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ABSTRACT

There is an increasing need to accurately image objects at a high temporal resolution

for different applications in order to analyze the underlying physical, chemical, or biological

processes. In this thesis, we use advanced models exploiting the image structure and the

measurement process in order to achieve an improved temporal resolution. The thesis is

divided into three chapters, each corresponding to a different imaging application.

In the first chapter, we propose a novel method to localize neurons in fluorescence mi-

croscopy images. Accurate localization of neurons enables us to scan only the neuron loca-

tions instead of the full brain volume and thus improve the temporal resolution of neuron

activity monitoring. We formulate the neuron localization problem as an inverse problem

where we reconstruct an image that encodes the location of the neuron centers. The sparsity

of the neuron centers serves as a prior model, while the forward model comprises of shape

models estimated from training data.

In the second chapter, we introduce multi-slice fusion, a novel framework to incorporate

advanced prior models for inverse problems spanning many dimensions such as 4D com-

puted tomography (CT) reconstruction. State of the art 4D reconstruction methods use

model based iterative reconstruction (MBIR), but it depends critically on the quality of the

prior modeling. Incorporating deep convolutional neural networks (CNNs) in the 4D recon-

struction problem is difficult due to computational difficulties and lack of high-dimensional

training data. Multi-Slice Fusion integrates the tomographic forward model with multiple

low dimensional CNN denoisers along different planes to produce a 4D regularized recon-

struction. The improved regularization in multi-slice fusion allows each time-frame to be

reconstructed from fewer measurements, resulting in an improved temporal resolution in the

reconstruction. Experimental results on sparse-view and limited-angle CT data demonstrate

that Multi-Slice Fusion can substantially improve the quality of reconstructions relative to

traditional methods, while also being practical to implement and train.

In the final chapter, we introduce CodEx, a synergistic combination of coded acquisition

and a non-convex Bayesian reconstruction for improving acquisition speed in computed to-

mography (CT). In an ideal “step-and-shoot” tomographic acquisition, the object is rotated
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to each desired angle, and the view is taken. However, step-and-shoot acquisition is slow and

can waste photons, so in practice the object typically rotates continuously in time, leading

to views that are blurry. This blur can then result in reconstructions with severe motion

artifacts. CodEx works by encoding the acquisition with a known binary code that the re-

construction algorithm then inverts. The CodEx reconstruction method uses the alternating

direction method of multipliers (ADMM) to split the inverse problem into iterative deblur-

ring and reconstruction sub-problems, making reconstruction practical. CodEx allows for a

fast data acquisition leading to a good temporal resolution in the reconstruction.
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1. A MODEL BASED NEURON DETECTION APPROACH

USING SPARSE LOCATION PRIORS

1.1 Introduction

Mapping the functional connectivity in the brain continues to be a major challenge in

neuroscience. An important component in developing such a map is the ability to measure the

activity of many neurons accurately at a high frame rate. Fluorescence microscope imaging

using recently developed fluorescent calcium indicators is a good candidate for making these

measurements due to a combination of high spatial and temporal resolution. The foundation

of this form of neural imaging is the increase in calcium ion concentration whenever a neuron

is activated [ 1 ]; this increased concentration leads to fluorescence from the calcium indicator,

which is captured by a fluorescence microscope [ 2 ] [ 3 ]. Recently developed calcium indicators

like GCaMP6 respond to changes in calcium ion concentration quickly and thus provide the

possibility of measuring neural activity at a high frame rate [ 4 ].

In conventional raster scan fluorescence microscopy, in which all the voxels in the volume

are scanned equally often, the frame rate suffers markedly as the size of the brain volume to

be imaged increases [ 5 ] [ 6 ]. However, for purposes of capturing neural activity, it is necessary

to scan only the volume containing the neurons, which is typically a small fraction of the total

volume. Thus, replacing a full raster scan for each frame with a scan of the much smaller

neural volume can dramatically increase the scan frame rate. Of course, this strategy relies

on accurate knowledge of the neural volume, which we propose to obtain using a single

GCaMP6 scan of the full volume of interest.

The central challenge of this research is to create a method for accurately detecting and

determining the location of each neuron in a GCaMP6 image so that the volume can be

sparsely scanned at a high frame rate. This goal presents a number of difficult challenges.

First, there can be large illumination variations across the image, along with high noise.

Furthermore, there is often fluorescence from the dense network of axons and dendrites,

referred to as neuropil. There are also cylindrical blood vessels in the images that have

similarities with neurons, making the detection of neurons more challenging. Also, some

neurons are saturated with fluorescence; this is an artifact of GCaMP overexpression that
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leads to a significantly different type of calcium fluorescent image relative to other neurons

[ 1 ] [  3 ].

Before describing our method, we briefly review related work on cell segmentation and

tracking methods, including frame to frame association and active contour models.

Several algorithms [ 7 ] [ 8 ] track cells in a sequence of 2D images by detecting cells in each

frame and then establishing frame to frame association based on several criteria. However,

there are problems in the frame to frame association phase if there is large variation in

illumination from frame to frame, a high density of cells, and/or a large number of cells

entering or leaving the frame [ 9 ] [  10 ].

Active contour models have also been proposed for segmenting and tracking cells in

microscopy images [ 11 ] [ 12 ] [ 13 ] [ 14 ] [ 15 ]. Active contour based methods take a deformable

contour with a certain energy function and minimize that energy to segment a cell. However

a good initialization is often required to avoid getting stuck on a local minima [ 16 ]. Active

contours require a data attachment term to guide the contour. Many methods use a data

attachment term that depends solely on the edge map computed from the image gradient

[ 17 ] [ 18 ] [ 19 ]. However, in images with high noise, gradient information is unreliable. Other

methods use statistical intensity information computed for the region inside the contour [ 20 ]

[ 21 ].

Active contour models have been extended to include strong prior shape information in

[ 22 ] [  23 ] [  24 ] [  25 ]. However it is difficult to detect an unknown number of objects [  26 ]. To

mitigate this, variations of active contour with Marked Point process is proposed in [ 26 ]

[ 27 ]. But these methods are formulated for 2D images and cannot be directly applied to 3D

images.

In this paper, we solve the problem of detecting neuron centers in a 3D volume using

a novel model-based neuron detection algorithm (MBND). We formulate this as an image

reconstruction problem in which we construct a sparse location image that encodes the

neuron centers. That is, a non-zero value in the location image corresponds to the center

of a neuron. We model the observed neurons as a linear combination of shape models in

the forward model and use separate shape models for normal neurons and abnormal over-

expressed neurons; the coefficients in this linear combination are the nonzero entries in the
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Figure 1.1. Example of a GCaMP6 calcium fluorescence image used in this
study. The bright circle is a neuron affected with GCaMP over-expression. The
large black circles are blood vessels. The annular rings are normal neurons.

location image. We use a sparsity based prior model for the construction of the location

image since the neuron centers are sparsely distributed in the 3D volume. We model the

background illumination variation in the image as a linear combination of low-frequency basis

vectors of the Discrete Cosine Transform, and we model the presence of sparsely distributed

bright dendrites as additive impulsive noise. We compute the MAP estimate of the location

image by minimizing a convex cost function. Tests on GCaMP6 fluorescence neuron images

show better accuracy than widely used methods.

1.2 Forward and Prior Model

To formulate the problem, let us denote the observed vectorized image as Y ∈ RN , where

N is the total number of voxels in the 3D image. Let S denote the lattice in R3 representing

the voxel locations in the image and let Ω map from the lattice points in S to an index i

such that 1 ≤ i ≤ N . Then YΩ(s) is the value of the image at the voxel location s ∈ S
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Figure 1.2. Illustration of how A(1)X(1) +A(2)X(2) model the neurons in the
image. The ring shapes represent normal neurons and the disk shaped ones
represent over-expressed neurons

Let A(1), A(2) ∈ RN×N be matrices corresponding to linear space invariant filters. The

impulse responses of A(1), A(2) are the shape model of normal and over-expressed neurons.

A(1), A(2) perform convolution with the shape model as their convolution kernel.

Let X(1), X(2) ∈ RN be sparse images which encode the location of the normal and

over-expressed neuron centers respectively.We shall refer to them as location images. X(1)

and X(2) represent the contribution of two neuron models to explain the data at each voxel

location. X(k) is non-zero only at the center of neurons that are modeled by the shape model

of A(k) and the non-zero value is proportional to the brightness of the neuron it models.

Therefore, A(1)X(1) +A(2)X(2) models the neurons in the image Y . This is illustrated in

figure  1.2 .

Let the columns of the matrixB ∈ RN×M be theM basis vectors of the 3D Discrete Cosine

Transform corresponding to the low-frequency components. Then given appropriate choice

of the parameter vector θ ∈ RM , Bθ can be used to model the low-frequency background

illumination variation in the image for an appropriate choice of θ ∈ RM . We shall refer to
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Figure 1.3. Illustration of all the variables in the forward model and their sizes

Bθ as the background offset and θ as the background offset coefficients. Using these, we

model the image Y as

Y =
2∑

k=1
A(k)X(k) +Bθ +WI +WG, (1.1)

where WI represents additive impulsive noise from dendrites, and WG represents additive

Gaussian noise. The variables in equation  1.1 and their sizes are illustrated in figure  1.3 

We consider the Gaussian noise to be white so that the forward model (likelihood of the

data, Y given unknown variables X(1), X(2), WI and θ) can be written as

p(Y |X(1), X(2), θ,WI) =

1
zF
exp

(
− 1

2σ2
wG

‖Y −
2∑

k=1
A(k)X(k) −Bθ −WI‖2

2

)
, (1.2)

where zF is the normalizing constant or the partition function of the forward model and σ2
wG

is the variance of the gaussian noise.

In the prior model formulation, we model the variables X(1), X(2), WI as independent.

Thus their joint prior probability p(X(1), X(2),WI) can be factored into the individual prior

probabilities p1(X(1)), p2(X(2)) and pI(WI) as:

p(X(1), X(2),WI) = p1(X(1))p2(X(2))pI(WI) (1.3)
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Since, X(1), X(2) and WI are sparse, we model their negative log prior to be proportional

to their L1 norm. The L1 norm prior is known to induce sparsity in a convex fashion [ 28 ].

The individual prior probabilities are then given by:

pk(X(k)) = 1
zk
exp

(
− 1
σi
‖X(i)‖1

)
, k = 1, 2 (1.4)

and

pI(WI) = 1
zWI

exp
(
− 1
σWI

‖WI‖1

)
, (1.5)

where z1, z2 , zWI
are the corresponding partition functions and σ1, σ2 , σWI

are scale

parameters.

1.3 Neuron Centers Estimation

Since the location of the neuron centers are encoded in the location images , X(1) and

X(2), they need to be estimated first in order to calculate the neuron centers. The variables

θ and WI are not needed for calculating the neuron centers but they need to be estimated in

order to estimate X(1) and X(2). For estimating the location images we use the maximum a

posteriori probability (MAP) estimate. Since we also have the parameter vector θ , we find

the joint MAP estimate of X(1) ,X(2), WI and θ as:

{X(1)∗
, X(2)∗

, θ∗,W ∗
I } =

arg min
X(1),X(2),θ,WI

{
− log(p(Y |X(1), X(2), θ,WI))

− log(p(X(1), X(2),WI))
}

, (1.6)

where p(Y |X(1), X(2), θ,WI) is the likelihood of the image Y given X(1), X(2), θ,WI and

p(X(1), X(2),WI) is the prior probability of X(1), X(2) and WI . Using equations  1.4 and  1.5 

we can find the MAP estimate as:
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{X(1)∗
, X(2)∗

, θ∗,W ∗
I } =

arg min
X(1),X(2),θ,WI

{ 1
2σ2

wG

‖Y −
2∑

k=1
A(k)X(k) −Bθ −WI‖2

2

+
2∑

k=1

1
σk
‖X(k)‖1 + 1

σWI

‖WI‖1 . (1.7)

The MAP estimate is computed by iteratively minimizing the cost function above. This

is similar to the LASSO cost function [ 29 ]. We use the iterative co-ordinate descent method

[ 30 ] to minimize the cost function in equation  1.7 . We iteratively minimize the cost function

in equation  1.7 until the change in forward model cost, 1
2σ2

wG

‖Y −∑2
k=1A

(k)X(k)−Bθ−WI‖2
2

, falls below a certain threshold ε.

After the location images X(1) and X(2) have been estimated, we can find the neuron

center locations by finding the location of its non-zero voxels. However, due to imperfect

matching between our shape model and the shape of the neurons in the data, we might have

consecutive non-zero voxel values in the estimated location images X(1) and X(2) leading

to duplicate neuron centers. To mitigate this, we compute the normal and over-expressed

neuron centers as the local maxima of location images X(1) and X(2) respectively. In other

words, we consider the location s ∈ S to be a neuron center if X(k)
Ω(s) > 0 and X

(k)
Ω(s) >

X
(k)
Ω(r)∀r ∈ δs, k = 1, 2, where the neighborhood δs of s is given by:

δs = {r ∈ S | ‖W−1(s− r)‖2 < 1, r 6= s}, (1.8)

where W = diag(wx, wy, wz) is a weighting matrix providing the size of the neighborhood.

The overview of the full process of neuron center estimation is shown in figure  1.4 .

