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PREFACE

In this constantly emerging data-driven scientific society, x86 and ARM based embed-

ded mobile computing platforms ranging from single-threaded single core to multi-threaded

multi-core processors play a distinct role in the computer vision (OpenCV) paradigm. Convo-

lutional Neural Network (CNN) algorithms developed specifically for computer vision appli-

cations need to be optimized for embedded computing platforms with limited computational

resources such as memory and processing power.

This thesis focuses on optimizing CondenseNet, a successor of widely popular CNN:

DenseNet (Densely Connected Convolutional Networks) and explains different techniques

utilized to reduce forward FLOPs and redundant trainable parameters resulting in unprece-

dented computational efficiency during training from scratch as well as during real-time

inference on an ARM based computing platform. This new CNN architecture is named

CondenseNeXt. Furthermore, extensive analyses are conducted on three popular computer

vision benchmarking datasets: CIFAR-10, CIFAR-100 and ImageNet in order to corroborate

the performance of CondenseNeXt CNN.
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GLOSSARY

architecture set of rules and methods that dictate the functionality and

organization of different modules of a computer system

bias an intercept that is added externally which has an effect of

increasing or decreasing the net input of the activation function

checker core a safety core within a CPU chip that is used to perform

comparisons for error checking

cyberinfrastructure advanced and powerful computer and information technology

systems

dennard scaling power density stays constant as transistor size reduce and power

utilization remains in proportion

distributed computing multiple components located on different machines

edge devices local devices

error rate signifies how well the network is performing on a certain set

flash a non-volatile computer memory that can be erased or

re-programmed

FlexCAN an embedded network architecture design to extend CAN

communication

FlexRay more faster and reliable automotive communication protocol

than CAN communication

frobenius inner product an operation that computes two matrices and returns a number

ground truth measurement of the target variable (inference) against empirical

evidence

hidden layer a part of the neural network is not visible directly from either the

input or output nodes of the network

inference process of utilizing a trained neural network model to make a

prediction

interleaving support a design which compensates for the slow memory speed by evenly

spreading memory address across memory banks
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L2 cache memory a level 2 cache memory built into the CPU chip

message buffering an area in the memory designed to temporarily hold messages

when sent by the source until the recipient receives it

mobile capable of moving or being moved

moore’s law processor’s computing power doubles every 18 months

neuron structural elements of a processing system that is capable of

processing and storing information

perceptrons a neural network algorithm for supervised learning

plasticity phenomenon of neurons adapting to the constantly changing

environment

power wall a phenomenon that limits frequency of processors to a certain

limit

pruning to remove as superfluous

single crop of inputs input images are taken and cropped only once

synaptic weights extracted information that is stored using inter-neuron

connection strengths

tensor another word of neuron

top-1 accuracy top predicted class with highest accuracy that match the ground

truth

top-5 accuracy top five predicted classes with the highest accuracy that match

the ground truth

weight a parameter within a neural network that determines how much

influence the input will have on the output

zipwire a communication bus developed upon a high speed (240 MHz)

serial interface
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ABSTRACT

Artificial Intelligence (AI) is the intellectuality demonstrated by machines, similar to nat-

ural intelligence demonstrated by living creatures of the Animalia kingdom, which involves

emotionality and consciousness to a certain extent. Advances in the computer technology

and access to copious amounts of data for multinomial classification due to digitization of

the human society, inexpensive cameras and Internet of Things (IoT) has fueled research

and development in the field of machine learning and perception, also known as computer

vision.

Convolutional Neural Networks (CNN) are a class of Deep Neural Networks (DNN) which

is a subset of Machine Learning (ML) which in turn is a simple technique for the realization

of AI. CNNs are becoming more popular in the field of computer vision for performing

fundamental tasks such as image classification, object detection and image segmentation

for real-world applications including, but not limited to, self-driving vehicles, robotics and

Unmanned Ariel Vehicles (UAVs) commonly known as a drone. This rise in popularity of AI

along with advancement in edge devices at local level such as mobile embedded computing

platforms ranging from single-core single-threaded processors to multi-core multi-threaded

processors have dictated the need for research and development of increasingly efficient state-

of-the-art deep neural network architectures.

One of the very first data and computationally intensive convolutional neural network

algorithms began dominating accuracy benchmarks in 2012 [  1 ]. With recent developments in

AI and embedded systems, a desire for more efficient yet accurate inferring CNNs has flour-

ished in recent years. This thesis proposes a neoteric variant of deep convolutional neural

network architecture incorporating state-of-the-art techniques such as Depthwise Separable

Convolution and Model Compression (Pruning) which results in reduction of forward FLOPs

and increase in overall accuracy (decrease in error rate) resulting in an outstanding perfor-

mance during training from scratch as well as during real-time image classification observed

through deployment of trained weights on NXP’s BlueBox, an ARM-based autonomous em-

bedded computing platform designed for self-driving vehicles, and benchmarked across three

popular computer vision datasets: CIFAR-10, CIFAR-100 and ImageNet.
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1. PROBLEM AND ITS BACKGROUND

Before beginning this thesis, a brief discussion of the problem being investigated, and its

background is in order. This discussion, while inadequate, still resides in the realm beyond

being what exposes the limitations of human understanding, shall lay a strong foundation

to commend the thesis statement proffered by this work and for the merits upon which the

research work and results in the subsequent chapters shall manifest.

1.1 Brief Overview

In recent years, three significant advancements have changed the AI landscape: techno-

logical advancements such as dramatically slowing down of Moore’s Law which forecasts that

the processor core performance will now double every 20 years, and the ending of Dennard

Scaling that has resulted in a power wall restricting the processor frequency to around 4

GHz since 2006 [  2 ]; shift in computing paradigms resulting in transitioning from central-

ized computing to distributed computing on edge devices; and significant developments in

the AI domains such as computer vision, natural language processing, and graph analytics.

As a result, researchers are faced with serious challenges of developing efficient deep neural

network algorithms for devices with constrained computational resources such as memory,

power supply, performance and system cooling.

This thesis proposes an ultra-efficient deep convolutional neural network developed specif-

ically for x86 and ARM based embedded computing platforms on the edge without needing a

CUDA enabled GPU support for real-time inference of input data, to confidently propound

the thesis statement offered by this work in the subsequent chapters.
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2. INTRODUCTION

Convolutional Neural Networks (CNN) are the backbone of computer vision algorithms. This

section provides an in-depth analysis of what a CNN is, starting with fundamentals of neural

networks and gradually building up to the different modules that constitute a CNN.

2.1 Artificial Neural Networks

Artificial Neural Networks (ANN), commonly known as Neural Networks, have been heav-

ily inspired by the functioning of a human brain and how the brain computes completely

different than a traditional computer. A human brain is extremely sophisticated and nonlin-

ear information processing system. It is capable of reorganizing and retraining its structural

elements known as neurons in order to parallelly perform complex computations such as

multi-object detection and classification, and pattern recognition much faster than any com-

puter in existence today. For example, consider human vision which performs perceptual

recognition computation of patterns and objects around us in about 100-200 milliseconds

and provides us the information so that we can interact and react accordingly. Powerful

computers with abundant computational resources will still take longer to execute tasks of

such higher complexity.

