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ABSTRACT

Alternate power sources in automotive class-8 trucking industry is a major focus of re-

search in recent days. Green house gasses, oxides of Nitrogen(NOx), Oxides of Sulphur(SOx),

hydrocarbons and particulate matter are major concerns contributing to the shift in alter-

nate fuel strategies. Another direct relation to move to an alternate power strategy is the

reduction in net fuel consumption which in turn implicitly improves the emission compo-

nents. A holistic approach is needed while designing a modern class-8 vehicle. A variety

of system architecture, control algorithms, diagnostic levers are needed to be manipulated

to achieve the best of blends amongst Total Cost of Ownership (TCO), Drivability, Fuel

Economy, Emissions Compliant, Hauling Capacity, etc. The control and system levers are

not mutually exclusive and there is a strong correlation amongst all these control and system

components. In order to achieve a consensus amongst all these levers to achieve a common

objective, is a challenging and complex problem to solve. It is often required to shift the

algorithm strategy to predictive information based rather than reactive logic. Predictively

modulating and manipulating control logic can help with better fuel efficient solution along

with emissions improvement. A further addition to the above challenge is when we add a

fleet of vehicle to the problem. So, the problem now is to optimize a control action for a fleet

of vehicles and design/select the correct component size. A lot of research has been done

and is still underway to use a 48V hybrid system with a small battery using a simple charge

sustaining SOC control strategy. This will make the system light enough not to compromise

on the freight carrying capacity as well as give some extra boost during the high torque

requirement sections in the route for a better fuel and emissions efficient solution. In this

work a P2 type 48V hybrid system is used which is side mounted to the transmission via

a gear system. The selection of the system and components enables the usage of different

control strategies such as neutral coasting and Engine off coasting. This architecture with a

traditional 12-15L Internal combustion engine along with a mild 48V hybrid system provides

the most viable selection for a long haul class-8 application and is used in this work. It is also

possible to identify other component sizes along with architectures for new configurations.

The framework in this research work can help develop the study for different component
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sizing. While this research work is focused towards building a framework for achieving pre-

dictive control in a 3 truck platooning system using multi-agent based control, the other

supporting work done also helps understand the optimal behavior of the interacting multiple

controls when the corridor information such as road grade and route speed limit are known

a-priori, in a single vehicle. The build up of this work analyzes an offline simulation of a 4

control optimal solution for a single hybrid truck and then extend the optimal controls to a

3 truck platoon. In the single truck, this research will help identify the interacting zones in

the route where the various control actions will provide the best cost benefits which is fuel

economy. These benefits are associated as a function of exogenous look ahead information

such as grade and speed limit. Further it is also possible to identify the optimal behavior

and the look ahead horizon required for achieving that. In other words the optimal behavior

and benefits associated with the global solution can be accomplished by implementing rule

based control system with a look ahead horizon of 2-5 km. If this would not have been the

case then it is almost impossible to design a predictive controller based on the entire route

information which can stretch up to hundreds of kilometers. Optimal algorithms of such

prediction horizon are not feasible to be implemented in real time controllers. This research

work will also help understand the interaction between different active control actions such

as predictive speed modulation, gear shift, coasting and power split with passive control

levers such as slow down due to hybrid regeneration, hybrid boost during coasting, etc. This

will help in architecting a system involving component specifications, active optimal control,

look ahead information, hybrid system strength, etc, working in close interaction with each

other. Though we analyze these predictive behavior for a single vehicle as a supporting work

the prime objective is to include these predictive levers in a platooning system using an agent

based method. This multi-agent based technique will help analyze the behavior of multiple

trucks in a platoon in terms of fuel efficient safe operation. The focus of this research work is

to not directly come up with a controller or strategy but rather to understand the optimality

of this control levers for a multi-vehicle platoon system given a look ahead information is

available. The research shows that predictive information will help in gaining fuel economy

for a platoon of class-8 mild hybrid trucks. It also highlights the challenges in doing so and

what needs to be traded off in order to achieve the net fuel benefit.
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1. INTRODUCTION

1.1 Motivation

In the context of global warming and its effect on climate change that the world is going

through in present days at an alarming rate it is obvious to reduce the dependence on fossil

fuels and there by reduce the overall carbon footprint as well as other harmful oxides of

nitrogen (NOx) and sulphur (SOx) [1 ]. The surface temperature of the Earth is rising at

an alarming rate and has risen approximately 1.5 deg F since the 1970s [2 ]. This report

[2 ] also lists the significant threats to weather changes, ecosystems and human health. As

shown in Figure 1.1a , Oxides of Carbon is the major contributor in all forms of Green House

Gas (GHG). The transportation sector significantly contribute to green house gas emissions

(28%)1.1b , with the medium and heavy duty vehicles contributing significantly.

(a) Overview of Greenhouse
Gas Emissions in 2018

(b) Total U.S. Greenhouse Gas
Emissions by Economic Sector
in 2018

Figure 1.1. Total Emissions in 2018 = 6,677 Million Metric Tons of CO2
equivalent. Percentages may not add up to 100% due to independent rounding.

Passenger and freight travel is projected to increase at a steady pace as shown in Figure

1.2 , which indicates the dependency on fossil fuels or other efficient alternate fuels to cater

to the demand. If the demand is supplied by fossil fuel alone that increases the threat to

global warming and drastically will increase the carbon footprint. Additionally it will put a
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tremendous stress on a better emissions control strategy to control the harmful by-products

of combustion such as NOx, SOx, Hydrocarbons, Particulate Matter, etc. Airline industry

will see the major thrust in passenger carrying segment while heavy duty line haul industry

will be the prime mover in the freight carrying segment. This indicates that a better clean

energy solution is of paramount importance for a better future mobility.

Figure 1.2. Past and Projected comparison of passenger and freight travel
by different modes. A significant increase in light duty segment as well as
marginal increase in heavy duty segment which will put tremendous pressure
of natural resources and environment pollution

A tremendous amount of research is done as well as there are different sectors individu-

ally working on a better, cleaner combustion technique by increasing Engine Brake Thermal

Efficiency (BTE) as well as fuel economy. Figure 1.3 1.4 depicts a very nice information

about the past trends in fuel economy and energy intensity improvements. The projected

improvement is also significant. Particularly for the class 7-8 line haul segment which is the

prime focus for this work we see a better trend in fuel economy as well as energy intensity.

Department of Energy funded Supertruck-I & Supertruck-II projects are such an example of

engine and powertrain improvement projects involving a consortium of OEMs and Tier-1s to

achieve a better BTE and engine performance overall. Figure 1.5 , shows the achievement so

far by Daimler Trucks, in the BTE space for Supertruck-II. There are other such key players
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Figure 1.3. Comparison of Fuel Economy for Light Duty Passenger Cars and
Heavy Duty Line Haul Applications. The comparison is for past data as well
as for projected data up to 2050.

Figure 1.4. Past and Projected Energy Intensity comparison between Pas-
senger Travel Modes and Freight Travel Modes. Class 7-8 cargo hauling modes
are expected to have a projected improvement in energy consumption.

as Cummins Inc, Peterbuilt, Volvo, Daimler along with academic institutions working on

demonstrating a better powertrain capability. While this is a positive element in the engine

22



Figure 1.5. Department of Energy(DOE) Sponsored Super Truck II, Engine
Brake Thermal Efficiency(BTE) Achievement

development side, there is still a huge scope in improving the overall scenario by compiling

everything together as one package which will work together holistically to achieve a better

fuel efficient, low carbon, low emissions solution. As an example while Supertruck-I was

more towards conventional vehicle performance improvement, Supertruck-II brought in the

concept of hybrid electrified powertrain to better augment the powertrain performance. It

is quite intellectual to assume that Supertruck-III would definitely bring in the flavors of

autonomy and fleet management to augment the hybrid powertrain for a holistic perfor-

mance achievement. There are many such programs investigating the need to hybridize the

conventional powertrain in a variety of architecture. Figure 1.6 , shows the fuel economy,

Distance travelled and energy consumption metrics as a function of speed, kinetic energy

and distance. This data as reported by NREL showcases a good potential case study for

hybridization benefits in a heavy duty and medium duty segment. While the passenger
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light duty vehicle segment is quite easy to hybridize due to its low profile in cargo carrying

requirements, it is a challenging task to hybridize a heavy duty vehicle.

Figure 1.6. National Renewable Energy Laboratory (NREL) Data showing
Fuel Economy Comparison data showing

The mandated percentage improvement of fuel economy for various types of vehicles is

summarized in Figure 1.7 . It can be seen that these regulations mandate significant reduction

in CO2 emissions and fuel consumption for heavy-duty vehicles, e.g. about 15% for Class 8

heavy haul, and 20-30% for heavyduty pickups and vans by 2030.

All these numbers and reports indicates the need to have an overall better transportation

methodology using an improved powertrain running an advanced control scheme. This also

calls for introducing a more better platooning system. Predictive interactive controls in

platoon is one such technology which is most researched these days.

1.2 Background

While passenger & light duty segment has seen a rapid growth towards chassis dynamics,

infotainment, autonomy the heavy duty line-haul segment has seen tremendous effort towards
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Figure 1.7. Summary of CO2 and fuel consumption reduction from adopted
Phase 1 and proposed Phase 2 heavy-duty vehicle standards for selected vehicle
categories [3 ]

a more cleaner combustion process. While a more cleaner combustion is achieved as a result

of unprecedented improvement in the traditional internal combustion engine (ICE), there

is also a holistic improvement being made each year to the complete powertrain system.

When it comes to the powertrain, hybrid technology plays a pivotal role in defining the

technology of the future towards a green sustainable solution for freight carriers. Heavy

duty line-haul vehicles are focused towards meeting timely delivery of required cargo between

destinations. This means that these segment is limited by payload bearing capacity as well

maintaining a given road speed while hauling goods. These make any control formulation,

around these applications along with component sizing, a constrained optimization problem,

which depends heavily on load and route vehicle speed. Class 8 vehicle platoon is also

studied as a viable solution for long distance freight carriers. Taylor, et al, [4 ] demonstrated

a comprehensive analysis of Class 8 vehicle platoon with respected to corridor information

such as road grade, traffic speed, road speed limit. This analysis shows the potential benefits

of such systems when platooning as a function of grade and traffic flow. Emissions impact

for different engine operating surfaces are also of prime importance while designing a global

optimal solution. In order to achieve performance, engine operating points may shift and
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thereby adversely affect the carbon footprint as well as the tailpipe components. Hence it

is often required to strike a balance between the engine operating points and the tailpipe

emission limits. Though it can be argued that the after treatment systems such as diesel

particulate filters, diesel oxidation catalyst and selective catalytic reductant will take care

of the harmful elements but it is always not possible to decompose the elements in the after

treatment system if they are not limited by the engine operation to a safe value.

In order to achieve a better overall powertrain efficiency and obtain a cleaner solution,

hybridization of powertrain is of paramount interest. There are different configurations of

hybrid powertrain architectures that are explored over the last decade. Each architecture has

its own benefit and challenges and the selection of an architecture is heavily dependent on the

application and the requirements. In heavy duty segment where freight carrying capacity is

of utmost importance it is very essential to keep the weight of the hybrid system low in order

to not compromise the freight carrying limit. Hence a small 48V hybrid system is often, a

thought of solution for these applications. A very potential solution which is well explored in

literature as well as in industry is the 48V parallel P2 architecture which offers a light weight

torque assist on top of the internal combustion engine’s (ICE) torque curve. This augmented

torque when required provides a better and cleaner powertrain without compromising a lot

on the net freight weight. Another architecture which has a lot of potential in the class 6

segment is the strong hybrid solution with a series architecture. Though this architecture

gives a much better fuel economy there is a tradeoff to the overall system weight which

reduces the net freight carrying capacity. In this architecture a downsized engine is used

to charge the strong hybrid system. Another downside to this system is the occasional

cooling of the after treatment system when the engine is off. Since the after-treatment

system has to be at a certain temperature in order to convert the harmful engine emissions,

this causes the NOx conversion to be less effective when the engine turns on and produces

pollutants to a cold after-treatment system. All these constraints led to many academic and

industry researchers to explore a variety of hybrid powertrain architectures along with engine

optimization strategies to achieve a better, cleaner, efficient and reliable application. While a

lot of work has been done in this domain but its often done in buckets without considering the

complete system as a single unit. There is good amount of scope to have a optimal solution
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design including engine and after-treatment dynamics along with powertrain architecture.

Now that we understand the vehicle dynamics and systems interaction the next level is to

include the controls dimension. Most often control systems are based on reactive control

strategies. As an example when cresting a hill the vehicle will only downshift based on

the reactive torque requirement when the torque demand is not able to meet the vehicle

acceleration/speed. This is pure reactive control. Now if the predictive element is introduced

which can be road grade ahead, traffic information, weather information, etc, we get the

opportunity to implement a much better predictive controller. The key element to this

predictive controller is to understand what should be the predictive information and for how

much ahead in time the information is needed. Once the predictive lever is introduced the

control cannot be the regular reactive control but rather has to be some sort of predictive

control with a look ahead horizon. This poses a challenge to implement a global optimal

predictive controller capable of running in a modern controller hardware.

1.3 Contribution

This research work has two prime components. A simulation based class 8 mild hybrid

truck is designed to formulate a complex multi-control multi-objective optimization frame-

work. A true global optimality is studied in this step for a single hybrid vehicle The various

interactive controls scheme that can be deployed in a predictive way for a mild hybrid class

8 application are proposed based on the results from this step. The second proposal is made

for a predictive control approach of a platoon of 3 trucks using multi-agent based solver.

1.3.1 Development of a multi-objective predictive optimal control formulation
for a hybrid class-8 truck

A true global optimal control strategy is developed and analyzed for a 48V mild hybrid

class-8 truck. This part of the research work is developed as the foundation for the multi-

agent framework. Chapter 5 discusses this formulation in detail. To the best of the author’s

knowledge a predictive multi-objective control strategy for an interactive hybrid system in a

class-8 application is not studied well in literature. To address this gap and help understand
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the possibility of control system design this framework will be of paramount importance.

The optimal solution for the entire route with the knowledge of predictive information can

help design more robust energy efficient control strategy for a class-8 mild hybrid application.

This framework also discusses the interaction of hybrid system with predictive controls. A

list of predictive control strategies is prescribed as an outcome of the optimal study done in

this chapter. The control strategies are prescribed as a function of road gradability.

1.3.2 Development of a multi-agent based predictive control strategy for a pla-
toon of class-8 trucks

This is the prime objective of the research where the predictive optimal control strategy

obtained from the previous analysis is fed to a simulation framework of 3 platooning trucks.

A agent based controller is proposed using the modified Metropolis Algorithm to solve a

optimization objective involving 3 trucks together in the platoon. The objective in this

formulation is to arrive to an energy domain consensus between the trucks in the platoon

following a state update mechanism to minimize an objective cost. This formulation is

defined and studied in chapter 6 . A list of control strategies is prescribed at the end of this

chapter as a function of road gradability.

1.4 Thesis Outline

Chapter 2: Present Technology & Research Objective - This chapter provides an

assessment of the present technology of predictive interactive control strategies for platooning

class 8 trucks. The different control actions interacting with the mild hybrid system for a

class 8 truck is studied. Predictive platoon with multiple interactive control levers are not

studied well in literature for their energy domain optimization. Further the application an

agent based approach for platooning consensus is not available in literature to the best of the

author’s knowledge. The lack of an integrated multi-objective approach for predictive energy

optimization in mild hybrid trucks motivated the author for this work which is discussed

in this chapter. The analytical objectives are discussed along with the hypothesis of energy

saving is claimed in this chapter.
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Chapter 3: System Design - A detailed design of a control oriented model is presented

in this chapter. The dynamics of individual components along with the requirement of

map based transfer functions are discussed in this chapter. A 48V mild hybrid with P2

configuration is also discussed in detail along with the component specification. The battery

is designed as Coulomb counting SOC based structure but a detailed 1D electrochemical

model is used to tune the parameters for a battery cooling system. This model is not used

in the control oriented model but is used for tuning the parameters needed for the battery

thermal management. Additionally in this section the route information is also discussed

and the baseline results are portrayed. This result is used to estimate any benefit associated

with the single vehicle offline global optimal solution as well as the multi-vehicle platoon

configuration.

Chapter 4: Problem Formulation & Approach - This chapter discusses the high level

problem. The details of the problem is defined and the objectives are laid out. Though the

detailed analysis of the problem is done sequentially in the following chapters this chapter

sets the prelude to the objectives in hand and how the complete problem in going to be

solved.

Chapter 5: Energy Optimal Predictive Control of a single Class-8 truck - The

final optimal solution for the 3 truck platoon system requires the problem to be solved for

the single truck and then the optimal solution to be fed to the platooning system. This

chapter proposes a framework and control strategy to be deployed to a hybrid vehicle for

absolute global optimality. The proposed framework analyzes the true optimality between

interactive control levers when look ahead information is available for the entire route.

Chapter 6: Energy Optimal Predictive Control of a Platoon - This chapter discusses

the method and the objectives behind how the predictive optimal control strategy is used in

a 3 truck platoon using the multi-agent based control structure. The proposed framework

augment the optimal solution from chapter 5 and proposes the platooning system. The

proposed framework shows better fuel benefits based on simulation results.

Chapter 7: Summary & Conclusion - This chapter discusses the major outcome of

the work and highlights the benefits associated with it. This chapter also summarizes the

understanding which is gained from the optimal behavior in multiple platooning trucks. It
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also discusses the benefits associated with control levers which are of prime importance and

also talks about the passive benefits which are gained based in implicit behavior of the

control levers.

Chapter 7: Recommendation & Future Work - Finally the scope of improvement is

discussed in this chapter. It also states the necessary recommendations which are needed

to achieve a more holistic optimal control understanding of the complete powertrain. As

an example the after treatment parameters such as NOx, SOx, HC, system temperatures,

etc are not used as an active element in the optimization process. Nor in the cost function

neither as constraints.
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2. PRESENT TECHNOLOGY & RESEARCH OBJECTIVE

Hybridization of heavy duty vehicle’s powertrain has gained lot of importance due to their

potential fuel saving capability. A number of different architectures and strategies have been

explored by different researchers. [5 ],[6 ],[7 ],[8 ] studied the importance of hybridization of the

powertrain and the respective energy savings associated with it. A few alternate fuel op-

tions are also explored as major power producing unit in line haul trucks[9 ],[10 ],[11 ],[12 ],[13 ].

These alternate power technologies are predominantly being sought of because of their high

energy density. Various hybrid architectures and topology are available depending on ap-

plication. A very detailed study on these component sizing, positioning, and advantages,

disadvantages are studied in [14 ],[15 ], [16 ].

[17 ] presents a simulation study of various Battery Electric Vehicle (BEV) types to compare

their performance when driving on real-road drive cycles to highly optimized eco-driving

cycles. The results of the simulation confirmed that eco-driving has a high potential to

reduce energy consumption for all types of BEVs. This study also compares the impact of

eco-driving on conventional vehicles to comparable BEVs. An evaluation of eco-driving for

two very different service types - local urban service and express service is conducted by

the authors in [18 ], they implemented strategies to minimize fuel consumption by limiting

instantaneous vehicle specific power while maintaining average speed and conserving total

distance. Studies of platooning trucks in literature are largely experimental-based, and not

simulation-based. Of the simulation-based platooning truck studies, Siemon et al. simulated

Peterbilt 579 trucks in 4 truck platoons at spacing of 30, 50 and 100 ft gaps at 24.6 m/s

(55 MPH) with different trailer configurations (box, shipping container, and flatbed trailers)

found fuel savings of 2.5% for the lead, 9.5% for the second, 11.5% for the third, and 13% for

the fourth truck [19 ]. The inter-vehicle dynamics, grade and speed effect, and shifting are

not considered as there is no true platooning controller used. Johansson et al. simulates two

platooning Class 8 Trucks on a 2 km stretch of flat highway, initially traveling at 90 km/hr

ultimately slowing to 60 km/hr [20 ]. Experimental two-truck platooning results have previ-

ously demonstrated platoon-averaged fuel savings of 2.7-9.7% in Class 8 trucks traveling at

highway speeds [21 ]. Platoons consisting of three Class 8 trucks operating at steady-state,
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on flat ground, at 85 KPH (52.8 MPH), with a gap of 6 m (19.7 feet), demonstrated 4-5%

fuel savings for the lead truck, 10% for the second following truck, and 14% for the third

following truck at an altitude of 1,800 m (6,000 ft) where the air density is 80% of that at sea

level [22 ]. Flat-ground test track experiments of three platooning heavy trucks at 80 km/hr

(49.7 MPH) with a gap of 10 m (32.8 feet) showed fuel savings of 4% for the lead truck,

19% for the second truck, and 17% for the third truck. Fuel savings reduced to 1% (lead),

15% (second), and 16% (third) when the gap was increased to 15 m (49.2 feet) [23 ]. Peloton

Technology experimentally demonstrated that a production intent platooning controller is

capable of saving 7.25% on flat ground [24 ], [25 ]. A comparison of predicted fuel savings

from platooning in simulation is made to this experimental data. Tsugawa et al, [26 ] showed

that an automated truck platoon of 3 fully-automated trucks driving at 80km/h with a gap

of 10m is capable of steady state driving and lane changing.The lateral control is based on

the lane marker detection and the longitudinal control is based on the gap measurement and

inter-vehicle communications. Fuel saving of 14 percent can be achieved on a test track and

along the expressway using this feature. Traffic flow has important decision making aspects

in truck platooning as discussed by Calvert et al, [27 ]. As discussed by them truck platooning

has significant effects on traffic flow performance. These effects were tested for the influence

of traffic states, truck gap settings, platoon sizes, and the share of equipped trucks. The

results showed truck platooning to have slight negative effect on non-saturated traffic flow in

contrast to having a large negative effect on saturated traffic flow. This paper recommends

to improve platoon strategies and for policymakers to only allow truck platooning outside

of busy saturated traffic areas. [28 ], presents truck platooning in autonomous heterogeneous

trucks. As per the paper, every autonomous truck should keep following the leader truck’s

way-points while maintaining a designated distance from the truck ahead. [29 ], presents a

flexible agent-based simulations model to serve as a matchmaking system for truck platoon-

ing. In contrast to centralized systems, this matchmaking is done locally among trucks using

real-time data. Since this type of matchmaking is done spontaneously, this type of platoon

matching is denoted as real-time matchmaking. Truck platooning attempts to significantly

reduce fuel consumption for the follower truck as air drag and inter-vehicle gap is reduced.

