
AUTONOMOUS PERCEPTION AND NAVIGATION IN
UNKNOWN INDOOR ENVIRONMENTS

by

Thomas Victor Ilyevsky

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

School of Electrical and Computer Engineering

West Lafayette, Indiana

August 2021



THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Jeffrey Mark Siskind, Chair

School of Electrical and Computer Engineering

Dr. Robert Givan

School of Electrical and Computer Engineering

Dr. Ronnie B Wilbur

Department of Speech, Language, and Hearing Sciences

Dr. Thomas Talavage

Department of Biomedical Engineering, University of Cincinnati

Approved by:

Dr. Dimitrios Peroulis

2



This thesis is dedicated to my parents, Leonid and Tatyana Ilyevsky, and my partner,

Emily Stillman.

3



ACKNOWLEDGMENTS

This work was supported, in part, by the US National Science Foundation under Grants

1522954-IIS and 1734938-IIS, by the Intelligence Advanced Research Projects Activity (IARPA)

via Department of Interior/Interior Business Center (DOI/IBC) contract number D17PC00341,

and by Siemens Corporation, Corporate Technology. Any opinions, findings, views, and con-

clusions or recommendations expressed in this material are those of the authors and do not

necessarily reflect the views, official policies, or endorsements, either expressed or implied,

of the sponsors. The U.S. Government is authorized to reproduce and distribute reprints for

Government purposes, notwithstanding any copyright notation herein.

4



TABLE OF CONTENTS

 LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

 LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

 LIST OF SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

 ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

 ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

 1 INITIAL SYSTEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

 1.2 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

 1.2.1 Hardware and Software . . . . . . . . . . . . . . . . . . . . . . . . . 23

 1.2.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

 1.2.3 Navigation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

 Trajectory Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 26

 Intersection Detection and Classification . . . . . . . . . . . . . . . . 27

 Intersection Refinement . . . . . . . . . . . . . . . . . . . . . . . . . 29

 Intersection Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

 1.3 States of the System Architecture . . . . . . . . . . . . . . . . . . . . . . . . 31

 1.3.1 Wander . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

 Wander Substates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

 Forward Driving Goals . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5



 Person Detection and Tracking . . . . . . . . . . . . . . . . . . . . . 36

 1.3.2 Approach_person . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

 1.3.3 Hold_conversation . . . . . . . . . . . . . . . . . . . . . . . . . 41

 Spoken Communication . . . . . . . . . . . . . . . . . . . . . . . . . 43

 Information Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 44

 Dialogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

 Addressing Corner Cases . . . . . . . . . . . . . . . . . . . . . . . . . 48

 1.3.4 Follow_directions . . . . . . . . . . . . . . . . . . . . . . . . . . 49

 Plan Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

 Follow_directions Substates . . . . . . . . . . . . . . . . . . . . 52

 Forward Driving Goals . . . . . . . . . . . . . . . . . . . . . . . . . . 53

 1.3.5 Navigate_door . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

 Detecting Walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

 Generating Door Proposals . . . . . . . . . . . . . . . . . . . . . . . 57

 Scoring proposals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

 Localizing detections . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

 Driving-Goal Generation . . . . . . . . . . . . . . . . . . . . . . . . . 62

 Common-Sense Navigation . . . . . . . . . . . . . . . . . . . . . . . . 63

 1.4 System Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

 1.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6



 1.4.2 Trial Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

 1.4.3 Observations and Improvements . . . . . . . . . . . . . . . . . . . . . 73

 Approach_person . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

 Hold_conversation . . . . . . . . . . . . . . . . . . . . . . . . . 74

 Follow_directions . . . . . . . . . . . . . . . . . . . . . . . . . . 74

 Navigate_door . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

 1.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

 1.5.1 Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

 1.5.2 Behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

 1.5.3 Vision-Language Navigation . . . . . . . . . . . . . . . . . . . . . . . 82

 1.6 Comparison with Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . 84

 1.7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

 2 TALK THE TALK AND WALK THE WALK: DIALOGUE-DRIVEN NAVIGA-

TION IN UNKNOWN INDOOR ENVIRONMENTS . . . . . . . . . . . . . . . . 92

 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

 2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

 2.3 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

 2.4 Dialogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

 2.4.1 Dataset collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

 2.4.2 Dialogue turn generation . . . . . . . . . . . . . . . . . . . . . . . . . 102

7



 2.4.3 Augmented dataset training and validation . . . . . . . . . . . . . . . 103

 2.4.4 Spoken dialogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

 2.5 Navigation Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

 2.6 Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

 2.6.1 Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

 2.6.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

 2.6.3 Command Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

 2.7 System Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

 2.8 Comparison Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

 2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

 A BUILDING FLOOR PLANS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

 VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

8



LIST OF TABLES

 1.1 Various kinds of actions that can fill plan steps as produced by Hold_conver-
sation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

 1.2 Plan rewrite rules. In the following, dir denotes any direction action, ntadir
denotes any direction action except turn-around, int denotes any intersection
action, and goal denotes any goal action. The first matching rule applies when
multiple rules match. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

 1.3 Query templates for plan patterns. The notation 〈nth〉 refers to a direction
determiner generated based on how many direction concepts of the same type
appear prior to dir in the current partial plan. The notation 〈jth〉 refers to an
intersection determiner generated based on how many intersection concepts of
the same type appear prior to int in the current partial plan. The first matching
template applies when multiple templates match. . . . . . . . . . . . . . . . . . 50

 1.4 Sample conversations from our trials. . . . . . . . . . . . . . . . . . . . . . . . . 51

 1.5 YOLO vs. our door-detection method . . . . . . . . . . . . . . . . . . . . . . . . 64

 1.6 Trial results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

 1.7 Behavior success rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

 1.8 Sample conversations from our trials. . . . . . . . . . . . . . . . . . . . . . . . . 69

 1.9 Success rate of the robot at extracting a correct plan from conversation, following
that plan, and finding the goal door. . . . . . . . . . . . . . . . . . . . . . . . . 71

 1.10 Survey results from our participants. All statements had to be rated on a 5-point
Likert scale from 1: absolutely disagree to 5: absolutely agree, which mimics
Weiss et al. Statements 1–5 were provided by us. Statements 6–25 came from
Weiss et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

 1.11 System Trials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

 1.12 Comparison with Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

 1.13 Samples of language text used during our trials and the VLN trials. . . . . . . . 87

 1.14 Comparison of our system with prior VLN systems. Successful trials were those
where the robot stopped within 1 m of the goal location. . . . . . . . . . . . . . 88

9



 1.15 Navigation statistics from the results reported in Table   1.14  . Correct actions
is the average number of actions the system correctly predicted and executed
before heading off in a wrong direction. Total actions is the average number
of actions executed before the stop condition is met. Correct Waypoints is the
average number of waypoints the system correctly predicted and navigated to
before heading off in a wrong direction. Total Waypoints is the average number
of waypoints navigated to before the stop condition is met. Navigation Error is
the average driving distance from the ending location to the goal location. . . . 88

 1.16 Validation success rate of prior VLN systems, using metric from [  11  ]. . . . . . . 89

 1.17 Validation navigation error of prior VLN systems, using metric from [  11  ]. . . . . 90

 2.1 Possible plan concepts for plan annotation. int-L and int-R have a left or right
turn, respectively. end refers to the end of the hallway; elbow refers to an elbow.
The first four direction concepts refer to the direction the robot should drive in.
It will continue moving in that direction until it encounters the next step in the
plan. either refers to turning left or right at an elbow when it is not explicitly
stated (e.g., “go around the corner”). goal-F, goal-L, and goal-R respectively
refer to goals that are ahead, on the left, or on the right. � refers to an unknown
or unspecified step in the plan. change-floor refers to using an elevator to move
between floors.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

 2.2 Number of samples for each partial plan category. . . . . . . . . . . . . . . . . . 101

 2.3 Training samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

 2.4 Partial plan follow-up questions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

 2.5 Commands produced from plan subsequences. . . . . . . . . . . . . . . . . . . . 106

 2.6 Intersection types based on available directions. . . . . . . . . . . . . . . . . . . 110

 2.7 Experimental results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

 2.8 Comparison of our system with prior VLN systems. Successful trials were those
where the robot stopped in the hallway with the goal location. . . . . . . . . . . 114

 2.9 Navigation statistics from the results reported in Table   2.8  . Correct Waypoints is
the average number of waypoints the system correctly predicted and navigated to
before heading off in a wrong direction. Total Waypoints is the average number
of waypoints navigated to before the stop condition is met. Navigation Error
is the average driving distance from the ending location to the beginning of the
hallway with the goal location. . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

10



LIST OF FIGURES

 1.1 Finite-state-machine view of the system architecture. . . . . . . . . . . . . . 21

 1.2 (a) Qualitative direction categories and their heading relative to robot ori-
entation. (b) An example of trajectory generation with trajectory distance
limited to 3.6 m. The black lines represent obstacles (i.e., walls). Target
points of potential trajectories for 24 headings are shown as small points.
The gray target points are filtered out as either unknown space or too near
an obstacle. The pink target points represent drivable trajectories. The dark
pink lines are headings associated with maximal drivable trajectories of dis-
tance 3.6 m. The dark green circles represent qualitative drivable trajectories
with the qualitative direction labels forward, left, and back-left. (c) An exam-
ple of how intersection detection and classification ignores large traversable
areas that arise from alcoves and other large open spaces. A single scale,
namely a distance of 3.6 m, is depicted. The gray traversable area is much
wider than a hallway so the drivable trajectories in that traversable area are
discarded. Only the drivable trajectories in the blue traversable area are
taken as hallway trajectories. (d) An example of how intersection detection
and classification, at a single scale of 3.6 m, forms candidate intersections as
tuples of hallway trajectories at a given scale and selects at most one of these
as the single detected and classified intersection. The target points of the
hallway trajectories in Pair 2 are furthest from obstacles, so it will be selected. 25

 1.3 (a) These intersections, with very short hallways, can only be detected with
a distance ≤2.4 m. (b) This corner, with a decorative front to a lab space,
can only be detected with a distance ≥4.8 m. All intersections are correctly
detected and classified by considering multiple distances. . . . . . . . . . . . 28

 1.4 Qualitative map produced for a single floor of a building. The red line indi-
cates the path that the robot traveled. Blue spheres are registered intersec-
tions. Yellow arrows are hallway trajectories associated with each registered
intersection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

 1.5 The Wander finite-state machine. . . . . . . . . . . . . . . . . . . . . . . . 34

11



 1.6 Example of how the robot determines a forward driving goal despite starting
with a suboptimal pose. The robot is 1 m from the wall and its orientation
is ≈45◦ off from that of the hallway. The transparent red cone indicates that
the navigation process was unable to find any drivable trajectories using a
cone angle of ±15◦ from the forward orientation. The transparent blue cone
indicates that the navigation process was able to find a drivable trajectory
using a cone angle of ±30◦ and thus a cone angle of ±45◦ is not required. The
median drivable trajectory that the navigation process returned is used as a
forward driving goal (labeled “Driving Goal 1”). Upon approaching that
driving goal, the robot repeats this process, but only up to a cone angle of
±30◦ if necessary, and the yellow arrow labeled “Driving Goal 2” will be its
second forward driving goal. This process incrementally moves the robot to
the center of the hallway and changes its orientation to more closely match
that of the hallway. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

 1.7 Approachable person detector output. Tracks that have just begun and whose
walk rate/polarity are still being determined are colored orange. Tracks that
are walking away are colored blue. Tracks that meet the criteria for being
either stationary or approaching the robot, are colored green. Near the bot-
tom of each bounding box, the person’s distance from the robot is displayed
on the left and their walking speed is displayed on the right. Positive implies
approaching the robot; negative implies walking away. . . . . . . . . . . . . . 40

 1.8 Instruction extraction via parsing steps. . . . . . . . . . . . . . . . . . . . . 45

 1.9 The Follow_directions finite-state machine. Transition conditions in
Courier represent the next step in the plan. All others represent transition
conditions derived from sensor data. . . . . . . . . . . . . . . . . . . . . . . 53

 1.10 Example of how the robot determines a forward driving goal when the person
it just conversed with has materialized as an obstacle in the quantitative map.
The two transparent red cones coming from the robot indicate that no drivable
trajectories are free at a cone angle of either ±15◦ or ±30◦. (To prevent this
figure from becoming too cluttered, we ignore the cone angle of ±45◦). The
two transparent red cones coming from the point that is 0.5 meters to the left
of the robot indicate that there are no drivable trajectories at either ±15◦ or
±30◦. The blue cone coming from the point that is 0.5 meters to the right of
the robot indicates that a drivable trajectory was found and it is used as the
forward driving goal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

 1.11 Process for extracting walls from LiDAR data. . . . . . . . . . . . . . . . . . 55

 1.12 Projected walls with region boundaries. Green lines are the tops and bottom
of walls projected at heights of 0 m and 2.2 m respectively, and the orange
lines are the ±15 cm tolerances for the top. . . . . . . . . . . . . . . . . . . 58

12



 1.13 Line segment detections, color coded by their orientation. Green lines are
horizontal. Vertical lines are teal. Blue lines have a downward slope. Red
lines have an upward slope. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

 1.14 Driving-goal positions for a door. . . . . . . . . . . . . . . . . . . . . . . . . 62

 1.15 The floor plans of each building. Our training set consists of EE, MSEE, and
PHYS. Our test set consists of HAMP, KNOY, and ME. Areas of the map
that are green represent areas that the robot can drive in. Areas of the map
that are red represent areas that the robot cannot drive in. These include
carpeted areas and hallways that are narrower than the robot’s circumscribed
radius. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

 1.16 Images from one floor of each building. . . . . . . . . . . . . . . . . . . . . . 70

 2.1 System Diagram. A question, q, is posed to a person. Their utterance, u,
and the current plan, p, is fed into the dialogue component, which produces
an updated plan and follow-up question. Dialogue loops until a complete
plan, [pi], is produced. The complete plan is converted into robot commands,
[ci], which are fed into the navigation network. The navigation component
produces a goal location, l, and feedback status, f , which are used to carry
out all commands.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

 2.2 (a) The robot can execute the command; it produces a goal location that
drives it into the hallway on its left and a feedback status of transition. (b)
The robot is in a hallway and cannot execute the command yet; it produces a
goal location that drives it further down the hallway and a feedback status of
forward. (c) The robot has reached the end of the hallway and cannot make
a right turn; it stops and produces a feedback status of failure. . . . . . . . . 107

 2.3 Left: Black squares represent all positions within 5 m of the center of the
SLAM map. Center: Green squares represent positions corresponding to
backward. Red squares represent positions corresponding to right. Right:
Green square is goal location for backward and red square is goal location
for right. Available directions are backward and right; using Table   2.6  , the
intersection types are int-R, end, int-B, and elbow. . . . . . . . . . . . . . 109

 A.1 Building Name: EE. Floor Number: 0.  . . . . . . . . . . . . . . . . . . . . . 122

 A.2 Building Name: EE. Floor Number: 1.  . . . . . . . . . . . . . . . . . . . . . 123

 A.3 Building Name: EE. Floor Number: 2.  . . . . . . . . . . . . . . . . . . . . . 124

 A.4 Building Name: EE. Floor Number: 3.  . . . . . . . . . . . . . . . . . . . . . 125

 A.5 Building Name: MSEE. Floor Number: 0.  . . . . . . . . . . . . . . . . . . . 126

 A.6 Building Name: MSEE. Floor Number: 1.  . . . . . . . . . . . . . . . . . . . 127

 A.7 Building Name: MSEE. Floor Number: 2.  . . . . . . . . . . . . . . . . . . . 128

13



 A.8 Building Name: MSEE. Floor Number: 3.  . . . . . . . . . . . . . . . . . . . 129

 A.9 Building Name: PHYS. Floor Number: 0.  . . . . . . . . . . . . . . . . . . . 130

 A.10 Building Name: PHYS. Floor Number: 1.  . . . . . . . . . . . . . . . . . . . 131

 A.11 Building Name: PHYS. Floor Number: 2.  . . . . . . . . . . . . . . . . . . . 132

 A.12 Building Name: PHYS. Floor Number: 3.  . . . . . . . . . . . . . . . . . . . 133

 A.13 Building Name: HAMP. Floor Number: 0.  . . . . . . . . . . . . . . . . . . . 134

 A.14 Building Name: HAMP. Floor Number: 1.  . . . . . . . . . . . . . . . . . . . 135

 A.15 Building Name: HAMP. Floor Number: 2.  . . . . . . . . . . . . . . . . . . . 136

 A.16 Building Name: HAMP. Floor Number: 3.  . . . . . . . . . . . . . . . . . . . 137

 A.17 Building Name: HAMP. Floor Number: 4.  . . . . . . . . . . . . . . . . . . . 138

 A.18 Building Name: KNOY. Floor Number: 1.  . . . . . . . . . . . . . . . . . . . 139

 A.19 Building Name: KNOY. Floor Number: 2.  . . . . . . . . . . . . . . . . . . . 140

 A.20 Building Name: KNOY. Floor Number: 3.  . . . . . . . . . . . . . . . . . . . 141

 A.21 Building Name: KNOY. Floor Number: 4.  . . . . . . . . . . . . . . . . . . . 142

 A.22 Building Name: ME. Floor Number: 0.  . . . . . . . . . . . . . . . . . . . . . 143

 A.23 Building Name: ME. Floor Number: 1.  . . . . . . . . . . . . . . . . . . . . . 144

 A.24 Building Name: ME. Floor Number: 2.  . . . . . . . . . . . . . . . . . . . . . 145

 A.25 Building Name: ME. Floor Number: 3.  . . . . . . . . . . . . . . . . . . . . . 146

14



LIST OF SYMBOLS

m meters

s seconds

15



ABBREVIATIONS

AMT Amazon Mechanical Turk

API Application Programming Interface

ASCII American Standard Code For Information Interchange

CARLA Car Learning to Act

EE Electrical Engineering building

FC Fully-Connected

FOV Field Of View

FSM Finite-State Machine

GUI Graphical User Interface

HAMP Hampton Hall of Civil Engineering building

IMU Inertial Measurement Unit

KITTI Karlsruhe Institute of Technology and Toyota Technological Institute

KNOY Knoy Hall of Technology building

LiDAR Light Detection and Ranging

MSEE Material Sciences and Electrical Engineering building

ME Mechanical Engineering building

NDH Natural-language Dialog History

NMS Non-Maximal Suppression

O2O Office-to-office

OCR Optical Character Recognition

PHYS Physics building

R2R Room-to-room

RCM Reinforced Cross-Modal Matching

ReLU Rectified Linear Unit

RGBD Red Green Blue Depth

ROS Robot Operating System

Seq2Seq Sequence-to-Sequence

SF Speaker-Follower

16



SLAM Simultaneous Localization And Mapping

TBS Tactical Behavior Specification

VLN Vision-Language Navigation

YOLO You Only Live Once

17



ABSTRACT

Standard off-the-shelf SLAM algorithms allow robots to build 2D maps of their envi-

ronments and consequently enable them to navigate to (x, y) coordinates in those maps.

However, this is a large step removed from a robot finding and going to a professor’s office

or locating an elevator and taking it up one floor. The robot would have to robustly detect

and localize doors and elevators in a hallway. Additionally, given directions to this hallway,

the robot would have to accurately follow them in a previously unknown environment. In

this thesis, we propose solutions to these two key challenges associated with finding a goal

in an unknown indoor environment. We present a robust algorithm that relies on image and

laser-range data to detect doors. This algorithm is combined with a set of common-sense

rules to enable a robot to efficiently find a specific door in a hallway. To follow directions in

an unknown environment, we propose a convolutional neural network-based approach that

takes a local crop of the 2D SLAM map and a command as input to produce navigational

goal points and feedback for the robot as output. All of these methods are deployed on a

real robot and evaluated in the form of live trials in previously unseen and unmodified office

environments.

18



1. INITIAL SYSTEM

This chapter includes a submission to TRO, which describes a system that finds a goal
door on a single floor of a single building. I was responsible for the following technical
section: Section  1.3.5 . Jared Johansen was responsible for the following technical sections:
Section  1.2.3 , Section  1.3.1 , Section  1.3.2 , Section  1.3.3 , and Section  1.3.4 .

We worked on the comparison experiments in Section  1.6 together. Jared Johansen
worked on the system we used to collect the dataset; we both worked on collecting and
annotating the data. We both worked on the code that loaded and trained the system; I
trained the models and computed the simulated validation results. We both worked on the
system that ran the live experiments; Jared Johansen ran the experiments and computed
the test results.

1.1 Introduction

The Amazing RaceTM is a popular reality television show in which two-person teams

race to some designated location. They typically have to figure out where they are, navi-

gate through foreign areas, and ask people for directions to their destination. State-of-the-

art artificial-intelligence and human-robot-interaction research enables robots to solve such

natural-language-driven navigation tasks [ 1 ]–[ 8 ]. However, these systems suffer from certain

limitations such as requiring a specific syntactic structure for natural-language commands

or requiring a map of the environment. A system design without these crutches is crucial

for operating autonomously in new, unknown environments. Additionally, it is important

for these systems to have productive interaction with humans for the purpose of receiving

instructions to execute or to learn new information. However, it is impractical and inconve-

nient for every person to know the precise details of a robotic system in order to interact with

it. Therefore, robotic system designs should be based on and thereby exhibit human-like

behavior to enable natural and useful interaction with humans.

To drive research towards this outcome, we propose a novel task: The Amazing RaceTM:

Robot Edition. The task is this: we place the robot in an unknown environment, without a

map, and give it the name of a person, room, or building to find. Unlike much prior work in

the field of VLN, [ 9 ]–[ 13 ], this task requires real navigation in a physical environment, not

in a simulated one. Additionally, our full task is considerably more complex than the task

underlying current VLN research. Current VLN research simply gives an agent directions

19



which the agent then follows. Our task requires that the robot find and approach a person,

engage that person in a dialog to obtain directions, follow those directions, and find the goal

by reading door tags. Our task involves deploying a robot in a new environment where it does

not have all of the information it needs to perform its responsibility. There are individuals in

the environment who have more knowledge than it does. In order to effectively and efficiently

carry out its task, it must seek out those individuals and obtain necessary information from

them. This task is general in that any physical robot should be able to find a goal location

in an unknown environment. For the purpose of constructing an initial solution to this task,

we restrict the goal to finding a door with a specified number on a single floor of a building.

