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GLOSSARY

Behavior – What people do (Motowildo, Borman, & Schmit, 1997).

ICMP Attack – Internet control message protocol attacks (ICMP) is the network layer concerned

with Internet services such as routing. Network layer DoS attacks are used to consume the

network bandwidth and they can include ICMP flood attacks and user datagram protocol

(UDP) floods (Compton & Hornat, 2007; Das, Karabade, & Tuna, 2015).

ICMP Flood – For a ICMP flood attack, a large volume of ICMP ECHO REQUEST packets (e.g.,

ping requests) are sent to overload the targeted network until it can no longer handle

legitimate traffic. That results in legitimate users being unable to access the network

(Compton & Hornat, 2007).

Incident Detection System – The IDS includes a database of known attack signatures or event

patterns. It will search the signatures in packets and network traffic and if there is a match,

it issues an alert (Shanks, 2015).

TCP Attacks – TCP attacks are concerned with the reliability of data communications between

client and server. The attacks affect any computer providing TCP-based network services

such as a Web server or a FTP server (Compton & Hornat, 2007).

WIZ Attack – A form of distributed denial of service (DDoS) attacks that are designed to cause

Internet resources (i.e. websites, servers, routers) to become overwhelmed and then

unavailable to users (Das et al., 2015). Expensive DDoS attacks were found to be the

most common network attacks targeting enterprises in Cisco’s 2014 Annual Security

Report (Cisco, 2014).

Work Performance – The expected organizational value of what people do (Motowildo et al.,

1997).
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ABSTRACT

The persistent issues that have been identified in the cyber defense domain, such as

information-overload, burn-out and high turn-over rates among cyber analysts leads us to question

what the cognitive ability contribution is to a more successful cyber performance. Cyber defense

researchers theorize that individual differences are determinants of cyber performance success but

have yet to establish empirically the role of individual differences. Therefore, the study uses an

individual differences approach under a work performance framework to study the contributions

of cognitive ability (i.e., attention control) on cyber performance success in a specific cyber

work-role (i.e., the Incident Reponder), and through its well-defined primary task (i.e., incident

detection system performance). The sample included actual network analysts with a wide range

of incident detection expertise, age, and education levels for more reliable and valid scores. The

results of the correlational analysis showed that individual differences in attention control (i.e.,

flexibility and spatial attention) contribute most to the differences in Incident Responder

work-performance. A linear regression model then demonstrated that spatial attention and

flexibility predict 53 to 60 percent of the variance in cyber performance scores. It is suggested

that the KSA’s from the NICE framework be updated with the cognitive abilities that contribute to

and/or predict cyber performance success, for superior recruitment efforts towards a more

efficient cyber defense work-force.
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CHAPTER 1. INTRODUCTION

This chapter provides an overview of the research study. It introduces the research by

presenting a background of the problem area and research questions. In addition, it covers the

research significance, assumptions, limitations and delimitations which define the extent of the

study.

1.1 Background

The identification of specific human factors (i.e., knowledge, skills and abilities)

(Newhouse, Keith, Scribner, & Witte, 2017) that contribute to cyber performance is important for

improving the efficiency of cyber security efforts. Unfortunately, the cyber analyst is very

understudied in the human-factors research (R. S. Gutzwiller, Hunt, & Lange, 2016) and

therefore, the cognitive ability contribution to cyber performance has not yet been identified. The

current dissertation serves as a starting point for scientifically identifying the specific cognitive

abilities that underlie cyber performance success. An individual differences framework

(Cronbach, 1957; Hunter, 1983; Motowildo et al., 1997) that acknowledges the relationship

between an individuals cognitive ability, knowledge and skills on task performance is applied in

order to accomplish that goal. The dissertation showed that the current methods used to

investigate the human factors contributing to cyber performance are inadequate and often not

precise. The following chapters explain the importance of the individual differences research,

offers an overview of previous research, provides the methodology used in the study and an

analysis of the results.

1.2 Problem Statement

A major problem today for organizations connected to the Internet is to become a victim

to cyber attack. That is because a successful attack results in heavy societal and monetary losses

(Riley, Elgin, Lawrence, & Matlack, 2014). Despite declaring cyber defense efforts a national

security mission (Mancuso, Strang, Funke, & Finomore, 2014) and the increasing technological

13



advancements, cyber attacks continue to rise while the security operation centers (SOC) remain

low performing (Cisco, 2020; Ponemon, 2020). According to a 2019 and 2020 survey by

Ponemon Institute (2020) of over 600 information technology and security professionals, only 50

percent of them rated their SOC as effective in the ability to gather evidence, investigate and find

the source of threats, although effectiveness did improve slightly from 2019 to 2020. The Figure

in 1.1 displays the main issues identified in the SOC survey, such as an increasing work-load that

leads to burn-out, lack of expertise and/or talent, high turn-over, information overload, etc. The

CISO Benchmark Report (Cisco, 2020) based on a double-blind study of 2800 global

participants conducted in late 2019 identify similar findings.

Figure 1.1. Main Issues Identified in the SOC (Ponemon, 2020)

It is disconcerting to see that the same issues presented 16 years ago (D’Amico et al.,

2005) are still the prominent ones today, even though industry leaders and experts (Cisco, 2014;

Northcutt, 2014; Shackleford, 2012) warned us that work-load would only increase as more

technologies (e.g. phones, virtual environments, wearables, etc.) connect to the Internet (i.e. The

Internet of Things) creating more entryways for cyber criminals. Further they warned, that over

14



time security network analysts would find it even more difficult to detect events and defend their

environment.

It is clear that not much has been done over the years to resolve or to even improve the

work challenges in the SOC, as some issues have only got worse, as seen in Figure, 1.2. Not

surprising, 60 percent of the professionals surveyed in 2020 say the stress related burn-out of

working in the SOC has caused them to consider changing and/or leaving their current

job/position (Ponemon, 2020).

Figure 1.2. The percent of change between 2019 and 2020 per SOC issue (Ponemon,
2020)

In efforts to increase overall cyber performance effectiveness in the SOC, enterprises are

urged and/or required to follow best practices for computer security (Newhouse et al., 2017;

Petersen et al., 2020). That includes being able to identify individuals with the specific

knowledge, skills, and abilities (KSA) needed to support defense of the enterprise (Huq, 2015;

Newhouse et al., 2017). The majority of the human factors research (i.e., human/analyst

centered) in cyber defense, aiming to identify the KSA requirements has investigated cyber

performance differences between groups (e.g., teams) of individuals. Most of that research is

experimental, where researchers investigated how cognition affected cyber performance when

manipulating the network environment (Champion, Rajivan, Cooke, & Jariwala, 2012; Sawyer

et al., 2015). There is very little research seeking to measure individual differences (i.e.,

between-subject variance) in basic human cognition (i.e., cognitive abilities) and how much they

contribute to cyber performance success under naturally occurring circumstances (Cronbach,

1957). As a result, the cognitive abilities that mostly contribute to cyber performance success is
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still unknown. Many of the current issues seen in the SOC (Ponemon, 2020) can be better

addressed if cognitive ability is identified.

1.3 Scope

The scope of the project was to identify the individual differences in cognitive ability that

contributes to cyber performance for the role of Incident Responder. The Incident Responder

work-role has been scientifically studied which offers enough evidence for pinpointing the

cognitive ability that underlines performance in that particular role only. A primary task of the

Incident Responder is to operate an incident detection system (IDS) (D’Amico et al., 2005;

Goodall, Lutters, & Komlodi, 2009b), therefore the human-computer interactions in a simulated

IDS (Funke et al., 2016) was collected from 16 cyber analysts from the Purdue University

campus over the summer of 2020. Only the cyber analysts that had expertise using an IDS were

included in the study. To quantify cognitive ability, the cyber analysts performed three direct

cognitive measures that cover basic visual attention ability only. The measures included spatial

attention (i.e., orienting, vigilance, executive function), working memory capacity, and executive

functions (i.e., task-switching, inhibition and updating). Personality, emotions, mood and

auditory research are out of scope, since they were seldom posited by the human-factors in cyber

defense research to contribute to cyber performance. Lastly, the current study is an individual

differences study (Cronbach, 1957) that quantitatively measures performance between-subjects

rather than between groups. Therefore, the study uses correlational methods to accomplish that

goal. The data collected from the IDS and from the cognitive ability measures is all that was

required to detect the cognitive ability contributions to cyber performance success.

1.4 Research Question

The research question for the current study was: How do individual differences in

cognitive ability contribute to the cyber performance of network security analysts? That question

involved investigating which predictor variables have the strongest correlation with cyber

performance, and if they can further predict cyber performance. The following is the hypothesis:
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H1: Individual differences in attention control predict the cyber performance of

network security analysts.

1.5 Significance

The current study significantly contributes to the human factors research in the cyber

security domain. That area of research aims to improve cyber defending through discovering

more efficient strategies for defending networks against cyber attacks. It seeks improved training

methods for analysts. It also designs network defense tools to aid human cognitive ability

(Champion et al., 2012; Goodall, 2011; Vieane et al., 2016), and of most importance to the

current study it investigates specific human factors that contribute to cyber performance. Even

with those research efforts, the cognitive ability contribution to cyber performance has not yet

been identified. The research proposed here aims to fill that gap in the human factors research

(Dawson & Thomson, 2018) by scientifically identifying the individual differences in cognitive

ability that contribute to cyber defense success. The research is important for several reasons.

The first reason for why the individual differences study is significant is because it

transfers cognitive ability measures (i.e., attention control) developed in a laboratory, to the

performance in a real-world cyber defense task. The successful transfer increases the predictive

and ecological validity of those measures. It is of great importance because a main goal of

cognitive sciences is to bridge the gap between the laboratory and real life (Holleman, Hooge,

Kemner, & Hessels, 2020). Many studies that do attempt the transfer, do not use ecologically

valid criterion representing the complexity of a real-world task (Holleman et al., 2020).

The next reason the study is important is for recruitment purposes. The cyber-security

workforce (Ponemon, 2020) has expressed the challenge of recruiting and retaining individuals

with the right knowledge, skills and abilities (Newhouse et al., 2017). One big reason for that

challenge is that the cognitive abilities that directly contribute specifically to cyber knowledge and

to skill (Motowildo et al., 1997; Schmidt, Hunter, & Outerbridge, 1986) are still unknown, and

more or less assumed. As a result, when cyber-recruiters seek out a screening method to aid in

their search for more cognitively equipped analysts, they either come up empty handed or with

inadequate measures of cognitive ability, that have not yet been scientifically identified or
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associated with cyber performance (S. G. Campbell, O’Rourke, & Bunting, 2015; Trippe,

Moriarty, Russell, Carretta, & Beatty, 2014). Therefore, many employers are currently using

selection methods that are not very effective, and/or do not predict how the individual will

perform (Schmidt & Hunter, 2004). The findings from the study will therefore directly benefit

recruiters and employers in their search for more effective cyber analysts, as they will be able to

screen for the scientifically identified cognitive abilities that are of most importance to cyber

defense success. For example, individuals with a high cognitive ability can be selected for which

to build a more efficient cyber security workforce, but only if the cognitive ability is associated

with and/or predicts cyber performance. The research proposed here offers stable and reliable

cognitive ability measures (i.e., predictors) that can predict cyber performance for hiring

procedures, which can considerably increase the efficiency of cyber defending over time (Schmidt

& Hunter, 1998).

One last reason for why the current research is important is that the findings could aid in

the redesigning of incident detection systems and displays so that cyber analysts at any level of

cognitive ability can still perform well. Many of the current software-tool designs do not take into

consideration the limits of human cognition (Champion et al., 2012; Goodall et al., 2009b;

R. S. Gutzwiller et al., 2016; Wickens, 2008), resulting in poor cyber defense performance and

burn-out (Champion et al., 2012; Ponemon, 2020).

1.6 Assumptions

The assumptions for this study include:

• The cyber task is relevant and typical of a network analysts’ job function.

• The cognitive tests used in this study are reliable and valid tests.

• The participants completed the measures presented to them to the best of their ability.

• The participants that performed the cyber task were indeed cyber analysts.

• The cognitive tasks chosen for this study were appropriate to answer the research questions.
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1.7 Limitations

The limitations for this study include:

• The study was limited by the participants cooperation to perform the cognitive tests, and

cyber tasks to completion and/or to correctness.

• The study was limited to 16 volunteer network analysts available who are affiliated with

Purdue University, West Lafayette campus, over the summer of 2019.

• The study was limited by the reliability and validity of the measures.

• The study was limited by the time allotted for graduate research.

• The study was limited by the facility in which the research was conducted. As it was

conducted in the back of a cyber laboratory, during the summer of 2019.

• The study was limited by funds available to pay participants for their time and effort.

1.8 Delimitations

The delimitations for this study include:

• The cyber task was limited to a small number of alerts (40) that a network analyst might

encounter.

• The study was limited to just one task environment. Cyber analysts commonly use a variety

of software to aid in their investigations.

• The study was limited to just one display that the analyst would use during cyber defense.

While cyber analysts frequently shift between multiple displays.

• The study measured only three cognitive abilities while there are many other cognitive

variables that contribute to the differences in cyber performance scores.
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1.9 Summary

The chapter provided the scope, significance, research question, assumptions, limitations,

delimitations, definitions, and other background information for the research project.
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CHAPTER 2. REVIEW OF LITERATURE

In order to identify the cognitive ability contribution to cyber performance, first the

important tasks associated with a specific cyber defense work-role must be identified, along with

the human attributes that are likely to be important for success in that role. Next, the behaviors

that differentiate the successful from the less successful cyber performers must be identified.

Lastly, the human factors that affect cyber performance must be discovered. That process is said

to allow for pinpointing/predicting the cognitive abilities that likely contribute most to the

identified behaviors of cyber performance (Motowildo et al., 1997; Sauce & Matzel, 2013).

Accordingly, the chapter begins with an overview of the empirically identified work-role

requirements specifically for the Incident Responder, along with the associated cognitive

work-tasks and mental challenges in which they face. That is followed with an overview of the

human factors research in cyber defense specific to investigating the cognitive factors that

contribute to cyber performance in incident detection system-like tasks. The chapter addresses

that through the more popular cognitive theory/frameworks that have been applied to study cyber

performance, such as Situational Awareness (CyberSA) (Endsley, 1995), Signal Detection

Theory (D. M. Green, Swets, et al., 1966) and the Hybrid Space Framework (Jøsok et al., 2019).

Each section gives an overview of the specific framework followed by the identified human

factors posited to influence cyber performance. Additionally, the identified behavioral differences

that contribute to more successful cyber performance is highlighted. The reasoning for the

literature review to address the cognitive human-factors and behaviors that effect and/or

contribute to cyber performance in an IDS, is that the main goal of individual differences research

is to make sense of the effects that have already been observed (Cronbach, 1957; Sauce &

Matzel, 2013). The chapter will show that the correlational research is limited in regards to the

identification of individual differences in cognitive abilities, that can influence cyber performance.

2.1 Individual Differences in Job Performance

Cronbach (1957) famously made the distinction between the experimental research stream

verses the correlational research stream. He wrote that the experimental approach studies the
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variance among treatments. It is also used for determining underlying causes for behavior (Sauce

& Matzel, 2013). While the correlational approach is used to investigate the variance among

individuals (Cronbach, 1957). The correlational approach is also used to study which way

variables interact in a population to produce differences in a behavior as, “causes of variation of a

behavior” (Sauce & Matzel, 2013). The current study applies the correlational research approach

and its methods under the well-established individual differences framework (Sauce & Matzel,

2013). The individual differences framework recognizes that individuals differ in behavior such

as in personality traits, genetics, and cognitive ability. The individual differences in cognitive

ability and how it influences job performance behavior is of importance to the current study. The

association between the two is one of the most established associations in the literature (Hunter,

1983; Motowildo et al., 1997; Schmidt et al., 1986). The frameworks of job performance

(Hunter, 1983; Motowildo et al., 1997; Schmidt et al., 1986) all hold the common idea that

individual differences in cognitive ability directly impacts job performance (e.g., a work sample),

and indirectly impacts job performance through job knowledge, as seen in Figure, 2.2. Those

interactions displayed in the causal model become important when determining the cognitive

abilities that contribute to cyber performance.

Figure 2.1. Correlations Across all Studies

Hunter (1983) put the framework to use and investigated the relationships among the three

variables in various occupations using a large meta-analysis (n = 3264 cases, n = 14 studies). The

researcher only included previous studies with similar cognitive ability predictors and similar
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Figure 2.2. A Causal Model for Cognitive Ability, Knowledge and Performance
(Hunter, 1983)

criterion measures (e.g., direct verses subjective job performance measures). The researcher

found a similar average reliability between the three variables across the studies. His results are

seen Figure, 2.1, and his causal model can be seen in Figure, 2.2. The high correlation of (r =

0.53) between cognitive ability and performance (i.e., work-samples) from the reliability

estimates in Figure, 2.1 comes from a direct causal impact (r = 0.19) and also from an indirect

effect of (r = 0.61 − 0.55 = 0.34) through job knowledge, as seen in the causal model in Figure,

2.2. Those correlations show that cognitive ability directly contributes to work performance itself

and to knowledge.

In a more present meta-analysis consisting of over 32,000 employees in 515 widely

diverse jobs, Schmidt and Hunter (2004) found that general mental ability (GMA) is the highest

predictor of job performance. The researchers reported that the validity of the GMA for

predicting job performance was (r = 0.58) for professional-managerial jobs, (r = 0.56) for

high-level complex technical jobs, and further declines as complexity/skill of the job lessens. The

researchers conclude that the GMA is a better predictor of job performance over other predictors

because of its higher association with knowledge. Individuals with higher cognitive ability obtain

knowledge quicker and perform better. When applied to the current study, cognitive ability should

be related to cyber performance to the extent that the job-task calls for or depends on the specific
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abilities (Hunter, 1983). When considering the empirical research (Schmidt & Hunter, 2004,

1998; Schmidt et al., 1986) and theoretical support (Motowildo et al., 1997) for the causal

model (Hunter, 1983) and the large, repeatedly discovered association (r = 0.53) between

cognitive ability and performance, it is surprising how little it has been studied in the cyber

performance domain for job selection purposes when both knowledge and cognitive ability

contribute to cyber performance and to each other.

There has been recent gravitation towards the use of cognitive ability measures for cyber

recruitment purposes (Svenmarck, 2020). That is because the demand for cyber security

personnel for the various cyber defense work-roles (Petersen et al., 2020) is currently higher than

the amount of students that graduate in computer science (Svenmarck, 2020). One solution has

been the utilization of cognitive ability tasks beyond the usual education requirement of a

computer science degree in order to increase the recruitment base (Svenmarck, 2020). However,

only a handful of cognitive ability tests have been devised for recruitment of cyber personnel,

such as the Armed Services Vocational Aptitude Battery (ASVAB) (Trippe et al., 2014), or the

Cyber Aptitude and Talent Assessment (CATA) (S. G. Campbell et al., 2015). Those popular

assessments apply cognitive ability measures that have not yet been scientifically identified in

association with cyber performance from a specific cyber work-task and/or within a specific

work-role, which eliminates its ability to predict job performance. In order to identify the specific

cognitive abilities that most affect cyber performance, first the critical work functions/processes,

tasks, and cognitive challenges of a specific cyber defense work-role must be empirically

identified. That will allow for a definition of job-specific cyber performance (Motowildo et al.,

1997) that will lead us to a representative work-sample for which cognitive ability contributions

can be properly assessed. The following section identifies the important knowledge, skills and

tasks for the Incident Responder work-role (Petersen et al., 2020).

2.1.1 Knowledge, Skills and Tasks for Cyber Defense

In 2017, the National Initiative for the Cyber-security Workforce Framework (NICE) was

created by the National Institute of Standards and Technology (NIST) in the U.S. Department of

Commerce (Newhouse et al., 2017). The framework has been recently revised (Petersen et al.,
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2020). The NICE framework serves as the most popular go-to guide for how to identify, recruit,

develop, and retain cyber-security talent for a more efficient cyber workforce. The former NICE

framework (Newhouse et al., 2017) identified the tasks, knowledge, skills, and abilities for

strengthening the cyber-security of an organization (i.e., KSAs). Those factors are continuously

updated (Petersen et al., 2020) by coordinating with government, academic, and industry

partners. For example, the revised version of the NICE framework seen in Figure, 2.3 omits the

ability factor.

Figure 2.3. The NICE Framework: TKS (Petersen et al., 2020)

The NICE framework (Petersen et al., 2020) now identifies the skills, knowledge

requirements and work-tasks (TSKs) for all of the various cyber defense work-roles. The skills

from the framework that are needed for cyber security are defined as, “The capacity to perform an

observable action (i.e., describes what the learner can do) (Petersen et al., 2020, p.5 ). The tasks

from the framework are described as, “An activity that is directed toward the achievement of

organizational objective (i.e., describes the work to be done) (Petersen et al., 2020, p.4 ). Lastly,

knowledge is described as, “ A retrievable set of concepts within memory” (Petersen et al., 2020,

p.5 ). The framework provides no information regarding the required cognitive abilities that

directly affect knowledge, skill, and contribute to more successful cyber-defending (Hunter,

1983; Motowildo et al., 1997; Schmidt & Hunter, 2004). For example, the required skills for

Cyber Defense Incident Responder are listed from the NICE Framework as:
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• Skill of identifying, capturing, containing, and reporting malware.

