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ABSTRACT 

Proteins are drivers of almost all biological processes in the cell. The functions of a protein 

are dependent on their three-dimensional structure and elucidating the structure and function of 

proteins is key to understanding how a biological system operates. In this research, we developed 

computational methods using machine learning techniques to predicts the structure and function 

of proteins. Protein 3D structure prediction has advanced significantly in recent years, largely due 

to deep learning approaches that predict inter-residue contacts and, more recently, distances using 

multiple sequence alignments (MSAs). The performance of these models depends on the number 

of similar protein sequences to the query protein, wherein some cases similar sequences are few 

but dissimilar sequences with local similarities are more and can be helpful. We have developed a 

novel deep learning-based approach AttentiveDist which further improves over the previous state 

of art. We added an attention mechanism where dis-similar sequences are also used (increasing 

number of sequences) and the model itself determines which information from such sequences it 

should attend to. We showed that the improvement of distance predictions was successfully 

transferred to achieve better protein tertiary structure modeling. We also show that structure 

prediction from a predicted distance map can be further enhanced by using predicted inter-residue 

sidechain center distances and main-chain hydrogen-bonds. Protein function prediction is another 

avenue we explored where we want to predict the function that a protein will perform. The crux of 

the approach is to predict the function of protein based on the function of similar sequences. Here, 

we developed a method where we use dissimilar sequences to extract additional information and 

improve performance over the previous approaches. We used phylogenetic analysis to determine 

if a dissimilar sequence can be close to the query sequence and thus can provide functional 

information. Our method was ranked highly in worldwide protein function prediction competition 

CAFA3 (2016-2019). Further, we expanded the method with a neural network to predict protein 

toxicity that can be used as a safety check for human-designed protein sequences. 
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 INTRODUCTION 

1.1 Background 

All the biological processes in a cell are performed through proteins. Proteins are the key 

macromolecules whose interactions carry out key cell functions like maintenance, replication, 

reproduction and defense. Identifying the functions of individual proteins and their interactions 

would help us understand how the biological system operates as a whole. Protein’s execution of 

their function is dependent on the three-dimensional structure. Thus, is it important to discover 

and understand the protein structure to gain a deeper knowledge of how the cell works. 

Experimentally studying and discovering the attributes of a protein is a slow and expensive process. 

With the advent of next gen sequencing technologies, proteins sequences are being discovered at 

a much faster pace than experimental approaches can keep up. Figure 1.1 shows that the growth 

in size of the standard protein sequence and structure databases. It is evident that GenBank [1], the 

genetic sequence database is growing much rapidly compared to structure database PDB [2] and 

functional annotation database SWISS-PROT [3].  

Bioinformatics plays a key role in bridging this information gap between the amino acid 

sequence information and in-depth knowledge about protein’s functionality. Computational 

predictive tools, once modelled, are much faster and relatively inexpensive to run. They can be 

useful in determining structural and functional properties for new unknown proteins, at a much 

larger scale than possible just through experimentation. They can also be useful in finding clues 

and building hypothesis for experimental biologist, accelerating experimental work. Thus, 

developing computational structure and function prediction methods have been one of the most 

important area in bioinformatics. 
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Figure 1.1. Growth of sequence and 3D structure databases. Data shown as of May 2021.  

Figure was obtained from https://www.kanehisa.jp/en/db_growth.html 

1.2 Protein Structure Prediction 

There are four levels to define a protein structure as shown in Figure 1.2. The sequence of amino 

acids in the protein’s polypeptide chain constitutes its primary structure.  Interactions between 

various atoms in the polypeptide chain give rise to three types of local conformations called alpha 

helices, beta sheets, and random coils. These are known as secondary structures of the protein. 

These secondary structures can also be described by the torsion angles between adjacent amino 

acids in the protein chain. Interactions between the sidechains of amino acids folds the polypeptide 

chain forming the overall three-dimensional shape called the tertiary structure. The quaternary 

structure of the protein is formed by the combination of multiple single chain protein subunits. The 

activity of a protein depends on its three-dimensional shape, where the pockets, exposed amino 

acids and their charges dictates which other macromolecules the protein can interact with. 

Structure prediction primarily involves predicting the three-dimensional structure, generally from 

proteins linear amino acid sequence. Accurately predicting structures can help us learn protein’s 

function by identifying structural similarity to known structures, understand consequence of 

sequence/genetic changes to proteins functionality, virtual drug screening and designing novel 

protein. 
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Figure 1.2. Levels of protein structureFigure was obtained from National Human Genome 

Research Institute, https://www.genome.gov/genetics-glossary/Protein 

 

Traditional structure prediction methods relied on finding similar sequences called 

templates whose structures are known. The unknown sequence is aligned to the template sequence 
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and the model is built based on the template 3D structure. Templates can be found using sequence 

similarity tools like PSI-BLAST [4] and HHSearch [5]. This approach generates good quality 

protein like structures, however, it is only applicable when homologous structures are available. 

Approaches where structure prediction is done based on the protein sequence only are called de 

novo structure prediction/ template free modelling. De novo protein structure prediction is one of 

the most challenging problem in bioinformatics. The biggest benefit of such approaches it that 

because they do not rely on similar structures, they can be used to model any protein. 

Recent approaches for de novo structure prediction focus on accurately predicting long-

range contacts in the protein sequence which are then used to assist protein folding. The core 

principle behind contact prediction is detecting coevolutionary relationships between residues 

from multiple sequence alignments (MSAs) [6]. Previous contact map prediction approaches used 

direct coupling analysis to identify these relationships. These methods include CCMPred [7], 

PSICOV [8], Gremlin [9], EV fold [10], and plmDCA [11]. Currently, deep learning-based 

methods have improved contact prediction significantly. This is evident from the community-wide 

assessment for structure prediction, CASP13 [12] (Critical Assessment of Structure Prediction), 

where top-performing methods in structure prediction including AlphaFold [13] and methods in 

contact prediction including RaptorX [14], TripletRes [15], and ZHOU Contact [16] are all deep 

learning-based. Raptor-X and Alphafold also showed that predicting distance distributions instead 

of binary contacts can further improve the performance. The current approaches, however, are still 

not accurate enough to consistently achieve structure modeling with high GDT-TS structure 

evaluation scores [12]. Thus, further improvement is still needed. 

One of the keys to accurate distance/contact prediction is the quality of MSAs [17, 18]. 

Recent works have used a conservative E-value cutoff to generate MSAs because using a large E-

value cutoff can lead to noisier and sometimes incorrect co-evolution information in the MSA. On 

the other hand, a larger E-value cutoff can yield an MSA containing more sequences, which may 

provide useful information particularly when a query protein does not have many close homologs. 

The difficulty is that the appropriate level of sequence similarity depends on the protein family 

[19, 20]. In further chapters, we propose a new deep learning-based approach, AttentiveDist, where 

the model can use multiple alignment information through an attention mechanism. Attention 

mechanisms in deep learning models are widely used in natural language processing [21, 22] and 

computer vision [23, 24] for determining which regions in the sentence or image respectively are 
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important for a given task. In AttentiveDist, the attention mechanism determines the importance 

of every MSA at residue pair level, utilizing information from different MSA’s to improve the 

performance. 

Recently, DeepMind showcased AlphaFold2 [25], a new deep learning based structure 

prediction method in CASP14 which performed exceptionally well than all the other methods. For 

most of the blind targets in the competition AlphaFold2 achieved GDT-TS (Global Distance Test 

– Total Score) of 0.8 or more. A GDT-TS above 0.5 is generally regarded as correct fold by the 

community where one can safely assume that the global protein shape is correct in the predicted 

model. A score of 0.8 or more means that the predicted topology is correct and detailed information 

like side chain conformation may also match to real structure. This is a great milestone in structure 

prediction community. Although their paper and code is not available yet, we believe their success 

is attributed largely due to SE(3) transformer layer [26], a 3D rotation-translation equivariant 

attention layer, which predicts the 3D protein structure. This allows the deep learning model to 

output the 3D structure instead of distance map allowing the model to directly learn from the error 

it makes in structure prediction. The model was trained on 128 TPUv3 GPU’s for couple of weeks, 

which is massively more than 1-2 GPU’s used by most other methods. Such resources are generally 

not available in the academic labs and further development of more resource efficient model is 

needed. 

1.3 Protein Function Prediction 

Computational algorithms which can mine the functional genomic and proteomic data to 

accurately predict protein functions can help assign functions to newly discovered sequences as 

well as exploring the breadth of different functions a protein can have.  

Protein functions are textually described in literature. To computationally predict the 

functions, they need to be transformed into a vocabulary. This has been done Gene Ontology (GO) 

Consortium [27] through the introduction of Gene Ontology (GO) terms. GO terms is a 

hierarchical set of terms that capture functional information. They provide controlled vocabularies 

of defined terms, where each term corresponds to a specific function of a gene/protein. These cover 

three domains: Cellular Component (CC), the parts of a cell or its extracellular environment; 

Molecular Function (MF), the elemental activities of a gene product at the molecular level, such 

as binding or catalysis; and Biological Process (BP), operations or sets of molecular events with a 
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defined beginning and end, pertinent to the functioning of integrated living units: cells, tissues, 

organs, and organisms. It is structured as a directed acyclic graph where each term has defined 

relationships to one or more other terms in the same domain, and sometimes to other domains. 

Figure 1.3 shows a small part of GO directed acyclic graph. 

 

 

Figure 1.3. Small part of Gene Ontology graph. Figure was obtained from NaviGO tool [28], 

https://kiharalab.org/web/navigo/views/goparent.php 

 

The traditional approach to predict protein function computationally is to find similar 

sequences and transfer their annotations. A simple method using this approach retrieves 

homologous sequence using similarity detection algorithms like PSI-BLAST [4] take the function 

of the best matching sequences which are above certain thresholds. This approach works well 

when similarity is very high and starts becoming unreliable with moderate to low similarity levels. 

This decease the breadth of sequences which can be annotated as many sequences don’t have 

closely similar sequences in the database and can also leads to erroneous predictions for those 

which have. Besides sequence similarity, other techniques are also used to for predicting functions. 

Protein-protein interaction network based methods relies on the principle that if two proteins 

interact with each other, then they might also share the function [29, 30]. But these methods require 

a defined protein network available for functionally un-annotated proteins. Protein structure-based 

methods search for similarity in three-dimensional conformation [31, 32]. If two proteins have 
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similar protein folds, it is highly likely that they also share the function. They perform well, but 

needs protein structure to be available, which is generally not the case for new proteins. Genomic 

data based methods uses microarray data and expression pattern to determine proteins function 

[33]. They depend on finding genes having similar expression patterns, which might indicate co-

regulation and common function. Among all these strategies, for large scale function prediction, 

sequence similarity remains the most efficient approach. Two main reasons for this are availability 

of huge sequence dataset, which is expanding every day because of high throughput sequencing, 

and simple requirement of the technique to work for new proteins. 

Most of the sequence similarity based methods rely on PSI-BLAST to get a set of similar 

sequences which is further processed in different way to predict the function. ConFunc splits 

sequences into sub alignment and use their GO terms to deduce the function [34]. GoFDR tries to 

identify protein residues which are functionally discriminating, using multiple sequence alignment 

of homologous hits [35]. ESG uses PSI-BLAST that performs an iterative search, taking in account 

neighboring sequences, which can capture more general similarities [36]. SIFTER explores the 

evolutionary relationship among the query protein and gene family it is closely related to [37]. 

Most of these methods limits the use of BLAST by only considering sequences with low E-value 

(i.e., sequences with high similarity to query). Although the motivation behind restricting the 

search space to similar sequences is intuitive, it prevents prediction when closely related sequences 

are not available. For such ‘hard’ cases, the algorithm should be able to mine data from less similar 

sequences as well. This has been the bottleneck in sequence based prediction methods. PFP [38, 

39] is one of the pioneer methods, which makes use of sequences with a wide range of similarity 

to a query ranging from significant hits to very weakly similar ones up to an E-value of 125, far 

larger than conventionally used thresholds, e.g. 0.001. GO terms are extracted from all the 

retrieved sequences; however, to reduce the risk of predicting unrelated GO terms taken from 

weakly similar sequences, sequences are weighted by their E-values. PFP also considers the co-

occurrence of GO terms, which is statistics of GO term pairs that frequently co-occur in annotation 

of the same sequence. PFP was one of the top ranked function prediction methods in Critical 

Assessment of Functional Annotation CAFA [40] and the top in the Critical Assessment of Protein 

Structure Prediction (CASP) function prediction category in 2007 [41]. In the following chapters 

we present a new sequence-based function prediction method, Phylo-PFP, which significantly 
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improves prediction performance over PFP by incorporating phylogenetic information in defining 

sequence similarity. 

GO term predictions can be further extended to predict specific properties of the protein. 

In the following chapters we tackle the problem of protein toxicity prediction based on GO terms. 

Artificially designed proteins can lead to the production of harmful proteins, either un-intentionally 

or intentionally.  Foreseeing such effects can prevent potential harm. One solution is to check for 

toxicity in lab facilities that synthesis artificial proteins. This can be done through a computational 

algorithm that take a protein or DNA sequence as input and alerts if the protein is predicted to be 

toxic. In the following chapters, extending Phylo-PFP, we present a machine learning based 

protein toxicity prediction method, which can predict the toxicity of a query protein sequence 

based on the protein’s predicted Gene Ontology (GO) annotation.  
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 PROTEIN STRUCTURE PREDICTION USING DEEP 

LEARNING  

Protein 3D structure prediction has advanced significantly in recent years due to improving contact 

prediction accuracy. This improvement has been largely due to deep learning approaches that 

predict inter-residue contacts and, more recently, distances using multiple sequence alignments 

(MSAs). In this chapter I present AttentiveDist, a novel approach that uses different MSAs 

generated with different E-values in a single model to increase the co-evolutionary information 

provided to the model. To determine the importance of each MSA’s feature at the inter-residue 

level, we added an attention layer to the deep neural network. We show that combining four MSAs 

of different E-value cutoffs improved the model prediction performance as compared to single E-

value MSA features. A further improvement was observed when an attention layer was used and 

even more when additional prediction tasks of bond angle predictions were added. The 

improvement of distance predictions was successfully transferred to achieve better protein tertiary 

structure modeling. 

2.1 Background 

Computational protein structure prediction is one of the most important and difficult problems in 

bioinformatics and structural biology. Understanding protein structure can unlock information 

about protein function and can aid in the design and development of artificial proteins and drug 

molecules [42, 43]. Recently, a significant improvement in protein structure prediction has been 

observed due to improvements in contact and, more recently, distance map prediction [12]. The 

predicted contacts/distances are used to drive computational protein folding, where the 3D atomic 

protein structure is predicted without the need for template structures [44]. 

The core principle behind modern contact prediction is detecting coevolutionary 

relationships between residues from multiple sequence alignments (MSAs) [6]. Previous contact 

map prediction approaches used direct coupling analysis to identify these relationships. These 

methods include CCMPred [7], PSICOV [8], Gremlin [9], EV fold [10], and plmDCA [11]. The 

next wave of methods, which represents the current state of the art, uses deep learning to predict 

contacts/distances. Deep learning-based methods have improved contact prediction significantly. 
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This is evident from the recent community-wide assessment for structure prediction, CASP13 [12] 

(Critical Assessment of Structure Prediction), where top-performing methods in structure 

prediction including AlphaFold [13] and methods in contact prediction including RaptorX [14], 

TripletRes [15], and ZHOU Contact [16] are all deep learning-based. Raptor-X and Alphafold also 

showed that predicting distance distributions instead of binary contacts can further improve the 

performance. However, the current approaches are still not accurate enough to consistently achieve 

structure modeling with high GDT-TS structure evaluation scores [12]. Thus, further improvement 

is still needed. 

One of the keys for accurate distance/contact prediction is the quality of MSAs [17, 18]. 

Recent works have used a conservative E-value cutoff to generate MSAs because using a large E-

value cutoff can lead to noisier and sometimes incorrect co-evolution information in the MSA. On 

the other hand, a larger E-value cutoff can yield an MSA containing more sequences, which may 

provide useful information particularly when a query protein does not have many close homologs. 

The difficulty is that the appropriate level of sequence similarity depends on the protein family 

[19, 20]. 

Here, we propose a new deep learning-based approach, AttentiveDist, where the model 

can use multiple alignment information through an attention mechanism. AttentiveDist uses a set 

of MSAs that are obtained with different E-value cutoffs, where the deep-learning model 

determines the importance of every MSA using an attention mechanism. Attention mechanisms in 

deep learning models are widely used in natural language processing [21, 22] and computer 

vision[23, 24] for determining which regions in the sentence or image respectively are important 

for a given task. To better generalize the model, we used a multi-tasking approach, predicting 

backbone angles and orientation angles [45] together with inter-residue distance. We also show 

that structure prediction from a predicted distance map using Rosetta [46] can be improved by 

using predicted inter-residue sidechain center distances and main-chain hydrogen-bonds. The 

predicted distances and angles are converted into potentials using neural network-predicted 

background distributions. 

We show that the deep learning based inter-residue distance prediction benefits from 

using multiple MSA’s. We compared distance predictions using combinations of individual MSAs 

of different E-value cutoffs with the attention-based approach, showing that the latter achieved a 

better precision. We also demonstrate that the attention given to different MSA-based features in 
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AttentiveDist is correlated to the co-evolutionary information in the MSA. Finally, we show that 

in structure modelling, additional constrains of predicted inter-residue sidechain center distances 

and main-chain hydrogen-bonds improves structure prediction. 

