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ABSTRACT 

The aerodynamics of insect flight is not well understood despite it has been extensively 

investigated with various techniques and methods. Its complexities mainly have two folds: 

complex flow behavior and intricate wing morphology. The complex flow behavior in insect 

flight are resulted from flow unsteadiness and three-dimensional effects. However, most of the 

experimental studies on insect flight were performed with 2D flow measurement techniques 

whereas the 3D flow measurement techniques are still under developing. Even with the most 

advanced 3D flow measurement techniques, it is still impossible to measure the flow field closed 

to the wings and body. On the other hand, the intricate wing morphology complicates the 

experimental studies with mechanical flapping wings and make mechanical models difficult to 

mimic the flapping wing motion of insects. Therefore, to understand the authentic flow 

phenomena and associated aerodynamics of insect flight, it is inevitable to study the actual flying 

insects.  

In this thesis, a recently introduced technique of schlieren photography is first tested on 

free jet of match rockets with a physics based optical flow method to explore its potential of flow 

quantification of unsteady flow. Then the schlieren photography and optical flow method are 

adapted to tethered and feely flying houseflies to investigate the complex wake flow and 

structures. In the end, a particle tracking velocimetry system: Shake the Box system, is utilized to 

resolve the complex wake flow on a tethered house fly and to acquire some preliminary 3D flow 

field data 
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1. INTRODUCTION 

1.1 Background Overview  

Flapping flight involves complex locomotion movements and complex flow phenomenon while 

the animal is hovering, taking off, and landing. Flow on flapping wings is highly unsteady and three-

dimensional compared with fixed wings, where the flow can be considered approximately steady and 

two-dimensional. For example, an insect to support its body weight must produce 2–3 times more lift than 

can be accounted for with conventional aerodynamic theories while having incredible maneuverability 

with quick accelerations (Ellington C. P., 1999). The unsteady aerodynamic flight of insects is usually 

characterized by large-scale vortex structures, complicated flapping-wing kinematics, and flexible wing 

structures (Liu & Aono, 2009). A flapping cycle can be divided into four stages: two translational phases 

(upstroke and downstroke), when the wings sweep through the air with a high angle of attack, and two 

rotational phases (pronation and supination), when the wings rapidly rotate and reverse direction 

(Dickinson, Lehmann, & Sane, 1999). A deep understanding of the aerodynamics of flapping wings is 

crucial to comprehend the flight behavior of more than a million insect species and approximately eleven 

thousand vertebrates (Chin & Lentink, 2016). 

The well-known story of ‘bumblebee cannot fly’ can be traced back to 1919 when Hoff suggested 

that animals flew with the aerodynamics of fixed wings (Bomphrey, Taylor, & Thomas, 2009). In 

addition, in 1934, August Magnan and André Sainte-Lague concluded that bees' flight was impossible 

when fixed-wing aircraft theories were applied (McMasters, 1989; Douglas L. Altshuler, Vance, Roberts, 

& Dickinson, 2005). They modeled bumblebee wings as a pair of flat plates traveling through the air. 

Therefore, the insects flap their wings at high angles of attack (AoA), resulting in flow separation and 

high drag and low lift production, something that is not desired in conventional fixed wings, which 

operate at low angles of attack. Moreover, the Kutta condition no longer applies as the viscous flow 

structures shed and become highly unsteady around the wing.  

 In 1996, Ellington experimented on a tethered hawkmoth and visualized leading-edge vortex 

structures on the wings (LEV) (Ellington, Berg, Willmott, & Thomas, 1996). The structure of LEV is 

considered as one major mechanism of lift augmentation and accounted for 2/3 of the total lift production 

on hovering insects (Muijres, et al., 2008). Although, this explained how augmented lift is produced, it 

raised more questions about the LEV and the unsteady aerodynamics of flapping wings. Consequently, 

flapping wing aerodynamics has gathered a lot of interest among researchers and scientists in studying lift 

generation mechanisms on some vertebrates such as hummingbirds, bats, and owls. As well as on 

different insects, including the fruit fly, bumblebee, hawkmoth, rhinoceros beetle, cicada, and mosquito 
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(Oh, Lee, Park, Choi, & Kim, 2019). Due to the difficulties in capturing and measuring the flow field 

close to the wings, even though all of these studies have contributed to the understanding of flapping 

wing aerodynamics, there still not a clear understanding about the flow structures and their associated 

unsteady aerodynamics. Moreover, most aerodynamic researches have focused on medium and large size 

insects. While on small insects, studies have been conducted with dynamic-scaled mechanical models that 

mimic the flapping wing motion. In this study, two state-of-the-art approaches (Schlieren photography 

and Particle-Tracking-Velocimetry) are implemented to capture the near-body flow structure and resolve 

the three-dimensional flow field on tethered houseflies. 

1.2 Aerodynamic Theory of Insect Flight  

Understanding aerodynamic forces generation on insects are essential to biologists and 

engineers to comprehend animal locomotion and aerodynamics. On flying insects, one critical 

mechanism for lift augmentation is the attached leading-edge vortex (LEV) (Figure 1.1. 

Ellington, Berg, Willmott, & Thomas, 1996; Berg & Ellington, 1997). The LEV is formed when 

insects flap their wings at high angles of attack and flow separates from the leading edge. Then 

separation layer rolls up, creating the LEV and it remains attached to the wing until it is shed at 

the end of each half-stroke during reversals. This ability of staying attached can help the flow to 

conform Kutta condition and avoids stall, thereby increasing the lift generation. In addition, drag 

is also increased and insects use the increased drag to initiate acceleration into forward or 

backward flight (Ellington C. P., 1999). This flow structure has been identified in different 

researches and on different insect species, but the mechanics to stabilize it are stilled under 

investigation and study (Liu & Aono, 2009). Other aerodynamic mechanisms include added 

mass, rotational circulation, clap and fling, and wing–wake interactions (in Figure 1.2). The 

added mass takes into consideration of the acceleration of the wing and the acceleration of the 

fluid around the wing. This increases the pressure on the wing, and the effect can be interpreted 

as additional mass on the wings. On the other hand, the rotational circulation takes place during 

the rotational/stroke reversal phase. When the wing rotates and translates the Kutta condition 

fails, an additional circulation is created and augments the lift production (Jardin, Chatellier, 

Farcy, & David, 2009). Depending on the timings of duration and rotation t (relative to wing 

stroke), it can enhance or attenuate the force generated during the translation phase (Chin & 

Lentink, 2016). 
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Figure 1. 1 Formation of the leading-edge vortex (LEV). (A) Fulfillment of the Kutta condition in insects 
at high angles of attack. (B) Topology of the LEV. (Nabawy & Crowther 2017). 

The clap and fling mechanism, also known as Weis-Fogh mechanism, references to the 

wing motion, the “clap” when the wings meet, and the “fling” when they apart. During the 

“clap,” vorticity is shed by the trailing edges as they get together, forming a stopping vortex and 

the opposite circulation sign of each wing cancels out. This annulate the Wagner effect, and 

circulation can build up much faster, extending lift over subsequent strokes. Also, the little gap 

between the wings pushes fluid out, producing thrust. During the “fling,” as the wing separates 

from each other, fluid fills the empty space providing an increase in circulation. (Lehmann, Sane, 

& Dickinson, The aerodynamic effects of wing–wing interaction in flapping insect wings, 2005). 

Although this mechanism enhances lift production, many species do not use it or rarely use it, 

only under specific circumstances: during take-off, carrying loads, and making sharp turns (Chin 

& Lentink, 2016). In the mechanism of wing-wake interaction, when an insect starts a new 

stroke, its wings reverse direction and encounter the wake generated from the previous strokes, 

resulting in higher relative velocities and aerodynamic force production (Jardin, Chatellier, 

Farcy, & David, 2009). Furthermore, flying insects operate over a broad range of Reynolds 

numbers from approximately 10 to 104; for comparison, a swimming human has a Reynolds 

number of 106 (Sane, 2003). Therefore, insects operate at much lower Re and viscous effect 

plays a vital role on its flow physics and associated aerodynamics (Sane, 2003). 
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Figure 1. 2 (Top) Insect wing kinematics. (A-F) Black arrows indicate airflow direction, and light blue 
arrows represent net forces. (A) Added mass sequence. (i) wing starts acceleration (ii) pressure increases 
around the wing, adding mass (shaded region). (B) Formation of the LEV that prevents stall and increases 
lift augmentation. (C) Additional circulation is generated during supination and pronation, known as the 
Kramer effect, which increases lift production. The wing is shown (i) before, (ii) during, (iii) after 
rotation. (D) Clap and fling sequence. (i) When the wings meet ‘clap’, opposing circulations cancel out. 
(ii) The close gap between the wings pushes fluid out, producing thrust. (iii) During the ‘fling’, when the 
wings get away from each other and translation begins, new fluid rushes in and speeds up circulation 
generation. (E) Added mass effect as the wing (i) decelerates for (ii) rotation and (iii) accelerates for 
translation. (F) Wing interaction with the wake generated during the previous stroke. (Chin & Lentink, 
2016). 