1.4 Shape Model Estimation

The impulse responses of A(1) and A(2) serve as shape models and are estimated from

training data. The impulse responses of A(1) and A(2) are image patches that represent the

shape of the typical neuron of normal and over-expressed type respectively as shown in the
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Figure 1.4. Overview of neuron center estimation in MBND

first images in figure  1.6 (a)(b). Let the impulse response of A(1) and A(2) be u(1) , u(2) ∈ RL

in vectorized form. We extract neuron patches from the training volume to estimate u(1) and

u(2). Let Z be the vectorized training volume. We manually select P1 neuron centers of the

normal type and P2 neuron centers of the over-expressed type in the training volume and

train the shape models using these. These neuron centers need not be exhaustive, i.e. there

might be other neuron centers present in the training volume apart from these. To estimate

the shape models that best fit the training volume, we minimize the minimum reconstruction

error in equation  1.7 in the neuron region with respect to the shape models. To simplify the

training, we find the background offset variable, θ by minimizing the reconstruction error

with respect to θ to get θ = BTZ. We then compute the background offset subtracted

training volume, Z̃ as:

Z̃ = Z −BBTZ (1.9)

We then extract P1 training patches of size L from Z̃ centered around the P1 neuron centers of

the normal type and put them in the matrix Y (1) ∈ RL×P1 . Similarly, we extract P2 training

patches of size L from Z̃ centered around the P2 neuron centers of the over-expressed type

and put them in the matrix Y (2) ∈ RL×P2 . The process of extracting training patches and

estimating the shape models is illustrated in figure  1.5 .
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Figure 1.5. Overview of the process of extracting training patches and
estimating the shape models

Then, to estimate u(k) for k = 1, 2, we minimize the minimum reconstruction error with

respect to u(k) as:

u(k) = arg min
u∈RL

{ Pk∑
i=1

min
ρ∈R
‖Y (k)
∗,i − ρu‖2

2

}
(1.10)

Define the sample correlation matrices R(k)
Y ∈ RL×L, for k = 1, 2 as

R
(k)
Y = 1

Pk
Y (k)(Y (k))T . (1.11)

Solving the least squares problem in equation  1.10 gives

u(k) = arg max
u∈RL

(
uTR

(k)
Y u

‖u‖2
2

)
. (1.12)
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Let the eigenvalues and eigenvectors of R(k)
Y be Λ(k) and E(k) for k = 1, 2. So that

R
(k)
Y = E(k)Λ(k)(E(k))T . (1.13)

The solution to equation  1.10 is well known: u(k) is the eigenvector of R(k)
Y corresponding

to the highest eigenvalue. Since the solution to equation  1.12 is scale invariant, we set

‖u(k)‖2 = (Λ(k)
1,1)1/2 to capture the brightness scale of the neurons:

u(k) = (Λ(k)
1,1)1/2E

(k)
∗,1 . (1.14)

1.5 Experimental Results

In this section we compare our Model Based Neuron Detection algorithm (MBND) with

CellSegm [  31 ]. CellSegm is a publicly available software for high throughput cell segmenta-

tion in fluorescence microscopy images. We use the segmct method within CellSegm toolbox

which segments cells by iterative thresholding, hole filling and classification based on sizes of

regions above threshold. We take the connected component centers of the final segmentation

result to be the neuron centers.

1.5.1 Dataset Description

We use GCaMP6 labeled calcium imaging data of a mouse brain to evaluate our neuron

detection algorithm. The data was provided by Prof. Meng Cui and Dr. Lingjie Kong at

Purdue University. The full 3D data volume is of size 512x512x421 voxels along the x,y and

z axes respectively. The inter-voxel distance is 1µm. The neuron cells are approximately

ellipsoids with diameter 10µm along each axis. Contrast stretching is done on the whole

volume to improve the contrast and then the voxel values are normalized in the range 0-1.

A section of the volume (after contrast stretching and normalization) is shown in figure  1.1 

as an example.

We test our algorithm on a section of the full volume of size 104x101x21 that we will call

test volume henceforth. We collect neuron patches for training from a separate section of
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size 351x201x51 from the whole volume. We will call this the training volume henceforth.

We do not use the whole volume since collecting ground truth is time and labor intensive.

1.5.2 Training

We subtract the low-frequency background from the training volume and then extract

84 centered neuron patches from it, 79 of them normal neuron patches and 5 over-expressed

ones. For background subtraction we construct B by using the first 6 , 5 , 11 basis vectors

of the 1D Discrete cosine transforms along the x,y,z directions respectively so that we have

M = 6× 5× 11 = 330 basis vectors of the 3D Discrete cosine transform in B. The patches

extracted were of size 15x15x7. After extracting the training patches, the shape models

u(1) and u(2) were estimated using solution to equation  1.14 . The equatorial slices of the

eigen-images for the normal and over-expressed neuron training data are shown in figure  1.6 .

We only show the eigen-images corresponding to the highest eigenvalues. The eigenvalues

are shown in figure  1.7 .

As a first order approximation, we use only the eigen-image of the highest eigen-value

for the shape models.

1.5.3 Testing and Evaluation

We apply both the CellSegm method and MBND on the test volume. To determine the

accuracy of the detected centers we rely on a ground truth: a list of actual neuron center

co-ordinates. The ground truth was manually determined by looking at the 3D stack and

was verified by an expert. We consider a detected neuron center to be a correct one if it

differs from the true center by a certain tolerance value. Namely, if c1 = [x1, y1, z1]T is the

location of a true neuron center, and c2 = [x2, y2, z2]T is the location of a detected neuron

center, then c2 is considered a true detection of c1 if:

‖D−1(c1 − c2)‖2 < 1 (1.15)
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(a) Equatorial slice of eigen-images for normal neuron training data

(b) Equatorial slice of eigen-images for over-expressed neuron training data

Figure 1.6. The equatorial slices of the eigen-images for the (a) normal
neuron data (b) neurons affected by GCaMP over-expression. Only the eigen-
images corresponding to the highest eigenvalues are shown.

where, D = diag(dx, dy, dz) is a weighing matrix providing the tolerances along each of the

x,y,z directions. The values of dx, dy, dz should be small enough so that the ellipsoid with

radii dx, dy, dz is well inside the neuron and large enough that small deviations in center

co-ordinates are still considered true detection. We take dx = 3, dy = 3, dz = 4 since there

are roughly half of the radii of the ellipsoidal neurons.

Each detected neuron center that is a true detection of some neuron in the ground truth

is termed a true positive. If multiple neuron centers are detected within the tolerance limit

of the actual neuron center, only one of them is considered a true positive and the rest are

considered false positives. If a detected neuron center is not a true detection of any neurons

in the ground truth then it is termed a false positive. All neuron centers in the ground truth

that are not detected are termed false negatives. For a set of detected centers and ground
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(a) Eigenvalues of normal neuron training data (b) Eigenvalues of over-expressed neuron training data

Figure 1.7. Eigenvalues of the (a) normal neuron data (b) neurons affected
by GCaMP over-expression

truth, let the total number of true positives, false positives and false negatives be denoted as:

NTP , NFP and NFN respectively. We evaluate the list of detected centers by the precision

and recall metric defined as:

precision = NTP

NTP +NFP

(1.16)

recall = NTP

NTP +NFN

(1.17)

Precision and recall values lie in the range [0, 1] and high values for both are desirable.

Combining both precision and recall, we define a metric F-score as:

F = 2 · precision · recall
precision+ recall

(1.18)

For both MBND and CellSegm, we tune the parameters to get the best F-score on the

test volume. We set the noise standard deviation σwG = 0.07. For constructing B, use the

first 6, 5, 11 basis vectors of the 1D Discrete cosine transforms along the x,y,z directions

respectively so that we have M = 6 × 5 × 11 = 330 basis vectors of the 3D Discrete cosine
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transform in B. We set wx = wy = wz = 4 for calculating local maxima of the location

images. We set the parameters σWI
, σ1, σ2 so that a neuron of typical intensity and of the

trained shape can be detected. Let there be a neuron cu(k), (k = 1, 2) embedded in the test

image, where c is a scalar constant and u(k) is estimated from equation  1.14 . Then to detect

it we need to have a non-zero solution to the equation:

ρ∗ = arg min
ρ∈R

1
2σ2

wG

‖cu(k) − ρu(k)‖2
2 + 1

σk
|ρ| (1.19)

It can be shown that a non-zero solution corresponds to σk ≥ cσ2
wG
/‖u(k)‖. This is the

motivation behind setting σk = ckσ
2
wG
/‖u(k)‖, (k = 1, 2) and σWI

= cIσ
2
wG

, where c1, c2 and

cWI
are scalar constants. We set c1 = 3.3, c2 = 2.7 and cWI

= 2.5.

For MBND, the best F-score obtained was 0.91 with corresponding precision = 0.95

and recall = 0.87. For CellSegm, the best F-score obtained was 0.13 with corresponding

precision = 0.18 and recall = 0.10. The neuron detection results for MBND and CellSegm

corresponding to their best F-score is displayed in figure  1.8 . We also display the original

image and ground truth to get a visual comparison. To show the neurons, we draw a sphere

around the neuron centers in 3D and we show the circular intersection of the surface of the

sphere with the current slice in the figures. A dot in the center of the circle indicates that the

neuron center is in the current slice. Ground truth and true detection are shown in green,

false positives in red and missed detection in blue.

Next, for MBND we vary the neuron regularizer σ1 in equation  1.7 and keep the other

parameters fixed to get a series of neuron detection results and the corresponding precision

and recall values. For the CellSegm method, we vary the threshold and keeping the other

parameters fixed to get a series of neuron detection results and the corresponding precision

and recall values. We plot these precision recall values to generate a precision-recall plot.

The precision recall plot of MBND is compared to that of CellSegm in figure  1.9 .

From figures  1.8 and  1.9 we can see that MBND has minimal false positives and is able

to detect many more neurons than CellSegm. From figures  1.8 (o) and  1.8 (g) we can see

that CellSegm is able to detect only the very bright neurons. This is because iterative

thresholding combined with other image-processing techniques are not good if there isn’t
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a strong difference in illumination level between the object and the background. On the

other hand, in MBND we train shape models for the neurons and thus MBND is able to

detect neurons even when there isn’t much illumination difference between the neuron and

the background.

1.6 Conclusion

In this paper we presented a novel model based neuron detection scheme(MBND) to

detect neuron centers in fluorescence images of neurons. MBND is able to detect neurons at

very low signal to noise ratios. Results show that MBND performs better than one widely

used method.
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Figure 1.8. Slice by slice comparison of detected neurons by our proposed
method(MBND) with CellSegm Here (a), (e), (i), (m) show the original test
image in slices 3,8,13,18 respectively. (b), (f), (j), (n) show the ground truth
in slices 3,8,13,18 respectively. (c), (g), (k), (o) show the neurons detected by
CellSegm in slices 3,8,13,18 respectively. (d), (h), (l), (p) show the neurons
detected by our MBND in slices 3,8,13,18 respectively. To show the neurons,
we draw a sphere around the neuron centers in 3D and we show the circular
intersection of the surface of the sphere with the current slice in the figures. A
dot in the center of the circle indicates that the neuron center is in the current
slice. Ground truth and true detection are shown in green, false positives in
red and missed detection in blue.
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Figure 1.9. Precison recall plot of our proposed method(MBND) compared
with CellSegm
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2. MULTI-SLICE FUSION FOR SPARSE-VIEW AND

LIMITED-ANGLE 4D CT RECONSTRUCTION

2.1 Introduction

Improvements in imaging sensors and computing power have made it possible to solve

increasingly difficult reconstruction problems. In particular, the dimensionality of recon-

struction problems has increased from the traditional 2D and 3D problems representing

space to more difficult 4D or even 5D problems representing space-time and, for example,

heart or respiratory phase [ 32 ]–[ 37 ].

These higher-dimensional reconstruction problems pose surprisingly difficult challenges

computationally and perhaps more importantly, in terms of algorithmic design and training

due to the curse of dimensionality [ 38 ]. However, the high dimensionality of the reconstruc-

tion also presents important opportunities to improve reconstruction quality by exploiting

the regularity in the high-dimensional space. In particular, for time-resolved imaging, we

can exploit the regularity of the image to reconstruct each frame with fewer measurements

and thereby increase temporal resolution. In the case of 4D CT, the contributions of [  33 ],

[ 39 ], [ 40 ] have increased the temporal resolution by an order of magnitude by exploiting the

space-time regularity of objects being imaged. These approaches use model-based iterative

reconstruction (MBIR) [ 41 ], [ 42 ] to enforce regularity in 4D using simple space-time prior

models. More recently, deep learning based post-processing for 4D reconstruction has been

proposed as a method to improve reconstructed image quality [ 43 ].

Recently, it has been demonstrated that plug-and-play (PnP) priors [ 44 ]–[ 47 ] can dra-

matically improve reconstruction quality by enabling the use of state-of-the-art denoisers as

prior models in MBIR. So PnP has great potential to improve reconstruction quality in 4D

CT imaging problems. However, state-of-the-art denoisers such as deep convolutional neural

networks (CNN) and BM4D are primarily available for 2D and sometimes 3D images, and

it is difficult to extend them to higher dimensions [ 38 ], [ 48 ], [ 49 ]. In particular, extending

CNNs to 4D requires very computationally and memory intensive 4D convolution applied

to 5D feature tensor structures. This problem is further compounded by the lack of GPU

accelerated routines for 4D convolution from major Deep-Learning frameworks such as Ten-
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Figure 2.1. Illustration of our multi-slice fusion approach. Each CNN de-
noiser operates along the time direction and two spatial directions. We fuse
the CNN denoisers with the measurement model to produce a 4D regularized
reconstruction.

sorflow, Keras, PyTorch  

1
 . Furthermore, 4D CNNs require 4D ground truth data to train

the PnP denoisers, which might be difficult or impossible to obtain.

