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ABSTRACT

Binary code analysis is widely used in many applications, including reverse engineering,

software forensics and security. It is very critical in these applications, since the analysis of

binary code does not require source code to be available. For example, in one of the security

applications, given a potentially malicious executable file, binary analysis can help building

human inspectable representations such as control flow graph and call graph.

Existing binary analysis can be roughly classified into two categories, that are static anal-

ysis, and dynamic analysis. Both types of analysis have their own strengths and limitations.

Static binary analysis is based on the result of scanning the binary code without executing it.

It usually has good code coverage, but the analysis results are sometimes not quite accurate

due to the lack of dynamic execution information. Dynamic binary analysis, on the other

hand, is based on executing the binary on a set of inputs. On the contrast, the results are

usually accurate but heavily rely on the coverage of the test inputs, which sometimes do not

exist.

In this thesis, we first present a novel systematic binary analysis framework called X-

Force. Basically, X-Force can force the binary to execute without using any inputs or proper

environment setup. As part of the design of our framework, we have proposed a number

of techniques, that includes (1) path exploration module which can drive the program to

execute different paths; (2) a crash-free execution model that could detect and recover from

execution exceptions properly; (3) overcoming a large number of technical challenges in

making the technique work on real world binaries.

Although X-Force is a highly effective method to penetrate malware self-protection and

expose hidden behavior, it is very heavy-weight. The reason is that it requires tracing indi-

vidual instructions, reasoning about pointer alias relations on-the-fly, and repairing invalid

pointers by on-demand memory allocation. To further solve this problem, we develop a

light-weight and practical forced execution technique. Without losing analysis precision,

it avoids tracking individual instructions and on-demand allocation. Under our scheme, a

forced execution is very similar to a native one. It features a novel memory pre-planning

phase that pre-allocates a large memory buffer, and then initializes the buffer, and variables
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in the subject binary, with carefully crafted values in a random fashion before the real exe-

cution. The pre-planning is designed in such a way that dereferencing an invalid pointer has

a very large chance to fall into the pre-allocated region and hence does not cause any ex-

ception, and semantically unrelated invalid pointer dereferences highly likely access disjoint

(pre-allocated) memory regions, avoiding state corruptions with probabilistic guarantees.
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1. INTRODUCTION

Over the last decade, the number of computer programs has increased significantly. A

great variety of software are produced by software companies and programmers. Since 1995,

Internet has tremendous impact, which includes rising of software distribution and usage.

Further, a huge amount of smartphone applications built on top of mobile device operating

systems (e.g. iOS, Android) are being developed and used since 2007, and is increasing

exponentially.

Software security becomes more and more important with the fast growth of software

market. Due to the complexity of software system, developers sometimes make logic mistakes

and embed security vulnerabilities into software programs. Those security vulnerabilities

can have significant impacts on a lot of companies and individuals that are using flawed

computer systems. For example, buffer overflow vulnerabilities might be used by malicious

attackers to obtain the remote control of computer systems. Nowadays, malware targeting

enterprises has become highly sophisticated. Such malware may hide in the victim machine

for a long period of time and manifest no sign of malicious activity, until certain conditions

are satisfied (e.g. becoming online, reaching to specific time). Based on the huge impact of

security vulnerabilities, the techniques of analyzing binary become very important, because

most malicious software only present in form of binary without having any source code. The

goal of the analysis is to reveal the malware’s intent, behavior, and strategy, so that to detect

on-going or finished attacks and even prevent future attacks.

Analyzing binary program directly without using source code is very challenging due to

the lack of semantic information. Existing binary analysis can be classified into either static

analysis or dynamic analysis. Static analysis methods usually scan the binary code directly

without running it. Dynamic analysis methods, on the other hand, execute the binary

program while monitoring the execution process and manipulating the dynamic execution

states. However, they both have their own strengths and limitations. The advantages of

static analysis include having good code coverage, and good scalability in term of binary size.

However, due to the lack of dynamic execution information, the results can be sometimes

inaccurate. On the contrast, dynamic analysis methods are able to obtain accurate result
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by monitoring the real program executions. But the code coverage can be fairly low, since

they heavily rely on the input sets.

1.1 Research Challenges

Binary Analysis For Code Coverage. Binary analysis has many security applications. For ex-

ample, given an unknown, potentially malicious executable, binary analysis helps construct

its human inspectable representations such as control flow graph (CFG) and call graph (CG),

with which security analysts can study its behavior [1 ]–[6 ]. Binary analysis also helps iden-

tify and patch security vulnerabilities in COTS binaries [7 ]–[11 ]. Valuable information can

be reverse-engineered from executable through binary analyses. Such information includes

network protocols Ma:IMC’06:Protocol:Inference, [12 ]–[16 ], input formats [17 ]–[19 ], variable

types, and data structure definitions [20 ]–[22 ]. They can support network sniffing, exploit

generation, VM introspection, and forensic analysis.

Existing binary analysis for code coverage can be roughly classified into static, dynamic,

and symbolic (concolic) analysis. Static analysis analyzes an executable directly without

executing it; dynamic analysis acquires analysis results by executing the subject binary;

symbolic (concolic) analysis is able to generate inputs to explore different paths of a binary.

These different styles of analyses have their respective strengths and limitations. Static

analysis has difficulty in handling packed and obfuscated binaries. Memory disambiguation

and indirect jump/call target analysis are known to be very challenging for static analysis.

Dynamic binary analysis is based on executing the binary on a set of inputs. It is widely

used in analyzing malware. However, dynamic analysis is incomplete by nature. The quality

of analysis results heavily relies on coverage of the test inputs. Moreover, modern malware

[23 ]–[25 ] has become highly sophisticated, posing many new challenges for binary analysis.

Symbolic [26 ] and concolic analysis [1 ], [7 ], [27 ], [28 ] have seen much progress in recent

years. Some handle binary programs [1 ], [5 ]–[7 ] and can explore various paths in a binary.

However, difficulties exist when scaling them to complex, real-world binaries, as they operate

by modeling individual instructions as symbolic constraints and using SMT/SAT solvers to

resolve the generated constraints. Despite recent impressive progress, SMT/SAT remains
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expensive. While symbolic and concrete executions can be performed simultaneously so that

concrete execution may help when symbolic analysis encounters difficulties, the user needs

to provide concrete inputs, called seed inputs, and the quality of seed inputs is critical to

the execution paths that can be explored. With no or little knowledge about malware input,

creating such seed inputs is difficult. Moreover, many existing techniques cannot handle

obfuscated or self-modifying binaries.

In this dissertation, we introduce a novel binary analysis infrastructure called X-Force

to analyze modern complex binary executables with better code coverage. X-Force takes a

binary executable as input, forces the binary to execute explores different execution paths

while requiring no inputs or proper environment.

Heavy-Weight Forced Execution. As forcing execution paths could lead to corrupted states

and hence exceptions, X-Force features a crash-free execution model that allocates a new

memory block on demand upon any invalid pointer dereference. However, X-Force is a very

heavy-weight technique that is difficult to deploy in practice. Specifically, in order to respect

program semantics, when X-Force fixes an invalid pointer variable (by assigning a newly

allocated memory block to the variable), it has to update all the correlated pointer variables

(e.g., those have constant offsets with the original invalid pointer). To do so, it has to

track all memory operations (to detect invalid accesses) and all move/addition/subtraction

operations (to keep track of pointer variable correlations/aliases). Such tracking not only

entails substantial overhead, but also is difficult to implement correctly due to the complexity

of instruction set and the numerous corner situations that need to be considered (e.g., in

computing pointer relations). As a result, the original X-Force does not support tracing into

library functions.

In this dissertation, we propose a practical forced execution technique. It does not

require tracking individual memory or arithmetic instructions. Neither does it require on

demand memory allocation. As such, the forced execution is very close to a native execution,

naturally handling libraries and dynamically generated code. Specifically, it achieves crash-

free execution (with probabilistic guarantees) through a novel memory pre-planning phase,

in which it pre-allocates a region of memory starting from address 0, and fills the region with

carefully crafted random values.
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1.2 Dissertation Statement

In this dissertation, we aim to improve the binary code analysis for software security

applications from two different perspectives: 1) binary analysis code coverage and 2) binary

analysis cost.

The thesis of this dissertation is as follows: The binary code analysis for software security

applications can be improved by forced execution as well as memory pre-planning.

1.3 Contributions

The contributions of this dissertation are as follows:

• We propose X-Force, a system that can force a binary to execute requiring no inputs

or any environment setup. It features a crash-free execution model that could detect

and recover from exceptions properly. We have also developed various execution path

exploration algorithms. Our evaluation shows that X-Force substantially advances the

state-of-the-arts [1 ], [7 ], [26 ].

• We propose PMP, a novel memory pre-planning scheme that provides probabilistic

guarantees to avoid crashes and bogus program dependencies. The execution under

our scheme is very similar to a native execution. Our evaluation shows that PMP is a

highly effective and efficient forced execution technique. Compared to X-Force, PMP

is 84 time faster, and the false positive (FP) and false negative (FN) rates are 6.5x. and

10% lower, respectively, regarding dependence analysis; and detect 98% more malicious

behaviors in malware analysis. It also substantially supersedes recent commercial and

academic malware analysis engines Cuckoo [29 ], Habo [30 ] and Padawan [31 ].

1.4 Organization

This dissertation is organized as follows: following the introductory chapter, chapter 2

presents the design and implementation of X-Force which forces an arbitrary binary to exe-

cute along different paths without any input or environment setup. Chapter 3 discusses PMP,

a practical forced execution technique which does not require tracking individual memory

15



or arithmetic instructions. Neither does it require on demand memory allocation. Thus, it

makes the forced execution very close to a native execution, naturally handling libraries and

dynamically generated code. Chapter 4 discusses the related works and, Chapter 5 concludes

the dissertation.
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2. X-FORCE: FORCE-EXECUTING BINARY PROGRAMS FOR

SECURITY APPLICATIONS

2.1 Introduction

Binary analysis has many security applications. For example, given an unknown, poten-

tially malicious executable, binary analysis helps construct its human inspectable represen-

tations such as control flow graph (CFG) and call graph (CG), with which security analysts

can study its behavior [1 ]–[6 ]. Binary analysis also helps identify and patch security vul-

nerabilities in COTS binaries [7 ]–[11 ]. Valuable information can be reverse-engineered from

executable through binary analyses. Such information includes network protocols [12 ]–[16 ],

[32 ], input formats [17 ]–[19 ], variable types, and data structure definitions [20 ]–[22 ]. They

can support network sniffing, exploit generation, VM introspection, and forensic analysis.

Existing binary analysis can be roughly classified into static, dynamic, and symbolic

(concolic) analysis. Static analysis analyzes an executable directly without executing it; dy-

namic analysis acquires analysis results by executing the subject binary; symbolic (concolic)

analysis is able to generate inputs to explore different paths of a binary. These different styles

of analyses have their respective strengths and limitations. Static analysis has difficulty in

handling packed and obfuscated binaries. Memory disambiguation and indirect jump/call

target analysis are known to be very challenging for static analysis.

Dynamic binary analysis is based on executing the binary on a set of inputs. It is

widely used in analyzing malware. However, dynamic analysis is incomplete by nature. The

quality of analysis results heavily relies on coverage of the test inputs. Moreover, modern

malware [23 ]–[25 ] has become highly sophisticated, posing many new challenges for binary

analysis: (1) For a zero-day binary malware, we typically do not have any knowledge about

it, especially the nature of its input, making traditional execution-based analysis [3 ], [33 ]–[36 ]

difficult; (2) Malware binaries are increasingly equipped with anti-analysis logic [37 ]–[41 ] and

hence may refuse to run even if given valid input; (3) Malware binaries may contain multi-

staged, condition-guarded, and environment-specific malicious payloads, making it difficult

to reveal all payloads, even if one manages to execute them.
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Symbolic [26 ] and concolic analysis [1 ], [7 ], [27 ], [28 ] has seen much progress in recent

years. Some handle binary programs [1 ], [5 ]–[7 ] and can explore various paths in a binary.

However, difficulties exist when scaling them to complex, real-world binaries, as they operate

by modeling individual instructions as symbolic constraints and using SMT/SAT solvers to

resolve the generated constraints. Despite recent impressive progress, SMT/SAT remains

expensive. While symbolic and concrete executions can be performed simultaneously so that

concrete execution may help when symbolic analysis encounters difficulties, the user needs

to provide concrete inputs, called seed inputs, and the quality of seed inputs is critical to

the execution paths that can be explored. With no or little knowledge about malware input,

creating such seed inputs is difficult. Moreover, many existing techniques cannot handle

obfuscated or self-modifying binaries.

In this dissertation, we propose a new, practical execution engine called X-Force. The

core enabling technique behind X-Force is forced execution which, as its name suggests,

forces an arbitrary binary to execute along different paths without any input or environ-

ment setup. More specifically, X-Force monitors the execution of a binary through dynamic

binary instrumentation, systematically forcing a small set of instructions that may affect

the execution path (e.g., predicates and jump table accesses) to have specific values, re-

gardless of their computed values, and supplying random values when inputs are needed.

As such, the concrete program state of the binary can be systematically explored. For in-

stance, a packed/obfuscated malware can be forced to unpack/de-obfuscate itself by setting

the branch outcomes of self-protection checks, which terminate execution in the presence of

debugger or virtual machine. X-Force is able to tolerate invalid memory accesses by per-

forming on-demand memory allocations. Furthermore, by exploring the reachable state of

a binary, X-Force is able to explore different aspects or stages of the binary behavior. For

example, we can expose malware’s data exfiltration operations, without the presence of the

real data asset being targeted.

Compared to manual inspection and static analysis, X-Force is more accurate as many

difficulties for static analysis, such as handling indirect jumps/calls and obfuscated/packed

code, can be substantially mitigated by the concrete execution of X-Force. Compared to

symbolic/concolic analysis, X-Force trades precision slightly for practicality and extensibility.
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Note that X-Force may explore infeasible paths as it forces predicate outcomes; whereas

symbolic analysis attempts to respect path feasibility through constraint solving1
 . The

essence of X-Force will be discussed later in Section 2.6 . Furthermore, executions in X-Force

are all concrete. Without the need for modeling and solving constraints, X-Force is more

likely to scale to large programs and long executions. The concrete execution of X-Force

makes it suitable for analyzing packed and obfuscated binaries. It also makes it easy to port

existing dynamic analysis to X-Force to leverage the large number of executions, which will

mitigate the incompleteness of dynamic analyses.

Our main contributions are summarized as follows:

• We propose X-Force, a system that can force a binary to execute requiring no inputs

or any environment setup.

• We develop a crash-free execution model that could detect and recover from exceptions

properly. We have also developed various execution path exploration algorithms.

• We have overcome a large number of technical challenges in making the technique work

on real world binaries including packed and obfuscated malware binaries.

• We have developed three applications of X-Force. The first is to construct CFG and CG

of stripped binaries, featuring high quality indirect jump and call target identification;

the second is to study hidden behavior of advanced malwares; the third one is to

apply X-Force in reverse engineering variable types and data structure definitions of

executables. Our results show that X-Force substantially advances the state-of-the-

arts.

2.2 Motivation Example

Consider the snippet in Figure 2.1 . It shows a hidden malicious payload that hijacks the

name resolution for a specific domain (line 14), which varies according to the current date

(in function genName()). In particular, it receives some integer input at line 2. If the input

satisfies condition C at line 3, a DNSentry object will be allocated. In lines 5-8, if the input
1↑ However, due to the difficulty of precisely modeling program behavior, even state-of-the-art symbolic
analysis techniques [1 ], [7 ], [26 ] cannot guarantee soundness.
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Figure 2.1. Motivating Example.

has the CODE_RED bit set, it populates the object by calling genName() and stores the

input and the generated name as a (key, value) pair into a hash table. In lines 12-14, the

pair is retrieved and used to guide domain name redirection. Note that the hash table is

used as a general storage for objects of various types. In line 10, an irrelevant object o is

also inserted into the table.

This example illustrates some of the challenges faced by static, symbolic and concolic

analysis. In static analysis, it is difficult to determine that the object retrieved at line

12 is the one inserted at line 7 because the abstract domain has to precisely model the

behavior of the hash table put/get operations and the condition that y==x, which requires

context-sensitive and path-sensitive analysis, and disambiguating the memory bucket[i]

and bucket[i+4] in table_get() and table_put(). The approximations made by many

static analysis techniques often determine the object at line 12 could be the one put at

line 7 or 10. Performed solely at the binary level, such an analysis is actually much more

challenging than described here. In symbolic/concolic analysis, one can model the input at

line 2 as a symbolic variable such that, by solving the symbolic constraints corresponding to

path conditions, the hidden payload might be reached. However, the dictionary read at line

21 will be difficult to handle if the file is unavailable. Modeling the file as symbolic often

causes scalability issues if it has nontrivial format and size, because the generated symbolic

constraints are often complex and the search space for acquiring syntactically correct inputs

may be extremely large.
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In X-Force, the binary is first executed as usual by providing random inputs. Note that

X-Force does not need to know the input format a priori as its exception recovery mechanism

prevents any crashes/exceptions. In other words, the supply of random input values is merely

to allow the execution to proceed, not to drive the execution along different paths. In the

first normal run, assume that the false branches of the conditionals at lines 3, 5 and 13

are taken, yielding an uninteresting execution. X-Force will then try to force-set branch

outcomes at a small number (say, 1 or 2) of predicates by performing systematic search.

Assume that the branch outcome at line 5 is force-set to “true”. The malicious payload will

be forced to activate. Note that pointer p has a null value at line 6, which will normally

crash the execution at line 22. X-Force tolerates such invalid accesses by allocating memory

on demand, right before line 22. Also, even if the dictionary file at line 21 is absent, X-Force

will force it through by supplying random input values. As such, some random integer and

domain are inserted into the table (line 7) and retrieved later (line 12). Eventually, the

random domain name is redirected at line 14, exposing the DNS hijacking operation. We

argue that the domain name itself is not important as long as the hidden hijacking logic is

exposed.

2.3 High Level Design

2.3.1 Forced Execution Semantics

This section explains the basics of how a single forced execution proceeds. The goal is

to have a non-crashable execution. For readability, we focus on explaining how to detect

and recover from memory errors in this subsection, and then gradually introduce the other

aspects of forced execution such as path exploration and handling libraries and threads in

later sections.

Language. Due to the complexity of the x86 instruction set, we introduce a simple low-level

language that models x86 binary executables to facilitate discussion. We only model a subset

that is sufficient to illustrate the key ideas. Fig. 2.2 shows the syntax.

Memory reads and writes are modeled by R(ra) and W(ra, rv) with ra holding the address

and rv the value. Since it is a low-level language, we do not model conditional or loop
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Program P ::= s
Stmt s ::= s1; s2 | nop | r :=` e | r :=` R(ra) |

W`(ra,rv) | jmp`(`1) | if (r`) then jmp(`1) |
jmp`(r) | r := malloc`(rs) |
free`(r) | call`(`1) | call`(r) | ret`

Operator op ::= + | − | ∗ | / | > | < | ...
Expr e ::= c | a | r1 op r2
Register r ::= {esp,eax,ebx, ...}
Const c ::= {true, f alse,0,1,2, ...}
Addr a ::= {0,MIN_ADDR,MIN_ADDR+1, ...,MAX_ADDR}
PC ` ::= {`1, `2, `3, ...}

Figure 2.2. Language.

statements, but rather guarded jumps; malloc() and free() represent heap allocation and

deallocation. Function invocations and returns are modeled by call() and ret. In our

language, stack/heap memory addresses are modeled as a range of integers and a special

value 0 to denote the null pointer value. Program counters (or instruction addresses) are

explicitly modeled by the PC set. Observe that each instruction is labeled with a PC, denoting

its instruction address. Direct jumps/calls are parameterized with explicit PC values whereas

indirect jumps/calls are parameterized with a register.