During the first two years of birth, a human brain undergoes considerable re-structuring

of its neurons to develop its ability to learn and adapt to set of rules of behavior through

what is commonly known as experience. However, this development does not stop here;

it continues throughout the human life. This phenomenon of neurons adapting to the con-

stantly changing environment is known as plasticity. Just as plasticity is important to human

brain’s information extraction process, so is important for neural networks comprised of ar-

tificial neurons. In general, a neural network is modelled to allow machines to learn, adapt,

think and process information in a similar way the human brain does. Neural networks are

developed using a programming language and deployed on electrical computing hardware or

simulated in a software on a digital computer.
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Artificial neural networks resemble a human brain in following two ways:

• Through a learning process, knowledge is extracted with the help of neurons.

• This information is then stored using inter-neuron connection strengths known as

synaptic weights.

This process of learning is called a learning algorithm where the synaptic weights of the

neural network are modified to attain a desired output. A neuron is an information processing

unit which is an underlying fundamental of a learning algorithm. Figure 2.1 demonstrates

the structure of a neuron in a neural network and discloses three basic elements as follows:

1. Synaptic Weights: Each of these synapses are represented by its own weights. Unlike

synapses in a human brain, synapses in a neural network may have positive as well as

negative values.

2. Summing Junction: Also known as an adder, it sums all input signals weighted by the

corresponding synaptic strengths of a neuron. In this way, an adder functions as a

linear combiner.

3. Activation Function: An activation function, either linear or non-linear, is used to

limit the amplitude of the output of a neuron. Activation functions are also sometimes

known as squashing functions.

x1 wk1

x2 wk2 Σ
Summing
junction

ϕ(·)

Activation
function

yk

Output

xn wkn

Synaptic
weights

Bias
bk

Inputs

Figure 2.1. Nonlinear model of a neuron, labeled k, in a neural network.
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Computation of the local gradient δ(n) of a neuron requires knowledge of an activation

function ϕ(·) as seen in Figure 2.1. An activation function ϕ(·) has to be continuously differ-

entiable. Table 2.1 provides a summary of most commonly used continuously differentiable

nonlinear activation functions in fully connected multi-layer feed-forward neural networks.

Bias bk is like an intercept that is added externally which has an effect of increasing

or decreasing the net input of the activation function. In simple terms, it facilitates the

shifting of the activation function by adding a constant. Figure 2.1 can be mathematically

represented by (2.1) as follows:

yk = ϕ(uk + bk) (2.1)

where

uk =
m∑

j=1
wkjxj (2.2)

Table 2.1. Continuously Differentiable Nonlinear Activation Functions.
Name Function Derivative Figure

Sigmoid σ(x) = 1
1+e−x f ′(x) = f(x)(1 − f(x))2

Tanh σ(x) = ex−e−x

ez+e−z f ′(x) = 1 − f(x)2

ReLU f(x) =

0 if x < 0
x if x ≥ 0.

f ′(x) =

0 if x < 0
x if 1 ≥ 0.

Softmax f(x) = ex∑
i ex f ′(x) = ex∑

i ex − (ex)2

(
∑

i ex)2
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2.2 Multi-layer Feed-forward Neural Networks

Multi-layer feed-forward neural networks are one the most popular structured classes of

neural network architectures. In this type of network, neurons are intimately linked with

the learning algorithm utilized to train the network for a given dataset depending on its end

application and implementation.

There can be one or more hidden layers whose computation nodes are known as hidden

neurons and the number of hidden layers dictate the depth of a neural network. The term

hidden denotes that a part of the neural network is not visible directly from either the input

or output nodes of the network. By adding more hidden layers, the neural network will have

extra sets of synaptic connections which will help the network extract higher order statistical

data from the inputs xn. Figure 2.2 below provides a visual representation of a two-layer

feed-forward neural network comprised of one input layer, one hidden layer and one output

layer as follows:

...
... ...

x1

x2

x3

xn

h1

hn

o1

on

Input
layer

Hidden
layer

Ouput
layer

Figure 2.2. Fully connected feed-forward neural network with one hidden
layer and one output layer.
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A conventional method for training multi-layer fully connected feed-forward neural net-

works, also known as multi-layer perceptrons, is the back-propagation algorithm, which also

includes the famous LMS algorithm as a special case. There are two phases in this algorithm:

1. Forward Phase: In this phase, inputs are propagated forward through the neural

network layer by layer where synaptic weights are fixed until it reaches the output

layer.

2. Backward Phase: In this phase, an error signal is generated by correlating the output

of the network with the ground truth (desired response). Then this error signal is

propagated backward through the neural network layer by layer adjusting the synaptic

weights of the network.

Blue lines in Figure 2.3 below correspond to error signals of the back propagation algorithm.

d1
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1ϕ(·)
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v
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(1)
1

v
(2)
1

v
(2)
1
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δ
(2)
1

+1
w

(1)
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w
(1)
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w

(2)
10 = b(2)

w
(2)
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d2

e2

o2 − 1ϕ(·)y
(1)
2ϕ(·)

x2

e2

v
(1)
2

v
(1)
2
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(1)
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w
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(1)
3ϕ(·)
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(1)
3

v
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Figure 2.3. Signal-flow of back-propagation learning algorithm for fully con-
nected feed-forward neural network with one hidden and one output layer.
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In order to mathematically represent the back propagation algorithm for multi-layer

perceptrons [ 3 ], we will consider following two cases:

Case 1 - When neuron j is an output node, a ground truth (desired output) is readily

available for the node. Hence, error signal ej(n) and local gradient δj(n) is mathematically

represented as follows:

ej(n) = dj(n) − yj(n) (2.3)

where dj(n) is the ith element of the desired response vector d(n) and yj(n) is signal generated

at the output of neuron j in the output layer with the help of stimulus x(n) applied to the

input layer. Then, the local gradient δj(n) can be computed as follows:

δj(n) = ej(n)ϕj′(vj(n)) (2.4)

where ϕj′(vj(n)) derivative corresponds to the respective activation function.

Case 2 - When neuron j is a hidden node, there is no ground truth (desired output) available

at the hidden node. Hence, an error signal has to be calculated recursively in a backward

fashion. Equation 2.4 can be redefined as follows:

δj(n) = − δε(n)
δyj(n)ϕj′(vj(n)) (2.5)

where

δε(n)
δyj(n) = −

∑
k

ek(n)ϕk′(vk(n))wkj(n)

= −
∑

k

δk(n)wkj(n) (2.6)

From equations 2.5 and 2.6, the back propagation formula for local gradient δj(n) for this

case is mathematically represented as follows:

δj(n) = ϕj′(vj(n))
∑

k

δk(n)wkj(n) (2.7)
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2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are a special class of fully connected multi-layer

feed-forward neural networks designed specifically to infer two dimensional objects in an

image frame with a high degree of resistance and stability to skewing, scaling, noise and

other forms of distortions. This complex task is trained in a supervised manner by providing

ground truth labels during the training stage. Following are three fundamental operations

carried out by a CNN:

1. Feature extraction: Each neuron in the neural network obtains a synaptic input from

local neuron(s) form the previous layer. Thus, compelling the current neuron to ex-

tract local features. After feature extraction is performed, its location becomes less

important, provided if the relative position to other features is maintained.