Because the robot has no prior knowledge about the goal location nor the structure of the

environment, it must seek a person for assistance. Once a person is found, the robot must

engage them in a dialogue to obtain directions to the goal. It has to follow these directions

to reach the hallway that the room is in, at which point it would have to systematically

search for doors and read their door tags to locate the correct one. We present a novel

finite-state-machine (FSM) system design that makes these logical steps to accomplish this

task.

Our hypothesis is that this problem requires a specific set of abilities that are invoked in

a particular order, equivalent to an FSM. We carefully chose a sequence of specific states for

our FSM design that reflects the steps a typical person would take to efficiently find a room

in an unknown office environment. Initially knowing nothing about the environment, many

people would ask the first person they see for directions. After receiving these directions

and potentially asking for clarification, they would follow them to the approximate location

of the room and begin looking for the specific number. Our FSM design mimics this human

behavior, which can result in a shorter and more efficient path to the goal as opposed

to a simple exhaustive search of the environment. Although an exhaustive search would

eventually succeed, it would not necessarily take the most efficient path, would ignore people

who may have a rich understanding of the environment and a willingness to help, and

would not push the envelope on robot cognition. Additionally, an exhaustive search becomes

unsuitable as the size of the environment increases.

20



Figure 1.1. Finite-state-machine view of the system architecture.

21



In order to enable such human-like reasoning, we abstract low-level sensor data such as

audio, video, and LiDAR into information that a human would have readily available such as

navigation directions and potential goal locations. The states in our FSM design, as shown

in Figure  1.1 , also referred to as behaviors, make use of this information to handle new

and/or complex situations. They also incorporate methods to handle complete, partial, or

erroneous information similar to how a human would when encountering such in conversation

or navigation. We believe this design mimics high-level aspects of human behavior on the

same task. Additionally, to the best of our knowledge, this paper makes the following

contributions:

• We present a method that abstracts noisy SLAM data into navigation actions that a

robot can execute.

• We present a method that allows the robot to find and approach a person to ask for

directions, ignoring those that appear unwilling to engage in dialog.

• Our method engages in multi-turn dialogue that involves generating natural-language

clarification questions in response to an incomplete or inconsistent plan produced from

incomplete or inconsistent directions.

• Our method detects and localizes doors, and their associated door tags, as potential

targets, reading the door tags. The door-tag-reading process is also noisy, which we

mitigate through specific mechanisms. The process of searching for doors makes use

of common-sense knowledge: adjacent doors are numbered consecutively with odd and

even numbers on opposite sides of the hallway. The knowledge is only a default; our

robot is robust when the default is violated. But this knowledge leads to both more

efficient and more human-like behavior.

• All forms of input, including the spoken language, the camera input used to find people

and read door tags, and the LiDAR input used for SLAM are noisy. Further, action

execution is noisy and unreliable. Nonetheless, our methods are robust in the face of

all this noise.

• We demonstrate our methods on a real robot in the real world, where the position and

actions are continuous rather than a discrete graph with a small finite, set of discrete

actions.

22



In order to evaluate the performance of our system, we conducted 52 trials across 4 floors

of each of 3 buildings previously unseen by the robot. We recruited 13 untrained volunteers

to provide the robot with directions to the specified goal room number in each trial. Due

to our system’s ability to recover from individual behavior failures, we demonstrate a high

success rate of 76.9%. Additionally, we document observations made during the trials as

opportunities for further research into this task.

1.2 System Overview

In this section, we provide a high-level overview of our system’s hardware, software, and

architecture as well as the method used to construct a qualitative map from the quantitative

map produced by SLAM. We provide detailed descriptions of our system’s components in

the next section.

1.2.1 Hardware and Software

Our robotic platform consists of a Clearpath Husky A200TM UGV equipped with an

Open IMU UM7, Velodyne VLP-16 3D LiDAR, Axis M5525-E PTZ Camera, Blue Yeti

microphone, and a System76 Laptop with two Nvidia GeForce GTX 1080 GPUs. Each of

these is a commercial, off-the-shelf product. Clearpath integrated the IMU, LiDAR, PTZ

Camera, and laptop onto the Husky A200TM UGV.

Our software 

1
 is implemented in a combination of C++ and Python, using ROS Kinetic

as the communication framework between different components of the system. We use

Google Cartographer [ 14 ] to perform simultaneous localization and mapping (SLAM) from

data from the IMU and 3D LiDAR. We record speech with the Blue Yeti microphone and

convert it into text using the Google Speech-to-Text [  15 ] API. We use the Stanford Parser

[ 16 ] to parse the text. We use Python’s pyttsx3 library [  17 ] to synthesize speech through

the laptop speaker. We use YOLOv3 [ 18 ] to detect people in images taken from the Axis

camera. We use LSD (Line Segment Detector) [  19 ] on images from the Axis camera as part
1

 ↑ All software used to produce the results in this manuscript is available at  https://github.com/qobi/
amazing-race .

23

https://github.com/qobi/amazing-race
https://github.com/qobi/amazing-race


of our method for detecting doors. We extract text from images of door tags taken with

the Axis camera with Google’s Optical Character Recognition [ 20 ] API. We use a LiDAR-

camera calibration software package [ 21 ] to compute a calibration matrix between the 3D

LiDAR and the Axis camera. This matrix lets the system compute 3D locations for detected

people and doors in the environment.

1.2.2 Architecture

Our architecture is a finite-state machine illustrated in Figure  1.1 . This design makes

logical steps towards reaching the goal and recovers from failure at any of those steps. Each

state has a success condition that leads to the next state in the pipeline as well as failure con-

ditions which result in a transition to the initial state of the system. Given a goal description,

the initial state is Wander, as the robot needs to find a person to get directions to the goal.

This state allows the robot to explore the environment while simultaneously attempting to

detect and track people. Once a person is found, the robot enters the Approach_person

state, in which it drives towards the person and synthesizes speech to grab their attention.

If the robot successfully reaches the person, it initiates a conversation with them in the

Hold_conversation state. The robot uses speech synthesis and speech recognition to

request directions to the desired goal and interpret the person’s response, respectively. It can

ask an appropriate clarification question if the interpreted directions are incomplete. Once a

complete set of directions are determined through dialogue with the person, a transition to

the Follow_directions state is made. Follow_directions executes each direction in

order by continuously mapping the environment to determine when to continue to the next

instruction, such as turning left when a left turn becomes available. Successful completion

of the directions implies that the robot is in the hallway that contains the goal. The robot

then enters the Navigate_door state which involves detecting doors and driving up to

them to inspect their door tags. This will let the robot ultimately confirm arrival at the

desired goal.

24



(a) (b)

(c) (d)

Figure 1.2. (a) Qualitative direction categories and their heading relative
to robot orientation. (b) An example of trajectory generation with trajectory
distance limited to 3.6 m. The black lines represent obstacles (i.e., walls). Tar-
get points of potential trajectories for 24 headings are shown as small points.
The gray target points are filtered out as either unknown space or too near
an obstacle. The pink target points represent drivable trajectories. The dark
pink lines are headings associated with maximal drivable trajectories of dis-
tance 3.6 m. The dark green circles represent qualitative drivable trajectories
with the qualitative direction labels forward, left, and back-left. (c) An example
of how intersection detection and classification ignores large traversable areas
that arise from alcoves and other large open spaces. A single scale, namely a
distance of 3.6 m, is depicted. The gray traversable area is much wider than
a hallway so the drivable trajectories in that traversable area are discarded.
Only the drivable trajectories in the blue traversable area are taken as hallway
trajectories. (d) An example of how intersection detection and classification,
at a single scale of 3.6 m, forms candidate intersections as tuples of hallway
trajectories at a given scale and selects at most one of these as the single de-
tected and classified intersection. The target points of the hallway trajectories
in Pair 2 are furthest from obstacles, so it will be selected.

25



1.2.3 Navigation Process

The physical environment has intersections connected by hallways. Humans give navi-

gation instructions by describing paths through hallways between intersections. They use

informal terms to classify intersections into various types (e.g., elbow, three-way, and

four-way) and to distinguish between different hallways emanating from intersections by

their heading (e.g., forward, left, and right). To facilitate the interpretation of these informal

navigation instructions, our robot constructs and maintains two maps of the environment,

one quantitative and one qualitative. The quantitative map is an occupancy grid constructed

by SLAM. It is a 2D matrix of cells, where each cell corresponds to a 5 cm square of the

ground that takes one of three possible classifications: free, obstacle, or unknown. Gener-

ally, in an indoor office environment, free cells would be rooms or hallways, obstacle cells

would be walls or objects, and unknown cells would be unexplored areas of the building

or anything outside of the walls. The qualitative map is a graph whose vertices represent

detected intersections labeled with intersection type and whose edges denote detected hall-

way paths. We refer to these as registered intersections and hallway paths since the process

of constructing and maintaining the qualitative map can add, remove, merge, and update

registered intersections and hallway paths when detecting new ones. The quantitative map,

along with the robot’s current pose (position and orientation) in that map, is continually

maintained and updated by a background process running SLAM. The qualitative map is

constructed and updated from the quantitative map and robot pose by a background process

continually running at 1 Hz. We refer to the latter background process as the navigation

process. The qualitative map produced by the navigation process is used by several of our

robot behaviors.

Trajectory Generation

The first step of the navigation process is to construct various sets of trajectories, short

paths that the robot can drive from its current pose. A trajectory is a target point in world

coordinates at a specified distance and heading from the current pose. Low-level robot

navigation uses trajectory target points as driving instructions. We nominally consider all

26



distances that are integral multiples of 1.2 m from 1.2 m to 7.2 m, combined with all headings

that are integral multiples of 360◦

64 , as potential trajectories. These are filtered as follows. We

first remove all trajectories which require traversing a point that is within 0.6 m of an obstacle

or unknown space to reach the target point. This yields a set of drivable trajectories. The

0.6 m threshold was chosen as it is our robot’s circumscribed radius; it would not fit through

passageways smaller than this. Since we need to search each trajectory for obstacles, the

1.2 m quantization was chosen to reduce the number of potential trajectories considered while

still considering sufficiently many to successfully interpret and execute human navigation

instructions. We then filter the set of drivable trajectories, keeping only the ones with the

largest distance for each heading. This yields a set of maximal drivable trajectories. Finally,

we label each maximal drivable trajectory with one of eight qualitative directions based on

its heading (Figure  1.2 a). We then filter the set of maximal drivable trajectories, keeping

at most a single trajectory for each qualitative direction, the one with the median heading.

This yields a set of qualitative drivable trajectories, there being at most eight of these, each

labeled with a distinct qualitative direction. Figure  1.2 (b) illustrates the process of trajectory

generation. 

2
 

Intersection Detection and Classification

The next step in the navigation process is to determine whether the robot is in an

intersection, and if so, to determine the type of that intersection (e.g., elbow, three-way,

or four-way). It does this at multiple scales, with each distinct trajectory distance taken

as a scale, to tolerate different building designs with different hallway lengths and widths

(Figure  1.3 ).

At each scale, this process starts with all drivable trajectories at that scale. The first step

is to eliminate drivable trajectories that would not be considered as driving through hallways.

This is done by grouping all adjacent drivable trajectories (with headings differing by 360◦

64 )

to represent a traversable area (Figure  1.2 c). The width of a traversable area is determined

as the maximal Euclidean distance between any two target points of drivable trajectories in
2

 ↑ While we classify eight distinct qualitative directions and qualitative driving directions, the remainder of
the manuscript only considers the four primary ones.

27



(a) (b)

Figure 1.3. (a) These intersections, with very short hallways, can only be
detected with a distance ≤2.4 m. (b) This corner, with a decorative front to a
lab space, can only be detected with a distance ≥4.8 m. All intersections are
correctly detected and classified by considering multiple distances.

the traversable area. If a traversable area is wider than the specified width of a hallway for

that building, all trajectories associated with that traversable area are discarded. This allows

the robot to ignore alcoves and similar open spaces, and yields a set of hallway trajectories.

The hallway trajectories are grouped into pairs, triples, and quadruples whose headings

are ≈90◦ apart. These constitute potential intersections of type elbow, three-way, and

four-way, respectively. Each such tuple constitutes a potential intersection. Potential in-

tersections whose elements are not separated by obstacles are discarded. This yields a set

of intersection candidates, each of which has the robot’s position as its initial location. In-

tersection candidates are scored based on the sum of the distances of the location and each

element’s target point from the nearest obstacle.

This process may produce multiple intersection candidates, e.g., an elbow will always

be present when a three-way is also present and an intersection candidate produced at

a larger scale may also be present at a smaller scale. The navigation process prioritizes

intersection candidates as follows: 1. quadruples over triples, 2. triples over pairs, 3. larger

scales over smaller scales, and 4. higher scores over lower scores. This yields at most a single

detected and classified intersection at the current robot position. For reasons to be discussed

28



later, each detected and classified intersection is given a unique identifier and each hallway

trajectory in that intersection tuple is also given a unique identifier.

As an example, consider Figure  1.2 (d), which illustrates intersection detection and clas-

sification at a single scale, namely 3.6 m. Three pairs of hallway trajectories (green, blue,

and orange) are shown (out of a possible nine), each hallway trajectory associated with the

highlighted (green, blue, and orange) target point. Each such pair constitutes an intersection

candidate. Pair 2 (blue) will have the highest score (since its target points are furthest from

obstacles) and will be kept as the single detected and classified intersection.

Intersection Refinement

Since the navigation process performs intersection detection and classification repeatedly

at 1 Hz, it can detect the same intersection multiple times, particularly if the robot remains

in an intersection for more than 1 s. This is akin to how object detectors can place multiple

but different boxes around an object. We address this by performing a kind of nonmaximal

suppression (NMS) in a fashion analogous to how object detectors deal with this problem.

Moreover, intersection detection and classification is performed relative to the robot pose.

As this changes, the classified intersection type might change due to noise (e.g., classifying

an intersection as an elbow when it is a three-way). Further, through a process described

below, detected and classified intersections are registered as vertices in the qualitative map.

Registered intersections are labeled with their location, which we wish to be the center of

the physical intersection. However, detected intersections are registered with their location

being the robot position at the time of detection, which might not be the center of the

physical intersection.

To address this, we perform intersection refinement. We suppress detection of new inter-

sections when the robot is within 2 m of a registered intersection. Further, we continuously

refine the locations and classification labels of registered intersections in a background pro-

cess. This process recomputes the intersection candidates while imagining the robot to be at

every point in a 3×3 grid, with 0.4 m spacing, centered on the current location of each reg-

istered intersection, using the current SLAM occupancy grid. The intersection candidates

29



are pooled and prioritized as in initial intersection detection and classification to yield a

single redetection and reclassification. The registered intersection is updated to reflect the

redetected and reclassified intersection, including its location. We enforce a constraint that

intersections cannot shift more than 2.4 m from their original location. For efficiency, this

refinement is only applied to a registered intersection when the robot is within 5 m of that

intersection.

Each detected and registered intersection contains 1. its location, 2. its type, and 3. a

tuple of hallway trajectories. The hallway trajectories represent the hallway paths between

intersections. During refinement, the redetected intersection might contain different hallway

trajectories than the current registered intersection. This can happen when, for example,

a group of people stop to talk and block a hallway trajectory in the intersection. During

intersection refinement, we wish to maintain the same unique identifiers associated with

each intersection and hallway trajectory in that intersection. This requires constructing

a correspondence between the hallway trajectories in the registered intersection and those

in the redetected intersection. The optimal correspondence is found with the Hungarian

algorithm [  22 ] applied to a bipartite graph whose left vertices are the hallway trajectories in

the registered intersection, whose right vertices are the hallway trajectories in the redetected

intersection, and whose edges are given a cost which is the angular distance between the

hallway trajectory headings. Edges in this bipartite graph are only created when the angular

distance is <30◦. This correspondence is used to reassign the unique identifiers from the

hallway trajectories in the registered intersection to those in the redetected intersection.

As described previously, a redetected intersection may have different type than a regis-

tered intersection, and thus may have a different number of hallway trajectories. Thus, the

correspondence as produced above may fail to assign a hallway trajectory from the registered

intersection to one in the redetected intersection either because the redetected intersection is

of a different type with fewer hallway trajectories or because of eliminated edges. A hallway

trajectory in the registered intersection that does not have a corresponding hallway trajec-

tory in the redetected intersection is maintained, with its unique identifier, in the registered

intersection in a deactivated state, so that it can be reactivated later with the same unique

identifier.

30



Intersection Graph

The unique identifiers associated with registered intersections and their hallway trajec-

tories, whose consistency is maintained over time by intersection refinement, allow us to

construct a graph to represent the qualitative map. When the robot comes within 0.5 m of

a registered intersection, it selects the hallway trajectory whose target point is closest to the

robot position as the one used to enter the intersection. The robot’s path is searched back-

ward until it comes within 3 m of a hallway trajectory from the last registered intersection

it visited. An edge in the qualitative map is registered between these two registered inter-

sections and represents a hallway path. The weight of this edge is taken as the Euclidean

distance between the locations of the two registered intersections. If the backward search

process does not produce a hallway trajectory, that hallway trajectory is left unconnected,

to represent hallways that have not been completely explored yet. This graph is continually

constructed and updated by the navigation process. See Figure  1.4 for an example of the

qualitative map produced for a single floor of a building.

1.3 States of the System Architecture

In this section, we describe the the implementation of each state in our system.

1.3.1 Wander

Wander is the initial state of the system and lets the robot continuously navigate

through the environment, trying to detect and track people until it finds an approachable

person. The general strategy is to explore the environment in a human-like manner, usually

moving forward, choosing a direction to go when at an intersection, and only turning around

when reaching a dead end.

Wander Substates

The Wander state has five substates: 1. Make_decision, 2. Rotate_recovery,

3. Rotate, 4. Drive_forward, and 5. Drive_through_intersection. Wander

31



Figure 1.4. Qualitative map produced for a single floor of a building. The
red line indicates the path that the robot traveled. Blue spheres are registered
intersections. Yellow arrows are hallway trajectories associated with each reg-
istered intersection.

32



enters the Make_decision substate first, where it analyzes whether it is in a registered

intersection and which qualitative directions are available. If no qualitative directions are

available (e.g., when it is first initialized), it enters the Rotate_recovery substate, which

causes it to spin in place 360◦. This substate helps to update the quantitative and qualitative

maps in the immediate vicinity, which determine whether any qualitative drivable trajectories

are available. If none are available, it stays in this substate. If qualitative drivable trajectories

are available, the robot selects the one whose heading is closest to its current orientation as

the recovery angle. The robot enters the Rotate substate to match its orientation with that

of the recovery angle and will then enter the Drive_forward state. This series of substates

helps it find its way out of alcoves, entrances, or elevator landings and into hallways.

When in the Drive_forward state, the robot continuously drives forward while

monitoring for registered intersections. This forward, which we use to indicate when and

how a robot drives down a hallway, is distinct from the qualitative drivable trajectory forward

and will be explained in Section  1.3.1 . When it enters a registered intersection, the robot

enters the Make_decision substate to determine what to do. First, it determines which

hallway trajectory it entered the registered intersection from. Hallway trajectories included

in registered intersections maintain a visitation time as an indication of when they were last

visited. The visitation time for the hallway trajectory used to enter the registered intersection

is updated to the current time. Then, it temporally orders all active hallway trajectories

of that registered intersection. If it has visited each hallway trajectory, it selects the oldest

one and takes it. If there are one or more hallway trajectories that it has not taken, it

randomly selects one and takes it. It then updates the visitation time of the selected hallway

trajectory with the current time. Maintaining visitation times allows the robot to explore

the environment in a thorough manner, preferring to visit areas in the map that it has not

seen or that it has seen least recently.

After selecting the hallway trajectory to take, if the hallway trajectory is to the left

or right of the robot’s pose, the robot will enter the Rotate substate to rotate 90◦ to

the left or right, respectively. Thereafter, or in the case that the robot chose to drive

straight through the intersection, it enters the Drive_through_intersection substate

to move out of the intersection and into the hallway. This substate prevents the robot both

33



Figure 1.5. The Wander finite-state machine.

from immediately recognizing it is in a registered intersection and causing it to re-evaluate

what to do. The Drive_through_intersection substate has the robot drive forward

continuously. Once it has traveled more than 2 m and the intersection type has changed,

the robot returns to the Drive_forward substate.

If, while driving forward, the robot reaches a dead-end (which is determined by there

being a back qualitative drivable trajectory but no forward, left, or right qualitative drivable

trajectories), the robot performs a single 360◦ spin to ensure that it truly is at a dead-end

(instead of simply having failed to detect an adjoining hallway). After performing this spin,

it will enter the Make_decision substate, which, if it is still at a dead-end, will enter

the Rotate_recovery substate. This substate will see that there is a single qualitative

drivable trajectory available (back), which it uses as its recovery angle. The robot would

enter the Rotate substate, rotate 180◦, and then return to the Drive_forward substate.

These substates can be modeled as a FSM as shown in Figure  1.5 .

34



Forward Driving Goals

When the robot starts driving down a hallway, it might not be in the middle of the

hallway, and its orientation might not match that of the hallway. Despite starting in a

suboptimal pose, we want the robot to move towards and drive down the middle of the

hallway. To do so, when the robot enters the Drive_forward substate, we take its current

orientation as the forward orientation. This forward orientation will get refined over time

as the robot drives down the hallway to more accurately reflect the same orientation as the

hallway.

While the navigation process provides a set of qualitative drivable trajectories, due to

the suboptimal starting pose of the robot, there may not be a qualitative drivable trajectory

associated with the forward orientation. Therefore, we pass the forward orientation and

a cone angle to the navigation process, ask it to find all maximal drivable trajectories within

that cone and return the median one as the median drivable trajectory. Initially, the cone

angle is ±15◦ from the forward orientation. If no drivable trajectories are found within

the cone, this process is repeated with a cone angle of ±30◦ and then ±45◦. When drivable

trajectories are found within the cone, the median drivable trajectory is used as the forward

driving goal.