LSet ::= P (Addr)
SR ∈ RegLinearSet ::= Register 7→&LSet
SM ∈MemLinearSet ::= Addr 7→&LSet
accessible ∈ AddrAccessible ::= Addr 7→ boolean

recovery (r) ::=

1: S ← SM(r)
2: VS ← {}
3: for each address a ∈ S do
4: VS ← VS + {∗(a)}
5: min ← the minimal value in VS
6: max ← the maximum value in VS
7: t ← malloc(max−min+BLOCKSIZE)
8: accessible[t, t +max−min+BLOCKSIZE−1] = true
9: for each address a ∈ S do

10: offset ← ∗(a)−min
11: ∗(a) ← t +offset

Figure 2.3. Definitions.
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Table 2.1. Linear Set Computation Rules.
Statement Action1,2 Rule
initially foreach (global address t) L-INIT

if (isAddr(∗t)) SM(t) = {t};
r := R(ra) SR(“r”)→ nil; L-READ

if(SM(ra)) SR(“r”)→ SM(ra);
W(ra,rv) if (SM(ra)) SM(ra) = SM(ra)−{ra} L-WRITE

SM(ra)→ nil;
if (SR(“rv”))

SR(“rv”) = SR(“rv”) ∪ {ra};
SM(ra)→ SR(“rv”);

r := a SR(“r”)→{} L-ADDR
r := c SR(“r”)→ nil L-CONST
/*!isAddr(c)*/
r := r1 +/− r2 if (!(isAddr(r1)&&isAddr(r2))) L-LINEAR

SR(“r”)→ nil
if (isAddr(r1)) SR(“r”)→ SR(“r1”);
if (isAddr(r2)) SR(“r”)→ SR(“r2”);

r := r1 ∗/... r2 SR(“r”)→ nil L-NON-LNR
free(r) t = r; L-FREE

while (accessible(t))
if (SM(t)) SM(t) = SM(t)−{t};
t ++;

1. The occurrence“r” denotes the symbolic name of register r, the
occurrence of r denotes the value stored in r.
2. Operator “=” means set update, “→” means pointer update.
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In X-Force, we ensure that an execution is not crashable by allocating memory on-

demand. However, when we replace a pointer pointing to an invalid address a with the

allocated memory, we need to update all the other pointer variables that have the same

address value or a value denoting an offset from the address. We achieve this through the

linear set tracing semantics, which is also the basic semantics for forced executions2
 . Its goal

is to identify the set of variables (i.e. memory locations and registers at the binary level),

whose values have linear correlations. In this dissertation, we say two variables are linearly

correlated if the value of one variable is computed from the value of the other variable by

adding or subtracting a value. Note that it is simpler than the traditional definition of linear

correlation, which also allows a scaling multiplier. It is however sufficient in this work as

the goal of linear set tracing is to identify correlated pointer variables, which are induced by

address offsettings that are exclusively additions and subtractions.

The semantics is presented in Table 2.1 . The corresponding definitions are presented in

Fig 2.3 . Particularly, linear set LSet denotes a set of addresses such that the values stored

in these addresses are linearly correlated. Mapping SR maps a register to the reference of

a LSet. Intuitively, one could interpret that it maps a register to a pointer pointing to a

set of addresses such that the values stored in the register and those addresses are linearly

correlated. Two registers map to the same reference (of a LSet) implies that the values of

the two registers are also linearly correlated. Similarly, mapping SM maps an address to

the reference of a LSet such that the values in the address and all the addresses in LSet are

linearly correlated. The essence of linear set tracing is to maintain the SR and SM mappings

for all registers and addresses that have been accessed so that at any execution point, we

can query the set of linearly correlated variables of any given variable.

Before execution, the SM mapping of all global variables that have an address value is set

to the address itself, meaning the variable is only linearly correlated with itself initially (rule

L-INIT). Function isAddr(v) determines if a value v could be an address. X-Force monitors

all memory allocations and the image loading process. Thus, given a value, X-Force treats it

as a pointer if it falls into static, heap, or stack memory regions. Note that we do not need to

be sure that the value is indeed an address. Over-approximations only cause some additional
2↑ We will explain the predicate switching part of the semantics in Section 2.3.2 
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Table 2.2. Memory Error Prevention and Recovery.
Statement Action Rule
r := malloc(r1) for (i = r to r+ r1−1) M-ALLOC

accessible(i) = true
free(r) t = r; M-FREE

while (accessible(t))
accessible(t) = false
t ++;

r := R(ra) if (!accessible(ra)) M-READ
recovery(ra);

W(ra,rv) if (!accessible(ra)) M-WRITE
recovery(ra);

linear set tracing. For a memory read operation, the SR mapping of the destination register

points to the SM set of the value in the address register if the SM set exists, which implies the

value is an address, otherwise it is set to nil (rule L-READ). Note that in the rule we use “r”

to denote the symbolic name of r and ra to denote the value stored in ra. SR(“r”)→ SM(ra)

means that we set SR(“r”) to point to the SM(ra) set. For a memory write, we first eliminate

the destination address from its linear set. Then, the address is added to the linear set of the

value register as the address essentially denotes a new linearly correlated variable. Finally,

the SM mapping of the address is updated (rule L-WRITE). Note that operation “=” means

set update, which is different from “→” meaning set reference update. For a simple address

assignment, the SR set is set to pointing to an empty linear set, which is different from a

nil value (rule L-ADDR). The empty set is essentially an LSet object that could be pointed

to by multiple registers to denote their linear correlation. A nil value cannot serve this

purpose. For a linear operator, the SR mapping of the destination register is set to pointing

to the SR mapping of the register holding an address value (rule L-LINEAR). Intuitively,

this is because we are only interested in the linear correlation between address values (for

the purpose of memory error recovery). For heap de-allocation, we have to remove each

de-allocated address from its linear set (rule L-FREE).

Table 2.2 presents the set of memory error detection and recovery rules. The relevant

definitions are in Fig. 2.3 . An auxiliary mapping accessible() is introduced to denote if an

address has been allocated and hence accessible. The M-ALLOC and M-FREE rules are

standard. Upon reading or writing an un-accessible address, X-Force calls function recovery

() with the register holding the invalid address to perform recovery. In the function, we

first acquire the values of all the variables in the linear set and identify the minimal and
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Figure 2.4. Sample Execution for Linear Set Tracing and Memory Safety. The
code is from Fig. 2.1 .

maximum values (lines 1-6). Note that the values may be different (through address offsetting

operations). We then allocate a piece of memory on demand according to the range of the

values and a pre-defined default memory block size. Then in lines 9-12, the variables in

the linear set are updated according to their offsets in the block. We want to point out

that on-demand allocation may not allocate enough space. However, such insufficiency will

be detected when out-of-bound accesses occur and further on-demand re-allocation will be

performed. We also want to point out that a correctly developed program would first write

to an address before it reads. As such, the on-demand allocation is often triggered by the

first write to an invalid buffer such that the value could be correctly written and later read.

In other words, we do not need to recover values in the on-demand allocated buffers.

In our real implementation, we also update all the registers that are linearly correlated,

which can be determined by identifying the registers pointing to the same set. Furthermore,

the rules only describe how we ensure heap memory safety whereas X-Force protects critical

stack addresses such as return addresses and parameters, which we will discuss later.

Example. Fig. 2.4 presents part of a sample execution with the linear set tracing and

memory safety semantics. The program is from the motivation example (Fig. 2.1 ). In the

execution, the else branch of line 3 is taken but the true branch of line 5 is forced. As

such, pointer p has a null value when it is passed to function genName(), which would cause

an exception at line 22. In Fig. 2.4 , we focus on the executions of lines 6, 22 and 7. The

second column shows the binary code (in our simplified language). The third column shows
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the corresponding linear set computation and memory exception detection and recovery.

Initially, SM(&p = 0x8004c0) is set to pointing to the set {0x8004c0} according to rule L-

INIT. At binary code line 2, SR(eax) is set to pointing to the set of SM(&p). At line 3,

since the value is further copied to a stack address 0xce0080, eax, &p and the stack address

all point to the same linear set containing &p and the stack address. Intuitively, these

are the three variables that are linearly correlated. At lines 9 and 10, edi further points

to the same linear set. At line 12, when the program tries to access the address denoted

by edi = 4, the memory safety component detects the exception and performs on demand

allocation. According to the linear set, &p and the stack address 0xce0080 are set to the

newly allocated address 0xd34780 while edi is updated to 0xd34784 according to its offset.

While it is not presented in the table, the program further initializes the newly allocated

data structure. As a result, when pointer p is later passed to table_put(), it points to a

valid data structure. 2

In the early stage of the project, we tried a much simpler strategy that is to terminate

a forced execution when an exception is observed. However, we observed that since we do

not provide any real inputs, exceptions are very common. Furthermore, simply skipping

instructions that cause exceptions did not work either because that would have cascading

effects on program state corruption. Finally, a crash-proof execution model as proposed

turned out to be the most effective one.

X-Force also automatically recovers from other exceptions such as division-by-zero, by

skipping those instructions that cause exceptions. Details are omitted.

2.3.2 Path Exploration in X-Force

One important functionality of X-Force is the capability of exploring different execution

paths of a given binary to expose its behavior and acquire complete analysis results. In this

subsection, we explain the path exploration algorithm and strategies.

To simplify discussion, we first assume a binary only performs control transfer through

simple predicates (i.e. predicates with constant control transfer targets). We will introduce
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Algorithm 1 Path Exploration Algorithm
Output: Ex - the set of executions (each denoted by a sequence of switched predicates)

achieving a certain given goal (e.g. maximum coverage)
Definition switches: the set of switched predicates in a forced execution, denoted by a

sequence of integers. For example, 1 ·3 ·5 means that the 1st, 3rd, and 5th
predicates are switched
WL : P (Int) - a set of forced executions, each denoted by a sequence of
switched predicates
preds : Predicate×boolean - the sequence of executed predicates with their
branch outcomes

1: WL ← {nil}
2: Ex ← nil
3: while WL do
4: switches ← WL.pop()
5: Ex ← Ex ∪ switches
6: Execute the program and switch branch outcomes according to switches,

update fitness functionF
7: preds ← the sequence of executed predicates
8: t ← the last integer in switches
9: preds ← remove the first t elements in preds

10: for each (p,b) ∈ preds do
11: if eval(F , p,b) then
12: update fitness functionF
13: WL ← WL∪ switches · t
14: t ← t +1

28



how to extend the algorithms in realistic settings, e.g., supporting exploration of indirect

jumps in later section.

Algorithm 1 describes a general path exploration algorithm, which generates a pool of

forced executions that are supposed to meet our goal specified by a configurable fitness

function. It is a work list algorithm. The work list stores a list of (forced) executions that

may be further explored by switching more predicates. Each execution is denoted by a

sequence of integer numbers that specify the executed predicate instances to switch. Note

that X-Force only force-sets the branch outcome of a small set of predicate instances. It lets

the other predicate instances run as usual. Initially (line 1), the work list is a singleton set

with a nil sequence, representing an execution without switching any predicate. Note that

the work list is not empty initially. At the end of a forced execution, we update the fitness

function that indicates the remaining space to explore (line 6), e.g., coverage. Then in lines

7-16, we try to determine if it would be of interest to further switch more predicate instances.

Lines 7-9 compute the sequence of predicate instances eligible for switching. Note that it

cannot be a predicate before the last switched predicate specified in switches as switching

such a predicate may change the control flow such that the specification in switches becomes

invalid. In lines 10-16, for each eligible predicate and its current branch outcome, we query

the fitness function to determine if we should further switch it to generate a new forced

execution. If so, we add it to the work list and update the fitness function. Note that in

each new forced execution, we essentially switch one more predicate.

Different Fitness Functions. The search space of all possible paths is usually prohibitively

large for real-world binaries. Different applications may define different fitness functions to

control the scope they want to explore. In the following, we introduce three fitness functions

that we use. Other more complex functions can be similarly developed.
• Linear Search. In certain applications, such as constructing control flow graphs and

dynamic type reverse engineering (Section 2.5 ), the goal may be just to cover each

instruction. The fitness function F could be defined as a mapping covered : Predicate×

boolean 7→ boolean that determines if a branch of a predicate has been covered. The

evaluation in the box in line 11 of Algorithm 1 is hence defined as !covered(p,¬b),

which means we will switch the predicate if the other branch has not been covered.
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Once we decide to switch an additional predicate, the fitness function is updated to

reflect the new coverage (line 12). The number of executions needed is hence O(n)

with n the number instructions in the binary.

• Quadratic Search. In applications such as identifying indirect call targets, which is a

very important challenge in binary analysis, simply covering all instructions may not

be sufficient, we may need to cover paths that may lead to indirect calls or generate

different indirect call targets. We hence define F as a set icalls to keep the set of the

indirect call sites and potential indirect call targets that have been discovered by all

the explored paths. The evaluation in line 11 is hence to test if cardinality of icall

grows with the currently explored path. If so, the execution is considered important

and all eligible unique predicates (not instances) in the execution are further explored.

The complexity is O(n2) with n the number of instructions. X-Force can also limit the

quadratic search within a function.

• Exponential Search. If we simply set the evaluation in the line 12 to true, the algorithm

performs exponential search because it will explore each possible combination. In

practice, we cannot afford such search. However, X-Force provides the capability for

the user to limit such exponential search within a sub-range of the binary.

Taint Analysis to Reduce Search Space. An observation is that we do not have to force-

set predicates in low-level utility methods, because their branch outcomes are usually not

affected by any input. Hence in X-Force, we use taint analysis to track if a predicate is related

to program input. X-Force will only force branch outcomes of those tainted predicates. Since

this is a standard technique, we omit its details.

2.4 Practical Challenges

In this section, we discuss how we address some prominent challenges in handling real

world executables.

Jump Tables. In our previous discussion, we assume control transfer is only through simple

predicates. In reality, jump tables allow a jump instruction to have more than two branches.

Jump tables are widely used. They are usually generated from switch statements in the
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source code level. In X-Force, we leverage existing jump table reverse engineering tech-

niques [42 ] to recover the jump table for each indirect jump. Our exploration algorithm then

tries to explore all possible targets in the table.

Handling Loops and Recursions. Since X-Force may corrupt variables, if a loop bound or

loop index is corrupted, an (incorrect) infinite loop may result. Similarly, if X-Force forces

the predicate that guards the termination of some recursive function call, infinite recursion

may result. To handle infinite loops, X-Force leverages taint analysis to determine if a loop

bound or loop index is computed from input. If so, it resets the loop bound/index value to

a pre-defined constant. To handle infinite recursion, X-Force constantly monitors the call

stack. If the stack becomes too deep, X-Force further checks if there are cyclic call paths

within the call stack. If cyclic paths are detected, X-Force skips calling into that function

by simulating a ”ret” instruction.

Protecting Stack Memory. Our early discussion on memory safety focused on protecting

heap memory. However, it is equally important to protect stack memory. Particularly, the

return address of a function invocation and the stack frame base address of the caller are

stored on stack upon the invocation. They are restored when the callee returns. Since

X-Force may corrupt variable values that affect stack accesses, such critical data could be

undesirably over-written. We hence need to protect stack memory as well. However, we

cannot simply prevent any stack write beyond the current frame. The strategy of X-Force

is to prevent any stack writes that originate in the current stack-frame to go beyond the

current frame. Specifically, when a stack write attempts to over-write the return address,

the write is skipped. Furthermore, the instruction is flagged. Any later instances of the

instruction that access a stack address beyond the current stack-frame are also skipped. The

flags are cleared when the callee returns.

Handling Library Function Calls. The default strategy of X-Force is to avoid switching

predicates inside library calls as our interest falls in user code. X-Force handles the following

library functions in some special ways.

• I/O functions. X-Force skips all output calls and most input calls except file inputs.

X-Force provides wrappers for file opens and file reads. If the file to open does not
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exist, X-Force skips calling the real file open and returns a special file handler. Upon

file reads, if the file handler has the special value, it returns without reading the file

such that the input buffer contains random values. Supporting file reads allows X-

Force to avoid unnecessary failure recovery and path exploration if the demanded files

are available.

• Memory manipulation functions. To support memory safety, X-Force wraps mem-

ory allocation and de-allocation. For memory copy functions such as memcpy() and

strcpy(), the X-Force wrappers first determine the validity of the copy operation, e.g.,

the source and target address ranges must have been allocated, must not overlap with

any critical stack addresses. If necessary, on-demand allocation is performed before

calling the real function. This eliminates the need of memory safety monitoring, linear

set tracing, and memory error recovery inside these functions, which could be quite

heavy-weight due to the special structure of these functions. For example, memcpy()

copies individual addresses one by one and these addresses are linearly correlated as

they are computed through pointer manipulation, leading to very large linear sets.

For statically linked executables, X-Force relies on IDA-Pro to recognize library functions

in a pre-processing step. IDA leverages a large signature dictionary to recognize library

functions with very good accuracy. For functions that are not recognized by IDA, X-Force

executes them as user code.

Handling Threads. Some programs spawn additional threads during their execution. It is

difficult for X-Force to model multiple threads into a single execution since the order of their

execution is nondeterministic. If we simply skip the thread creation library functions such

as CreateThread() and beginthread(), the functions in the thread could not be covered. To

solve this problem, we adopt a simple yet effective approach of serializing the execution of

threads. The calls to thread creation library functions are replaced with direct function calls

to the starting functions of threads, which avoid creating multiple threads and guarantees

code coverage at the same time. Note that as a result, X-Force is incapable of analyzing

behavior that is sensitive to schedules. We will leave it to our future work.
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2.5 Evaluation

X-Force is implemented in PIN. It supports WIN32 executables. In this section, we use

three application case studies to demonstrate the power of X-Force.

Table 2.3. CFG and CG Construction Results.
Coverage Indirect Call Edge X-Force Internals

IDA-Pro Input Union X-Force IDA-Pro Input Union LLVM X-Force Time (s) # of Runs Avg. # of Exp. Avg./Max. Linear Set Size Switched/Total # of predicates
164.gzip 7913 3601 5075 0 2 2 2 704 246 10 2.9/36 2.1/1291
175.vpr 31847 19409 29218 0 0 0 0 8725 1849 49 2.8/19 4.7/2164
176.gcc 310277 157451 227546 25 169 9141 1720 173241 26606 95 4.5/265 12.9/29847
181.mcf 2184 1622 1935 0 0 0 0 129 113 10 3.1/23 4.3/153
186.crafty 43327 27811 42763 0 0 0 0 43995 2496 0.4 2.6/9 8.0/62582
197.parser 25532 17339 23135 0 0 0 0 3424 1820 8 2.5/17 6.4/944
252.eon 70592 15580 27224 0 60 28802 121 6379 2091 4 2.3/10 4.1/3146

253.perlbmk 132264 55964 33643 24 225 - 151 7137 843 0.8 3.5/40 8.3/9535
254.gap 113410 37564 110066 2 1103 187155 20470 50745 7319 1353 30.0/1846 6.0/173316

255.vortex 132053 53798 101207 0 28 340 30 34776 8566 13 2.9/33 7.3/2548
256.bzip2 5761 3612 4830 0 0 0 0 557 209 5 3.3/15 1.4/7001
300.twolf 46556 19996 41935 0 0 0 0 10043 2825 17 2.6/8 5.4/1322

Table 2.4. Detailed Coverage Comparison with Dynamic Analysis

Input Union X-Force Input Union Input Union X-Force
∩ X-Force \ X-Force \ Input Union

164.gzip 3601 5075 3601 0 1474
175.vpr 19398 29218 19398 0 9820
176.gcc 157451 227546 157451 0 70095
181.mcf 1622 1935 1622 0 313
186.crafty 27811 42763 27811 0 14952
197.parser 17339 23135 17339 0 5796
252.eon 15580 27224 15580 0 11644

253.perlbmk 55964 33643 27003 28961 6640
254.gap 37564 110066 37564 0 72502

255.vortex 53798 101207 53798 0 47409
256.bzip2 3612 4830 3612 0 1218
300.twolf 19996 41935 19996 0 21939

2.5.1 Control Flow Graph (CFG) and Call Graph (CG) Construction

Construction of CFG and CG is a basic but highly challenging task for binary analysis,

especially the identification of indirect call targets. In the first case study, we apply X-

Force to construct CFGs and CGs for stripped SPECINT 2000 binaries. We also evaluate

the performance of X-Force in this study. To construct CFGs and CGs, we use X-Force to

explore execution paths and record all the instructions, control flow edges, and call edges,

including indirect jump and indirect call edges. The exploration algorithm is a combination

33



of linear search and quadratic search (Section 2.3.2 ). Quadratic search is limited to functions

that contain indirect calls or encounter values that look like function pointers.

We compare X-Force results with four other approaches: (1) IDA-Pro; (2) Execute all

the test cases provided in SPEC and union the CFGs and CGs observed for each program

(i.e., dynamic analysis); (3) Static CG construction using LLVM on SPEC source code

(i.e., static analysis) 3
 . (4) Dynamic CFG construction using a symbolic execution system

S2E [7 ]. We could not compare with CodeSurfer-X86 [43 ], which can also generate CFG/CG

for executables based on static analysis, because it is not available through commercial or

academic license.