2.2 Methods 

2.2.1 Training, validation, and test datasets 

For the training and validation dataset, we took proteins from the PISCES [47] database that 

consists of a subset of proteins having less than 25% sequence identity and a minimum resolution 

of 2.5 angstroms, released in October 2019. We further pruned this dataset by removing proteins 

that contain more than 600 or less than 50 amino acids and those released after 1st May 2018 (i.e. 

the month of beginning of CASP13). Next, proteins that have intermediate gaps of more than 50 

residues, not considering the termini, were removed. Finally, a protein that has 2-letter chain names 

was removed because PISCES capitalizes chain names making it confusing for cases where the 

real 2 letter chain name has both mixed lowercase and uppercase alphabets used. This resulted in 

11,181 proteins. Out of those, 1,000 proteins were selected randomly as the validation set, and the 

rest were used to train the models. For each instance of glycine, a pseudo-C atom was built to be 

able to define C-C distance by converting it to alanine. 

CASP13 FM and FM/TBM domains were used as the test set, containing 43 domains 

(across 35 proteins). The full protein sequence was used in the input instead of the domain to 

replicate the CASP13 competition. 

2.2.2 MSA generation 

To generate the MSA we used the DeepMSA [17] pipeline. This pipeline consists of three stages 

where three different databases are searched to obtain similar sequences, which produces better 

MSAs compared to a single database search. The packages used for DeepMSA were HHsuite [48] 

version 3.2.0 and HMMER [49] version 3.3. The sequence databases we used were released before 

the CASP13 competition began for the sake of fair comparison, and were: Uniclust30[50] database 

dated October 2017, Uniref90 [51] dated April 2018, and Metaclust_NR [52] database dated 

January 2018. We generated 4 different MSAs with E-value 0.001, 0.1, 1, and 10 used in HHsuite 

[48] and HMMER [23, 49]. 
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2.2.3 Network parameters and training 

In AttentiveDist the convolution filter (kernel) size is 5x5 for the first 3 blocks and then 3x3 for 

the rest of the network, and the channels were kept constant to 64. We also added dilation to 

increase the receptive field of the network, with dilation cycling through 1,2 and 4. 

The loss function used during training is the weighted combination of individual 

objective loss. For each objective cross-entropy loss was used and the weights were manually 

tuned. Distance and orientation angles losses were given weight of 1 while the backbone φ and  

angle losses were given weight of 0.05 each. The Adam [53] optimizer with a learning rate of 

0.0001 was used. Dropout probability was 0.1. Dilations were cycled between 1,2 and 4. The 

learning rate, dropout and loss weights were tuned on the validation dataset. We trained the model 

for 80 epochs. Batch size was set to 1 because of GPU memory constraints. 

2.2.4 Sidechain center distance and backbone hydrogen-bond (N-O) prediction 

For the tertiary structure modeling, we tested the inclusion of two additional predicted distance 

constraints, distances between Side-Chain cEnters (SCE) and distances between the nitrogen and 

the oxygen (N-O) in peptide bonds. These distances were binned similarly to the Cβ – Cβ distances. 

The first bin was for a distance between 0 to 2 Å, bins up to 20 Å were of a width of 0.5 Å, followed 

by a bin of size 20 Å to infinite. A bin for residue pairs with missing information was also added. 

For prediction, we used networks with 25 ResNet blocks, which is smaller than the one in Figure 

2.1. The model was trained on the E-value 0.001 MSA data (Figure 2.2). The prediction 

performance for SCE distances and N-O distances are is shown in Table 2.1. 

2.2.5 Protein 3D structure generation from distance prediction 

We performed protein structure modeling similar to the work by Yang et al. [45] We used Rosetta’s 

protein folding and energy minimization protocols with customized constraints. The constraints 

were computed from our predictions of distance distributions (Cβ-Cβ, SCE-SCE, and backbone 

N-O) and angle distributions (backbone − and the three residue-pair orientation angles) by 

normalizing the predicted values with predicted reference distributions. For both distance and 

angle constraints, the predicted distributions were converted to an energy potential as follows: 
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𝑒𝑛𝑒(𝑖) = −𝑙𝑜𝑔 (
𝑃𝑖

𝑅𝐸𝐹𝑖
) , 𝑖 = 1, 2, … 𝑁,  (Eq. 2.1) 

where Pi and REFi are the predicted probability and the reference probability of i-th bin, 

respectively. N is the number of bins in the predicted distribution.  

 

Figure 2.1. The network architecture of AttentiveDist. a. The overall architecture. From 

sequence-based features computed from a set of MSA’s of different E-values and 2D features, 

AttentiveDist uses ResNet with attention mechanism to predict Cb-Cb distances, three side-chain 

orientation angles, and backbone j,  angles.. Dotted box represents weights are shared. b. 

Layers in a single ResNet Block. conv2d (green), 2d convolution layer; INorm (blue), instance 

normalization; ELU (orange), Exponential Linear Unit. 

 

Figure 2.2. ResNet model architecture for a, Sidechain Center (SCE) distances and b, backbone 

peptide N-O pairwise distance prediction. The ResNet Block is the same as described in Figure 

2.1b. conv2d (green) is 2d convolution layer, INorm (blue) is instance normalization, ELU 

(orange) is Exponential Linear Unit. 
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Table 2.1. Long range precision of prediction made for Side-Chain cEnters (SCE) contact and 

contact between the nitrogen and the oxygen (N-O) in peptide bonds. The contact is defined if as 

pairs within 8 Å for SCE-SCE, and 4 Å for N-O. The 43 CASP13 FM and FM/TBM targets were 

considered. 

Prediction L/5 L/2 L/1 

SCE 0.688 0.530 0.410 

N-O 0.856 0.744 0.545 

 

The reference probability distributions of three distances, backbone angles, and the side-

chain orientation angles were predicted with a five-layer fully-connected neural networks.  A 

network of the same architecture was trained for each type of constraints. For a distance type, the 

features used were the positions i and j of the two amino acids, the length of the protein, and a 

binary feature of whether a residue is glycine or not [13]. For angle predict we also included the 

one-hot encoding of the amino acid type. 

All energy potentials were smoothed by the spline function in Rosetta, and then used as 

constraints in the energy minimization protocol. The energy potentials of distances (Cβ-Cβ, SCE-

SCE and backbone N-O) and inter-residue orientations were split into L/10*L/10 blocks. To 

explore a diverse conformational space, the blocks of the potentials were randomly added to the 

energy function in the minimization steps. We generated 4,000 decoy models with different folding 

paths (i.e. additions of the blocks of potentials) and weight parameters that balance the energy 

terms. All decoy models were ranked by ranksum [54], a sum of the ranks of three scoring 

functions, GOAP [55], DFire [56], and ITScore [57]. The best scoring model was selected as the 

predicted structure. 

2.3 Results 

2.3.1 AttentiveDist architecture 

AttentiveDist predicts the distribution of Cβ - Cβ distance and three side-chain orientation angles 

for each amino acid residue pair, as well as backbone dihedral angles. Its uses a deep learning 

framework, ResNet [58], with an attention mechanism that identifies important regions in MSAs. 

Figure 2.1 shows the network structure of AttentiveDist. The network is derived from 

ResNets [58], where each residual block consists of convolution layers followed by instance 
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normalization [59] and exponential linear unit [60] (ELU) as the activation function. This set is 

repeated twice with a dropout layer in between to form one residual block. The first 5 residual 

blocks are feature encoding layers and the weights are shared for the different inputs generated by 

4 MSAs of E-values 0.001, 0.1, 1, and 10. For multiple different MSA feature encoding, we use 

soft attention to automatically determine the most relevant MSA for each pair of residues. An 

attention weight vector 𝑎  of size 𝑘  is computed for every 𝑖, 𝑗  pair of residues, where 𝑘  is the 

number of different MSAs used. Let 𝑋𝑚 be the encoded feature matrix for MSA 𝑚. 𝑎𝑚 is a scalar 

value that represents the “attention” or importance given to encoded feature 𝑋𝑚(𝑖,𝑗) , which is 

computed using Equation 1. The matrix W in Equation 1 is chosen such that 𝑒𝑚 is scalar, and it is 

learned during training along with the other parameters of the network. The attended feature matrix 

𝑌  is computed as the weighted sum of different MSA encoded features where the weight is 

attention given as shown in Equation 2. The intuition is that Y captures the relevant information 

from multiple different MSAs. 

𝑎𝑚 =
exp 𝑒𝑚

∑ exp 𝑒𝑘
𝑀
𝑘=1

 , where 𝑒𝑚 = 𝑊𝑇𝑋𝑚(𝑖,𝑗)  (Eq. 2.2) 

𝑌𝑖,𝑗 =  ∑ 𝑎𝑘𝑋𝑘(𝑖,𝑗)
𝑀
𝑘=1   (Eq. 2.3) 

The attended features are then passed through 40 residual blocks. The model branches 

into 5 different paths with different outputs after the last residual block. In each path there is an 

additional convolution layer followed by normalization and activation which learn task-specific 

representations. To improve the generalization, we used a multi-task learning approach where the 

model is trained on six related tasks, namely, distance prediction, three side-chain orientation 

angles (Figure 2.3), and the   backbone angles. The paths for distance and orientation angles 

contain a final convolution layer to obtain the proper output dimension, followed by softmax 

activation. In the backbone   angles path, a max pooling layer is added to reduce the 

dimensionality from LxLx64 to Lx64 where L is the size of the protein, followed by 1D 

convolution and softmax activation. The whole network is trained end-to-end. The final model is 

an ensemble of 5 models, where the prediction is the average of individual E-value models and the 

attention-based model that combines the four MSAs. 
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Figure 2.3. Orientation angles. The three orientation angles mu(μ), theta(θ) and rho(ρ) between 

any pair of residues in a protein. In the 3D structure of the protein, considering any two residues 

A and B, θAB represents the dihedral angle between the vectors NA -> CαA and CβA -> CβB 

along the axis of CαA -> CβA. ρAB represents the angle between the vectors CβA -> CαA and 

CβA -> CβB. θ and ρ depends on the order of residue and thus are asymmetric. μ represents the 

dihedral angle between the vectors CαA -> CβA and CβA -> CαB along the axis of CβA -> CβB. 

These orientation angles help in representing the direction of residue A to residue B and vice-

versa. The orientation angles were originally described in Yang et al.23 We used different 

notations of angles from them to prevent confusion with conventionally used angle notation. 

 

We used eight sequence-based input features. The 1D features are one hot encoding of 

amino acid type (20 features), PSI-BLAST [4] position specific scoring matrix (20 features), HMM 

[61] profile (30 features), SPOT-1D [62] predicted secondary structure (3 features) and solvent 

accessible surface area (1 feature), making a total of 74 1D features. MSAs, from which the 1D 

features were computed, were generated using the DeepMSA [17] pipeline. 1D features were 

converted into 2D features by combining features of two residues into one feature vector. We also 

used three 2D features, which were a predicted contact map by CCMPRED [7] (1 feature), mutual 

information (1 feature), and statistical pairwise contact potential [63] (1 feature). Thus, in total we 

used (2 x 74) + 3 = 151 L x L features, where L is the length of the protein.  

The AttentiveDist network predicts the Cβ – Cβ distance of every pair of residues in a 

target protein as a vector of probabilities assigned to 20 distance bins. The first bin is for 0 to 4 Å, 

the next bins up to 8Å are of a size 0.5 Å and then bins of a 1 Å size follow up to 18 Å. The last 

bin added is for no-contact, i.e. for 18 Å to an infinite distance. Similarly, the backbone   angles 

were binned to 36 ranges, each of which has a 10-degree range. Three side-chain orientation angles, 

  and  (Figure 2.3) were binned into 24, 24, and 15 bins, each with a size of 15 degrees, 

respectively. The side-chain orientation angles were only considered between residue pairs that 
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are closer than 20 Å, and for the rest of the residue pairs a no contact bin was considered as the 

correct answer. For target values for training, the real distances and angles were converted into 

vectors where the bin containing the real distance/angle has value 1 and while the rest were set to 

0. 

The network was trained on a dataset of 11,181 non-redundant proteins, which were 

selected from the PISCES [47] database. Sequences released after 1st May 2018 (i.e. the month of 

beginning of CASP13) were removed. Every pair has less than 25% sequence identity. Out of 

these, 1,000 proteins were selected randomly as the validation set, while the rest were used to train 

the models. More details are provided in the Method section. 

2.3.2 Contact prediction performance 

We compared the performance of AttentiveDist with several different input MSA settings on 43 

FM (Free Modeling) and FM/TBM (Template-Based Modeling) domains from CASP13. FM and 

FM/TBM are harder targets compared to template-based modeling because they do not have any 

appropriate template protein available, necessitating de-novo prediction. We used the standard 

metric of top L/n predicted long range contacts precision and F1 score as used in other works, 

where L is length of the protein and n is 1, 2, and 5. Long range contacts are defined as contacts 

between residues that are 24 or more residues away. Since AttentiveDist predicts residue-residue 

distances instead of binary contact, we converted this to contact prediction by summing the 

probabilities of distance bins from minimum distance to 8 Å. 

We performed an ablation study of our model to understand how much different additions 

contribute to the performance (Table 2.2). The baseline model shown at the top of the table is a 

single model that predicts only C-C distance using an E-value of 0.001 for feature generation. 

0.001 was used for E-value because it gave the overall the highest precision among the other E-

values used in AttentiveDist. Next, we added multitask learning, where the model predicts the 

distance, 2D side-chain orientation angles, and the backbone dihedral angles together, but without 

attention. The multi-task learning improved the L/1 precision from 0.451 to 0.468. 

The next three rows compare multi-task learning results with four different E-values 

(0.001, 0.1, 1, and 10). The results show that on average an E-value of 0.001 performed the best. 

The sixth row, “No attention, 4 E-values” shows the results of using MSAs with the four E-values 

to compute four different 1D features but without the attention mechanism. In this model we 
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concatenated the features of the 4 E-values and passed them to the network. This increased the L/1 

precision to 0.472; however, the L/2 and L/5 decrease by 0.006 and 0.011, respectively. The reason 

of the decrease could be because the 4 MSAs were input in parallel without any weighting 

mechanism. We also compared with contact map probability based a MSA selection strategy [45] 

where for each target one prediction out of the 4 MSAs was selected based on the sum of L/1 

contact probability values. Interestingly, the MSA selection performance was similar to the “No 

attention, 4 E-values” strategy. The next strategy, the AttentiveDist (single) model, which used the 

attention mechanism, improved L/1 precision further to 0.479. We also computed the average 

probabilities from 4 single E-value models (4 E-value (average)), which yielded L/1 precision of 

0.479. Finally, we averaged the outputs from the 5 models (4 single E-value models and the model 

with attention), the full AttentiveDist, which resulted in a 0.14 gain to achieve 0.493 in L/1 

precision. We show the L/1 precision comparison of the 43 individual targets between No 

attention, 4 E-values and E-value 0.001 model in Figure 2.4a. In Figure 2.4b we compare the E-

value 0.001 model and AttentiveDist and in Figure 2.4c we compare No attention, 4 E-values and 

AttentiveDist. Overall, we show that using four different E-value MSA’s improves the 

performance in all L/1, L/2 and L/5 precision. A similar trend was observed when F1 score was 

considered, where AttentiveDist (single) improved the L/1 F1 score from 0.427 to 0.442 compared 

to the E-value 0.001 model.  
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Figure 2.4. Individual target L/1 precision comparison between a, 4 E-value model without 

attention and E-value 0.001 model b, E-value 0.001 model and AttentiveDist c, 4 E-value model 

without attention and AttentiveDist. E-value 0.001 model represents the model trained with E-

value 0.001 MSA features in multi-task fashion. 

 

In Table 2.2 we also compare the performance with TripletRes [15], the second best server 

method in CASP13, because it used the same MSA generation pipeline, DeepMSA, with the same 

sequence datasets. Comparison with the same MSAs makes the comparison more informative 

because the performance highly depends on the input MSA. There was a significant improvement 

in L/1 precision of 9.3% and F1 score of 9.4% when compared to TripletRes. When compared for 

individual targets (structure domains), AttentiveDist had a higher L/1 precision than TripletRes 

for 27 domains, tied for 2 domains out of the 43 domains (Figure 2.5a). AttentiveDist had higher 

average precisions than RaptorX-Contact [14], the top server methods in CASP13, as shown at the 

bottom of Table 2.2. RaptorX has a new development after CASP14 [64], but here we compared 

with their results in CASP13. Comparisons of individual targets (Figure 2.5b) shows AttentiveDist 

showed a higher L/1 precision than Raptor-X for 23 domains and tied for 2 domains out of the 43 

domains. 
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Table 2.2. CASP13 FM and FM/TBM 43 targets long range precision and F1 score. L/5, L/2 and 

L/1 shows values when top L/5, L/2 or L/1 contact predictions with the highest probabilities 

were considered where L is the length of the protein. 

Model 
Precision F1 score 

L/5 L/2 L/1 L/5 L/2 L/1 

Distance only (E: 10-3) 0.700 0.586 0.451 0.224 0.359 0.411 

E-value 10-3 0.716 0.608 0.468 0.228 0.373 0.427 

E-value 10-1 0.693 0.587 0.452 0.216 0.363 0.415 

E-value 1 0.724 0.589 0.455 0.230 0.362 0.414 

E-value 10 0.696 0.580 0.452 0.217 0.354 0.411 

No-attention, 4 E-values 0.705 0.602 0.472 0.223 0.371 0.432 

MSA selection 0.713 0.604 0.472 0.226 0.373 0.433 

AttentiveDist (single) 0.716 0.613 0.479 0.230 0.385 0.442 

4 E-values (average) 0.744 0.619 0.479 0.238 0.383 0.445 

AttentiveDist 

(Ensemble) 
0.746 0.624 0.493 0.241 0.387 0.454 

TripletRes 0.701 0.587 0.451 0.230 0.363 0.415 

RaptorX-Contact 0.744 0.612 0.481 0.248 0.381 0.441 
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Figure 2.5. Long L/1 precision comparison of the 43 CASP13 FM and FM/TBM domains 

between a, TripletRes and AttentiveDist. AttentiveDist showed a higher L/1 precision than 

TripletRes for 27 domains and tied for 2 domains out of the 43 domains. b, Raptor-X and 

AttentiveDist. AttentiveDist showed a higher L/1 precision than Raptor-X for 23 domains and 

tied for 2 domains out of the 43 domains. 