This gets the robot moving towards the middle of the hallway and having its orientation

more closely reflect that of the hallway. As it nears this first driving goal, these steps are

repeated, but only up to a window of ±30◦. After nearing its second driving goal, the robot

is typically in the middle of the hallway and has the same approximate orientation as the

hallway. For all remaining forward driving goals after this point, only a window of ±15◦

is used. Decreasing the maximum possible window after navigation to the first and second

driving goals is done to avoid forward driving goals that lead to undesirable behavior. As

the robot drives down a hallway, there may be alcoves on the left or right. If a wide cone angle

is used, drivable trajectories can be within the alcove and the median drivable trajectory that

is returned from the navigation process can cause the robot to veer off from the center of the

hallway. In the worst case, it can drive into the alcove, have no qualitative direction forward,

and think it has arrived at a dead-end. Alternatively, if instead of there being an alcove,

35



there is a hallway, the robot can inadvertently drive around a corner (without realizing it)

and still think it is driving forward. See Figure  1.6 for an illustration of this entire process.

Earlier, we stated that the forward orientation is updated over time to more accurately

reflect the same orientation as the hallway. At first blush, it may seem logical to always use

the robot’s current orientation as the forward orientation. However, this fails under the

following scenario. As the robot drives down a hallway, obstacles may appear in front of it

(e.g., people walking and/or sometimes stopping in front of it—whether unintentionally or

intentionally—to see how the robot will react). Standard local path planners handle these

types of unexpected obstacles by navigating around them. As the robot is driving around

such an obstacle, its orientation may change significantly such that it no longer matches

that of the hallway and in some cases can be nearly perpendicular to the hallway. If, at this

moment, the robot needed to update its driving goal, and used its current orientation as

the forward orientation, the navigation process could either determine that there were no

drivable trajectories or return a drivable trajectory that would move the robot in a direction

it should not go. Either could derail the robot from properly driving down the hallway.

To handle this case, once the robot has moved 2 m from its starting point, we compute the

angle from its starting point when it began driving down to the hallway to its current position

and use this as the forward orientation. This gives a much more accurate approximation

of the orientation of the hallway and makes the forward orientation robust to the situation

described above.

There is one additional mechanism we employ to help the robot drive forward around

obstacles but we will postpone that discussion until Section  1.3.4 as it makes more sense in

that context.

Person Detection and Tracking

The ultimate goal of the Wander state is to locate a person to approach. Therefore,

while the robot is navigating through the environment, it uses the Axis camera and 3D

LiDAR to continuously detect and track people in that environment.

36



Figure 1.6. Example of how the robot determines a forward driving goal
despite starting with a suboptimal pose. The robot is 1 m from the wall
and its orientation is ≈45◦ off from that of the hallway. The transparent red
cone indicates that the navigation process was unable to find any drivable
trajectories using a cone angle of ±15◦ from the forward orientation. The
transparent blue cone indicates that the navigation process was able to find a
drivable trajectory using a cone angle of ±30◦ and thus a cone angle of ±45◦

is not required. The median drivable trajectory that the navigation process
returned is used as a forward driving goal (labeled “Driving Goal 1”). Upon
approaching that driving goal, the robot repeats this process, but only up to a
cone angle of ±30◦ if necessary, and the yellow arrow labeled “Driving Goal 2”
will be its second forward driving goal. This process incrementally moves the
robot to the center of the hallway and changes its orientation to more closely
match that of the hallway.

37



YOLOv3, a real time object-detection system, is used to detect people. It can detect

multiple objects of different classes and provide their spatial location via bounding boxes.

These boxes are used to determine the location of people in the quantitative map.

The camera’s horizontal field of view angle and resolution are known. Each pixel in the

camera can be mapped to a particular angle relative to the position of the camera. These

angles can be used to extract the distance of the detected object from the LiDAR data.

Because bounding boxes from object detectors are imperfect, and because standard object

detectors localize detections with boxes even though the shape of most natural objects (e.g.,

humans) is not rectangular, some of the LiDAR points will shoot beyond the object and hit

a more distant object or wall. Instead of taking the average of these points, we keep the

closest one, which represents the nearest part of the detected person. By knowing the pose

of the robot, camera, and LiDAR, we can determine the precise position of that object in

the quantitative map.

These person detections, along with their quantitative map coordinates, are fed into a

detection-based tracker. Typically, a detection-based tracker combines bounding boxes from

adjacent image frames into tracks if their pixel coordinates sufficiently overlap. However,

in our case, this method is unsuitable because the robot is constantly moving. Therefore,

instead of combining detections that occupy the same spatial region in the camera’s field of

view, we combine detections that occupy/overlap the same location in the quantitative map.

In this way, if the robot moves or rotates, the moving field of view does not affect the ability

of the tracker to accurately piece together detections into tracks.

For all existing tracks, we compute the Euclidean distance from the last known location to

each new detection. These distances constitute the cost to pair the track with the detection.

We use the Hungarian algorithm to minimize the cost across all pairings of tracks with new

detections and find the optimal pairing. We perform a sanity check to make sure that no

pairings are unreasonable. We first determine the walking speed of the person, by computing

how far they have traveled since the last detection and dividing that by the amount of time

that has elapsed since then. If the walking speed is >2.5 m/s, we break the track-detection

pairing and the detection becomes a new track. All pairings that meet this threshold are

combined into a single track. Because detectors can be noisy and imperfect, the tracker

38



employs forward projection on all tracks for up to 0.5 s to compensate for missed detections.

Any tracks that go 0.5 s without an additional detection are pruned.

Tracks are classified based on the length of time they have been active and the average

walking speed of the person. Once a track is ≥1.5 s long, the average walking speed is

computed over the previous 1.5 s. The person’s walking direction is determined by whether

the most recent location is closer to the robot than the location ≈1.5 s ago. If the most recent

location is closer by more than 0.3 m/s, the person is considered approaching the robot. If the

most recent location is further by more than 0.3 m/s, the person is considered walking away.

Otherwise, the person is considered stationary. Tracks that are <1.5 s long are considered

as having just begun and are thus ignored as part of any decision making on the part of the

robot. Sample outputs of each of these four situations are shown in Figure  1.7 .

Tracks that are classified as stationary or approaching the robot are considered “ap-

proachable.” When such occurs, the robot transitions to the Approach_person state.

1.3.2 Approach_person

Once an approachable person is successfully located, the system enters the Approach_per-

son state to introduce itself to the person, drive up to them, and face them just as a human

would. Using the person’s location in the quantitative map, the robot computes a driving

goal that is 0.8 m from the person (in a direct path from the robot to the person) with a

pose that is facing the person, and begins driving there. If the person is approaching the

robot, once they are within 7 m, the robot will hail them and ask them for help. When the

robot is ≤2 m from the person, it will introduce itself to initiate the conversation.

Throughout this process, the person’s location in the quantitative map is being monitored

and updated, and new potential driving-goal locations are being computed. If any of these

are ≥0.5 m from the previous driving goal, the robot updates its driving goal. This allows

the robot to approach the person in a closed-loop fashion. If instead of stopping, the person

chooses to walk up to the robot, once they are within 0.8 m of the robot, the robot will

immediately stop and consider this as having successfully approached the person. It will

continue the process of monitoring and updating the driving goal until it either reaches the

39



Figure 1.7. Approachable person detector output. Tracks that have just
begun and whose walk rate/polarity are still being determined are colored
orange. Tracks that are walking away are colored blue. Tracks that meet the
criteria for being either stationary or approaching the robot, are colored green.
Near the bottom of each bounding box, the person’s distance from the robot is
displayed on the left and their walking speed is displayed on the right. Positive
implies approaching the robot; negative implies walking away.

40



person, they leave the field of view (e.g., enter a room), or begin to walk away. If either of the

latter two scenarios occur, the robot will begin this entire process over with the next-closest

approachable person. If there are none present, it returns to the Wander state.

1.3.3 Hold_conversation

Once the robot approaches the person, it enters the Hold_conversation state whose

objective is to construct a plan of how to navigate to a specific destination by engaging

in dialogue with the person. This plan is represented as a list of navigational actions that

can be executed by the robot as commands. If the person were to formally communicate

the plan to the robot, this task would be trivial. What makes this nontrivial is that the

communication is done informally through spoken natural language.

Inferring a plan from spoken dialogue with a person presents several challenges. First,

people often ramble and speak incoherently. Second, Google’s Speech-to-Text API is im-

perfect and sometimes returns incorrect and/or nonsensical results. Third, state-of-the-art

parsers, trained on written text rather than spoken text, create abnormal parse trees that

make extracting relevant and accurate information more difficult.

Although, we use an off-the-shelf speech recognizer and only process the output of that,

our system is robust in light of two crucial differences between spoken and text input. The

first is that spoken input is typically far less grammatical than written text. The second

is that all current speech recognizers, including the one that we use, are far from perfect,

and introduce significant errors in the transcription process. Our system is robust in light of

these two differences whereas a VLN system, which is trained and evaluated only on written

text provided by humans, is not.

Our Hold_conversation behavior does not construct a semantic interpretation from

the parse tree. We use word spotting for a small set of concepts, where each concept can be

lexicalized with wide variety. We use the parse tree as a filter for how these concepts can be

linked together to form a plan. The plan is only a partial representation of what was said,

a sequence of directions and intersections ending in a goal.

41



Table 1.1. Various kinds of actions that can fill plan steps as produced by
Hold_conversation.

Kind Concept English description
dir forward drive forward until a stop condition is encountered

left rotate 90◦ left
right rotate 90◦ right
turn-around rotate 180◦

either left or right depending on availability
int elbow intersection of type elbow

three-way intersection of type three-way
four-way intersection of type four-way
int-L intersection with a left hallway trajectory
int-R intersection with a right hallway trajectory
int-F intersection with a left and/or right hallway trajectory, as well as a forward hallway trajectory
end intersection with a left and/or right hallway trajectory, but noforward hallway trajectory

goal goal-F goal is somewhere up ahead
goal-L goal is somewhere up ahead on the left
goal-R goal is somewhere up ahead on the right
person our next task is to find a person for further directions

42



To overcome these obstacles, we employ the following general approach to plan inference,

i.e., constructing a plan from natural-language dialogue. We maintain a plan that consists

of a sequence of steps, that are filled with actions of various kinds, including directions,

intersections, and goals. Steps in the plan may be unfilled, denoted by �. Initially, the

plan consists of a single unfilled step. The current (partial) plan is used at every dialogue

turn to generate a query to the person. The response is processed in the context of the

current (partial) plan to fill in unfilled steps, potentially add new steps that are either filled

or unfilled, and potentially change or delete steps. This processing takes two forms. One

is a sequence of steps for filling in parts of the plan based on the person’s response. The

other is a set of rewrite rules that update parts of the plan based on the local context in

the plan. If, after processing, the plan contains one or more unfilled steps, a new query is

generated for the person and processing continues. This process continues until the plan

contains no unfilled steps. To prevent an indefinitely long conversation, the length of the

plan is restricted to ten steps. If a plan gets to that length, the robot ends the conversation,

executes those steps, then searches for another person to ask.

The sequence of plan actions must be coherent. The rewrite rules attempt to render plans

coherent. For example, if the plan indicates that the robot eventually reaches an elbow in

the hallway, it would be incoherent for it to drive straight at the elbow. The robot uses

its current knowledge to formulate and pose a query about a missing piece of information.

The person’s response might provide information about one or more steps, or change a step

that was incorrect. Rewrite rules are applied to fill in or modify steps that may not have

been explicitly given but were implied. This process is repeated until a complete plan is

constructed.

Spoken Communication

Our robot converses in real time, adhering to the norm of taking turns while talking and

using common sense to factor in previous utterances into subsequent utterances. Speech

recognition and speech synthesis are mutually exclusive operations so a person’s response is

only processed when they finish speaking.

43



Information Extraction

In the Hold_conversation state, the robot attempts to fill in the steps of a plan with

actions from a natural-language utterance. Our plans are formulated with a certain plan

structure that stipulates that adjacent steps form pairs that constitute commands to the

robot. The first step in a pair must be a direction action. The second step in a pair will be

a stop condition and takes the form of either an intersection action or a goal action. Only

the last step in the plan can be a goal action. All other stop conditions must be intersection

actions. Thus a plan can be though of as a sequence of commands, each command being a

direction for the robot to drive in until the specified stop condition, with the robot ultimately

checking that it has reached the goal. The various actions that can fill plan steps of various

kinds are shown in Table  1.1 .

Prior to any dialogue, the plan is initialized with a single empty step: [�]. In order

to populate the plan, the robot’s first question to the person is ‘Can you tell me how to

navigate to 〈destination〉?’ The steps we use to parse the response and populate the plan

with actions are illustrated in Figure  1.8 . First, the utterance is chunked by splitting it at

key elements such as ‘.’ or ‘then.’ Each chunk is fed into the Stanford Parser. This results

in more accurate parse trees than feeding the whole utterance into the Stanford Parser.

Then, the parse trees are searched for phrases that contain direction keywords (e.g., ‘turn

around,’ ‘left,’ or ‘right’) to insert the corresponding actions into the plan. If no direction

keywords are found, the utterance is searched for any intersection or goal keywords to insert

the corresponding actions into the plan.

Each phrase that contains one of the direction keywords is concatenated with its preceding

and succeeding phrase to provide context for information extraction. Starting with the leaf

node in the parse tree that corresponds to the direction keyword, the tree is searched for the

nearest parent with one of the following POS tags: ADJP, ADVP, CONJP, FRAG, INTJ,

LST, NAC, NP, NX, PP, PRN, PRT, QP, RRC, UCP, VP, WHADJP, WHAVP, WHNP, or

WHPP. The trees corresponding to the left and right siblings of this parent node are used as

the preceding and succeeding phrases, respectively. The preceding phrase is further refined

by searching for the first verb that precedes the direction keyword; if that does not exist,

44



Figure 1.8. Instruction extraction via parsing steps.

45



we search for the first preposition that precedes the direction keyword. All words preceding

the verb or preposition are eliminated from the preceding phrase. If no verb or preposition

is found, no preceding phrase is used. In the event that the direction keyword’s parent has

no left or right siblings, we use the entire tree from the chunk as the concatenated phrase.

Each set of concatenated phrases is searched for the presence of an intersection keyword,

direction and intersection determiners (e.g., ‘first,’ ‘second,’ or ‘last’), and destination verbs

(i.e., ‘be,’ ‘find,’ ‘see’). If a destination verb is present, a goal action is created based on the

direction keyword (i.e., ‘left’ → goal-L, ‘right’ → goal-R, otherwise goal-F). Otherwise, the

direction keyword, direction determiner, intersection keyword, and intersection determiner

are used to populate the plan with corresponding actions. For example, in the right chunk

in Figure  1.8 , it can be inferred from the determiner ‘second’ for the intersection keyword

‘three-way’ that the plan should contain two steps, each with a three-way intersection

action. This also implies that the robot should go straight at the first one and turn right

at the second one. If there were no direction keywords found, the phrase is searched for

intersection or goal keywords that may have been missed, adding in the corresponding plan

actions. The plan actions extracted from each chunk are concatenated to create the final

plan. For a given utterance, this plan must be consistent with plan structure as described

above to ensure proper execution.

1. The first step must be a direction action.

2. The last step must be a goal action.

3. A direction action must always follow an intersection action.

4. Two intersection actions cannot be adjacent.

5. Two direction actions cannot be adjacent (unless the first one is turn-around).

These properties of plan structure allow us to formulate patterns to describe all mini-

mal invalid action sequences. Each such invalid action sequence can be rendered valid by

appropriately adding, deleting, or modifying plan steps. Such plan modification is per-

formed by rewrite rules. For example, consider the plan [forward, left], which implies

that the robot must arrive at an intersection with a left turn. This plan can be rewrit-

ten as [forward,�, left] to indicate that it needs to populate a plan step with an action

that specifies the intersection type at which it will make the left turn. These rewrite rules

46



Table 1.2. Plan rewrite rules. In the following, dir denotes any direction
action, ntadir denotes any direction action except turn-around, int denotes
any intersection action, and goal denotes any goal action. The first matching
rule applies when multiple rules match.

goal  � goal
. . . goal �  . . . goal
� int-L dir . . .  forward int-L dir . . .
� int-R dir . . .  forward int-R dir . . .
int turn-around . . .  turn-around . . .
turn-around int . . .  turn-around forward int . . .
int . . .  � int . . .
. . . forward forward . . .  . . . forward . . .
. . . goal . . .  . . . . . .
. . . elbow int-L . . .  . . . elbow . . .
. . . elbow int-R . . .  . . . elbow . . .
. . . three-way int-L . . .  . . . three-way . . .
. . . three-way int-R . . .  . . . three-way . . .
. . . four-way int-L . . .  . . . four-way . . .
. . . four-way int-R . . .  . . . four-way . . .
. . . ntadir forward . . .  . . . ntadir . . .
. . . ntadir dir . . .  . . . ntadir � dir . . .
. . . int1 int2 . . .  . . . int1 � int2 . . .
. . . int goal . . .  . . . int � goal . . .
. . . dir  . . . dir �
. . . int  . . . int �
. . . elbow forward . . .  . . . elbow . . .
. . . elbow � . . .  . . . elbow either . . .
� forward . . .  forward . . .
� turn-around . . .  turn-around . . .

are repeatedly applied to the plan until it no longer contains any invalid action sequences.

Table  1.2 shows the complete list of plan rewrite rules.

Dialogue

The goal of Hold_conversation is to construct a complete plan, with no unfilled

steps. If the plan is not complete, a query is generated and posed to the person for the

first unfilled step in the plan. Information is extracted from the person’s response to fill the

47



corresponding unfilled step in the plan. The type of the query depends on the pattern in

which the unfilled step occurs. There are two query types: single, which requests a single

piece of information, and open-ended, which gives the person more freedom in their response.

Table  1.3 illustrates the different queries for each pattern and query-type.

If the query-type is single, Hold_conversation looks for the presence of that partic-

ular type of information in the response. After finding it, all words up to it are removed and

the remaining text is parsed in an open-ended fashion. Consider an example:

Robot: Which direction do I start out going?

Person: you start left, then turn right at the end of the hallway

Our parsing method extracts ‘left’ as the answer to the query and then replaces the cor-

responding � in the plan with left. Then it parses ‘then turn right at the end of the

hallway’ in an open-ended manner and inserts the extracted instructions into the plan af-

ter left. If the query-type is open-ended, the response is parsed in the same way as the

response to the robot’s first question. The robot repeatedly poses questions, processes the

respond, and applies rewrite rules until it generates a complete plan with no missing infor-

mation. A complete and consistent plan indicates success and results in a transition to the

Follow_directions state.

If the plan is complete but not consistent, or if no plan could be constructed, then the

plan [right, person] is created and a transition to the Follow_directions state is made.

This short plan causes the robot to rotate away from the person so that they are no longer

in the field of view and will not be redetected as an approachable person. After rotating 90◦

to the right, the robot transitions to the Wander state and will seek out a new person to

ask for directions.

Addressing Corner Cases

To help facilitate a more natural conversation, we have a small amount of code to address

a few corner cases that may arise in spoken conversation. If a response to a query is not heard

within 5 s, the robot states this fact and repeats its query. If the robot is not able to extract

any useful information from a response, it indicates such and may provide some information

48



about what it does understand (e.g., directions and intersections). If the robot goes two

turns without the plan changing (e.g., it fails to understand the person’s instructions or

it hears no response), the robot ends the conversation and carries out whatever portion of

the plan is usable. If the person indicated the robot misunderstood their last utterance, the

robot backs up one step, using the previous iteration of the plan and its corresponding query.

If the person indicates that they would like to start over, the robot resets the plan and asks

its original query. Some sample conversations from our trials are shown in Table  1.4 .

1.3.4 Follow_directions

With a successfully extracted plan, the robot enters the Follow_directions state.

The plan includes direction, intersection, and goal actions. Direction and intersection actions

are grounded in the environment by the navigation process described in Section  1.2.3 . The

goal action is a transition condition to Follow_directions that it has completed the plan

provided by the person and should transition to the next state.

Plan Preprocessing

In Section  1.3.1 , we described the Drive_through_intersection substate and its

purpose in ensuring the robot exited the registered intersection before being able to detect

another registered intersection and re-evaluate what to do. That behavior is important to

Follow_directions as well for a similar reason: if the robot entered a registered in-

tersection, rotated in the direction specified in the plan, and immediately began looking

for the subsequent intersection, it could mistakenly think it had reached it, despite still

being in the same registered intersection. We want the robot to completely exit the cur-

rent registered intersection before beginning to look for the subsequent one. To facilitate

this behavior, Follow_directions takes the plan received from Hold_conversation,

searches for all but the last instance of the pattern [int, dir], and inserts the following two

actions after the direction action: [forward-through-int, forward]. As an example, the

plan [forward, elbow, left, elbow, left, goal-F] would become

49



Table 1.3. Query templates for plan patterns. The notation 〈nth〉 refers to a
direction determiner generated based on how many direction concepts of the
same type appear prior to dir in the current partial plan. The notation 〈jth〉
refers to an intersection determiner generated based on how many intersection
concepts of the same type appear prior to int in the current partial plan. The
first matching template applies when multiple templates match.

Pattern Query-type Query
� open-ended ‘Could you tell me how to navigate to

〈destination〉?’
� int . . . single ‘Which direction do I start out go-

ing?’
� goal single ‘Which direction do I start out go-

ing?’
turn-around � . . . open-ended ‘What do I do after turning around?’
dir � . . . open-ended ‘What do I do after starting to go

dir?’
turn-around dir � . . . open-ended ‘What do I do after turning around

and going dir?’
. . . left . . . left � . . . open-ended ‘What do I do after I turn left (this

being the 〈nth〉 left I take)?’
. . . left � . . . open-ended ‘What do I do after I turn left?’
. . . right . . . right � . . . open-ended ‘What do I do after I turn right (this

being the 〈nth〉 right I take)?’
. . . right � . . . open-ended ‘What do I do after I turn right?’
. . . elbow dir � . . . open-ended ‘Where do I go after the elbow (this

being the 〈jth〉 elbow)?’
. . . int forward � . . . open-ended ‘What do I do after going through the

〈jth〉 int?’
. . . int � open-ended ‘What do I do after getting to the

〈jth〉 int?’
. . . int1 � int2 . . . single ‘When I am at int1, which direction

will I go to get to int2?’