Part of the results is presented in Table 2.3 . Columns 2-4 present the instructions that

are covered by the different approaches. Particularly, the second column shows the number of

instructions recognized by IDA. The third column shows those that are executed by concrete

input runs. Columns 5-8 show the indirect call edges recognized by the different approaches4
 .

The last five columns show internal data of X-Force.

From the coverage data, we observe that X-Force could cover a lot more instructions

than dynamic analysis except 253.perlbmk. Note that the dynamic analysis results are

acquired using all the test, training and reference inputs in SPEC, which are supposed to

provide good coverage. Table 2.4 presents more detailed coverage comparison with dynamic

analysis. Observe that X-Force covers all the instructions that are covered by natural runs

for all benchmarks except 253.perlbmk, which we will explain later. X-Force could cover

most of the instructions identified by IDA except 252.eon and 253.perlbmk. We have man-

ually inspected the differences between the IDA and X-Force coverage. For most programs

except 253.perlbmk, the differences are caused by part of the code in those binaries being

unreachable. In other words, they are dead code that cannot be executed by any input.

Since IDA simply scans the code body to construct CFG and CG, it reports all instructions

it could find including the unreachable ones.
3↑ We cannot compare LLVM CFGs with X-Force CFGs as LLVM CFGs are not represented at the instruction
level.
4↑ Direct jump and call edges are easy to identify and elided.
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Table 2.5. Detailed Indirect Call Edges Identification Comparison with Dynamic Analysis

Input Union X-Force Input Union Input Union X-Force
∩ X-Force \ X-Force \ Input Union

164.gzip 2 2 2 0 0
176.gcc 169 1720 169 0 1551
252.eon 60 121 60 0 61

253.perlbmk 225 151 103 122 48
254.gap 1103 20485 1103 0 19382

255.vortex 28 30 28 0 2
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Indirect call edge identification is very challenging in binary analysis as a call site may

have multiple call targets depending on execution states, which are usually difficult to cover

or abstract. Some of them are dependent on states related to multiple procedures. Note that

there does not exist an oracle that can provide the ground truth for the set of real indirect call

edges. From the results, we could observe that LLVM’s indirect call identification algorithm

generates a large number of edges, much more than X-Force. However, we confirm that most

of them are bogus because the LLVM algorithm simply relies on method signatures to identify

possible targets and hence is too conservative. X-Force could recognize a lot more indirect

call edges than dynamic analysis. The detailed comparison in Table 2.5 shows that the X-

Force results cover all the dynamic results and have many more edges, except 253.perlbmk.

We have manually inspected a random set of the selected edges that are reported by X-Force

but not the dynamic analysis and confirmed that they are feasible. From the results in

Table 2.3 , IDA can hardly resolve any indirect call edges.

Table 2.6. Result of using S2E to analyze SPEC programs
Basic Block Function Block Touched Fully Covered Number
Coverage Coverage Functions Functions of Paths

164.gzip 768/2240(34%) 768/1294(59%) 62/186(33%) 21/186(11%) 134
176.gcc 740/46487(1%) 740/1468(50%) 62/1398(4%) 19/1398(1%) 261
252.eon 64/2830(2%) 64/101(63%) 19/649(2%) 13/649(2%) 33

253.perlbmk 1708/37384(4%) 1708/6912(24%) 134/1510(8%) 27/1510(1%) 329
254.gap 1235/28871(4%) 1235/3136(39%) 80/941(8%) 21/941(2%) 29

255.vortex 10933/35979(30%) 10933/20822(52%) 437/1031(42%) 21/1031(2%) 9

We also use S2E to analyze the six SPECINT 2000 programs that contain indirect calls.

The four programs other than 252.eon and 255.vortex read input from stdin, so we use the

s2ecmd utility tool provided by S2E to write 64 bytes to stdout and pipe the symbolic bytes

into these programs. We run each program in S2E and use the ExecutionTracer plugin to

record the execution trace. We use the IDA scripts provided by S2E to extract information

of basic blocks and functions from the binaries, and then use the coverage tool provided by

S2E to calculate the result.

The result is shown in Table 2.6 . The columns show the following metrics from left to

right: (1) coverage of basic blocks; (2) coverage of basic blocks when excluding the basic

blocks in those functions that are not executed; (3) coverage of functions; (4) percentage of
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fully-covered functions; (5) the number of different paths that S2E explored. Observe that

the coverage is much lower than X-Force in general. 176.gcc, 253.perlbmk and 254.gap

are parsers/compilers. They have poor coverage on S2E because they get stuck in the

parsing loops/automatas, whose termination conditions are dependent on the symbolic input.

Regarding 255.vortex, S2E fails to solve the constraints when an indirect jump uses the

symbolic variable as the index of jump table. As a result, S2E fails to identify most of the

indirect call edges due to the failure of creating different objects. In 252.eon, S2E fails to

solve the constraints of the input file format, which must contain a specific string as header.

The program throws exception and terminates quickly, which leads to poor coverage.

253.perlbmk is a difficult case for X-Force. It parses perl source code to generate syntax

trees. The indirect call targets are stored in the nodes of syntax trees. However, since the

syntax tree construction is driven by finite automata, path coverage does not seem to be able

to cover enough states in the automata to generate enough syntax trees of various forms. A

few other benchmarks such as 176.gcc and 254.gap also leverage automata based parsers,

however their indirect call targets are not so closely-coupled with the state of the automata

and hence X-Force can still get good coverage. We will leave it to our future work to address

this problem.

The last five columns show some statistics of X-Force. The run time and the number

of explorations are largely linear regarding the number of instructions except for a small

number of functions on which quadratic search is performed. Some take a long time (e.g.,

close to 50 hours for 176.gcc) due to their complexity. The average number of exceptions is

the number of exceptions encountered and recovered from in each execution (e.g. memory

exceptions, division by zero). The numbers are smaller than we expected given that we

execute these programs without any inputs and switch branch outcomes. It shows that our

exception recovery could effectively prevent cascading exceptions. The linear set sizes are

manageable. The last column shows the average number of switched predicates versus the

average number of predicate instances in total in an execution. It shows that X-Force may

violate path feasibility only in a very small part of execution. The performance overhead of

X-Force compared to the vanilla PIN is 473 times on average. It is measured by comparing
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the number of instructions that could be executed by X-Force and the vanilla PIN within

the same amount of time.

Table 2.7. Result of using X-Force for malware analysis compared with IDA
Pro and native run.

Name MD5 File Size(KB) Number of Library Functions Number of Library Call Sites No. of Runs
IDA Pro Native Run X-Force IDA Pro Native Run X-Force in X-Force

dg003.exe 4ec0027bef4d7e1786a04d021fa8a67f 192 147 129 252 808 546 1750 800
Win32/PWSteal.F 04eb2e58a145462334f849791bc75d18 20 7 21 42 9 28 94 30
APT1.DAIRY 995442f722cc037885335340fc297ea0 19 90 40 100 213 68 236 121
APT1.GREENCAT 0c5e9f564115bfcbee66377a829de55f 14.5 66 26 64 303 114 302 112
APT1.HELAUTO 47e7f92419eb4b98ff4124c3ca11b738 8.5 41 16 39 109 33 109 30
APT1.STARSYPOUND 1f2eb7b090018d975e6d9b40868c94ca 7 37 14 36 80 15 80 25
APT1.WARP 36cd49ad631e99125a3bb2786e405cea 45.5 77 47 79 495 156 414 221
APT1.NEWSREEL 2c49f47c98203b110799ab622265f4ef 21 67 31 67 189 49 192 93
APT1.GOGGLES 57f98d16ac439a11012860f88db21831 10.5 35 21 36 127 45 131 42
APT1.BOUNCER 6ebd05a02459d3b22a9d4a79b8626bf1 56 11 16 97 24 39 562 298

2.5.2 Malware Analysis

One common approach to understanding the behavior of an unknown malware sample is

by looking at the library calls it makes. This could be done by static, dynamic or symbolic

analysis; however, they all have limitations. Static analysis could not obtain the parameters

of library calls that are dynamically computed and is infeasible when the sample is packed or

obfuscated. Traditional dynamic analysis can obtain parameters and is immune to packing

and obfuscation, however, it could only explore some of the execution paths depending on

the input and the environment. Unfortunately, the input is usually unknown for malware.

Symbolic analysis, while being able to construct input according to path conditions, has

difficulty in handling complex or packed binaries.

X-Force overcomes these problems as traditional dynamic analysis could be built upon

X-Force to explore various execution paths without providing any inputs or the environment.

In this case study, we demonstrate the use of a library call analysis system we built on top

of X-Force to analyze real-world malware samples.

When we implement library call analysis on top of X-Force, we slightly adjust X-Force

to make it suitable for handling malware: (1) We enable the concrete execution of most

library functions including output functions because many packers use output functions

(e.g. RtlDecompressBuffer()) to unpack code. We continue to skip some library calls

such as Sleep() and DeleteFile(); (2) We intercept a few functions that allocate memory
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and change page attributes, such as VirtualAlloc() and VirtualProtect(). This is for

tracking the memory areas of code and data which keep changing at runtime due to self-

modifying and dynamically generated code.

Given a malware sample, we use X-Force to explore its paths. We use the linear search

algorithm (Section 2.3.2 ) as it provides a good balance between efficiency and coverage.

During each execution, we record a trace of function calls. For library calls, we also record

the parameter values. The trace is then transformed into an interprocedural flow graph

that has control transfer instructions, including jumps and calls, as its nodes, and control-

flow/call edges as its edges. The parameters of library calls are also annotated on the graph.

The graphs generated in multiple executions are unioned to produce the final graph. We

then manually inspect the final graphs to understand malware behavior.

We evaluate our system on 10 real-world malware samples which are either wild-captured

virus/trojan or APT samples described in [44 ]. Since our analysis focuses on library calls,

we choose the number of identified library functions and the total number of their call sites

as the evaluation metric5
 . We also compare our results with IDA-Pro and the native run.

In IDA, library functions are identified from the import table; the call sites are identified

by scanning the disassemblies. In the native run, we execute the malware without any

arguments and record the library calls using a PIN tool.

The results are shown in Table 2.7 . We can see that for packed or obfuscated samples such

as dg003.exe, Win32/PWSteal.F, APT1.DAIRY, and APT1.BOUNCER, IDA gets fewer

library functions and call sites compared to X-Force. For other samples that are not packed

or obfuscated, since the executables could be properly disassembled, the metrics obtained in

IDA and X-Force are very close. However, even in such cases, static analysis is insufficient to

understand the malicious behavior because it does not show the values of the library function

parameters. Compared to the native run method, X-Force can identify more library functions

and call sites.

Next, we present detailed analysis for two representative samples.
5↑ We exclude the C/C++ runtime initialization functions which are only called before the main function.
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Address Malicious Behavior
0x1000db50 Copy self to %Application Data%\ws2hlp.exe

and execute with "update" argument
0x10006180 Execute a command sent by the C&C server
0x10005d80 Delete a file sent by the C&C server
0x1000f130 Reboot the victim machine
0x1000ea70 Self-removal from the victim machine
0x10005ed0 Delete all files on the hard disk

Sleep(0x3e8) = 0x0 ......

Call 0x10001030

Call 0x10005ed0

Call 0x10005d80

Call 0x10001030

Call 0x1000db50

ntohl(0x0) = 0x0 ......

Call 0x100019d0

call 0x10001480

cmp eax, 0x196
ja 0x1000d0f3

mov dl, 1000da48[eax]
jmp 0x1000da04[edx*4]

cmp eax, 0x1f4
ja 0x1000d935

Call 0x10006180 Call 0x1000ea70 ......

jmp 0x1000dadc[eax*4]

Call 0x1000f130 ......

Call 0x100010d0

......

......

Figure 2.5. The flow graph of the function at 0x1000c630 generated by X-Force
when analyzing dg003.exe.
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Call 0x10009b50

FindNextFileA(0x15da98, [129b68]=0x20) = 0x1
FindNextFileA(0x15da98, [129b68]=0x26) = 0x1
FindNextFileA(0x15da98, [129b68]=0x20) = 0x1
FindNextFileA(0x15da98, [129b68]=0x20) = 0x1

......

FindFirstFileA([129ca8]="\*", [129b68]=0x0) = 0x15da98
FindFirstFileA([12974c]="\controller_x-force\*", [12960c]=0x0) = 0x15dad0

FindFirstFileA([1291f0]="\controller_x-force\controller_x-force\*", [1290b0]=0x0) = 0x159bf8
FindFirstFileA([128c94]="\controller_x-force\controller_x-force\Release\*", [128b54]=0x0) = 0x159c30

......

DeleteFileA([129ca8]="\AUTOEXEC.BAT") = 0
DeleteFileA([129ca8]="\boot.ini") = 0
DeleteFileA([129ca8]="\cfg.txt") = 0

DeleteFileA([129ca8]="\CONFIG.SYS") = 0
......

RemoveDirectoryA([1291f0]="\controller_x-force\controller_x-force\Release") = 0
RemoveDirectoryA([12974c]="\controller_x-force\controller_x-force") = 0

RemoveDirectoryA([12974c]="\controller_x-force\Release") = 0
RemoveDirectoryA([129ca8]="\controller_x-force") = 0

......

FindClose(0x159c30) = 0x1
FindClose(0x159bf8) = 0x1
FindClose(0x159bf8) = 0x1
FindClose(0x15dad0) = 0x1

......

Figure 2.6. The flow graph of the function at 0x10009b50 in dg003.exe that
delete all files on the hard disk.
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Dg003.exe. This is a typical APT malware sample that features multi-staged, condition-

guarded and environment-specific payload. In the first stage, the malware extracts a DLL

which it carries as its resource, packs the DLL in memory using a proprietary algorithm and

writes the packed DLL to the disk. In the second stage, the packed DLL is loaded, unpacks

itself in memory and executes the main payload.

There is a previous report [24 ] in which the analysts used both static and dynamic

analyses to analyze this sample. To perform static analysis using IDA Pro, they manually

extract and unpack the DLL. This requires reverse engineering the unpacking algorithm,

which could be both time consuming and difficult. Our system avoids such trouble by

concretely executing the unpacking routine which performs the unpacking for us. Compared

with their dynamic analysis, it takes X-Force about 5 hours to finish 800 executions to

explore all paths in both the first and second stages of the malware. After that, the traces are

transformed into a flow graph containing 378 functions. Our system is able to discover a set

of malicious behaviors that are NOT mentioned in the previous report. As shown in Fig. 2.5 ,

each highlighted function call in the graph corresponds to a previously unrevealed malicious

behavior. Each behavior is identified using the library calls made in the corresponding

function. For example, as shown in Fig. 2.6 , the library calls and the parameters in the

function at 0x10009b50 show that it recursively enumerates and deletes files and directories

starting from the root directory, which indicates its behavior is to delete all files on the disk.

In Fig. 2.5 we can see that the common dominator of all these function calls (highlighted

in red color) determines if the value of eax register is larger than 0x196. With taint analysis

in X-Force, we find that the value of the eax register is related to an input which is a buffer in

a previous recv library function call. This indicates it represents the command ID sent by the

C&C server, which leads to the execution of different malicious behaviors. Hence, we suspect

that the previous analysts missed some behaviors because the C&C server only sent part of

the possible commands at the time they ran the malware. We also find that the buffer in

the recv function call is translated to the command ID using a private decryption algorithm,

so it would be infeasible for symbolic analysis to solve the constraints and construct a valid

input. We also want to point out that at the time we perform the analysis, the C&C server of
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this malware is already inactive; we would not be able to discover these malicious behaviors,

had we not used X-Force.

Win32/PWSteal.F. Before trying X-Force on this sample, we first try static analysis using

IDA-Pro. Surprisingly, this sample does not import any suspicious library function; not even

a function that could perform I/O (e.g. read/write file, registry or network socket). The

LoadLibrary() and GetProcAddress() functions are not imported either, which means the

common approach of dynamically loading libraries is not used. The strings in the executable

do not contain any DLL name or library function name either. This indicates the sample is

equipped with advanced API obfuscation technique to thwart static analysis.

Since static analysis is infeasible, we submit the sample to the Anubis malware analysis

platform for dynamic analysis. The result shows the malware does read some registry entries

and files, however, none of them seems malicious. Hence, we feed the sample to our system

in hopes of revealing its real intent. X-Force achieves full coverage after exploring 30 paths

and generates a graph with 15 functions. By traversing the graph, we find that this malware

aims at stealing the password that is stored by IE and Firefox in the victim’s machine.

It enumerates the registry entry that stores the encrypted auto-complete password for IE

and calls library functions such as CryptUnprotectData() to decrypt the stored password.

This is very similar to the attack mentioned in [45 ]. Regarding Firefox, it first gets the

user name from profiles.ini under the Firefox application data directory, and then steals

the password that is stored in the signons*.txt under the directory of the user name. The

password is then uploaded to a remote FTP server using the file name [Computer Name].[IP

Address].txt. Clearly, this sample finds the entry addresses of these library functions at

runtime using some obfuscation techniques. X-Force allows us to identify the malicious

behavior without spending unnecessary time on reverse-engineering the API obfuscation.

Moreover, the flow graph also reveals the reason why Anubis missed the malicious behav-

ior: the malware performs environment checks to make sure the targets exist before trying to

attack. For example, in the function where the malware steals password from IE, it will try

to open the registry entry that contains the auto-complete password; if such entry does not

exist or is empty, the malware will cease its operation and return from that function. Also,
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before it tries to steal password stored by Firefox, it will first try querying the installation

directory of Firefox from registry to make sure the target program exists in the system.

Such “prerequisites“ are unlikely to be fulfilled in automated analysis systems as they are

unpredictable. However, by force-executing through different paths, X-Force is able to get

through these checks to reveal the real intent of the malware.

TYPE_1 func1(TYPE_2 arg1, TYPE_3 arg2) {
TYPE_4 var1;

1 var1 = strlen (arg1);
2 if (arg2 >= var1)
3 return 0;
4 return arg1[arg2];
}

Figure 2.7. REWARDS example.

2.5.3 Type Reverse Engineering

Researchers have proposed techniques to reverse engineer variable and data structure

types for stripped binaries [20 ]–[22 ]. The reverse engineered types can be used in forensic

analysis and vulnerability detection. There are two common approaches. REWARDS [20 ]

and HOWARD [22 ] leverage dynamic analysis. They can produce highly precise results but

incompleteness is a prominent limitation – they cannot reverse engineer types of variables if

such variables are not covered by executions. TIE [21 ] leverages static analysis and abstract

interpretation such that it provides good coverage. However, it is challenging to apply the

technique to large and complex binaries due to the cost of analysis.

One advantage of X-Force is that the forced executions are essentially concrete executions

such that existing dynamic analyses could be easily ported to X-Force to benefit from the

good coverage. Therefore in the third case study, we port the implementation of REWARDS

to X-Force. Given a binary executable and a few test inputs, REWARDS executes it while

monitoring dataflow during execution. When execution reaches system or library calls, the

types of the parameters of these calls are known. Such execution points are called type

sinks. Through the dynamic dataflow during execution, such types could be propagated to

variables that (transitively) contributed to the parameters in the past and to variables that

are (transitively) dependent on these parameters.
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Figure 2.8. Type reverse engineering coverage results.
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Consider the example in Fig. 2.7 . Assume func1 is executed. After line 1, the type

of arg1 and var1 get resolved using the interface of strlen(). So TYPE_2 is char *, and

TYPE_4 is unsigned int. In line 2, arg2 is compared with var1, implying they have the

same type. Thus TYPE_3 gets resolved as unsigned int. Later when line 4 gets executed,

it returns TYPE_1 which is resolved as char since arg1 is of char *.
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Figure 2.9. Type reverse engineering accuracy results.

Porting REWARDS to X-Force requires very little modification of either the REWARDS

or the X-Force systems as they only interface through the (forced) concrete executions. Facil-

itated by X-Force, REWARDS is able to run legacy binaries and COTS binaries without any

inputs. In our experiment, we run the new system on the 12 SPEC2000 INT binaries. They

are a lot more complex than the Linux core-util programs used in the original paper [20 ]. To

acquire the ground truth, we compile the programs with the option of generating debugging

symbols as PDB files, and use DIA SDK to read the type information from the PDB files.

