

Hotspot and Hierarchical-Fill served more riders, their fleet dispatch efficiencies are actually 

similar with Nearest-All when averaged over the extremely long dispatch distances. By contrast, 

the fleet dispatch efficiency of DQN (around 0.75 extra rider/meter) is about seven times higher 

than other methods with positive dispatch efficiency, which suggests that DQN is the most efficient 

dispatch method of all the approaches. 
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Figure 4.12. Fleet dispatch efficiency versus service rate. 
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 CONCLUSION AND FUTURE WORK 

In summary, I integrated a reinforcement learning-based algorithm (DQN) into an agent-

based autonomous taxi fleet model and evaluated the DQN algorithm using a real-world scale 

simulation. I compared the performance of DQN with common dispatch methods in related 

literatures. While DQN slightly underserved the fleet comparing with the best serving method, 

DQN is much more efficient than all of them considering the cost of dispatching. The benefit of 

DQN also lies in its distributed nature, which scales well with the size of dispatch problem.  

Multiple aspects of this study can be improved in future research. To address the service rate 

deficiency, a better spatiotemporal global coordination (e.g., multi-step and long-distance dispatch) 

and a better rewarding mechanism are needed. In addition, the rider service level itself can be 

reflected in the reward function definition in terms of some variables. It would be more realistic to 

run continually for multiple days without the vehicle initialization at the beginning of each day. 

Moreover, this simulator can be easily generalized to a ride-sharing scenario and a station-based 

electric vehicle scenario. It would be interesting to migrate this DQN framework to these similar 

operational problems, but more sophisticated st, at, rt definitions need to be designed. A congestible 

road network can be included into the simulator as well to consider the impact of dispatch trips on 

congestion. Some other influencing factors, such as trip fare pricing, long-term changes of rider-

system interactions can be introduced into the decision-making of the system as well, and their 

joint effect can be further explored by more sophisticated experiments. 
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APPENDIX A. SUPPLEMENTARY FIGURES. 

 

Figure A.1. Scatter plot of fleet dispatch distance versus service rate for all tested and selected 
DQN β hyperparameters. (a)-(d) show the patterns for β0, β1, β2, and β3 respectively. 

 

 
Figure A.2. Spatial distribution of Nearest-All parking slot. 
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Figure A.3. Spatial distribution of Nearest-Cluster parking depot. 

 

 
Figure A.4. Coarser and finer grid systems of Hierarchical-Fill. 
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Figure A.5. Probability density distribution of service trip time. 

 

 

 

 
Figure A.6. Probability density distribution of pick-up trip time. 
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Figure A.7. Probability density distribution of dispatch trip time. 

 

 

Figure A.8. Distribution of dispatch origination and destination for Nearest-All. (a)-(d) show the 
dispatch origination distributions for early morning, morning peak, afternoon, and evening peak. 
Similarly, (e)-(h) show the dispatch destination distributions for the corresponding four periods. 
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Figure A.9. Distribution of dispatch origination and destination for Nearest-Cluster. (a)-(d) show 
the dispatch origination distributions for early morning, morning peak, afternoon, and evening 
peak. Similarly, (e)-(h) show the dispatch destination distributions for the corresponding four 

periods. 
 

 

 
Figure A.10. Distribution of dispatch origination and destination for Hotspot. (a)-(d) show the 

dispatch origination distributions for early morning, morning peak, afternoon, and evening peak. 
Similarly, (e)-(h) show the dispatch destination distributions for the corresponding four periods. 
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Figure A.11. Distribution of dispatch origination and destination for Hierarchical-Fill. (a)-(d) 
show the dispatch origination distributions for early morning, morning peak, afternoon, and 

evening peak. Similarly, (e)-(h) show the dispatch destination distributions for the corresponding 
four periods. 

 
 

 
Figure A.12. Distribution of dispatch origination and destination for DQN. (a)-(d) show the 

dispatch origination distributions for early morning, morning peak, afternoon, and evening peak. 
Similarly, (e)-(h) show the dispatch destination distributions for the corresponding four periods. 
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