As per [30 ], platoon formation changes based on the start and end destinations for each
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truck and is also affected by other road users. This papers investigates how traffic may

affect a merging maneuver of two trucks trying to form a platoon and observed that there

could be a merge delay of over 10 percent when compared to the ideal case with the absence

of traffic. As per [31 ], the efficiency of platooning is not only dependant on aerodynamic

drag but also by the diffusion of platooning technology, the maximum platoon length and

the tightness of time windows. The research in this paper shows that these factors can

considerably reduce the positive effects of truck platooning. Guo et al, [32 ], investigates the

problem of speed planning and tracking control of a platoon of trucks on highways. The

speed planning algorithm uses average vehicle instead of platoon leader, thus making speed

profile more fuel-efficient for platoons with vehicles if different weights and sizes. The vehi-

cle controller is designed considering road slope and heterogeneity of vehicles. [33 ] proposes

a cooperative distributed approach for forming/modifying platoons of trucks based on real

time consensus algorithm. This approach when compared with a centralized optimization-

based algorithm, proved to be a more general scheme that is able to form platoons even in

cases with large initial separation of trucks and is capable of handling complex situations

using its capability to form partial platoons. Zhang et al,[34 ] discussed that most literature

only provides scattered pieces of information regarding fuel economy in truck platoons. This

paper summarizes the methodologies, the fuel consumption contributing factors, methods to

improve platooning rate, and future control strategies to generate fuel-efficient speed profiles

for each vehicle driving in a platoon. [35 ] proposes a two-layer control architecture to safely

and fuel-efficiently coordinate the vehicles in the platoon. The layers contain information

on road topography and the real-time control of the vehicles using dynamic programming to

compute fuel-optimal speed profile and a distributed model predictive control framework for

real-time control of vehicles. Kaluva et al, [36 ] analyses the impact of platooning in urban

environments by studying the influence of inter vehicle distance, platoon size and vehicle

speed on the drag coefficients of the vehicles in a platoon. This study utilized two vehicle

models, a minibus and a passenger car are analysed to characterize the drag coefficients.

Muratori et al, [37 ] statistically analyses a large collection of real-world US truck usage data

to estimate the fraction of total miles that are technically suitable for platooning. This

paper focuses on estimating ”Platoonable” mileage based on overall highway vehicle use and
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prolonged high-velocity travelling and established that about 65 percent of the total miles

driven could be driven in a platoon formation, leading to a 4 percent reduction in total

truck fuel consumption. [38 ] assesses the impact of an eco-driving training program on fuel

savings and reduction of CO2 emissions in a well-designed field trial. This methodology

proposed by Wang et al, includes different types of road sections under various traffic con-

ditions and a systematic method to evaluate the overall and specific impacts of eco-driving.

this paper offers great insights for policymakers in road transport planning and for drivers

when applying eco-driving techniques. [39 ] explains how a truck driver controls his vehicle

with the motive of maintaining a desired velocity while keeping the fuel consumption as low

as possible. This is achieved by estimating oncoming operation points of the powertrain

and optimal choice of inputs.This information is used as an input in an algorithm for the

implementation of a predictive gearshift program and predictive cruise controller. In the

paper [40 ] a novel predictive technology is used to incorporate the cruise set speed along

with a gear shift point. The numerical based algorithm used a combination of nonlinear

dynamics constraint and objective cost. The mixed integer problem due to the gear choice is

solved partially by the outer convexification process. Benefits are shown on real world and

artificial routes. Hellstrom et al, [41 ] explores how information about future road slopes can

be used in a heavy truck with an aim of reducing fuel consumption without increasing total

travel time. The longitudinal behavior of the vehicle is controlled by determining accelera-

tor and brake levels and also which gear to engage. Paper [42 ] presents a novel predictive

control scheme is used for energy management in hybrid trucks driving autonomously on

the highway. This scheme uses information from GPS together with speed limits along the

planned route to schedule charging and discharging of the battery, the vehicle speed, the

gear and decision of when to turn off the engine and drive electrically. Borek et al, [43 ]

presents an optimal strategy for heavy-duty trucks that minimizes fuel consumption in ur-

ban ares. This strategy uses an online convex model predictive control strategy that balances

a trade-off between reducing braking effort and tracking optimal velocity. [44 ] introduces a

model predictive control algorithm which attempts to reduce the cost of operation of heavy

trucks with cruise control application based on road topology information obtained through

GPS positioning and 3D maps. [45 ] attempts to solve one prominent challenge of truck
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platooning which is the safe and efficient interaction of the trucks with surrounding traffic,

mainly in cases of lance changes that may lead to the decoupling of truck platoons. This

paper proposes a supervisory tactical strategy based on a first-order car-following model

with bounded acceleration is designed to maximize the flow at merge discontinuities. Kock

et al, [44 ] proposes implementation of predictive optimal algorithms operating the truck

at economically favourable operation points by considering the costs of operation and dy-

namics of the vehicle. This approach considers GPS positioning and 3D maps for slope,

curve and speed limit information of future road segments. The paper [46 ] proposes a model

predictive control method to control the clutch engagement process effectively shorten the

torque interruption, thus enhancing the gear downshift quality. Huang et al, [47 ] explains

an anti-idling regenerative auxiliary power system for service vehicles. Service vehicles gen-

erally have predetermined routes but the mass/load of such vehicles vary during drive cycle.

Therefore, this paper recommends using an adaptive model predictive controller designed to

account for this variation. The paper [48 ] explains a way of exploiting vehicular on board

prediction for a limited time horizon and minimizing the auxiliary energy consumption of

the electric cooling system through real-time optimization. The paper [49 ] provides a com-

parison of three strategies using model predictive control in with the objective of minimizing

fuel consumption for a heavy-duty truck. The three strategies are; a time-based formulation

that penalizes braking effort in place of fuel consumption, a simplified approach to the first

strategy, and a distance-based convex formulation that maintains a tradeoff between energy

expenditure and tracking of the coarsely optimized velocity. In the operation of long-haul

trucks, fuel costs have a large impact on total cost of ownership. This paper [50 ] attempts

to solve the problem of obtaining a trade-off between minimizing the fuel consumption and

simultaneously maximizing the vehicle speed thus eventually decreasing time-related fixed

costs. The paper [51 ] explores learning-based predictive cruise control and the impact of this

technology on increasing fuel efficiency for commercial trucks by implementing predictive

cruise control model which uses future road conditions and solves for cost-effective course

of action. The paper [52 ] provides a comparison of three strategies using model predictive

control in with the objective of minimizing fuel consumption for a heavy-duty truck. Two

of these three strategies can then be adapted to accommodate the presence of traffic and
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optimally navigate signalized intersections using infrastructure-to-vehicular communication.

Szabo et al,[53 ] presents a cascaded control system with a discrete-time model-predictive

control in the outer loop and a flatness-based 2-DOF controller in the inner loop. The paper

[54 ] illustrates how optimizing the power split among different energy sources in electric

trucks and following distance should be performed to ensure safety, drag reduction and en-

ergy consumption. Earnhardt et al, [55 ] introduces two controllers capable of alternating

between independent vehicle velocity trajectory optimization and a collaborative platooning

approach based on the aggregate fuel savings of all the vehicles in the platoon. [56 ] investi-

gates the fuel saving potential of predictive optimal control methods for the engine cooling

system in conventional trucks. The advantages of this approach are the recovery of brake

energy and the balance of energy sources in order to minimize total energy. As energy man-

agement strategy is crucial in improving the fuel economy of hybrid electric vehicles, this

paper [57 ] targets at evaluating the role of velocity forecast in the adaptive equivalent con-

sumption minimization strategies. It is a challenge to implement Equivalent Consumption

Minimum Strategy online for real-time control due to the complex calculations needed. This

paper [58 ] attempts to reduce ECMS’s calculation load by proposing an adaptive Simplied-

ECMS-based strategy for a parallel plug-in hybrid electric vehicle. [59 ] proposes a novel

real-time energy management strategy for parallel hybrid electric vehicles. This approach

uses adaptive ECMS which sets the time-varying equivalent factor. Hybrid electric vehicles

have been known to be a feasible option to reduce fuel consumption and emissions. This

paper [60 ] proposes a fuzzy logic controller adjusting the equivalent factor based on the de-

viation between reference state of charge and actual state of charge for better trajectory.

Trian et al, [61 ] proposes an adaptive energy management system consisting of off-line and

online parts to improve the energy efficiency of a parallel hybrid electric bus. The offline

part focuses on the recognizing the precision of driver’s driving style based on the hybrid

algorithm. The online part incorporates driver’s driving style into equivalent consumption

minimization strategy.

There are wide range of controls available and a variety of vehicle models but none solved

an energy management strategy for a platoon using detailed optimal behavior for multiple

states and controls. The primary objective of this work is to find the best strategy in terms
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of global optimality with all levers interacting together. This kind of setup is not studied so

far to the best of the author’s knowledge. There are no solution available for a predictive

controller trying to control more than 4 levers using a dynamical system with more than 5

states for a 3 truck platoon. In this work an attempt is made to design, implement, analyze

and understand the multi-objective optimization based, true global behavior for a mild hy-

brid electric class-8 truck and then extend the optimality to solve a problem for the 3 truck

platoon. While the single truck optimality help understand the true optimal strategies than

can be deployed on a mild hybrid truck based on look ahead knowledge of the route, the

multi-agent based method will define the optimal strategy for a platoon of 3 trucks when

look ahead information is available.

Table 2.1. Summary of Literature and Contribution
Contribution Summary

Topics Literature Proposed
Predictive Single Control - Class 8 Matured -

Multiple Interactive Predictive Controls - Class 8 Insufficient Contribution
Multi-agent predictive platooning - Class 8 Insufficient Contribution

Table 2.1 summarizes the contribution made through this work. This research was done

as part of bridging the gap between existing literature and what the author thinks shall help

design predictive platooning system of class-8 trucks.

2.1 Inspiration

This research is inspired from human behavioral science as exhibited while riding a bicy-

cle. Riding a professional road bike is an advanced method of utilizing look ahead perceived

information for an energy management solution. Figure 2.1 , shows the different control levers

used during a ride by a rider. It also shows that the look ahead information is perceived

by the eyes and the brain does the rest of the energy management to control the different

controls in the right efficient way. An efficient control strategy is of paramount importance

while riding on a hilly terrain due to the limitation of energy production. Figure 2.2 shows

37



Figure 2.1. Predictive control analogy derived from bicycling case

the different predictive controls in an illustrative way for various section of the route with

different grade profile. To understand better the control actions we will look at the cyclist

at different part of the route with different gradients.

• At point A, the cyclist sees a hill coming up. While still at a milder grade and mostly

flat section the cyclist uses the look ahead road grade information for the entire line

of sight which is shown by the red arrow. Based on that grade information the cyclist

predicts that to crest the hill the better strategy is to speed up during the flat section

where it will need less energy to attain a greater speed and then utilize that kinetic

energy to help crest the hill. It is important to note that the range of speed increase

has to to be judiciously done so that it is not required to brake at the end of the
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Figure 2.2. Short horizon predictive controls as exhibited in professional bicycling.

hill. Essentially it is not required to gain kinetic energy more than what is required

and then waste the energy gained by braking which is basically loss of energy at the

expense of rider power/calorie. This is termed as predictive speed management wherein

instead of targeting a constant cruise speed the rider can decide to increase the target

dynamically depending on the need, based on look ahead road grade information.

• The second part of the route is at point B, where the rider is on the uphill and has

attained enough kinetic energy to crest the hill. At this point the rider predictively and

progressively down shift to help crest the hill with less effort and thereby compromising

a bit on the speed. Depending on individual rider power this down shift will be decided.

Some riders can crest the hill with out down shift if the speed gained before the hill

is sufficient. It is worth noting that different levels of complex optimization process

based on different objectives are performed by different riders.

• The third part of the route is at point C, where the rider is at the apex of the hill.

At this point the rider get a long look ahead information for the grade ahead. The

efficient control is to pulse and glide throughout the down grade and also the flat

section following a steep down hill. The rider can optimize a best speed target plan

by manipulating cadence and cycle speed.

• The last point D, is not a unique point from the previous three points but rather a

situation which can occur in conjunction to the previous 3 points. The riders form a
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stacked up profile to reduce aerodynamic drag loss. The individual riders in the stack

can determine their controls based on their look ahead knowledge for the most efficient

energy management of the entire group.

2.2 Extension to Automobile Application

The high level primary objective for a class 8 platoon of 3 trucks is very similar to the

biking scenario. It is to formulate a complex multi-objective optimization method which will

provide us with a global optimal profile for all the control levers we have discussed so far.

The problem is solved in a sequential method by bringing in one control lever at a time.

First the speed management problem is solved then the coast management and then the

two of those together to see the interaction between the two. The final solution is where

all the 4 control levers Speed, Coast (Neutral and Engine Off), Gear and Power

Split are solved together. The solution is done for a chosen route. So, for each vehicle

configuration change and route change we need to get the optimal solution. The method

used to solve this non-linear global optimal problem is by a computationally challenging

dynamic programming algorithm. Hence, this part of the problem is done offline and is

referred to as a offline optimizer. This is also done individually for each truck. So if two

trucks have two different configuration they will have two separate optimal profiles for the

control levers.

The next big part of the work is when multiple such trucks form a platoon and cooperatively

drives through a route following the optimal profile for each truck. A multi-agent based

control strategy is developed to achieve better fuel efficiency in a platoon operation with

the optimal control profile. Each agent runs its own state updates based on the designed

metropolis algorithm and then solve the cost function to find the minimum objective value.

A detailed objective for each problem formulation is defined in this section. The primary

objective of this research is to understand the potential of Cycle Efficiency Management

solution in term of Absolute Fuel Economy numbers and the impact of this optimal

solution to Emissions. In this research a complex holistic study is attempted to see the

interactions between different control levers and how they perform. The research will answer
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some of the key questions at macroscopic energy and component losses level on one hand

and also will answer some of the detailed microscopic level behavior of the components as

seen in time series plots. Figure 2.3 , shows the high level objective what we want to achieve

Figure 2.3. Research Objective In Fuel Map Space

in this research in fuel BTE Space. The figure shows the power curve as a function of Engine

Speed. On the same plot we have the BTE contours. The 12th and 11th gear mark is the

Isochronous speed at 65mph vehicle speed in engine speed domain.

At this BTE contour level the objective is to move the red bubble to the green bubble zones

which will increase the efficiency of the engine and save fuel. Also moving the BTE point

to around 600RPM means the engine is coasting in neutral which has its own fuel benefits.

The other vehicle level objectives that are analyzed in terms of fuel saving measures are the

negative work reduction by the truck. Negative work involves both motoring work and well

as engine and service braking. In case of the platoon system another important metrics is

the aerodynamic loss reduction. As briefly described in the previous sections, this research

is to study the benefits associated with running this advanced optimal targets in individual

trucks following a platoon. So the objective is divided into two fold. First find the offline

optimal profile for each truck given a route and vehicle configuration. Second design an

online multi-agent based controller to follow the optimal target to achieve a safe operation

and better fuel economy.
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2.3 Offline Mode - Single Vehicle Optimality

This activity is needed whenever there is a different route introduced or the vehicle

configuration changes. A full factorial based dynamic programming [62 ] algorithm is used

to find the global optimal profiles for each control levers described above. The problem is

solved in a stacked up approach where each lever is solved individually and then combined

together to analyze the interaction between the different controls levers.

2.3.1 Predictive Speed Management

Figure 2.4 , illustrates the speed objective which is expected to be the outcome of the

optimal solution. This analogy is derived from the understanding of the cycling analogy and

observing the behavior of the rider. The problem is formed as a minimization type objective

Figure 2.4. Speed Management Cartoon
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with a cost function which is the weighted sum of the total fuel consumed and trip time. It is

worth noting here that the trip time is included in the objective to make sure that the vehicle

is not moving slow in order to achieve fuel benefits. Further, in order to include trip time

which is not the free variable here, the problem is converted and solved in distance domain

instead of the time domain. As a result of this the dynamics of the vehicle is converted to a

distance domain.
δy

δs
= δy

δt
∗ δt

δs
(2.1)

which gives,
δy

δs
=

δy
δt

v(s) (2.2)

Which essentially is dividing all rate of chance dynamics with vehicle speed in distance

domain. Similarly we will also get the vehicle speed as :

v(s) =
√

(2 ∗
∫ ∑

F

meqiv
ds) (2.3)

Hence, for this problem the high level objective is to let the cruise set speed dynamically

vary based on look ahead road grade information. Analogically we can predict that the

vehicle will speed up during the flat section before entering an uphill. Since the vehicle can

now target a higher set speed on top of the baseline cruise set speed (which is decided by the

tuning of the droop), it will use more fuel and try to gain kinetic energy which can be used

later in the up-hill. The highlighted zone in ”Yellow”, is the section of the route where the

speed-up will occur.

The first ”Purple” highlighted zone is the up-hill where the vehicle loose speed due to

gravity and since it has started from a higher speed and it can go up to a much lower speed

in this configuration there will be fuel saving by letting the engine work at a better BTE

contour zone. The second ”Purple” zone is the downhill section where the vehicle can now

achieve more speed and not have to brake to target a set cruise speed. This will help with

some more fuel savings by reducing losses due to braking. The speed modulation around the

baseline set cruise speed is a complex design parameter to tune since it will decide on the

level of fuel savings and also impact drivability.
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2.3.2 Predictive Coast Management

Next concept which is extended from the rider’s concept of no cadence is the neutral

and engine off coast. The objective is to find out regions in the route where it is possible to

coast and even turn the engine off. It is essential to select an architecture which will make

it possible to disengage the engine from the drive line so that this control strategy can be

implemented. Hence a P2 architecture is selected. Details of the system selection will be

discussed in next chapters.

Figure 2.5 , is an illustration of the concept of coast management. The ORANGE portions

Figure 2.5. Coast Management Cartoon

are the regions where the vehicle will enter into coasting depending on operator demand

power. It is expected to see a big coast event during the downhill and small frequent coast

events during flat section of the route. This frequent coast events in the flat section is termed
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as ”Pulse and Glide”. As in the case with speed management, we also have a dynamic speed

bound between which the vehicle speed can modulate instead of targeting a fixed set speed.

2.3.3 Predictive Gear Management

The next control lever that will be studied is the modulation of gear predictively. This

is expected to be more of a performance lever rather than a fuel efficient lever. As observed

from the cycling analogy a downshift is needed during the uphill section in order to crest

the hill. In the case of an automobile that may not be the issue but there may be speed lugs

during the uphill which is a drivability issue. So, it expected to solve the drivability issue by

improving on the speed lugs and also not consuming more fuel in order to do so.

Figure 2.6 , is an illustration of the concept of gear management. The objective is to formulate

Figure 2.6. Gear Management Cartoon

a problem to see if the vehicle is predictively shifting ahead in time as compared to the

reactive shifting schedules. It is also worth to note that the vehicle will also up-shift early as
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compared to its reactive counterpart. It is not expected to gain any fuel benefits from this

objective but it is still possible to achieve a fuel benefit in case the engine efficiency based

fuel tables are tuned in such a way that the engine domain isochronous speed at a lower

gear (11th gear) does not stretch way beyond the maximum engine BTE contours. This is

discussed in detail in subsequent chapters.

2.3.4 Predictive Power Split

Lastly the objective on the single vehicle is to predictively split the power requirement

between engine and hybrid electrical system. Based on the fact that this is a 48V Mild

Hybrid system it is not expected to see any substantial improvement with this concept. The

analogy is drawn from riding a eBike.

All the 4 control levers are individually solved for the single vehicle configuration given

a specific route. The final optimal control trajectory is selected based on the solution of

all these control levers working together. Since there is strong correlation between these

levers the problem is formulated to minimize the fuel usage with all 4 controls together. A

detailed problem formulation is discussed in later chapters along with recommendations to

be deployed in a class 8 mild hybrid truck.

2.4 Online Mode - Multi Vehicle Optimality

The online mode is the core of the research work where the objective is to let multiple

trucks operate in platoon following the target optimal trajectory as found by the offline

solver. In general platooning in trucks is a very popular topic these days. The major focus

in developing platooning system is more towards addressing the perception problem, con-

nectivity algorithms, Functional Safety and Robust Sensor Technology.

Figure 2.7 , shows the setup in a platooning system. The literature study in this research

showed that there is insufficient study available for predictive platooning based energy do-

main analysis. In this work we have considered only the 1-D longitudinal dynamics of the

platooning system, optimizing an energy minimization objective function. Various multi-

agent methods are already established in a lot of different field with outstanding capabilities.
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Figure 2.7. Platoon Setup Between Vehicles. Elements of Vehicle to Vehicle
Communication showing a following distance of 12-15m. The key elements
used to establish connectivity between two platooning trucks in close proxim-
ity.

In this work a similar approach is used using the well established metropolis algorithm based

state update methods to minimize an objective function. In this research each truck share

its speed profile and current optimal profile between each other. Based on the information

from the different trucks in the platoon each truck runs its own local optimal algorithms to

achieve safe operation (maintain distance) and achieve a better fuel efficiency and reduce

emissions by their engines working at better BTE zones. The key contribution in this work

is the application of the multi-agent based method to study the energy efficient predictive

behavior in the platooning trucks. The questions tried to answer through this work are,

• Is the problem solvable using an multi-agent based algorithm?

• Does the algorithm show promising results?

• Is a dynamic separation distance good for platooning truck in energy domain?

• Is predictive controls required for follower trucks in platoon?
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• What are the key contributors to absolute fuel economy in follower trucks in platoon?

• Predictive control challenges in grades for follower trucks?

• Interaction of multiple controls and its feasibility in application?