1.3 Experimental Challenges  

In the light of CFD simulation, particle velocimetry (including PIV and PTV), and other 

flow visualization techniques, the complex flow on flying animals have been extensively 

investigated and studied.  However, most of the studies have been performed on medium or large 

size insects, whereas the flow on small insects is difficult to study with. Moreover, as insect 

wingbeat frequency increases as size decrease, fruit fly flaps its wings at a flapping frequency of 

about 200 Hz (Sane, 2003). These two factors, including small size and high flapping frequency, 

lead to most studies on small insects being conducted on mechanical flappers that can mimic the 

complex wing motion/kinematics or in CFD simulations.  
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Figure 1. 3. (A) Numerical Simulation of a hovering rhinoceros beetle (Trypoxylus dichotomus) showing 
the leading-edge vortex (LEV) and wing-tip vortex (WTV) (Oh, Lee, Park, Choi, & Kim, 2019). (B) 
Mechanical flapper that reproduces camber and twisting deformation (Truong, Nguyen, & Lee, 2017). 

Digital Particle Image Velocimetry (DPIV) is extensively implemented to quantify the 

flow field from capturing images of tracer particles. Then the particle images can be correlated 

with computational algorithms to derive 2D displacement/velocity field. 2D PIV has been widely 

implemented to study different flow phenomena, including the flow field on flying insects. 

However, on small insects, particle seeding and laser intensity is an issue that leads the insect to 

not cooperate, even with tethered insects (Lehmann, 2012). On the other hand, Tomographic PIV 

uses several cameras to record a volume of tracer particles from different angles, enabling 

reconstructing 3D flow field. This technique has been implemented on a tethered locust, showing 

interesting flow structures, but it was limited only to the far-field away from the insect. 

(Henningsson, et al., 2015). In addition, just to process the data set from one complete wingbeat 

cycle, it took 96 days with a 48-multicore processor. Moreover, the setup consisted of eight high-

resolution and high-sensitivity cameras and a powerful laser, making the cost a considerable 

challenge to replicate in other labs. 
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Figure 1. 4 Instantaneous flow measurement of a full wingbeat wavelength on a tethered locust, using 
tomographic PIV (Henningsson et al 2015). 

Recently, a high-speed schlieren photography was adapted to study the flow structures of 

a free-flying hawkmoth (Liu, Roll, Kooten, & Deng, 2018). It was demonstrated the potential of 

Schlieren photography to capture the formation and evolution of flow structures. Moreover, 

unlike previous studies, a secondary hind-wing tip vortex was found and gave a better 

understanding of the vortex loop formation. Flow visualization was accomplished by applying 

isopropyl alcohol onto the hawkmoth wings to act as a passive scalar that the Schlieren setup can 

track. However, the same procedure cannot be used on smaller insects such as houseflies for two 

reasons. First, the high flapping frequency on small insects vaporizes the isopropyl alcohol very 

quickly. Second, it is not easy to ensure enough alcohol was applied to all the wing surfaces 

without adding much weight to the wings. Therefore, to extend the applicability of Schlieren 

photography to study a broader range of insect species, a different method is required. 
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Figure 1. 5 Complete vortex structure captured using Schlieren photography of a hawkmoth (Manduca). 
(Top) Vortex structures during the downstroke. (Bottom) Vortex structures during the upstroke. (Liu, 
Roll, Kooten, & Deng, 2018) 

1.4 Schlieren Photography 

Shadowgraph and schlieren photography rely on the index of refraction for flow 

visualization, which Snell’s law can explain. The index of refraction is the ratio of the speed of 

light in a vacuum to its velocity in a medium. In the presence of spatial variations in the index of 

refraction, light rays are refracted and deflected from their continuous path. (Taberlet, et al., 

2018). Variations on the index of refraction occur if the media's density changes due to local 

temperature, pressure, or composition (Weinstein, 2010). Schlieren has been used since the early 

1800s to visualize and capture fluctuations in optical density (Settles, 2001). The word schlieren 

(plural, old German) means bits or pieces. It is practiced today based on the techniques first 

invented by the German physicist August Toepler (Gopal, Klosowiak, Jaeger, Selimkhanov, & 

Hartmann, 2008). Schlieren is one of the simplest, oldest, and depending on the setup, a cheap 

method for flow visualization. Schlieren and Shadowgraph photography has been used in fluid 
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dynamics studies because they are very sensitive methods that do not interfere or disturb flow 

visualization (Mazumdar, 2013). Another advantage is that the configuration of the Schlieren 

setup can be easily modified for the needs of different studies. Traldi (Traldi, et al., 2018) 

published detailed information on different Schlieren setup variations. The basic idea is to use a 

point light source and direct it to a parabolic mirror, where the light is collimated and travels 

back to the focal point, where the light is cut off, producing Schlieren images. The cutoff ratio is 

essential to visualize flow features; typically, 50% of the light is cut. Although the setup of 

Shadowgraph (0% light cutoff) and Schlieren are quite similar, Schlieren is more sensitive to 

changes in the index of refraction (Davies, 1981). For a long time, Schlieren and Shadowgraph 

were used only as a tool for flow visualization or, in some cases, for minimal data extraction, due 

to the lack of a tool to generate velocity fields.  

 
Figure 1. 6 Different Schlieren setup (Traldi, et al., 2018). 
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1.5 Optical Flow Method  

Flow visualization provides a general description of flow behavior, but quantification of 

flow phenomena is fundamental to comprehend the physics behind the fluid motion. Early 

attempts to quantify schlieren images can be traced back to 1936 when Townend tracked 

displacements manually to get velocity measurements. Since this is time-consuming and 

introducing human errors, schlieren was limited to visualization only for a long time. With the 

rise of computer technology, particle image velocimetry (PIV) technique has become a widely 

popular tool to study flow phenomena. PIV is based on the local spatial cross-correlation 

between two successive particle images to create a vector field (Adrian, 1991). The natural idea 

was to use the PIV algorithms in schlieren photography; this approach is called schlieren image 

velocimetry (SIV). However, there are not particles (seeding) to track in schlieren images, 

leading to poor performance (Hargather, Lawson, & Settles, 2011). To solve this issue, other 

algorithms based on optical flow rather than particle tracking were developed. Optical flow can 

be described as the apparent motion of objects in images caused by the relative motion of objects 

and the viewer (Horn & G.Schunck, 1981). The optical flow equation establishes a link between 

the spatiotemporal radiance variation from an emitting object in 3D space and its projection onto 

the image plane (Heitz, Mémin, & Schnörr, 2009). In the optical flow method, the vector field is 

calculated by assuming intensity constancy between two-time sequenced images (Ray, 2011). 