50



Table 1.4. Sample conversations from our trials.
Speaker Utterance
Robot: Could you tell me how to navigate to 345?
Person: yeah, turn around go to the end of the hall and you’ll take a lot to the

bathroom.
Robot: What do I do after getting to the first end of the hall?
Person: you take a left at the bath.
Robot: What do I do after I turn left?
Person: app
Robot: I did not understand that. What do I do after I turn left?
Person: you go to the end of the hall.
Robot: What do I do after getting to the second end of the hall?
Person: turn right.
Robot: What do I do after I turn right?
Person: it’ll be the third door on the left.
Robot: Thanks for your help. Have a great day!
Plan: [turn-around, forward, end, left, end, right, goal-L]

Robot: Could you tell me how to navigate to 276?
Person: yeah, turn around then turn right then your first left and then the door

will be on your left.
Robot: Thanks for your help. Have a great day!
Plan: [turn-around, forward, int-R, right, int-L, left, goal-L]

Robot: Could you tell me how to navigate to 1273?
Person: yes, turn right.
Robot: What do I do after I turn right?
Person:
Robot: I did not hear you. What do I do after I turn right?
Person: and then turn right.
Robot: What do I do after I turn right (this being the second right I take)?
Person: find room 1273.
Robot: Thanks for your help. Have a great day!
Plan: [forward, int-R, right, int-R, right, goal-F]

51



[forward, elbow, left, forward-through-int,

forward, elbow, left, goal-F].

Follow_directions Substates

The Follow_directions state has five substates: 1. Make_decision, 2. Drive_for-

ward, 3. Rotate, 4. Drive_through_intersection, and 5. Complete. Follow_di-

rections maintains a step counter, indicating the current step to execute. It enters the

Make_decision substate first, initializing the step counter to the first step in the plan.

When the current action is forward, it will enter the Drive_forward substate wherein

it drives forward until the subsequent intersection in the plan is found. In the example

[forward, elbow, left, . . .] the robot would drive forward until it detects an elbow inter-

section. As noted in Table  1.1 , some of the intersection keywords are less specific and only

contain an indication of what hallway trajectories one would expect to find at the specified

intersection. For example, int-L would specify a registered intersection of any type that

includes a hallway trajectory labeled with the qualitative direction left.

Once the specified intersection has been detected, the robot will return to the Make_de-

cision substate to determine what it needs to do next. It the next step in the plan contains

a direction action that requires rotation (i.e., left, right, or turn-around), the robot

will enter the Rotate substate. In this substate, the robot will rotate in-place by a

specified amount according to the direction specified in the plan: left → 90◦, right →

−90◦, and turn-around → 180◦. After rotating, the robot will return to the Make_de-

cision substate. If the subsequent step is forward-through-int, the robot enters the

Drive_through_intersection substate. As before, it requires that the intersection

type change and the robot travel at least 2 m from where it rotated before it exits this

substate and returns to the Make_decision substate.

Before each of the substates Drive_forward, Rotate, and Drive_through_in-

tersection finish performing their task and return to the Make_decision substate, they

increment the step counter accordingly. Eventually, the step counter will reach the goal

action. When this occurs, Make_decision transitions to the Complete substate. This

52



Figure 1.9. The Follow_directions finite-state machine. Transition con-
ditions in Courier represent the next step in the plan. All others represent
transition conditions derived from sensor data.

is indicative of Follow_directions having successfully executed the plan and the robot

will transition to the next state. When the goal action is goal-F, goal-L, or goal-R, the

robot has reached the same hallway as the goal and must look for it. Thus the robot will

transition to the Navigate_door state. When the goal action is person, the robot has

carried out as many steps as the previous person was able to provide and must now seek out

a new person to ask for instructions. Thus the robot will transition to the Wander state.

A diagram of this FSM is shown in Figure  1.9 .

Forward Driving Goals

When approaching a person, the robot may have moved to one side of the hallway and

be in a suboptimal pose (similar to that described in Section  1.3.1 ). Additionally, because

the conversation will have taken some amount of time, the person may have materialized as

an obstacle in the quantitative map, directly in front of the robot. If the first action in the

plan is forward, the robot may be unable to do so, even when using the technique described

in Section  1.3.1 , where we search with increasingly wider cone angles in the hopes of finding

53



Figure 1.10. Example of how the robot determines a forward driving goal
when the person it just conversed with has materialized as an obstacle in
the quantitative map. The two transparent red cones coming from the robot
indicate that no drivable trajectories are free at a cone angle of either ±15◦

or ±30◦. (To prevent this figure from becoming too cluttered, we ignore the
cone angle of ±45◦). The two transparent red cones coming from the point
that is 0.5 meters to the left of the robot indicate that there are no drivable
trajectories at either ±15◦ or ±30◦. The blue cone coming from the point that
is 0.5 meters to the right of the robot indicates that a drivable trajectory was
found and it is used as the forward driving goal.

a median drivable trajectory. If no drivable trajectories are available from the robot’s pose

(which is often the case because of the robot’s proximity to the person), we repeat the same

search for a median drivable trajectory, but use positions that are horizontal to the robot’s

pose. Starting at the robot’s current pose, we incrementally search left then right at distances

of ±0.5 m, ±1 m, and ±1.5 m, with the expectation that at some horizontal position, we

will be far enough away from the person to find a median drivable trajectory. We then use

this median drivable trajectory as our forward driving goal. This helps to move us around

the person and drive in the direction indicated. Note that this mechanism, also present in

the Wander state, is the one we alluded to in Section  1.3.1 . Figure  1.10 provides a visual

explanation of this process.

While in the Drive_forward substate, the robot will continue driving forward until

it either detects the intersection specified in the plan or reaches the end of the hallway. If

54



(a) Raw LiDAR points. (b) Extracted line segments. (c) Merged line segments.

Figure 1.11. Process for extracting walls from LiDAR data.

it reaches the end of the hallway without detecting the desired intersection, the robot will

perform a single 360◦ spin to ensure that it truly is at a dead-end. If, after performing this

spin, it has not detected the specified intersection, it indicates failure to carry out the plan

and will return to the Wander state.

1.3.5 Navigate_door

Once the robot completes execution of the plan with a goal other than person, it will be

located in the hallway containing the desired door and transitions to the Navigate_door

state to conduct a systematic search to find the door. The search procedure depends on

accurate door localization and common-sense reasoning. We leverage several key character-

istics of our environment: doors are all of a similar shape, each door has a door tag displaying

the room number, and room numbers are consecutive odd on one side of the hallway and

consecutive even on the other. This lets the robot inspect the doors in a logical fashion.

To detect doors, doorways, and elevators, we rely on four standard pieces of sensor

information from the robot: 1. the camera image, 2. the raw LiDAR data, 3. the quantitative

map, and 4. the robot pose. We use the LiDAR data to first determine regions in the image

that can contain doors, then search these regions for door proposals, and ultimately assign

a confidence score to each proposal. Because the LiDAR data provides information about

obstacle distance relative to the robot, we can use the robot’s position in the quantitative

map to compute absolute locations for the door proposals.

55



Detecting Walls

We rely on 3D information from the LiDAR data to determine the walls. This data is

represented as a collection of 2D (x, y) coordinates that represent the location of obstacles

in the environment surrounding the robot. An illustration of such data can be seen in

Figure  1.11a . We apply the Douglas-Peucker algorithm [  23 ] to reduce the number of these

points and establish line segments that can correspond to walls in the environment. We

define each line segment as the 4-tuple (x1, y1, x2, y2) where (x1, y1) and (x2, y2) correspond

to a pair of endpoints. The resulting line segments can be seen in Figure  1.11b . Due to

occlusion or recession, this algorithm can produce disjoint line segments that correspond to

the same wall. We employ two stages of clustering to merge these disjoint line segments into

walls.

Because line segments that correspond to the same wall must share the same orientation,

we cluster the line segments with hierarchical clustering based on their angles. We refer to

these clusters as orientation clusters. To disambiguate line segments belonging to parallel

but distinct walls, we perform a second stage of clustering. For each line segment within an

orientation cluster, we rotate it by the negative of its angle so that the resulting line segment

is parallel to the x-axis in a standard Cartesian coordinate system. The transformation is

shown in Equation  1.1 .

x1 x2

y1 y2

 =

cos −θ − sin −θ

sin −θ cos −θ


x1 x2

y1 y2

 (1.1)

Now, for each resulting line segment (x1, y1, x2, y2), its distance to the x-axis is equal to

y1(= y2). Thus, we cluster all of these line segments based on this distance to distinguish

between parallel walls. At the end of this step, our final clusters consist of line segments that

belong to the same wall. For each of these clusters, we merge all of the line segments into

a single line segment (x̂1, ŷ1, x̂2, ŷ2) by taking the two most extreme endpoints of the line

segments. Each of these merged line segments represents a wall in the robot’s immediate

environment. The final result can be seen in Figure  1.11c .

56



Now that we have the locations of the walls, we can create regions in the image that

could contain doors. Because most doors, doorways, and elevators have a standard height

of 2.2 m, we desire regions that are bounded above by this height and below by the ground

level, 0 m. Knowing the camera intrinsics, K, and extrinsics, R and t, we can apply the

transformation in Equation  1.2 to project the wall line segments onto the image at these

height levels by setting h appropriately.


u1 u2

v1 v2

1 1

 = K
[
R t

]


x̂1 x̂2

ŷ1 ŷ2

h h

1 1


(1.2)

Because we take real data from a moving robot as input, this projection might not always

result in accurate pixel coordinates, which can cause complications when we search for edges

that correspond to the tops of doors. Therefore, we incorporate a vertical distance tolerance

of ±15 cm for the top boundary. A visualization of the boundaries and their tolerances can

be seen in Figure  1.12 . Each pair of a top and bottom boundary is considered as a distinct

wall region.

Generating Door Proposals

We use edge detection as a basis for generating door proposals, incorporating mechanisms

that are robust to noisy edge detections which are prevalent in images obtained from a

moving robot. We employ LSD (Line Segment Detector) to detect line segments in the image

without any parameter tuning. Each line segment is represented as the 4-tuple (u1, v1, u2, v2).

Inspired by Shi et al., we quantize the line segments into several bins depending on their

orientation. We do this to isolate the line segments that can potentially belong to a door,

specifically the two posts and the top. Therefore, we keep any vertical line segments as

possible door posts. Then, we separate any lines in the top half of the image into three bins

based on whether the line segment has a positive slope, negative slope, or a slope close to

zero, respectively. An example result is shown in Figure  1.13 .

57



Figure 1.12. Projected walls with region boundaries. Green lines are the
tops and bottom of walls projected at heights of 0 m and 2.2 m respectively,
and the orange lines are the ±15 cm tolerances for the top.

58



Figure 1.13. Line segment detections, color coded by their orientation. Green
lines are horizontal. Vertical lines are teal. Blue lines have a downward slope.
Red lines have an upward slope.

59



Given the detected edges and the projected wall regions, we can search for possible doors

in the environment. We iterate over each wall region to find doors in that region. First,

any line segments, of any orientation, that lie outside of the horizontal range defined by the

wall region are removed from consideration. Then, we iterate over pairs of vertical lines to

generate door proposals. However, we only consider lines that are within a certain distance

range of each other, approximately equivalent to the width of doors. We approximately

localize the vertical lines in 3D space by projecting the raw LiDAR data to image coordinates,

by Equation  1.2 , and then computing the closest LiDAR point to each vertical line. That

LiDAR point’s 3D location is used as the approximate location for the corresponding vertical

line. Then we cluster the vertical lines based on their 3D locations to create a reduced set

of possible door posts represented as (u1, v1, u2, v2). Because u1 = u2 for vertical lines, we

compute the average u1 within a cluster to compute u1 and u2. Then we use u1 to find v1

and v2 by computing the corresponding points on the top and bottom boundaries of the

wall region, respectively. This creates a smaller set of lines that extend from the bottom

boundary to the top boundary in the wall region on the image. Using these 3D locations of

the lines in this reduced set, we compute a pairwise distance between them and only keep

pairs whose distance is within the range [0.5 m, 1.25 m].

Scoring proposals

We introduce a metric to determine how confident we are that a given pair of vertical

lines corresponds to a door or elevator as some proposals could correspond to signs, posters,

or wall structures. Akin to Del Pero et al., we measure how much each proposal explains,

or covers, the detected line segments in the image by computing the coverage of the vertical

lines and top bar (the segment connecting the top points of the vertical lines) of the proposal.

Multiple line segments may correspond to the same component of the door proposal, but

could be disjoint and/or overlap due to noise or occlusion. First, we isolate the detected line

segments that could correspond to the top of the door, by only retaining segments whose

orientation matches the orientation of the top boundary of the wall region as well as lie

within the top boundary’s vertical tolerance. Then, using the same approach as for the

60



vertical lines, we compute the approximate 3D location for each endpoint of each of the

remaining line segments, and only consider line segments whose endpoints are within the

horizontal range: 0.15 m left of the left vertical line and 0.15 m right of the right vertical

line.

With these remaining segments, we can compute what fraction, ctop, they cover of the

top horizontal area between the two vertical line segments. We take the same approach to

the vertical line segments themselves. For each of the two vertical line segments, we find

all of the original line segments that are within 0.2 m and compute how much they cover

those line segments vertically, resulting in cleft and cright. These three values are aggregated

to compute a score for each door as indicated in Equation  1.3 .

score = cleft + cright + ctop

3 (1.3)

Rather than have binary decisions about whether or not a proposal is a door, a confidence

score can allow an online system to be adjusted to a desired false-positive rate. In our system,

we use a confidence score threshold of 0.75, only considering detections with a score greater

than or equal to this.

Localizing detections

Using the 3D locations of the door posts, we describe the location of the door as the tuple

d = (xmin, ymin, xmax, ymax) where min and max correspond to the closer and further door

posts respectively. This allows for driving to both sides of the door as the door tag might be

on either side. Because this process is performed in an online fashion on continuous image

frames received from the camera, the same door can be detected multiple times at different

time steps. Therefore, detections from different time steps are hierarchically clustered by

the Euclidean distances between their center locations. For accurate clustering, we rely on

additional information from the LiDAR data to accurately cluster door detections. For each

door bounding box, we find all the 3D points whose corresponding pixel coordinates are

within its bounds. We then take the median of these 3D points as the door detection’s

61



(a) The close side of a door. (b) The far side of a door.

Figure 1.14. Driving-goal positions for a door.

center location. This allows for computing accurate door coordinates and filtering out false

positives for driving-goal generation.

Driving-Goal Generation

For each of the resulting clusters, we compute the average locations of the door posts to

create the final driving goals for that door. Only clusters whose size is >3 are considered.

These clusters are classified as being on the right side of the hallway or the left side based

on a comparison between the robot’s trajectory down the hallway and the door locations

(relative to the beginning of the hallway). Within these classifications, the clusters are sorted

by increasing distance relative to the beginning of the hallway. This allows for driving to a

specific door. For example, driving to the third door on the left can be achieved by retrieving

the coordinates of the door whose index is two, by zero-indexing, among doors classified as

being on the left side of the hallway. The robot uses the coordinates of the door posts to

create two driving goals so that it can position itself appropriately to read the door tag.

Figure  1.14 illustrates the two desired positions. The door’s angle θ = tan−1 ymax−ymin
xmax−xmin

is

computed and used to determine a driving goal that is 1 m perpendicular to the door and

with a target orientation orientation matching that of the door. Upon arrival at this driving

goal, the robot pans its camera in the direction of the door to read its door tag with Google’s

Optical Character Recognition API.

62



Common-Sense Navigation

Generally, the robot will drive straight down the center of the hallway, using the forward

command, and only drive up to a door once it is within 3 m. This behavior results in a good

view of doors up ahead. If the index and/or classification of the desired door is unknown,

common-sense knowledge about room labeling in an office environment is leveraged to guess

what they are, based on the first door tag that is read. This can enable potentially more

efficient goal-finding than exhaustive search alone. This common-sense knowledge is based

on assumptions about doors being labeled in increasing or decreasing order, both numerically

and alphabetically (in the case of a letter suffix), and even and odd doors being on different

sides of the hallway. Given the door tag of the first door the robot inspects, it will use parity

to determine what side the goal door is on. If the goal door is on the same side, it will

compute the expected index of the goal door and drive down the hallway until it detects

that door. Otherwise, it will start with the first door on the other side of the hallway. For

example, if the desired door is room 335 and the first door tag read is 331, then room 335

will be two doors down on the same side of the hallway. Alternatively, if the first door tag

is 330, only doors on the other side of the hallway will be inspected.

A number of mechanisms are incorporated to allow the robot to find the goal door in

spite of any of these assumptions being invalidated. Firstly, at any given point, all the door

tags read so far are used to determine whether or not the goal door was missed. This is done

using the range and trend (whether they are increasing or decreasing) of the door values to

check whether the robot should have come across the door in its path. If the door has not

been missed, the robot will continue to inspect doors on the current side of the hallway until

it reaches the end of the hallway. In both of these cases, the robot returns to the start of the

hallway and begins an exhaustive search of all doors in the hallway to find the goal door.

If the robot still has not found the goal door after this exhaustive search, it returns to the

Wander state.

Although object detection networks like YOLO and Faster-RCNN [ 26 ] are able to detect

people well, and as such we use YOLOv3 in our Approach_person behavior, they do not

detect doors well. To demonstrate that our method of door detection is more reliable, we ran

63



Table 1.5. YOLO vs. our door-detection method
doors approached total doors success rate false positives

YOLO 20 41 48.8% 1
ours 36 41 87.8% 2

a set of experiments with the Navigate_door behavior. We ran this behavior in isolation

in four hallways of EE and recorded the number of doors it successfully drove up to. Then,

inside of Navigate_door we replaced our door-detection algorithm with a YOLO model

trained on a dataset of doors [ 27 ] and reran the same set of experiments. We also recorded

the number of false positives, where the robot drove up to a location that did not have a

door. The results in Table  1.5 show that our approach allows the robot to discover a much

larger percentage of doors, 87.8% vs. 48.8%, than when YOLO is used to detect the doors.

1.4 System Evaluation

Our system design was developed and validated in three buildings (EE, MSEE, and

PHYS). In order to evaluate the generalizability and robustness of our system’s performance,

we performed 52 trials in 4 distinct floors in each of three new buildings (HAMP, KNOY, and

ME) it had not been deployed in before. With three exceptions described below, we froze

our software after development before the evaluation trials. For these trials, we recruited 13

volunteers to provide directions to the robot.  

3
 Volunteers were untrained university students

who had never interacted with the robot before nor were aware of what it understood or

was capable of. Each volunteer assisted with 1–6 trials. We demonstrate in our trials that

this method is able to successfully navigate in the real world using instructions obtained via

interaction between a real robot and untrained humans who speak freely and have not been

coached to use a specific language subset.
3

 ↑ Our original intent was to not have any volunteers but instead to have the Wander state find people
naturally occurring in the environment to model real visitors soliciting help in finding their way from locals.
COVID-19 prevented us from doing this.

64



1.4.1 Experimental Setup

For each trial, the robot was placed on a floor of one of the three new buildings and

given a random door number as the goal in the form of a string. This was done by speaking

a command to the robot in the form of “Husky, find X”, where X is a room number. We

supported giving any command that started with the word “Husky”, included the word “find”

anywhere in the command and contained a word that met the following regular expression:

\s[a-zA-Z]{0,1}[0-9]{1,4}[a-zA-Z]{0,1}\s

which we would use as the goal door string. For example, we supported any of the following

commands: “Husky, find room X”, “Husky, can you find X”, or “Husky, will you please go and

find a room for me. It is X.” For each trial, the robot was placed on a floor of one of the three

new buildings and given a random door number as the goal. The volunteer was instructed to

stand in a location where the robot would be allowed to Wander for some time before seeing

them. If the robot re-entered the Wander state at any point in the trial, the volunteer was

instructed to relocate to a position that the robot would come across after being allowed to

wander for some time. A trial was considered a complete success if the robot reached the

correct goal door and read its door tag. Otherwise, it was considered a failure. Trials that

were manually terminated early were also considered a failure. We manually terminated a

trial if the robot got stuck and could not move after manual intervention. We also manually

terminated a trial if the Follow_directions or Navigate_door behaviors could not

succeed within two attempts. For the Follow_directions behavior, an attempt was

when the robot drove past the intersection it was supposed to turn at, but did not detect

it. For the Navigate_door behavior, an attempt was when the robot drove past the goal

door but did not detect it. A trial was considered a complete success if the robot reached the

correct goal door and read its door tag. A trial was concluded and subsequently declared a

failure if the robot did not reach the goal after several attempts. In some trials, some minor

manual intervention was used to partially rotate the robot or prevent it from crashing into

a wall to allow the trial to continue. 

4
 

4
 ↑ An online appendix at  https://github.com/qobi/amazing-race contains the floor plan of each building

and describes each trial in detail, including the building, floor, volunteer, goal, a transcript of the dialog, the

65

https://github.com/qobi/amazing-race


Table 1.6. Trial results.
Building Successes Total Success rate
HAMP 11 17 64.7%
KNOY 13 16 81.3%
ME 16 19 84.2%
all 40 52 76.9%

Table 1.7. Behavior success rate.
Behavior Total instances Average instances per trial Success rate
Wander 390 7.5 0.99
Approach_person 385 7.4 0.47
Hold_conversation 183 3.5 0.86
Follow_directions 182 3.5 0.68
Navigate_door 99 1.9 0.40

66



1.4.2 Trial Results

The number of successful trials is shown in Table  1.6 on a per-building basis. Overall,

the system was able to successfully reach the given goal in 76.9% of the trials. Of the 12

floor plans tested, the robot was able to successfully find the goal at least twice on every

floor and usually three or more times (8/12 floors). This result highlights the ability of our

system to generalize to new floor plans. We provide an online appendix which shows the

environmental complexity of these floor plans as well as the diversity of natural-language

dialogue that the robot is able to handle. It shows how distinct the floor plans of the test

buildings are from the buildings that our system was developed in.

One of the characteristics of our system is its ability to recover from individual behavior

failures. Of the 52 trials, only 3 (≈5.7%) succeeded without any behavior failures. When

failures do occur, either from shortcomings of the individual behaviors or incorrect instruc-

tions from volunteers, the robot is able to recover and make multiple attempts at its task.