• Skill in preserving evidence integrity according to standard operating procedures or

national standards.

• Skill in securing network communications.

• Skill in recognizing and categorizing types of vulnerabilities and associated attacks.

• Skill in protecting a network against malware. (e.g., NIPS, anti-malware, restrict/prevent

external devices, spam filters).

• Skill in performing damage assessments.

• Skill in using security event correlation tools.

• Skill to design incident response for cloud service models.

The two required abilities for the Cyber Defense Incident Responder role that have been

removed from the most recent NICE Framework (Newhouse et al., 2017) are:

• Ability to design incident response for cloud service models.

• Ability to apply techniques for detecting host and network-based intrusions using intrusion

detection technologies.

The human factors research in cyber defense (Andrade et al., 2018; Jones, Namin, &

Armstrong, 2018; Kokkonen & Puuska, 2018) has been attempting to fill in the gap of the NICE

framework in regards to what the skill requirements and previously described ability (Newhouse

et al., 2017) further entail. For instance, one might ask, what exactly are the desired human

attributes and cognitive abilities that likely contribute to more success in the cyber defense

Incident Responder role? In efforts to begin answering that question, cognitive task analysis

(CTA) for cyber defense work performance (D’Amico et al., 2005; D’Amico & Whitley, 2008;

R. S. Gutzwiller et al., 2016) has proven helpful. An understanding of the primary tasks (i.e.,

behavior) and mental challenges that analysts face during incident detection work allows us to

start thinking about associated cognitive abilities (i.e., predictors) that might aid in that work
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environment (Motowildo et al., 1997; Sauce & Matzel, 2013). The next section discusses the

work-role of the Incident Responder, followed by the associated cognitive challenges from CTA

research.

2.1.2 The Role of the Cyber Analyst: Incident Responder

The role of Incident Responder is vaguely described in the NICE framework

as,“investigates, analyzes, and responds to cyber incidents within the network environment or

enclave” (Newhouse et al., 2017, p.111 ). Fortunately, for purposes of the current study, the

cognitive requirements/processes and tasks that are essential to the Incident Responder role have

been generally identified in cognitive task analysis (CTA) research (Champion et al., 2012;

D’Amico et al., 2005; Goodall et al., 2009b; R. S. Gutzwiller et al., 2016; Mahoney et al.,

2010; Zhong, 2016) and the Incident Responder work-role has been further described in the

following research.

First, D’Amico et al. (2005) conducted one of the most widely cited CTA studies in cyber

defense to present, that looked at the entire work process of information security. Their CTA used

41 network security analysts from commercial and government organizations. The analysis of the

data revealed a generalized workflow for the various roles of cyber analyst, to include three stages:

• Event detection: monitoring and detection

• Situation assessment: analysis

• Threat assessment: response

The event detection stage (stage 1) for the triage analysis role (i.e., Incident Responder) is

most relevant to the current study, additionally shown in Figure, 2.4. In the ‘detection stage’ (i.e.,

triage analysis) the main role of the cyber analyst is described as being able to quickly detect and

escalate suspicious events (i.e., true-positive threats) that are located within large arrays of sensor

data (e.g., IDS alerts, firewall logs, OS audit trails, vulnerability reports and packet dumps) for

further investigation. The data within the incident detection system; a common network software

that automatically alerts the analyst to signs of network intrusions, is known to contain mostly
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Figure 2.4. Cyber Defense Work-flow (D’Amico et al., 2005)

false-positive alerts (Champion et al., 2012; Goodall et al., 2009b). The analysts are described

as, ‘weeding through it’ in search of actual threats (D’Amico et al., 2005). More specific to

reactive incident detection tasks and activities, Goodall, Lutters, and Komlodi (2009a); Goodall

et al. (2009b) presented four common stages for the role of Network Intrusion Detection Analyst

as follows:

• Monitoring the network for events: looking for indications of anomalous or malicious

activity

• Triaging an event: prioritizing an alert and/or threat, which can lead to a temporary stopgap

measure

• Analysis of an event: the analyst uses various tools to determine if the alert is a false-alarm

or not
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• Response to an event: a stopgap measure, such as patching a system

All analysts participating in their study followed the four stage process when performing

incident detection work. Accordingly, analysts monitor the network for threats through an

incident detection system (IDS). When alerted to a potential event the analyst will triage it,

analyse it through network data tools (e.g., Tripwire, Snort) and then respond to it. The

researchers described the work as dynamic, event-driven, and reactive (e.g., to an IDS alert or

event). Additional CTA research (D’Amico et al., 2005; Paul & Whitley, 2013) has identified

the associated analytic questions that Incident Responders must ask themselves as they move

through the process towards making the threat decisions, as seen in Figure, 2.5.

The questions are said to be complex (e.g., multi-step), requiring significant cyber-domain

knowledge and situated expertise (Goodall et al., 2009a) in order to successfully answer them

given the information and tools provided in the network environment. The researchers state that,

“Incident detection systems (IDS) cue human analysts and provide them with targeted (but often

overwhelming) network data to aid in their investigation. Because of this human-centered nature

of incident detection work, it is especially important to understand the types of expertise needed

and the ways this expertise is acquired. Understanding these will help incident detection tool

designers, trainers, managers, and incident detection practitioners” (Goodall et al., 2009b, p.11 ).

Although investigating the knowledge and expertise contribution to cyber performance is

important, Schmidt and Hunter (2004) found that job expertise and education only have a small

correlation of (r = 0.18 and r = 0.10) with job performance. Identifying the cognitive ability

contribution to cyber performance will aid in understanding more about how expertise is

acquired. For instance, if the analyst will be able to achieve it in a timely manner.

To date, the analytical questions and general work-role findings of the Incident Responder

(D’Amico et al., 2005; Goodall et al., 2009a) have been widely cited and upheld in the human

factors research. Further CTA research (Goodall et al., 2009a; R. S. Gutzwiller et al., 2016;

Paul & Whitley, 2013; Zhong, 2016) reveal more fine-grained cognitive processes of triage

analysis and additional work-roles and tasks specifically for the Incident Responder. That allows

us a view into the Incident Responders behaviors and decision-making process, and to then

further question the cognitive ability contribution that might aid in a more successful performance

in that role (Sauce & Matzel, 2013).
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Figure 2.5. Analysis Questions (D’Amico et al., 2005)

2.1.3 Cognitive Challenges and Primary Tasks of the Cyber Analyst

The cognitive task analysis (CTA) research identifying the skills, knowledge, and abilities

of the cyber analyst have found a similar compilation of cognitive challenges that analysts

encounter during incident detection work, that have mostly not improved over the last 16 years

(Ponemon, 2020). One persisting cognitive challenge for the Incident Responder is to manage

the increasing information-overload issue in the security operations center (SOC) (Cisco, 2020;
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D’Amico et al., 2005; Ponemon, 2020) without allowing it to affect primary task performance.

The primary cognitive task of the Incident Responder and commonly noted challenge due to

information overload (Cisco, 2020; Ponemon, 2020) includes the formation of mental models

per incident/event (D’Amico et al., 2005; Goodall et al., 2009a; R. S. Gutzwiller et al., 2016;

Wickens, 2008). The primary task (i.e., an information search and evidence collection task)

entails searching through high volumes of various network data for evidence associated with each

incident. That requires shifting through the use of many different vendor software/tools (Cisco,

2020; Goodall, 2011), although the amount of vendor tools used in the SOC has reduced since

2017. Now, 86 percent of organisations use between one and 20 vendors (Cisco, 2020). The data

of importance discovered from each tool must then be mentally fused or correlated together (i.e.,

data-fusion) into a mental model without using external aids. The events are typically correlated

by timestamps, IP addresses, host names, and port numbers, on an ad hoc basis (i.e.,

reconstructing the events timeline) to decide if malicious activity occurred. The additional

research (Champion et al., 2012; Goodall et al., 2009b; R. S. Gutzwiller et al., 2016) studying

cognitive tasks of the Incident Responder, and current industry research (Cisco, 2020; Ponemon,

2020) all report the significant data-overload challenge in association with the primary task,

where analysts literally face thousands of alert investigations per day. R. S. Gutzwiller et al.

(2016) described the analysts from their CTA as “taxed,” as they work on incidents from “cradle

to the grave”. That type of working environment leads to burnout and to the inability to retain

cyber personnel (Ponemon, 2020), although higher cognitive ability may lessen those effects

(Sauce & Matzel, 2013).

Another highlighted cognitive challenge to the Incident Responder role is that analysts

must make threat decisions in an IDS often under uncertainty or ambiguity. That is said to be due

to limitations with network tools in their ability to present information that the analyst needs to

make proper decisions (Champion et al., 2012; D’Amico et al., 2005; Goodall et al., 2009b;

Ponemon, 2020; Tyworth, Giacobe, & Mancuso, 2012). The specific tool limitations posited in

that research are that they provide incomplete sensor data, and do not allow for visibility into the

attack surface. That causes the analyst to switch between the use of many different tools. When

the analyst does not have all of the evidence that they need to make the threat decision, visual

attention research (Wolfe, Horowitz, & Kenner, 2005) suggests that it can cause extensive
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searches for the missing evidence (i.e., target information) (Wickens, Gutzwiller, & Santamaria,

2015; Wolfe et al., 2005). The extent of the search behavior likely depends on the cognitive

ability of the individual (Wolfe et al., 2005) and/or their perceived task difficulty, work-habits,

effort, etc. (Motowildo et al., 1997). Unfortunately, the specific individual differences in

cognitive ability that mostly contribute to overcoming the cognitive challenges in IDS work is

again not considered in the cognitive task analysis research.

2.1.4 Human Attention Limits in Cyber Defense

The cognitive task analysis (CTA) research (D’Amico et al., 2005; Goodall et al., 2009b)

and current industry research (Ponemon, 2020), identifies that human capacity limits are being

exceeded in cyber defense work. In light of that fact there is a sprouting body of visualization

research (Tyworth et al., 2012; Vieane et al., 2017, 2016) that aims to reduce cognitive load (i.e.,

data-overload) in order to improve analyst performance. To give just two examples; through

designing visual aids in IDS software that can guide attention (Posner & DiGirolamo, 1998) to

areas of importance (R. S. Gutzwiller et al., 2016), and through the development of automation

software. However, the aids and software tools are said to not always enhance cyber performance

since they seldom take into consideration the analysts goals, information needs (Goodall et al.,

2009b; R. S. Gutzwiller et al., 2016; Wickens, 2008), and the limits of human cognition

(Champion et al., 2012). For example, incident detection systems (i.e., automation software) still

produce high amounts of false-alarms (Ponemon, 2020) which cognitively overloads the analyst

and hinders cyber performance (Champion et al., 2012; Ponemon, 2020).

Further, experimental research (Mancuso, Minotra, Giacobe, McNeese, & Tyworth,

2012) demonstrates how difficult it is to actually measure the effects of a cyber interface/tool on

cognition and because of that difficulty, the researchers point out that software designers

advertising that a cyber-tool improved cognition is probably not supported by research. If the

cognitive ability that contributes most to cyber performance (e.g. IDS performance) has not yet

been identified, one must ask how it is possible to design effective aids and network tools to ease

cognitive processing in the first place. Although, from the research presented here (Vieane et al.,
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2016), the task displays that have been designed with consideration of human cognition

limitations still appear to increase the cyber performance success.

There are individual differences (i.e., variance) in human capacity limits that determines

the effect that a visual aid has on cyber performance, but interactions between the individuals

cognitive ability and the new aid/tool (i.e., treatment variable) is often neglected in cyber

visualization research (Vieane et al., 2017, 2016). The individual differences in cognition can be

measured through traditional cognitive ability measures in association with the cyber performance

scores, with the ultimate goal being to increase cyber performance (i.e., payoff) for those that

scored lower in cognitive ability. That idea can be seen in Figure 2.6 from Cronbach (1957).

Figure 2.6. The Figure Shows that the Admission of Students with High Scores on a
Relevant Aptitude are Admitted, which Raises the Payoff for the Institution

(Cronbach, 1957)

Cronbach (1957) said that the correlationist applies a fixed treatment and looks for

aptitudes that maximize the slope of the payoff (i.e., cyber performance). In cyber defense

selection, the organization will take the analysts with high scores on the relevant aptitude (e.g.,

cognitive ability) and thus raise the payoff for the organization. First the cognitive abilities that

contribute most to differences in cyber performance must be identified (Cronbach, 1957).
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2.1.5 Cognitive Task Analysis Summary

The cognitive task analysis (CTA) research scientifically identified the core work

processes, cognitive challenges, and higher-order cognitive requirements most fully for the

Incident Responder. That lays the ground-work towards identifying the actual cognitive abilities

that drive successful performance in the Incident Responder work-role. Individual differences in

cognitive ability can mitigate the primary cognitive challenges, discussed from CTA research: the

formation of multiple mental-models and data-fusion (De Jong, 2000). However, we still do not

know which cognitive ability contributes most to its success. Studying individual differences in

cognitive abilities, and identifying which ones associate most with differences in cyber

performance is one way to find solutions to mitigate human capacity effects (Champion et al.,

2012) on cyber performance (Sauce & Matzel, 2013).

The repeated finding from the CTA research that security needs are not being met because

incident detection work is not compatible with basic human-information processing abilities

(R. S. Gutzwiller et al., 2016; Wickens, 2008) further highlights the need for identifying the

cognitive ability that most contributes to cyber performance. If we know what the cognitive

abilities are that contribute most to successful cyber performance in specific work-tasks then more

effective technologies/software can be devised/redesigned so that individual differences no longer

show meaningful variation in performance (Guastello, Shircel, Malon, & Timm, 2015). The

individual differences framework (Cronbach, 1957; Motowildo et al., 1997) must be applied in

cyber defense/human factors research in order to identify them. The next section discusses the

synthetic task environments that are widely used to study human factors in cyber defense.

2.2 Synthetic Task Environments

Synthetic task environments (STE), are primarily used by the human factors researchers in

cyber defense for ultimately improving cyber performance. STEs are often used for studying

aspects of human cognition (Champion et al., 2012; Cronbach, 1957; Greenlee et al., 2016),

team performance/collaboration, cyber defense training, and for improving software aids and

network tools (Vieane et al., 2017, 2016). The STEs in cyber defense research range from

34



simulating a real-world network environment such as an intrusion detection system (IDS)

(Ben-Asher & Gonzalez, 2015; Champion et al., 2012; Funke et al., 2016; Mancuso et al.,

2012), to simulating very specific incident response tasks, such as a network monitoring task

(McIntire et al., 2013; Sawyer et al., 2015). One reason for the wide use of a STE in human

factors research is because cyber defense environments are inaccessible (Mancuso et al., 2012).

Another reason for its use is because it offers a controlled environment with less confounds from

which a more reliable measure of cyber performance can be obtained.

Unfortunately, many of the human performance studies in cyber defense either use a STE

that is not similar to any real-world cyber task, and/or a new one is introduced that has not been

validated in further research. That reduces how representative it is to how cyber analysts behave.

The behaviors (i.e., human-computer interactions) of the analyst are usually recorded as they

operate in the STE environment, and then the human-computer interactions of interest to the

researcher are analyzed depending on the applied human-performance framework or model.

Therefore, the next three sections discuss the main theories and frameworks that have

been applied to study cognitive processes of cyber analysts while they defended networks in a

STE, beginning with Situational Awareness (i.e., CyberSA) (Endsley, 1995), followed by Signal

Detection Theory (D. M. Green et al., 1966) and ending with the Hybrid Space Framework

(Jøsok et al., 2019). Each section includes the associated human factors and human computer

interactions posited to contribute to cyber defense performance. Of most importance to the

current study, the patterns of behaviors that differentiate the effective from the less effective cyber

performers in an incident detection environment are identified. That allowed for pinpointing the

cognitive ability variables that may account for cyber performance (Motowildo et al., 1997;

Sauce & Matzel, 2013).

2.3 CyberSA Framework

One human performance model (i.e., pre-decision making model) that has been

extensively utilized in the human factors research in cyber defense is the situational awareness

(SA) model by Endsley (1995). The SA model is shown in Figure, 2.7.
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Figure 2.7. Situational Awareness Model (Endsley, 1995) Showing the Attention and
Working Memory Contribution to SA

Situational awareness is formally defined as, “The perception of the elements in the

environment within a volume of time and space, the comprehension of their meaning and the

projection of their status in the near future” (Endsley, 1995, p.12 ). In other words, SA is viewed

as achieving a ‘state of knowledge’ or an understanding of what is going on in a dynamic

environment before a decision can be reached. The three cognitive processes of SA from its

definition include:

• Perception: perception of critical elements of information in the environment (Level 1)

• Comprehension: acquiring the meaning of the information in the environment by

combining the elements (Level 2)

• Projection: a projection of actions based on the perception and comprehension that was

gained in the environment (Level 3)
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The information-processing mechanisms and innate abilities of the individual, such as

attention and working memory as shown in Figure, 2.7 have been generally recognized to

contribute to achieving SA (R. Gutzwiller, 2007). When using the model as a conceptual tool to

obtain a measure (i.e., a level) of SA, subjective (i.e., indirect) measures are often applied, such as

self-rating questionnaires (e.g., SART), observer-rating scores (Champion et al., 2012), or

confidence scales (Evangelopoulou & Johnson, 2015). Those subjective measures of cognition

have draw-backs since they measure how the individual perceived their own SA rather than their

actual (i.e., observed) SA, and often they do not correlate with actual performance scores

(Champion et al., 2012; Evangelopoulou & Johnson, 2015; Mancuso et al., 2012). In addition,

probing methods are applied such as the situation awareness global assessment technique

(SAGAT) (Endsley, 1995; Mancuso et al., 2012), where the individual is asked comprehension

questions and is given stop-and-go feedback about what is really happening in the environment

(Zhong, 2016). The stop-and-go measures and probing of any type in real-time for assessing SA

can be disruptive to the on-going task and can interfere with correlations between cognitive

ability (e.g., SA) and performance (Mancuso et al., 2012).

When the SA model is properly applied to cyber defense (CyberSA), which entails

actually assessing the levels of SA, the SA achievement level is said to depend on both the

capability of the tool/system to present the required information as well as the cognitive ability of

the individual (R. S. Gutzwiller et al., 2016). The CTA research (Champion et al., 2012;

D’Amico et al., 2005; R. S. Gutzwiller et al., 2016) has recognized the issues on both sides of

that relationship. For example, the limitations with the network tools/software, the high data

volume issue, and the associated data-overload experienced by cyber analysts, but the actual

cognitive ability contributions have not been fully addressed.

The following section of CyberSA research (Champion et al., 2012; Evangelopoulou &

Johnson, 2015; Paul & Whitley, 2013; Stevens-Adams et al., 2013) reports the consequences

for the failing relationship between the analyst and the tools/software, where it finds CyberSA is

difficult to maintain. More specifically, the projection level has been found difficult to achieve

within a cyber environment (Evangelopoulou & Johnson, 2015; R. S. Gutzwiller et al., 2016)

with most cyber performance studies (Ben-Asher & Gonzalez, 2015; Champion et al., 2012;

Dutt, Ahn, & Gonzalez, 2013; Stevens-Adams et al., 2013) finding that either CyberSA and/or
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task performance is low. The next subsections explore the proposed human factors that have been

found to affect cyber performance and/or CyberSA, and the methods that were used to identify

the factors are discussed.

2.3.1 Cognitive Workload

A human factor of interest in the cyber defense research is the cognitive-workload factor.

Cognitive workload can be defined as, “ The level of attentional resources required to meet both

objective and subjective criteria, which may be mediated by task demands, external support, and

past experience” (Young & Stanton, 2001, p.10 ). The theory behind cognitive work-load is that

humans have a limited capacity and/or limited resources to process information (Kahneman,

Treisman, et al., 1984). That means that as task difficulty increases so does mental workload, and

once the environmental demands exceed the individuals capacity, task performance then declines.

A high work-load is often associated with negative outcomes such as fatigue, frustration and

stress, and it can affect cyber performance. A high cognitive work-load has been reported in the

cognitive task analysis studies and in the CyberSA research in cyber defense (Champion et al.,

2012; R. S. Gutzwiller et al., 2016; Vieane et al., 2017) as a cognitive challenge for Incident

Responders; partly stemming from data-overload. The cognitive-workload has been commonly

measured through the NASA Task Load Index (TLX) questionnaire of perceived work-load, in

direct association with cyber performance like in the following study.

Champion et al. (2012) conducted one of the first cyber defense experiments to show how

a higher work-load negatively affects team CyberSA performance (Endsley, 1995). The

researchers used eight teams of three analysts each (n = 23 Cadets) from a cyber security student

group. The team performance was assessed from the percent of correctly identified attack paths,

from classifications of individual attack alerts in an IDS, and through a self-assessment of

CyberSA. Furthermore, the analysts completed two subjective measures; the NASA Task Load

Index (TLX) questionnaire and a confidence measure. Those measures were collected twice from

two different trials, with the second trial containing 47 additional events (false-positive alerts).

The researchers found that performance scores were all quite low with only 60 percent of

the events correctly classified, and only 47 percent of the teams correctly identifying the attack
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paths. That finding lined up with CyberSA which was scored as moderate-to-low, in that the teams

reported being only “somewhat aware” of what was occurring in the task. However, the finding of

poor performance from measures all around did not line up with the teams high self-reported

confidence in their categorization of alerts (70 percent confident). Additionally, a somewhat high

cognitive load was reported from the NASA Task Load Index; in the high six range for both trials.