2.3.3 Prediction performance relative to the size of MSAs 

As observed by previous works [14, 15], we also observed correlation between the size of MSAs, 

i.e. the number of sequences in the MSAs and the contact prediction accuracy. In Figure 2.6a, the 

L/1 long range contact precisions were shown for two methods, AttentiveDist and the model using 

only MSAs of E-value 0.001, relative to the number of sequences in the MSAs. The number of 

sequences in the MSAs is shown in the log scale. A positive correlation was observed, as shown 

in the figure, and particularly, there is clear distinction of the performance at the sequence count 

of 100. When the sequence count was less than 100, L/1 precision was always below 0.4. 

Oppositely, when the sequence count is very high, over 10,000, high precisions of over 0.75 were 

observed. Although the high precision was observed with a large number of sequences, observed 

precisions had a large range of values when the sequence counts was over 100. 
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Figure 2.6. Analysis of the MSA size and the attention. a, Relationship between log of the 

sequence counts in MSAs and long-range L/1 contact precision for the 43 CASP13 targets. 

AttentionDist (blue) and the E-value 0.001 model (red), where E-value 0.001 was used as a 

cutoff for generating MSAs. The lines represent the regression. b, the fraction of residue pairs 

where the MSA with the highest attention agreed with the MSA with the highest mutual 

information (MI). The number of targets among the 35 CASP13 target proteins that have the 

particular fraction of agreed residue pairs were counted for each bin. 43 FM and FM/TBM 

CASP13 target domains belong to 35 proteins. Out of the 35 proteins, two proteins were 

discarded from this analysis because the four MSAs with different E-value cutoffs of these 

proteins were identical. c, the agreement is compared with the contact probability computed from 

the four MSAs with CCMPred. 

2.3.4 Analyses of attention weights 

In AttentiveDist, for each residue pair, attention values are distributed across four MSA-based 

features each computed with the four different E-value cutoffs, which sum up to 1.0. To understand 

what the attention mechanism captures, in Figure 2.6b and 2.6c we examined how the attention 

corresponds to co-evolution signals. We compared with local and global co-evolutionary signals. 

The local co-evolutionary signal used is mutual information (MI), which uses pairwise residue 

profile information. The global signal considers effects from other residues as well, which can be 

computed by pseudo-likelihood maximization (PLM). We used CCMPred [7], which is an 

implementation of PLM. For each residue pair in a protein target, we counted the number of times 

the MSA with the highest attention weight assigned by AttentiveDist agrees with the MSA with 

the highest co-evolutionary signal. As reference, we computed random-level agreement, where the 

MSA assignment for each residue pair was shuffled while keeping the fraction of times that each 

MSA had the highest attention weight in the original computation the same. The average 

agreement for MI was 0.329 compared to a random agreement of 0.298, and for CCMPred it was 

0.376 compared to 0.277 random agreement. In both cases the agreement was higher than random. 

The histogram shifted to higher values when compared with CCMPred than MI. The average 
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agreement for the 33 proteins were higher for CCMPred than MI. Thus, overall, the attention is a 

mechanism to select MSAs with higher co-evolutionary signals. 

We also analyzed attention weights assigned to each MSA features in targets. First, for 

each target, we summed attention values given to each MSA over all residue pairs in the target and 

selected the one with the highest sum as most informative. We found that out of 43 targets, in 32 

targets E-value 0.001 received the most attention, while E-value 0.1, 1, and 10 received the most 

attention for 1, 1, and 8 targets, respectively. 

Next, we analyzed attention values given to residue pairs in a target. Figure 2.7a, b, c, show the 

maximum, minimum, and standard deviation of attention weights given to four MSAs in each 

target. The average statistics for the CASP13 targets are shown in Table 2.3. We can observe that 

the attention weight values vary for different targets. Figure 2.7d shows the percentage of residue 

pairs that had the largest attention weight for each MSA feature. We can see that E-value 0.001 

shared the largest fraction of residue pairs for most of the targets. This is understandable 

considering that E-value of 0.001 showed the highest prediction performance (Table 2.2) among 

the four MSA features. 

 

Figure 2.7. Statistics of pairwise attention weights given to the 43 CASP13 targets. a, the 

maximum attention weight given to each MSA among values for all the residue pairs. b, the 

minimum attention weight given to each MSA. c, standard deviation given to each MSA. d, 

Percentage of residue pairs in a target where each MSA had the largest attention weight. In all 

figures the x-axis represents the 43 CASP13 targets. Four MSAs with E-value of 0.001, 0.1, 1, 

and 10 are shown in blue, red, green, and yellow lines. 
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Table 2.3. Statistics of attention weights given to different E-value based features averaged over 

43 CASP13 FM and FM/TBM domain targets. 

MSA E-value Max Min Std 

0.001 0.486 0.129 0.030 

0.1  0.397 0.141 0.022 

1 0.382 0.138 0.021 

10 0.424 0.124 0.027 

2.3.5 Angle prediction 

Accuracy of angle prediction are provided in Table 2.4. The results show the fraction of times that 

an angle is predicted at the exact correct bin or at a bin off by 1 or 2 bins. Within 2 bins, about 70% 

of the angles are predicted correctly. 

Table 2.4. Accuracy of backbone phi-psi and orientation angles for the 43 CASP13 FM and 

FM/TBM domain targets. The bin size of torsional angles was set to 10° while the bin for the 

orientation angles was 15°. Bin slack of 0 represents that the predicted bin of the highest 

probability and the real bin were the same. Bin slack of 1(or 2) denotes that the predicted bin was 

1(or 2) bin(s) away from the correct bin. 

Angle Bin Slack 

0 1 (±10°) 2 (±20°) 

 0.277 0.590 0.722 

 0.242 0.548 0.700 

 0 1 (±15°) 2 (±30°) 

 0.332 0.582 0.634 

 0.377 0.656 0.703 

 0.394 0.692 0.748 

2.3.6 Protein structure modeling 

Finally, we built the tertiary structure models of the CASP13 domains and compared with the top 

CASP13 server models. For the structure modeling, in addition to the predictions of C-C 

distance, main-chain   angles, and the three,   and  side-chain orientation angles, we 



 

 

39 

tested the inclusion of two additional distance constraints, which were Side-chain CEnter (SCE)-

SCE distances and peptide-bond nitrogen (N)-oxygen (O) atom distances. These distances help in 

proper secondary structure formation and side-chain packing. All the constraints were converted 

into a potential function by normalizing predicted probability values in bins by predicted reference 

probability values. The folding was performed using Rosetta [46] by adding the predicted 

potentials into the Rosetta energy function. Out of a few thousand models generated, the best 

scoring model for each target are reported in this section. Details are provided in Methods. 

We compare the average TM scores of the predicted structures with three top CASP13 

servers in Figure 2.8a. For AttentiveDist, we showed results by two versions, one with the 

predicted SCE-SCE distances and the backbone N-O distances, which is denoted as AttentiveDist 

(Full), and the one without these two distance constraints (AttentiveDist w/o SCE and N-O). 

AttentiveDist w/o SCE and N-O improved the TMscore from 0.552 to 0.568 compared to the single 

E-value 0.001 multi-task trained model, demonstrating the effectiveness of using four MSA’s in 

structure modeling. Comparing two versions of AttentiveDist, the two distance constraints further 

improved the TMscore by 2.1% from 0.568 to 0.579. In Figure 2.9, TM-scores of individual 

domain targets by the two versions of AttentiveDist are shown. For 19 domains the multi-task 

AttentiveDist showed a higher GDT-TS and tied for 4 domains out of 43 domains in total. 

AttentiveDist showed higher average TM scores than the top-three CASP13 severs, 

Zhang-Server (0.517), RaptorX-DeepModeller (0.508), and BAKER-ROSETTASERVER (0.450), 

which are shown in Figure 2.8a as well. As we used the same MSA extraction strategy as Zhang-

Server, in Figure 2.8b, we further show the TMscores of the 43 individual targets by AttentiveDist 

(Full) and Zhang-Server. AttentiveDist (Full) showed a higher TM-Score than Zhang-Server for 

29 cases and tied for 3 cases. We also compared the residue-residue contact area difference (CAD) 

score [65] in Table 2.5. CAD score determines the structure similarity by comparing the inter-

atomic contact area between the reference and predicted structure. AttentiveDist improved both 

the AA (all residues) and SS (only sidechain residues) CAD score compared to the server models. 

 

 

 

 

 



 

 

40 

 

 

 

Figure 2.8. Performance in structure modelling. a, TM-score for AttentiveDist, AttentiveDist 

without using predicted sidechain center distance and backbone N-O distance and the top 3 

server methods in CASP13 for 43 FM and FM/TBM targets. b, Individual target TM-score 

comparison between our method and the Zhang-Server. The registered name of Raptor-X in 

CASP13 was RaptorX-DeepModeller and BAKER-ROSETTASERVER for Rosetta Server. 

 

 

 

Figure 2.9. TM-score of AttentiveDist (Full) and AttentiveDist without using predicted SCE-

SCE and N-O distances on the 43 CASP13 domains. AttentiveDist (Full) showed higher TM-

Score for 19 targets, tied on 6 targets. 
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Table 2.5. Average CAD score of top 1 predicted PDB for the 43 CASP13 FM and FM/TBM 

domain targets. In AA all residue atoms are taken into consideration, while in SS only sidechain 

atoms are taken into consideration. 

Model CAD 

AA SS 

Zhang-Server 0.512 0.237 

RaptorX-DeepModeller  0.500 0.231 

BAKER-ROSETTASERVER 0.509 0.225 

AttentiveDist (Full) 0.545 0.283 

 

Figure 2.10 provides four examples of models computed with distance prediction by 

AttentiveDist (Full) in comparison with Zhang-Server, RaptorX-DeepModeller, and BAKER-

ROSETTASERVER. The first panel, Figure 2.10a, is a 180-residue long domain with two - 

helices and two -sheets, T0957s1-D1. While our model has a TM-score of 0.78, indicating that 

the overall conformation is almost correct, the models by the other three methods have some 

substantial differences from the native. The Zhang-Server model missed one -sheet, the RaptorX- 

DeepModeller did not predict any -sheets, and the BAKER-ROSETTASERVER placed the -

sheet at the top of the structure and a -helix in substantially different orientations. The second 

example, T0980s1-D1 (Figure 2.10b) is another  class protein with a long loop region, which is 

placed on the right-hand side of the figures. The loop is difficult to correctly model, as the three 

top CASP13 servers did not fold it well. The incorrect modeling of the loop also affected to the 

placement of the -helix in the right orientation in their models. Our AttentiveDist model managed 

to have the overall fold almost correct, as shown by a higher TM-score of 0.64. For the next target, 

T0986s2-D1 (Figure 2.10c), the Zhang-Server has almost all the architecture correct, but slight 

shifts of  helices cost it in the TM-score, which was 0.59. Our model had the conformation almost 

correct even in the loop regions, resulting in a high score of 0.78. The BAKER-

ROSETTASERVER model did not assemble the large -sheet correctly. The last target shown has 

an -helical structure, which consists of two long -helices with multiple small -helices. (T0950-

D1, Figure 2.10d). While our model identified correct orientations for the two long helices, the 
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other methods built them incorrectly which caused other incorrect helix arrangements at the top of 

the structure in the figure, resulting in lower scores. 

 

Figure 2.10. Examples of structure models by AttentiveDist (Full) in comparison with the top-1 

model by the three top servers. AttentiveDist (Full), green; Zhang-Server, red; RaptorX-

DeepModeller, orange; and BAKER-ROSETTASERVER, blue. The native structures are shown 

in gray. TM-scores, CAD AA, and CAD SS are shown in parentheses, respectively, separated by 

/. Targets are a, T0957s1-D1 (PDB ID: 6cp8; length: 180 amino acids); b, T0980s1-D1 (PDB ID: 

6gnx; 104 aa); c, T0986s2-D1 (PDB ID: 6d7y; 155 aa); d, T0950-D1 (PDB ID: 6ek4; 331 aa). 
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2.3.7 Performance in CASP14 

CASP, the worldwide protein structure modelling competition is an excellent platform to access 

the progress of structure prediction methods as well as the progress of the field in the community. 

We participated with AttentiveDist model in CASP14, with the results released in December 2020.  

For contact prediction category ranking of the models were computed based on L/5 long range 

contacts for free modelling targets. Our group was ranked 13th, with the server model ranked 32nd 

[66]. The model rank is lower because each group generally submits multiple variations of their 

model. 

 The L/5 long range precision by our group was 0.371 which is better than average but much 

lower that the best method achieving 0.665 precision. From analyzing the methods with higher 

performance than ours, there were two key reasons for this huge different in performance. First, 

we did not use the template model as input feature. A good template can provide significant amount 

of information about the protein fold leading to higher contact prediction precision. Second is the 

databases used for MSA search. The top groups used metagenomic databases like BFD [67], JGI 

[68] and MGnify [69] which contains millions to billions of protein sequences extracted from 

environmental genomics. A larger search database can increase the size of MSA, which as shown 

in Figure 2.6 leads to a better performance. Even without using metagenomics database and 

templates our model was still competitive for certain targets. For instance, for target T1029-D1 

our server model prediction was ranked the best with TMscore 0.53, even higher than AlphaFold2 

model having TMscore 0.47. 

2.4 Discussion 

We presented AttentiveDist, a deep learning-based method for predicting residue distances and 

angles from four MSAs with four different E-value cutoffs. By adding an attention layer to the 

network, useful features from MSAs were selectively extracted, which led to higher predictive 

performance. In AttentiveDist, the attention layer as well as multi-tasking strategy boosted the 

prediction accuracy. In the context of the recent intensive efforts for developing residue 

distance/contact prediction methods by the community, this work shows another strong 

demonstration of how protein structure information can be further squeezed by exploiting modern 

deep learning technologies. Although our approach showed higher precision for free modelling 
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targets, an improvement is still needed especially when the available sequences are sparse for input 

MSAs, which remains as an important future work. 

2.5 Code availability 

Code is made available at http://github.com/kiharalab/AttentiveDist. 

  

http://github.com/kiharalab/AttentiveDist
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 PROTEIN FUNCTION PREDICTION USING 

PHYLOGENETIC DISTANCE OF DISTANTLY RELATED SEQUENCES 

Function annotation of proteins is fundamental in contemporary biology across fields including 

genomics, molecular biology, biochemistry, systems biology, and bioinformatics. Function 

prediction is indispensable in providing clues for interpreting omics-scale data as well as in 

assisting biologists to build hypotheses for designing experiments. As sequencing genomes is now 

routine due to the rapid advancement of sequencing technologies, computational protein function 

prediction methods have become increasingly important. A conventional method of annotating a 

protein sequence is to transfer functions from top hits of a homology search; however, this 

approach has substantial short comings including a low coverage in genome annotation. In this 

chapter I present Phylo-PFP, a new sequence-based protein function prediction method, which 

mines functional information from a broad range of similar sequences, including those with a low 

sequence similarity identified by a PSI-BLAST search. To evaluate functional similarity between 

identified sequences and the query protein more accurately, Phylo-PFP re-ranks retrieved 

sequences by considering their phylogenetic distance. Compared to the Phylo-PFP’s predecessor, 

PFP, which was among the top ranked methods in the second round of the Critical Assessment of 

Functional Annotation (CAFA2), Phylo-PFP demonstrated substantial improvement in prediction 

accuracy. 

3.1 Background 

Proteins are drivers of almost all biological processes in the cell. Therefore, elucidating function 

of an individual protein is key to understanding how a biological system operates through 

functional interactions of component proteins. Ultimately, the biological function of a protein 

needs to be determined experimentally; however, a hypothesis is needed to design an assay that 

determines whether a target protein has a particular function. Computational function prediction 

can provide valuable information when biologists build such hypotheses. As genome sequencing 

has become routine due to the rapid advancement of sequencing technologies [70], function 

prediction has become increasingly important. Computational function prediction methods are also 

useful for analyzing omics data including gene expression and protein-protein interaction data. 
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In addition to function prediction methods that use protein sequence information, there are 

other types of methods that consider gene co-expression patterns, phylogenetic profiles, three 

dimensional (3D) structures of proteins, as well as protein-protein interaction networks [71]. These 

non-sequence-based methods can often identify functional relationships of proteins that are not 

obvious from sequence similarity. However, non-sequence information is not always available and 

thus has limited applicability. 

Recently there is an increasing momentum for developing function prediction methods 

driven by successful organization of a community-wide objective assessment of protein function 

prediction, the Critical Assessment of Function Annotation (CAFA) [72, 73]. In CAFA, 

participants predict function (GO terms or other ontology terms specified by the organizers) of 

many target proteins (48,298, and 100,816 proteins in CAFA1 and CAFA2, respectively). Then, 

predictions are evaluated only for newly annotated GO terms to the target proteins after a waiting 

period of over six months from the prediction submission. This process is designed for assessing 

methods’ capability of predicting new functions rather than retrieving known functions from 

existing data sources. Three rounds of CAFA have been held so far, CAFA1 in 2010-2011, CAFA2 

in 2013-2014, and CAFA3 in 2016-2017, for which the official evaluations were reported for the 

first two. 

