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Figure 2.8: DNA damage in HCC1937 measured by a neutral comet assay. A. Exposed to no DNA
damage agent; B. Exposed to 10 uM Doxorubicin over 1 hour .........c.cceevviiiiiiininiciicccecs 71

Figure 2.9: DNA damage effects of PCNA inhibitors. Cells were exposed to 10 uM doxorubicin
for 1 hour and then allowed 8 hours to repair. These were done in the cell lines shown and with the
listed concentration of an inhibitor at the title as well as 1/10 GI50 ofthe PCNA antagonist denoted.
The % DNA tail was averaged over cells with damage and the cells without damage tallied. A)
HCC1937; B) MDA-MB-231; C) MDA-MB-436; D) MDA-MB-468.......c.ccccoviiniiniiniienenenienes 73

Figure 2.10: RADS51 and YH2AX Foci Formation in MDA-MB 231 Cells. MDA-MB 231 were
either exposed to 10 pM doxorubicin as a DNA damage agent. Cells were then exposed to T2AA
OVEr EITNEI 8 OF 24 NOUIS. ..ot 76

Figure 2.11: PCNA Antagonist Effects on Homologous Recombination in Combination with DNA
Damage Agents and Repair Antagonists in MDA-MB-231 Cells. A) Cells were exposed to PCNA
inhibitors at 1/3 GI,, over 8 hours. B-C) Cells were exposed to PCNA inhibitors at 1/3 G, as well
as an amount of DNA damage repair antagonists over 8 hours 25. D-E) Cells were exposed to
doxorubicin for 1 hour and then washed of PCNA inhibitors. ........cccooviiiiiiiiicieiceesceeeees 77

Figure 2.12: PCNA Antagonist Effects on Homologous Recombination in Combination with DNA
Damage Agents and Repair Antagonists in MDA-MB-436 Cells. A) Cells were exposed to PCNA
inhibitors at 1/3 GI,, over 8 hours. B-C) Cells were exposed to PCNA inhibitors at 1/3 GI,,as well

as an amount of DNA damage repair antagonists over 8 hours 25. D-E) Cells were exposed to

doxorubicin for 1 hour and then washed followed by 8 or 24 hours of PCNA inhibitors. ............ 78
Figure 2.13: Measuring Replication through Quantifying DNA. A. No treatment; B. 30 uM T2AA
.............................................................................................................................................................. 79

Figure 2.14: DN A Replication Effects of PCNA inhibitors. Three different cell lines were exposed
to five doses of PCNA inhibitors as monotherapies. These therapies start at 1/3 GI50 and utilize a
dilution factor of 3 to measure the effect. A) MDA-MB-231; B) MDA-MB-436; C) MDA-MB-
AO8 .. E R Rt R Rt r e n e 80

Figure 2.15: Translesion synthesis effects of PCNA inhibitors. Three different cell lines were
exposed to five doses of PCNA inhibitors as monotherapies as well as UV. These therapies start
at 1/3 G150 and utilize a dilution factor of 3 to measure the effect. A) MDA-MB 231; B) MDA-
MB 436; C) MDA-MBUABS.........ocoeiirieiiirieeisiee sttt b ettt 82

Figure 2.16: PCNA Antagonist Profile by Pathway Specific Features. All PCNA inhibitors had
each major feature specificity calculated as reported in the methods. The goal was to utilize
multiple assays to determine the isolated effects on each pathway or function listed. Toxicity —
based on the LDs of the antagonist alone; DNA Damage — % DN A Tail of the antagonist at Glso/3;
HR:NHEJ — The overall effects of PCNA antagonists in HR specific vs. NHEJ-specific contexts;
Rad51 Foci—the amount of Rad51 foci maintained after 24h while treated by the PCN A antagonist,
Replication — the amount of cells in S phase after dosing with Gls¢/3; TLS — the amount of cells in
S phase after dosing With GLs0/3 ..o 83

Figure 2.17: Drug Interaction in Double-Strand Break Repair Pathways and PCNA Inhibitor
Impact; This is the validate mechanisms of our small molecule DNA repair antagonists in the
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context of homologous recombination (HR), classical non-homologous end joining (c(NHEJ), and
alternative non-homologous end joining (aNHEJ). These compounds are outlined with black. The
PCNA inhibitors assessed in this study are outlined in green. AOH compounds have been shown
previously to inhibit HR, but neither in that study, or this one, was a specific target identified.
However, DNA damage was detected with the AOH compounds as a monotherapy. Due to the
Rad51 foci persistence, the effects of T2AA, TEP, LPB, and LPT can be narrowed down to an
effect that includes Rad54 or Polymerase association. Synergistic relationships require effects that
include at least HR and either NHEJ pathway. A) HR; B) cNHEJ; C) aNHEJ ... 87

Figure 3.1: Gene Networks; Gene networks represent the possible interactions of gene products
often with expression or network topography measurements determining the color of nodes. They
provide an intuitive presentation to represent pathway regulation. Arrows and wedges can be used
to show activating and deactivating relationships. Further, modifications can be used to show
functional changes created by interactions. A) Simple metabolic pathway; B) Complex signaling
PATIWAY .o s 93

Figure 3.2: Co-Expression Network; Gene networks are representations of physical interactions of
their products. Co-expression is also used to determine clustering of gene product that are effective
SIMUITANEOUSIY. ...ttt b e bbbt benbesbenbenbenns 94

Figure 3.3: Disease Networks; Disease networks can be used to analyze how diseases are similar
or connections between disease pathophysiology to biomolecular features. A) This disease
similarity network creates edges between diseases that have more than 5 associated genes in
common; B) Disease regulation network utilizes genomic, proteomic, and treatment data along
with disease data to identify biological features at the gene, pathway, and tissue levels. ............. 96

Figure 3.4: Synthetic Lethal Network; Synthetic lethal relationships are a result of targets
prominence in a context and the ability of a drug to shift that prominence. This often includes
genomic conditions specific to a disease to ensure selectivity. Understanding genes through their
relationship using this perspective can involve interactions that would appear distant or close in
other NEtWOrk apProaChes. .......c.oiviiiiiiec s 97

Figure 3.5: Overall Project Workflow: The initial gene network involves a limited dataset of gene
product interactions and gene expressions. What follows is a set of network analyses that
compound the effects of network connectivity on overall genomic dynamics that simulate
treatment. A POP — apoptosis; excision repair; CC — cell cycle; DDR — DNA damage repair; MAPK
— MAPK PALRWAY ..ttt sttt bbb e b e nbe e b s 100

Figure 3.6: Cell Line GO Term-Specific Network Formation Process; A) After hub selection, a hub
network is formed through selecting all of the interactors within two steps of the hub protein. B)
Expression data for a specific to a subtype is then applied to the nodes. C) All nodes that are either
over- or underexpressed above or below the threshold is then selected (yellow outline), but those
that are in common between both subtypes are excluded (blue outline). D) All neighbors between
the selected nodes are then used to form the new subtype specific network (green outline). E) GO
terms are used to describe nodes within subtype-specific networks F) Subnetworks are analyzed
for aberrant connections related to known disease phenotypes to observe functional subunits within
the Subtype-SPECIfiC NETWOTK. ....ocuiiiiieiiiiiieee e 102
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Figure 3.7: GO Term Tier; GO terms are organized in hierarchal tree structure based on the
relationship between terms. Maximizing the distance a term has from the source term provides
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Figure 3.9: Initial Cell Line Networks; These networks were created through a £6X differential
expression threshold. Each cell line network was then focused further on MAPK, DNA damage
repair, cell cycle, and apoptosis pathway related genes. A. HCC1937; B. MCF7; C. MDA -MB-
231; D. MDA-MB-436; E. MDA-MB-468; F. SKBR3; .....ccocoiiiiiiiic e 115

Figure 3.10: Node Attribute Analysis; The HCC1937 network was overlaid with either differential
gene expression, node degree, eigenvector, or source-weighted eigenvector values. A) Differential
Expression, B) Node Degree, C) Eigenvector Values, D) Weighted Eigenvector Values............ 118

Figure 3.11: Pathway Analysis by Treatment Type; Utilizing the pathway analysis method
described previously using eigenvector analysis, we assessed didn’t tumor subtypes for overall
modifications. A) HCC1937; B) MCF7; C) MDA-MB-231; D) MDA-MB-436; E) MDA-MB-468;
F) SKBR3; APOP — apoptosis; BER — base excision repair; CC — cell cycle; HR — homologous
recombination; /CL — interstrand cross-linking repair; MMR — mismatch repair; NER — nucleotide
excision repair; NHEJ — non-homologous end JOINING .......ccccvvviiiiiinnieiieenesie s 124

Figure 3.12: BRCA1l Loss-of-Function Mutation Effect on Homologous Recombination.
Homologous recombination associated genes in TNBC tumor samples from TCGA were used to
create networks. Networks were analyzed for weighted eigen centrality which corresponds to node
size and with gene expression representing the color of nodes. A. BRCAl +/+ TNBC tumor
samples; B. BRCAT -/- TNBC tumor SAMPIES .......ccveviiieriiiiniiiie e s s 130

Figure 3.13: Network Disruption by Loss-of-Function Compared to Removal of Gene; Networks
were created from TCGA TNBC tumor sample expression data according to the same method as
the cell lines. Similar pathway analysis and centrality measurements were taken with sample
groups with and without BRCA1 loss-of-function mutations. Networks were then created without
BRCAI entirely and the loss of edges and BRCAL1 itself was measured. A. TCGATNBC; B. TCGA
TNBC BRCA1 -/-; C. TCGA TNBC BRCAI removed; APOP — apoptosis; BER — base excision
repair; CC — cell cycle; HR — homologous recombination; /CL — interstrand cross-linking repair;
MMR — mismatch repair; NER — nucleotide excision repair; NHEJ — non-homologous end joining;

Figure 3.14: Disruption from Homologous Recombination and Non-Homologous End Joining
Components in TNBC tumors; Networks were created from TNBC expression data and analyzed
similarly to the base networks, but without the nodes specified. Network features were then
measured as before and the relative difference in each process and their connectivity was measured.
A) BRCAT1; B) PARPI; C) BRCA1/PARP1; APOP — apoptosis; BER — base excision repair; CC —
cell cycle; HR — homologous recombination; /CL — interstrand cross-linking repair; MMR —
mismatch repair; NER — nucleotide excision repair; NHEJ — non-homologous end joining;......133

Figure 3.15: Disruption from Homologous Recombination and Non-Homologous End Joining
Components in TNBC tumors; Networks were created from TNBC expression data and analyzed
similarly to the base networks, but without the nodes specified. Network features were then
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measured as before and the relative difference in each process and their connectivity was measured.
A) PCNA; B) PARP1; C) PCNA/PARPL; APOP — apoptosis; BER — base excision repair; CC —
cell cycle; HR — homologous recombination; ICL — interstrand cross-linking repair; MMR —
mismatch repair; NER — nucleotide excision repair; NHEJ — non-homologous end joining;......135

Figure 3.16: Disruption Indices for Combinatorial Gene Removal in Breast Cancer Cell Line
Networks; Cell line networks were analyzed for their differential process centrality through the
deletion of two genes corresponding to drug targets. Disruption indices were calculated according
to our reported formula in the method section. Values above 1 indicate significant disruption to the
network through the connectivity within and between processes analyzed. A. HCC1937; B. MCF7;
C. MDA-MB-231; D. MDA-MB-436; E. MDA-MB-468; F. SKBR3........cccoconiiniiineiien 137

Figure 3.17: Combination Indices for Drug Combinations in Breast Cancer Cell Lines; Cells were
tested in combination using a MTT assay and their combination indices (CI) determined through
Chou-Talalay. The maximal 1/CI value for a concentration was used that was above the minimal
drug concentrations and below the GI;,, concentration of a single chemotherapy. Values above 1.1

have a confidence greater than 95% to be synergistic. A. HCC1937; B. MCF7; C. MDA-MB-231;
D. MDA-MB-436; E. MDA-MB-468; F. SKBR3 ......coccoiiiiiiiieeee e 138

Figure 3.18: Simple Statistical Assessment of Disruption Index (DI) and Combination Index (CI).
A) The ability of the DI to predict combinations that will be synergistic as seen through
experimental results for CI. B) A simple correlation of DI to CI showing the ability to predict the
0T Teg VLG (O ) S 1 1S) 4t ) 4 PSPPSR 143

Figure 4.1: PCNA Post-Translational Modification and DNA Damage Repair Pathway Influence.
PCNA isinvolved as a scaffold protein to form protein-DN A complexes in the four repair pathways
represented: mismatch repair (MMR), nucleotide excision repair (NER), homologous
recombination (HR), base excision repair (BER). Proteins that are involved in complexes with
PCNA are represented by rhombuses and modifiers of PCNA are represented by rectangles. The
different arrows represent different modifications with EGFR phosphorylating PCNA, RAD18

ubiquinating PCNA, and SETD sumoylating PCNA. ........ccccooiiiiniiii e 149
Figure 4.2: DNA Double-Strand Break Repair via Homologous Recombination with Inhibitor
Targets. Black squares outline targets with selective inhibitors. ........c.cccocvviviiiiiiieiinienee i, 151
Figure 4.3: DNA Single-Strand Break Repair through Base Excision Repair ...........ccccoveennne. 153
Figure 4.4: DNA Single-Strand Break Repair through Nucleotide Excision Repair ................... 153

Figure 4.5: Additional Network Descriptor Model. A) Node complex model; nodes that can
comprise a similar complex with interchangeable components can be modeled as a complex node.
Complex nodes may possess different functions depending on the members of the complex.
Overexpressed genes, designated in yellow, will be more favored over complexes including
underexpressed genes, designated in blue. B) Node GO commonality can be used to described
groups of nodes. Their uncommon GO terms can be used to describe the influence of nodes on
(011415 B o) (Yoo 156

Figure 4.6: Representation of a Transcription Factor Network ... 157
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ABSTRACT

This thesis Cancer is the second leading cause of death in the modern world, only trailing
congestive heart disease. Many factors contribute to the mortality rate, including the diversity of
tumors, development of chemoresistance, and recurrence of metastatic tumors. Conventional
chemotherapeutic approaches focus on universal features of cancer derived from its rapid
proliferation. Rapid proliferation inherently produces stress on metabolic systems, but also on the
limiting macromolecule to cell proliferation: DNA. DNA replication and overall genomic stability
are negatively impacted by rapid cell proliferation and is mitigated by dysregulation of DNA
damage repair (DDR) and apoptosis pathways. Somatic mutations and aberrant gene expression
provide both avenues of therapy and resistance. Understanding tumor sensitivity to optimize care
expeditiously can be furthered by investigating additional targeted molecular and integrated
bioinformatic approaches.

Proliferating cell nuclear antigen (PCNA) is an essential gene to numerous tumor-
dysregulated processes including DNA replication and repair. Conventional wisdom would
prohibit targeting PCNA due to its status as an essential gene, as directly antagonizing it would
cause toxic effects in healthy cells. However, multiple groups have created small molecule
antagonists capable of targeting PCNA without affecting normal cells. Some of these antagonists
have been qualified biochemically providing insights into their mechanisms of action. | sought out
to define the different classes of PCNA antagonists to describe possible clinical utility. This work
resulted in three defined classes that are separated by their effects on general DNA damage
induction, selective inhibition of DDR pathways, and DNA replication processivity.

Network theory has been utilized to integrate disparate informatic approaches to extract
multilevel data with greater explanatory power than the original source data. Network approaches
utilizing differential gene expression and drug response profiles have led to the discovery of novel
targets and disease subtypes. | sought to use a network approach to leverage differential gene
expression (DGE), gene ontology (GO) terms, and protein-protein interactions (PPI) data to
determine synergistic drug combinations in cancer cell lines with disparate DDR backgrounds. |
limited the scope of this work to DDR, cell cycle, DNA replication, apoptosis, and MAPK

associated genes. To power this approach, | created three novel metrics of PPl network
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connectivity through GO term and DGE: GO Impact, GO Cohesion, and GO Adhesion. From these
novel metrics, | created a visualization technique dubbed a Process Network that recharacterizes a
PPI network into a set of pathway interactions. Using gene removal as a model of inhibition, |
measured resulting network disruption to determine synergistic relationships. I produced a method

with 90.2% specificity and 88.7% sensitivity.
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CHAPTER 1. INTRODUCTION

Cancer is the second leading cause of death in the modern world, only trailing congestive
heart disease.! Many factors contribute to the mortality rate, including the diversity of tumors,
development of chemoresistance, and recurrence of metastatic tumors.? Conventional
chemotherapeutic approaches focus on universal features of cancer from which it derives its rapid
proliferation. These approaches include DNA damage, mitogenic therapy, and metabolic toxins,
all of which cause general toxic effects that exacerbate treatment and limit the use of these
therapies.>* Further, the diversity of tumors goes beyond tissues of origin and progression but
includes driver mutations, cell survival plasticity, and re-engineered proliferation loops that
provide chemoresistance.>” Within these unique cancer features, genes that possess a heightened
importance in cancer biology has provided fodder for effective targeted therapeutics. These
insights have spurred the development of personalized specific therapies for pre-selected patient
populations to achieve higher success rates.2-1° However, further stratifying diverse diseases slows
treatment progress.t**4 Clinical trials seeking to apply molecular therapies that target features
common within different tumor types continue to increase the number of successful new!>16
treatments through drug repositioning. However, these targeted features must be distinct from
healthy tissue pathways to offer advantages over traditional chemotherapies. Further data analysis
and chemical tools are needed to accelerate the discovery process for understanding these
distinctions.

At the heart of the issue is that as different as cancerous systems are from healthy ones,
they are both utilizing, for the most part, the same components. For example, in both “normal”
biology and cancer biology, there are shared “essential genes”.1”'8 Essential genes if deleted, or
sufficiently mutated to more extended function, result in embryonic lethal phenotypes. All these
genes have roles in fundamental processes of cell growth and function, such as DNA replication,
cell cycle, or cell survival.*2° Many of these essential genes products are considered “untargetable”
due to their importance in healthy cells (Table 1.1). The exceptions are proteins that are key to
rapid proliferation, especially those involved in DNA replication and cytokinesis as tumors rely
on them more heavily than most normal cells do. Still, these possess strong side effects due to their

cytotoxicity which limits their utility.
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Table 1.1: Essential genes within cancer contexts. Of the over 2,000 essential genes many
of them are more associated with certain tumor types. Much of this has to do with the tissue of
origin, but many are so tied to basic cancer pathophysiology that they are important to all types.

Essential Gene Class

Tumor Types

Example Genes

Neuronal Development

Glioma, Breast, Ovarian

DCX, SIX3, ZIC2

Gonad Development

Prostate, Testicular, Ovarian, Cervical, Breast

DHH, PROK2, FSHR

Endothelial Tissue

All GATA3, ECE1,HSPG2
Development
Differentiation All DNMT3B, TBXS5, CREBBP
Sugar Metabolism All MAN2BI1, DLD, FH

Fatty Acid Metabolism

Liver, Colorectal, Pancreatic

ACOXI1, VLCAD, PLA2G6

DNA Maintenance/Replication

All

PCNA, FANCG, ATM

Mitochondrial Function

Lung, Breast, Ovarian, Cervical, Glioma,
Urothelial

HADHA, SLC25A19. POLG,
PCCA

Tumor Suppressors All GPRS54, TP53,RB1
Cell Adhesion Colorectal, Pancreatic ITG, CADH
Cytoskeleton Colorectal, Renal, Pancreas, Glioma SALL1, BBS2, MKKS
Hormone Synthesis Prostate, Testicular, Ovarian, Cervical, Breast | AR, CRH, CTSD
Proteolysis Overturn Colon UBRI, PSMA1

Cell Stress Regulators

Lung, Prostate, Stomach, Colorectal

NAG, HSP90A, HSP1

Figure 1.1 shows the extent that essential genes make up the human protein interactome.
Essential genes frequently are found as hubs of activity and intersections between multiple
molecular signaling pathways. Further, interactions with essential genes have considerable overlap
with oncogenes in their areas of influence. It follows that they are highly connected in cellular
networks to currently drugged systems and provide the context for much of cancer therapy
mechanisms.?22 With this in mind, understanding how these genes can be manipulated to reduce
cancer systems’ plasticity can lead to a reduction in chemoresistance. As essential genes, targeting
them directly, remains risky unless disease contexts and aberrant stressors are identified that
separate them from their essential functions. These stressors can be introduced or enhanced

through well-defined mechanisms of current chemotherapeutics and next-generation options.
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NN

Figure 1.1: Essential genes and tumor genes influence. There are 26,047 nodes and 569,182
edges, with 1,151 genes being considered essential genes by the Database of Essential Genes,
last updated December 2017. Oncogenes were qualified through the loss-of-deletion approach
outlined in (Pertesi, 2019). The entire proteome with protein-protein interactions from
BioGrid. Interactions that involve essential genes are yellow, interactions including tumor
suppressors are magenta, and those that include oncogenes are cyan, and those without any of
those are gray. Figure was visualized with Cytoscape version 3.8.1
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Stressors could take the form of high-stress genomic changes, small molecules, or engineered

macromolecules.

An example is the FDA-approved HDAC3 inhibitor, vorinostat.?> HDAC3 is a Class |
histone deacetylase known for its vital role in histone remodeling surrounding DNA damage repair
and DNA replication.?* While there is some redundancy in this function with HDAC1 and HDAC?2,

the complete loss of HDAC3 in healthy cells remains lethal.?> Class | HDACSs are also involved in

coknia [ puva R TRAL

Figure 1.2: Blue objects are proteins, green
objects are histone acetyltransferase, orange
objects are histone deacetylases, purple
objects are acetylation PTMs, yellow objects
are ubiquitin PTMs, and red objects are anti-
tumor pathways.

deacetylating non histone proteins. In this way,
they modulate numerous key pathways with
HDAC3 being responsible for apoptosis
suppression through numerous mechanisms, two of
which are shown in Figure 1.2.%6 In gastric cancers,
FADD-like apoptosis regulator (FLIP) is
responsible for inhibiting caspase 8 activation
through the extrinsic apoptosis pathway via the
FADD receptor.?” HDAC3 ensures FLIP’s stability
through deacetylating Ku70, allowing it to
complex with flip and prevent FLIP’s
degradation.? The loss of HDAC3 activity reduces
the amount of FLIP expressed and sensitizes
patients to the extrinsic apoptosis pathway
activators.?® In some types of lung and colon cancer,
overexpressed HDAC3 deacetylases p53 reduces
its transcriptional activity, which reduces the
expression of numerous cell cycle arrest and pro-
apoptotic genes.>*3! HDAC3 inhibition allows p53
to be highly transcriptionally active and sensitize
cells to cisplatin and other traditional
chemotherapeutics. Through overexpression of
HDAC3 and different modulations to the tumor’s
genome, certain functions of HDAC3 become

emphasized and essential to tumor biology. We
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consider these to be the tumor-dependent functions (TDF) of HDAC3 and these TDFs allow
HDACS3 to be targeted in these systems and leverage the activity of other therapeutics such as
orlistat. Thus, the key to targeting essential genes in tumors isto assess TDF’s context and discover
new drugs and/or appropriate combinations of existing drugs to take advantage of the tumor’s
novel dependencies.

The hypothesis tested in this work is that drug combinations that include essential genes
can leverage sufficiently compromised contexts to treat tumors safely with current therapeutic
options specifically.!*3? Essential genes, due to their roles in biological systems, cannot be
circumvented by the typical chemoresistance mechanisms that tumors utilize without
consequences on survival. As such, our focus is on systems that are highly flexible and dependent
on essential genes but show significant modulation in disease contexts to be target candidates for
pharmacological agents. Inhibition of essential genes can exacerbate reductions in redundant and
compensatory processes that tumors make to maximize proliferation and minimize apoptosis. The
use of targeted secondary therapy can ensure the stress induced by such a system results in cell
death by inducing a context that relies on the essential gene or vice versa. This approach multiplies

efforts in targeted therapy by enhancing efficacy.

1.1 Rapid Proliferation Negatively Impacts Genome Stability

Cancer is a genetic disease often brought on by incorrect processing or repair of the host’s
DNA. These errors progress to a gain-of- or loss-of-function mutation in oncogenes or tumor
suppressors respectively, to create a state of tumorigenesis.®®> Genes that commonly cause this
transformation surround cell survival and cell proliferation (Fig. 1.3).343 Many subsequent
mutations throughout tumor development occur in genes for DNA replication, repair, and
maintenance, all of which are requisite for successful cell growth and survival. Scaffold proteins,
including proliferating cell nuclear antigen (PCNA), facilitate these processes by creating
platforms for enzymes to act on DNA.3738 As a nexus of necessary operations, PCNA function is
essential, and tumor cells enhance the protein status through its central roles in proliferation.
Further, PCNA and several other scaffold proteins act as hubs to numerous disease-modulated
pathways. DNA damage repair (DDR), DNA replication, and cell cycle signaling show extensive

mutations and differential expression in a disease state.3%-4! Between tumor types, different suites
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of changes provide unique contexts for how these three processes interconnect and dysregulate
cells with novel mechanisms to the same overall outcome, increased cell proliferation. Further,
many changes brought on by the stress of rapid proliferation cause changes in related processes,

making the origin of dysregulation often cryptic.

1.1.1 Cell Cycle Progression and Genome Stability is Uncoupled from Apoptosisin Tumors

Many checkpoint proteins prevent the progression of cell cycle depending upon the cell’s
status. Some check point factors monitor the available energy and resources the cell possesses to
ensure that the required DNA replication and mitosis components are available.*>* Other
checkpoint factors monitor the expression of enzymes required for each step to ensure
uninterrupted progression during cell division. Finally, numerous proteins exist that monitor
during genome replication the DNA status in the cell to ensure that it is an accurate copy to be
passed on to the daughter cells. These checkpoint proteins are most active during S phase, when
DNA replication occurs, and at the G2/M checkpoint, just before the cell divides.** 48

DNA damage is a constant stress point during cell proliferation and intensifies the
metabolic pathways upregulated in tumors.**->! To overcome this stress, cancers must greatly
enhance its ability to repair damaged DNA and/or increase tolerance of damaged DNA. DNA
damage stress in tumors is mitigated directly through modulating DDR or indirectly by reducing
the effectiveness of DNA damage to induce apoptosis signaling.352-%° Many DDR proteins are
overexpressed in tumors to expedite repair, and TP53 is commonly mutated in tumors severing the
primary connection between DNA damage and apoptosis. However, TP53 is not the only route to
cell death from DNA damage. DNA damage often delays cell cycle progression, even halting it in
S phase, causing a cascade of signaling resulting in cell death through several intrinsic apoptosis
signal proteins in the mitochondria. This pathway allows DNA damage to faithfully cause cell

death in the absence of several apoptotic markers.
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Figure 1.3: Cell Cycle and DNA damage repair in a tumor context. Due to tumors possessing an
increased proliferation rate, this makes them more predisposed to utilizing the homologous
recombination (HR) over the non-homologous end-joining (NHEJ), the two main double-strand break
repair pathways. Due to the increased proliferation rate, that is undue stress on DNA in replication that
is mitigated by translesion synthesis (TLS) to tolerate the damage sustained by the stress. Green objects
facilitate increased growth, red objects suppress tumors, blue objects progress the cell cycle, and orange
objects slow cell cycle.



1.1.2 Cell Cycle Progression and DNA Damage Repair are Mutually Regulated

Tumors often modulate cell cycle proteins to prevent the delay of any phase regardless of
DNA damage status.®>% This condition often occurs through loss-of-function mutations to
checkpoint proteins and constitutive upregulation of DNA repair proteins. These defects generally
appear together since DNA damage sensors and checkpoint proteins are required to activate and
increase DDR proteins’ expression. By increasing overall DDR levels, DNA damage sensors that
link to apoptosis are circumvented without losing overall genomic integrity. However, this
scenario causes a dependence upon specific DDR pathways. In many cases, when S phase proteins
are overexpressed, homologous recombination (HR), becomes preferred in other phases.
Alternatively, a reduction mismatch repair function occurs to increase DNA damage tolerance
pathways. Both strategies enable rapid proliferation despite genome instability. These processes
still allow for increases in gene translocations, point mutations, and other means of tumor
development.

DDR processes also include numerous mitogenic factors, and their successful repair
suppresses cell cycle arrest. In this way, DDR can complete a positive feedback loop that ensures
that checkpoint proteins cannot halt cell cycle and lead to apoptosis. Further, both cell cycle
progression and DDR processes can enhance cell survival pathways to ensure rapid proliferation.
Unsurprisingly, efforts to counter DDR and cell cycle affect one another and leads to lowered cell
survival and the onset of apoptosis. Many means of regulating cell cycle that balances the influence
of DDR on cell cycle are removed early on in tumor development. This mutual modulation services

key junctions in cell cycle and DDR, but often are non-specific and affect all dividing cells.
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1.1.3 DNA Replication and Cell Cycle Drive DNA Damage Repair Outcomes

DNA is most commonly packaged as chromatin, a protein-DNA complex that protects
DNA from stress and tangling. In order for DNA replication to occur, the entire genome must
sequentially dissociate from this complex and be exposed to multiple sources of DNA damage.
DNA unraveling using helicases can cause high stress levels that result in single-strand breaks
(SSB) or even double-strand breaks (DSB), leading to cell death. During this phase, different DDR

mechanisms activate to prevent loss of DNA and to maintain an accurate replication. Go and G

Residue Modification Key Writer Function
K13 Acetylation Blue CPB/p300 PCNA Degradation
K14 Acetylation Blue CPB/p300 PCNA Degradation
K77 Acetylation Blue CPB/p300 PCNA Degradation
K80 Acetylation Blue CPB/p300 PCNA Degradation
K168 ISGylation Gray BRE Terminate TLS
K110 Methylation Purple EZH2 Egglr? ;el-islonger Okazalki
K248 Methylation Purple SETDS8 Polymerase switch to POLD
Y114 Phosphorylation Yellow NA Adipogenesis
Y211 Phosphorylation Yellow EGFR K;&ﬁsﬁadaﬁon,
K254 Sumoylation Teal UBC9 DSB foci formation
K117 Ubiquitin Red NA UV damage response
K164 Ubiquitin Red Rads, Rad1s, RNFg | Lromotes DNA synthesis at

damaged site

Figure 1.4: PCNA structure and PTM impact on pathways. PCNA is a highly modulated scaffold
protein that impacts the numerous interactors and pathways it is involved in. The crystal structure is
marked at the residues by the modification type with the functional change listed.
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phase DDR mechanisms rely on limiting the DNA’s exposure and the speed of the repair, whereas
S and G2 phase DDR mechanisms prioritize accuracy of repair. DNA replication is then
coordinated by numerous protein complexes and signaling cascades.

At the center of both DNA replication and repair is proliferating cell nuclear antigen
(PCNA), which acts as a platform for assembly of protein-DNA complexes called the replisome.
The entire replisome forms around PCNA. Higher order regulation of the replisome occurs through
post-translational modifications (PTM) of PCNA to coordinate DDR and DNA damage
tolerance.®°% Figure 3 summarizes the sites of PTMs on PCNA and the known biological
regulatory roles. These changes determine only if DDR occurs, but which pathways are active.
Examples like phosphorylation of Y211 are known to stabilize PCNA homotrimers, and prevents
mismatch repair activation.6”68 The ubiquitination of K164 is required for polymerase switching
in translesion synthesis. The regulation of many PTMs is through the MAPK pathway’s effectors
and replisome regulators such as BRCAL. Other scaffold proteins are recruited and modified by
DNA damage sensors, such as XRCC1/4 by PARP1 or the MRN complex.®®"> Overall, these
processes are not monolithic pathways following a direct sequence of events but highly
interconnected processes modified through upstream signal proteins and the final complexes’
enzymes. Numerous other PTMs of PCNA allow it to be a modular scaffold for DNA processes
through its 200+ interactors that rely on multiple binding modes. Changes in the PTMs of PCNA

bias DDR outcomes as well as modifications to the surrounding pathways.