Table  1.7 shows the success rate of each behavior. Despite there being multiple instances

of each behavior due to failure, the robot is ultimately able to reach the goal door with the

subsequent recovery from the individual behavior failures. This ability effectively increased

the success rate by a factor of 13.3. Our system handles a very comprehensive space of nat-

ural language, as well as a comprehensive space of visual complexity, both in terms of image

and SLAM data. Figure  1.15 shows the complex and diverse floor plans that our system

was developed and tested in. Figure  1.16 show examples of the visual complexity our robot

is able to handle. Table  1.8 show some examples of the complex natural language dialogues

that our robot was able to handle.

We assessed how often the robot was able to perform the following three behaviors suc-

cessfully in succession: Hold_conversation, Follow_directions, and Navigate_door.

We computed three metrics in Table  1.9 . We first measured how often the robot produced

a correct plan from dialogue. We then measured how often the robot produced a correct

plan from dialogue and executed it correctly. Finally, we measured how often the robot

plan extracted, the map constructed with the route taken, indication of success or failure, and a description
of the failure reason upon failure. The appendix also includes three videos depicting three complete trials,
one in each building.

67



floor EE MSEE PHYS HAMP KNOY ME

3

2

1

0

Figure 1.15. The floor plans of each building. Our training set consists of
EE, MSEE, and PHYS. Our test set consists of HAMP, KNOY, and ME.
Areas of the map that are green represent areas that the robot can drive in.
Areas of the map that are red represent areas that the robot cannot drive in.
These include carpeted areas and hallways that are narrower than the robot’s
circumscribed radius.

68



Table 1.8. Sample conversations from our trials.
Speaker Utterance
Robot: Could you tell me how to navigate to 1067?
Person: turn left and go straight until the end of the hallway, then turn right

and go straight to the end of the hallway and then
Robot: What do I do after getting to the second end of the hall?
Person: and then
Robot: I did not understand that.
Robot: I understand verbal directions, like turn-around and turn left. I under-

stand intersections like an elbow or end of hallway. I understand words
like goal or destination.

Robot: You can give me instructions in small chunks or all at once. If I misun-
derstand something, you can tell me that my interpretation was wrong
or incorrect and I will back up one step. If I totally misunderstand,
you can ask me to start over.

Robot: What do I do after getting to the second end of the hall?
Person: start over
Robot: Sorry about that. Let’s start over.
Robot: Could you tell me how to navigate to 1067?
Person: turn left then go to the end of the hallway then turn left again and go

to the end of the hallway and then turn right and keep going straight
until you see the door, which is on the left.

Robot: Thanks for your help. Have a great day!
Plan: [forward, int-L, left, end, left, end, right, goal-L]
Robot: Could you tell me how to navigate to 453?
Person: turn around go forward and the door will be directly in front of you.
Robot: What do I do after turning around and going forward?
Person: the door will be in front of you.
Robot: I did not understand that.
Robot: I understand verbal directions, like turn-around and turn left. I under-

stand intersections like an elbow or end of hallway. I understand words
like goal or destination.

Robot: You can give me instructions in small chunks or all at once. If I misun-
derstand something, you can tell me that my interpretation was wrong
or incorrect and I will back up one step. If I totally misunderstand,
you can ask me to start over.

Robot: What do I do after turning around and going forward?
Person: the door will be stopped at the inn at the intersection and the door

will be there.
Robot: Thanks for your help. Have a great day!
Plan: [turn-around, forward, goal-F]

69



EE3 MSEE2 PHYS2

HAMP1 KNOY0 ME0
Figure 1.16. Images from one floor of each building.

70



Table 1.9. Success rate of the robot at extracting a correct plan from con-
versation, following that plan, and finding the goal door.

Successful instances Total Instances Success Rate
correct plan 125 183 68.3%
correct plan and correct execution 92 183 50.3%
correct plan, correct execution, and goal found 35 183 19.1%

produced a correct plan from dialogue, executed it correctly, and found the goal door. Out

of all of the conversations that the robot had with a volunteer, it correctly adhered to their

instructions and found the goal door 19.1% of the time (see Table  1.9 ). While the success

rate of successfully completing all three of these behaviors in sequence is relatively low, we

are able to increase our per-trial accuracy by allowing the robot to fall back to Wander

in the FSM and trying again. However, improving each of these individual behaviors would

reduce the robot’s need to fall back to Wander and allow it to find the goal faster.

We conducted a post-trial survey with our volunteers. They were asked to read a state-

ment and rate it on a 5-point Likert scale from 1: absolutely disagree to 5: absolutely agree.

There were a total of 25 statements; the first 5 were provided by us; the last 20 came from

Weiss et al., who performed a survey of people who interacted with their robot after conduct-

ing an experiment similar to ours. Table  1.10 contains the statement, number of responses,

as well as the mean and standard deviation for each statement. In general, the volunteers

indicated that they were able to communicate with the robot, it was able to understand the

navigational instructions they gave it, and it asked appropriate follow-up questions. They

also indicated that it was helpful when the robot told them what it understood.

After running the trials, we further considered the scenario when no person could be found

in the environment. To support this scenario, we integrated portions of Navigate_door

into Wander. While the robot is wandering around, it simultaneously detects doors and

looks for people. If it sees a door and there are no approachable people, it will drive up to

the door and inspect its door tag. If it sees an approachable person, it will approach that

person and ask for navigational instructions to the goal. To test out this new capability, we

ran 6 trials in one of the test buildings (KNOY). In 3 of the trials, the robot successfully

located the door before finding any person in the environment. In 3 of the trials, the robot

71



Table 1.10. Survey results from our participants. All statements had to be
rated on a 5-point Likert scale from 1: absolutely disagree to 5: absolutely
agree, which mimics Weiss et al. Statements 1–5 were provided by us. State-
ments 6–25 came from Weiss et al.

Index Statement Number Mean Standard Deviation
1 I was able to communicate with Hosh using natural language 11 4.18 0.75
2 Hosh was able to understand the navigational instructions I gave it 11 3.64 0.50
3 Hosh asked appropriate follow-up questions 11 3.82 0.98
4 It was helpful when Hosh told me what it understood 11 4.55 0.69
5 Communicating with Hosh was easy 11 3.55 0.69
6 I am afraid of making errors if I am interacting with Hosh 11 3.09 1.22
7 I could work with Hosh if I got a good training 11 4.64 0.50
8 Under time pressure I could never be successful in dealing with Hosh 11 2.36 1.29
9 The interaction with Hosh is easily understandable 11 4.27 0.65

10 I could solve all occurring interaction problems with Hosh by myself 11 3.45 0.82
11 It will be easy to use Hosh 11 3.64 0.67
12 It will be easy for me to skilfully interact with Hosh 11 3.91 0.54
13 Hosh reacted to my behavior 11 2.82 1.25
14 The interaction with Hosh should be a give and take 11 3.82 0.98
15 The interaction with Hosh was like a give and take 11 3.18 0.60
16 Hosh and me would compose a good team 11 3.36 0.81
17 Hosh needs my support to carry out its task 11 3.91 0.94
18 Hosh will be useful to me 11 2.91 0.70
19 The effort to carry out tasks together with Hosh will be immense 11 2.36 0.67
20 I can imagine to carry out tasks faster with Hosh 11 2.91 0.83
21 I do not think it is necessary to introduce Hosh to the everyday working life 11 2.73 1.01
22 Hosh could support me in everyday transactions 11 3.45 0.69
23 Hosh will ease burdensome tasks 11 3.45 0.69
24 I would not like to work together with Hosh 11 1.91 1.04
25 I think it is a good idea to “use” the Hosh robot 11 3.91 0.70

72



found a person, whom it asked for navigational instructions, and followed those to the goal

hallway and then found the goal door successfully.

1.4.3 Observations and Improvements

As the trials were conducted, many observations were made about each behavior’s in-

teraction with the complex environments in which the robot was evaluated. Although the

system recovers from most individual behavior failures, reducing the number of these would

lead to faster and more efficient goal finding. In this section, we discuss these observations

and how they can potentially be used as points of improvement in future work.

Approach_person

We observed several challenges associated with successfully and safely navigating to a

person to ask them for directions. YOLOv3 cannot distinguish between people and pictures

of people on the walls. In some trials, this led to the robot repeatedly driving up to walls

containing pictures of people and attempting to initiate Hold_conversation. Potential

solutions include using body size as a prior to determine whether the detected person has

the correct size for the detected distance or incorporating body-pose estimation to help make

the distinction. Also, constraints can be applied to the locations of person detections, such

as having to touch the ground, to eliminate detections of people on posters and signs from

consideration.

Another point of difficulty was detecting and localizing people that are far away. People

that are small in the camera’s field of view are more difficult to detect. Even if they are

detected, the bounding boxes are small, thus having fewer corresponding 3D LiDAR points,

making it difficult to localize, track, and classify person tracks accurately. Similarly, consis-

tent, accurate localization of people was also difficult when they were occluded by objects

such as drinking fountains or trash cans, or when they were positioned close to a wall. These

objects would often overlap with the person detections, which would affect the localization

of the person themselves as some 3D LiDAR points overlapping the box would actually

correspond to the object or wall instead of the person. These issues created tracks that

73



would rapidly switch between being approachable and not approachable, which caused the

system to correspondingly switch between Wander and Approach_person rapidly. This

explains the high number of instances of Wander and Approach_person on a per-trial

basis as well as the low success rate of Approach_person. The robot would eventually

reach the person, but would sometimes do so in an inefficient manner.

Hold_conversation

The most common observation made when volunteers were providing instructions to the

robot was their use of terminology and hand gestures that the robot did not understand.

Some volunteers tried to describe directions using gestures, distances, angles, and objects.

There is opportunity for developing a more generalizable and robust conversation engine

that is capable of handling the diversity possible in a set of navigation instructions. A

quantitative map with richer semantic information could support dialogue and navigation

related to concepts such as objects, colors, or landmarks. Additionally, the plan structure

could also be expanded to include distances, angles, objects, landmarks, text, arrows, and

signs.

Aside from this, there was one trial where Google’s Speech-to-Text API returned a non-

ASCII character (◦), which was not supported by our message passing, and caused our

Hold_conversation behavior to die. We manually restarted the Hold_conversation

behavior and the trial continued to success.

Follow_directions

Many of the building floors featured complexities not seen during development, such as

open spaces and variation in both hallway width and turn angles. In particular, one building

had hallways that branched off at 45◦ angles. This caused some confusion both in process-

ing and executing the navigation instructions provided by the person. Some people would

indicate that the robot should drive ‘straight’ when it got to those intersections while oth-

ers indicated the robot should ‘turn.’ When told to drive ‘straight,’ Follow_directions

would detect that it could no longer drive forward after reaching the end of the hallway

74



Table 1.11. System Trials.
group live trials # of trials success rate
ours yes 52 76.9%
Birmingham yes 46 67.4%
Munich yes 1 100.0%
UW no 14 71.4%
Cornell yes 46 76.1%

where the hallway would veer off at 45◦ and thus indicate failure. When told to turn ‘left,’

Follow_directions would not detect the left turn and also indicate failure. An area

of future research includes developing adaptive methods for determining novel intersection

types in new indoor environments.

In a different building, the robot could not detect a particular narrow hallway opening

(≈1.5 m wide when most hallways were 2–4 m wide) due to a hyperparameter corresponding

to the hallway width. We adjusted it accordingly after the first 4 trials, and left it unchanged

for the remainder of the trials. Dynamically detecting characteristics like this in novel

environments is an area of future research.

Finally, as the robot is driving around, it is building a quantitative map in real-time

and relies on map updates to determine where there are registered intersections. When the

conjoining hallways are narrow, the robot sometimes does not have enough data from its

LiDAR to have built a reliable-enough quantitative map to detect the intersection correctly.

Instead of detecting the intersection, the robot drives past it unaware. Planned future work

includes using a neural network to improve the detection of intersections and execution of

the Follow_directions behavior in spite of an incomplete map.

Navigate_door

The Navigate_door behavior exhibited difficulty in finding the goal door in some

situations. First, many doors were occluded or only partially visible in the robot’s field of

view and the door detection method does not support detecting doors in these scenarios. A

point for future work could be to train a neural-network-based object detector to robustly

75



Table 1.12. Comparison with Related Work.
(a) Test environment.

Group Number of test environments Test environment Train/Test environments are different Map provided
ours 12 floor of building yes no
Birmingham 1 11 m2 with hallway, 2 offices, and 1 conference room unspecified no
Munich 1 downtown Munich unspecified no
UW 1 floor of building yes yes
Cornell 1 1 km2 outdoor facility with 12 buildings unspecified no

(b) People interaction and direction-giving.
group interacts with live people untrained people multi-turn conversation open-ended conversation spoken dialogue
ours yes yes yes yes yes
Birmingham yes unspecified yes yes no
Munich yes yes yes no no
UW no 

a
 yes no no no

Cornell no 

b
 no no no no

a
 ↑ This paper takes, as the input to their trial, a single, open-ended text instruction from an untrained user.

b
 ↑ This paper takes, as the input to their trial, a single, open-ended text instruction from a predefined

grammar called TBS.

(c) Directions, goals, and recovery.
group follows directions can detect when directions are wrong robot detects goal independently recovers from failure
ours yes yes yes yes
Birmingham no no yes yes
Munich yes no unspecified yes
UW yes yes unspecified yes
Cornell yes no yes no

76



detect doors in spite of occlusion. Additionally, the network could be trained to detect other

objects as well to enable the robot to find something beyond a room.

Another observation is that although the common-sense reasoning led the robot to ef-

ficiently find the goal in some trials, in many cases, it was disrupted by both missed and

false-positive door detections. In these scenarios, the Navigate_door behavior resorted

to exhaustive search to find the goal door and was typically able to locate it. However,

on a larger scale, exhaustive search would be impractical so a more robust reasoning and

navigation system is an area of future work. To help remedy missed doors, we adjusted the

threshold for the hierarchical clustering of door detections from 0.25 m to 0.5 m to create

fewer but larger clusters. This parameter change was done after the first 7 trials and kept

for the remaining trials.

We also found two issues involving using Google’s Optical Character Recognition (OCR)

to read door tags. The first issue involved misreads, which happened twice in our trials.

The robot drove up to the correct door, but read “goio” instead of “g010.” The same thing

occurred with “g055” being misread as “go55.” A simple string replacement for commonly

mistaken characters/digits would solve this problem (e.g., o ⇒ 0, i ⇒ 1, S ⇒ 5, etc.). The

other challenge with OCR was distinguishing any text read from text read from the door

tags. In one failed trial, the robot drove up to a door and read an advertisement about an

event occurring in a particular room. The room it was referring to was our goal room (which

happened to be about 2 m away, across the hall). In another failed trial, the robot failed

to detect the goal door, drove up to the subsequent door, but still read the goal door’s door

tag. In both of these cases, the robot erroneously claimed success. Being able to distinguish

between a door tag and other signage or text, as well as being able to assign a single door tag

to a single door, would alleviate this issue. We counted the two trials with OCR misreads

as successes (since the robot did successfully accomplish all of the behaviors leading up to

finding the correct door) and counted the two trials with the advertisement and the adjacent

door as the mistaken goal as failures.

Lastly, after the first 24 trials, we discovered an issue where the robot was not clearing

its set of detected door locations in between different instances of the Navigate_door

behavior within the same trial. This was fixed for the remaining trials as the intention was

77



to only reason about doors in the current hallway as that is where the goal should be located.

However, in future work, retaining and reasoning about all detected doors could enable the

robot to find the goal without directions as well as return to rooms it has already visited if

given instructions to do so.

1.5 Related Work

Several research groups have constructed a system that accomplishes a comprehensive

task similar to ours. We first compare and contrast our system to these other comprehensive

systems. Then, we compare our individual behaviors to other research that has focused on

similar behavior-specific tasks.

1.5.1 Systems

In Table  1.11 and Table  1.12 , we compare our system to those of the following groups:

Birmingham [  1 ], whose task is to find an object within a small office environment; Munich [  2 ],

whose task is to navigate the streets of Munich and reach a downtown plaza; UW [  3 ], whose

task is to follow natural-language directions to an office on a building floor; and Cornell [ 4 ],

whose task is to follow a natural-language directive (in a specified grammar) to an outdoor

goal location.

All five groups perform their task in the real world. Our results, along with Birmingham

and Cornell, are based on a large number of trials, which helps to support the success rate

reported. Our success rate is comparable to the other groups, but, as we will show in the

subsequent tables, we also take on more challenges.

Table  1.12a describes the test environment and how many distinct environments each

group tested on. We test in 12 distinct environments, which is much larger than any other

group. Having multiple trials in a large number of distinct environments provides some addi-

tional support to the generalizability of our system. We also stress that our 12 environments

are distinct from the environments we trained on and developed for. Doing so prevents us

from “training on (or developing for) the test set,” which carries the risk of overfitting to

78



a particular environment and biasing the generalizability of a system’s performance. Like

most of the other systems, we operate in an unknown environment, without a map.

Table  1.12b compares how the robot interacts with people and gets directions. Unlike

UW and Cornell, which have a single set of directions provided to the robot at the beginning

of the trial, we have to find people in our environment that we can ask for directions.

These people are untrained and unfamiliar with what the robot understands or is capable

of. Along with Birmingham, we allow for open-ended conversation, which increases the

diversity of responses. Finally, our conversation takes place via spoken dialogue which no

other systems do. (Munich uses a GUI to get responses, while Birmingham uses text input.)

These differences make our task considerably harder than those of other systems.

Finally, in Table  1.12c , we point out a few additional ways in which our task sets us apart

from the other systems. Our robot has to follow directions, rather than simply exploring

until the goal is found. Exploring may work when the environment is small, but becomes

intractable as the environment increases in size. When the directions it has are wrong,

both our robot and UW’s are capable of detecting this. In UW’s case, they backtrack and

recompute the next-most-likely path to the goal. In our case, we simply revert to Wander

and seek out another person to ask for directions. Our robot is capable of discovering and

detecting the goal independently, while it is unclear whether all systems are capable of that

ability. Lastly, like most other systems, we are able to recover from individual behavior

failures and continue working towards the goal.

1.5.2 Behaviors

As described earlier, our system combines a number of behaviors, each of which solve

one of the sub-tasks presented by The Amazing RaceTM task. The first is autonomous

navigation in an indoor environment. Barrett et al. employ a learning mechanism to acquire

the semantics for direction keywords such as ‘left of,’ ‘right of,’ and ‘behind’ and then use

these semantics for planning and describing robot paths. Because our focus was to design a

complete system for navigation in an unknown environment, we predefined a similar set of

79



directions for the Wander and Follow_directions state and used a novel method for

determining whether they are available.

The next crucial sub-task is to find a person and receive and interpret directions from

them. The Jackrabbot lab at Stanford has developed a robot that complies with social

conventions such as understanding [  29 ] and predicting [  30 ] human trajectory in crowded

scenes. When looking for and approaching people, our robot also complies with expected

conventions such as determining which people are approachable, introducing itself as it

approaches, and not invading personal space when having a conversation.

Bauer et al., Bauer et al., Bauer et al. define a set of heuristic rules and a complex finite-

state machine to obtain specific pieces of information from a person through a touch screen

interface on their robot. Our system, however, takes full spoken natural-language utterances

as input and extracts instructions from them. Oh et al. and Boularias et al. require a specific

syntactic structure of natural-language commands called Tactical Behavior Specification to

simplify the parsing problem. Our parsing method does not depend on such a strict grammar

because it would be impractical for interacting with people unfamiliar with the robot. Kollar

et al. train a model to extract spatial-description clauses from natural-language directions

to determine the corresponding path in the environment. Our method does not rely on

training.

A single person’s response may have insufficient, vague, or incorrect information. Thoma-

son et al. present a dialogue system that can compensate for this issue by generating queries

about missing pieces of information, specifically the action, patient, recipient, or some com-

bination of them. Our dialogue system does not predefine what or how much information we

seek and instead dynamically infers and generates queries for what information is missing.

There has been prior work [  34 ]–[ 37 ] that, like our work, has also focused on achieving

multi-turn dialogue understanding on a physical robot. However, this work operated within

smaller and simpler environments than our work; we train and evaluate our system on several

large unmodified office environments. Banerjee et al. collected data from a physical robot

to train their algorithm to follow natural-language instructions. However, evaluation of the

approach was only performed in simulation. Blukis et al. demonstrated their algorithm on a

quadcopter, but the environment was very small with just a few objects on a green surface.

80



The environment was only varied by placing different objects in different positions. Lukin

et al. constructed a framework to control a physical robot with spoken language, but it was

only tested in a simulator in which the virtual robot could execute navigation commands

from a finite discrete set. Thomason et al. proposed a method to allow a robot to learn

object-related concepts through dialogue. Only a single demonstration on a real robot was

done in a single room with several objects on a table.

In order to navigate in the environment, given the natural-language directions, the robot

needs a semantic map of the environment. Hemachandra et al. rely on AprilTag fiducials

to classify regions in the environment for autonomous navigation. However, this prevents

practical operation in any unknown environment because it would have to be labeled with

these fiducials. Sünderhauf et al. explore new areas and create a semantic map through

the classification of sequences of image frames as places (e.g., office or kitchen). Pangercic

et al. create semantic object maps in a kitchen using a RGBD camera that enables their

robot to perform fetch and place tasks. We use the occupancy grid, door detection, and text

recognition to make a semantic map of an unknown environment.

Many approaches, including ours, rely on edge or line segment detection as a basis for

finding door posts. Stoeter et al. detects door frames by detecting vertical stripes in the

image, but other objects or parts of the background could be responsible for vertical edges.

More complex approaches look for edges in the image that form an upside-down U-shape

to create door detections [ 24 ], [  41 ]. These methods depend on high quality detected edges,

which are not necessarily possible to obtain especially on images captured from a camera

on a robot navigating in areas with varying, possibly poor, lighting conditions. Our method

incorporates noise-tolerance mechanisms that simultaneously allow for door detection in spite

of poor edge detection and measuring the confidence of those detections.

In the case of Shi et al., only U-shapes that intersect the corridor lines are considered

doors in order to avoid false positives caused by signs or posters. These corridor lines are

obtained by finding the vanishing lines that have the most intersections with the bottoms of

vertical lines. Olmschenk et al. employ a similar method to finding corridor lines by detecting

the vanishing point and vertical lines in an image to determine where the wall meets the

floor. This approach is impractical for two reasons: 1. walls orthogonal to the viewpoint are

81



ignored and 2. patterns in the image, such as floor tiling, can induce strong edge detections

that can be confused for corridor lines. We incorporate 3D information from LiDAR data to

reliably and generally detect wall regions and avoid this issue.