We evaluate the system in terms of both coverage and accuracy. Coverage means the

percentage of variables in the program that have been executed by our system. Accuracy is

the percentage of the covered variables whose types are correctly reverse engineered. From

Fig. 2.8 , the average coverage is around 84%. The coverage heavily relies on the code coverage

of X-Force. Recall that these programs have non-trivial portion of unreachable code. The
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Figure 2.10. Essence of X-Force.

variables in those code regions cannot be reverse engineered by our system. From Fig.2.9 ,

the average accuracy is about 90%. The majority of type inference failures is caused by the

fact that the variables are not related to any type sink.

We also compare with IDA and the original REWARDS. IDA has a static type inference

algorithm that works in a similar fashion. When we run the original REWARDS, we have

two configurations: (1) use the test input only (1 input per program) and (2) use both the

test and the reference inputs (around 4 inputs per program). From Fig. 2.8 and Fig. 2.9 , our

system has much better accuracy than IDA (90% vs. 55% on average) and better coverage

than the original REWARDS, i.e., 84% vs. 57% (test+reference) or 34% (test input only).

The better accuracy than IDA is achieved by the more precise modeling of behavior difficult

for static analysis, such as heap accesses and indirect calls and jumps.

2.6 Discussion and Future Work

X-Force is intended to be a practical solution for analyzing unknown (malicious) binaries

without requiring any source code or inputs. Hence, X-Force trades soundness and complete-

ness for practicality. It is unsound as it could explore infeasible paths. It is incomplete as it

cannot afford exploring all paths. Figure 2.10 shows how X-Force compares with static and

dynamic analysis: The “Reachable Program State” oval denotes all states that can be reached

through possible program inputs – the ideal coverage for program analysis. Static analyses

often make conservative approximations such that they yield over-approximate coverage.

Dynamic analyses analyze a number of real executions and hence yield under-approximate

results. X-Force explores a larger set of executions than dynamic analyses. Since X-Force

makes unsound approximations, its results may be invalid (i.e., outside the ideal oval). Fur-

thermore, it is incomplete as its results may not cover the ideal ones.

However, we argue that X-Force is still of importance in practice: (1) There are many

security applications whose analysis results are not so sensitive to paths, such as the three
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studies in this dissertation. As such, path infeasibility may not affect the results much.

However, having concrete states in path exploration is still critical in these applications such

that an execution based approach like X-Force is suitable; (2) Only a very small percentage of

predicates are switched (Section 2.5.1 ) in X-Force. Execution is allowed to proceed naturally

in most predicates, respecting path feasibility. According to our observations, most of the

predicates that got switched in linear search are those checking if the program has been

provided the needed parameters, if files are properly opened, and if certain environmental

configurations are correctly set-up; (3) In X-Force, taint analysis is used to identify predicates

that are affected by inputs and only such predicates are eligible for switching.

Moreover, X-Force allows users to (1) rapidly explore the behaviors of any (unknown)

binary as it simply executes the binary (without solving constraints); (2) handle binaries

in a much broader spectrum (e.g., large, packed, or obfuscated binaries); (3) easily port

or develop dynamic analysis on X-Force as the executions in X-Force are no different from

regular concrete executions.

Future Work. We believe this dissertation is just an initial step in developing a unique type

of program analysis different from the traditional static, dynamic, and symbolic analysis.

We have a number of tasks in our future research agenda.

• While X-Force simply forces the branch outcomes of a few predicates without consid-

ering their feasibility, we suspect that there is a chance in practice the forced paths

are indeed feasible in many cases. Note that the likelihood of infeasibility is not high

if the forced predicates are not closely correlated. We plan to use a symbolic analysis

engine that models the path conditions along the forced paths to observe how often

they are infeasible.

• We develop 3 exploration algorithms in this dissertation. From the evaluation data on

the SPECINT2000 programs, there are cases (e.g., perlbmk) that the current explo-

ration algorithms cannot handle well. More effective algorithms, for example, based

on modeling functions behaviors and caching previous exploration choices, will be de-

veloped.
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• We currently handle multi-threaded programs by serializing their executions. In the

future, we will explore forcing real concurrent executions. We envision this has to be

integrated with flipping schedule decisions, which is a standard technique in exploring

concurrent execution state. How to handle the enlarged state space and the potentially

introduced infeasible thread schedules will be the new challenges.

• The current system is implemented as a tool on top of PIN. To build a tool that makes

use of X-Force, for example REWARDS, the implementation of the additional tool is

currently mixed with X-Force. They are compiled together to a single PIN-tool. We

aim to make X-Force transparent to dynamic analysis developers by providing an PIN-

like interface. Ideally, existing PIN-tools can be easily ported to X-Force to benefit

from the large number of executions provided by the X-Force engine.

• We also plan to port the core X-Force engine to other platforms such as mobile and

HTML5 platforms.

2.7 Summary

In this chapter, we develop a novel binary analysis engine X-Force, which forces a binary

to execute without any inputs or the needed environment. It systematically forces the

branch outcomes at a small number of predicates to explore different paths. It can recover

from exceptions by allocating memory on-demand and fixing correlated pointers accordingly.

Our experiments on three security applications show that X-Force has similar precision as

dynamic analysis but much better coverage due to the capability of exploring many paths

with any inputs. In the next chapter, we will discuss how we further improve the cost of

forced execution by leveraging memory pre-planning.
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3. PMP: COST-EFFECTIVE FORCED EXECUTION WITH

PROBABILISTIC MEMORY PRE-PLANNING

In this chapter, we focus on improving the cost of binary executable analysis by leveraging

memory pre-planning. Malware is a prominent security threat and exposing malware be-

havior is a critical challenge. Recent malware often has payload that is only released when

certain conditions are satisfied. It is hence difficult to fully disclose the payload by sim-

ply executing the malware. In addition, malware samples may be equipped with cloaking

techniques such as VM detectors that stop execution once detecting that the malware is

being monitored. Forced execution techinque X-Force features a highly effective method to

penetrate malware self-protection and expose hidden behavior, by forcefully setting certain

branch outcomes. However, it is very heavy-weight, requiring tracing individual instruc-

tions, reasoning about pointer alias relations on-the-fly, and repairing invalid pointers by

on-demand memory allocation. We develop a light-weight and practical forced execution

technique. Without losing analysis precision, it avoids tracking individual instructions and

on-demand allocation. Under our scheme, a forced execution is very similar to a native one.

It features a novel memory pre-planning phase that pre-allocates a large memory buffer, and

then initializes the buffer, and variables in the subject binary, with carefully crafted values in

a random fashion before the real execution. The pre-planning is designed in such a way that

dereferencing an invalid pointer has a very large chance to fall into the pre-allocated region

and hence does not cause any exception, and semantically unrelated invalid pointer derefer-

ences highly likely access disjoint (pre-allocated) memory regions, avoiding state corruptions

with probabilistic guarantees.

3.1 Introduction

The proliferation of new strains of malware every year poses a prominent security threat.

Recently reported attacks demonstrate the emergence of new attacking trends, where mal-

ware authors are designing for stealth and leaving lighter footprints. For example, Fileless

malware [46 ] infects a target host through exploiting built-in tools and features, without

50



requiring the installation of malicious programs. Clickless infections [47 ] avoid end-user in-

teraction through exploiting shared access points and remote execution exploits. Cryptocur-

rency malware [48 ] allow attackers to generate huge revenues by illegally running mining

algorithms using victim’s system resources. According to [49 ], a massive cryptocurrency

mining botnet has generated $3 million revenue in 2018. Under this new threatscape, mali-

cious payloads have evolved and look much different than traditional ones. Thus, a critical

challenge the security community is facing today is to understand and analyze emerging

malware’s behavior in an effort to prevent potentially epidemic consequences.

A popular approach to understanding malware behavior is to run it in a sandbox. How-

ever, a well-known difficulty is that the needed environment or setup may not be present

(e.g., C&C server is down and critical libraries are missing) such that the malware cannot be

executed. In addition, recent malware often makes use of time-bomb and logic-bomb that

define very specific temporal and contextual conditions to release payload, and some sam-

ples even use cloaking techniques such as packing, and VM/debugger detectors that prevent

execution when the malware is being monitored.

Researchers in [50 ] proposed a technique called forced-execution (X-Force) that pene-

trates these malware self-protection mechanisms and various trigger conditions. It works by

force-setting branch outcomes of some conditional instructions. (e.g., those checking trigger

conditions). As forcing execution paths could lead to corrupted states and hence exceptions,

X-Force features a crash-free execution model that allocates a new memory block on demand

upon any invalid pointer dereference. However, X-Force is a very heavy-weight technique

that is difficult to deploy in practice. Specifically, in order to respect program semantics,

when X-Force fixes an invalid pointer variable (by assigning a newly allocated memory block

to the variable), it has to update all the correlated pointer variables (e.g., those have constant

offsets with the original invalid pointer). To do so, it has to track all memory operations

(to detect invalid accesses) and all move/addition/subtraction operations (to keep track of

pointer variable correlations/aliases). Such tracking not only entails substantial overhead,

but also is difficult to implement correctly due to the complexity of instruction set and the

numerous corner situations that need to be considered (e.g., in computing pointer relations).

As a result, the original X-Force does not support tracing into library functions.
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In this dissertation, we propose a practical forced execution technique. It does not

require tracking individual memory or arithmetic instructions. Neither does it require on

demand memory allocation. As such, the forced execution is very close to a native execution,

naturally handling libraries and dynamically generated code. Specifically, it achieves crash-

free execution (with probabilistic guarantees) through a novel memory pre-planning phase,

in which it pre-allocates a region of memory starting from address 0, and fills the region

with carefully crafted random values. These values are designed in such a way that (1) if

they are interpreted as addresses and further dereferenced, the addresses fall into the pre-

allocated region and do not cause exception; (2) they have diverse random values such that

semantically unrelated pointer variables unlikely dereference the same random address and

avoid causing bogus program dependencies and corrupted states. An execution engine is

developed to systematically explores different paths by force-setting different sets of branch

outcomes. For each path, multiple processes are spawned to execute the path with different

randomized memory pre-planning schemes, further reducing the probability of coincidental

failures. The results of these processes are aggregated to derive the results for the particular

path. The engine then moves forward to the next path.

Our contributions are summarized as follows.

• We develop a practical forced-execution engine that does not entail any heavy-weight

instrumentation.

• We propose a novel memory pre-planning scheme that provides probabilistic guarantees

to avoid crashes and bogus program dependencies. The execution under our scheme is

very similar to a native execution. Once the memory is pre-planned and initialized at

the beginning, the execution just proceeds as normal, without requiring any tracking

or on the fly analysis (e.g., pointer correlation analysis).

• We have implemented a prototype called PMP and evaluated it on SPEC2000 programs

(which include gcc), and 400 recent real-world malware samples. Our results show that

PMP is a highly effective and efficient forced execution technique. Compared to X-

Force, PMP is 84 time faster, and the false positive (FP) and false negative (FN)

rates are 6.5X and 10% lower, respectively, regarding dependence analysis; and detect
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98% more malicious behaviors in malware analysis. It also substantially supersedes

recent commercial and academic malware analysis engines Cuckoo [29 ], Habo [30 ] and

Padawan [31 ].

3.2 Motivation

In this section, we use an example to motivate the problem, explain the limitations of

existing techniques, and illustrate our idea. The code snippet in Figure 3.1 simulates the

command and control (C&C) behavior of a variant of Mirai [51 ], a notorious IoT malware

that launches distributed denial of service attacks when receiving commands from the remote

C&C server. In particular, it reads the maximum number of destination hosts (to attack)

from a configuration file (line 9), and allocates a Cmd object with sufficient memory to

store destination information in the Dest objects (lines 10-12). When the C&C server is

connectable (line 15), the malware scans the local network for the destination hosts (line

16), receives the requested command (line 17), and performs the corresponding actions on

the destination hosts (lines 18-22).

To expose such malicious behavior, analysts could run the sample in a sandbox and mon-

itor its system call sequences and network flows [31 ]. Unfortunately, a naive execution-based

analysis is incomplete and hence cannot reveal all the malicious payloads, especially those

that are condition-guarded and environment-specific. In our example, if the configuration

file does not exist or the C&C server is not connectable, the malicious behavior will not be

exposed at all. One may consider to construct an input file and simulate the network data.

However, such a task is time-consuming and not practical for zero-day malware whose input

format and network communication protocol are unknown. In addition, recent malware sam-

ples are increasingly equipped with anti-analysis mechanism, which prevents these samples

from execution even if they are given valid inputs (please refer to Section 2.5 for real-world

cases). This poses great difficulties for dynamic analysis.

Forced execution [50 ] provides a practical solution to systematically explore different

execution paths (and, hence reveal different program behaviors) without any input or en-

vironment setup. It works by force-setting branch outcomes of a small set of predicates
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and jump tables. One critical problem faced by forced execution is invalid memory accesses

due to the absence of necessary memory allocations and initializations, which are present in

normal execution. Without appropriate handling of invalid memory accesses, the program

is most likely to crash before reaching any malicious payload. In our example, the malicious

behaviors were supposed to be exposed, if the predicate in line 15 is forced to take the true

branch, and the jump table in line 18 is forced to iterate different entries. However, the

forced execution fails in line 30, because cmd is not properly allocated and its dests field is

not initialized.

X-Force. In X-Force [50 ], researchers show that simply ignoring exceptions does not work

as that leads to cascading failures (i.e., more and more crashes), they propose to recover

from invalid memory accesses by performing on-demand memory allocation. In particular,

X-Force monitors all memory operations (i.e., allocate, free, read and write) to maintain a

list of valid memory addresses. If an accessed memory address is not in the valid list, a new

memory block will be allocated on demand for the access. To respect program semantics,

when a pointer variable holding an invalid address x is set to the address of the allocated

memory, all the other pointer variables that hold a value denoting the same invalid address or

its offset (e.g., x+c with c some constant) need to be updated. X-Force achieves this through

linear set tracing, which identifies linearly correlated pointer variables that are induced by

address offsetting. When a pointer variable is updated, all the correlated pointers in its

linear set need to be updated accordingly based on their offsets.

Assume in an execution instance, line 8 takes the false branch and line 15 is forced to

take the true branch. In this execution, cmd is a NULL pointer, hence the dests pointer in

line 27 points to 0x8 (the offset of dests field is 8). The rounded rectangle in Figure 3.1 

illustrates what X-Force does for the memory access of dests[0]->ip in line 30. Linear

sets are maintained for each register and each memory address. In particular, SR(r) and

SM(a) are used to denote the linear set of register r and address a, respectively. After

executing instruction α, the linear set of register rbx is updated to be the same as that

of &dests, i.e., SR(rbx) ← SM(&dests) such that SR(rbx)=SM(&dests)={0x7ffdfffffed0},

which is the address of dests. Intuitively, the pointer value in rbx is linearly correlated to
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that in dests. Hence, fixing either one entails updating the other. The linear correlation

is further propagated to register rdx after executing instruction γ, since its value is derived

from rbx by address offsetting (i.e., &dests[0] = &dests + 0). When executing instruction

δ, X-Force detects an invalid access through the pointer denoted by rdx (i.e., &dests[0]),

holding an invalid address 0x8. Hence, it allocates a memory block with address 0x2531000

and initializes it with zero values. Register rdx is then updated to 0x2531008. The value

of &dest should also be updated, since it linearly correlates with rdx. Similar memory

recovery operations are needed for instruction ε that accesses dests[0]->ip through an

invalid memory address 0x0.

As we can see that each memory operation should be intercepted by X-Force for memory

address validation and linear set tracing. Upon the recovery of an (invalid) pointer variable,

all the linearly correlated variables need to be updated accordingly. This causes substantial

performance degradation. It was reported that X-Force has 473 times runtime overhead over

the native execution [50 ]. Furthermore, since many library functions such as string functions

in glibc can lead to linear set explosion (due to substantial heap array operations), X-Force

chose not to trace into library functions to update linear sets. As a result, its memory

recovery is incomplete (see Section 2.5 for a real-world example).

Our technique. We propose a novel randomized memory pre-planning technique (called

PMP) to handle invalid memory accesses with probabilistic guarantees. Instead of allocating

new memory blocks on demand, PMP pre-allocates a large memory block with a fixed

size (e.g., 16KB) when the program is loaded. The pre-allocated memory area (PAMA)

is filled with carefully crafted random values such that if these values are interpreted as

memory addresses, the corresponding accesses still fall into PAMA.We call this self-contained

memory behavior (SCMB). In addition, these random values are designed in a way that

they are self-disambiguated. That is, it is highly unlikely that two semantically unrelated

memory operations access the same random address, causing bogus dependencies. We call

this self-disambiguated memory behavior (SDMB). For example, the simplest way to achieve

SCMB is to pre-allocate a chunk of memory starting at 0x00 and fill it with 0x00. As such,

dereferences of null pointers (e.g., ∗p with p = 0) or pointers with some offset from null

56



(e.g., ∗(p+8)), yield value 0x00 due to the initialization. If the yielded value 0x00 is further

interpreted as a pointer, its dereference continues to yield 0x00, without causing any memory

exception. However, such a scheme leads to substantial bogus program dependencies as

semantically unrelated memory operations through uninitialized/invalid pointer variables

all end up accessing address 0x00. For example, assume p and q are not properly initialized

and both have a null value due to forced execution and there are two pointer dereference

statements “1.∗ p = ...; 2. ...= ∗q”. A bogus dependence will be introduced between 1 and

2. Such bogus dependencies further lead to highly corrupted program states. SDMB is to

ensure that unrelated pointer variables have a high likelihood to contain disjoint addresses

such that it is like they were all properly allocated and initialized. Intuitively, PMP diversifies

the values filled in the pre-allocated large memory region such that dereferences at different

offsets yield different values. Consequently, follow-up dereferences (of these values) can

continue to disambiguate themselves.

In addition to the aforementioned pre-planning, during execution, PMP also initializes

global, local variables, and heap regions allocated by the original program logic with ran-

dom values pointing to PAMA. Note that otherwise they are initialized to 0 by default.

As such, when these variables are interpreted as pointers and dereferenced without being

properly initialized along some forced path, the accesses still fall in PAMA and also have

low likelihood to collide (on the same address). Through SCMB, PMP enables crash-free

memory operations, which are critical for forced execution. Since it does not require tracing

memory operations or performing on-demand allocation, it is 84 times faster than X-Force

(Section 2.5 ). Through SDMB, PMP respects program semantics such that it can faithfully

expose (hidden) program behaviors with probabilistic guarantees. As shown in our evalua-

tion (Section 2.5 ), PMP has fewer false positives (FP) and false negatives (FN) than X-Force

as well.

Figure 3.2 illustrates a 64-KB pre-allocated memory area mapped in the address space

from 0x0 to 0xffff. Note that although this memory region may overlap with some reserved

address ranges, we leverage QEMU’s address mapping to avoid such overlap. It is filled with

crafted random values that ensure both SCMB and SDMB. For our motivation example,

instruction δ reads the memory unit at address 0x8 (i.e., &dests[0]) and gets the value
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......

Figure 3.2. Pre-allocated memory area. The data is presented in the little-
endian format for the x86_64 architecture. The bytes in gray are free to be
filled with 8-multiple random values.

0x3850. Subsequently, the instruction ε uses 0x3850 as the address to access dests[0]->ip.

These two accessed addresses (0x8, 0x3850) are contained in the PAMA, hence no memory

exception occurs. The data dependence between these two addresses are also faithfully

exposed, without undesirable address collision. Observe that there is no memory validation

and linear set tracing required.

We want to point out while SCMB and SDMB can be effectively ensured in forced

execution, they may not be as effective in regular execution. Otherwise, dynamic memory

allocation could be completely avoided. The reason is that forced execution aims to achieve

good coverage to expose program behaviors such that it bounds loop iterations [50 ]. As a

result, linear scannings of large memory regions are mostly avoided, allowing to establish

SCMB and SDMB effectively and efficiently. Intuitively, one can consider that our design

is equivalent to pre-allocating many small regions that are randomly distributed. This is

particularly suitable for heap accesses in forced-execution as they tend to happen in smaller

memory regions. Even if overflows might happen, the likelihood of critical data being over-

written is low due to the random distribution.

3.3 Design

3.3.1 Overview

Figure 3.3 presents the architecture of PMP, which consists of three components: the

path explorer, the dispatcher and the executors. Given a target binary, the path explorer
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Figure 3.3. Architecture of PMP.

systematically generates a sequence of branch outcomes to enforce, including the PCs of the

conditional instructions and their true/false values. We call it a path scheme. Note that like

X-Force, PMP does not enforce the branch outcome of all predicates, but rather just a very

small number of them (e.g., less than 20). The other predicates will be evaluated as usual.