1.2 Identifying Disease Markers through Informatic Approaches and Pathway Analysis

With the exponential growth in available genome data, more specific patient information are
accessible to understand disease prognosis and progression.”® To utilize genomic information,
libraries that organize these data into useful formats and data tools become rate-limiting. The
progress in ontology and informatics has mirrored the rise in genomic data availability as a result.
In the past ten years, genome-wide association studies (GWAS), pathway analysis tools, and
simple gene enrichment studies are available for almost every tumor type.”” Patient-derived tumor
genome sequencing, coupled with pathway analyses, are now used to identify key driver mutations

that include mitogenic factors as guides to predict treatment effectiveness.”®7°
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While correlation studies have virtually found oncogenes and tumor suppressors, they
require discrete genomic changes, such as somatic mutations.8%8! Often, the gene changes impact
multiple pathways that can thwart treatments due to these genomic changes. Both researchers and
clinicians require more detailed descriptions of these changes’ impacts on pathway regulation to
guide decision-making. In biological networks, the vertices are often genes, gene products, or
biological processes, while the edges denote some link between the two vertices. In pathway
analysis, many network theory algorithms find great utility in determining changes in cell process
dynamics.”” The questions that remain are how to construct networks with the most critical content

to represent the diseases under consideration.

1.2.1 Somatic Mutations

Somatic mutations were the earliest biomarkers used in determining tumor progression and
the likelihood of tumors developing in one’s lifetime. Genes that, when mutated, caused tumor
development through enabling rapid proliferation were named oncogenes. These were often genes
that signaled cell proliferation, and the mutations often removed safeguards that allowed them to
be regulated.2 Tumor suppressors act to prevent rapid proliferation or to initiate apoptosis once it
occurs.?2 The loss of tumor suppressor functions, often through a nonsense mutation or a loss of
enzyme activity, allows tumors to develop. By comparing tumor genomes to normal tissue
genomes, additional oncogenes, and tumor suppressors, gene discovery has occurred. Sets of
somatic mutations remain the primary biomarker used in determining treatment due to their
transparency and well-defined impact.

Primary networks are formed based on concurrent somatic mutations creating links
between genes.-8 Those trends can then be used to see if there are links between the patient or
clinical data from those samples. Response to treatment, tumor subtype, and development stage
are all often used and provide a means to predict drug response or aid in prognosis.®’ Further, these
data used in conjunction with biological pathway models can discern what cell functions are most
affected by the set of mutations. Somatic mutation sets show redundancy, but they allow clinicians

to narrow down treatment options in many tumor types.

32



1.2.2 Differential Gene Expression

Differential gene expression (DGE) quantifies the differences in expression between two
or more sets of tissues. The resultant patterns are useful to differentiate tissues and to understand
how different organs and cells function.®2° In oncology, normal tissue is compared to tumors to
distinguish what changes in gene expression associate with tumor growth and progression. Since
many identified genes that cause cancers are signaling proteins, there remains ample dysregulation
downstream of the expressed gene to explain differences in tumor types and subtypes. DGE has
been instrumental in stratifying tumor subtypes beyond morphology and surface antigens. Outside
of the clinic, differential gene expression has been key in determining drug targets and mechanisms
of action and therapy resistance.®%!

DGE provides an alternative dataset for clinicians to stratify tumors into subtypes that can
describe prognosis and drug responsiveness.®?°* This approach takes into consideration somatic
mutations in key oncogenes or tumor suppressors to more fully describe the disease context. While
useful when they are apparent, morphological and cell surface markers only capably describe cells
that are defined by those features. In the case of triple negative breast cancer (TNBC), there are no
surface markers or somatic mutation to distinguish this diverse group of tumors. Other tumor types
are described by unsuccessful treatments that the patient has undergone, such as castration-
resistant prostate cancer which suffers the same ontological issues as TNBC. These ill-defined
tumor subtypes often lack targeted therapies and resistance to traditional chemotherapy along with
recurrence is common.% % The few targeted therapies available in these contexts can be effective,
but features to select by are sometimes transient and stable biomarkers are rare, limiting the usage
of such therapies.®% It is essential to describe mechanisms by which therapies can be effective
and translate this to effective biomarkers. This can take the form of somatic mutations and
differential gene expression contexts that possess favorable phenotypes to expand these therapy
types. Of course, doing so in the current model requires robust tools that do not yet exist.

Due to the aberrant biology of tumors, DGE has also been used to assess novel biology that
is actionable for treatment options. Network approaches that integrate DGE data and novel
pathway linkages offer perspective in specific disease contexts. Often DGE data is derived through
treated samples and cell lines to discern changes related to either sensitivity or chemoresistance.
When paired with siRNA and CRISPR, a considerable amount of pathway analysis can be

achieved.®®®° Even without these additional experimental techniques, network theory approaches
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that examine concurrent DGE across different contexts can identify gene sets related to tumor
biology. This goes past gene enrichment studies to discern novel interactions between pathways,
but still rely upon well-understood gene sets preventing discovery past what are already defined

cancer targets.

1.2.3 Protein-Protein Interactions

Proteomics offers considerable insight into pathophysiology and drug discovery in cancers.
Crystal structures of many oncoproteins contribute to the determination of targeting mechanisms,
which lead to numerous therapeutic options. Examples are the increased understanding of protein
complexes and interactions for the crucial changes in ubiquitination-based protein degradation,
including mdm2-p53 or transcription factor activity.1°1%0 Further, strategies that target post-
translational modifications allow for entirely novel strategies in addressing tumors, adding another
degree of complexity.

Network approaches are particularly useful in understanding protein-protein interaction
(PPI) dynamics.192:103 In tumor contexts, both an increase and decrease in protein interaction can
mirror gain-of- or loss-of-function somatic mutations. Disease networks described by protein-
protein interactions are among the most commonly used for drug repurposing as a result.194.1%
Predicting common features resulting from general changes without the constraint of gene sets and
concurrent changes provides a less biased discovery context. However, the risk of using broader
datasets remains evident since more possible explanations must be investigated using the
appropriate experiments or ruled out by previously published works.

Structural biology, as a subtopic of proteomics contributes considerable insights to the role
of mutations in protein-protein interactions. The acceleration in recent years due to the
development of Cryo-EM technologies allows for the visualization of more complex protein
assemblies for the first time.1%:107 These protein complexes are key in tumor contexts due to the
novel complexes that occurring when individual protein expression change from either mutant and
wild-type genes. Shifts in the complexes functional states can alter the roles of individual gene
functions in disease. An example is the Wilm’s Tumor protein 1, which normally acts as a tumor
suppressor through activating p53, but becomes an oncoprotein when overexpressed through

sequestration of p53.1%8.109 Shifts in the functional states of protein complexes can be theorized
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through predictive techniques. However, an understanding at the molecular level is required to
elucidate new targeting strategies unique to cancer disease.

As changes in PPIs are sufficient to induce or progress a disease state they represent an
emerging class of drug targets.!'? Instead of an enzyme where you can target the active site, PPI
inhibitors often go after conserved binding regions of one or more proteins in the complex. To
achieve this, PPI inhibitors must target one or more pockets or subpockets along the interface of
one of the target interaction proteins.!'* The advantage of a PPI inhibitor is that instead of
abrogating all functions of a protein, only functions dependent on that interaction which contribute
to the disease state are impacted. This is especially advantageous in the case of essential genes that
possess many necessary interactions, but only a subset is contributing to the disease state. In the
case of p53 and WT1, a reduction in the WT1 interaction would reverse the sequestration effect
and allow the cell to properly activate apoptosis.*?

In the case of PCNA, which is necessary for several processes, inhibiting a specific or
subset PPIs would also effectively target surrounding disease effects without losing its essential
functions. The numerous post-translational modifications and binding modes of PCNA creating
many scenarios provides multiple avenues for this approach. A single-nucleotide polymorphism
(SNP) in PCNA, S228l, provides the basis for an autosomal recessive neurodegenerative disorder
that results from a deficiency of the nucleotide excision repair (NER) pathway to achieve proper
DNA repair.!®® This mutation functionally restricts a flexible region of PCNA, the inter-domain
connecting loop, which conforms to proteins that bind to PCNA, stabilizing the interaction.!4
DNA replication and other processes still occur in cells with this mutation showing that modulation

of one binding site of PCNA can produce specific functional outcomes.

1.3 Enhancing Current Therapeutic Options in Cancer

The difficulties in general chemotherapy approaches, such as microtubule inhibitors,
metabolic toxins, or DNA damage agents, is that drug-induced toxicity is not unique to tumors.
These on-target toxicities severely limit their utility long term and often leads to chemoresistance
in tumors, exacerbating the issue.'*>16 These chemotherapeutic approaches rely on inhibitors of
oncogenic pathways, cell survival, cell cycle, DNA maintenance, and apoptosis. A conundrum

emerges from these observations since these pathways from a molecular perspective show high
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tumor specificity. However, these same processes show the highest levels of plasticity for
survival 117118 Traditional chemotherapies work by leveraging the increased stress on tumor
systems that over-rely on these processes for survival relative to normal cells. Table 1.2 shows a
cross-section of traditional chemotherapies that are components of standard-of-care in oncology
for decades. Molecularly-targeted therapies that inhibit the tumors’ ability to cope with the
increased stress have now made significant progress. Many of these newer therapies depend upon
appropriate biomarkers to identify patients whose tumors will be sensitive to these treatments. -
121 However, the utilities for most of these new targeted therapies are limited by the diversity of
tumors and the remaining redundancy between biological systems within tumors.1?2-124
Unfortunately, identifying individual targets in each tumor context takes considerable time and

effort to discover and reduce to practice.

Table 1.2: Traditional chemotherapies that target conserved phenotypes in all tumors. The primary
process they are associated with and their basic function are listed.

Drug Target Process
Anthracyclines TOP2A DNA tangle, supercoil relief
Irinotecan TOPI1A DNA stress
Cisplatin DNA cross-linker DNA damage
Ifosfamide Alkylating agents DNA damage
5-FU Thymidylate synthase | Nucleotide metabolism
Gemcitabine Anti-metabolite DNA synthesis
Taxanes TUBB1B Cytokinesis
Letrozole Aromatases Hormone metabolism
Leuprolide Egiﬁg%?ﬁg:ﬁ;e Hormone metabolism
Fl,.llvestrfmtf' Hormone receptors Tyl.'osine receptor kinase
Nilutamide activate pathways

Two strategies to expedite and enhance the application of novel and current therapies for cancer
patients include drug repositioning and unique drug combinations. Drug repositioning involves

using a drug in a novel disease context, often discovering that it possesses an alternative target

36



relevant in that disease state. It can also occur through the discovery of increased importance of
the drug target in particular disease contexts. The development of drug combinations currently
focuses on expanding the utility of two monotherapies through empirical clinical trials (Table 1.3).
An extensive understanding of the genomic and proteomic context in the patient tumors is needed
to maximize the appropriate application. However, with sufficiently advanced informatics tools,
singular discrete features, such as a somatic mutation, would not be required. Instead, a tool that
predicts phenocopy events through diverse features, including multiple data types, could be used
as a druggable context. Current approaches exist to identify novel disease markers that are
consistent with pathophysiology by determining overall mechanisms and finding phenocopy
events.1127 However, this needs to be extended to druggable contexts to combat the

heterogeneity of tumors and expand the use of targeted therapies.
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Table 1.3: Drug combinations approved by the FDA. Combinations that did not include a targeted
therapy were excluded and combinations that utilized the same strategy as another were excluded with
the first combination filed being kept. Drug list and targets were collected from the accessdata.fda.gov.

Drug A Drug Class A Drug B Drug Class B
Flutamide Antiandrogen Leuprolide ;‘;;Zi;ﬁ;nfo?g;ﬁgne-
Idarubicin hydrochloride | Anthracycline Cytarabine Pyrimidine analog
Vinorelbine tartrate Tubulin antagonist Cisplatin DNA cross-linker
Trastuzumab Anti-HER2 Antibody Paclitaxel Tubulin stabilizer
Cetuximab Anti-EGFR Antibody Irinotecan El(l)l[i)&i::rmerase
Bevacizumab Anti-VEGF Antibody 5-Fluorouracil Pyrimidine analog
Lapatinib EGFR kinase inhibitor | Capecitabine Pyrimidine analog
Ixabepilone Beta-tubulin inhibitor Capecitabine Pyrimidine analog
Pertuzumab Anti-HER2 Antibody Trastuzumab, Docetaxel AHBIB Loty

Tubulin stabilizer

Ziv-aflibercept

Angiogenic inhibitor

5-Fluorouracil,
Leucovorin, Irinotecan

Pyrimidine analog

Obinutuzumab Anti-CD20 antibody Chlorambucil Alkylating agent
Idelalisib PI3K kinase inhibitor Rituximab Anti-CD20 antibody
Nivolumab Anti-PD-1 antibody Ipilimumab Anti-PD-L1 antibody
Palbociclib CDK .4){6 kinase Letrozole Aromatase inhibitor
inhibitor
Necitumumab Anti-EGFR Antibody Gemcitabine, Cisplatin e apalog,
i DNA cross-linker
Ribociclib CDK .4){6 kinase Letrozole Aromatase inhibitor
inhibitor
. . o Cytarabine, DNA Polymerase
Midostaurin FLT3 inhibitor Daunorubicin -
- CDK4/6 kinase ESRI dimerization
Abemaciclib inhibitor Fulvestrant inhibitor
. SMO receptor . DNA Polymerase
Glasdegib inhibitor Cytarabine inhbitor
Alpelisib PI3K kinase inhibitor Fulvestrant ESRI dimerization

inhibitor
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1.3.1 Utilizing Drugs in Ideal Contexts by Identifying Relevant Biomarkers

Clinicians have several criteria that they use to categorize patients to determine a prognosis
and therapeutic regimen. Tumor morphology and surface antigens have been the primary means
of making these decisions for decades, but genomic information using next generation sequencing
(NGS) technologies are rapidly emerging as a first choice.849312812% The rapid identification of
biomarkers that provide sensitive contexts for existing therapies is one means of expanding the use
of current therapies. Multiple genotype tests have been FDA approved to determine treatments in
breast cancer.'*°-132 Somatic mutations have been the favored biomarker to be used, but in clinical
trials and drug discovery, tumor gene expression are also useful to determine if treatments will be
effective.

Multiple approaches can determine whether a biomarker is likely to be relevant for a
particular drug or disease context. GWAS are used to broadly examine disease states for genomic
variants that are universal across many sample types.'33134 While broad in its scope, GWAS alone
cannot convey the direct functional impact of detected gene loci on phenotypic outcomes. Gene
enrichment is a similar differential analysis that relies on gene expression instead of somatic
mutations, as is the case with GWAS.13136 Both approaches are aided by pathway analyses that
provide additional biological contexts to these genetic sequences’ differences and their impact on
a disease phenotype.

Pathway analysis methods, such as KEGG pathway analysis or IPA analysis, utilize a priori
knowledge of biological processes and PPI’s that facilitate their function.'3"1%8 These curated
pathways represent current understanding including any biochemical or regulatory process from
kinase signaling to anabolic or catabolic metabolism. Within these pathways, existing pathway
analysis methods can identify the impact of the loss of a gene product either through a loss-of-
function mutation or down-regulated expression within the pathway.*® However, the impact is
only understood in individual pathways and not the possible downstream effects on other pathways.
Further, these tools do not consider the compounding effects within the aberrant tumor biology
with novel connections between pathways. The ability to evaluate patients with criteria based on
system functionality rather than discrete pathway markers that only imply function is an unmet

need.
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1.3.2 Inducing Synthetic Lethality through Drug Combinations

Synthetic lethality is when the loss of two genes produces a much more significant loss in
viability than the loss of either gene alone. Often this is done by targeting two compensatory or
parallel processes, or vertical inhibition in key pathways!4%!4! but due to cancer’s disruption of
biological processes, more distant pairings are possible.'#? Synthetic lethal opportunities have only
been utilized in the clinic where one gene product is loss to mutation giving leverage to a targeted
monotherapy.'43145 Drug combinations have consistently been used to decrease the individual
toxicities of chemotherapy agents. These combinations generate additional stress to tumor cells
that do not allow for the same plasticity as a monotherapy. However, these combinations are rarely
designed to induce leverageable contexts that impact overall tumor biology. If deployed, this
approach provides a means to produce a highly leverageable context instead of merely anticipating
one. However, the interaction of two drugs in a system is orders of magnitude more difficult to
evaluate, which has limited this approach.

As with all cancer treatment types, both informatic and experimental approaches to identify
suitable disease contexts for synthetic lethal opportunities are the subject of many research tools.
The discovery of CRISPR-Cas9 created a rapid means of specifically reducing proteins’ content
in a high-throughput screen format.}46:147 This technology allows researchers to remove
combinations of proteins and artificially create networks that describe synthetic lethal events.
Multiple driver mutations common to many tumor subtypes (such as KRAS, BRAF, etc.) have
been identified which enables discovery of specific weak points in proliferative pathways that were
theoretically non-redundant.!4814% This approach is leading the development of most current
therapies which rely on direct targeting of an upstream signal protein that drives an oncogenic
system such as EGFR inhibitors and the MAPK pathway.1°0-15! Synthetic lethality is being used in
special context of somatic mutations in the BRCAL/2 genes that reveal a sensitivity to PARP1
inhibitors.8144 Tools that rapidly identify contexts for the combined uses of targeted therapeutics
through identifying non-canonical phenocopy, either drug combinations or sensitization through

genomic features, events is an unmet need that could greatly expand the use of these therapeutics.
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What has yet to emerge are de novo synthetic lethal therapies that rely on general features
of tumors. As shown in Table 4, current combination therapies either include a quality-of-life drug,
such as an antiemetic, to tolerate a highly cytotoxic therapeutic or are a previously approved
targeted therapeutic with an approved traditional chemotherapeutic. Synthetic lethal informatics
approaches have created exhaustive lists of likely synthetic lethal pairings across numerous
contexts.’>2-1% Many focus on concurrent somatic mutations within drug sensitive tumor
populations while analyzing the disease context’s pathway significance.*® Others analyze DGE
patterns across drug sensitive and resistant populations while using experimental synthetic lethal
data to identify genetic profiles.!>® However, both of these approaches focus on total loss of gene

function, which prevents them from considering other modes of inhibition.

Table 1.4: Targeted inhibitors in DNA damage repair, cell cycle, and DNA replication. The primary process
they are associated with and their basic function are listed as well. Their FDA status is reported if they have
been submitted at some point, otherwise, they are labeled as preclinical

Drug Target Process Function FDA Status
Alpelisib PI3K PI3K-AKT Pathway Einase Phase [1I
G efitinib EGFR ETK. MAPK pathway | Kinase Phase Il
Olapanb PAEP1 a-NHET P AR polym erase Phase III
NUT026 DNA-PK c-NHEJ Klinase Preclinical
KU55933 ATM HR. DNA - leson | gince Prectinical

detection
PFMOL MRE11 End-resectioning. DSB | £ jomclease Preclinical
repar
ML216 BLM End resectioning. DSE | poficase Prectinical
repar
NSC617143 WRN End-resectioning. DSB | 1 ficase Preclinical
repar
PF477736 CHEK1 Cell cydle halting Einase Preclinical
E5-1 EAD31 Strand recombining Fecombinase Preclimical
D103 RADS2 Strand amnealing HE DN A binder Preclinical
Streptorigrin EAD34 L oop resolufion Helicase Preclinical
Pabociclib CDE4/6 G 15 checkpoint KEinase Phase Il
Eoscovitine CDEL12 3 checkpoint Einase Phase [1
Aliserib AUREA Cell cyde progression | Kinase Phase IT
AZDI1TIS WEEL Cell cyde progression | Phosphatase Phase I
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1.3.3 Essential Genes and Synthetic Lethality

The selective inhibition of an essential gene, a gene whose loss results in an embryonic
lethal phenotype, through functional antagonism of the encoded protein can be leveraged in disease
contexts. Total inhibition essential genes cause toxicities as seen observed with traditional
chemotherapeutics. Functional selective antagonism of essential genes as a target requires a
disease context for synthetic lethal pairs of agents or genetic defects that lead to drug sensitivity.
Thus, disease contexts must be assessed for their dependence on functions and not individual gene
expression to select appropriate therapeutic strategies. However, the challenge remains that
pathway signaling changes to allow for cancer phenotypes create gaps in understanding the disease
context.’5-159 Essential genes can provide insight into these systems since they are rarely changed
outside of their expression and their change in function can be assessed through their
interactions.*®® While their biological roles may not alter, their context and regulation are often
thoroughly changed to enable the pathologies associated with those systems. Utilizing targets with
low flexibility within the networks can provide long term solutions as long as combinations can
produce unique conditions. Through drug combinations surrounding these essential gene targets,
novel contexts that enhance conventional treatment effects can be achieved.

My approach will investigate the potential to identify synthetic lethal combinations and
contexts within currently recognized targets surrounding the interregulated DNA replication,
repair, and cell cycle systems.53:5456-58.161-163 Thyjs focus provides numerous existing inhibitors as
starting points allowing any discoveries made to be more rapidly applicable to a clinical setting.
Table 5 represents a survey of targets with a potent and specific inhibitor that has at least been
demonstrated utility in pre-clinical animal studies. These biological systems possess several
proteins with well-understood functionally dependent interactions. The system’s flexibility also
provides a considerable compensatory activity that would allow healthy cells to overcome drug
combinations based on tumor biases. The addition of PCNA functional antagonism offers an
opportunity to stress the system in a manner that gene expression and somatic mutation models

are unable to duplicate.

42



1.4 Scope

As developed in the sections above, a clear unmet need in cancer research is the predictable
molecular links of tumor diversity and adaptability. The current approaches utilizing discrete
biomarkers to indicate sensitivity and then seeking out either general therapeutic approaches
before developing targeted therapies for each one will take decades if not longer. Drug
combinations of successful treatments limited by disease context could provide solutions that can
be produced at a much higher rate. Further, inducing synthetic sickness would allow for far lower
toxicity than conventional approaches. Yet, their utilization would require new tools to evaluate
complex biomarkers involving multiple data types.

This work aims to create data analysis tools capable of integrating somatic mutation, gene
expression, and PPI data to identify complex biomarkers to evaluate drug combinations. Single
discrete biomarkers are useful since there is confidence in their identification, even if they are
limited in their utility. Complex biomarkers can indicate cell biology changes through data
combinations of protein function changes, expression, and dynamics. Systematic approaches
capable of evaluating each of these often require a great deal of expertise to process and interpret.
Therefore, our secondary objective is to create useful graphing options that do not sacrifice rigor
of analysis but enhances ease of use.

A second goal is to define and reduce to practice an example of an essential gene as a drug
target due to TDFs in breast cancers. This will work similarly to the HDAC3 inhibitor development
by assessing what functions can be targeted and developing strategies to make the effect specific
to the tumor type. | evaluate the utility of inhibiting an essential gene, PCNA. Understanding how
to leverage the centrality of essential genes in chemoresistant contexts will allow for rapid
expansion of both current and future therapeutic options. However, it is important to monitor the
multiple pathways that are influenced by PCNA to determine if specificity can be achieved through
direct inhibition. Modulation of DNA replication, DDR, DNA damage tolerance, or cell cycle all
influence multiple chemoresistant strategies and being able to reduce the functionality of any of
them could lead to synthetic sickness. With few redundancies in these processes, it is unlikely that

further resistant phenotypes could arise making this strategy very rewarding in several contexts.
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CHAPTER 2. CLASSES OF SMALL MOLECULE PCNA INHIBITORS
DEFINED BY MECHANISM OF ACTION

2.1 Introduction

Proliferating cell nuclear antigen (PCNA) represents a hub in cell processes required for
cancer development, including DNA replication, histone modification, DNA damage repair
(DDR), and telomere maintenance.’641% Many of these roles are also necessary for all
proliferating cells, not merely cancerous cells. Simultaneous targeting of all PCNA functions
would be disastrous due to its status as an essential gene. All the processes that PCNA controls
through organizing DNA-protein complexes have been targeted indirectly through traditional
DNA damaging chemotherapeutics or directly through targeted therapies.?>#467 |f a
pharmacological agent could modulate only a select subset of PCNA functions, there could be a
biological context for numerous other approaches that target novel unstable biological states.
PCNA would then join an emerging group of drug targets whose regulation through post-
translational modifications and protein-protein interactions (PPI), provide numerous therapeutic
applications.t68-171

One of the few known PCNA genetic mutations occurs at S2281, which resides in the
interdomain connecting loop (IDCL) used to stabilize protein-protein interactions. The mutation
reduces IDCL flexibility, stabilizing PPI with PCNA after initial binding at the PCNA interacting
protein motif (PIPM) site.1”? This loss of flexibility reduces a subset of PCNA interactions required
for the nucleotide-excision repair (NER) pathway, which repairs single-strand breaks and adducts.
However, this mutation does not prevent DNA replication functions of PCNA, allowing patients
to reach adulthood before developing neurodegenerative effects. The selective impact of another
mutation at Y211F shows that phosphorylation at this site is necessary for prolonged polymerase
loading, integral to a successful S phase of cell cyle.5.173174 Yet, cells possessing this mutation
were able to repair DNA damage caused by cisplatin. Another example of a selective effector of
PCNA function emerges from the small molecule inhibitors T2AA and PCNA-I1 that reduce the
amount of ubiquitination of K164, contributing to a loss of the translesion synthesis (TLS) DNA

damage tolerance pathway.!’>17" These examples highlight the potential of direct effectors to
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modulate PCNA related functions selectively. ldentifying the disease contexts for a PCNA

inhibitor's utility remains a challenge that this study seeks to address.

2.1.1 Double-Strand Break Repair

Double-strand breaks (DSB) are the deadliest form of DNA damage, and cells possess
multiple strategies to overcome their effects. Homologous recombination (HR) is a pathway for
the repair of DSB (Fig. 2.1). HR is only active during and immediately after S phase through its
regulation by cell cycle checkpoint proteins and other proliferation pathways including MAPK.178-
182 PCNA is required for new strand elongation and ligation following the Rad51 nucleoprotein
complex sister chromatid invasion.*®3-18 Without PCNA to help resolve this pathway’s component,
the interstrand complex may collapse, causing considerable damage to both chromatids. Further,
these roles occur at a stage already committed to the HR pathway. Therefore, a lack of functional
PCNA would have little effect on the upstream signal proteins that begin the HR process.

The compensatory pathway for HR is non-homologous end joining (NHEJ), which is most
active during GO and G1 phases of the cell cycle but remains active in other phases.'8-18 NHEJ,
in both its forms, involves only four steps that include a low number of proteins: site recognition,
end processing, gap filling, and ligation (Fig .2.2). Since this repair method is not template-directed,
it is error-prone and includes a deletion of nucleotides as the DNA ends are rejoined.'®1%0 This
pathway remains the primary DSB repair pathway through its rapid response and relatively fewer
proteins required despite its error-prone nature. The two NHEJ pathways are the classical NHEJ
pathway (Fig. 2.2), controlled by DNA-PK and Ku70/80, and the alternative NHEJ pathway, which
PARPI controls. (Fig. 2.3)
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Figure 2.1: DNA Double-Strand Break Repair via Homologous Recombination
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PARPI antagonists have emerged as a viable molecularly-targeted therapy in ovarian,
breast, and lung cancer.832:1%! They rely upon a BRCA1 mutation for utility since it reduces the
HR pathway's functionality. Olaparib traps PARP1 at damaged sites preventing Ku70/80 foci
formation, effectively inhibiting both classical and alternative NHEJ.1%21%% Combined with a loss
of HR, cancer cells are unable to overcome DSBs that occur. Numerous other mutations reduce
the HR pathway’s functionality at various stages of the process, including BRCA2, ATM, and
RADS52. Genes whose loss-of-function mimics BRCA1’s deficiency by losing an effective HR
pathway impose “BRCAness”. In the context of olaparib drug resistance, inhibitors of gene
products that induce “BRCAness” traits show restoration of drug sensitivity when used in

combinations.143:194.195

However, multiple olaparib-resistant contexts capably counter these
combinations as “BRCAness” genes affect upstream signal proteins that regulate the activity of
HR triggering feedback loops that overcome an upstream block of HR. Since the functional roles
of PCNA occur after commitment to the HR pathway, an inhibitor may provide a unique
opportunity to reduce HR effectiveness without modulating the signaling pathways that activate

HR. This scenario would create a new context for inducing tumor cell sensitivity to olaparib.

2.1.2 DNA Replication

DNA replication provides one of the most stressed states of the human genome. During
replication, much of the DNA is decondensed from the nucleosome, increasing overall exposure.
The unwinding of DNA also induces physical and mechanical stresses through coiling and
supercoiling.1%1%7 Even with topoisomerases present to mitigate this stress, DNA damage and
subsequent breaks still occur. A lack of DDR before or during strand synthesis causes stalls at the
replication fork. This temporal effect can then lead to a state of fork collapse, which triggers cell
cycle arrest and the apoptotic pathway's induction.’®® PCNA is the central component of the
replisome responsible for DNA polymerase activity. The coordination of helicase and DNA
polymerase activities depends on PCNA to allow longer strands to be replicated for S phase of cell
cycle progression. Inhibitors of PCNA that bind at the PIPM site cause S phase delays by reducing

DNA polymerase affinity for the replisome and ultimately slowing replication. 19920
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2.1.3 Translesion Synthesis

In the presence of UV-induced nucleotide dimers and DNA adducts, replication fork stalls

RAD18
Ubiquitin

—
_ .

e

Figure 2.4: Translesion Synthesis DNA Damage
Tolerance Pathway

2.1.4 PCNA Ligands and Inhibitors

occur and exacerbate the damage.?01:20?
Translesion synthesis (TLS) can overcome this
damage by switching out an accurate B-family
polymerase for a less accurate Y-family
polymerase to continue the replication process.
The polymerase switching occurs only when
mono-ubiquitination of PCNA at K164 is
present. This modification of PCNA lowers B-
family polymerases’ affinity while increasing
the affinity of Y-family polymerases!’®:176.203
(Fig. 2.4). Repair of the damage occurs later
without the loss of the replisome and replication
fork collapse. As a result, TLS is key to DNA
damage tolerance pathway that allows cell cycle
progression regardless of certain DNA damage
types.?%42% The pathway allows for rapid
proliferation of cancer cells despite increased

stress due to the elevated metabolic program.

The evaluation of protein and direct ligand binding with PCNA to date covers multiple

contexts. (Table 2.1) These ligands include numerous peptides derived from PCNA protein

interactors with a wide-range of binding affinities and, for many, co-crystal structures are

available.?% This information has provided insights to PCNA function with different protein

binding partners. The highest affinity ligand is a non-natural consensus peptide sequence named

pogo ligase (PL).2%” This peptide was derived through optimizing the high affinity natural ligand

p21’s C-terminus. PL binds at the PIPM site of PCNA and serves as a standard for competitive

binding assays'’-208209 QOther high-affinity peptides have utility as probes of PCNA functions in
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DNA replication through the PIPM interaction site.?1° Nuclear localization and binding affinity of
different protein interfaces regulate strand elongation through initially lower affinity interactions
supported by other complexing factors.?*! Ligases seal the ends of each strand and displace earlier
complexes to finish strand elongation. The p21 protein isthe negative regulator of DNA replication
and S phase progression. The protein is an inhibitor of cyclin and cyclin-dependent kinases (CDK)
while also possessing a high affinity for PCNA binding at the PIPM site to block association with
other factors, including DNA polymerases.??