Hanheide et al. employ a knowledge hierarchy that enables reasoning over known pieces

of information in order to perform task planning, execution, and task-failure explanation.

Because our robot has no prior knowledge about the environment, we extract information

such as driving directions and door locations in an online fashion to execute navigation

instructions and plan paths to potential locations of the goal.

1.5.3 Vision-Language Navigation

There has been considerable prior work on vision-and-language navigation (VLN). Some

of this work [  9 ]–[ 13 ], [  43 ] trained and evaluated VLN models on the Room-2-Room (R2R)

dataset [  9 ]. This dataset consists of natural-language text instructions paired with corre-

sponding trajectories in a simulated indoor environment. These trajectories are sequences

of vertices in a discrete graph, where each vertex has a panorama of images to represent the

view at that vertex. Our work differs significantly from all of this work in a number of key

ways.

First, in the R2R simulator, robot position is represented as a vertex in a discrete graph

and visual information, although from real images, is noise-free and deterministic at each

vertex. In contrast, rather than just repeatedly outputting one of a small number of adja-

cent graph vertices to eventually reach a goal vertex, we address a more complex problem:

controlling a physical robot in the real world with a noisy continuous position and action

space and noisy continuous observations. While Anderson et al. trained in a simulated envi-

ronment, it tested both in simulated environments and on a real robot in real environments.

When the navigation graph was known a priori, performance in the real environment was

comparable to that in simulation, however, results were very poor when the navigation graph

was unknown and waypoints were predicted on the fly. Our system is able to successfully

execute navigation instructions without a known map of the environment, just with the

SLAM map that is built as the robot drives.

82



Second, the above prior work took single-turn text as input. Our system interacts with

a person in multi-turn spoken dialogue and is designed to be robust in the face of noisy

speech recognition. Such dialogue is crucial for clarifying potentially ambiguous instructions.

Thomason et al. considers a cooperative VLN task and provides a new dataset of navigation

trajectories along with dialogue between a navigator and an oracle. Although the dataset is

intended to support research into language generation, they do not provide a method that

generates language. They only consider the task of navigation from dialogue history which

involves producing navigation actions given a dialogue history between two humans as input.

Third, our system has capabilities beyond those of these VLN approaches. These VLN

methods assume that natural language is a given input at execution time, but in the real

world, a person may not be available in the immediate vicinity. Our system is capable of

autonomously exploring the environment, detecting approachable people, and driving up to

them to ask for directions. Additionally, it makes use of of common-sense knowledge to

search for doors, which leads to both more efficient and more human-like behavior.

Some VLN approaches, like our method, perform continuous control, rather than way-

point selection. Roh et al. and Sriram et al. present methods that control an autonomous

vehicle within two environments in the CARLA simulator given natural-language instruc-

tions. However, in contrast to our method, they only considered single-turn instructions

as input and the trained autonomous vehicle did not engage in multi-turn dialogue. Also,

our approach takes noisy SLAM data from a real physical robot as input. This data in

noisier and less rich than the synthetically generated 3D images in the CARLA simulator.

Roh et al. only evaluated their approach in the CARLA simulator, while Sriram et al. also

conducted a single experiment on real data (the KITTI dataset) and one experiment on a

physical electric vehicle. We, however, rigorously demonstrate our system’s performance on

a real robot in real indoor environments in 52 trials.

Some prior work only presented methods for part of the VLN task. Deitke et al. and Zhu

et al. demonstrated vision-only navigation to a specified target object.

83



1.6 Comparison with Prior Work

We compared our method to five prior VLN approaches [ 9 ]–[ 13 ]. Since these methods

cannot wander around a floor of a building, nor approach a person, nor hold a conversation,

we had a volunteer provide navigational instructions to a nearby door. These methods also

do not translate human language instructions to robot actions; they translate to edges in a

graph, not robot motor control. However, one can imagine that part of our system, specifi-

cally the Hold_conversation, Follow_directions, and Navigate_door behaviors

could be replaced with one of these VLN approaches. Thus we compare part of our sys-

tem with existing VLN research on the shared subportion of the task and we use methods

from our system to convert the output of the VLN systems into robot motor control. This

simplified task involves placing the robot in a fixed position, providing it with a textual

input of the navigational instructions, and evaluating how well these methods were able to

successfully follow the instructions. Success is measured by distance from the goal where the

goal is often only a few waypoints away.

To perform this evaluation, we first trained these methods offline and then deployed them

on our robot to perform live trials involving navigation in an unknown physical environment

with non-scripted instructions from a volunteer. In order to train these methods, we needed

a training set with the same structure as R2R, where all navigation is performed on a fixed

graph with images available for all orientations at each vertex. Thus we collected an addi-

tional dataset, in the style of R2R, using our robot in the same three buildings (EE, MSEE,

and PHYS) we used to develop our algorithms, by placing the robot at fixed waypoints,

approximately 3 m apart, and collected 36 images at each waypoint at different pan angles

(every 30◦) and tilt positions (0◦, 0◦ and 30◦). We used 0◦ twice since pointing the camera

towards the ground was not possible with our robot configuration and we wanted to match

the same positive tilt angle used in R2R. We then collected natural-language utterances from

27 participants that provided navigational instructions from various starting locations and

orientations to various ending locations. We paired the utterances with the corresponding

sequences of waypoints to construct a dataset with 2,814 samples. We appended a sentence

referring to the ending location to each utterance. This was done for two reasons: 1) like our

84



system, the VLN system would need to take the goal location as input and 2) we adhered

to the style and structure of the R2R dataset whose utterances refer to the goal location.

For example, if one of the participants was asked for instructions to room 232, and they

replied “Go straight and then make a left,” we augmented the utterance to be “Go straight

and then make a left. Stop at room 232.” We refer to this dataset as office-to-office (O2O).

We trained Seq2Seq [ 9 ] and NDH [ 10 ] on R2R, using the code base provided by Thomason

et al., then fine tuned on O2O. We trained SF [ 12 ], RCM [  13 ] and Babywalk [ 11 ] on R2R,

using the code base provided by Zhu et al., then fine tuned on O2O.

Evaluating with live trials in novel environments in a different building, however, required

us to map the small finite action space output by these VLN models to the continuous

action space needed to perform our task. Seq2Seq and NDH predict one of six actions to

perform: rotate left or right by 30◦, look up or down by 30◦, drive forward, and end. For

these approaches, we determine forward positions by searching the robot’s SLAM map for

positions in free space in front of the robot’s current position. For the other actions, the

robot would rotate left or right by 30◦ or tilt its camera up or down by 30◦. During the

trials, upon completion of an action, the robot took the current camera image, extracted

its features, and decided what action to perform next. SF, RCM, and Babywalk predict

an adjacent waypoint to navigate to. For these approaches, we would determine adjacent

waypoints by searching the robot’s SLAM map for positions in free space that corresponded

to positions in front of, behind, left of, and right of the robot’s current position. This was

made possible by one of the contributions of our paper (Section  1.2.3 ).

During the trials, upon arrival at a waypoint, the robot collected 36 images at the same

pan and tilt angles described above, extracted their features as described in Zhu et al., and

decided whether to drive to an adjacent waypoint or indicate completion.

A strict evaluation of success of a purely autonomous method that cascades the prior

models that output discrete navigation actions designed to navigate in a symbolic graph

with our code that instead navigates to physical waypoints from those discrete actions leads

to very low success rate. Thus we relaxed our success criterion to manually intervene if the

robot got too near an obstacle. We moved the robot away from the obstacle, keeping the

85



same orientation, but positioning it closer to the middle of the hallway, to allow the trial to

continue.

We conducted eight trials with each of the five methods in KNOY, where our approach

had neither its best nor worst success rate. We positioned the robot in the same starting

location and orientation for all eight trials and provided the same corresponding text in-

structions. Note that these starting locations, orientations, and text instructions are the

same as 8 of the trials described in Section  2.8 . The goal location was appended to the

text instructions in the same way as our training set as described above. All but two trials

were concluded when the method met the stop condition. For Seq2Seq and NDH, the stop

condition is when the method predicts the stop action. For SF, RCM, and Babywalk, the

stop condition is when the method predicts the current waypoint. The two trials, one using

NDH and one using SF, were concluded manually prior to the stop condition because the

robot became stuck driving in a loop in an open area. If the robot arrived within 1 m of

the goal location, we considered it a success. We then manually drove the robot to the goal

location. Using odometry, we measured the navigation error, which is the driving distance

from the ending location to the goal location. We compared the results of the VLN systems

that used the same starting locations, orientations, and text instructions from 8 trials from

Section  2.7 to the 16 trials we ran of this system in the same test building (KNOY). This

was not an apples-to-apples comparison for several reasons. Firstly, the starting locations,

orientations, and input instructions were not the same as mentioned above. This is because

the trials were originally intended to serve as a comparison to the trials conducted in Sec-

tion  2.7 . However, the VLN system trials were conducted on the same 4 floors of KNOY

and the input utterances were very similar. Table  1.13 shows some of the utterances from

our system’s trials versus those from the VLN system trials. Although the language is not

identical, it is similar, and we believe this allows us to compare our system’s performance

to that of the VLN systems. Secondly, our system relies on multi-turn spoken conversation

instead of a single text input, unlike the VLN systems which can only take a single piece

of text as input. Lastly, our system is able to recover from failures in individual behaviors,

unlike the one-shot approach used in VLN systems and in our experimental design in Sec-

tion  2 . Table  1.14 shows that four of the five prior methods failed to correctly execute the

86



Table 1.13. Samples of language text used during our trials and the VLN trials.
Our system trials
turn around take your first right go down the hallway about 30 to 50 ft and it will be on your left.
turn right then turn left go straight turn left. and your destination is on the rake.
yes, go straight turn left and the bowl is on the right.
sure, turn around take your first left and go down the hallway room 417 will be on the right hand side.
VLN trials
Continue straight at the end of the hallway. Take a left and then take another right. Stop at room 339.
Around take a right and then take another right. Stop at room 313.
Continue straight, take a right and then left. Stop at room 278.
Turn around at the end of the hallway. Take a left. Stop at room 443.

instructions specified by the input utterances in all eight of their respective trials and one

prior method succeeded only once. In contrast, our method succeeded in 13 of the 16 trials.

Table  1.15 shows how much of the instructions were followed and how close the robot got

to the goal. Note that all of the trials reported in Table  1.14 and Table  1.15 were conducted

on the same four floors of KNOY. However, for each table, the trials in row 6 had different

starting positions, goal locations, and language text than those in rows 1-5. The trials in

rows 1-5 had the same starting positions, goal locations, and language text as each other;

these shared the same starting positions, goal locations, and language text as eight of the

the trials described in Section  2.7 . All prior VLN methods correctly follow only a small

portion of the instructions and end up very far from the goal. In contrast, our method gets

very close to the goal on average. For the methods that predict actions, we include the

number of actions predicted and how many actions the robot successfully predicted before

predicting an incorrect action. For the methods that use adjacent waypoints, we include the

number of waypoints traversed and how many waypoints the robot successfully navigated

before predicting an incorrect waypoint. For the methods that use actions, the robot would

often turn to face the wall and predict the forward action repeatedly before predicting a

rotation action. Were it not for our code that prevented the robot from performing illegal

actions, the robot would have driven into walls almost immediately. For all methods, the

robot would frequently drive in the opposite direction from that indicated in the instructions.

In contrast, our system generally navigated the robot in the correct direction towards the

goal.

87



Table 1.14. Comparison of our system with prior VLN systems. Successful
trials were those where the robot stopped within 1 m of the goal location.

Successful number of trials Total number of trials Success rate
Seq2Seq [ 9 ] 1 8 12.5%
NDH [ 10 ] 0 8 0.0%
SF [ 12 ] 0 8 0.0%
RCM [ 13 ] 0 8 0.0%
Babywalk [ 11 ] 0 8 0.0%
Our System 13 16 81.3%

Table 1.15. Navigation statistics from the results reported in Table  1.14 .
Correct actions is the average number of actions the system correctly predicted
and executed before heading off in a wrong direction. Total actions is the
average number of actions executed before the stop condition is met. Correct
Waypoints is the average number of waypoints the system correctly predicted
and navigated to before heading off in a wrong direction. Total Waypoints
is the average number of waypoints navigated to before the stop condition is
met. Navigation Error is the average driving distance from the ending location
to the goal location.

Correct Total Correct Total Navigation
Actions Actions Waypoints Waypoints Error

Seq2Seq [ 9 ] 6.1 82.5 n/a n/a 19.0 m
NDH [ 10 ] 4.6 93.9 n/a n/a 37.4 m
SF [ 12 ] n/a n/a 3.9 26.8 30.0 m
RCM [ 13 ] n/a n/a 3.5 15.8 42.8 m
Babywalk [ 11 ] n/a n/a 0.1 8.9 34.2 m
Our System n/a n/a n/a n/a 0.8 m

88



Table 1.16. Validation success rate of prior VLN systems, using metric from [ 11 ].
EE MSEE PHYS Average

Seq2Seq [ 9 ] 0.113 0.088 0.072 0.091
NDH [ 10 ] 0.097 0.088 0.066 0.084
SF [ 12 ] 0.140 0.057 0.044 0.080
RCM [ 13 ] 0.073 0.076 0.197 0.115
Babywalk [ 11 ] 0.132 0.080 0.098 0.103

In addition to these experiments, we also evaluated the prior VLN approaches in isolation,

without our navigation system. We did this by training and validating them directly on

O2O. We performed three-fold cross validation for each of the five methods. We split O2O

into three folds, one for each of the three buildings. In a round-robin fashion, we trained

each of the five methods on two of the folds and validated on the third fold. Table  1.16 

shows the validation success rate for each method for each fold as well as their average

success rate. On average, the success rates are very low. As opposed to our live trials, the

prior VLN approaches had access to a known discrete graph of the environment in these

experiments. Therefore, the results show that even with a known discrete graph of the

environment, the prior VLN methods are generally unable to find a goal in our environment.

Table  1.17 shows the validation navigation error for each method for each fold as well as

their average navigation error. These results are close to what we observed in our live trials

(see Table  1.15 ). This shows that the VLN approaches are not limited by the navigation

mechanisms we used to deploy them on the robot. Instead, this confirms that they work

poorly in our environment. Additionally, this is all on just the simplified subset of our task

that is shared in common with prior VLN work. It does not involve searching for a person to

ask directions from, engaging in a dialog with clarification questions to resolve incomplete,

ambiguous, and inconsistent instructions, or reading door tags to find the goal, all of which

make our task even more difficult than the standard VLN task.

1.7 Conclusion and Future Work

In this manuscript, we proposed The Amazing RaceTM: Robot Edition task in which a

robot must find any designated location. We described a system design that solves this task

89



Table 1.17. Validation navigation error of prior VLN systems, using metric from [ 11 ].
EE MSEE PHYS Average

Seq2Seq [ 9 ] 27.368 37.566 40.901 35.278
NDH [ 10 ] 29.864 33.787 39.746 34.466
SF [ 12 ] 28.866 33.162 49.208 37.079
RCM [ 13 ] 27.592 32.464 37.772 32.609
Babywalk [ 11 ] 28.753 33.642 40.290 34.228

90



with the scope of finding a specific room on a single floor of a building. We demonstrated

that our system architecture lets a robot complete this task by a making a series of logical

steps akin to those a human would make. Our robot autonomously finds a person in the

environment and engages them in dialogue for directions. It then follows these directions to

reach the hallway in which it then searches the doors to find the designated goal.

We demonstrated that our system was successful in 76.9% of the trials that we conducted.

As discussed, future work entails making improvements to each of the behaviors in our system

to both improve the success rate and increase the scope of the task.

We make available our code and rosbags as well as describe our software configuration in

order for others to make meaningful comparisons and build off of our work. Our rosbags  

5
 can

be used as a dataset for comparison of different methods. Our code and software configura-

tion can be deployed on most robot platforms, as the main dependencies are common sensor

data in the form of LiDAR, camera images, and odometry. This would allow others to apply

our system to other indoor environments to evaluate and compare against its performance.

Additionally, we release our O2O dataset which can be used to evaluate VLN methods in

the same way as the R2R dataset. This can allow others to improve VLN methods to be

more robust to the complex and diverse environments present in our O2O dataset.

5
 ↑ A rosbag is a file that stores message and sensor data at each time step in a trial.

91



2. TALK THE TALK AND WALK THE WALK:

DIALOGUE-DRIVEN NAVIGATION IN UNKNOWN INDOOR

ENVIRONMENTS

This chapter includes a submission to IROS, which describes a machine-learned variant of
the Hold_conversation and Follow_directions behaviors. I was responsible for the
following technical section: Section  2.6 . Jared Johansen was responsible for the following
technical section: Section  2.4 .

2.1 Introduction

Imagine an office environment where individuals work in separate areas to follow social-

distancing guidelines. You need to give an important package to a colleague but you’re

unable to go in person. You summon a robot and give it navigational instructions in plain

English to your colleague’s office. The robot engages you in a dialogue to clarify some

ambiguity in your navigational instructions and then follows the plan it infers to deliver the

package. In this paper, we present a machine-learned system that makes a significant step

towards this reality.

Our system consists of two main components. The first is a transformer-based network

trained to interpret spoken natural language and convert it into a navigation plan that

the robot can execute. Crucially, it’s designed to support multiple turns in a conversation

by taking the robot’s current plan and a transcript of a spoken utterance as input and

producing an updated plan and follow-up question (if necessary) as output. Some previous

work (e.g., [ 3 ], [ 4 ]) only considers an agent receiving a single text instruction as input and

producing a single plan as output. This is impractical, however, for real-life applications

that depend on spoken language and speech recognition. A person might misspeak or the

speech recognition could be erroneous. This necessitates support for live dialogue to rectify

any potential errors or ambiguity. To train this network, we collected a novel dataset of

navigational-instruction utterances, created transcript-plan pairs, and augmented them to

support multi-turn dialogue.

92



The second component of our system is a 2D CNN-based network trained to produce

navigational goals that correspond to the plan produced by the dialogue component. Navi-

gational instructions generally consist of left or right turns in specific locations, such as “turn

right at the end of the hallway.” If the robot does not have a map of its environment in

advance, it would be unable to directly generate an entire navigational plan to execute these

navigational instructions. Therefore, the network takes the latest map (produced by SLAM)

and the current step in its plan as input to produce a navigational goal as output. It is de-

signed to produce forward goals by default until the robot arrives at the desired intersection,

in which it should produce a goal corresponding to the desired direction. Additionally, it is

trained to recognize when a step in the plan cannot be executed. To train this network, we

collected a novel dataset of actual trajectories driven and SLAM maps produced by a robot

on several floors of several buildings.

The dialogue and navigational components are combined into a system that enables

dialogue-driven navigation in an end-to-end fashion in unknown, indoor environments. To

test out the effectiveness of a robotic algorithm, it is important to test in the real world where

it is required to operate in continuous space with noise and unanticipated conditions. To this

end, we recruited volunteers to converse with the robot and provide navigational instructions

to various locations in three real buildings. These volunteers were not involved in our natural-

language dataset collection. These three test buildings were not part of either the dataset

used to train the dialogue component or the dataset used to train the navigation component.

We evaluated whether the navigational instructions were converted into a correct plan and

whether the plan was correctly executed. We demonstrate our system’s performance in 39

trials. We also demonstrate in Section  2.8 that algorithms that may work in simulation do

not necessarily perform well in the real world.

Explicitly, this paper makes the following contributions:

• We provide a novel dataset of transcript-plan pairs for navigation in indoor environ-

ments. We apply a novel data augmentation method to train a transformer network to

support multi-turn dialogue, allowing the robot to ask the person clarifying follow-up

questions.

93



• We provide a novel dataset of robot trajectories paired with navigational commands

in several indoor environments. We use automatic annotation and data augmentation

techniques to train a 2D CNN on this data to produce navigational goals and feedback

statuses that correspond to the input instructions.

• Unlike most prior work that demonstrates performance on synthetic data or their own

training environments, we demonstrate performance in real indoor environments with

real volunteers that are distinct from our training sets to show the generalizability of

our approach.

• We train three prior vision-and-language navigation methods on our data and deploy

them them on our robot in one of our test buildings. We show that our approach

vastly outperforms these methods.

2.2 Related Work

There has been considerable prior work on vision-and-language navigation (VLN). Some

of this work, [  9 ]–[ 13 ], [ 43 ], trained and evaluated VLN models on the Room-2-Room (R2R)

dataset [  9 ]. This dataset consists of natural-language text instructions paired with corre-

sponding trajectories in a simulated indoor environment. These trajectories are sequences

of vertices in a discrete graph, where each vertex has a panorama of images to represent the

view at that vertex. [  48 ] and [  49 ] presented similar methods to choose waypoints to reach a

goal specified by natural-language instructions but in simulated outdoor environments. Our

work differs significantly from all of this work in a number of key ways.

First, in the R2R simulator, robot position is represented as a vertex in a discrete graph

and visual information, although from real images, is noise-free and deterministic at each

vertex. In contrast, rather than just repeatedly outputting one of a small number of adja-

cent graph vertices to eventually reach a goal vertex, we address a more complex problem:

controlling a physical robot in the real world with a noisy continuous position and action

space and noisy continuous observations. While [ 43 ] trained in a simulated environment, it

tested both in simulated environments and on a real robot in real environments. However,

when the navigation graph was known a priori, performance in the real environment was

94



comparable to that in simulation, but results were very poor when it was unknown and

waypoints were predicted on the fly. Our system is able to successfully execute navigation

instructions without a known map of the environment, just with the SLAM map that is built

as the robot drives.

Second, the above prior work took single-turn text as input. Our system interacts with a

person in multi-turn spoken dialogue and is trained to be robust in the face of noisy speech

recognition. Such dialogue is crucial for clarifying potentially ambiguous instructions. [ 44 ]

and [  45 ] presented VLN approaches that perform continuous control, rather than waypoint

selection, of an autonomous vehicle within two environments in the CARLA simulator given

natural-language instructions. However, they also only considered single-turn instructions

as input and the trained autonomous vehicle did not engage in multi-turn dialogue. Also,

in contrast, our approach takes noisy SLAM data from a real physical robot as input. This

data in noisier and less rich than the synthetically generated 3D images in the CARLA

simulator. [  44 ] only evaluated their approach in the CARLA simulator, while [  45 ] also

conducted a single experiment on real data (the KITTI dataset) and one experiment on a

physical electric vehicle. We, however, rigorously demonstrate our system’s performance on

a real robot in real indoor environments in 39 trials.