There are multiple ways platooning can be achieved with different objectives. In this research

an energy level study is conducted to analyze and understand the overall predictive behavior

in platooning hybrid trucks. The work is conducted to understand the key questions as

highlighted above. The key contribution is the application of a simple multi-agent based

algorithm with assumptions to maintain and achieve energy savings.
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3. HYBRID VEHICLE DESIGN & COMPONENT SELECTION

This chapter is a self contained document of describing the basic principle behind design-

ing the longitudinal dynamics of a Vehicle. To the extent feasible, the model of both a

conventional diesel operated vehicle as well as a hybrid vehicle will be designed. There are

an enormous number of complex models that can be designed for any vehicle. The design

objectives are dependent on the use cases of the models. As an example for studying and

implementing lane keeping assist systems a lateral yaw dynamics model of the vehicle is de-

sired. Similarly for studying the vibration and shock absorber dynamics, a quad car model of

the axle and wheel may be required. In the context of this research where we try to manage

the energy, a simple one dimensional longitudinal force balance model is sufficient.

Figure 3.1 shows the different forces acting on a vehicle in motion. All of these forces are

dynamic and are either a function of road grade or vehicle speed. Newton’s 2nd law of motion

governs the force balance equation for the vehicle. The tractive force for the vehicle is, the

Figure 3.1. Summation of vehicle negative forces and the balancing tractive
force resulting into the force balance equation providing the vehicle forward
acceleration
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equivalent mass of the vehicle times the forward acceleration. Hence we get our very first

equation for the vehicle dynamics in 1-D longitudinal form as 3 

Ftrac = meq
dv

dt
(3.1)

where, dv
dt

is the vehicle forward acceleration.

The negative forces which tries to restrict the forward motion of the vehicle are Aerodynamic

drag force which is a function of how fast the vehicle is moving and its frontal area. The more

streamline the vehicle frontal design is the less this drag force. The other resisting forces

is the rolling resistance due to the frictional contact of the wheels with the road surface.

The next force which resist the forward motion is component of gravitational pull which is

a function of the Vehicle equivalent mass. In this chapter we will look at the details of the

different components and how they are chosen and designed in the context of this research

work. The Aerodynamic drag force is represented by equation 3 

Faero = 1
2ρCdAν2 (3.2)

where, ρ is air density, Cd is aerodynamic drag coefficient which depends on Vehicle geometry,

A is vehicle frontal area & ν is vehicle speed. This drag force in case of follower vehicles in

a platoon changes as 3 ,

Faerofollower
= 1

2Φ(d)ρCdAν2,

Φ(d) = (1 − CD,1

CD,2 + d
)

(3.3)

where, d is the separation distance between the vehicles. CD,1 & CD,2 are constants obtained

from polynomial fit data published in open literature.

3.1 Engine

The first component in the system which is the primary power producing device is the

Internal Combustion Engine. There are a number of models which can be used to design the
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dynamics of the engine depending on usage and need. A detailed Air Path Dynamics Model

using 3 states (Boost Pressure, Exhaust Pressure and Turbine Speed) can be developed as,

dPIM

dt
= γR

VIM

(ṁcT + ṁegrTegr − ṁengTIM),

dPEM

dt
= γR

VEM

[(ṁeng + ṁfuel)TEM − (ṁegr + ṁt)TEM)],

dNtc

dt
= 1

JtcNtc

(Pt − Pc),

(3.4)

where, PIM is the intake manifold pressure, VIM is the intake manifold volume, TIM is the

intake manifold temperature, PEM is the exhaust manifold pressure, VEM is the exhaust

manifold volume, TEM is the exhaust manifold temperature.

Similarly, dividing the engine into a Block, Crank and Sump structure, we can develop a

thermal model as well [63 ]

In this research we do not need a detailed model like described above, rather a simple map

based efficiency model will suffice our purpose. The Engine is taken from a Cummins

Inc©15L diesel family which has a power rating of 298-373 kW and a torque rating of

1966-2508 N.m. The fuel map is made up to be around 47% efficient as shown in Figure

3.2 . Its a 6 cylinder inline configured system [64 ]. The solid black curve is the Engine

Power Curve [kW] which shows the different power characteristics as a function of Engine

Speed in RPM. The efficiency map which is made up to have an island of around 47% within

a band of 1100-1250 RPM. It is worth noting here that the objective of any engine controller

would be to make the engine work in this zone. This means that at top gear the engine

speed should lie in this zone.
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Figure 3.2. Engine Fuel Map - BTE
[64 ]

3.2 Clutch

Clutch is designed as a simple torque pass through device after adjusting for losses. It

is assumed that clutch is a constant 97% efficient device. Equations 3.2 are the two main

Clutch dynamics.

ωeng = ωclu,

τclu = τeng ∗ ηclu,
(3.5)

where, ηclu is the efficiency of the clutch or a measure of torque loss. It is worth to note that

in the Clutch we calculate the Engine speed to be fed back upstream to the Engine system.

3.3 Transmission

The transmission system is a 12 speed overdrive EATON system. There are 12 forward

ratios and 2 reverse ratios. It can support a maximum Gross Vehicle Weight (GVW) of
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49895 Kg and supports a maximum torque of 2508 N.m The gear ratios are documented

Table 3.1. Transmission Gear Ratios
[65 ]

Type Gear # Gear Ratio % Step

Forward

1 14.43 31
2 11.05 31
3 8.44 31
4 6.46 31
5 4.95 31
6 3.79 30
7 2.91 31
8 2.23 31
9 1.70 31
10 1.3 30
11 1.0 31
12 0.776 –

Reverse 1 16.92 –
2 12.95 –

in table 3.1 and are referred from EATON©[65 ]. The shift points for the transmission is

made up using vehicle speed reference. The way it is derived as a function of vehicle speed

and operator throttle so that at cruising speed the transmission stays at top gear. It is also

done in a way to keep the engine speed within the best operable BTE region.

3.4 Electrification - Discussion & Selection

Mild hybrid system is very popular in passenger car segment mostly due to emissions

benefit and somewhat fun factor associated with it. The key aspects of a MHEV in a

passenger car are,

• electrical power available (e.g. 15kW)

• voltage rating of the battery system (e.g. 48V)

• fuel consumption / CO2 reduction potential (e.g. 15%)

• functions performed by the electric machine (e.g. torque boost)
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Figure 3.3 shows the market share of different types of hybrid system in the passenger car

segment. where, A - Subcompact Cars, B - Compact Cars, B - Medium Cars, D - Large

Figure 3.3. Passenger Car Market Penetration
[14 ]

Cars, E - Premium Cars.

Though the same range of benefits are not possible in a class-8 type application but there

is scope of bringing in a number of benefits when we integrate a MHEV system in a line

haul truck. There are multiple options available in terms of architecture for aMild Parallel

Hybrid Vehicle (MHEV). The key objectives while looking into the different architectures

are the positioning of the components (specifically the motor generator), the various control

features that can be implemented and finally the advantages & disadvantages associated

with fuel savings & drivability. Figure 3.4 shows the growing trend in market share that

the electric and hybrid vehicles will have over a period of next 10 years. The information

provides significant importance to the usage and research of electrified powertrain. Figure 3.5 

categorizes the various control and systems features that can be implemented based on the
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selection of the choice of Hybrid Powertrain architecture. Though most of these feature is not

related to our research of Class-8 application but still it provides a detailed understanding

and helps with identifying the best architecture for this research. The various Mild Hybrid

Electric Vehicle architectures are enumerated below with their description,

1. P0 – The electric machine is connected with the internal combustion engine through

a belt, on the front end accessory drive (FEAD)

2. P1 – The electric machine is connected directly with the crankshaft of the internal

combustion engine

3. P2 – The electric machine is side-attached (through a belt) or integrated between the

internal combustion engine and the transmission; the electric machine is decoupled

from the ICE and it has the same speed of the ICE (or multiple of it)

Figure 3.4. Electric Market Share
[14 ]

55



4. P3 – The electric machine is connected through a gear mesh with the transmission;

the electric machine is decoupled from the ICE and it’s speed is a multiple of the wheel

speed

5. P4 – The electric machine is connected through a gear mesh on the rear axle of the

vehicle; the electric machine is decoupled form the ICE and it’s located in the rear

axle drive or in the wheels hub

3.4.1 Drive line side electric machine MHEV architectures P(2)

Both P0 and P1 mild hybrid configurations have the electric machines on the engine

side, without the possibility of mechanical disconnection. This makes torque boosting and

energy recuperation not very efficient because of the torque losses. Moreover, recuperating

electrical energy with the engine off, during coasting, is not possible. The P2, P3 and

Figure 3.5. Different Features associated with different topology
[14 ]
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P4 mild hybrid architectures are better in terms of energy flow efficiency, mainly because

of the positioning of the electric machine. In these types of configurations, the electric

machine is positioned after the drive line connecting device (clutch), on the input shaft of

the transmission (P2), on the output shaft of the transmission (P3) or on the rear differential

(P4). In this work P2 architecture is chosen with the electric machine mounted to the input

shaft of the transmission via a coupled geared assembly. This arrangement allows for all

the potential hybrid benefits as well as engine to be disengaged if needed from the driveline.

Figure 3.6 shows the schematic of the chosen P2 architecture with the component position

in the powertrain.

Figure 3.6. MHEV P2 Architecture – Side Mounted EM
[14 ]

3.4.2 Motor Generator

A good choice to start with this research is to have a mild hybrid 48V system. This

system provides torque boost when needed during heavy power demand as well as not make

the overall vehicle very heavy. In case of a larger system the power to weight ratio will

decrease and also make the load carrying capacity of the truck lower. Table 3.2 [* scalable

peak torque between 50-80Nm] [66 ] shows the general parameters for the selected motor
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Figure 3.7. Motor Torque & Power Curves
[66 ]

Table 3.2. P2 OFF-AXIS 48V eMOTOR*
Feature Performance

Continuous Power (30s) 15kW @15000 RPM
Peak Power (1s)(2x/5s) 20kW @12000 RPM

Peak Torque 50-80 Nm
Peak Torque @ Crank 150-240 Nm
Max Regeneration (30s) ≥ 25 kW

Voltage 48V
Max Motor Speed Continuous 18400 RPM

Max Motor Speed 20000 RPM
Coolant WEG, 65deg C, 6L/Min

Dimensions φ 185mm,

generator. Two sets of motor specs are used from the same motor. One with a 50Nm rating

and the other with a 80Nm.
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3.4.3 Energy Storage System

There are several choices for a 48V energy storage system. In this work a simple config-

uration from A123 Systems is selected [67 ]. The battery chemistry used in this work is of

Li-Ion type.

The battery is a very mild assist with a 8Ah capacity and a nominal operating temperature

of close to 25C. At this settings it can provide continuous power of 15kW. A more powerful

custom made choice is also explored which has a rating of 60Ah and can provide a contin-

uous power of close to 30kW.

A simple thermal model for the battery is designed to model the heat loss by the battery.

An active cooling system is also in place to decrease the rate of heat loss by the battery.

Since the battery is small and limited by power, proper heat management of the battery is

necessary to utilize its full range of power capability. It is also worth mentioning that the

battery is considered to always provide continuous power and the peak power switching logic

is not used for this work.

Table 3.3. 48V Battery Specifications
Specification Unit Performance

Peak Configuration - 14s1p

Capacity Ah 60

Minimum Voltage V 24

Maximum Voltage V 54

Nominal Voltage V 46

SOC Range % 25 - 70

10s Discharge @ 25degC, BOL, 50% SOC kW 28

60s Discharge @ 25degC, BOL, 50% SOC kW 16

10s Charge @ 25degC, BOL, 50% SOC kW 30

60s Charge @ 25degC, BOL, 50% SOC kW 20

Usable Energy BOL @ 25degC Wh ≥180Wh

Mass Kg 40
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Table 3.3 [67 ] shows the different battery parameters and their chosen value as used in

this work. A very simple cooling strategy is applied to maintain the battery temperature

and limit the battery charge/discharge power ratings. In order to come up with the battery

cooling parameters a 1D Li-Ion high fidelity electrochemical based model is used [68 ]. The

model described by Pramanik et al., is developed for a single cell which is scaled in this

work to mimic the required battery size used in this system model. This model is utilized

to estimated the thermal loss of the battery pack and then calculate the coefficients needed

for the cooling system.

3.5 Chassis

The vehicle assembly comprises of 2 major components in terms of torque transfer, namely

the axle and the wheel. Finally the last subsystem calculates the vehicle speed from the

adjusted torque in the end. A 18 wheel system is considered in this work. The gross vehicle

weight is 65000lbs. A study of different condition of load is also used to get an understanding

of how much weight we can put in in terms of hybrid system since with the addition of more

hybrid weight we will loose hauling capacity.

3.5.1 Axle

Axle is designed as a simple torque pass through device after adjusting for losses. A

relatively down sped design is used by selecting an axle ratio of close to 2.47. Equations 3.6 

are the two main Axle dynamics.

ωtrn = ωaxl

RAR
,

τaxl = τtrn ∗ RAR,

(3.6)

Axle is considered to 100% efficient in this study. It is worth to note that in the Axle we

calculate the transmission speed to be fed back upstream to the transmission system. Axle

torque is the forward torque transferred to the wheel for further processing in the chain.
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3.5.2 Wheels

The wheel speed is given by equation 3.7 

ωwhl = ν

µwhl

(3.7)

where, µwhl is the wheel radius in meters The forward torque is given by equation 3.8 

τwhl = Fnorm + τaxl (3.8)

3.5.3 Force Balance

Finally, the 1-D longitudinal Equation 3 can be formulated in a detailed way. The

different forces at the wheel is summed up and then divided by the equivalent vehicle mass

to get the acceleration. Finally the acceleration is integrated to get the velocity of the vehicle

which is used to feed back to the upstream controllers for a full closed loop dynamics. The

gravitational drag force as a function of the road grade is given by Equation 3.9 .

Fdrag = mgsin(θ) (3.9)

where, θ is the road grade in radians The aerodynamic drag as explained in the above section

is a function of the vehicle speed and is reiterated by equation 3.10 

Faero = 1
2ρCdAν2 (3.10)

The road normal force is also a function of road grade and is given by equation 3.11 

Fnorm = mgcos(θ) (3.11)

where, θ is the road grade in radians Finally, the forces acting on the vehicle is given by

equation 3.12 

mα = Ftrac − Fdrag − Faero − Fnorm (3.12)
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where, α is the acceleration of the vehicle and is responsible of either speeding or slowing

the vehicle. Equation 3.12 can be rearranged as Equation 3.13 

α = 1
m
[Ftrac − Fdrag − Faero − Fnorm] (3.13)

Hence finally the vehicle speed is given by Equation 3.14 

ν =
∫ 1

m
[Ftrac − Fdrag − Faero − Fnorm]dt (3.14)

As we have seen in earlier chapters the problem for the optimal control is solved in distance

domain, we finally convert Equation 3.14 as

ν =
√

(2
∫ 1

mν(s) [Ftrac − Fdrag − Faero − Fnorm]ds) (3.15)

It is worth noting here that equation 3.15 makes vehicle speed of the system as a state of

the system dynamics. The assumptions made throughout this chapter while designing the

system dynamics are,

• Rotational Compliance & Coupling Dynamics between components are not considered

for the purpose of this research.

• Losses are considered constant instead of a function of any dependent variables.

• Map based logic is used in every calculation possible to eliminate the need of complex

analytical design.

Since the research is based on energy level analysis the above considerations are justified.

Finally, in a general compact state space form, the dynamics can be written as equation

3.16 .

X = Ax + bu (3.16)

The continuous states are Vehicle Speed, Vehicle Position, Engine Fuel Quantity,

Battery SOC & Battery Temperature. Gear Number & Clutch State are discrete
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integer type. Hence the problem is a mixed integer non-linear type problem. The con-

trol inputs are Engine Throttle, Clutch Command, Brake Command, Gear Shift

Request & Power Split Ratio.

3.6 Corridor Information

Once the choice of vehicle component is identified and a longitudinal force balance dy-

namical model is designed, it is required to identify some corridor information which are

exogenous inputs to the vehicle simulation. The two important inputs that is considered in

this work are route grade and route speed limit. The information is used form public domain

repositories such as https : //www.openstreetmap.org. A section of the I64 route is made

up which is around 82 mile long with a characteristic road grade of 1.3%.

3.7 System Performance

The baseline system dynamics are simulated in simulink for the entire duration of the

route which is a generic US Route of 82 miles. The baseline simulation is done in time

domain and the results are captured here. The objective here is to study the baseline system

behavior and check for simulation and dynamics sanity. It is also intended to study the

baseline energy behavior so that it can be compared against optimal levers. Figure 3.8 

shows the simulink structure for a single vehicle which is designed as per the component

specifications discussed in the above sections. Figure 3.9a shows the fuel economy numbers

along with the BTE and cycle work change for a conventional vehicle of multiple loads. The

first plot shows the result for 5 set of simulation. Each set has 5 bar plots (Red - Absolute

Fuel Economy compared to baseline, Blue - Trip Time change compared to baseline, Green

- Compensated Fuel Economy which is Absolute Fuel Economy-Trip Time Change, Yellow -

Change in Cycle Work compared to baseline, Purple - Change in BTE compared to baseline).

The 4 sets are baseline which is 65000lbs truck, the second one is 55000lbs truck and the

rest are 70000lbs, 75000lbs and 80000lbs respectively. It is observed that the FE % change

increases by over 6% with a 10000 lbs of load reduction. Similarly there is a progressive

reduction in FE % change as we increase the vehicle load. This is expected since the vehicle
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Figure 3.8. Simulink Structure of a Single Vehicle - Forward torque and back-
ward speed feedback loop. The components used are Corridor data processing,
Operator Processing [throttle, brake, gear, clutch], Power Split Sequence, En-
gine and Motor Generator processing, Transmission Dynamics and finally the
Vehicle longitudinal model.

works more on torque curve with the increase in load. Another observation is that with

the increase in load there is more cycle work being done by the vehicle which also increases

proportionately with the load (the yellow bars show positive numbers with load increase

which means compared to baseline its more). There is not a very significant change in BTE

which signifies that the vehicle is well tuned for transmission shift points and the fuel maps

are very well tuned as well. Figure 3.9b shows negative work which is the sum of the motoring

work and the braking work as a percent change against baseline for a conventional vehicle

of multiple loads. Similar to Figure 3.9a this plot also has 5 sets of data. The first set being

the baseline simulation for the conventional truck with out hybrid system turned on and a

gross vehicle weight of 65000lbs. The red bars in each set is the total negative work. The

yellow bars in each set is the total engine braking work and the green bars in each set is the

total motoring work. It is worth observing here that the motoring work almost remain same

with load but there is a huge increase of braking work with load increase. This is anticipated

since the heavier vehicle will have more kinetic energy during downhill and will have more
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characteristic acceleration there by going past the braking zones more than a less loaded

vehicle. This fact is validated with the negative work for the less loaded vehicle where we see

less braking work. These results provide a good confidence on the baseline vehicle system.

Next we validate the Mild Hybrid benefits over the conventional vehicle. Figure 3.10a shows

the Fuel Economy numbers with the addition of the hybrid system where the power split

strategy is simple SOC target tracking within a range of 25% to 75% as specified by the

battery manufacturer. The sequence of plots and nomenclature is exactly similar to what

is presented in the convectional case, Figure 3.9a & Figure 3.9b . Each set here is the result

of adding the hybrid system on top of the conventional counterpart. So the first set is the

result of adding the hybrid system on top of the 55000lbs conventional vehicle. Similarly

the second set is the result for the addition of the hybrid system on top of the conventional

65000lbs vehicle and so on. We observe substantial improvement in fueling with heavy load

which is because of more regenerative braking capability associated with a heavy vehicle. We

see similar cycle work all through which also shows that the electric system is compensating

for the extra power demand by the additional load. Figure 3.10b shows the negative work

due to motoring losses and braking for different loads. Motoring remains almost similar

while braking work increases with load. Table 3.4 shows the tabulated key metrics for the

Table 3.4. Baseline simulation results with rule based control for SOC and
other control levers. SOC follows a charge sustaining PI logic

Metrics Units Value
Distance Travelled miles 81.92
Fuel Consumed Kg 27.3
Fuel Economy mpg 9.6
Trip Time s 4600
Total Shifts - 39

Aerodynamic Work kWh 90.2
Cycle Work kWh 146

BTE % 44.8
Engine Out NOx Kg 0.4384
Negative Work kWh -29.6

simulation with baseline controls. These numbers are used in the optimal controls algorithm

as well as used to calculate all benefits in the subsequent sections. The baseline for this
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research work is considered as a 65000lbs truck with a mild 48V system attached to the

transmission input shaft via a coupling gear. The hybrid system is managed through a simple

rule based SOC target tracking proportional integral controller. The dynamics of the vehicle

is modelled as described in the previous sections with simple vehicle speed feedback and

torque propulsion including both engine and hybrid system. The SOS is a rule based simple

target tracking control with charge sustaining algorithm, between bounds. Most literature

often use such strategy for simplicity in calculation. The optimal control algorithm later

described will study the effect of predictively controlling the SOC algorithm.