The previous work with PCNA from the Davisson laboratory evaluated the potential of
PCNA as a flexible platform for multi-modal complex formation.?® The IDCL forms part of the
PIPM binding site undergoing a disordered-to-ordered transition, and can contribute multiple
conformational states of the receptor. The cooperativity of binding at the homotrimer's multiple
PCNA binding sites is likely due, in part, to the IDCL’s flexibility. By evaluating various PIPM
sequences in the human proteome and their ability to interact with PCNA, a reverse-PIPM
sequence was shown to possess high affinity. The notable reverse-PIPM characteristic was
established in the AKT kinase, a key cytoplasmic and nuclear regulator of DDR and cell survival.
This interaction was known abstractly, but this work capably demonstrates the direct interaction
between these proteins. While several PIPM-peptides consistently utilized key residues within the
IDCL, the PCNA conformations differed among binding states. However, at the base of the IDCL,
there are three regions that create subpockets for the PIPM motif to bind: 1128-Y 133, D232-L.234,
and Y250-K254. The interactions at these sites are conserved across PIPM presenting peptides and
provide the foundation for both engineered peptides and small molecules. All this only heightens
the interest in producing functionally selective small molecule inhibitors to manipulate this
platform.

Multiple studies have sought to rationally optimize peptide ligands for PCNA using
insights from the natural sequences such as p21. ACR2 is an example of an engineered peptide
that displaces proteins essential to DNA replication.?'®* ACR2 contains an intramolecular cyclic
substructure or “staple” that stabilizes a 310 a-helix in a PIPM sequence motif. This secondary
structure element allows for enhanced binding affinity by mimicking the local structure present
when larger peptides bind at the PIPM binding site in PCNA. A related but distinct design approach
relies on enhancing the peptide binding avidity of multiple PIPM binding sites and providing a

novel tool compound. The homotrimer defines structural topology for three PIPM binding sites.
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Using p21 20mer peptide sequence as a starting point, allowed for small protein constructs
produced through recombinant DNA methods. The trivalent constructs show a 100-fold increase
in affinity for PCNA PIPM binding sites based upon a direct displacement of the monovalent p21
peptide. In this case, the increases in affinities are far from a conservative additive prediction of
20-fold, but further highlights the presence of multiple functional PIPM binding sites in the PCNA
homotrimer.

Another method of PCNA binding that has been explored for inhibition is utilizing the
interior of PCNA. PCNA binds to chromatin and dsDNA through the negative backbone of nucleic
acids. Anaptamer, a-PCNA, was created to explore this alternative binding site of PCNA. a-PCNA
was shown to reduce the capability of DNA polymerase 6 and €. However, this only occurred in
the presence of PCNA showing that the aptamer reduces the processivity granted by PCNA. The
aptamer was developed using a recombinant PCNA bound to streptavidin as bait. A PCNA pull-
down revealed the high-affinity aptamers, which were then optimized for affinity through
nucleotide deletions at the 3’ and 5° ends. Targeting the interior of PCNA using nucleic acids
offers a binding site at nanomolar affinity for selecting the functional role in DNA replication
processes. This distinguishes the aptamer from both peptides and small molecules, which target
multiple processes. While this aptamer has a known direct effect on DNA replication, the only
effect related to DDR is synergism with doxorubicin.?*

An alternative but overlapping peptide-ligand binding site on PCNA has shown that
functions can be differentially affected by the ligand bind site. The AIkB homolog 2 PCNA
interacting motif (APIM) was first implicated in the nucleotide excision repair (NER) pathway by
preventing XPA association.?t> APIM peptides have been optimized similarly to PIPM peptides,
however instead of producing engineered peptides optimizing binding affinity, nuclear localization
and stability were the focus to produce ATX-101.2%6 Overall, APIM peptides possess a reduced
effect on DNA replication and enhanced effects on DDR of single-strand breaks (SSBs).?'” Further,
PCNA modified at K164 by ubiquitination showed selective binding for APIP peptides over PIPM
peptides.®® The ATX-101 peptide has been registered for a Phase | clinical trial.?® While the
details of the mechanisms remain less clear, there is ample evidence supporting the premise that
PTMs are capable of modulating which protein interactors engage PCN A, 6466114219

Approaches using peptides have shown great utility, but peptides have not shown

differential effects outside of the APIM binding sites. All PIPM peptides possess similar
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biochemical features but do show some structural differences in PCNA-peptide complexes. The
effects of these peptides are expected to impact many functions of PCNA and preclude other
targets within the same pathway. PIPM peptides are also tolerable to most normal cells as
monotherapies but show general toxic effects when used in combination with DNA damage agents
in vitro. Still, only APIM peptides show any selective antagonism towards DDR pathways
associated with PCNA.

In addition to utilizing these peptides to determine PCNA protein interactions, they also
provide insights for structure-based drug design. Several PCNA inhibitors are known using
different discovery strategies. A high throughput biochemical screening campaign for PCNA
ligands capable of displacing the high-affinity PL peptide for the PIPM site enabled the discovery
of the natural hormone triiodothyronine (T3). A simple modification of T3 to T2AA provides the
first example of a small molecule inhibitor selective for PCNA.13177 T3 and T2AA induce an
unprecedented binding pocket contiguous with the PIPM binding site near the base of the IDCL. "’
The cellular effects of T2AA include enhancing DNA damage agents and inhibition of TLS.??°
These effects are similar to the PIPM-containing peptides; however, T2AA does not block S phase
progression directly or directly modulate kinase activity.??* Therefore, T2AA is the first small
molecule able to show selectivity in downstream events by binding to PCNA. T2AA block
prevents ubiquitination at K164 by Rad18, which is necessary for translesion synthesis (TLS). The
mechanism for this is unclear but is not dependent on or correlated to Y211 phosphorylation status.
These distinct cellular effects of T2AA establishes the proof of concept that a small molecule
inhibitor of PCNA function and the PTMs can be modulated more precisely than with a peptide-
based inhibitor.

Using an in silico approach to target the PCNA-dimer interface led to discovery of an
inhibitor class represented by PCNA-I1 (Table 2.1).222 PCNA can form homotrimers that are not
suitable for loading into DNA without pathway-specific loading factors, including RFC, that
utilize ATP hydrolysis to promote “clamping” of PCNA.?2% This trimeric sliding-clamp on DNA
is the scaffold providing important docking sites for protein complexes. The stabilization of the
trimeric PCNA in the absence of DNA is a strategy for inhibiting a broad range of PCNA
functions.??* Since PCNA-I1 prevents the recruitment of PCNA clamps, it is expected to abolish
PCNA’s DNA related functions and thus serves as an example of a pan-PCNA inhibitor distinct

from the functionally selective effects demonstrated by T2AA.
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A concept of a cancer-specific PCNA has been advanced for many years by the Malkas
laboratory.??> Evidence of this is the development of a peptide-specific to the cancer-specific
region, L126-Y133.2%6 To create a more specific PCNA inhibitor that impacts cancer cells, this
same group assessed a putative cancer-associated PCNA isoform region.??® This region occurs
near the PIPM binding site as well as the T2AA binding site. The results of a virtual screening
campaign provide a series of molecules that claim to leverage cancer-associated differences.??’
Information for only the PCNA inhibitors AOH39 and AOH1160 have recently been disclosed.
The observations include specific effects in cancer cell cultures with some enhancement of DNA
damage through HR.??” Additional claims include some impact on DNA replication. The affinity
and binding site(s) by which AOH039 and AOH1160 engage PCNA remains ambiguous at this
time. The authors could not displace the PL peptide through a fluorescence polarization assay.
Using NMR spectroscopy for detection and T2AA as a control ligand, AOH1160 induces
resonance changes attributed to a similar set of amino acids consistent with the binding of PCNA
but not definitive for a specific site. Since AOH1160 represents the second class of small molecule
PCNA inhibitors with a different functional selectivity inhibition profile, inclusion in this study is
warranted.

Our laboratory has utilized a novel fragment-based ligand design approach to leverage
multiple receptor features of PCNA that enhance binding with potential inhibition profiles distinct
from T2AA or AOH1160.2%8 To expand the functional selectivity of PCNA inhibitors, binding in
multiple protein subpockets was hypothesized to leverage the flexible interface of the PIPM
binding sites. Based on Pedley et al. observations?'°, accommodation for the receptor flexibility
relies on the inclusion of apo-PCNA and multiple ligand co-crystal structures during the in silico
screening phase.?20228229 Using the FEN1, p21, Pole, and T3 binding modes produce a consensus
of receptor features that define binding subpockets induced upon ligand-binding in this flexible
region of PCNA. Compound libraries were based upon N-alkyl glycines that simultaneously
display three subpocket ligands linked by a relatively flexible peptoid backbone. This backbone
has enhancements in drug-like physicochemical properties, including superior metabolic stability
over traditional peptides.?30-233

The results of the virtual screens yielded multiple PCNA ligands with representatives in
Table 2.1. All candidate ligands were initially screened for direct competitive binding with the PL

peptide to establish affinity at the PIPM binding site in PCNA. Binding in this critical region
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confirms the virtual, flexible docking screen. Additionally, in silico analyses using molecular
dynamics simulations also highlights the screening approach's capacity to discover ligands that
bind distinct receptor PCNA conformations. Furthermore, using principal component analyses of
the ligand-bound conformations of PCNA provide comparisons to the known peptide ligands,
including PL, Abl, Akt. In all cases, the higher affinity tripeptoids show stabilization of distinct
PCNA conformations from those for the PIPM-containing peptides and T2AA. Initial in vitro
cellular activity assessment of these tripeptoids shows synergism with DSB and SSB damage
agents in drug-resistant cell lines. Further evaluation of how the binding of these agents in the
PCNA PIPM site enable selective inhibition of PCNA’s function is the focus of this study.
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Table 2.1: PCNA inhibitors and binders discovered and developed. *Molecules used in this
study. tLactam bridge between K145 and E149

Compound Structure IC;, (uM) K; (uM)
P21-Peptide RRQTSMTDFYHS 1.8+0.5 0.477
PL- Peptide SAVLQKKITDYFHPRK 0.145+0.013 | 0.136
APIM Peptide MDRWLVKW 11£0.5 NA
ATX-101 AcMDRWLVKWKKKRKIRRRRRRRRRRR 11£0.5 NA
ACR2 GRKRRQK;sSMTE, ,FYH! 1.61£0.076 NA
(o]
HO. |
T3 L 19.0=0.42 7.8
I 0 2
1
HO. |
T2AA* \©\ e 1344033 | %128%
0 : : 0.0318
‘ 0 041+
PCNA-I1 "‘N ] 1.60=036 | o'\
OH Wy
H [9]
N
H
AOH39* O 18 _G NA NA
[e]
N
SRADS
AOH1160* Coj O NA NA
(0]
Df"
T2AA-NEal-NPip 4 o ©\‘ 0 0.175+
+
(TEP)* HO\©\I N\)J\N/\",N\)LNH 1.82+0.37 0.0356
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2.2 Rationale

Current PCNA peptide and small molecule inhibitors have shown some ability to
downregulate specific functions of PCNA. Further, these effects have implications either on or
through PTMs of PCNA that regulate PPIs of PCNA. These effects require increased stress through
DNA damage to emerge as potential therapeutic options. However, due to the numerous possible
PCNA functions associated with cells' sensitization to general genomic stress, especially DNA
damage, this approach offers little insight if any functional selectivity. The overall objective of
this section is to show the ability to create functionally selective inhibitors of PCNA. To understand
the nature of the small molecules that bind to the PIPM binding region and the extent of selectivity,
| performed a series of assays alone and in combination with other DDR inhibitors while utilizing
DNA damage agents as controls. The objective of this is to understand what possible synthetic
lethal or synergistic relationships exist between PCNA inhibitors and related DDR pathways.

While some of these inhibitors have already reported functionally selective inhibition, the
studies here seek to provide rigorous criteria for the profiling of PCNA inhibitor target engagement
and pharmacological effects. While not exhaustive, these assays will differentiate between three
major PCNA functions already observed as important in cancer diseases including: DSB repair
through HR, DNA replication, and TLS. To examine PCNA’s role in DNA damage and cell
viability, 1 will be assessing the effect of PCNA inhibitors in combination with DSB repair
pathway inhibitors (Table 2.2). Since NHEJ and HR pathways are compensatory, PCNA inhibitors'
ability to synergize NHEJ inhibitors selectively can further validate HR-specific inhibition.

The design of experiments for selective cell PCNA inhibitor effects relies on varied genetic
contexts to test PCNA function in different biological states. Cells lacking the HR pathway should
show limited PCNA inhibitor effects if they are selective for PCNA's functional state in HR. DNA
damage-resistant tumor cell lines carry TP53 or PTEN mutations that directly affect apoptosis and
DDR responses. These mutations reduce a single agent's effect but provide a background for
efficient evaluation of two agent combinations. MAPK pathway gain-of-function mutations, such
as KRAS or BRAF, and loss-of-function mutations to cell cycle regulators, such as RB1 and
CDKNZ2A, prevent S phase delays through signaling, but not through direct manipulation of the
replisome. The combination of cell line diversity and DNA repair antagonist combinations enables
separation of DNA damage effects on cell cycle from replisome effects specific to PCNA

inhibition.
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PCNA inhibitors that do not target a specific functional role could be considered general
chemotherapeutics. Functionally selective PCNA inhibitors would provide a new class of
antagonists that enhance other targeted inhibitors' utility by leveraging genomic stress contexts.
The combinations studied here reflect PCNA inhibitors' selective capabilities and whose synergies

can be interpreted with tumor cell genomic contexts.

2.3 Methodology

2.3.1 Cell Culture

The human TNBC cell lines HCC1937, MDA-MB-231, MDA-MB-436, and MDA-MB-468 were
purchased from the American Type Culture Collection (ATCC). MDA-MB-231 was cultured in
DMEM supplemented with 10% FBS. HCC1937 and MDA-MB-468 were cultured in DMEM
supplemented with 5% FBS. MDA-MB-436 was cultured in L-15 supplemented with 10% FBS,
10 pg/ml insulin, and 16 pg/ml glutathione. Incubation of HCC1937, MDA-MB-231, and MDA-
MB-468 cell cultures were conducted at 37° C and 5% CO2 in a humidified incubator. Incubation
of MDA-MB-436 was also at 37° C but with no gas exchange. All cells were harvested as cells
reached 70-80% confluency utilizing Trypsin-EDTA (0.25%) and were split 1:10 for cells with a
doubling time close to 24 h or 1:5 for cells with doubling times greater than 24 h. Cells with
doubling times below 24 h had media replaced every 2-3 days or 3-5 days for cells with doubling
times greater than 24 h (Table 2.2).
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Table 2.2: Cell Line Properties; Doubling times were determined after culturing cells for 2-3 passages as
this was more accurate to cell growth speed during assays.

. i N HR Growth Doubling
Cell Line Type/Subtype Mutations Status Conditions Time ()
MDA-MB- | Mesenchymal- | BRAF, CDKN2A, N 10% FBS, )1
231 like KRAS, NF2, TP53 DMEM, 5% CO, N
10% FBS, L-15,
MDA-MB- BRCAIL, RBI, 10 pg/ml insulin,
436 Basal-1 TP53 - 16 pug/ml =36
glutathione
MDA-MB- Basal.1 PTEN, RBI, N 5% FBS, 2
468 " SMADA4, TP53 DMEM, 5% CO, |
BRCALIL, PTEN, 5% FBS,
HCC1937 Basal-1 RBIL. TP53 + DMEM. 5% CO, ~54
Embryonic 10% FBS,
HEK293 Kidney - * | pMEM, 5% co,| 2
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2.3.2 Drug Combinations and Synergism

PCNA inhibitors were evaluated in combination with the ATM antagonist KU-55933, the

DNA-PK antagonist NU7026, the

Table 2.3: Small Molecules Utilized to Examine Effects of

PARP1 antagonist olaparib, and the
PCNA Antagonism

DNA damage agent doxorubicin.

Compound Structure Process

Doxorubicin is a topoisomerase |l

OH . .
-,.OH , antagonist that preferentially causes
Damaging Agent,

Doxorubicin | 6 o0 oH 0,0 Double-Strand DSBs. ATM is an early signaling
Break
%H protein in the HR pathway and an

intersection between DNA damage and
cell cycle. DNA-PK is responsible for

Alternative Non-

Olaparib H"m?l‘_’g_ousmd much of the signaling and coordination
olning
of the classical NHEJ pathway. PARP1
maintains a similar role in alternative
Classical Non- .
NU7026 HomologousEnd | NHEJ, but also has the potential to
Joining prevent Ku70/80 foci formation. These
combinations will allow this study to
KU-55933 Homologous survey HR selectivity as well as
S Recombination .
j compare PCNA antagonism to general
3

chemotherapeutic effects. (Table 2.3)

The objective of using drug combinations in pathways surrounding PCNA is to discern
whether an inhibitor affects PCNA functions associated with those pathways. NHEJ is a
compensatory pathway to the PCNA-dependent HR pathway; inhibiting both the DNA repair
pathways would produce a synergistic response. This condition would constitute a “chemical
synthetic lethality” in analogy to PARP-1 inhibitor's clinical utility when tumor genomes bear
BRCAL loss-of-function mutations.

Synergism is a pharmacological effect that is not explained as the sum of two independent
outcomes. ldentification of synergism occurs when the two agents used in combination have
greater effect together than either used alone. The quantification of synergism between any two
inhibitors makes use of the equation offered by Chou and Talalay.?* By quantifying the

pharmacological effects as synergistic, additive, or subadditive, we can define PCNA inhibitors'
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impacts in multiple tumor genome contexts through drug combinations. Quantification of the
effect of a drug combination makes use of a combination index (Cl) where values > 1 are

considered synergistic, 1 is additive, and < 1 are subadditive.

2.3.3 Cell Proliferation

Tumor cell proliferation was measured using the MTT (3-(4, 5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide) cell proliferation reagent. Cells were plated on flat-bottom 96-well
plates at a density of 1 x 10* cells per 100 pL per well, following patterns dependent on plate type
(Fig. 2.5). Cells attached over 4 hours at 37°C in an incubator. Control plates were then exposed

to 10 uL of MTT (5 mg/mL in growth media)

1:65“..‘563“ ]i65“®3‘59 222| was added to each well at a final
3333388838883 B:z + @3835 concentration of (0.5 mg/mL) to metabolize
"'3’3333';55.: Es.; %3383;; for 4 hours at 37°C. After the incubation
:zz::z::zza o:z gz:zzza period, 50 pL of solubilization solution (10%

Figure 2.5: MTT Plate Configuration; A) Control plate; Triton-X 100, acidic isopropanol (0.1N HCI))
B) Test plate; Red: No cells, negative control; Green: \as added, and the plate was stored without

Cells, no treatment, positive control; Blue: Cells,
treatment light overnight on an agitator to improve
solubilization.

Experimental plates were treated with either a monotherapy or drug combination. For
monotherapies, each compound started at 200 uM and used a dilution factor of 3 to produce the
series of 10 concentrations. An exception was a 50 uM starting value for doxorubicin due to its
potency. All the drug molecules were tested as monotherapies, including the PCNA inhibitors.
Drug combination studies were designed to include PCNA inhibitors at Glso/3 (max. 30 uM),
Gls0/10 (max. 10 pM), and Gls/30 (max. 3 pM). These PCNA inhibitors' dosages were applied in
combination with a DNA damage agent or repair antagonist following the monotherapy dosage
protocol. These concentrations provide enough data to determine synergism while minimizing the
PCNA inhibitor used.?** The drug combination experiments duration were approximately three
cell doubling times for each cell line.

To measure the cell proliferation, light absorbance readings were collected at 570 nm to

assess reduced MTT, and 650 nm to eliminate background. Absorbance values were normalized
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to the 570 nm readings to calculate the percent cell growth by comparing to an appropriate control
plate for each cell line. The control plates were used to standardize base cell counts and normalize

the experimental plates' positive and negative controls.

2.3.4 Cell Survival

Cell survival studies were conducted using a clonogenic assay.?3 Cells were plated on flat
bottom 6-well plates at a density of 1x102 cells with 1 mL per well. After allowing cells to attach
over 4 h, the cultures were treated with single-drugs using with five concentrations of DNA-
damaging agent, DDR inhibitor, or PCNA inhibitor followed by incubation for 24 h. The MTT
results were examined for drug concentrations that elicited a reduction in total cell numbers from
Day 0 to ensure cell death. The dosage range of the best 5 doses within the 10-step 3-fold dilution
curve used in the MTT assay. Combinations utilized the same 5 concentrations of DNA-damaging
agent or DDR inhibitor used in the single-drug treatments. The PCNA inhibitor dosages were
Glso/3 (max. 30 uM), Glso/10 (max. 10 uM), and Glso/30 (max. 3 pM). Cells were washed with 1
mL of PBS to remove the drug treatment and incubated in 1 mL of the appropriate buffer at 37 °C
under the specific atmospheric conditions stated above. After 6-7 cell doubling periods when the
control colonies were visible, the cells were fixed in 4% p-formaldehyde and stained with DAPI
solution (1 pg/mL DAPI, 0.1% Triton-X 100, PBS) for counting using a Cytation 3 in image
cytometer mode. Normalization was calculated from the drug-treatment cell colony data to colony

counts and control cells in drug-free medium.

2.3.5 DNA Double-Strand Breaks

DSBs were analyzed using a neutral comet assay.?% Cells were plated on flat-bottom 96-
well plates at a density of 2 x 10* cells per 100 pL per well and incubated for 4 h in an appropriate
medium at 37 °C under the specific atmospheric conditions. Cells were treated with 1 pM
doxorubicin for 1 h to induce DNA damage. Media was exchanged with fresh media before
treatment with 5 concentrations of each compound for 8 h to allow for repair. In combination
studies, cells were also exposed to a single dosage of PCNA inhibitor at Glso/3 (max. 30 uM).
After the proper exposure time, cell cultures were treated with Trypsin-EDTA (0.25%) to suspend
in 100 pL of 0.5% low melting agarose in PBS at 45°C. Fifty microliters of diluted cells were
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immobilized onto microscope slides which had been pretreated by dipping in 1% Agarose in
nanopure water and allowed to dry overnight. Glass coverslips were placed on top of the cell
deposition, and the slides were incubated at 4°C for 10 min to solidify the low melting agarose.
Slides were moved to room temperature for 5 min, the coverslips removed, and immobilized cells
were lysed in4°C neutral lysis buffer (25 mM Tris HCI pH 8.0, 100 mM EDTA, 2.5 M NacCl, 0.1%
Triton X-100) overnight at 4°C. After removal from the lysis buffer, the slides were equilibrated
in neutral comet electrophoresis buffer (90 mM Tris HCI pH 8.0, 90 mM Boric Acid, 2 mM EDTA)
for 20 min and electrophoresis at 14V, 21mA for 40 min. After electrophoresis, slides were
equilibrated in 0.4 M Tris-HCI pH 7.4 for 5 min at room temperature, the buffer was replaced
twice for a total of three wash steps. Sixty microliters of 4,6-diamidino-2-phenylindole (DAPI, 1
pmg/mL in H20) was applied dropwise to the agarose pad and incubated at 4°C for 15 minutes.
Comets were then imaged using a BioTek Cytation 3 Cell Imaging Multi-Mode Reader with a 4x
objective and analyzed using BioTek Gen 5 software. To quantify the “% tail DNA”, a protocol
published by BioTek was utilized on a minimum of 100 cells identified with an area appropriate

for each cell assessed through the negative control of non-drug treated cells.?’

2.3.6 Homologous Recombination Assessment through Rad51 Foci

HR activity was evaluated through Rad51 foci.?®® Cells were plated on p-Slide 8 Well
Chamber Slides at a density of 2 x 10* cells per 150 pL per well and allowed to attach over 4 h at
37°C. Cells were then pretreated with 10 uM of doxorubicin for 1 hat 37°C followed by replacing
the media and then treatment at 2 concentrations of DDR antagonists for 8 h or 24 h. Cells were
treated using the same drug concentrations used in the comet assay, Glso/2 for DDR antagonists
and Glso/3 for PCNA inhibitors. Cells were then fixed with 4% p-formaldehyde in PBS at room
temperature for 10 minutes. To assess PCNA inhibitors’ potential impact on HR competence, we
examined RAD51 foci formation. As a control, y-H2AX foci were analyzed as a general DNA
damage marker. After fixation, cells were permeabilized with 0.1% Triton X-100 in PBS at room
temperature for 5 m. A 1% bovine serum albumin (BSA) solution in PBS was used to block
nonspecific binding to the permeable cells. Primary antibody stains were diluted in 1% BSA
blocking solution in PBS were added followed by DAPI (2 pg/mL). Finally, the permeable cells

were exposed to the appropriate secondary antibodies diluted in 1% BSA blocking solution in PBS.
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The primary antibodies used were (1:100). Secondary antibody was anti-mouse-FITC (1:100). A
Nikon TE2000 inverted fluorescence microscope (Nikon Instruments Melville, NY, USA) enabled
imaging of the stained cells under oil immersion with a 40X objective. The number of foci were
estimated utilizing DAPI to determine the nucleus for each cell followed by inclusion points of
interest in those regions. A minimum of 50 cells were analyzed for each biological replicate. The
arrays of foci count for each biological replicate were subjected to further analysis to determine

the average number of foci per cell, and the percentage of cells with zero foci.

2.3.7 DNA Replication and Translesion Synthesis

DNA replication efficiency was analyzed by DNA quantification over a sub-doubling time
period.?% Cells were plated on flat-bottom 96-well plates at a density of 1 x 10 cells per 100 pL
per well, allowed to attach over 4 h. For studies using synchronized cell populations, the media
was replaced with an FBS-free media followed by incubation for 24 h. For the studies of the effects
TLS, cells were exposed to 300 uJ/cm2 UV radiation utilizing a Spectronics XL-3000 UV
Crosslinker. When evaluating just the effects on DNA replication delays, this UV-irradiation step
was omitted. Cells were then treated with 6 concentrations of each compound for approximately
85% of each cell line’s doubling time. At the end of the appropriate time periods, cells were fixed
with 4% p-formaldehyde in PBS and stained with DAPI in PBS (2 pg/ml). Data for DNA
quantification were acquired using with a Cytation 3 (4x objective) and compared to no drug
addition controls, but FBS addition, and cells that did not receive any FBS after the
synchronization period. These control cells provided the standards to assess whether DNA

replication was complete and proceeded past the G1/S checkpoint.

2.3.8 Inhibitor Feature Profile Assessment

A set of descriptors were developed to profile the different effects of PCNA inhibitors
quantitatively. The phenotypic effects under investigation are a general response to DNA damage,
DDR through HR, DNA replication, and TLS summarized in Table 2.4. Discrete values that

quantify all the measured drug effects were used to profile PCNA inhibitors quantitatively.
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Toxicity was derived using LDso values for each PCNA inhibitor as a monotherapy

. o ~adjusted using the equation in Table 2.4.
Table 2.4: PCNA Inhibitor Feature Classification; LD50 is

the concentration measured in the clonogenic assay that The general toxicity of a PCNA
results in half the cells’ death. GI50 is the concentration

measured in the proliferation assay that results in half the cell Inhibitor Is critical to determine If any

growth. dose range window exists for
functionally selective effects. This
Feature Assessment Protocol . . . .

information is also essential to
Toxicity —log;o(LDsy)— 3 understand  the necessity  of
DNA Damage % DNA Tail at Gls/3 combinations to affect tumor cells

Glso 1 without side effects on normal cells.

HR Selectivity —_— .
Glso npEr DNA damage was determined
Rad51 foci ct. by the amount of damage caused by a

Persistent Rad51 Foci JA2AX foci ct. at GL;/3;: 24 h

PCNA inhibitor at a concentration

Replication % S Phase at Gl5,/3 equal to 1/3 Glso using a comet assay

Translesion Synthesis % S Phase at Gl5,/3 without an initial doxorubicin exposure.

This information assesses if the PCNA
inhibitor has any intrinsic DNA damage causing capabilities. The ability to enhance DNA damage
through inhibiting repair is an effect that can be leveraged in multiple disease contexts, but general
DNA damage effects need to be utilized differently.

HR selectivity (HR:NHEJ) was determined using a ratio of the average enhancement effect
of a PCNA inhibitor, in combination with NHEJ antagonists in HR competent contexts, divided
by the average enhancement effect of PCNA inhibitors, in combination with an HR antagonist or
HR incompetent cells. This ratio evaluates how much the PCNA inhibitor can synergize with DDR
antagonists in a PCNA-dependent DDR.

Rad51 foci form as HR progresses in response to DNA damage. These foci displace the
general DNA damage marker yYH2 AX. Rad54 inhibition shows a reduction in yYH2AX foci as any
Rad51 foci that form are unable to resolve.?4%241 As PCNA antagonism occurs near the same step,
Rad51 foci persistence indicates a failure of HR to progress to completion. If Rad51 foci levels
remain high after 24 h, and YH2AX foci levels are less than the 8 h measurements, it is consistent

that the HR pathway is being affected by the PCNA inhibitor.
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DNA Replication and TLS effects are established responses to PCNA inhibitors that can
serve as a baseline effect. Since these effects are understood mechanisms, observing inhibitory
effects on these pathways with a new PCNA inhibitor when used alone is sufficient to explain the

impact on tumor cell growth.

2.4 Results

2.4.1 Cell Proliferation and Survival

PCNA inhibitors have shown several direct effects on cell proliferation. This property is
considered a result of delays in DNA replication through replisome inhibition. Inhibiting PCNA
also decreases DDR potential, which would lead to cell cycle checkpoint activation. Sufficient
destabilization of the cell cycle through these pathways will result in the activation of apoptosis
and cell death. Evaluating potential cancer therapeutics' ability to reduce tumor cell growth and
induce tumor cell death is standard practice.

As detailed above, selecting drug combinations and cell lines with varied genomic profiles
is an approach to parse the degree of PCNA inhibition due to select functions. Loss of NHEJ and
HR simultaneously is a clinically validated form of synthetic lethality.*°24> NHEJ inhibitors
should be synergistic in the presence of a PCNA inhibitor that directly impacts HR's role. Likewise,
utilizing an NHEJ antagonist, either olaparib or NU7026 should be highly effective in an HR
compromised cell line. However, in HR deficient cells, either througha BRCA1 mutation or ATM
inhibition by KU55933, PCNA inhibitors that selectively inhibit HR should be non-synergistic.

Their effects as single agents immediately separated the PCNA inhibitors we evaluated in
these studies. In all four cancer cell lines, the average Glso for AOH39 was 2 uM, and 180 nM for
AOH1160. In contrast, T2AA and TEP, LPB, and LPT (tripeptoids) all show Glso values > 100
MM. (Fig. 2.6) These results are consistent with previously reported values for these
inhibitors.208220.227 \What they all share in common is the ability to synergize with doxorubicin.
Utilizing the Chou-Talalay method to determine synergism in drug combinations, a Cl above 2 is
observed for all the PCNA inhibitor combinations with doxorubicin in the HR competent cell lines.
However, the tripeptoids and T2AA routinely show a greater Cl than the AOH compounds, with
a Cl above 3 in HR competent cell lines often nearing 4 or 5 (Table A.1). AOH compounds are
the only inhibitors to reach a Cl of 2 in the HR-deficient cell line MDA-MB 436. These differences
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imply that AOH synergism is not HR-dependent, but T2AA and the tripeptoids have a greater

dependency on HR competence to be effective in combination with a DNA damage agent.
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The combinations with NU7026 and KU55933 further evaluate pathway specificity of the
PCNA inhibitors. NU7026 targets DNA-PKcs, an enzyme responsible for regulating the early
stages of NHEJ necessary for function (Fig. 2.2). KU55933 inhibits ATM activity, which governs
the MRN activity required for HR activation and processing (Fig. 2.1). Synergism with NU7026
would imply the PCNA inhibitor possesses a strong HR effect that results in loss of function of
both DSB repair pathways. This dual blockade is analogous to loss-of-function mutations that
reduce HR competence and sensitize cells to NHEJ inhibitors. Synergism with ATM suggests
other effects that are not PCNA and HR dependent since they would inhibit sequential steps in the
same pathway. Synergism with NU7026 in HR incompetent cell lines, MDA-MB-436, also
provide evidence of non-HR specific inhibition of PCNA.