Third, we output a feedback status along with our goal coordinates. This allows for direct

feedback about whether or not the input instruction was successfully executed or whether it

eventually failed (because the instruction was unachievable). The latter allows the robot to

detect when an instruction it was given is incorrect.

There has been prior work, [  34 ]–[ 37 ], [  50 ], that, like our work, has also focused on achiev-

ing multi-turn dialogue understanding on a physical robot. However, this work operated

within smaller and simpler environments than our work; we train and evaluate our system

on several large unmodified office environments. [  34 ] proposed a method to allow a robot to

learn object-related concepts through dialogue. Only a single demonstration on a real robot

was done in a single room with several objects on a table. [  50 ] demonstrated a dialogue and

navigation system for a physical robot; however semantic regions in the map were provided

to the system in advance and there was no full evaluation of the system’s performance, only

preliminary experiments in a single environment. [ 35 ] constructed a framework to control

95



a physical robot with spoken language, but it was only tested in a simulator in which the

virtual robot could execute navigation commands from a finite discrete set. [ 36 ] demon-

strated their algorithm on a quadcopter, but the environment was very small with just a few

objects on a green surface. The environment was only varied by placing different objects in

different positions. [  37 ] collected data from a physical robot to train their algorithm to follow

natural-language instructions. However, evaluation of the approach was only performed in

simulation.

There has been other prior work [  46 ], [  51 ]–[ 55 ], that, like ours, first converts natural-

language instructions into a plan that can then be interpreted and executed. [  51 ] and [  52 ]

modeled instruction-action pairs to convert each instruction independently into an action

in a noninteractive fashion to map an instruction sequence to an action sequence. Our

system interacts with a person in spoken dialogue to clarify ambiguities and update the

plan in the context of the dialogue. [  53 ] and [ 54 ] determined a set of constraints from

natural-language instructions and applied those constraints to a known map to generate a

navigation trajectory. [  55 ] and [  56 ] both depended on having topological representations

of the environment. Unlike our approach, these methods would not work in an unknown

environment.

Finally, some prior work only presented methods for part of the VLN task. [ 46 ] and [ 47 ]

demonstrated vision-only navigation to a specified target object. [  57 ] presented a data-driven

parser for understanding navigation directions for the purpose of human-robot dialogue but

did not apply it to any form of navigation, simulated or real.

2.3 System Architecture

Our system consists of a dialogue component and navigation component. The dialogue

component facilitates multi-turn conversation with a person to produce a plan. The plan

is converted into commands that the navigation component then executes. The navigation

component incrementally executes each command by analyzing the SLAM map and produc-

ing goal locations for the robot to drive to and a feedback status to indicate whether to

advance to the next command. A diagram of our system can be seen in Figure  2.1 .

96



Figure 2.1. System Diagram. A question, q, is posed to a person. Their
utterance, u, and the current plan, p, is fed into the dialogue component,
which produces an updated plan and follow-up question. Dialogue loops until
a complete plan, [pi], is produced. The complete plan is converted into robot
commands, [ci], which are fed into the navigation network. The navigation
component produces a goal location, l, and feedback status, f , which are used
to carry out all commands.

97



2.4 Dialogue

The purpose of engaging in dialogue with a person is to construct a plan of how to

navigate to a specific destination. If the person were to formally communicate the plan to

the robot, using formalisms the robot is capable of executing, this task would be trivial.

What makes this nontrivial is that the communication is done informally through spoken

natural language. In order to facilitate this spoken dialogue, we collected and augmented

a dataset to train a transformer-based network to take as input a current plan and input

transcript of the spoken utterance, and to produce an updated plan and follow-up question

as output.

2.4.1 Dataset collection

To collect a dataset of navigational instructions, we recruited 27 subjects that spoke

English and were familiar with three buildings on our campus. For each of four floors, for

each of the three buildings (PHYS, MSEE, and EE), we described a starting location and

orientation of both a robot and a passerby. We asked them to imagine they were the passerby

and that the robot had posed a single query, asking for navigational instructions to a location

within that building. They were allowed to provide partial instructions or indicate they did

not know the location of the destination. The subjects recorded a verbal response to each

query and we used Microsoft’s speech-to-text engine [  58 ] to convert the spoken responses

into text. We collected a total of 8797 navigational-instruction utterances and produced

their corresponding transcripts. Some navigational-instruction utterances involve using an

elevator to move to another floor. In this work, we handle the dialogue component of using

an elevator to move between floors, but focus on performing navigation in a single floor.

Future work will address accomplishing multi-floor navigation.

We identified a set of plan concepts of various kinds, including directions, intersections,

goals, and other that cover the vast majority of navigational instructions contained in our

transcripts, so that each transcript would have a corresponding plan with a sequence of these

concepts. All plan concepts, their types and definitions can be found in Table  2.1 . We posted

98



Table 2.1. Possible plan concepts for plan annotation. int-L and int-R have
a left or right turn, respectively. end refers to the end of the hallway; elbow
refers to an elbow. The first four direction concepts refer to the direction
the robot should drive in. It will continue moving in that direction until it
encounters the next step in the plan. either refers to turning left or right
at an elbow when it is not explicitly stated (e.g., “go around the corner”).
goal-F, goal-L, and goal-R respectively refer to goals that are ahead, on the
left, or on the right. � refers to an unknown or unspecified step in the plan.
change-floor refers to using an elevator to move between floors.

Type Plan concepts
Intersections int-L, int-R, end, elbow
Directions turn-around, forward, left, right, either
Goals goal-F, goal-L, goal-R
Other �, change-floor

99



each transcript on Amazon Mechanical Turk (AMT) and asked two workers to construct a

coherent plan using these plan concepts.

When the constructed plan had a �, we asked the AMT workers to type a follow-

up question that they would ask to resolve the �. Each of the 8797 transcripts had two

plan annotations and (potentially) two follow-up questions. When the plans and follow-

up questions were the same, we created a single sample. When the plans and follow-up

questions were different, we kept both if they were both reasonable. Otherwise, we kept

the most correct one. If neither were correct, we manually modified one to be correct and

retained this as a sample. This process resulted in a total of 9818 unique samples consisting

of [�] for the current plan, an input transcript, an updated plan, and a follow-up question.

If the updated plan was a complete plan (i.e., no � present), we used a default follow-up

question of “Got it. Thanks!”

From among the 9818 samples, we found that 7467 (76.1%) had complete plans and

2351 (23.9%) had partial plans (i.e., a � present). We sorted the samples with a partial

plan into four categories: empty, need-elevator, need-first, and need-last, based on their

plan pattern (see Table  2.2 ). Although these partial plan categories occur less frequently

in our dataset than samples with a complete plan, they are realistic possibilities during live

spoken dialogue due to pauses in speech, poor speech recognition, or incomplete navigational

instructions. Therefore, we augmented our dataset to increase the number of samples in these

categories. For empty, we generated random sentences that had an updated plan of [�]. The

category need-elevator had a relatively large number of samples, so we did not perform any

augmentation. For need-first, we used samples with complete plans, but removed certain

keywords (e.g., “go straight” or “turn-around”) from the beginning of the transcripts and

replaced the first instruction in the plan with �. We performed a similar augmentation for

need-last, but truncated text from the end of the transcript and replaced the corresponding

concepts in the plan with �. Table  2.2 shows the total sample counts before and after

augmentation.

100



Table 2.2. Number of samples for each partial plan category.
Category Pattern Original count Augmented count
empty [�] 125 2125
need-elevator [�, change-floor, . . .] 2100 2100
need-first [�, ¬change-floor, . . .] 68 2200
need-last [. . . ,�] 58 1818

101



2.4.2 Dialogue turn generation

The purpose of dialogue is to rectify any missing information (i.e., �) in the current plan.

The data we collected only simulates the first turn in a conversation, in which the current

plan is [�], and the input transcript contains complete, partial, or no information to the

destination. To facilitate dialogue, we must train the network to handle subsequent turns

of conversation in which a person responds to follow-up questions produced by prior turns.

Therefore, we further augment the dataset by producing follow-on samples whose current

plan is a partial plan of the form described in Table  2.2 and whose input transcript would

be a valid response to a previously-asked, follow-up question.

To generate these follow-on samples, we use custom logic to create realistic input tran-

scripts; correct, updated plans; and relevant, follow-up questions. The input transcripts,

and portions of the updated plans, come from the first-turn samples (which we described

in the previous section). For follow-on samples whose current plan comes from the need-

elevator category, we find first-turn samples whose destination happened to be an elevator

and whose updated plan was a complete plan. The transcripts from these first-turn samples

contain navigational instructions to an elevator. We use these as the input transcripts of our

follow-on samples. The updated plans from these first turn-samples contain a complete plan

to an elevator. We strip off the goal concept which leaves a sequence of plan concepts to the

elevator. Since the need-elevator category has a plan of the form [�, change-floor, . . .], we

replace the � with the sequence of plan concepts to the elevator. An example of this type

of follow-on sample can be seen in Table  2.3 .

For follow-on samples whose current plan comes from the need-first category, we find first-

turn samples whose input transcripts include words such as “forward,” “straight,” “back-

ward,” or “turn-around” among the first ten words. We use the first ten words of these

transcripts as the input transcript of our follow-on sample. The updated plan of our follow-

on sample is the same as the current plan, but replaces � with forward or turn-around,

depending on the first concept in the updated plan from the first-turn sample.

For follow-on samples whose current plan comes from the need-last category, we first

determine whether the plan concept before the � is a direction concept or an intersection

102



concept. When it is a direction concept, we find two types of samples from among our first-

turn samples: one whose updated plan starts with forward and does not have � within the

first four steps and one whose updated plan’s first step is forward and whose second step

is a goal concept. With these, we create two new follow-on samples. For each, the input

transcript of the first-turn sample is used verbatim in the follow-on sample. We take the

updated plan from the first-turn sample and strip off the first forward concept to leave a

sequence of plan concepts. We take the current plan in our follow-on sample, replace the �

with this sequence of plan concepts, and use this as the updated plan.

When it is a intersection concept, we find first-turn samples whose updated plans would

be consistent when combined with the current plan to form the updated plan. For example,

if the intersection is specifically end or elbow, we find two first-turn samples, one whose

updated plan has left as the third step and one whose updated plan has right as the third

step. These plans (third step and onward) are appended to the follow-on sample’s current

plan to serve as its updated plan. When it is int-L or int-R, we again find two first-turn

samples, one whose updated plan has left or right, respectively, as the third step and one

whose updated plan starts with forward and does not have a � within the first four steps.

The follow-on’s updated plan is formed by appropriately combining the current plan with

the relevant portions of the first-turn sample’s updated plan.

Finally, for each sample, it’s possible that the input transcript is nonsensical or an empty

string (representing silence). We create additional samples for these cases in which the

updated plan is simply the same as the current plan. It’s also possible the person may

indicate that the robot should start over. We create samples for this scenario as well where

the updated plan is [�]. To create relevant follow-up questions, we wrote custom logic that

looked at the plan and generated a question (see Table  2.4 ). Table  2.3 shows one first-turn

sample and one follow-on sample.

2.4.3 Augmented dataset training and validation

We used the source code at [  59 ] to train a network based on Text Summarization with

Pretrained Encoders [ 60 ] to take the current plan and input transcript as input and to

103



Table 2.3. Training samples.
current plan [�]
input transcript yeah, go straight and then make a right
updated plan [forward, int-R, right,�]
follow-up question What do I do after turning right?
current plan [�, end, left, goal-R]
input transcript think you might have to turn around
updated plan [turn-around, end, left, goal-R]
follow-up question Got it. Thanks!

Table 2.4. Partial plan follow-up questions.
Category Follow-up question
empty Repeat original question.
need-elevator Ask for navigational instructions to the elevator.
need-first Ask which direction to start out going.
need-last Ask what do to after last instruction.

104



produce an updated plan and follow-up question as output. For training, we specified a

maximum input length of 200 tokens. We divided the subjects into five folds to perform

leave-one-fold-out cross validation. The average validation accuracy was 69.9% and the

average follow-up question relevance was 99.0%.

2.4.4 Spoken dialogue

When initiating a conversation, the plan is initialized to [�] and begins with the robot

posing a question. It waits for a response, which is transcribed to produce a transcript. The

current plan, along with this transcript, are fed into the network, which produces an updated

plan and follow-up question. The robot poses the follow-up question and this process repeats

itself until the updated plan has no �.

To help facilitate a more natural conversation, we have a small amount of code to address

a few corner cases that may arise in spoken conversation. If a response is not heard within

5 s, the robot states this fact and repeats its question. If the robot is not able to extract

any information from a response, it indicates such and may provide some information about

what it does understand (e.g., directions and intersections). If the robot goes two turns

without the plan changing (e.g., it fails to understand the navigational instructions or hears

no response), the robot ends the conversation and carries out whatever portion of the plan

is usable.

2.5 Navigation Commands

Once a complete plan is produced, it is post-processed to take the plan concepts and

convert them into a sequence of commands for the navigation component to execute. The

commands are generated from plan subsequences by pairing adjacent intersection and direc-

tion concepts in the plan, with one exception: turn-around, which is treated as a stand-alone

command. Table  2.5 shows these conversions.

105



Table 2.5. Commands produced from plan subsequences.
Plan subsequences Command Description
end,left end_left turn left at end of hallway
end,right end_right turn right at end of hallway
int-L,forward int-L_forward go forward when left available
int-L,left int-L_left turn left when left available
int-R,forward int-R_forward go forward when right available
int-R,right int-R_right turn right when right available
turn-around int-B_backward turn around when possible
elbow,left elbow_left turn left at elbow
elbow,right elbow_right turn right at elbow
elbow,either elbow_either go through elbow

106



2.6 Navigation

The navigation component executes each command by continuously looking at the SLAM

map to determine a goal location where the robot should drive and a feedback status to

indicate whether to advance to the next command. When it arrives at the intersection

indicated by the command, the navigation component predicts a goal location that executes

the turn indicated by the command and a feedback status of transition indicating it can

advance to the next command. However, if the robot is in the middle of a hallway, the

navigation component predicts a goal location that drives it down the hallway and a feedback

status of forward indicating that the command has not been executed. If it reaches the end

of the hallway without detecting the intersection, the navigation component stops the robot

and produces a feedback status of failure indicating that the robot has failed to execute the

command. We illustrate this in Figure  2.2 which depicts three SLAM maps and commands

depicting different scenarios along with their corresponding feedback statuses. The robot’s

position and orientation is depicted by the light blue arrow and the yellow circle represents

the goal location where the robot should drive.

(a) int-L_left (b) elbow_either (c) end_right

Figure 2.2. (a) The robot can execute the command; it produces a goal
location that drives it into the hallway on its left and a feedback status of
transition. (b) The robot is in a hallway and cannot execute the command
yet; it produces a goal location that drives it further down the hallway and a
feedback status of forward. (c) The robot has reached the end of the hallway
and cannot make a right turn; it stops and produces a feedback status of
failure.

107



2.6.1 Network

We implement this navigation with a neural network that takes the command and SLAM

map as input and predicts a goal location as (x, y) coordinates and feedback status with a

3-way classifier. The neural network consists of 4 convolutional layers that extract features

from the SLAM map. These features are concatenated with a one-hot encoding of the input

command which is passed through 2 fully-connected layers to create a final representation of

the input. This representation is passed into two parallel layers, to predict the coordinates

and feedback status, respectively.

2.6.2 Training

To train this network, we required training samples that consist of a SLAM map, input

command, goal location, and feedback status. To collect the SLAM maps, we manually

navigated the robot on several floors of three buildings (PHYS, MSEE, and EE), ensuring to

cover every hallway. The robot was intentionally driven in the centers of hallways and turned

in the centers of intersections to simulate ideal navigation. We used Google Cartographer

[ 14 ] to determine the robot’s positions and generate the SLAM maps as it was driving, and

these were recorded at a rate of 10 Hz.

Each SLAM map is used to create multiple training samples by pairing each of the

commands in Table  2.5 . Then, for each map-command pair, we determine the corresponding

goal location and feedback status. To do this, we first must determine what directions are

available to the robot in the SLAM map by using the robot positions that were recorded.

A direction is considered available if there is a recorded position in the SLAM map in that

direction within 5 m of the SLAM map’s center. We also use these positions to determine a

goal location for each available direction. This process is illustrated in Figure  2.3 . Then we

use the available directions to determine the intersection type(s) based on the correspondence

indicated in Table  2.6 .

We can now use this information to form the training samples. For each command,

if the SLAM map has the intersection corresponding to it, we make a sample whose goal

location corresponds to the direction specified by the command and whose feedback status

108



Figure 2.3. Left: Black squares represent all positions within 5 m of the center
of the SLAM map. Center: Green squares represent positions corresponding
to backward. Red squares represent positions corresponding to right. Right:
Green square is goal location for backward and red square is goal location
for right. Available directions are backward and right; using Table  2.6 , the
intersection types are int-R, end, int-B, and elbow.

109



Table 2.6. Intersection types based on available directions.
forward backward left right Intersection types

no no no yes int-R
no no yes no int-L
no no yes yes hallway, int-L, int-R
no yes no no end, int-B
no yes no yes int-R, end, int-B, elbow
no yes yes no int-L, end, int-B, elbow
no yes yes yes int-L, int-R, end, int-B
yes no no no hallway
yes no no yes int-R
yes no yes no int-L
yes no yes yes int-L, int-R
yes yes no no hallway, int-B
yes yes no yes int-R, int-B
yes yes yes no int-L, int-B
yes yes yes yes int-L, int-R, int-B

is transition. If the SLAM map does not have the intersection, but forward is an available

direction, we make a sample whose goal location corresponds to forward and whose feedback

status is forward. If the SLAM map does not have the intersection and forward is not

available, we make a sample whose goal location is (0.0, 0.0), and whose feedback status is

failure.

We train the network on these samples, using two loss functions for each of the respective

outputs. For the 3-way feedback status classifier, we use weighted cross-entropy and for

regressing to the (x, y) goal coordinates we use mean-squared-error. During training, we

randomly apply rotation and translation (y-axis only) transformations to simulate the robot

having an off-center position and orientation in a hallway, allowing the network to still predict

correct goals.

2.6.3 Command Execution

To achieve autonomous navigation on the robot,we apply the trained network contin-

uously to the current input command and SLAM map at a rate of 10 Hz. Because noisy

output is possible with noisy SLAM data, we consider multiple consecutive outputs from the

110



network to make navigation decisions. This accomplishes two crucial things: the robot will

not navigate incorrectly due to a single spurious output and the robot will be able to catch

an intersection if it is driving past it. Specifically, the navigation component considers the

10 most recent outputs, feedback statuses and goal locations, of the network. Among these

outputs, if the most common feedback status is forward, the robot will drive to the goal

location of the most recent output. However, if it is transition or failure the robot will stop

moving and wait for 10 additional outputs to make a final decision. If the most common

feedback status of these outputs is transition, the robot computes the aggregates the goal

locations of only the outputs whose status is transition. The robot will then drive to the

aggregated goal location. Once that navigation is complete, the robot will then take the

next command as input into the network. If it is failure, however, the robot will stop and

not attempt to execute any more commands.

2.7 System Experiments

To evaluate the performance of our entire system, we tested in three buildings that were

not part of our training sets. 

1
 These test buildings consist of multiple hallways and alcoves

of varying lengths and widths, with common objects, such as water-fountains, trashcans, and

chairs, found in various places (see Figure  1.15 for example floor plans). We placed the robot

in different locations on different floors of the three new buildings. In each location, it was

tasked with asking a person for navigational instructions to a goal location and then following

the plan it constructed. We recruited volunteers, who were not part of our training set, to

engage in the dialogue. After constructing a plan, it attempted to execute the commands

to reach the hallway containing the goal location. The ROS move_base package [  61 ] was

used for autonomous path planning, with obstacle avoidance, to driving goals produced by

the navigation network. A demonstration of our system can be seen in the attached video

submission.

We consider several different forms of successes. If the navigational instructions were

interpreted and followed correctly, this is a complete success. If the navigational instructions
1

 ↑ All software and datasets used to produce the results in this manuscript will be made available upon
publication.

111



Table 2.7. Experimental results.
HAMP KNOY ME Total

Complete Success 5 10 6 21
Dialogue Success/Navigation Failure 2 3 5 10
Dialogue Failure/Navigation Success 4 1 3 8
Complete Failure 0 0 0 0
Total 11 14 14 39

were interpreted incorrectly and the robot either followed the interpretation correctly or

signified an inability to do so correctly, this is a navigation success but dialogue failure. If

the navigational instructions were interpreted correctly, but the navigation was unsuccessful,

this is a dialogue success but navigation failure. If both were unsuccessful, it is a complete

failure. Any trial that required manual intervention was considered a failure.

Table  2.7 shows a breakdown of the trials and their corresponding category on a per-

building basis. The dialogue and navigation components had high success rates of 79.4%

and 74.3%, respectively. In the case of dialogue, its success rate is slightly better than the

validation accuracy reported in Section  2.4.3 . In 92.3% of the trials, the dialogue component

produced plans whose first 3 concepts were correct, which means that for a strong majority

of the time, the robot would have a plan that starts it going in the right direction. In these

trials, the robot always succeeded at reaching the intersection corresponding to the current

input command by correctly outputting the transition classification. However, in 9 of the

10 trials with navigation failure, the robot was unable to predict an accurate driving goal

while stopped in the correct intersection, even after rotating, and indicated failure. In the

other single trial, manual intervention was employed to prevent the robot from crashing while

turning a corner to execute the first command and allowed the robot to successfully complete

the second command autonomously. In 5 of the 39 trials, the robot’s sequence of commands

did not correspond to the environment either due to misinterpretation in dialogue or a

mistake on the volunteer’s behalf. In all 5 of these trials, the robot correctly drove forward

until eventually predicting the failure feedback status at the end of a hallway to indicate

that the command could not be executed.