In this paper, we present a novel 4D X-ray CT reconstruction algorithm that combines

multiple low-dimensional CNN denoisers to implement a highly effective 4D prior model.

Our approach, multi-slice fusion, integrates the multiple low-dimensional priors using multi-

agent consensus equilibrium (MACE) [  50 ]. MACE is an extension of the PnP framework

that formulates the inversion problem using an equilibrium equation—as opposed to an

optimization—and allows for the use of multiple prior models and agents.

Figure  2.1 illustrates the basic concept of our approach. Multi-slice fusion integrates

together three distinct CNN denoisers each of which is trained to remove additive white

Gaussian noise along lower dimensional slices (hyperplanes) of the 4D object. When MACE

fuses the denoisers it simultaneously enforces the constraints of each denoising agent, so that

the reconstructions are constrained to be smooth in all four dimensions. Consequently, multi-

slice fusion results in high-quality reconstructions that are practical to train and compute
1

 ↑ Currently only 1D, 2D, and 3D convolutions are supported with GPU acceleration
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even when the dimensionality of the reconstruction is high. In our implementation, one

MACE agent estimates the cone-beam tomographic inversion. The remaining 3 agents are

CNN denoisers trained to remove additive white Gaussian noise along two spatial directions

and the time direction. The CNN agents work along complimentary spatial directions and

are designed to take as input a stack of five 2D slices from five neighboring time-points. We

refer to this as 2.5D denoising [ 38 ], [  51 ]. Further details are given in Section  2.4 .

The MACE solution can be computed using a variety of algorithms, including variants of

the plug-and-play algorithm based on ADMM or other approaches [ 44 ], [ 45 ], [  52 ], [ 53 ]. We

implement multi-slice fusion on distributed heterogeneous clusters in which different agent

updates are distributed onto different cluster nodes. In particular, the cone-beam inversion

computations are distributed onto multiple CPU nodes and concurrently, the CNN denoising

computations are distributed onto multiple GPU nodes.

We present experiments using both simulated and real data of 4D NDE tomographic

imaging from sparse-views, and we compare multi-slice fusion with MBIR using total varia-

tion (TV) and 4D Markov random field (MRF) priors. Our results indicate that multi-slice

fusion can substantially reduce artifacts and increase resolution relative to these alternative

reconstruction methods.

The rest of the paper is organized as follows. In section  2.2 , we introduce the problem of

4D CT reconstruction. In section  2.3 , we introduce the theory behind MACE model fusion.

In section  2.4 , we use the MACE framework to introduce multi-slice fusion. In section  2.5 ,

we describe our training pipeline for training the CNN denoisers. In section  2.6 , we describe

our distributed implementation of multi-slice fusion on heterogeneous clusters. Finally, in

section  2.7 , we present results on sparse-view and limited-angle 4D CT using both simulated

and real data.

2.2 Problem Formulation

In 4D X-ray CT imaging, a dynamic object is rotated and several 2D projections (ra-

diographs) of the object are measured for different angles as illustrated in Figure  2.2 . The

problem is then to reconstruct the 4D array of X-ray attenuation coefficients from these
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measurements, where three dimensions correspond to the spatial dimensions and the fourth

dimension corresponds to time.

Figure 2.2. Illustration of 4D cone-beam X-ray CT imaging. The dynamic
object is rotated and several 2D projections (radiographs) of the object are
measured for different angles. The projections are divided into Nt disjoint
subsets for each of the Nt time-points.

Let Nt be the number of time-points, Mn be the number of measurements at each time-

point, and Ns be the number of voxels at each time-point of the 4D volume. For each time-

point n ∈ {1, . . . , Nt}, define yn ∈ RMn to be the vector of sinogram measurements at time n,

and xn ∈ RNs to be the vectorized 3D volume of X-ray attenuation coefficients for that time-

point. Let us stack all the measurements to form a measurement vector y = [y>1 , .., y>Nt ]> ∈

RM where M = ∑Nt
n=1Mn is the total number of measurements. Similarly, let us stack the 3D

volumes at each time-point to form a vectorized 4D volume x = [x>1 , . . . , x>Nt ]> ∈ RN , where

N = NtNs is the total number voxels in the 4D volume. The 4D reconstruction problem

then becomes the task of recovering the 4D volume of attenuation coefficients, x, from the

series of sinogram measurements, y.
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In the traditional maximum a posteriori (MAP) approach, the reconstruction is given by

x∗ = arg min
x
{l(x) + βh(x)} , (2.1)

where l(x) is the data-fidelity or log-likelihood term, h(x) is the 4D regularizer or prior model,

and the unit-less parameter β controls the level of regularization in the reconstruction. The

data-fidelity term, l(x), can be written in a separable fashion as

l(x) = 1
2

Nt∑
n=1
‖yn − Anxn‖2

Λn , (2.2)

where An is the system matrix, and Λn is the weight matrix for time-point n. The weight

matrix accounts for the non-uniform noise variance due to a Gaussian approximation [ 30 ]

of the underlying Poisson noise. The weight matrix is computed as Λn = diag{c exp {−yn}

where the scalar c is empirically chosen [ 33 ].

If the prior model, h(x), can be expressed analytically like a 4D Markov random field

(MRF) as in [  33 ], [ 35 ], then the expression in equation (  2.1 ) can be minimized iteratively to

reconstruct the image. However, in practice, it can be difficult to represent an advanced prior

model in the form of a tractable cost function h(x) that can be minimized. Consequently,

PnP algorithms have been created as a method for representing prior models as denoising

operations[ 44 ], [  45 ]. More recently, PnP methods have been generalized to the multi-agent

consensus equilibrium (MACE) framework as a way to integrate multiple models in a prin-

cipled manner [ 35 ], [  50 ], [  54 ].

2.3 MACE Model Fusion

In this section, we use the multi-agent consensus equilibrium (MACE) framework to fuse

the data-fidelity term and multiple denoisers; these multiple denoisers form a single prior

model for reconstruction. This allows us to construct a 4D prior model using low-dimensional

CNN denoisers (described in Section  2.4 ).
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To introduce the concept of consensus equilibrium, let us first consider a variation of

the optimization problem in equation ( 2.1 ) with K regularizers hk(x), k = 1, . . . , K. The

modified optimization problem can thus be written as

x∗ = arg min
x

{
l(x) + β

K

K∑
k=1

hk(x)
}
, (2.3)

where the normalization by K is done to make the regularization strength independent of

the number of regularizers.

Now we transform the optimization problem of equation (  2.3 ) to an equivalent consensus

equilibrium formulation. However, in order to do this, we must introduce additional notation.

First, we define the proximal maps of each term in equation ( 2.3 ). We define L(x) : RN → RN

to be the proximal map of l(x) as

L(x) = arg min
z∈RN

{
l(z) + 1

2σ2‖x− z‖
2
2

}
, (2.4)

for some σ > 0. Similarly, we define Hk(x) : RN → RN to be the the proximal map of each

hk(x) , k = 1, . . . , K as

Hk(x) = arg min
z∈RN

{ 1
2σ2‖x− z‖

2
2 + hk(z)

}
. (2.5)

Each of these proximal maps serve as agents in the MACE framework. We stack the agents

together to form a stacked operator F : R(K+1)N → R(K+1)N as

F (W ) =


L(W0)
H1(W1)

...
HK(WK)

 , (2.6)

where W ∈ R(K+1)N is stacked representative variable. The consensus equilibrium is the

vector W ∗ ∈ R(K+1)N that satisfies

F (W ∗) = G(W ∗) , (2.7)
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Figure 2.3. Illustration of consensus equilibrium as analogous to a force
balance equation: each agent pulls the solution toward its manifold and at
equilibrium the forces balance each other.

where G is an averaging operator given as

G(W ) =

W...
W

 , (2.8)

and the weighted average is defined as

W = 1
1 + β

W0 + β

1 + β

(
1
K

K∑
k=1

Wk

)
. (2.9)

Notice the weighting scheme is chosen to balance the forward and prior models. The unitless

parameter β is used to tune the weights given to the prior model and thus the regularization

of the reconstruction. Equal weighing of the forward and prior models can be achieved using

β = 1.

If W ∗ satisfies the consensus equilibrium condition of equation ( 2.7 ), then it can be

shown [ 50 ] that W ∗ is the solution to the optimization problem in equation (  2.3 ). Thus

if the agents in MACE are true proximal maps then the consensus equilibrium solves an

equivalent optimization problem.

However, if the MACE agents are not true proximal maps, then there is no inherent

optimization problem to be solved, but the MACE solution still exists. In this case, the

40



MACE solution can be interpreted as the balance point between the forces of each agent

as illustrated in Figure  2.3 . Each agent pulls the solution toward its manifold and the

consensus equilibrium solution represents a balance point between the forces of each agent.

Thus MACE provides a way to incorporate non-optimization based models such as deep

neural networks for solving inverse problems.

To see how we can incorporate deep neural network based prior models, first notice that

equation ( 2.5 ) can be interpreted as the MAP estimate for a Gaussian denoising problem

with prior model hk and noise standard deviation σ. Thus we can replace each MACE

operator, Hk, for each k = 1, . . . , K in equation (  2.5 ) with a deep neural network trained to

remove additive white Gaussian noise of standard deviation σ.

It is interesting to note that when Hk is implemented with a deep neural network denoiser,

then the agent Hk is not, in general, a proximal map and there is no corresponding cost

function hk. We know this because for Hk to be a proximal map, it must satisfy the condition

that ∇Hk(x) = [∇Hk(x)]> (see [ 44 ], [ 55 ]), which is equivalent to Hk being a conservative

vector function (see for example [ 56 , Theorem 2.6, p. 527]). For a CNN, ∇Hk is a function

of the trained weights, and in the general case, the condition will not be met unless the CNN

architecture is specifically designed to enforce such a condition.

The consensus equilibrium equation  2.7 states the condition that the equilibrium solution

must satisfy. However, the question remains of how to compute this equilibrium solution.

Our approach to solving the consensus equilibrium equations is to first find an operator that

has the equilibrium solution as a fixed point, and then use standard fixed point solvers. To do

this, we first notice that the averaging operator has the property that G(G(W )) = G(W ).

Intuitively, this is true because applying averaging twice is the same as applying it once.

Using this fact, we see that

(2G− I)(2G− I) = 4GG− 4G+ I = I , (2.10)
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where I is the identity mapping. We then rewrite equation ( 2.7 ) as

FW ∗ = GW ∗

(2F − I)W ∗ = (2G− I)W ∗

(2G− I)(2F − I)W ∗ = W ∗ .

So from this we see that the following fixed point relationship must hold for the consensus

equilibrium solution.

(2G− I)(2F − I)W ∗ = W ∗ , (2.11)

and the consensus equilibrium solution W ∗ is a fixed point of the mapping T = (2G−I)(2F−

I).

We can apply a variety of iterative fixed point algorithms to equation ( 2.11 ) to compute

the equilibrium solution. These algorithms have varying convergence guarantees and con-

vergence speeds [ 50 ]. One such algorithm is Mann iteration [  50 ], [  54 ], [  57 ]. Mann iteration

performs the following pseudo-code steps until convergence where ← indicates assignment

of a psuedo-code variable.

W ← (1− ρ)W + ρTW , (2.12)

where weighing parameter ρ ∈ (0, 1) is used to control the speed of convergence. In particular,

when ρ = 0.5, the Mann-iteration solver is equivalent to the consensus-ADMM algorithm [  50 ],

[ 58 ]. It can be shown that the Mann iteration converges to a fixed point of T = (2G−I)(2F−

I) if T is a non-expansive mapping [ 50 ].

Note that each Mann iteration update in equation ( 2.12 ) involves performing the mini-

mization in equation (  2.4 ). This nested iteration is computationally expensive and leads to

slow convergence. Instead of minimizing equation ( 2.4 ) till convergence, we initialize with

the result of the previous Mann iteration and perform only three iterations of iterative coor-

dinate descent (ICD). We denote this partial update operator as L̃(W0, X0) where X0 is the
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initial condition to the iterative update. The corresponding new F operator approximation

is then given by

F̃ (W ;X) =


L̃(W0;X0)
H1(W1)

...
Hk(WK)

 . (2.13)

Algorithm  1 shows a simplified Mann iteration using partial updates. We perform alge-

braic manipulation of the traditional Mann iterations[ 54 ], [ 57 ] in order to obtain the sim-

plified but equivalent Algorithm  1 . It can be shown that partial update Mann iteration

also converges [ 54 ], [ 57 ] to the fixed point in equation ( 2.11 ). We used a zero initialization,

x(0) = 0, in all our experiments and continue the partial update Mann iteration until the

differences between state vectors Xk become smaller than a fixed threshold.

Algorithm 1: Partial update Mann iteration for computing the MACE solution
Input: Initial Reconstruction: x(0) ∈ RN

Output: Final Reconstruction: x∗

1 X ← W ←
[
x(0)

...
x(0)

]
2 while not converged do
3 X ← F̃ (W ;X)
4 Z ← G(2X −W )
5 W ← W + 2ρ(Z −X)
6 x∗ ← X0

2.4 Multi-Slice Fusion using MACE

We use four MACE agents to implement multi-slice fusion. We set K = 3 and use the

names Hxy,t, Hyz,t, Hzx,t to denote the denoising agents H1, H2, H3 in equation (  2.6 ). The

agent L enforces fidelity to the measurement while each of the denoisers Hxy,t, Hyz,t, Hzx,t

enforces regularity of the image in orthogonal image planes. MACE imposes a consensus

between the operators L, Hxy,t, Hyz,t, Hzx,t to achieve a balanced reconstruction that lies
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Figure 2.4. Architecture of our 2.5D CNN denoiser. Different sizes of input
and output necessitate a selection operator for the residual connection. Each
green rectangle denotes a tensor, and each ellipse denotes an operation. Blue
ellipses specify the shape of the convolution kernel.

at the intersection of the solution space of the measurement model and each of the prior

models. The MACE stacked operator F encompassing all four agents can be written as

F (W ) =


L(W0)

Hxy,t(W1)

Hyz,t(W2)

Hzx,t(W3)

 . (2.14)

Here the representative variable W ∈ R4N is formed by stacking four vectorized 4D volumes.