The AOH antagonists showed synergism with NU7026 in all cell lines, including MDA-
MB-436. However, the Cl values were above 2.3 in HR competent cell lines and only 1.6 in MDA-
MB-436. While these results show that the AOH molecules might have an HR effect, they also
elicit other effects independent HR. The synergism observed with KU55933 in all cell lines except
MDA-MB-436 where it was only additive, also supports the AOH compounds' HR-independent
effects. The greatest Cl was observed in HR-competent cell lines at 1.8 suggesting some synergism.
However, T2AA and the tripeptoids showed a different synergism profile. These molecules
showed no synergism with KU55933 in any context, at times suggesting borderline antagonism,
or in MDA-MB-436 with either NU7026 or KU55933. T2AA and the tripeptoids showed
synergism with NU7026 in all HR competent cell lines with CI above 3 in all of them.

Olaparib is another NHEJ antagonist utilized to test the specificity of the HR effect of the
selected PCNA inhibitors. Olaparib differs from NU7026 in that it traps PARP1 at damaged sites
while NU7026 prevents DNA-PK foci formation. This mechanistic distinction enables olaparib to
inhibit the formation of other NHEJ DDR complexes increasing its overall efficacy. Similar to the
combinations with NU7026, the AOH compounds were synergistic with olaparib in all cell
contexts, including the HR incompetent MDA-MB-436. However, T2AA and the tripeptoids
showed a similar profile with olaparib as they did in combinations with NU7026. T2AA and the
tripeptoids were able to synergize with olaparib in all HR competent cell lines with CI values

above 2, and in the olaparib-insensitive HCC1937, robust CI values close to 5.
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Overall, these observations are consistent with HR specific effects for T2AA and the tripeptoids
PCNA inhibitors. These results also further substantiate that the AOH compound possesses
additional cellular effects not dependent on HR.

The clonogenic assays were designed based on the MTT proliferation assay's observations
to establish the LDsg values for each of the PCNA inhibitors. The dosage ranges were selected to
create the most statistically robust curve based upon the Glso values of each single agent to ensure
a data point with 100% cell survival. Doxorubicin being more toxic, showed the greatest cell
killing effect with the PCNA inhibitors. LDsg values were higher than estimated through MTT, as
is typical with this assay due to the dosing regimen's difference (Fig. 2.7). However, synergism
and sensitivity remained consistent between all combinations.

The AOH compounds were the only PCNA inhibitors to be effective as single agents with
significant effects on Glso and LDso. Further, the AOH compounds showed greater enhancement
of DDR antagonists in general at their Glso/3 than other PCNA inhibitors. AOH compounds
showed the same ability to synergize with KU55933 implying a separate mechanism from the
previous HR effect reported. This result further confirmed in the HR-incompetent cell line MDA-
MB-436. AOH compounds also were capable of sensitizing the resistant cell line, HCC1937, to
olaparib.

T2AA and the tripeptoids possess similar profiles in the clonogenic assays as they did in
the MTT assay. These compounds showed exceptional ability to enhance doxorubicin potency in
all HR-competent cell lines. They also capably synergized with olaparib in HR-competent cell
lines, including HCC1937. Most importantly, these inhibitors show no toxic effects as single
agents up to 200 uM in this assay as well. These compounds require destabilization of the cellular
genomes to increase stress upon multiple processes adjacent to PCNA functions.

The differentiation of the AOH and other PCNA inhibitors is further distinguished when
examining the clonogenic results. These results indicate that the AOH of inhibitors has additional
effects beyond HR due to their ability to synergize with ATM inhibitors and cells that do not
possess a competent HR pathway. The other PCNA inhibitors show some specificity as HR

antagonists due to synergizing with NHEJ antagonists only in HR-competent cell lines.
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2.4.2 DNA Double-Strand Breaks

PCNA’s direct ties to DDR and consistent enhancement of DNA damage agents makes
direct evaluation of DNA damage necessary to understand the impact of inhibition. Comet assays
are a standard of the field in observing gross amounts of DNA damage. | assessed DSBs
specifically through a neutral comet assay to measure the amount of DNA no longer tightly
packaged in the nucleus due to DNA damage using the “% DNA tail” metric. Evaluating DNA
damage within the drug concentrations observed in both proliferation and viability assays allows
us to understand the impact of observed DNA damage. Also, we must evaluate the amount of
damage after approximately 8 hours to allow time for DNA damage repair with HR or NHEJ.
Shorter periods would only allow NHEJ a chance to repair damage as it is utilized in any phase

and requires less time to become activated.

A.

Figure 2.8: DNA damage in HCC1937 measured by a neutral comet assay. A. Exposed to no DNA
damage agent; B. Exposed to 10 uM Doxorubicin over 1 hour

First, PCNA inhibitors were evaluated as single agents. The AOH molecules were
observed to induce DNA damage well below their Glsg value, consistent with earlier reported
effects. This result further differentiates these molecules from T2AA and the tripeptoids as they

cannot induce damage alone. Still, all of the PCNA inhibitors were able enhance the amount of
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doxorubicin-induced damage at 1-hour exposures. Whether this enhancement is due to increasing
the amount of damage sites or reducing DDR capabilities is not defined in this assay. Still, it
remains that AOH molecules can induce damage as single agents while T2AA and the tripeptoids
require initial damage to produce an effect.

Synergism with targeted molecules will further inform us as to the method of DNA damage
enhancement. With cells exposure to a DDR antagonist targeting either NHEJ or HR, | evaluated
the increase in DNA damage after 8-hours. The AOH molecules showed an ability to enhance the
amount of damage present when used in combination with NHEJ antagonists regardless of the cell
line's genetic background. | observed greater than 10% DNA Tail increases at or just below 2-fold
increases of damage. These effects were observed in the HR-incompetent cell line MDA-MB-436
showing that these inhibitors do not require the HR pathway to be active to increase the amount of
DSBs. The AOH molecules were also able to enhance DSBs in combination with the HR
antagonist KU55933 in all HR competent cell lines showing a shift of close to 12% in the DNA
tail and close to 20% more cells showing significant damage. All of these results are logical when
compared to proliferation and survival data.

T2AA and the tripeptoids showed profiles across all cell lines and drug combinations
similar to the survival and proliferation data presented above. These small molecules showed
significant enhancement of DNA damage with NHEJ antagonists in HR- competent cell lines.
When NU7026 was used in combination with T2AA and the tripeptoids there was an increase of
~10% in the DNA Tail across HR-competent cell lines. Olaparib showed a significantly greater
synergism showing an increase of ~20% in the same cells. As before, | saw little change in the
combinations of these molecules with ATM inhibitor KU55933 in MDA-MB-436, the HR-
incompetent cell line. Overall, this shows selectivity towards HR inhibition by T2AA and the
tripeptoids.
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2.4.3 RAD51/yH2AX Foci

The role of PCNA inhibitors in HR-specific effects is implicated by the data obtained from
the comet assay. More direct measurement of these effects requires examining the HR pathway
through Rad51 foci (Fig. 2.1 & 2.10). As noted, PCNA is vital to the latter stages of HR through
strand elongation. Numerous studies have shown Rad51, Rad52, BRCAL, and BRCAZ2 require
PCNA to assemble at sites during HR.56:184.243-245 These proteins are all vital to HR and suggest
another possible mechanism. It isimportant to distinguish if the impact is on early steps or late HR
steps, which can be tested by the ATM inhibitor KU55933 that inhibits initial HR activation.
Olaparib, an NHEJ antagonist, is used here to validate synergistic effects with PCNA inhibitors
that were observed previously and to determine whether they are directly related to HR.

The overall experimental setup closely followed the comet assay to allow comparative
analysis. At the 8-hour time point, Rad51 foci appear in cells with no secondary treatment after
the doxorubicin exposure (Fig 2.11). PCNA inhibitors were assessed with and without doxorubicin
and in combinations with DDR antagonists. The AOH inhibitors showed a significant increase in
vyH2AX and Rad51 foci as single agents compared to the vehicle in HR-competent cells. Notably,
the AOH molecules had the lowest ratio of Rad51:yH2AX foci. These results are consistent with
previous observations with AOH compounds ability to inhibit HR functionality. In an HR-
incompetent cell line, the AOH compounds induced a larger number of yYH2AX foci and no Rad51
foci. All the other PCNA inhibitors were unable to induce either YH2AX or Rad51 foci as single
agents in either HR-competent or -incompetent cell lines. These observations are consistent with
the results observed in the comet assay.

All PCNA inhibitors enhanced the DNA damage response in combination with
doxorubicin in HR-competent cells. When cells are exposed to doxorubicin and then dosed with
AOH molecules, YH2AX foci count and Rad51 foci are increased >40%. These results indicate a
significant increase in damage with a relatively low increase in Rad51 foci formation over 8 hours.
This is consistent with the reports of the AOH molecules inhibiting HR function, but also our
evidence of their capability of inducing damage as a single agent. T2AA and the tripeptoids saw a
similar Rad51 foci response but a lesser YH2AX foci effect with 2 fewer foci on average, when
dosed with doxorubicin initially and given 8 hours to repair DNA damage. In the 24-hour assay,
vehicle treated cells resolve the majority of their Rad51 foci and yH2AX foci. However, the AOH

compounds maintain the damage response, albeit at a lower level than at 8 hours. After exposure,
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cells treated with T2AA and the tripeptoids see a drastic decrease in yYH2AX foci with a marginal
reduction in Rad51 foci. The differences in this response can be attributed to AOH compounds'
ability to induce DNA damage while the other PCNA inhibitors stall HR progression.

To further validate the HR specific effect, the combination of PCNA inhibitors with the
targeted DDR antagonists were evaluated in the MDA-MB 436 cell line (Fig. 12). KU55933, an
ATM inhibitor, was unable to induce damage as a single agent and prevented HR activation in the
presence of AOH compounds. This observation is very similar to the effect of AOH compounds
in the HR-incompetent MDA-MB-436. There was no additional effect in combination with other
PCNA inhibitors, as expected from the previous assays.

Olaparib was utilized to understand what occurs in a reduced NHEJ function cell line.
Olaparib saw a greater Rad51:yH2AX foci ratio than doxorubicin, likely due to a reduction in
NHEJ function, allowing HR to compensate. In combination with AOH compounds, there was a
significant enhancement of both Rad51 and YH2AX foci counts and cells with any foci in HR-
competent cells and no Rad51 foci, but a greater amount of yH2AX foci in HR-incompetent cells.
T2AA and tripeptoids possess a larger Rad51:yH2AX foci ratio. This could be due to both greater
HR activation due to the reduced capacity of NHEJ and the persistence of Rad51 foci observed in
the 24-hour doxorubicin experiment. Overall, the results confirm the features observed previously
and cements the implication that T2AA and the tripeptoids exhibit both different and more specific

HR functional inhibition than the AOH compounds.
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Figure 2.11: PCNA Antagonist Effects on Homologous Recombination in Combination with DNA Damage Agents
and Repair Antagonists in MDA-MB-231 Cells. A) Cells were exposed to PCNA inhibitors at 1/3 Gl over 8 hours.

B-C) Cells were exposed to PCNA inhibitors at 1/3 Gl as well as an amount of DNA damage repair antagonists over
8 hours 25. D-E) Cells were exposed to doxorubicin for 1 hour and then washed of PCNA inhibitors.
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Figure 2.12: PCNA Antagonist Effects on Homologous Recombination in Combination with DNA Damage
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damage repair antagonists over 8 hours 25. D-E) Cells were exposed to doxorubicin for 1 hour and then
washed followed by 8 or 24 hours of PCNA inhibitors.
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2.4.4 DNA Replication

Another PCNA process that has been impacted by previous pan-inhibitors is DNA
replication (Fig. 2.13).66:246.247 This effect is primarily through the inhibition of PCNA-DNA
polymerase interactions producing replication stress by exposed ssSDNA resulting in DNA damage
xthat causes stalls in replication and fork collapse. DNA damage independent of DNA replication
can halt cells at the G1/S checkpoint, but most PCNA-centric effects require S phase to upregulate
HR and begin DNA replication. T2AA has been reported to have significant effects on DNA
replication processivity. This is consistent with our results. T2AA at a concentration equal to
Glso/3 saw more than a ~25% increase in cells remaining in S phase with only an average ~8%
increase in cells remaining in the G1 phase (Fig. 2.14). In contrast, AOH compounds, at a
concentration equal to Glso/3, saw an average of ~5% increase in cells remaining in S-phase, but
an average of ~9% increase in cells remaining in G1 phase. Referencing back to earlier
experiments, this is at a concentration where DNA damage is induced by these compounds. This
is all similar to doxorubicin’s effects on cell cycle where there was an average of ~6% increase in
S phase cellsand ~12% increase in G1 phase cells across all cell lines. The tripeptoids all behaved
very similarly to one another. There was only an average increase in G1 phase cells of ~2-3% and
an average ~14% increase in S phase cells at a concentration equal to Glso/3, well below any effects

on growth or damage.

Figure 2.13: Measuring Replication through Quantifying DNA. A. No treatment; B. 30 uM T2AA
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This experiment begins to differentiate the effects of T2AA from the tripeptoids and
thoroughly separates them from the AOH compounds. T2AA shows the greatest effect on DNA
replication while the tripeptoids show a measurable effect at concentrations below those for growth
inhibition. AOH compounds show no effects on DNA replication at dosages below concentrations
that induce DNA damage. Further, AOH compounds show a similar profile to doxorubicin,
increasing cell cycle arrest in G1 phase. Doxorubicin causes a strong synergism in S phase delays

for T2AA, and the tripeptoids further emphasize the HR-specific effects.

2.4.5 Translesion Synthesis

TLS requires a monoubiquitination of PCNA at K164. Prior studies establish that the
PCNA inhibitor T2AA directly inhibits this PTM by an unknown mechanism.?2° This reduction in
monoubiquitination of PCNA reduces the activity of TLS, and in turn, sensitizing cells to intra-
strand crosslinks and adducts.?*824° UV light exposure causes thymidine dimers that require TLS
and base-excision repair to overcome.?®® Exposing cells to UV damage and then assessing cells’
capability to bypass the damage and go through S phase shows a competent TLS pathway. Under
these experimental conditions, it is possible to detect if the PCNA inhibitors’ effects on HR and
replication involve the step of TLS. The AOH compounds showed no synergism with the UV
damage, all delays in cell cycle progression occurred in the G1 phase and which is indicative of
DNA damage and not replication delays (Fig. 2.15). T2AA displays significant capacity to induce
delays in S phase in the presence of UV radiation, an average increase of 40% of cells in S phase
across all cell lines, including HR-incompetent cells. TEP, LPB, and LPT did not show significant
synergism with UV radiation in slowing S phase progression. These observations suggest that
while TEP, LPB, and LPT share similar HR effects as T2AA, they differ significantly in their
ability to directly inhibit TLS. T2AA is the only small molecule to show significant reduction in
Rad18 mediated monoubiquitination of K164. T2AA also has a proposed secondary binding site
closer to K164 in addition to its PIPM binding site.**® Tripeptoids could be acting as exclusive

PIPM site binders enhancing their functional selectivity on PCNA.
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2.4.6 PCNA Inhibitor Profile

PCNA inhibitor activity can be classified by the distinguishing factors shown in each of
these assays. These factors are determined by the experimental context, including effects observed
through drug combinations and varying genetic backgrounds (Fig. 2.16). As such, I will define
PCNA inhibitors by their effects on cell proliferation, viability, and gross DNA damage, and then
by three specific effects related to the functions of PCNA evaluated here: DNA replication, TLS,

and HR. As a control, doxorubicin will be used to show general DNA stress in these same contexts.

PCNA Antagonist Profile
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Figure 2.16: PCNA Antagonist Profile by Pathway Specific Features. All PCNA inhibitors had each major
feature specificity calculated as reported in the methods. The goal was to utilize multiple assays to
determine the isolated effects on each pathway or function listed. Toxicity — based on the LDso of the
antagonist alone; DNA Damage — % DNA Tail of the antagonist at Glso/3; HR:NHEJ — The overall effects
of PCNA antagonists in HR specific vs. NHEJ-specific contexts; Rad51 Foci — the amount of Rad51 foci
maintained after 24h while treated by the PCNA antagonist; Replication — the amount of cells in S phase
after dosing with Glso/3; TLS — the amount of cells in S phase after dosing with Glso/3

T2AA is the most thoroughly analyzed PCNA small molecule inhibitor in our study. The lack of
toxic effectsas a single agent, including induction of DNA damage, is significant and differentiates

T2AA from peptides studied to date. Since its discovery, T2AA has maintained its uniqueness as
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a selective small molecule inhibitor of PCNA. T2AA’s effects on DNA replication have also been
thoroughly documented and understood as the ability to inhibit DNA polymerase association with
PCNA. Furthermore, T2AA’s ability to inhibit K164 monoubiquitination has allowed the study
and evaluate the role in TLS. The enhancement of various DNA damage agents and DDR
antagonists by T2AA has been investigated previously, but not in the same way as in this study.
The work here establishes the capability of T2AA to sensitize resistant cell lines to NHEJ
antagonists and the inability of T2AA to synergize with ATM inhibitors. The results further cement
T2AA asan inhibitor of HR antagonist. The maintenance of Rad51 foci over time is a novel effect
and confirms observations of PCNA peptide-based inhibitors as preventing proper Rad54 function.
Overall, T2AA shows the ability to inhibit several PCNA functions, but requires additional
genome stress in the system to reveal significant effects.

The AOH compounds uniquely showed significant cell toxicity and induction pf DNA
damage as single agents. However, they were much more effective in the presence of doxorubicin
and targeted DDR antagonists. While they were more effective in synergizing with NHEJ
antagonists, they also enhance the HR antagonism. Further, they synergize with both general and
targeted chemotherapies in the absence of a functional HR pathway. AOH compounds do not
significantly affect cell cycle progression in the DNA replication model or through TLS that could
not be explained by just drug-induced DNA damage. Overall, AOH compounds show significant
activity with HR, as reported, but also general effects and lack the qualities of functionally specific
PCNA inhibition. AOH compounds could be understood as general stressors of PCNA related
processes likely through direct and indirect effects on PCNA.

The tripeptoids possess similar traits to T2AA but show no significant toxic effects as
single agents on cell growth and genome integrity. However, these compounds show strong
synergistic effects with general DNA damage agents and NHEJ antagonists. These molecules
require a functional HR pathway to function, supporting a specific mechanism of action. These
agents show similar effect on Rad51 foci persistence which likely contributes to the specificity of
pharmacological action. However, these compounds are different from T2AA in their lack of
effects on DNA replication and TLS. The tripeptoids have a notably lower effect on DNA
replication delays in these experiments despite having comparable, if not greater, binding affinity

to PCNA than T2AA. They lack a significant enhancement on S phase delays in the presence of
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UV radiation suggesting they have little effect on TLS. All these results implicate highly specific
inhibition of PCNA function in the HR pathway.

2.5 Discussion

This study establishes three groups, whose features are outlined in later subsections, of
PCNA inhibitors and reveals possible clinical utility for each group: AOH Compounds, T2AA,
and Tripeptoids (Fig. 2.17). While different groups have assessed their own PCNA inhibitors, this
is the first study that examines their mechanistic roles in determining specific inhibitory
mechanisms. As a result, this study also further establishes that it is possible for PCNA inhibitors
to have a context specific effect that leverages disease biased functions. More generally, this also
validates the use of PPI antagonists as a strategy to affect flexible regions of proteins, such as
PCNA. More clinically speaking, this provides an example of targeted therapies being capable of
sensitizing resistant cells through an essential gene, further establishing their targetability in
combinations. This is in contrast to more general approaches utilized with PCNA, such as PCNA
peptide antagonists or the pan-PCNA inhibitor PCNA-I1. PCNA-I1 targets the site of
homodimerization allowing PCNA to be loaded onto DNA and form a homotrimer capable of
facilitating interaction with DNA for several proteins. This prevents all interactors that require a

homotrimer complexed with DNA.

2.5.1 AOH Compound PCNA Antagonism Description

With the establishment of differential PCNA antagonism, it is necessary to evaluate what
disease contexts PCNA antagonism is relevant to and which functions are targetable. Subclass A
contains AOH39 and AOH1160 and possesses some HR specificity when compared to
doxorubicin, but also possesses its own DNA damaging capabilities.??” This was observed in the
initial publication with these molecules, but the lack of a notable Rad51 foci persistence, DNA
replication, or TLS effects clearly distinguish them from the other subclasses. As a DNA damage
agent that preferentially targets tumors over normal cells and with the slight HR focus subclass A
could have a broad range of cell types to effect. The lack of more specific PCNA functional
inhibition would likely leave it more sensitive to general resistance methods of tumor cells,

however. Induction of DNA damage is the primary feature that is discernable and any effects on
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DNA replication or cell cycle can be explained through this effect. A reduction in general toxicity
overall should be sufficient utility to make subclass A one to pursue to reduce the use of more
toxic traditional chemotherapeutics. However, our objective has been to pursue functional

selectivity that leverages specific cancer biology contexts and not generalized strategies.
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2.5.2 T2AA and Tripeptoid PCNA Antagonism Description

Subclass B and C show remarkable overlap in functional selectivity. Subclass B contains
T2AA, and subclass C contains the tripeptoids developed by the Davisson group. Both show low
toxicity as monotherapies in all cell types despite moderate affinity and high specificity of binding
to PCNA. The greatest area of overlap between these subclasses lie in their ability to target HR
and synergize with NHEJ antagonists as well as DNA damage. Their ability to antagonize HR
appears to be similar in preventing the resolution of the strand invasion and therefore also
preventing strand elongation and loop resolution. The persistence of Rad51 foci with the resolution
of y-H2AX is a telling feature and further confirms PCNA’s role in Rad51 dissociation.'8325! As
described earlier, this form of inhibition prevents feedback to reduce upstream signaling and
allows the HR pathway to function up until PCNA is necessary. Interestingly, these antagonists do
not present this feature unless the cell is stressed either through exposure to a DNA damage agent
or through inhibition of the compensatory pathway NHEJ. This feature alone bears much more
investigation and will provide fodder for other groups working in this area.

In addition, both subclasses also show slowing of DNA replication, likely through
preventing prolonged polymerase loading at the replication fork. This has been a hallmark of PIPM
protein-protein interaction inhibitors and has also been induced with p21 peptides. It is notable
that T2AA was more than twice as effective in reducing the progression through S-phase than the
tripeptoids developed by our group. Where these classes truly differentiate is in their effects on
TLS. T2AA has been verified to inhibit K164 ubiquitination via Rad18 to induce TLS. The Rad18
binding site and K164 is distant from the PIPM binding site and the T2AA binding site.?>? The
tripeptoids show no effect on TLS suggesting that they do not prevent this interaction as T2ZAA
does. The increased specificity of the tripeptoids could explain the lower effect on DNA replication
overall. T2AA, while more general in its effects, would still be applied to enhance DNA damage
effects in multiple contexts as well as the tripeptoids. However, the narrower effects of the
tripeptoids may reduce the amount of “off-target” functional effects and make them safer in few
contexts than T2AA. Regardless, this demonstrates the functional selectivity of PCNA inhibitors
as not merely theoretical based on past mutational studies but a fact to be leveraged and developed

further.
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2.5.3 Overcoming Olaparib Resistance through Induced Synthetic Lethality

The most impactful discovery for cancer therapeutics generally is the ability to inhibit the
HR pathway through PCNA. This exceeds “BRCAness” features as there are no redundancies in
PCNA function that are possible. The enhancement of DNA damage through this mode of
inhibition will also ensure a rapid activation of apoptosis. Without a means to signal to the
beginning of the process, a loss of PCNA function can quickly multiply the damage as HR is
consistently activated despite its failure. This would enable oncologists to artificially create
systems of lowered HR competence to sensitize tumors to PARP inhibitors. The enhancement of
damage through this mechanism would also allow these inhibitors to sensitize tumors to damage
that upregulate HR as a means to blunt the impact of DNA damage agents, such as doxorubicin.
Further, as has been observed previously, mutations to PCNA can be even more disastrous than

our inhibitors reducing the development of chemoresistance.

2.5.4 Leveraging High-Content Assays through Drug Combinations and Differentiated
Biology

Overall, classifying three groups of PCNA inhibitors provides a blueprint for defining
future PCNA antagonism. Understanding PCNA functional effects through a quorum of assays to
determine the impact of non-mutually exclusive features that are interregulated is essential.
Attempting to evaluate any of these features individually would not satisfyingly discern which
feature is the primary one, as in the case of subclass A where the DNA damage effects caused
delays in cell cycle. Showing the utility of functionally specific antagonists of an essential gene in
combination with other targeted antagonists provides a novel approach to therapeutic strategies.
These therapeutics require combinations to leverage specific stressed conditions that are inducible

by the concurrent administration of targeted therapies contextualized by a specific disease state.

2.6 Conclusions and Impact

In this work, I provide clear differentiation of three classes of PCNA antagonists through
toxicity, DNA damage, drug combinations involving HR and NHEJ antagonists, DNA replication,
TLS effects measured through UV exposure, and Rad51 foci effects. While not an exhaustive set

of characteristics, this establishes antagonists as either having general effects through PCNA or
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specific effects through DNA damage repair in HR, DNA replication effects, or TLS polymerase
switching. The assays selected and approaches included prioritize throughput as well as being
high-content. Further, my novel examination at lower concentrations in combination with DNA
damage repair antagonists for synergism provides insight into the mechanistic context as well. In
the case of targeting essential genes or specific protein functions, understanding the mechanism of
action through relevant combinations is key to show likely utility. Standardizing this approach
through direct and indirect measurements provides definitions of functional inhibition of PCNA
antagonists that will allow for the expansion of ligand types and roles through these definitions.
Providing novel metrics to define specific features of functional inhibition to produce this profile
also allows for additional classes to be discovered with various permutations of these features

using this approach.
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CHAPTER3. A NETWORK APPROACH TO PREDICT
SYNERGISTIC DNA REPAIR ANTAGONIST COMBINATIONS IN
CANCER

3.1 Introduction

In the United States, cancer has surpassed cardiovascular disease as the number one cause
of death in wealthy nations.?%3254 Cancer treatments continue to be improved by increasing the
personalization of therapy using molecularly targeted, and immunotherapies. The diversity and
heterogeneity of tumors still present challenges for these approaches, and radiation and general
chemotherapy options remain the standard of care for many indications.?>>25 However, these
therapies carry additional toxicity issues and ultimate chemoresistance developed by tumors have
steadily reduced the efficacy of these treatment strategies.?325° Currently, biomarkers that can
effectively identify a course of treatment are limited to common cancer subtypes. As such,
precision in defining biological features that are most predictive for meaningful clinical responses
to new or traditional therapies has not been generally realized and leaves many gaps in the effective
use of pharmacotherapies.

Agents that damage DNA remain a prominent component of the tumor chemotherapeutic
strategies. The increased rates of proliferation in tumor cells affect stress and dependence on
dysregulated cell cycle checkpoints.?® When most effective, increased DNA damage by these
agents exceeds the capacity that the DNA damage repair (DDR) pathways can manage. An excess
of DNA damage results in cell cycle arrest and the activation of the intrinsic apoptotic pathway,
leading to the execution phase of apoptosis and cell death.?6%:262 However, due to the inherent
genomic instability, cell survival is also commonly dysregulated to allow the tumor to proliferate
rapidly even in a state of high stress. As such, many tumors have developed resistance to DNA
damage by dysregulation of the DDR and/or reducing the responsiveness of cell cycle and
apoptotic pathways to DNA damage.?632% In contrast, tumor cells must maintain or enhance the
means of detecting and repairing DNA to prevent overwhelming genomic instability. DDR
pathways and cell cycle dysregulation have made these molecular components a focus of novel
targeted therapies.

The DNA repair targeted therapies are limited in their application as they are dependent on

the exact form of dysregulation. They rely upon somatic mutations and other biomarkers to
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indicate the possible use of these therapies.?%® The identification of these markers has allowed the
advancement of personalized treatments. Gene expression profiles and single biomarkers are not
exhaustive means of discerning the potency of personalized therapy. In many cases, the modulation
of an unmodified gene can drive tumor biology, so there are multiple paths to this change.?%¢
Developing a method to discern systems that are changed allows the broader use of therapies that
target the system rather than just a target. Examples of biomarker-dependent application of the

drugs olaparib and palbociclib are evidence for this shift in oncology.

3.1.1 Gene Expression Network

The field of pathway analysis is well established and has been used to identify disease pathology
trends.?67268 Pathway analysis is simply assessing defined molecular signaling involved in the
completion of a biological task. Scale-free network graphs representing pathways with nodes
containing individual genes or proteins and edges defining modifications or actions performed by
a source protein upon a target protein.?®® These network graphs can order a simple set of linear
nodes whose product is modified by subsequent nodes, such as in a metabolic pathway (Fig.
3.1A).2’° However, most pathways include branches and regulatory loops that define a system
beyond linear process (Fig. 3.1B).?"* Many pathways have well-defined early and late regulator
proteins that recruit other proteins within the process or increase the expression of the genes needed.
There is often more than one way to activate a pathway and multiple regulators to ensure control
over the pathway. These networks' construction can represent the biological feature that only a few
genes must be overexpressed for a pathway to be considered active.?’? These genes are known as
indicator genes and can provide a condensed gene set to evaluate pathway activity. Gene and
pathway enrichment have been used to create profiles for drug responsiveness and predicting

similarity between diseases.?"274
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Figure 3.1: Gene Networks; Gene networks represent the possible interactions of gene products
often with expression or network topography measurements determining the color of nodes. They
provide an intuitive presentation to represent pathway regulation. Arrows and wedges can be used
to show activating and deactivating relationships. Further, modifications can be used to show
functional changes created by interactions. A) Simple metabolic pathway; B) Complex signaling
pathway
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Pathway networks have been created to represent connections between gene expression related to
a specific context, such as drug treatment. Co-expression is then used to determine edge strength
creating a network of relationships that, while less direct, define a biological capably (Fig. 3.2).27°
A comparison of differential co-expression can provide insights into novel network dynamics that
would be impossible to discern through protein-protein interactions. The layering of information
with additional genomic data, including epigenetic regulators, miRNA, and IncRNA can develop
a more resolved image of aberrant regulation.?’62’" The systems focus on the mechanics of
dysregulation and not merely the dysregulation itself. Gene expression remains a commonly used
indicator and means to construct an understanding of disease pathology. Further investigation to
understand the neighboring pathways and interactors is required to discern a meaningful potential
of a drug target.