PFP [38, 39] is one of the pioneer methods, which makes use of sequences with a wide 

range of similarity to a query ranging from significant hits to very weakly similar ones up to an E-

value of 125, far larger than conventionally used thresholds, e.g. 0.001. GO terms are extracted 

from all the retrieved sequences; however, to reduce the risk of predicting unrelated GO terms 

taken from weakly similar sequences, sequences are weighted by their E-values. PFP also 

considers the co-occurrence of GO terms, which is statistics of GO term pairs that frequently co-

occur in annotation of the same sequence. PFP was one of the top ranked function prediction 

methods in CAFA and the top in the Critical Assessment of Protein Structure Prediction (CASP) 

function prediction category in 2007 [41].   

Here, we present a new method, Phylo-PFP, which significantly improves prediction 

performance over PFP by incorporating phylogenetic information in defining sequence similarity. 

We first show that the E-values of the sequences do not largely agree with the distances defined 

by phylogenetic trees to a surprising extent. Then, we show that weighting sequence by 

considering the phylogenetic distance can substantially improve GO term prediction accuracy. 
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Predictions by Phylo-PFP were evaluated on a dataset of 1702 non-redundant protein sequences 

and showed better performance than the original PFP as well as several other existing methods. 

To compare its performance among the best programs available to date, Phylo-PFP was used to 

predict functions of target sequences in CAFA2. We show that Phylo-PFP outperforms all the top 

methods used in CAFA2, having the highest score in all three GO categories, Molecular Function 

(MF), Biological Process (BP), and Cellular Component (CC). 

3.2 Methods 

3.2.1 Overview of the Phylo-PFP method 

Figure 3.1 illustrates the workflow of Phylo-PFP. For a query protein sequence, Phylo-PFP 

searches similar sequences from a reference sequence database with PSI-BLAST (maximum 

iteration set to 3). In this retrieval, top 500 sequences are retrieved or until an E-value of up to 125 

is reached. Collecting diverse sequences with a large E-value has two advantages: First, as 

demonstrated in the original version of PFP, the E-value cutoff will capture a larger breadth of 

sequences, which is particularly effective when closely annotated homologs to the query do not 

exist in the database. Also, for Phylo-PFP, having many sequences help in constructing meaningful 

phylogenetic trees, which is a key new feature of the Phylo-PFP algorithm. 
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Figure 3.1. Overview of Phylo-PFP algorithm 

 

The next step of Phylo-PFP is to rank retrieved sequences using a weighting factor that 

considers the phylogenetic distance among them. This step is the key difference from the original 

PFP, which simply uses the raw E-value to rank sequences. There are three steps in constructing a 

phylogenetic tree: 1) A multiple sequence alignment (MSA) is computed for the retrieved 

sequences using MUSCLE [74]. 2) From the MSA, a pairwise sequence alignment for each 

sequence pair is extracted, from which a distance matrix is computed using PROTDIST [75] in the 

PHYLIP package with the Jones-Taylor-Thornton model. 3) With the set of computed distances, 

a phylogenetic tree is constructed using the neighbor joining (NJ) method implemented in 

PHYLIP. Following the tree construction, a distance 𝑑𝑟 is defined between the query protein and 

each protein k as the sum of the branch lengths between them on the tree, which is scaled to a value 

between 0 and 100 as 
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𝑑𝑟 =
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑘)−min

𝑖
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖)

max
𝑖

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖)−min
𝑖

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖)
∗ 100                        (1) 

Using the phylogenetic distance 𝑑𝑟 and the E-value, a retrieved sequence i is ranked with 

a weight named the Evolutionary distance-normalized Log E-value (ELE) in the descending order: 

𝐸𝐿𝐸(𝑖) =  
−𝑙𝑜𝑔10(𝐸−𝑣𝑎𝑙𝑢𝑒(𝑖))+𝑏

𝑑𝑟(𝑖)
                         (2) 

where E-value(i) is the E-value of the sequence i, b is the constant, log10(125), which is an offset 

added to make the numerator of the equation a non-negative value up to an E-value of 125, and 

𝑑𝑟(𝑖) is the phylogenetic distance of the sequence i. The numerator is the weight used in the 

original PFP. In Phylo-PFP, the numerator is normalized by 𝑑𝑟(𝑖), i.e. a sequence that has a large 

distance on the phylogenetic tree receives a discounted weight, which brings the contribution of 

the sequence lower when the score for predicted GO terms are computed. Using ELE, a function 

(GO term) fa is scored for a query sequence as 

s(𝑓𝑎) = ∑ ∑ (𝐸𝐿𝐸(𝑖)𝑃(𝑓𝑎|𝑓𝑗))
𝑁𝑓𝑢𝑛𝑐(𝑖)
𝑗=1

𝑁
𝑖=1              (3) 

where N is the number of sequences retrieved from the sequence database within an E-value of 

125, Nfunc(i) is he number of GO terms annotating the sequence i, ELE(i) is the weight defined in 

Eq. 2, and P(fa|fj) is the functional association [39], a conditional probability that GO term fa is in 

annotation of a sequence that is also annotated with GO term fj. The function association allows 

predicting GO terms that do not appear in annotations of retrieved sequences. Associations are 

also computed between terms across different categories, e.g. terms in MF and BP. Associations 

with a probability of 0.9 or higher were considered. Each GO term in the final prediction is also 

given a confidence score, which is computed by normalizing ELE for all GO terms belonging to 

the same category. The Eq. 2 is an update from the original PFP score [39]. In PFP, the score is 

𝑠(𝑓𝑎) = ∑ ∑ ((−log (𝐸-value(i)
𝑁𝑓𝑢𝑛𝑐(𝑖)
𝑗=1

𝑁
𝑖=1 ) +  𝑏)𝑃(𝑓𝑎|𝑓𝑗)      (4) 

where E-value(i) is the E-value of sequence i. 

3.2.2 Constructing the annotation database 

For any function prediction method, it is crucial to have a comprehensive annotation database that 

keeps known GO terms for sequences, as the method depends on it in extracting GO terms from 

PSI-BLAST hits. We integrated several data sources to form our annotation database for Phylo-
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PFP. The primary database used was the UniProtKB/Swiss-Prot including Non-IEA (Inferred from 

Electronic Annotation) annotations [76]. In addition we integrated annotations from UniPathway 

[77], TIGRFAMs [78], SMART [79], Reactome [80], PROSITE [81], ProDom [82], PRINTS [83], 

PIRSF [84], Pfam [85], InterPro [86], and HAMAP [87]. 

3.2.3 Non-redundant benchmark dataset 

Target sequences for the benchmark dataset were selected from UniProt Reference Clusters 

(UniRef), which provides a clustered set of sequences from UniProt Knowledgebase [88]. We used 

the UniRef50 clusters of 8/25/2016, in which sequences with more than 50% identity to each other 

are clustered. We selected a representative sequence from each cluster which fulfills two 

conditions: a cluster must include more than 1500 sequences, and the representative protein is 

annotated in UniProt. Representative sequences were removed if it had more than 500 hits with an 

E-value 0.0 in the third round of PSI-BLAST as these sequences have many highly similar 

sequences which makes their function prediction easy. This procedure yielded 1702 sequences for 

the benchmark dataset. We also constructed another benchmark dataset by clustering these 1702 

sequences with 30% sequence identity cutoff.  

3.2.4 CAFA2 dataset 

We also tested Phylo-PFP on the dataset from CAFA2 [73]. CAFA2 released 100,816 target 

protein sequences but predictions were evaluated only for 1776 sequences which newly 

accumulated GO terms during the waiting period. Among the 1776 sequences, 419 sequences had 

MF GO terms, 860 sequences had BP GO terms, and 1259 sequences had CC GO terms. For 

replicating participation in CAFA2 with Phylo-PFP, the benchmark sequence dataset as well as 

the ground truth of the annotation were obtained from the supplementary data at 

https://figshare.com/articles/Supplementary_Data_for_CAFA2/2059944/1. When we ran Phylo-

PFP, we used the UniProt database of August 2013 (a version released before the CAFA2 target 

sequences were released to participants), so that annotations newly added after the release were 

not included. 
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3.2.5 Other methods compared 

For PSI-BLAST, we extracted GO terms from the top 10 hits in the third iteration of a PSI-BLAST 

run. As for Pfam [89], GO terms were extracted from profile hits using Pfam2go mapping available 

from http://www.geneontology.org. For both PSI-BLAST and Pfam a confidence level of a 

predicted GO term was assigned by the E-value of the most significant sequence hit from which 

that term was extracted (in case multiple sequence hits have the same GO term): A confidence 

score of 1.0 was assigned if the E-value of the sequence was 0.01 or smaller; 0.5 if the E-value 

was between 0.01 to 10; and 0.2 when the E-value was 10 or larger. As for SIFTER [90], we used 

the webserver at http://sifter.berkeley.edu. 

3.2.6 Prediction evaluation score 

For PSI-BLAST, we extracted Prediction accuracy was evaluated with the Fmax score following 

the evaluation in evaluation in CAFA.  For each protein sequence, it compares a set of GO terms 

predicted by a method with the true annotation of the protein and calculates precision P, recall R 

and Fmax as 

𝑃(𝑡) =  
1

𝑛
∑

𝑇𝑃𝑖(𝑡)

𝑇𝑃𝑖(𝑡)+𝐹𝑃𝑖(𝑡)

𝑛
𝑖=1                            (5) 

𝑅(𝑡) =  
1

𝑛
∑

𝑇𝑃𝑖(𝑡)

𝑇𝑃𝑖(𝑡)+𝐹𝑁𝑖(𝑡)

𝑛
𝑖=1                            (6) 

𝐹𝑚𝑎𝑥 =  𝑚𝑎𝑥
𝑡

{F1 − score} =  𝑚𝑎𝑥
𝑡

{
2∗ 𝑃(𝑡)∗𝑅(𝑡)

𝑃(𝑡)+𝑅(𝑡)
}     (7) 

where t is the score threshold, P(t) is the precision at threshold t, R(t) is the recall at threshold t, 

𝑇𝑃𝑖(𝑡) is the total number of GO terms that have predicted score greater than or equal to t and are 

present in true annotation set for protein i (i.e. true positive prediction considering that predicted 

GO terms with a score t or higher are predicted), 𝐹𝑃𝑖(𝑡) is the total number of GO terms that have 

a predicted score greater than or equal to t and are not present in true annotation set for protein i 

(false positive at score t), 𝐹𝑁𝑖(𝑡) is the total number of proteins that are present in true annotation 

set but do not have predicted score greater than or equal to t for protein i (false negative at score 

t), n is the number of proteins predicted used for evaluation. Considering that each method may 

assign its prediction confidence score of a different distribution, F1-score is computed at different 

confidence score cutoff, t, and the maximum of among the computed F1-score was taken as the 

prediction accuracy for the method (Eq. 7). 

http://sifter.berkeley.edu/
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3.2.7 FunSim score 

The funSim [91, 92] score was used to compute similarity of GO annotations of proteins. For GO 

annotations of two proteins, funSim is defined from similarity of GO term pairs as follows: 

The similarity of two individual GO terms c1 and c2 is 

𝑠𝑖𝑚(𝑐1, 𝑐2) = 𝑚𝑎𝑥
𝑐∈𝑆(𝑐1 ,𝑐2)

(
2∙𝑙𝑜𝑔𝑝(𝑐)

𝑙𝑜𝑔𝑝(𝑐1)+𝑙𝑜𝑔𝑝(𝑐2)
∙ (1 − 𝑝(𝑐))        (8) 

where 𝑝(𝑐) is the annotation frequency of term c relative to the frequency of the ontology root, 

and 𝑆(𝑐1, 𝑐2) is the set of common ancestor terms between terms 𝑐1 and 𝑐2. The similarity of two 

sets of terms, 𝐺𝑂𝑖
𝐴 and  𝐺𝑂𝑗

𝐵 , of respective sizes N and M is calculated by constructing an all-by-

all similarity matrix 𝑠𝑖𝑗. 

𝑠𝑖𝑗 = 𝑠𝑖𝑚(𝐺𝑂𝑖
𝐴, 𝐺𝑂𝑗

𝐵), ∀𝑖𝜖{1, … , 𝑁}, ∀𝑗𝜖{1, … , 𝑀}         (9) 

Row vectors compare the similarity of set A (protein 1) to set B (protein 2), while column vectors 

compare the similarity of set B (protein 2) to set A (protein 1). 

𝑆𝑖𝑚(𝐴, 𝐵) =
1

𝑁
∑ 𝑚𝑎𝑥

1≤𝑖≤𝑀
𝑠𝑖𝑗

𝑁
𝑖=1                           (10) 

𝑆𝑖𝑚(𝐵, 𝐴) =
1

𝑀
∑ 𝑚𝑎𝑥

1≤𝑗≤𝑁
𝑠𝑖𝑗

𝑀
𝑗=1                            (11) 

To calculate an overall similarity score for the two term sets, we combined these two terms for 

each GO category: 

𝐺𝑂𝑠𝑐𝑜𝑟𝑒 = 𝑚𝑎𝑥 ( 𝑆𝑖𝑚(𝐴, 𝐵), 𝑆𝑖𝑚(𝐵, 𝐴) )           (12) 

where 𝐺𝑂𝑠𝑐𝑜𝑟𝑒  is any of the three category scores (MF-score, BP-score, CC-score). If annotations 

of the two query proteins contain terms for all three categories, funSim is defined as 

𝑓𝑢𝑛𝑆𝑖𝑚 =
1

3
[(

𝑀𝐹𝑠𝑐𝑜𝑟𝑒

𝑚𝑎𝑥(𝑀𝐹𝑠𝑐𝑜𝑟𝑒)
)

2
+ (

𝐵𝑃𝑠𝑐𝑜𝑟𝑒

𝑚𝑎𝑥(𝐵𝑃𝑠𝑐𝑜𝑟𝑒)
)

2
+ (

𝐶𝐶𝑠𝑐𝑜𝑟𝑒

𝑚𝑎𝑥(𝐶𝐶𝑠𝑐𝑜𝑟𝑒)
)

2
]     (13) 

𝑚𝑎𝑥(𝐺𝑂𝑠𝑐𝑜𝑟𝑒)  =  1 (maximum possible 𝐺𝑂𝑠𝑐𝑜𝑟𝑒) and the range of the funSim score is [0,1]. If 

query protein(s) do not have GO annotations for all three categories, funSim is computed only for 

categories that commonly exist in the two proteins compared. 

3.3 Results 

We first discuss that relationship between the E-value and phylogenetic distance of sequences. 

Then, we present prediction results of Phylo-PFP on the two datasets. 
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3.3.1 New sequence weight and sequence similarity 

First, we examined to what extent the new sequence weight ELE (Eq. 2) correlates sequence 

similarity score computed with E-value used in the original PFP. In phylogenetic studies, 

difference between sequence similarity scores and the phylogenetic distance has been a focus of 

interest [93, 94]. Smith and Pease discussed cases when a sequence similarity score, -log(E-value), 

which is also used in the original PFP, does not capture evolutionary related sequences [94]. Eisen 

showed examples when the phylogenetic distance is expected to perform better than a sequence 

similarity-based score in predicting gene function [95]. 

Figure 3.2a shows the distribution of the Pearson’s correlation coefficients between ELE 

and -log(E-value) for PSI-BLAST hits for 1702 sequences in the benchmark dataset. For each 

query sequence in the benchmark dataset, similar sequences to the query were retrieved from the 

database with PSI-BLAST up to an E-value of 125, and correlation between the sequence 

similarity score and ELE was computed and summarized in a histogram. For cases of very similar 

sequences to the query with an E-value of 0, a very small number (1e-1000) was assigned. 

Although there is a small peak at the highest correlation bin of 1.0, the highest peak in the 

plot was observed at a very weak correlation of around 0.1. 53.58% were less than 0.2. Due to 

these very weak correlation, the mean correlations values were modest, 0.234. The same trend was  

Figure 3.2. (a) Histogram of Pearson’s correlation coefficients computed between -log(E-value) 

and ELE of PSI-BLAST hits for the dataset of 1702 sequences. (b) Histogram of Pearson’s 

correlation coefficients between -log(E-value) and the phylogenetic distance. 

 

observed in Figure 3.3, which is a histogram of correlation between the BLAST Bit score and ELE. 

Smith & Pease showed similar plots of correlation between the evolutionary distance and –log(E-
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value) for simulated protein sequences [94], which corresponds to Figure 3.2b in our analysis. 

Compared with their results (Fig. 3A and B in their paper), which showed high correlations 

between the two values, our results on real sequences show a diverse distribution of correlations 

including many cases that had almost no correlation. The average correlation in Figure 3.2b was -

0.546. The different result between the plots by Smith & Pease and Figure 3.2b in this work is 

probably due to the different ways that the sequence datasets were constructed. The sequence 

dataset in the former work was simulated based on a molecular model [94] while in the current 

work sequences were collected from real database searches up to a very weak similarity of an E-

value of 125. Another difference is that while the plots by Smith & Pease are computed only for 

two query proteins, the current work summaries 1702 proteins showing that there are sequences 

of a high correlation but with a larger number of sequences with weak correlations.  

 

Figure 3.3. Correlation between BLAST Bit score and ELE. Histogram of Pearson’s correlation 

coefficients between the BLAST Bit alignment score and the ELE score of PSI-BLAST hits for 

the 1702 sequences in the benchmark dataset. The average correlation was 0.247 and 53.70% of 

the correlation values were less than 0.2. 