The three denoisers Hxy,t, Hyz,t, and Hzx,t share the same architecture and trained model

but are applied along different planes of the 4D space. The CNN architecture is shown in

Figure  2.4 . We have modified a typical CNN architecture [ 59 ] to input information from

a third dimension. The channel dimension of a convolution layer is typically used to input

multiple color channels for denoising 2D color images using CNNs. We re-purpose the channel

dimension to input five adjacent 2D slices of the noisy image to the network and output the

denoised center slice. The other slices are being denoised by shifting the 5-slice moving

window. We call this 2.5D since the receptive field along the convolution dimensions is large
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but in the channel dimension is small. It has been shown that this type of 2.5D processing

is a computationally efficient way of performing effective 3D denoising with CNNs [ 38 ], [  51 ].

We use the notation Hxy,t to denote a CNN space-time denoiser that performs convolution

in the xy-plane and uses the convolution channels to input slices from neighboring time-

points. The denoisers Hyz,t and Hzx,t are analogous to Hxy,t but are applied along the yz and

zx-plane, respectively. This orientation of the three denoisers ensures that

1. The spatial dimensions x, y, z are treated equivalently. This ensures the regularization

to be uniform across all spatial dimensions;

2. Each dimension in x, y, z, and t is considered at least once. This ensures that model

fusion using MACE incorporates information along all four dimensions.

Since the three denoising operators Hxy,t, Hyz,t, and Hzx,t process the 4D volume “slice

by slice”, they can be implemented in parallel on large scale parallel computers. Details on

distributed implementation are described in section  2.6 .

2.5 Training of CNN Denoisers

All three prior model agents Hxy,t, Hyz,t, and Hzx,t in multi-slice fusion share the same

2.5D model shown in Figure  2.4 but are oriented along different planes. Consequently we

train a single 2.5D CNN model using 3D data. Even though the CNN needs to denoise 3D

time-space data, we train it using 3D spatial data since 3D volumes are widely available

unlike time-space data.

Figure  2.5 outlines our training data generation. We start with a low-noise 3D CT volume

that is representative of the objects to be reconstructed. We extract 3D patches from the

CT volume and add pseudo-random additive white Gaussian noise (AWGN) to the patches

to generate the training pairs. We then train the CNN to remove the noise. The use of

AWGN is due to the mathematical form of the quadratic norm term in the proximal map in

equation  2.5 and follows from the theory of Plug-and-play [ 44 ], [  45 ].
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Figure 2.5. Illustration of our training data generation. We extract 3D
patches from a typical CT volume and add additive white Gaussian noise
(AWGN) to generate training pairs. This makes the training process self-
supervised.

2.6 Distributed Reconstruction

The computational structure of multi-slice fusion is well-suited to a highly distributed

implementation. The main computational bottleneck in Algorithm  1 is the F operator.

Fortunately, F is a parallel operator and thus its individual components L, Hxy,t, Hyz,t, and

Hzx,t can be executed in parallel. The operators L, Hxy,t, Hyz,t, and Hzx,t can themselves

be parallelized internally as well. The distributed implementation of multi-slice fusion is

illustrated in Figure  2.6 .

The CNN denoisers Hxy,t, Hyz,t, and Hzx,t are 2.5D denoisers that denoise the 4D volume

by processing it slice by slice and thus can be trivially parallelized leading to a large number

of concurrent operations. The concurrent operations for all three denoisers are distributed

among multiple GPUs due to the availability of optimized GPU routines in Tensorflow. In

our experiments we used a GPU cluster with three Nvidia Tesla P100 GPUs to compute the

CNN denoising operators.
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Figure 2.6. Illustration of distributed computation of multi-slice fusion. We
perform distributed computation of the F operator which is the main computa-
tional bottleneck in Algorithm  1 . Each operator within F , namely Hxy,t, Hyz,t,
Hzx,t, and L can be executed in parallel. Furthermore, operators Hxy,t, Hyz,t,
Hzx,t, and L are 3D operators that can process the 4D volume “slice by slice”
leading to a large number of concurrent operations that can be distributed
among multiple compute nodes.

The cone-beam inversion operator, L, can also be computed for each time-point inde-

pendently due to the separable structure in equations ( 2.4 ) and ( 2.2 ). This leads to a large

number of concurrent operations which are distributed among multiple CPU nodes. The

cone-beam inversion for each time-point is computed using a coordinate-descent minimiza-

tion with multi-threaded parallelism. Further details about the cone-beam inversion can be

found in [ 34 ].
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Figure 2.7. Comparison of different methods for simulated data 360◦. Each
image is a slice through the reconstructed object for one time-point along
the spatial xy-plane. The reconstruction using FBP suffers from high noise
and fails to recover the small hole in the bottom of the image. MBIR+TV
and MBIR+4D-MRF suffer from jagged edges and fail to recover the small
hole in the bottom of the image. MBIR+Hyz,t and MBIR+Hzx,t suffer from
horizontal and vertical streaks, respectively, since the denoisers were applied
in those planes. MBIR+Hxy,t cannot reconstruct the small hole in the bottom
of the image since the xy-plane does not contain sufficient information.

2.7 Experimental Results

We present experimental results on two simulated and two real 4D X-ray CT data for

Non-Destructive Evaluation (NDE) applications to demonstrate the improved reconstruction

quality of our method. The four experimental cases are outlined below

1. Simulated Data 360◦: Sparse-view results on simulated data with a set of sparse

views ranging over 360◦ at each reconstructed time-point;

2. Simulated Data 90◦: Sparse-view limited-angle results on simulated data with a set

of sparse views ranging over 90◦ at each reconstructed time-point;
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3. Real Data 360◦: Sparse-view results on real data with a set of sparse views ranging

over 360◦ at each reconstructed time-point;

4. Real Data 90◦: Sparse-view limited-angle results on real data with a set of sparse

views ranging over 90◦ at each reconstructed time-point.

The selection of the rotation range per time-point is arbitrary and can be chosen after the

measurements have been taken. For example, a full rotation with 400 views can be used

as a single time-point or as four time-points with 100 views each. The four time-points

per rotation can provide extra temporal resolution, however, they require a more difficult

reconstruction with incomplete information.

We compare multi-slice fusion with several other methods outlined below

• FBP: Conventional 3D filtered back projection reconstruction;

• MBIR+TV: MBIR reconstruction using a total variation (TV) prior [ 60 ] in the spatial

dimensions;

• MBIR+4D-MRF: MBIR reconstruction using 4D Markov random field prior [ 33 ] with

q = 2.2, p = 1.1, 26 spatial neighbors and 2 temporal neighbors;

• MBIR+Hxy,t: MBIR using the CNN Hxy,t as a PnP prior;

• MBIR+Hyz,t: MBIR using the CNN Hyz,t as a PnP prior;

• MBIR+Hzx,t: MBIR using the CNN Hzx,t as a PnP prior.

We used two CPU cluster nodes, each with 20 Kaby Lake CPU cores and 96 GB system

memory to compute the cone-beam inversion. We used three GPU nodes, each with a Nvidia

Tesla P100 GPU (16 GB GPU-memory) and 192 GB system memory to compute the CNN

denoisers. To compute the multi-slice fusion reconstruction, we run Algorithm  1 for 10

Mann iterations, with 3 iterations of cone-beam inversion per Mann iteration. The total

reconstruction time of multi-slice fusion for each experimental case are given in Table  2.1 .

The 2.5D CNN denoiser model used in the reconstructions was trained using a low-noise

3D CT reconstruction of a bottle and screw cap made from different plastics. The object
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Table 2.1. Total reconstruction time of multi-slice fusion for each experimental case

Experimental Case Reconstruction size (x,y,z,t) Reconstruction Time

Simulated Data 360◦ 240× 240× 28× 8 8 mins
Simulated Data 90◦ 240× 240× 28× 8 8 mins
Real Data 360◦ 731× 731× 91× 16 133 mins
Real Data 90◦ 263× 263× 778× 12 46 mins

is representative of a variety of Non-Destructive Evaluation (NDE) problems in which the

objects to be imaged are constructed from a relatively small number of distinct materials.

The extracted patches were normalized to [0, 1] and random rotation, mirroring, intensity

shift were applied. The standard deviation of the additive white Gaussian noise added during

training was 0.1.

2.7.1 Simulated Data 360◦

Table 2.2. Experimental specifications for Simulated Data 360◦

Magnification 5.57
Number of Views per Time-point 75

Rotation per Time-point 360◦
Cropped Detector Array 240× 28 , (0.95 mm)2

Voxel Size (0.17 mm)3

Reconstruction Size (x,y,z,t) 240× 240× 28× 8

In this section we present results on simulated data to evaluate our method in a sparse-

view setting. Each time-point is reconstructed from a sparse set of views spanning 360◦. We

take a low-noise CT reconstruction of a bottle and screw cap and denoise it further using

BM4D [ 49 ] to generate a clean 3D volume to be used as a 3D phantom. We then vertically

translate the 3D phantom by one pixel per time-point to generate a 4D phantom x0. We

generate simulated sinogram measurements as N (Ax0,Λ−1) where A is the projection matrix

and the inverse covariance matrix Λ = diag{c exp {−Ax0} accounts for the non-uniform noise

variance due to a Gaussian approximation [ 30 ] of the underlying Poisson noise. We then
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Figure 2.8. Plot of cross-section through the phantom and reconstructions
from simulated data 360◦. Multi-slice fusion results in the most accurate re-
construction of the gap between materials.

perform a 4D reconstruction from the simulated sinogram data and compare with the 4D

phantom. The experimental specifications are summarized in Table  2.2 .

Figure  2.7 compares reconstructions using multi-slice fusion with several other methods.

Each image is a slice through the reconstructed object for one time-point along the spatial xy-
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plane. The reconstruction using FBP suffers from high noise and fails to recover the small

hole in the bottom of the image. The reconstructions using MBIR+TV and MBIR+4D-

MRF suffer from jagged edges and fail to recover the small hole in the bottom of the image.

MBIR+Hyz,t and MBIR+Hzx,t suffer from horizontal and vertical streaks, respectively, since

the denoisers were applied in those planes. MBIR+Hxy,t does not suffer from streaks in

the figure since we are viewing a slice along the xy-plane, but it suffers from other artifacts.

MBIR+Hxy,t cannot reconstruct the small hole in the bottom of the image since the xy-plane

does not contain sufficient information. It is to be noted that multi-slice fusion enhances the

size and contrast of the small hole highlighted by the blue circle relative to the phantom.

This can cause deviations when measuring the size of small features in the reconstruction.

Next we plot a cross-section through the object for multi-slice fusion, MBIR+4D-MRF,

MBIR+TV, FBP, and the phantom in Figure  2.8 . Multi-slice fusion results in the most

accurate reconstruction of the gap between materials.

Finally we report the peak signal to noise ratio (PSNR) and the structural similarity

index measure (SSIM) [  61 ] with respect to the phantom for each method in Table  2.3 to

objectively measure image quality. We define the PSNR for a given 4D reconstruction x

with a phantom x0 as

PSNR(x) = 20 log10

(
Range(x0)

RMSE(x, x0)

)
, (2.15)

where range is computed from the 0.1st and 99.9th percentiles of the phantom. As can be

seen from Table  2.3 , multi-slice fusion results in the highest PSNR and SSIM scores.

Table 2.3. Quantitative Evaluation for simulated data 360◦. Multi-slice fusion
has the highest PSNR and SSIM metric among all the methods.

Method PSNR(dB) SSIM
FBP 19.69 0.609

MBIR+TV 26.63 0.860
MBIR+4D-MRF 25.84 0.787
Multi-slice fusion 29.07 0.943

MBIR+Hxy,t 29.03 0.922
MBIR+Hyz,t 28.04 0.932
MBIR+Hzx,t 28.31 0.926
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2.7.2 Simulated Data 90◦

Table 2.4. Experimental specifications for Simulated Data 90◦

Magnification 5.57
Number of Views per Time-point 36

Rotation per Time-point 90◦
Cropped Detector Array 240× 28 , (0.95 mm)2

Voxel Size (0.17 mm)3

Reconstruction Size (x,y,z,t) 240× 240× 28× 8

In this section we present results on simulated data to evaluate our method in a sparse-

view and limited-angle setting. Each time-point is reconstructed from a sparse set of views

spanning 90◦. The simulated measurement data is generated in a similar fashion as Sec-

tion  2.7.1 using the experimental specifications summarized in Table  2.4 .

Figure  2.9 shows a comparison of different methods for simulated data with 90◦ rota-

tion of object per time-point. The FBP reconstruction has severe limited-angle artifacts.

MBIR+TV improves the reconstruction in some regions but it suffers in areas affected by

limited angular information. MBIR+4D-MRF reduces limited-angle artifacts, but allows

severe artifacts to form that are not necessarily consistent with real 4D image sequences. In

contrast, the multi-slice fusion result does not suffer from major limited-angle artifacts.