112



2.8 Comparison Experiments

We compared our method to three prior VLN approaches [  11 ]–[ 13 ] on the task reported

in Section  2.7 . While we evaluated using the same kind of live trials reported in Section  2.7 ,

we needed a training set with the same structure as R2R, where all navigation is performed

on a fixed graph with images available for all orientations at each vertex, Thus we collected

an additional training set, in the style of R2R, using our robot in the same three buildings

(PHYS, MSEE, and EE) where we collected the training sets reported in Section  2.4.1 and

Section  2.6.2 , by placing the robot at fixed waypoints, approximately 3 m apart, and collected

36 images at each waypoint at different camera pan and tilt positions. We then paired the

natural-language utterances reported in Section  2.4.1 with the corresponding sequences of

these waypoints to create the new training set. This allowed us to construct 2,814 training

samples. We trained SF [ 12 ], RCM [ 13 ] and Babywalk [  11 ] on R2R, using the code base

provided by [ 11 ], then fine tuned on this new training set.

Evaluating with live trials in novel environments in a different building, however, re-

quired us to map the small finite action space output by models trained with the prior

VLN approaches to the continuous action space needed to perform our task. During the

trials, upon arrival at a waypoint, the robot collected 36 images at the same pan and tilt

angles described above, extracted their features as described in [  11 ], and decided whether to

drive to an adjacent waypoint or indicate completion. We determined adjacent waypoints by

searching the robot’s SLAM map for positions in free space that corresponded to positions

in front of, behind, left of, and right of the robot’s current position.

A strict evaluation of success of a purely autonomous method that cascades the prior

models that output discrete navigation actions designed to navigate in a symbolic graph

with our code that instead navigates to physical waypoints from those discrete actions leads

to very low success rate. Thus we relaxed our success criterion to manually intervene if the

robot got too near an obstacle. We moved the robot away from the obstacle to allow the

trial to continue.

We conducted eight trials with each of the three methods in KNOY, where our approach

had its highest success rate. We positioned the robot in the same starting location and

113



Table 2.8. Comparison of our system with prior VLN systems. Successful
trials were those where the robot stopped in the hallway with the goal location.

Successful number of trials Total number of trials Success rate
SF [ 12 ] 0 8 0.0%
RCM [ 13 ] 0 8 0.0%
Babywalk [ 11 ] 0 8 0.0%
Our System 10 14 71.4%

Table 2.9. Navigation statistics from the results reported in Table  2.8 . Cor-
rect Waypoints is the average number of waypoints the system correctly pre-
dicted and navigated to before heading off in a wrong direction. Total Way-
points is the average number of waypoints navigated to before the stop condi-
tion is met. Navigation Error is the average driving distance from the ending
location to the beginning of the hallway with the goal location.

Correct Total Navigation
Waypoints Waypoints Error

SF [ 12 ] 3.9 26.8 25.6 m
RCM [ 13 ] 3.5 15.8 38.9 m
Babywalk [ 11 ] 0.1 8.9 29.4 m
Our System n/a n/a 3.6 m

orientation used in eight of our trials from Section  2.7 and provided the same corresponding

text instructions. A trial was concluded when the method predicted the stop condition. If the

robot was in the hallway with the goal location, we considered it a success. We then manually

drove the robot to the beginning of the hallway with the goal location. Using odometry, we

measured the navigation error, which is the driving distance from the ending location to

the beginning of the hallway with the goal location. Table  2.8 shows that two of the three

methods failed to correctly execute the instructions specified by the input utterances in

all eight of their respective trials and one method succeeded only once. Table  2.9 shows

a breakdown of these trials, including the number of waypoints traversed and how many

waypoints the robot successfully navigated before heading off in a wrong direction. In some,

the robot would simply start driving in the opposite direction from that indicated by the

instructions. In others, it would miss the turn it was supposed to take or start driving back

to where it came from. Our system has a much higher success rate and far lower navigation

error.

114



2.9 Conclusion

We have demonstrated an end-to-end system, deployed on a real robot in a real environ-

ment, that can interpret instructions through spoken dialogue as a sequence of commands

and then execute those commands. We have also shown that our approach outperforms prior

VLN methods when applied to the task of a real robot understanding instructions in a real

unknown environment.

115



REFERENCES

[1] M. Hanheide, M. Göbelbecker, G. S. Horn, A. Pronobis, K. Sjöö, A. Aydemir, P. Jens-
felt, C. Gretton, R. Dearden, M. Janicek, et al., “Robot task planning and explanation
in open and uncertain worlds,” Artificial Intelligence, vol. 247, pp. 119–150, 2017.

[2] A. Bauer, K. Klasing, G. Lidoris, Q. Mühlbauer, F. Rohrmüller, S. Sosnowski, T. Xu,
K. Kühnlenz, D. Wollherr, and M. Buss, “The autonomous city explorer: Towards
natural human-robot interaction in urban environments,” International Journal of
Social Robotics, vol. 1, no. 2, pp. 127–140, 2009.

[3] C. Matuszek, D. Fox, and K. Koscher, “Following directions using statistical machine
translation,” in International Conference on Human-Robot Interaction, 2010, pp. 251–
258.

[4] J. H. Oh, A. Suppé, F. Duvallet, A. Boularias, L. Navarro-Serment, M. Hebert, A.
Stentz, J. Vinokurov, O. Romero, C. Lebiere, et al., “Toward mobile robots reasoning
like humans,” in Conference on Artificial Intelligence, 2015, pp. 1371–1379.

[5] T. Kollar, S. Tellex, D. Roy, and N. Roy, “Toward understanding natural language
directions,” in International Conference on Human-Robot Interaction, 2010, pp. 259–
266.

[6] S. Hemachandra, F. Duvallet, T. M. Howard, N. Roy, A. Stentz, and M. R. Walter,
“Learning models for following natural language directions in unknown environments,”
in International Conference on Robotics and Automation, 2015, pp. 5608–5615.

[7] J. Thomason, S. Zhang, R. J. Mooney, and P. Stone, “Learning to interpret natural
language commands through human-robot dialog,” in International Joint Conference
on Artificial Intelligence, 2015, pp. 1923–1929.

[8] D. P. Barrett, S. A. Bronikowski, H. Yu, and J. M. Siskind, “Driving under the influence
(of language),” Transactions on Neural Networks and Learning Systems, vol. 29, no. 7,
pp. 2668–2683, 2018.

[9] P. Anderson, Q. Wu, D. Teney, J. Bruce, M. Johnson, N. Sünderhauf, I. Reid, S.
Gould, and A. Van Den Hengel, “Vision-and-language navigation: Interpreting visually-
grounded navigation instructions in real environments,” in Computer Vision and Pat-
tern Recognition, 2018, pp. 3674–3683.

[10] J. Thomason, M. Murray, M. Cakmak, and L. Zettlemoyer, “Vision-and-dialog navi-
gation,” in Conference on Robot Learning, 2020, pp. 394–406.

116



[11] H. Zhu Wang and- Hu, J. Chen, Z. Deng, V. Jain, E. Ie, and F. Sha, “Babywalk: Going
farther in vision-and-language navigation by taking baby steps,” in Annual Meeting of
the Association for Computational Linguistics, 2020, pp. 2539–2556.

[12] D. Fried, R. Hu, V. Cirik, A. Rohrbach, J. Andreas, L.-P. Morency, T. Berg-Kirkpatrick,
K. Saenko, D. Klein, and T. Darrell, “Speaker-follower models for vision-and-language
navigation,” in Conference on Neural Information Processing Systems, 2018, pp. 3318–
3329.

[13] X. Wang, Q. Huang, A. Celikyilmaz, J. Gao, D. Shen, Y.-F. Wang, W. Y. Wang, and
L. Zhang, “Reinforced cross-modal matching and self-supervised imitation learning
for vision-language navigation,” in Computer Vision and Pattern Recognition, 2019,
pp. 6629–6638.

[14] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure in 2D LIDAR
SLAM,” in International Conference on Robotics and Automation, 2016, pp. 1271–
1278.

[15] Google, Cloud speech-to-text, Retrieved Mar 1, 2019 from  https://cloud.google.
com/speech-to-text , 2019.

[16] D. Chen and C. Manning, “A fast and accurate dependency parser using neural net-
works,” in Empirical Methods in Natural Language Processing, 2014, pp. 740–750.

[17] N. M. Bhat, Python text to speech library, Retrieved Dec 1, 2018 from  https://pypi.
org/project/pyttsx3/ , 2017.

[18] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,” arXiv:1804.02767,
2018.

[19] R. Grompone Von Gioi, J. Jakubowicz, J. M. Morel, and G. Randall, “LSD: A fast
line segment detector with a false detection control,” Transactions on Pattern Analysis
and Machine Intelligence, vol. 32, no. 4, pp. 722–732, 2010.

[20] Google, Detect text in images, Retrieved Apr 1, 2019 from  https://cloud.google.
com/vision/docs/ocr , 2019.

[21] D. Agarwal, LIDAR-camera-calibration in ROS, Retrieved Jun 1, 2018, from  https:
//github.com/agarwa65/lidar_camera_calibration , 2018.

[22] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval research
logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

117

https://cloud.google.com/speech-to-text
https://cloud.google.com/speech-to-text
https://pypi.org/project/pyttsx3/
https://pypi.org/project/pyttsx3/
https://cloud.google.com/vision/docs/ocr
https://cloud.google.com/vision/docs/ocr
https://github.com/agarwa65/lidar_camera_calibration
https://github.com/agarwa65/lidar_camera_calibration


[23] D. H. Douglas and T. K. Peucker, “Algorithms for the reduction of the number of
points required to represent a digitized line or its caricature,” Cartographica: The
International Journal for Geographic Information and Geovisualization, vol. 10, no. 2,
pp. 112–122, 1973.

[24] W. Shi and J. Samarabandu, “Investigating the performance of corridor and door detec-
tion algorithms in different environments,” in International Conference on Information
and Automation, 2006, pp. 206–211.

[25] L. Del Pero, J. Bowdish, D. Fried, B. Kermgard, E. Hartley, and K. Barnard, “Bayesian
geometric modeling of indoor scenes,” in Computer Vision and Pattern Recognition,
2012, pp. 2719–2726.

[26] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time object de-
tection with region proposal networks,” in Advances in Neural Information Processing
Systems, 2015, pp. 91–99.

[27] M. Arduengo, C. Torras, and L. Sentis, Robust and adaptive door operation with a
mobile manipulator robot, 2019. arXiv:  1902.09051 [cs.RO] .

[28] A. Weiss, J. Igelsböck, M. Tscheligi, A. Bauer, K. Kühnlenz, D. Wollherr, and M.
Buss, “Robots asking for directions - the willingness of passers-by to support robots,”
in International Conference on Human-Robot Interaction, 2010, pp. 23–30.

[29] A. Robicquet, A. Sadeghian, A. Alahi, and S. Savarese, “Learning social etiquette: Hu-
man trajectory understanding in crowded scenes,” in European Conference on Com-
puter Vision, 2016, pp. 549–565.

[30] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S. Savarese, “Social
LSTM: Human trajectory prediction in crowded spaces,” in Computer Vision and
Pattern Recognition, 2016, pp. 961–971.

[31] A. Bauer, B. Gonsior, D. Wollherr, and M. Buss, “Heuristic rules for human-robot
interaction based on principles from linguistics-asking for directions,” in New Frontiers
in Human-Robot Interaction, 2009, pp. 24–30.

[32] A. Bauer, D. Wollherr, and M. Buss, “Information retrieval system for human-robot
communication-asking for directions,” in International Conference on Robotics and
Automation, 2009, pp. 4150–4155.

[33] A. Boularias, F. Duvallet, J. Oh, and A. Stentz, “Grounding spatial relations for out-
door robot navigation,” in International Conference on Robotics and Automation, 2015,
pp. 1976–1982.

118

https://arxiv.org/abs/1902.09051


[34] J. Thomason, A. Padmakumar, J. Sinapov, N. Walker, Y. Jiang, H. Yedidsion, J.
Hart, P. Stone, and R. Mooney, “Jointly improving parsing and perception for natural
language commands through human-robot dialog,” Journal of Artificial Intelligence
Research, vol. 67, pp. 327–374, 2020.

[35] S. Lukin, F. Gervits, C. Hayes, P. Moolchandani, A. Leuski, J. G. Rogers III, C. S.
Amaro, M. Marge, C. Voss, and D. Traum, “Scoutbot: A dialogue system for collabora-
tive navigation,” in Annual Meeting of the Association for Computational Linguistics,
2018, pp. 93–98.

[36] V. Blukis, Y. Terme, E. Niklasson, R. A. Knepper, and Y. Artzi, “Learning to map
natural language instructions to physical quadcopter control using simulated flight,”
in Conference on Robot Learning, 2020, pp. 1415–1438.

[37] S. Banerjee, J. Thomason, and J. J. Corso, “The RobotSlang benchmark: Dialog-guided
robot localization and navigation,” in Conference on Robot Learning, 2020, pp. 1–10.

[38] N. Sünderhauf, F. Dayoub, S. McMahon, B. Talbot, R. Schulz, P. Corke, G. Wyeth,
B. Upcroft, and M. Milford, “Place categorization and semantic mapping on a mobile
robot,” in International Conference on Robotics and Automation, 2016, pp. 5729–5736.

[39] D. Pangercic, B. Pitzer, M. Tenorth, and M. Beetz, “Semantic object maps for robotic
housework-representation, acquisition and use,” in International Conference on Intel-
ligent Robots and Systems, 2012, pp. 4644–4651.

[40] S. A. Stoeter, F. Le Mauff, and N. P. Papanikolopoulos, “Real-time door detection
in cluttered environments,” in International Symposium on Intelligent Control, 2000,
pp. 187–192.

[41] D. Kim and R. Nevatia, “Recognition and localization of generic objects for indoor
navigation using functionality,” Image and Vision Computing, vol. 16, no. 11, pp. 729–
743, 1998.

[42] G. Olmschenk and Z. Zhu, “3D hallway modeling using a single image,” in Computer
Vision and Pattern Recognition Workshops, 2014, pp. 158–164.

[43] P. Anderson, A. Shrivastava, J. Truong, A. Majumdar, D. Parikh, D. Batra, and S.
Lee, “Sim-to-real transfer for vision-and-language navigation,” in Conference on Robot
Learning, 2020, pp. 1–11.

[44] J. Roh, C. Paxton, A. Pronobis, A. Farhadi, and D. Fox, “Conditional driving from
natural language instructions,” in Conference on Robot Learning, 2020, pp. 540–551.

119



[45] N. Sriram, T. Maniar, J. Kalyanasundaram, V. Gandhi, B. Bhowmick, and K. M.
Krishna, “Talk to the vehicle: Language conditioned autonomous navigation of self
driving cars,” in International Conference on Intelligent Robots and Systems, 2019,
pp. 5284–5290.

[46] M. Deitke, W. Han, A. Herrasti, A. Kembhavi, E. Kolve, R. Mottaghi, J. Salvador,
D. Schwenk, E. VanderBilt, M. Wallingford, L. Weihls, M. Yatskar, and A. Farhadi,
“RoboTHOR: An open simulation-to-real embodied AI platform,” in Computer Vision
and Pattern Recognition, 2020, pp. 3164–3174.

[47] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and A. Farhadi,
“Target-driven visual navigation in indoor scenes using deep reinforcement learning,”
in International Conference on Robotics and Automation, 2017, pp. 3357–3364.

[48] H. Chen, A. Suhr, D. Misra, N. Snavely, and Y. Artzi, “Touchdown: Natural language
navigation and spatial reasoning in visual street environments,” in Computer Vision
and Pattern Recognition, 2019, pp. 12 538–12 547.

[49] H. de Vries, K. Shuster, D. Batra, D. Parikh, J. Weston, and D. Kiela, “Talk the walk:
Navigating New York City through grounded dialogue,” arXiv:1807.03367, 2018.

[50] C. Theobalt, J. Bos, T. Chapman, A. Espinosa-Romero, M. Fraser, G. Hayes, E. Klein,
T. Oka, and R. Reeve, “Talking to Godot: Dialogue with a mobile robot,” in Interna-
tional Conference on Intelligent Robots and Systems, 2002, pp. 1338–1343.

[51] D. L. Chen and R. J. Mooney, “Learning to interpret natural language navigation
instructions from observations,” in Conference on Artificial Intelligence, 2011, pp. 859–
865.

[52] H. Mei, M. Bansal, and M. Walter, “Listen, attend, and walk: Neural mapping of
navigational instructions to action sequences,” in Conference on Artificial Intelligence,
2016, pp. 2772–2778.

[53] T. M. Howard, S. Tellex, and N. Roy, “A natural language planner interface for mo-
bile manipulators,” in International Conference on Robotics and Automation, 2014,
pp. 6652–6659.

[54] Z. Hu, J. Pan, T. Fan, R. Yang, and D. Manocha, “Safe navigation with human instruc-
tions in complex scenes,” Robotics and Automation Letters, vol. 4, no. 2, pp. 753–760,
2019.

[55] G. Sepulveda, J. C. Niebles, and A. Soto, “A deep learning based behavioral approach
to indoor autonomous navigation,” in International Conference on Robotics and Au-
tomation, 2018, pp. 4646–4653.

120



[56] X. Zang, A. Pokle, M. Vázquez, K. Chen, J. C. Niebles, A. Soto, and S. Savarese,
“Translating navigation instructions in natural language to a high-level plan for be-
havioral robot navigation,” arXiv:1810.00663, 2018.

[57] R. Meena, G. Skantze, and J. Gustafson, “A data-driven approach to understanding
spoken route directions in human-robot dialogue,” in Conference of the International
Speech Communication Association, 2012, pp. 226–229.

[58] Microsoft, Azure speech-to-text, Retrieved Apr 1, 2020 from  https://azure.microsoft.
com/en-us/services/cognitive-services/speech-to-text/ , 2020.

[59] C. Schäfer and D. Tran, Headliner, Retrieved Mar 14, 2020 from  https://github.
com/as-ideas/headliner , 2020.

[60] Y. Liu and M. Lapata, “Text summarization with pretrained encoders,” in Empirical
Methods in Natural Language Processing, 2019, pp. 3730–3740.

[61] E. Marder-Eppstein, Move_base, Retrieved Sep 1, 2018 from  http://wiki.ros.org/
move_base , 2018.

121

https://azure.microsoft.com/en-us/services/cognitive-services/speech-to-text/
https://azure.microsoft.com/en-us/services/cognitive-services/speech-to-text/
https://github.com/as-ideas/headliner
https://github.com/as-ideas/headliner
http://wiki.ros.org/move_base
http://wiki.ros.org/move_base


A. BUILDING FLOOR PLANS

Areas of the map that are green represent areas that the robot can drive in. Areas of the

map that are red represent areas that the robot cannot drive in. These include carpeted

areas and hallways that are narrower than the robot’s circumscribed radius.

Figure A.1. Building Name: EE. Floor Number: 0.

122



Figure A.2. Building Name: EE. Floor Number: 1.

123



Figure A.3. Building Name: EE. Floor Number: 2.

124



Figure A.4. Building Name: EE. Floor Number: 3.

125



Figure A.5. Building Name: MSEE. Floor Number: 0.

126



Figure A.6. Building Name: MSEE. Floor Number: 1.

127



Figure A.7. Building Name: MSEE. Floor Number: 2.

128



Figure A.8. Building Name: MSEE. Floor Number: 3.

129



Figure A.9. Building Name: PHYS. Floor Number: 0.

130



Figure A.10. Building Name: PHYS. Floor Number: 1.

131



Figure A.11. Building Name: PHYS. Floor Number: 2.

132



Figure A.12. Building Name: PHYS. Floor Number: 3.

133



Figure A.13. Building Name: HAMP. Floor Number: 0.

134



Figure A.14. Building Name: HAMP. Floor Number: 1.

135



Figure A.15. Building Name: HAMP. Floor Number: 2.

136



Figure A.16. Building Name: HAMP. Floor Number: 3.

137



Figure A.17. Building Name: HAMP. Floor Number: 4.

138



Figure A.18. Building Name: KNOY. Floor Number: 1.

139



Figure A.19. Building Name: KNOY. Floor Number: 2.

140



Figure A.20. Building Name: KNOY. Floor Number: 3.

141



Figure A.21. Building Name: KNOY. Floor Number: 4.

142



Figure A.22. Building Name: ME. Floor Number: 0.

143



Figure A.23. Building Name: ME. Floor Number: 1.

144



Figure A.24. Building Name: ME. Floor Number: 2.

145



Figure A.25. Building Name: ME. Floor Number: 3.

146



VITA

Thomas Victor Ilyevsky received his B.S. in Electrical and Computer Engineering from

Cornell University in 2016. He is currently pursuing a Ph.D. in Electrical and Computer

Engineering at Purdue University. His research primarily focuses on artificial intelligence,

computer vision, and robotics.

147


	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS
	ABBREVIATIONS
	ABSTRACT
	INITIAL SYSTEM
	Introduction
	System Overview
	Hardware and Software
	Architecture
	Navigation Process
	Trajectory Generation
	Intersection Detection and Classification
	Intersection Refinement
	Intersection Graph


	States of the System Architecture
	Wander
	Wander Substates
	Forward Driving Goals
	Person Detection and Tracking

	Approach_person
	Hold_conversation
	Spoken Communication
	Information Extraction
	Dialogue
	Addressing Corner Cases

	Follow_directions
	Plan Preprocessing
	Follow_directions Substates
	Forward Driving Goals

	Navigate_door
	Detecting Walls
	Generating Door Proposals
	Scoring proposals
	Localizing detections
	Driving-Goal Generation
	Common-Sense Navigation


	System Evaluation
	Experimental Setup
	Trial Results
	Observations and Improvements
	Approach_person
	Hold_conversation
	Follow_directions
	Navigate_door


	Related Work
	Systems
	Behaviors
	Vision-Language Navigation

	Comparison with Prior Work
	Conclusion and Future Work

	TALK THE TALK AND WALK THE WALK: DIALOGUE-DRIVEN NAVIGATION IN UNKNOWN INDOOR ENVIRONMENTS
	Introduction
	Related Work
	System Architecture
	Dialogue
	Dataset collection
	Dialogue turn generation
	Augmented dataset training and validation
	Spoken dialogue

	Navigation Commands
	Navigation
	Network
	Training
	Command Execution

	System Experiments
	Comparison Experiments
	Conclusion

	REFERENCES
	BUILDING FLOOR PLANS
	VITA

