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ABSTRACT

Container adoption has exploded in recent years with over 92% of companies using con-

tainers as part of their cloud infrastructure. This explosion is partly due to the easy orches-

tration and lightweight operations of containers compared to traditional virtual machines.

As container adoption increases, servers hosting containers become more attractive targets

for adversaries looking to gain control of a container to steal trade secrets, exfiltrate customer

data, or hijack hardware for cryptocurrency mining. To control a container host, an adver-

sary can exploit a vulnerability that enables them to escape from the container onto the host.

This kind of attack is termed a “container escape” because the adversary is able to execute

code on the host from within the isolated container. The vulnerabilities which allow container

escape exploits originate from three main sources: (1) container profile misconfiguration, (2)

the host’s Linux kernel, and (3) the container runtime. While the first two cases have been

studied in the literature, to the best of the author’s knowledge, there is, at present, no work

that investigates the impact of container runtime vulnerabilities. To fill this gap, a survey

over container runtime vulnerabilities was conducted investigating 59 CVEs for 11 different

container runtimes. As CVE data alone would limit the investigation analysis, the investi-

gation focused on the 28 CVEs with publicly available proof of concept (PoC) exploits. To

facilitate this analysis, each exploit was broken down into a series of high-level commands ex-

ecuted by the adversary called “steps”. Using the steps of each CVE’s corresponding exploit,

a seven-class taxonomy of these 28 vulnerabilities was constructed revealing that 46% of the

CVEs had a PoC exploit which enabled a container escape. Since container escapes were

the most frequently occurring category, the nine corresponding PoC exploits were further

analyzed to reveal that the underlying cause of these container escapes was a host compo-

nent leaking into the container. This survey provides new insight into system vulnerabilities

exposed by container runtimes thereby informing the direction of future research.
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1. INTRODUCTION

1.1 Overview

Containers enable organizations to scale and develop software solutions in the cloud-

native era. Containers accomplish this scale by replacing the need to focus on developing

specific operating systems or complicated software frameworks and by enabling developers

to focus on writing applications within a pre-defined environment configured in a container.

Because of this capability to easily abstract independent processes away from the host envi-

ronment, many containers are run as micro-services. Through this approach, each container

is responsible for maintaining and running a specific application. Thus, containers are de-

signed to create lightweight and isolated applications that can be run on any server that

supports containers.

In addition to being a development platform, containers are also designed to run un-

trusted code securely (Untrusted code has not been verified by the person executing it and

therefore may be assumed to include malicious content until proven safe.) To constrain

this untrusted code, the container leverages kernel isolation and kernel security mechanisms.

When an application vulnerability exists in the container or the container itself is malicious,

the host’s isolation and security mechanisms are designed to prevent any malicious code

from executing in the container and impacting the host. For example, if a web server has a

Remote Code Execution (RCE) vulnerability, because it is running in a container, exploiting

the vulnerability will not lead to a compromise of the underlying server. When any type of

vulnerability is discovered in an application, the container can be killed and restarted with

a patched version without having to restart the physical machine. However, there are more

complex security issues that arise when there are vulnerabilities accessible in the container.

These vulnerabilities can be used to defeat the isolation and security mechanisms constrain-

ing the container. They have a high impact on the integrity of the container host system so

adversaries continue to search for opportunities to exploit these types of vulnerabilities. Ex-

ploits that target these vulnerabilities are known as “container escapes” since an adversary

is able to execute and control code on the host from within the container.
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There are three main categories of vulnerabilities adversaries exploit to escape a con-

tainer: (1) Profile misconfiguration, (2) Linux kernel, and (3) Container runtime. The first

occurs when the isolation and security mechanisms applied to containers are not properly

secured or are dropped entirely to ease the development process (e.g., running a privileged

Docker container [1 ]). When adversaries compromise poorly secured containers, they can

easily break out (e.g., how to escape a privileged Docker container [2 ]). The second occurs

when there is a Linux kernel vulnerability that is exploitable inside a container. Because

containers are still Linux processes that share the same kernel as the host, any kernel vulner-

ability accessible to the container process is exploitable in the container. By leveraging the

appropriate kernel exploit for an accessible vulnerability, the adversary can execute code as

root, and modify the properties of the container such that it is no longer secured or isolated

from the host [3 ]. These two kinds of escapes have been studied in the literature [4 ] [5 ] [6 ].

The third vulnerability, container runtime, unlike the two previously studied vulnerability

types, has not been previously studied.

1.2 Contributions

In this thesis, a survey over 11 container runtimes and their corresponding 59 CVEs was

conducted. The survey’s goal was to gain insight into why container runtime vulnerabilities

occur, and what impact the corresponding exploits have on the container host. Since CVEs

do not include technical details and only a short paragraph description of the vulnerability,

a working PoC exploit for the CVE is required to fully analyze the impact of the CVE on the

container host. After querying publicly available search services and repositories, only 28

CVEs were found to have PoC exploits. To analyze the cause and effect of each CVE’s PoC

exploit a formal framework was required. In the framework, each PoC exploit is analyzed

according to its “steps”, or the high-level commands executed by the adversary. Using these

exploit “steps”, a seven-class taxonomy was created to categorize the 28 CVEs based on the

cause and impact of each vulnerability’s exploit. After completing the taxonomy of the 28

CVES, we found the largest category, CVEs with PoC exploits leading to container escapes,

comprised 46% or 13 of the 28 CVEs. These 13 CVEs had nine associated PoC exploits: seven
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PoC exploits covering one CVE, and two covering three separate CVEs. These nine exploits

were further investigated to determine the underlying causes of container escapes that exploit

container runtimes. This final investigation phase revealed that the major reason these

escapes occur is due to unintended host components exposed in the container. This survey

motivates the direction for future research seeking to secure containers against escapes.
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2. BACKGROUND

This chapter discusses the background topics of container escapes, traditional container

isolation and security, and container architecture design.

2.1 What is a Container and How is it Escaped?

For this work, A container is defined as a secured and isolated application. For example,

a container might be dedicated to running a web server, or database, or may be offered as

a “Container as a Service” (CaaS) [7 ] [8 ]. In some cases, A vulnerability may exist in the

application that enables an adversary to gain execution within the container or the adversary

already has access to execute code in the container (e.g., CaaS). Even with this ability to

execute code in the container, the adversary usually cannot attack other resources on the

container host because the container is isolated from the container host. In addition, if the

container is properly secured, the isolation of the container should be unbreakable. However

as discussed previously, an adversary can exploit three kinds of vulnerabilities accessible

from within the container (misconfiguration, runtime, and kernel vulnerabilities) to break

the security mechanisms of the container, violate the container’s isolation, and run code on

the host. The next sections describe the isolation and security mechanisms provided by the

Linux kernel.

2.2 Kernel Isolation Mechanisms

The Linux kernel provides two isolation mechanisms for processes: (1) Namespaces, an

abstraction layer on each global system resource where processes within a given namespace

appear to have their own unique instance of that resource, and (2) Cgroups, which limit

consumption of system resources by grouping processes into “control” groups.