2. Feature mapping: A layer is composed of multiple feature maps where individual

neurons are required to share coequal set of synaptic weights. This operation aids in

shift invariance as well as reduction in the number of free parameters.

3. Subsampling: This operation results in reduction of resolution of the feature map

which helps in building resistance to shifts and other forms of distortions as discussed

before.

Convolution Subsampling Convolution

8@128x128
8@64x64

24@48x48
1x256

Figure 2.4. High level view of a convolutional neural network for image processing.
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Figure 2.4 provides visualization of a convolutional neural network’s architecture which

comprises of one input layer, two hidden layers and one output layer. This network architec-

ture is designed to perform image processing tasks such as image classification. The input

layer has 128 × 128 sensory nodes (neurons) which receives input image that has already

been cropped, centered and normalized in terms of dimensions. Thereafter, convolution,

subsampling and then again convolutional operations are performed on the input image as

follows:

1. Convolution is performed by the first hidden layer made up of eight feature maps

consisting of 64 × 64 neurons.

2. Subsampling operation is carried by the second hidden layer along with local averaging.

This layer is made up of 24 feature maps consisting of 48 × 48 neurons. Each neuron

also has a trainable coefficient, bias and an activation functions (can be either linear

or non-linear).

3. A final convolution is performed by the output layer made up of 1 feature map consist-

ing of 256 neurons wherein, each neuron is assigned either one of 256 possible outputs.

Convolution layer contains an array of numbers that will execute Frobenius Inner Product

operation on data received from previous layers and pass it forward to the next layer. Figure

2.5 provides a visualization of Frobenius Inner Product of Filter K on data I, which is

repeated for every filter in the convolutional layer.

1 1 1 0 0 0
0 1 1 1 0 0
0 0 1 1 1 0
0 0 1 1 0 0
0 1 1 0 0 0
1 1 0 0 0 0

I

∗
1 0 1
0 1 0
1 0 1

K

=

1 4 3 4 1
1 2 4 3 3
1 2 3 4 1
1 3 3 1 1
3 3 1 1 0

I ∗ K

1 0 1
0 1 0
1 0 1

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

Figure 2.5. 2D convolutional operator where the kernel matrix is moved
across the target image and element-wise products are recorded.
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2.4 Evolution of the ResNet CNN Family

A first fully connected deep feed-forward multi-layer neural network for supervised learn-

ing was introduced by Alexey G. Ivakhnenko and V.G. Lapa in 1967 [  4 ] which provides the

underlying principles for all deep neural network architectures today. Computer vision is

a multi-disciplinary field of science where researchers seek to study and develop innovative

techniques to allow computers to perform intricate operations such as image classification,

object detection and image segmentation, similar to how a human brain computes such tasks.

AlexNet, a deep CNN introduced by Alex Krizhevsky in collaboration with Ilya Sutskever

and Geoffrey Hinton in 2012 [  5 ], is one of the world’s most influential works in the field of AI

having won the ImageNet LSVRC (Large Scale Visual Recognition Challenge) competition in

September 2012. It inspired many AI related works utilizing CNNs and GPUs to proliferate

deep learning.

In 2016, G. Huang et al. introduced ResNet architecture to train a CNN with large

amounts of data for computer vision purposes. A prominent feature of this CNN is the iden-

tity shortcut connections that allow skipping of one or more layers [ 6 ], visually represented

by Figure 2.6 below. Due to this novel idea of skipping layers, ResNet is still being used as

a baseline algorithm by many researchers to build more complex DNN architectures.

yin

ResNet Block

yout

yin

Hidden Layer H1

· · · · · ·

Hidden Layer HN

⊕

yout

Figure 2.6. Identity shortcut connections in ResNet.
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In 2017, G. Huang et al. introduced Dense Convolutional Network, popularly known as

DenseNet [  7 ]. This work was recipient of the Best Paper Award in the 2017 IEEE CVPR

conference, which proposes a novel idea of dense connections which results in fewer trainable

parameters and an increase in accuracy compared to ResNet.

At the core of DenseNet lies the concept of dense blocks, a group of layers, and dense

connectivity, where each layer is connected to every other subsequent layer in a feed-forward

fashion as shown in Figure 2.7. In other words, a proceeding layer carry-forwards it feature

maps to all subsequent layers and then concatenates it so that each subsequent layer receives

a collective information from previous layers. This facilitates the reuse of features extracted

by layers in the early stages and are directly utilized by deeper layers.

Experiments in [  7 ] show that in the final classification layer, weights tend to focus towards

final feature maps of the network. This helps in moderating the vanishing-gradient problem,

encouraging feature reuse, strengthening feature propagation, and significantly reducing the

number of trainable parameters.

x0

BN–ReLU–Conv

H1
x1

BN–ReLU–Conv

H2
x2

BN–ReLU–Conv

H3
x3

BN–ReLU–Conv

H4
x4

Transition layer

Figure 2.7. Visual representation of dense connectivity in DenseNet.
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In 2018, G. Huang et al. introduced an improved version of DenseNet called CondenseNet

[ 8 ]. The authors propose replacing Standard Convolutions in DenseNet with Group Con-

volutions, a special case of a sparsely connected convolutions, first seen in AlexNet [ 5 ] in

2012 and then again in ResNeXt [  9 ] in 2017, results in reduction in computational cost by

partitioning input features in G number of groups which are mutually exclusive and produces

its own outputs, visually represented by Figure 2.8.

The reduction in computational cost can be mathematically represented by the following

equation where CC is computational cost, R is number of input features, O is number of

output features and G is number of groups:

CC = R × O

G
(2.8)

The authors also propose incorporating filter pruning method into the design of group

convolution and collectively call this module as learned group convolution. With this pruning

technique, filters with low magnitude weights are pruned first and then optimized to learn the

defined filter groups. Their experiments demonstrate a substantial savings in computational

resources required to train the network from scratch, compared to DenseNet.

Figure 2.8. CondenseNet’s group convolution on the right that replaces
DenseNet’s standard convolution on the left.
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3. PROPOSED ULTRA-EFFICIENT CNN ARCHITECTURE:

CONDENSENEXT

CondenseNeXt is an ultra-efficient and an improved variant of CondenseNet specifically

designed for ARM-based computing platforms with constrained computational resources

such as RAM and without CUDA enabled GPU support. CondenseNeXt refers to the next

dimension of cardinality [ 10 ]. This work was recipient of the Best Paper Award in the

category of Artificial Intelligence and Machine Learning at the 2021 IEEE CCWC conference.

3.1 Prior Works

Following prior and related works have contributed to the research work and results

presented within this thesis:

• Convolutional Neural Networks [  11 ]–[ 13 ], particularly CondenseNet [ 8 ], provide an

underlying foundation for the CNN algorithm proposed by this thesis.