 

In Figure 3.4, three examples of proteins with a high and low correlations are shown. Figure 

4a is from alpha-ketoglutarate-dependent dioxygenase AlkB (UniProt ID: P05050), an example of 

sequences with a high correlation between ELE and the sequence similarity, -log(E-value). The 

correlation of this protein was 0.999. Figure 4b and Figure 4c are opposite cases where there was 

no correlation between ELE and the sequence similarity. Figure 3.4b is from alpha-ketoglutaric 

semialdehyde dehydrogenase (UniProt ID: Q6FFQ0). The correlation was 0.125. For this protein, 

the score distribution was split into a large number of high scoring proteins (upper right) and a 
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small number of low scoring proteins (bottom left) and the high scoring proteins were a mixture 

of different dehydrogenase families dominated by N-succinylglutamate 5-semialdehyde 

dehydrogenase and NAD/NADP-dependent betaine aldehyde dehydrogenase, which had high 

similarity but inconsistent score rankings between ELE and the sequence similarity. ELE was 

higher for semialdehyde proteins and lower for dehydrogenases, while the sequence similarity was 

almost the same among them. Figure 3.4c is a plot for peptide chain release factor 2 (UniProt ID: 

Q8ZHK4), which had a correlation value of 0.179. Sequence hits consisted of peptide chain release 

factor 1 and peptide chain release factor 2 from different organisms. As shown in the figure, ELE 

distinguished factor 1 (triangles) and factor 2 (circles) better than the sequence similarity giving 

higher scores to factor 2 homologs, while the sequence similarity did not separate these two groups. 

 

 

Figure 3.4. Examples of score correlation of individual proteins. (a) Score distribution of ELE 

and the sequence identity for alpha-ketoglutarate-dependent dioxygenase AlkB (UniProt ID: 

P05050). (b) Score distribution of ELE and the sequence identity for alpha-ketoglutaric 

semialdehyde dehydrogenase (UniProt ID: Q6FFQ0). (c) Score distribution of ELE and the 

sequence identity for peptide chain release factor 2 (UniProt ID: Q8ZHK4). The sequence hits 

include factor 2 homologs (circles) and factor 1 homologs (triangles). 
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3.3.2 Performance of Phylo-PFP on the non-redundant benchmark dataset 

Next, we evaluated prediction performance of Phylo-PFP on the benchmark dataset. The 

prediction performance was compared with the original PFP and three other existing methods as 

reference, PSI-BLAST, Pfam, and SIFTER [90]. SIFTER was chosen because it considers a 

phylogenetic tree to transfer function from similar proteins to the query. When we ran Phylo-PFP 

and PFP, we removed the query sequence itself and sequence hits with an E-value of 0 from the 

PSI-BLAST run. The performance of the methods were evaluated with the Fmax score, which is 

the average F1-score at a method’s score cutoff that gives the maximum F1-score to the entire set 

of target proteins (i.e. the method’s score cutoff was not optimized differently for each target. 

Fmax score was used because it is a main evaluation metric used in CAFA. 

Table 3.1 summarizes the Fmax score of the five methods. Phylo-PFP showed the highest 

Fmax score, 0.812 followed by PSI-BLAST with a score of 0.785. The rest of the methods were 

ranked in the order of PFP, Pfam, and SIFTER. To test the statistical significance, we ran a two-

sided hypothesis test for each method against Phylo-PFP, using paired t-test. In Table 3.2 P-value 

is shown from hypothesis testing of Fmax score of each method compared to Phylo-PFP, showing 

that the performance difference between Phylo-PFP and the other methods was statistically 

significant. For further comparison, in Figure 3.5A we removed sequence hits up to a certain E- 

value, 1e-2, 1e-1, 1, 10, and 100 from the PSI-BLAST search for the three methods, Phylo-PFP, 

PFP, and PSI-BLAST, and predicted GO terms from remaining sequence hits. This is to simulate 

situations when a query protein does not find any significant hits. Pfam and SIFTER results do not 

change by E-value cutoffs, because PSI-BLAST is not used in their algorithms. It is apparent that 

Phylo-PFP and PFP performed substantially better than PSI-BLAST. At an E-value cutoff of 1e-

2, the Fmax scores of the three methods were 0.465, 0.463, and 0.353, respectively (Table 3.1). It 

caught our attention that the Fmax score of PFP was worse than PSI-BLAST with no cutoff, which 

is probably due to the nature of this particular benchmark dataset, where query sequences have a 

sufficient number of highly similar sequences because they are collected from clusters of Uniref50. 

However, when sequence hits were limited to an E-value of 1e-2 or lower, PFP showed its superior 

ability to PSI-BLAST as consistent with the earlier benchmark studies of PFP [38, 39, 96]. 

Comparing Phylo-PFP and PFP, Phylo-PFP performed better with no cutoff (0 in the plot) and 

cutoffs of 1e-2, 1e-1, 1, and 10. The margin between the two methods was largest when no E-value 

cutoff was applied. This implies that the sequence hits reranking with the ELE weight was more 
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effective when closely similar sequences were more correctly ranked. At the cutoff of 100, Phylo-

PFP and PFP showed almost identical Fmax score, 0.400, and 0.401, respectively.  

 

Table 3.1.The Fmax score of the five methods on the benchmark dataset. Fmax scores were 

computed at two E-value cutoffs of PSI-BLAST search, with no cutoff and 1e-2. Only one score 

was provided for Pfam and SIFTER since they do not use a database search results from PSI-

BLAST. 

Method Fmax (no cutoff) Fmax 1e-2 cutoff 

Phylo-PFP 0.812 0.465 

PFP 0.747 0.463 

PSI-BLAST 0.785 0.353 

PFam 0.500 - 

SIFTER 0.288 - 

 

Table 3.2. Statistical test for the results shown in Table 3.1. 

Method P-value 

PFP 4.83e-88 

PSI-BLAST 6.38e-19 

Pfam 1.42e-226 

SIFTER 0.0 
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Figure 3.5. Prediction performance of Phylo-PFP on the benchmark dataset of 1702 non-

redundant proteins. (a) Performance comparison with different E-value cutoffs applied to PSI-

BLAST hits in terms of the Fmax score. Phylo-PFP (circles) was compared with PFP (stars), 

PSI-BLAST (diamonds), Pfam (triangle), and SIFTER (cross).  Sequence hits that have an E-

value smaller (i.e. more significant) than the E-value cutoff are removed and not used for 

extracting GO terms. (b) Comparison of predictions by Phylo-PFP and PFP for individual 

proteins. Fmax scores were compared. (c) The depth of correctly predicted GO terms with an E-

value cutoff of 1e-2 by Phylo-PFP and PFP were compared. The x-axis represents the depth of 

the correctly predicted GO terms in the GO graph. If a GO term has multiple parental terms with 

different depths, the smallest depth for the term was considered. Predictions with a confidence 

score of 0.9 or higher were considered. If a sequence had multiple correctly predicted GO terms 

of different depths, the sequence was counted for all the depths. The right most bars, 8+, are for 

depths of 8 or larger. (d) Difference of Fmax scores of Phylo-PFP and PFP against the 

Spearman’s correlation between the PSI-BLAST hits ranks of the two methods. Each data point 

corresponds to a protein sequence in the benchmark dataset. 

 

As described in Methods, Phylo-PFP uses E-value of 125 as a sequence retrieval cutoff for 

PSI-BLAST if the number of sequences does not reach 500 before that E-value. We compared the 

performance of using E-value cutoff of 100 and 150 as well. In the benchmark dataset created from 

UniRef50, sequences retrieved from 78 of the 1702 query sequences had an E-value of 150 or 

larger within top 500 sequence hits of PSI-BLAST. Thus, we compared on these 78 sequences. 

The Table 3.3 shows the Fmax score of Phylo-PFP using three E-value cutoffs, 100,125 and 150, 
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for those sequences showing that 100 and 150 gave similar results but 125 had the highest Fmax 

score among them. 

Additionally, we also used HHblits [97] and MMseqs2 [98] instead of PSI-BLAST in 

Phylo-PFP with the same parameters as we used PSI-BLAST, i.e. up to three iterations and an E-

value cutoff of 125 with 500 maximum sequence hits. Interestingly, Phylo-PFP with MMseqs2 

exceeded the Phlyo-PFP’s performance with a Fmax of 0.842. Comparison of the two methods for 

each benchmark sequence are shown in Figure 3.6. Phylo-PFP-HHblits had an Fmax score of 

0.633. 

We further tested the methods Uniref50 dataset clustered with 30% identity cutoff, which 

included 1234 sequences. The results are shown in Table 3.4 and were consistent with results of 

50% identify dataset.  

In the subsequent panels in Figure 3.5, we analyzed the difference between Phylo-PFP and 

PFP from several different angles. Figure 3.5b shows a direct comparison of Fmax score of 

individual proteins in the benchmark dataset. Phylo-PFP showed larger or the same Fmax score 

than PFP for 83.72% of the sequences. Often the gain by Phylo-PFP over PFP was large; for 89 

(5.23%) sequences the improvement of the score was more than 0.3 and the maximum Fmax score 

increase observed was 0.677 (from0.212 to 0.889). Phylo-PFP achieved the perfect score of 1.0 

for 529 proteins while it was 338 for PFP. On the other hand, the deterioration of the score by 

Phylo-PFP was relatively small. For only 5 (0.29%) sequences the decrease in the score was more 

than 0.3. 

 

Table 3.3.Phylo-PFP results with different E-value cutoff 

E-value cutoff Fmax 

100 0.773 

125 0.775 

150 0.770 
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Figure 3.6. Comparison between original Phylo-PFP with Phylo-PFP-MMSeq2. The above plot 

compares the F-score for each sequence in the UniRef50 benchmark dataset between the two 

methods.  Phylo-PFP with MMSeq2 showed a higher score than the original Phylo-PFP for 580 

sequences, while original Phylo-PFP was better for other 303 sequences. The two methods 

showed the same score for the rest. 

 

 

Table 3.4.Fmax score of Phylo-PFP and other methods on the benchmark dataset with 30% 

identity cutoff. 

Method 50% similarity Fmax 30% similarity Fmax 

Phylo-PFP 0.812 0.803 

Phylo-PFP MMSeqs2 0.842 0.828 

Phylo-PFP HHBlits 0.633 0.625 

PFP 0.747 0.736 

PSI-BLAST 0.785 0.773 

Pfam 0.500 0.483 

SIFTER 0.288 0.284 
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In Figure 3.5c, we examined the information content of predicted functions by Phylo-PFP 

and PFP quantified as the depth of correctly predicted GO terms. GO terms are organized in a 

directed acyclic graph ordered from general functional terms to more specific functions [99]. Thus, 

correct predictions of GO terms at larger depth (closer to leaves) are more valuable than prediction 

of shallower GO terms. In the plot, the results from the E-value cutoff of 1e-2 (Figure 3.5a) was 

used and only high confidence predictions with a confidence level over 0.9 were considered. It is 

shown in Figure 3.5c that Phylo-PFP predicted more terms at larger depths than PFP. Phylo-PFP 

predicted correct GO terms at a depth of five or deeper for 1.58 times more sequences than PFP. 

When only depths of eight or deeper were considered, Phylo-PFP predicted GO terms in 2.03 times 

as many cases as PFP. 

In the last panel, Figure 3.5d, we examined the difference of the prediction performance 

(Fmax score) for each target protein between Phylo-PFP and PFP relative to the amount of the 

difference in the ranks of PSI-BLAST- retrieved sequences. Since Phylo-PFP and PFP use the 

same set of retrieved sequences from a PSI-BLAST search with only difference being ranking of 

the sequences due to the different scoring schemes used by the two methods, the performance 

difference may be correlated to the difference of the sequence ranks. The difference of the 

sequence rankings was evaluated by the Spearman’s correlation (x-axis). We expected that a large 

improvement of prediction accuracy occurs when a large sequence ranking difference is observed, 

which should result in a small correlation coefficient. However, the trend seems to be rather 

opposite. Large Fmax score improvements were observed more frequently when the correlation 

values are close to 1.0, which indicates a small difference in the sequence rankings of the two 

methods. This may be implying that an improvement occurs when a small number of key 

sequences are adjusted in their ranks. 

3.3.3 Permutation test of sequence ranking 

We further tested statistical significance of rank change by Phylo-PFP. For each sequence in the 

benchmark dataset, we examined sequence hits from its PSI-BLAST run and marked “correct” 

sequences (that has a FunSim score of 0.6 or higher). Then, we checked the rank of all the correct 

sequences in the sequence rank based on ELE for Phylo-PFP and the E-value score for PFP. 

Ideally, correct sequences should go up in the ranking by ELE, as we showed in examples in Figure 

3.7 and Figure 3.8. We performed Mann–Whitney U-test as the test statistic between the two sets 
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of ranks of E-value (in PSI-BLAST) and ELE (in Phylo-PFP). We then randomly shuffled the 

ranks 1000 times and performed the same test to obtain the distribution of the test statistic and 

calculated the p-value.  

Out of 1702 benchmark sequences, 232 (13.6%) had a statistically significant rank change 

(p-value <0.05). This result is consistent with our initial observation that the changes in the ranking 

seemed to be not huge, and only key correct sequences move up in the rank. It should also be noted 

that the ranking change does not directly correlate with the improvement of function prediction 

accuracy, since Phylo-PFP uses a different scoring scheme from the original PFP. 

 

Figure 3.7. Visualization of sequence rank changes by ELE used in Phylo-PFP relative to the 

functional similarity to the query protein. The dendrogram shows functional similarity of each 

sequence to the query protein (shown in blue), which was quantified with the funSim score of 

GO terms annotations of two proteins. Top 75 sequences of highest functional similarity to a 

query protein are shown. In comparison with sequence hit ranks in PFP, sequences that went up 

or down in their ranking in Phylo-PFP are shown in green and red, respectively. UniProt IDs are 

shown for proteins that are mentioned in the text. The query is human major surface glycoprotein 

G (UniProt ID: P03423). 
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Figure 3.8. Visualization of sequence rank changes by ELE used in Phylo-PFP relative to the 

functional similarity to the query protein, sarcosine oxidase subunit beta from Corynebacterium 

sp. (UniProt: P40875). Sequence hits with their ranks moved up are shown in green, whereas 

sequences with lowered rank are shown in red. The query protein is show in blue. 
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3.3.4 Case Studies 

In this section we discuss an illustrative case of Phylo-PFP’s prediction. The focus is to examine 

how Phylo-PFP improved prediction over PFP by reranking PSI-BLAST sequence hits by the ELE 

weight. 

The query protein used is human respiratory virus surface glycoprotein G (UniProt ID: 

P03423). This protein is present on the virus surface, for which GO terms such as virion membrane 

(GO:0055036), virion (GO:0019012), host cell surface (GO:0044228), extracellular region 

(GO:0005576), integral component of membrane (GO:0016021), and membrane (GO:0016020) 

are annotated in the CC category. The protein helps in attachment of the virus to the host cell 

membrane by interacting with heparan sulfate, initiating viral infection. This corresponds to GO 

annotations of virion attachment to host cell (GO:0019062), viral process (GO:0016032), 

evasion/tolerance by virus of host immune response (GO:0030683), and viral entry into host cell 

(GO:0046718) in the BP category. Phylo-PFP showed a high prediction accuracy, an Fmax score 

of 0.803 while it was 0.042 by PFP. If we calculate Fmax using the optimal score cutoff for this 

particular protein, then Phylo-PFP score was increased to 0.958, while PFP score increased to 

0.741, still lower Phylo-PFP. 

As shown in Table 3.5, Phylo-PFP predicted most of the correct GO terms with a high 

confidence score of 0.99 to 1.00, while PFP predicted them with a low score of 0.06 to 0.11. PFP 

instead predicted the incorrect terms, diaminopimelate metabolic (GO:0046451) and lysine 

biosynthetic process via diaminopimelate (GO:0009089) with the highest score of 1.0. These two 

incorrect GO terms came from sequence hits of diaminopimelate epimerase, which had a 

significant E-value (e.g. 1e-26 for bacterial diaminopimelate epimerase, UniProt ID: A6VQR8). 

In contrast to PFP, Phylo-PFP moved the ranks of Epstein-Barr virus envelope glycoproteins (e.g. 

Q3KST4, P03200, and P68344) higher, which are virus envelope proteins similar to the query 

protein. Figure 3.7 depicts how the sequence hits in PSI-BLAST search were reranked by ELE. 

The dendrogram shows the top 75 functionally similar sequences to the query, P03423 (shown in 

blue). Sequence hits are shown in green if their ranks went up by ELE in comparison with their 

original ranks in PSI-BLAST, which include the three proteins, Q3KST4, P03200, and P68344. 

Shown in red are sequences whose rank went lower by ELE. As illustrated, sequences that are less 

similar, i.e. far from the query in the dendrogram, went lower, while those more functional similar 

went up in the rank. Table 3.6 further illustrates the amended score contribution by ELE with a 
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few sequence examples. The three virus proteins in the table had insignificant E-values of 2.2, 

0.23, and 0.55 respectively, and thus only contributed 2 to 10% of the scores relative to A6VQR8, 

a diaminopimelate epimerase sequence with a very small E-value. However, their relative 

contribution increased to 14 to 20% in ELE, which was sufficient, together with contributions of 

other functionally similar sequences to the query, P03423 (Figure 3.7), to rank correct GO terms 

with the highest confidence scores (Table 3.5). 

 

Table 3.5. Confidence scores of correct GO terms for P03423 by Phylo-PFP and PFP. Two more 

GO terms discussed in the text are also listed. 

Correct GO terms Phylo-PFP 

Confidence Score 

PFP Confidence 

Score 

GO:0044228 (Host cell surface) 0.99 0.06 

GO:0055036 (virion membrane) 0.99 0.06 

GO:0046718 (viral entry into host) 1.00 0.11 

GO:0005576 (extracellular region) 0.99 0.13 

GO:0016021 (integral component of membrane) 1.00 0.09 

GO:0030683 (evasion or tolerance by virus of 

host immune response) 

1.00 0.11 

GO:0019062 (virion attachment to host cell) 1.00 0.11 

GO:0019012 (virion) 1.00 0.12 

GO:0016032 (viral process) 1.00 0.11 

GO:0016020 (membrane) 0.694 0.17 

GO:0046462 (diaminopimerate metabolic 

process) 

0.55 1.00 

GO:0009089 (lysine biosynthetic process via 

diaminopimerate) 

0.55 1.00 
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Table 3.6.Comparison of E-value, phylogenetic distance, and ELE of a few key PSI-BLAST hits 

for a query protein, P03423. *Diaminopimelate epimerase. # Epstein-barr virus envelope 

glycoprotein. a), the weight of the sequence used in PFP, i.e. –log(E-value) + b, relative to 

A6VQR8. b), the phylogenetic distance. c), ELE relative to A6VQR8. 