 To develop a method to quantify a sequence of images, Horn & Schunck (1981) proposed 

the brightness constraint equation for computing optical flow. Even though the equation assumes 

that image intensity does not change during the time sequence. This approach is not derived from 

any physical principle, and therefore it is not justified from a physical point of view (Liu & Shen, 

2008). Moreover, the brightness constrain equation was used for PIV images, and it was 

concluded that the equation is not accurate to study flow behavior (Ruhnau, Kohlberger, Schnörr, 

& Nobach, 2005). Another approach was proposed by (Corpetti, Mémin, & Pérez, 2002), who 

use the continuity equation of fluid mechanics to generate vector fields. Even though this method 

can generate an accurate velocity field, it is not applicable to every flow phenomena. A general 

physics base algorithm was proposed by Liu & Shen (2008). They established a quantitative 

connection between optical flow and fluid flow by deriving a relationship between the radiance 

projected to a camera and the path-averaged velocity field weighted with a relevant field 

quantity. 
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1.6 Aim of the Thesis 

Even though flow visualization measurement techniques have progressed considerably, it 

is still challenging to visualize and measure the complex flow field on small flying insects with 

current experimental approaches. As mentioned previously, most of the aerodynamics research 

on small insects was conducted on scaled mechanical models that mimic the flapping wing 

motion or with CFD simulations. However, it raises concerns on if the mechanical model was 

able to mimic the details of insect wing morphology; or if the numerical simulation is truthfully 

reflecting the actual flow of insects. To address this issue, schlieren photography was 

successfully introduced to study a hawkmoth, but the same method cannot be applied to small 

insects. In this thesis, a different approach to visualizing flow structures on small insects is 

introduced. Instead of using isopropyl alcohol, a refraction index gradient was introduced by 

controlling the temperature gradient in the air. This concept has been successfully implemented 

by Veldhuis, who used schlieren photography to study the wake structures of rising and falling 

spheres inside a water tank by creating a temperature gradient (Veldhuis, Biesheuvel, 

Wijngaarden, & Lohse, 2004). In this study, a small air container is heated on the top and cooled 

at the bottom to set a refraction index gradient and to capture the flow disturbance generated by 

houseflies with a Z-type Schlieren setup. To quantify the schlieren images, an optical flow 

method is implemented to derive velocity fields. This thesis is organized as follows. To test the 

schlieren setup and optical flow method, in chapter 2, the exhaust gas/ free jet from a matchstick 

rocket is studied and analyzed. In chapter 3, the new setup of schlieren photography on small 

insects is described and introduced. The unsteady wake flow is then quantified with optical flow 

method. In chapter 4, the state-of-the-art “Shake-the-Box” system is implemented on tethered 

houseflies to resolve the complex 3D flow field in the wake of the tethered insects. 
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2. UNSTEADY FLOW VISUALIZATION AND QUANTIFICATION OF 
FREE JET OF MATCH ROCKETS USING SCHLIEREN PHOTOGRAPHY 

AND OPTICAL FLOW METHOD 

2.1 Introduction  

Chemical rockets burn fuel in the combustion chambers, converting chemical energy 

stored in the propellant into high pressure/kinetic energy to push exhaust gas through the 

nozzles, producing thrust. One simplest example of chemical rocket is matchstick rocket that can 

be easily built with matchstick and aluminum foil. Aluminum foil wraps around a match head, 

which is essentially a mixture of solid fuel and oxidizer and can be heated up from the outside to 

initiate the combustion inside the small chamber of aluminum foil. The modern matches are 

usually made of mixture of potassium chlorate, sulfur, and phosphorus (Mohamed, 

Sivapirakasam, & Surianarayanan, 2013). When heated, the propellant burns and creates 

predominantly hot, low-molecular-weight gases in the confined space to produce a high pressure 

that push the gaseous product out of the chamber from a small opening at the tail. Although the 

matchstick rocket has many design variations and appeared in several educational books as an 

experimental experience to understand Newton’s laws (Gurstelle, 2012; Nations, 1988), there is 

very little scientific study on the exhaust gas flow of matchstick rockets.  

Meanwhile, the exhaust gas flow from the rocket can be characterized as a free jet which 

is directly discharged into the ambient air. A free jet can be described as the interaction of a fluid 

with some momentum or buoyancy exiting from a narrow exit into a large static fluid body. The 

velocity difference between the free jet and static fluid body produces a discontinuity that 

becomes unstable and generates vortices that entrainment the surrounding fluid into the jet 

(Chang, et al., 2020). Those vortices, fuse, pare, and rupture during the development of the jet, 

and play an important role in the characteristics of the jet. Based on the velocity center line 

decay, the jet flow can be divided into four different velocity zones: core, transition, profile 

similarity, and termination (Kmecova, Sikula, & Krajcik, 2019). Free jets have been studied 

experimentally with different methods, including dye visualization, hot wire measurement, 

particle image velocimetry, and schlieren photography. Schlieren photography can be 

implemented because normally, the densities between the free jet and static fluid body is 
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different, which can be perceived by the method. In this study, a high-speed schlieren 

photography is implemented on free jets produced from two horizontally anchored match 

rockets, one with skewer stopper at exits and another without it. To quantify the velocity field of 

the free jet, a physics-based optical flow method (Liu & Shen, 2008) is implemented on the 

schlieren images. 

2.2 Materials and Methods  

Our match rockets are made of aluminum foil, bamboo skewer, and match head. The 

aluminum foil was cut into a trapezoidal shape (30 mm x 115 mm). A 20 mm long skewer and 

match head were put along the longer side of the aluminum foil, covering 20 mm aluminum foil 

and leaving 10 mm empty. Then, the skewer and match head were wrapped from rolling the 

aluminum foil to create the cylindrical body of the match rocket.  And the spare foil above the 

match head was twisted and crimped with a pair of pliers. The final length of the rocket was 

about 30 mm with an exit diameter of 3 mm. Mainly because the skewer inside the rocket is 

being used as a compression mechanism to increase pressure inside the chamber. Eventually, the 

matchstick will be pushed out of the rocket due to the exhaust gas. Limiting the rocket exit 

dimension to the skewer diameter of 3 millimeters. For the second rocket, the same procedure 

was implemented but with the bamboo skewer removed from the chamber afterward. Once the 

rocket was complete, it was anchored horizontally on the table and ignited to launch it by heating 

the rocket head with a lighter under the rocket head.  

To capture and visualize the exhaust gas produced by the rocket match, a high-speed 

schlieren photography system was implemented. The system consisted of a high-speed camera 

(Photron Mini UX 100), two 10-inch parabolic mirrors, and a LED. The white LED light was 

projected throughout a 1 mm pinhole into the first mirror, which collimates the light and reflects 

it to the second mirror, producing parallel rays of light in the test region. The second mirror 

focuses the collimated light towards the camera, passing by a razor blade edge. The high-speed 

camera then recorded the schlieren images at 10,000 frames per second at a resolution of 

1280x480 pixels. In this paper, two experiments were presented; a match rocket with a skewer in 

the chamber and one rocket that does not. To derive the velocity vector field, the resulting 

schlieren images were later processed with a physics-based optical flow method (Liu & Shen, 
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2008). Due to the unsteadiness of the flow, not only velocity fields were calculated but also 

acceleration and shear fields were derivative from the optical flow method. Demonstrating, the 

full potential of this method as a tool to study flow behavior.   

 
Figure 2. 1 (A) Z-type Schlieren set-sup. (B) Materials used to build a  match rocket. Rocket before 
wrapping the aluminum foil. (C) Rocket after wrapping and ignition. 

2. 3 Results  

In a rocket engine (liquid or solid), fuel and oxidizer are mixed and exploded in a 

combustion chamber (Benson, Combustion, 2014), producing new chemical substances (exhaust 

gas) with high pressure that passed through a nozzle to produce thrust (Hall, 2015). The same 

principles apply to the match rocket. The match head contains the solid fuel and oxidizer, while 

the rolled-up aluminum foil acts as the combustion chamber. When the match head burns in the 

rolled-up aluminum foil chamber, the gasses product expands quickly in the chamber and builds 

up the pressure, pushing the rocket to move forward. Meanwhile, owing to the reacting force, the 

exhaust gas will be pushed backward and exits the rocket chamber.  When the rocket is tested 

with a skewer inside the chamber, the chamber is enclosed; thus, the pressure can be built up 

quickly until it reaches a critical value that can push the skewer out of the chamber. When the 
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rocket is tested without a skewer, the chamber is open in the end, and exhaust gas flow will be 

created at the very beginning of the ignition.  
 