Namespaces. Namespaces confine processes into groups to limit access to changes in global

system resources (e.g., the container namespace should not have the same access to network

interfaces as the host). There are currently eight namespaces as defined by the Linux man

page [9 ]. They help isolate process’s: cgroup, IPC (Inter-process Communication) objects,
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network stack, mount points, PIDs (Process Id), time data, user and group ids, and host and

domain name. For example, when a container process is put into its own PID namespace

it can only see processes that also share its PID namespace (i.e., only processes that are

running in that specific container).

Cgroups. Cgroups are used to limit each process’s usage of system resources. Each cgroup

defines limits for specific system resources and upon full consumption of system resources, all

other processes in the same group are prevented from accessing more [10 ]. For containers, the

three main cgroups are CPU, memory, and I/O, which limit the number of CPUs, amount

of memory, and input/output operations on block devices respectively. Container runtimes

each set these cgroups using their internal methods. For example, Docker enables a user to

specify in a container runtime configuration the limits for CPU and memory usage [11 ].

2.3 Kernel Security Mechanisms

The kernel provides three security mechanisms that help secure the host against mali-

cious execution in containers: (1) Mandatory Access Control (MAC), (2) Seccomp, and (3)

Capabilities. These mechanisms are highly important as they are the main protections the

container host can use to defend itself from attacks that originate in containers.

Access Control Protection. In general, policy frameworks such as mandatory access

control (MAC) and discretionary access control (DAC), constrain actions users can take on

systems using rule sets. If an action is permitted by all rules in the policy framework, it is

allowed, otherwise, the action is stopped. Thus, the security of the system is reliant on the

proper building of the rules and reliability of the framework. In DAC, the policy is defined by

simple rules where users and groups of users can only perform r/w/x (read/write/execute)

permissions on files they own, however, there are many ways around such a simplified rule

system. For example, a file with root permissions and execution vulnerabilities that is

executable by anyone in the system could be used as an underprivileged user to execute code

as root. In MAC, the policy frameworks like SELinux [12 ] and Apparmor [13 ] define in-depth

rules deeply embedded in the kernel as Linux security modules (LSM [14 ]) and only permit

actions defined by the configured policy. However, if the policy isn’t clearly defined, or there
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are bugs in the policy modules themselves, adversaries can disable the MAC frameworks

or bypass them entirely through flaws in policy logic. These frameworks are non-trivial

to implement properly on any highly modular system (e.g., home or corporate computing

environment).

Seccomp. Seccomp filters enable the kernel to firewall system calls for any process. Each

process is assigned various seccomp settings that can be either very complicated or as sim-

ple as a black/white list of enabled/disabled system calls [15 ]. For example, a simple list

of allowed or denied system calls can be defined in LXC [16 ], and Docker sets a default

seccomp profile of the allowed system calls for each container when one is not provided in

configuration [17 ].

Capabilities. Before Linux kernel version 2.2[18 ], the Linux root user had full permissions

over all aspects of the Linux operating system. Either a user was a superuser able to perform

any actions or a regular user who could not perform any privileged actions (e.g., open raw

sockets or mount directories). Capabilities were created to separate root permissions into

38 separate units and create a more fine-grained permission model for the Linux kernel [18 ].

For example, CAP_NET_ADMIN gives a process the permissions to edit all levels of the

network stack, including the system firewall, while CAP_SYS_ADMIN gives general ad-

ministration permissions such as mounting file systems. To properly isolate containers, the

capabilities assigned to the container must minimize the allowed functionality, otherwise,

the adversary can abuse these permissions as pointed out by grsecurity [19 ]. Granting a

container CAP_NET_ADMIN or CAP_SYS_ADMIN is quite permissive and dangerous,

especially for something designed to be untrusted such as a container.

2.4 Container Architectures

This section discusses how containers are created and executed by exploring how an

OCI (open container initiative) [20 ] compliant container is created, using the Docker con-

tainer ecosystem as a case study. For the most part, container runtimes follow the OCI

specification for containers, except LXC which is not compliant but has wrappers to enable

inter-operability [21 ]. This defines how both containers are managed and executed.
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Figure 2.1. The Docker container architecture

OCI containers. In 2015, container developers realized there was not a unified format for

specifying how containers should be created and run so they started the OCI. This organiza-

tion defines a spec of requirements for container runtimes and container images to create an

industry-standard container [22 ]. A figure is provided to aid in the visualization of the typical

container architecture (Figure 2.1 ). The default runtime for the spec is runC [23 ], which per-

forms the initialization of the actual container process. runC has a simple job, take in an OCI

compliant image, and execute the functionality as defined by the OCI image. While runC

is mainly concerned with the physical execution of the container, containerd [24 ] focuses on

managing all the metadata and image files for containers. Hence containerd draws its name

from being a “container daemon”. So containerd organizes and gathers all required container

metadata to build and execute an OCI container image. Keeping these facts in mind, when

a user executes the command “docker run ubuntu” to build an Ubuntu container, this

sends a request to the Docker engine. The Docker engine coordinates with Dockerhub [8 ] to

download all required image information. Then, this data is processed, stored, and sorted by

containerd, which builds out an OCI image. Next, containerd starts a shim to handle setting
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up the new container to be executed by runC. Lastly, runC executes the OCI image as a

container process. The encapsulation of various container responsibilities enables developers

to focus on securing each container component by its specific responsibilities. This thesis

focuses on the container execution portion where the runtime is executed and investigates

vulnerabilities exposed in the container through the container runtime. In this case, all the

runtimes investigated in this survey replace runC as the process to execute the container.

17



3. RELATED WORK

In this chapter, previous work related to container security is explored. These works are

broken into two categories: (1) Container measurement studies, and (2) Vulnerability anal-

ysis. The container measurement studies explore vulnerabilities related to attacks against

containers. The vulnerability analysis works investigate the threat landscape of a system

from a CVE perspective. For each work, we highlight the specific aspects that are related

to the container runtime vulnerability survey.

3.1 Container Measurement Studies

These measurement studies focus on container vulnerabilities. While this thesis focuses

on container runtime vulnerabilities, container measurement studies about container vulner-

abilities are discussed to define the current literature in container vulnerability research.

A measurement study on exploit execution effectiveness in containers was conducted

highlighting the impact of kernel escape type exploits on containers [4 ]. This measurement

study examined 88 exploits based on user-space application and kernel vulnerabilities. They

found that 50/88 exploits successfully ran on containers. Furthermore, they claim 4 of the

30 kernel exploits achieved privilege escalation and successfully ran the in the container.

These exploits all followed a similar attack chain utilizing commit_creds to achieve privilege

escalation, so they designed a 10 line code defense into the commit_creds kernel function to

prevent these exploits from running.

Anton investigates risks and benefits of user-namespace security applied to container

vulnerabilities, notably dirtycow (CVE-2016-5195), socksign (CVE-2017-7308), and runC

(CVE-2019-5736). For dirtycow and socksign, user-namespaces do not prevent the exploit

from succeeding. For the runC vulnerability, remapping the root user of a container to an

unprivileged user effectively mitigates the vulnerability. This study shows that efforts can

be taken to mitigate some of the vulnerabilities discussed here.

A different work explores vulnerabilities within the Docker ecosystem [6 ]. This research

focuses on Docker misconfiguration and image vulnerabilities, while container runtime vul-

nerabilities are listed, but not discussed. In contrast, this thesis chooses to focus on container
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runtime vulnerabilities across 10 other container runtimes and explores the vulnerabilities

exposed by the Docker runtime more fully.