Prot. ID E-val. -log(E)+b Rel(PFP)a) Phylb) ELE Rel(ELE)c) Func. 

A6VQR8 1E-26 28.1 1.0 31.6 0.890 1.0 D.e* 

Q5N013 2E-22 24.1 3 35.7 0.666 0.748 D.e 

Q3KST4 2.2 0.758 0.027 13.9 0.126 0.142 E.-b.# 

P03200 0.23 2.738 0.097 15.8 0.176 0.198 E.-b. 

P68344 0.55 2.360 0.084 14.1 0.167 0.188 E.-b. 

 

We discuss another case with sarcosine oxidase subunit  from Corynebacterim sp. strain 

P-1 (UniProt ID: P40875). This protein catalyzes the oxidative demethylation of sarcosine into 

formaldehyde, glycine and hydrogen peroxide, which corresponds to GO annotations of 

oxidoreductase activity (GO:0016491) and sarcosine oxidase activity (GO:0008115) in the 

Molecular Function (MF) category as well as tetrahydrofolate metabolic process (GO:0046653) 

and oxidation-reduction process (GO:0055114) in the BP category. Phylo-PFP successfully 

predicted all the four GO terms yielding the Fmax score of 1.00 (1.00) while PFP’s Fmax was 

0.518 (0.623). Shown in the parentheses are the Fmax value obtained when optimized for this 

target protein. Table 3.7 shows confidence scores predicted for the correct GO terms by Phylo-

PFP and PFP as well as two more terms that are over-predicted by PFP (the two terms at the bottom 

of the table). While analyzing PSI-BLAST hits to understand the different performance between  
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Table 3.7. Confidence scores of correct GO terms for a query protein P40875 by Phylo-PFP and 

PFP. Two more GO terms to be discussed in the text are also listed. 

 

the two methods, we found that sequence hits with significant E-values included both functionally 

related and non-related sequences. For example, Q9AGP3 and O87388, both of which are 

sarcosine oxidase were identified with a significant E-value (E-103 and 1E-76, respectively), while 

tRNA biosynthesis proteins were also among the top hits, Q8ZNB2 (E-value: 7E-73), A9MJ47 (E-

value: 2E-72), and A9N465 (E-value: 2E-73). This caused PFP to predict GO terms related to these 

proteins, such as tRNA processing (GO:0008033) and methyltransferase activity (GO:0008168) 

with a medium level confidence score. In contrast, Phylo-PFP effectively reranked sequence hits 

with the ELE weight correctly, as shown in Table 3.8, by considering the phylogenetic distance of 

the sequence hits. Ranks of tRNA biosynthesis proteins, Q8ZNB2, A9MJ47, and QA9N467, were 

lowered due to their large phylogenetic distances (more than 85), while sarcosine oxidase 

sequences, Q9AGP3 and O87388, moved up in the rank because their phylogenetic distances were 

relatively small, 0.23 and 20.31 respectively. Consequently, Phylo-PFP managed to predict correct 

GO terms of sarcosine oxidase with a high score (Table 3.8). Oxidoreductase activity (GO:016491) 

was predicted with the highest confidence by both Phylo-PFP and PFP because it is the common 

annotation between sarcosine oxidase and tRNA biosynthesis proteins. Figure 3.8 illustrates this 

situation of sequence reranking by ELE for Phylo-PFP. Among those which were moved up in the 

rank (shown in green) are functionally similar to the query (blue) including Q9AGP3 and O87388, 

whereas the three tRNA biosynthesis proteins, Q8ZNB2, A9MJ47, and QA9N467 were among 

sequences which were moved to lower ranks. 

Correct GO terms Phylo-PFP 

Confidence Score 

PFP Confidence 

Score 

GO:0016491 (oxidoreductase activity) 1.00 1.00 

GO:0055114 (oxidation-reduction process) 1.00 1.00 

GO:0008115 (sarcosine oxidase activity) 0.59 0.02 

GO:0046653(tetrahydrofolate metabolic 

process) 

0.47 0.02 

GO:0005737 (cytoplasm) 1.00 0.61 

GO:0008033 (tRNA processing) 0.07 0.38 

GO:0008168 (methyltransferase activity) 0.13 0.38 
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Table 3.8. Comparison of E-value, phylogenetic distance, and ELE of a few key PSI-BLAST 

hits for a query protein, P40875. 

Protein 

ID 

E-

value 

Phylo 

distance 

ELE Description 

Q8ZNB2 7E-73 85.58 0.868 tRNA biosynthesis bifunctional protein 

MnmC 

A9MJ47 2E-72 87.10 0.825 tRNA biosynthesis bifunctional protein 

MnmC 

A9N465 2E-73 85.30 0.877 tRNA biosynthesis bifunctional protein 

MnmC 

Q9AGP3 E-103 0.23 457.059 Sarcosine oxidase 

O87388 1E-76 20.31 3.845 Sarcosine oxidase 

3.3.5 Prediction on the CAFA2 target protein dataset 

We further tested Phylo-PFP on the target protein sequence dataset used in CAFA2 to compare 

the performance with top performing methods in the assessment. In total, 56 groups submitting 

126 methods participated in CAFA2.  

We compared the performance of Phylo-PFP with the best performing methods in CAFA2 

as well as PFP and with a baseline method, BLAST (Table 3.9). The top performing methods from 

CAFA2 were taken from Figure 4 of the CAFA2 evaluation report [73]. 
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Table 3.9. The Fmax score of predictions for the CAFA2 dataset by Phylo-PFP in comparison 

with top performing methods in CAFA2. Results of the three GO categories are separately 

shown. Fmax scores of the methods participated in CAFA2 were taken by matching the 

supplemental data and Figure 4 of the CAFA2 evaluation report.  Dashes (-) indicate that method 

did not appear among top 10 methods in Figure 4. The largest Fmax value for each GO category 

is highlighted in bold. 

Method MF BP CC 

MS-KNN 0.595 0.363 0.455 

EVEX 0.593 - 0.468 

Paccanaro Lab - 0.372 - 

Tian Lab 0.591 0.367 0.462 

Orengo-FunFams 0.569 0.352 0.438 

Go2Proto 0.563 - - 

SIFTER 0.561 - - 

INGA-Tosatto 0.555 0.347 - 

Jones-UCL 0.554 0.352 0.450 

Argot2 0.544 0.351 - 

Gough Lab - 0.352 0.458 

PULP - 0.350 0.441 

Rost Lab - - 0.442 

IASL - - 0.439 

PFP 0.574 0.348 - 

CONS - - 0.446 

BLAST 0.473 0.251 0.347 

Phylo-PFP 0.606 0.380 0.506 

 

Remarkably, Phylo-PFP outperformed the other methods in all three categories with an 

Fmax score of 0.606, 0.380, and 0.506 for MF, BP, and CC category, respectively. Considering 

the methods from CAFA2, a different method excelled for each GO category and no method 

showed consistent high performance among all the categories. MS-KNN scored the highest in MF 

with an Fmax of 0.595, Paccanaro Lab was the top among the existing methods in BP with an 

Fmax of 0.380, while EVEX was best in CC with an Fmax of 0.372. This is a clear contrast with 

Phylo-PFP, which exhibited the best performance in all the three categories.  
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3.3.6 Computational time 

The computational time for running Phylo-PFP are shown in comparison with PFP and PSI-

BLAST in Table 3.10. To examine how the computational time grows as the number sequence hits 

by PSI-BLAST increases, the computational time was measured for three different numbers of 

hits, 10, 100, and 500. The time needed for Phylo-PFP increased substantially as the number of 

sequence hits grew, mainly due to the time needed to construct a phylogenetic tree from the 

sequence hits. With 10 sequence hits, Phylo-PFP took 3.1 times the computational time of PFP, 

which grew to 21.8 times when 500 sequence hits were retrieved. 

 

Table 3.10. Computational time of the prediction methods. Computational times shown are the 

average values of ten query sequences in the unit of seconds. Hits (columns) indicate the number 

of sequence hits by PSI-BLAST. The number of hits were limited to 10, 100, and 500, for each 

method. The computations were performed on a computer operated by Linux with Intel Core i7-

920 CPU 2.67GHz with 24.6 GB RAM. 

Methods\Hits 10 100 500 

PSI-BLAST 15.7 23.0 31.2 

PFP 18.2 28.3 44.7 

Phylo-PFP 56.6 103.5 975.2 

 

3.3.7 Performance in CAFA3 

We participated in world-wide function prediction competition CAFA3 with Phylo-PFP as wella 

as an ensemble method CONS [100] that included Phylo-PFP with the highest weightage. We 

updated the annotation and PSI-BLAST database in 2016, before the start of the competition. Our 

method came 2nd in CC category, 4th in MF category and 6th in BP category out of 68 teams and 

144 total methods [101]. Results of the competition are shown in Figure 3.9. For human proteins, 

our method came 1st in CC category, 2nd in MF category and 1st in BP category, shown in Figure 

3.10. 
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Figure 3.9. Performance evaluation based on the Fmax for the top-performing methods in 

CAFA3. Figure was obtained from Figure 3 of [101] 
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Figure 3.10. Fmax for the top-performing methods in CAFA3 for human targets. Figure was 

obtained from Figure S6 of [101] 
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3.4 Discussion 

In this study, we developed a new sequence-based protein function prediction method, Phylo-PFP, 

which substantially improved the prediction accuracy from its predecessor, PFP, by using 

phylogenetics to determine the evolutionary distance of sequences retrieved from a database 

searches.  

It has been discussed that the sequence similarity does not often accurately capture 

evolutionary relationship of sequences [94]. Here we showed that there was no strong correlation 

between the database search scores and the phylogenetic distances for most of the sequences in a 

large dataset on a realistic scenario of PSI-BLAST search. Subsequently, as a practical solution 

for improving PFP, we implemented a distance-based phylogenetic analysis, and achieved 

favorable prediction accuracy improvements. Phylo-PFP takes more computational time than PFP 

especially when the number of PSI-BLAST hits is large. A practical solution for performing 

prediction for many sequences would be to run the method in parallel on multi-core CPUs. 

Further improvement of the accuracy is expected by considering several approaches. For 

example, instead of the distance-based phylogenetic analysis we used in this work, a more accurate 

tree construction technique such as maximum likelihood [102] or Bayesian inference [103, 104] 

may be used. Also, functional domain [105] or residue information [35, 106] can be explicitly 

considered, as currently functional transfer is performed in PFP and Phylo-PFP only by global 

sequence similarity. 

  



 

 

74 

 GENE ONTOLOGY-BASED PROTEIN TOXICITY 

PREDICTION 

With advancements in synthetic biology, the cost and the time needed for designing and 

synthesizing customized gene products have been steadily decreasing. Many research laboratories 

in academia as well as industry routinely create genetically engineered proteins as a part of their 

research activities. However, manipulation of protein sequences could result in unintentional 

production of toxic proteins. Therefore, being able to identify the toxicity of a protein before the 

synthesis would reduce the risk of potential hazards. Existing methods are too specific, which 

limits their application. In this chapter I extended general function prediction methods for 

predicting the toxicity of proteins. Protein function prediction methods have been actively studied 

in the bioinformatics community and have shown significant improvement over the last decade. 

On top of our function prediction method Phylo-PFP described in chapter 3, we developed a neural 

network model, named NNTox, which uses predicted GO terms for a target protein to further 

predict the possibility of the protein being toxic. We have also developed a multi-label model, 

which can predict the specific toxicity type of the query sequence. Together, this work analyses 

the relationship between GO terms and protein toxicity and builds predictor models of protein 

toxicity. 

4.1 Background 

Proteins carry out various functions in a cell, forming functional networks and signaling pathways 

that are essential to sustain life. Understanding the function of component proteins in the networks 

is a fundamental step to obtain critical insights into complex cellular mechanisms. As a means to 

elucidate the function of a protein and the relationship between the function and the sequence or 

the structure of the protein, experimentally, it is common to construct mutants of the protein and 

test their function in vitro and in vivo. Advancements in synthetic biology [107, 108] as well as 

protein design [109] have made it now possible to construct artificial proteins that fold and 

assemble into desired structures and achieve specific tasks in a cell. Artificial protein synthesis has 

also revolutionized the biotechnology industry, where the technique has been used to program 
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microbes to produce drugs at reduced production cost, to create disease-resistant crops that 

improve the yield, or to design new vaccines and therapeutic antibodies to cure diseases [110-112].  

While there are many applications of constructing desired artificial peptides and proteins, 

a potential problem is the production of harmful or toxic proteins. There are two scenarios where 

toxic proteins may be constructed: One situation would be that a newly designed protein happens 

to have an unexpected harmful function. There are many aspects of cell function that are still 

unclear, thus, foreseeing such side effects when designing a new protein may be very difficult. The 

second possible case would be an intentional design or release of toxic proteins for biological 

attack [113]. To prevent release of toxic proteins, there are ongoing efforts to build systems and 

devices that collect unknown proteins or organisms together that identify proteins with potential 

harm[114-117]. There is a strong demand for such systems for lab facilities of gene synthesis, 

places where many people gather, e.g. airports, and war zones where biological attack might occur. 

A computational algorithm for detecting toxic proteins should take a protein or DNA 

sequence as input and alerts if the protein can be harmful. ThreatSEQ developed by Battelle 

Memorial Institute identifies sequences of concern by comparing them with a curated database of 

known toxic proteins [118]. ToxinPred [119] and other series of methods developed by the 

Raghava group target detection of toxic bacterial peptides using machine learning methods based 

on sequence information [120, 121]. ClanTox uses a machine learning method that was trained on 

known peptide ion-channel inhibitors [122]. These methods are similar in approach in that they 

use sequence information. Moreover, the methods except for ThreatSEQ have a limited application 

to peptide toxins. 

In this paper, we present a new method, NNTox (Neural Network-based protein Toxicity 

prediction), which can predict the toxicity of a query protein sequence based on the protein’s Gene 

Ontology (GO) annotation [123]. GO is a controlled vocabulary of function of proteins and has 

been widely used for function annotation and prediction. Previously, our lab has developed a series 

of function prediction methods [124, 125] including PFP [39, 126, 127] and Phylo-PFP [125], 

which have been shown to be among the top-performing function prediction methods in the 

community-wide automatic function prediction experiment, Critical Assessment of protein 

Function Annotation (CAFA) [72, 73]. Here, we show that the toxicity of proteins can be well 

predicted from GO terms that are predicted by PFP. First, we examined the distribution of GO 

terms in annotations of toxic proteins and showed that GO terms are promising features for 
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predicting toxicity. Next, we developed a neural network for predicting protein’s toxicity from 

their GO term annotations. Finally, we have further extended the method to the mode of action of 

toxicity of a protein. 

4.2 Methods 

First, we will describe the datasets used in this study. Then, we explain the neural network model 

of NNTox. 

4.2.1 Toxic protein dataset 

Toxin proteins were collected from the UniProtKB-SwissProt database [128] using the keyword 

“Toxin” (UniProtKB KW-0800). A total of 6,497 toxin proteins were obtained. From the 6,497 

toxin proteins, we collected a set of 1,506 unique GO terms that were included in their GO 

annotations. The GO term of “toxin activity” (GO:0090729) was removed from the collection 

because this term obviously related to toxicity and can bias prediction if it is included in the 

annotation of proteins in the training and testing set for the toxicity prediction. From this toxin 

protein set, we removed proteins that were redundant to other proteins in terms of their GO term 

annotations. We did not use sequence similarity for the redundancy criterion because the input to 

our model is GO terms. The non-redundant dataset contained 488 toxin proteins.  

Non-toxin proteins were also collected from UniProtKB SwissProt using the following two 

conditions: 1), they are not tagged with the keyword “Toxin”. 2), 95% of GO terms annotating the 

protein belong to the toxin GO term set. The second criterion makes most of the GO term 

annotation of toxin and non-toxin proteins very similar. Using this approach 82,583 non-toxin 

proteins were obtained. Then, as was done for the toxin protein dataset, proteins with redundant 

GO annotations were removed, which resulted in 6,594 non-toxin GO proteins. 

The Toxin keyword had 11 sub-classes, which were cardiotoxin (134/8), enterotoxin 

(94/12), neurotoxin (2744/100), ion channel impairing toxin (2429/74), myotoxin (121/22), 

dermonecrotic toxin (148/4), hemostasis impairing toxin (865/95), G-protein coupled receptor 

impairing toxin (186/33), complement system impairing toxin (160/6), cell adhesion impairing 

toxin (207/18), and viral exotoxin (9/4). The first number in the parentheses is the total number of 

proteins in the sub-class downloaded from UniProtKB-SwissProt while the second number is those 

in the non-redundant toxin proteins. Using this information, we compiled a dataset of the mode of 
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action of the toxin proteins. Out of the 488 non-redundant toxin proteins, 270 proteins had 

information of the mode of action. A protein is assigned to multiple classes if it belongs to more 

than one sub-class keywords. Out of the 270 proteins, 173 proteins belong only to one sub-class, 

88 proteins have two assigned sub-classes, and 9 have three sub-classes. 

4.2.2 Feature vector representing a protein 

A protein in the dataset is represented by a vector of 2,596 binary (1 or 0) values (except for the 

last position), which indicates existence of the particular GO term in its GO annotation. 2595 GO 

terms represents all the GO terms found in toxin proteins as well as general GO terms that 

frequently appear in UniProtKB database (concretely, all GO terms that annotate more than 1000 

proteins). The last position of the vector represents the number of GO terms that are associated 

with the protein but are not present among the above 2,595 GO terms. Using only toxin GO terms 

in the feature vector limits the scope of GO terms that the network can see and using all ( >35,000) 

will lead to spare features. As a middle ground, we added top background GO term in the feature 

vector as well. 