3.8 Conclusion

Having understood the baseline results we move on to the next part which is the problem

formulation. Henceforth we will refer to the Mild Hybrid configuration running 65000 lbs

load as our baseline system and all benefits will be accessed on top this system. Overall the

baseline system is defined as below,

• Mild Hybrid operating a P2 architecture with the traction motor mounted to the

output shaft of the transmission via a gear assembly

• The vehicle is configured to haul a load of 65000 pounds

• The vehicle is configured to run a route of nearly 82 miles with a characteristic grade

of 1.3% and a road speed limit of 65mph

The optimal problem will be solved by including one lever at a time on top this newly defined

baseline. All metrics associated with the control formulation will be compared against this

baseline and the results produced here.
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4. PROBLEM FORMULATION & APPROACH

The multi-objective minimization type problem for a system of line haul trucks in a platoon

is solved in this problem. There are two objectives for this work, the first one is to under-

stand the true global optimal behavior with multiple control levers working in conjunction

with the mild hybrid system and the second one is to formulate a problem to find global

optimal behavior in a platoon of trucks using multi-agent methods. The motive of the work

is to understand the rules behind the control levers and how they shall operate as a function

of road grade and speed limits. A two folded approach is tried here where a complex problem

involving 5 states and 4 interacting controls is solved offline. In this step the behavior is

analyzed for each control lever and its interaction with other controls. A set of rules that can

be deployed based on predictive knowledge is recommended. The other important aspect

is the need for look ahead information. It is also analyzed at this step as to what level of

look ahead information is needed. The question we tried to answer here is whether we need

the full route information for the true global result or a smaller section of the road ahead is

good enough for the expected benefits. Once this is done the next step is to figure out the

best possible way to implement the controls in the platooning trucks so that they provide

true global results. It is very challenging to implement PMP or MPC based controls in

the control modules that most of the trucks use today. Once we move to more GPU based

processing units for the trucking industry these math heavy algorithms could be the true

solution. Until then it is often needed to rely on simple rules derived from the global offline

solution. A similar approach is taken here where the second step takes the offline control

trajectory and tries to follow it using another simple distributed averaging based algorithm

for a shorter horizon. This action is taken for each individual trucks in the 3 truck platoon

in our case.

Typically for a system of this scale identification of the true objective is challenging. There

are multiple factors that affect the true optimized operation of a line haul truck. Definitely

the total fuel consumed is the primary objective to minimize. Though the improvement in

miles per gallon number is the key element but its interaction with other components n the

vehicle drives the true problem. We cannot compromise on trip time in order to save fuel.
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Similarly engine out NOx numbers can also be part of the cost function in order to achieve

a better emissions foot print. Carbon neutrality is another objective. Further with more

advanced features like coasting while in mission can significantly lower after treatment tem-

peratures which adversely affect conversion rates in the catalysts. Further the component

sizing is another key criteria in deciding the optimal behavior of the controls. As an example

engine fuel maps and rear axle ratio plays a key part in deciding optimality for predictive

control of the gears.

While there are numerous ways the problem can be attacked and solved to understand some

key behavioral differences in the controls, we have targeted the objective to achieve better

fuel efficient, safe operation in a platoon and also do not trade off a lot on trip time and

drivability. Since better fuel efficient operation also indicates a better engine operation point

in the BTE contours, we also anticipate to improve on the emissions. This improvement in

engine out NOx is the passive result of the better engine operation. In this research the

after-treatment temperatures are not considered in the optimal problem formulation nor is

the emission components part of the objective function or the constraints. This is specifically

done in order to keep the problem only tied to the engine and powertrain domain. The effect

of emissions is studied as a passive improvement based on the improvement in the complete

powertrain. The recommendation and future work extension of this research would be to

include the emissions component (both temperature and absolute NOx values) in the prob-

lem formulation to actively include those as part of the optimal behavior. There could be

potential option for including externally heated after treatment models as well which may

provide a different optimality. These all are viable problems for optimizing the complete

powertrain.

Figure 4.1 shows the overall schematic of how the problem is laid out. It shows the two

independent phases which are used to solve the problem and analyze the global optimal

behavior. As shown in the figure the exogenous corridor information used in this work as

predictive look ahead knowledge is the road grade and the speed limit. The offline part can

be solved individually for any vehicle configuration, any load condition, any route condition

with traffic or without traffic in consideration. Since this type of problem is very computa-

tional heavy it is often needed to run in offline mode either in cloud or using a high efficient
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computer. Although they are only used to understand the global true optimal behavior and

not used in production environment. In this work a 4 controls, 5 states(including vehicle

position) problem is solved which falls under a very challenging multi-control optimization

class. The complexity of the true optimal behavior depend on a number of use cases - in-

teracting control action, state trajectory interaction, range of absolute look needed, vehicle

configuration type and so on. This problem help us realize and understand a lot of functional

dependence of optimality to these control levers along with component sizing.

The vehicle system is designed and analyzed in the previous chapter and we have see the

dependence of load variation with fuel economy and other key metrics. The vehicle configu-

ration is fixed for all the 3 platooning trucks in this research and the load is set to 65000lbs

for each truck. The route is also fixed to be a made up section of I64 with a hilly portion

in between two relatively flat section. Further a demo route for microscopic analysis is also

used which is a 3% uphill followed by a 3% downhill type of trapezoidal route. This route is

primarily used to code up the problem and tune initial weights before running the final tun-

ing on the actual route. Details of the simulation results are discussed in the next chapters.

Once we have the vehicle configuration and corridor information fixed we define the objective

function as Equation 4.1 , It is a weighted sum of total fuel used in the route and the trip

time. Since the scale is widely different for time and fuel we have normalized it with weights.

min
∀u∗∈U

[ α

WF C

(ṁf (u, s)
Vs(u, s) ) + 1 − α

WT T

( 1
Vs(u, s))].ds (4.1)

The problem is solved in distance as time in this problem in independent and can change

depending on vehicle speed change. Hence the cost function is integrated over distance

[ds]. There are only two parameters used in the cost objective. The Engine Fuel Rate

and the Trip Time. As discussed in the previous section, the dynamics in time domain is

converted to distance domain by dividing the state parameters in the dynamics as well as

cost function by Vehicle Speed (v(s)). α is the weights on the fuel and time. A value of 1

for the α means the optimal behavior will be targeted towards complete fuel savings with

out maintaining the trip time balance. The vehicle will slow down excessively in this case.

Similarly a value of 0 for α will mean the optimality will focus on trip time saving by trying
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to move fast and thereby spending more fuel. We used an automated bisection search to tune

alpha for each DOE since it is a time consuming effort. WF C and WT T are the normalizing

weights on the fuel and trip time parameters since they are in different scales. These weights

are estimated based on the respective fuel and trip time numbers from their corresponding

baseline simulation results. The other details of the non-linear constraints and the solution

method are discussed in the subsequent sections.

Figure 4.2a shows the section of the I64 from where the road data is used. The char-

acteristics gradient for this section is 1.3% and the entire route length is 82miles with a

constant cruise speed limit of 65mph. The baseline vehicle dynamics is set to follow this

constant cruise speed target with out any torque based droops. Simulation result of this

baseline simulation is studied in the previous chapter.

Figure 4.2b is the dynamic grade and vehicle speed profile for the baseline simulation. It

shows the how the road is graded and what is the dynamic range of vehicle speed with the

any look ahead knowledge. It is observed that the engine brakes are effective to restrict

vehicle speed around 71mph as set and the vehicle is limited to 50mph at heavy grades.

This is the system torque map limitation of the vehicle.

Figure 4.3. Illustration of a Demo Route for metrics analysis in terms compu-
tational correctness. This route is not meant for calculating the fuel economy
numbers. This is used to computationally analyze the correctness of the algo-
rithm implementation and also to understand the local behaviors with respect
to hills and downhills.
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(a) Real world drive cycle taken from a section of I64. Grade
points are generated from openstreetmap.org website.

(b) Route grade and baseline vehicle speed profiles. The vehicle speed
is targeting a rudimentary cruise controller set speed.

Figure 4.2. Prime Route Characteristics including real world segment and
vehicle speed profile as a function of grade.
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Figure 4.3 is the 10mile route used as a demo short route to code, tune and analyze the

initial results. It shows the typical behavior of the truck in an uphill and downhill with the

speed drop, speed up and engine braking.

4.1 Dynamic Program Algorithm

Dynamic program algorithm based on the famous Hamilton-Jacobi-Bellman principle

involves a complex and computationally challenging process which is described in the below

steps, these steps are sequentially executed to get the optimal offline results using a single

truck,

• Baseline Run :- Simulate the baseline plant to store results for comparison and gather

data for dynamic program initialization

• Feasible Grid Search :- This step is the most time consuming and computation heavy

process. It loops through all the combinations of feasible grid points for states &

controls, then store the next iterated value for each state & cost metric parameters.

This cost value is the cost to go from 1 step to another and the cost-to-go for the

optimal solution

• Optimal Control Selection :- This step is heart of dynamic programming where the

minimum stage cost is calculated and the optimal cost-to-go is selected from the min-

imum stage cost. The corresponding minimum control value for each optimal stage

cost is also selected.

• Simulate Optimal Controls :- The final sequence is to apply the optimal controls gener-

ated in the previous step to see the final outcome of the dynamical plant. The optimal

controls is selected based on interpolated n-D look up tables since it is a function of

the number of states and the independent time vector. The figure below shows the

interpolation method used to select the optimal control and the cost-to-go values,
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Figure 4.4. Illustration of Cost To Go Calculation. During the full factorial
DOE space search starting from the end of the route to the start, the objective
cost is calculated for each selected DOE space point. The cost-to-go selector
then selects the minimum cost from each local cost points

Figure 4.4 , shows the Cost-To-Go calculation and the selection of control variables. It

depicts the admissible space among all the control levers. This admissible space is explored

during the grid search stage to find the objective cost for each combination of controls and

state parameters within the admissible space. This calculation is further done for each

distance point for the entire route.
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Figure 4.5. Illustration of how the optimal control is interpolated based on
the state parameters and the independent vehicle position. In a similar fashion
the other control levers are also chosen for the Coast, Gear and Power Split
Problems

Figure 4.5 shows the simulink generic structure for the optimal control selection based

on the state parameters. The n-D tables here are fed with the optimal control values as a

function of each state parameter. Interpolation of the n-dimensional search space is done to

select the optimal control values and the cost-to-go. It is required to do the interpolation

since while going forward in simulation it is not necessary that the states coincide exactly

with the grid points.
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Figure 4.6. Interpolation for control action & cost-to-go

Figure 4.6 shows the propagation of state variables in every time step. The ” GREEN ”

paths at each time instant shows the possible path that the state can take but the ” RED ”

paths are the one which are the interpolated optimal path.

Table 4.1. Dynamic Programming Grid Setup
Parameters States Controls Units Grid Points

Vehicle Speed Yes No m/s 51
Transmission Gear Number Yes No none 4

Battery SOC. Yes No frac 13
Clutch State Yes No none 2

Engine Throttle No Yes frac 11
Clutch Command No Yes none 2
Shift Request No Yes none 3
Power Split No Yes W 13

Table 4.1 shows the discretized grid setup for the states and control variables. The grids

are chosen such that the dynamics are still captured between the step size and the grid is

not too large to challenge the computational cost. As can be seen from the grid setup that

a total of 51*4*13*2*11*2*3*13 = 4550832 points for the states and controls. This
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when multiplied with the grid size for the distance gets to a huge number which has its

own computational challenge to solve. While solving for this problem the minimum cost

calculated at each step is also penalized based on the violation of each associated state

parameters. As an example there are soft and hard constraints on absolute vehicle speed,

engine speed, gear number. Additional constraints are also on the interaction between gear

shift and coast requirements. Further details on dynamic program structure and algorithm

is provided in appendix section.

4.2 Online Platoon Controller

The next stage is when the platooning trucks use the optimal control profile. The problem

can be solved in multiple ways. One simple way is to let the lead truck follow the optimal

trajectories and the follower trucks passively follow the lead trucks ensuring that the critical

distance is maintained. This is typically done using a proportional-integral feed forward

controller that tracks the separation distance and adjust brake and throttle power as needed.

The other gear and the coast control levers can be applied as it is ensuring dynamical

requirements. This is typical to the reactive based control strategy where the lead vehicle

drives the entire the platoon mostly. The follower vehicles plays in the throttle and brake

space to maintain follow separation distance. while this strategy can be easy to implement

it does not guarantee (without validation) whether the results are truly optimal. Later in

the section we analyze whether implementing such a strategy is the best tradeoff among all

the requirements.

Moving one step further the platoon problem can be solved using traditional optimal control

methods such as model predictive control, Mixed integer non-linear program methods, pseudo

spectral collocation methods and even Pontryagin’s minimum principle. While some of them

are used widely in industry for various application and also provides true optimality but it

is often challenging if not impossible to implement such algorithms in real time controllers.

This led to the requirement of analyzing the global optimal behavior using different methods

in this research and understand the over all behavior in terms of optimal results, challenges

in implementation, ability to scale up the problem and involving vehicle dynamics.
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In this work a simple multi-agent based method is used where each node (trucks) in this

case need to be aware of its neighbor’s state. The trucks share information about their state

variable and are fed with the same global optimal control signals as obtained from the offline

problem. The lead and the last truck in the platoon have 1 neighbor each while the middle

truck has 2 neighbors. The trucks use a shorter horizon to iterate on the state update values

and minimize the cost while meeting the constraints. The state update in this case is for the

vehicle speed only and is given by Equation 4.2 as studied by Boyd et al, [69 ][70 ], where each

truck needs to know the separation distance between the trucks from it and then applies the

formula to get is updated value.

xi(t + 1) = (1 −
∑
j∈Ni

1
(1 + max(di, dj))

)xi(t) +
∑
j∈Ni

1
(1 + max(di, dj))

xj(t) (4.2)

where, Ni is the nodes in the network, d′s are the separation distance and x′s are the respec-

tive states. Once the state updates are available the cost function is calculated to find the

minimum objective value and the penalties are applied based on the constraints. Equation

4.3 shows the objective cost function that is used in the approach. This method is iterated for

the short horizon as the vehicle moves forward. More details on distributed averaging based

algorithm along with short description of Model Based Control and Pontryagin’s Minimum

Principle are discussed in the Appendix section.

u∗
1:N(s) = argmin

u1:N ∈R

N∑
n=1

∫ s

0

{
Wfαṁfn

vsn

+ Wt(1 − α)vtn

vsn

+ τbraken

}
ds (4.3)

The objective of this research is to setup and understand the following key behaviors along

with the major fuel efficient objective,

• Effect of mild hybridization of a line haul truck operating at high way speed

• Effect of interacting control actions based on look ahead knowledge of road grade and

speed limit

• Optimality analysis for multi-objective problem as a function of predictive information

• Extension of predictive optimal solution to a 3 truck platoon system
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• Analysis of predictive requirement for follower vehicles in platoon
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5. SINGLE VEHICLE OFFLINE OPTIMIZATION

In this chapter the detailed problem is implemented and analyzed for each control lever at

a time along with all levers working together. The addition of each control lever is done

as a stacked up approach by adding 1 control lever at a time to the previous problem and

analyzing the behavior.

5.1 Offline Mode - DP Based Speed Management Solver for Single Truck

Though the final problem is solved for 4 major control levers with the objective of mini-

mizing the overall fuel usage, the method used here is by solving the problem by introducing

one lever at a time.

The first lever studied here is the Cruise Set Speed. The objective is to understand if

the cruise target speed can be predictively changed around the isochronous constant cruise

speed of 65mph as function of look ahead road grade information. The general form for the

cost function is modelled by Equation 5.1 

min
u

J =
∫ tf

t0
ṁf (x, u, w) ∗ dt (5.1)

where, ṁf is the ”fuel mass flow rate”, (x, u, w) are states, controls and exogenous inputs.

The states here in terms of solving the optimal control problem are Vehicle Speed, Gear

Number & Battery SOC. The search space is discretized between a minimum and maximum

set of points for all these states. Engine Speed is also a state but it is a dependant state of

the vehicle speed and hence it is not needed by the solver for the control problem.

ωeng(t) = v(t) ∗ wrad

ν ∗ RAR
(5.2)

where, ωeng is engine speed in rad/s, ν is ”gear ratio”, RAR is Rear Axle Ratio and wrad is

wheel radius. As discussed in the previous sections, since this problem is not a fixed time

problem the dynamics is converted into distance domain from time domain. Total time is

also included in the objective cost to make sure that total time remains within baseline limits.
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So, if the single truck with out these predictive controls takes ”X” seconds to cover the

route, the optimal control should also be close to that ”X” seconds. Hence, the final cost

function is designed as discussed in previous chapter. Equation 5.3 , shows the cost function

with the non-linear constraints on the states and controls.

min
∀u∗∈U

[ α

WF C

(ṁf (u)
Vs(u) ) + 1 − α

WT T

( 1
Vs(u))]∆s (5.3)

subject to,

ẋ(s) = f(x(s), u(s), w(s)),

y(s) = g(x(s), u(s), w(s)),

and, non-linear constraints,

vmin ≤ v(s) ≤ vmax,

gmin ≤ g(s) ≤ gmax,

socmin ≤ SOC(s) ≤ socmax,

ωeng,min ≤ ωeng(s) ≤ ωeng,max,

τeng,min(ωeng) ≤ τeng(s) ≤ τeng,max(ωeng),

There are three states here x(.) =[Vehicle Speed, Gear Number, Battery SOC], 1 control

u(s) = Throttle and the primary output is y(s) = OptimalV ehicleSpeedTrajectory.

It must be noted here that the constraints are both soft and hard. There is a hard vehicle

speed limit based on absolute speed maximum and minimum thresholds. We also have a

soft root mean square type error constraint based on the difference between baseline speed

profile and the optimal speed profile. To make fuel benefit numbers comparable we let the

base line speed increase to the upper bound for the speed before the brakes are applied. This

is done in order to make a fair comparison between the optimal problem formulation and the

baseline simulation environment. Figure 5.1 , illustrates the different speed constraints used

in the problem. The blue highlighted figure is that of the baseline simulation environment

with out the optimal problem. The cruise target is set to constant 65mph. Though it may

be noted that the system is limited to torque curve to maintain this set speed at heavy

grades and hence it will slowdown due to gravity on uphills. Similarly during down hills the

vehicle will accelerate and speed up. In this case we have not used the brake (both engine
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Figure 5.1. Speed Constraints for the Optimal Problem. There are

brakes and wheel brakes too prevent the vehicle from going beyond 65mph). We let the

vehicle coast up to a calibrated speed droop beyond the set speed before the engine brakes

are applied and similarly another calibrated threshold before the wheel brakes are applied.

This is particularly done so that it creates a fair comparison with the optima results which

is formulated to dynamically move speed around the set cruise speed.

The sequence of code for this section is explained in Algorithm 1 The output of this solver is

the optimal throttle value. This throttle control is used as input to the closed loop system

to generate the optimal speed profile. The vehicle will no longer target a constant 65mph

cruise set speed in this case as the optimal throttle will let the vehicle dynamically increase

speed and slow down in the route based on look ahead grade information. The Vehicle Speed

profile captured in this offline mode is fed as the cruise set target for the individual trucks in

platoon. The multi-agent controller follows the target with other control levers in action and

also include the braking system as an additional lever for maintaining safe follow through

distance.
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Result: Optimal Throttle, Optimal Vehicle Speed Feedback
Step 1 - Run Open Loop Forward Simulation: Initialize system parameters;
while Vehicle Position is NOT end of Route do

Step through the route in distance;
Accumulate fuel mass - ṁf = f(vs(i));

end
Step 2 - Generate Dynamic Programming Grid Space: Initialize system parameters;
Create full factorial tensor space for states & controls;
Simulate for 1 distance step (20 meters);
Gather states & controls output;
Step 3 - Optimal Reference Generation: Initialize system parameters;
Apply penalty to all DOE points where constraints are violated;
Select minimum throttle for each state point;
while Vehicle Position is NOT end of Route do

Apply optimal control value interpolated for each state point;
Integrate fuel rate for mpg;

end
Algorithm 1: Offline Global Optimality-Single Vehicle

Figure 5.2. Simulation framework and flow for the single vehicle configura-
tion. It shows the high level process and the step wise simulations that are
run to generate the optimal control action.
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Figure 5.2 shows the stages of the well known dynamic programming which is used in

this work to solve the problem. The baseline metrics are accumulated and fed to the stage

cost calculation algorithm which calculates the local stage cost for each value of control and

state combinations. Finally the Optimal cost algorithm finds the minimum cost from all the

state and control discretized points and selects the best control point for the minimum cost.

The problem is also solved for a demo route of 10 mile with a 2 mile uphill and a 2 mile down

hill section as described in Chapter 4 . This is done as a sanity check for the problem and

also to debug any issue. This also helps understand the local behaviors tied to individual

hills. Figure 5.3 shows the optimal throttle and its contours as a function of vehicle position

for a fixed gear, SOC and Clutch engaged state on the 10 mile demo route. It shows that

Figure 5.3. Contours of Optimal Throttle in Vehicle Speed Space for a fixed
gear and SOC state point. Dotted bounds shows the constraint on Vehicle
Speed which is set based on baseline simulation
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the truck accelerates just before entering the hill and the throttle is maximum at that point.

During the down hill the truck did not chose to apply any throttle. This contour is for a

single gear state and a single discretized value of SOC which are the states in this problem.

Figure 5.4 shows the cost to go calculated from the end of the route towards the start for

the objective function. The Cost shown here is chosen at a particular gear and SOC point

which are the state parameters in the problem.

Figure 5.4. Optimal Cost-to-go contour with Vehicle Speed at a fixed gear
and SOC state point.

Table 5.1 shows the key metrics for the Cruise Speed modulation problem. It shows an

absolute fuel economy of 3.02% with a change of 0.07% in trip time. There is a reduction

of 1% of aerodynamic work and 2.56% reduction in total cycle work. The brake thermal

efficiency improved by 0.18%. Negative work reduction is mostly due to engine braking

reduction.

Figure 5.3 shows the optimal throttle and its contours as a function of vehicle position

for a fixed gear, SOC and Clutch engaged state.
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Figure 5.5. Contours of Optimal Throttle in Vehicle Speed Space for a fixed
gear and SOC state point. This contour space plot is for the actual route for
the entire 86miles. Dotted line bounds shows the constraint on Vehicle Speed
which is set based on baseline simulation
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Table 5.1. Comparison of key metrics for the first offline problem where the
cruise reference speed is predictively modulated based on look ahead knowledge
of the entire route

Metrics Units VS ∆
Fuel Consumed Kg 26.4984 -0.8
Fuel Economy mpg 9.86 3.02
Trip Time s 4602.8 0.07

Aerodynamic Work kWh 89.26 -1.01%
Cycle Work kW 142.34 -2.56%

BTE % 44.95 0.18%
Negative Work kWh -24.1 -18.66

EONOx Kg 0.4104 -6.41

Figure 5.6. Optimal cost-to-go for the full route for one point of all the states.