PMP operates in rounds, each round executing a path scheme. For each path scheme, PMP

further generates multiple versions of variable initializations, each having different initial

values but satisfying both SCMB and SDMB. We call them memory schemes. The reason of

having multiple memory schemes is to reduce the likelihood of coincidental address collisions.

A process is forked for each path and memory scheme and distributed to an executor for

execution. At the end of a round, the dispatcher aggregates the results from the executors

(e.g., coverage). Another path scheme is then computed by the path explorer to get into the

next round, based on the results from previous rounds.

Path Explorer. In essence, path exploration is a search process that aims to cover different

parts of the subject binary. In each round, a new path scheme is determined by switch-

ing additional/different predicates, or enforcing additional/different jump table entries, to
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improve code coverage. Since the search space of all possible paths is prohibitively large

for real-world binaries, PMP follows the same path exploration strategies in X-Force [50 ],

including the linear search, the quadratic search and the exponential search. In particular in

each round, the linear search selects a new predicate or jump table entry to enforce, which

is usually the last one that does not have all its branches covered in previous rounds. The

exponential strategy aims to explore all combinations of branch outcomes and is hence the

most expensive. It is only used to explore some critical code regions. Quadratic search falls

in between the two. Since these are not our contributions, interested readers are referred to

the X-Force project [50 ].

Dispatcher. The dispatcher aggregates execution results (e.g., code coverage and program de-

pendencies) of multiple executors in a conservative fashion. Specifically, it considers a result

valid if and only if it is agreed by n executors, with n configurable. In our experience, n = 2

is good enough in practice. Such aggregation further improves our probabilistic guarantees.

Intuitively, assume PMP ensures that a reported result has lower than p ∈ [0,1] probability

to be incorrect during a single execution (on an executor), due to the inevitable accidental

violations of SCMB or SDMB. The aggregation further reduces the probability to pn if the

memory schemes on the various executors are truly randomized (and hence independent).

Executors. All executors are forked from the same main process with the same initialized

PAMA. Each executor then enforces a given path and memory scheme assigned to it. Such

a design avoids the redundant initialization of PAMA. Note that all memory accesses must

start from some variable, whose value is fully randomized across executors.

The rest of this section will explain in details the memory pre-planning step and the prob-

ability analysis for SCMB and SDMB guarantees. Execution result aggregation is omitted

due to its simplicity.

3.3.2 Memory Pre-planning

Overview. Figure 3.4 presents the workflow of memory pre-planning. When a program is

loaded, a pre-allocated memory area (PAMA) is prepared by invoking the mmap system call
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Figure 3.4. Workflow of Memory-preplanning.

to map a crafted file to the program address space. The file content is randomly gener-

ated beforehand. During execution, program variables (including global, local variables and

heap regions) are initialized by PMP with random eight-multiple values pointing to PAMA.

Specifically, PMP intercepts: 1) the program entry point for initializing global variables;

2) call instructions for initializing local variables; and 3) memory allocations for initializing

heap regions. Note that PAMA preparation happens a priori and incurs negligible runtime

overhead, while variable initialization occurs on-the-fly during execution. Both are generic

and do not require case-by-case crafting. We further discuss these steps in the following.

PAMA Preparation. PAMA is mapped at the lower part of the address space starting from

0x0, in order to accommodate null pointers or pointers with invalid small values. The word-

aligned addresses within PAMA (i.e., those having 0 at the lowest three bits) are filled with

carefully crafted random values, such that if these values are interpreted as addresses, they

fall within PAMA. As such, the range of random values that we can fill is dependent on

the size of PAMA. For a 64-KB PAMA (i.e., in the address range of [0, 0xffff]), the first

two least-significant bytes of a filling value are free to be set with a random eight-multiple

value. Other bytes are fixed to zero. Note that such a value is essentially a valid word-aligned

address in PAMA. For a 64-MB PAMA, the first three least-significant bytes of a filling value

can be set randomly, providing better SDMB. The maximum PAMA can be as large as 128

TB, as a larger PAMA would overlap with the kernel space. While a feasible design is to

change the entire virtual space layout (by changing kernel), it would hinder the applicability
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Figure 3.5. code snippet.
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Figure 3.6. memory scheme.

of our technique. In practice, we find that 4-MB of PAMA provides a good balance of SCMB

and SDMB.

Global Variable Initialization. In an ELF binary, the uninitialized or zero-initialized global

variables are stored in the .bss segment. During loading, PMP reads the offset and size

information of the .bss segment from the ELF header. PMP then initializes the segment

like a heap region.

Heap Initialization. Pre-planning heap regions that are dynamically allocated by instructions

in the subject binary is relatively easier. PMP intercepts all memory allocations and set the

allocated regions to contain random word-aligned PAMA addresses. Note that PMP writes

these values to each word-aligned address in the heap region. If a regular compiler is used

to generate the subject binary, the compiler would enforce pointer-related memory accesses

to be word-aligned through padding. However, malware may intentionally introduce pointer

accesses that are not word-aligned. In the following discussion, we always assume word

alignment.

Local Variable Initialization. Initializing local variables is more complex. After initializing

PAMA and before spawning the executors, PMP initializes the entire stack region like a

heap region. Note that stack frames are pushed and popped frequently and the same stack

address space may be used by many function calls. As such, the stack space may need to

be re-initialized. A plausible solution is to identify stack frame allocations (e.g., updates of

rsp register) and conduct initialization after each allocation. However, due to the flexibility

of stack allocations, it is difficult to precisely identify them. Inspired by stack canaries
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used to detect stack overflows, PMP uses the following design to initialize stack regions.

It intercepts each function invocation. Then starting from the current address denoted by

rsp, it randomly checks eight 1
 unevenly distributed addresses lower than the rsp address

(i.e., the potential stack space to be allocated), in the order from high to low, to see if

they are PAMA addresses (meaning that they were not overwritten by previous function

invocations). We also call these addresses canaries without causing confusion in our context

and use Ci to denote the ith canary. PMP identifies the lowest (last) canary that is not

PAMA address, say Ct , and then re-initializes [Ct+1, rsp] (note that stack grows from high

address to low address). If all eight canaries are overwritten, PMP continues to check the

next eight. Observe that since stack writes may not be continuous, the detection scheme

has only probabilistic guarantees. In practice, our scheme is highly effective and we haven’t

encountered any problems caused by incorrect stack initialization.

Example. We use the code snippet shown in Figure 3.5 as an example to explain the memory

pre-planning process. In the code, a global variable g is defined at line 3, two local variables

a, b are defined in function case1(). Assume in an execution instance, line 24 takes the

false branch and b is not allocated and initialized; and line 25 is forced to take the true

branch. Although a is initialized by the original program code with an allocated heap region,

the data in the heap region is not initialized. Without memory pre-planning, the program

would have exception at any of the memory operations in lines 26-29.

In this example, the global variable g is set to a random PAMA address at the beginning.

Upon calling case1(), PMP checks the canaries at C1, C2, and so on (see the stack frame

in the top-left corner of Figure 3.6 ), and then identifies, say, the region from [C3,rsp] needs

re-initialization, which includes local variables a and b. Inside the function body, a is set

to a dynamically allocated heap region at line 22, but other variables such as g and b keep

their initial PAMA address value (as line 24 is not executed). Specifically, g and b point to

0xfff0 and 0x20 (in PAMA), respectively. Consider the read operation at line 28 that triggers

pointer dereferences on b and then b->f1. The former dereferences address 0x20 and yields

value 0xffd0, which is further interpreted as an address in the follow-up dereference of b-
1↑ Eight is an empirical choice and works well in our evaluation. The number and the distribution of canaries
are configurable.
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>f1, yielding another valid PAMA address. Observe that any following dereferences will be

within PAMA and do not cause any exceptions, illustrating the SCMB property. The value

of b->f1 (i.e., 0xffd0) dereferenced at line 28 is different from that of b->f2 (i.e. 0x08)

dereferenced at line 27, and hence disambiguate themselves, illustrating SDMB.

3.3.3 Other PAMA Memory Behavior and Interference with Regular Memory Operations.

Memory pre-planning is particularly designed to handle exceptional memory operations

(caused by forced execution). As such, all the values filled in PAMA are essentially in

preparation for these values being interpreted as addresses and further dereferenced. It

is completely possible that the subject binary does not interpret values from PAMA as

addresses. For example, it may interpret a PAMA region as a string and access individual

bytes in the region. In such cases, the accessed values are just random values. This is

equivalent to how X-Force handles uninitialized/undefined buffers.

A PAMA location can be written to and later read from by instructions in the subject

binary, dictated by the program semantics. Program dependencies induced by PAMA are

no different from those induced through regular memory regions. For example, the code at

line 26 in Figure 3.5 establishes an alias between variable alias and b->f2. At line 27, a

memory write is conducted on b->f2. At line 29, a memory-read is conducted on alias.

PMP can correctly establish the dependence between line 27 and line 29, since they both

point to the same memory address 0x8.

It may happen that a PAMA location is written to by the subject binary and then read

through a semantically unrelated invalid pointer dereference later. As the written value may

not be a legitimate PAMA address, the later read causes exception. For example, line 37 at

function case2() of Figure 3.5 writes a value 0xdeadbeef that is not a word-aligned address

within PAMA to the address indicated by pointer c. Assume c happens to have the same

value 0xffd8 as an unrelated pointer d. The write to *c also changes the value in *d to

0xdeadbeef. As such at line 38, an exception is triggered for the read of **d. In the next

subsection, our probability analysis shows that such cases rarely happen as the likelihood

for two semantically unrelated pointers are initialized to the same random value is very
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low. Furthermore, PMP employs different memory schemes in multiple executors, further

reducing such possibility.

In the worst situation, the subject binary uses its own instructions to set semantically

unrelated pointers to null. In normal execution, these pointers would point to different

properly allocated memory regions. However in forced execution, they may not be allocated,

and all point to address 0. In such cases, PMP cannot disambiguate the accesses of these

variables, and lead to bogus dependencies. For example, the local variables e and f in

function case3 () of Figure 3.5 are explicitly set to null by the original program code. In

forced execution where line 7 is not executed, they point to the same address 0x0, resulting

in bogus dependence (e.g., between lines 9 and 10). Our experimental results in Section 2.5 

show that such cases rarely happen.

3.3.4 Probability Analysis

In this section, we study the probabilistic guarantee of PMP for the SCMB and SDMB

properties. Violations of SCMB lead to exceptions whereas violations of SDMB lead to

bogus dependences and corrupted variable values. To facilitate discussion, we introduce the

following definitions. Let PA be the set of all possible addresses within PAMA, and WA be

its word-aligned subset. Assume the size of PAMA is S. Then, on a 64-bit architecture, we

have equation (3.1 ).

S = |PA|= |WA|×8 (3.1)

In addition, let FV be a random subset of WA, called the filling value set, whose elements

are used as the values to be filled in PAMA. Without loss of generality, we assume 0 belongs

to FV. We define the ratio between the size of FV and the size of WA as diversity, denoted as

d. Then, we have equation (3.2 ).

|FV|= |WA|×d =
d·S
8

(3.2)
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The initialization of PAMA can be formulated as a mapping f : WA 7→FV, which assigns

each word (with 8 bytes alignment) in PAMA (i.e., denoted by addresses in WA) with a random

value selected from FV. Intuitively, a more diverse FV leads to a more random memory scheme.

The initialization that fills the whole PAMA with value 0 can be considered an extremal case

where FV contains only a single element 0. Note that in this case, SCMB is fully respected,

while SDMB is substantially violated as all invalid memory operations collide on address 0.

Probabilistic Guarantee of SCMB. When a pointer variable is initialized (by PMP) with a

value indicating an address close to the end of PAMA, dereference of its offset may result

in an access out of the bound of PAMA. As an example, consider the dereference of g->f5

at line 18 of function case4() in Figure 3.5 . Recall that g is set to be 0xfff0 by PMP. The

address of g->f5 is hence 0x10000, out of the bound of PAMA with 16 KB size.

Theorem 1. Let x be a filling value selected from FV, α be an offset. The probability Perr1 of

x+α being out of the bound of PAMA is calculated by equation (3.3 ).

Perr1 = P((x+α) 6∈ PA | x∈ FV) =
α

S−8
·
(

1− 8
d ·S

)
(3.3)

Proof. For PMP to access an out-of-bound address x+α, x must belong to an address set

IA=WA∩{S−α,S−α+1, . . . ,S−1}. To simplify discussion, let α′= |IA|= α
/

8 , S′= |WA| and

N = |FV|. Let the size of IA∩ FV be i. We can infer conditional probability P(x∈ IA |x∈

FV) = i
/

N , denoted as Pi1. Additionally, because there are
(S′−1

N−1

)
possible FVs that could

be uniformly chosen from (recall 0∈FV always holds) and
(

α′

i
)
·
(S′−α′−1

N−i−1

)
FVs have i common

elements with IA, P(|FV∩IA|= i)=
(

α′

i
)
·
(S′−α′−1

N−i−1

)/(S′−1
N−1

)
, denoted as Pi2. Enumerating size

i∈{1, . . . ,α′}, Perr1=∑
α′
i=1 Pi1·Pi2=(α′/N)·(

(S′−2
N−2

)/(S′−1
N−1

)
)= α

S−8 ·
(
1− 8

d·S
)

Intuitively, the larger the pre-allocated memory area (i.e., S) and the lower the diversity

(i.e., d), the lower the Perr1. In particular, the Perr1 of a naive initialization that fills PAMA

with value 0 is 0. In a typical setting of S=0x400000, α=8 and d=1, Perr1=1.9073e−06,

illustrating a very low chance of exception. A plausible way to completely avoid SCMB

violation is to avoid using address values close to the end of PAMA. However this requires

knowing the largest possible offset, which is difficult in practice.
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Probabilistic Guarantee of SDMB. SDMB will be compromised when two unrelated pointers

are initialized to the same value by chance. Taking local variables c and d for case2()

in Figure 3.5 as an example, both of them are initialized to 0xffd8, causing invalid pointer

dereference at line 38.

Theorem 2. Let x and y be two filling values independently selected from FV. The probability

Perr2 of coincidental address collision, when x and y have the same value, is calculated by

equation (3.4 ).

Perr2 = P(x = y | x∈ FV, y∈ FV) =
8

d·S
(3.4)

Proof. Recall x and y are independently selected from FV. Thus, fixing x=v0 as a constant,

we can infer Perr2=P(y=v0 |y∈FV)= 1
/
|FV|= 8

/
(d·S) .

With a typical setting d = 1 and S= 0x400000, Perr2 = 1.9073e−06, a very low probability.

Perr3 =P(l (x,β)∩ l (y,γ) 6= /0 | x∈FV, y∈FV)

≤ 64
d2·S2 +(1− 8

d·S
)2·β+γ−8

S−8

(3.5)

Proof is elided due to space limitations. With a setting of β = 0x1000, γ = 0x1000, and

the rest as the same before, Perr3 = 0.00195, still reasonably low. Note that one can always

improve the guarantee by having more executors with different pre-plans.

3.4 Evaluation

3.4.1 Experiment Setup

We evaluate PMP with the SPEC2000 benchmark set as well as a set of malware samples

provided by VirusTotal [52 ] and Padawan [31 ]. The experiment on SPEC2000 is conducted

on a desktop computer equipped with an 8-core CPU (Intel® CoreTM i7-8700 @ 3.20GHz)

and 16G main memory. The experiment on the malware samples is conducted on a virtual

machine (to sandbox their malicious behaviors) hosted on the same desktop. On both
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experiments, the configuration of PMP is as follows: 4-MB pre-allocated memory area (i.e.,

S = 0x400000), diversity d = 1, and 2 executors (i.e., n = 2).

3.4.2 SPEC2000

SPEC2000 is a well-known benchmark set contains 12 real world programs, some of them

are large (e.g., 176.gcc). The list of programs and the characteristics of their executables

can be found in Appendix A . We choose SPEC2000 for the purpose of comparison as it was

used in X-Force. Table 3.1 presents the comparative results on different aspects, including

forced execution outcomes, code coverage and memory dependence.

Forced Execution. In this experiment, both PMP and X-Force use the same linear path

exploration strategy. Specifically, it first executes the binary once without forcing any branch

outcome. Then it traverses the executed predicates in the reverse temporal order (the last

predicate first) and finds the predicate that has an uncovered branch. A new path scheme

is then generated to force-set the uncovered branch. The procedure repeats until there are

no more schemes that can lead to new coverage. Column 2 in Table 3.1 reports the total

execution time when PMP finishes the exploration. Columns 3 and 4 present the number

of executions that pass and fail (i.e., encounters an exception), respectively. The number in

parentheses denote the number of executions finished per second. Columns 11-13 show the

corresponding results for X-Force. From these results, we have the following observations.

(1) PMP can perform 12.6 forced executions per second on average, which is 84 times faster

than X-Force (0.15 execution per second). Since PMP uses 2 executors for each path scheme,

one may argue that X-Force can be parallelized to use two cores (for fair comparison). We

want to point out that first it is unclear how to parallelize the linear search algorithm; and

the second executor in PMP is just to provide better probabilistic guarantees. In most

cases, such improvement may not have practical impact (see our next experiment). Hence in

deployment, additional executors may be turned off. (2) The execution failure rate of PMP

is 3.5%, which is reasonably low and comparative with X-Force. Note that the rate is higher

than what we identified in the SCMB probability analysis (Section 3.3.4 ). The reason is

that the majority of failures reported by both PMP and X-Force are not caused by memory

69



Ta
bl
e
3.
1.

SP
EC

20
00

R
es
ul
ts

B
en

ch
m

ar
k

P
M

P
X

-F
or

ce
ex

ec
ut

io
n

st
at

us
co

de
co

ve
ra

ge
m

em
or

y
de

pe
nd

en
ce

ex
ec

ut
io

n
st

at
us

co
de

co
ve

ra
ge

m
em

or
y

de
pe

nd
en

ce
ti

m
e

(s
)

#
ru

n
#

fa
il

#
in

sn
#

bl
oc

k
#

fu
nc

#
fo

un
d

#
co

rr
ec

t
#

m
is

ty
pe

d
ti

m
e

(s
)

#
ru

n
#

fa
il

#
in

sn
#

bl
oc

k
#

fu
nc

#
fo

un
d

#
co

rr
ec

t
#

m
is

ty
pe

d

16
4.

gz
ip

24
.6

38
2

(1
5.

6/
s)

11 (3
%

)
7,

65
0

(1
00

%
)

69
9

(9
9%

)
61

(1
00

%
)

3,
52

9
2,

82
4

(8
0%

)
0

(0
%

)
2,

11
2

36
9

(0
.1

7/
s)

10 (3
%

)
7,

42
0

(9
7%

)
66

9
(9

5%
)

61
(1

00
%

)
3,

66
2

2,
34

3
(6

4%
)

28 (1
%

)

17
5.

vp
r

76
.8

1,
00

6
(1

3.
1/

s)
82 (8
%

)
26

,7
83

(8
3%

)
2,

00
7

(7
1%

)
22

6
(8

9%
)

13
,4

18
8,

98
3

(6
7%

)
33

3
(2

%
)

9,
43

6
1,

00
0

(0
.1

0/
s)

79 (8
%

)
26

,6
77

(8
3%

)
2,

00
4

(7
0%

)
22

6
(8

9%
)

13
,3

32
7,

19
9

(5
7%

)
2,

42
8

(1
8%

)

17
6.

gc
c

34
90

.2
26

,5
24

(7
.6

/s
)

82
2

(3
%

)
18

6,
31

0
(4

9%
)

16
,1

04
(4

4%
)

1,
23

9
(6

5%
)

57
3,

37
5

38
4,

16
1

(6
7%

)
11

,4
67

(2
%

)
34

7,
01

4
26

,6
47

(0
.0

8/
s)

79
9

(3
%

)
18

3,
28

0
(4

8%
)

16
,0

98
(4

3%
)

1,
22

1
(6

4%
)

57
3,

92
6

33
2,

30
3

(5
8%

)
63

,1
31

(1
1%

)

18
1.

m
cf

8.
6

14
4

(1
6.