Table  2.5 shows peak signal to noise ratio (PSNR) and structural similarity index measure

(SSIM) with respect to the phantom for each method. Multi-slice fusion results in the highest

PSNR and SSIM scores.

Table 2.5. Quantitative Evaluation for simulated data 90◦. Multi-slice fusion
has the highest PSNR and SSIM metric among all the methods.

Method PSNR(dB) SSIM
FBP 10.86 0.467

MBIR+TV 15.35 0.801
MBIR+4D-MRF 14.25 0.742
Multi-slice fusion 19.44 0.875

In order to determine the effectiveness of our method for more challenging data, we

generate extreme sparse-view simulated data with different angle of rotation per time-point
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while keeping the rest of the experimental setup the same as Table  2.4 . Figure  2.10 illus-

trates the reconstruction quality obtained for the extreme sparse-view data with different

levels of limited angle. FBP results in strong artifacts due to sparse-views and limited an-

gles. MBIR+TV and MBIR+4D-MRF mitigates most of the major sparse-view artifacts but

suffers from limited angle artifacts in the 90◦ limited angle case. Multi-slice fusion results

in fewer limited-angle and sparse-view artifacts and an improved PSNR metric. Moreover,

multi-slice fusion results in a reduced motion and sparse view artifacts as compared to

MBIR+TV and MBIR+4D-MRF as the rotation per time point is decreased.

2.7.3 Real Data 360◦: Vial Compression

Table 2.6. Experimental specifications for Real Data 360◦: Vial Compression
Scanner Model North Star Imaging X50

Voltage 140 kV
Current 500 µA

Exposure 20 ms
Source-Detector Distance 839 mm

Magnification 5.57
Number of Views per Time-point 150

Rotation per Time-point 360◦
Cropped Detector Array 731× 91, (0.25 mm)2

Voxel Size (0.0456 mm)3

Reconstruction Size (x,y,z,t) 731× 731× 91× 16

In this section we present results on real data to evaluate our method in a sparse-view

setting. The data is from a dynamic cone-beam X-ray scan of a glass vial, with elastomeric

stopper and aluminum crimp-seal, using a North Star Imaging X50 X-ray CT system. The

experimental specifications are summarized in Table  2.6 .

The vial is undergoing dynamic compression during the scan, to capture the mechanical

response of the components as shown in Figure  2.15 . Of particular interest is the moment

when the aluminum seal is no longer in contact with the underside of the glass neck finish.

This indicates the moment when the force applied exceeds that exerted by the rubber on the

glass; this is known as the “residual seal force” [ 62 ].
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During the scan, the vial was held in place by fixtures that were placed out of the field

of view as shown in Figure  2.15 . As the object rotated, the fixtures periodically intercepted

the path of the X-rays resulting in corrupted measurements and consequently artifacts in

the reconstruction. To mitigate this problem, we incorporate additional corrections that are

described in Appendix  A .

Figure  2.11 compares multi-slice fusion with several other methods. Each image is a slice

through the reconstructed vial for one time-point along the spatial xy-plane. Both FBP and

MBIR+4D-MRF suffer from obvious artifacts, higher noise and blurred edges. In contrast to

that, the multi-slice fusion reconstruction has smooth and uniform textures while preserving

edge definition. Figure  2.11 also illustrates the effect of model fusion by comparing multi-slice

fusion with MBIR+Hxy,t, MBIR+Hyz,t, and MBIR+Hzx,t. MBIR+Hyz,t and MBIR+Hzx,t

suffer from horizontal and vertical streaks respectively since the denoisers were applied in

those planes. MBIR+Hxy,t does not suffer from streaks in the figure since we are viewing a

slice along the xy-plane, but it suffers from other artifacts. MBIR+Hxy,t cannot reconstruct

the outer ring since the slice displayed is at the edge of the aluminum seal and the xy-plane

does not contain sufficient information. In contrast, multi-slice fusion can resolve the edges

of the rings better than either of MBIR+Hxy,t, MBIR+Hyz,t, and MBIR+Hzx,t since it uses

information from all the spatial coordinates.

Next, we plot a cross-section through the object for multi-slice fusion, MBIR+4D-MRF

and FBP in Figure  2.12 . For this, we choose a time-point where we know the aluminum

and glass have separated spatially, thus creating an air-gap. Multi-slice fusion results in a

deeper and more defined reconstruction of the gap between materials. This supports that

multi-slice fusion is able to preserve fine details in spite of producing a smooth regularized

image.

Finally in Figure  2.13 we plot a cross-section through the object with respect to time to

show the improved space-time resolution of our method. We do this for FBP, MBIR+4D-

MRF and multi-slice fusion. Multi-slice fusion results in improved space-time resolution of

the separation of aluminum and glass.
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2.7.4 Real Data 90◦: Injector Pen

Table 2.7. Experimental specifications for Real Data 90◦: Injector Pen
Scanner Model North Star Imaging X50

Voltage 165 kV
Current 550 µA

Exposure 12.5 ms
Source-Detector Distance 694 mm

Magnification 2.83
Number of Views per Time-point 36

Rotation per Time-point 90◦
Cropped Detector Array 263× 768, (0.254 mm)2

Voxel Size (0.089 mm)3

Reconstruction Size (x,y,z,t) 263× 263× 778× 12

In this section we present results on real data to evaluate our method in a sparse-view

and limited-angle setting. The data is from a dynamic cone-beam X-ray scan of an injector

pen using a North Star Imaging X50 X-ray CT system. The experimental specifications are

summarized in Table  2.7 .

The injection device is initiated before the dynamic scan starts and completes a full

injection during the duration of the scan. We are interested in observing the motion of

a particular spring within the injector pen in order to determine whether it is working as

expected. The spring in question is a non-helical wave-spring [  63 ] that is constructed out

of circular rings that are joined together. The spring exhibits a fast motion and as a result

we need a high temporal resolution to observe the motion of the spring. To have sufficient

temporal resolution we reconstruct one frame for every 90◦ rotation of the object instead of

the conventional 360◦ rotation.

Figure  2.14 shows a volume rendering of the reconstructed spring and a cross-section

through it for four time-points and reconstruction methods FBP, MBIR+4D-MRF, and

multi-slice fusion. The FBP reconstruction contains severe limited-angle artifacts. MBIR+4D-

MRF mitigates some limited-angle artifacts but some artifacts remain. In contrast, multi-

slice fusion mitigates most limited-angle artifacts. The cross-sections of the spring in the

multi-slice fusion reconstruction are more circular than the other methods, which align with
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our prior knowledge about the spring. The fast compression of the spring causes the rings

within the spring to move significantly within a time-point, resulting in the observed blur in

the multi-slice fusion reconstruction. Strong limited-angle artifacts in the other reconstruc-

tions mask this effect.

2.8 Conclusion

In this paper, we proposed a novel 4D X-ray CT reconstruction algorithm, multi-slice

fusion, that combines multiple low-dimensional denoisers to form a 4D prior. Our method

allows the formation of an advanced 4D prior using state-of-the-art CNN denoisers without

needing to train on 4D data. Furthermore, it allows for multiple levels of parallelism, thus

enabling reconstruction of large volumes in a reasonable time. Although we focused on 4D X-

ray CT reconstruction for NDE applications, our method can be used for any reconstruction

problem involving multiple dimensions.
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Figure 2.9. Comparison of different methods for simulated data with 90◦
rotation of object per time-point. The FBP reconstruction has severe limited-
angle artifacts. MBIR+TV improves the reconstruction in some regions but
it suffers in areas affected by limited angular information. MBIR+4D-MRF
reduces limited-angle artifacts, but allows severe artifacts to form that are not
necessarily consistent with real 4D image sequences. In contrast, the multi-slice
fusion result does not suffer from major limited-angle artifacts.
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Figure 2.10. Illustration of the reconstruction quality obtained for extreme
sparse-view data with different levels of limited angle per time-point. FBP
results in strong artifacts due to sparse-views and limited angles. MBIR+TV
and MBIR+4D-MRF mitigates most of the major sparse-view artifacts but
suffers from limited angle artifacts in the 90◦ limited angle case. Multi-slice
fusion results in fewer limited-angle and sparse-view artifacts and an improved
PSNR metric. Moreover, multi-slice fusion results in reduced artifacts com-
pared to MBIR+TV and MBIR+4D-MRF as the rotation per time point is
decreased.
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Figure 2.11. Comparison of different methods for Real Data 360◦: vial.
Each image is a slice through the reconstructed vial for one time-point along the
spatial xy-plane. Both FBP and MBIR+4D-MRF suffer from obvious windmill
artifacts, higher noise and blurred edges. In contrast to that, the multi-slice
fusion reconstruction has smooth and uniform textures while preserving edge
definition. MBIR+Hyz,t and MBIR+Hzx,t suffer from horizontal and vertical
streaks. MBIR+Hxy,t cannot reconstruct the outer ring since the slice displayed
is at the edge of the aluminum seal and the xy-plane does not contain sufficient
information. Multi-slice fusion can resolve the edges of the rings better than
either of MBIR+Hxy,t, MBIR+Hyz,t, and MBIR+Hzx,t since it has information
from all the spatial coordinates.
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Figure 2.12. Plot of cross-section through the vial at a time when the
aluminum and glass have physically separated. Multi-slice fusion is able to
resolve the junction between materials better while simultaneously producing
a smoother reconstruction within materials compared to MBIR+4D-MRF and
FBP.
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Figure 2.13. Illustration of temporal resolution for real data 360◦ : vial. We
plot a cross-section through the vial with time for each method: multi-slice
fusion, MBIR+4D-MRF, FBP. Multi-slice fusion results in improved space-
time resolution of the separation of aluminum and glass.
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Figure 2.14. Volume rendering of the reconstructed spring and its cross-
section for four time-points. A 90◦ limited set of views is used to reconstruct
each time-point. The FBP reconstruction contains severe limited-angle arti-
facts. MBIR+4D-MRF mitigates some limited-angle artifacts but some arti-
facts remain.

Figure 2.15. Experimental setup for Real Data 360◦: Vial Compression. The
vial is undergoing dynamic compression during the scan, to capture the me-
chanical response of the components. The glass vial (center) and the actuator
(top) are held together by a frame constructed of tubes and plates. The tubes
were placed outside the field of view of the CT scanner, thus causing artifacts
in the reconstruction. We describe a correction for this in Appendix  A .

63



3. CODEX: A MODULAR FRAMEWORK FOR JOINT

TEMPORAL DE-BLURRING AND TOMOGRAPHIC

RECONSTRUCTION

3.1 Introduction

Computed tomography (CT) imaging has been widely used in a variety of applications to

study the internal structure of static and dynamic objects. For rapidly changing objects, good

temporal resolution is crucial in order to resolve the reconstructed object accurately. Model

based iterative reconstruction techniques have led to significant improvements in temporal

resolution for time-resolved CT through the use of novel view-sampling [ 33 ] and improved

prior modeling multi, [ 33 ], [ 35 ], [ 64 ]. However, even with these improvements, the temporal

resolution is fundamentally limited by the rate of collection of projection measurements.

In an ideal CT system, each view is assumed to measure the projection at a single angle.

A step-and-shoot acquisition strategy conforms with this assumption by rotating the object

to each desired angle and stopping the rotation before taking a measurement. Step-and-

shoot results in a slow acquisition due to the frequent stops in rotation and a wastage of the

photon flux when the object is being rotated. A more practical acquisition strategy is fly-

scanning [ 65 ], where the object rotates continuously while measurements are being taken.

However, this results in motion blurred measurements, and consequently reconstructions

that are affected by motion artifacts.

The rotation of the object introduces a motion blur in the measurements that is difficult

to deblur directly using simple approaches. Simple deconvolution operations [ 66 ], [  67 ] along

the view-angle dimension are not possible when the view angles are sparse which is typical

in time-resolved CT imaging. In the photography literature [  68 ], [  69 ], motion blurred pho-

tographs are often deblurred by modeling the motion blur as a spatial convolution with a

point-spread function and then inverting the convolution. However, the blurring operation

in the radiographs cannot be modeled as a spatial convolution. This is because each X-ray

detector pixel measures the combined signal from many parts of the object with a differ-
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Figure 3.1. Illustration of our method, CodEx. CodEx is a synergistic com-
bination of a coded acquisition and a non-convex Bayesian reconstruction.
During acquisition, CodEx flutters the exposure on and off rapidly in a known
binary code during each view, resulting in a coded motion blur. CodEx subse-
quently uses the knowledge of the code to solve a non-convex iterative recon-
struction problem to reconstruct the underlying object.

ent velocity vector due to the rotation. Consequently, spatial deblurring approaches from

photography cannot be used to deblur the motion blurred 2D radiographs.

Model based iterative reconstruction methods can be used to model the motion blur

within the reconstruction problem and solve it. However, for the problem of transmission

tomography, the attenuation of the X-ray beam is exponential, so this results in a non-convex

cost function [ 70 ] that is difficult to optimize. Some approaches use linear approximations to

the forward model [ 71 ], [ 72 ] in order to make the computation simpler, but the approximation

error can be too large in some circumstances [ 71 ]. Regardless of the method used to invert

the motion blurred measurements, the inversion process is inherently ill-posed due to the

nature of the motion blur [ 71 ].