2.3.1 Velocity field quantification 

 

With the high-speed schlieren photography system, the exhaust gas with a different 

density to the ambient can be visualized and captured. The schlieren images are first pre-

processed with background subtraction and then processed utilizing the physics-based optical 

flow method in MATLAB to derive the velocity vector field. The velocity is calculated in a 

rectangular region (27 mm × 20 mm in physical space and 236×175 pixels in images) at the 

rocket exit. Figure. 2 a, c present two samples of the background-subtracted schlieren images of 

the exhaust gas tested with a skewer and without a skewer. Figure. 2 b, d present the averaged 

velocity contour plots (over 30 frames or 3 milliseconds) at time instants when the exhaust gas 

reaches the highest speed at t = 1.5 ms for a rocket with skewer and t = 40 ms for rocket without 

the skewer.  In the horizontal direction, when the exhaust gas exits the rocket, the gas first 

accelerates and then reaches the local maximum velocity at a distance of about x = 4.5D (at a 

distance of five times the rocket diameter), then the exhaust gas starts decelerating in the down-

stream. In the schlieren photography images on the match rocket without a skewer, we observed 

significant dark regions in the exhaust gas flow that could be related to the inadequate 

combustion product under low temperature and pressure (This phenomenon is repeating on the 

rockets without skewer). Particularly, in the later part of the schlieren photography video, the 

dark imaging issue is getting worse and prevents us from applying the physics-based optical flow 

method to quantify the flow field.  Consequently, in the match rocket test without a skewer, only 

the first 45 milliseconds of the event is analyzed and studied, while an event of 80 milliseconds 

is analyzed and studied on the match rocket test with a skewer. 
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Figure 2. 2 (A & C) Images after background subtraction and boundary region highlighted in color red. (B 
& D) Vector and contour velocity fields at the highest maximum velocity. (A & B) Match rocket with 
bamboo skewer at t = 1 ms. (C & D). Match rocket without bamboo skewer at t = 45 ms. 

Only the axial component of the velocities was considered because the thrust is only 

correlated to the momentum in the axial direction. Fig. 3 a, b shows the velocity plots on the 

rocket with a skewer and Fig. 3 c, d show the velocity plots on the rocket without a skewer. In 

Fig. 3 a, b, the raw instantaneous local maximum, and spatial average velocity, plotted in blue, 

fluctuate substantially. A moving average filter with a window size of 3 milliseconds is applied 

to the raw data, deducing filtered data in red. The filtered result shows that the local maximum 

and spatial average velocities are at the highest in the beginning with a value of 9.99 m/s and 

2.37 m/s, respectively. Both the local maximum and spatial average velocities are continually 

decreasing over time. On the rocket with the skewer, because the solid propellant is limited and 

combustion happened in a very short time of duration within the confined space, the 

chamber/total pressure is highest when the exhaust gas pushes the skewer out of the chamber. 

Therefore, the flow momentum is at the highest value at the beginning of the event. On the 

rocket without the skewer, however, the local maximum and spatial average velocities are at the 
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lowest values in the beginning of the event and continually increasing over time. During the time 

of investigation (the velocity quantification is limited to the first 45 millisecond due to the dark 

images), the filtered local maximum and spatial average velocities reach to the highest value of 

7.73 m/s and 1.16 m/s, respectively at the end of the time. On the rocket without the skewer, 

since the chamber is not enclosed and with an open end, the exhaust gas flow is created 

immediately after the combustion started. Due to the non-uniform heating on the solid 

propellant, the combustion is localized in the beginning and then starts in other places to 

eventually reach a complete ignition (Was observed in testing on the match head). Therefore, 

without an enclosed chamber, in Fig. 3 c and d, before reaching the highest value, the 

chamber/total pressure is increasing over time, so as the exhaust gas speed.  

 
Figure 2. 3 Instantaneous and filtered maximum and mean velocities of both rockets. (A & B) Match 
rocket with a bamboo skewer. (C & D) Match rocket without a bamboo skewer.  

Comparing the exhaust gas speeds between the two match rockets, the exhaust gas speed 

is higher in the rocket with the skewer but lower without the skewer. Assuming the solid 

propellant are similar between the two rockets, during the combustion, the chamber/total 

pressure in a confined space should be higher than the one in an open chamber, resulting in a 

higher momentum in the exhaust gas flow. Moreover, when the exhaust gas of the two rockets 

reaches the highest speed, the instantaneous velocity profiles are examined at three different 

distances from the rocket exits and presented in Figure 4. Similar to the observation in Figure 2, 

on both rockets, the exhaust gas accelerates at the beginning from the exit and reaches to the 
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highest spatial velocity at a distance of 4.5D from the exit. Comparing the velocity profiles from 

the two rockets, the velocity profiles at the exits (x=0) have a similar velocity magnitude of 

about 2 m/s. However, at x = 4.5D the exhaust gas velocity is considerably higher on the match 

rocket with the skewer at a speed of 6 m/s at the center and lower on the rocket without the 

skewer at a speed of 4m/s at the center, which further substantiates the observation in Figure 3. 

In addition, the jet of the rocket with the bamboo skewer does not have a perfect conical shape 

due to the exhaust gas at the beginning is constantly hitting the back of the expelled skewer. 

Eventually, the disturbed flow is dissipated and recovers its traditional conical shape.  

 
Figure 2. 4 Velocity profile at the instant of maximum velocity at three different locations. (A) Match 
rocket with a bamboo skewer at t = 1 ms. (B) Match rocket without bamboo skewer at t = 45 ms.  

On the other hand, mean acceleration (material derivative), mean velocity, and mean 

shear were calculated on the rocket with the skewer to investigate the detailed physical process 

of the exhaust gas flow. The rocket without the skewer, however, developed a vortex ring in the 

beginning before producing the jet flow. This happened because low energy jet intends to create 

a vortex ring at low Reynolds numbers (Chang, et al., 2020). Afterward, as the pressure in the 

chamber increases, and the jet Reynolds number increased and developed into standard conical 

shape free jet flow. Therefore, the flow field changes substantially on the rocket without the 

skewer and is not considered in later calculations. The rocket with the skewer showed an 

interesting phenomenon of acceleration-deceleration-acceleration (Figure 5 a). Where it can be 

seen that at the exit, there is a high acceleration followed by deceleration. However, there is a 

transition zone where the exhaust gas accelerates once again to finally decelerate at x= 7.6 D. 

Therefore, two velocity peaks are observed along the centerline of the flow, with the first peak at 
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3.5 m/s and a second peak at 3 m/s. Moreover, it is expected that local pressure at the second 

mean velocity peak (x= 7.6 D) should be equivalent to ambient pressure where the flow in 

downstream is purely driven by inertia and decelerate under friction.  

 
Figure 2. 5 (A, C, E) Time average over 80 ms of acceleration, velocity, and shear field, respectively. (B) 
Acceleration along the centerline. (D) Mean along the centerline. (F) Mean shear along the bottom layer 
at y/D =1 

Also, the mean acceleration, mean velocity, and mean shear at the exit are not symmetric. 

This issue persisted on different trials where there was a small leak either at the top or bottom. 

For two reasons, the exit is not symmetric because the aluminum foil was not well wrapped, or 
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the pressure inside the chamber is too high that breaks the weakest zone at the exit. This also 

concatenates on higher shear stress at the exit bottom than the top shown in Figure 2.5 e, f.  In 

addition, the bottom shear layer is ticker and extends for a longer distance than the top layer. 

Indicating that the discontinuities due to the velocity difference between the exhaust gas and the 

surrounding air are more prominent in the bottom than in the top. Also, the top and bottom layer 

of the jet has different mixing rates between the air and the exhaust gas, since this is dictated by 

the shear layer (Chang, et al., 2020). Moreover, in Figure 2.5, e there is a significant and 

continuous drop of shear stress magnitude along the bottom section of the jet.  

2.3.2 Thrust force estimation 

As the instantaneous velocity field is obtained, the thrust force can be estimated by 

implement the conservation of linear momentum. To estimate the thrust some assumptions were 

made. (1) The exhaust gas can be treated as ideal gas. (2) Chemical equilibrium is established 

within the rocket chamber, and the gas composition does not change over time. (3) The rocket 

exit is axial symmetric. Applying these assumptions and conservation of the linear momentum 

(Sforzini, 1970), the thrust is estimated with Equation 1 and Equation 2.  

  (1) 

 

 (2) 

 

16 KClO3 + 3 P4S3 → 6 P2O5 + 16 KCl + 9 SO2 

The first term in Eq.1 is the rate of change of fluid momentum inside the control volume. 