There was only one significant difference (p = 0.05) in performance between the two trials with

more incorrectly classified events (i.e., reconnaissance events only) seen in the trial in which the

the false-positives were added. The performance decline was 16 percent from trial one to trial

two. The researchers were actually only able to show that higher false-alarms caused a decline in

performance (i.e., cognitive overload) in association with CyberSA when the amount of

false-positive events in the IDS was increased. There were no other discovered differences

between trials for any other measures including the NASA-TLX measure of subjective work-load.

The study highlights the effects of high cognitive demand (i.e., high data volume) of the

IDS environment, a mental challenge posited by cognitive task analysis research (D’Amico et al.,

2005; R. S. Gutzwiller et al., 2016) and it shows the negative effect that it has on CyberSA.

However, it does not show the relative importance of the “cognitive capacity variable” to making

successful threat decisions. For instance, if the researchers had investigated the scores between

individuals rather than solely between teams, we would learn if their subjective cognitive

work-load (NASA-TLX) mitigated the effect (Sauce & Matzel, 2013), but capacity measures that

correlate directly with performance would be required.

Further, the study highlights the inaccuracies of self-assessed performance (Van Zandt,

2000) in the cyber defense domain, which can be seen in the analysts’ low accuracy performance

in relation to their self-reported over-confidence per alert decision. The discrepancy is repeatedly

observed in cyber defense studies (Ben-Asher & Gonzalez, 2015) and could be related to the

ambiguous nature of alert classifications (D’Amico et al., 2005; Tyworth et al., 2012). The

study also shows the limitations of using ‘proportions correct’ only to assess IDS performance.

Here we miss out in knowing if the difference in performance between the two different trials

differ in sensitivity, response bias, or both. We do know that with the addition of false-positive

alarms the analyst may have altered their criterion (i.e., response bias) for classifying threats
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(Lerman et al., 2010), but like most studies under CyberSA, the decision strategy (i.e., response

bias) was not considered.

Newer research from Wright-Patterson Air Force Base (Greenlee et al., 2016), further

measured the high-cognitive demand in an IDS environment because its effects (i.e., stress and

burnout) may cause an analyst to lose their situational awareness, but unlike the previous study

(Champion et al., 2012) specific network analysis tasks (i.e., face validated) related to cyber

work-roles were used and compared. The researchers investigated the cognitive work-load and

stress from operating in an IDS for two different network analysis tasks; triage (n = 27) and

escalation (n = 46). The researchers applied two subjective measures; the Dundee Stress State

Questionnaire (DSSQ) used to measure task engagement, distress, and worry, while the

NASA-TLX was used to measure cognitive work-load. In both tasks the mental demand and

effort was rated as significantly greater than 50 (p < 0.001), meaning it was high. The Multiple

Resources Questionnaire (MRQ), a work-load subscale further showed that triage analysis

demanded significantly more short-term memory, spatial attentive processing, spatial emergent

processing, and visual lexical processing, compared with other subscales (p < 0.05) and in

comparison to escalation analysis. From the findings of the study the researchers point to

sustained spatial attention and/or vigilance as possibly playing a major role in triage analysis.

Although the exploratory study used college-aged individuals without any cyber experience, the

findings serve as clues to the cognitive ability underlying more successful cyber performance in

an IDS (Sauce & Matzel, 2013).

2.3.2 Working Memory

Working memory (WM) is a core cognitive factor that underlies CyberSA performance

(Endsley, 1995), and may contribute to a more successful performance in cyber defending. For

example, working memory is involved in the formation of mental models and data-fusion; the

primary cognitive challenges identified in CTA research for IDS work (D’Amico et al., 2005;

R. S. Gutzwiller et al., 2016; Wickens, 2008). Working memory was first conceptualized by

Baddeley and Hitch (1974), and discussed as a limited capacity system or resource that can

manipulate and update stored (i.e., maintained) information over a short amount of time (i.e.,
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short term memory). It is considered a core cognitive process that is used in every day tasks that

are not automatically performed (Unsworth & Engle, 2007). For example, it is used for actively

maintaining information such as phone numbers or current task goals. Additionally, the stored

information can be manipulated with the deployment of executive processes (i.e., attention

control processes). For example, repeating a series of digits backwards requires both storage and

manipulation. The tasks designed to measure working memory are said to measure both attention

control process (e.g., inhibition and updating) and its storage capacity (Baddeley & Hitch, 1974;

Engle & Kane, 2004; Miyake & Friedman, 2012; Shipstead, Harrison, & Engle, 2015).

Working memory is often considered in cognitive models of cyber behavior (Dutt et al., 2013).

Cyber defense researchers (Ben-Asher, Oltramari, Erbacher, & Gonzalez, 2015;

Cranford et al., 2020; Dutt et al., 2013; Yuan, Li, Rusconi, & Aljaffan, 2017) have been using

cognitive modeling (i.e., cognitive decision models) to simulate human behaviors when operating

in a computing environment and to better understand the involved human cognitive

processes/abilities such as perception, memory, and attention (Endsley, 1995) in efforts to

improve software interfaces and CyberSA performance. For example, (Dutt et al., 2013) used

working memory as a core component in their computational cognitive model of human behavior.

The model is based on the Instance-Based Learning Theory (IBL) to expected cyber defender

behavior in various attack and defend situations. The IBL factors included the level of prior

knowledge (i.e., experiences stored in a simulated analysts working memory) and the analysts

risk-tolerance level (i.e., the point at which the analyst decides to classify a sequence of events as

a cyber-attack or wait for more convincing evidence). CyberSA performance was measured by

accuracy (i.e., precision and recall) and timeliness of the analysts decision to stop the attack. One

finding from the study was that the model predicted that exposure to more threat experiences,

increased the models working memory ability to detect threats. However, other causes can be

even more important as causes of variation in cyber performance that must be identified through

the individual differences framework (Sauce & Matzel, 2013) using behavioral data from actual

analysts.

More recent research has used eye tracking (Yuan et al., 2017) to better understand

cognitive processes of individuals when interacting with security systems for contributing to

human performance models, but again the actual cognitive ability behind the behavior is not
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identified. The cognitive modeling approach for studying cyber performance was pointed out as

being a good alternative to drawing conclusions from samples of undergraduate students like the

experimental studies (Ben-Asher & Gonzalez, 2015; Champion et al., 2012) have done due to

the difficulty of obtaining actual cyber analysts for research purposes.

2.3.3 Task-Switching

Situational Awareness is considered a main precursor to decision-making, but it can

degrade with fatigue and stress, and it can be negatively affected by task interruptions (i.e.,

task-switching) and distractions (Endsley, 1995), as seen in the cyber defense environment

(Vieane et al., 2017, 2016). Task-switching refers to the time that it takes to shift attention (i.e.,

ease of transitioning) to different tasks (e.g., rules and task-sets) (Miyake & Friedman, 2012;

Miyake et al., 2000). The theory around set-shifting tasks is that the cognitive control processes

(i.e. attention control) are significantly more involved when the individual switches between tasks

(ABAB) in an incongruent trial, in comparison to a congruent trial where the individual repeats

the same task (AAAA) (Jersild, 1927; Monsell, 2003). The two trials are used to isolate the

executive-control processes (a incongruent trial) from non-executive-control processes (a

congruent trial). The performance on the task is measured in response time (D. A. Allport, Styles,

& Hsieh, 1994; Jersild, 1927; Rogers & Monsell, 1995; Vandierendonck, Liefooghe, &

Verbruggen, 2010) and error. The performance difference between those two trials represents the

cognitive control processes engaging during switching, which is reflected in a shift-cost. The

findings from a more recent study (Kortschot et al., 2018) that investigated attentional switching

in the cyber defense domain suggests that task switching may affect cyber performance, however

real-world tasks were not used and/or the participants did not have prior experience and

knowledge of the experimental platform that was applied; as similarly seen in the following

end-user study.

Vieane et al. (2016) investigated whether coordinated displays (i.e., displays that

automatically link relevant event information by timestamp across databases), in comparison to

standard displays improved an analysts IDS performance. The researchers conducted a true

experiment (N = 46) and used a t-test to measure the between group differences in time to

42



completion. The novice participants with no cyber experience in the uncoordinated condition took

significantly longer (M = 86.21 minutes, SE = 4.62 minutes) to finish the alerts than did

participants in the coordinated condition (M = 43.61 minutes, SE = 3.08 minutes), t (42) = 7.67, p

< .001, Cohen’s d = 2.31. They discovered that coordinated displays nearly doubled CyberSA

performance efficiency (i.e, time) in detecting network threats with the simulated environment.

The finding suggests that task switching may affect cyber performance.

Further, Vieane et al. (2017) found that task interruptions such as answering e-mails

during the classification of attacks, significantly caused a performance decline for 13 novice with

no cyber experience. The participants ranged in age from 18 to 33. The participants correctly

classified most of the alerts, however the alerts that were interrupted took significantly (p = .005)

longer (M = 72.02 s, SE = 5.57 s) for participants to complete in comparison to alerts that were

not interrupted (M = 63.44 s, SE = 4.85 s). The previous two studies (Vieane et al., 2017, 2016)

therefore suggest that task-switching negatively affected cyber performance.

2.3.4 CyberSA Summary

Cognitive work-load and/or capacity theory (Champion et al., 2012) and task-switching

(Vieane et al., 2017, 2016) was identified as affecting CyberSA, while the other human factors

proposed to influence CyberSA are spatial attention and vigilance (Greenlee et al., 2016), and

higher working memory in association with more experience and knowledge (Dutt et al., 2013).

However, the CyberSA research fails to take into account the individual and their unique set of

knowledge, experiences, and cognitive ability that influences CyberSA. For instance, the basic

cognitive ability contribution that is considered essential to making decisions under the CyberSA

conceptual model such as attention and working memory (Endsley, 1995; R. Gutzwiller, 2007)

is yet to be empirically validated in association with cyber performance under an individual

differences framework. One reason for that is because most of the human factors research

addresses the cyber performance of analysts’ in teams, while the individual differences (i.e.,

causes in variation) contribution to performance is not considered.

Another reason may be because there is limited ways in which to measure CyberSA

directly without interfering with on-going cyber performance (Mancuso et al., 2012). In order to
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appropriately study the differences between analysts that contribute to cyber performance and/or

to CyberSA, it is recommended that researchers use measures that are direct and reliable (e.g.,

applied in more than one study) and further, that measures are high in sensitivity and low in

measurement error. However, the subjective measures applied under CyberSA framework are not

of the essence (Salmon, Stanton, Walker, & Green, 2006). One last limitation to using subjective

CyberSA measures are that they are known to reflect only the behavior of the participants and not

their ‘internal processing of information’ (Endsley, 1995).

Overall, Champion et al. (2012) put it best when they questioned how SA transfers to a

cyber environment. They said, “How does this apply with the cyber world in which perception is

limited to what a computer can convey through the monitor, where space is seemingly infinite,

and comprehension is shared between the computer and analyst?” (Champion et al., 2012, p.1 ).

From that description of CyberSA, the Signal Detection Theory (D. M. Green et al., 1966;

N. A. Macmillan & Creelman, 1990) discussed next could be a better choice for measuring cyber

performance, especially when many of the choices that analysts make are ambiguous. SDT is

another popular human performance model that takes into account the analysts internal

processing and/or neural noise (Lynn & Barrett, 2014) and it also considers the external noise

stemming from the task (e.g., how different the alerts are from each other) in overall performance.

2.4 Signal Detection Theory Framework

To better assess cyber performance under uncertainty, the Signal Detection Theory (SDT)

(D. M. Green et al., 1966; N. Macmillan & Creelman, 2005) has been applied in the human

factors research (Ben-Asher & Gonzalez, 2015). Originally, SDT was developed to assess the

binary responses (i.e., classification behavior) from discrimination tasks that cause perceptual

uncertainty (Fechner, Howes, & Boring, 1966). Fechner et al. (1966) was first to propose SDT,

when he explained how to scale mental experiences (i.e., psychophysical scaling). For that he

presented how to scale/measure subjective sensations of heaviness caused from two different

weights by asking the participant which one is heavier. He further explained that individuals will

require a certain amount of heaviness that will correspond to their neural noise before they can

detect a change in the weight. In other words, the binary decisions (‘yes’ or ‘no’) that humans
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make, are said to require a certain internal threshold of evidence (i.e., neural noise) or confidence

before they can be made. Individuals will differ in how much evidence they require. His same

logic applies to recognition memory decisions (Kantner & Lindsay, 2012; N. A. Macmillan &

Creelman, 1990; Mickes, Wais, & Wixted, 2009), eye-witness identifications (Wixted, Mickes,

Dunn, Clark, & Wells, 2016), weather forecasting (Harvey Jr, Hammond, Lusk, & Mross, 1992),

and in cyber defense decision making (Ben-Asher & Gonzalez, 2015). The two main

components to decision making under SDT are:

• Sensitivity/discriminability

• Response Bias

Applied to cyber defense for clarity, the SDT asks when presented with two alerts (e.g., a

false-positive threat and a true-positive threat) over a series of trials, can an analyst detect the

sensation of a threat (i.e., the signal) from the sensation of a false-alarm (i.e., the noise). That is

known as the individuals discrimination (i.e., sensitivity) ability. The SDT also asks if the

individual is more inclined to respond to alerts as false-positives or as hits when faced with the

ambiguous/subjective information presented by cyber tools. That is known as the response bias

(i.e., decision strategy). Even though cognitive factors (i.e., internal factors) such as neural noise

and changes in attention may affect the response (Stanislaw & Todorov, 1999), the SDT does not

identify any specific cognitive processes or abilities that may contribute to making a decision.

SDT quantifies the overall sensitivity and response bias that are confounded in an accuracy score

(Lynn & Barrett, 2014), for which to precisely study an individuals performance.

The following section will cover the cyber research using SDT metrics and/or the

psycho-physical methods from SDT, as measures of cyber performance. First, the section will

cover the cyber vigilance research using SDT methods, followed by the research using SDT to

measure performance differences based on knowledge. The research investigating the response

bias of cyber analysts is also addressed in the section. Of most importance to the current study,

the following research further identifies important cognitive variables contributing to cyber

performance.
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2.4.1 Spatial Attention

Attention is a human factor that underlies cyber performance and the achievement of

CyberSA (Endsley, 1995). It is difficult to define attention because of its many different types,

interpretations, and associations with other cognitive processes, but most definitions refer to it as

the cognitive mechanism(s) (i.e., a gateway) that allow certain information (i.e., objects, features

and locations) (Desimone & Duncan, 1995) to be more fully processed than the information not

selected (Cohen, Cavanagh, Chun, & Nakayama, 2012). Many cognitive theories concur that

human behavior is controlled by top-down attention (i.e., voluntary attention or goal-directed

attention) and bottom-up attention (i.e., involuntary attention, reflexive, or stimulus-driven

attention) (Desimone & Duncan, 1995; Itti & Koch, 2001; Koch & Tsuchiya, 2007). Attention

that is guided by top-down processes is using instructions, prior knowledge and/or goals stored in

working memory to control behavior (Desimone & Duncan, 1995) in order to accomplish a task.

Attention that is guided by bottom-up processes is automatically captured by objects or features

(Theeuwes & Burger, 1998) because of their distinctiveness or uniqueness (i.e., salience, color,

location) (Theeuwes & Burger, 1998), or because the information is relevant to the observer’s

intentions or goals (Folk, Remington, & Johnston, 1992). Those two attention types interact in

ways that either benefit or hinder the individual during tasks. For instance, attention can

automatically or involuntarily shift (i.e., orient) with bottom-up attention to a flickering light even

if it is irrelevant to ones current task-goals. In that potentially hindering situation, research

(Posner & DiGirolamo, 1998) suggests that bottom-up attention is competing or conflicting with

top-down attentional goals, as consistently reflected in longer RT; observed in conflict tasks

(Eriksen, 1995; Yantis & Johnston, 1990). The resulting deployment of inhibition (i.e., attention

control) on the distracting information by top-down attention (i.e., executive functions) is also

important for allowing the individual to stay on task (Desimone & Duncan, 1995; Engle & Kane,

2004; Folk et al., 1992; Sawaki & Luck, 2010; Yantis, 1992), especially when the primary

task load is high (Lavie, 1995). The amount interference experienced from irrelevant information

depends on individual differences in attention control (Engle & Kane, 2004; Miyake &

Friedman, 2012), and/or their capacity under perceptual load theory (Lavie, 1995).
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Researchers (Emmanuel, McClain, Matzen, & Forsythe, 2015) from Sandia National

Laboratory have investigated attention differences in novice from expert analysts in a conference

contribution. They applied the visual search paradigm to cyber security since the tasks and the

tools used by analysts require them to visually scan through large amounts of text-centric data

(e.g., logs), in order to search for events of interest. The eye-tracking activity (i.e., attention

allocation) of 12 novice and expert analysts was measured while they completed a static log

analysis task in a variety of commonly used cyber tools (e.g., Network Miner, Wireshark,

ENCASE Enterprise, AccessData Registry, PDF Dissector, and Hex Workshop). The researchers

found that the novice users took three times longer to find the target of interest in the log and were

often distracted by ‘extraneous text’ that caught their attention. Although the study is a

conference contribution and incomplete, it still serves as another clue for the current study

towards identifying the basic cognitive ability, such as visual attention (i.e., visual search) that

contributes most to cyber performance differences.

2.4.2 Vigilance

The following section discusses how vigilance, a lower-level cognitive ability affects

cyber performance through the use of Signal Detection methods. First, visual attention is fully

described as follows. Posner (1990), proposed a widely accepted model of visual attention with

three brain networks/constructs:

• Alerting

• Orienting

• Executive Control

According to the model, the orienting network (Desimone & Duncan, 1995; Itti & Koch,

2001), allows the individual to move/orient their “spotlight of attention” to areas of interest in the

environment. The alerting network (i.e., vigilance) includes the individuals ability to stay in an

alerted state or to maintain their readiness to respond during a task. Lastly, the executive control

network (Engle & Kane, 2004; Miyake & Friedman, 2012) (i.e., attention control network)
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includes the inhibition processes that are used to resolve conflict such as competing attentional

task demands. The conflict for example, could be distracting information (e.g., internal or

external conflict) occurring during the task. Further, each network is associated with distinct

anatomy in the brain, but they stay functionally connected (Fan et al., 2005; Fan, McCandliss,

Sommer, Raz, & Posner, 2002; McConnell & Shore, 2011). The small correlations observed

between the networks still allow for them to be studied separately (i.e., diverse or domain

specific) (Fan et al., 2002).

Cyber defense researchers in human factors (McIntire et al., 2013; Sawyer et al., 2015),

have questioned if a cyber defense monitoring task- an aspect of IDS work (Goodall et al.,

2009b) is associated with vigilance tasks. That is because a sustained attention or vigilance in

tasks, over a long duration (i.e., time-on-task) is associated with a vigilance decline (i.e., a

vigilance decrement) (Hitchcock et al., 2003). A vigilance decline or decrement (i.e., attention

failure) in cyber defense results in individuals missing critical events/threats that often times lead

to very negative consequences and/or costs (McIntire et al., 2013; Sawyer et al., 2015). The

cyber defense research (McIntire et al., 2013; Sawyer et al., 2015) manipulated and then

investigated psycho-metric factors under SDT, such as event rate (i.e., the amount of events to be

monitored) and signal probability (i.e., probability of the critical signal/target occurring) in cyber

monitoring tasks and then assessed if the performance associated with vigilance.

(McIntire et al., 2013) was the first to investigate vigilance through eye-tracking in a

controlled cyber task, under methods of SDT. The analysts (n = 20) were given a response task

that included monitoring a graph display for unusual levels of network activity. The task also

required monitoring of a text display for suspicious Internet protocol (IP) addresses and port

combinations coming into the network. Their task dashboard can be seen in Figure 2.8.

The analyst pushed a key-board button when they recognized the suspicious IP address

that was memorized prior to performing the cyber task. In both displays the critical signal event

rate (i.e. suspicious IP) was a low five percent. It is difficult to achieve a representative event rate

in cyber defense research since real-world true-positive threat encounters are very low;

somewhere around one to five percent depending on the network environment (Funke et al.,

2016; Goodall et al., 2009b). The performance efficiency was then assessed from the percentage

of correct signals detected (i.e., percent hits), calculated every 10 minutes (i.e., 10 minute epochs)
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Figure 2.8. The Cyber Monitoring Task Dashboard (McIntire et al., 2013)

over the 40 minute trials because the critical signals were set to appear at those times. The

researchers found that the measured oculometrics (i.e., eye tracking) to assess operator vigilance,

significantly correlated with changes in cyber performance over time on task (p = .05). The

negative correlations between the percent hits and whether there was a decrease in performance

(i.e., decrement group) or not (i.e., no decrement group) can be seen in Figure 2.9.

As attention (i.e., vigilance) decreased (e.g., slower eye blinking) cyber performance (i.e.,

hit-rate) declined; over time. That was said to represent the vigilance decrement (Hitchcock et al.,

2003). The researchers suggest shortening the time spent in a cyber task in order to reduce the

decrement. Individual differences in vigilance can be further investigated in association with

cyber performance, through traditional vigilance tasks instead of eye tracking.