The limit of gene expression as a metric is that many genes whose activities are not solely
regulated by their expression. The underexpression of one gene does not register as the
overexpression of an associated gene. Many molecular complexes exist in biology whose structure
change because of what genes are or are not present. Furthermore, somatic mutations can make
the interaction profile entirely different, rendering differential gene expression moot. Any method

that relies entirely on gene expression will possess gaps related to the functional features of

proteins.
') -, :.
___,/ = . é?.:--'
Ry )
: n _
)
f | Lo
o« J . ﬁ‘:"

Figure 3.2: Co-Expression Network; Gene networks are representations of physical interactions
of their products. Co-expression is also used to determine clustering of gene product that are
effective simultaneously.
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3.1.2 Disease Networks

Disease networks have been created for the same reason as pathway networks, to examine both
global and local changes to discern novel connections. Disease networks are created through two
general methods. The first uses the comparison of two disease networks directly to determine what
relationships may exist (Fig. 3.3A).2® This approach aims to determine what similarities can
leverage one disease’'s understanding through another. Connections between disease conditions
have been able to offer opportunities for drug repositioning.2”® Observations that detail similar
genomic changes and network modifications can predict how a drug could behave similarly in two
diseases. The approach is frequently useful with cancer diseases that possess similar somatic
mutations.?® Examples are the broader use of gefitinib in EGFR dependent contexts or DNA
damage agents where stress markers indicate enhanced sensitivities.?8-23 Drug repositioning is
also possible in infections that require similar host functions to allow disease progression.?84
Connections between diseases can act as an effective shorthand to reduce redundancy of effort.
The second type of disease networks focus on individual disease or comparative sets of
conditions seeking models of the pathophysiology's emerging biomolecular features (Fig. 3.3B).2%
This approach can be considered an extended gene network that prioritizes processes over
individual gene relationships. The sources of information emerge from examining changes at the
genetic, cellular, and tissue levels. When considering such large sample sets, narrowing data to
focus on features considered to be sources of changes necessary for the disease is requisite.?86287
To do so, information is examined at each level to analyze their connections to pathophysiology.
This approach can involve the sum of pathways that influence action within and between cells.?8
What emerges are not root causes but more information about novel connections between
processes. The exact means of regulating those processes often have varied effects that depend on
pathway relationships. Eventually, the resolution can be at individual genes, but a global context
must be present before correctly ascertaining an outcome. Focusing on subnetworks related to
disease dynamics can provide insight into cellular features that give rise to more significant issues

that evade detection by examining cellular components alone.
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Figure 3.3: Disease Networks; Disease networks can be used to analyze how diseases are similar or
connections between disease pathophysiology to biomolecular features. A) This disease similarity network
creates edges between diseases that have more than 5 associated genes in common; B) Disease regulation
network utilizes genomic, proteomic, and treatment data along with disease data to identify biological
features at the gene, pathway, and tissue levels.

3.1.3 Synergy Networks

Synthetic lethality and synergy describe when the loss of two genes or biomolecular functions is
nonadditive in their combined effect with respect to the loss of either independently.?® Synergism
can emerge in a disease treatment scenario from either a genomic change that is co-dependent
upon a monotherapy or a combination of therapies. Drug combinations have been used consistently
in cancer therapy to reduce side effects from treatments or enhance the drug effects in resistant
contexts.??® More recently, targeted therapies dependent on genomic contexts, such as olaparib and
BRCAL, have shown the potency of this approach.?®12% As such, predicting what combination of
gene function loss will most adversely affect a particular disease context can broaden the use of
targeted therapies.

Synthetic lethality depends on the loss of two features that are either compensatory or
contribute independently to some necessary outcome. Most frequently, these predictions arise from
experimental data that remove the presence of a combination of genes and their product through
genomic modification or direct inhibition.?%3-2% Network approaches can derive predictions of
likely contexts for drug combinations (Fig. 3.4).2% Where these networks differ is they do not
require the same information scope if based on experimental data. The patterns developed through

these results allow molecular contexts to be identified and translated to other disease states. Often
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these combinations are focused on currently drugged targets or those that are at least considered
druggable to ensure that any discoveries are rapidly applicable to a disease state. Using understood
therapies also ensures that the mechanism of action of these combinations are most accessible to

an understanding.
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Figure 3.4: Synthetic Lethal Network; Synthetic lethal relationships are a result of targets prominence in a
context and the ability of a drug to shift that prominence. This often includes genomic conditions specific
to a disease to ensure selectivity. Understanding genes through their relationship using this perspective can
involve interactions that would appear distant or close in other network approaches.

3.2 Rationale

The complexity of the cellular components involved in the responses to genomic stress challenges
conventional means of defining the disease states' functional markers. Protein-protein interaction
(PPI) networks have utility to identify pathway stress points and functional hubs within biological
processes. Aberrant expression patterns and mutations have been integrated into PPl networks to
show alternative network hubs indicative of disease phenotypes.?®’?®® These differentiating
features from non-disease have been used to verify prognostic indicators’ mechanism of action,
suggest novel impacts of mutations, and identify possible drug targets.2%9-30

The extensive integration of DDR, cell cycle, and DNA replication is enabled through
numerous signaling proteins that compensate for each other.3°23%3 The consideration of these
pathways as discrete modules within the cell does not accurately explain these systems.

Importantly, many gain and loss of function mutations in these pathways are observed in patient
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tumors.3® To identify actionable markers in these tumors, | have developed an approach that
emphasizes the cell's ability to reroute and prioritize functions within these networks. These
networks focus on enzymatic processes and their protein-DNA complexes as opposed to the
signaling network that drives them. To understand the pathogenic modulation of these pathways,
| integrate differential gene expression and topological measurements of genes to analyze multiple

pathways' influences to affect the disease state.

3.2.1 Method Design and Application

The objective of this effort is to identify patterns of bias in DDR evident in different tumor
genomes. As a start, gene expression data for a subset of genes within DDR, DNA replication, cell
cycle, the MAPK pathway, and apoptosis are used to differentiate the tumor from other cellular
contexts. Creating a PPI network from these data constructs a cell function model that is better
able to assess both pathway and inter-pathway dysregulation. By considering how pathways are
interconnected within a PPl network, estimates of external dependencies and redundancies
influencing the overall tumor’s biology can be derived. Exposing these pathways' dysregulation
informs when dependencies or loss of redundancies in DDR occur and identify which forms of
DNA damage will most stress a tumor subtype.

Accomplishing this through a network approach informed by differential gene expression
can allow rapid individual assessment from a patient’s clinical biopsy. The strategy here focuses
on conserved regions that link DDR to cell cycle and apoptosis, reducing novel mechanisms'
likelihood from confounding the model. A metric for evaluating these models’ performance in
distinguishing patient tumors resistance or responsiveness to general chemotherapy and radiation.
In addition, the analysis’ capacity to identify which components of a system could be targeted in
the event of DNA damage stress, or resulting in cell cycle arrest, to effectively treat tumors is
experimentally tested in cell models. Breast cancer cell lines were utilized as a model due to their
breadth of reported features, translating to oncology practice. The connections between pathology
and subtypes of breast cancers are well defined both genetically and biologically to create robust

classifications of diseases emerging from the breast tissue.
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3.3 Methods

This section can be divided into five themes: qualifying source data, base gene network
creation and analysis, integrated metrics utilizing GO terms, gene expression, and network features,
process network visualization and disruption, and model validation through in vitro experiments.
Source data qualification and references provide reviewers with the opportunity to assess whether
there are any root issues in this approach (Fig. 3.5A). Base gene network creation and analysis
provides the PPI data sets to be used. Further, base gene network analysis provides fodder for the
development of the more sophisticated process network (Fig. 3.5B). Integrating the GO term, PPI,
and gene expression data into values describing the leverageable insights each offers in
conjunction with the others creates novel pathway analysis metrics (Fig. 3.5C). These values will
be visualized through the process network that seeks to describe the cell line regulation through
entire pathways rather than individual genes. Synergism is itself a description of enhanced
disruption within a system by targeting key genes to the overall regulation. In this section, my
definition of disruption within the cell line networks is described to provide a model to examine
potential synergistic relationships (Fig. 3.5D). Finally, experimental parameters are outlined for

the in vitro validation of this model (Fig. 3.5E).
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Figure 3.5: Overall Project Workflow: The initial gene network involves a limited dataset of gene product
interactions and gene expressions. What follows is a set of network analyses that compound the effects of
network connectivity on overall genomic dynamics that simulate treatment. APOP — apoptosis; excision
repair; CC — cell cycle; DDR — DNA damage repair; MAPK — MAPK pathway
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3.3.1 Data Sources

| collected data from four sources: The Cancer Genome Atlas (TCGA), Human Integrated
Protein-Protein Interaction rEference (HIPPIE), the BioGRID databases, and the Broad Institute
Cancer Cell Line Encyclopedia (CCLE).3%53% | utilized tumor genome data from TCGA, for
disease networks, and the CCLE, for cell line networks, to annotate and describe PPI data collected
from HIPPIE and BioGRID in breast cancer patients and cell lines. RPMI normalized breast cancer
tumor gene expression data followed the “unc.edu” protocol standard of TCGA.3% Separations of
tumor genome data into disease subtype and further by treatment outcomes were conducted before
comparison to corresponding adjacent-normal tissue samples to examine fold-change expression.
Cell line expression data were acquired through CCLE. PPI data were curated based on 2-step
interaction networks related to a central hub protein, or protein sets, and include only interactions
verified in humans and those that are considered “low-throughput” according to BioGRID. The
initial filtering of the data and formation of the 2-step network and all other analyses were
conducted using scripts written in RStudio. All images of networks were constructed using

Cytoscape.

3.3.2 Network Creation

Both cell line and TCGA networks were created using an initial gene expression filter to
identify significantly dysregulated gene sets. The next step was inclusions of all genes that are
interacting with any gene from this set. Finally, all genes involving apoptosis, cell cycle, DDR, or
MAPK pathways were included within this network (Fig. 3.6). Gene expression cutoffs for cell
lines are defined as any gene possessing an absolute Z-score value greater than 2. In TCGA data
sets, differential gene expressions were derived using fully processed, normalized, and aggregated
RNA-seq data®!? and adjacent normal tissue corresponding to the same subtype. Any gene with an

absolute log2 differential gene expression value greater than 10 was included in the gene set.

101



"MJ0OMIBU J14198ds-adA10NS 8yl UIYIIM SIIUNQGNS [RUOIIdUNY AISSCO 0] SadAlouayd aseasip UMOUX 01 Pale|al SUOIIaUU0I Juellage
1o} pazAjeue aJe sy10M1auqns (4 Sy40M18U 21J19ads-adA1gns UIYIIM SBPOU 3G 113sap 01 pash aJe swial Q9 (3 *(suljIino usalh) yJomiau 21J1dads
2dA1qns mau 8yl WIoj 01 Pasn Uay] aJe Sapou Paldsas ayl usamiaqg sioqubiau |1 (@ "(auijno anjq) papnjoxa ate sadAigns y1oq ussmiaq
UOWILIO Ul aJe Jeyl asoy 1ng ‘(auljino mojjak) palaa]as Uuayl I Pjoysalyl ayl Mojaq J0 aAoge passaldxalapun Jo -J9A0 Jaylla ale Jeyl Sapou
IV (D 'sepou ay) 01 parjdde uay s1 adAigns e 01 J1419ads e oy elep uolssaidx3 (g -uteloid gny ayl Jo sdais oMy ulylm sioloelsiul 8yl Jo
[[e Bunoa|as ybtnoiyl pawioy 1 YI0M1au gny B ‘Uonds|aes gny Jaly (v :SS8001d UOITewI0H 3J0MIaN 214198dS-Wia] 09 aulT [190 :9'€ ainbiq

PRINE-0D

X01 IT 2dyqng . )
X0T IT 2dyqng I adiiqng

— A.m@%v\“ 0« A
i a . d ereqy adue v MI0MIIN
¢ rast S Idd [¥10L
®

X071 I 2dqns I ad£)qns

pPaR)T-0D
X071 I 2dL)qng

102



3.3.3 Base Total Network Analysis

To understand differences in overall base networks, | employed several simple network
metrics provided by Cytoscape.3!* Comparing networks directly to one another can be difficult
due to qualitative differences, however, it is necessary to understand the effect of the overall
method. Each of these measurements assesses the overall connectivity and size of networks.
Density is the proportion of edges that could exist compared to the amount that does exist.
Clustering compares how connected a node’s neighbors are to how connected they could be.
Centralization of a network is a measurement of how the average node is compared to the most
central node. Heterogeneity is a measurement of the variance in the number of neighbors each

node possesses throughout the whole network.

3.3.4 Eigenvector Centrality

Eigenvector centrality (CE) is a measurement of the influence a node has on a network and
its stress. Unlike other forms of measurements, CE focuses on the influence possessed by adjacent
nodes. In this way, nodes need not have the most connections, but influential connections to
achieve a high centrality value. A contrasting analysis is betweenness (CB) and degree of centrality
(CD) focusing on the number of shortest paths and general connections that a node possesses. In
addition, CE analysis is easily weighted by an independent value to determine the value of
individual edges to the connectivity of the network. With this additional feature, gene expression

can be used to determine the likelihood of an interaction to exist in a disease or cell line context.
1
CE, = 1 e Ayt * Xt 3.1)
Where x; is the centrality score of vertex t, CEy is the centrality score of node v, A is a constant or

Weighted value, ay; is the adjacency matrix, and G is the graph.

3.3.5 Impact Matrix

Not all genes possess single functions or even the same role within the same pathway. For
example, WT1 shows different activity within apoptosis depending on what associations are
available. EGFR generally upregulates both NHEJ and HR as a transcription factor and through
direct modifications of DNA-PK and ATM. However, ATM and DNA-PK directly antagonize the

other’s function through phosphorylation. Being able to define a protein’s role within several
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pathways as either activating, facilitating, or deactivating is critical to determining the value its
influence may have in each context. In each parent group of apoptosis, cell cycle, or DDR process
each gene is registered as regulatory or non-regulatory and if regulatory, it is assigned either a
positive or negative value. This gene assignment extends to all edges of a gene within each of these
processes assessed individually during GO term analysis. To convey this information, simple
matrix multiplication can be applied to each GO term calculated for.

H+*F+xR=M (3.2)
Where H is the gene-GO term identity matrix, F is the gene-GO term influence matrix, and R is

the gene-GO term regulatory matrix and M is the impact matrix (Scheme B.1).

3.3.6 GO Term Based Analysis and Parent Group Hierarchy

Gene Ontology (GO) terms were used to characterize networks by the biological processes.

These terms also provide insight to the interconnectedness of these

Top-Down processes in each disease subtype. GO terms were used for their high-

level specificity of molecular function and biological process

0t designation. While GO terms can be highly specific, the terms are

organized in a hierarchy that forms a tree-like structure from the subsets

e Q 15t of subsets. I have annotated this structure with a “Tier” metric that
describes the distance a term has from one of the three most general

O e - terms: Biological Process, Cell Compartmentalization, and Molecular
} Function (Fig. 3.7). This structure allows ranking of terms by relative

@ e o specificity and evaluation of their relative position in the tree. A Tier
system ensures that when comparing GO terms directly to one another

they are of equitable specificity (Fig. 3.6). Further, 1 use three GO term
@ 4% analyses to characterize cell line-specific networks to create

Figure 3.7: GO Term Tier; g hnetworks from: GO Impact, GO Cohesion, and GO Adhesion. Each
GO terms are organized in

hierarchal tree structure of these GO analysis techniques utilizes an interaction matrix (Scheme.
based on the relationship
between terms.
Maximizing the distance @ and at intersections where there is an edge, a value of 1 is entered. This

term has from the source )
term provides optimal Value canalso be a calculated value, such as CE or gene expression.

overview.

B.2). An interaction matrix has all of the nodes as rows and columns
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3.3.6.1 GO Impact

GO Impact is defined by the number of times that a protein-protein interaction involved the
GO terms listed. This term allows rapid characterization of which pathways and functions are most
common within a network to understand the emphasized and deemphasized functional interactions.
The GO Impact of GO term g can be defined as:

XM *1; ;= Gl (3.3)

Where M is an impact matrix, | is an interaction matrix (Scheme B.2) and i is an interactor which
possesses the GO term g and j are all other interactors. The sum is then taken of all values in the
interaction matrix that have all genes that possess GO term g. This analysis differs from GO
enrichment by weighting the GO terms that have more interactions based upon aberrant gene

expression.

3.3.6.2 GO Cohesion

GO Cohesion measures the amount gene products possessing the same GO term interact.

This term allows for understanding how much the GO Impact value is dependent purely on

interactions of gene products that share the same GO term. Independently, this measurement

capably ranks the dysregulation within a pathway and how much this affects the network overall.
The GO Cohesion of GO term g can be defined as:

ng M I

Where M is an impact matrix, | is an interaction matrix (Scheme B.2) and i is an interactor which

= GC, (3.4)

alg ~

possesses the GO term g and j is any interactor of i that also possess GO term g. The sum of the

values within | that fit this description are then considered the GO Cohesion (GCy) for that term.

3.3.6.3 GO Adhesion

GO Adhesion is a measurement of how much the gene products of two different GO terms
interact. This abbreviates the amount that the dysregulation of one pathway is linked through
protein-protein interactions and Weighted the gene products that possess more interactions with

the gene products of different GO terms. The GO Adhesion of GO term g and h can be defined as:
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Y M*1l ;i =GAgp, (3.5)

igjh
Where M is an impact matrix, | is an interaction matrix (Scheme B.2) and i is an interactor which
possesses the GO term g and j is any interactor of i that possess GO term h. The sum of the values

within | that fit this description are then considered the GO Adhesion (GAg,) for that term.

3.3.7 Process Network Creation

| analyzed the effects of the disease on DNA damage repair pathways as well as intrinsic
apoptotic signaling and cell cycle signaling due to the integrated nature and disease/therapeutic
implications therein. GO terms were used to assign genes to pathways as well as distinct steps in
signaling. Gene products involved in the negative regulation of any of these pathways were
analyzed separately to distinguish their effect. Both gene expression enrichment as well as
weighted CE measurements were used to determine changes in pathway regulation. Further, gene
products indicated as hubs via centrality were assessed for their connections to other pathways to
determine interpathway influence. The Gly measurements utilizing weighted CE measurements in
the interaction matrix were used to create sets of genes. To further distinguish whether Glg values
were caused by gene sets that were in common between two GO terms or focused on a single GO
term, Glganalysis uses gene sets that contained all possible genes related to a GO term that was
not shared between two GO terms. Comparing the Glgvalues from these two approaches formed
the values used for the individual nodes.

The GAg analysis provided values to assess the connectivity of processes to one another
which were used as edges of a Process Network. The GCganalysis was utilized to determine which
edges were self-regulatory and were measured separately from external regulation by other
processes. This disease network provides an estimate of how much a process may contribute to the
system’s dysregulation. It also provides perspective on the influence of a single process are from

internal or external dysregulation.

3.3.8 Somatic Mutations

Utilizing somatic mutations (SM) data to further stratify my data allows for in silico
modeling of some understood loss-of-function genotypes that have been identified in the disease.

A key set of mutations that significantly affect DDR pathways are mutations in BRCAL and
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BRCA2 genes. Loss-of-function mutations in these genes lead to a loss of the HR pathway,
disrupting a key player in DSB repair. Categorizing tumor data by SM presence in subtype specific
networks can show changes in both disease subtype networks and their subnetworks. This
approach can reveal the identity of other network sections affected by the SM pathway by
separating samples within a subtype based on mutation status in the relevant gene. These mutations
must not be silent modifications with verification as a loss-of-function mutation. Once their
mutation status separates samples, the gene expression analysis is completed as it was for the
subtype originally. Comparison of expression is then conducted between the wildtype samples and

those that bear a loss-of-function mutation to adjacent-normal tissue gene expression.

3.3.9 Network Disruption

The network disruption caused by the loss of a gene was measured through eliminating a
gene product from the initial dataset before rebuilding the network. Gene removal provides insight
into the importance of a node to total network connectivity as well as to individual pathways.
Further, new nodes could emerge as hubs of influence and would determine new connectivity to
the system. Disruption was scored by assessing the loss of influence of related systems and
weighted by the impact on the cell line's ability to prevent apoptosis progression. Proper DNA
damage repair or progression successfully through cell cycle without significant delays are the two
primary means of preventing apoptosis. Therefore, disruption is a measure of the changes of key
pathways’ influence and the amount a compensatory factor is possible. A drug combination's
success is observed through the simultaneous elimination of a gene product from the initial dataset
and observing the overall disruption. Disruption was measured through the relative change in the
centrality of nodes surrounding the deleted gene and their effect on the overall process.

Acg.
Yo =D (3.6)
Where Ac;; is the change in centrality of neighbor j or deleted node i and ¢;; is the original

centrality measurement of neighbor j of deleted node i.
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Table 3.1: Descriptors of Network and Experimental Evaluation of Synergism and Disruption

Quantitative . L. . L.
. Abbreviation Description
Metrics and Terms P
Degree Centrality CD the number of edges connected to this node
Betweenness CB the extent to which a node lies on paths
Centrality ’ between other nodes
Eigenvector the influence of a node derived by the
& . CE influence of the nodes that it shares an edge
Centrality .
with
. matrix that transforms node values by their
Impact Matrix M . y
presumed effect on cell survival
measurement of the overall influence of GO
GO Impact GIl, )
g term g in the network
. measurement of the connectivity between
GO Cohesion GC, ) ty
g genes possessing the GO term g
measurement of the connectivity between
GO Adhesion GAg), genes possessing the GO term g and genes
possessing the GO term A
L synergism derived from drug combination
Combination Index CI YRers &
experunents
Disruption predicted synergism derived from process
DI
Index networks
. network values that represent intraregulation
Processivity - P gt
of a pathway
network values that represent interregulation
Influence - P gt

of two pathways
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3.3.10 Combinatorial Drug Treatment

To evaluate predicted synergism in breast cancer, drug combinations of well-understood
inhibitors of ATM, DNA-PK, PARP1, PCNA, EGFR, CDK4/6, and CHK1 were all utilized. These
inhibitors are used to target the MAPK, HR, NHEJ, and G1/S checkpoint pathways (Table 3.2).
Different levels of dysregulation in these pathways occur in breast cancer diseases, including the

cell lines selected in the Cell Culture
Table 3.2: Small molecule PCNA inhibitors to be

evaluated in this study. section below. ATM is an early HR

deactivator and DNA damage detection

Compound Structure Target Process
@. T o activator, and I used the KU55933 inhibitor
“oH Damaging Agent. ..
Doxorubicin /! *0 !,H !Ur_HO TOP24 Douil-gjfaid for ATM's selectivity over ATR and PI3K
| Break
%“ inhibitors.312 DNA-PK is central to cNHEJ
cx | and the NU7026 inhibitor is specific for
m s DNA-PK over numerous nuclear kinases,
o (i
i including AKT.313 EGFR is one receptor
O /EH Alternative Non- . . .
Olaparib i PARPI | Homologous End | tyrosine Kkinase responsible for the
OO s
R | activation of the MAPK pathway. EGFR
Q . also has nuclear functions necessary for HR
Pabocichb | "y S CDK4/6 | GI/S Checkpoint o . .
O N @ and NHEJ activation, which are not kinase
o'/%:" dependent. PCNA, as outlined in earlier
Rabusertib HoH crxy |  Homelogous sections, has substantial implications in
' % ecombmation
© INJ\ DNA  replication and cell cycle
—~ chesical non. | PYOCESSIVitY. 314 | am utilizing T2AA as it is
7702 - b JA- omologous End . . . .
e g DRAFE L H Jofﬁg F the most studied selective PCNA inhibitor
—~ < to date.?? The PARP1 inhibitor olaparib,
A i { Homol
KU-55933 ATM [ e, | an FDA-approved treatment of breast
@3 cancer, is used due to its specificity for

PARP1 and aNHEJ over other PARP-related functions directly tied to apoptosis.3®> CDK4/6 is a
G1/S checkpoint protein vital to cell cycle progression, and the inhibitor palbociclib is another
FDA-approved treatment of breast cancer.®® CHEK1 is required for connecting DNA damage
repair processes to cell cycle and apoptosis progression and was inhibited with rabusertib, which

has been used in several phase Il studies.3!” Combinations of these inhibitors will allow the survey
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of several pathways implicated in multiple breast cancer subtypes and their interconnectedness.
Combinations are all analyzed utilizing the Chou-Talalay method as before to indicate their

combination index (CI).

3.3.11 Cell Culture

The human breast cancer cell lines HCC1937, MCF7, MDA-MB-231, MDA-MB-436,
MDA-MB-468, and SKBR3 were purchased from the American Type Culture Collection (ATCC).
MDA-MB-231 and SKBR3 were cultured in DMEM supplemented with 10% FBS. HCC1937 and
MDA-MB-468 were cultured in DMEM supplemented with 5% FBS. MDA-MB-436 was cultured
in L-15 supplemented with 10% FBS, 10 pg/ml insulin, and 16 pg/ml glutathione. MCF7 were
cultured in DMEM with 10% FBS and 10 pg/ml insulin. Incubation of HCC1937, MCF7, MDA -
MB-231, MDA-MB-468, and SKBR3 cell cultures were conducted at 37° C and 5% CO; in a
humidified incubator. Incubation of MDA-MB-436 was also at 37° C but with no gas exchange.
All cells were harvested as cells reached 70-80% confluency utilizing Trypsin-EDTA (0.25%) and
were split 1:10 for cells with a doubling time close to 24 h or 1:5 for cells with doubling times
greater than 24 h. Cells with doubling times below 24 h had media replaced every 2-3 days or 3-5
days for cells with doubling times greater than 24 h (Table 3.3). Cells were kept under 15 passages

to prevent the development of novel genomic changes.
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Table 3.3: Cell Line Properties; Doubling times were determined after culturing cells for 2-3 passages as
this was more accurate to cell growth speed during assays.

. _ . HR Growth Doubling
Cell Line Type/Subtype Mutations Status Conditions Time (h)
BRCAIL PTEN, N 5% FBS, DMEM, -
HCC1937 Basal-1 RB1. TP53 5% CO, ~54
e CDEN2A . 10% FBS.
MCE7 L al A PIK3CA DMEM, 5% CO, ~4
Mesenchymal- | BRAF, CDEKN2ZA, 10% FBS
MDA-MB-231 - : + i ~
like KRAS NWNF2, TP33 DMEM., 5% CO, 21
10% FBS, L-15,
_ BRCAL EBI1. 10 pg/ml insulin,
MDA-MB-436 Basal-1 P33 16 yg/ml ~36
ghutathione
PTEN.RBI, . 5% FBS, DMEM,
MDA-MB-468 Basal-1 SMAD4. TPS3 5% CO, ~22
. 10% FBS.
2 - + : ~
SKBR3 HER2 PIK3CA TP33 DMEM., 5% CO, 30

3.3.12 Cell Proliferation

The same MTT assay was utilized here as in Chapter 2 with the additions of cell lines

mentioned previously. Only changes made are including additional cell lines and inhibitors listed

previously in this section.
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3.4 Results

The results section can be divided into three subsections: initial network creation and

analysis (Fig. 3.8A-B), comparative univariate enrichment (Fig. 3.8C), and process network

A.

B.

e

Evaluation

C v
{ Process Network

D.

E Gene Deletion Model of
®| Network Disruption

Combinatorial Gene
Removal

Network Disruption bﬂ
F

Comparing Disruption
G, Index to Analogous Cell
Treatment

Figure 3.8: Results Section Summary

creation and evaluation (Fig. 3.8D-G).
Following the parameters laid out in section
3.3.2, networks were made from each cell
line (Fig. 3.8A). Basic network analysis of
the entire network was used to compare the

networks on a global scale. As this is not

sufficient  resolution to  determine
differences in disease response to
therapeutics, multiple strategies were

assessed to identify node influence within
the network (Fig. 3.8B). The three variables
that provide sufficient data for enrichment
studies, gene expression, CE, and source-
weighted CE were then separated for further
analysis (Fig. 3.8C). Univariate enrichment
was found to be insufficient to derive
disease features consistent with clinical and
Process

experimental observations.

Networks were created according to section 3.3.7 (Fig. 3.8D). These were evaluated to see if they

are able to describe disease features than univariate enrichment more accurately. Network

disruption by node removal was compared to a LOF mutation (Fig 3.6E). Network disruption by

combinatorial node removal was then used to simulate combinatorial drug treatment. This

method's performance was first compared to known synergistic interactions between genomic

features and a monotherapy, BRCA1 -/- and PARP1 removal. Further evaluation of gene removal

as a model for inhibition was accomplished using synergistic drug targets, PCNA and PARP1

removal (Fig. 3.8F). Finally, synergism predictions through our disruption model were compared

to combinatorial drug treatment to validate our model (Fig. 3.8G).
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3.4.1 Initial Differential Gene Expression Networks

Differential gene expression (DGE) has been utilized to interpret pathway activation and
disease pathophysiology for decades.®'8-3?1 As tumor genomic data availability has increased so
has the applications in defining signatures of cancer diseases such as the PAM50 criteria.** DGE
often relies upon a priori knowledge of gene sets that determine either pathway or disease
features.322323 These gene sets include indicator genes that often show differential expression and
often include transcription factors and signaling enzymes implicated in the process.3?43% These
observations are limited to well-understood biology but prevent large sets of genes whose
expression does not change from masking pathway activation. Instead, the work here has selected
a subset of genes within pathways under examination by evaluating only highly dysregulated genes
and genes directly interacting.

To select a gene subset for initial network creation, I utilized GO terms focusing on
pathways known to be highly dysregulated in tumors: apoptosis, cell cycle, DNA damage repair,
and the MAPK pathways.4351:160327-329 Tq focus on these pathways, | first evaluated cell line
dysregulation to produce a baseline for investigation. DGE was utilized to create a subset of genes
for PPI networks using the approach detailed above (Fig. 3.5). A network was created for each cell
line used in this study (Fig. 3.9). These networks varied significantly in the number of nodes and
edges (Table 3.4) with the most variations in number of nodes in the cell cycle and MAPK
pathways. A similar amount of DDR and apoptosis-related genes were present in all cell line
networks suggesting similar amounts of gene dysregulation in these processes. Density and
heterogeneity do not show similarly large differences suggesting a similar level of connectivity
despite the size differences. The range of clustering within networks offers different levels of
interconnectivity between subnetworks within the system. In the absence of pathway specific
measurements, it is unclear whether specific pathways show high interconnectivity while others
show low levels or if they all generally show similarly low levels. Overall, it is clear from these

results that these networks are diverse and can easily distinguish the different cell lines.
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Table 3.4: Cell Line Network Summary Statistics. Density is the proportion of edges that could possibly
exist compared to the amount that do. Clustering compares how connected a node’s neighbors are to how
connected they could possibly be. Centralization of a network is a measurement of how the average node
is compared to the most central node. Heterogeneity is a measurement of the variance in the number of
neighbors each node possesses throughout the whole network.

Cell Line Nodes | Edges | Density | Clustering | Centralization | Heterogeneity
HCC1937 434 5330 0.04 0.248 0.241 0.938
MCF7 635 9383 0.032 0.285 0.29 1.094
MDA-MB 231 357 4153 0.045 0.31 0.266 0.987
MDA-MB 436 788 12555 0.028 0.223 0.257 1.038
MDA-MB 468 805 12187 0.027 0.254 0.253 1.089
SKBR3 409 5450 0.044 0.296 0.242 0.981

3.4.2 Graphical Representations of Gene Influence

Using the PPI data and the GO term limitations, | created a subset of genes to analyze.
Gene enrichment through expression is a general approach to identifying which pathways are
active or dysregulated in a disease state. It is also helpful to create networks to describe areas of
dysregulation surrounding differentially expressed genes.?®6:3°1 However, the parameter that is
used to assess a gene’s influence on the system must be selected based on what outcomes are being
measured. All approaches will have strengths and weaknesses based on what values they use to
understand influence. We will assess gene expression’s ability, CD, weighted and unweighted CE

to designate gene influence in a system.
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3.4.2.1 Gene Expression

Gene expression has been the most used variable to denote the relative influence of genes
ina system. This approach can be used with a PPI network to give topological markers independent
of network structure identifying regions of interest. (Fig. 3.8A) A gene product's activity does not
always correlate to either its own expression or to the expression of all of their interactors. 33 This
is because not all interactors contribute towards all of a gene product’s functions. It is also true
that a single interactor can be sufficient to activate a gene product. It can also be the case that the
loss of one gene product allows another gene product to create a protein complex that contributes
to the disease state.33! For this reason, pathway analysis often utilizes the position a gene product
has in the pathway to augment the significance in change of gene expression.®32 When genes are
analyzed in a PPI network context, the significance of a gene’s expression can be understood by
an increased influence. Therefore, a gene that shows a ten-fold increase in expression that only
possesses one interaction is not as disruptive as a gene that only shows a five-fold increase in
expression with fifty interactors. Utilizing network features dependent on the quality of
interactions ensures that the influence a gene product has within the network is not merely reliant

on its own properties, similar to enrichment.