5.2 Offline Mode - DP Based Speed & Coast Management Solver for Single
Truck

This is similar to the Speed Management problem in terms of the cost function and

system dynamics. Equation 5.3 is still the cost that will be used to calculate the cost to go

along with the non-linear constraints on speed and gear. The only exception in this case is

the addition of another state and control variable in the problem. To manage coast we need
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to know the current clutch state and then command the clutch to engage or disengage. Hence

there is a new DP (dynamic programming required) state added to the problem which is

the current clutch state. The control lever which is also added is the clutch command which

dictates whether the engine is coasting or engaged.

One additional constraint here is the duration and frequency of coast events. Even though

speed constraints will take care of how long we can be in coast events, there is a need for a

constraint on how frequent the coast events could be. It is done by introducing a penalty on

the frequency of change in clutch state. This will ensure that the system is not coasting for

very less time which are practically not possible from system dynamics.

It is also needed here to handle the interaction with hybrid system. We had to answer the

question of what the hybrid system will do when the vehicle is coasting. The question is

more severe when we have an Engine Off Coasting. The current control action will make the

hybrid system work based on SOC limits and can either regenerate or propel the vehicle. If

the system is regenerating it will interact with the coast events and will reduce the speed

more there by taking it out of coasting. This problem is also solved on the 10 mile short

route for sanity and tuning before the problem is moved to the full route. Figure 5.7 shows

the optimal behavior in speed and coast events on the 10 mile route. It is seen that the speed

increases as in the speed problem alone before the hill and then slowing down before the

down hill. There were 2 distinct coast events of sufficient duration, one just before entering

the down hill and the other while coming out of the down hill.

90



Figure 5.7. Trapezoidal 3% Route Speed Profile along with Gear and Clutch
State showing Optimal Control Action

Table 5.2. Comparison of key metrics for the Coast Management problem
only with Engine Idle and Engine Off Condition. The ∆% is the comparison
with the baseline simulation

Metrics Units Case EI ∆EI Case EO ∆EO

Fuel Consumed Kg 27.03 -0.26 26.92 -0.37
Fuel Economy mpg 9.66 0.98% 9.7 1.39%
Trip Time s 4604.1 0.09% 4602.6 0.06%

Aerodynamic Work kWh 89.7 -0.52% 89.1 -1.19%
Cycle Work kW 144.97 -0.76% 144.76 -0.91%

BTE % 44.87 0.09 44.99 0.21
Negative Work kWh -27.21 -8.17% -26.1 -11.91%

EONOx Kg 0.4304 -1.82% 0.4297 -1.98%

Table 5.3 and Table 5.2 shows the energy lost in the system in the form of negative

work done. This in an important metrics to look at since the negative work done is the loss

in energy which is gained at the expense of either fuel or electric energy. Since dynamic

programming did not show the reason why the fuel benefits are occurring it is important to

compare the reduction in negative work done which clearly indicates where the fuel economy

is coming from along with the improvement in engine BTE.
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Table 5.3. Comparison of key metrics for the Vehicle Speed and Coast Man-
agement problem with Engine Idle and Engine Off Condition. The ∆% is the
comparison with the baseline simulation

Metrics Units Case EI ∆EI Case EO ∆EO

Fuel Consumed Kg 26.3345 -0.96 26.14 -1.15

Fuel Economy mpg 9.92 3.64% 9.99 4.41%

Trip Time s 4604.2 0.1% 4603.7 0.08%

Aerodynamic Work kWh 87.52 -2.94% 87.53 -2.93%

Cycle Work kW 141.92 -2.85% 140.25 -3.99%

BTE % 45.09 0.31 44.89 0.11

Negative Work kWh -21.76 -26.56% -22.12 -25.35%

EONOx Kg 0.4021 -8.28% 0.4002 -8.71

Figure 5.9a shows the key comparison between vehicle speed only problem and vehicle

speed with coast solved together. We notice that the addition of coast problem along with

vehcile speed gives an added 0.6% absolute fuel economy. The problem with coast alone

provided 0.88% benefits which indicates that the vehicle speed problem alone and coast

problem alone benefits do not sum up completely. There is some benefit which is not realized

when we solved the speed and coast problem together. Contrary to the engine idle scenario

it is observed that the engine off case provides an added 1.4% benefit is achieved which is

exactly the addition of vehicle speed problem and coast problem. This indicates that with

engine off coasting the benefits are preserved whether we solve the problem individually or

together. It is also noted that a relatively high amount of cycle work reduction took place

with the engine off version of the speed and coast problem. We do not significant reduction

in negative work with the coast only problem both for the engine idle as well as the engine

off scenarios.
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5.3 Offline Mode - DP Based Speed, Coast & Gear Solver for Single Truck

In this third problem we have included predictive gear control as a third lever along with

speed and coast controls. The objective function remains same with the addition of an extra

control input which is the gear shift command. Gear shift command command can take 3

possible states (up shift, hold gear & down shift). The objective here is to find if shifting

the gear with the knowledge of road grade in the route will help achieve any fuel benefits

and/or drivability improvements. As discussed in the previous chapters it is not expected

to gain any fuel benefits unless the fuel maps are tuned in such a way to include high BTE

zones at a lower gear. We will validate these analytical analogies with the simulation results

from this problem. As per the process the initial problem is framed using a shorter made up

route of 3% grade (uphill and downhill) at 2 distinct position in the route. The uphill occurs

first followed by the downhill. Figure 5.10 shows the key control levers in action. We see

similar expected behaviors of speed up during the pre-uphill region and slow down during

the pre-downhill portion. It is worth noting that this problem has only 1 coast event just

before entering the downhill. The other coast event which was coming out of the down hill

is not observed here in this problem.

Table 5.4. Comparison of key metrics for the Vehicle Speed and Coast Man-
agement problem with Engine Idle and Engine Off Condition. The ∆% is the
comparison with the baseline simulation

Metrics Units Case EI ∆EI Case EO ∆EO

Fuel Consumed Kg 26.34 -0.95 26.1 -1.19

Fuel Economy mpg 9.92 3.62% 10.01 4.57%

Trip Time s 4597.3 -0.05% 4605.3 0.12%

Aerodynamic Work kWh 90.29 0.13% 87.54 -2.92%

Cycle Work kW 142.021 -2.78% 140.218 -4.02%

BTE % 45.11 0.33 44.94 0.17

Negative Work kWh -22.3 -24.74% -23.93 -19.24%

EONOx Kg 0.41. -6.48% 0.4082 -6.89
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Figure 5.10. Optimal control behavior analysis using a 3% demo route. Key
control levers are vehicle cruise speed, clutch command and gear shift request.
Clutch State is *20 and Gear Number is *4 in the plots.

Table 5.6 shows the raw data from the vehicle speed, coast and gear management problem

for both the engine idle and engine off scenarios. The ∆% are the changes compared to the

baseline simulation results.

96



Figure 5.11. Speed histogram comparison of predictive cruise speed control
with engine off coasting vs engine idle coasting and engine idle with predictive
management.

Figure 5.11 shows the speed distribution between the speed, coast problem for both the

engine idle and engine off case and speed, coast, gear problem together for the engine idle

condition. We notice that the engine off coast problem with speed has the most standard

deviation, which indicates that the vehicle is more transient in terms of speed as compared

to others. It is also observed that the gear management problem reduced the speed lug-

back towards the more negative speed points which are the uphill section of the route. It is

also worth noting that the gear management also spends more time at the lesser negative

speed points which indicates slowing down more during the flat sections of the route. Figure

5.12a shows the detailed fuel economy along with the associated key metrics. We see the

progressive improvements in results and also noted that gear management is not a fuel

economy but more of a performance lever as explained and studied in below sections. Most

of the benefits are also associated with the BTE improvement, negative work reduction and

cycle work reduction.
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Figure 5.13. Predictive Optimality in Gear Management. The problem
shows the predictive gear shift behavior in one of the up-hill section

Figure 5.13 is an exploded view of a section with details of how the gear behaves in a

grade. This is for the problem with predictive gear management. The dotted black lines are

the high and low vehicle speed bound which are applied as constraints for all the problems

and is taken from baseline dynamics. The blue and the red plots shows the baseline and

the optimal vehicle speed respectively. We notice that during the uphill section the optimal

vehicle speed drops less compared to the baseline. The speed drop in this case for the optimal

profile is better than the baseline by close to 2mph. Comparing the green and the dotted

magenta plots which are the optimal and the baseline gear shift we notice that the gears

shifts early as a result of the predictive knowledge. While this helps reducing speed lug-back

in hills it will also affect fuel economy. Hence with the gear management problem we see less

(top-1) gear operation and also slow down in the flat section to compensate for the fuel loss

in the hills. Interestingly we also see an early upshift while coming out of the hill which is an
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interesting observation for fuel economy for this BTE map. The metrics results associated

with behavior is discussed in the below sections.

Figure 5.14. Vehicle Speed Distribution between Predictive Speed Manage-
ment Problem and Predictive Speed with Gear Management Problem

Figure 5.14 shows the speed histograms for the speed and speed, gear problems. We

notice less speed reduction in the heavy hills as compared to the speed only problem. The

balance is done by slowing more during the flat sections. This is indicated by the taller

orange bar close to 0 mph as compared to shorter orange bars closer to larger negative mph

numbers.
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Figure 5.15. Vehicle Speed Distribution between Predictive Speed Manage-
ment with Engine Idle Coast Problem and Predictive Speed with Engine Idle
Coast + Gear Management Problem

Figure 5.15 compares the vehicle speed histograms for the speed, coast problem and the

speed, coast, gear problem. The distribution is almost similar with a little lesser slow down

which indicates a better reduction of lug-back. This is something which is shown in the

below section with the time series data. It is worth noting that though the problem reduced

lug-back in the heavy hills during the flat section the slow down is still more which is the

optimal behavior to balance time and improve fuel. The fuel spent during the heavy hills is

compensated by the slow down during the flat section and also balancing time.
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Table 5.5. Comparison of key metrics for the Vehicle Speed and Gear Man-
agement problem. The ∆% is the comparison with the baseline simulation

Metrics Units VSG ∆

Fuel Consumed Kg 26.45 -0.84

Fuel Economy mpg 9.88 3.19%

Trip Time s 4596.8 -0.07%

Aerodynamic Work kWh 90.34 0.19%

Cycle Work kW 142.24 -2.63%

BTE % 44.99 0.21

Negative Work kWh -24.54 -17.18%

EONOx Kg 0.411 -6.25%

Table 5.5 shows the raw data in tabular form for the problem speed and gear management.

It is worth to note that we have tried to solve the problem for gear and speed alone to

understand the behavior. It is noted that this does provide any significant improvement.

% FE improvement is just 0.3% which falls under margin of error, as well it may not be

realizable in actual controls. The interesting fact is that it did not eat away the benefits of

speed alone problem which is important. Aerodynamic drag work increased since the truck

moved a little faster than the baseline in this case.
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Figure 5.16. Comparison between key parameters for Speed + Coast Prob-
lem and Speed + Coast + Gear Problem

Figure 5.16 demonstrates the behavior change due to the addition of the gear problem

on top of the speed and coast problem. The route is a simple 10 mile route with a 3% uphill

followed by a 3% downhill. The results are not very conclusive in these plots but the overall

trend is in the similar lines. The result can be tuned better with more weight adjustment

which is not done in this case since this is not the prime route. In general as with all other

problems, we solved the problem on the demo route and then moved to the prime route as

shown in the Figure 5.17 .
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Figure 5.17. Vehicle Speed Distribution between Predictive Speed Manage-
ment Problem and Predictive Speed with Gear Management Problem

Figure 5.17 shows the detailed time series plots of key signals for this problem plotted

against vehicle position. The plot is stitched by taking some zoomed portion of the hilly

portion. Subplot 1 shows the road grade. The subsequent subplots shows the keys signals

with the red being the speed, coast and gear problem and the black being the coast and speed

problem only. The reason for this comparison is to understand the microscopic differences

in key signals due to the addition of the predictive gear problem. Subplot 2 shows the

reduction in vehicle speed lug back at heavy hills. It is clearly seen that the red plot is

not dropping as much as the black plot. On an average a 2 − 3mph less speed drop in the

heavy grade sections are noted. This will impact fuel economy negatively but will give a

better drivability performance. We tried to tune the cost weights in such a way so that

we do not penalize fuel economy for this problem and hence we saw almost negligible fuel

economy improvement with this problem. The subplot 3 shows the engine speed comparison

between the two simulation result. Subplot 4 shows the actual gear number and difference
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between the two. We clearly see that there are some early downshift during pre-uphill which

is typical to our predictive theoretical understanding from the introduction section. Though

early up-shift is also possible but we do not have any in this portion of the route. Subplot 5

shows the coast events where the clutch state goes from 4 (locked) to open (1). We do not

need any significant differences in the coast events due to the inclusion of the gear problem.

There are some differences but its not huge. Subplot 6 and subplot 7 shows the variation

of engine torque and fuel command during the portion of the route. The fuel command

either will go top idle low speed governor fuel value or 0 depending on whether engine idle or

engine off problem is solved. The last subplot 8 is the cumulative % time and fuel economy

improvement. It shows the improvements as a function of dynamic signal change.

5.4 Offline Mode - DP Based Speed, Coast, Gear & Power Split Solver for
Single Truck

This is an additional lever that we want to include in this research work with minimum

priority. It is not expected to see a substantial improvement in results with the additional

of this lever. The reasoning here for this analogy is that the hybrid system is quite small

to provide substantial electric boost mode operation. A major improvement could be in the

duration of coasting with the addition of hybrid boost.

In this problem there are no additional states involved but there is an extra control input

for the dynamic solver. This new control input is power split ratio. The way this ratio is

defined in the problem is by discretizing the entire hybrid power range including the charge

and discharge limits. So if the hybrid power can range between -20kW to +20kW, then the

grid is setup by discretizing this complete range of 40kW between -ve and +ve range. The

resolution of the grid size matters since they impact the results based on how dynamic and

responsive the particular control input is. Hence a SOC needs a more higher resolution than

the power split ratio. It is also worth noting that the more the grid size the more challenging

is to solve it using Dynamic Programming due to computational limits.
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Table 5.6. Comparison of key metrics for the Vehicle Speed and Coast Man-
agement problem with Engine Idle and Engine Off Condition. The ∆% is the
comparison with the baseline simulation

Metrics Units Case EI ∆EI Case EO ∆EO

Fuel Consumed Kg 26.34 -0.95 25.995 -1.30

Fuel Economy mpg 9.92 3.63% 10.05 5.00%

Trip Time s 4597.2 -0.06% 4601.5 0.04%

Aerodynamic Work kWh 90.298 0.14% 89.21 -1.07%

Cycle Work kW 141.89 -2.87% 141.67 -3.02%

BTE % 45.07 0.29 45.59 0.82

Negative Work kWh -22.78 -23.12% -23.97 -19.1%

EONOx Kg 0.4 -8.76% 0.4023 -8.23

Table 5.6 shows the raw data for the full problem with speed, coast, gear and power split

management for both the engine idle and engine off scenario. The ∆% is the comparison

with the baseline simulation.

Figure 5.18. % Time in top 4 Gear for each DOE. The comparison has to
be between the top 2 gears. Predictive gear tries to operate more at a lower
gear while Fuel Economy tends to operate at a higher gear.
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Figure 5.18 shows the total time spent in each gear for the individual problems. This

metrics provides an understanding of which gear is predominantly being exercised by each

problem. Since downshifting to a lower gear from top gear will take the operation outside of

the maximum BTE zone it is not expected that the gear problem will try to shift down for

a better fuel efficient solution. Hence for this kind of BTE map a more fuel efficient solution

is practically not possible. Gear problem can expected to provide a better drivability by

helping to reduce lug backs in heavy hill. It is seen in Figure 5.18 that all the problem

types are trying to increase top gear operation since fuel saving will be more due to the

BTE contour positioning. It is also interesting to observe that the problems with gear

management is reducing the time in (top-1) gear. The coast management problem alone

is the only problem which is not able to increase top gear operation much as compared to

the other problems. This is due to the fact that with coast management problem since the

vehicle is not predictively modulating speed and gear the speed drops are more which causes

the gear to shift down more. A detailed time series of gear behavior for a portion of the route

with grades is analyzed in the previous section. Figure. 5.19a shows the key metrics for the

full problem with 4 predictive control levers on a single vehicle. In this problem the coast

method used is with Engine idle condition. The set of bar plot as with the previous cases

shows the trip time adjusted fuel economy along with the absolute fuel economy and total

trip time for each case. The plots also shows the reduction in cycle work and the improvement

in Brake Thermal Efficiency in each case. Figure. 5.19b shows the reduction in aerodynamic

drag and the reduction in Engine Out NOx numbers. The bar chart also shows the reduction

in negative work which in the single vehicle offline case includes only engine braking and

motoring losses. We see a progressive improvement in economy along with an associated

degree of NOx reduction. With the full set of problem a 3.7% fuel economy is achieved with

a NOx reduction of around 8.3%. The corresponding BTE improvement in this case is much

lower and is close to 0.3%. While the BTE improvement is on the lower side which definitely

impacts the fuel economy and the NOx reduction we see substantial reduction in cycle work

and negative work. in fact negative work reduction is more than the engine off counterpart.

Figure 5.20a and Figure 5.20b captures the detailed metrics for all the problems stacked

up for the engine off case. It is observed that each additional lever brings in some added
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benefit though the addition of gear and power split is not significant and may not be realized

in production code. This is because actual implemented production code may not get the

full benefits of theoretical optimality and considering only a percentage of what we see here

will actually be realized it is very hard to predict if an improvement of the order of 0.5% can

truly be realized. Overall an impressive 5% fuel economy is seen with the predictive features

working together with engine off coasting condition. This benefit is mostly contributed by

around 0.8% improvement in BTE, 3% reduction in cycle work and 19% reduction in negative

work. There is also an associated NOx reduction with each control levers. We observed a

reduction of close to 8.75% of NOx when compared to baseline results. This is completely

due to the fact that engine BTE has improved and other losses are reduced. Figure 5.21 

shows the coast metrics for all the problems individually. The bars shows the percentage of

time in coast by each problem and the line plot shows the number of coast events in each

problem. We see near similar behavior with engine idle case for all the problems as well as

similar behavior with the engine off case for all the problems. Interestingly the coast alone

problems has some good amount of coasting events but could not provide a lot of benefit

simply because of the fact that the net fuel economy is not related to coast events alone

but is a combined factor of multiple scenarios including cycle work reduction, negative work

reduction, BTE improvements and aerodynamic drag reduction. Further a couple of very

large coast events were also observed which may not be feasible in real environment due

to lube and cooling in the engine and aftertreatment restrictions. Nevertheless, the metrics

gives an overview of the coast event distribution across various problem set.

Figure 5.22 shows the overall vehicle histogram for the entire set of problem. It shows a

wider standard deviation in vehicle speed for the optimal problem. This is because of the

fact that the vehicle speed is modulated a lot as compared to the fixed cruise speed target.

In our work the speed droops used are +6mph and −3mph which means vehicle speed can

swing between 62mph and 71mph. The BTE contours shows the fuel consumed as the red

bubbles. Bigger bubbles means more fuel consumed in that BTE zone. It is noted that

a substantial amount of fuel spent in the idle section for the engine idle condition which

directly maps to the percentage of time spent in coast. Figure 5.23a shows the % change

in aerodynamic work as a function of % improvement in fuel economy. There is no concise
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co-relation between the the two in terms of the different problems. This is because the trip

time is balanced with baseline trip time. Hence the overall increase in speed and decrease in

speed tends to balance each other. The vehicle speed and coast only problems show typically

more aerodynamic work reduction. This is due to the fact that they are only slowing down

the vehicles whenever possible by going to coasting along with speed modulation. There

is no precise rule which can be extracted by these behaviors. Figure 5.23c shows similar

trends as compared to the cycle work reduction where we see limited reduction with the

coast alone problems due to no speed modulation. Since negative work is due to the speed

band operating at regions beyond the engine braking limits, with the coast alone problem

vehicle speed is not intentionally modulated to a higher or lower value at the expense of the

fuel hence the reduction is less as compared to the baseline results. In this case the speed

modulation typically follows the baseline numbers. The other problems have a lesser spread

with the engine idle problem as compared to the engine off problem. It is noted that there

is a linear trend in fuel economy and negative work reduction for al problems except the

problems with the addition of the gear modulation. Figure 5.23d shows the reduction in

total cycle work of the engine as a result of the predictive knowledge of the road grade. The

bubbles shows the reduction in Engine Out NOx as a function of the reduction in % Cycle

Work by the engine. Though it can also be seen that the reduction is more in case of Engine

off case which is due to the fact that the engine idle work is taken away in this case. In case

of the Engine idle scenario the reduction for all the problems are around −2.75% while the

problem with engine idle coast only is around −0.76% while with the Engine off scenario the

problems with vehicle speed along with coast, gear and power split provides added reduction

as compared to vehicle speed alone problem only. This clearly demonstrate the fact that

the problem with engine idle and engine off case are completely different in behavior and

cannot be determined by interpreting zero fuel consumption by engine idle problem during

the idle sections. This is an important observation. Similar trends are also observed with

the negative work reduction for both the engine off and engine idle coast cases. Negative

work in this case is comprised of engine braking work and motoring work. Similarly Figure

5.23b shows the variation of Cycle work reduction to Brake Thermal Efficiency improvement.

There is no strong co-relation between any problem and the general behavior. Extraction of
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rules based off only BTE behavior is not very feasible.