In this work, Flauzac et al. conducted a comparison over technical aspects of container

solutions [25 ]. This work compares LXC, Singularity, runC, Kata, and gVisor container

runtimes using four feature sets, but the most applicable part of this work is the isolation and

security capability comparisons. From the security features comparison, cgroup isolation is

an optional setting across all the container runtimes except gVisor. In addition due to design

choices, Kata containers do not support Apparmor or seccomp filters, and gVisor supports

seccomp filters, but not Apparmor. From the isolation comparison, LXC has more robust

default isolation settings over Singularity or runC. Most significantly LXC runs containers in

a separate user namespace by default, while the others do not. In addition, Kata containers

run containers inside a hypervisor, and gVisor provides a kernel isolation mechanism. These

insights are helpful when comparing vulnerabilities across container runtimes.

Another research group measures the ability of containers to limit resources by stress

testing container cgroup limits on an Amazon cloud instance [26 ]. They present five case

studies where cgroup limits can be defeated. This paper does not study the case of Denial of

Service attacks, so while this novel attack is interesting, we consider Denial of Service attacks

out of scope, as they do not enable the attacker to control code on the container host. DoS

attacks limit the availability of system resources and do not compromise the integrity or

confidentiality of the host.

3.2 Vulnerability Analysis

These next two works are good examples in the literature that analyze and compare

vulnerabilities based on CVEs. The first paper compares vulnerabilities by analyzing their

exploits and the second uses CVEs to provide insight into the security issues exposed in

trusted execution environments.

Allodi and Masscci conducted a vulnerability risk assessment by comparing discovered

CVEs to actively used exploits [27 ]. They find that a high CVSS score is not as indicative

of the risk of the exploitability of a vulnerability. Rather, the existence of a working proof
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of concept (42%) or Black Market exploit sale (80%) is associated with a higher risk of

exploitation. This insight motivates the survey to only investigate vulnerabilities where a

publicly available PoC exploit can be found. Due to lack of resources, it was not possible to

investigate black market exploit sales.

Cerdeira et al. perform a vulnerability analysis of popular TrustZone Trusted Execution

Environments by leveraging publicly documented exploits and vulnerabilities to gain insight

into critical vulnerabilities that exist in these systems [28 ]. The relevant contribution to this

thesis is the vulnerability study that was conducted over TEE implementations. They clas-

sified the vulnerabilities based on the severity of the CVSS score: critical, severe, medium,

low. This study shows that useful insight can be gained from studying the CVEs within

the NVD, just as performed in the container runtime CVE survey. The TEE survey differs

from the container runtime survey in that it motivates reverse-engineering the TEE binaries,

while the container runtime survey breaks down exploits into high-level attacker commands

called “steps”.
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4. THREAT MODEL

For the system, we assume an administrator is operating a Linux-based container host where

each container runs a specific application ([1] in Figure 4.1 ). For example, this may be

a micro-service type environment hosting external corporate services (e.g., a container is

responsible for hosting a web server and another a database) or a CaaS host providing

container instances for clients ([7 ], [8 ]). The exact hardware used for this host is unimportant

as all hardware is part of the trusted computing base (TCB), as well as all the software

in the Linux kernel ([5] in Figure 4.1 ). The administrator controls all software on the

container host and secures the containers so that the adversary cannot take advantage of

misconfiguration vulnerabilities ([3] in Figure 4.1 ). For the adversary, we assume they have

gained code execution inside the containers the administrator hosts ([2] in Figure 4.1 ).

This could happen in one of three ways: (1) there is a remote code execution vulnerability

present in a container application with a high probability of exploitability [27 ], (2) the

service allows the adversary to execute code on the container as a user in the environment

Container
Linux Server:
container host

1

5

34

2

Figure 4.1. Visual of the threat model with labeled components
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(e.g., CaaS), and/or (3) the administrator by mistake downloads and executes a malicious

container image. The adversary’s goal is to own the whole container host by exploiting

a vulnerability available in the container to execute a container escape. For this study,

the adversary can exploit any vulnerability in the container’s runtime accessible within the

container ([4] in Figure 4.1 ). Any side-channel attacks that may be possible only impact the

confidentiality of the system and not integrity (i.e., they don’t enable adversary command

execution outside the container), and therefore are out of scope for this study ([29 ], [30 ], [31 ]).

As well as side channels, attacks targeting the availability of the system, denial of service

(DoS), are considered out of scope (e.g., a container that hogs all system resources). These

attacks do not affect the container hosts’ integrity or confidentiality and have been studied

in previous works [26 ].
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5. CONTAINER RUNTIME SURVEY

In this chapter, we detail the entirety of the container survey. First, we describe the collec-

tion process of the container runtimes list and their corresponding CVEs. After collection,

initial analysis motivates the need to focus on runtime vulnerabilities with PoC exploits. To

classify the PoC exploits, a seven-class taxonomy is created to understand the cause and

impact of each PoC exploit. Since the major category of this taxonomy was found to enable

container escapes, these nine PoC exploits covering 13 container runtime CVEs were fur-

ther investigated. This final analysis determined the underlying cause of container escapes

exploiting container runtimes: a host component exposed in the container.

5.1 Data Collection Overview

Container Runtimes Analyzed. To analyze as many runtimes as possible, a list of popular

runtimes was gathered from the literature review and search engine queries (e.g., “popular

container runtimes”). The full list of container runtimes along with respective links to their

code repositories is featured in Table 5.1 . We note that while rkt is no longer maintained

(per the Github repository), analyzing vulnerabilities found in the project is still relevant,

as rkt was an actively used container runtime.

Table 5.1. Distribution of CVE vulnerabilities for each runtime from 2016 to March 2021

Runtime Critical High Medium Low

LXC [32 ] 1.0 3.0 0.0 2.0
Docker [33 ] 1.0 11.0 7.0 0.0
runC [23 ] 0.0 4.0 0.0 0.0
CRI-O [34 ] 0.0 1.0 1.0 0.0
Singularity [35 ] 1.0 8.0 1.0 0.0
gVisor [36 ] 1.0 0.0 2.0 0.0
rkt [37 ] 0.0 3.0 0.0 0.0
crun [38 ] 0.0 1.0 0.0 0.0
Podman [39 ] 0.0 1.0 2.0 0.0
containerd [24 ] 0.0 1.0 2.0 0.0
Kata [40 ] 0.0 3.0 2.0 0.0

Total 4.0 36.0 17.0 2.0
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Figure 5.1. Container runtime CVEs by CVSS score

CVE Data Sources. The NIST National Vulnerability Database (NVD) [41 ] publishes

all the data regarding common vulnerability enumerations (CVE) [42 ] that are submitted

to Mitre. For this study, we investigated all CVEs published from January 1st, 2016 to

March 2021. 2016 was chosen since this was one year after the foundation of the OCI, while

March 2021 was when the survey was conducted. To parse this data effectively, we leveraged

nvdtools [43 ], an open-source golang library that downloads and queries the published NVD

JSON data from the NVD public API. The NVD data is designed to be queried via common

platform enumeration ids (CPE), which to quote NIST is “a structured naming scheme for

information technology systems, software, and packages” [44 ]. Accordingly, the container

runtime list in Table 5.1 was transformed into a list of CPEIDs (see appendix A.1 ), so all