In this paper, we introduce CodEx, a novel method for coded exposure CT acquisition

and reconstruction. Figure  3.1 illustrates our approach. During acquisition, CodEx flutters

the exposure on and off rapidly in a known binary code during each view, resulting in a
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coded motion blur. CodEx subsequently uses the knowledge of the code to solve a non-

convex iterative reconstruction problem to reconstruct the underlying object. The CodEx

reconstruction method uses the alternating direction method of multipliers (ADMM) to split

the inverse problem into iterative deblurring and CT reconstruction sub-problems. This

results in a modular reconstruction algorithm, making it easy to extend to different CT

geometries.

We present results on different simulated as well as experimental data to evaluate our

method, as well as to answer questions about the choice of a good code. The results indicate

that a well chosen code results in a reduced loss of information during acquisition, leading

to improved reconstruction quality.

The rest of the paper is organized as follows. In section  3.2 , we introduce the general

problem of motion blur due to integration over angles, as well as coded acquisition in order to

mitigate the effect of the motion blur. In section  3.3 , we introduce our CodEx formulation

that models the coded motion blur and inverts it during the reconstruction process. In

section  3.4 , we describe our interlaced view-angle sampling scheme that provides a practical

approach for performing coded exposure acquisition with interlaced view angles. Finally, in

section  3.5 , we present results on simulated and experimental data to evaluate our method.

3.2 Problem Description

In a conventional computed tomography (CT) setting, a single view is assumed to mea-

sure the projection of an object at a single angle. To conform with this assumption, a

step-and-shoot scanning is done where the object is rotated to each desired angle, a view

measurement is taken, and the rotation is resumed. However, this leads to slow acquisition

and wasted photons. A more practical approach is fly-scanning, where the object is con-

tinuously rotated while the view measurements are being taken. However, in this case, the

detector integrates the incoming photon-flux over a range of angles instead of a single angle,

66



as shown in Figure  3.2 . The resulting vector of Md expected photon-counts at the detector

at angle θ0 can be written as

λ̄boxcar
θ0 = λ0

∆θ

∫ θ0+∆θ

θ0
exp {−Aθ x} dθ , (3.1)

where Aθ ∈ RMd×N performs the forward projection of the image x at angle θ, λ0 is the

photon-flux of the X-ray source, and ∆θ is the blur-angle.

Figure 3.2. Illustration of motion blur due to rotation. In step-and-shoot
acquisition, each measurement depends on the projection at a single angle
(blue line). In fly-scanning, the detector integrates photons over a range of
projection angles (red sector). This integration can be approximated as a
discrete sum over micro-projection angles (red dots).

We can approximate the integration in equation ( 3.1 ) using a discrete sum over K closely

spaced angles as

λ̄boxcar
θ0 = λ0

K

K−1∑
k=0

exp
{
−Aθ0+ k∆θ

K
x
}
. (3.2)

We will refer to these K closely spaced angles as micro-projection angles henceforth.

As ∆θ becomes larger, we collect more photons in a single measurement, but this comes

at the cost of blurred measurements, which leads to a reconstruction with motion artifacts.

To overcome this problem, our approach will be to modulate the photon flux at each of

the K micro-projection angles by a binary code. This can be done by pulsating the X-ray

source [  73 ], using the electronic shutter of the detector sensor, or with a mechanical shutter
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on the beam path [ 74 ] as shown in Figure  3.2 . In this case, the expected photon-counts at

the detector at angle θ0 can be written as

λ̄θ0 = λ0

K

K−1∑
k=0

ck exp
{
−Aθ0+ k∆θ

K
x
}
, (3.3)

where c = [c0, c1, · · · , cK−1] is the binary code used to modulate the photons. In this case,

each measurement is formed by a coded sum over K non-overlapping micro-projection angles.

Notice that equation ( 3.3 ) reduces to the boxcar case of equation ( 3.2 ) when c = [1, 1, · · · , 1].

On the other hand, equation ( 3.3 ) reduces to step-and-shoot scanning when c = [1, 0, · · · , 0].

Modulating the photon flux results in loss of photons compared to the boxcar case of c =

[1, 1, · · · , 1], but many more photons are collected relative to the step-and-shoot case of

c = [1, 0, · · · , 0]. A good choice of code c can result in an invertible blur while improving

the signal to noise ratio (SNR) of the measurements.

3.3 CodEx Formulation

In this section, we will introduce CodEx, a synergistic combination of coded acquisition

and CT reconstruction. During the acquisition process, we collect Mθ 2D radiograph mea-

surements at Mθ different measurement angles. As Figure  3.2 illustrates, each radiograph

measures the projection of the object across a range of angles which can be written as a

function of K micro-projections. Some of the Mθ measurements can have overlapping pro-

jections and share the same micro-projections. Without loss of generality, we assume that

there are Nθ ≤ KMθ unique micro-projection angles in [0, π] out of the KMθ maximum

possible micro-projection angles.
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3.3.1 Measurement Model

For each measurement, we use a binary code c = [c0, c1, · · · , cK−1] to modulate the

photon-flux over K micro-projection angles as shown in equation ( 3.3 ). The resulting vector

of expected photon counts for all the measurement angles can be written as

λ̄ = c̄
λ0

K
C exp {−Ax} , (3.4)

where, λ̄ ∈ RMθMd is the vector of expected photon counts for the Mθ measurement angles

and Md detector pixels, C ∈ RMθMd×NθMd is a sparse matrix that performs the coded sum

in equation ( 3.3 ) and is normalized such that each row of C sums to 1, c̄ = ∑K−1
k=0 ck is the

normalizing constant, A ∈ RNθMd×N projects the image x ∈ RN for the Nθ unique micro-

projection angles. The structure of the matrix C depends on how the Mθ measurement

angles are arranged, and how each measurement relates to the micro-projections at K micro-

projection angles. Section  3.4 provides details on the structure of C for a practical interlaced

view-sampling strategy.

The vector of incident photon counts at the detector, λ ∈ RMdMθ are given by

λ ∼ Pois(λ̄) , (3.5)

where Pois(λ̄) denotes an element wise Poisson distribution with mean λ̄. A high expected

photon-count λ̄ results in a higher signal to noise ratio (SNR) in the measurements. The goal

of the coded projections is to increase the SNR of the acquired data while also allowing for

accurate deblurring of the summed micro-projections. A good code c introduces an invertible

blur and allows us to preserve high frequency information while at the same time collecting

more photons to reduce noise [ 69 ].

In order to derive the forward model, we first convert the photon-count measurements

into projection measurements as is typically done in tomography. In order to do this, we
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normalize by the “blank scan” obtained when the object is removed (i.e., x = 0), and we

take the negative log to form

y = − log
{

λ

c̄λ0/K

}
, (3.6)

where y ∈ RMdMθ is the vector of projection measurements for all Mθ views, and c̄ = ∑K−1
i=0 ck

results from the assumption that x = 0 in equation ( 3.3 ). If the photon counts are large,

then we can make the approximation [ 30 ], [  34 ] that

E [y|x] ≈ − log {C exp {−Ax}}

V ar [y|x] ≈ D−1 . (3.7)

whereD = diag{λ}. In practice, the true photon counts, λ are often unknown. Consequently,

we set the precision matrix D as

D = diag{w exp {−y}} , (3.8)

where the scalar w is empirically chosen [ 33 ], [  34 ], [  75 ].

Using the Gaussian approximation to the likelihood function[  30 ], the non-linear forward

model is then given by

− log p(y|x) = 1
2 ‖y + log {C exp {−Ax}}‖2

D + const(y) . (3.9)

3.3.2 MAP Estimate

The X-ray attenuation coefficient image x∗ can be reconstructed by computing a Maxi-

mum A Posteriori (MAP) estimate as

x∗ = arg min
x
{− log p(y|x)− log p(x)}

= arg min
x

1
2 ‖y + log {C exp {−Ax}}‖2

D + h(x)
 (3.10)
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where h(x) is the regularization or prior model and the forward model term − log p(y|x)

follows from equation ( 3.9 ). Notice that the non-linear forward model makes direct opti-

mization of the cost function in equation ( 3.10 ) challenging, but in the following sections,

we propose a modular algorithm for solving (  3.10 ) that makes the problem tractable.

3.3.3 ADMM Formulation

In order to simplify the optimization in equation ( 3.10 ), we split the cost function into

two parts with the following constraint

p = Ax , (3.11)

where p ∈ RNθMd is the projection of the image x at the Nθ finely spaced micro-projection

angles. In other words, p is the full set of unobserved micro-projections of the object. We

thus form the following equivalent problem.

x∗, p∗ = arg min
x,p

1
2 ‖y + log {C exp {−p}}‖2

D + h(x)


s.t p = Ax

(3.12)

Next, we will use the alternating directions method of multipliers (ADMM) method [  58 ]

to solve the constrained optimization of equation ( 3.12 ). The augmented Lagrangian for this

problem is given by

L(p, x, u) =1
2 ‖y + log {C exp {−p}}‖2

D + h(x)

+ 1
2σ2 ‖p− Ax+ u‖2 , (3.13)

where σ is a tunable parameter, and u is the scaled dual variable. The ADMM algorithm

for this problem can then be formulated as Algorithm  2 .
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Algorithm 2: ADMM formulation for coded exposure reconstruction
1 Initialize: p, x, u
2 while not converged do
3 p← arg minp L(p, x, u)
4 x← arg minx L(p, x, u)
5 u← u+ p− Ax
6 x∗ ← x
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3.3.4 Modular Implementation

Note that the optimization sub-problems in Algorithm  2 can be simplified as

arg min
p

L(p, x, u) = arg min
p

{1
2 ‖y + log {C exp {−p}}‖2

D

+ 1
2σ2 ‖p− (Ax− u)‖2

}
, (3.14)

arg min
x

L(p, x, u) = arg min
x

{ 1
2σ2 ‖(p+ u)− Ax‖2

+ h(x)
}

. (3.15)

We can rewrite the optimization problems in equations ( 3.14 ) and (  3.15 ) in a more

compact form as

arg min
p

L(p, x, u) = Fd(Ax− u), (3.16)

arg min
x

L(p, x, u) = Ft(p+ u), (3.17)

where the operators Fd and Ft are defined as

Fd(p̃) = arg min
p

1
2 ‖y + log {C exp {−p}}‖2

D

+ 1
2σ2 ‖p− p̃‖

2

, (3.18)

Ft(p̃) = arg min
x

 1
2σ2 ‖p̃− Ax‖

2 + h(x)
, (3.19)

where p̃ is a representative variable.

Both operators Fd and Ft have intuitive interpretations. From its form, function Fd can

be interpreted as the MAP deblurring function. Intuitively, Fd computes the MAP estimate

of the micro-projections p given the coded blurred measurements y and a prior distribution

of N(p̃, σ2I). In other words, Fd is a function that recovers the full set of unobserved micro-

projections in the proximity of p̃. On the other hand, the function x = Ft(p) has the simple
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interpretation of being a function that computes the regularized tomographic reconstruction,

x, given the micro-projections p.

Algorithm 3: CodEx reconstruction algorithm
1 Initialize: p, x, u
2 while not converged do
3 p← F̃d(Ax− u; p)
4 x← F̃t(p+ u;x)
5 u← u+ p− Ax
6 x∗ ← x

Algorithm ( 3 ) shows the complete CodEx reconstruction algorithm. Since it is impractical

to minimize the functions in equations ( 3.18 ) and (  3.19 ) completely, we perform partial

updates starting from an initial condition. The operator F̃d(p̃; pinit) denotes the computation

of Fd(p̃) for a fixed number of partial iterations starting from an initial condition of pinit.

Similarly, the operator F̃t(p̃;xinit) denotes the computation of Ft(p̃) for a fixed number of

partial iterations starting from an initial condition of xinit.

Algorithm  4 outlines the computation of the deblurring function, F̃d(p̃; pinit) that performs

a partial update minimization of equation ( 3.18 ) starting from an initial value of pinit. We use

a gradient descent approach with a backtracking line-search [ 76 ] to perform the optimization.

The cost function is denoted by

fd(p) = 1
2 ‖y + log {C exp {−p}}‖2

D + 1
2σ2 ‖p− p̃‖

2 .

The gradient of the cost function fd(p) is denoted by

g = −diag (exp {−p})C>diag (C exp {−p})−1De . (3.20)

The cost function fd(.) is evaluated several times for each iteration in order to choose an

appropriate step-size of η starting from an initial step-size of η0.

Algorithm  5 outlines the computation of the tomographic reconstruction function, F̃t(p̃;xinit)

that performs a partial update minimization of equation (  3.19 ) starting from an initial value
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Algorithm 4: Computation of the deblurring function F̃d
Input: Initial micro-projections: pinit

Proximal micro-projections input: p̃
Output: Final micro-projections: p∗

1 Initialize: p← pinit
2 for i← 1 to np do
3 e← y + log {C exp {−p}}
4 g = −diag (exp {−p})C>diag (C exp {−p})−1De
5 η = η0

6 while fd(p− ηg) > fd(p)− ηε ‖g‖2 do
7 η ← η/2
8 p← p− ηg
9 p∗ ← p
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of xinit. The optimization can be performed using any off-the-shelf software module that can

perform regularized inversion. More implementation details are given in section  3.5 .

Algorithm 5: Computation of the tomographic reconstruction function F̃t
Input: Initial reconstruction: xinit

Projections data: p̃

Output: Final reconstruction: x∗
1 Initialize: x← xinit
2 for i← 1 to nt do
3 e← p− Ax
4 x← x+ Update(e, A)
5 x∗ ← x

Even though the coded deblurring and CT reconstruction problems are tightly coupled,

the modular structure of Algorithm ( 3 ) separates them into deblurring and CT reconstruction

sub-problems that must be solved repeatedly until convergence. Note that the deblurring

operator Fd performs the optimization in equation ( 3.18 ) purely in the projection domain

and is independent of the CT geometry. Only the tomographic reconstruction operator Ft,

and the forward projection operator A in Algorithm ( 3 ) depend on the CT geometry under

consideration. Our approach can therefore be easily extended to other CT geometries by

incorporating a different reconstruction operator Ft, and a forward projection operator A

specific to that CT geometry.