7/
s)

2
(1

%
)

2,
97

7
(1

00
%

)
21

3
(1

00
%

)
24

(1
00

%
)

1,
71

8
1,

24
8

(7
3%

)
0

(0
%

)
37

4
16

4
(0

.4
3/

s)
2

(1
%

)
2,

94
7

(9
9%

)
21

3
(1

00
%

)
24

(1
00

%
)

1,
48

7
1,

01
1

(6
8%

)
13

0
(9

%
)

18
6.

cr
af

ty
86

0.
3

2,
75

3
(3

.2
/s

)
15

(0
.5

%
)

40
,4

04
(9

6%
)

4,
23

7
(9

6%
)

10
4

(1
00

%
)

22
,4

37
14

,3
00

(6
4%

)
20

(0
.0

8%
)

99
,7

64
2,

83
0

(0
.0

3/
s)

13
(0

.4
%

)
41

,6
85

(9
9%

)
4,

38
1

(9
9%

)
10

4
(1

00
%

)
22

,8
16

12
,0

92
(5

3%
)

2,
74

9
(1

2%
)

19
7.

pa
rs

er
98

.2
1,

59
0

(1
6.

2/
s)

68 (4
%

)
22

,0
93

(9
0%

)
2,

68
8

(9
2%

)
27

9
(9

4%
)

9,
95

8
6,

66
4

(6
7%

)
88

7
(9

%
)

6,
34

0
1,

68
5

(0
.2

7/
s)

69 (4
%

)
23

,3
31

(9
5%

)
2,

79
9

(9
6%

)
28

8
(9

7%
)

11
,7

40
5,

87
0

(5
0%

)
3,

68
2

(3
1%

)

25
2.

eo
n

37
.2

70
7

(1
9.

0/
s)

27 (4
%

)
28

,6
00

(7
1%

)
5,

56
0

(7
0%

)
50

2
(8

2%
)

9,
52

1
4,

45
7

(4
7%

)
14

2
(1

%
)

4,
02

0
65

9
(0

.1
6/

s)
26 (4
%

)
27

,6
22

(6
9%

)
5,

41
3

(6
8%

)
50

1
(8

1%
)

9,
12

1
3,

55
7

(3
9%

)
5,

66
9

(6
2%

)

25
3.

pe
rl

bm
k

1,
18

9
10

,3
18

(8
.7

/s
)

50
8

(5
%

)
11

8,
13

5
(8

8%
)

11
,6

00
(9

0%
)

69
2

(9
7%

)
66

,7
26

28
,3

94
(4

3%
)

4,
00

1
(6

%
)

17
6,

09
6

10
,4

00
(0

.0
6/

s)
50

2
(4

%
)

11
9,

46
7

(8
9%

)
11

,6
76

(9
0%

)
69

6
(9

7%
)

70
,6

11
24

,7
13

(3
5%

)
18

,8
66

(2
7%

)

25
4.

ga
p

1,
05

4
7,

75
4

(7
.3

/s
)

31
0

(4
%

)
49

,8
69

(5
4%

)
4,

51
9

(5
0%

)
40

1
(8

8%
)

38
,2

43
20

65
1

(5
4%

)
3,

05
9

(8
%

)
10

3,
45

8
7,

46
1

(0
.0

7/
s)

29
8

(4
%

)
49

,9
20

(5
4%

)
4,

52
1

(5
0%

)
40

1
(8

8%
)

38
,7

84
18

22
8

(4
7%

)
6,

59
3

(1
7%

)

25
5.

vo
rt

ex
48

7.
0

7,
23

2
(1

4.
9/

s)
15

7
(2

%
)

10
0,

71
8

(9
2%

)
15

,5
13

(9
1%

)
57

7
(9

2%
)

55
,2

05
19

,9
39

(3
6%

)
63

0
(1

%
)

58
,6

46
7,

22
3

(0
.1

2/
s)

13
2

(2
%

)
10

0,
65

2
(9

2%
)

15
,4

89
(9

1%
)

57
7

(9
2%

)
54

,9
77

15
,3

93
(2

8%
)

14
,0

72
(2

6%
)

25
6.

bz
ip

2
16

.0
24

9
(1

5.
6/

s)
13 (5
%

)
6,

33
8

(9
2%

)
54

5
(9

4%
)

60
(9

5%
)

2,
75

5
2,

37
5

(8
6%

)
0

(0
%

)
84

2
25

8
(0

.1
9/

s)
11 (4
%

)
5,

17
9

(7
6%

)
47

1
(8

2%
)

53
(8

4%
)

2,
43

4
1,

84
9

(7
6%

)
21

5
(9

%
)

30
0.

tw
ol

f
22

1.
4

2,
97

2
(1

3.
4/

s)
97 (3
%

)
52

,3
51

(9
1%

)
3,

68
2

(8
6%

)
16

5
(9

9%
)

24
,0

32
10

,3
33

(4
3%

)
52

8
(2

%
)

21
,3

08
2,

99
7

(0
.1

4/
s)

90 (3
%

)
52

,8
31

(9
2%

)
3,

74
9

(8
8%

)
16

5
(9

9%
)

25
,6

64
8,

21
2

(3
2%

)
3,

13
2

(1
2%

)
Av

er
ag

e
-

12
.6

/s
3.

5%
83

.8
%

79
.1

%
91

.8
%

-
60

.6
%

2.
6%

-
0.

15
/s

3.
4%

82
.7

%
81

.0
%

90
.9

%
-

50
.6

%
19

.6
%

70



exceptions, but rather inevitable as the path explorer forces the execution to enter branches

that must lead to failures (e.g., forcing the true branch of a stack smash check inserted by

the compiler).

Code Coverage. Columns 5∼7 and 14∼16 show the code coverage of PMP and X-Force,

respectively. Observe that on average PMP covers 83.8% instructions, 79.1% basic blocks

and 91.8% functions, which is comparable to X-Force. For most of the benchmark programs,

PMP achieves more than 80% code coverage. Specifically, for mcf and gzip, PMP achieves

100% code coverage.

The worst cases are eon and gcc. Further manual inspection shows that this is due to

some inherent shortcoming of the linear search strategy. To illustrate, consider the code

snippet in Figure 3.7 , which is extracted from gcc that validates function arguments before

proceeding. When the check_arg() function is invoked for the first time at line 2, the true

branch of predicate at line is taken by default. The linear path exploration will force the next

execution to take the false branch, since it has not been covered before. At the second-time

invocation of check_arg() at line 3, the false branch of the predicate at line 8 will not be

forced to execute again (hence take the true branch by default), since it has been covered

before. That means, the code after line 3 will not get executed due to the validation failure

at line 3.

The essence of the problem is that linear search only focuses on predicates, without

considering their context. For example, function check_arg() may be invoked from multiple

places, and each calling context should be considered differently. That is, a branch being

covered in a context should not prevent it from being explored again in a different context.

In our future work, we will explore a context-sensitive path exploration method that can

provide probabilistic guarantees. Specifically, we will explore a sampling algorithm that can

sample a predicate, together with its unique context, in a specific distribution (e.g., uniform

distribution).

Memory Dependence. We also conducted an experiment, in which we detect the program

dependencies exercised by forced execution. A dependence is exercised when an instruction

writes to some address, which is later read by another instruction. This is to evaluate the
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Figure 3.7. Explaining problem of linear search using gcc.

SDMB property of PMP. Note that it is intractable to acquire the ground truth of program

dependencies, even with source code (due to reasons such as aliasing). Therefore, we use two

methods to evaluate the quality of detected dependencies. First, we run the SPEC programs

on the inputs provided by the SPEC suite (some of them are large and comprehensive) and

collect the dependencies observed. These must be true positive program dependencies. As

such, forced execution is supposed to expose most of them. Any missing one is an FN.

Second, we built a static type checker to check if the source and destination of a (detected)

dependence must have the same type. We developed an LLVM pass to propagate symbolic

information to individual instructions, registers, and memory locations such that we know the

type of each binary operation and its operands. Note that we need the symbolic information

just for this experiment. PMP operates on stripped binaries. Ideally, force execution should

report as few mistyped dependencies as possible. Each mistyped dependence must be an

FP. Columns 8∼10 and 17∼19 show the memory dependence results for PMP and X-Force,

respectively.

Observe that X-Force has 6.5 times more mis-typed memory dependences compared to

PMP (19.6% versus 2.6%), that is, 6.5X more FPs. In addition, the must-be-true memory

dependences reported by X-Force are 10% fewer than those by PMP. That is, X-Force has

10% more FNs. The main reason is that X-Force does not trace into library execution such

that pointer relations are incomplete. We will use a case study to explain this in the next
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Figure 3.8. Explaining FPs and FNs by X-Force using mcf.

paragraph. Mis-typed dependences (FPs) in PMP are mostly caused by violations of SDMB.

The results are consistent with our analysis in Section 3.3.4 . Note that our probabilistic

guarantee for SDMB was computed for a pair of accesses, whereas the reported value is the

expected value over a large number of pairs.

Case Study. We use 181.mcf as a case study to demonstrate the advantages of PMP over

X-Force, as well as over a naive memory pre-planning that fills the pre-allocated region and

variables with 0. To reduce the interference caused by the path exploration algorithm, we

use the execution traces of the runs on the provided test cases as the path schemes. That

is, we enforce the branch outcomes in a way that strictly follows the traces. The test cases

fall into three categories: training, test, and reference, with difference sizes (reference tests

are the largest). We use the memory dependences reported while executing the test cases

normally as the ground truth to identify the false positives and false negatives for PMP and

X-Force. Since both the forced and unforced executions of a test input follow the same path,

the comparison particularly measures the effectiveness of the memory schemes. To be more

fair, we only run PMP on a single executor.

The results are shown in Table 3.2 . The 2nd and 3rd columns compare the execution

speed. Observe that PMP is much faster, consistent with our earlier observation. For

the memory dependences, PMP has no FPs or FNs while the naive planning method has

some; and X-Force has the largest number of FPs and FNs. The former is because SDMB is

violated. The latter is due to the incompleteness of pointer relation tracking (i.e., missing the
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Table 3.2. Experiment with mcf.

Item
Execution Time (s) Memory Dependence

PMP X-Force ground PMP Naive X-Force
found fp fn found fp fn found fp fn

test 0.0305 1.987 1847 1847 0 0 1848 5 4 1858 28 17
train 0.0348 2.578 2065 2065 0 0 2069 13 9 2088 45 22
ref 0.0609 4.390 2062 2062 0 0 2068 14 8 2080 37 19

library part). Note that the numbers of FPs and FNs are smaller compared to the previous

experiment as these are results for a small number of runs, without exploring paths.

Consider the code snippet from mcf shown in Figure 3.8 . Variable arc is a buffer that

contains many pointer fields. As it is copied to new_arc at line 3, the pointer fields in arc

and new_arc are linearly correlated. However, X-Force misses such correlations as it does not

trace into memcpy() at line 2. This could lead to missing dependences such as that between

lines 4 and 5; and also bogus dependences. For example, the read *(new_arc->tail) at line

5 must falsely depend on some write that happened earlier.

3.4.3 Malware Analysis

We use 400 malware samples. Half of them are acquired from VirusTotal under an aca-

demic license, and the other half fall into the set of malware used in the Padawan project.

Note that the authors of Padawan cannot share their samples due to licensing limitations.

Hence, we crawled the Internet for these samples based on a set of hash values provided

by the Padawan’s authors through personal communication. Many samples could not be

found and are hence elided. The 400 samples cover up-to-date malware of different families

captured from year 2016 to 2018. We compare the malware analysis result of PMP with that

of Cuckoo [29 ] (a well-known sandbox for automatic malware analysis), Padawan [31 ] (an

academic multi-architecture ELF malware analysis platform), Habo [30 ] (a commercial mal-

ware analysis platform used by VirusTotal for capturing behaviors of ELF malware samples)

as well as X-Force [50 ].

In order to compare our technique with the state-of-the-art anti-evasion measures, we im-

plemented two popular anti-evasion methods [53 ] (i.e. system time fast-forwarding and anti-
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Figure 3.12. Overall result of malware analysis.
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Table 3.3. Analysis on malware samples used for case study.
Case ID Cuckoo Habo Padawan Cuckoo++ X-Force PMP

1 031 12 17 12 12 283 301
2 004 27 29 28 27 32 216
3 225 49 49 166 165 183 220
4 309 153 169 292 221 274 705

virtualization-detection) as extensions to Cuckoo. We name the extended system Cuckoo++.

Specifically in the first method, we modify the kernel to make the system clock much faster

(e.g., 100 times faster), mainly for the following two reasons. First, a malware analysis VM

often has a very short uptime since it restarts for each malware execution. As such, advanced

malware may check the system uptime to determine the presence of sandbox VM. Second,

advanced malware samples often sleep for a period of time before executing their payload (in

order to defeat dynamic analysis). In the other method, we intercept file system operations

to conceal the artifacts produced by virtual machine (e.g., /sys/class/dmi/id/product_name

and /sys/class/dmi/id/sys_vendor).

The detailed comparison results are shown in Appendix C . Note that the malware

behaviors of Padawan are provided by its authors. We set up an execution environment

similar to Padawan (Ubuntu 16.04 with Linux kernel version 4.4) for the other tools, including

PMP, X-Force, Habo, Cuckoo and Cuckoo++, so that the results can be comparable. We set

5 minutes timeout for each malware sample.

Result Summary. Figure 3.12 presents the overall result of malware analysis. Specifically, the

number of unique system call sequences exposed by different tools are show in Figure 3.9 . To

avoid considering similar system call sequences that have only small differences on argument

values as different sequences, we consider sequences that have more than 90% similarity

as identical. As we can see that the executions with anti-evasion measures enabled (i.e.,

Cuckoo++ and Padawan) expose more system call sequences than the native executions

(i.e., Cuckoo and Habo), but disclose fewer than the forced execution methods (i.e., X-Force

and PMP). On average, PMP reports 220%, 243%, 150%, 151% and 98% more system call

sequences over Cuckoo, Habo, Cuckoo++, Padawan and X-Force, respectively. Details can

be found in Appendix C .
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The comparison of execution speed and length of path schemes between PMP and X-

Force are shown in Figure 3.10 and Figure 3.11 respectively. Note that Cuckoo and Padawan

only runs each sample once (instead of multiple executions on different path schemes as force

execution tools do). Hence we do not compare their execution speeds and length of path

scheme. On average, PMP is 9.8 times faster than X-Force and yields path schemes with

the length 1.5 times longer than X-Force. The longer the path scheme, the deeper the code

was explored. The second case studies in this subsection show that with the longer path

schemes, PMP can expose some malicious behavior in deep program paths that could not

be exposed by X-Force.

Case Studies. Next, we use four case studies from different malware families to illustrate the

advantages of PMP.

Case1: 1e19b857a5f5a9680555fa9623a88e99. It is a ransom malware that uses UPX

packer [54 ] to pack its malicious payload in order to evade static analysis. Figure 3.13 

shows a constructed code snippet to demonstrate part of its malicious logic. It mmaps a

writable and executable memory area (line 2), then unpacks itself (line 3) and transfers con-

trol (line 4) to the unpacked payload (lines 7-17). The malicious payload checks the validity

of command line parameters (line 8) and deletes itself from the file system (line 10). If the

command line parameter specifies the encrypt action, the malware traverses the file system

to replace each file with its encrypted copy (lines 13-14).

The comparison of different tools on this malware is shown in the second row of Table 3.3 .

Triggering payload requires the correct command line parameters. Hence directly running

the malware using Cuckoo, Habo, Cuckoo++ and Padawan fail to expose the malicious

behavior. Both X-Force and PMP expose the payload. Figure 3.14 shows the captured

system call sequence. Observe the unlink syscall b that removes the malware itself and the

encryption and removal of “/etc/passwd” by syscalls e-g.

Case2: 03cfe768a8b4ffbe0bb0fdef986389dc. It is a bot malware that receives command

from a remote server. Figure 3.16 shows the simplified code of its processing logic. It checks

whether a file exists that indicates the right execution environment (line 2) and whether

the remote server is connectable (line 4). If both conditions are satisfied, the malware
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Figure 3.13. simplified code.

Figure 3.14. captured system call sequence.

Figure 3.15. Case 1: the ransom malware sample.

communicates with the remote server. The remote server will validate the identity of the

malware by its own communication protocol (lines 4-7). If the validation is successful, a

command received from the remote server will be executed on the victim machine (lines

8-9).

The comparison of different tools on this malware is shown in the third row of Table 3.3 .

The malicious payload of this malware sample is hidden in a deeper path, which requires a

much longer path scheme. Figure 3.17 shows the path scheme enforced by PMP to expose

the malicious behaviors. The length is 28, which is larger than the longest path scheme that

is enforced by X-Force within the 5 minutes limit. These forced branches are to get through

the ID validation protocol.
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Figure 3.16. simplified code.

Figure 3.17. path scheme.

Figure 3.18. Case 2: the bot malware sample.

Case3: 14b788d4c5556fe98bd767cd10ac53ca. It is an enhanced variant of Mirai, which is

equipped with a time-based cloaking technique. Figure 3.19 shows a simplified version of

its code snippet. At line 4, it checks whether the system uptime is short, which indicates a

potential analysis environment. If the system uptime is long enough, it checks whether there

exists any initialization script in the “/etc/init.d” directory (line 8) 2
 . If both conditions are

satisfied, the malware sample adds itself to an initialization script for launching at system

reboot.

Cuckoo and Habo cannot expose the aforementioned behaviors. Cuckoo++ and Padawan

can expose the traversal of the “/etc/init.d” directory (line 6), by passing though the uptime

check via fast-forwarding system time and using a long-running VM snapshot, respectively.

However, they cannot expose the modification of initialization script (line 9), due to the

failure of the initialization script check, as the default OS environment does not have any
2↑ An initialization script has a file name that starts with ‘S’, followed by a number indicating the priority.

79



Figure 3.19. Case 3: the enhanced variant of Mirai.

initialization script. PMP and X-Force can expose both behaviors by forcing the branch

results.

Case4: 8ab6624385a7504e1387683b04c5f97a. This is a sniffer equipped with a vm-detection-

based cloaking technique. Figure 3.20 shows a simplified version of its code snippet. If a

VM environment is detected, the malware sample deletes itself and exits (lines 2-3). Other-

wise, it enters a sniffing loop, which randomly selects an intranet IP address and a known

vulnerability and checks whether the host with the IP contains the vulnerability (lines 5-7).

If so, the information about the vulnerable host is sent to the server and the payload is sent

to the vulnerable host (lines 8-9).

Cuckoo and Habo cannot expose the aforementioned behaviors. Cuckoo++ and Padawan

can expose the network communication to the selected IP address, since they are enhanced

to conceal VM-generated artifacts. However, they cannot expose sending the vulnerable host

information and payload, since the analysis environment is often offline and there may not

exist a vulnerable host on the intranet. PMP can expose both behaviors. X-Force can expose

both in theory but fails within the timeout limit due to its substantially larger runtime cost.

3.4.4 Time Distribution
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Figure 3.20. Case 4: the sniffer malware sample.

We measure the runtime overhead of different components. The distribution is shown

in Appendix B . As we can see that most of the time (84%) is spent on code execution,

while only 13% and 3% of time are spent on memory pre-planning and path exploration,

respectively. In memory pre-planning, 2%, 5%, 69% and 24% of time are spent on PAMA

preparation, initialization of global variables, local variables and heap variables. Observe

that PAMA preparation takes very little time as most work is done offline.

3.5 Summary

We develop a lightweight and practical force-execution technique that features a novel

memory pre-planning method. Before execution, the pre-planning stage pre-allocates a mem-

ory region and initializes it (and also variables in the subject binary) with carefully crafted

values in a random fashion. As a result, our technique provides strong probabilistic guar-

antees to avoid crashes and state corruptions. We apply the prototype PMP to SPEC2000

and 400 recent malware samples. Our results show that PMP is substantially more efficient

and effective than the state-of-the-art.
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4. RELATED WORK

4.1 Binary Analysis Code Coverage

The binary analysis code coverage problem of security applications has been studied for

a long time. Researchers proposed to force branch outcomes for patching software failures

in [10 ]. Hardware support was proposed to facilitate path forcing in [9 ]. Both require source

code and concrete program inputs. Branch outcomes are forced to explore paths of binary

programs in [55 ] to construct control flow graphs. The technique does not model any heap

behavior. Moreover, it skips all library calls. Similar techniques are proposed to expose hid-

den behavior in Android apps [56 ], [57 ]. These techniques randomly determine each branch’s

outcome, posing the challenge of excessive infeasible paths. Forced execution was also pro-

posed to identify kernel-level rootkits [4 ]. It completely disregards branch outcomes during

execution and performs simple depth-first search. None of these techniques performs excep-

tion recovery and instead simply terminates executions when exceptions arise. Constraint

solving was used in exploring execution paths to expose malware behavior in [5 ], [6 ]. They

require concrete inputs to begin with and then mutate such inputs to explore different paths.