• Dense blocks and dense connectivity first seen in DenseNet [  7 ], where previous and

current layers are connected to subsequent layers in a feed-forward fashion facilitating

the re-use of channels and neurons to characterize information at different levels of

deepness, has been incorporated into the design of the proposed CNN algorithm.

• Depthwise separable convolutions, first seen in [  14 ], is one of the main fundamental and

key concepts incorporated into the design of CondenseNeXt CNN. This idea of utilizing

spatially separable convolutions can be dated back to 2012 when it was introduced

in [  15 ] has been successfully implemented in MobileNet [  16 ] and Xception [  17 ] CNN

architectures.

• Group-wise filter pruning [  18 ]–[ 20 ], one of the very popular model compression tech-

niques, has also been incorporated into the design of CondenseNeXt CNN architecture

to significantly improve efficiency by discarding redundant elements that do not affect

the overall performance of CNN algorithm proposed by this thesis.
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The two main goals of the proposed CNN algorithm, CondenseNeXt, is to reduce the

final model size (weights) trained on CIFAR-10 dataset to less than 3.0 MB at the cost of

loss in accuracy and to reduce the computational resources required to train the network

from scratch as well as for real-time inference on low compute/embedded platforms such

NXP BlueBox, Nvidia Jetson, Raspberry Pi in comparison to the baseline architecture,

CondenseNet. Following sections provide a detailed information on the prominent state-of-

the-art features of CondeseNeXt.

3.2 Convolution Layers

Depthwise separable convolution primarily deals with spatial dimensions i.e. the width

and height as well as depth of an image and a kernel. Depth corresponds to the number of

channels in an image. For example, depth will be three for RGB (Red, Green, Blue) channels

of an input image. Depthwise separable convolution takes an input image and transforms it

only once and then elongates this transformed image to the desired n number of channels as

shown in Figure 2.9 below. Hence, after depthwise separable convolution, an input image,

originally with three channels, will now have multiple channels, each representing a differ-

ent shade of the original channel. For example, the original input image’s red channel is

transformed and then elongated along 128 channels. We will then have an interpretation of

the density of the red color defined by each of the 128 levels of redness. This applies to the

remaining two channels of the RGB input image as well. Depthwise separable convolution

replaces group convolution from CondenseNet.

1
11

3
3

3

7

7

5

5

1283

5

5
3

1

1

Depthwise Convolution Operation Pointwise Convolution Operation

x 128

Figure 3.1. 3D illustration of the overall process of depthwise separable convolution.
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Depthwise separable convolution incorporates following two layers:

• Depthwise Convolution: Instead of performing convolution operation on all channels of

an input image parallely, depthwise convolution layer performs convolution operation

on each channel independently. This behavior can be associated to the act of filtering

in layman’s terms. Suppose there is an input image of size X × X × N and kernels

(filters) K of size F × F × 1, where N is the number of channels of an input image,

then the output of depthwise convolution will be of size Y × Y × N . The spatial

dimensions have now shrunk while depth of N channels have been preserved (remains

unchanged). The computational cost of this operation is Y 2 × F 2 × N . This operation

can be mathematically represented as follows:

Ŷk,l,m =
∑
i,j

K̂i,j,m · Xk+i−1,l+j−1,m (3.1)

• Pointwise Convolution: Since depth of the input image has remained unchanged, a

pointwise convolution is performed to increase the number of channels by using a 1×1

kernel. Hence, size of kernel for this operation will be 1 × 1 × N and size of the output

will be Y × Y × Z for Z kernels K. This behavior can be associated to the act of

combining in layman’s terms. This operation can be mathematically represented as

follows:

Yk,l,n =
∑
m

K̃m,n · Ŷk−1,l−1,m (3.2)

To put this in to perspective and to provide a valid comparison for depthwise separa-

ble convolution, equations 3.1 and 3.2 can be mathematically represented by the following

equation for a standard convolution:

Yk,l,n =
∑
i,j,m

ki,j,m,n · Xk+i−1,l+j−1,m (3.3)

Incorporating depthwise separable convolution that splits a kernel into two discrete ker-

nels for filtering and combining stages, as aforementioned, results in a substantial decrease

in forward FLOPs resulting in an outstanding computational efficiency.
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3.3 Model Compression

Network pruning is one of the propitious techniques in the field of model compression

aimed at reducing computational costs such as FLOPs and RAM utilization by removing

redundant and insignificant elements that either are irrelevant or will not affect the perfor-

mance of the network upon disposition. Figure 3.2 below provides a brief overview of weight

matrices under different levels of coarseness of network pruning approaches. Fine-grained

pruning discards weights that have minimal influence on accuracy resulting in irregular struc-

tures whereas coarse-grained pruning discards entire filter that have minimal influence on

accuracy resulting in regular structures but may result in significant accuracy loss if the

network is highly compressed. In order to maintain a balance between both trade-offs, Con-

denseNeXt utilizes 2D group-level pruning approach in addition to class-balanced focal loss

function and cardinality to ease and reduce the negative impact of this pruning process.

3.3.1 Group-wise Pruning

Group-wise pruning is intended to exorcise inconsequential filters during the training

process which is arbitrated by the L1-Normalization [ 21 ] of Xgij where g denotes an individual

group, i denotes the input and j denotes the output of that group.

(a) Fine-Grained (b) 2D Group-Level (c) Coarse-Grained

Selected Weight Pruned Weight
Irregular Regular

Channel 1 Channel 2

Channel 3

Channel 1 Channel 2

Channel 3

Channel 1 Channel 2

Channel 3

Figure 3.2. Weight matrices for different network pruning approaches.
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To facilitate the group-wise pruning process, a hyper-parameter p is defined and set to 4

which allows the network to autonomously determine the required number of filters (kernels)

to remove before proceeding to perform depthwise separable convolution.

3.3.2 Class-Balanced Focal Loss Function

To solve the issues caused due to imbalanced weights, a weighting factor inversely pro-

portional to the number of samples is incorporated into the design of CondenseNeXt. This

technique is known as Class-Balanced Focal Loss Function (CBFLF) [ 22 ]. It can be mathe-

matically represented by the following equation:

CBFLF(z, y) = −
C∑

i=1

(
1 − pt

i

)γ
log

(
pt

i

)
(3.4)

where y is the ground-truth class, σ is the Sigmoid Cross-Entropy Loss and

pt
i = σ

(
zt

i

)
= 1

1 + exp(−zt
i )

3.3.3 Cardinality

A new dimension to the existing spatial dimensions called Cardinality, denoted by D,

is incorporated into the design of CondenseNeXt algorithm to further mitigate the loss in

accuracy during the pruning process. Experiments and results presented within this thesis

prove that instead of going deeper and/or wider in the network in order to obtain better

overall accuracy when performance returns starts diminishing, increasing cardinality rate D

is a more effective way of achieving this goal.

Consider a group convolution comprised of G groups of size F × F × GX × GY where

GX =X
G

and GY =Y
G

. The total number of trivial filters (kernels) to be pruned before

proceeding to perform depthwise separable convolution can be mathematically represented

as follows:

G · Gx = X · D − p · X (3.5)
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3.4 Activation Function

In artificial neural networks, an activation function of a node is a mathematical equation

that defines the output of that particular node by limiting the amplitude of the output.