3.4.2.2 Degree Centrality

The amount any one node influences the network is known as centrality. Simple network
analysis to assess a node’s influence is the number of edges it possesses, known as the node degree
or CD.3® (Fig. 3.8B) In networks of fewer than 100 nodes, CD can effectively identify one node
that could modify most nodes in a network.33* CD does not provide a large number of significant
nodes as the distribution of edge count is not evenly distributed. The graph only highlights a few

nodes towards the center of the network and provides no additional groups to aid in analysis.

3.4.2.3 Eigenvector Centrality

In larger networks, such as those | have created, there will likely be multiple hubs and
clustering around those hubs. Understanding the amount, a node contributes, both to its cluster and
the overall network, becomes a more difficult question the larger the network is. Assuming that

any node with more interactions is more influential ignores the possibility of a node with few
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highly influential interactors having more significant influence. CE was selected as my primary
centrality measurement due to its ability to prioritize nodes based on their connections to other
important nodes (Fig. 3.8C). This approach emphasizes connectivity that the entire system is
dependent upon. Like many other centrality measurements, CE will often correlate with CD as it
utilizes the total number of edges a node has in its calculation. Network centrality can provide an

alternative metric to understand a gene’s influence on a system.

3.4.2.4 Source-Weighted Eigenvector Centrality

Leveraging the gene expression data through a centrality measurement createsa new metric
that identifies hubs and enhances neighbors regardless of their expression level. | utilized a
weighted CE analysis that scores an edge according to the source node's differential expression,
including dependence on the source node's expression, but not the target node (Fig. 3.8D). There
are several practical differences between this approach and simple eigenvector analysis. Firstly, a
weighted CE greatly reduces the influence of under-expressed nodes and allows other hubs to
emerge that take their place within the network structure. The consequence is a reduction in the
edges’ score that leaves the node and does not directly lower its interactors' centrality. Secondly,
highly overexpressed genes enhance themselves and elevate the nodes directly connected to them,

creating clusters of multiple influential genes.
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Figure 3.10: Node Attribute Analysis; The HCC1937 network was overlaid with either differential gene
expression, node degree, eigenvector, or source-weighted eigenvector values. A) Differential Expression,
B) Node Degree, C) Eigenvector Values, D) Weighted Eigenvector Values
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3.4.2.5 Enrichment through Gene Expression Compared to Centrality

| performed pathway analyses of the subsets of genes within the networks using gene
expression, CE, and source-weighted CE. (Fig. 3.9) | assess the capability of these variables to
capably represent biological features of the cell line through enrichment. Some methods provide
curated gene sets of indicator genes, but | avoid this technique as many gene functions can be
dependent on other genomic features unique to the disease state. With this in mind, I will establish

the limitations of univariate enrichment to discern biological features in these cell lines.

3.4.2.6 Gene Expression Analysis of Base Networks

When only examining gene expression, distinct signatures for each cell line are observed
(Fig. 3.9A). The HCC1937 network shows extensive overexpression of genes contributing to DNA
fragmentation and the execution phase of apoptosis. DNA replication is also significantly
enhanced along with base-excision repair (BER), HR, and interstrand cross-linking repair (ICL).
These repair pathways are often active in the S phase alongside DNA replication.®35-33" MCF7
shows a significant increase in BER, and the execution phase of apoptosis and underexpression in
DNA replication and mismatch repair (MMR). Overall, MCF7 shows far less dysregulation in
these pathways.3%-340 MDA-MB 23 1’s sees the greatest modulation of the MAPK pathway, which
matches its BRAF/KRAS mutation status.341342 MDA-MB 231 also shows similar overexpression
of ICL, but without the DNA replication pathway's dysregulation.3*33%4 The MDA-MB 436
network shows general dysregulation across all DNA damage repair pathways and possesses
significant enrichment in genes related to the G2/M checkpoint and apoptosis's execution phase.
This cell line is notably resistant to single-strand damaging agents, such as cisplatin, consistent
with these results.344:345 MDA-MB 468’s network shows the greatest enrichment of NHEJ, DNA
replication, and the G2/M checkpoint. What is noticeably absent is an enrichment of MDA-MB
468’s HR pathway known to be highly active.?*® SKBR3’s network shows primarily down-
regulation surrounding the late steps of cell cycle proceeding cytokinesis.3#7-34° They also show a
strong down-regulation of DNA fragmentation. SKBR3 is a HER2-enriched cell line that
dysregulates upstream effectors and generally prioritizes cell survival mechanics preventing

apoptosis,350-352
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Gene expression enrichment does capably highlight a number of standout pathways in each
cell line. The overexpression of a number of pathways does not translate to overactivation as some
pathways are fully internally regulated. HR in MDA-MB 468 is a good example of this. Also,
relative gene expression values are also able to be compared across cell lines. Gene expression
does not capably demonstrate possible influence on the network as a whole. This is important as
many pathways show a similar level of overexpression, but this does not indicate whether these
pathways are made overexpressed by other features or are the source of dysregulation. There is
also the matter of MCF7 and MDA-MB 231 cell lines not showing a large number of dysregulated
pathways making it difficult to differentiate pathways further. A reduced number of enrich
pathways is often mitigated by curating gene sets to prevent the measurement of genes whose
expression is not as dynamic. To maintain a large data set similar to what we started with requires
a means of weighting gene expression to ensure influential nodes and their pathways are

recognized space.

3.4.2.7 Eigenvector Centrality Analysis of Base Networks

When examining the same pathways using only the CE measurements, | observe different
results (Fig. 3.9B). The HCC1937 network shows a similar focus on the apoptotic execution and
DNA fragmentation phases. However, BER with NHEJ and NER are more influential in this
network than HR and ICL. This result is not consistent with reported characteristics of the cell
line.243353 Also, the G1/S and G2/M checkpoints are emphasized in the network analysis.3** The
MCF7 network shows a similar emphasis in the execution phase of apoptosis and BER as it did in
the expression enrichment. However, | see changes in the mitochondria-related apoptosis
processes®®3%6 G1/S%7, MMR3%, NHEJ**®, and NER.%%° Hormone-related dysregulation of the
G1/S pathway is consistent with a Luminal A tumor.361:32 These repair pathways are typically
active in stressed environments that created in rapidly dividing tumor cells.**3* The MDA-MB 231
network shows an extreme focus on BER and NER not indicated by the gene expression. 344364
While HR is less central than these two; it is still significant.34¢ Using the centrality measurement,
the control of the execution phase and mitochondrial function are also emphasized.365366 | astly,
MAPK is still influential and could explain the DDR pathways | see emphasized in this analysis.3*

The MDA-MB 436 network may not show the same extreme focus on a few pathways as other
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cell lines. Still, it maintains a focus on the execution phase of apoptosis®®’ and BER and NER368,
similar to the other cell lines, to control the stress of cell proliferation. The MDA-MB 468 appears
similar in construction to the MDA-MB 436 network, which is unexpected due to their drug
sensitivity and proliferation rate differences. The emphasis remains on the execution and
mitochondria phases of apoptosis with NER and NHEJ.3%%370 |astly, SKBR3 is very differently
represented in network analysis compared to just gene expression analysis. A decisive influence
of BER and NER along with the other DDR pathways is observed.3”1-373 There is also extensive
influence in the G1/S and G2/M checkpoints®’437 alongside the execution and mitochondria
phases of apoptosis.376:377

Overall, the CE values paint a very different picture than the gene expression. Some of the
observations made are consistent with features determined by gene expression. The cell lines
appeared to have several trends in the DDR pathways influential, despite several studies detailing
otherwise. By focusing on these pathways, | have guaranteed significant overlap in the nodes
involved, which likely contributes to the trends I observed. Using only centrality will not be
sufficient to differentiate cell lines. In addition, some of the observations made through simple CE
did not faithfully represent the cell lines' features. Much of this occurs through a lack of emphasis
rather than false emphasis. Still, the analysis requires improvements to provide an accurate model

of cell activity.

3.4.2.8 Source-Weighted Eigenvector Centrality Analysis of Base Networks

The third analysis uses the source-weighted eigenvector centrality (Fig. 3.9C). The
HCC1937 network distinguishes itself as being the most dysregulated network. The entirety of
apoptosis shows significant influence in this network in addition to cell cycle checkpoints and
arrest. The BER, MMR, NHEJ, and NER DDR pathways are the focus of this network. The MCF7
network shows few definite influences with the execution phase of apoptosis, and the BER
pathway is likely to influence the processes. The MDA-MB 231 network mirrors the HCC1937
network with the only significant differences being that only the execution and mitochondria
phases of apoptosis are influential. This network also has a reduced focus on the DNA replication
pathway. The MDA-MB 436 network shows similar dispersion to the MCF7 network. The

execution phase of apoptosis and ICL appear to be influential only as secondary pathways. No
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distinguishable pathways are identifiable in the MDA-MB 468 network using this method of
analysis. The SKBR3 network again shows a distinct pattern of influence with a similar DDR
pathway profile as HCC1937 and MDA-MB 231. The SKBR3 network also significantly
emphasizes MAPK compared to the others, focusing on the execution phase and an impressive
lack of focus on DNA fragmentation.

There are several issues with using centrality enrichment alone. The MCF7, MDA-MB 436,
and MDA-MB 468 networks capably show this approach's limitations with larger networks. These
networks are close to double the size of the other three networks, and a simple enrichment analysis
was insufficient to distinguish what processes influence the system. Upon further investigation, a
significant issue in each of these networks was one node being incredibly dominant: EGFR in
SKBR3, ESR1 in MCF7, and SQSTM1 in MDA-MB 436. CE is necessarily relative and
determined for the entire network making the maximal central node value of 1. The remaining
nodes show similar levels of centrality by comparison, which allowed the overall network
centrality to appear normal. Lastly, BER seems to be a dominating force in essentially all the breast
cancers. While it is a vital repair pathway, | found that many other DNA damage repair pathways
share BER genes when examining the genes comprising these pathways. Much of the early
detection genes of DNA damage in BER can also activate additional DNA damage responses. For
this approach to be viable, accounting for the compensatory factors for pathway redundancies will
need to feature either through constraining the gene subsets to limit network size or to analyze

each network in total and in parts.

3.4.3 Cell Line-Specific Process Networks

Since simple enrichment was incapable of defining the system to the required resolution, I
derived a metric to survey the connectivity of processes to one another. The basic hypothesis for
why simple enrichment | performed failed to account for multiple features of these networks: they
have several nodes in common, some nodes will dominate the entire network, and some processes
have several nodes in common. Additional metrics were devised to counter these effects and allow
an in-depth analysis of interactions within the key cellular processes of interest. GAgn was derived
to measure the number of edges between processes to assess interpathway regulation. GCq4 was

derived to assess how much a process regulates itself. Using these two calculations, | can
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distinguish between edges and nodes shared between processes rather than seeing them as a
homogenous group. Glg is a means of focusing source-weighted CE analysis by whether nodes
connect to one or more cellular processes. The analysis design allows nodes that are important to
a process rather than the entire network to be still prominent. Each of these features, as mentioned
above, link to standard network features of edges, self-loops or node borders, and node values
themselves. Nodes and edges that serve distinct roles in a process will be evaluated separately,
preventing the gross overlap and refocusing the network analyses on smaller groups of nodes in

their total network context.
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Figure 3.11: Pathway Analysis by Treatment Type; Utilizing the pathway analysis method described previously using
eigenvector analysis, we assessed didn’t tumor subtypes for overall modifications. A) HCC1937; B) MCF7; C) MDA-
MB-231; D) MDA-MB-436; E) MDA-MB-468; F) SKBR3; APOP — apoptosis; BER — base excision repair; CC — cell
cycle; HR — homologous recombination; ICL — interstrand cross-linking repair; MMR — mismatch repair; NER —
nucleotide excision repair; NHEJ — non-homologous end joining
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HCC1937 Process Network

Using these three values, | constructed descriptive process networks to replace the
enrichment analysis used previously. These more detailed networks are compiled in the Appendix
(X?). The HCC1937 Process Network shows a very different set of key interactions than the simple
enrichment analysis (Fig. 3.11A). HCC1937 does not have a competent BER pathway to combat
oxidative DNA damage.®”® The enrichment studies presented BER as the most influential DDR
pathway to cell line dysregulation. When the roles of genes within this subset are separated, this
pathway is less connected to other processes and its own regulation. DNA damage repair
abnormalities in HCC1937 revolve around the loss-of-function (LOF) mutation of BRCAL and the
ability of HCC1937 to maintain a functional HR pathway despite this. Previous work by others
show that a combination of NER and ICL is used to compensate for the HR pathway preventing
sensitivity to PARP1 inhibitors.37238 It is also important to note that HR is strongly tied to the
G1/S checkpoint in this cell line, as it is frequently in TNBC cell lines.38!%8 The G1/S-HR
connection is clearly on display in this network with both internal and external enhancement of
these pathways. Further, an overactive MMR pathway tied to a MAPK activation is consistent
with prior observations for this cell line.38338 Lastly, HCC1937 is a slow-growing cell line that
allows continued proliferation through dysregulation of G1/S and G2/M checkpoints to persist
growth.3838 This characteristic is evident in my network, and the other LOF mutations of RB1,
BRCAL, and PTEN all tied to these checkpoints. Unlike KRAS and BRAF GOF mutations that
increase proliferation rate to ensure proliferation, these LOF mutations reduce the likelihood of
cell cycle arrest. This feature aligns with the concept that a cell cycle checkpoint can be highly

dysregulated, without increasing cell proliferation rate.

MCF7 Process Network

The MCF7 network shows a completely different profile with the size of the network being
beyond my ability to make observations (Fig. 3.11B). A key feature that is observed indirectly by
this network is the extreme overexpression of ESR1.387:388 Unlike in the previous attempt using
centrality alone, | can observe the downstream effects using the combination of the three defined
parameters, GAgh, GCq, and Glg, A. Many of the features can also be explained by the gain-of-
function (GOF) mutation to PIK3CA, which is vital MAPK and cell survival®®, and a LOF
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mutation to CDKN2A, a key cell cycle checkpoint regulator.3®® The dysregulation in cell cycle
checkpoints is linked to the CDKN2A LOF mutation. The enhanced activation of the MAPK
pathway, and the connection to cell cycle indicate a reason for MCF7 rapid in vitro growth. The
prominence of nearly all DDR pathways can be explained by ESR1 activity and is consistent with
studies showing MCF7’s DNA damage repair abilities to be enhanced over other breast cancer cell
lines.3°1-3% While the cell cycle processes do show dysregulation, self-regulation shows a
reduction in capacity to activate and execute cell cycle arrest.3%:3% Qverall, this network is capably

distinguished from other cell line networks by process connectivity and self-regulation dynamics.

MDA-MB 231 Process Network

The MDA-MB 231 network shows a different type of regulation than observed in
HCC1937 or MCF7 (Fig. 3.11C). While there is a paucity of nodes indicating significant
dysregulation and preservation of many connections between processes, MDA-MB 231 shows a
cell line that has reduced flexibility to maximize its biological strategy. DNA damage repair
pathways do not show significant enhancement, nor pathways that counter excessive stress. BER,
NER, and NHEJ all show limited connection to other processes aside from apoptosis. %3973% The
decreased emphasis on these DDR pathways leaves a combination of HR, ICL, and MMR to
relieve this stress.3%%-4%2 |t is even more notable that the cell cycle process tightly regulates these
pathways. HR and the cell cycle both show a diminished connection to apoptosis, preventing its
activation through DNA damage stress.3’4493494 These biological features require tight control
over cell cycle arrest and DNA replication through cell cycle dysregulation. Previous observations
in MDA-MB 2315 led to the use of cell cycle inhibitors to sensitize them to DNA damage. Most
of the network effects tie directly to the GOF mutations in KRAS and BRAF and the LOF in
CDKN2A. Overall, this approach captures that MDA-MB 231 reduces flexibility to ensure that

apoptosis is not activated.

MDA-MB 436 Process Network

The MDA-MB 436 process network overcomes the network size, similarly to MCF7 (Fig.
3.11D). Unlike HCC1937, MDA-MB 436 is HR-incompetent possessing a LOF BRCA1 mutation.

Despite the deficiency, HR appears to retain considerable self-regulation, similar to MDA-MB
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231s. A significant difference between these two networks is that HR is strongly connected to cell
cycle arrest and apoptosis rather than the G1/S checkpoint, maintaining its activity. HR possesses
several key interactions with other pathways that can switch the DDR pathway that repairs the
DNA damage.*%4% In contrast to HR, the NHEJ pathway can be enhanced by other pathways. HR
is likely to give way to NHEJ as these pathways co-regulate one another to ensure only one
complex forms at a damaged site.*” Similar to HCC1937, NER and ICL show increased activity
to manage stress, but NHEJ is more active instead of HR in this case.4%84%° Further, the enhanced
activity of BER is supported by the MDA-MB 436 resistance to cisplatin and single-strand
break.®%® Additionally, the RB1 LOF mutation is responsible for the dysregulation of the G1/S
checkpoint, and along with the TP53 LOF mutation, the connection between cell cycle arrest and
apoptosis is reduced. Overall, subtle differences in different processes' connectivity indicate

significant changes in system dynamics in MDA-MB 436.

MDA-MB 468 Process Network

The MDA-MB 468 network is the last large network whose resolution was enhanced
through the Process Network approach (Fig. 3.11E). At first glance, it is notable that HR, ICL,
BER, and MMR pathways show high levels of enhancement, self-regulation, and connectivity.*1%-
412 These pathways and their interconnectivity are related to the DNA damage and stress resistance
characteristic of MDA-MB 468. Aside from ICL, these DDR pathways show reduced connectivity
to cell cycle arrest and apoptosis.*3414 However, these DDR pathways and NHEJ maintain a tight
connection to G1/S and G2/M processivity, maintaining their activity.**546 While these
checkpoints are still connected to apoptosis and cell cycle arrest, there is a reduction in their effects
on DNA damage repair. The MAPK pathway shows a reduced focus on DNA damage repair
potentiation and an increased effect on cell cycle activation.*"-41° As observed earlier, this is due
to the prominence that EGFR has in this cell line also reflected in the DNA damage repair pathways
involving EGFR as a transcription factor: HR, ICL, and MMR. Overall, this network appears to
be inside out, focusing on DNA damage repair that shows reduced connectivity and inter-
regulation between NER and NHEJ and other DDR pathways. These cells proliferate and show

significant stress resistance with a focus on cell cycle processivity and DDR pathways over
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apoptosis. As emphasized before, this approach has elucidated this cell line's signature traits

despite the size of the network.

SKBR3 Process Network

Finally, the SKBR3 Process Network, distinguishes from other cell lines (Fig. 3.11F).
SKBR3 is the only HER2-enriched cell line and shows a reduced influence of BER and
connectivity of ICL.375420 NHEJ and NER both show significantly enhanced self-regulation and
connectivity to cell cycle progression.*?1-422 However, these pathways also show significant
influences on the apoptosis process along with a robust connection between cell cycle arrest and
apoptosis.*?4426 These features provide a remarkable potential for apoptosis activation through
normal pathways. HR and MAPK show a reduction in connectivity to apoptosis, but significant
effects on cell cycle and cell cycle checkpoints.#2’~430 The prominence and dysregulation of the
G1/S checkpoint processivity over that of the G2/M checkpoint is significantly different from the
other breast cancer cell lines. This separation shows the dominance of upstream effectors that push
for G1/S activation. Components of HR can increase the amount of G1/S related genes like
transcription factors.*31-43 Late phase HR components also reduce cell cycle arrest processivity,
as do late phase NHEJ components. 359365434435 Qverall, the DDR pathways appear to possess a
more direct route to apoptosis reduction in activity and G1/S functioning as a central hub of this
dysregulation. Inhibition of G1/S checkpoint proteins does not reduce the efficiency of HR in
HER2+ cell lines as it does in TNBC cell lines. In this network, it becomes apparent that the same

connectivity does not exist.

3.4.3.1 Summary on Process Network Analysis

Overall, the primary issues observed in using source-weighted CE are resolved using the
Process Network method. Individual cell lines are readily distinguished and represent phenotypic
features associated with each cell line. All cell lines showed a large amount of influence from
apoptosis due to increases in apoptosis exclusive genes in these networks. The high influence that
apoptosis has on these networks is mitigated by TP53 LOF mutations present in most cell lines.
For many cell lines, the apoptosis pathway can still proceed to cell death if other factors initiate

the execution phase. However, cell lines have either disconnected apoptosis from cell cycle arrest
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or multiple other processes to mitigate apoptosis activity. By identifying which connections are

severed or maintained, a method to predict effective combinations will be enabled.

3.4.4 Predictions through Node Removal

A simulated target inhibition approach was devised to utilize these cell line Process
Networks to predict drug responses. Current synthetic lethal networks rely upon siRNA and
CRISPRI experiments to validate predictive algorithms. The genetic techniques involve reducing
or eliminating a gene product. While this is not an entirely accurate representation of the impact
of a small molecule inhibition on a biological system, these approaches are easily simulated. The
small molecule inhibitors used in this study do not effectively reduce all functions of their targets.
To assess whether removing a node from the network is an adequate measure of inhibiting the

gene product, I compare these predictions to known drug-sensitive contexts.

3.4.4.1 TCGA Gene Expression Network Analysis of BRCAL +/+ and -/- Contexts

A well-studied synthetic lethal interaction is BRCA1 LOF mutation that reduces HR
efficiency with a PARP1 inhibitor.”%47.1%2 This pairing of drug and genetic deficiency has proven
clinically efficacious in TNBC tumors.*% Expression data from RNA-seq of TCGA breast tumor
samples were used to create a Process Network. The loss of BRCAL function in these networks
shows evident downregulation of HR in a gene subnetwork focused on HR (Fig. 3.12).43743% This
condition involves reducing the influence and expression of several regulatory proteins, including
CHEK1, BRCA1 and BRCA2, which accompanies a decrease in HR complex components such
as RADS1. Further, a process network for TCGA TNBC samples was created identically to the
cell lines (Fig. 3.13A) to reveal a significant difference in how these tumors manage proliferation
and stress. Overall, there is a reduction in apoptotic signaling and self-regulation compared to the
cell lines. The TCGA samples show a similar focus on cell cycle checkpoints in regulating
proliferation with priming by the MAPK pathway. The majority of influential connections to the

apoptosis process are from upregulated DNA damage repair pathways, leading to its suppression.
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Figure 3.12: BRCA1 Loss-of-Function Mutation Effect on Homologous Recombination. Homologous recombination
associated genes in TNBC tumor samples from TCGA were used to create networks. Networks were analyzed for
weighted eigen centrality which corresponds to node size and with gene expression representing the color of nodes.
A. BRCA1 +/+ TNBC tumor samples; B. BRCA1 -/- TNBC tumor samples

A Process Network created with only BRCAL -/- tumor samples assessed the network's
ability to reveal the changes in the HR network and tumor sensitivity (Fig. 3.13B). To understand
the impact of BRCAL LOF, a differential network was created by subtracting the original TCGA-
TNBC Process Network from the BRCA1 -/- TCGA TNBC Process Network. Overall, | see
significant decreases in all processes that BRCA1 directly contributes to, apoptosis, cell cycle
arrest via DNA damage, the G2/M checkpoint, and HR. This deletion also reduces connectivity
between these pathways and other DDR pathways, most notably NHEJ and NER.

Finally, I assessed the effects that deleting the BRCAL node in the TCGA TNBC samples
with wild-type BRCAL. This deletion’s Process Network was compared to the TCGA TNBC
BRCAL1 +/+ samples including the BRCAL node (Fig. 3.13C). Overall, | see similar effects, but
with a lower impact and fewer modifications to connectivity. Removing BRCAL is not able to
predict the downstream effects of a loss of BRCA1’s transcription factor capabilities. The ability
of this approach to capably measure changes to the direct interactors of BRCA1 and BRCA1’s

processes is encouraging.
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3.4.4.2 TNBC Process Network Analysis of BRCAL1 -/- versus BRCAL Simulated Deletion

To assess how synergism appears in the Process Networks, evaluating TNBC samples
while simulating a loss of PARP1 was utilized in both BRCAL +/+ and BRCA1 -/- sample sets.
This case serves as a positive control to assess a likely synergistic context and a known insensitive
context. The same process for calculating node removal, deletion of PARP1 reveals a decrease in
the dependent processes' influence in the system, including the connections between NHEJ and
NER to cell cycle checkpoints (Fig. 3.14B). ICL and BER show less modulation as they have more
indirect connections to PARP1 than the other DDR pathways. The lack of impact and direct
connections to apoptosis implies a lack of a lethal effect. The removal of PARP1 from BRCAL -/-
TNBC samples shows a significant reduction of cell cycle checkpoint activity, HR, and NHEJ.
The connections of G1/S and G2/M checkpoints to cell cycle arrest are reduced while DDR
pathways are not. This scenario would suggest that the cell cycle would be more likely to arrest
when DNA damage is elevated and promote activation of apoptosis. Apoptosis also shows reduced
connections to checkpoints and DDR pathways making it less likely to be deactivated. The same
process of deregulation is seen in the co-removal of BRCA1 and PARP1 (Fig. 3.14C). A notable
difference is that the BRCA1 -/- samples show greater dysregulation between DDR and cell cycle
checkpoints. Changes seen in non-BRCAL interactors throughout DDR and cell cycle are likely
missed in the network only showing removal of BRCA1 due to the unaccounted-for expression
changes from losing BRCAL as a transcription factor. This is also assessed in MCF7 and MDA-
MB 231 cell lines (Figure B.19,21)
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3.4.43 TNBC Process Network Analysis of BRCAL and PARP1 Synergy through
Simulated Deletion

Since | do not have reliable genetic models for each of the inhibitor pairs, it is important to
assess a similar synergistic combination using the Process Network analyses. PCNA is a key HR
component and the inhibitor T2AA has been reported, both earlier in this work and by other groups,
to be able to target that function. Therefore, | compared the results of co-removal of PCNA and
PARPL1 to discern whether my differential process networks could simulate this interaction. | once
again used the TCGA TNBC samples for consistency with the BRCAL assessment. PCNA removal
in the TNBC network was not as impactful as BRCAL on HR or cell cycle phases, aside from
replication (Fig. 3.15A). PCNA also had a reduced effect on apoptosis and a more substantial effect
on G2/M instead of G1/S. HR connections to replication and apoptosis are reduced by the PCNA
removal as well. Co-removal of PCNA and PARP1 produces the reduced connections between
both HR and NHEJ to apoptosis and cell cycle arrest. Apoptosis is still well connected to cell cycle
arrest, as it was with BRCAL -/- and PARP1 removal (Fig. 3.15C). This is also assessed in MCF7
and MDA-MB 231 cell lines (Figure B.20, 22).
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3.4.5 Synergism Predictions and Measured Outcomes

Predicting synergism over additivity or enhancement requires an understanding of network
dynamics beyond a simple differential. Utilizing the Impact Matrix, | distinguish which processes
and nodes are likely to contribute to or prevent cell death. A large component of this calculation
considers node edges over nodes to contribute to the activation of apoptosis. For example, in cell
cycle, many checkpoint proteins are understood as tumor suppressors, while other proteins
involved in their regulation could be considered oncogenes.**-44 It is important to assess a process
not as simply whether it increases the likelihood of cell death or not. Instead, understanding the
sum of the effects produced by both a single pathway and its interactions with other pathways
determines the outcome. The process maps presented in earlier sections lack some of the resolution
required to understand these relationships. However, to look at every individual edge and node
that comprises their effect would be overwhelming. A new value, disruption index (DI), was used
as a metric to measure the likelihood that changes in a network cause cell death through the loss
of two nodes over either alone. As such, not all disruptions to the network will be of the same
value. For example, not all connections between cell cycle and apoptosis will lead to cell death.

The Impact Matrix is designed to indicate pro-apoptotic processes and nodes positive and
anti-apoptotic processes and nodes negative. Therefore, the more positive the value, the more
likely there is to be cell death. The reduction in Processivity is considered to be relative to the
change within the process to prevent large networks from diluting a single process's effects.
However, the amount of dysregulation within the network is accounted for ensuring the greater
the Influence of an affected process, the greater the Disruption Index.

In order to predict synergism, the effect of a drug combination must supersede the additive
effect. The methodology used in this work prioritizes the reduction of multiple processes over that
of a single process. The two genes deleted receive a higher DI if they affect different pathways
from each other. Furthermore, prioritization is given to multiple regulatory connections to
apoptosis over any single connection. Measuring disruption in this manner does not differentiate
compensatory pathways from those that are independent of one another.

Cell proliferation assays with drug treatments are used to test the synergism predictions
made by this method by comparing CI values to the DI generated by the Process Network analysis.

These were conducted as detailed in section 3.3.10.
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HCC1937 DI vs. CI Profile

Co-removals of drug targets within the HCC1937 network produced results consistent with
observations in the Process Network (Fig. 3.16A). Drug targets associated with NHEJ and HR
such as PARP1 and DNA-PK combinations with PCNA, EGFR, and ATM showed consistent and
large DI. Also, a prediction of CHEK1 synergy with PARPL1 is evident and regulates the G2/M
checkpoint and Processivity of the HR pathway. Interestingly, CHEK1 deletion has a reduced
impact on HR in HCC1937.442443 An EGFR inhibitor was also predicted to synergize with PCNA
and CDK4/6 inhibitors, which directly impact the G1/S checkpoint and DNA replication. EGFR
regulates both cell cycle processes as well as their connections to apoptosis.

The CI profile complemented the HCC1937 DI profile closely (Fig. 3.17A). However, the
PARP1 and CHEK1 combination showed the greatest divergence and displays the method’s
difficulty with downstream effects. CHEK1 does have a significant impact on HR that is not well
characterized by the removal of CHEK1 in a Process Network. Interestingly, DNA-PK and
CHEK?1 synergism is correctly predicted. A key difference between DNA-PK and PARPL1 is that
in the base gene network, PARP1 interacts with CHEKZ1, which causes significant overlap in their

interactions.

MCF7 DI vs. ClI Profile

The MCF7 is a luminal A cell line showing significant differences from TNBC cell lines
(Fig. 3.16B) and continues to predict synergies. Overall, the selection of combinations that focus
on DDR and cell cycle are not effective. Those that are effective have significant direct connections
to cell cycle. The most significant disruption is from a CDK4/6 inhibitor and a PARPL1 inhibitor.
Of the cell cycle processes, G1/S shows the greatest connection in regulating apoptosis. While
NER is the most connected DDR pathway to cell cycle processes, NHEJ is a close second, and
PARP1 is a regulator of both pathways. G1/S signaling is often tightly associated with MMR, HR,
and ICL pathways' efficiency, which may come into play. The next largest DI’s are associated with
CHEKTU inhibition with EGFR and PARP1. CHEKL inhibition has the most impactful effect on
the G2/M checkpoint and HR regulation. EGFR and PARP1 both have strong connections to NHEJ

and other DDR pathways' Processivity, as mentioned earlier. As stated above, MCF7 appears to
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have a cell cycle-focused network which is understandable considering they are a hormone-
dependent tumor.

The CI profile for the MCF7 cell line is qualitatively accurate, but not quantitatively (Fig.
3.17B). Using the cutoff value of 1 for both predictions of synergism for DI or 1/ClI, all the
predictions for both negative and positive synergism cases are accurate. The degree of synergism
is not well predicted, with the combinations of ATM and CDK 4/6 or PARP1 inhibitors. ATM’s
position as a DNA damage sensor and an HR activator yields a significant effect on the G1/S
checkpoint and HR and related pathways. For instance, there appears to be an underestimation of
the ATM connection to CHEK1 and apoptosis in the network. Regardless, both combinations

predict to be synergistic.