3.4 Interlaced View Sampling

Recently proposed interlaced view sampling schemes [  33 ], [ 40 ] have demonstrated im-

proved reconstruction quality for time-resolved tomography compared to traditional pro-

gressive view sampling. In interlaced view sampling, the view measurements are collected

over multiple rotations of the object, rather than a single rotation as progressive sampling.

This allows a wider range of angular measurements per unit time, thereby improving the

reconstruction quality for time-resolved tomography [ 33 ].

Interlaced view sampling schemes typically require a large spacing between consecutive

view angles, causing considerable motion blur in fly-scanning. CodEx is thus well suited
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for interlaced view sampling as the resulting motion blur can be inverted to improve the

reconstruction quality.

However, using an irregularly spaced interlaced view sampling can make the CodEx re-

construction very computationally expensive. To see why this is, consider equation ( 3.3 )

that formulates the expected photon counts at a view-angle as a discrete sum over K micro-

projection angles. If the view-angles are not regularly spaced, then the micro-projection

angles for different view-angles will not match. In the worst case, the measurements at

Mθ view-angles will be a function of KMθ micro-projection angles. This increases the

memory footprint of the projection domain variables p, u ∈ RKMθMd in Algorithm  3 dras-

tically, as well as increases the computational complexity of the operators Fd and Ft in

equations ( 3.18 ) ( 3.19 ) considerably.

In order to improve the computational efficiency of CodEx reconstruction with interlaced

views, we propose a interlaced view sampling scheme with regularly spaced view angles. The

Mθ interlaced measurement angles are given as

θi = πiK

Nθ

, for i = 0, · · · ,Mθ − 1, (3.21)

where K is the code length of coded exposure and Nθ is the number of unique micro-

projection angles in [0, π] chosen such that gcd(K,Nθ) = 1. Not every choice of Nθ will yield

a good interlaced angle scheme that offers a uniform coverage in the [0, π] angular range.

Theorem  B.0.1 in Appendix  B shows that ensuring gcd(K,Nθ) = 1 allows the view angles θi
for i = 0, . . . , (Nθ − 1) to cover every unique angle πj

Nθ
in [0, π] for j = 0, . . . , (Nθ − 1).

In order to ensure gcd(K,Nθ) = 1, we choose Nθ in the following way

Nθ = mK − n , (3.22)

where the positive integersm and n are chosen so that n andK are co-primes. Once a suitable

n is chosen that is co-prime to K, m can be adjusted to tune the angular spacing between

view-angles. For a small n, the view-angles θi in equation (  3.21 ) are roughly separated

77



by π
m

. Theorem  B.0.2 in Appendix  B shows that our choice of Nθ satisfies the constraint

gcd(K,Nθ) = 1. Some typical choices of the parameters K, m, n is given in Table  3.1 .

Table 3.1. Typical parameter choices for view-angles
Code-length Blur-angle
K m n Nθ = mK − n ∆θ = K180◦

Nθ

52 2 27 77 121.56◦
52 5 27 233 40.17◦
52 10 27 493 18.98◦
52 20 27 1013 9.24◦

Fig  3.3 graphically illustrates the interlaced view-angle scheme in equation ( 3.21 ) for

the case when m = 5, n = 5, and K = 11. In this case, there are Nθ = mK − n = 50

distinct micro-projection angles in the range of [0, π]. Notice that each new measurement

angle shown by a blue dot is spaced by K = 11 discrete angular steps, but the measurement

angles do not repeat until all Nθ = 50 distinct micro-projection angles are sampled.

The expression of expected photon-counts at the detector given in equation ( 3.4 ) can be

written more explicitly for the proposed interlaced view angle sampling as

λ̄i = λ0
K−1∑
k=0

ck exp
{
−
(
Aπ(iK+k)

Nθ

)
x
}

, for i = 0, · · · ,Mθ − 1, (3.23)

where λ̄i ∈ RMd is the vector of expected photon-counts at the Md detector pixels, λ0 is the

photon-flux of the X-ray source, c = [c0, c1, · · · , cK−1] is the binary code used to modulate

the photons, and AπiK
Nθ

∈ RMd×N performs the forward projection of the image x at angle
πiK
Nθ

.

In order to write equation ( 3.23 ) in a vectorized form, let us define λ̄ ∈ RMdMθ to be the

vector of expected photon-counts at the detector for the Mθ measurement angles as

λ̄ = [λ̄0, · · · , λ̄Mθ−1]> . (3.24)
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Figure 3.3. Illustration of our View angle sampling for coded exposure CT
for Nθ = mK − n = 50 (K = 11, m = 5, n = 5) and Mθ = 50. Each new
measurement angle shown by a blue dot is spaced by K = 11 discrete angular
steps, but the measurement angles do not repeat until all Nθ = 50 distinct
micro-projection angles (blue dots) are sampled.

Let us also define the forward projection matrix for the Nθ micro-projection angles as

A = [A>0 , A>π
Nθ

, · · · , A>(Nθ−1)π
Nθ

]> . (3.25)

Using the above notation, equation ( 3.23 ) can be expressed in a more compact vectorized

form like equation ( 3.4 ) as

λ̄ = c̄λ0C exp {−Ax} , (3.26)
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where c̄ = ∑K−1
i=0 ck is used for normalization, λ0 is the photon-flux of the X-ray source, and

the matrix C that performs the coded sum is defined as

Ci(iθ,ir,ic),j(jθ,jr,jc) (3.27)

=



ck
c̄

if mod(iθK + k,Nθ) = jθ for some k < K ,

and ir = jr, and ic = jc

0 otherwise

,

where mod() denotes the modulo operation and i(iθ, ir, ic) represents the rasterized index i

as a function of the angular index iθ, row index ir, and column index ic. Similarly, j(jθ, jr, jc)

represents the rasterized index j as a function of the angular index jθ, row index jr, and

column index jc.

3.5 Results

We present results using simulated and binned physical data in order to demonstrate

the effectiveness for our CodEx approach. We consider three experimental cases outlined as

follows:

1. Simulated data without noise

2. Simulated data with photon noise

3. Binned physical data.

In each experimental case, we compare the result of our Algorithm  3 to the baseline solution

in equation ( 3.28 ) for different exposure codes. In particular, we consider three exposure

codes:

1. Snapshot code: a single one followed by all zeros (1, 0, · · · , 0)

2. Raskar code [  69 ]

3. Boxcar code: all ones (1, 1, · · · , 1)
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Figure  3.4 displays these codes as a plot. The original Raskar code [  69 ] is of length 52 but

we extend it to larger code-lengths by repeating it by an integer number of times.

(a) Snapshot code

(b) Raskar code

(c) Boxcar code

Figure 3.4. Examples of the binary codes of length 52 that are used for
modulating the photon-flux in our experiments.

As a baseline method for comparison, we use an iterative reconstruction method without

modelling the coded blur. Mathematically this can be written as

x∗baseline = arg min
x

λ0

2

Mθ−1∑
i=0

∥∥∥∥yi − AπiK
Nθ

x
∥∥∥∥2

+ h(x)
 , (3.28)

where yi ∈ RMd is the vector of projection measurements at angle πiK
Nθ

in accordance with

the view sampling in equation ( 3.21 ), AπiK
Nθ

∈ RMd×N performs forward projection of the

image x ∈ RN at angle πiK
Nθ

. The prior model h() is chosen to be the same as the CodEx

reconstruction.

CodEx can utilize any off-the-shelf regularized inversion solver for Ft in equation ( 3.19 ) to

compute the solution in Algorithm  3 . The baseline method in equation ( 3.28 ) can similarly be

computed using any off-the-shelf regularized inversion solver. In all our experimental results,

we use svmbir ( https://github.com/cabouman/svmbir ) to compute Ft as well as the baseline
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reconstruction. The svmbir implementation uses a Markov random field based regularization

and the reconstruction is computed using a cache optimized iterative coordinate descent [ 77 ].

For computing the CodEx reconstruction, we run 1000 ADMM iterations in Algorithm  3 .

For each ADMM iteration, we run np = 5 partial updates for computing the F̃d step and

nt = 5 partial updates for computing the F̃t step. For computing the baseline reconstruction,

we perform 400 iterations.

(a) Phantom (b) CodEx-snapshot (c) CodEx-Raskar (d) CodEx-boxcar

(e) Baseline-snapshot (f) Baseline-Raskar (g) Baseline-boxcar

Figure 3.5. Comparison of reconstruction quality for simulated data with-
out noise. Experimental details are in Table  3.2 . For the Raskar and box-
car codes, the baseline reconstruction produces a blurred image. In contrast,
CodEx is able to reconstruct the image without suffering from severe blurring.
The CodEx-boxcar reconstruction has noticeable radial blur due to the non-
invertible nature of the boxcar blur kernel. In contrast, the CodEx-Raskar and
CodEx-snapshot reconstructions do not suffer from severe radial blur artifacts.

3.5.1 Simulated data without noise

In this section we perform simulated experiments without noise in order to demonstrate

the ability to deblur the coded blur introduced during the measurement process. We start
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with a phantom image, use forward-projection to generate simulated noise-free measure-

ments, and then perform reconstruction from the simulated measurements. In order to

generate simulated noise-free measurements, we make use of equations ( 3.4 ) and ( 3.5 ) with

an infinitely large λ0. We set the diagonal elements of the weight matrix D to be 103 in

equation ( 3.18 ). Details of the experimental setup are given in Table  3.2 .

Table 3.2. Experimental setup for simulated data without noise
Number of Views, Mθ 233

Number of Unique Angles, Nθ 233
Angular Span 180◦

Code Length, K 52
Blur Angle 40.17◦

Reconstruction Size (x, y) 64× 64

Figure  3.5 provides a qualitative comparison between our method CodEx and the baseline

for different exposure codes. For the Raskar and boxcar codes, the baseline reconstruction

produces a blurred image. In contrast, CodEx is able to reconstruct the image without

suffering from severe blurring. The CodEx-boxcar reconstruction has noticeable radial blur

due to the non-invertible nature of the boxcar blur kernel. In contrast, the CodEx-Raskar

and CodEx-snapshot reconstructions do not suffer from severe radial blur artifacts.

3.5.2 Simulated data with photon noise

In this section, we perform simulated experiments with Poisson noise in order to simulate

real coded-exposure tomographic systems. We start with a phantom image, use forward-

projection to generate simulated noisy measurements, and then perform reconstruction from

the simulated measurements. In order to generate simulated measurements, we make use of

equations ( 3.4 ) and ( 3.5 ). The experimental details are summarized in Table  3.3 .

Figure  3.6 shows a qualitative comparison of CodEx with the baseline for different coded

exposures. For Raskar and boxcar codes, the baseline reconstruction leads to a blurred

image. In contrast, CodEx-Raskar and CodEx-boxcar reconstructions do not suffer from

severe blurring artifacts. The reconstructions with snapshot code suffer from high noise due

to the limited photon counts in the measurements. The reconstructions with boxcar code
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(a) Phantom (b) CodEx-snapshot (c) CodEx-Raskar (d) CodEx-boxcar

(e) Baseline-snapshot (f) Baseline-Raskar (g) Baseline-boxcar

Figure 3.6. Comparison of reconstruction quality for simulated data with
photon noise. Experimental details are in Table  3.3 . For Raskar and box-
car codes, the baseline reconstruction leads to a blurred image. In contrast,
CodEx-Raskar and CodEx-boxcar reconstructions do not suffer from severe
blurring artifacts. The reconstructions with snapshot code suffer from high
noise due to the limited photon counts in the measurements. The reconstruc-
tions with boxcar code suffer from radial blur artifacts and loss of fine features
due to the non-invertible nature of the blur kernel.

Table 3.3. Experimental setup for simulated data with noise
λ0 10000

Number of Views, Mθ 100
Number of Unique Angles, Nθ 233

Angular Span 180◦
Code Length, K 52

Blur Angle 40.17◦
Reconstruction Size (x, y) 64× 64

suffer from radial blur artifacts and loss of fine features due to the non-invertible nature of

the blur kernel.
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(a) Primal Residual: RMSE(Axt, pt) (b) Dual Residual: RMSE(Axt, Axt−1)

Figure 3.7. Primal and dual residual convergence plots for simulated data
with photon noise. Here t refers to the ADMM iteration number. The Raskar
code leads to an improved convergence than the boxcar code.

In Figure  3.7 , we plot the primal residual, RMSE(Axt, pt) and dual residual, RMSE(Axt,

Axt−1) [ 58 ] at each ADMM iteration to illustrate the convergence of our method. Here t

refers to the ADMM iteration number. The Raskar code leads to an improved convergence

than the boxcar code.

In Figure  3.8 , we show the effect of the photon-flux (λ0) and the code length on recon-

struction quality for different codes. For each code type snapshot, Raskar, and boxcar, we

vary the photon-flux (λ0) and plot the rmse with respect to the phantom to measure im-

age quality. We also show the resulting image for a visual inspection of image quality. We

repeat this process for each code lengths of 52, 104, and 208. The remaining experimental

parameters are kept the same as Table  3.3 . When the photon-flux (λ0) is low, the boxcar

code and Raskar code produce better image quality than the snapshot code as a result of

collecting more photons. When the photon-flux (λ0) is high, the minor gains from increased

photon count do not fully compensate for the loss of information by inverting the coded blur.