Activation functions are also commonly known as Transfer Functions. Most state-of-the-art

CNNs make use of non-linear activation functions to help the network adapt to various of

types of datasets, to help learn complex patterns of the input data and to help differentiate

between the output classes without requiring exorbitantly large number of neurons.

CondenseNeXt utilizes ReLUn (Rectified Linear Units capped at n units) first seen in

[ 23 ] to aid in learning of complex patterns of the input data with fewer neurons and with

greater accuracy. In this non-linear activation function, units are capped at pre-determined n

units to accelerate and encourage the network to learn sparse features much earlier compared

to regular ReLU activation function. In CondenseNeXt, ReLUn is capped at 6 and hence,

called ReLU6. Furthermore, ReLU6 along with batch normalization is exercised before each

convolution layer. ReLU6 can be mathematically defined by equation 3.6 and graphically

represented by Figure 3.3 as follows:

f(x) = min(max(0, x), 6) (3.6)

−10 −5 5 10

2

4

6

0
Input

OutputReLU
ReLU6

Figure 3.3. Graphical representation demonstrating difference between ReLU
and ReLU6 activation functions.
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4. ARM-BASED COMPUTING PLATFORM: NXP BLUEBOX

This thesis demonstrates an efficient deployment of CondenseNeXt on NXP BlueBox, an

ARM-based autonomous embedded computing platform with constrained computational re-

sources designed for automotive applications such as self-driving vehicles.

4.1 Brief Overview

Processors based on ARM architecture are very popular and widely used in mobile devices

such as smartphones and tablets as well as in embedded computing systems such as the NXP

BlueBox, Nvidia Jetson and Raspberry Pi for computer vision purposes. ARM processors are

based on Reduced Instruction Set Computing (RISC) philosophy which is a widely successful

Instruction Set Architecture (ISA) due to its low power consumption and heat generation

compared to Complex Instruction Set Computing (CISC) architecture based processors such

as the Intel x86-family.

Evolution of ARM processors can be dated back to 1981 when Acorn Computers in-

troduced BBC Micro (British Broadcasting Corporation Microcomputer System), a series

of microcomputers and related peripherals, proved to be extremely successful and outper-

formed almost twice as that of Apple II 8-bit personal computer at that time due to the use

of DRAM (Dynamic Random Access Memory).

As of 2021, ARM Holdings, a British semiconductor company, have shipped more than

180 billion ARM-based chips worldwide, accounting to over 60% of all processors in-use

today and this market-share of ARM is expected to grow even further due to continuous

advances in the field of self-driving vehicles, embedded systems and IoT [ 24 ].

There are also growing concerns regarding data privacy and usage when user’s personal

data is processed and stored offline on a central server. Moreover, as the number of devices

that rely on central processing increase exponentially, it creates a strain on the existing

network and communication infrastructure resulting in periods of black-out and inactivity.

To overcome these issues, distributed AI computing on edge (local) devices are extremely

appealing and have challenged researchers to create ever more efficient algorithms for com-

puting platforms with limited computational resources.
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4.2 System Design of NXP BlueBox Gen2 Family

NXP BlueBox is an embedded computing platform designed and developed by NXP

Semiconductors, a Dutch-American semiconductor company, for automotive applications

like self-driving cars, tucks and SUVs. It is an Automotive High Performance Compute

(AHPC) platform that offers prerequisite environment and performance for researchers and

engineers to develop autonomous driving, sensor fusion and motion planning automotive

applications in addition to providing essential vision acceleration performance and varied

automotive interfaces for functional safety applications as well.

NXP Semiconductors introduced BlueBox Gen1, the first generation of BlueBox family,

in summer of 2016 at the 2016 NXP FTF Technology Forum hosted by NXP in Austin,

Texas. With an ever-growing demand and R&D in field of computer vision and autonomous

driving technologies, BlueBox Gen1 opened avenues to a host applications for researchers and

developers to design, deploy and test their applications. Shortly thereafter, NXP introduced

BlueBox Gen2, the second generation of BlueBox family with three new and improved ARM-

based processors: S32V234 for computer vision processing, LS2084A for high performance

computing and S32R274 for real-time processing of radar information, for example: LIDAR.

4.2.1 S32V Computer Vision Processor

The S32V234 computer vision processor has a quad core ARM Cortex-A53 64-bit CPU

operating up to 1000 MHz frequency codified with an ARM Cortex-M4 32-bit CPU for

functional safety which is based on an ARMv8-A 64-bit instruction set developed by ARM

Holdings’ Cambridge design centre. This processor is coupled with an internal 4MB SRAM

along with a 32-bit LPDDR3 memory controller to support external memory. It is designed

to be an on-chip Image Signal Processor (ISP) designed for ASIL-B/C automotive safety

applications and has been optimized to obtain utmost performance per watt efficiency. Figure

4.1 provides a detailed visualization of this processor in the form of a block diagram [ 25 ].
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4.2.2 LS2 High Compute Processor

The LS2084A high performance computing processor has an octa core ARM Cortex-A72

64-bit CPU operating at up to 2.1 GHz frequency. It is based on ARMv8-A 64-bit instruction

set developed by ARM Holdings’ Austin design centre. The eight cores of the ARM A72

CPU is arranged into four clusters, each cluster containing two cores and sharing a 1MB

L2 cache memory. It is complemented with two 64-bit DDR4 SDRAM memory controllers

with ECC and interleaving support up to 2.1 GT/s. The LS2 processor provides full support

for hardware virtualization, partitioning enforcement, TrustZone architecture, a variety of

high-speed peripheral interface controllers such as PCIe 3.0, Serial ATA (SATA) 3.0, Serial

Peripheral Interface (SPI), Quad Serial Peripheral Interface (QSPI), I2C synchronous serial

communication protocol and an Integrated Flash Controller (IFC) 2.0 to support NAND

and NOR flash. Furthermore, the LS2 provides support support in order to be compatible

with the next generation LayerScape LX2 family and is designed to certify and comply with

automotive quality AEC Q100 Grade 3 standards with 15 years product longevity. Figure

4.2 provides a detailed visualization of this processor in the form of a block diagram [ 26 ].

4.2.3 S32R Radar Processor

The S32R274 radar processor is a micro-controller to control and process radar infor-

mation such as LIDAR. It offers various on-chip modules such as Freescale PowerPC-based

Architecture e200Z4 32-bit CPU running at 120 MHz frequency with one checker core that

as a whole operates as a safety core along with another module that has two Freescale

PowerPC-based Architecture e200z7 32-bit CPU cores running at 240 MHz frequency that

has a whole operates as a primary computation core for radar processing. It has a 2MB

on-chip flash memory with ECC and a 1.5 MB on-chip SRAM memory with ECC. The

S32R processor is specially optimized for radar processing, temporary information storage,

message buffering and data-stream handling operations. It has been designed to meet the

stringent ASIL-D automotive standards for performance and reliability. Figure 4.3 provides

a detailed visualization of this processor in the form of a block diagram [ 27 ].
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4.3 System Connectivity of NXP BlueBox Gen2 Family

NXP BlueBox Gen2 (2.0) provides researchers and engineers with a wide variety of com-

munication protocols to connect external peripheral devices and sensors to the BlueBox

computing platform:

• The S32V processor offers CAN-FD with enhanced payload and data rate, PCIe, Eth-

ernet, FlexRay, Zipwire, SAR-ADCs, SPI and SD card connectivity.