Another analysis done while working on the single truck optimal problem is to run the

same optimal formulation for a shorter section of the route to validate the optimal behavior

relation to look ahead distance requirement. The complete route is divided into two sections

of 40 mile each, one for the first half and the next for the second half. Table 5.7 shows

the % Fuel Economy numbers for the two sections of the route. The results from Table 5.7 

Table 5.7. Predictive fuel economy numbers for different section of the route
Route Section FE Trip Time Full Route FE Full Route TT Coast Events
1st 40 miles 2.41 -0.05

5.00 0.04

Decreased
2nd 40 miles 2.39 0.02 Increased
Hilly 10 mile 0.053 -0.86 None
Flat 10 mile 1.03 0.27 Regular

shows that the over all behavior and fuel economy numbers stays near similar if we shorten

the route to half. Since the route is not exactly symmetrical the numbers are not equally

divided. The coast events also reduced a little for the first half of the route and increased

marginally for the second section. This is solely due to the fact that the grade profile is

not similar. It is also noted that the optimal control shows similar physical behavior during

the very short hilly section where there was no coast events observed and the vehicle speed

modulation was also not effective. The predictive gear played a role by reducing the lug

back. It is noted that the Fuel Economy is not at all achieved in this section. While in

the flat section there is usual behavior of coast events and the problem was able to achieve

around 1% benefit. There is also more slow down of the vehicle due to the fact that there

was coast events which slowed the speed down. Overall if these results are compared with

the full route solution it is not observed that the benefits are hugely sacrificed. Specifically

for the 40 miles route it is noted that the benefits are almost equally divided between the

two segments and adds up to get close to the full route benefits.
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5.5 Conclusion

In this Section a true global predictive optimal problem is designed for a class 8 mild

hybrid truck involving 4 interactive controls. This type of problem is never solved in energy

domain to the best of the author’s knowledge. The interaction analysis including the 4

independent controls for a class 8 truck is not studied well in literature. There is no literature

available prescribing what shall be the different control levers that could be applied to a class

8 truck as a function of look ahead road grade. This analysis is crucial in understanding

the optimality in interacting controls and will help design fuel efficient algorithms for class

8 mild hybrid trucks. This analysis is also precursor to predictive platooning systems. The

usage of this formulation in platooning system is discussed in the next chapter. Based on

the analysis done in this chapter the following algorithm suggestions are made which are

novel to the best of the author’s knowledge in a class 8 mild hybrid truck application,

• Predictive road grade knowledge can help design control algorithms that will enable

fuel savings depending on road grade profile,

• Vehicle cruise speed shall be increased within acceptable bounds ( calibrated for driv-

ability) before entering an uphill,

• Vehicle cruise speed shall be reduced within calibratible bounds before entering a

downhill,

• Down shift gear to a lower value predictively before hitting speed lug back in up-hill,

• Up Shift gear predictively while still on uphill and before completely coming out of

the hill,

• Engine shall be disengaged and turned off in mild down grade,

• Engine shall be disengaged for short duration during flat section of route with predic-

tive speed modulation (increase speed then disengage),

116



6. MULTI-VEHICLE REAL TIME CONTROL

6.1 Online Mode - Multi-Agent Control

This step is the second phase of the problem where the offline optimal control is fed

to the 3 trucks in platoon. The objective of the 3 trucks is to follow the optimal control

as much as possible to come to a consensus based on the objective cost and the non-linear

constraints. Each vehicle in the platoon is cognizant about the optimal control trajectory as

obtained by the offline optimizer. This optimal trajectory is same for all the trucks in platoon

since they are configured to have the same architecture. The task of the online multi-agent

based optimizer is to use the global offline optimal trajectory and optimize the 3 trucks in

the platoon following a different constrained optimization algorithm for a short look ahead

horizon. The decision of using a short horizon is based on the analysis and understanding of

the global optimal behavior of a single truck optimized over the entire route. As noted with

the single vehicle optimization, the major benefits associated with the predictive information

is tied to local optimal points and is not related to the entire route. We understood that

the major components in achieving the fuel economy are the predictive cruise control and

predictive coasting (both engine idle and engine off). We also found that the predictive

gear shift is more of a performance criteria and does not provide any fuel economy for this

type of powertrain and engine BTE maps. Similarly the predictive power split management

also does not provide any fuel economy and it is not surprising since the hybrid system is a

mild 48V system with limited capacity. It is never designed to propel the truck on electric

power alone. It is worth noting here that when we say the predictive hybrid system is not

providing any fuel economy we are referring to the fuel economy on top of the rule based

SOC management strategy which also has the hybrid system. So essentially the predictive

power split control is not bringing in any benefit as compared to the baseline.

It is also understood from the offline results that the region of operation for the predictive

cruise control and coasting are mutually exclusive and does not eat away each others benefit.

While the predictive cruise control is more prevalent during the pre-hill sections, coasting

is more effective during long flat sections of the route. This is a good key learning with

respect to implementation details as it will help design rule based controllers which can
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work much more efficiently with out having to interact with each other often. Figure 6.1 

shows the high level architecture of the platoon system. The offline problem is either solved

in cloud or in a high performance computer. This step is super challenging in terms of

computational power. This type of predictive global optimal control can never be run in

a real time controller. Hence it is always desirable to run these simulations in offline and

extend the learning to real time controllers. Full route grade information along with speed

Figure 6.1. High level overview of the full control formulation and hierarchy
of the process. The full horizon is used to conclude the optimality for the single
vehicle. A short horizon is used to achieve cooperative consensus among the
platooning trucks.

limit is used in this problem as predictive information. The result obtained is the global

behavior of the control levers. These optimal levers are provided to the 3 trucks in platoon

and each one run its own iterative process to minimize the modified cost function with the

non-linear constraints applied. This problem is not easy to solve as it involves Mixed Integer

Non-linear variables. As an example the gear number and the clutch state are integer type

state variables. One way to solve this type of problem is to relax the integer type state and
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then solve for the gradient following which the state variables are restored from the relaxed

state. One way to form the problem is to use the Hamiltonian of the cost and constraints

and then solve the problem using Pontryagin’s minimum principle. A general quick note on

the Hamilton-Jacobi-Bellman PDEs and Pontryagin’s Minimum Principle,

• Often, we only care about the optimal trajectory for a specific initial condition x0.

Exploiting that we need less information, we can arrive at simpler conditions for opti-

mality – Pontryagin’s Minimum Principle

• The PMP does not apply to infinite horizon problems, so one has to use the

HJB equations in that case

• The HJB PDE is a sufficient condition for optimality (it is possible that the optimal

solution does not satisfy it but a solution that satisfies it is guaranteed to be optimal)

• The PMP is a necessary condition for optimality (it is possible that non-optimal tra-

jectories satisfy it) so further analysis is necessary to determine if the candidate PMP

policy is optimal

• The PMP requires solving an ODE with split boundary conditions (not easy but easier

than the nonlinear HJB PDE!)

The Hamiltonian can be formed as,

H(vs, ηn, Cs, Bsoc, λ1, λ2, λ3, λ4, s) =
N∑

n=1

∫ s

0

{
Wfαṁfn

vsn

+ Wt(1 − α)vtn

vsn

+ τbraken

}
+

N∑
n=1

λ1n

∂vsn

∂sn

+
N∑

n=1
λ2n

∂ηn

∂sn

+

N∑
n=1

λ3n

∂Csn

∂sn

+
N∑

n=1
λ4n

∂Bsocn

∂sn

(6.1)

where, vsn is the vehicle speed for each truck, ηn is the gear number, Csn is the clutch state

and Bsocn is the battery state of charge.

This problem is not easy to solve analytically and definitely not possible to solve real time

even for a very short horizon. Hence we do not explore this option beyond. Details on
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Pontryagin’s Minimum Principle is highlighted in Appendix section including some basic

proofs.

Another implementable but challenging solution is to use Model Predictive Control approach.

We have tried to solve the problem using model predictive control. Liu et al., used a similar

offline simulation and then used the optimal cruise control speed target in a 2 truck platoon

[71 ]. They used a moving window based simple model predictive control approach to solve

the objective cost as shown in Equation 6.2 

min
u

J =
∫ t+∆t

t
(wṁf

∗ ṁf (x, u, w).wv(v(t) − vref (t))2)

+ wδTengδTeng(t) + wδTbrake .δTbrake)dt

(6.2)

This cost function is discretized over the prediction horizon ∆t and is minimized subject

to the vehicle and powertrain dynamics and constraints. In the cost function, vref is the

optimal speed profile computed by offline algorithms, δTeng and δTbrake are the change in

engine and brake torque inputs, and wṁf
, wv, wδTeng and wδTbrake are the weight factors to

tune the MPC performance. This problem is solved in real-time using a nonlinear program-

ming optimizer based on interior-point methods as in [72 ] and is applied in real-time in the

framework of MPC. The application of this controller in car following operation mode is a

fuel efficient Adaptive Cruise Controller (ACC) in which MPC controller has the flexibility

to optimize the distance to the front vehicle within its limits with respect to the integrated

vehicle and powertrain dynamics, constraints and the fuel consumption cost function. While

this is a very elegant technique but it has its own challenge of implementing specifically for

multi-objective problems with 5 states 4 controls. MPC is evaluated theoretically and not

pursued due to the challenges associated with large number of states and controls.

Another approach which is tried in this work as a comparison is the pseudo-spectral collo-

cation method using the SNOPT (Sparse Nonlinear OPTimizer, is a software package for

solving large-scale nonlinear optimization problems written by Philip Gill, Walter Murray

and Michael Saunders[73 ]) library and matlab to solve the non-linear mixed integer problem

by relaxing the integer type gear state variable and the clutch state. This is a very interesting

solver used to find global optimality in trajectory optimization. though it is nice way to solve
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a complex mixed integer non-linear problem but the implementation of such an algorithm

was again very challenging in terms of formulating the problem for a large number of states

and controls, specially for mixed integer type.

Both the above methods showed average benefits in fuel economy close to 10% and 8.4%

respectively. While this numbers are not analyzed in details in this work but they provide

a relevant ball park estimate of what is achievable. Based on the analysis of the different

available methods a novel method is used in this work. A modified version of Metropolis

Algorithm is used which is very common in multiple flying robot formation controls. Having

discussed this background we shift to the multi-agent based approach and analyze the results

we obtain.

6.1.1 Distributed averaging based consensus

Multi-agent systems (MASs) have gained wide attention in recent years due to its multi-

faceted practical applications, especially in wireless sensor networks, formation control in

robots, transportation network optimization, vehicle ecosystem development, etc. One of the

most important and intensively investigated issues in MASs (and their applications) is the

consensus problem due to its attraction in both theoretical and applied aspects (Olfati-Saber

and Murray, [74 ]; Olfati-Saber et al.,[75 ]; Ren[76 ]). Recently there is a lot of traction in more

advanced problems of constrained consensus analysis and design using MAS’s. In networks of

agents (or dynamic systems), ”consensus” means to reach an agreement regarding a certain

quantity of interest that depends on the state of all agents. A ”consensus algorithm” (or

protocol) is an interaction rule that specifies the information exchange between an agent and

all of its neighbors on the network. Distributed computation over networks has a tradition

in systems and control theory. [77 ],[78 ] also discusses the distributed computing structure

using multi agent modes. The distributed averaging problem is a consensus problem whose

objective is to devise a protocol which will enable all the members of a group of autonomous

agents to compute the average of the initial values of their individual consensus variables in a

distributed manner. Gossip algorithms can provide information exchange and computation

for autonomous vehicles in a group, where each vehicle must make estimates and decisions,
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while ensuring consensus at the group level. Periodic gossiping is a deterministic method

for solving the distributed averaging problem by stipulating that each pair of agents which

are allowed to gossip, do so repeatedly in accordance with a pre-specified periodic schedule.

Agent pairs which are allowed to gossip correspond to edges on a given connected, unidirected

graph. In general, the rate at which the agents’ consensus variables converge to the desired

average value depends on the order in which the gossips occur over a period. A more detailed

description of distributed averaging is provided in the appendix section.

6.1.2 Problem Formulation

The objective for the online controller running distributed mode calculations is formulated

in Equation 6.3 

u∗
1:N(s) = argmin

u1:N ∈R

N∑
n=1

∫ s

0

{
Wfαṁfn

vsn

+ Wt(1 − α)vtn

vsn

+ τbraken

}
ds (6.3)

subject to,

ẋ(s) = f(x(s), u(s), w(s)) (6.4)

y(s) = g(x(s), u(s), w(s)) (6.5)

ḋn(s) = vn(s) − vn−1(s) (6.6)

and, non-linear constraints

vmin ≤ v(s) ≤ vmax (6.7)

τbrk,min ≤ τbrk(s) ≤ τbrk,max (6.8)

dmin ≤ d(s) ≤ dmax (6.9)
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The cost objective is a summation of fuel consumed and total trip time. Trip time is

added to compensate for the excessive slow down of the vehicle in order to save fuel. The

other component in the cost function is the braking work. The vehicle will try to brake in

order to maintain the safe distance between the trucks. The addition of braking work will

make sure that the trucks are not utilizing excessive braking.

The problem is solved by considering each truck as an agent with the other trucks being it’s

neighbor. Hence the lead truck and the last truck in the platoon has 1 neighbor each while

the middle truck has two neighbors. Hence the middle truck has two edges. Only the vehicle

speed state in this case is update using a generalized metropolis algorithm and the other

control levers are applied as its from the offline optimal results as it is. If the optimal control

violates the constraints then the constraints gets the priority and the truck comes out of the

optimal profile. As, an example if the truck cannot be in coast mode in the platoon due to

a constraint violation then it comes of coast mode and runs normal operation. In general a

consensus process recursively evolves with respect to a discrete time scale. In general for a

consensus algorithm, agent i sets the value of its own agreement variable at time t + 1 based

on the average of its current value and the neighbor’s value,

xi(t + 1) = 1
(1 + di)

(xi(t) +
∑
j∈Ni

xj(t)) (6.10)

where, Ni is the set of indices of agents of i′s neighbors and di is the number of indices in Ni.

Boyd et al, [69 ][70 ][79 ] provided a better algorithm called Metropolis Algorithm where

each agent needs to know the number of neighbors of each of its neighbors, The state update

is given as,

xi(t + 1) = (1 −
∑
j∈Ni

1
(1 + max(di, dj))

)xi(t) +
∑
j∈Ni

1
(1 + max(di, dj))

xj(t) (6.11)

We used this algorithm with the vehicle as the state variable which is updated at each time

step for the short horizon in real time following the minimum objective cost and constraints.

d for the lead and the last truck is 1 and the middle truck is 2 depending on number of

edges. The other control levers are not updated based on this algorithm as it will make the
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problem challenging and it is not expected to get much benefit by doing so.

The sequence of code for this section is explained in Algorithm 2 The optimal speed trajectory

Result: Platoon Total Fuel Benefit in % mpg & Inter-vehicular Separation
Initialize Vehicle Parameters;
Initialize Inter-vehicular Separation;
while Vehicle Position is NOT end of Route do

Set Cruise Reference Speed bucket;
Set Braking Bucket;
Calculate Fuel Consumption for the Platoon;
ṁf (t) = f(v(t));
Calculate Inter-vehicular Distance;
s(t) = f(v1(t), v2(t), v3(t));
Update State parameter;
if Fuel Consumption is Minimum & Inter-vehicular Separation within Limit
then

Select v(t + 1) = v∗(t);
else

Run next set of speed reference;
end

end
Algorithm 2: Online Local Optimality - Multiple Vehicle

for the single vehicle in this route is captured from global offline optimal solution and is fed as

the cruise target speed for the individual vehicles in the platoon. The job of the online multi-

agent controller [77 ][78 ] is to coordinate with each vehicle in the platoon to follow the set

reference speed and maintain a safe inter-vehicular separation using the proposed Metropolis

Algorithm [70 ][79 ]. This control is needed because simply feeding the speed target will make

the trailing vehicles run faster than the lead vehicles and collide with each other since the

trailing vehicles will have less aerodynamic drag and will speed up more. Figure 6.2 shows

the relative change in drag coefficient as a function of vehicle separation [80 ][81 ]

The reduction in Aerodynamic drag coefficient is given in Equation 6.12 which is the fraction

by which the aerodynamic drag coefficient will change based on the separation distance. The

constants CD,1 and CD,2 are adjusted based on polynomial fit from open literature data.

Φ(di) = (1 − CD,1

CD,2 + di
) (6.12)
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Figure 6.2. Drag Coefficient as a function of inter vehicular separation

It is worth noting here that the multi-agent controller will run discrete control optimizer

in each truck knowing the grade information and complete optimal optimal profile for each

truck in the platoon. Each individual agent will try to solve the cost for its own which there

by in conjunction with the global optimal input target will achieve best fuel economy for the

entire fleet. Additional control levers in this case is the braking effort and the inter vehicular

dynamics are also included.

6.1.3 Optimal Behavior Analysis

The problem as described above is solved for the 3 trucks in platoon. The separation

distance between the trucks are dynamically modified with the intention of spending the

least amount of energy as well as maintaining the separation distance. The braking effort is

part of the objective function to make sure that the system will not have to brake too often

to loose kinetic energy which is a loss at the expense of the fuel energy. In this section the

benefits are analyzed and studied. The first Figure 6.3 is the radar plot of the adjusted Fuel

economy of the 3 trucks. There are 2 sets of data in the plot. One is for the coast events

when engine is idle and the other for the case with engine off. On an average the 3 truck

platoon achieved 9.42% better fuel economy over baseline simulation results. This result is
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Figure 6.3. % Fuel Economy radar for the 3 platooning trucks - Lead, Fol-
lower 1 and Follower 2. The fuel economy radar shows the numbers for both
engine coast condition as well as engine off coast conditions

for the engine idle coast event. Similarly for the engine off coast scenario the average went

up to 10.65%. The trend in improvement is similar though for both the scenario. The engine

off scenario made the lead truck do more better in terms of fuel economy. Figure 6.4a shows

the key metrics related to fuel consumption and the associated parameters affecting it. It is

observed that an average of 9.5% fuel benefit is achieved in the engine idle scenario for the

platoon. The engine off case shows an average of 10.7% for the platoon. The plot show 6

sets of bar plots. Each set comprises of 5 key metrics (Green - Adjusted Fuel Economy %

Change, Red - Absolute Fuel Economy % Change, Orange - Absolute Trip Time % Change,

Yellow - Engine Cycle Work % Reduction, Purple - BTE % Change). The 3 sets of bar plots

are for engine idle case while the last 3 sets are for the engine off case. The lead vehicles in

both the cases shows almost similar behavior to the single vehicle optimality. The associated

benefit is a result of cycle work reduction and aerodynamic work reduction. There is almost
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near similar improvement in brake thermal efficiency in all the cases. Figure 6.4b shows the

comparison of different negative work reduction metrics. The bar plots in green shows the

reduction in aerodynamic drag work. The reduction of the lead trucks in both the Engine Idle

as well as the Engine Off case is negligible compared to baseline results. This is considering

the fact that the lead trucks follow the optimal speed profile almost perfectly. The follower

trucks shows more reduction due to the reduction in aerodynamic drag in the following

trucks. The reduction is more in the second following truck than the first as expected due

to more reduction in aerodynamic drag in the second follower than the first. Engine off

case shows a bit more reduction in aerodynamic work loss. Blue bars show the reduction in

negative work which includes motoring loss, engine braking along with service braking. The

follower trucks in both engine idle as well engine off scenario shows less reduction due to the

application of more service brakes in order to maintain safe operable distance between the

trucks. Engine idle scenario shows less reduction in negative work than the engine off case.

Figure 6.5 shows the detailed time series plots of the 3 trucks in platoon as a function of

vehicle position in x-axis. The trucks show dynamically varying separation distance with the

trailing truck almost going 120m during heavy hills. This can pose challenge with cut-ins.

This was because of a coast event before a hill. This large separation distance also reduce

the benefits associated with aerodynamic drag reduction. This is an anomaly observed in the

solution space. This can be better tuned by making the separation constraint more stringent.

The battery SOC is pretty much dependent on the reactive grade profile. It is also observed

that the wheel braking increased a lot. This is also shown in Figure 6.4b . The blue bar

plots in this figure shows significant less reduction in the negative work which is due to the

fact that wheel braking has increased. Figure 6.6 shows the data for the coast events and %

time in coast for the system of trucks in platoon. The plot depicts 2 sets of data one with

the engine idle coast scenario and the other for the engine off coast. It is noted that for the

following trucks the total number as well as the total time in coast is significantly lower than

the lead truck. This behavior is similar to both the engine idle and engine off coast case.

This is analytically because of the speed modulation in the follower trucks which made the

trucks go out of coast in most of the cases or not get into coast at all. Figure 6.7 shows the

key signals for total fuel consumed and the Engine Out NOx values. It shows the progressive
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Figure 6.5. Subplot 1 is the Vehicle Speed Trajectory of two trucks in platoon.
Subplot 2 is the following distance of the second truck in the platoon. Subplot
3 is the engine out NOx for the lead as well as the follower truck which shows
no improvement in NOx reduction by the follower truck.

trend in decreasing fuel consumption and engine out NOx numbers. Figure 6.8a and Figure

6.8b shows the relation of % change in fuel economy as function of change in Brake Thermal

Efficiency. In both the case it is observed that the BTE improves progressively with increase

in Fuel Economy. In the Engine Idle case the BTE change reduced a bit for the last truck

in the platoon but still it shows better fuel economy. The benefits associated here is more

contributed by the reduction in aerodynamic drag reduction. The BTE did not improve a lot

because of more gear shifts with the predictive knowledge as well as to maintain separation

distance.
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Figure 6.6. Coast metrics for the 3 Trucks in Platoon - The Engine Idle and
Engine Off metrics shows clear difference in optimal behavior

Figure 6.7. Engine Out NOx and Fuel Consumed plots. The first subplot
is the cumulative Engine Out NOx and the second one is the instantaneous
Engine out NOx value

6.2 Conclusion

In this research the general metropolis algorithm for multi agent based distributed av-

eraging problem is used to study an implementable algorithm for the 3 truck platooning
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(a) Brake Thermal Efficiency improvement as function of % Fuel Economy.
This is for the scenario with Engine Idle during coasting

(b) Brake Thermal Efficiency improvement as function of % Fuel Economy.
This is for the scenario with Engine Off during coasting

Figure 6.8. Brake Thermal Efficiency as compared to Fuel Economy for
Engine Off and Engine Idle Coast scenarios.

system with predictive optimal control. The intent of the work is to understand the global

optimality and the general behavior more than trying to design a control algorithm. In most

of the real time controller rule based algorithms are suitable so it becomes essential to under-

stand these underlying behaviors which gives true optimal results. It is also compared to a

simple model predictive control based algorithm from literature where the predictive cruise
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control is studied alone. It shows near similar results and behavior. Obviously the results

will not match exactly since the it depends on vehicle configuration and architecture. Figure

Figure 6.9. % Aerodynamic drag work reduction as function of % Fuel Econ-
omy. The % reduction in aerodynamic drag work is calculated based on base-
line simulation results

6.9 is another nice metrics to analyze and look at. This indicates the fuel benefits associated

with overall aerodynamic drag work reduction. The major fuel benefits are definitely due to

the reduction in drag coefficients in the following trucks. The work reduction is definitely

affecting fuel economy but there are other contributors as well in the benefit such as negative

work reduction, and BTE improvement as seen in Figure 6.8a and Figure 6.8b . These figures

shows the relation of BTE to fuel economy.