X-Force is related to static binary analysis [21 ], [42 ], [58 ]–[60 ], dynamic binary analy-

sis [20 ], [22 ], [61 ] and symbolic binary analysis [1 ], [7 ]. We have discussed their differences

from X-Force in Section 2.6 , which are also supported by our empirical results in Section 2.5 .

X-Force is also related to failure oblivious computing [62 ] and on-the-fly exception recov-

ery [63 ], which are used for failure tolerance and debugging and require source code.

4.2 Cost-effective Binary Analysis

Forced Execution. PMP substantially improves the analysis cost of X-Force. As shown by

our results, PMP is 84 times faster than X-Force, has 6.5X, and 10% fewer FPs and FNs of

dependencies, respectively, and exposes 98% more payload in malware analysis. Following X-

Force, other forced-execution tools are developed for different platforms, including Android

runtime [64 ] and JavaScript engine [65 ], [66 ]. Compared to these techniques, PMP targets
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x86 binaries and addresses the low level invalid memory operations. Additionally, PMP is

based on novel probabilistic memory pre-planning instead of demand driven recovery.

Memory Randomization. Memory randomization has been leveraged for different purposes,

such as reducing vulnerability to heap-based security attacks through randomizing the base

address of heap regions [67 ] and randomly padding allocation requests [68 ]. DieHard [69 ]

tolerates memory errors in applications written in unsafe languages through replication and

randomization. It features a randomized memory manager that randomizes objects in a

“conceptual heap” whose size is a multiple of the maximum real size allowed. PMP shares

a similar probabilistic flavor to DieHard. The difference lies in that PMP pre-plans the

memory by pre-allocation and filling the pre-allocated space and variables with crafted values.

In addition, PMP aims to survive memory exceptions caused by forced-execution whereas

DieHard is for regular execution.

Malware Analysis. The proliferation of Malware in the past decades provide strong moti-

vation for research on detecting, analyzing and preventing malware, on various platforms

such as Windows [70 ], [71 ], Linux [53 ], [72 ], as well as Web browsers [73 ], [74 ]. Tradi-

tional malware analysis fall into two categories: signature-based scanning and behavioral-

based analysis. The former [52 ], [75 ] detects malware by matching extracted features with

known signatures. Although commonly used by anti-malware industry, signature-based ap-

proaches are susceptible to evasion through obfuscation. To address this, behavioral-based

approaches [76 ]–[78 ] execute a subject program and monitor its behavior to observe any ma-

licious behavior. However, traditional behavioral-based approaches are limited to observing

code that is actually executed.

Anti-targeted Evasion. Modern sophisticated malware samples are equipped with various

cloaking techniques (e.g., stalling loop [79 ] and VM detection [80 ]) to evade detection. To

fight against evasion, unpacking techniques [81 ], [82 ] are applied to enhance signature-based

scanning, and dynamic anti-evasion methods [77 ], [83 ] are developed to hide dynamic features

of analysis environment such as execution time and file system artifacts. These techniques

are very effective for known targeted evasion methods. Compared to these techniques, PMP
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is more general. More importantly, PMP and forced execution type of techniques allow

exposing payload guarded by complex conditions that are irrelevant to cloaking.
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5. CONCLUSION

In this dissertation, we propose two techniques, enabled by forced binary execution and

memory pre-planning, to provide better binary code analysis results.

We develop a novel binary analysis engine X-Force, which forces a binary to execute

without any inputs or the needed environment. It systematically forces the branch outcomes

at a small number of predicates to explore different paths. It can recover from exceptions by

allocating memory on-demand and fixing correlated pointers accordingly. Our experiments

on three security applications show that X-Force has similar precision as dynamic analysis

but much better coverage due to the capability of exploring many paths with any inputs.

To further improve the cost-effectiveness of binary code analysis, we develop PMP,

a lightweight and practical force-execution technique that features a novel memory pre-

planning method. Before execution, the pre-planning stage pre-allocates a memory region

and initializes it (and also variables in the subject binary) with carefully crafted values in a

random fashion. As a result, our technique provides strong probabilistic guarantees to avoid

crashes and state corruptions. We apply the prototype PMP to SPEC2000 and 400 recent

malware samples. Our results show that PMP is substantially more efficient and effective

than the state-of-the-art.
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A. SPEC2000 BENCHMARK

Benchmark source lines binary size # insn # block # func
164.gzip 8,643 143,760 7,650 707 61
175.vpr 17,760 435,888 32,218 2,845 255
176.gcc 230,532 4,709,664 378,261 36,931 1,899
181.mcf 2,451 62,968 2,977 213 24

186.crafty 21,195 517,952 42,084 4,433 104
197.parser 11,421 367,384 24,584 2,911 297

252.eon 41,188 3,423,984 40,119 7,963 615
253.perlbmk 87,070 1,904,632 133,755 12,933 717

254.gap 71,461 1,702,848 91,608 9,020 458
255.vortex 67,257 1,793,360 109,739 16,970 624
256.bzip2 4,675 108,872 6,859 577 63
300.twolf 20,500 753,544 57,460 4,280 167
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B. TIME DISTRIBUTION
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C. DETAILS OF MALWARE ANALYSIS RESULT

Cuckoo Habo Padawan Cuckoo++ X-Force PMP
Avg. 41.65 38.88 53.15 53.28 67.40 133.36
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ID MD5 Cuckoo Habo Padawan Cuckoo++ X-Force PMP
001 00056adfd6982498c184f429d7af61d4 29 22 28 31 42 92
002 005449f26bb0033c8ba5cfbb5c2c6f6b 15 15 25 27 34 74
003 0191642afcabb6cb2e9449822ea10d37 70 65 69 98 126 128
004 03cfe768a8b4ffbe0bb0fdef986389dc 27 29 28 27 32 216
005 045136430edac124ea134bf2a32a4a60 15 15 26 15 16 33
006 057857302490521bd52d25a141bbbdfb 14 14 27 27 34 591
007 0686a7459152174f821c8c635cfbda8a 47 53 47 49 67 90
008 08afb6111b6b3d574036cf10fe787063 14 14 25 27 33 45
009 09e4b26df6b499a81453766c17226106 22 32 27 37 46 80
010 0b855d8d6a3c3ac8d5fd6931570e02ae 48 53 48 55 69 92
011 0bc2cbb5be3e651355a50c07885464bf 15 15 26 29 17 33
012 0c0d2ed33316dc5a92a2785007dbcb50 7 10 17 19 25 27
013 0c1aa91e8cae4352eb16d93f17c0da2b 15 15 25 23 34 74
014 0cfe8985c56da5a821ff9bf35aa3dbd4 22 35 30 35 44 58
015 0d186ccf5829dd5bffdc2aff944fe2f6 23 21 34 37 45 61
016 10c47191922eefcfae39bf5be540bd44 15 16 23 27 35 35
017 10f5beac257a92665866cdc99550b7bb 20 17 19 25 31 347
018 113c079464639b4a12826b42c1d96ac7 24 22 35 35 46 71
019 11c489ddea858030b23f7ac184994439 48 54 47 55 69 87
020 1226e436e5e830c9fbe58043fa4f9f3b 43 40 42 59 76 83
021 1321bd12e164aa7c8b7e39afe7bc8a62 20 18 31 27 42 56
022 132397a7e793fb4052f8d44634a15582 36 40 36 50 63 73
023 137c1520b37dfc3ce5072be7995c96fc 14 14 24 26 33 45
024 13f2bb2af16f513b4a35a26c6f8f5cbc 40 41 42 40 58 64
025 17579313f14995e2bfa75a703562debf 17 18 27 26 40 56
026 179c7648bb607147973c2fccbcc0e530 21 25 31 34 43 43
027 199c8ffc248a35d99e1f26ff79bd9398 14 20 14 14 18 32
028 1a7e8ddc317806db053c472e1299fe33 15 15 25 26 34 74
029 1b5054939ee601d89fdaa44c109943cf 29 22 28 29 42 91
030 1b74e8a749948d2fbf2f90486ce63fcf 17 18 27 30 40 55
031 1e19b857a5f5a9680555fa9623a88e99 12 17 12 12 283 301
032 2077166b21e9717df706ca897e5bfc94 14 14 24 14 15 44
033 210e4243c8edc87499ce7caa4076d433 22 45 41 40 60 69
034 22dc1db1a876721727cca37c21d31655 5 8 5 7 17 135
035 23c42760532270113de57b97346edff0 20 18 30 30 42 56
036 24bf1279bc8ffe0c8380675cb8c1b94a 17 17 27 30 39 40
037 25c364af9d8025dcaa8f6ac10c8283af 17 18 28 32 40 55
038 28255eb4c29ef0420572126d8bc0e481 20 18 30 30 42 54
039 28c866843a9462113eb26aef1024db08 17 17 28 29 36 55
040 28fed854eeadd32abfd946e0692c9ae4 21 19 32 33 42 42
041 2ad28d994083eb88d56eded361d7e381 22 45 40 41 53 80
042 2d66f629e00042de8662b384b3c7c3bb 20 30 25 24 43 46
043 2e6453a7eac407dbe47b70b72082490c 20 18 30 33 42 56
044 31c55141129151ee4728a40613b93eca 21 17 21 21 31 55
045 3544c1e682d97dc5e5dbef6898f17fcf 17 18 28 32 40 55
046 36263d91d726dcdb93b97ea05ae8656a 36 40 36 36 63 69
047 36a332f5a8dc058fdf437fa67ecc06cf 39 36 38 40 58 74
048 39d46a0cd60393e5571b720c915db30d 48 54 47 54 69 93
049 3ad6f8a257cfa2d11292cb6420ed884a 18 19 28 26 41 57
050 3b0d923cf1792151e6540ca38b3d6d19 20 17 19 20 32 74
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ID MD5 Cuckoo Habo Padawan Cuckoo++ X-Force PMP
051 3decf1b4e5e821c159e051a04fbf0452 7 7 20 19 27 27
052 3e21a608b64341e97a73861fa0b24ec2 20 18 32 49 61 75
053 3f193286767c269b786e117c43807f7b 17 18 27 32 40 55
054 3fb857173602653861b4d0547a49b395 14 14 27 27 34 487
055 40845a4a9024e1a44bf2453c11dc4003 18 18 29 28 41 55
056 4087376ef72170f248eb2f0665a26796 22 19 22 25 33 40
057 424f94d07b45eab1bd32494cdeb4d67b 22 45 40 35 22 66
058 46eaf3f07c2a59e0bb284a7aacb41dc4 40 37 39 44 62 136
059 483b322b42835227d98f523f9df5c6fc 30 7 26 30 43 51
060 49c178976c50cf77db3f6234efce5eeb 17 18 27 25 40 40
061 4b1e9e8ccf91998393509290d436ede3 60 61 59 60 77 224
062 4e593af1ab25873681c62ca4f49e31e3 21 19 31 35 43 43
063 4f5d0ed102de7c171d1df4989c4cdcd0 15 16 25 29 36 55
064 4fa4269b7ce44bfce5ef574e6a37c38f 25 16 21 25 37 79
065 502a90ed7a851b01b340aded822c4de0 28 22 27 33 41 119
066 524287dda3d6d8e59ebe249476ed8181 27 23 26 32 42 74
067 53ad943fe07be315d908c6b8fe305a08 24 22 35 40 46 69
068 54b0f140da40e5713377f4d4a8f143ad 24 17 25 26 34 159
069 559169cd8167dcbaaf065d6a122a289d 20 43 38 33 40 57
070 55e0a8737b091da7bda7060b75b2e119 60 61 62 60 101 227
071 56cb1c4e788e63325bbb531da187e609 31 27 59 64 70 96
072 57b1ff91b59aada9a1c566940db4d46a 27 29 28 27 49 90
073 57b4d2108051dbe43d7b35777ba76d40 15 15 26 27 34 78
074 582f47ec975b0ba8cafe5a39cccbd552 24 22 34 36 46 71
075 58af33baf68feb637b59a20ba4ea0c03 26 53 48 51 65 96
076 5a6fd63f4ffc6037dc192b6c3f456e87 55 32 58 58 76 123
077 5b36aebed504b73123e10de21529b638 21 19 31 34 43 43
078 5c1dd20f74dac82306864a411f96171c 140 149 87 140 157 183
079 5c47f09a37376d9b6a4e97518c435dc9 17 18 27 27 39 39
080 5cf6110f21b80123f577e85bf81af82f 22 45 40 47 60 93
081 5d6aa67ce342703f6735925d359c3049 43 40 42 43 77 83
082 5e890cb3f6cba8168d078fdede090996 29 25 28 29 44 76
083 5f13326e2c90b70593b645540f25213f 17 18 28 32 40 55
084 5fb565eee5336c0b30451a0a023036b8 11 5 20 20 29 30
085 5fd2ed4f42f0cce701482fbdb78a00b1 36 7 36 37 39 76
086 5feaa85c62d1117a7931df0bf8b62dd3 21 24 31 33 43 82
087 6025e14c04a7c35e8a049885f035b97b 15 15 23 25 32 32
088 6139657db08c3e9d5d2399259e8eaaa0 28 24 27 33 43 74
089 62c2d296060d14061f5c54f31662dac9 31 27 57 61 88 105
090 6355f0ea6c19090e0baedc57016beb6c 19 20 19 19 31 31
091 664378d10f610552d17e97cc06ade139 20 43 48 39 48 57
092 6b0bd9599779c3a4899a6ee9fd2eee03 28 24 28 35 45 68
093 6dc1f557eac7093ee9e5807385dbcb05 15 15 26 22 34 74
094 705df7bc13a3fc1bbfc79735455fda68 24 21 25 28 34 45
095 70ad6b0a94a0ef3ff974833dd7296b8d 29 25 28 29 45 173
096 717dfa046833dac608b6f1a274a47938 8 7 23 23 29 444
097 72afccb455faa4bc1e5f16ee67c6f915 362 362 291 362 423 505
098 74124dae8fdbb903bece57d5be31246b 36 40 36 38 40 84
099 74f0ec75b6bced0be2ede45455fc90a5 41 7 40 41 44 58
100 75e04ad828359d2d25718430bc5f3dd3 14 14 24 26 33 54