• The LS2 processor offers DUART, I2C, SPIO, GPIO and USB 3.0 interfaces.

• The S32R processor offers JTAG, UART, FlexCAN and Zipwire to connect to a radar

ASIC.

Figure 4.4 offers a top-frontal view of the NXP BlueBox 2.0 and Figure 4.5 offers a

high-level view of NXP BlueBox 2.0 system Connectivity.

Figure 4.4. NXP Bluebox 2.0.
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Figure 4.5. High-level view of NXP BlueBox Gen2 system connectivity.
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4.4 RTMaps Remote Studio Software

RTMaps (Real-Time Multi-sensor applications) Remote Studio software is a GUI-based

application designed by Intempora to allow researchers and engineers to develop applications

for self-driving cars, advanced driver and safety assistance systems and robotics. It is an

essential tool to capture, process and view data from different sensors in real-time so that

this data can be played back at a later time for reviewing, debugging and testing purposes.

RTMaps software is available on both, Windows and Linux operating systems and na-

tively supports PyTorch and TensorFlow deep learning frameworks. These frameworks are

open-source Python based libraries that utilize graphs to perform numerical computation on

the input data. In RTMaps, OpenCV algorithms can be developed using Python scripting

language and with the help of blocks in RTMaps and then be deployed on to any supported

embedded computing platform without having to connect any external user-interfacing pe-

ripheral devices such as a screen, mouse and a keyboard to the embedded system. Figure

4.6 provides an overview of RTMaps setup on NXP BlueBox 2.0.

S32V234 Processor...

LS2084A Processor... S32R274 Processor

ZipWirePCIe

RTMaps Embedded

RTMaps Embedded

Figure 4.6. RTMaps on NXP BlueBox 2.0.
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5. EXPERIMENTS AND RESULTS

Training results presented within this thesis are based on the evaluation of the proposed

CondenseNeXt CNN architecture on three benchmarking datasets: CIFAR-10, CIFAR-100

and ImageNet for single image classification [  28 ] utilizing the training cyberinfrastructure

and setup outlined, unless specified explicitly otherwise, in this chapter.

5.1 Cyberinfrastructure

Cyberinfrastructure (supercomputing and storage resources) for training is provided and

managed by the Research Technologies division at the Indiana University which supported

the work presented within this thesis in part by Shared University Research grants from IBM

Inc. to Indiana University and Lilly Endowment Inc. through its support for the Indiana

University Pervasive Technology Institute [ 29 ].

Cyberinfrastructure (ARM-based autonomous embedded computing platform) for testing

is provided and managed by the Internet of Things (IoT) Collaboratory at the Purdue School

of Engineering and Technology at Indiana University Purdue University at Indianapolis,

which also supported the work presented within this thesis.

5.1.1 Training Infrastructure

• Intel Xeon Gold 6126 12-core CPU with 128 GB RAM.

• Four NVIDIA Tesla V100 GPU.

• CUDA Toolkit 10.1.243.

• PyTorch version 1.1.0.

• Python version 3.7.9.
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5.1.2 Testing Infrastructure

• NXP BlueBox 2.0 ARM-based autonomous embedded development platform.

• Intempora RTMaps Remote Studio version 4.8.0.

• CIFAR-10, CIFAR-100 and ImageNet Datasets.

• PyTorch version 1.1.0.

• Python version 3.7.9.

5.2 Training and Testing Results for Image Classification

CondenseNeXt CNN architecture has been designed and developed in PyTorch version

1.1.0 framework. PyTorch was introduced by Facebook’s AI Research lab (FAIR) in Septem-

ber 2016. It is a free and open source machine learning library based on python’s Torch

library, primarily used to develop computer vision and natural language processing applica-

tions. CondenseNeXt was evaluated on the following three benchmarking datasets:

5.2.1 CIFAR-10 Dataset

Alex Krizhevsky introduced CIFAR-10 dataset in [  30 ]. It is a collection and a subset of

80 million tiny images dataset, designed to train machine learning algorithms for computer

vision applications. The CIFAR-10 dataset consists of a total of 60, 000 low resolution (32×32

pixels) images, split in two sets of 50, 000 for training the neural network and 10, 000 for

testing the neural network. The training and testing sets are mutually exclusive to obtain a

fair error rate.

CIFAR in the name CIFAR-10 stands for Canadian Institute for Advanced Research and

the number 10 signifies that this dataset consists of the following ten classes: airplanes,

birds, cars, cats, deer, dogs, frogs, horses, ships, and trucks. Because of a very small number

of classes and low resolution photos, researchers are able to quickly test different algorithms

and techniques. Thus, making it one of the most popular and widely used datasets in the

field of machine learning research.
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Figure 5.1. CIFAR-10 classes for image classification.

CondenseNeXt was trained with a single crop of inputs on CIFAR-10 dataset utilizing

the aforementioned cyberinfrastructure and following additional setup:

• Epochs: 200

• Stages: 4 − 4 − 4

• Batch Size: 64

• Feature Size k: 8 − 8 − 8

• Nesterov Momentum Weight: 0.9

• Dropout and Learning Rate: 0.1

• Learning Rate Type: Cosine Shape

• Gradient Descent: Stochastic Gradient Descent (SGD)
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Figure 5.2. Training overview of CondenseNeXt on CIFAR-10 dataset.

Figure 5.2 plots Top-1 and Top-5 accuracies as a function of training epoch (in orange

and blue) of CondenseNeXt CNN architecture trained on CIFAR-10 dataset [  30 ]. Table 5.1

provides a comparison of performance between the baseline architecture, CondenseNet, and

the proposed CNN architecture, CondenseNeXt, in terms of FLOPs, parameters, and Top-1

and Top-5 accuracies to achieve a trained model size (final weight) of 2.9 MB.

CondenseNeXt achieves a Top-1 accuracy (top class with highest accuracy that match the

ground truth) of 92.28% (Top-1 error rate: 7.72%) and Top-5 accuracy (top five classes with

the highest accuracy that match the ground truth) of 99.77% (Top-5 error rate: 0.23%) along

with 63.84% reduction in forward FLOPs utilizing the aforementioned cyberinfrastructure,

training setup and hyperparameters.