CVEs for each runtime could be collected. After building this CPEID list, the nvdtools

utility cpe2cve collected all relevant CVEs for each respective runtime CPEID yielding 59

CVEs in total.
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Initial Analysis. The distribution of these CVEs is displayed in Table 5.1 . The Critical,

High, Medium, Low designate the severity of a vulnerability determined by its respective

Common Vulnerability Scoring System(CVSS) score [45 ]. The ranges for each category are

as follows: Critical (> 9), High (>= 7, < 9), Medium (>= 4, < 7), Low (> 0, < 4). The

higher the severity of the vulnerability the greater the impact the vulnerability has on the

confidentiality, integrity, and availability of the container host. Looking further at Figure 5.1 ,

we can see that 40 of the vulnerabilities are high or critical severity, which demonstrates the

high impact container runtime vulnerabilities can have on the container host. In addition,

at least every runtime has a high severity vulnerability, while Docker and Singularity have

the greatest number: 12 and 9 high/critical vulnerabilities respectively. As this table is an

overview of all container runtime vulnerabilities, it includes seven DoS vulnerabilities and

two repeat vulnerabilities. These nine vulnerabilities were removed from the study as they

fall outside the scope of the threat model. While having this high severity distribution of

CVEs demonstrates the critical nature of container runtime vulnerabilities, CVEs alone do

not provide enough detail to understand the impact of the vulnerabilities on the container

host. We discuss the issues with CVEs in the next section by pivoting the investigation to

focus on CVEs with PoC exploits.

5.2 Mapping CVEs to Exploits

Finding Exploits. To analyze the impact of the remaining 50 container runtime vulnera-

bilities, more information must be explored, as CVEs do not contain technical details only

a textual description of the vulnerability. The CVE descriptions miss technical details from

two aspects: (1) the step-by-step technical process an adversary can take to exploit the

vulnerability, and (2) the exact privileges gained by the adversary as a result of exploiting

the vulnerability (e.g., gaining host code execution, host network access, or privilege escala-

tion). For example, the description for CVE-2018-19295 for the Singularity runtime is only

one sentence: “Sylabs Singularity 2.4 to 2.6 allows local users to conduct Improper Input

Validation attacks” [46 ]. This CVE description lacks both kinds of details (technical steps

and the adversary gained capabilities).
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Figure 5.2. Container runtime CVEs with PoC exploits by CVSS score

To gather a list of all PoC for each vulnerability, we began by building the initial list of

exploits from those available in the NVD. Each CVE’s JSON data contains reference links

that point to additional information associated with each CVE. If exploits were available in

a CVE’s NVD entry, they were denoted with the “exploit” tag in the reference link list. By

filtering for all appropriate “exploit” flags, we identified 12 CVEs in the NVD with publicly

available PoCs.

To ensure we covered the other CVEs missing PoC exploits in the NVD database, we

leveraged Github and Google to query for publicly available PoC exploits. Example search

strings used to validate available public PoCs for a CVE include “[CVE-NUM] PoC” and

“[RUNTIME_NAME] [CVE-NUM] exploit”. From these manual search queries, we identified

an additional 16 CVEs with a public PoC exploit. In total across the NIST NVD and public

searches on Google and Github, we curated a list of 28 CVEs with PoC exploits (Figure 5.2 ).

Completeness. While only the CVEs with known PoC exploits were analyzed further, this

does not mean other vulnerabilities cannot be exploited, nor that they lack working exploits.
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The exploits may not be accessible for two main reasons: (1) Adversaries hold them privately

for use as zero-days and do not disclose the exploits after the vulnerabilities are discovered

or the zero-days are found exploiting the vulnerability in the wild, or (2) The vulnerabilities

may have been disclosed responsibly to the affected vendors, and such vendors desire the

researchers to keep the exploits private. Thus, the exploits are never made publicly available.

In either case, the vulnerability is still valid, but as discussed previously has limited use for

further analysis. So only the 28 CVEs with PoC exploits are explored further. To analyze the

28 CVEs further, they were categorized by the cause and impact of their associated exploits.

5.3 Exploit Analysis Framework

To analyze and compare exploits across runtimes, a systematic framework must be cre-

ated. Frameworks of choice could be: (1) comparison of raw exploit binaries, or (2) com-

parison using a high-level adversarial framework like Mitre ATT&CK [47 ]. If a full binary

analysis was utilized for the framework, access to the exploit’s binary or source code would

allow deep technical analysis (e.g., comparing the exact syscalls used in an exploit). However

not all PoC URLs for a given CVE provide binary-level code or even source code. Limiting

the analysis to this low level would exclude these important vulnerabilities from the analy-

sis. In addition, this analysis can miss important semantic information that is more easily

detailed with a higher level framework such as where the exploit is executed (e.g., inside the

container or on the container host).

On the other hand, if a high-level adversarial framework was utilized, analyzing PoC

exploits would not require access to full source code or the PoC binary; a detailed PoC blog-

like explanation of the exploit would suffice. However, important technical commands that

are required for an exploit could not be included in the analysis. For example, the use of the

mount command to mount a host directory within a container would be considered “T1006:

Direct Volume Access” in the MITRE ATT&CK framework. Using this classification would

lose the semantic information of the exact commands executed by the adversary.

So the framework created here takes a middle ground between full binary analysis of the

exploits and the high-level Mitre ATT&CK framework [47 ]. The framework used in this
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Table 5.2. Number of CVEs in each category

Category Exploits

Container-to-Host-Escape 13
Host-Privilege-Escalation 6
Container-to-Host-Limited-Host-Access 4
Unpatched-System 2
Container-to-Host-Network-Access 1
Container-Privilege-Escalation 1
MAC-disable 1

analysis breaks each exploit into high-level adversary commands called “steps”. These steps

can capture the details missing in the high-level adversarial framework, but do not require

the original source of the exploit like in binary analysis.

5.4 Exploit Taxonomy

Using the steps created with the exploit analyzer framework, we created a seven-class

taxonomy based on the cause and impact of each exploit. This section details six of the seven

categories in the taxonomy. The last category, full container escape exploits, is explored in

the next section since 46% of the CVEs in the taxonomy fall into this category.

For all seven categories, each CVE is categorized based on the associated exploit’s im-

pact (i.e., the capabilities the adversary gains from executing the exploit such as host code

execution, host network access, or host privilege escalation) and the cause of the exploit

(i.e., how does the vulnerability enable the adversary to gain the capabilities associated with

the impact). The overall distribution of each exploit category is visualized in Figure 5.3 . In

the rest of this section, the findings for each category are presented and analyzed according

to the associated exploits. As stated previously, the largest exploit category, a full container

escape, is associated with the most CVEs, so it is presented in the next section.

MAC Disable. This category includes exploits that disable the MAC framework used to

constrain the container (e.g., Apparmor or SELinux). There is only one exploit in this cate-

gory. CVE-2019-16884 [48 ] enables an adversary to disable the Apparmor MAC constraints

securing runC container runtime. This issue was the result of runC, not properly validating
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Figure 5.3. Breakdown of CVE exploits by category

runtime mount paths. To exploit, the adversary first creates a fake /proc directory. When

the container runs, the host /proc is mounted over this fake directory, and Apparmor is

fooled into running the container process “unconfined” (i.e., the container is no longer con-

strained by app armor). This exploit only stops Apparmor from securing the container, but

other security mechanisms (e.g., seccomp) still greatly limit the capabilities of the adversary.