Years later Sawyer et al. (2015) conducted an experimental study (n = 24) to determine if

cyber tasks are associated with traditional vigilance tasks. They used a cyber response task (i.e.,

discrimination task) that was similar to the previous study (McIntire et al., 2013). The critical

signal for detection was a simple visual discrimination between the IP address and associated

communication port- usually flagged by an IDS system (Goodall et al., 2009b). The critical
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Figure 2.9. The Negative Correlations Between the Percent Hits and Whether There
was a Decrease in Performance (i.e., Decrement Group) or not (i.e., no Decrement

Group) (McIntire et al., 2013)

signal was again manipulated by high and low probability of its occurrence (i.e., signal

probability), and the amount of events to be monitored (i.e., event rate) was also manipulated.

After completing the cyber task, the participants mental demand (i.e., work-load) was measured

through the NASA Task Load Index (NASA-TLX).

The researchers found that the detection rate for the critical signal was lower when it

appeared less in the low signal probability (M = 72.14 percent) condition, when compared to the

high signal probability condition (M = 83.14 percent) at (p = .05). Further, the mean detection

scores (M = 88 percent) were higher in the slow event rate condition verses the fast event rate

condition (M = 66 percent) at (p < .001). Then, the high self-reported mental workload

(NASA-TLX) for the task was associated with a decline in performance in those conditions, as

seen in Figure 2.10. The findings were said to suggest that the cyber task was quickly susceptible

to the vigilance decrement.

However, one issue with the study was that the cyber task was manipulated into a

‘vigilance task’ to begin with even though performance research (Cronbach, 1957; Robertson &

Kandola, 1982) warns scientists against that practice. Overall, the researchers were able to

demonstrate that a simple cyber monitoring task (i.e., discrimination task) requires significant

attentional demands under pressure, limited time and volume (Greenlee et al., 2016), and that the

50



Figure 2.10. Self-reported Mental Workload (NASA-TLX) for the Cyber Task
(Sawyer et al., 2015)

higher work-load leads to missed true-positive threat detection. The task demands in their study

are said to be comparable to the tasks in air-traffic control and medical monitoring, but cyber

defense environments tend not to require monitoring beyond quick checks for suspicious activity

(Goodall et al., 2009b). Furthermore, the researchers conclude that the analysts could not

maintain a high performance because of, “diminished information processing resources, a

situation that is arguably reflected in the high scores seen on the NASA TLX, especially in the

Effort subscale” (Sawyer et al., 2015, p.161 ), but that would require a individual differences

investigation.

In conclusion, the results from the experimental research (i.e., observing variation

between groups) discussed here suggests that high vigilance is required to complete simple cyber

tasks. Research is still needed to assess how individual differences in vigilance affects the cyber

performance. That can be done through real-world, cyber defense tasks where analysts investigate

rather than simply monitor (i.e., discriminate and respond) for threats. The monitoring task used

in the previous two studies is usually performed by the IDS anyway (Goodall et al., 2009b). The

following sections extends the SDT beyond discrimination tasks, to acknowledging that in IDS
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tasks analysts make their decisions through ambiguous choices. It also discusses the

human-computer behaviors that have been discovered to differentiate a successful cyber group

from the less successful through traditional Signal Detection Theory (D. M. Green et al., 1966;

N. Macmillan & Creelman, 2005). Most significantly, the identified behavioral variables of more

successful cyber defense can then be further predicted by cognitive abilities.

2.4.3 Knowledge

Knowledge is a factor that affects cognitive ability, skills and task performance

(Motowildo et al., 1997). Cyber domain-knowledge and technical skills are well defined factors

under the Cyber-security Workforce Framework (i.e., NICE) (Northcutt, 2016; Petersen et al.,

2020) however, having individual knowledge or expertise alone does not guarantee success, as

seen in the following study. (Ben-Asher & Gonzalez, 2015) first applied the Signal Detection

Theory (SDT) to investigate how the domain-knowledge factor (e.g., expertise and practical

knowledge) and cognitive ability contributes to cyber performance (i.e., information search and

evidence collection) for the cyber expert in comparison to the novice (n = 55). The researchers

designed a simplified IDS task that held multiple attack scenarios within it (e.g., a denial of

service scenario, and a deface-website scenario, etc.). The IDS task produced an alert (network

event) every 10 seconds, and the participants classified it as a threat or not. After the completion

of each scenario they were also required to determine if the entire scenario was a cyber attack or

not and to give the confidence in their decision. The researchers designed the IDS task so that

novices (i.e., students from the general student population) could perform reasonably well, in

which they noted vastly reduced its representation of a real-world cyber environment. A further

limitation to their study was that the task experience was not the same for both groups, as the

novice group participated in-person (60 minutes long) and was given 10 of the scenarios at

random, while the expert took an online version of the task (25 minutes long), and was given only

three of the 10 scenarios at random.

The researchers reported overall performance in regards to alert classifications in the IDS

as low- near chance level, as seen in previous experimental studies (Champion et al., 2012) using

a IDS simulator. The 20 cyber security professionals correctly detected 55 percent of the 20
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malicious events with a 15 percent false detection rate (d’ = 1.18), while the novice performed

significantly worse (p = .024) at 45 percent (d’ = .78). Under SDT a value of 0 means no

detection ability, while a value of 3.00 and up reflects high sensitivity (N. Macmillan & Creelman,

2005). Therefore, the performance level indicates high task difficulty and/or a low internal

sensitivity for detecting threats from non-threats for IDS work (N. A. Macmillan & Creelman,

1990). Further, the experts obtained a significantly higher hit-rate (i.e., correct classification of

true-positives), and a lower false-alarm rate in the stealing confidential data scenario (t(240) =

4.105, p = < .001), and in the sniffer detected scenario (t(116) = 1.948, p = .054) to suggest

knowledge influences cyber performance in only two out of four scenarios. The individual

differences in cognitive ability (i.e., causes of variation in performance) that strongly affects

knowledge (Motowildo et al., 1997), was not actually investigated in the study.

In a further analysis, in regards to the attack scenarios, the researchers cleverly applied

SDT with a focus on utility (Lynn & Barrett, 2014) asking at what point do analysts perceive and

then classify that an attack has occurred when given a sequence of network events leading up to

an attack. They found that performance and confidence in the determination of the attack was the

same between the novice and the expert, to which they suggest knowledge did not play a

significant role in the task. However, as seen in Figure 2.11, the novice was significantly more

quick (i.e., less careful) to determine that an attack occurred with less accumulated threat

evidence in comparison to the expert (z = 3.816, p < .001). The researchers suggest that cyber

security experts may have the tendency to be more cautious and conservative when determining

that an attack occurred because of the high costs for wrongly classifying an alert in a IDS,

however the response bias was not calculated in order to be certain.

Overall, their study merely tells us that the experts performed better than the novice in an

IDS because of their cyber knowledge, and that they investigated the alerts more thoroughly than

the novice before making a determination of an attack. Besides knowledge which was not always

the case, it does not tell us why experts and novice differ. The analysts further differ in their

cognitive abilities behind their investigative behaviors that contribute to a more successful

performance, although not identified in the study. Further correlational research is required in

order to investigate which cognitive factors/abilities most associate with knowledge (Motowildo

et al., 1997) and to the performance in an IDS task.
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Figure 2.11. The Figure Shows the Probability of Experts and Novices to Declare a
Cyber-attack Depending on the Number of Correctly Detected Threats, and Indicates
that Novices Declare a Cyber-attack Quicker and with Less Evidence (Ben-Asher &

Gonzalez, 2015).

Further, the study highlights the difficulty of acquiring individuals with actual IDS

expertise to participate in laboratory studies. Here, like in many of the cyber performance studies

a student group without any experience at all in network security/IDS work is pooled as a

comparison group (i.e., novice) and asked to complete a “real-world” IDS task when it takes years

of expertise to operate one (Goodall et al., 2009a). That drastically reduces its ecological

application. Lastly, although many of the methods under SDT was applied in the study which

offers more precise performance differences, the response bias and/or the decision strategy under

SDT was not reported.

2.4.4 Response Bias

The response bias metric (i.e., decision strategy) under SDT is defined as, “reflecting the

outcome of a decision making process that occurs as an individual is faced with choosing between

two or more options. Response bias quantifies the tendency to either respond in a predominantly

liberal (i.e., yes-threat) or conservative (i.e., no-threat) direction” (Waring, Chong, Wolk, &

Budson, 2008, p.13 ). Besides being a performance measure in experimental research where it is

manipulated and then compared, the response bias has also been seen as a possible trait

characteristic using the individual differences framework. Evidence of this first comes from the

research (Klauer & Kellen, 2010; Van Zandt, 2000), finding that individuals vary from a liberal

bias to a conservative and/or cautious bias in most tasks. Additionally, the response bias has been
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seen as reliable and stable across and within recognition memory tasks, offering evidence that that

the response bias is trait-like. For instance Kantner and Lindsay (2012) showed that a liberal bias

in their first memory experiment remained a liberal bias in the second (Kantner & Lindsay, 2012,

2014). Further, the response bias from memory tasks correlate with other stable cognitive abilities

such as executive function (e.g., working memory and prepotent response inhibition) (Huh,

Kramer, Gazzaley, & Delis, 2006; Kantner & Lindsay, 2012, 2014), and with personality traits

(Gillespie & Eysenck, 1980). In short, the findings from the correlations are said to mean that

individuals with a more liberal bias tend to accept memories as true often with little memory

evidence (Kantner & Lindsay, 2012). Overall, the response bias resembles a stable cognitive trait

where individuals differ in the amount of evidence they require to make decisions (Kantner &

Lindsay, 2014).

When the response bias is applied to an incident detection task (Ben-Asher & Gonzalez,

2015; Dutt et al., 2013; Rajivan et al., 2013), some cyber analysts will be more inclined to

judge alerts as non-threatening, and will therefore have a bias to say no-threat. Other analysts

may tend to judge the alerts more suspiciously, regardless of the packet contents and/or collected

evidence. Those participants have a bias to say yes-threat. The human factors research in cyber

defense has very minimally investigated the decision making strategy of analysts in regards to

their response bias.

Dutt et al. (2013) first applied a computational cognitive model (under CyberSA), to

expected cyber defender behavior in various attack and defend situations. The models predicted

that decisions in an IDS depends upon the cyber analysts subjective risk-level (i.e., tolerance), or

willingness to classify an alert as a threat. In other words, a low tolerance to threats was predicted

for better accuracy in detecting threats (Dutt et al., 2013), however real behavioral data was not

used. That prediction is representative of a liberal response bias under SDT; meaning to obtain a

higher false-alarm rate but less misses. That response is safer than wrongly classifying a

true-positive threat as benign (Ben-Asher & Gonzalez, 2015). One other study (Rajivan et al.,

2013) calculated a conservative bias for two groups of cyber analysts however, the participants

were not actually cyber analysts with IDS experience. Instead they were recruited from the

university subject pool and trained to perform the task. Additionally, the calculation for the

response bias was incorrect.
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When a main goal in cyber defense work is to avoid wrongly classifying true-positive

threats as benign because of the high costs in doing so, the accuracy score measuring percent

correct only may be an inadequate measure for cyber performance, as it does not measure the

costly mistake by itself (D. M. Green et al., 1966; Lynn & Barrett, 2014). Additionally, when

benefits and costs (i.e., pay-offs) differ like it does in a network environment it needs to be

accounted for in the accuracy score (Lynn & Barrett, 2014) through calculating the individuals

response bias. For now it remains unclear how individual differences in cognitive ability

contributes to the response bias as a measure of cyber performance.

2.4.5 Signal Detection Theory Framework Summary

The cyber human-factors research was able to show a specific behavior that differentiate

the more successful analyst from the less successful, that can be further explained by their

individual differences (Sauce & Matzel, 2013). That behavior difference between the novice and

the expert cyber analyst pertained to their “response bias” or in other words, how much evidence

the analyst requires before making a threat decision (Ben-Asher & Gonzalez, 2015). Since

knowledge did not appear to contribute to evidence accumulation in the cyber task from the study

by Ben-Asher and Gonzalez (2015), the cognitive ability behind that behavior when actual cyber

tools are provided may contribute more to its success. Therefore, it remains unclear how

information search and evidence accumulation, the main cognitive task for identifying threats in

triage analysis work (D’Amico et al., 2005) depends on the analysts cognitive abilities.

In most of the studies presented thus far, the cyber performance scores from a variety of

cyber tasks has shown as consistently poor (Ben-Asher & Gonzalez, 2015; Champion et al.,

2012). That suggests environmental factors that are not under the control of the analyst is

affecting performance. The SDT methods can offer a more complete picture of cyber

performance differences and it can further show how the individual analyst is affected by the

ambiguous/conflicting threat information in an IDS. For instance, the response bias

(N. Macmillan & Creelman, 2005) accounts for the decisions that are made under that ambiguity

(i.e., decision strategy) but it is rarely accounted for in cyber performance studies. Discussed next

is one last theoretical framework of cognitive processes/concepts for cyber defense called the
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Hybrid Space (Jøsok et al., 2019). It has been used to indirectly measure the cognitive agility of

individual cyber analysts- using a between-subject approach.

2.5 The Hybrid Space Framework

The Hybrid Space is a conceptual framework (Jøsok et al., 2019) that was designed to

represent a cyber operators range of cognition (i.e., cognitive agility) when conducting cyber

defense operations. An analyst is asked to mark their current work focus in one of the quadrants in

the Hybrid Space diagram, shown in Figure, 2.12 as they perform their real-time cyber analysis.

Figure 2.12. The Hybrid Space Diagram (Jøsok et al., 2019; Knox et al., 2017)

The movement (total distance traveled, x and y movement and quadrant changes) in the

Hybrid Space is considered a measure of cognitive agility. The following human factors studies

are among the few that seek to identify individual differences in cognitive ability, and how it

contributes to cyber performance.

2.5.1 Cognitive Agility and Self-Regulation

Individual differences in an aspect of attention known as cognitive agility, and the

self-regulation ability has been proposed to underlie cyber performance (Jøsok et al., 2019;
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Knox et al., 2017). The researchers (Jøsok et al., 2019; Knox et al., 2017) using the Hybrid

Space defined cognitive agility with following three cognitive concepts (Good & Yeganeh, 2012).

• Cognitive flexibility: ability to shift mental sets and adjust behavior to a changing

environment

• Cognitive Openness: being open to new perspectives, ideas and experience

• Focused Attention: ability to select the relevant targets from the irrelevant targets and to

also ignore distracting information

Cognitive agility in cyber defense is referred to as, the response or adjustment to suddenly

changing environmental demands (Knox et al., 2017). Knox et al. (2017), describes it

as,“cognitive focus movements” in the Hybrid Space Framework. In regards to the self-regulation

concept, it also has many definitions and theories attached to it, but all of them are concerned with

an individuals control (i.e., regulation) over their actions, thoughts, emotions, impulses or

appetites, and task performances (Banfield, Wyland, Macrae, Münte, & Heatherton, 2004;

Miyake & Friedman, 2012). Self-regulation can be defined as, “The higher order (i.e., executive)

control of lower order processes responsible for the planning and execution of behavior”

(Banfield et al., 2004, p.62 ). The cyber performance research (Jøsok et al., 2019; Knox et al.,

2017) using self-regulation in cyber performance studies measured it through subjective trait

questionnaires, but it can also be measured through direct measures of cognitive ability (Miyake

& Friedman, 2012), as follows.

The 3-factor model of executive function is the most widely studied executive function

(EF) model for individual differences research (Karr et al., 2018). The three proposed functions

and or constructs of the central executive include:

• Updating

• Inhibition

• Set-shifting
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The updating construct includes maintaining relevant information to working memory. A

higher working memory may allow for a quicker transition to a new task (i.e., flexibility) (Kiesel

et al., 2010; Pettigrew & Martin, 2016). Further, individuals with higher working memory may

experience less distractibility (Lecerf & Roulin, 2009); and/or apply better inhibition (i.e.,

attention control) during set-shifting (Engle & Kane, 2004; Kane & Engle, 2003). The

inhibition construct includes inhibiting information that is not task-relevant. It is summoned

during set-shifting tasks to suppress or inhibit competing task-sets and distracting information

(i.e., interference) (A. Allport & Wylie, 2000; D. A. Allport et al., 1994) so that attention can

focus on and/or select the relevant information for the task (Engle & Kane, 2004). Individuals

vary in their ability to inhibit the distracting information that appears during task-switching (i.e., a

top-down task) (Engle & Kane, 2004; Miyake & Friedman, 2012), and that represents their

executive attention control. Lastly, the set-shifting construct refers to the time that it takes to shift

attention (i.e., ease of transitioning) to different tasks (e.g., rules and task-sets) (Miyake &

Friedman, 2012; Miyake et al., 2000).

Cyber defense researchers (Jøsok et al., 2019; Knox et al., 2017) have used the Hybrid

Space Framework to measure cognitive agility (i.e., self-reported cognitive location) in

association with a trait questionnaire of self-regulation, both of which were measured over a four

day cyber defense exercise. The exercise required 23 cadets with experience to defend a network

from attacks. Through the use of a linear regression model, all self-regulation variables predicted

Hybrid Space movements (cognitive agility), seen in Figure 2.13.

The higher levels of self-regulation explained 43.1 percent (alpha was set to 0.05) of the

total cognitive movements in the Hybrid Space. The researchers suggest that higher levels of

self-regulation was associated with a more ‘active search’ for relevant information (Jøsok et al.,

2019). However, there are a few notable issues with the study.

The researchers stated that, “validating self-regulation as a contributing factor to cognitive

agility is important as this can be a pathway to empirically underpin individual cyber operator

performance” (Jøsok et al., 2019, p.1 ). First, self-regulation and cognitive flexibility is already a

well-established construct (Miyake & Friedman, 2012). The executive functions are a core

component of self-regulation ability and to flexibility (Miyake & Friedman, 2012) that can be

easily measured with a traditional set-shifting task. Second, although identifying the cognitive
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Figure 2.13. Scatter Plots Comparing Self-regulation Variables and Cognitive
Movements in the Hybrid Space (Jøsok et al., 2019)

ability that mostly underlies cyber performance is important, it is more scientifically appropriate

to identify them naturally rather than forcing self-regulation to basically correlate with itself in

another measure of subjective “cyber flexibility” (Cronbach, 1957). Furthermore, (Robertson &

Kandola, 1982, p.11) warned that, “researchers should not attempt to increase validity by

developing criteria that are likely to relate closely to the predictor. Rather, it is important that the

criteria themselves are job performance measures”. Overall, further research with reliable and

direct cognitive measures are needed to confirm the associations between self-regulation, agility

and and cyber performance. Also, the cyber performance can be better measured in a more

controlled, simulation/environment rather than in a cyber defense exercise. Significant

associations would then suggest that flexibility is a core requirement for an analysts’ cognitive

movement through cyber tasks.
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2.5.2 Hybrid Space Summary

The research mentioned in the section that applied subjective measures and/or

questionnaires find indirect associations between cyber performance and higher level cognitive

ability. Although useful in detecting individual differences, the method does not allow for direct

identification of the cognitive abilities that are driving cyber performance scores. Furthermore,

the cyber task used in a majority of cyber performance research does not represent any specific

cyber defense work-task. In order to properly identify the individual differences that contribute to

cyber defense success, a specific real-world cyber task/tool must be used under normal conditions

(i.e., no experimental manipulations) (Sauce & Matzel, 2013), and data must be collected from

actual analysts with experience using that tool.

2.6 Information Search and Evidence Accumulation Behavior Differences

A key behavior difference that has been identified in cyber performance studies between

the novice and the expert cyber analyst is their information search behavior into security events

through cyber tools, with the expert showing more evidence accumulation prior to making threat

decisions (Ben-Asher & Gonzalez, 2015). Further, (Jøsok et al., 2019) found higher levels of

self-regulation in association with a more ‘active search’ for relevant information (Jøsok et al.,

2019). Lastly, a series of conference studies from Sandia National Laboratories (Emmanuel et al.,

2015; Silva et al., 2014; Stevens-Adams et al., 2013) collected human-machine transactions of

analysts (n = 26) through automated data logging, as they participated in a cyber training exercise.

They found that participants using more tools (e.g., Wireshard, Reverse Engineering Binary, and

Reverse Engineering Java) over the course of the training, may have performed better than those

using less, as seen in Figure 2.14.

In a follow-up to the study (Silva et al., 2014), the cyber expert was then identified as

being more thorough in their investigations in comparison to less experienced analyst, as

discovered from their higher tool-use. For instance, a high positive correlation between cyber

experience and specific tool-use (r = 0.565) was discovered. The higher tool-use behavior of the
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Figure 2.14. Scatter Plots Comparing Accuracy (i.e., Number of Successful Answers
Submitted) and Tool-use (i.e., Number of tools used) (Stevens-Adams et al., 2013)

expert was contributed to a better task understanding for the expert that allowed them to more

freely accomplish goals with a variety of different tools.

Although there are various method issues with the conference contributions, such as the

use of non-standardized performance measures and non-representative cyber tasks, the research

does pinpoint a specific behavior, rather than performance results, that differentiate the more

successful analyst from the less successful in cyber defense tasks that can be further explained by

their individual differences (Motowildo et al., 1997; Sauce & Matzel, 2013). Individual

differences in cognitive ability could be driving the search performance difference.