Figure 6.10a shows the bubbles for % change in Fuel Economy as a function of % change in

Aerodynamic work reduction. The bubbles are represented for both engine idle and engine

off coast cases. The ”Blue” bubbles are for the lead truck. The ”orange” bubbles are for the

follower 1 and the ”green” bubbles are for the follower 2 truck. It is clear that the reduction

in aerodynamic drag and fuel economy is proportional to each other and the progressively

compliment each other. The ”gray” bubble is for the follower 1 truck with no predictive con-

132



trol and the ”yellow” bubble is for the follower 2 truck with no predictive controls. Though

the reduction in aerodynamic drag is much more in the non-predictive case because of the

trucks following constant separation distance but still the fuel economy benefits are less than

the predictive case. This shows that the look ahead knowledge and predictive control can

add more fuel efficient behavior. Similarly, Figure 6.10b shows the respective cycle work

reduction as function of % improvement in Brake Thermal Efficiency. There is minor BTE

improvement in the follower trucks but Cycle work reduction is significant in the follower

trucks. This contributes to the fuel economy improvement in the follower trucks. It is also

important to note that the follower trucks in case of non-predictive control did not show

much improvement in cycle work reduction. Though the BTE is improved for the follower

truck 2 a lot. This shows that fuel economy is a combination of multiple factors including

aero dynamic drag reduction, BTE improvement, Cycle work reduction as well as reduction

in negative work. Figure 6.10c shows the % change in Fuel Economy as a function of % in

Negative work which includes wheel braking, Engine Braking and Motoring. The follower

trucks in the predictive control shows increase in negative work due to the application of more

wheel brakes in order to adjust for dynamic speed modulation and separation distance. The

non-predictive controls has to do more wheel braking in order to maintain a fixed separation

distance and hence the reduction is much less which also contributes to less fuel economy.

Lastly, Figure 6.10d shows the relation of % change in Engine Out NOx as function of %

reduction in Cycle Work. The NOx reduction is passive in this case as a result of better

engine operation. The NOx reduction is not part of the optimal control formulation. The

engine off coast scenario for the follower 2 truck shows the most reduction in % NOx. This

is also due to the fact that the aerodynamic drag is the least as well as the cycle work is very

low and also there is some improvement in BTE operation. Table6.1 shows the improvement

in Fuel Economy when predictive control is used as compared to non-predictive controls.

It shows that on an average for the 3 truck platoon there is an overall net fuel economy

improvement of 2.94% for the predictive controls with Engine Idle scenario and 3.99% for

the Engine off scenario. Table 6.2 captures the detailed metrics of the multi-agent based

optimal result for the 3 truck in platoon. The results are from the problem with Engine Idle

Coast condition. The detailed metrics show the absolute numbers and how they change with
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different scenarios for the lead and follower trucks. Table 6.3 captures the detailed metrics

of the multi-agent based optimal result for the 3 truck in platoon. The results are from

the Engine Off Coast condition. Finally, based on the optimal behavior using predictive

look ahead knowledge the platooning system can have the following recommended control

actions,

• Adaptive speed modulation can provide fuel benefits in platooning trucks,

• Disengage engine and use idle conditions in flat section of the route,

• Follower trucks shall not need predictive gear shifts,

• Follower trucks shall save electric energy during heavy grade and use it to supplement

longer coast events in the flat section,

• Dynamic separation shall be limited to 20 to 120 meters,
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7. CONCLUSIONS

48V mild hybrid driven P2 powertrain architecture for a class 8 type line haul application

is a complex system in itself. There are a number of design options available in terms of

systems engineering. Further there are a different variety of control algorithms that can

be implemented for achieving a better overall powertrain efficiency. The problem becomes

more interesting and challenging when we include a platoon of such trucks driving at highway

speed following a autonomous path planning algorithm. Though in this work the autonomy

is studied but an attempt to understand the overall energy efficient behavior of each vehicle

in a platoon is made. The problem in this work is setup in an incremental stacked up fashion.

While the first few chapters described the overall motivation for the work along with the

background, chapter 4 discussed the hybrid architecture that is used in this work. A few

assumptions are made while conducting this system design which are as follows,

• The platoon consists of three trucks

• All three vehicles have the same architecture running the similar duty cycle

• Corridor information consists of only road grade and route speed limit. Traffic infor-

mation is not considered in this work

• Vehicle load is kept constant throughout this analysis

The system runs a proportional integral based feed forward control for route speed limit

tracking and braking. The hybrid system is a simple SOC trajectory tracking based rule

based control which operates in charge sustaining mode between 25% and 75% SOC levels.

This system is defined throughout as baseline and all metrics are compared against such

a system. The follower trucks in the baseline system are exactly similar to the lead truck

except for the fact that they experience a less aerodynamic drag. The braking system also

takes into effect the separation distance from the lead truck.

Once the baseline system is defined, chapter 5 outlines the problem formulation methodology

along with the different objectives. It talks about the high level objective of actively using

predictive information to study the optimal behavior of platooning class 8 trucks. It is also
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discussed here about the multi-objective optimization challenge including multiple control

levers together. It is of prime importance to understand the co-relation of these control levers

with each other. This is needed in order to design specific embeddable controllers which can

operate in their own zones without interfering with other controllers. The other key question

is to understand the benefits of such predictive controllers in platooning vehicles. The big

question here is ”Is it necessary for follower trucks to know the predictive information or

they can passively follow the lead truck running predictive controls?”

Chapter 6, defines the individual predictive control problems one at a time for the single,

lead vehicle only. The idea presented in this work is to apply a global optimizer like dynamic

programming to find the optimal trajectories for the 4 control levers. This is done as an

offline optimal problem and is highly computation heavy. This kind of problems either

need a very efficient high end processor or a cloud structure. Hence these are often used

to understand and analyze the optimal behavior and then a better controller efficient rule

based algorithm can be designed. In this work dynamic programming is used using a high

efficient tower workstation to solve the multi-objective problem in the following stacked up

sequence,

• Predictive Cruise Speed - In this problem formulation the look ahead predictive

information used is still the road grade for the entire route and the speed limit. The

cost function used is to minimize fuel along with no compromise on the total trip time.

The time is considered as a part of the cost function so that the truck does not slow

down in order to save fuel. The trip time for the entire optimal solution has to be

close to the baseline trip time. The objective is to find the adaptive cruise speed target

based on the predictive road grade knowledge and the optimal u∗ which in this case is

the engine throttle. The cost function is,

u∗(s) = argmin
u∈[0,1]

∫ s

0

{
Wfαṁf

vs

+ Wt(1 − α)vt

vs

}
ds (7.1)

where, Wf & Wt are the normalizing weights for the trip time and the fuel consumed, α

is the tuning weight for the fuel and trip time. α = 1 means a complete optimality for

fuel saving with out considering trip time and vice versa. The non-linear constraints are
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applied on vehicle speed, engine speed, gear number. This optimal problem formulation

shows a 2% fuel savings for the single truck with out compromising on the total

trip time. The characteristic grade for the entire route is close to 1.3%. Some key

observations from this problem is that the predictive cruise control modulates speed

around hills and downhills. Specifically it increases speed before entering a hill and

decreases the speed before entering a down hill. This is also in line to our understanding

from the behavior seen in the cyclist’s situation. In energy domain it is similar to

gaining energy when it is easy to do in the flat section and then utilize the kinetic

energy gained in the hill section to overcome the grade drag. Similarly during the

downhill it is efficient to slow down a bit before entering the downhill to save energy

(fuel) since it is expected to increase speed during the downhill and will have to brake

thereby wasting energy which is gained at the expense of fuel. The main objective

here is to reduce the negative works in the form of reduced engine braking. Speed

modulation during the flat sections are not very common. During the flat section the

truck follows the usual route speed limit which is 65mph or 29m/s in this work. This

behavior is also validated using the dummy 10mile route with a trapezoidal 3% uphill

and downhill section. The emissions are also improved as a passive component due to

the engine operating point change. Now that the engine operates at a more better BTE

zone consuming less fuel, we observed a better NOx numbers. The Normalized NOx

reduction from baseline simulation is around 5% in this optimal problem formulation.

• Predictive Cruise Speed & Coasting -This problem is exactly similar to the

previous problem but an added control variable is included. The new control lever is

the clutch command which can disengage the master clutch and let the engine idle.

The extra fuel saving associated with this approach is when the engine goes to idle and

consume idle fuel instead of torque curve fuel. It is also worth noting here that the

coasting events shall not replace motoring event where there is no fuel consumption

at all. There is another class of problem solved here which is similar to coasting but

instead of the engine idling it shuts the engine there by consuming no fuel at all. This

method can replace motoring events but will lack the ability of engine braking. So
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with the coasting problem the speed constraints are critical in order to assure that

when engine braking is needed the system gets out of coasting to let the master clutch

engage and help with engine braking. In this case for the given route of 86miles with

a characteristic grade of 1.3% we observed a fuel saving of close 0.8% when the engine

is let to idle during coast events. In case of coasting with engine off an additional 1%

totaling to a 1.8% fuel economy is achieved. It is also observed that the coasting events

are mostly active during the flat section of the route as compared to the hilly section

where the predictive cruise control was mainly active. This is indeed good in order to

develop controls which are not encroaching each others space. It is also observed that

coasting with engine off has a different set of operating region as a function of grade. It

is mostly active during the down grade portions of the route specifically coming out of

the down hill. It is also noticed that coasting with engine off has less but longer coasting

events as compared to coasting with engine idling. Engine idle coast events are similar

to pulse and glide type behavior during the flat section of the route. The coasting

problem is also solved as an independent problem with out the cruise speed and it is

observed that the benefits are little less than what is achieved with the cruise speed and

coast problem together. The decrease in benefit is around 10% for the coasting with

engine idle problem alone and 15%−20% for the coasting with engine off problem alone.

The behavior and operating zone is still the same but the duration of events reduced.

This is also analytically justified since with the speed modulation the truck gets more

opportunity to stay in coast without violating speed constraints. The improvement in

passive NOx reduction with this problem formulation was around 7.4% with engine

idle coast events and around 8% with engine off coast events. The improvement with

engine off coasting case is not substantial since the NOx production is a little more

during engine crank and start cycles. It is also worth pointing out that shutting out

the engine will lower the after treatment temperatures and hence it will impact the

conversion efficiency of the active selective catalytic reduction components. This will

pose a challenge in using engine off coasting too frequently unless there is an active

heating element integrated in the system to maintain after treatment temperatures.
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This is an altogether different problem to solve but indeed a potential candidate for

future multi-disciplinary optimization techniques.

• Predictive Cruise Speed, Coasting & Gear Management - In this problem a

third control lever is added in the multi-objective optimization. Though gear is more

of a performance lever it is not expected to gain a lot of fuel economy by predictively

modulating gear but it is solved to understand the behavior and study its co-relation

with the other levers together. It is also worth pointing out here that the engine

efficiency maps used for this work has its peak BTE zone around a range of engine

speed which corresponds to top gear ratio of the transmission system. This means

that if we get down to a lower gear the system will compromise on fuel savings. Hence

to achieve the minimum cost of fuel savings the system will not down shift. This is

also seen with the optimal solution. This problem did not provide any fuel benefits

but neither did penalize fuel savings. It was a hard problem to tune for achieving at

least the same fuel economy as with the previous problem. The problem is tuned to

provide the same benefits as the previous problem and with this settings it is observed

that the system down shifts a little early while in the grade, and stays at a lower

gear a little more after coming out of a grade. The way this problem is setup is that

when a coasting event is on the gear cannot shift and if there is a shift request the

system cannot go to a coasting event. This is implemented as a penalty in the cost

function in order to make sure that system dynamics are not affected and the vehicle

can shift and do coasting when needed. With this in mind, it is observed that going

out of a down hill when the vehicle is coasting the gear is held usually at the top

gear and then after the coast event the gear is shifted if there is a request. On the

performance side it is observed that with predictive gear shifts the truck was able

to maintain a higher speed in the uphill sections. On an average a 2mph less speed

reduction is achieved in all the uphills. The impact of NOx improvement is not at all

substantial to justify that addition of predictive knowledge for gear management can

improve NOx production in the system. In fact for some tuning cases it increased the

NOx production a bit due to the gear operation at a lower gear. This is analytically
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justified as well since a lower gear operation means better performance rather than a

better BTE zone operation. The good observation is that even with the fuel efficient

tuning for the optimal parameters it did not penalized NOx improvement drastically.

• Predictive Cruise Speed, Coasting, Gear & Power Split Management -

The last problem solved is including the power split strategy based on the look ahead

information. Though the SOC profile changed a bit but it did not provide any sub-

stantial benefit in fuel savings. The size of the hybrid system limited the power split

strategy to substantially do any thing beyond the baseline rule based charge/discharge

strategy. It is still observed that the hybrid system is discharged at its full capacity

in the uphills but then charged quickly during the downhills. Any other strategy to

charge the battery at the expense of fuel is not considered as beneficial in the optimal

solution. During heavy grades it is seen that the gear shifts early and the hybrid

system is exhausted much earlier than the baseline. Potential improvements can be

made by increasing the size of the hybrid system but it will come at a cost of increased

weight and thereby compromising on the total freight carrying capacity. The con-

straints added in this problem are on vehicle speed minimum and maximum deviation

from the route speed limit, gear numbers, engine speed, coasting penalty during shift

requests and vice versa and finally on SOC minimum/maximum limits. The NOx im-

provement in this problem as well did not show a significant positive trend. The same

analogy can be derived as presented in the previous problem since gear management

is as well a part of this problem.

The key outcome of the offline multi-objective optimal control theory results are that

there are separate zone of operation for the individual control levers and that the levers

do not fight with each other for objective minimization, that is more fuel economy. Fuel

efficient control levers are cruise speed as a function of look ahead road grade and coast

management. Predictive gear management does not provide fuel benefit but is a performance

lever. Similarly due to the size of the mild hybrid system there is no significant energy efficient

behavior with predictive look ahead knowledge.

Figure 7.1a shows the high level absolute fuel benefits compared to baseline rule based
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(a) Pie distribution of absolute fuel economy for the various
problem type using engine idle coast sequence

(b) Pie distribution of absolute fuel economy for
the various problem type using engine off coast
sequence

control simulation results. The pie chart shows the different DOE scenarios with engine

idle condition only. We see the trend that predictive speed modulation with coast provides

the maximum fuel benefit while gear and power split are not significant players in achieving

fuel efficient solution for this vehicle configuration and route type. Similarly Figure 7.1b 
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shows the same DOE’s with engine off coast sequences. Though the overall fuel economy

improved in this case as compared to its engine idle counterpart but the general trend still

remains the same. We see benefits exclusively from speed modulation and coast whereas

gear management is more of a performance lever and power split kind of limited to it small

range and could not provide any significant benefits.

The next approach to this research was to take the optimal behavior to a platoon of 3 trucks.

The lead truck is the prime mover here with the follower trucks limited to dynamically

changing the control levers obeying the separation distance. The separation distance was

not set to a fixed value but rather considered as a dynamic range between an upper and

lower bound. We used model predictive control as an option to compare the results with

the proposed multi-agent based distributed averaging method. While MPC is the analytical

optimal solver, it is always not feasible to implement MPC in real time controllers. Hence

the distributed averaging based algorithm is chosen as an alternative. It is observed that

distributed averaging method is able to get close to MPC results.

The objective function for the platooning trucks, is,

u∗
1:N(s) = argmin

u1:N ∈R

N∑
n=1

∫ s

0

{
Wfαṁfn

vsn

+ Wt(1 − α)vtn

vsn

+ τbraken

}
ds (7.2)

where, Wf & Wt are the normalizing weights for the trip time and the fuel consumed

for individual trucks, α is the tuning weight for the fuel and trip time. α = 1 means a

complete optimality for fuel saving with out considering trip time and vice versa. N = 3 is

the total number of trucks in the platoon and τbraken is the baring work for each truck. The

other constraints applied are on the inter-vehicular separation which is not fixed but can

vary between a lower and upper bound. Another penalty was added as a soft constraint on

the deviation of the control signals of each truck from the optimal control signal estimated

by the offline controller. Overall the platoon average fuel economy increased by 9%. This

benefit is compensated against baseline trip time, which is considering that the trucks shall

not take more time than what the baseline simulation provided. This is to ensure that the

fuel benefits are not achieved by penalizing trip time. There was slight reduction in fuel

benefits on the lead truck which indicates that the truck now in the platoon is not exactly
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following the optimal offline control trajectories. This is based on the fact that all the three

trucks are now trying to come to a consensus in the platoon. The truck right behind the lead

truck achieved around 9.5% fuel benefit and the last platooning truck achieved a combined

benefit of 12%. The follower trucks showed significant reduction on the coast events and

the predictive gear shift events. Coast events gets penalized due to the variation in inter-

vehicular separation. Follower vehicles chose not to do any coasting during the hilly portion

of the route but did do a couple of events during the flat section. The events were also

reduced in time, which is why there was no significant difference in the solution between

engine off verses the engine idle coast formulation.

Due to the reduction in aerodynamic drag in the follower vehicles the engine power was

sufficient to keep the vehicle speed well within limit in the hills. Hence we did not notice a

lot of predictive gear operation. Even from the performance factor an early downshift was

not needed by the follower trucks. Predictive hybrid management as well did not provide any

significant difference in behavior. The follower trucks showed a much less transient battery

throughput. Since the net drag in the system is reduced the battery charge/discharge cycles

were not that transient.

Overall there was 7% increase in braking work by the by the follower truck 1 and around

10% increase in braking work for the follower truck 2. Engine braking work in the follower

trucks reduced and was replaced by mostly braking work increase. Follower truck 1 had

around 5.5% reduction and follower truck 2 around 9%. Motoring work increased by around

1% for follower truck 1 and 0.6% for follower truck 2. In general the overall negative work

increased for the follower trucks which is counter intuitive to fuel savings. This analytically

provides sufficient understanding that predictive features may not provide a lot of fuel savings

for follower trucks in a platoon. The benefit in fuel savings in a platoon is mostly by the

reduction of aerodynamic drag. It is also observed that the drivability is impacted by the

follower trucks in order to keep the separation distance within bounds but dynamically

changing it. It could be a better solution to maintain a fixed separation distance between

two trucks just by following the lead truck dynamics. It is also noted that there is no

significant improvement in NOx, numbers by predictively controlling the follower trucks. In

fact NOx numbers are around 2% better if a fixed separation distance is maintained.
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8. FUTURE WORK

The problem analyzed in this work is very complex with multiple levers and vehicle con-

figuration involved. It is highlighted throughout the paper that different assumptions are

made. There is a huge potential in including other key control levers or bringing in more

objectives in the problem. The current problem helped us understand the impact and inter-

action of 4 control levers namely adaptive cruise speed, gear selection, coasting (both engine

idle and engine off) and hybrid power split. We have seen the effectiveness of these levers

independently as well as when interacting together. It is also noted that levers have unique

operating regions when compared to different drive cycles with a varying road grade. There

is potential to include other control levers to the problem set. This will give more holistic

optimal behavior for the complete system. The objective can also be changed to include

emissions and tailpipe temperature for a direct optimal control involving active emissions

strategy. While doing the fleet control optimization the lateral dynamics are not studied

which can also be another degree of freedom for the study. The below key improvements

and research are either being conducted by the author or are potential candidate for future

research.

Total Cost of Ownership optimization is a key driver for a lot or industrial conglomerate

these days. This is kind of a travelling sales man problem where any genetic algorithm

based static optimization can be run in order to figure out the best possible route in terms of

trip time, energy savings, shortest route as well as meeting the delivery schedule for a stop

and go kind of application. This kind of optimization will also provide the best powertrain

architecture that is suitable for this application along with the component sizing. It will

also help understand the charging station installation need over the entire route. This is

a real life challenge and interesting problem to solve. Another key objective is sizing the

right components for a particular class of vehicle hauling a fixed load. In conjunction with

predictive levers the right component size will make the system the best fuel efficient as well

as attain other objective of load carrying capacity and vehicle gross weight reduction.

The next problem is to understand the impact of bringing in the after treatment components

in the optimization method. It will ensure the proper operation of the after treatment in
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terms of maintaining temperatures as well as conversion efficiency down stream of the en-

gine. This will help study the need to have externally heated systems for cold conditions.

Another situation is to use more control levers together such as dynamic torque control, load

based predictive control, predictive braking, etc. All these interacting control will improve

the over all performance and help understand the global optimality in a much diverse space.

At this point with various multiple levers it is almost impossible to frame any analytical

minimization problem. So there is a need to distributively frame the problem in such a way

so as to understand the interacting lever in a much better way is possible.

In platoon system there is a lot that can be achieved by introducing more predictive and

smart algorithms. Traffic based distributed platoon algorithms can be realized which can

optimize their controls based on the future need to come to a platoon. So multiple trucks

operating at nearby regions can optimize their trajectory based on the predictive information

of road grade, weather, traffic and plan their route accordingly so that they can get to a

platoon when needed in the best optimal way.