Container Privilege Escalation. This category includes vulnerabilities that achieve con-

tainer privilege escalation, but do not escape the container (e.g., inside the container a regular

user can escalate privileges to root). There is only one exploit in this category. CVE-2019-

19333 enables, “...unprivileged processes in the sandbox to read and write the memory of

other, more highly privileged processes in the sandbox” [49 ]. Thus, a regular user can gain

root privileges, but because of gVisor’s sandbox design gaining root in the container does

not enable a full container escape.

29



Container to Host Network Access. This category includes vulnerabilities that enable

the adversary to gain host network access from within the container and demonstrates that

container constraint mechanisms can expose the host to new container vulnerabilities. There

is one vulnerability in this category, CVE-2019-14891 [50 ] for the CRI-O runtime. This CVE

enables the adversary to gain full networking capabilities on the container host, by gaining

control of resources allocated for the CRI-O container monitoring process. When CRI-

O starts up, a monitoring process for all CRI-O containers runs in the background. The

vulnerability exists because CRI-O spawns all containers under the same cgroup including

the initial CRI-O monitoring process. Thus, a malicious actor can consume all of the memory

allocated for the CRI-O container cgroup space. In doing so, multiple times, a malicious

CRI-O container is able to gain a namespace reference to the old host monitoring PID, which

shares the host NET, UTS, and IPC namespaces. This enables the adversary to gain access

to the host’s network interface, and thus the host network. However, this vulnerability does

not directly enable a container to escape onto the container host.

Unpatched System. This category includes vulnerabilities for runtime packages which

when patched regress to old vulnerabilities by faulty or mistaken patches. Missing proper

patches can introduce discovered vulnerabilities into an otherwise secure system. Redhat

published two CVEs to track incorrect runC versions that were pushed to Redhat Enterprise

Linux seven (RHEL7), CVE-2020-14298 [51 ], and CVE-2020-14300 [52 ]. The exploits for

CVE-2019-5736 [53 ] and CVE-2016-9962 [54 ] (corresponding to the unpatched CVEs 14298

and 14300 respectively) will be able to exploit the unpatched runC software in the unfixed

RHEL7. Since the 14298 and 14300 vulnerabilities are the results of failed patches, they are

not included in the Container-to-Host escape category. The real exploits are covered by the

original CVE corresponding to the two runC vulnerabilities (5736 and 9962). As each of

these vulnerabilities is a full container escape they are explored further in the next section.

Limited Container to Host Access. This category defines vulnerabilities that enable

the adversary to gain limited control over the container host from within the container

(e.g., create network interfaces, enable/disable hardware, or discover privileged file paths).

There are four exploits in this category. The first exploit corresponds to CVE-2017-5985 [55 ]

30



where the LXC suid binary [56 ] (lxc-user-nic) [57 ] did not check the target net namespace

utilized by the user executing the binary to create a network interface. This enabled any user

to create a host network interface. The second exploit corresponds to CVE-2018-10892 [58 ]

where a malicious Docker container can modify host hardware exposed through /proc/acpi.

For example, the container can disable/enable Bluetooth, or modify screen brightness. The

third exploit corresponds to CVE-2018-16359 [59 ] where gVisor did not block the renameat

syscall, so any container user was able to change filenames for paths on the host. The fourth

exploit corresponds to CVE-2018-6556 [60 ] where the LXC suid binary lxc-user-nic enables

an unprivileged user to open arbitrary files on the host (but does not allow read/write to

those files).

Host Privilege Escalation. This category is the second-largest category and defines vul-

nerabilities that enable an adversary to gain privilege escalation assuming they have access

to the container host. These vulnerabilities do not enable a container escape, as they require

the ability to run code as a host user prior to the adversary exploiting the vulnerability. The

first three CVEs correspond to the Singularity container runtime: CVE-2019-11328 [61 ],

CVE-2018-19295 [62 ], CVE-2020-13847 [63 ]. CVE 11328 and 19295 identify issues with the

suid binary Singularity uses to initialize and run containers. Both vulnerabilities are the

result of overly permissive directories containing the namespace information for spawned

containers. These directories can be manipulated by a local user executing the suid binary

to point to arbitrary mount, NET, IPC, PID namespaces. Thus, the user can spawn a con-

tainer that to the host appears as a root process. The third Singularity CVE 13847 occurs

because Singularity did not validate the header/descriptor fields of the SIF (Singularity im-

age format [64 ]) container image when checking the SIF image hash. Normally, the entire

SIF file should be hashed and validated by the image validation signature. In this case, the

header and descriptor fields can be modified after generating the validation signature for a

given image, and the new modified image will still validate based on the old signature of the

unmodified image. This enables an adversary to put arbitrary commands in the header of

a secure image to be executed during container build time, enabling the adversary to gain

privilege escalation.
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The next two CVEs in this category correspond to Docker. The first Docker CVE, CVE-

2019-13139 [65 ], is a bug in “Docker build” when reading from a malicious Github URL that

includes a command injection string. When the URL is set up as a local path, “Docker

build” does not cleanse the input, and the included command will be executed by “Docker

build”. Thus, the adversary can gain code execution as whatever user is performing the

“Docker build”. Usually, this is the root user since running “Docker build” as a non-root

user requires special configuration [66 ]. The second Docker CVE, CVE-2018-15514 [67 ],

impacts Windows systems as it is a deserialization vulnerability present on the Windows

Docker client. While this survey focuses on vulnerabilities impacting a Linux container host,

this vulnerability is included here for completeness, as there is a publicly available PoC

exploit for the vulnerability.

The last CVE is CVE-2020-27151 [68 ] which impacts the Kata container runtime. If a

local user defines a malicious container configuration, then any binaries designated in the

configuration will execute with the same permissions as the Kata runtime. Since at the

time, Kata-runtime ran with root permissions, this was a privilege escalation issue. The six

vulnerabilities in this class demonstrate how container runtime vulnerabilities can enable

local users on the container host to gain privilege escalation.

Non-Escape Categories Summary. Overall, these six categories cover 16 CVEs which the

adversary can exploit to gain various levels of host access. While the adversary cannot escape

the container with any of these vulnerabilities, they can gain still gain significant capabilities

especially in the host privilege escalation category, where each vulnerability enables a local

user to get root permissions.

5.5 Container Escape Exploits

While the taxonomy from the last section revealed that container escapes were the high-

est occurring issue, it did not detail how an adversary exploits these 13 CVEs to escape

containers. In this section, we further investigate the container runtime exploits that lead

to a container escape, and how this leak occurs for each exploit. The main reason con-

tainer escapes are able to exploit container runtimes is an exposed host component inside

32



Table 5.3. Container runtime exploits listed by the runtime, highlighting the cause of the
escape (3), the non-causes (7), and the leaked host component

Runtime CVE File Descriptor
Mishandling?

Component
Missing Access
Control?

Host Execution
in Container
Context?