MDA-MB 231 DI vs. Cl Profile

MDA-MB 231’s DI profile shows many of the same hallmarks of TNBC (Fig. 3.16C). The
DDR enhancement to increase the likelihood of cell survival offers a similar set of predictions as
HCC1937. NHEJ and HR's co-dysregulation appear to be very disruptive in this network and
simulates the known synergistic relationships between these pathways. The chief difference
between MDA-MB 231 and other TNBC cell lines focuses on cell cycle and how that drives the
DDR response. From these results, CHEKL is predicted as a more likely enhancer of DDR than
CDKA4/6. The G2/M connection to reducing arrest potential in MDA-MB 231 is a key factor with
ample CHEKZ upregulation to manage this connection. This factor allows for CHEK1 to potentiate
disruption of DDR, regardless of the source of reduced efficiency. As observed before, CDK4/6
inhibitors are able to synergize with NHEJ inhibitors, but not HR inhibitors. This result follows
the observation that G1/S checkpoint proteins are driving HR dependency in the cell line. Overall,
this system is consistent with KRAS/BRAF GOF mutations and downstream effects due to those
common mutations.

The CI profile of MDA-MB 231 closely mirrors the DI profile (Fig. 3.17C). However, the
DI profile underestimates the EGFR connections in comparison to the combinatorial effects. A
likely cause is the off-target effects of the EGFR inhibitor and MDA-MB 231’s exceptional
dependence on the MAPK pathway through the KRAS/BRAF mutations. This situation makes the

DDR effects of EGFR inhibition a more significant component of the synergism than in other cell
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lines. While somatic mutations directly impact the expression profiles to determine centrality,
there are often more pathway-specific changes. This scenario is especially true of KRAS/BRAF
mutations in MDA-MB 231 cells that affect the MAPK pathway but not the DDR pathways
specific to EGFR. Overall, MDA-MB 231 predictions were confirmatory by the assays.

MDA-MB 436 DI vs. CI Profile

The MDA-MB 436 diverges sharply from other TNBC cell lines due to its BRCAL LOF
mutation. (Fig. 3.16D) The loss of an efficient HR pathway is a requirement for numerous
synergistic relationships. The NHEJ inhibitors are most effective in this cell line, consistent with
the observations where only synergism occurs between EGFR or CHEKL inhibitors with DDR
inhibitors. ATM and PCNA inhibitors' potential to impact DNA replication, ICL, and G1/S is
likely the source of high DI with CHEK1, which would impact the G2/M checkpoint and
connections. Otherwise, the accumulation of DSB’s from the loss of NHEJ along with a G2/M
checkpoint inhibitor is a synergistic strategy observed before. The low amount of disruption in
MDA-MB 436 could also be an artifact of the generally high-level of connectivity of this network,
preventing a considerable impact.

The MDA-MB 436 CI profile shows the most significant correlation with its DI profile
(Fig. 3.17D). This cell line result stands out, showing the fewest synergism cases similar to the
results with MCF7. The lack of an efficient HR pathway removes many of the effective
combinations in the other cell lines. The heightened Influence of CHEK1 through the G2/M
checkpoint and DSB repair regulation is a dominant factor in this cell line. While the DI profile
does not capably display the magnitude of synergism, it does capably show the lack of synergism
in most of the combinations. Overall, MDA-MB 436 presents a simple context in the focused set

of pathways for testing this study's methodology.

MDAM-MB 468 DI vs. Cl Profile

The MDA-MB 468 is the final TNBC cell line in the study and the DI profile is similar to
the other HR-competent TNBC cell lines. (Fig. 3.16E) The combinations of HR and NHEJ
inhibitors show the most potent DI. G1/S cell cycle arrest is more Influential due to its connectivity
than G2/M in the MDA-MB 468 Process Network (Fig. 3.12E). This point reflects that CDK4/6
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more frequently predicts a synergistic partner. However, this does not extend to HR inhibitors due
to the weak connection to the HR process and the prominence of ICL. Overall, MDA-MB 468
looks very similar to other TNBC cell lines, except for its emphasis on other cell cycle components,
which shifts the disruption to CDK4/6 inhibitor combinations.

The MDA-MB 468 CI profile shows separation and the most false negatives compared to
other cell lines (Fig. 3.17E). These include the ATM and DNA-PK, EGFR and PARP1, and ATM
and CHEKZ1 combinations. Two of these combinations are borderline cases where they minimally
exceed the 1.1 cutoffs for synergism. It also contains one false positive in CHEK1 and CDKA4/6,
which shows a more significant separation. A major component of these four inaccuracies is the
dominant Influence of HR and ICL, which ATM contributes to, but results in low impact on
apoptosis or cell cycle arrest in the Process Network. These features reduce the prediction for
disruptions to trigger apoptosis activation. G1/S and G2/M checkpoints are both well connected to
apoptosis and cell cycle arrest, and numerous pathways. However, the prominence of the MAPK
and survival pathways underestimate in this approach. A broader set of processes may improve

the ability to predict the impact of these scenarios.

SKBR3 DI vs. CI Profile

SKBR3 is the sole HER2+ cell line and shows a unique DI profile to match (Fig. 3.16F).
NHEJ and HR combinations are predicted to be only moderately effective compared to the
magnitude of predictions in the TNBC cell lines. A strong focus on CHEK1 and EGFR
combinations makes this profile stand out. A much stronger emphasis on the MAPK pathway and
EGFR specifically in this cell line’s network is a partial explanation for this characteristic. The
emphasis on CHEK1 combinations likely exists through its strong connection to apoptosis and
NHEJ, which stands out as the primary DDR pathway in this network. The greatest DI confirms
this relationship exists between CHEK1 and NHEJ inhibitors. The reduced impact of HR inhibitors
on DI is likely reflects low inhibitory effects on self-regulation, maintaining connections to cell
cycle arrest while NHEJ compensates for DDR.

The CI profile of SKBR3 closely resembles the DI profile (Fig. 3.17F). There is a lack of
correlation between the CI values of synergistic combinations and DI values due to the CHEK1-

NHEJ inhibitor combinations. The result is more significant synergism than predicted. G2/M and
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NHEJ’s prominence and Influence on apoptosis, and cell cycle arrest is remarkable. The impact of

this characteristic extends to DNA replication and reduces connectivity in other pathways. The
focus on G2/M and NHEJ is consistent with unique HER+ tumor effects on the G2/M

checkpoint.#4444> G2/M checkpoint modulation has been used as a prognostic marker in HER2+

tumors and has highlighted HER2 as a targetable entity in these tumors.

3.4.6 Method Results Summary

A 1/CI>1.1 1/CI<1.1
DI>1 56 6 0.903
DI<1 6 58 0.09375
0.903 | 0.09375
B. __
4
2
a

1/C1

Figure 3.18: Simple Statistical Assessment of Disruption Index
(DI) and Combination Index (CI). A) The ability of the DI to
predict combinations that will be synergistic as seen through
experimental results for CI. B) A simple correlation of DI to
Cl showing the ability to predict the magnitude of synergism

3.5 Discussion

The methodology developed and
tested in this study shows remarkable
potential for predicting synergism in DDR
pathways and connected processes (Fig.
3.18). A 90.3% true positive and true
negative rate qualifies this method to
identify likely synergistic combinations in
various tumor genomes. Where this method
does not excel is in predicting the degree of
synergism of a combination. The R? value
of a logarithmic trendline between DI and
Cl reaches 0.72, leaving considerable room
for improvement. This method can be
considered a qualitative analysis of
synergism, but not a quantitative scoring
method. One deficiency of the study is the
lack of antagonistic drug combinations,
which leaves its detection by this

methodology unknown.

This study establishes a novel method leveraging CE to predict drug synergism potential.

A workflow design for network creation parameters includes gene expression, GO term gene sets,
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and protein-protein interactions. From this network creation strategy, values describing the amount
these networks representing connections between and within pathways were developed. A simple
simulation of gene deletion to model network dynamics due to target inhibition was created.
Finally, an effective data presentation technique was developed to leverage these data analyses.
These overall workflow and metric definitions are distinctive from other network building and
analysis strategies, which seek to understand differential gene expression or drug activities. By
establishing a network from reliable data pooled into GO terms and interaction sets, gene
expression data can be leveraged further than before. These methods, coupled with the explosion
of genomic information, can discover genes with novel importance rather than relying on already
known genes to determine pathway significance. This approach also ties dysregulation to known

interactions to allow expedited development of drug discovery hypotheses.

3.5.1 Eigenvectors as a Biomarker Metric

CE has been used in previous studies define a broad range of systems from population
evolutionary dynamics to sparse neural networks. Use of either a weighted or unweighted CE to
prioritize gene selection has been utilized to replace simple enrichment. In my study, | approached
a data set that includes numerous common features, by design. The goal is to simplify individual
gene identifiers as significant or insignificant to a disease model. When attempting to apply this
approach to my datasets focusing on individual gene groups, | was unable to distinguish datasets
better than gene expression. Instead, the utility of the approach was found in identifying larger
changes in network dynamics over processes that share multiple nodes. Creating a process that is
able to distinguish changes in groups of nodes over individual nodes was established as a
requirement to distinguish datasets. Further, CEs were useful here to study subnetwork structure
within the larger parent networks to explore specific dysregulation within an individual pathway
in sample sets. This use of CE creates multiple resolution levels of this analysis technique.
Validation of observations is imminently possible through examining known components of the

system.
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3.5.2 Integrated Pathway Analysis through Inter- and Intra-connectivity

Cancer biology is a story of discrete changes in a single gene creating a dysregulated
system and the novel connections that result. The work here expands the concept of dysregulation
as increases or decreases of normal functions to novel connections that re-contextualize the system.
This objective necessitates evaluation if pathways that are co-activated or expressed have separate
co-regulation from direct pathway activity. More importantly, it is necessary to understand groups
of changes as a whole instead of attempting to identify smaller datasets that indicate large changes.
A consistent narrative is that a pathway’s influence is notable due to the lack of “normal” processes.
It implicates creating a minimal panel size that seeks to understand deeply integrated systems as a
set rather than as discrete changes. In the cell lines evaluated, changes in DDR pathways were
proceeded by changes in cell cycle checkpoints. The means of dysregulation can change the focus
of treatment towards finding gaps in the tumor biology that would allow for stressed systems to
collapse. Understanding when the disease’s state renders a decreased sensitivity to DNA damage
due to changes in cell cycle or the MAPK pathway can allow the correct therapeutic option to be

selected.

3.5.3 Gene Removal as a Model of Inhibition

Gene downregulation or even removal through siRNA, non-coding mutations, or CRISPR
have become efficient means of testing the likely impact of inhibition. The removal of nodes from
a network and the specificity of the genomic techniques listed are simple and direct, enabling rapid
experimental design and validation through multiple means. Inhibition by a small molecule or drug
is @ much more complex set of interactions to be simulated through a network. Drug inhibition
profiles do not entirely remove a protein or all its functions and often have additional effects. A
thorough drug profile by removing the proper edges that correspond to the drug’s activity would
be most effective. In my networks, gene deletion proves to be effective in evaluating drug
inhibition's most direct effects. The ability to further weigh the drug effect within the network by
using unique features that describe a drug’s specific action would require extensive mechanistic
information. Understanding drug effects through differential gene expression comparing treated

and untreated cells could produce that profile and indicate the amount of system disruption. This
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approach could assess two drug effects and would allow the method to remain efficient and focus

on the same data sets as it does now.

3.5.4 Network Disruption Measured through Pathway Dynamics

Network stress is a well-understood means of measuring changes in network adaptability
and plasticity. Most network stress metrics focus on overall network connectivity or individual
node connectivity. They also find the minimal network features to create connectivity between
clusters or other network features. In these systems, apoptosis is the clear focus of an effective
drug combination. Thus, not all types of disruption are equal, and the adaptability of these networks
is not measured through my DI, but instead the likelihood of an apoptotic response. Presuming
that each node acts at its maximum potential in each interaction allow network dynamics to be
calculated as a whole. Each process must evaluate node deletion's net contribution within the
system and also their contribution to the influence of the surrounding nodes. This condition does
not allow for a single node to completely prevent a processes function. While this is not entirely
accurate, there are numerous examples of homologous proteins replacing other protein’s
function(s). A node's ability to supplant another’s role or circumvent a blocked step is not explicitly
understood within this approach but is still assumed. Utilizing more definite pathway descriptions
would allow for a more sensitive assessment of known systems but may constrict predictions to

what is already understood.

3.6 Conclusions and Impact

This approach is the first synergism prediction strategy leveraging a protein interaction
network examined using eigenvector centrality. My approach to defining the contributions of
genes to a related pathway through GO terms using my equations for GO Impact, Cohesion, and
Adhesion are also novel contributions to the field. While other pathway analysis techniques exist
utilizing protein interactions to determine gene sets, using source-weighted eigenvectors and the
relationships defining subnetworks is also novel. Utilizing these three values to create a novel
Process Network to limit the impact of large networks in reducing the descriptiveness of small
gene sets within a pathway. My Disruption Index (DI) value utilizing simulated gene deletion

required the enhanced descriptiveness of Process Networks. The DI, while indicative of likely
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synergism, is still able to be parsed into the contributions of the individual dysregulation of a
pathway or gene. This is able to indicate likely mechanisms to be evaluated to understand each
case of synergism. This overall process of predicting synergistic combinations is 90.4% specific
and sensitive. Overall, this approach proves to be a descriptive and predictive approach in
analyzing the nexus of DNA damage repair, cell cycle, apoptosis, and MAPK pathways. While
more focused than other approaches that predict synergism, Process Networks and the

identification of disrupted pathways provides a unique mechanistic perspective.
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CHAPTER 4. FUTURE DIRECTIONS

Agents that damage DNA remain a prominent component of the tumor treatment strategies.
The increased rates of proliferation in tumor cells affects stress and dependence on dysregulated
cell cycle checkpoints.>! Effective DNA damage agents work by increasing DNA damage detected
by the cell to those exceeding the DNA damage repair (DDR) pathways' capacity. Tumor
resistance arises through further dysregulation of DDR or reduced functionality of apoptosis.446447
Tumor plasticity has led to DNA damage agents' lower efficacy in recurring tumors while still
possessing severe side effects. As displayed in this work, ample opportunities exist within DNA
damage repair systems that could lead to innovation in oncology. The sensitization of tumors to
artificially induced DNA damage and leveraging their dependence on DNA damage repair through
targeted therapy remain fodder for discovery.*#:44% My focus on drug combinations and phenotypic
studies has provided a broad view of these observations' utility. What remains to be understood
are what precise molecular interactions these inhibitors are targeting to bring about these results.
Furthermore, any models of these interactions would require a similar understanding of the
nuances of individual protein functions within protein complexes. Improving our knowledge of
how various forms of inhibition can influence DDR pathways, both through biochemistry and in

silico models, can drive this innovation.

4.1 Further Evaluation of Specific DNA Damage Repair Inhibition through PCNA

PCNA isinvolved in numerous pathways with functional modulation through multiple post-
translational modifications (Fig. 4.1).2!! Many of the protein-protein interactions required for both
the modifications and pathway complexes share a similar binding motif. Therefore, multiple
effects are anticipated for PCNA antagonists binding at these sites. The observations
differentiating T2AA as well as our tripeptoids inhibitor are clear examples of the functional
diversity of PCNA antagonism. What has not been demonstrated in this study are the exact
molecular effects upon PCNA, or its interactors, that are responsible for each class of PCNA
inhibitors. Since PCNA is a modular interaction platform regulated by post-translational
modifications (PTM), it is vital to understand PCNA through PTMs in relevant DDR pathways.

PTM assessment would involve a direct investigation of known changes related to DDR in K164
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and Y211 status. With T2AA, it is already known that the mechanism of action involves an effect
on K164 ubiquitination, which directly impacts TLS and HR recruitment.4>® These features can be
used to quickly identify likely interactors significant to each class of PCNA antagonism. However,
investigating specific interactions of PCNA required by different repair pathways at specific points
can further define these molecules. A focus on PCNA interactions should go beyond the work
done to investigate PCNA-DNA polymerase complexes.??® Further, protein-protein interaction

studies should involve the single-strand break (SSB) repair pathways that require PCNA.

HR

Figure 4.1: PCNA Post-Translational Modification and DNA Damage Repair Pathway Influence. PCNA is involved
as a scaffold protein to form protein-DNA complexes in the four repair pathways represented: mismatch repair
(MMR), nucleotide excision repair (NER), homologous recombination (HR), base excision repair (BER). Proteins
that are involved in complexes with PCNA are represented by rhombuses and modifiers of PCNA are represented by
rectangles. The different arrows represent different modifications with EGFR phosphorylating PCNA, RAD18
ubiquinating PCNA, and SETD sumoylating PCNA.
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4.1.1 Understanding Differential Inhibition of Homologous Recombination

The HR pathway has multiple proteins that small molecules have targeted. (Fig. 4.2)
Within our studies, we have utilized our PCNA inhibitors as well as ATM inhibitor KU-55933.
Rad51, Rad54, and the Bloom helicase (BLM) have all been successfully targeted to reduce HR
activity.*51-453 ATM is necessary for end processing which allows for the formation of the Rad51
nucleofilament. Rad51 is required to initiate strand invasion to form the Holliday junction for
template-derived repair. Rad54 is required to remove Rad51 to allow for stable complementation
after strand invasion. BLM is then required to ensure that the Holliday junction is resolved without
additional double-strand breaks (DSB) (Fig. 4.2). All these proteins physically interact with PCNA
in a manner that is important to HR progression. Inhibition of HR through a selective inhibitor of
PCNA protein-protein interaction (PPI) could potentially have an HR effect through any of these
interactors. Our assessment of Rad51 foci formation and the PCNA inhibitors' ability to synergize
with an ATM inhibitor provided insight into two types of HR inhibition. Further, testing these
molecules in an HR-deficient context provides some insight into whether there are additional
mechanisms to be evaluated. To fully understand the effects and types of PCNA inhibition, we
should evaluate relevant PTMs of PCNA, additional foci, and additional drug combinations.

The two PTMs of PCNA relevant to HR most studied are mono-ubiquitination of K164
(ubK164) and phosphorylation of Y211 (pY211).4* There is also the less understood sumoylation
of K164 (suK164), which is mutually exclusive with ubK164. ubK164 is controlled by the E3
ligase RAD18.4%° Several studies have reduced RAD18 function through siRNA resulting in a
reduced HR capacity.*>¢45" A direct effect on ubK164 status by a PCNA inhibitors would explain
the likely set of blocked interactions. suK164 directly inhibits HR activity of PCNA as well as
promotes cytoplasmic localization of PCNA.

It is possible that our inhibitors somehow, either directly or indirectly, enhance the amount
of suK164. pY211 is controlled by EGFR and was initially understood as a DNA replication
marker.#84%9 pY211 prevents poly-ubiquitination of PCNA and is also required to maintain
PCNA-polymerase complexes in DNA replication. The impact of pY211 on HR is not well
understood. The evaluation of this PTM would also distinguish whether effects directly impact the
amount of PCNA rather than a specific form of PCNA.
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Figure 4.2: DNA Double-Strand Break Repair via Homologous Recombination with Inhibitor Targets. Black squares
outline targets with selective inhibitors.
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Rad51 foci were selected for evaluation as it is not directly modified by ATM and it is one
of the first HR-specific marker. 53BP1 is another common marker for HR but can be modified to
promote progression to non-homologous end joining (NHEJ).46%461 53BP1 is also required to
activate ATM’s subsequent HR functions allowing ATM inhibition to render 53BP1 effects
moot.*62463 Also, inhibition of PCNA K164 ubiquitination reduces 53BP1 foci formation, but
PCNA foci formation requires 53BP1 foci dissolution.#6446> An evaluation of H2AX, RPA, 53BP1,
RADS51, PCNA foci formation over multiple time points in a 24-hour period would define the
progression through HR. Pairing this HR foci panel with Ku70/80 and PARP1 foci as controls
would identify whether a reduction in HR-related foci is related to NHEJ or HR dysfunction.*%6

In this study, HR antagonists were not combined with NHEJ antagonists. Instead, a focus
on specific effects of each PCNA inhibitor revealed separate classes. Only one HR antagonist, KU-
55933, was used with a PCNA inhibitor, which prevents the formation of RAD51 foci. Evaluating
only one HR antagonist combination was to focus my work on one likely mechanism of PCNA
antagonism. Drug combinations of PCNA inhibitors with inhibitors of RAD51, RAD54, and BLM
would establish whether they overlap with other HR steps. These combinations with the NHEJ
inhibitors of PARP1 or DNA-PK could establish which HR phase is being impacted by a class of
PCNA inhibitors. This could also be achieved with siRNA experiments exploring the loss of these
gene products. Proteomic studies to assess notable PTMs of these proteins and downstream

effectors can also interrogate the steps in between the foci development that PCNA may influence.

4.1.2 Evaluating Any PCNA Inhibition of Nucleotide Excision and Base Excision Repair

While this study focused on DSB and their direct repair, there are other means of increasing
DSBs and damage-related stress. PCNA is a key component of both base excision repair (BER)
(Fig. 4.3) and nucleotide excision repair (NER) (Fig. 4.4). SSBs rapidly progress to DSB through
inhibition of repair pathways.*”4% While we possess convincing data suggesting a direct effect
on HR, this does not preclude an effect on SSB repair. The selection of ATM as the HR antagonist
capably differentiates the mode of HR inhibition some PCNA inhibitors exhibit. However, an
ATM inhibitor was a poor choice to assess SSB repair effects of PCNA antagonists. ATM has a
direct effect on BER activation which could mask PCNA inhibitory effects in SSB.46°
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Directly measuring SSB repair of PCNA through alkaline comet assays or utilizing SSB-specific
damaging agents are the first steps to be taken. If SSB damage is enhanced in the presence of
PCNA inhibitors, further work focusing on interactors of PCNA in SSB repair, including APEX

and XPG would be necessary.470471

4.2 Improving Process Network Mapping and Resolution

The process network maps created were able to capably separate synergistic and non-
synergistic drug combinations through their disruption index (DI). While predictions of relative
magnitude of synergism would be impactful, being able to describe antagonism specifically would
be of greater impact. It would require additional descriptors for differentiation of changes in
network dynamics. The equation developed for DI specifically highlights the disruption of the
current network, as implied by the name. However, the disruption measured focuses on local
features within a process and does not include a descriptor of overall network integrity and ability
to accomplish a specific task. Instead, it is focused on the relative decreases in connectivity
between and within processes. Still, as seen in many resistant tumors, a well-connected system is
not required. Being able to define the minimal network necessary and to be able to understand
likely areas of compensation would be required to evaluate resistant features.#’2473 Including
additional edge and node types would be able to describe the true connectivity of a network. As
such, I recommend including both transcription factor and miRNA edges to define the regulation
of the network by itself to articulate network plasticity. Further, more articulate descriptions of
currently evaluated nodes and edges by likely functional significance through the formation of

complexes and somatic mutations could describe the impact of gene expression.

4.2.1 Defining Node and Edge Activity as Discrete Groups through Known Complexes and
Somatic Mutations

Due to the multiple functions of proteins and their interactions determining their
functionality, defining proteins as discrete nodes is inaccurate. In my model, for expedience, each
node was given similar influence over all nodes that they interacted with. In the case of
underexpressed genes, the weighted eigenvector analysis reduces the influence genes connected

to these can receive and impart. However, the loss of one interactor can enhance other interactors'
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activities that are mutually exclusive, as in the case of some transcription factors.#’* In this model,
it is assumed that all interactions occur more or less simultaneously. To counter this feature of our
model, proteins that act in concert with one another can also contribute to “compound nodes”
representing a protein complex (Fig. 4.5A). Creating novel single node to represent a group of
nodes is not a new concept or solution. However, the use of eigenvectors to expedite this
calculation would be. Compound nodes are also often used to create sparse networks, whereas |
would be doing so to make additional data points.

Another change in network structure would be to utilize the status of shared or unshared
GO terms of proteins interacting with one another (Fig. 4.5B). Nodes’ GO commonality with their
neighbors is data already collected to define GO Cohesion and Adhesion, allowing the model to
evaluate inter-and intra-pathway regulation. GO commonality defines here how entire processes
interact with one another on a large-scale. Understanding GO commonality as a local phenomenon
can better define the influence of small groups of nodes instead of seeing them as the sum of
disparate points. Furthermore, GO commonality can be utilized to determine which groups of
genes should respond together rather than separately. The ability to gauge the capacity of the
network to maintain connectivity despite disruption would allow for measurements of antagonism.

Somatic mutations are another feature that is not directly accounted for in this model.
Many somatic mutations will cause downstream effects that can be observed in the gene
expression profile. Loss-of-function (LOF) and gain-of-function (GOF) mutations can redefine
the GO profile of a particular protein. Some somatic mutations cause changes in the protein's
molecular function and others alter structural features necessary to bind to other proteins. The
annotation required to define whether a somatic mutation changes just the GO profile or what
edges exist could take considerable effort. However, several databases have compiled more

common somatic mutations to expedite this process.*’547
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Figure 4.5: Additional Network Descriptor Model. A) Node complex model; nodes that can comprise a similar
complex with interchangeable components can be modeled as a complex node. Complex nodes may possess different
functions depending on the members of the complex. Overexpressed genes, designated in yellow, will be more favored
over complexes including underexpressed genes, designated in blue. B) Node GO commonality can be used to
described groups of nodes. Their uncommon GO terms can be used to describe the influence of nodes on other
processes.

4.2.2 Introducing Transcription Factor and miRNA Networks to Create New Edges

Networks created solely on genetic data have been used to characterize disease pathology

and drug responses.*’"478 | utilized only gene expression in my networks and have also proposed
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somatic mutation influences on the current node set. However, adding additional edges that are
defined by a transcription factor's ability to increase or decrease the gene expression can also be
used to understand influence (Fig. 4.6).%’ The presence of transcription factor sets in the network
can show a tumor's ability to react to certain inhibitors. Gene removal would no longer be utilized
as a model for inhibition, but a fixed reduction of a target available to interact. A reduction in
expression would then be able to be countered by increases in gene expression through this new
model. This novel approach would require two networks to be created, one from the original data

and then an additional network of a
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Figure 4.6: Representation of a Transcription Factor Network

compensate for changes due to
inhibition. Even if a secondary
network is not produced, the
presence of upregulated transcription factors and the loss of miRNA can be used to create an
additional coefficient, a Resistance Index. The Resistance Index would represent the projected
ability of a network to compensate for currently upregulated processes. An estimate of resistance
potential would be key to predictions of antagonism and synergism and the emergence of drug

resistance.
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APPENDIX A. ADDITIONAL DATA CHARACTERIZING PCNA INHIBIT
OR CLASSES’ MECHANISMS OF ACTION

Table A.1: PCNA Inhibitor GI50 Values in Combination with DNA Damaging Agents

HCC1937 MDA-MB-23]1 | MDA-MB-436 | MDA-MB-468
Treatment ﬁgﬁ SD 1/l gfﬁ SD 1/ClI ﬁﬁ; SD 1/CI ﬁg;g SD 1/CI
T2AA >100 NA NA| >100 NA NA[ >100 NA NA| >100 NA Na
AOH39 272 026 NA| 231 024 NA| 224 021 NA| 180 024 NA
AOH1160 023 002 NA| 018 003 NA| 019 003 NA| 0.18 0.02 NA
T2AA-NEal-NPip (TEP) >100 NA NA| >100 NA NA|[ >100 NA NA| >100 NA Na
NLys-NPip-NBal (LPB) >100 NA NA| >100 NA NA|[ >100 NA NA| >100 NA Na
NLys-NPip-NTyr (LPT) >100 NA NA| >100 NA NA|[ >100 NA NA| >100 NA Na
Doxorubicin (Dox) 251 210 NA| 532 426 NA| 186 0.19 NA| 923 126 NA
Dox+30 M T2AA 172 017458 061 009 62| 121 014125 12 0.163.58
Dox+0.2 tM*AOH39 09 008271 028 004 294 018 003233 06 008252
Dox+0.01 M*AOH1160 06 009 28| 029 004 296 024 003217] 07 007245
Dox+30 yM TEP 19 016444 1.6 022 556/ 1.54 016107 1 0103588
Dox+30 M LPB 22 027421] 18 026 544 156 025 1| 12 013338
Dox+30 uM LPT 28 033383 21 021 528 1.6 02309 11 009372
KU55933 331 308 NA| 355 468 NA| 471 738 NA| 381 4.89 NA
KUS5933+30 M T2AA 30.5 3.83094| 345 348 09| 458 432 09| 363 3.53001
KU$5933+0.2 \M*AOH39 73 085181 82 078 178 324 286098 84 116181
KUS55933+0.01 yM*AOH1160 | 69 0.57185] 98 139 1.65| 308 277 1.02| 7.3 093 1.91
KU55933+30uM TEP 313 462092 348 534 089 461 578 0589| 351 3.84094
KU55933+30M LPB 321 379 09| 352 542 088| 469 6.630.88| 346 4.030.95
KU$5933+30uM LPT 324 504089 306 446 099 448 6.620091| 352 539094
NU7026 615 9.10 NA| 551 861 NA| 45 044 NA| 587 801 NA
NU7026+30 uM T2AA 74 064 37| 65 074 374] 52 050077 74 078363
NU7026+0.2 uM*AOH39 62 075231 71 059 217] 13 018161 33 044257
NU7026+0.01 \M*AOH1160 59 056233 69 102 219 1 014 18| 29 043262
NU7026+30 M TEP 81 108355 7 065 361 43 068091 83 072344
NU7026+30 uM LPB 85 131347 74 063 352| 47 038084 99 103314
NU7026+30 iM LPT 84 123349 73 075 354| 51 070078 88 083334
Olaparib >100 NA NA| 63 052 NA| L1 009 NA| 84 075 Na
Olaparib+30 M T2AA 46 066531 085 013 351 099 0.14096] 12 012342
Olaparib+0.2 {M*AOH39 68 058257 092 0.12 200 023 002185 091 012227
Olaparib+0.01 KM*AOH1160 55 054264 091 009 21| 025 0.031.79] 089 0.10228
Olaparib+30 M TEP 53 045516) 1 014 324 1 011095 1.6 015294
Olaparib+30 M LPB 590 086503 11 011 309 1 011095 21 02525
Olaparib+30 yM LPT 62 08249 12 017 294| 1.1 o010087] 23 022236
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Table A.2: PCNA Inhibitor LD, Values in Combination with DNA Damaging Agents and