2.7 Chapter Summary

The human-factors research in cyber defense has provided cognitive factors that affect

cyber performance and specific behaviors that differentiate the more successful analyst from the

less successful in cyber defense tasks that can be further explained by their individual differences

(Sauce & Matzel, 2013). The identified behaviors and factors in IDS work serve as clues for the

current individual differences study towards identifying the cognitive abilities that mostly

underlie cyber performance. The identified cognitive factors that influence cyber performance

included cognitive data-load (Champion et al., 2012; Dutt et al., 2013; Greenlee et al., 2016),

vigilance (i.e., the vigilance decrement) (McIntire et al., 2013; Sawyer et al., 2015), spatial
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attention (Greenlee et al., 2016), task-switching (Vieane et al., 2017, 2016), flexibility (Knox et

al., 2017) and knowledge (Ben-Asher & Gonzalez, 2015). Here, there are unidentified individual

differences in cognitive ability that can mitigate the negative effects that certain factors have on

cyber performance (Motowildo et al., 1997; Sauce & Matzel, 2013). The identified

human-computer behavior differences included investigatory search differences, identified

through higher tool-use for experts (Ben-Asher & Gonzalez, 2015; Emmanuel et al., 2015;

Jøsok et al., 2019), and response bias (i.e., decision strategy) (Ben-Asher & Gonzalez, 2015;

Dutt et al., 2013; Rajivan et al., 2013). Again, there are unidentified individual differences in

cognitive abilities behind the investigative behaviors and decision strategy that contribute to the

analysts’ cyber performance.

Overall, the human factors research has not yet identified which cognitive abilities are

contributing most to cyber performance (i.e., information search and evidence collection) and

there is very little research seeking to measure the individual differences (i.e., between-subject

variance) in basic human cognition (i.e., abilities) and how much they contribute to cyber

performance success. Furthermore, there are significant methodology issues in the human-factors

research aiming to study cyber performance. The main issues seen are that researchers use college

students rather than actual analysts with cyber expertise. They use make-shift cyber exercises or

tools that have not been validated in previous research, and further do not represent real-world

cyber tools that are specific to a cyber work-role. Last but not least, researchers attempt to

increase validity by developing criteria that are likely to relate closely to the predictor Jøsok et al.

(2019); Knox et al. (2017); McIntire et al. (2013); Sawyer et al. (2015). Finally, precise

measures of performance are not always applied.
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CHAPTER 3. FRAMEWORK AND METHODOLOGY

The following chapter provides the methodology and framework that was applied in the

research study. First an overview of the entire study is provided, followed by detailed discussion

of each cognitive ability measure used in the study. Each cognitive ability variable is subdivided

into three subsections in order to discuss the related stimuli, procedure and analysis. Following

this, the variables of cyber performance are covered similarly. A description of the study’s

sample, along with the hypothesis being tested, and what determines a successful test for rejecting

the null hypotheses will be discussed. The rationale for applying the measures is given throughout

the section.

3.1 Overview of the Study

The research question for the study was: How do individual differences in attention

control contribute to the cyber performance of network security analysts? The hypothesis

involved investigating the associations between cognitive ability measures (the predictor

variables) and cyber performance scores (criterion variable) and whether or not the cognitive

ability can predict performance. In order to answer the research question, first a measure of cyber

performance was obtained in a real-world cyber task under normal conditions. The

human-computer interaction from 16 cyber analysts from Purdue University with expertise in

using an incident detection system (IDS) was collected while they performed in a IDS simulator

known as the Cyber Intruder Alert Testbed (CIAT) (Funke et al., 2016). The IDS task required

the analyst to freely investigate, and to then classify 40 alerts that continuously arrived in a

dashboard as either threat or no-threat (i.e., a binary classification). The CIAT simulator has been

applied in cyber defense human factors research various times (Borneman, 2018; Funke et al.,

2016; Greenlee et al., 2016; Vieane et al., 2017, 2016) with great results. The study then

assessed the human computer interactions under Signal Detection methods (N. Macmillan &

Creelman, 2005; Stanislaw & Todorov, 1999) in order to obtain a precise and complete picture

of the analysts decision-making performance in the IDS environment. The SDT calculations

provided a hit-rate and a false-alarm rate from the accuracy score.
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Next, to properly assess the variation in cognitive ability (i.e., attention control) and its

impact on cyber performance, the cognitive ability data was collected through direct measures of

attention and executive function. The direct measures allowed for a more precise measure of

cognitive ability, the closest to measuring actual neural activity as possible. The cognitive ability

measures were selected after a full review of the human factors that were seen to influence cyber

performance. Only the cognitive ability measures designed for individual differences research

was selected for the current study. First, the Attention Network Task (ANT) (Fan et al., 2005,

2002) was selected for the current study, which measures individual differences in

spatial-attention through the efficiency of the alerting (i.e, vigilance), orienting, and executive

control networks (Engle & Kane, 2004; Miyake et al., 2000; Posner & DiGirolamo, 1998).

Next, a digit-span was applied to assess working memory capacity (Baddeley & Hitch, 1974),

and finally a task-switching measure (Armbruster, Ueltzh, Basten, & Fiebach, 2012; Miyake &

Friedman, 2012) was used to assess individual differences in flexibility under various conditions

including task-switching under conflict. Those traditional measures of attention control have

predictive validity in that they produce significant associations with performance in dynamic

domains and they have been extensively studied. Thus, the tasks have good construct validity and

their reliability is known.

Overall, studying the associations between the cognitive ability measures and cyber

performance scores revealed the underlying processes or mechanisms mostly required to make

more successful threat decisions in an incident detection system and answered the hypothesis for

the current study.

3.2 Cognitive Ability Measures

The following section individually discusses the three cognitive ability measures that

serve as predictor variables and/or as measures in association with cyber performance (i.e.,

criterion) (a largely cognitive criterion) and the reasoning for their selection is provided. In

addition, the Cronbach reliability scores are provided per cognitive measure because the

reliability of the measures determine the strength of the hypothesised correlations in the current

study (Cooper, Gonthier, Barch, & Braver, 2017).
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The within-subject reliability for cognitive measures is known to be on the lower side

despite their common use (Hedge, Powell, & Sumner, 2018; Meyerhoff & Papenmeier, 2020),

with the standard of good/substantial reliability for cognitive measures at (Cronbach’s Alpha =

0.60) (Hedge et al., 2018). However, (Nunnally, 1978) strictly defined a reliability coefficient of

0.70 as modest reliability, and that value is considered acceptable for early stages of research;

while the reliability of 0.80 is considered adequate for basic research. Therefore, the current study

applied cognitive measures with reliability above (Cronbach’s Alpha = 0.70), although some of

the conditions within the measures were found to be lower. The consequences of that are seen in

the analysis.

All of the cognitive measures applied in the current study were administered through a

computer running Presentation software by Neurobehavioral Systems. Presentation software is a

stimulus delivery and experiment control program for neuroscience that is designed to provide

precise stimulus delivery and accurate response logging. The Attention Network Test (Fan et al.,

2002) is discussed first.

3.3 Attention Networks

The Attention Network Test (ANT) (Fan et al., 2005, 2002), is a quick and popular

spatial-cuing task that was developed to measure the efficiency of visual attention networks

(Posner, 1990), and for use in individual differences studies. The ANT measure requires

participants to perform a typical on-going Flanker task (Eriksen, 1995) among three conditions

(i.e., executive control, orienting and alerting). How efficiently individuals orient their attention

with various top-down verses bottom-up cues (i.e., priming) to the target in the Flanker task (Enns

& Richards, 1997; Posner, 1990) is investigated. In most studies using the ANT, the larger

orienting and alerting effects is said to reflect poor selective attention (Broadbent, Cooper,

FitzGerald, & Parkes, 1982).

The various research (Fan et al., 2002; Ishigami & Klein, 2010; MacLeod et al., 2010;

Rey-Mermet, Gade, Souza, von Bastian, & Oberauer, 2019) measuring the reliability of the ANT

finds that it is a reliable and valid measure of spatial attention. Starting with the original study by

(Fan et al., 2002), the executive control network was seen as the most reliable with an adequate
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test-retest score (Cronbach’s Alpha = 0.77). The orienting network had a intermediate reliability

score (Cronbach’s Alpha = 0.61), and the alerting network was found to have the least reliable

test–retest score (Cronbach’s Alpha = 0.52) (Fan et al., 2002). The reliability of the executive

control network is said to be higher because it is more directly measured (Fan et al., 2002;

Ishigami & Klein, 2010), while the lower reliability for the alerting and orienting network may

be because of their interaction (Ishigami & Klein, 2010). Other studies (MacLeod et al., 2010)

found nearly the same split-half reliability results with 1,141 participants. Newer research

(S. Campbell, 2016) exploring the reliability of the ANT, found a higher split-half reliability

correlation score that ranges from (Cronbach’s Alpha = 0.67) to (Cronbach’s Alpha = .81) and

finds that it remains reliable and consistent over one year. To date, those numbers are said to

represent one of the best measures of attention network efficiency available.

The ANT measure was chosen for the current study because of its reliability and construct

validity (Posner, 1990), and also because it has transferred from a laboratory to real-world

situations/domains, such as the traffic and transportation domain (Roca, Crundall, Moreno-Rı́os,

Castro, & Lupiáñez, 2013; Weaver, Bédard, McAuliffe, & Parkkari, 2009) which found

significant correlations between the attention networks and driving performance. Further, the

musical domain (Medina & Barraza, 2019) found through the ANT that professional musicians

outperformed non-musicians in their ability to resist the distracting Flankers in the executive

control component to suggest better attention control for musicians. One last reason the ANT task

was chosen for the current study is because vigilance was identified in the human factors research

as influencing cyber performance (Greenlee et al., 2016; McIntire et al., 2013; Sawyer et al.,

2015). The current study hypothesised that the attention networks would contribute/correlate

highly with cyber performance.

3.3.1 Stimuli

The same version of the ANT described by (Fan et al., 2002) was applied in the current

study. The main task of the ANT is a classic Flanker task (Eriksen, 1995) that can be seen in

Figure, 3.1, where a row of five black arrows is displayed. The central arrow is set as the target,

while the rest of the arrows are designated as flankers. The participants were required to respond
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by pushing a response button when the target arrow was facing left, and to push the button when

the target arrow was facing right.

Figure 3.1. The Attention Network Task (Fan et al., 2005)

To summon executive control (i.e., conflict) in the task, congruent and incongruent stimuli

was used. For the congruent condition, the flankers on each side of the target arrow faced the

same way as the target arrow. For the incongruent condition, the flankers on each side of the

target arrow faced the opposite direction. For the orienting component, the row of arrows was

presented either above or below a fixation point, at random. That required participants to quickly

shift/orient their spatial attention up or down. For the alerting component, three cue conditions

were used (no cue, cue, center-cue). An asterisk served as the cue to where and when the row of

black arrows would appear on the screen. The center-cue condition alerted the individual for

when the the black arrows would appear. The spatial-cue condition alerted participants of when

and also where the black arrows would appear on the screen. Lastly, there was a condition in
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which no cue was given (i.e., no-cue condition). That condition gave an individuals baseline of

sustained attention only (Fan et al., 2005, 2002).

3.3.2 Procedure

The attention network task (Fan et al., 2002), was administered through a computer

running Presentation software by Neurobehavioral Systems. Each 17 minute session consisted of

one 2 minute practice block with performance feedback, and three experimental blocks without

feedback. The experimental blocks each took five minutes to complete, and consisted of 96 trials

(four cue conditions x two target locations x two target directions x three flanker conditions x two

repetitions). The participants gave their responses (i.e., finger-presses) through a response box

that was connected to the computer running Presentation software, where the response time was

precisely recorded. The long trials in the ANT aid in reducing the proportion of error variance

(Nunnally, 1978) for better reliability in individual differences research.

3.3.3 Analysis

The three attention networks scores were calculated by the following subtractions. To

calculate the Alerting Network contribution (presence or absence of cues without spatial

information); the difference between trials that were preceded by a double cue (rt - dc) and those

that had no cue (rt - nc) was computed. To calculate the Orienting Network contribution (presence

or absence of cues with spatial information); the response difference between trials that were

preceded by spatial cues (rt - sc) and those with central cues (rt - cc) was computed. To compute

the Executive Network contribution; the differences between congruent flankers (rt - c) on both

sides of the target and incongruent flankers (rt - i) was computed. The faster response scores

indicate greater efficiency, for alerting and orienting networks. For the EF network, a lower score

indicates greater attention control/efficiency.

The descriptive statistics for each network can be seen in Table, 3.1. The median RT

scores for each network was taken for further analysis, as those values are less likely to be

influenced by outlier trials. The average accuracy of ANT performance was high (0.95 and up)
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indicating that all participants understood the instructions and were able to perform the task

reliably. The mean for the executive function network was (m = 77 ms, SD = 19). The orienting

network mean was (m = 36 ms, SD = 13), and the alerting network mean was (m = 43 ms, SD =

22). A previous individual differences study (McConnell & Shore, 2011) using the same ANT

task on 588 healthy older individuals found similar means and error in comparison to the current

study, except that the executive control mean obtained here for the cyber analysts was a bit better.

The bi-variate two tailed correlations between the three networks was addressed and there were

no significant correlations between any of the attention networks. Overall, the data obtained from

the rather small sample of cyber analysts appears accurate and has a wide range of scores.

Table 3.1. Descriptive Statistics
Alerting Orienting EF Median

Valid 15 15 15
Missing 0 0 0
Mean 43.1 36.2 77.0
Std. Error of Mean 5.7 3.3 5.1
Median 41.2 34.5 80.9
Std. Deviation 22.2 12.9 19.7
Range 69.9 40.8 54.6
Minimum 10.1 16.4 48.7
Maximum 80.0 57.2 103.3

3.4 Digit-Span

The simple digit-span task (Woods et al., 2011) also known as the backwards and

forwards digit-span was selected for the current study to measure individual differences in visual,

short-term working memory capacity (Baddeley & Hitch, 1974). The forwards digit-span

includes remembering the order of a perceptually observed sequence of numbers. The span

mainly measures a individuals storage capacity of visual information, once perceptual

information is removed (Chun, Golomb, & Turk-Browne, 2011), whereas the backwards-digit

span includes observing a sequence of numbers and then repeating the sequence in reverse order.

The backwards span measures an individuals ability to maintain the information in short-term

storage as well as to internally manipulate that information (Shipstead et al., 2015). The
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manipulation draws more on attention/executive control (i.e., inhibition processes) (Engle &

Kane, 2004; Fougnie & Marois, 2007).

The first reason for selecting the digit-span for the current study is because of its

reliability estimate, often calculated in the 0.8 to 0.9 range in experimental research (Engle &

Kane, 2004). The digit span chosen for the the current individual differences study (Woods et al.,

2011) reported a “high” test-retest correlation (Cronbach’s Alpha = 0.68) for the forward span, in

regards to the longest list correctly reported on any of the 14 trials. The test-retest correlations for

the backwards span was actually high (Cronbach’s Alpha = 0.81) for the maximum list reported.

The test-retest reliability was taken over three days (n = 31) with an age range of 18 to 46 (mean

age = 26 years) with an average of 14.8 years of education. The high reliability for WM allows it

to successfully predict higher-level cognitive abilities in individual differences research, such as

reading comprehension (McVay & Kane, 2012), writing (Daneman & Carpenter, 1980), and

general intelligence (Unsworth & Engle, 2007). The digit span is also used in standardized

testing (Wechsler Intelligence Scales). The main and final reason for applying the WM digit span

in the current study is because cognitive task analysis research (D’Amico et al., 2005), and

cognitive decision models (Dutt et al., 2013) in cyber performance research posits working

memory ability as a main contributor to the primary task of IDS work in the formation of mental

models and data-fusion. The current study hypothesized that a higher working memory capacity

may allow for more efficient cyber performance in IDS work.

3.4.1 Stimuli

Participants completed a computerized forwards and backwards digit span from the

Poldrack Lab at Stanford University (Woods et al., 2011). First the instructions appeared on the

computer screen for the forward digit-span, instructing the participant to try to remember a

sequence of numbers that would appear on the screen one after the other. At the end of each trial,

the participant was asked to enter all the numbers into a presented number-pad in the sequence in

which they occurred, as seen in Figure, 3.2.

71



Figure 3.2. Poldrack Lab Digit-Span (Woods et al., 2011)

The participant used the computer mouse to click on the digits in the order in which they

originally appeared. For the backwards digit-span the participant was asked to report the reverse

of the sequence of numbers displayed.

3.4.2 Procedure

First the instructions for the forwards digit-span was displayed on the screen, and then the

forward digit-span took place starting with a 3 digit length. Once the forward digit span was

completed, the instructions for the backwards digit-span appeared on the screen, followed by the

backwards digit-span starting at a two digit length. In both parts of the task, 14 trials were

presented, with the digit length increasing by one digit after each correct trial and decreasing after

two successive incorrect trials at the same list length.

3.4.3 Analysis

The working memory (WM) ability measure was scored for each participant by

computing the highest number of remembered digits per span. That number indicated the

participants’ maximum working memory capacity. The descriptive statistics for the measure of

WM is displayed in Table 3.2. The working memory measure applied to the sample of cyber
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analysts obtained a mean forward working memory span of (m = 8.3), and a mean backwards

working memory span of (m = 7.5). Both scores are higher than the known population average (m

= 7) (Miller, 1956). A study by Woods et al. (2011) that uses the exact test as the current study

reported a mean for the forwards span at (m = 7.87) digits, and a mean for the backwards span at

(m = 6.48) digits (n = 31). Therefore, the sample of cyber analysts in the current study had an

elevated WM score, meaning they have a higher working memory capacity. The test still appeared

to have enough variance to include it in the current study, with the backwards digit span having

more.

Table 3.2. Descriptive Statistics for the Working Memory Digit Span
WM Forwards WM Backwards

Valid 16 16
Missing 0 0
Mean 8.31 7.50
Std. Error of Mean 0.33 0.35
Std. Deviation 1.30 1.41
Variance 1.70 2.00
Range 6.00 6.00
Minimum 6.00 4.00
Maximum 12.00 10.00

3.5 Task Switching

Flexibility was measured through a neurological measure called Stabflex (Armbruster et

al., 2012). The task-switching measure was designed for use in individual differences research.

The main on-going task for Stabflex is a typical on-going judgement task (i.e., magnitude and

parity task) from the classic switching paradigm (Jersild, 1927; Rogers & Monsell, 1995). The

Stabflex task involves switching between the magnitude and parity of a single digit- a task that is

widely known to represent the speed and flexibility with which people switch between two

different tasks. The Stabflex measure further adds three conditions that occur during the on-going

task to include a task switching condition, a distractor inhibition condition, and an ambiguous

condition. The ambiguous condition allowed for measuring conflict/choice during switching
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and/or how long it takes to react to the interruption, which is rarely addressed in usual set-shifting

tasks.

The test-rest reliability of usual switching tasks have adequate reliability. For instance,

(Pettigrew & Martin, 2016) reported a adequate internal (i.e., within one session) split-half

reliability score (Cronbach’s Alpha = 0.67) for switching tasks. The lower reliability estimates

seen in set-shifting task are said to occur because the task may be too easy, thus causing low

between-subject variability which then leads to low reliability for measuring individual

differences (Hedge et al., 2018). However, a recent study (Kraft, Rademacher, Eckart, & Fiebach,

2020) using Stabflex (n = 100) reported a high internal (within subject) split-half reliability for the

switch cost (RT) (Cronbach’s Alpha = 0.87), but the switching error was inadequate (Cronbach’s

Alpha = 0.23), while the spontaneous switch rate (ambiguous condition) was also high

(Cronbach’s Alpha = 0.83). The Stabflex task was chosen for the current study because of its

difficulty for which more use of attention control is required. Furthermore, it required extensive

training for the task, which increases its reliability by reducing the proportion of error variance

(Nunnally, 1978).

The predictive validity in the applied research for set-shifting tasks is growing. For

instance, the updating of WM in a set-shifting task (Miyake et al., 2000) was able to predict an

aviators flight performance (Causse, Dehais, & Pastor, 2011). In addition, the video game

domain (Colzato, Van Leeuwen, Van Den Wildenberg, & Hommel, 2010; C. S. Green &

Bavelier, 2006) has found set-shifting performance differences between individuals that play

video games and those that do not. The video game players (VGP) were found with superior

flexibility in comparison to non-video game players (Colzato et al., 2010). One last major reason

for choosing the Stabflex task is because the human factors research in cyber defense identified

task-switching behavior (Ben-Asher et al., 2015; Kortschot et al., 2018) and flexibility (Jøsok et

al., 2019; Knox et al., 2017) as a possible highly contributing factor to cyber performance. The

current study hypothesised that higher amounts of flexibility (i.e., lower costs) would correlate

with more successful cyber performance.
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3.5.1 Stimuli

The Stabflex task can be seen graphically in Figure 3.3. The response task was presented

through a computer running Presentation software. A keyboard was required in order to give the

responses. The participants assigned two fingers (middle and index finger) on each hand to four

keyboard buttons that were mapped to odd and even on the left hand, and greater-than/less-than

on the right hand. The stimuli for the task included digits one through nine in the color gray. The

participants were told to always use the brighter of the two gray digits when performing the

on-going magnitude/parity task.