Host Component Leaked

LXC 2016-8649 3 7 7 /proc fd
runC 2016-9962 3 7 7 /proc fd
Docker 2018-15664 7 7 3 host chroot
runC 2019-5736 3 7 7 /proc/self/exe
runC † 2019-19921 7 3 7 /proc via a container volume
Docker 2019-14271 7 7 3 /proc

rkt
2019-10144

7 7 3
host filesystem
device2019-10145

2019-10147
containerd * 2020-15257 7 3 7 abstract UNIX socket

Kata
2020-2023

7 3 7
container to host
shared directory2020-2025

2020-2026

* the exploit requires access to the host network namespace, † the exploit requires control of two containers

the container. We determined that the host component exposure occurs from three different

issues: (1) a mishandled file descriptor, (2) a runtime component missing access control, or

(3) adversary-controlled host execution.

For issue 1, the exposure occurs by a file descriptor remaining open inside the container

via the /proc filesystem, which gives the adversary read/write access to the host filesystem.

For issue 2, the exposure occurs because the adversary gains access to a host runtime compo-

nent that failed to implement fine-grained access control. For example in CVE-2020-15257,

the adversary gains access to the containerd abstract UNIX socket. For issue 3, the expo-

sure occurs because a host binary executes in the context of the container which enables the

adversary to manipulate execution through either a malicious shared object or a malicious

symlink. Table 5.3 lists each exploit sorted by CVE date. The runtime and CVEs associated

with each exploit, the cause of the leak (denoted by a green checkmark), and the leaked host

component are all listed in the respective column. For reference, the steps of each exploit

are included in Appendix A.2 .
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5.5.1 File Descriptor Mishandling

This section details the three exploits that lead to container escapes due to mishandled

file descriptors exposed in the container. These exploits are associated with CVE-2016-8649,

CVE-2016-9962, and CVE-2019-5736 respectively.

CVE-2016-8649. This CVE was identified in LXC [69 ] and enables a container escape by

exploiting a race condition created during the lxc-attach [70 ] command to access an instance

of a host file descriptor. The lxc-attach command enables the administrator to get a shell in

the context of the currently executing container. To exploit the vulnerability, the adversary

constructs a fake proc file system in the container that ensures capabilities are dropped for

new processes. When the administrator executes lxc-attach to get a container shell, the

adversary executes a malicious binary to ptrace lxc-attach. Through this ptrace command,

the adversary is able to copy the host file descriptor of the lxc-attach process, and use the

execve system call on the file descriptor from the container context to execute a new process.

This new process will have all capabilities enabled due to the hijacked /proc set up by the

adversary. Thus the adversary escapes the container and gains unconstrained code execution

on the host.

CVE-2016-9962. This CVE was identified in runC [54 ], and enables a container escape by

exploiting a race condition during the initialization of a runC container to access an instance

of a host file descriptor. This exploit is similar to CVE-2016-8649 in that the init process

of the runC container has an open file descriptor on the host. However, to exploit this race

condition the adversary does not need to create a fake /proc filesystem in the container.

Upon container initialization, the adversary uses ptrace on the init process on container

startup. This enables the adversary to gain a copy of an open file descriptor on the host.

Using the open file descriptor to the host, the adversary is able to read/write files on the

host, signifying a full container escape.

CVE-2019-5736. This CVE was identified in runC [53 ] and enables an adversary to over-

write the host runC binary and therefore execute arbitrary code on the host. To exploit this

CVE, the adversary configures the malicious container with two properties: (1) a symlink

from the container’s entry point (usually /bin/bash) to /proc/self/exe, and (2) a malicious.so
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file to be loaded by /proc/self/exe (in this case the host runC) later. This malicious.so file

overwrites the file descriptor of the executing process that loads it, and so will overwrite the

host runC. When the malicious container executes, the symlinked entry point will point to

the host’s runC binary, as this is what /proc/self/exe refers to. Then, this /proc/self/exe

will execute in the context of the container and load the malicious.so. The malicious.so then

overwrites the host runC binary referenced by /proc/self/exe with a malicious backdoor.

Finally, when the administrator spawns new containers, the malicious backdoor is executed

signaling the adversary can successfully escape the container. This exploit succeeds because

it is able to gain a reference to the host runC file descriptor. Using this file descriptor, the

adversary can execute the host runC in the context of the container and force the newly

executing runC (which is the host binary) to load the adversary’s malicious.so.

5.5.2 Runtime Component Missing Access Control

This section details the three exploits that lead to container escapes due to runtime

components that fail to implement robust access control. These exploits demonstrate that

access to any properties of the container runtime should be properly authenticated, otherwise

they present a threat to the container host’s security. These exploits are associated with

CVE-2019-19921, CVE-2020-15257, and CVE-2020-23,25,26 respectively.

CVE-2019-19921. This CVE was identified in runC [71 ] and relies on a race condition

between two runC containers that share a volume mount. This exploit attacks a vulnerability

in runC where it does not properly control how /proc is mounted in the container allowing

the adversary to fully escape by mounting the /proc filesystem using a directory on the

volume mount. To exploit this vulnerability, the adversary prepares two containers A and

B. This complies with the threat model as we do not limit the number of containers in which

an adversary may gain execution.

First, container A creates a symlink from /proc to /evil/level1 and specifies a volume

mounted to /evil. At the same time, Container B also has a volume mounted to /evil. Then,

Container B swaps /evil/level1 with /evil/level1~ on a continuous loop. Finally, container

A continuously reruns and tries to access the host procfs at /evil/level1~/level2. On success,
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container A will have access to the host procfs through the /evil/level1/~/level2 directory.

This access enables the adversary to escape the container.

CVE-2020-15257. This CVE was identified in containerd [72 ], and enables the adversary

to fully escape the container by leveraging the containerd API UNIX abstract socket from

within the container. While the exploit requires that the container executes with host net-

working, this is often enabled if the administrator wants to increase the network performance

of the executing container [73 ]. As the container has access to host networking, the adver-

sary can connect to the containerd abstract socket, and issue API commands to containerd.

Using this channel to control containerd, the adversary sends create/start API commands to

spawn a new container in the host namespace, unconstrained by Apparmor, seccomp, and

running with all capabilities. With this newly spawned container (i.e., root process) the ad-

versary now has access to the full system. This exploit is mainly an issue with the unsecured

abstract UNIX API socket and was patched by running the API socket as a normal UNIX

file path socket.

CVE-2020-2023-25-26. These three CVEs were identified in Kata [74 ] [75 ] [76 ]. This

exploit is the most complicated of the nine since the container executes in a virtual machine

and is constrained by kernel isolation/security mechanisms on the virtual machine (VM).

To fully escape, the attacker has to first escape the container on the guest, then onto the

host. Accordingly, this exploit takes place in three stages, one for each CVE: (1) to escape

the container onto the virtual guest (2023), (2) to infect the underlying VM image (2025),

and (3) to escape the VM through a shared host directory (2026). To exploit the first CVE

(2023), the adversary overwrites a binary on the guest filesystem from within the container

running on the virtual guest. To accomplish this, the adversary first determines the virtual

guest’s root filesystem block device numbers. Using the mknod syscall the adversary creates

a device file for the guest root filesystem on the container. Then, the adversary uses debugfs

to overwrite the Kata-agent binary on the container with faulty data and the “shutdown”

binary with a malicious exploit. Next, to clear the working Kata-agent binary from the

VM page cache, the adversary allocates memory until the Kata-agent binary in memory is

replaced with the faulty one the adversary overwrote on the filesystem. Once this replacement
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occurs, the VM attempts to shut down and loads the malicious “shutdown” binary which

executes indicating the adversary has control over the guest machine.