90



ID MD5 Cuckoo Habo Padawan Cuckoo++ X-Force PMP
101 770756fdaed23e4ef3c0a17f26bc22b6 17 17 28 28 35 56
102 7dad01f26f01992d24d0f8e6d08d042e 17 18 28 24 40 55
103 81b6ee216e10e17104706536c21a479a 39 36 39 48 59 157
104 81ea379c237724249c137fc83ef21e9a 6 9 6 6 19 35
105 850177156d5a010254bba5746664a3c7 15 15 26 27 34 34
106 862cfa928c8edfd50ed22e08bbb14c61 17 18 27 25 40 56
107 898dde6afb3142e607528359b0935e9e 48 54 47 48 69 88
108 8bd0c5f36987218a95dc56677c40f880 17 17 27 29 36 57
109 8bfed4ef1067ca119d4d71a66a84e06e 8 7 25 23 29 29
110 8c5c1e62d737ffd0dc36b2c1252ddd75 37 40 38 50 63 266
111 8dba0738910ef34590cea87a3c1ac538 27 32 48 51 74 74
112 8df9ec7cd1de78957ea800fd63d66051 39 36 39 39 58 132
113 8f194847387186899cc8d9f9ca903e07 103 112 139 143 147 190
114 901cbff40784ee40518fda6471e70baa 15 14 26 26 33 70
115 912bca5947944fdcd09e9620d7aa8c4a 15 15 25 26 34 83
116 9353a060cc5fc8f26ce8a0105dfac48f 15 14 26 24 32 34
117 9361a4d5b4bf3041759bd4f727920df2 14 14 28 33 34 587
118 93c2f1ca9949435cffe81572d3d21d5e 15 15 25 27 34 34
119 942ea0c4cb729d4878eb5b8998981228 48 54 48 54 69 92
120 96804156396bce25d49c4ea4f058d569 47 53 48 47 59 83
121 96de2982978ea899ba4a97ff73e7f466 15 15 26 27 34 76
122 97ba48a2562e856d8eef15e1c9f6585e 17 18 28 25 42 57
123 994136a3c18399900f73d085bf42a330 97 94 40 109 138 142
124 9d2b507212c19a9dcf95168745e793ea 39 36 38 39 59 145
125 a25470a5b305fc5e7c80b68810e132b2 43 40 42 46 76 83
126 a27896388f0f0dad493e7d786e48eaab 14 14 23 21 15 95
127 a3ab4dfb3e3b160fed14d923db29daec 20 30 25 23 42 53
128 a4404be67a41f144ea86a7838f357c26 47 43 46 55 69 82
129 a4944230d62083019d13af861b476f33 14 15 24 25 35 54
130 a4eecf76f4c90fb8065800d4cad391df 29 40 59 56 78 303
131 a58fb83be409874271fa04709012b5ad 19 17 29 32 41 55
132 a62f2bca5c0a5d239c6a3732a2f424ab 228 229 359 355 408 621
133 a6617c5cb59135e05799498d264564c7 75 71 72 75 95 129
134 a664df72a34b863fc0a6e04c96866d4c 17 18 28 33 39 172
135 a71079102c6f7053a9402f72cec79825 22 18 21 22 22 33
136 a8cd638e13b1848f347fc724e9386ea8 15 15 23 25 33 79
137 a8f78241bd7b7cad50e054bcb4dfa01b 27 32 48 47 74 74
138 a96fc6e018d771932b70aaf9eb8b7484 347 353 359 415 523 713
139 ab2b936e95da491789caa802ec4948cf 22 19 21 26 34 65
140 ab40bea438fbf809b5786d52b38ea318 39 36 39 39 59 144
141 abbf052d0c9d84c5a30bf7348e225b31 18 19 28 31 40 41
142 ac2c9ce2b3edf07045024d60f9b4e53e 27 32 48 60 75 75
143 ad76e4b7470df9368380b2b5375410b4 40 37 39 49 62 148
144 aec2df8a6cb35aa5b01b0d9f1f879aa1 20 30 25 23 42 49
145 b4088daeb311c24d8f9a20b5ec223bc9 21 17 20 24 31 55
146 b754622e816fb2281402b86f75fa9ccf 26 22 25 26 42 337
147 b8f6cdb7360dd2411fcbed86cf77b775 15 14 25 22 34 34
148 b91fed817500f9c377ca9c799e987c74 27 32 48 60 74 74
149 be0db913011e51e3424be7841b13fd05 15 15 26 26 34 77
150 bf8287805afdfc72ca6b7c6e76d5b04a 347 355 352 351 521 716
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ID MD5 Cuckoo Habo Padawan Cuckoo++ X-Force PMP
151 c2764861cacf73cda2227bfeb67f707d 8 8 7 10 13 129
152 c2a5b75c7273b3b4d4bf0a234eea35f2 28 24 27 29 43 64
153 c32a5d9b0c78b335af5197d3831966a9 41 42 41 41 50 61
154 c36625389cb4739518472de4298536fb 54 32 58 60 75 120
155 c38d08b904d5e1c7c798e840f1d8f1ee 82 84 87 86 110 137
156 c533142180337d02f5e2a6ee2bf9e099 14 14 27 27 34 587
157 c63cef04d931d8171d0c40b7521855e9 15 15 26 31 34 79
158 c64919c97236dcef4e97140c1153b274 14 7 35 31 46 327
159 c80b8f2a2d6a9e1500bfa52f864ea46d 17 18 28 31 40 55
160 c83b5e8b47824392082c84240bf2f8b4 17 18 27 31 40 55
161 c8c1f2da51fbd0aea60e11a81236c9dc 29 22 28 29 41 91
162 c97acd1fad05a0b0a7825f5647d4244a 17 18 28 32 40 55
163 cb0477445fef9c5f1a5b6689bbfb941e 70 66 70 99 125 127
164 cb3d93f65c64e48ef81274a49a748ce7 29 25 28 36 45 116
165 cc29a224e327412e0db7f3ce5c4f4e00 6 8 6 14 18 35
166 cd60f742fc71f98b34a264c5f3e55a42 14 14 29 25 34 34
167 cfcd5153e739406baa7b354dd5b28e04 17 18 28 31 40 55
168 d04c492a5b78516a7a36cc2e1e8bf521 70 66 69 99 125 127
169 d0874ba34cfbdf714fcf2c0a117cc8e2 38 35 37 38 58 135
170 d0b9d58f3a454ad6df2e4d055858c1e5 6 9 6 14 18 33
171 d1a19e834ef3a4f7ecfcd8af04c6ebe4 14 14 28 23 34 587
172 d21fb7ed52ba13294240354c1f528d2f 3 5 3 10 13 269
173 d2cd482ba82e592c1dc5ded7db79ec70 15 15 25 24 34 74
174 d3a894f6052ecee1ca87b69e619ca0cb 31 27 30 31 49 122
175 d493af745de315c6989355a49d21b2a3 20 18 31 31 42 56
176 d721e7efb5d63eaf85540748942f301d 42 42 43 42 48 52
177 d7d73062d2defe111b6ba3bdcf5e4e18 17 17 28 33 36 55
178 d979d2dce979788c0ce9ccc72b445617 27 32 48 60 74 74
179 dae9fd1c16b6fee713f53182cb2d4e10 17 6 28 31 40 40
180 db16765a02efbe75ae569c5901744c19 346 358 460 465 522 712
181 dc4db38f6d3c1e751dcf06bea072ba9c 15 15 26 29 34 75
182 dd77f74445d61c8d80335b15d432c27b 13 7 21 26 33 110
183 de2e41048e3a54ac1e6bbae91ae999ab 20 43 39 42 30 59
184 de5798b69df92163cdd25f362565c521 27 32 49 44 74 74
185 dff09a1a31fadad518a6760c3cfbdc17 28 46 42 51 64 170
186 e37ff9a3fc89bf29ea96333f3aa7f296 40 37 40 40 60 135
187 e3d80f2cd1de02c74f198189aba33052 29 22 28 29 42 91
188 e6ffa02a63c951e4e8a131e43d9fea6a 15 15 25 20 34 76
189 ec3de1355a2056a7eb5e799b5e989d0b 24 47 44 49 63 92
190 ec673fedd52823da1ebae7019e042382 21 19 31 28 42 82
191 ed62ce1a406b2a0b9d6d79ca4e3572b6 18 18 28 33 37 59
192 ee11c23377f5363193b26dba566b9f5c 31 27 57 43 55 87
193 f27751af292f252f1cc55f90f15bd30b 14 22 284 162 203 423
194 f2b00b27e6e8d10d3c27525ecd9af120 47 53 48 53 69 92
195 f3e8a50f0c1c3a510f882d0fdb121960 14 14 24 26 33 33
196 f8cfc2b7f01c3a26f0a9db32b8c5f51c 17 16 27 27 36 36
197 fa68eb454b37401bb0476428a3ae84a5 20 17 19 24 31 65
198 fa7a3c257428b4c7fda9f6ac67311eda 24 14 20 27 34 159
199 fd75a87293ca3215f3c033f64feefd0f 18 17 29 30 37 58
200 ff02a16427e3200526220350fa8c9b4f 30 26 30 35 44 55
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ID MD5 Cuckoo Habo Padawan Cuckoo++ X-Force PMP
201 011bb615de58263b483c8fb04d04525c 20 16 19 23 30 519
202 027aaab9a6c3a3d94d78858821555a8b 31 26 30 31 36 107
203 02fc23152110db73763d50fa2c9bf8f9 15 14 42 43 34 70
204 03561dd35406b403d85402979b9d05a2 43 39 42 43 76 82
205 03b2597873ba0f0e28e3dc78343dd968 17 16 28 28 35 52
206 03ed77d8a342473bee100850e42cd11c 7 15 28 20 26 139
207 049d713e7833ac6fa0cdf1b632dce1dd 15 14 26 27 33 70
208 05266ec1f4c9981e7027681563fc8867 59 5 58 59 62 112
209 0632ef98ee12a4754e7c914285625ab0 216 178 299 216 269 344
210 067329430589b374c35e1b696ada34f9 21 23 31 21 27 78
211 06a35dd46bae273bb42850563c9f51fe 38 34 37 45 56 138
212 07ce3c632e2399c1b3218a77599ea771 70 39 99 102 90 260
213 07f5bbc7f414bcb25bbb8014240e8c0f 28 24 27 28 44 56
214 08dbfacee7a4a77f25f159bc8666a974 20 16 19 23 30 563
215 0a44d7078bc1c5f1217ff503f2f3ebc8 8 7 20 17 28 65
216 0b26005c71cea142c87f8e976cf704e0 72 67 89 72 90 222
217 0b9835fd94b8a967497835cb13e212b1 26 17 26 26 33 34
218 0d4de50a28c4294576aa834f13d4f959 15 20 25 15 16 70
219 108079ccf885562a92cb363addb4182c 7 10 17 7 7 138
220 11f6f1bb81a837fab5b578352150a7be 18 18 28 18 23 56
221 125dca58b81561fafe56797252d0a39e 68 63 70 73 71 72
222 135fb83a2a1fad994ac298daa9a427bd 28 23 27 28 42 55
223 13e0645ba42c32bb049419b83f2dc804 17 18 28 30 39 57
224 1408f779af2a5ed4e736af107da29ec8 20 17 19 24 30 46
225 14b788d4c5556fe98bd767cd10ac53ca 49 49 166 165 183 220
226 15b09361380380d3bdcfec7d316b6951 306 306 337 340 350 457
227 196360a06bbef80d5a9aae11f5894a34 20 16 19 23 30 63
228 1a713da3360a34516ad82b1523abf6d1 17 17 28 26 40 64
229 1d21a6d88e50e371e8bde993d7333d89 48 46 47 49 84 86
230 1d5416ae2474aedfd68f79e4aacd1b14 20 17 31 27 41 70
231 1dbfb9de8ddd948039693054fe83459c 78 89 91 83 104 227
232 1ed97c5de81a7a9037727c639faf9bfe 23 20 22 27 34 54
233 1f79632bb62b3497492ec6fa366d98fc 349 407 422 419 495 655
234 21c75019e965cfa6ca34a670c238c379 13 7 22 27 34 147
235 2361605b95afa6514dd856b21854dd26 48 45 47 52 84 86
236 2370ef9dbf483c20f48b4d1a2a6ab3b2 346 208 354 346 360 582
237 256ad86b8cea17b514230497d62b8907 15 15 26 26 23 71
238 25a5284bcd99e246566e0a927fda27fa 17 18 28 31 39 57
239 292d124aa58579e18239951f63c38da7 144 129 205 166 208 300
240 295370e5a3afdb8f6babdfff74837f0b 49 45 53 66 84 85
241 2995574af03023ed9199bdc54de34df0 13 12 24 26 14 38
242 29f518d6fe7de8df6791d110668b912d 29 44 66 69 43 199
243 2b79e388966bb783ba81e56b490f3b93 52 47 58 65 81 141
244 2e940ae965d9ff64a0b225718e765290 21 18 32 33 43 54
245 32370b31ab6b2e23e9ab4add4f2819aa 8 8 20 21 27 64
246 331b1cca79f04e3ba0c907bcf07224d1 38 31 38 40 46 68
247 33af29cb0deee7ee22f994f4a4d23a74 20 16 19 24 31 52
248 3498ca6576a3ec21cf28840ffd4db5e7 17 17 28 30 35 52
249 34a4c33ba5e4451c5796bb4476724d6a 15 15 26 15 16 72
250 3518cd0cebef50798acda338f243f16c 4 13 15 15 20 111
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ID MD5 Cuckoo Habo Padawan Cuckoo++ X-Force PMP
251 356ce264ae0867f60f34cd78a2f93ff0 39 35 39 41 53 63
252 35bc0e96dec5d36f55332ea649c373d6 14 13 21 22 15 78
253 364ff454dcf00420cff13a57bcb78467 314 152 362 314 341 385
254 38c940d037d653275b72c9de1b642727 103 60 116 119 161 174
255 3ec866180f9cac1bcb1d6037d2846567 319 313 317 319 413 417
256 3f037e9dd44b74b13d6791c6a2d69f10 29 25 28 35 44 53
257 427289af22c46174ecaf987d2178626d 20 16 19 24 30 537
258 454760fe8180c3c3bb062f8fc4aa1b7b 350 191 421 406 497 653
259 455ca63206d588da68c07d7bc2a6eeeb 39 35 38 45 58 143
260 458fe2439525b3f6b47ed4ba9d56f28e 15 15 23 15 16 59
261 45a02fb9272e3acb5c9a6c65bf41d768 17 16 27 32 35 52
262 45a943ce94b89de26ec923dd79b67c62 49 46 49 67 84 85
263 481d0baa98049379ab7713827393dc31 7 14 17 21 27 139
264 487bb61b3eeecb3988bb1d962b391470 21 19 20 21 35 44
265 49969f4484393afc1e1f41151512e1b4 19 16 18 19 29 43
266 4c78c0b15048a65721369ec3b076a4d3 26 24 32 34 44 56
267 4f46355e3b525340dba54aaef37513b9 60 59 65 71 89 154
268 51bba809f66c8d8df371f2c5ec690d68 14 11 30 30 37 486
269 51f516f91d06a0ea22b16a1499019784 17 17 27 17 22 63
270 528dded11385d5f6f0f2cd1aed767612 17 18 28 33 22 54
271 55127fe3361c858f792c1ed293979405 18 16 28 28 36 85
272 55889bba8c38037b64353664e71e4de2 19 15 18 22 29 42
273 55a410487b1b33320db189c7330d1d27 16 8 26 23 35 74
274 5835a68f0a6aca46219e2c3dd67bb08b 8 5 53 42 52 130
275 5a82854f4c17fdeb96d7573775d5c1f7 26 25 47 36 45 55
276 5d5c689616635c7f1f70e11f560cd7a9 15 14 27 27 34 47
277 61c3829b71be53cf531359f1179278f8 43 40 42 60 76 82
278 62e8fae3267ca477b5bcf6e20b08db5c 705 699 702 705 818 820
279 67e2781ab76e0fdf90e16feda6f9bb92 18 17 28 28 36 58
280 6bdbf23cef66b687d8770cdbb975152a 51 65 69 88 113 114
281 6db50873565946688adbc295b71df792 17 17 30 30 39 55
282 6f01828bff7489d75430922d882802ac 7 19 21 23 30 119
283 7058a6ff263e337c28d02555d4d5d840 193 150 266 194 243 323
284 706c0b48c89088fab58cb1eaa5cc8481 28 23 27 33 42 66
285 70da56d81aacfdd983032de8d153b134 19 15 18 23 29 41
286 71911c8703317d85550fb2c8434cba2e 11 5 20 16 29 118
287 719b1b9f691458af3b0da974649f42bf 8 7 24 22 28 486
288 71f0165f8f323fabeabb6e7899bd82d9 18 18 29 31 40 56
289 73e22cbf693132f18efd7de370b2c649 14 15 284 162 203 434
290 76f0a6e2e2b0041eb99fd38be1a10d30 18 17 29 25 20 52
291 7705b32ac794839852844bb99d494797 215 180 282 285 266 340
292 7731bca7a293366073a96bbeff46ef1e 26 22 25 26 43 59
293 78b3573a0b1c48e1ce7681590729b933 34 36 41 46 54 69
294 78facb6fed493a214931b38da717e0c7 17 17 28 32 22 64
295 797c5c00edd1b91cc97cc37ddc0efd4a 29 21 25 29 33 49
296 7b11921e962dd58a2a0d91c13f358e6f 21 18 31 35 43 82
297 80ea54e6b09a879a00496113146b9fe4 17 17 27 27 35 52
298 826c991fc57cb3ca593854c26b0e90d9 30 25 33 31 44 280
299 83c57db78a41143f9952f4dfa0be4e80 122 62 141 148 186 265
300 8416c4a84f495fe47f5cddece8afbb74 17 16 28 24 35 51
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ID MD5 Cuckoo Habo Padawan Cuckoo++ X-Force PMP
301 85c7e24b1c610e95a00e67de45306475 21 18 32 32 42 74
302 867ac455ee27fbd7872d3aefac729bf3 77 71 78 77 139 236
303 87113c55c5398c65c8aa7157b5b64f1a 8 5 53 32 41 77
304 88ecb91721cfa62e724317aa00293278 89 32 98 94 110 252
305 8932bd03aeaf81b1b6d6a7c97ea2da1a 8 7 24 15 20 168
306 893b1eddfcd390b26b8ddda3ac725fc6 51 47 50 55 90 97
307 8a4dabeef4e88749a6abe1d272003d15 72 67 73 77 125 126
308 8a82483ea34fd156010d9ea8a8234a49 43 39 42 61 75 81
309 8ab6624385a7504e1387683b04c5f97a 153 169 292 221 274 705
310 8d3ea75f160fdd9ff8efedab7e436851 51 48 50 71 89 95
311 8d68e286ebcaf2a3e76e7814bc4084fd 18 19 29 18 23 55
312 8f184c2e09d6e5c19e1edea50850c347 42 47 62 57 62 83
313 9188f0ff6070eb28b65aa1c396d89835 35 35 35 41 53 78
314 91f5d45b7a24d69e9d2d0b88870c8c40 27 23 26 27 40 98
315 9330d7d3114fc7bfa2ee8d05ad6882ec 17 17 27 31 29 54
316 937e25c1c059150dab0ec95a3a715262 21 25 31 21 27 75
317 961c824f208dbd57c2c489955830b195 30 25 29 30 45 56
318 969dd70e0dba7df04fc93548224ba8a2 17 17 28 33 39 55
319 984a0524e333060a337c5a6ceae06b42 18 18 28 32 41 64
320 98579b288581d02dcb2e6581f9be5a2f 68 63 69 70 72 74
321 9b0ee3bf1fa0a2b5e3d07c0b52dab1a6 43 40 42 43 75 81
322 9b6acc30fc9e224fea745906ed8f8889 23 21 33 35 44 58
323 9b7f5a1228fa66cbd35e75fb774fdc8e 153 203 246 161 199 655
324 9bb32c8115e3c643ee55dc41e754da73 7 10 17 12 25 139
325 a21e5260be784afbd01b93b20932ce8c 18 18 28 27 23 56
326 a27383a4644c8f25db5dfbd6496ab5d7 17 17 27 30 39 55
327 a27ee2b8f214dfbb5e15741751c09bf7 144 129 166 144 177 285
328 a4d4b5a8426822a6e26141f0a99781a4 14 14 25 25 32 45
329 a8c86a50e5613d2284c7e1a0f18e5bf2 15 15 25 22 33 73
330 a976deb51d295834b033609f9d5544ff 28 23 27 28 42 61
331 a9b6a5e7044ee975dbdbde90245f3938 18 19 29 18 23 56
332 aa5bebb84c2baae824782a85e2bde15a 58 52 60 58 77 258
333 aa646e4158bc48ecf4c745ef36664f1c 26 22 25 26 42 131
334 ab27fa9c2b797edacfbe961ae01372ad 28 24 27 28 43 63
335 ac6d049830db2f68ba01425be8b6d141 87 83 86 87 146 147
336 b03c32330edd83d10f23c941ce11412f 20 17 19 23 30 41
337 b04ab29c9a7a4fb99c1a8e60aebc5f38 17 17 28 26 22 54
338 b0c23492048f6cd5595cf847381fd5b2 20 17 19 20 30 544
339 b1598c6f6e9552b8c0776163793b529e 18 18 28 31 40 56
340 b27d6fa312b314d49a7e4ea7e85fc685 15 14 25 20 33 70
341 b2cd98a0b6f6ac9de92c92a702ee5f76 8 8 21 20 27 62
342 b4bc9b6f1c68981bad1cb40e8cf71e97 4 6 15 17 22 112
343 b58f043367e6057c9c79418d332e38c8 14 16 284 162 204 420
344 b8053ad0847830c698b0bdc35020f0d8 17 18 27 30 39 57
345 b85520dd2d64d6d05fe75b6112253fce 14 13 26 25 32 480
346 b931748458cfb2261cf7c14fb0441d95 24 20 23 27 34 45
347 bacee65f81615128345982051c4a605f 15 14 26 15 16 70
348 bc225bcbb80bef9c0b0d014305a9543d 55 54 54 72 92 100
349 bf2de60d4dddf43b4313668ad04ccafb 38 35 37 38 56 139
350 bfef696178596e2b801b396f8ec4c203 14 13 26 14 15 44
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ID MD5 Cuckoo Habo Padawan Cuckoo++ X-Force PMP
351 c39c03e276ac9bf64a502aa97f4187a9 21 18 35 34 27 89
352 c42554aef95702855ecc2c01f01d5cb9 72 65 67 99 124 125
353 c505029f2342e0452eed10d7705592fb 51 47 50 51 89 95
354 c61880e699640afbbba3e0ba7a8498b4 17 18 28 26 22 54
355 c8384a4b1951535448fe343374e38629 29 25 28 33 45 83
356 c87f1455ce2a5d3b68ce4bd4bb0f2ffb 17 18 26 29 22 54
357 c8d2fbac602fa261aa58276a2fd1c1d9 22 29 46 51 42 74
358 cba0943d3321347d28b293c14e2d352f 8 8 23 22 28 168
359 ccacb967524b88ec37f9779e826b89ea 24 20 25 27 34 45
360 cd3f835f1ef72f9dc48be1ea7f912dee 17 17 27 17 22 63
361 cd9db4354782ac9a26d9277d2d119ec6 133 133 168 167 138 449
362 cecd4988e023f5be02ae9fb8dbfd80c3 18 18 28 32 40 57
363 cff22e37378dbc280072c751cd13c612 75 71 74 103 130 131
364 d73face1dbd45383e74389a1bb3a2790 15 15 25 26 33 72
365 d766b045d130c0abc5d65be9254866d2 20 16 19 23 30 524
366 db5d478bdd8c50ee4425c3b7aa7a0342 19 12 20 22 29 263
367 dbd1c1eb767a458940a916a55e50783b 28 24 27 28 42 61
368 dc11905db6d7b885d0672836690b0789 17 17 27 22 39 55
369 dced35ba29cee86504064bf45c1fdd34 8 8 24 22 29 490
370 dd1e0191dbb0d9e6c30f6a17b968657e 39 35 39 39 53 63
371 de91ad771b54f73a924ac24a830c7bd9 17 16 28 17 18 53
372 e41f7965cba7e029c9c803274a928ef4 67 86 108 82 102 198
373 e4beb0caef120a317c73fc5640ef284b 15 14 25 26 33 71
374 e5c66d51421e6f90b8b7095d68f2c9fa 14 11 29 29 37 492
375 e7130e2ca5049be3acdb4fe01306f950 17 18 27 25 17 63
376 e8b597edd5d41bce904b6d417658c4bf 28 23 27 28 43 63
377 ead453a06315bfc702ad302821337fc2 20 33 49 45 65 70
378 eadfb2b01702d22f23e1af425f2613e9 17 18 24 17 22 65
379 ebd8790e97fb1403f72224429d6f89e4 43 39 42 43 76 83
380 ec52663c2e836fab94482c345aab9c5e 24 18 24 29 31 46
381 ed692adcc957fb54a24fe6e0c077c132 67 62 66 67 117 118
382 ee14c8b9fc8578f3218cd1da1ba46940 20 23 31 32 41 56
383 ee92d85933b024e8d82e03ed6acbaaf6 28 23 27 28 44 56
384 f0b820b96602eb7c63821df7cefe4ccd 38 34 37 38 56 135
385 f335f5857f2d30d0d811e1b732f0890a 15 14 25 15 16 69
386 f3c7855a2bc30b9d02baa8960a11f2ca 50 44 52 50 66 261
387 f3ff9415de6bab4f4c55d86e94ea1e85 319 315 317 327 412 416
388 f70d182ac7bb3d398ae47d38893dc1e2 201 188 203 205 258 268
389 f7e9e33108373f92527c3afd8a107aff 23 19 22 29 37 48
390 f8b42194ec19f3f5a7d7caedfb4188db 8 7 23 22 28 168
391 fa5c5264f4668f7a40f7576a27cfe78b 17 17 25 31 39 68
392 fb9c492cdaaf4a6be7032919c1f3a8df 20 16 19 23 30 550
393 fcb7184960449a616321c144090b3aa2 22 19 21 25 32 54
394 fcbfb234b912c84e052a4a393c516c78 263 35 283 263 285 298
395 fdb594009e2aa9f7a70f5e3c0b78cb86 18 18 28 32 40 56
396 fe681844084177d14a0a2e5d9ce9893e 77 88 89 94 104 228
397 fe742579bfbdd885a81fa16c57f7dcf7 15 14 26 30 33 73
398 febeaf981abcf790fb2f77d6c67ced7b 8 8 21 24 30 66
399 ff0c597903c66d6c5577c86cacde0baf 36 21 35 40 52 62
400 ff3ab2043c7a9c8d84ad785bb9301f83 15 14 25 26 15 69
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