While the second term is the momentum flux going out of the control volume (Dabiri, 2005). 

Since the exit rocket is not symmetric, velocity along  will vary. To address this issue, two 

approaches to estimate the velocity were considered. In the first approach, velocity for each  

was calculated by taking the mean value of each  for Eq 1. In the second approach, the overall 
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mean velocity at each control surface was used on Eq. 2. In the case of density, ideal gas law 

was used for SO2 as it is the primary gas product from the chemical reaction. A thermal camera 

(Flir E40) was used to measure the temperature of the exhaust gas, deriving a temperature of 96 o 

C, therefore a gas density of 2.1175 kg/m3 is derived. Equations 1 and 2 are implemented on a 

control volume, the black rectangular boundary in Figure 2.6, in which the green line sits at the 

exist of the rocket and green line 2 lays at the second velocity peak, and local pressure equals to 

the ambient pressure.  

The estimated thrust (pressure at exits) increases until it reaches a maximum value 

around t=10 ms. Eq. 1 has a maximum thrust of 0.012207 N at 10.9 ms, while Eq. 2 has a 

maximum value of 0.012556 N at 9.3 ms. This follows a common curve of a rocket thrust graph. 

However, after this peak usually there is a drop in thrust followed by a steady/constant zone. In 

the case of the matchstick rocket is not the case, and instead, thrust drops continually in the 

process. This can be attributed to the uneven combustion of the head match. Since the 

combustion ratio of the fuel and oxidizer is not precisely controlled, the kinetic energy released 

changes over time and therefore changes the rocket's thrust. On the other hand, comparing the 

two-equation, there is an overall discrepancy of 0.000256 N between them. Also, it can be seen 

that Eq. 2, in general, has higher values than Eq. 1.  

 
Figure 2. 6 Plot of thrust using Equations 1 and 2. Control volume highlighted in black and controls 
surfaces highlighted in green. 
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2.4 Discussion  

Studying the exhaust gas flow produced from a match rocket is complex. The exhaust gas 

flow is unsteady, and the rocket exit is not symmetric. In addition, replicate the same procedure 

for each rocket is challenging. Match head size, effectiveness wrapping the bamboo skewer, and 

other variables make the match rocket performance vary from to trial to trial. In addition, even 

though the match head can be considered a solid propellant, the design differs from a standard 

solid propellant with a cylindrical shape. Usually, with a perforation in the center along the 

cylinder to control the chemical reaction of the elements and direct the exhaust gas to the 

exit/nozzle. This means that the match head does not have an optimal design for a solid 

propellant. Causing the chemical reaction/combustion of the fuel and oxidizer not being well 

controlled and producing fluctuations in pressure and exhaust gas expelled. Also, unburned and 

burned material exiting the rockets contributes to the uncertainty of the velocity quantification. 

Moreover, considerable velocity fluctuation is observed in the velocity quantification, which can 

contribute to the solid propellant's imperfection. Despite of these, both graphs follow a similar 

trend, providing an insightful description of the exhaust gas behavior.  

Some modifications of the setup can help for future studies. Only wrapping the head 

match and using a small diameter pipe for the rocket body could solve the issue of the exit 

geometry. Also, smashing the match head to make powder from it and weigh it for each trial can 

standardize the procedure to understand the fluid flow better. Other brands might use different 

ratios of chemical elements to make the head match. Also, to increase the performance of the 

rocket, a nozzle must be used instead. This can be accomplished by replacing the bamboo skewer 

with a small valve. Since the purpose of the skewer is to keep the gas inside the chamber to 

increase the pressure. A closed valve can do the same, and by opening the valve, the gas can be 

redirected through a nozzle. On the other hand, the optical flow method appear to be an excellent 

tool to study flow phenomena comminated with Schlieren photography.  
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3. ADAPTING SCHLIEREN PHOTOGRAPHY TO VISUALIZE FLOW 
STRUCTURES OF A TETHERED AND FREE FLYING HOUSEFLY 

3.1 Introduction 

Insects perform flapping-wing flight to create lift and thrust for forwarding and backward 

flight while achieving remarkable maneuvers with rapid accelerations and decelerations (Liu H., 

2009). For example, a fly can change direction by 90° in less than 50 milliseconds while flying 

through the air (Fry, Sayaman, & Dickinson, 2003). Insect flight has fascinated researchers 

because applying fixed-wing aerodynamic theories to study their flight led to the contradiction 

that insects should not fly. The small wing size and high angle of attack flight do not satisfy 

traditional aircraft theories. This promoted the rapid growth of experimental research in the past 

decades to study the complex flow structures generated by insect flight to understand their 

aerodynamic mechanisms. For example, using smoke visualization on a tethered hawkmoth, the 

leading-edge vortex (LEV) was captured and linked as the primary source of lift production, 

solving the enigma of how insects are capable of flying. (Ellington, Berg, Willmott, & Thomas, 

1996). Nowadays, it is believed that the LEV can generate up to two-thirds of the total lift in 

insect flight (Muijres, et al., 2008). Similarly, many studies have found other mechanisms such 

as: added mass, rotational circulation, clap and fling, and wing–wake interaction, that insects 

utilize to generate aerodynamic forces (Chin & Lentink, 2016). Also, there has been a lot of 

work on deriving theoretical expressions of force estimations based on properties of vortex wake 

(Dabiri, 2005) because the vortex wake can be considered the “footprint” of a traveling insect 

(Wang, 2005). 

Particle image velocimetry (PIV) has been used to qualitative and quantitative study the 

unsteady flow of large insects revealing complex vortex structures. However, most of the studies 

of small insects have been performed using mechanical flappers, because conventional particle-

tracking flow measurement methods cannot efficiently resolve the flow structure even with high-

density seeding. Advancement in technology and particle tracking algorithms made it possible to 

capture three-dimensional vortex structures on a tethered locust using tomographic PIV (2015) 

(Henningsson, et al., 2015). However, it was limited only to the far-field wake, leaving 

uncertainties in the flow structures near to the wings. Moreover, it took 96 days to reconstruct the 
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flow structures on sever server with 48 AMD cores and 64 GB of ram. In addition, the setup 

consisted of a powerful laser and eight cameras (high-resolution and high-sensitive). Making this 

set-up very expensive and not realistically possible to replicate in other laboratories around the 

world.  

Most of the studies of insect aerodynamics were made on large insects such as: 

dragonflies, locusts, and hawkmoths, bumblebees, droneflies, and hoverflies (Cheng & Sun, 

2016) because it is difficult to study a small insect in a natural setting. Therefore, there is not too 

much research on real small insects. Advancements in computational power made it possible to 

simulate insect flight. In addition, technology help to design detailed robotic flappers to study 

small insects. To develop a model, some critical parameters such as: angle of attack, stroke 

amplitude, and wingbeat frequency are usually acquired using high-speed cameras. This data is 

used as input for the CFD simulation or to design mechanical flappers. Using this data, both 

models provide a complete visualization of the formation and evolution of the vortical flow. 

However, insect wings still are very complex to model because of their deformable structure and 

unique features that might be easily overlooked. Therefore, these two approaches raise the 

concern if the model was designed considering all the details of insect wing morphology and 

whether the mechanical and numerical simulation is truthfully reflecting the actual flow 

generated by an insect. Consequently, despite that many studies have significantly contributed to 

decipher the aerodynamic mechanisms of the flapping flight, there is not a fully comprehensive 

understanding of the complex flow structures and the aerodynamics of hovering insects. One of 

the reasons is that it has been challenging to observe the complete flow structures in the near-

field and far-field wake on real insects. 

Schlieren photography has been used in fluid dynamics studies because it is a very 

sensitive method that does not interfere with or disturb flow visualization (Mazumdar, 2013). As 

with any other method to study flow phenomena, this technique has improved with 

advancements in technology. High-speed cameras and optical flow algorithms made it possible 

to use it as a qualitative and quantitative method for a broader range of applications. This non-

conventional method to study flying insects was recently adopted to investigate a free-flying 

hawkmoth (Liu, Roll, Kooten, & Deng, 2018). Demonstrating the potential of this method to 

fully capture the formation and evolution of the vortical flow structures. The flow was captured 

by brushing isopropyl alcohol onto the wings to act as a passive scalar to be tracked by the 
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Schlieren setup. However, this method cannot be used on smaller insects such as house flies 

because of two reasons. First, the high flapping frequency vaporizes the isopropyl alcohol very 

quickly. Second, it is difficult to ensure enough alcohol was applied to all the wing surfaces 

without adding too much weight to the wings. Therefore, to extend the applicability of Schlieren 

photography to study a broader range of insect species, another method was needed. Veldhuis 

used Schlieren photography to study the wake structures of rising and falling spheres by creating 

a temperature gradient inside a water tank (Veldhuis, Biesheuvel, Wijngaarden, & Lohse, 2004). 