4.2.3 Neural network models 

We used a five-layer fully connected feedforward neural network for the toxin/non-toxin 

prediction (Figure 4.1). The input layer has 2,596 neurons representing the GO term feature vector. 

The input layer is connected to three hidden layers, each of which has 200 neurons. The last layer 

uses the softmax nonlinearity to convert the output into class probability, toxin and non-toxin. 

Neurons are connected with a sigmoidal activation function. The code is available at 

http://www.github.com/kiharalab/NNTox. 

http://www.github.com/kiharalab/NNTox
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Figure 4.1. The network architecture of NNTox for toxin/non-toxin binary prediction. 

 

Predicting the mode of action of toxin proteins is a multi-label classification problem, where one 

toxin could have more than one mode of action. For example, conotoxin, a snail toxin, is both a 

neuro-toxin and an ion channel inhibitor toxin. Thus, classes are not mutually exclusive. We 

modified the neural network described above to perform multi-label prediction, by replacing 

softmax in the last layer with computing the sigmoid cross-entropy loss. In the sigmoid cross-

entropy loss, the loss calculated for every label is independent of the loss in other labels, and thus 

allows for multiple labels to be predicted. 

The sub-classes of toxins are imbalanced, e.g. neurotoxin and ion channel inhibiting toxin 

have more proteins than other sub-classes. This can cause bias in the network while training 

towards highly represented classes. To overcome this problem, we added a weight to each correct 

class prediction in the multi-label neural network, where the weight is inversely proportional to 

the number of the times that class is present in the training set. For a protein, v = [v1, v2, ,,, v11] is 

the label vector, where vi =1 represents that the protein has the mode of action i. For each mode of 

action i, we calculated the positive count (i), i.e., the number of times vi=1 and the negative count 

(i), i.e., the number of times vi=0 in the training dataset. The weight wi given to a mode of 

action/class i is wi = (negative count (i))/(positive count (i)). Thus, the weight is 1 if the number 

of positive and negative counts is equal while giving more weight as the positive count decreases. 
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4.2.4 Training and validation with nested cross-validation 

Training was performed with backpropagation using the ADAM optimizer, implemented in 

TensorFlow [129]  We performed a five-fold nested cross validation to tune four hyper-parameters: 

the number of neurons in hidden layer [10, 50, 100, 200, 500], the regularization strength [10, 1, 

0.1, 0.01, 0.001], the learning rate [10, 1, 0.1, 0.01, 0.001] and the number of epochs [100, 500, 

1000, 2000, 5000]. Shown in the parentheses are the values tested for each hyper-parameter. 

Nested cross-validation provides robust and unbiased training and testing using the full 

data available from the dataset. In the nested cross-validation there were two cross validation 

loops. In the outer loop, the dataset was divided into k (=5) subsets, where one subset was 

considered as the test set and the rest are used for training & validation set, and the test set was 

changed for k times. Furthermore, the inner loop was to perform a cross-validation on the training 

& validation set, i.e. the set was divided into k (=5) pieces again and one of them was considered 

as the validation set. Each different combinations of hyper-parameters were trained on the training 

set and tested on the validation set. This was performed for k times by changing the validation set. 

Then, the best hyper-parameter was chosen based on the average error on the k validation set, and 

the model trained using the hyper-parameter set on all training and validation set was applied to 

the testing set. This is repeated for k times, and the final result was the average performance on 

the k test sets. 

4.2.5 Protein function prediction with PFP 

We examined the performance of NNTox using two sets of GO terms for proteins. First, we tested 

NNTox using the GO annotations of proteins obtained from UniProtKB-SwissProt. This is to test 

the performance of the architecture of NNTox in the best possible cases when all the correct GO 

terms are known. Second, we used a GO-term prediction method, PFP, to predict GO terms of 

each protein and trained NNTox on the predicted GO terms. This is to simulate the situation when 

true GO terms for a query protein are not present. 

PFP was developed in our group and has been successful in the Critical Assessment of 

protein Function Annotation algorithms (CAFA). PFP uses PSI-BLAST [130] to retrieve similar 

sequences from a database to a query sequence and obtains GO-term annotations from the 

sequences with an E-value of up to 125. Then, each GO term will be assigned with a score that 
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reflects the E-value of sequences that have the GO term in their annotation as well as the 

conditional probability that the GO term occurs given other GO terms are observed. For the 

sequence database, we used UniProtKB Swiss-Prot downloaded in March 2018. To avoid 

retrieving GO terms from the query protein itself, sequences retrieved with an E-value of 0 were 

discarded. 

PFP provides a confidence score to each GO term predicted that ranges from 0.0 to 1.0 

with 1.0 for the highest confidence (Appendix Table A1). Using PFP, we devised a simple baseline 

strategy to predict if a protein is toxin or not directly from assigned GO terms. If PFP predictions 

include the “toxin activity” GO term (GO:0090729) with high confidence (>= 0.9) then we label 

the protein as a toxin. We also trained NNTox network with PFP-predicted GO terms. Only 

predicted terms were used for this training, i.e. known GO term annotations were not considered 

to simulate the situation that query proteins do not have any known annotations. We removed the 

“toxin activity” GO term from the PFP predictions as having this GO term would bias the model 

and make the toxin prediction easy.  

4.2.6 Additional baseline method 

To evaluate the performance of NNTox, we developed a naïve GO term based baseline approach. 

In this approach, a protein is classified as toxin if all the GO terms associated with it are present 

in the Toxin GO term set. This approach reflects the idea that if a set of GO terms are already 

known to be associated with a toxin, we classify a new protein associated with those GO terms as 

toxin as well. For baseline method, the non-redundant toxin protein dataset was split into a 70:30 

train:test ratio, where 70% of the dataset was used to create the Toxin GO term set. The method 

was tested with 30% of the toxin test dataset and all the non-redundant non-toxin proteins.  

4.2.7 Prediction evaluation 

Prediction accuracy was evaluated with the F1 score. The precision P, recall R and F1 score was 

calculated as 

𝑃 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
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𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹1 =  
2 ∗ 𝑃 ∗ 𝑅

(𝑃 + 𝑅)
 

where TP is the total number of proteins that are toxin and were predicted correctly as toxin, FP is 

the total number of proteins that are non-toxin but predicted as toxin, and FN is the total number 

of proteins which are toxin but predicted as non-toxin. 

4.3 Results 

4.3.1 GO term specificity for toxin proteins 

To begin with, we examined if any GO terms have a specific association with the toxicity of 

proteins. We computed the specificity of GO terms for toxin proteins, which was defined as the 

fraction of the toxin proteins that are annotated with the specific GO term among all proteins in 

UniProtKB-SwissProt with the GO term annotation. Table 4.1 lists top 20 GO terms with the 

highest toxin specificity. Appendix Table A2 provides a complete list of GO terms associated with 

toxin keywords. Besides GO terms that are apparently related to toxins, e.g. those with the word 

“inhibitor” in their description, there are highly toxin-specific terms that do not directly indicate 

toxicity.  

The first GO term in the table, “Other organism postsynaptic membrane” (GO: 0035792) 

has 100% of the toxin specificity. Proteins with this GO term are indeed toxins, e.g. alpha-

conotoxin in a sea snail (Uni-Prot ID: CDKA_CONVX) and cobrotoxin in Chinese cobra (UniProt 

ID: 3S1CB_NAJAT). These toxins bind to nicotinic acetylcholine receptors, inhibiting them, and 

impairing neuromuscular transmission. Thus, it is involved in neurotoxicity and ion channel 

impairing toxicity. “N-acylphosphatidylethanolamine-specific phospholipase D (NAPE-PLD) 

activity” (GO: 0070290, example proteins: UniProt ID: A1lB1_LOXIN) has a high toxin 

specificity of 75.35%. Phospholipid D catalyzes the hydrolysis of sphingomyelin and induces 

complement-dependent hemolysis, dermonecrosis, blood vessel permeability, and platelet 

aggregation. Thus, it is involved in dermonecrotic and complement system toxicity. It is possessed 

by recluse spiders and causes necrotic damage. “Phospholipase A2 activity” (GO:0004623), the 
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last one in the table, has a toxin specificity of 58.41% with neurotoxin specificity of 22%, myotoxin 

specificity of 14%, and hemostasis impairing toxin specificity of 23%. Phospholipase A2 catalyzes 

the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides. It affects 

neuromuscular transmission by blocking acetylcholine release from the nerve termini. It also has 

anticoagulant activity and weakly inhibits ADP-induced platelet aggregation. The protein with this 

activity exists in venomous snakes, e.g. Chinese krait (UniProt ID: PA2B1_BUNMU) and 

Nikolsky's Viper (UniProt ID: PA2B2_VIPBN). Overall the results show GO terms are promising 

features for predicting protein toxicity. 

Table 4.1. Toxin specific GO terms. 

GO ID Function Toxin Spec. (%) a) 

0035792 other organism postsynaptic membrane 100.00 (554) 

0072556 other organism presynaptic membrane 98.14 (317) 

0042151 nematocyst 91.64 (252) 

0030550 acetylcholine receptor inhibitor activity 91.11 (123) 

0019871 sodium channel inhibitor activity 89.89 (169) 

0008200 ion channel inhibitor activity 87.89 (1415) 

0016248 channel inhibitor activity 87.56 (1415) 

0099602 neurotransmitter receptor regulator activity 75.46 (123) 

0034548 acetylcholine receptor regulator activity 75.46 (123) 

0070290 N-APE-PLD D activity b) 75.35 (214) 

0004630 phospholipase D activity 75.09 (214) 

0016247 channel regulator activity 71.72 (1415) 

0030547 receptor inhibitor activity 69.44 (125) 

0009405 pathogenesis 66.26 (6497) 

0102568 phospholipase A2 activity (12-DOPE) c) 59.51 (319) 

0102567 phospholipase A2 activity (12- DPPtdCho) d) 59.51 (319) 

1903963 arachidonate transport 59.48 (342) 

0050482 arachidonic acid secretion 59.47 (342) 

0017080 sodium channel regulator activity 59.31 (172) 

0004623 phospholipase A2 activity 58.41 (375) 

a) the number of toxin proteins with the GO term is shown in the parenthesis. b), N-acylphosphatidylethanolamine-

specific phospholipase D activity. c), phospho-lipase A2 activity consuming 12-dioleoylphosphatidylethanolamine. 

d), phospho-lipase A2 activity (consuming 12-dipalmitoylphosphatidylcholine). 
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4.3.2 Performance of toxin prediction 

In this section we discuss the performance of our NNTox on distinguishing toxin and non-toxin 

proteins. We compare the performance with the baseline methods. Table 4.2 summarizes the 

results. The table shows precision, recall, and the F1 score, which was defined as the harmonic 

mean of precision and recall of toxin protein prediction. 

 

Table 4.2. Summary of the toxin prediction. 

Method Precision Recall F1 score 

With GO annotation    

Baseline exact 0.029 0.626 0.055 

Baseline 1 mismatch 0.023 0.714 0.044 

Baseline 2 mismatches 0.021 0.769 0.041 

NNTox (GO Annotation) 0.903 0.898 0.900 

With PFP prediction    

Baseline exact 0.110 0.156 0.129 

Baseline 1 mismatch 0.102 0.184 0.131 

Baseline 2 mismatches 0.115 0.259 0.159 

PFP 0.873 0.535 0.663 

NNTox (PFP) 0.801 0.750 0.775 

PFP + NNTox(PFP) 0.807 0.781 0.794 

The baseline method is explained in Methods.  NNTox (GO Annotation) used the GO annotations of 

proteins from UniProtKB-SwissProt. “PFP” checked if the “toxin activity” GO term was predicted 

with 0.9 or a higher confidence score. NNTox (PFP) uses predicted GO terms by PFP using 0.1 as the 

prediction confidence cutoff value (Figure 4.2). PFP + NNTox(PFP) is a two-step prediction using 

first PFP and then to apply NNTox(PFP) for proteins that are not identified as toxin by PFP. 

 

In the first three rows of Table 4.2, we showed the prediction performance one can obtain 

by simply comparing GO annotation of a target protein with known proteins in the reference 

database (the baseline method). When the exact match of GO terms was counted, recall for toxin 

proteins was 0.626. When the condition was relaxed, allowing 1 or 2 miss matches of GO terms, 

the recall for toxin proteins naturally increased to 0.714 by sacrificing the precision. This is 

intuitive because with 1 mismatch allowed, proteins which had only one GO term not present in 

the toxin GO set were now predicted as toxins as well but with the cost of false positives. F1 scores 
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of the baseline method were as low as 0.055 due to low precision values that were caused by a 

large number of false positives (i.e. non-toxin proteins predicted as toxins). 

In contrast, prediction by NNTox performed substantially better than the baseline method. 

The precision and recall for detecting toxin proteins was 0.903 and 0.898, respectively, indicating 

that the predictions made for toxin and non-toxin proteins were well balanced. The NNTox F1 

score was 0.900, which is a clear contrast compared to baseline method that showed substantially 

lower F1 score. 

The second half of Table 4.2 shows results using PFP predicted GO terms. Using predicted 

GO terms, the baseline method showed lower recall as compared with results using GO 

annotations. This is because predicted GO terms for a protein have a low random chance to 

perfectly agree with toxin GO terms. As another baseline, PFP prediction was also directly used 

to determine if a protein is toxin by checking if the prediction included “toxin activity” GO term 

with a high confidence (>= 0.9). This approach performed better than the baseline method showing 

an F1 score of 0.663 and a recall of 0.535. Thus, about half of the toxin proteins were identified 

correctly by the PFP baseline. NNTox performed better than the baseline methods and the PFP 

baseline with an F1 score of 0.775, although the performance was worse than the cases with correct 

GO annotation. For NNTox, we used predicted GO terms with PFP’s confidence score of over 0.1, 

since that gave the best performance (Figure 4.2). We also tested a two-step prediction process  
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Figure 4.2. F1 score, precision, and recall of toxin prediction for different PFP’s GO prediction 

confidence levels. 

 

where PFP and NNTox with PFP predicted GO terms were combined (the last row in Table 4.2). 

First, the protein was determined to be toxin based on direct PFP predictions. Then, if the protein 

is not predicted to be toxin, then NNTox was applied. This procedure further improved NNTox in 

all the evaluation metrics. The F1 score increased from 0.775 to 0.794. Looking closely, the first 

step of the PFP application filtered 261 toxin proteins correctly (i.e. true positives), then additional 

120 toxin proteins were selected by the NNTox. 

In Figure 4.3, we analyzed the importance of each GO term in distinguishing toxin and 

non-toxin proteins. For each GO in the feature vector, we computed the mutual information to the 

toxin classification relative to the toxin specificity (Table 4.1). As shown, a large specificity of a 

GO term does not necessarily mean a large mutual information for the classification. Such cases 
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happen for GO terms that are highly specific for toxins but only appear in annotation of a small 

number of proteins, thus not much helpful for the classification for many proteins in the dataset. 

The top three GO terms were pathogenesis (GO:0009405), interspecies interaction between 

organisms (GO:0044419) and multi-organism process (GO:0051704), which is not surprising as 

these terms highly indicative of a protein being toxin. 

 

 

Figure 4.3. Mutual information and toxin specificity of GO terms for toxin/non-toxin 

classification. 

4.3.3 Neural network visualization 

In Figure 4.4 we visualized the network to illustrate how the neural network model separated the 

toxin and non-toxin proteins using the principal component analysis (PCA). For each protein in 

the non-redundant tox-in/non-toxin set, we ran the trained network and calculated the output of 

each of the three hidden layers and passed it through the sigmoid activation function. The top 

figure shows that toxin proteins (red) mostly overlapped with non-toxin proteins in the PCA space. 

The distinction between the two classes became substantially clearer in the second layer (the 

middle panel), and further improved in the third layer. Thus, as the network went deeper and the 

model complexity increased, the model was able to separate the two classes better. 
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Figure 4.4. Separations of toxin and non-toxin proteins in the neural network layers. Outputs 

from each of the three hidden layers of the neural network for toxin (red) and non-toxin (green) 

proteins are visualized by PCA. The x- and the y-axis are the first and the second principal 

components of the output values of the layer through the sigmoid activation function. 



 

 

88 

4.3.4 Prediction of toxin mode action 

Next, we developed a multi-label neural network model, which predicts the mode of action of a 

toxin protein. The input to the model is the same feature vector of GO terms and the output is a 

binary vector for the 11 modes of action. Multiple action predictions are also allowed for a protein, 

which makes the prediction task more complex. To evaluate the prediction performance of the 

model, we computed the elementwise accuracy of the predicted vector (Table 4.3) as usually used 

for multi-label classification [131], where the number of correctly predicted modes for each of the 

target proteins was counted. NNTox (Mode of action) showed good performance with an accuracy 

of over 0.8, even when predicted GO terms were used. The high accuracy indicates that the method 

was overall successful in not only for pointing out the correct mode of the toxin proteins but also 

in avoiding over predicting incorrect modes. 

 

Table 4.3. Summary of the mode of action prediction accuracy. 

Input GO terms Accuracy 

UniProtKB 0.879 

Prediction by PFP 0.825 

The values are the average for test sets in the five-fold nested cross-validation. 

In this multi-class prediction, a prediction output for a protein is a binary 

vector of 11 values, where 1 indicates the class is predicted and 0 for a 

negative prediction for the class. The accuracy was computed by counting the 

agreement of the predicted binary class for each toxin mode of action in all the 

proteins. 