Figure 3.3. StabFlex Task

(Armbruster et al., 2012)

3.5.2 Procedure

Stabflex (Armbruster et al., 2012) was administered through a computer running

Presentation software by Neurobehavioral Systems. First, the participants completed three

training components. The first training component instructed the participant on how to complete

the odd/even decision (i.e., on-going task) using one number that appeared above the fixation

cross. That was followed by a practice run that included 20 trials with a number appearing above
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the fixation cross. In the second training component the participant was instructed on how to

complete the smaller/larger than five decision that appeared below the fixation cross. That was

followed by 20 trials with a number appearing below the fixation cross. At the end of the training,

a percent correct was shown on the screen and if it was lower than 80 percent correct the

participant repeated the training. Next, the participants completed one last training component

with three blocks of training that incorporated both tasks from the prior two training. The first

block included 60 trials with right/wrong feedback and no ambiguous trials. Block two included

80 trials with right/wrong feedback and no ambiguous trials and finally block three included 100

trials without feedback and with ambiguous trials included. At the end of the training, the percent

correct was shown on the screen.

After successful completion of the training, the participants completed the five minute

experimental task which was presented in two separate blocks with 150 trials each. The

experimental task procedure included the baseline task (i.e., on-going odd or even task) which

occurred between three conditions (i.e., critical trials); task switching, distractor inhibition, and

ambiguous conditions. After every critical trial, participants continued to perform the baseline

task for three to six trials. For the on-going task, only one digit was displayed above the fixation

cross and participants decided if it was odd or even. That was considered the baseline condition.

The error and RT from the condition was measured. The participants responded 240 times (80

percent). For the remaining 20 percent of trials, two digits were presented on the screen, above

and below the fixation cross for the following conditions:

In the distractor condition (20 trials), a second unrelated digit in a dark color appeared

below the fixation cross. The participants still attended to the usual brighter digit. The absolute

number of errors and RT was totalled for a measure of performance in the condition. The

distractor inhibition condition is said to stay low until participants arrived to it via on-going task.

The distractor condition is used as a measure of WM stability.

In the switching condition (20 trials) the participants attended to the brighter digit, but the

digit would switch to sometimes appearing below the fixation cross, where participants would

then switch tasks to performing the less than or greater than five rule. Again, a RT and error rate

was calculated as a measure of performance in the switching condition. The condition is used as a

measure of WM flexibility.
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Finally, the last condition within the on-going task was the ambiguous condition (20

trials). In the condition two digits appeared above and below the fixation cross, but they were both

the same bright gray color. Thus, no cue existed and participants were free to switch or stay. In

other words, the participant either continued with the task that they just performed (e.g.,

classifying the top digit as odd or even) in the on-going task or they could switch to performing

the previously used task (less than or greater than five on the bottom digit). The switches in the

condition is considered by researchers (Armbruster et al., 2012; Armbruster-Genç, Ueltzhöffer,

& Fiebach, 2016) to be measuring the stability (i.e., depth) of an individuals attractor states or the

stability of WM. A RT and error rate was again calculated as a performance score in the condition.

3.5.3 Analysis

The data from the main experiment (Armbruster et al., 2012) was used for data analysis.

First, the error per task condition (i.e., error during distractor present, error during switching,

error during on-going trial, error during the ambiguous condition) was calculated into a percent

(error x 100/240.0). Similarly, the average mean response time (RT) was calculated for each task

condition in milliseconds. Then the costs in behavioral performance was calculated by

subtracting the mean RT and mean error rate in the baseline condition from the mean RT and

mean error rate in the respective task condition (Armbruster-Genç et al., 2016; Monsell, 2003).

Finally, the spontaneous switch rate was computed as the number of switches in ambiguous trials,

divided by the number of ambiguous trials (20) (Kraft et al., 2020). For analyses of the data, all

trials with an RT less than 150 ms was eliminated as suggested by previous research

(Armbruster-Genç et al., 2016).

The descriptive data from all Stabflex conditions is consistent with previous research

using Stabflex (Armbruster et al., 2012; Armbruster-Genç et al., 2016) on healthy adults. The

raw descriptive statistics for each condition in Stabflex for the current study can be seen in Table,

3.4 and in Table, 3.3. The task-switching (RT) time for cyber analysts (m = 935 ms) was slightly

quicker, but very similar to the data collected in previous studies using healthy adults (m = 960

ms) (Armbruster et al., 2012; Armbruster-Genç et al., 2016). Additionally, that condition and

the distractor inhibition (m = 829 ms) from the current study both showed higher costs than the
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on-going task like it should (Armbruster et al., 2012; Armbruster-Genç et al., 2016). The

descriptive statistics for the ambiguous condition (error-rate and response times) can be seen in

Table, 3.3. The mean switching rate in the ambiguous condition was (m = 10.5 percent) and the

amount correct when switching was (m = 7.3 percent). The mean time for the non-switchers in

the condition was (m = 996.3 ms), and for those that switched the mean was (m = 1042.0 ms).

There was a significant correlation between the ambiguous condition and switching RT, as

typically seen in previous research using the Stabflex task (Armbruster et al., 2012;

Armbruster-Genç et al., 2016; Kraft et al., 2020). All of which to suggest a valid measure of

flexibility performance for the sample of cyber analysts. Lastly, the calculated costs for all

conditions (ambiguous, distractor and switching condition) is displayed in Table 3.5.

Table 3.3. Descriptive Statistics for the Ambiguous Condition in Stabflex
AmbiSwitch(Total) AmbiSwitch(Correct) AmbiNonSwitch(RT) Ambiswitch(RT)

Valid 15 15 15 14
Missing 0 0 0 1
Mean 10.5 7.3 996.0 1042.0
Std. Error of Mean 1.4 1.0 63.5 72.2
Median 10.0 8.0 1076.1 999.8
Std. Deviation 5.6 4.0 245.8 270.3
Range 19.0 14.0 766.7 821.7
Minimum 0.0 0.0 580.3 705.4
Maximum 19.0 14.0 1347.0 1527.1

Table 3.4. Descriptive Statistics for Stabflex Conditions
Ongoing(RT) Distractor(RT) Switch(RT) Ongoing(Er) Distractor(Er) Switch(Er)

Valid 15 15 15 15 15 15
Missing 0 0 0 0 0 0
Mean 659.9 829.3 935.7 6.2 15.0 20.7
Std. Error of Mean 27.6 44.2 50.0 1.1 3.2 2.4
Median 646.7 799.1 856.5 6.3 10.0 20.0
Std. Deviation 106.7 171.3 193.5 4.3 12.5 9.4
Range 326.8 537.3 599.0 15.8 50.0 30.0
Minimum 526.9 601.4 646.8 1.7 5.0 5.0
Maximum 853.7 1138.7 1245.8 17.5 55.0 35.0
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Table 3.5. Descriptive Statistics for Costs
Switch Costs (RT) Distractor Costs (RT) Ambi-Switch Costs (RT)

Valid 15 15 14
Missing 1 1 2
Mean 275.76 162.33 159.79
Std. Error of Mean 36.52 24.25 27.62
Std. Deviation 141.43 93.93 103.34
Variance 20003.08 8823.26 10679.41
Range 544.26 349.37 390.00
Minimum 104.65 16.00 2.00
Maximum 648.91 365.37 392.00

3.6 Cognitive Ability Measures Summary

In individual differences research it is important to have a large variance in scores and low

error, per measure to increase reliability (Cooper et al., 2017; Hedge et al., 2018). In the current

study, the variance for the cognitive tasks appear large. In addition, the cognitive data collected

from the sample is similar to previous samples of healthy adults, and therefore it appears to be

valid.

3.7 The Cognitive Task: CIAT

The literature review identified the use of an incident detection system (IDS) as the

primary task of the Incident Responder in the triage/incident detection role. Therefore, the current

study selected the simulated network environment known as the Air Force Cyber Intruder Alert

Testbed (CIAT) (Funke et al., 2016), to assess and define cyber performance (Motowildo et al.,

1997). The CIAT was developed for human factors research in cyber defense (Funke et al.,

2016), and it was designed to resemble industry standard incident detection software (IDS) such

as ArcSight, AlienVault and IBM’s Security Network Protection (XGS). That is important

because many of the tasks used to study cyber performance are not representative to a real-world

software or cyber defense work-task, which reduces and/or eliminates ecological validity. The

IDS task used in the current study is specific to a cyber defense work-role so that the analysts’

behaviors in the IDS can transfer to their real-world/job performance (Motowildo et al., 1997). In
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further support for the selection of the CIAT for the current study is that it has strong face validity

from the various experts and analysts that have confirmed its representation to the standard IDS

software (Funke et al., 2016), and to the incident detection work-role (Borneman, 2018; Funke

et al., 2016; Greenlee et al., 2016; Vieane et al., 2017, 2016). It has also been used in various

cyber defense performance studies (Borneman, 2018; Funke et al., 2016; Greenlee et al., 2016;

Vieane et al., 2017, 2016) with successful results.

Although the researchers using the CIAT in those studies may have tweaked the simulator

to fit their experiment, the base IDS task remained the same. For the current study, the CIAT was

not manipulated, since the goal of individual differences research is to investigate the already

existing variation between cyber analysts. As (Cronbach, 1957, p.671 ) said, “the correlator finds

his interest in the already existing variation between individuals, social groups, and species”. One

last benefit to using the CIAT simulator, and a primary goal of correlation research (Cronbach,

1957) is that it allowed the information search and evidence collection task to remain uniform for

each participant contributing to a correlation, which reduced confounding variables from

influencing the cyber performance scores.

The CIAT task required each analyst to freely select individual alerts that appeared in a

queue and to then decide if the alert was a threat, or no-threat. In order to make the classification

decision various tools were available to the analyst that were located within tabs on the CIAT

dashboard. The analyst used the tools to acquire more evidence in order to make the threat

decision. In order for the alert to be a threat, all elements of a signature had to exist in the packet

data and/or in the network log. Finally, it was hypothesised that cognitive ability (lower cognitive

costs) would be associated with higher cyber performance accuracy, and with more efficient

search behaviors in the CIAT.

3.7.1 Stimuli

The CIAT program was loaded on a Windows computer. Each participant in the study

interacted with the original, unmodified CIAT program, which was pre-populated with data from

scenario one, IP Set two (Funke et al., 2016). The CIAT dashboard can be viewed in Figure, 3.4.

The dashboard was set-up to have a “multi-tab-view” where there was a tab for the alert queue

80



(alerts tab), a signature database tab (query tab), a packet capture software tab (PCap tab) and a

network list tab (network tab). A typical IDS will throw an alert when it detects network activity

that is similar to a known signature. Likewise, the analysts used the alert tab (i.e., IDS) to classify

the alerts/events in the queue as either a “threat” or “not a threat”. The alerts in the queue were

color coded by threat severity (e.g., severity levels one through five). The participants used the

other three tabs (i.e., tools) to verify the existence of four to six pieces of evidence in order to

classify the alert. For example, the query tab could be used to determine whether or not the alert

matched the signature of a known threat, while the network tab displayed the associated network

addresses, and the PCap tab displayed the associated packet data. An alert was confirmed as a

threat if it matched all of the elements of the threat signature.

The original alert data-set provided with the CIAT program (Funke et al., 2016) was

reduced from 90 to 40 alerts by removing the bottom 50 alerts. The decision to use only 40 alerts

was made in order to fit the 45 minute time window for the task, and because the alert amount of

40 has been used in previous studies (Borneman, 2018; Greenlee et al., 2016; Vieane et al.,

2017), using the CIAT simulator. The reduction left the alert severity distribution with the

following: 12 percent of alerts were severity one, 30 percent of alerts were severity two, 27

percent of the alerts were severity three, 27 percent of alerts were severity four, and lastly two

percent of alerts were severity five. The severity distribution can be compared to (Funke et al.,

2016) which had; 25 percent of alerts that were classified as severity one, 25 percent were severity

two, 20 percent were severity three, 20 percent were severity four, and 10 percent were severity

five. The reduction of the data-set left the simulator with only two true-positive threats out of 40,

while 38 alerts were false-negative threats. Thus, the base-rate (i.e., true-positive/false-positive

ratio) became somewhat more representative to real world threat encounters, usually seen around

one percent (Champion et al., 2012; Funke et al., 2016).

The first true-positive alert was located at alert number 23, and it was a high severity alert

(category four). The alert type was a wiz attack (i.e., distributed denial of service) on the SMTP

Server (pcap ID 9). The time stamp for that event was 12:30:30.455 (130000ms). The second

true-positive alert was located at location 40. The alert was a high severity (category five) FTP

heap corruption attack (pcap ID 36). The time stamp for the event was 12:32:30.455 (250000 ms).

The rest of the 38 false alerts in the IDS are defined as, “to include instances where an IDS
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misidentifies normal, benign activity as malicious; detects only partial evidence matching a

known signature; or correctly recognizes that malicious activity is present, but the system is not

vulnerable to that activity (e.g., an attack exploits a vulnerability that has been patched, or an

attack that targets a closed port)” (Funke et al., 2016, p.2 ). The alerts arrived in the IDS (i.e.,

alerts tab) in sets of 10, every two minutes.

Figure 3.4. CIAT Dashboard (Funke et al., 2016)

3.7.2 Procedure

First, the researcher demonstrated to the participant how to collect evidence in the IDS in

order to decide if an alert was a threat or no-threat. For that, the researcher used the mouse to
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select the first alert in the queue and then instructed the analyst to read the data inside the alert,

and to use the provided tabs (i.e., tools) to investigate the alert. The researcher then demonstrated

how to classify the alert by clicking on the threat or no-threat button in the alert tab. The

participant was given five minutes of practice time to become familiar with the network

environment and IDS simulator. The participant was then given unlimited time to classify all 40

alerts in any order, but they were asked to perform at a work-pace without distractions. For each

participant, the mouse and keyboard interactions with the CIAT software was logged and stored

within the same computer.

3.7.3 Analysis

Traditionally, job performance was measured through either subjective methods such as

supervisory performance ratings or through the work sample (i.e. performance test) (Hunter,

1983). A work sample directly measures job skill in a situation that is equal to that at work, under

realistic and standardized conditions (Hunter, 1983; Motowildo et al., 1997). Work-samples are

now considered among the most valid predictors of job performance (Hunter, 1983; Schmidt &

Hunter, 2004). The CIAT simulator served as the work sample in the current study. It allowed for

the collection of the following measures of cyber performance and investigator behavior.

This being an exploratory study, several measures of direct cyber performance were used

to find out which one was most representative to the IDS task (Sokolova & Lapalme, 2009). First,

the accuracy score and RT for alert classifications was collected and analyzed. Accuracy and RT

are common metrics for the evaluation of classification models (Sokolova & Lapalme, 2009) for

evaluating cyber defense performance (Ben-Asher & Gonzalez, 2015; Dutt et al., 2013; Funke

et al., 2016; Vieane et al., 2016), and they are commonly measured in cognitive tasks (Lynn &

Barrett, 2014). First, the total alert RT was taken because there is more variability in RTs than in

accuracy rates, therefore they tend to have a higher reliability for studying individual differences

(Cooper et al., 2017). Next, the overall accuracy was addressed (Accuracy = TP + TN/ TP + FP +

FN + TN x 100 percent) (Sokolova & Lapalme, 2009). Accuracy measures overall performance

and therefore encompasses all of the classification performances to include, the hit-rate,

false-alarm rate, true-negatives, bias, and sensitivity (Benjamin, Diaz, & Wee, 2009; Lynn &
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Barrett, 2014). Accuracy was calculated as the number of correct alert classifications over total

alert classifications (40). The individual differences in accuracy of the alert classifications can be

viewed in Table, 3.6 along with the accuracy per alert type (i.e., one through five severity level).

Table 3.6. Descriptive Statistics HCI
Hit Rate FP Rate CIAT Accuracy Total Alert Response Time Tool-Use Alert1 Alert2 Alert3 Alert4 Alert5

Valid 16 16 16 15 15 15 15 15 15 15
Missing 0 0 0 1 1 1 1 1 1 1
Mean 0.84 0.32 0.69 19.73 145.33 0.89 0.77 0.52 0.58 0.93
Std. Deviation 0.30 0.19 0.17 9.96 61.83 0.15 0.24 0.29 0.22 0.26
Range 1.00 0.65 0.57 32.00 295.00 0.40 0.75 0.82 0.73 1.00
Minimum 0.00 0.00 0.38 5.00 20.00 0.60 0.25 0.09 0.09 0.00
Maximum 1.00 0.65 0.95 37.00 315.00 1.00 1.00 0.91 0.82 1.00

The overall mean accuracy rate for the cyber performance was 69 percent. The mean

accuracy of each alert per threat-severity level from Table, 3.6 was as follows. There was high

accuracy for the low severity alerts (alert security level one) at a 98 percent success level. Those

alerts included failed logins and adware detected. The alerts with a severity of two had an

accuracy at 78 percent. Those alerts entailed ICMP Timestamp Request, FTP Improper Port

Specified, and Fragmented ICMP Packet. However, alerts with a three and four severity-level had

lower accuracy. The level three severity alerts were classified at chance level at 53 percent. Those

alerts included the Send Mail Recon Attack, TCP Port Sweep, ICMP Flood, TCP Null Port Scan,

TCP Network Sweep, TCP High Port Scan. The category four severity alerts were classified a

little over chance level at 60 percent. Those alerts included the FTP Improper Port Specified, FTP

Format String Attack, Wiz attack on SMTP Server, Smurf Attack, and Ping of Death. Finally, the

alerts with a severity level of five had an accuracy at 80 percent. The alert was a FTP Heap

Corruption Attack. The mean RT for total alert responses was 19 minutes.

One problem with using accuracy is that it does not tell us how the analyst classified the

more costly true-positive threats. Therefore, the methods of Signal Detection Theory was applied

in the current study to calculate the performance measures for alert classifications (D. M. Green et

al., 1966; Kornbrot, 2006). Accordingly, the 40 classified alerts were analyzed using the number

of hits (i.e., number of true-positive (TP) alerts classified as true-positives), misses (i.e., number

of true-positive alerts that the analyst classified as benign), false-positive alerts (i.e., number of

benign alerts that the analyst classified as a threat), and correct rejections (i.e., number of benign
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alerts that the analyst classified as benign) for each of the 16 analysts. That data is displayed in

Table, 3.7.

Table 3.7. Descriptive Statistics for SDT
Hits Misses Correct Rejections False Positives

Valid 16 16 16 16
Missing 0 0 0 0
Std. Deviation 0.60 0.60 7.19 7.18
Minimum 0.00 0.00 13.00 0.00
Maximum 2.00 2.00 38.00 25.00
Sum 27.00 5.00 414.00 195.00

Since all of the scores besides the hit-rate and accuracy were redundant, only hit-rate also

known as Recall = TP/TP + FN (i.e., the probability of responding yes on signal trials) and

accuracy were analyzed further. The false-positive rate was kept in the analysis to show its

precision. In regards to the hit-rate, in total there was 32 true-positives (two true-positives per

person). The total true-positives detected was 27 out of 32. There was a total of 609 false-positive

threats (38 per trial) and 414 of them were correctly rejected as such. The hit-rate can be seen in

Table, 3.6. The analysts correctly detected 84 percent (m = .84) of the malicious events (i.e., the

hit-rate or signal) and missed 5 out of 32 (16 percent) of them. When considering all IDS experts

on Purdue campus, that rate for missing true-positive alerts would be considered as poor when

considering their cost. The mean false-positive rate (i.e., noise or false-alarms) was 32 percent (m

= 32) for the IDS task. The false-alarm rate is higher in comparison to other cyber studies

(Ben-Asher & Gonzalez, 2015; Rajivan et al., 2013), but here a more representative signal (five

percent) to noise (95 percent) ratio was used, which brings the false-positive rate upward (Lynn &

Barrett, 2014). The over-all error seen here for both signals (i.e., targets) and false-positives

under that low of a prevalence rate for targets, is similar to what is seen in laboratory based visual

search tasks for targets under similar conditions (Wolfe et al., 2005). When targets are present on

just one percent of trials in that study (Wolfe et al., 2005) the observers missed 30 to 40 percent

of them.

The hit-rate and false-alarm rate pairs can yield two additional measures of cyber

performance to include the analysts’ sensitivity and response bias, but they were not able to be
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computed due to normality/equality of variance being likely violated in the data due to low

signals (hit-rate), and the fact that non-parametric SDT measures have been identified

(N. A. Macmillan & Creelman, 1990) as having serious issues when bias is non-neutral, like it is

in the current study. Therefore, analysis of those measures were not appropriate for the current

data set. The overall response bias can still be seen as liberal by the high amount false-positives

classified in the task.

Lastly, a specific measure of cyber performance/behavior (Motowildo et al., 1997) was

taken in the current study. That was the amount of tools that were used by the analyst to

investigate alerts/threats. The tool-use per analyst represented the amount of direct evidence

required to make the threat decisions. The tools that were used by the analyst within the IDS

software to investigate the alerts (i.e., TabSelect, Query, IPSelect, and PcapFrameSelect) was

recorded and then measured by summing the amount used per trial/ per participant. The measure

was taken because the work framework by Motowildo et al. (1997) suggests cognitive ability

most directly affects specific work-task behaviors and habits, that then affect work-performance.