Table 5.1. Comparison of Experiment 1 Performance on CIFAR-10 Dataset.
Architecture FLOPs (in millions) Parameters (in millions) Top-1 % Error Top-5 % Error

CondenseNet 65.81 0.52 5.76 0.19
CondenseNeXt 23.80 0.16 7.72 0.23
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Another extensive analysis was performed on CIFAR-10 dataset to achieve a greater

accuracy (lower error rate) at the cost of increased size of the final weight (in megabytes) in

comparison to the baseline architecture, using following training hyperparameters:

• Epochs: 200

• Batch Size: 64

• Stages: 14 − 14 − 14

• Feature Size k: 8 − 16 − 32

• Nesterov Momentum Weight: 0.9

• Dropout and Learning Rate: 0.1

• Learning Rate Type: Cosine Shape

• Gradient Descent: Stochastic Gradient Descent (SGD)

CondenseNeXt achieves a Top-1 accuracy (top class with highest accuracy that match the

ground truth) of 95.21% (Top-1 error rate: 5.31%) and Top-5 accuracy (top five classes with

the highest accuracy that match the ground truth) of 99.82% (Top-5 error rate: 0.18%) along

with 64.52% reduction in forward FLOPs utilizing the aforementioned cyberinfrastructure,

training setup and hyperparameters as shown in the table 5.2 below.

An image classification script was developed using Python scripting language in RTMaps

Remote Studio and the CondenseNeXt’s trained model (weight) was evaluated on NXP

BlueBox 2.0 for single image classification analysis. Figure 5.3 provides a screenshot of the

RTMaps console.

Table 5.2. Comparison of Experiment 2 Performance on CIFAR-10 Dataset.
Architecture FLOPs (in millions) Parameters (in millions) Top-1 % Error Top-5 % Error

CondenseNet 65.81 0.52 5.31 0.24
CondenseNeXt 26.35 0.18 4.79 0.15
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Figure 5.3. Evaluation of CondenseNeXt on CIFAR-10 dataset when de-
ployed on NXP BlueBox 2.0 using RTMaps Remote Studio 4.8.0 for classifying
an image of an airplane and outputting the predicted class in RTMaps console.
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5.2.2 CIFAR-100 Dataset

Along side CIFAR-10, Alex Krizhevsky also introduced CIFAR-100 dataset in [ 30 ]. Like

CIFAR-10, CIFAR-100 is also a subset of 80 million tiny images dataset, designed to train

machine learning algorithms for computer vision applications. Furthermore, it also consists

of a total of 60, 000 low resolution (32 × 32) images, split into two sets of 50, 000 for training

the neural network and 10, 000 for testing the neural network, and the training and testing

sets are mutually exclusive to obtain a fair error rate. However, unlike CIFAR-10, CIFAR-100

has 100 classes where each class contains 600 images.

Classes and images of CIFAR-10 and CIFAR-100 are mutually exclusive. For example,

CIFAR-100’s roses, road, castle and man classes are not part of CIFAR-10 dataset’s classes.

Figure 5.4 provides a brief overview of all 100 classes in this dataset.

Figure 5.4. CIFAR-100 classes for image classification.
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CondenseNeXt was trained with a single crop of inputs on CIFAR-100 dataset utilizing

the aforementioned cyberinfrastructure and following additional setup:

• Epochs: 600

• Batch Size: 64

• Stages: 14 − 14 − 14

• Feature Size k: 8 − 16 − 32

• Nesterov Momentum Weight: 0.9

• Dropout and Learning Rate: 0.1

• Learning Rate Type: Cosine Shape

• Gradient Descent: Stochastic Gradient Descent (SGD)
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Figure 5.5. Training overview of CondenseNeXt on CIFAR-100 dataset.
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Table 5.3. Comparison of Performance on CIFAR-100 Dataset.
Architecture FLOPs (in millions) Parameter (in millions) Top-1 % Error Top-5 % Error

CondenseNet 65.85 0.55 23.35 6.56
CondenseNeXt 26.38 0.22 21.98 6.29

Figure 5.5 plots Top-1 and Top-5 accuracies as a function of training epoch (in orange

and blue) of CondenseNeXt CNN architecture trained on CIFAR-100 dataset [  30 ]. Table

5.3 provides a comparison between the baseline architecture, CondenseNet, and the pro-

posed CNN architecture, CondenseNeXt, in terms of FLOPs, parameters, Top-1 and Top-5

accuracies.

The abrupt increase in the error rate at epochs 363, 383, 413 and 448 is caused by the final

pruning operation discarding (purging) half of the remaining weights. However, the plotted

graph demonstrates that the model slowly recovers from this pruning effect and optimizes

itself, eventually becoming stable.

CondenseNeXt achieves a Top-1 accuracy (top class with highest accuracy that match the

ground truth) of 78.02% (Top-1 error rate: 21.98%) and Top-5 accuracy (top five classes with

the highest accuracy that match the ground truth) of 93.71% (Top-5 error rate: 6.29%) along

with 59.94% reduction in forward FLOPs utilizing the aforementioned cyberinfrastructure,

training setup and hyperparameters.

An image classification script was developed using Python scripting language in RTMaps

Remote Studio and the CondenseNeXt’s trained model (weight) was evaluated on NXP

BlueBox 2.0 for single image classification analysis. Figure 5.6 provides a screenshot of the

RTMaps console.
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Figure 5.6. Evaluation of CondenseNeXt on CIFAR-100 dataset when de-
ployed on NXP BlueBox 2.0 using RTMaps Remote Studio 4.8.0 for classifying
an image of a human and outputting the predicted class in RTMaps console.
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5.2.3 ImageNet Dataset

ImageNet dataset was introduced by Dr. Fei-Fei Li, an AI researcher at Stanford Univer-

sity, along with a team of researchers at an IEEE CVPR conference in Florida in 2019 [ 31 ].

It is a very large image database organized and built according to the WordNet hierarchy

where every node in this hierarchy corresponds to hundreds of images. Unlike in a dictionary,

in WordNet hierarchy, words are related to other words rather than in an alphabetical order.

For example, within WordNet, the word hatchback would be nested under the word motor

car which would be nested under motor vehicle, and so on and so forth.

ImageNet contains over 20, 000 common categories such as table, chair, bucket, etc.,

each comprising of several hundred images. In total, there are over 14 million images in this

dataset that have been hand-annotated and labelled by the team. Figure 5.7 provides a brief

overview of this dataset.

Figure 5.7. ImageNet classes for image classification.
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CondenseNeXt was trained with a single crop of inputs on entire ImageNet dataset from

Large Scale Visual Recognition Challenge (ILSVRC) 2012, utilizing the aforementioned cy-

berinfrastructure and following hyperparameters using data parallelism technique:

• Epochs: 120 and Group Lasso: 0.00001

• Stages: 4 − 6 − 8 − 10 − 8 and Batch Size: 256

• Feature Size k: 8 − 16 − 32 − 64 − 128

• Nesterov Momentum Weight: 0.9

• Dropout and Learning Rate: 0.1

• Learning Rate Type: Cosine Shape

• Gradient Descent: Stochastic Gradient Descent (SGD)
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Figure 5.8. Training overview of CondenseNeXt on ImageNet dataset.
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Table 5.4. Comparison of Performance on ImageNet Dataset.
Architecture FLOPs (in millions) Parameter (in millions) Top-1 % Error Top-5 % Error

CondenseNet 529.36 4.81 26.2 8.30
CondenseNeXt 273.16 3.07 25.8 7.91

Figure 5.8 plots Top-1 and Top-5 accuracies as a function of training epoch (in orange and

blue) of CondenseNeXt CNN architecture trained on ImageNet dataset [  30 ] using PyTorch

supported data parallelism technique to accelerate training process across four Nvidia V100

GPUs. Table 5.4 provides a comparison between the baseline architecture, CondenseNet,

and the proposed CNN architecture, CondenseNeXt, in terms of FLOPs, parameters, and

Top-1 and Top-5 accuracies.