DNA Repair Inhibitors

HCC1937 MDA-MB-231 MDA-MB-436 | MDA-MB-468
Treatment LD50 LD50 LD50 LD50

qap D VCI (g SDVCI| (o SD LI v SD1/CI
T2AA >100 NA NA| >100 NA NA | >100 NA NA | >100 NA NA
AOH39 26.72 3.64 NA| 22.1 347 NA| 245 220 NA | 209 257 NA
AOH1160 129 140 NA| 114 172 NA| 102 1.09 NA| 103 1.19 NA
T2AA-NEal-NPip (TEP) >100 NA NA| >100 NA NA | >100 NA NA | >100 NA NA
NLys-NPip-NBal (LPB) >100 NA NA| >100 NA NA | >100 NA NA | >100 NA NA
NLys-NPip-NTyr (LPT) >100 NA NA| >100 NA NA | >100 NA NA | >100 NA NA
Doxorubicin (Dox) 136nM 164 NA| 1.18 0.15 NA | 1.05 0.10 NA [99.11M 14.3 NA
Dox+30 uM T2AA 6.720M 0.54 5.02|713.601M 2.14 6.2 [187nM 18.4 3.11|77.30M 1.13 3.79
Dox+0.2 tM*AOH39 4.9110M 0.52 2.71|1.940M 0.22 2.99 [60.20M 7.25 2.56 [0.620M 0.07 3
Dox+0.01 pM*AOH1160 2.760M 0.21 2.87|2.050M 0.32 2.99 [82.20M 10.5 2.44 [0.750M 0.06 3
Dox+30 uM TEP 9.120M 0.85 4.61|17.70M 2.10 6.07 [870nM 98.7 1.03 [1.04nM 0.11 6.24
Dox+30 uM LPB 12.50M 1.99 4.14|20.8nM 2.13 5.97|902nM 136 1 |1.23nM 0.18 6.16
Dox+30 uM LPT 14.10M 2.05 3.95|26.1 1M 3.35 5.81940nM 110 0.96 [2.77nM 0.11 6.19
KU55933 (ATM) >100 NA NA| 653 693 NA| >100 NA NA | 524 832 NA
KU55933+30 1M T2AA >100 NA NA| >100 NA NA | >100 NA NA | >100 NA NA
KU55933+0.2 tM*AOH39 35.6 420196 427 639 1.03| 914 941 127| 456 5.52 0.91
KU55933+0.01 pM*AOH1160[ 30.2 2.58 2.07| 49.7 7.49 0.93| 854 102 1.32| 34.1 4.76 1.02
KU55933+30 M TEP >100 NA NA| >100 NA NA | >100 NA NA | >100 NA NA
KU55933+30 M LPB >100 NA NA| >100 NA NA | >100 NA NA | >100 NA NA
KU55933+30 uM LPT >100 NA NA| >100 NA NA | >100 NA NA | >100 NA NA
NU7026 (PRKDC) >100 NA NA| >100 NA NA | 80.5 821 NA | >100 NA NA
NU7026+30 uM T2AA 40.1 4.05286| 362 3.36 3.03| 28.1 2.55 2.01| 42.2 3.84 2.78
NU7026+0.2 uM*AOH39 322 269203| 374 554 1.93| 151 153 1.92| 20.2 3.16 231
NU7026+0.01 {M*AOH1160 | 28.7 2.92 2.1| 358 524 1.96| 11.2 1.67 2.12| 162 2.08 2.42
NU7026+30 uM TEP 43.8 3.662.72| 392 550 29| 23.7 320 226| 50.3 7.44 25
NU7026+30 uM LPB 525 557243| 415 580 2.8 | 251 2.13 2.17| 68.7 5.63 2.03
NU7026+30 uM LPT 561 826233 38 4.86295| 302 280 191| 569 6.70 231
Olaparib (PARP1) >100 NA NA| 501 671 NA| 41 046 NA| 43.1 6.88 NA
Olaparib+30 uM T2AA 12.6 1.04 47| 322 044 467| 3.6 036 098| 244 022 4.84
Olaparib+0.2 uM*AOH39 254 2402.18| 466 0.54 235| 098 009 1.75| 2.05 0.16 2.63
Olaparib+0.01 yM*AOH1160 | 181 1.70 2.36| 4.31 0.66 2.39| 0.87 0.10 1.84| 215 034 2.61
Olaparib+30 yM TEP 15.3 237442 615 090 3.67| 3.85 0.55092| 627 0.74 3.41
Olaparib+30 M LPB 224 1.89382| 602 0.863.71| 401 061 0.89| 845 1.04 2.89
Olaparib+30 M LPT 247 3933.66| 821 099 3.19| 391 059 091| 7.89 0.85 3.01
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Table A.3: PCNA Inhibitor Effects on DNA Damage in Combination with DNA Damaging
Agents and DNA Repair Inhibitors

L HCC1937 MDA-MB-231 MDA-MB-436 MDA-MB-468
Treatment A)DNA SD % No uDNA % No %DNA D % No [% DNA % No

Tail Dmg | Tail Dmg | Tail Dmg | Tail Dmg
Vehicle 46 048 981 | 45 039 981| 51 050 975| 42 0.60 98.6
T2AA 45 059 979 43 042 992 | 54 047 974 48 0.63 984
AOH39 83 092 732| 7.1 077 823 7.1 087 821 | 7.5 0.67 796
AOH1160 82 067 741 | 84 076 729 69 1.0l 84 | 78 107 77
T2AA-NEal-NPip (TEP) 47 055 978 | 43 046 992 | 53 064 99 | 49 047 983
NLys-NPip-NBal (LPB) 5 078 975 4 062 999 | 545 046 974 | 53 051 995
NLys-NPip-NTyr (LPT) 51 057 981 | 41 059 996 535 054 985| 49 0.63 982
KU55933 (ATM) ~25 uM 126 192 496 145 198 416| 87 129 70.7| 246 3.07 114
KU55933+30uM T2AA 134 146 46.1| 145 151 418| 74 096 803 | 244 2.05 11.9
KU55933+229 nM*AOH39 209 3.09 208 | 206 1.81 216| 163 1.51 349 30.1 245 046
KU55933+19.5nM*AOH1160[ 24.1 3.53 12.6 | 20.7 2.52 212| 17.6 252 30.5| 31.5 439 032
KU55933+30uM TEP 13.6 175 452 174 2.06 31.1| 82 101 744 ] 235 272 142
KU55933+30uM LPB 13.6 190 455 172 2.60 318| 79 0.74 758 | 234 244 144
KU55933+30uM LPT 14.1 150 432 174 2.56 312 | 82 130 74 | 251 3.64 104
NU7026 (PRKDC)~30 uM 9.7 088 648 151 1.70 394 | 219 224 18 | 156 220 374
NU7026+30 unM T2AA 183 254 284 | 244 242 12 | 224 183 169 342 515 0.15
NU7026+229nM*AOH39 194 219 25 | 246 329 114 | 308 429 053] 31.1 3.23 0.23
NU7026+19.5nM*AOH1160 | 205 2.05 219 ]| 254 286 96 | 312 3.03 047 | 322 4.08 (.71
NU7026+30 uM TEP 192 2.14 256 227 231 16.1| 209 201 20.8| 348 4.87 0.74
NU7026+30 M LPB 174 2.63 312 239 3.03 13.1| 21.5 228 192 | 357 531 0.09
NU7026+30 uM LPT 18.1 2.02 29 | 238 224 133 ] 232 236 148 324 3.29 0.76
Olaparib (PARP1) ~5 uM 55 071 968 105 091 599| 23.1 328 15 | 151 1.34 394
Olaparib+30 uM T2AA 233 248 146 248 372 11 | 247 2.87 11.2] 383 558 0.23
Olaparib+229 nM*AOH39 224 280 168 272 3.07 58 | 323 3.07 0.14| 402 3.79 049
Olaparib+19.5 nM*AOH1160 | 235 3.61 141 | 269 243 63 | 329 2.72 047 | 41.7 4.18 054
Olaparib+30 yM TEP 242 288 124 249 243 107]| 256 394 92 | 39.7 3.64 0.73
Olaparib+30 uM LPB 254 241 97 | 254 3.06 97 | 252 274 10 | 382 591 046
Olaparib+30 yM LPT 23.1 339 151 | 248 378 11.1]| 255 3.72 9.4 | 381 3.82 0.68
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Table A.4: PCNA Inhibitor Effects on Replication

Treatment MDA-MB-231 MDA-MB-436 MDA-MB -468
reatmen

%Gl SD %S SD %G2 SD [%Gl SD %S SD %G2 SD [%Gl SD %S SD %G2 SD
30 uM T2AA 0.18 0.02 10.3 1.04 89.5 8.51{0.29 0.03 12.9 2.03 86.8 8.95[0.34 0.04 11.6 1.22 88.1 12.6

0.2 uM*AOH39

0.01 uM*AOHI1160

30 uM T2A A-NEal-NPip (TEP)
30 uM NLys -NPip -NBal (LPB)
30 uM NLys -NPip -NTyr (LPT)

0.62 0.07 1.31 0.15 98.1 8.23
0.330.032.650.29 97 13.4
0.45 0.06 1.87 0.2097.7 15.3
0.180.02 1.11 0.1298.7 11.7]
0.16 0.02 1.41 0.13 98.4 14.6]

0.330.04 1.750.21 87.9 8.08
0.250.02 1.56 0.15 84.2 7.77
0.17 0.01 1.43 0.20 85.6 10.3
0.17 0.03 1.350.11 98.5 8.28
0.39 0.04 1.27 0.19 98.3 14.1

0.550.06 1.48 0.20 84.7 13.3
0440.041470.1583.912.2
0.370.031.140.1388.311.7
0.060.011.090.10 89 12.2
0.110.010.650.1091.211.2

Doxorubicin (Dox)
Dox+30 uM T2AA
Dox+0.2 pM*AOH39
Dox+0.01 uM*AOH1160
Dox+30 uM TEP
Dox+30 uM LPB
Dox+30 uM LPT

22 3.3569.39.53 8.7 0.95
42.1 5.6553.96.88 3.9 0.33
56.1 647422419 1.7
62.3 937352336 2.5
36.25.1460.77.93 3.1
35.12.9161.28.51 3.7

0.20]
0.31
0.48
0.57]

37.84.21 57.9 7.48 4.3 0.50

26.7 3.81 63.97.079.41 1.23
36.55.61 58.9 6.44 4.56 0.50
68.27.91 29.1 3.19 2.67 0.29
71.3 6.8525.42.433.310.49
29.43.50 62.3 6.08 8.35 1.06
27.53.10 64.3 9.598.22 1.31
29.13.59 63 5.117.951.16

44.1 6.24 47.1 6.56 8.82 0.87
51.355446.43.732.310.33
73.410.8 24.6 3.59 1.99 0.30
8§2.912.515.1 1.572.01 0.23
48.84.63 47.1 4.04 4.11 0.54
50.1 7.10 46.1 6.82 3.81 0.42
49.27.22 46.7 6.30 4.03 0.60

KU55933

KU55933+30 pM T2AA
KUS55933 +0.2 pM*AOQH39
KUS55933 +0.01 uM*AOHI160
KUS55933 +30 uM TEP
KU55933 +30 uM LPB
KUS55933 +30 uM LPT

0 0.0057.85.234225.55
0 0.0089.613.710.41.20
0 0.0055.65.8244.46.84
0 0.0052.18.2547.97.07
0 0.0050.95.8749.14.53
0 0.0053.64.5746.47.30]
0 0.0051.47.2448.65.99

0 0.0059.36.8540.73.76
0.00 78.6 8.16 21.4 2.28
0.00 53.1 6.39 46.9 6.28
0.0051.75.3448.36.21
0.00 56.2 4.76 43.8 4.17
0.00 57.1 7.43 42.9 6.69)
0 0.0055.37.9744.7 3.69

o o o <o <o

0 0.0051.46.19 48.6 3.98
0 0.00 90 10.7 10 1.37
0 0.0055.6 8.20 44.4 4.10
0 0.0052.17.9047.95.96
0 0.0050.94.5949.17.26
0 0.0053.66.0946.45.04
0 0.0051.46.2548.64.85

NU7026

NU7026 +30 uM T2AA
NU7026 +0.2 uyM*AOH39
NU7026 +0.01 pM*AOHI1160
NU7026 +30 uM TEP
NU7026 +30 uM LPB
NU7026 +30 uM LPT

0.36 0.03 37.93.22 61.7 8.06]
15.21.5371.911.112.9 1.26]
30.3 4.37 25.2 2.80 44.5 4.86|
35.65.1722.42.88 42 6.30
18.72.90 48.1 6.52 33.2 2.68
19.2 2.32 52.3 6.75 28.5 2.34]
18.4 2.8549.1 6.75 32.5 4.85

0.22 0.03 43.1 5.99 56.7 5.80
0.550.0545.3 5.40 54.2 8.50
16.22.36 39.23.21 44.6 6.01
18.1 1.83 38.3 3.38 43.6 4.83
0.28 0.04 40.1 3.34 59.6 7.21
0.47 0.04 46.3 4.62 53.2 4.42
0.33 0.03 44.7 4.99 54.9 7.62

0.61 0.09 39.1 5.36 60.2 9.16
18.12.1569.55.8012.4 1.09
33.12.9527.23.23 39.7 6.20
30.8 3.63 28.9 4.54 40.3 6.10
14.3 1.89 38.1 4.41 47.6 5.38
13.1 1.07 37.8 4.72 49.1 6.32
11.51.08 35.6 3.16 52.9 6.11

Olaparib

Olaparib +30 uM T2AA
Olaparib +0.2 pM* AOH39
Olaparib +0.01 uM*AOH1160
Olaparib +30 uM TEP
Olaparib +30 uM LPB
Olaparib +30 uM LPT

0.27 0.02 29.4 4.70 70.3 7.04
22.32.6773.49.72 43 045
33.12.8927.1 2.2539.8 6.32
41.24.8326.23.7232.64.32
15.12.1140.15.3444.84.21
17.2 2.41 38.3 5.95 44.5 4.09
16.82.1239.75.8243.56.01

0.31 0.03 35.1 4.68 64.5 6.96
0.78 0.10 60.3 5.73 38.9 3.14
20.32.57 34.3 4.5945.4 6.36
22.62.9536.1 5.68 41.3 3.87
0.88 0.10 34.1 4.61 65 8.33
0.45 0.06 36.3 4.58 63.29.12
0.12 0.02 34.9 3.51 64.9 8.23

0.610.07 22.8 1.84 76.5 6.47
23.42.3570.88.16 5.8 0.80
33,1 3.4027.1 3.72 39.8 4.68
41.2 3.8626.23.93 32.65.14
18.6 1.94 36.1 3.38 45.3 3.69
14.6 2.30 30 2.68 55.4 8.86
15.42.13 36.54.98 48.1 5.70
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Table A.5: PCNA Inhibitor Effects on UV Damage Tolerance within S Phase

Treatment MDA-MB-231 MDA-MB-436 MDA-MB-468

%G1 SD %S SD %G2 SD [%G1 SD %S SD %G2 SD [%G1 SD %S SD %G2 SD
B30 UM T2AA 0.18 0.02 10.3 0.89 89.5 11.3(0.29 0.03 12.9 1.56 86.8 13.2(0.34 0.04 11.6 1.34 88.1 7.29
0.2 tM*AOH39 0.62 0.06 1.31 0.19 98.1 13.5(0.33 0.05 1.75 0.23 87.9 10.0{0.55 0.06 1.48 0.15 84.7 8.92
0.01 YM*AOH1160 0.33 0.03 2.65 029 97 149|025 0.04 1.56 0.21 84.2 8.41|0.44 0.05 1.47 0.20 83.9 §.19
30 uM T2AA-NEal-NPip (TEP) |0.45 0.07 1.87 0.15 97.7 10.5(0.17 0.02 1.43 0.23 85.6 12.5/0.37 0.05 1.14 0.11 88.3 11.8
30 M NLys-NPip-NBal (LPB) [0.18 0.02 1.11 0.13 98.7 13.2(0.17 0.02 1.35 0.15 98.5 10.4/0.06 0.01 1.09 0.12 89 12.6
30 M NLys-NPip-NTyr (LPT) [0.16 0.02 1.41 0.21 98.4 15.3[0.39 0.06 1.27 0.16 98.3 8.52]0.11 0.01 0.65 0.06 91.2 10.1
Doxorubicin 22 2.21 693 890 8.7 0.81]26.7 2.38 63.9 9.79 9.41 0.94|44.1 532 47.1 593 8.82 0.79
Dox+30 uM T2AA 42.1 422 539 620 3.9 0.45|36.5 4.52 58.9 6.58 4.56 0.69(51.3 5.86 46.4 4.23 2.31 0.20
Dox+0.2 uM*AOH39 56.1 5.70 42.2 436 1.7 0.25(68.2 10.2 29.1 3.87 2.67 0.32|73.4 6.12 24.6 2.26 1.99 0.27
Dox+0.01 tM*AOH1160 62.3 6.69 352 346 2.5 0.33|71.3 6.99 254 3.07 3.31 0.53]|82.0 7.99 15.1 1.87 2.01 0.31
Dox+30 uM TEP 36.2 3.68 60.7 659 3.1 0.46(29.4 3.67 62.3 9.59 835 0.92(48.8 7.01 47.1 497 4.11 0.48
Dox+30 uM LPB 351 470 61.2 802 3.7 0.35(27.5 2.20 64.3 7.49 822 0.74(50.1 4.23 46.1 5.62 3.81 0.59
Dox+30 uM LPT 37.8 3.09 57.9 587 4.3 0.51(29.1 4.02 63 820 7.95 0.80[49.2 436 46.7 7.16 4.03 0.54
KUS55933 0 000578 793 422 3.87| 0 0.00 593 6.25 40.7 5.03| 0 0.00 51.4 6.21 48.6 6.78
KUS55933+30 uM T2AA 0 0.00 896 12.6 10.4 0.85| 0 0.00 78.6 10.9 21.4 267| 0 0.00 90 121 10 1.44
KU55933+0.2 uM*AOH39 0 0.00 556 7.86 444 401 0 0.00 53.1 6.75 46.9 6.36| 0 0.00 55.6 6.78 44.4 6.05
KU55933+0.01 uM*AOH1160 | 0 0.00 52.1 6.81 47.9 471 0 0.00 51.7 447 483 548| 0 0.00 52.1 821 47.9 6.18
KU55933+30 uM TEP 0 0.00 509 7.70 49.1 6.79| 0 0.00 56.2 7.93 43.8 3.93| 0 0.00 50.9 7.30 49.1 4.67
KU55933+30 uM LPB 0 0.00 53.6 663 46.4 414 0 0.00 57.1 6.58 42.9 4.80| 0 0.00 53.6 5.11 46.4 4.20
KU55933+30 uM LPT 0 0.00 514 531 486 578 0 0.00 553 8.57 44.7 581| 0 0.00 514 6.01 48.6 541
INU7026 0.36 0.05 37.9 5.12 61.7 6.42(0.22 0.03 43.1 439 56.7 6.15|0.61 0.07 39.1 6.20 60.2 8.51
NU7026+30 M T2AA 152 2.01 71.9 10.2 12.9 1.49|0.55 0.07 453 3.97 54.2 4.81[18.1 2.64 69.5 6.99 12.4 1.01
NU7026+0.2 uM*AOH39 30.3 3.30 25.2 3.38 44.5 6.69]16.2 2.37 39.2 6.00 44.6 6.94|33.1 3.60 27.2 2.75 39.7 4.66
NU7026+0.01 uM*AOH1160  [35.6 4.04 22.4 273 42 570|181 1.81 383 6.09 43.6 5.26|30.8 4.21 28.9 439 40.3 5.40
INU7026+30 uM TEP 18.7 2.22 48.1 5.99 33.2 2.83|0.28 0.04 40.1 5.78 59.6 7.95[14.3 1.59 38.1 4.06 47.6 5.79
INU7026+30 M LPB 19.2 3.01 523 5.04 28.5 2.68|0.47 0.06 46.3 4.95 53.2 6.14|13.1 1.51 37.8 5.09 49.1 6.17
INU7026+30 uM LPT 18.4 2.37 49.1 4.55 32.5 4.65(0.33 0.04 44.7 6.47 54.9 5.07|11.5 1.78 35.6 3.96 52.9 8.42
Olaparib 0.27 0.04 294 298 70.3 11.0{0.31 0.05 35.1 4.61 64.5 853(0.61 0.05 22.8 2.70 76.5 11.2
Olaparib+30 uM T2AA 22.3 1.83 734 839 4.3 035|078 0.09 60.3 5.14 38.9 437|23.4 2.83 70.8 11.1 5.8 047
Olaparib+0.2 uM*AOH39 33.1 4.02 27.1 3.68 39.8 550|203 2.93 34.3 4.46 454 3.99|33.1 4.83 27.1 2.33 39.8 6.00
Olaparib+0.01 pM*AOH1160  [41.2 3.78 262 270 32.6 426|226 2.78 36.1 3.13 41.3 578|412 541 262 370 32.6 3.08
Olaparib+30 uM TEP 151 2.23 40.1 517 44.8 5.10(0.88 0.12 34.1 5.17 65 7.97(186 2.27 36.1 2.94 453 7.09
Olaparib+30 yM LPB 17.2 1.48 383 3.88 44.5 6.60(0.45 0.04 363 501 63.2 10.0(14.6 1.17 30 4.37 554 7.88
Olaparib 30 uM LPT 16.8 2.55 39.7 6.18 43.5 425(0.12 0.01 34.9 3.27 64.9 9.64[154 2.31 36.5 479 48.1 537
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Interaction Matrix
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Scheme B.2: Interaction matrix with sample network. Edges are denoted by 1°s where the two involved nodes intersect
in the matrix
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Expression Matrix
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Scheme B.3: Expression matrix is made using a sample network using green and red to represent underexpression and
overexpression, respectively.
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Gene-GO Matrix — Expression

GO Term g
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Scheme B.5: GO matrix with expression designates GO terms to genes and uses their expression to create a value in
the matrix
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Figure B.1: HCC1937 short network shows the most condensed version of the process network
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Figure B.3: HCC1937 full network shows a process network using all GO terms used to assess the original network
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CC replication

Figure B.4: MCF7 short network shows the most condensed version of the process network
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Figure B.5: MCF7 medium network shows a moderately condensed version of the process network
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Figure B.6: MCF7 full network shows an uncondensed version of the process network

172



L1} '
—_—
——
N I N S
[ HR ] | ccreplication i
N
=
N
MMR
~
-
—————————— |
lllj
NHEJ
NER

Figure B.7: MDA-MB 231 short network shows the most condensed version of the process network
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Figure B.8: MDA-MB 231 medium network shows a moderately condensed version of the process network
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Figure B.9: MDA-MB 231 full network shows an uncondensed version of the process network
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CC replication

Figure B.10: MDA-MB 436 short network shows the most condensed version of the process network
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Figure B.11: MDA-MB 436 medium network shows a moderately condensed version of the process network
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Figure B.12: MDA-MB 436 full network shows an uncondensed version of the process network
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Figure B.13: MDA-MB 468 short network shows the most condensed version of the process network
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Figure B.14: MDA-MB 468 medium network shows a moderately condensed version of the process network

180






|

- CC replication

5

NER
Figure B.16: SKBR3 short network shows the most condensed version of the process network
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Figure B.17: SKBR3 medium network shows a moderately condensed version of the process network
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Figure B.18: SKBR3 full network shows an uncondensed version of the process network
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Table B.1: Combinatorial Treatment by DNA Repair Antagonists in HCC1937, MCF7, and
MDA-MB 231 Measuring Glso

Secondary Agent
Vehicle | Palbociclib T244 KU55933 NU7026 Olaparib Gefitinib
Primary Agent ((Zi(; sD ((ZI;;; SD 1/CI ((ZI;;; SD 1/CI ((ZI;;; SD 1/CI (?3\5/[(; SD 1/CI ai(; SD 1/CI ((i:;; SD 1/CI
HCC1937
Rabusertib (CHEK1) 225 033|181 0.18 1.07|1.85 0.19 1.05|1.79 0.23 1.08| 0.41 0.04 3.46| 0.6 0.07 2.66/1.81 0.24 1.07
Palbociclib (CDK4/6) |88.82 8.03 NA 74.899.69 1.06(79.0411.3 1.01|21.95 2.71 2.88|18.7 2.73 3.22|313 3.72 221
T2AA (PCNA) =100 NA NA >100 NA 0.94|20.95 2.05 3.68]10.781.35 5314061547 231
KU55933 (ATM) 33.13 3.03 - NA 24.05 339 1.21|6.31 0.99 3.44|27.064.25 1.09
NU7026 (DNA-PK) [61.52 9.18 - - NA 52.985.75 1.04|22.722.43 2.13
Olaparib (PARP1) 5.16 0.52 - - - NA 25463.65 2.84
Gefitinib (EGFR) >100 NA - - - - NA
MCF7

Rabusertib (CHEK1) [67.76 6.19]58.93 9.00 1.03[60.23 8.68 1.01[58.93 8.66 1.03[44.89 5.80 1.31/39.584.90 1.46/51.076.51 1.17
Palbociclib (CDK4/6) [11.05 0.93 NA 9.68 0.83 1.02]3.62 0.46 2.33| 9.58 1.06 1.03]|6.18 0.55 1.51/8.99 1.20 1.09
T2AA (PCNA) >100 NA NA >100 NA 0.94|>100 NA 1.08[94.529.65 1.33|>100 NA 1.08
KU55933 (ATM) 82.64 942 - NA 73.49 10.6 1.01|142.4 448 1.63(81.4911.5 0.92
NU7026 (DNA-PK) 2.13 033 - - NA 1.87 0.20 1.01]2.02 0.22 0.94
Olaparib (PARP1) 33.23 343 - - - NA 40.695.27 1.88
Gefitinib (EGFR) 94.27 144 - - - - NA

MDA-MB-231
Rabusertib (CHEK1) [13.07 1.19{10.71 1.23 1.08[11.931.29 0.98]10.71 1.36 1.08| 4.54 0.60 2.22|3.91 0.61 2.49|8.03 1.16 1.39
Palbociclib (CDK4/6) | 4.96 0.65 NA 356 035 101|341 0361.05) 1 0.122.86/0.84 0.13 3.22|3.52 0.44 1.02
T2AA (PCNA) =100 NA NA =100 NA 0.91|18.58 1.67 3.74|20.522.53 3.51|60.987.53 1.54
KU55933 (ATM) 3552 561 - NA 29.02 294 1.09|6.83 1.01 3.42|31.6 428 1.01
NU7026 (DNA-PK) 55.14 8.17 - - NA 43.254.45 1.13|147477.48 1.04
Olaparib (PARP1) 437 048 - - - NA 3.55 0.49 1.84
Gefitinib (EGFR) 8.01 1.00 - - - - NA
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Table B.2: Combinatorial Treatment by DNA Repair Antagonists in MDAM-MB 436, MDA-MB 468,
and SKBR3 Measuring Glso

Secondary Agent
Vehicle | Palbociclib T244 KU55933 NU7026 Olaparib Gefitinib

Primary Agent ELIJ\S;)) SD 511131()) SD 1/CI 511131()) SD 1/CI ELI;IC)) SD 1/CI SLIJ\S/IC)) SD 1/CI SLI}S/[C; SD 1/CI 511131(; SD 1/CI

MDA-MB 436
Rabusertib (CHEK1) [12.69 1.34/1097 146 1.04|10411.13 1.09|5.16 1.25122] 7 098 1.54| 55 0.84 188|522 043 1.96
Palbociclib (CDK4/6) [41.73 5.36 NA 36.344.62 1.03]36.744.91 1.02|35.57 5.19 1.05|23.462.98 1.51|34.473.98 1.08
T2AA (PCNA) =100 NA - NA =100 NA 092]=100 NA 098|=100 NA 1.03|=100 NA 1.02
KUS55933 (ATM) 471 7.52 - - NA 3931394 1074192547 1.01|39.313.80 1.07
NU7026 (DNA-PK) 451 049 - - - NA 396 046 1.02| 3.8 046 1.06
Olaparib (PARP1) 2.04 032 - - - - NA 125 0.15 1.38
Gefitinib (EGFR) 2764 3.80 - - - - - NA

MDA-MB 468
Rabusertib (CHEK1) 041 0.06]0.34 0.04 1.07|033 0.051.09]0.31 0.03 1.15]0.18 0.03 1.79|0.18 0.02 1.84|0.22 0.03 1.54
Palbociclib (CDK4/6) [10.31 1.25 NA 8.78 0.83 1.05|8.69 1.09 1.06] 499 047 1.71|4.36 0.62 191|622 0.87 142
T2AA (PCNA) =100 NA - NA =100 NA 0.91]21.94 245 3.63|24.052.42 3.42|77.439.55 1.39
KUS55933 (ATM) 38.13 3.42 - - NA 2265 245 1.44]18.731.99 1.69|31.8 3.90 1.07
NU7026 (DNA-PK) 58.74 9.10 - - - NA 5112598 1.03[45624.75 1.14
Olaparib (PARP1) 862 1.01 - - - - NA 343 0.50 1.89
Gefitinib (EGFR) 1.63 0.15 - - - - - NA

SKBR3

Rabusertib (CHEK1) 0.05 0.01|0.02 0.00 1.96|0.05 0.00 098]|0.04 0.00 1.03] 0.02 0.00 1.88|0.02 0.00 2.24]0.02 0.00 1.87
Palbociclib (CDK4/6) |2.13 029 NA 1.77 0,17 1.06])1.23 0.12 1461 1.79 0.15 1.05|1.75 0.16 1.07]|1.06 0.16 1.65
T2AA (PCNA) =100 NA - NA =100 NA 096]|67.27 6.45 1.46|49.674.66 1.88|69.496.00 1.42
KU55933 (ATM) 37.08 490 - - NA 3266516 1022461263 131|32664.11 1.02
NU7026 (DNA-PK) 29.63 4.20 - - - NA 26.353.61 1.01|24452.35 1.08
Olaparib (PARPI1) 48.21 4.03 - - - - NA 2211313 1.79
Gefitinib (EGFR) 27 018 - - - - - NA
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Table B.3: Disruption Measured by Disruption Index through Combinatorial Gene Removal of DNA
Repair Genes from Disease Networks in HCC1937, MCF7, and MDA-MB 231

Secondary Gene
_ CDK4/6 PCNA ATM DNA-PK PARPI EGFR
Primary Gene DI DI DI DI DI DI
HCC1937
CHEK1 0.79 0.84 0.72 1.69 1.22 0.92
CDK4/6 NA 0.59 0.61 2.87 2.68 1.91
PCNA - NA 0.22 2.74 341 1.84
ATM - - NA 0.87 2.42 0.69
DNA-PK - - - NA 0.21 1.94
PARPI1 - - - - NA 2.11
EGFR - ) ) ) _ NA
MCF7
CHEK1 0.38 0.14 0.51 0.96 1.64 1.49
CDK4/6 NA 0.65 1.16 0.41 1.89 0.76
PCNA - NA 0.14 0.64 0.78 0.28
ATM - - NA 0.31 1.41 0.39
DNA-PK - - - NA 0.23 0.45
PARPI1 - - - - NA 1.36
EGFR - ) ) ) _ NA
MDA-MB-231
CHEK1 1.21 0.54 0.45 2.11 1.77 1.53
CDK4/6 NA 0.69 0.27 1.92 2.08 0.84
PCNA - NA 0.32 2.78 2.59 1.49
ATM - - NA 1.26 1.68 0.79
DNA-PK - - - NA 0.46 0.87
PARP1 - - - - NA 2.43
EGFR - - - - - NA
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Table B.4: Disruption Measured by Disruption Index through Combinatorial Gene Removal of DNA
Repair Genes from Disease Networks in MDA-MB 436, MDA-MB 468, and SKBR

Secondary Gene

_ CDK4/6 PCNA ATM DNA-PK | PARPI EGFR
Primary Gene DI DI DI DI DI DI
MDA-MB 436
CHEK1 0.95 1.94 1.68 1.38 1.54 1.84
CDK4/6 NA 0.74 0.56 0.68 1.48 0.45
PCNA ; NA 0.33 0.71 0.84 0.36
ATM ; ; NA 0.76 0.89 0.23
DNA-PK ; ; ; NA 0.22 0.67
PARPI1 ; ; ; ; NA 1.69
EGFR ] ] ) ) ) NA
MDA-MB 468
CHEK1 1.37 0.22 0.68 1.4 1.68 1.67
CDK4/6 NA 0.47 0.59 1.94 1.74 1.94
PCNA ; NA 031 1.51 233 1.46
ATM ; ; NA 1.08 1.27 0.72
DNA-PK ; ; ; NA 0.33 0.67
PARPI1 ; ; ; ; NA 1.89
EGFR ; ; ; ; ; NA
SKBR3
CHEK1 2.12 0.79 0.68 224 2.46 1.75
CDK4/6 NA 0.68 1.49 0.92 1.14 1.68
PCNA ; NA 0.23 1.14 1.09 2.12
ATM ; ; NA 0.89 1.46 0.89
DNA-PK ; ; ; NA 0.88 1.18
PARPI1 ; ; ; ; NA 1.89
EGFR ; ; ; ; ; NA
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