This paper implements a similar approach to study a tethered house fly inside a container filled 

with air heated on the top and cooled on the bottom to develop a temperature gradient to capture 

the disturbed flow filed with the Schlieren setup. 

3.2 Materials and Methods 

Experiments on house flies were performed on the third day after they hatched. A 

housefly was tethered following the procedure suggested by Duistermars. A housefly was placed 

inside a refrigerator at 4 oC for anesthetizing the insect. Then, a small pin with a diameter of 

0.072 inches was glued to the dorsal thorax between the head and the two wings. Finally, the fly 

was left to recover for about 10 minutes before inserting it inside the testing container. A small 

container (80 x 40 x 50 mm) was build using optical glass, transparent acrylic sheet, copper 

plate, and aluminum water block. The optical glass was used for the front and back walls, while 

the acrylic sheet was used for the side walls. An easy openable/closable window was made on 

one of the sides for putting the insect inside the container when the temperature gradient was 

stable. The temperature gradient inside the container was built by heating the top at 40 oC 

(copper plate) and cooling the bottom at 0 oC (aluminum water block). Two ptc electric heaters 

were glue to the copper plate to heat it, and a PID controller was used to keep the temperature at 

a constant value. To cool the aluminum block, a liquid cooling loop system was implemented 

that consisted of a pump, refrigerator, and windshield liquid. The windshield liquid was cooled 

before it was pumped to flow in the loop. A PID controlled was also used on the bottom to keep 

a constant temperature of 0 oC. In reality, it was difficult to control the temperature on the top, 

and the bottom at there was a discrepancy of ± 4 oC. 
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Figure 3. 1 (A) Z-type Schlieren setup. (B) Setup and temperature of the container (80 x 40 x 50 mm) in 
the testing area. The top of the container was heated with two thermal electrical heaters, and the 
temperature was controlled with a PID controller. The bottom is cooled using windshield liquid as a 
coolant in a loop. The liquid at low temperature leaves from the refrigerator and goes through the cooling 
block, and returns to the fridge to repeat the cycle. 

A standard Z-type high-speed Schlieren photography system was used to capture the flow 

field with a high-speed camera (FASTCAM Mini UX 100). Two 10-inch diameter parabolic 

mirror were used to collimate and refocus the light source from a white LED. In the case of the 

tethered housefly, a 300 mm lens was used. On the other hand, A Nikon 500 mm zoom lens was 

used for the free-flying housefly. A Schlieren video was captured at 10,000 frames with a 

resolution of 1280 x 480 pixels. The images were pre-processed using background subtraction to 

delate minor imperfections of the optical glass. Then a physics-based optical method (Liu & 

Shen, 2008) run on MATLAB was used to quantify the disturbed flow produced by the housefly.  

 Since Schlieren photography depends on the refractive index to visualize flow 

phenomena, which directly correlates with the temperature gradient, the container's temperature 
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was studied. It was used a thermal camera (Flir E40) to record the container's temperature for 25 

minutes. Although, the temperature gradient in Figure 3.3 does not represent the actual 

temperature inside the container because the camera is recording the optical glass temperature. 

This graph allows to demonstrates that a temperature gradient is successfully implemented, and 

also to visualize the temperature distribution. In addition, it will enable to test of the performance 

of the heating and cooling device. Moreover, this help to have an idea where to place the insect 

in such a way to not harm the insect due to the high temperature, while ensuring high contrast on 

the Schlieren video. The recorded video data was extracted using the software FLIR Tools + and 

plotted using MATLAB (Figure 3.3). Only the first 13 minutes were plotted because from that 

minute, the heaters on the container’s top keep a constant temperature of 90 oC. In addition, at 

that instant, it can be seen an almost perfect linear relationship. Implying, the temperature 

gradient is evenly distributed from top to bottom. Also, it was found that after 20 minutes, the 

cooling device lost its efficiency and started to raise the temperature to almost 20 oC. However, 

this is not an issue since the videos are recorded within the first 10 minutes.  

 
Figure 3. 2 Temperature distribution of the glass container recorded with a thermal camera (Flir E40). The 
temperature along the black line in the middle of the container is measured using FLIR Tools +. 
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The temperatures plotted in Figure 3.3 are along the black line in Figure 3.2. Although in 

figure 3.4 the temperature reaches 90 oC, that only happens after waiting for 13 minutes. In 

reality, the experiment is performed at t=2 min and the temperature inside the container at the top 

is 40 oC at the very top (measured with a thermocouple). This is corroborated in figure 3.3 where 

it can be seen that the heated copper plate is colder than the optical glass. In addition, the 

temperature where the insect is placed was around 35 C, and the fly was perfectly able to fly, 

including untethered flies. The temperature in the glass can be due to the thickness of the optical 

glass and the direct contact of the copper plate and optical glass. Unfortunately, no thermal 

properties of the optical glass were available to have a better understating of the heat exchange 

and correlated it with the air inside the container. 

 
Figure 3. 3 Vertical temperature distribution of the optical glass taken at the middle of the container for 
13 minutes. The vertical distance is measured from the top to the bottom of the container. 

3.3 Results 

 In figure 3.4 is presented the steps implemented to visualize and quantify the flow 

structures of a tethered housefly. Once the Schlieren video is recorded, the images are pre-

proceed using a background subtraction code run in MATLAB. This step is for subtracting the 

static objects and slight imperfections in the optical glass, lens, and parabolic mirrors. In 

addition, this enhances the flow signal that is hard to visualize on the raw images. In total, fifty 
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images were used to generate the background that will be used to subtract for each image. The 

white spots around the housefly are due to this step, but it will not affect the flow quantification. 

Then, the vector velocity field of the enhanced image is obtained by running a code in MATLAB 

based on a physics optical flow method (Liu & Shen, 2008). The boundary highlighted in blue in 

figure 3.4,b will be used in this chapter to estimate the velocity field. Even though in figure 3.4,c 

there places where there should not be vectors calculated, the overall estimation in those places is 

close to zero, as can be seen in figure 3.7,b,d.  

 
Figure 3.4 Procedure to quantify Schlieren images. (A) Raw image. (B) The image is pre-processed using 
background subtraction to enhance the signal and delate small imperfections in the glass. (C) Vector 
velocity field using optical flow method (Liu & Shen, 2008). 
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 As it can be seen in Figure 3.4 b, the entire disturbed flow field by the housefly is very 

clear to see. Demonstrating that the vertical temperature gradient approach can be used to study 

small insects. However, some limitations and improvements still exist for this approach to 

capture all the flow structures. First, after processing the video, there was a considerable amount 

of noise in the images, most likely caused by the high frame rate and illumination. This was 

addressed by applying a denoise and illumination filter to the pictures before running the optical 

flow code. Second, the video was recorded with a 300 mm zoom lens that is clearly not enough 

to have a closer look at the insect body. Therefore, the resolution is not high enough to 

distinguish some vortices and carry out an analysis closer to the wings. The setup was also tested 

with a 500 mm zoom lens, but the images got darker, which increased the noise, even at a lower 

frame rate. This was because the light was cut off with the razor blade at the focal point and by 

the zoom lens. Moreover, the Schlieren setup consisted of only one perspective, making it harder 

to correlate some flow structures. This can be addressed by setting up a dual Z-type Schlieren, 

forming a cross in the testing area to have a front view a side view. Despite all of these, some 

flow structures can be seen, such as the wing tip vortex (TV) and a vortex ring, as well as 

vortices shedding into the wake (Figure 3.5).  