Next, by modifying the virtual guest during the previous exploit, the second CVE is

already exploited(2025), since Kata VM images are reused in future container execution

with whatever modifications occurred during the previous execution. Because the adversary

controlled the modification in the previous exploit, they can use this ability to modify the un-

derlying guest operating system to control the next initialization of the Kata container VM.

Finally, the last CVE enables the adversary to escape the VM during VM initialization

(2026). Since the adversary has already compromised the VM guest image through the

previous two steps, the adversary is able to control Kata container initialization performed

by Kata-agent on the guest and Kata-shim on the host. Kata agent is responsible for

managing the containers on the virtual guest, while Kata-shim communicates container

commands to the Kata-agent on the virtual guest. To exploit this CVE, the adversary grabs

the container id sent to Kata-agent during container initialization. This allows the adversary

to predict a path to the shared directory that communicates files between the host Kata-

shim and the container Kata-agent. The adversary creates a symlink from a file path on

the shared host directory (/run/kata-containers/shared/containers/$CONTAINER_ID/) to

an arbitrary path on the host (/ for the root file system). Continuing the startup process,

the Kata-shim then attempts to bind mount the symbolic link set in the shared directory

to the VM guest. This symbolic link is followed to the root file system, and the Kata-shim

mounts the host filesystem inside the VM. Thus the adversary gains read/write access to the

root host filesystem and fully escapes the virtualized container. Even though the container

executes in a VM because the container host syncs resources between the VM and the host

this opens up a threat on the host the adversary can exploit to gain access to the host file

system (i.e., abusing the shared directory to read/write the host filesystem).
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5.5.3 Host Execution in Container Context

This section details the three exploits that lead to container escapes due to container

utilities that execute in the context of the container. These exploits are associated with

CVE-2018-15664, CVE-2019-14271, and CVE-10144,45,47 respectively.

CVE-2018-15664. This CVE was identified in Docker [77 ] and enables the adversary to

escape due to a TOCTOU (time of check, time of use [78 ]) vulnerability involving a container

file path. Docker cp is a container utility that enables administrators to move files into and

out of a container and is designed to mirror the Linux utility “cp” [79 ]. If during the execution

of Docker-cp the container target is changed to a symlink, the symlink is evaluated on the

host. Thus by manipulating the target on the container, the adversary can gain read/write

to an arbitrary host target and escape the container. To detail the vulnerability, first, the

adversary executes a malicious binary in the container to run the TOCTOU attack against a

directory the administrator may wish to copy out of the container (e.g., “/var/www/html”).

The attack runs a continuous while loop to swap the path /var/www/html with a symlink

to /. The attack will succeed if Docker-cp opens the /var/www/html path and later writes

on the same path, which has been changed into a symlink pointing to “/” causing the write

to happen on the host rootfs mounted at “/”. In the next step, the administrator runs

a command to copy the ./html directory on the host into the container. (e.g., Docker-cp

./html/ webserver:/var/www/html/ ). If during execution the TOCTOU attack succeeds,

then the adversary controls a write onto the host and successfully escapes the container.

CVE-2019-14271. This CVE was identified in Docker [80 ] and enables the adversary to

fully escape the container because the Docker-cp host binary is executed in the context of the

container. This is relatively similar to CVE-2019-5736, however, the execution of the host

binary is a flaw in Docker-cp and not the result of a leaked file descriptor. To exploit this

vulnerability, the adversary sets up a malicious libnsss.so inside the container which executes

a malicious binary inside the container (e.g., /evil). Then, when the administrator executes

Docker-cp, Docker-cp executes a subprocess (Docker-tar) in the context of the container,

loading the malicious libnsss.so and executing the /evil binary with the same permissions as

the Docker-cp host binary (most likely root permissions). Next, the /evil binary mounts the
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host /proc filesystem, giving the adversary the ability to read/write files arbitrarily on the

host. With access to the host /proc, the adversary can escape the container.

CVE-2019-10144,45,46. These three CVEs were identified in rkt [81 ], and enable the

adversary to fully escape the container by controlling the execution of the “rkt enter” utility

in the container. Rkt enter executes a specified binary on the container (the entry point by

default) without the constraints of cgroups, seccomp, and all 38 Linux capabilities. Since

the adversary can control the content of any binary in the container, this means they can

escape by editing the binary used by the administrator (e.g., “/bin/bash”), or editing a

shared object file the binary would load during the execution. To detail the exploit, first,

the adversary modifies libc.so.6 so that when loaded, it mounts the host filesystem. Then,

when the administrator executes “rkt enter” (the /bin/bash command by default) to spawn a

new shell in the container, the new shell loads libc.so. This triggers the exploit embedded in

libc.so to create a block device of the host root filesystem on the container using the mknod

syscall. This is possible since the shell is not constrained by security or isolation primitives.

Finally, the exploit finishes execution by mounting the host filesystem in the container. This

gives the adversary full access to read/write the host filesystem from within the container

and thus the adversary escapes the container.

5.6 Survey Results and Conclusions

In summary, this survey investigated 11 runtimes and their 59 CVEs from the NVD

database from which denial of service and duplicate CVEs were removed leaving a remainder

of 50 CVEs. Because CVE descriptions lack technical details, only the 28 CVEs with publicly

available PoC exploits were further analyzed. These 28 CVEs were categorized into a seven-

class taxonomy based on the cause and impact of each CVE’s respective exploit. This

taxonomy revealed that the major category of container runtime vulnerabilities yields a full

container escape. In the full container escape category, the 13 CVEs and their corresponding

nine exploits all occur because of host components that are exposed in the container. We

analyzed each exploit and discovered that the host component exposure occurs in one of

three ways: (1) file descriptor mishandling, (2) runtime components missing access control,
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and (3) host execution in the context of the container. In the next chapter, we propose two

possible defenses which cover each of these three issues to prevent exposing host components

in the container.
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6. DISCUSSION

The results of the container runtime vulnerability survey show that while containers provide

working security and isolation primitives there are still issues that result in complete con-

tainer escapes. The main reason container runtime escapes occur is due to a host component

exposed in the container. To prevent this exposure, we propose two possible defenses for

future research: (1) user namespace isolation, and (2) host file monitoring.

6.1 User Namespace Isolation

Running each container in its separate user namespace should prevent container runtime

exploits from executing successful escapes. Running a container in its user namespace maps

the root user of the container to a non-root user on the host [9 ]. This would prevent two of

the three issues from exposing a host component in the container: (1) Host file descriptors

would be owned by a different user on the host and therefore not accessible by the container

process. (2) Host runtime component access could not occur within the container as a

different user would run them on the host than the user attempting to access them in the

container. (3) Host execution in the container context would not be prevented directly by

using user namespaces to isolate the container since the adversary always has control over

the container contents. Integrating the user namespace defense is non-trivial to implement as

over 58% of containers execute as the root user by default [82 ], and LXC is the only runtime

to execute containers as a non-root user by default [83 ]. Despite this setback, this defense

was demonstrated by Anton [84 ] to mitigate CVE-2019-5736. He showed in his thesis that

user namespaces could be used to stop this vulnerability, however, he did not show it could

stop the five other applicable exploits explored in this thesis. Applying this defense to the

six corresponding exploits would define a well-rounded defense.