Furthermore, tool-use is considered a primary behavior of an Incident Responder (D’Amico et al.,

2005). Tool-use (Emmanuel et al., 2015) and information accumulation differences (Ben-Asher

& Gonzalez, 2015) have also been identified in the cyber literature as contributing to cyber

performance success in an IDS (Ben-Asher & Gonzalez, 2015; Emmanuel et al., 2015). The

mean number of tools used to investigate all threats in the current study was (m = 145) with a

range of 295 tools used, which can be seen in in Table, 3.6. That means the analyst switched

between various tools on average 145 times to classify 40 alerts.

3.8 Hypothesis

The purpose of the study is to test one hypothesis: That hypothesis is:

H0: Individual differences in attention control predicts cyber performance of network

analysts.
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3.9 Units and Sampling

The following section discusses the units (i.e., individuals) being tested and the sample

chosen for the study. It also covers the variables being tested and evaluated, as well as what will

be considered a successful test.

3.9.1 Sample

First, the current study was approved by the Purdue University Institutional Review

Board, under Protocol: 1703018965. 17 participants were recruited for the study from Purdue

University, over the summer of 2020. Data was not correctly saved for one participant. The 16

participants were recruited from an online advertisement that was hosted by Purdue Today that

sought cyber analysts with IDS expertise on campus. Additionally, the Purdue Polytechnic

Institute, the Purdue University business office, and the Center for Education and Research in

Information Assurance and Security (CERIAS) business office sent out a recruitment e-mail to

students and professors listed as being registered in cyber/technology courses. Finally, a

recruitment e-mail was sent to the director of Information Technology at Purdue (ITaP) requesting

participation in the study. The individuals interested in participating in the study e-mailed the

main researcher through the provided contact information. The participant was then pre-screened

for specific IDS expertise as a requirement to participate in the study. If the individual had the

required IDS expertise they arranged a time to participate in the study.

The qualified participants voluntarily signed informed consent documents before

beginning the study (Appendices A) and then completed a demographics questionnaire

(Appendices B), followed by the IDS task, and lastly they completed the cognitive tests. The

testing times were from 10am to 5pm, in the Cyber Forensics Laboratory at Purdue University.

The testing was conducted by a research assistant; under the direction of the primary researcher.

The testing took one to 1.5 hours to complete in one session. The participants were each given 15

dollars in exchange for their participation. The data from a total of 16 participants was retained

for analysis. Although the sample size is low it is not uncommon for individual differences

research in the cyber defense domain, given the noted challenge with obtaining incident
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responders (Dutt et al., 2013). To get around that challenge many performance studies use

cognitive modeling (Dutt et al., 2013) rather than collecting data from actual analysts, and/or

they commonly resort to using samples of students without cyber experience.

The sample for the current study consisted of four females (33 percent) and 12 males

which happened to be representative to the cyber security work-force population where women

currently account for about one quarter (24 percent) of the overall workforce (Dhamija, n.d.).

The frequency for gender for the current study can be seen in Table, 3.8.

Table 3.8. Frequencies for Gender
Gender Frequency Percent

Female 4 25
Male 12 75
Missing 0 0
Total 16 100

Further, the sample had a wide age range from 18 to 64 years old, which is a far less

restricted range than any cyber defense study presented in the literature review. The frequency for

age is given in Table, 3.9.

Table 3.9. Frequencies for Age
Age Frequency Percent

18-25 7 43
26-33 3 18
34-43 3 18
44-64 3 18
Missing 0 0
Total 16 100

The sample included nine analysts with a graduate level education and seven analysts with

a undergraduate level education, while most cyber analysts in the work-force have obtained a

computer science degree (Svenmarck, 2020). The frequencies for their education are in Table,

3.10. The sample had a range of one to 10 years of specific IDS expertise, another sample range

that is seldom seen in cyber defense human factors research. The IDS expertise is required due to
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the complexity of a real-world IDS task and for obtaining valid performance scores. The

frequencies for IDS expertise in years is displayed in Table, 3.11.

Table 3.10. Frequencies for Education
Education Frequency Percent

Undergraduate 7 43
Masters 2 12
Phd 7 43
Missing 0 0
Total 16 100

Table 3.11. Frequencies for Years of IDS Experience
Years of IDS experience Frequency Percent

1 4 25
2 3 18
3 3 18
4 3 18
6 2 12
10 1 6
Missing 0 0
Total 16 100

Lastly, in regards to cyber expertise in general, the sample included seven cyber experts

with six to 11 years of cyber expertise, six novice with one to two years of cyber expertise and

three intermediates with three to five years of cyber expertise. The frequencies for cyber expertise

is in Table, 3.12.

Table 3.12. Frequencies for Cyber Domain Expertise
Cyber Domain Expertise Frequency Percent

0-2 Novice 6 37
3-5 intermediate 3 18
6-10 Expert 7 43
Missing 0 0
Total 16 100

Overall, the sample is diverse with wide demographic ranges, that in turn increases the

reliability of the measures (Cooper et al., 2017). For the current study, individual differences
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research is more concerned with obtaining precise/accurate scores of each individual per measure,

than with increasing sample size for more statistical power to observe effects. The focus is more

towards the measures because the reliability of them limits the strength of the hypothesized

correlations (Cooper et al., 2017; Cronbach, 1957). For instance, the correlations between a test

and other measures reduce as a function of the square root of reliability (Nunnally, 1978).

Therefore, instead of increasing sample size in the current study, it applied cognitive ability

measures designed for individual differences research. In those measures the amount of trials are

increased in order to reduce error, leading to more reliable scores. In turn, that increased the

hypothesised correlations of the current study.

Overall, the current study took great strides to obtain reliable and precise scores for both

the cyber task and cognitive ability measures, and to obtain a diverse sample of cyber analysts.

Therefore, the hypothesis tested on the small subset from the population reached high,

statistically significant results that are reliable enough to generalize to a much larger population.

The alpha levels for testing the hypothesis was set at the 0.05 level. The next section discusses the

variables determined for the study.

3.9.2 Variables

There were three cognitive ability measures representing attention control that served as

the predictor variables in the study; working memory, task-switching (flexibility) and visual

attention via the attention networks. The criterion variable for the study included four measures of

cyber performance; hit-rate, RT, accuracy and tool-use. The correlations between those measures

will determine which cognitive ability contributes most to cyber performance, which then lead to

their inclusion into a linear regression model.

3.9.3 Originality

Human computer interaction (HCI) research has largely used an experimental approach to

study the factors that affect cyber performance, while the current study uses an individual

differences approach under a work performance framework (Hunter, 1983; Motowildo et al.,
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1997) to properly study the contributions of cognitive ability on cyber performance. The cognitive

ability contribution to cyber performance is a neglected factor in cyber defense research, even

though it is directly associated with both knowledge and work performance (Hunter, 1983). The

study is original because the cognitive abilities that mostly underlie cyber performance success

have not yet been scientifically identified. Since cognitive ability is the best predictor of job

performance (Schmidt & Hunter, 2004), the identification of them is very beneficial and original

for cyber defense work selection purposes (Cronbach, 1957). Lastly, the study is original because

of its methodology. It uses actual network analysts with a wide range of expertise, age, and

education levels which is hard to come by in cyber performance research. Most importantly, the

analysts all had expertise using an incident detection system, which allows for more reliable and

valid scores rather than resorting to the more popular method of pooling students without any

experience using one. Further, the work sample for the current study is a representative primary

task for the Incident Responder role, and it has been used in previous research with ample

success, whereas many cyber performance studies (Emmanuel et al., 2015; Silva et al., 2014)

create their own task rather than validating an existing one, and most of them are not specific to

an actual cyber defense work-role (Champion et al., 2012). Finally, the study applied objective

measures of both cognitive ability and task performance, while most of the cyber performance

research has used subjective measures of cognitive ability to investigate its role on performance

(Champion et al., 2012; Jøsok et al., 2019; Knox et al., 2017; McIntire et al., 2013; Sawyer et

al., 2015). The subjective measures may serve their purpose in those studies but they do not

measure the actual behavior of the cyber analyst.

3.10 Summary

The chapter provided the methods used in the research study including the reliability of

the tests. The next chapter presents the results of the study.
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CHAPTER 4. ANALYSIS AND RESULTS

The following chapter covers the analysis and results of the study. The human-computer

interactions from each participant that performed in the CIAT simulator was collected and

analyzed as measures of cyber performance, and then their cognitive ability measures were

analyzed. The correlations between individual differences in cyber performance and cognitive

ability will answer the hypothesis in part; by identifying the cognitive ability that most influences

cyber performance. The cognitive ability with the highest correlation with cyber performance was

then taken into a standard linear regression model in order to fully answer the hypothesis; that

cognitive ability can predict cyber performance.

4.1 Correlational Analysis

To begin answering the hypothesis of the current study, the bi-variate Pearson correlation

coefficients between the measures of cyber performance and the measured cognitive abilities is

reported in the following subsections, starting with accuracy. In case of non-normality, Spearman

correlations (rs) were calculated instead of Pearson correlations (r). First, normality is addressed.

All variables were not normally distributed, as assessed by Shapiro-Wilk’s test (p < .05), for

performance measures seen in Table, 4.1. and for ability measures in Table, 4.2. The significantly

non-normal variables were: hit-rate and working memory forwards. The Pearson and Spearman

correlation results for the entire study are presented in Appendices C.

Table 4.1. Shapiro-Wilk’s Test for Performance Measures
Hit-Rate FP Rate CIAT (P)Correct Tool-Use

Valid 16 16 16 15
Missing 0 0 0 1
Shapiro-Wilk 0.587 0.967 0.959 0.866
P-value of Shapiro-Wilk < .001 0.794 0.648 0.030
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Table 4.2. Shapiro-Wilk’s Test for Cognitive Ability Measures
Orient Alert EF WM(F) WM(B) AmbiSwRTCost SwitchRT SwitchCoRT Spontitchrate

Valid 16 16 16 16 16 14 15 15 16
Missing 0 0 0 0 0 2 1 1 0
Shapiro-Wilk 0.941 0.878 0.913 0.785 0.928 0.949 0.915 0.906 0.958
P-value of Shapiro-Wilk 0.365 0.037 0.128 0.002 0.223 0.546 0.163 0.117 0.624

4.1.1 Accuracy Correlations with Performance

The Pearson correlations between cognitive ability and cyber performance accuracy can

be seen in Table, 4.3. Accuracy (i.e., percent of correctly classified alerts) in the cyber task

negatively correlated with orienting of attention from the Attention Network Task (ANT) (r(16) =

-0.654, p = .006).

Table 4.3. Pearson’s Correlations for Accuracy
Variable CIAT Accuracy Orienting Switching(RT) Switch-Costs(RT)

1. CIAT Accuracy n –
Pearson’s r –

p-value –
2. Orienting n 16 –

Pearson’s r -0.654 –
p-value 0.006 –

3. Switching(RT) n 15 15 –
Pearson’s r -0.620 0.218 –

p-value 0.014 0.436 –
4. Switch-Costs(RT) n 15 15 15 –

Pearson’s r -0.599 0.463 0.842 –
p-value 0.018 0.082 < .001 –

That association implied that as alert classification accuracy increases, the cost of

orienting decreases. Additionally, accuracy negatively correlated with multiple conditions in the

switching task (i.e., Stabflex task) (Armbruster et al., 2012) as follows. Accuracy correlated

negatively with the task switching (RT) condition (r = -0.620, p = .014). Accuracy further

negatively correlated with the associated switching costs (r = -0.599, p = .018). The scatter-plots

for those x and y pairs can be seen in Figure, 4.1.

Accuracy did not correlate with any of the error conditions in the Stabflex task, which

makes sense because the reliability of the error conditions was recently reported as low (Kraft et
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Figure 4.1. Scatter-plots Between CIAT Accuracy and Orienting and Switching(RT)

al., 2020). The correlations suggest that an individuals flexibility and spatial attention (i.e.,

orienting ability) contribute to cyber performance accuracy, in the predicted direction which

partly answers the hypothesis of the current study. The next subsection breaks accuracy apart via

methods of SDT (D. M. Green et al., 1966; Stanislaw & Todorov, 1999) in order to measure the

hit-rate separately from the false-positive rate in the IDS task.

4.1.2 Correlations Between SDT Measures of Cyber Performance and Cognitive Ability

The bi-variate Spearman correlations (rs) were calculated between the hit-rate measure of

cyber performance and the measured cognitive abilities. First the hit-rate for true-positive alert

classifications in the cyber task negatively correlated with the alerting network (rs = -0.524, p =

.037, n = 14) from the ANT measure, as seen in Table 4.4. The correlation indicates that more

efficient vigilance is associated with the ability to detect a signal or true-positive threat in the IDS

task. After visually verifying the associations in the scatter-plot in Figure, 4.2 more data is

required to confirm the relationship. The cognitive ability contribution to the false-positive rate is

discussed next.

The Pearson correlations between cognitive ability and the false-positive rate can be seen

in Table, 4.5 for comparing to accuracy in Table, 4.3. The false-positive rate correlated in an

opposite direction (positive) than did accuracy for the same cognitive variables, but more

significantly. The false-positives correlated positively with the orienting network (r = 0.645, p =
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Table 4.4. Correlation Table for Hit-Rate
Variable Hit Rate Alerting

1. Hit Rate n –
Pearson’s r –

p-value –
Spearman’s rho –

p-value –
2. Alerting n 16 –

Pearson’s r -0.73 –
p-value 1.20e-3 –

Spearman’s rho -0.52 –
p-value 0.04 –

Figure 4.2. A Scatter-plot for the Hit-Rate and Alerting Correlation

.007, n = 15) from the ANT measure (Fan et al., 2002). It also positively correlated with

switching costs (RT) (r = 0.602, p = .018) from the task-switching measure (Armbruster et al.,

2012). Those correlations indicate that increasing classification errors (false-alarms) in the IDS is

associated with higher cognitive costs. Finally, the false-positive rate located in Table, 4.5

negatively correlated with frequency of tools used to investigate alerts (r = -0.544, p = .036). That

finding indicates that more tools used to investigate alerts, is associated with lower cyber

performance error (i.e., false-positive rate).
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Table 4.5. Pearson’s Correlations for False-Positive Rate
Variable Orienting Switching(RT) Switch-Costs(RT) FP Rate

1. Orienting n –
Pearson’s r –

p-value –
2. Switching(RT) n 15 –

Pearson’s r 0.218 –
p-value 0.436 –

3. Switch Costs(RT) n 15 15 –
Pearson’s r 0.463 0.842 –

p-value 0.082 < .001 –
4. FP Rate n 16 15 15 –

Pearson’s r 0.645 0.626 0.602 –
p-value 0.007 0.013 0.018 –

4.1.3 Correlations Between Specific Behaviors of Cyber Performance and Cognitive Ability

The frequency of tools used to make a decision (a criterion) when investigating alerts is a

specific behavior of task performance that correlated with the orienting network of the ANT

(r(15) = -0.691, p = .004) to suggest that quicker orienting ability may lead to more tool-use. The

frequency of tools used is also associated with increased alert response time, which is represented

by the positive correlation coefficient between them (r(15) = 0.616, p = .014). Tool-use also

associated with cyber performance accuracy (r(15) = 0.540, p = 0.03) indicating that accuracy

increases with more tool-use. The scatter-plots of those variables are displayed in Figure, 4.3 in

order to visually verify the associations. The Pearson correlations between those variables can be

seen in Table, 4.6.

The associations conclude that individual differences in spatial attention though the

attention networks (Fan et al., 2002) underlies the search for evidence behavior in an IDS. The

finding suggests that more efficient spatial attention may allow for more tool-use when

investigating alerts.
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Table 4.6. Pearson’s Correlations for Tool-Use
Variable Tool-Use CIAT Accuracy Orienting Alert Response Time

1. Tool-Use n –
Pearson’s r –

p-value –
2. CIAT Accuracy n 15 –

Pearson’s r 0.540 –
p-value 0.038 –

3. Orienting n 15 16 –
Pearson’s r -0.691 -0.654 –

p-value 0.004 0.006 –
4. Alert Response Time n 15 15 15 –

Pearson’s r 0.616 0.100 -0.451 –
p-value 0.014 0.723 0.092 –

Figure 4.3. Scatter-plots For Tool-Use on CIAT Accuracy and Orienting

4.1.4 Correlation Analysis Summary

The findings presented thus far support the hypothesis of the current study, under the

individual differences in job performance framework (Motowildo et al., 1997) that suggests

cognitive ability directly impacts specific behaviors and habits; that then impacts performance.

That relationship can be seen in the findings of the current study between spatial attention ability,

tool-use behaviors and cyber performance accuracy.
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4.2 Linear Regression

The highly significant cognitive ability in association with cyber performance was taken

into a linear regression model in order to fully answer the hypothesis; individual differences in

cognitive ability predict cyber performance success. A linear regression model was used to

explore how much the predictor variables (i.e., orienting and task-switching) can predict/explain

cyber performance accuracy (a continuous variable) for 16 cyber analysts. The descriptive

statistics for the variables can be seen in Table, 4.7.

Table 4.7. Descriptive Statistics
CIAT Accuracy Orienting SwitchingRT

Valid 16 16 15
Missing 0 0 1
Mean 0.69 34.90 935.65
Std. Error of Mean 0.04 3.38 49.96
Std. Deviation 0.17 13.53 193.51
Minimum 0.38 15.50 646.79
Maximum 0.95 57.20 1245.76

First, the outliers that indicated experimental error were removed, but not the outliers that

were clearly due to variability in the measurements since linear regressions are sensitive to

outliers. That was done through viewing histograms and scatter-plots of the variables. Further,

Table 4.8 shows that the standardized residuals do not exceed -3.00 to 3.00, so no outliers were

present. The Bi-variate Pearson correlations between task-switching (RT), orienting and cyber

performance computed for hypothesis one can be seen again in Table, 4.9. The size of the effect

represented by each correlation was determined using Cohen’s (1988) criteria in which (r = 0.10)

represents a small effect, (r = 0.30) represents a medium effect and (r = 0.50) represents a large

effect. Table, 4.9 shows that cyber performance demonstrated a strong bi-variate correlation with

task switching (r = -0.620, p = .007; a large effect), along with orienting (r = -0.654, p = .006; a

large effect). The signs for each of the Pearson correlations was in the predicted direction, and

each correlation was statistically significant with alpha set at (p = .05). Participants with more

efficient (e.g., attention (i.e., orienting and task-switching), tended to have higher cyber

performance scores.
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Table 4.8. Residuals Statistics
Minimum Maximum Mean SD N

Predicted Value 0.411 0.841 0.673 0.127 15
Residual -0.186 0.180 4.860e-18 0.103 15
Std. Predicted Value -2.065 1.325 -2.808e-16 1.000 15
Std. Residual -1.752 1.830 0.027 1.047 15

Table 4.9. Pearson’s Correlations
Variable CIAT Percent Correct Switch(RT) Orienting

1. CIAT Percent Correct n –
Pearson’s r –

p-value –
2. Switch(RT) n 15 –

Pearson’s r -0.620 –
p-value 0.014 –

3. Orienting n 16 15 –
Pearson’s r -0.654 0.218 –

p-value 0.006 0.435 –

The multiple regression analysis in Tables 4.10, and in 4.11, and in 4.12, showed that

there was a statistically significant relationship between (a) cyber performance scores (CIAT

percent correct/accuracy) and (b) the 2 predictor variables (i.e., orienting and task switching)

taken as a set, R2 = 0.60 percent, adjusted R2 = 0.53 percent, F(2, 12) = 9.139, p < .0005.

Table 4.10. ANOVA
Model Sum of Squares df Mean Square F p

H1 Regression 0.225 2 0.113 9.139 0.004
Residual 0.148 12 0.012

Total 0.373 14

Table 4.11. Model Summary - CIAT Percent Correct
Durbin-Watson

Model R R2 Adjusted R2 RMSE R2 Change F Change df1 df2 p Autocorrelation Statistic p

H0 0.000 0.000 0.000 0.163 0.000 0 14 0.299 1.334 0.174
H1 0.777 0.604 0.538 0.111 0.604 9.139 2 12 0.004 0.294 1.373 0.144
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Table 4.12. Coefficients
Model Unstandardized Standard Error Standardized t p

H0 (Intercept) 0.673 0.042 15.950 < .001
H1 (Intercept) 1.299 0.156 8.345 < .001

Orienting -0.006 0.002 -0.479 -2.573 0.024
Switching RT -4.356e-4 1.572e-4 -0.516 -2.771 0.017

The strength of the relationship meets the criteria of a large effect according to Cohen

(1988), indicating that orienting and task switching accounted for 53 to 60 percent of the variance

in cyber performance scores using the model. The sign of the multiple regression coefficient for

each predictor variable was in the predicted direction. For instance, as orienting decreased, cyber

performance increased; a negative association. The predictor variables each displayed a multiple

regression coefficient that was statistically significant, as follows: Orienting (b = -.6, p = .024),

and Set-shifting (b = -.04, p = .017). That means that as orienting (X) increases 1 millisecond,

cyber performance Y decreases .6 percent. As switching RT increases 1 millisecond, cyber

performance decreases by .04 percent. Those variables can be entered into the linear equation

model to predict cyber performance scores. The partial regression plots between CIAT accuracy

and orienting, can be seen in Figure, 4.4 and the partial regression plot between CIAT accuracy

and task-switching can be seen in Figure, 4.5. The rest of the linear regression assumptions are

now addressed.