 
Figure 3.5 Vortex structures captured on a tethered house fly. (A & C) Images after background 
subtraction. (B & D) Illustration of the flow structures captured.  
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Figure 3. 6 Relationship between maximum velocity and wing location. (A) Wing position at time zero. 
(B) Wing position corresponding to the three peaks at 4.5, 10.1, and 16.7 ms. (C) Wing position at the 
three velocity drops corresponding to t = 8, 13.5, and 19.8 ms.  

Due to the noisy images, the accuracy of the flow method is affected, and to handle this, a 

moving average was applied (similar to chapter two) to approximate the instantons velocity. 

Figure 3.6 is the moving average data where it can be seen a relationship between wing location 

during the stroke and maximum velocity. The three peaks located at t = 4.5, 10.1, and 16.7 

correspond to the instant when the wings are fully extended upwards. On the other hand, velocity 

drop at t = 8, 13.5, and 19.8 correlates when the wings are fully extended downward. The reason 

to this can be seen in figure 3.7,a where can be seen a vortex ring shaded in the downstroke, 

entering the control volume (when wings are fully up). On the other hand, in figure 3.7.b (wings 

fully down), the vortex ring is dissipated, and velocity drops. Also, in figure 3.7,b,d, the contour 
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velocity matches the flow shape in figure 3.7,a,b. Moreover, the trend line showed in figure 3.6, 

keeps a consistent pattern, demonstrating that the optical flow algorithm can be used to generate 

vector fields from Schlieren images.  

 

 
Figure 3. 7 Contour and velocity vector field when the wings are fully down and up. (A & B) The wings 
are fully up, and a vortex ring shed in the downstroke is entering the boundary. (C & D) The wings are 
pointing down, and the vortex is being dissipated.  

The presented results are for a tethered housefly, but there is always uncertainty if the 

insect is really trying to fly or just moving the wings. Therefore, the best approach is to study a 

free-flying insect. For this reason, the same procedure was used to test if this approach can be 

used on free-flying houseflies. Similar to the tethered insect, there are some issues related to 

image noise; however, it was proven that it can be used to visualize the flow disturbed by the 

insect. The level of noise in the image in figure 3.8 is a little bit more than in the tethered 

housefly because it was used a 500 mm zoom lens. with the aim to visualize flow structures close 

to the wing better. As mentioned before, the noise level is related to the illumination of the 

images, a brighter point light source will fix this issue or record at a lower frame rate. However, 

the video has to be recorded at least at 4000 fps because a complete beat cycle is approximately 
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22-24 images at this frame rate. In figure 3.8 it is presented a free-flying housefly while it was 

turning to set on the optical glass. A preliminary estimation of the maximum velocity in y-

direction was conducted. The maximum velocity at that particular instant was 0.57 m/s, 

demonstrating that this approach can be used to study free-flying insects.  

 
Figure 3. 8  (A) A fly turning 90 degrees to sit on the optical glass. (B) Vector velocity quantification at 
that particular instant. The maximum velocity inside the boundary was estimated to be 0.57 m/s. 

3.4 Discussion  

Combining Schlieren photography to visualize flow structures and using an optical flow 

method to quantify it opens a new door in insect aerodynamics studies. Studying small insects 

has been a challenge and limited to only CFD simulations or robotic scale model studies. As 

mentioned before, insect modeling is a very complex engineering task that requires wing 

kinematics tracking and replication of wing biological morphology. These models provide 

detailed information of vortices structures, but it requires validation of experimental studies. 

Moreover, PIV has been only used in few experiments to study a free-flying insect because it is 

challenging for an insect to behave naturally in the presence of a laser. Studying insects as they 

naturally behave can decipher hidden mechanisms that nature has found to optimize locomotion. 

For example, the Strouhal number of flying and swimming animals while cruise is in the range 

of 0.2 to 0.4. Suggesting this applies whether the propulsion of the animal is archived by the 
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wings or by the tail (Taylor, Nudds, & Thomas, 2003). Therefore, to fully understand the 

aerodynamic of insects, experimental data must be acquired from real insects while it is flying 

naturally. Although this chapter focused on a tethered house-fly, it can be seen in figure 3.9 that 

this approach can be used on a free-flying insect. Moreover, Schlieren is a non-intrusive method 

that allows studying animals in a natural setting, capturing all the vortices close and away from 

the insect body.  

As mentioned before, noise in the images will reduce the accuracy of the optical flow 

method, and the most significant factor is the illumination. Due to insect wingbeat frequency 

increases as size decreases, a high-frame-rate camera is needed to study small insects. This is an 

issue as images get darker as the frame rate increases. Also, the size of the insect represents an 

issue because flow around the wings cannot be seen, and zooming is required, which also 

darkens the images. Moreover, taking into account that Schlieren photography needs to block 

light at the focal point to visualize changes in the index of refraction, this also impacts in overall 

illumination of the video and the image quality drop. Therefore, a powerful bright LED light 

source is required to avoid recording videos with noise and have constant illumination. Another 

issue discussed in this chapter is the number of perspectives to visualize the flow structures. This 

can be addressed by implementing two Z-type Schlieren setups forming a cross to view vortices 

from two different angles. Moreover, this can be used to reconstruct in 3D the vortex structures.   

Also, flow visualization can be improved by increasing the temperature gradient inside 

the container. The temperature of the top is not recommended to get it higher since it is already 

at 35 oC and the flies start to slow down at 38 oC, and it is fatal beyond 45 oC (Keiding & 

Organization, 1986). Therefore, only the temperature at the bottom can be adjusted despite the 

fact that a fly is unable to fly at temperatures below 4 oC (Keiding & Organization, 1986). 

Currently, the cooling liquid is set at -5 oC but due to heat loss the temperature in the water block 

is 0 oC. The low temperature does not affect the fly performance of the insect because in this 

case of the tethered fly, the insect is placed almost at the top of the container and the insect is not 

affected by the low temperature. In the case of a free-flying insect, the insect will immediately 

start to fly to a higher location and will not be affected by the low temperature. This can also be 

used as a trick to motivate the insect to fly and record flow structures as the insect takes off. 

Therefore, lowering the temperature at the bottom and improving illumination will improve the 

flow signal and significantly reduce the noise in the images.  
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4. PRELIMINARY STUDY OF WAKE FLOW ON TETHERED HOUSE-
FLY USING THE SHAKE-THE-BOX SYSTEM  

 4.1 Introduction  

 Three-dimensional measurement of velocity fields is a rapidly emerging field in 

experimental fluid mechanics. Depending on data extraction method, there are two types of 3D 

flow measurement techniques: 3D particle velocimetry (3D PTV) and Tomographic PIV 

(Schanz, Gesemann, & Schröder, 2016). Tomographic PIV has been used to study different 

kinds of flow phenomena, including biomedical flow, bio-locomotion, combustion, and 

turbulence. This method has been successfully implemented on a tethered locust, revealing the 

instantaneous three-dimensional vortex structures (Henningsson, et al., 2015). Despite the 

amazing details of the captured flow, the locust study was limited to flow reconstruction only in 

the far-field wake region. Moreover, it took 96 days to process all the data of a single beat cycle 

with a server with 48 cores and 64 GB of ram. Moreover, Tomographic PIV has issues at high-

density seeding, which produces ghost particles that affect the resultant velocity vector (Schanz, 

Gesemann, & Schröder, 2016). Recent advancements in the Lagrangian particle tracking 

algorithm provide a novel solution to the 3D flow measurement. A new PTV algorithm of 

“Shake-the-Box” (STB) combines Iterative Particle Reconstruction (IPR) and an advanced 4D-

PTV (Particle Tracking Velocimetry) that uses time information to track particles for 

reconstruction. The system uses spatial information from previous images to predict the future 

location of the particles in future time steps. The predicted particle location will be slightly off, 

and one method to fix this discrepancy is to move (“shake”) the particle around space while 

exterminating the local residual (Schanz, Gesemann, & Schröder, 2016). Achieving high 

measurement accuracy of the flow with almost negligible ghost particle occurrence. Even though 

this method uses similar hardware as Tomographic-PIV. The Shake-the-Box system is much 

faster in processing the images, and it has a higher spatial resolution that can be increased to 

pixel level or below (Kähler, Scharnowski, & Cierpka, 2012). Usually, the “Shake-the-Box” 

computation time is 10 to 100 times less than for Tomographic-PIV. In this chapter some 

preliminary results on a tethered house fly with this method is presented.  
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Figure 4. 1 Schematic of the different computational steps that the “Shake-the-Box” method uses to track 
particles. (Schanz, Gesemann, & Schröder, 2016) 

4.2 Material and Methods  

The state-of-the-art “Shake-the Box” system was used to resolve the complex flow field 

on a tethered housefly.  The insect was tethered following the procedure described in chapter 

three. The system consisted of four consecutive high-speed and high-sensitivity cameras 

(Phantom 640L) and a high repetition rate laser (Nd:YLF single cavity Diode). The flow field is 

seeded by 1~5-micron fog particles (R700 Rockville Fog generator) that are illuminated by the 

laser, shot to 45o inclined mirror on an optical table.  The computer used for image processing 

consisted of a processor, Intel(R) Core (TM) i9-9940X @ 3.3 GHz with 64 GB of ram, and the 

software was LA VISION DAVIS.  