6.2 Host File Monitoring

Normally, MAC constraints prevent containers from accessing host files, however in the

case of the container escapes demonstrated in Section 5.5 , kernel MAC mechanisms fail
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to protect against illicit host access. In the case of this failure, container-aware system

monitoring tools like sysdig [85 ] could monitor sensitive directories (e.g., /bin, /proc) on the

host and alert on illicit activity. However, no current open source solutions exist to easily take

these logs and stop malicious activity as its detected. Building this type of prevention system

would stop all three issues highlighted in the survey from executing: (1) Host file descriptors

used by containers could be closed when accessed by container processes. (2) Runtime

components could be monitored and all processes accessing them without authorization

could be killed. (3) Host binaries that execute in container namespaces could be killed

before running, to prevent host execution in a container context. Implementing an active

defense that kills malicious activity as it is detected would be a useful defense to prevent

future container escapes like those identified by the survey.
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7. CONCLUSIONS

We present a survey over 11 container runtimes and their corresponding 59 CVEs to provide

insight into why container runtime vulnerabilities occur and the impact their corresponding

exploits have on the container host. As CVE descriptions alone do not provide enough

details for further analysis, only the 28 container runtime CVEs with PoC exploits were

analyzed further. To analyze each CVE’s PoC, the exploit was broken into high-level attacker

commands called steps. By examining each of the 28 CVEs in terms of their corresponding

exploit steps, we constructed a 7 class taxonomy that revealed that 46% of the CVEs had

exploits that lead to a container escape. Since container escapes were the most occurring

category covering twelve CVEs, we conducted an additional investigation over the eight

PoC container escape exploits in this category. In this final investigation, we demonstrated

that the main reason container escapes occur through container runtimes is the exposure of a

host component in the container. This occurs in three ways: (1) File descriptor mishandling,

(2) Runtime components missing access control, and (3) Host execution in the context of

the container. By highlighting the vulnerabilities exposed in container runtimes, especially

container escapes, this survey provides a useful resource for future container security research.
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A. APPENDIX

A.1 CPEID LIST

While there are 12 CPEIDs on the list two correspond to the kata container runtime.

This is the list that was used to query for all the CVES associated with 11 runtimes

1. cpe:2.3:a:crun_project:crun:*:*:*:*:*:*:*:*

2. cpe:2.3:a:docker:docker:*:*:*:*:*:*:*:*

3. cpe:2.3:a:google:gvisor:*:*:*:*:*:*:*:*

4. cpe:2.3:a:katacontainers:kata_containers:*:*:*:*:*:*:*:*

5. cpe:2.3:a:katacontainers:runtime:*:*:*:*:*:*:*:*

6. cpe:2.3:a:kubernetes:cri-o:*:*:*:*:*:*:*:*

7. cpe:2.3:a:linuxcontainers:lxc:*:*:*:*:*:*:*:*

8. cpe:2.3:a:linuxfoundation:containerd:*:*:*:*:*:*:*:*

9. cpe:2.3:a:linuxfoundation:runc:*:*:*:*:*:*:*:*

10. cpe:2.3:a:podman_project:podman:*:*:*:*:*:*:*:*

11. cpe:2.3:a:redhat:rkt:*:*:*:*:*:*:*:*

12. cpe:2.3:a:sylabs:singularity:*:*:*:*:*:*:*:*

A.2 EXPLOIT STEPS

CVE-2016-8649.

1. attacker constructs fake /proc in container

2. the attacker bind mounts to the fake /proc

3. the administrator executes “lxc-attach”
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4. ptrace lxc-attach process to get host file descriptor to entry binary

5. rexec file descriptor with execve

CVE-2016-9962.

1. the container initializes and the init process executes

2. a malicious container executes a ptrace on the init process during container initializa-

tion

3. ptrace enables the copy of a host fd

4. read/write files on the host using the open file descriptor

CVE-2018-15664.

1. the attacker embeds malicious executable inside a container that executes a TOCTOU

symlink-swap attack against a directory the user seeks to copy (e.g., “/var/www/html”).

2. the container starts and executes the symlink swap, which runs a while loop to contin-

uously swap the path “/var/www/html/” with a path on the container and a symlink

to “/”

3. the administrator attempts to copy a directory from the container with “docker cp

./html/ webserver:/var/www/html/”

4. during the copy the attacker switches the directory /var/www/html into a symlink “/”

5. the docker-cp utility to write to the symlink on the host

CVE-2019-5736.

1. replace container entry point (bash) to /proc/self/exe

2. save malicious.so with a new function to overwrite host runtime engine onto container

3. /proc/self/exe (the host container runtime binary) executes in the container on startup
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4. runtime loads the malicious.so on the container

5. malicious.so overwrites container_runtime with an adversary controlled binary /evil

6. spawning new containers will execute evil, code execution achieved

CVE-2019-19921.

1. rootfs of container A has a symlink /proc -> /evil/level1

2. launch container A specifying volume /evil

3. container B, started before container A, shares this named volume and repeatedly

swaps /evil/level1 and /evil/level1

4. container A mounts procfs to /evil/level1 /level2, but when it remounts /proc/sys, it

does so at /evil/level1/level2/sys

5. container A has access outside the container

CVE-2019-14271.

1. attacker sets up malicious libnss to execute /evil in the container

2. administrator executes docker-cp (executing docker-tar)

3. docker-tar loads the malicious libnss.so and executes /evil

4. /evil mounts the host /proc filesystem

5. the adversary has arbitrary read/write to the host

CVE-2020-15257.

1. an attacker compromises a container executing in the host network namespace

2. the attacker connects to the containerd abstract socket

3. the attacker issues create/start API commands to spawn a root-id proc on the host

(non-ns, non-apparmor, non-seccomp, all-caps)
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4. the attacker has root access and controls the system

CVE-2020-10144,45,47.

1. adversary modifies shared object file loaded by container’s entry point (evil.so)

2. administrator executes rkt enter

3. bash executes evil in the shared object file

4. evil.so runs mknod to create host filesystem block

5. evil.so mounts the mknod block

6. adversary can edit the host filesystem

CVE-2020-2023.

1. find the guest root filesystem device major and minor numbers

by inspecting /sys/dev/block.

2. Use mknod to create a device file for the guest root filesystem device

3. access device file and modify guest filesystem with debugfs

4. malloc loop to overwrite files in memory (kata-agent/systemd-shutdown)

CVE-2020-2025.

1. guest images share file changes

2. execute cve-2020-2023 to change the filesystem from the container

CVE-2020-2026.

1. create symbolic link in “/run/kata-containers/shared/containers/${ctrid}/rootfs” to

host directory path

2. on startup kata-runtime gets directory setup as symbolic link

3. kataruntime mounts /run/kata-containers/shared/sandbox/$ctrid/rootfs

to the host directory
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