Figure 4.4. Scatter-plots for CIAT Accuracy on Orienting and Task-Switching(RT)
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Figure 4.5. Scatter-plots for CIAT Percent Correct on Switching(RT) and
Task-Switching(RT)

First, the Durbin Watson Statistic seen in the model summary of Table, 4.10 checks for

correlations between residuals (i.e., error). That result was within an acceptable range above 1

and below 3 (Durbin Watson = 1.373), therefore the assumption of no-autocorrelation of residuals

has been met. There was homoscedasticity, as assessed by visual inspection of a plot of

studentized residuals versus unstandardized predicted values. The variance inflation factor (VIF)

value was a low 1 and none of the tolerance values were above 10, therefore the assumption of no

multicollinearity has been met. The quantile-quantile plot (Q-Q plot) in 4.6 shows that the

standardized residuals fit nicely along the diagonal, suggesting that the assumptions of normality

have also not been violated.

At this point, all of the assumptions of the regression model were met for orienting,

set-shifting (RT) and cyber performance (i.e., accuracy).

4.3 Analysis Conclusions

The primary goal of the current study was to investigate the cognitive abilities

contribution to cyber performance using a sample of experienced cyber analysts with wide

variance in expertise. The current study hypothesised that cognitive ability can predict cyber

performance success in an incident detection system (IDS). The hypothesis was supported as true
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Figure 4.6. QQ Plot

in the highly significant negative correlations seen between the spatial attention networks and

task-switching ability (i.e., flexibility) measures on IDS performance. In further support of the

hypothesis, the analysts’ evidence accumulation (i.e., a specific behavior) (Motowildo et al.,

1997) through tool-use in the IDS was strongly associated with orienting ability in the predicted

direction. A higher orienting ability may have allowed some analysts to obtain a higher level of

evidence per alert (i.e., evidence accumulation) through their use of more tools prior to making

the threat decisions. More tool-use was also correlated with an overall higher cyber performance;

a higher accuracy. The correlations indicate that more efficiency in the identified cognitive

processes mostly influence the differences in cyber performance.

The hypothesis is further supported as true in the findings from a linear regression model

which demonstrated that orienting of attention and flexibility predict 53 percent to 60 percent of

the variance in cyber performance scores in an incident detection task. The cognitive ability

contribution to performance is what is similarly seen between General Mental Ability (GMA) and

work-tasks (r = 0.51) in selection research (Hunter, 1983; Schmidt & Hunter, 2004; Schmidt et

al., 1986), and for more complex work-tasks (Schmidt & Hunter, 2004). On the other hand,

many of the cognitive ability measures did not associate with cyber performance. First, the error

conditions from the task-switching measures (i.e., Stabflex) did not influence cyber performance,

for one reason being that its reliability was recently discovered as low (Kraft et al., 2020).

Second, the working memory task (Woods et al., 2011) did not associate with performance
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measures however, working memory in the Stabflex measure (Armbruster et al., 2012) did. The

correlations between cyber performance and flexibility means that in order to perform well, the

analyst must be able to maintain information in working memory as well as task-switch with

flexibility through the cyber environment (Miyake & Friedman, 2012). The WM construct

(Baddeley & Hitch, 1974) and task (i.e., digit span) by itself may not be difficult enough to

produce individual differences in a group of cyber analysts.

Although not all ability measures were successful in regards to its hypothesised

association with cyber performance, the objective of the study to identify underlying cognitive

ability contribution to more successful cyber performance was achieved in the individual

differences study and the hypothesis was supported. The next section of the dissertation discusses

the conclusions and implications of the research and what it means to cyber defense.
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CHAPTER 5. CONCLUSIONS

The purpose of the research was to answer the question; how do individual differences in

cognitive ability contribute to the cyber performance of network security analysts? To investigate

the research question, one hypothesis was tested. The first part of the hypothesis was tested by

investigating which cognitive ability contributes most to cyber performance. For that, the

correlations between attention control and cyber performance scores was investigated. The results

of the correlational analysis showed that individual differences in flexibility and spatial attention

contribute most to the differences in IDS work performance. The second part of the hypothesis

was tested by investigating if individual differences in attention control can predict the cyber

performance of network analysts. The results of the linear regression model demonstrated that

orienting of attention and flexibility predict 53 to 60 percent of the variance in cyber performance

scores. Those findings have important implications for cyber defense.

The major finding from the hypothesis; that spatial attention and flexibility contribute

most to cyber performance confirms the cyber defense research (Greenlee et al., 2016; Jøsok et

al., 2019; Knox et al., 2017) that largely assumes those abilities associate most with cyber

performance; and it also contributes to the experimental research that found vigilance to strongly

effect cyber task performance (McIntire et al., 2013; Sawyer et al., 2015), which strengthens the

findings of the current study. Further, the findings confirm cyber frameworks (Andrade et al.,

2018) that posit executive function and flexibility as a highly significant contributor to cyber

performance success without scientific evidence. The findings also contribute to the human factor

models (Endsley, 1995; Jøsok et al., 2019; Knox et al., 2017) that pinpoint various cognitive

abilities that underlie cyber performance, but have not scientifically identified a single one that

majorly contributes to cyber performance success. Lastly, it contributes to the human cognitive

decision models (Dutt et al., 2013; Funke et al., 2016) that include working memory ability and

various other cognitive abilities to simulate the behavior of the analyst without knowing the main

contributors to cyber performance.

A practical application of the correlational findings would be to include the identified

cognitive ability in the interface design research for cyber defense systems. Individual differences

in flexibility and spatial attention behavior represent important aspects of analyst performance
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and should be considered in interface design of cyber defense software to improve performance.

For instance, software can be tested with the identified abilities from the current study with the

aim to alleviate the cognitive load on those processes so that all analysts can perform well. That

would require using treatments (e.g., different interface designs) and then allocating individuals to

the different treatments depending on their cognitive ability level in association with performance

(Cronbach, 1957). Cronbach (1957) argued that, ”ultimately we should design treatments, not to

fit the average person, but to fit groups of students with particular aptitude patterns. Conversely,

we should seek out the aptitudes which correspond to (interact with) modifiable aspects of the

treatment” (Cronbach, 1957, p.681 ). The current study identifies the cognitive ability that

interacts most with cyber performance for further performance research efforts. In particular, the

tool-use requirement appears to be an important aspect of cyber performance where a software

aid would be beneficial because of its seemingly high cognitive demand.

Additionally, the current study found that higher tool-use (a specific behavior in the IDS)

correlated with lower spatial attention costs (i.e., a quicker orienting ability), and that it also

associated with higher cyber performance. First, that finding builds on the cyber performance

research (Ben-Asher & Gonzalez, 2015; Emmanuel et al., 2015) that compared groups of

analysts and found separately that experts use more network tools (Emmanuel et al., 2015) and

accumulate more evidence than the novice prior to making attack decisions (Ben-Asher &

Gonzalez, 2015), by identifying the cognitive ability that contributes to both information search

and evidence accumulation (D’Amico et al., 2005); the actual primary task of the Incident

Responder. The finding also supports research from applied visual attention research (Wolfe et

al., 2005) where the extent of the search for evidence (i.e., targets) likely depends on the

individual (Wolfe et al., 2005); identified here in the cyber domain as individual differences in

visual attention control. Lastly, the finding supports the work performance framework (Hunter,

1983; Motowildo et al., 1997) which posits that individual differences in cognitive ability

directly impacts task behavior and task-habits; that contribute to job performance success

(Motowildo et al., 1997).

The other major finding from the hypothesis; that orienting of attention and flexibility

predict 53 to 60 percent of the variance in cyber performance scores has important practical

implications for the cyber defense work force. First, the findings from the hypothesis
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scientifically identified the cognitive ability contribution to more successful cyber defending for

the Incident Responder. Thus, it identified the missing abilities from the NICE framework

(Newhouse et al., 2017; Petersen et al., 2020) that are most desirable for performing in the

Incident Responder role. The NICE framework should be more inclusive of cognitive ability after

considering the empirical research behind the long established work performance frameworks

(Hunter, 1983; Motowildo et al., 1997; Schmidt & Hunter, 2004, 1998), and because the best

work selection predictors include cognitive ability measures such as the GMA (Schmidt &

Hunter, 2004), especially for highly cognitive work-roles like those in cyber defense. Similarly,

but more specifically, attention control was able to predict cyber performance success in the

current study. The identified cognitive abilities can now be applied for selecting talent for a more

efficient cyber workforce (Schmidt & Hunter, 2004). The companies that use valid measures for

hiring purposes that actually predict job performance, like those identified in the current study are

drastically more efficient over time (Schmidt & Hunter, 2004). Schmidt and Hunter (1998)

research makes three points regarding the benefits of using valid selection methods, “(a) the

economic value of gains from improved hiring methods are typically quite large, (b) these gains

are directly proportional to the size of the increase in validity when moving from the old to the

new selection methods, and (c) no other characteristic of a personnel measure is as important as

predictive validity” (Schmidt & Hunter, 1998, p.262 ).

Lastly, the observed relationships between the cognitive measures (e.g., flexibility,

orienting) and the tool-use behavior in the cyber task confirms that the laboratory measures are

valid, in that they are measuring the underlying cognitive processes that they are intended to

measure. Therefore, the findings support the predictive validity of the ANT (Fan et al., 2002) and

task-switching measure (Armbruster et al., 2012) by demonstrating that an individuals score from

those measures can be used to predict cyber performance with reasonable accuracy. Overall, the

results of the study indicate that the hypothesis from the current individual differences study is

correct. The limitations of the study are now discussed.

The first set of limitations to the study in regards to the predictor measures was that some

of them did not associate significantly with performance, but it was clear as to why. Either the

measure did not produce a wide enough variance and/or the measure was not reliable enough for

individual differences research. For instance, the digit-span could have been analyzed differently
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in order to obtain more variance for individual differences research using additional methods from

Woods et al. (2011), which could have increased its reliability. The limitations pertaining to the

criterion are now discussed.

A limitation regarding the cyber performance measures was in the somewhat failed

application of Signal Detection (SDT) methods (Stanislaw & Todorov, 1999). Although it was

seen through SDT methods that vigilance may play an important role in making true-positive

threat decisions, further measures could not be obtained such as the response bias and sensitivity.

The current study did find that SDT methods measured cyber performance more precisely and

lead to higher correlations with cognitive ability than did accuracy. The true-positive alerts should

be investigated and weighted separately from false-negative threat classifications in an IDS

because of the enormous losses and/or costs for missing true-positive threats in a cyber domain.

Furthermore, the response bias should also be accounted for when measuring IDS performance

again because of the associated costs. There was not enough true-positive alerts in the IDS to

measure bias in the current study. Another limitation pertaining to the criterion is that cognitive

engagement alerts could have been included in the IDS task to ensure that the participants were

participating as they should.

The last notable limitation to the current study pertains to the low sample size, but the

sample size is not unusual for research studying human factors in cyber defense. The sample size

could have been increased, but that would have required funding and additional IRB approval to

seek analysts outside of Purdue University. A replication of the current study with more

participants is suggested as a potential future study.

A future study can administer a more lengthy domain knowledge and experience

questionnaire (Ben-Asher & Gonzalez, 2015) prior to performing in the cyber task, and then the

associations between cognitive ability, knowledge and work/task performance (Hunter, 1983) can

be investigated further. Measuring both cognitive ability and knowledge is important because

knowledge or expertise alone does not guarantee performance success (Schmidt et al., 1986).

Overall, the current study is a start to scientifically exploring the cognitive abilities that transfer to

various aspects of cyber defense.
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APPENDIX A. CONSENT FORMS

Purdue IRB Protocol number: 1703018965 - Expires: 08-MAY-2022

Key Information

RESEARCH PARTICIPANT CONSENT FORM

Neuro-Cyber Study

Dr. Marcus Rogers, Professor

Computer and Information Technology Kelly Cole

COT

Purdue University

Please take time to review this information carefully. This is a research study. Your

participation in this study is voluntary which means that you may choose not to participate at any

time without penalty or loss of benefits to which you are otherwise entitled. You may ask

questions to the researchers about the study whenever you would like. If you decide to take part

in the study, you will be asked to sign this form, be sure you understand what you will do and any

possible risks or benefit. The purpose of this study is to identify cognitive abilities that would aid

in cyber defense. We think this will take you 60 minutes, in one session, with two- minute breaks

in-between. The harm or risk level for this study is no greater than everyday which is no greater

than what you would encounter in daily life or during the performance of routine physical or

psychological exams or tests. You will be compensated fifteen dollars.

What is the purpose of this study? The purpose of this study is to identify some of the

mental abilities that may be of importance when defending a computer network so that so that

educators, students, businesses and corporations will gain information that could improve how

and who defends the network. Knowing what aspects of attention are important, in cyber defense

tasks/environments, could help to better identify those who would work well in this field. You

have been invited to participate in this study because COT/Purdue University has identified you as

being enrolled in cyber courses. We are seeking to enroll up to 35 participants for this study.

What will I do if I choose to be in this study? If you decide to participate in this study,

first you will be asked demographic questions such as, years of experience in Network/Cyber

Security, age, gender and education level, followed by three neuro-psych tests. All the tests will
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be administered through a computer. You will enter an assigned ID (i.e., your name will not be

recorded) and take each cognitive test starting with a judgment task where you are to identify the

number presented to you as odd or even/greater-than or less- than, a digit span, an attention task,

and lastly, finishing with the cyber task which includes classifying attacks in a simulated network

environment.

How long will I be in the study? We think this will take you 60 minutes, in one session,

with two-minute breaks in- between.

What are the possible risks or discomforts? The harm or risk level for this study is no

greater than everyday which is no greater than what you would encounter in daily life or during

the performance of routine physical or psychological exams or tests. A cognitive fatigue risk is

present. We will offer breaks in-between all tests.

Are there any potential benefits? There are no direct benefits but your participation will

benefit cyber defense research and society.

Will information about me and my participation be kept confidential? The data

collected during the cognitive tests includes your reaction times and error rate. The data collected

during the cyber simulation includes your completion time and error rate. Your name will not be

recorded. This de-identified data will be stored in an excel sheet for data analysis-analyzed by the

research team, and password-locked within in the PI’s computer. All consent forms will be locked

inside a locker in Knoy Hall-Cyber Forensics Lab. Breach of confidentiality is always a risk with

data, but we will take precautions to minimize this risk as described in this confidentiality section.

The project’s research records may be reviewed by departments at Purdue University responsible

for regulatory and research oversight.

What are my rights if I take part in this study? Your participation in this study is

voluntary. You may choose not to participate or, if you agree to participate, you can withdraw

your participation at any time without penalty or loss of benefits to which you are otherwise

entitled. If you decide to withdraw from the study, the data that was collected will be deleted.

Your decision to participate or not will have no effect on your relationship with Purdue University.

Who can I contact if I have questions about the study? If you have questions,

comments or concerns about this research project, you can talk to one of the researchers. Please

contact Kelly Cole at colek@purdue.edu or Dr. Marc Rogers at rogersmk@purdue.edu. If you
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have questions about your rights while taking part in the study or have concerns about the

treatment of research participants, please call the Human Research Protection Program at (765)

494- 5942, email (irb@purdue.edu) or write to:

Human Research Protection Program - Purdue University

Ernest C. Young Hall, Room 1032

155 S. Grant St.,

West Lafayette, IN 47907-2114

To report anonymously via Purdue’s Hotline see www.purdue.edu/hotline

Documentation of Informed Consent

I have had the opportunity to read this consent form and have the research study

explained. I have had the opportunity to ask questions about the research study, and my questions

have been answered. I am prepared to participate in the research study described above. I will be

offered a copy of this consent form after I sign it.

Participant’s Signature Here:

Participant’s Name Here:

Researcher’s Signature Here: Kelly Anne Cole

Date Here:
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APPENDIX B. DEMOGRAPHIC QUESTIONNAIRE

The demographic questionnaire for the current study can be seen in Figure, B.1.

Figure B.1. Demographic Questionnaire Administered to All Participants

124



APPENDIX C. CORRELATIONS

The correlations for all variables used in the study can be seen in Table, C.1.

Table C.1. Correlation Table
Variable 1 2 3 4 5 6 7 8 9 10 11 12 13

1. Hit Rate n –
Pearson’s r –

p-value –
Spearman’s rho –

p-value –
2. FP Rate n 16 –

Pearson’s r 0.498 –
p-value 0.049 –

Spearman’s rho 0.439 –
p-value 0.089 –

3. CIAT Accuracy n 16 16 –
Pearson’s r -0.437 -0.997 –

p-value 0.091 < .001 –
Spearman’s rho -0.394 -0.995 –

p-value 0.131 < .001 –
4. Tool-Use n 15 15 15 –

Pearson’s r -0.399 -0.546 0.540 –
p-value 0.141 0.035 0.038 –

Spearman’s rho -0.193 -0.489 0.494 –
p-value 0.490 0.064 0.061 –

5. WM n 16 16 16 15 –
Pearson’s r 0.133 0.101 -0.101 0.115 –

p-value 0.624 0.710 0.710 0.682 –
Spearman’s rho 0.134 0.146 -0.199 0.152 –

p-value 0.621 0.590 0.460 0.587 –
6. WM n 16 16 16 15 16 –

Pearson’s r 0.509 0.229 -0.200 0.069 0.633 –
p-value 0.044 0.394 0.458 0.808 0.008 –

Spearman’s rho 0.287 0.063 -0.095 0.029 0.686 –
p-value 0.281 0.817 0.727 0.918 0.003 –

7. EF n 16 16 16 15 16 16 –
Pearson’s r 0.104 -0.017 0.033 0.060 -0.380 -0.252 –

p-value 0.702 0.950 0.902 0.833 0.147 0.346 –
Spearman’s rho 0.062 0.018 -0.004 -0.113 -0.567 -0.352 –

p-value 0.819 0.948 0.987 0.689 0.022 0.181 –
8. Orienting n 16 16 16 15 16 16 16 –

Pearson’s r 0.290 0.645 -0.654 -0.691 0.396 0.265 -0.024 –
p-value 0.277 0.007 0.006 0.004 0.128 0.322 0.929 –

Spearman’s rho 0.204 0.617 -0.652 -0.742 0.337 0.306 0.024 –
p-value 0.449 0.011 0.006 0.002 0.202 0.248 0.935 –

9. Alerting n 16 16 16 15 16 16 16 16 –
Pearson’s r -0.734 -0.274 0.233 0.105 -0.388 -0.633 0.073 -0.190 –

p-value 0.001 0.304 0.384 0.710 0.137 0.009 0.787 0.482 –
Spearman’s rho -0.524 -0.108 0.112 0.154 -0.357 -0.424 0.191 -0.009 –

p-value 0.037 0.691 0.680 0.584 0.175 0.102 0.477 0.978 –
10. SwitchCost(RT) n 15 15 15 15 15 15 15 15 15 –

Pearson’s r 0.085 0.602 -0.599 -0.259 -0.090 -0.119 0.209 0.463 0.714 –
p-value 0.763 0.018 0.018 0.350 0.750 0.673 0.455 0.082 0.003 –

Spearman’s rho 0.077 0.526 -0.504 -0.247 -0.089 -0.147 0.093 0.446 0.682 –
p-value 0.785 0.044 0.055 0.375 0.751 0.600 0.743 0.097 0.007 –

11. Spontswitrate n 16 16 16 15 16 16 16 16 16 15 –
Pearson’s r 0.336 -0.099 0.121 -0.138 0.508 0.467 -0.372 0.154 -0.588 -0.620 –

p-value 0.204 0.716 0.656 0.624 0.044 0.069 0.156 0.569 0.017 0.014 –
Spearman’s rho 0.314 -0.121 0.087 0.006 0.508 0.499 -0.400 0.177 -0.580 -0.482 –

p-value 0.237 0.656 0.748 0.982 0.044 0.049 0.125 0.512 0.019 0.069 –
12. SwitchingRT n 15 15 15 15 15 15 15 15 15 15 15 –

Pearson’s r 0.048 0.626 -0.620 -0.070 -0.002 -0.146 0.006 0.218 0.693 0.842 -0.520 –
p-value 0.865 0.013 0.014 0.805 0.994 0.604 0.983 0.436 0.004 < .001 0.047 –

Spearman’s rho 0.039 0.624 -0.617 -0.023 0.026 -0.099 0.093 0.329 0.671 0.850 -0.470 –
p-value 0.891 0.013 0.014 0.934 0.928 0.726 0.743 0.232 0.008 < .001 0.077 –

13. ambiSwitCosts n 14 14 14 14 14 14 14 14 14 14 14 14 –
Pearson’s r -0.751 -0.161 0.118 0.079 0.091 -0.026 0.075 0.130 0.510 0.330 -0.278 0.037 –

p-value 0.002 0.584 0.688 0.788 0.757 0.930 0.800 0.659 0.062 0.249 0.337 0.899 –
Spearman’s rho -0.669 -0.316 0.308 0.013 -0.198 -0.062 0.288 0.020 0.495 0.279 -0.294 0.051 –

p-value 0.009 0.271 0.283 0.964 0.498 0.834 0.318 0.952 0.075 0.333 0.308 0.868 –
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