As seen before with training on CIFAR-100 dataset, the abrupt increase in the error rate

at epochs 72, 77, 83 and 90 is caused by the final pruning operation discarding (purging) half

of the remaining weights. However, the graph plotted in Figure 5.8 shows that the model

slowly recovers from this pruning effect, optimizes itself and eventually becomes stable.

CondenseNeXt achieves a Top-1 accuracy (top class with highest accuracy that match the

ground truth) of 74.20% (Top-1 error rate: 25.8%) and Top-5 accuracy (top five classes with

the highest accuracy that match the ground truth) of 92.09% (Top-5 error rate: 7.91%) along

with 48.39% reduction in forward FLOPs utilizing the aforementioned cyberinfrastructure,

training setup and hyperparameters.

An image classification script was developed using Python scripting language in RTMaps

Remote Studio and the CondenseNeXt’s trained model (weight) was evaluated on NXP

BlueBox 2.0 for single image classification analysis. Figure 5.9 provides a screenshot of the

RTMaps console.
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Figure 5.9. Evaluation of CondenseNeXt on ImageNet dataset when deployed
on NXP BlueBox 2.0 using RTMaps Remote Studio 4.8.0 for classifying an im-
age of a street intersection sign and outputting the predicted class in RTMaps
console.
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5.3 Summary

Extensive training and image classification analyses are conducted on CIFAR-10, CIFAR-

100 and ImageNet image datasets. Following tables provide a quick overview of performance

results obtained from experiments outlined in this thesis for the proposed ultra efficient CNN

architecture, CondenseNeXt, which is compared to the baseline architecture, CondenseNet.

CondenseNeXt utilizes state-of-the-art convolutional layers and model compression tech-

niques which results in significant reduction of forward FLOPs, increase in overall accuracy

(decrease in error rate) as well as decrease in evaluation, time resulting in an outstanding

performance.

Table 5.5. Summary of CondenseNeXt’s Performance in Terms of Error Rate.
Dataset CNN Architecture FLOPs (in millions) Parameters (in millions) Top-1 % Error Top-5 % Error

CondenseNet 65.81 0.52 5.31 0.24CIFAR-10 CondenseNeXt 26.35 0.18 4.79 0.15

CIFAR-100 CondenseNet 65.85 0.55 23.35 6.56
CondenseNeXt 26.38 0.22 21.98 6.29
CondenseNet 529.36 4.81 26.20 8.30ImageNet CondenseNeXt 273.16 3.07 25.80 7.91

Table 5.6. Summary of CondenseNeXt’s Performance in Terms of Accuracy.
Dataset CNN Architecture FLOPs (in millions) Parameters (in millions) Top-1 % Accuracy Top-5 % Accuracy

CondenseNet 65.81 0.52 94.26 99.76CIFAR-10 CondenseNeXt 26.35 0.18 94.26 99.85

CIFAR-100 CondenseNet 65.85 0.55 95.21 93.44
CondenseNeXt 26.38 0.22 78.02 93.71
CondenseNet 529.36 4.81 73.80 91.70ImageNet CondenseNeXt 273.16 3.07 74.20 7.91

Table 5.7. Image Classification Evaluation Time of CondenseNeXt on NXP BlueBox 2.0
Dataset CNN Architecture FLOPs (in millions) Parameters (in millions) Evaluation Time (in seconds)

CondenseNet 65.81 0.52 0.1346CIFAR-10 CondenseNeXt 26.35 0.18 0.0359

CIFAR-100~ CondenseNet 65.85 0.55 0.2483
CondenseNeXt 26.38 0.22 0.1425
CondenseNet 529.36 4.81 2.3671ImageNet CondenseNeXt 273.16 3.07 1.7483
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6. CONCLUSION

Research work presented within this thesis propose a neoteric variant of deep convolutional

neural network architecture, CondenseNeXt, designed specifically for ARM-based embedded

computing platforms with constrained computational resources. This thesis commenced with

a brief discussion of the problem and its background in Chapter 1, followed by introduction

to fundamentals of neural networks in Chapter 2 which provides the reader a firm foundation

to commend the thesis statement proffered by the research work presented in Chapter 3 and

for the merits upon which experiment results have been successfully manifested in Chapter 5.

CondenseNeXt is an improved version of CondenseNet, the baseline architecture whose roots

can be traced back to ResNet. CondeseNeXt replaces group convolutions in CondenseNet

with depthwise separable convolutions and introduces group-wise pruning, a model com-

pression technique, to prune (remove) redundant and insignificant elements that either are

irrelevant or do not affect performance of the network upon disposition. Cardinality, a new

dimension to the existing spatial dimensions, and class-balanced focal loss function, a weight-

ing factor inversely proportional to the number of samples, has been incorporated in order to

relieve the harsh effects of pruning, into the design of CondenseNeXt’s algorithm. Further-

more, extensive analyses of this novel CNN architecture was performed on three benchmark-

ing image datasets: CIFAR-10, CIFAR-100 and ImageNet by deploying the trained weight

on to an ARM-based embedded computing platform: NXP BlueBox 2.0, for real-time image

classification. The outputs are observed in real-time in RTMaps Remote Studio’s console

to verify the correctness of classes being predicted. CondenseNeXt achieves state-of-the-art

image classification performance on three benchmark datasets including CIFAR-10 (4.79%

top-1 error), CIFAR-100 (21.98% top-1 error) and ImageNet (7.91% single model, single

crop top-5 error), and up to 59.98% reduction in forward FLOPs compared to CondenseNet.

CondenseNeXt can also achieve a final trained model size of 2.9 MB, however at the cost of

2.26% in accuracy loss (2.26% increase in error rate). Thus, performing image classification

on ARM-Based computing platforms without requiring a CUDA enabled GPU support, with

outstanding efficiency.
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7. RECOMMENDATIONS

Results presented within this thesis provide some of the first empirical data of combining

depthwise separable convolution with model compression (group-wise pruning) techniques.

Based on these results and conclusions, researchers can further investigate on improving the

performance of CondenseNeXt by performing hyper-parameter tuning in order to obtain

greater performance as well as explore cutting edge input data augmentation schemes and

policies in order to improve image classification accuracy. Furthermore, experiments can be

performed on YOLO (You Look Only Once) [  32 ] and Microsoft COCO (Common Objects

in Context) [ 33 ] datasets for real-time object detection on embedded computing platforms

without a CUDA-enabled GPU in order to understand how CondenseNeXt performs on these

different types of datasets during inference time. As demand for smaller yet efficient deep

neural networks increase with innovations in embedded systems, distributed computing and

edge devices, the scope for AI research and innovation in this field is immensurable.
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