To start the system's calibration, the laser was shot with a thickness of 6 mm to the 

mirror, and smoke was released. Then, the focus of each camera was adjusted to capture each 

particle perfectly. After this, a calibration target was placed in the testing area to gather 

illumination and spatial information for each camera. Combining the calibration target and a 

software tool helps to avoid human error in this critical step. Once the system was calibrated, the 

tethered housefly was placed in the testing area to start recording, similar to any PIV system 

procedure. The intensity of the laser was 34.00 A, and the image frame rate was 4.5 kHz. After 

this, the images were pre-processed, and a 3D volume was generated. For this step, the software 

package has an optical transfer function (OTF) that is used to characterize the shape and intensity 

of the particle within the volume. Finally, the images were processed with the “Shake-the-Box” 

algorithm to generate a 3D instantaneous particle tracking visualization. All of these took 

approximately 45 minutes to process 500 images.  
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Figure 4. 2 Shake the box system setup. The calibration target is used to calibrate the system. Once the 
system is calibrated, it is replaced by a tethered insect.  

4.3 Results  

The preliminary results of the Lagrangian particle tracking “Shake-the-Box” system is 

presented in Figure 4.3 where the system was successfully implemented to measure the flow 

fields in the wake of a tethered housefly. The number of traced particles in the image is 5000 

thousand, as a reference, 2000 is too little, and more than 8000 is too much. High seeding is 

definitely preferred since it can track small features, but too many results in convoluted flow 

measurement. Although, for flow visualization, this can be fixed by increasing the threshold of 

particle detection. It is worth mentioning that this amount of smokes particle is for studying a 

housefly; the STB algorithm can simultaneously track up to 275000 helium-filled soap bubbles 

(Huhn, et al., 2017).  



 

46 

  
Figure 4. 3  Shake the box, individual traced particles on the wake of a tethered housefly. 

The top right corner does not show traced particles because it is where the insect was placed to 

perform the experiment. This is a common issue in experiments involving animals due to seeding and 

light refraction caused by the animal body. This concatenates in poor particle reconstruction close to the 

wings, and the formation of vortices such as the LEV cannot be visualized. Despite this, the data acquired 

provides insight into the 3D flow motion of the vortices shed into the wake that cannot be obtained with 

2D measurements. The figure shows the formation of two vortices due to the difference between the 

disturbed flow and the surrounding air. These vortices get entrained, and thanks to the 3D particle 

tracking, the interaction of the particle entering the vortex can be studied. Eulerian flow statistics are 

generated from the Lagrangian particle data using ensemble averaging with spatial bins (Godbersen & 
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Schröder, 2020). In addition, unlike traditional PIV parameters, velocity along the z-direction can be 

extracted, providing more details of flow phenomena. In figure 4.3 is presented the 3D velocity and 

vorticity field at the same time instant.  

 
Figure 4. 3 (A & B) Isosurface plot of the velocity and vorticity at t = 0.02 ms respectevely. (A) Velocity. 
Red isosurface at 1 m/s and blue isosurface at 0.7 m/s. (B) Vorticity Red isosurface at 0.6 and blue 
isosurface at 0.3 

4.4 Discussion 

In the last decade, particle image velocimetry (PIV) has become a powerful tool in fluid 

mechanics studies, not only for 2D but also for 3D measurements. PIV resolution and accuracy 

have improved over the years. The “Shake-the-Box” system allows accurate measurement of 

each particle tracer's position, velocity, and acceleration. Thanks to implementing the self-

calibration tool and calibration plate that avoids the human error of this critical step. In addition, 

the individual reconstruction of each particle provides instantaneous information at different z 

values that can be used to understand small insect aerodynamics better. As it was expected, 

vortices were generated by the wings in the shear layer due to Kelvin-Helmholtz's instabilities. 

This chapter presents preliminary results for optimal settings to utilize the shake-the-box 

system to study a housefly. A laser sheet with a thickness of 6 mm at 34 A, and approximately 

4000 smoke particles is currently adopted. This set a foundation of optimal settings for the 
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current setup to performed experiments in a housefly. However, some set-up modifications are 

currently being explored to track more particles closer to the wings. One approach is to set two 

cameras at both sides instead of using four consecutive cameras. Since some particles are not 

being reconstructed because they are only detected by one camera, there is not enough spatial 

information for a complete reconstruction of the particle trajectories. To measure the three 

components of the Lagrangian velocity, at least three different angles of view are required 

(Kasagi & Nishino, 1991). Therefore, another approach is to add more cameras to the setup to 

reduce the number of particles not detected for at least three cameras.  Also, it was mentioned in 

chapter three, it is better to analyze data from a free-frying insect. For this reason, a way to carry 

out an experiment with a free-flying insect is being explored.  
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5. CONCLUSION 

Millions of years of evolution have allowed insects and flying vertebrates to have the 

incredible aerial performance to travel vast distances and disperse around the world. Taking size 

into consideration, these animals can travel faster and reach higher altitudes than conventional 

aircraft. Therefore, it was natural to apply the well-established fixed-wing theories to analyze 

flapping wings, leading to the well-known paradox ‘bumblebee cannot fly’. In the past decades, 

this has inspired and gathered a lot of interest in the research community. Thanks to this, many 

hidden aerial mechanisms have been discovered, such as: added mass, rotational circulation, clap 

and fling, delayed stall, and wing–wake interactions. However, there is not a deep understating 

of flapping wings yet. Studying insect flight is a challenging problem that requires three-

dimensional flow reconstruction and capturing flow structures close to the wings to understand 

the secrets behind their extraordinary aerial performance fully. This thesis explored two 

approaches to capture the vortex flow formation and evolution of a small insect (housefly).  

The first approach was to use Schlieren photography to visualize flow phenomena of a 

tethered and a free-flying housefly using a vertical temperature-controlled gradient to induce 

changes in the index of refraction. Demonstrating the potential of Schlieren photography to 

capture vortex flow structures in the near and far-field of small insects. In addition, the Schlieren 

images were quantified using a physics-based optical flow method. This algorithm was pushed to 

its limits by analyzing two very complex flow phenomena. First, an unsteady and non-symmetric 

exit jet was studied using Schlieren photography, and the optical flow method was used to 

generate vector fields. The velocity profile, acceleration, and shear stress derivation match 

standard theories of jets. Demonstrating the applicability of this algorithm to quantify velocity 

fields from Schlieren images. On the other hand, in chapter three, the photos were noisy, and 

after applying some filters to enhance the photos, the optical flow estimations showed a low-

velocity field compared with the velocity field of the shake-the-box. This can be attributed to the 

noise in the images and the fact that the experiments were conducted on two different insects. 

Despite this, as was shown in figure 3.7, the optical flow method was tracking the flow behavior. 

Therefore, this also confirms that code works with Schlieren images.  

On the other hand, a state-of-the-art Lagrangian particle tracking technique was used to 

acquired preliminary results of a tethered housefly. Vortices formation was captured, and their 
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interaction with the surrounding environment was observed. However, since it is very 

complicated to capture flow structures near the wing with the “Shake-the-Box” system, but on 

the other hand, Schlieren is capable of doing that but cannot generate 3D measurements. It can 

be concluded that both methods can be used to complement each other and provide a better 

understanding of the formation and evolution of flow structures of insects.  
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