Consequently at high photon-flux, the snapshot code produce better image quality than the

boxcar code and Raskar codes. Increasing the blur angle for a given photon-flux leads to the

degradation of image quality for the boxcar code and Raskar codes since inverting the coded

blur causes more loss of information. This loss of image quality is less pronounced for the
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(a) Code length 52 (Blur angle 40.17◦)

(b) Code length 104 (Blur angle 80.34◦)

(c) Code length 208 (Blur angle 160.68◦)

Figure 3.8. Effect of the photon-flux (λ0) and the code length on reconstruc-
tion quality for different codes. The remaining experimental parameters are
kept the same as Table  3.3 . When the photon-flux (λ0) is low, the boxcar code
and Raskar code produce better image quality than the snapshot code as a re-
sult of collecting more photons. When the photon-flux (λ0) is high, the minor
gains from increased photon count do not fully compensate for the loss of in-
formation by inverting the coded blur. Consequently at high photon-flux, the
snapshot code produce better image quality than the boxcar code and Raskar
codes.
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Raskar code since the code is more invertible than the boxcar code. Consequently, when the

photon-flux (λ0) is low, increasing the blur angle for the Raskar code can be beneficial since

the loss of information inverting the coded blur is compensated by the lower measurement

noise due to increased photon collection.

Table 3.4. Experimental setup for checking robustness with respect to the
underlying object to be reconstructed.

λ0 40000
Number of Views, Mθ 200

Number of Unique Angles, Nθ 493
Angular Span 180◦

Code Length, K 104
Blur Angle 37.97◦

Reconstruction Size (x, y) 128× 128

Figure 3.9. Robustness with respect to underlying reconstructed object. Ex-
perimental details are summarized in Table  3.4 . The CodEx reconstruction is
able to recover the major features of the image despite the high angular blur.
In contrast, the baseline results in overtly blurred reconstructions.

In order to show the robustness of our method, we perform simulated experiments using

different widely-used natural images and CT images [ 78 ] as the phantom. For each phantom,
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we perform forward-projection to generate simulated noisy measurements and then perform

reconstruction from the simulated measurements. To generate simulated measurements, we

make use of equations (  3.4 ) and (  3.5 ). Experimental details are summarized in Table  3.4 .

Figure  3.9 compares the CodEx reconstruction with the baseline reconstruction for each

phantom image. The CodEx reconstruction is able to recover the major features of the

image despite the high angular blur. In contrast, the baseline results in overtly blurred

reconstructions.

3.5.3 Binned physical data

(a) Pseudo phantom (b) CodEx-Raskar (c) CodEx- boxcar

(d) Baseline-Raskar (e) Baseline-boxcar

Figure 3.10. Comparison of reconstruction quality for binned physical data.
Experimental details are summarized in Table  3.5 . CodEx reconstructions
preserve the major features in the image whereas the baseline leads to overtly
blurred reconstructions.
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(a) Primal Residual: RMSE(Axt, pt) (b) Dual Residual: RMSE(Axt, Axt−1)

Figure 3.11. Primal and dual residual convergence plots for binned physical
data. Here t refers to the ADMM iteration number. The Raskar code leads to
an improved convergence than the boxcar code.

In this section, we perform semi-simulated experiments by binning physical experimental

data. Binning physical data allows us to generate arbitrary coded measurements without per-

forming physical experiments using coded exposure. We start with an existing experimental

data, generate coded measurements by binning, and then perform reconstruction from the

coded measurements. The object in consideration contains borosilicate glass spheres of dif-

ferent sizes encased in a polypropylene matrix [ 79 ]. The experimental details are summarized

in Table  3.5 .

Table 3.5. Experimental setup for binned physical data
X-ray Energy 27.4 keV

Exposure Time 0.0001 s
Number of Views, Mθ 1500

Number of Unique Angles, Nθ 1500
Angular Span 180◦

Code Length, K 104
Blur Angle 12.48◦
Pixel Size 5.2 µm

Reconstruction Size (x, y) 320× 320
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Using the original experimental measurements at Nθ distinct view-angles, we generate

Mθ = Nθ coded measurements as

yi = − log
{
K−1∑
k=0

ck
c̄

exp
{
−ỹmod(iK+k,Nθ)

}}
, (3.29)

for i = 0, · · · , Nθ − 1 ,

where ỹmod(iK+k,Nθ) is the vector of projection measurements at angle π(iK+k)
Nθ

obtained

from a physical experiment, yi is the vector of coded measurements at the ith view an-

gle, c = [c0, · · · , cK−1] is the binary code of length K. Note that since we generate Nθ

coded measurements from the Nθ original physical measurements, we can not create extra

information by coding and our reconstruction quality with coded measurements can at best

be that of using all the original measurements.

Figure  3.10 shows a comparison of our method with the baseline and the phantom for

measurements with different exposure codes. For the Raskar and boxcar codes, direct re-

construction produces a blurred image. In contrast, our PnP coded exposure method is able

to reconstruct the image without suffering from severe blurring.

In Figure  3.11 we plot the primal residual, RMSE(Axt, pt) and dual residual, RMSE(Axt,

Axt−1) [ 58 ] at each ADMM iteration to illustrate the convergence of our method. Here t

refers to the ADMM iteration number. The Raskar code leads to an improved convergence

than the boxcar code.

3.6 Conclusion

In this paper, we proposed CodEx, a novel method for coded exposure CT acquisition

and reconstruction. Coding the exposure during the acquisition allows us to collect more

photons while at the same time effectively remove motion artifacts in the reconstruction.

The modular structure of the CodEx reconstruction algorithm makes it easy to extend our

method to different CT geometries.
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[65] D. J. Ching, M. Hidayetoğlu, T. Biçer, and D. Gürsoy, “Rotation-as-fast-axis scanning-
probe x-ray tomography: The importance of angular diversity for fly-scan modes,”
Applied optics, vol. 57, no. 30, pp. 8780–8789, 2018.

[66] W. H. Richardson, “Bayesian-based iterative method of image restoration,” JoSA,
vol. 62, no. 1, pp. 55–59, 1972.

96



[67] L. B. Lucy, “An iterative technique for the rectification of observed distributions,” The
astronomical journal, vol. 79, p. 745, 1974.

[68] Q. Shan, J. Jia, and A. Agarwala, “High-quality motion deblurring from a single im-
age,” Acm transactions on graphics (tog), vol. 27, no. 3, pp. 1–10, 2008.

[69] R. Raskar, A. Agrawal, and J. Tumblin, “Coded exposure photography: Motion de-
blurring using fluttered shutter,” in ACM SIGGRAPH 2006 Papers, 2006, pp. 795–
804.

[70] I. Steven Tilley, A. Sisniega, J. H. Siewerdsen, and J. W. Stayman, “High-fidelity mod-
eling of detector lag and gantry motion in ct reconstruction,” in Conference proceedings.
International Conference on Image Formation in X-Ray Computed Tomography, NIH
Public Access, vol. 2018, 2018, p. 318.

[71] D. Ching, S. Aslan, V. Nikitin, and D. Gürsoy, “Time-coded aperture for x-ray imag-
ing,” Optics Letters, vol. 44, no. 11, pp. 2803–2806, 2019.

[72] J. Cant, W. J. Palenstijn, G. Behiels, and J. Sijbers, “Modeling blurring effects due
to continuous gantry rotation: Application to region of interest tomography,” Medical
Physics, vol. 42, no. 5, pp. 2709–2717, 2015.

[73] M. Pergament, M. Kellert, K. Kruse, J. Wang, G. Palmer, L. Wissmann, U. Wegner,
and M. Lederer, “High power burst-mode optical parametric amplifier with arbitrary
pulse selection,” Optics express, vol. 22, no. 18, pp. 22 202–22 210, 2014.

[74] M. Gembicky, D. Oss, R. Fuchs, and P. Coppens, “A fast mechanical shutter for submi-
crosecond time-resolved synchrotron experiments,” Journal of synchrotron radiation,
vol. 12, no. 5, pp. 665–669, 2005.

[75] T. Balke, S. Majee, G. T. Buzzard, S. Poveromo, P. Howard, M. A. Groeber, J. Mc-
Clure, and C. A. Bouman, “Model-based cone-beam tomography with scatter correc-
tion,” Document in preparation for the IEEE Transactions on Computational Imaging,

[76] L. Armijo, “Minimization of functions having lipschitz continuous first partial deriva-
tives,” Pacific Journal of mathematics, vol. 16, no. 1, pp. 1–3, 1966.

[77] X. Wang, K. A. Mohan, S. J. Kisner, C. Bouman, and S. Midkiff, “Fast voxel line
update for time-space image reconstruction,” in 2016 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2016, pp. 1209–1213.

97



[78] B. Albertina, M. Watson, C. Holback, R. Jarosz, S. Kirk, Y. Lee, and J. Lemmerman,
“Radiology data from the cancer genome atlas lung adenocarcinoma [TCGA-LUAD]
collection,” The Cancer Imaging Archive, 2016. doi:  http://doi .org/10.7937/K9/
TCIA.2016.JGNIHEP5 .

[79] S. Singh, T. J. Stannard, S. S. Singh, A. S. Singaravelu, X. Xiao, and N. Chawla, “Var-
ied volume fractions of borosilicate glass spheres with diameter gaussian distributed
from 38-45 micronsen cased in a polypropylene matrix,” Argonne National Lab.(ANL),
Argonne, IL (United States), Tech. Rep., 2017.

98

https://doi.org/http://doi.org/10.7937/K9/TCIA.2016.JGNIHEP5
https://doi.org/http://doi.org/10.7937/K9/TCIA.2016.JGNIHEP5


A. CORRECTION FOR FIXTURES OUTSIDE THE FIELD OF
VIEW

Algorithm 6: Blind fixture correction
Inputs: Original Sinogram: y,

System Matrix: A,
Output: Corrected Sinogram: ycorr

1 x← recon(y, A)
2 xm ← mask(x)
3 e← y − Axm

4 p← blur(e)
5 c← arg minc∈R ‖e− cp‖2

6 ycorr ← y − cp

Here we describe our correction for fixtures placed out of the field of view of the scanner.
As shown in Figure  2.15 , the setup is held together by a fixture constructed of tubes and
plates. The tubes were placed outside the field of view of the CT scanner, thus causing
artifacts in the reconstruction. Our method performs a blind source separation of the pro-
jection of the object from that of the tubes. Our blind separation relies on the fact that the
projection of the tubes is spatially smooth. This is true since the tubes themselves do not
have sharp features and there is motion blur due to the large distance of the tubes from the
rotation axis.

Algorithm  6 shows our correction algorithm for the fixtures. Figure  A.1 illustrates the
algorithm pictorially. The initial reconstruction x suffers from artifacts within the image
and at the edge of the field of view. We mask x using a cylindrical mask slightly smaller
than the field of view to obtain the masked image xm. This is done so that the majority of
the artifacts at the edge of the field of view are masked but the object remains unchanged
in xm. Consequently the error sinogram e = y − Axm primarily contains the projection
of the tubes with some residual projection of the object. The blurring of e filters out the
residual object projection but preserves the spatially smooth projection of the tubes. The
corrected measurements ycorr are found after performing a least squares fit. The correction
can be repeated in order to get an improved reconstruction x and consequently an improved
correction ycorr.

Figure  A.1 shows the sinogram and reconstruction both before and after performing
the blind correction. Not only does the reconstruction after fixture correction remove the
artifacts in the air region, but it also improves the image quality inside the object. It can
be seen that the vertical stripes in the object in the yz view of the reconstruction have been
eliminated after performing the correction.
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Figure A.1. Pipeline of the blind fixture correction in Algorithm  6 . The
vertical stripes in the yz-plane of the reconstruction and the ring at the edge
of the field of view in the xy-plane of the reconstruction have been rectified
after performing the correction.
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B. UNIQUENESS PROOF OF INTERLACED VIEW-ANGLES
Theorem B.0.1. All angles θi = iK π

Nθ
are unique (modulo π) if 0 ≤ i ≤ Nθ − 1 and

gcd(K,Nθ) = 1

Proof. Let us assume for the sake of contradiction that there are two integers i, j such that
i 6= j, 0 ≤ i, j ≤ Nθ − 1, and θi = θj (modulo π).

Using the definition of θi, this implies

iK = jK + c1Nθ , (B.1)

where c1 is an integer constant. Rearranging equation ( B.1 ), we have

(i− j)K = c1Nθ . (B.2)

Now since the left-hand-side of equation ( B.2 ) is a multiple of K, so must be the right-hand-
side. However, since gcd(K,Nθ) = 1, c1 must be a multiple of K. Let c1 = Kc2, for some
integer constant c2. Then, equation ( B.1 ) becomes

iK = jK +Kc2Nθ . (B.3)

Dividing by K on both sides give
i = j + c2Nθ . (B.4)

However, our initial assumption of 0 ≤ i, j ≤ Nθ − 1 is a direct contradiction to equa-
tion ( B.4 ).

Theorem B.0.2. If K, m, n are integers such that gcd(K,n) = 1 then gcd(K,mK−n) = 1

Proof. For the sake of contradiction let us assume gcd(K,mK−n) 6= 1 Thus we have K = aq
and mK − n = bq for some integers a, b, q.

Therefore, n = mK − bq = q(ma − b). Thus we have an integer q that divides both K
and n making gcd(K,n) 6= 1 and leading to a contradiction.
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