The current setup is just a way to have the basic system ready and can be scaled easily

to any problem as needed. Even different fuel source can be modelled easily to study the

effects. This field has huge potential and with increasing norms around the world and an

urge to reduce carbon footprint for a better tomorrow this will pave the way for a lot more

research to come in near future.
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APPENDIX

A.1 Dynamic Programming Background

Once the performance measure of the system or the cost function is determined the next
major task is to define a control function that would minimize the performance criteria.
Two widespread methodology to accomplish this task are minimum principle of Pontryagin
and the method of Dynamic Programming. Pontryagin’s minimum principle is a variational
approach that lead to a non-linear two point boundary value problem which is solved to get
the optimal control.
Dynamic Programming (DP) is both a controls methodology and a computer programming
method to numerically solve a optimization problem given a set of admissible controls and
state space grid vectors. It always satisfies global optimality as it finds the minimum value
of the cost/objective function from all admissible search space.
Since it has to traverse a full factorial DOE of search space for all the controls & states it is
often challenged by the curse of dimensionality [82 ][83 ]

A.1.1 Principal of Optimality

In controls literature a general control law is defined as

u∗
i (t) = f(xi(t), t) (A.1)

which is a closed loop or feedback optimal control. The functional relationship f is called
the optimal control law or optimal policy. The control law specifies how to generate the
control law from the states at a given time, since this is a time varying control formulation.
Dynamic programming specifically solve the controls problem applying the principle of op-
timality.
Bellman’s original Optimality Principle, states:
An optimal policy has the property that whatever the initial state and initial decisions are,
the remaining decision must constitute an optimal policy with regard to the state resulting
from the first decision. In figure A.1 , if Jabe is the minimum cost to go from a-e, then from

Figure A.1. Illustration of the Principle of Optimality

b-e the minimum cost has to be Jbe and Jbce cannot be the optimal path.
That is Jbce > Jbe
Dynamic programming is based on the same principle to find the optimum cost at each
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time step traversing backwards and then figuring out the optimal cost to go in the forward
simulation which by the principle of optimality is claimed to the global optimal result.
Figure A.2 depicts such a condition of admissible control selection. An alternative notation

Figure A.2. Illustration of the Principle of Optimality

for the computational formulation of the dynamic program algorithm is:

J∗
K(x(N − K)) = min

u(N-K)
[gD(x(N − K), u(N − K))

+ J∗
K−1(aDx(N − K), u(N − K))]

(A.2)

with, K being each stage during the search process and J∗ is calculated for each stage K,
which is known as stage cost. gD & aD comes from the definition of the system model
dynamics which can be ignored in this section.
Since a direct search is used to solve the functional recurrence equation, the solution obtained
is absolute (or global) minimum. Dynamic programming makes the direct search feasible
because instead of searching among the set of all admissible that cause admissible trajectories,
we consider only those controls that satisfy additional necessary condition - principle of
optimality.
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A.2 Formation Graphs and Deviation Variables

This section describes some background on graph theory and its application to manip-
ulation of formations of multiple vehicles. A graph is denoted by G = (V, E) where V is
the set of vertices and E ⊂ VxV is the set of edges of the graph. We assume all the graphs
are undirected with no edges (vi, vi), ∀i ∈ I from a node to itself. Each edge is denoted by
eij = (vi, vj) ∈ E or ij ∈ E for simplicity of notation where i, j ∈ E = (1, ..., n). An orientation
of the edges of the graph, E′ ⊂ E , is the set of edges of the graph which contains one and
only one of the two permutations of ij ⊂ E (ij or ji) for all the edges ij ⊂ E .
A triangulated graph is a graph G = (V , E , F) with the set of faces F ∈ VxVxV with ele-
ments fijk = (vi, vj, vk) or simply ijk(i, j, k ∈ I) satisfying the consistency condition that for
all faces fijk = (vi, vj, vk) ⊂ F , the following holds,
(vi, vj) ∈ E , (vj, vk) ∈ E , (vk, vi) ∈ E
Similarly, an orientation of the faces of a triangulated graph G is a set of faces F′ ⊂ F that
contains one out of the six permutations .of each face ijk ∈ F . Define the dual graph D(G)
of a triangulated graph G as a graph with |F′| number of nodes, one corresponding to each
(oriented) face of G. There is an edge between two distinct faces f1, f2 ∈ F′, if and only if
f1 and f2 share a common edge e ∈ E . A triangulated formation graph is a quintuple,
G = (V , E , D, F , A),
with a connected dual graph D(Q). Let qi = (xi, yi) ∈ R2 denote the position of the node
vi. Here, D = dij : ij ∈ E is the set of desired distances and A = aijk, ijk ∈ F is the set of
desired areas of triangular faces. The signed area of a triangle is given by

h(qi, qj, qk) = det

xi yi 1
xj yj 1
xk yk 1

 = (qk − qi)T S(qj − qi), (A.3)

where,

S =
[
0 −1
1 0

]
(A.4)

Delaunay triangulation is used as a set of points to obtain the triangulated graphs. In
Figure A.3 a triangulated formation of six vehicles is shown with,
V =1,2,3,4,5,6,
E′ =12,13,23,24,25,35,36,45,56,
F′ =123,245,253,356,

Fix the edge and face orientations of the triangulated graph G such that for all the faces
aijk ≥ 0, i.e. if for the face ijk ∈ F′ ⊂ F , aijk ≤ 0 then replace the triplet (vi, vj, vk) ∈ F′ by
(vj, vi, vk) to change the sign of the determinant in Equation A.3 . The following edge and
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Figure A.3. Illustration of a triangulated six vehicle formation

face deviation variables (also known as shape variables [84 ]) associated with the edges and
faces of the triangulated graph G are defined, respectively, as

ηij = ||qj − qi|| − dij,

δijk = qik
⊗

qij = (qk − qi)T S(qj − qi) − aijk,
(A.5)

for edges ij ∈ E′ and faces ijk ∈ F′. In addition, qrs := qs − qr and the tensor product ⊗
is defined by α

⊗
β := αT Sβ for α, β ∈ R2 Let pi = q̇i denote the velocity of each node

vi ∈ V . Then, the edge and face deviation rate variables (also known as shape velocities [84 ])
associated with the set of edges and faces of the graph G are defined, respectively, as follows,

vij = nT
ij .(pj − pi),

ζijk = (pk − pi)T S(qj − qi) + (qk − qi)T S(pj − pi),
(A.6)

where, vij = η̇ij, ζijk = δ̇ijk, nij = qij/||qij|| for qi 6= qj. Using the notation prs = ps − pr and
α⊥ = Sα (thus α

⊗
β = αT .β⊥), we can simplify the expression for the shape velocities as,

vij = nT
ij .pij,

ζijk = pik
⊗

qij + qik
⊗

pij = pT
ik.q⊥

ij − pT
ij .q

⊥
ik

(A.7)
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A.3 Model Predictive Control

The model-based predictive control (MPC) methodology is also referred to as the moving
horizon control or the receding horizon control. The idea behind this approach can be
explained using an example of driving a car. The driver looks at the road ahead of him
and taking into account the present state and the previous action predicts his action up to
some distance ahead, which we refer to as the prediction horizon. Based on the prediction,
the driver adjusts the driving direction. The MPC main idea is illustrated in Figure 1. The
MPC is constructed using control and optimization tools. The objective of this write-up is to
introduce the reader to the linear MPC which refers to the family of MPC schemes in which
linear models of the controlled objects are used in the control law synthesis. In the MPC
approach, the current control action is computed on-line rather than using a pre-computed,
off-line, control law. A model predictive controller uses, at each sampling instant, the plant’s
current input and output measurements, the plant’s current state, and the plant’s model to,

• calculate, over a finite horizon, a future control sequence that optimizes a given per-
formance index and satisfies constraints on the control action;

• use the first control in the sequence as the plant input.

The MPC strategy is illustrated in Figure 2, where Np is the prediction horizon, u(t + k|t) is
the predicted control action at t + k given u(t). Similarly, y(t + k|t) is the predicted output
at t + k given y(t).

Figure A.4. Model Predictive Control illustration for the predictive horizon
and the control horizon.
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A.3.1 Basic Structure of MPC

In Figure A.5 , we show a basic structure of an MPC-controlled plant, where we assume
that the plant’s state is available to us.

A.3.2 From Continuous to Discrete Models

Our objective here is to present a method for constructing linear discrete-time models
from given linear continuous-time models. The obtained discrete models will be used to
perform computations to generate control commands. We use a sample-and-hold device that
transforms a continuous signal, f(t), into the staircase signal, f(kh), kht < (k + 1)h, where
h is the sampling period. The sample and zero-order hold (ZOH) operation is illustrated in
Figure A.6 

Figure A.5. State feedback model predictive controller

Suppose that we are given a continuous-time model,

ẋ(t) = Ax(t) + Bu(t), x0 = x(t0) (A.8)

y(t) = Cx(t) (A.9)

The solution to the state equation is

x(t) = eA(tt0)x(t0) +
∫ t0

t
eA(t−τ)Bu(τ)dτ (A.10)

We assume that the input to the system is generated by a sample-and-hold device and has
the form,
u(t) = u(k), kht < (k + 1)h Let t0 = kh and t = (k + 1)h and let us use shorthand notation,
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Figure A.6. Sample and zero-order hold (ZOH) element operating on a
continuous function

x(kh) = x(k) Then taking into account that u(k) is constant on the interval [kh, (k + 1)h)
we represent Equation A.10 as,

x(k + 1) = eAhx(k) +
∫ (k+1)h

kh
eA(kh+hτ)Bu(k)dτ

= eAhx(k) +
∫ (k+1)h

kh
eA(kh+hτ)Bdτu(k)

(A.11)

Consider now the second term on the right-hand side of the above equation. Let
η = kh + hτ Then we can represent Equation A.11 as,

x(k + 1) = eAhx(k) +
∫ (k+1)h

kh
eA(kh+hτ)Bdτu(k)

= eAhx(k) +
∫ h

0
eAηBdηu(k)

= φx(k) + Γu(k),

(A.12)

where,
Φ = eAh and Γ =

∫ h
0 eAηBdη The discrete output equation has the form,

y(k) = Cx(k)
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A.3.3 Simple Discrete Time MPC

We consider a discretized model of a dynamic system of the form,

x(k + 1) = Φx(k) + Γu(k) (A.13)

y(k) = Cx(k) (A.14)

where, Φ ∈ Rnxn, Γ ∈ Rnxm and C ∈ Rpxn

Applying the backward difference operator, ∆x(k+1) = x(k+1)x(k), to Equation A.13 gives,

∆x(k + 1) = Φ∆x(k) + Γ∆u(k) (A.15)

where, ∆u(k + 1) = u(k + 1) − u(k)
We now apply the backward difference operator to Equation A.14 to obtain,

∆y(k + 1) = y(k + 1)
= Cx(k + 1) − Cx(k)
= C∆x(k + 1)

(A.16)

Substituting into the above Equation A.15 yields,

∆y(k + 1) = CΦ∆x(k) + CΓ∆u(k) (A.17)

Hence,

y(k + 1) = y(k) + CΦ∆x(k) + CΓ∆u(k) (A.18)

We combine Equation A.16 and A.17 into one equation to obtain,[
∆x(k + 1)
y(k + 1)

]
=

[
Φ O

CΦ Ip

] [
∆x(k)
y(k)

]
+

[
Γ

CΓ

]
∆u(k) (A.19)

We represent Equation A.14 ,

y(k) =
[
O Ip

] [
∆x(k)
y(k)

]
(A.20)

We now define the augmented state vector,

xa(k) =
[
∆x(k) y(k)

]
(A.21)

Let, Φa =
[

Φ O
CΦ Ip

]
, Γa =

[
Γ

CΓ

]
and Ca =

[
O Ip

]
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Using the above notation, we represent Equation A.17 and A.18 in a compact format as,

xa(k + 1) = Φaxa(k) + Γa∆u(k) (A.22)

y(k) = Caxa(k) (A.23)

where, Φa ∈ R(n+p)x(n+p), Γa ∈ R(n+p)xm, Ca ∈ Rpx(n+p) Suppose now that the state vector
xa at each sampling time, k, is available to us. Our control objective is to construct a control
sequence,

∆u(k), ∆u(k + 1), ...., ∆u(k + Np − 1) (A.24)

where Np is the prediction horizon, such that a given cost function and constraints are
satisfied. The above control sequence will result in a predicted sequence of the state vectors,

xa(k + 1|k), xa(k + 2|k), ...., xa(k + Np|1) (A.25)

which can then be used to compute predicted sequence of the plant’s outputs,
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A.4 Pontryagin’s Minimum Principle

The conditions for an optimal trajectory is provided by the well known Pontryagin’s
Minimum Principle which closely follows the established Hamilton-Jacobi-Bellman princi-
ple. However, the minimum principle provides necessary conditions, but not sufficient con-
ditions, for optimality. In contrast, the Hamilton-Jacobi-Bellman equation offered sufficient
conditions. Using the minimum principle alone, one is often not able to conclude that a
trajectory is optimal. In some cases, however, it is quite useful for finding candidate optimal
trajectories. Any trajectory that fails to satisfy the minimum principle cannot be optimal.
The method of Lagrange [85 ], a control Hamiltonian function H can be constructed by
appending the state equation to the integrand L using the Lagrange multipliers, λ(t), as
follows,

H(u(t), z(t), λ(t), t) = L(u(t), z(t), t) + λT (t)f(u(t), z(t), t), (A.26)

where z(t) is the optimal control, and u(t) is the corresponding optimal state. Then the
Pontryagin Minimum Principle (PMP, [85 ]) states that there exists a continuous function λ,
known as an adjoint function, that is the solution of the adjoint equation,

λ(t) = −Hu(u(t), z(t), λ(t), t), (A.27)

along with the appropriate initial (or final) condition of λ. In Equation. A.27 , Hu denotes
the differentiation of the Hamiltonian function with respect to the state. In particular, the
adjoint function is a Lagrange multiplier that brings the information of the state equation
constraint to the optimization problem. According to the PMP, the optimal control, z(t),
and corresponding optimal state, u(t), and adjoint, λ(t), must minimize the Hamiltonian so
that,

H(u(t), z(t), λ(t), t) ≤ H(u(t), z∗(t), λ(t), t), (A.28)

for all time and for all admissible (i.e., feasible) trajectory control variables z∗(t), while
the adjoint equation Equation. A.27 is satisfied. Admissible trajectories are defined as a
set of variables that lay in the neighborhood of the minimal solution and satisfies all of the
constraints. With the above considerations, we can now define the necessary and sufficient
conditions for optimality. For a feasible trajectory that satisfies the minimum principle,
condition Equation. A.28 implies that the Hamiltonian is minimum at the optimal control
z(t), such that,

Hz(u(t), z(t), λ(t), t) = 0 (A.29)

Equation. A.29 is the first order necessary condition for optimality and corresponds to
a special case of the Euler-Lagrange equation of the calculus of variations. The Pontryagin
Minimum Principle also leads to the positive semi-definiteness of the Hamiltonian’s Hessian
matrix as,

Hzz(u(t), z(t), λ(t), t) ≥ 0, (A.30)
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that is termed the Legendre-Clebsch condition and it is a second-order necessary condition
for optimality. In addition to the necessary conditions derived from the Pontryagin Minimum
Principle, if the strengthened Legendre-Clebsch condition,

Hzz(u(t), z(t), λ(t), t) > 0, (A.31)

holds, it guarantees that z(t) is the local minimizer of the Hessian. The condition in Equa-
tion. A.31 is known as the second-order sufficient condition for local optimality. For a purely
convex objective functional with respect to the control variables, the necessary conditions
are sufficient to guarantee the optimal control variable. We refer the interested readers to
[1, 2] for the proof of these theorems.
In summary, the Pontryagin Minimum Principle converts the optimal control problem into
a multipoint boundary value problem. That is, the optimality condition Hz = 0 results in
control expressed as,

z(t) = G(u(t), λ(t), t), (A.32)

and the optimal control variable and corresponding state and adjoint can be computed by
solving an ODE system,

u̇(t) = f(u(t), G(u(t), λ(t), t),
λ̇(t) = −Hu(u(t), G(u(t), λ(t), t)),

(A.33)

with appropriate initial and end time conditions, while Equation. A.31 ensures the optimal
control is a minimizer.

A.4.1 Theorem - Pontryagin’s Minimum Principle

Let u∗(t) : [t0, T ] ⇒ U be an optimal control trajectory
Let x∗(t) : [t0, T ] ⇒ X be the associated state trajectory from x0,
Then, there exists a costate trajectory p∗(t) : [t0, T ] ⇒ X satisfying,

• Canonical equations with boundary conditions:

ẋ∗(t) = ∆pH(x∗(t), u∗(t), p∗(t)), x∗(t0) = x0,

ṗ∗(t) = ∆xH(x∗(t), u∗(t), p∗(t)), p∗(t0) = ∆xgT (x∗(T )),
(A.34)

• Minimum principle with constant (holonomic) constraint:

u∗(t) = arg min
u∈U

H(x∗(t), u, p∗(t)), ∀t ∈ [t0, T ],

H(x∗(t), u∗(t), p∗(t)) = constant, ∀t ∈ [t0]
(A.35)
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A.4.2 Proof of Pontryagin’s Minimum Principle

First Order Necessary Condition for Optimality -
Let f be a continuously differentiable function on Rm and U ⊆ Rm be a convex set.
If u∗ is a minimizer of minu∈Uf(u), then:
∆f(u∗)T (v − u∗) ≤ 0, ∀v ∈ U

Proof - Suppose ∃ w ∈ U with ∆f(u∗)T (w − u∗) ≤ 0. Consider z(λ) := λw + (1 − λ)u
for λ ∈ [0, 1]. Since U is convex, z(λ) ∈ U and

d

dλ
f(z(λ))|λ=0 = ∆f(u∗)T (w − u∗) ≤ 0 (A.36)

implies that f(z(λ)) ≤ f(u∗) for small λ, contradicts that u∗ is optimal.

Lemma: ∆ - min Exchange
Let F (t, x, u) be a cont.-diffable function of t ∈ R, x ∈ Rn, u ∈ Rm and let U ⊆ Rm

be a convex set. Furthermore, assume π∗(t, x) = arg minu∈U F (t, x, u) exists and is
cont.-diffable. Then, for all t and x:

∂(minu∈UF (t, x, u))
∂t

= ∂F (t, x, u)
∂t

|u=π∗(t,x)∆x(min
u∈U

F (t, x, u)) = ∆xF (t, x, u)|u=π∗(t,x)

(A.37)

Proof - Let G(t, x) := minu∈U F (t, x, u) = F (t, x, π∗(t, x)). Then:

∂G(t, x)
∂t

= ∂F (t, x, u)
∂t

|u=π∗(t,x)+
∂F (t, x, u)

∂u
|u=π∗(t,x)

∂π∗(t, x)
∂t︸ ︷︷ ︸

since∆uF (t, x, π∗)(π∗(t + ε, x) − π∗(t, x)) ≥ 0

=0

(A.38)

A similar derivation can be used for the partial derivative wrt. x.

Step 1 - Hamilton-Jacobi-Bellman Partial Differential Equation gives J∗(t, x)
Extra Assumption: The PMP is proved under the assumption that J∗(t, x) and π∗(t, x) are
cont.-diffable in t and x and U is convex. These assumptions can be avoided in a more
general proof.
If the cost-to-go is cont.-diffable, the HJB PMP is also a necessary condition for optimality:

J∗(T, x) =gT (x), ∀x ∈ X

= min
u∈U

(g(x, u) + ∂

∂t
J∗(t, x) + ∆xJ∗(t, x)T f(x, u))︸ ︷︷ ︸

:= F (t, x, u)

, ∀t ∈ [t0, T ], x ∈ X (A.39)
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with, π∗(t, x) a corresponding optimal policy.

Step 2 - ∆ - min Exchange Lemma
Apply the ∆-min Exchange Lemma to the HJB PDE:

0 = ∂

∂t
(min

u∈U
F (t, x, u)) = ∂2J∗(t, x)

∂t2 + [ ∂

∂t
∆xJ∗(t, x)]T f(x, π

∗(t, x))

0 =∆x(min
u∈U

F (t, x, u))

=∆xg(x, u∗) + ∆x
∂J∗(t, x)

∂t
+ [∆2

xJ∗(t, x)]f(x, u∗) + [∆xf(x, u∗)]T ∆xJ∗(t, x)

(A.40)

where, u∗ := π∗(t, x)
Evaluating this along the trajectory x∗(t) resulting from π∗(t, x∗(t)) :

ẋ∗(t) = f(x∗(t), u∗(t)) = ∆pH(x∗(t), u∗(t), p)T , x∗(0) = x0 (A.41)

Step 3 - Evaluate along x∗(t), u∗(t)
Evaluating the results of Step 2 along x∗(t):

0 =∂2J∗(t, x)
∂t2 |x=x∗(t) + [ ∂

∂t
∆xJ∗(t, x)]T ẋ∗(t)

= d

dt
(∂J∗(t, x)

∂t
|x=x∗(t)︸ ︷︷ ︸

:= r(t)

) = d

dt
r(t) ⇒ r(t) = C.∀t

(A.42)

and

0 =∆xg(x, u∗)|x=x∗(t) + d

dt
(∆xJ∗(t, x)|x=x∗(t)︸ ︷︷ ︸

=: p∗(t)

) + [∆xf(x, u∗)|x=x∗(t)]T [∆xJ∗(t, x)|x=x∗(t)]

=∆xg(x, u∗)|x=x∗(t) + ṗ∗(t) + [∆xf(x, u∗)|x=x∗(t)]T p∗(t)
=ṗ∗(t) + ∆xH(x∗(t), u∗(t), p∗(t))

(A.43)

Step 4 -
The boundary condition J∗(T, x) = gT (x) implies that ∆xJ∗(T, x) = ∆xgT (x) ∀x ∈ X and
thus p∗(T ) = ∆xgT (x∗(T )),
from the HJB PDE we get,

−∂J∗(t, x)
∂t

= min
u∈U

H(x, u, ∆xJ∗(t, .)) (A.44)
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which along the optimal trajectory x∗(t), u∗(t) becomes,

−r(t) = H(x∗(t), u∗(t), p∗(t)) = C (A.45)

where, C is a constant
Finally, a quick note,

u∗(t) =arg min
u∈U

F (t, x∗(t), u)

=arg min
u∈U

g(x∗(t), u) + [∆xJ∗(t, x)|x=x∗(t)]T f(x∗(t), u)

=arg min
u∈U

g(x∗(t), u) + p∗(t)T f(x∗(t), u)

=arg min
u∈U

H(x∗(t), u, p∗(t))

(A.46)
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