 

Figure 4.5 shows the F1 score of each mode of action separately for toxin proteins with a 

single action mode. Precision and recall values are provided in Appendix Table A3 and A4, 

respectively. Naturally, F1 scores correlated strongly with the number of data available for modes, 

which is shown in the parentheses of the mode labels on the x-axis. A relatively high F1 score was 

observed for modes that have more data, but low scores were resulted in for modes with small data 

size. Thus, the data availability of the current database limits the prediction performance for several 

toxin modes, nevertheless, the results indicate that in principle the model is reasonable and will 

only improve by the increase of toxin data to be available in the future. 
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Figure 4.5. F1 scores of single-mode toxin proteins of 11different modes of action. 11 modes 

shown on the x-axis are: C, cardiotoxin; EN, enterotoxin; N, neurotoxin; IC, ion channel 

impairing toxin; M, myotoxin; D, dermonecrotic toxin; H, hemostasis impairing toxin; GCR, G-

protein coupled receptor impairing toxin; CS, complement system impairing toxin; CA, cell 

adhesion impairing toxin; V, viral toxin. In the parentheses, the number of proteins of the mode 

is shown. 173 toxin proteins that have only one mode of action were analyzed. Black bars, 

predictions using GO annotations from UniProtKB; gray bars, predictions using PFP’s GO term 

predictions. 

 

Among the toxin protein dataset with the mode of action, there are 88 proteins that have 

two mode labels. Here we examine predictions made to the two largest toxin groups with two 

labels. 54 out of 88 proteins are labeled as neurotoxin (N) and Ion channel impairing toxin (IC). 

Out of them, 30 (55.6%) had the exactly correct predictions, i.e. correct positive predictions for 

the two labels and correct negative predictions to the other modes. For 9 other cases, the two labels, 

N and IC, were correctly predicted but with other false positive predictions. Finally, 48 of them 

(88.9%) had at least 1 mode, either N or IC, correctly predicted. The second-largest group with 

two modes were with hemostasis impairing toxin (H) and cell adhesion impairing toxin (CA), with 

16 proteins. For this group, five of them have the exact correct prediction, and another protein was 

counted if we include the prediction with the two correct modes and one more over-predicted mode 

(37.5%). The number of proteins with at least one correctly predicted mode, H or CA, was 12 

(75.0%). Thus, overall, NNTox (Mode of action) was able to capture the dual labels of the proteins 

reasonably well. 
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4.4 Discussion 

Here, we developed NNTox, which predicts the toxicity of proteins via GO term annotation. In 

contrast to existing methods that compare a query protein sequence to known toxin proteins, 

NNTox’s approach is less dependent on the known similar toxin proteins because prediction is 

made via GO terms. This approach exploits the success of general function predictors that have 

constantly been improving in the past years. We used PFP for the current development because it 

was developed by our lab and is one of the top-performing methods in the field. As the function 

prediction method improves, the toxin prediction by NNTox will also improve. Performance is 

also expected to improve by using additional input features, such as protein local structure 

information, e.g. protein main-chain conformation [132], which can be predicted with a stable 

accuracy. 

The multi-label classification performed for toxin action mode prediction showed high 

elementwise accuracy (Table 4.3). Naturally, the accuracy for each mode was correlated to the 

data size of the category, which indicates that the architecture of the model is appropriate for this 

task and will further improve as more data become available. 

In this work, we trained the network model so that the overall F1 score was maximized.  

The method can also be trained differently, for example, in a way to increase the sensitivity of 

toxin detection (allowing more false positives), considering that missing life-threatening toxins 

can cause a catastrophic outcome. 

4.5 Availability of data and materials 

The code and the dataset used in this study are made available at  

http://www.github.com/kiharalab/NNTox and http://kiharalab.org/nntox_dataset/ 

  

http://www.github.com/kiharalab/NNTox
http://kiharalab.org/nntox_dataset/
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 CONCLUSION 

5.1 Structure Prediction 

In chapter 2 we presented AttentiveDist, a new method for prediction protein inter-residue 

distances/contact, orientation angles and sidechain center distances from sequence using deep 

learning. The predicted distances and angles were then used as constraints to model the protein 

structure. The predictive performance of deep learning-based models is known to depend on the 

size of input MSA. One way to incorporate more sequences in MSA is to relax the similarity cutoff 

by increasing the e-value. We showed that using multiple MSA of increasing e-values improves 

the contact prediction precision. To let the model focus on relevant information from different 

MSA’s we added an attention mechanism. Using attention improved the performance compared 

to combination of individual MSA trained models. AttentiveDist outperformed the top CASP13 

server models in free modelling targets, showing its better predictive power. Rigorous efforts have 

been made recently towards accurately predicting inter-residue distance/contact and the work in 

chapter 2 is another strong example that demonstrates the utility of modern deep learning 

technologies for improving protein structure prediction. 

 Homologous proteins with known 3D structure called templates can provide useful 

structural information when available. As a recent ongoing improvement to AttentiveDist, we 

added template information as features to the model. We used the first 5 templates found using 

HHsearch [133] regardless of their similarity to the query protein. From each template we extracted 

the protein structure information which includes Cβ-Cβ and side chain center distances, and 

template similarity measures which includes template coverage and sequence identity. An 

attention layer was added to extract useful information from different templates, similar to the 

attention mechanism for MSA’s. We also updated the training dataset to include sequences up to 

90% sequence similarity which increases the dataset size as well as provide small sequence-

structural variations data to the model. AttentiveDist-Template improves the performance 

significantly, achieving long range L/1 precision of 0.564 on CASP13 FM and FM/TBM targets 

compared to 0.493 of AttentiveDist. 

Further improvement is still needed especially for cases when the available sequences are 

sparse for input MSAs. Currently, similar sequences for MSA are found using sequence alignment-
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based algorithms. To expand the similar sequences set, one can use protein sequence embeddings 

that are trained on millions of protein sequences using deep learning techniques like transformer 

model. Such embedding can capture semantic information and using sequences which are similar 

in embedding space can augment the current sequences in MSA. Another avenue to explore is how 

to convert MSA into features. PSSM and HMM profile summarize the MSA information, however, 

allowing the deep learning model to itself summarize the MSA could capture different importance 

patterns. Such approach might even reduce the need for a large sequence set in MSA. 

 In the recent CASP competition, Alphafold2 achieved a surprisingly high accuracy 

structure prediction. So far only general information about their methodology available. They 

mentioned that significant increase in performance is attributed to SE(3) transformer [26] allowing 

the deep learning model to output the 3D structure directly, instead of distances. This allows the 

model to optimize directly on the main goal. Another important contribution of their model is the 

use of attention layers where the information flow is dynamically controlled by the network instead 

of fixed local grids flow as seen in convolution layers. AlphaFold2 is trained on 128 TPUv3 GPU’s 

for couple of weeks. This is a big resource limitation for many research labs. Future work should 

involve reducing the resource requirement by distilling the model using teacher student network 

as well as analyzing the performance of a shallow network.  

The current structure prediction models are focused heavily on single chain prediction, 

however, several multi-chain proteins exist. Next steps for deep learning models would be to 

prediction interaction between different chains of a protein. Finally, the SE(3) transformer layers 

because of its ability to directly predict 3D structure can be applied to other structure related 

problems like protein docking and protein design. 

5.2 Function Prediction 

In chapter 3 we presented a new sequence-based protein function prediction method, Phylo-PFP, 

which substantially improved the prediction accuracy from its predecessor, PFP, by using 

phylogenetics to determine the evolutionary distance of sequences retrieved from database search. 

In this work we showed that database search scores and the phylogenetic distances are not strongly 

correlated, indicating that similar sequences retrieved through database searches may not be 

phylogenetically similar. It is known that phylogenetically close sequences that have evolved from 

same ancestor share functional similarity. In Phylo-PFP, we re-ranked sequences retrieved from 
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database search based on a distance-based phylogenetic analysis leading to substantial 

improvement in prediction accuracy. Contrasting to general function prediction, we also developed 

a specific function predictor NNTox, which uses GO terms to predict the toxicity of a protein 

sequence. Compared to previous approaches while rely on sequence similarity towards known 

toxin sequences, our proposed approach uses general function predictor that mines data from all 

possible sequences. For a deeper understand of toxicity, we predict toxin action mode using multi-

label classification. 

 A future direction to improve the function prediction would be to use a more accurate tree 

construction technique such as maximum likelihood [102] or Bayesian inference [103, 104], 

instead of the distance-based phylogenetic analysis. Another important area to explore would be 

to explicitly considered functional domain [105] or residue information [35, 106] instead of the 

global sequence for functional transfer. Currently the same score is given to all GO terms of a 

similar sequence. Identifying domain-based functions would allow a more finetuned score given 

to different GO terms, leading to better precision. For NNTox, a future direction would be to 

incorporate structural information in the model. For instance protein local structure information, 

e.g. protein main-chain conformation [132], which can be predicted with a stable accuracy, can be 

added as input to the model.  
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APPENDIX A. SUPPLEMENTARY INFORMATION 

Table A1. F1 score of GO term prediction by PFP on the non-redundant toxin 

dataset (488 toxin proteins). 

PFP confidence cut-off Precision Recall F1 score 

0.0 0.282 0.562 0.376 

0.1 0.602 0.522 0.560 

0.2 0.699 0.497 0.580 

0.3 0.741 0.476 0.580 

0.4 0.765 0.459 0.575 

0.5 0.786 0.446 0.570 

0.6 0.806 0.436 0.566 

0.7 0.821 0.410 0.547 

0.8 0.831 0.393 0.533 

0.9 0.849 0.361 0.507 

1.0 0.860 0.293 0.436 
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Table A2. Association of GO terms with Toxin Keywords in UniProt. The file shows the toxin 

specificity, i.e. how much GO terms associate with toxin keywords of UniProt. The first and the 

second columns are the ID and the text description of GO terms, the toxin specificity (the third 

column) shows the fraction of proteins in UniProtKB-SwissProt that are toxins (i.e. with a 

keyword ‘Toxin’ UniProtKB KW-0800) among all the proteins in UniProtKB-SwissProt. The 

rest of the columns, Toxin Mode 1 to 3 show the dominant action mode(s) of the toxin if any that 

share above 10% of the toxin proteins.  

GO ID Function description 
Toxin 

Specificity 
Toxin Mode 1 Toxin Mode 2 Toxin Mode 3 

GO:0035792 other organism postsynaptic membrane 554 (100.00%) IC 443(80.0%) N 554(100.0%)  

GO:0072556 other organism presynaptic membrane 317 (98.14%) IC 172(53.0%) N 317(98.0%)  

GO:0042151 nematocyst 252 (91.64%) IC 164(60.0%) N 143(52.0%)  

GO:0030550 acetylcholine receptor inhibitor activity 123 (91.11%) IC 107(79.0%) N 116(86.0%)  

GO:0019871 sodium channel inhibitor activity 169 (89.89%) IC 165(88.0%) N 89(47.0%)  

GO:0008200 ion channel inhibitor activity 1415 (87.89%) IC 1123(70.0%) N 1026(64.0%)  

GO:0016248 channel inhibitor activity 1415 (87.56%) IC 1123(69.0%) N 1026(63.0%)  

GO:0099602 neurotransmitter receptor regulator activity 123 (75.46%) IC 107(66.0%) N 116(71.0%)  

GO:0030548 acetylcholine receptor regulator activity 123 (75.46%) IC 107(66.0%) N 116(71.0%)  

GO:0070290 
N-acylphosphatidylethanolamine-specific 

phospholipase D activity 
214 (75.35%) CS 141(50.0%) D 147(52.0%)  

GO:0004630 phospholipase D activity 214 (75.09%) CS 141(49.0%) D 147(52.0%)  

GO:0016247 channel regulator activity 1415 (71.72%) IC 1123(57.0%) N 1026(52.0%)  

GO:0030547 receptor inhibitor activity 125 (69.44%) IC 108(60.0%) N 118(66.0%)  

GO:0009405 pathogenesis 6497 (66.26%) IC 2427(25.0%) N 2741(28.0%)  

GO:0102568 
phospholipase A2 activity consuming 12-

dioleoylphosphatidylethanolamine) 
319 (59.51%) N 126(24.0%) H 134(25.0%)  

GO:0102567 
phospholipase A2 activity (consuming 12-

dipalmitoylphosphatidylcholine) 
319 (59.51%) N 126(24.0%) H 134(25.0%)  

GO:1903963 arachidonate transport 342 (59.48%) M 84(15.0%) N 123(21.0%) H 136(24.0%) 

GO:0050482 arachidonic acid secretion 342 (59.48%) M 84(15.0%) N 123(21.0%) H 136(24.0%) 

GO:0017080 sodium channel regulator activity 172 (59.31%) IC 168(58.0%) N 92(32.0%)  

GO:0004623 phospholipase A2 activity 375 (58.41%) M 88(14.0%) N 140(22.0%) H 146(23.0%) 

GO:0044179 hemolysis in other organism 499 (57.82%) CS 142(16.0%) D 147(17.0%)  

GO:0032309 icosanoid secretion 342 (53.11%) M 84(13.0%) N 123(19.0%) H 136(21.0%) 

GO:0015909 long-chain fatty acid transport 342 (53.11%) M 84(13.0%) N 123(19.0%) H 136(21.0%) 

GO:0051715 cytolysis in other organism 508 (52.32%) CS 142(15.0%) D 147(15.0%)  

GO:0071715 icosanoid transport 342 (52.21%) M 84(13.0%) N 123(19.0%) H 136(21.0%) 

GO:0008191 metalloendopeptidase inhibitor activity 107 (46.72%)    

GO:0015908 fatty acid transport 342 (44.94%) M 84(11.0%) N 123(16.0%) H 136(18.0%) 

GO:0004620 phospholipase activity 605 (44.65%) H 148(11.0%) D 147(11.0%)  

GO:0042311 vasodilation 117 (40.62%) 
GCR 
62(22.0%) 

  

GO:0030545 receptor regulator activity 125 (37.43%) IC 108(32.0%) N 118(35.0%)  

GO:0016298 lipase activity 606 (36.53%)    

GO:0015718 monocarboxylic acid transport 342 (35.81%) N 123(13.0%) H 136(14.0%)  

GO:0019835 cytolysis 613 (33.46%)    
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Table A2. Continued 

GO ID Function description 
Toxin 

Specificity 
Toxin Mode 1 Toxin Mode 2 Toxin Mode 3 

GO:0044419 interspecies interaction between organisms 6497 (31.03%) IC 2427(12.0%) N 2741(13.0%)  

GO:0031640 killing of cells of other organism 540 (27.57%)    

GO:0044364 disruption of cells of other organism 545 (27.40%)    

GO:0044279 other organism membrane 1189 (24.62%) IC 618(13.0%) N 872(18.0%)  

GO:0044218 other organism cell membrane 1189 (24.62%) IC 618(13.0%) N 872(18.0%)  

GO:0001906 cell killing 541 (23.71%)    

GO:0008081 phosphoric diester hydrolase activity 230 (20.76%) CS 142(13.0%) D 148(13.0%)  

GO:0051704 multi-organism process 6497 (19.76%)    

GO:0008217 regulation of blood pressure 156 (17.91%)    

GO:0098772 molecular function regulator 1855 (17.50%) IC 1341(13.0%) N 1186(11.0%)  

GO:0050880 regulation of blood vessel size 133 (16.94%)    

GO:0044448 cell cortex part 252 (16.67%) IC 164(11.0%)   

GO:0035150 regulation of tube size 133 (16.12%)    

GO:0005576 extracellular region 6233 (16.05%)    

GO:0003018 vascular process in circulatory system 133 (15.36%)    

GO:0006869 lipid transport 342 (14.87%)    

GO:0046942 carboxylic acid transport 342 (13.91%)    

GO:0010876 lipid localization 342 (13.44%)    

GO:0015711 organic anion transport 342 (12.87%)    

GO:0004866 endopeptidase inhibitor activity 265 (12.86%)    

GO:0061134 peptidase regulator activity 301 (12.85%)    

GO:0061135 endopeptidase regulator activity 265 (12.59%)    

GO:0030414 peptidase inhibitor activity 266 (12.35%)    

GO:0044217 other organism part 1216 (12.34%)    

GO:0044215 other organism 1216 (12.34%)    

GO:0016042 lipid catabolic process 381 (12.28%)    

GO:0044216 other organism cell 1202 (12.22%)    

GO:0035821 
modification of morphology or physiology 
of other organism 

579 (11.25%)    

GO:0005938 cell cortex 252 (10.99%)    

GO:0004867 serine-type endopeptidase inhibitor activity 153 (10.91%)    

GO:0008015 blood circulation 222 (10.58%)    

GO:0003013 circulatory system process 222 (10.47%)    

GO:0099568 cytoplasmic region 252 (9.91%)    

GO:0006820 anion transport 343 (9.71%)    

GO:0005509 calcium ion binding 383 (8.44%)    

GO:0004857 enzyme inhibitor activity 282 (7.94%)    

GO:0030435 
sporulation resulting in formation of a 

cellular spore 
104 (6.55%)    

GO:0052689 carboxylic ester hydrolase activity 380 (6.05%)    

GO:0004222 metalloendopeptidase activity 188 (5.84%)    
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Table A2. Continued 

GO ID Function description 
Toxin 

Specificity 
Toxin Mode 1 Toxin Mode 2 Toxin Mode 3 

GO:0042742 defense response to bacterium 214 (5.76%)    

GO:0043934 sporulation 104 (5.70%)    

GO:0046903 secretion 373 (5.43%)    

GO:0006952 defense response 722 (5.29%)    

GO:0090066 regulation of anatomical structure size 133 (5.12%)    

GO:0004252 serine-type endopeptidase activity 167 (4.95%)    

GO:0005179 hormone activity 111 (4.85%)    

GO:0008236 serine-type peptidase activity 205 (4.73%)    

GO:0017171 serine hydrolase activity 205 (4.71%)    

GO:0044764 multi-organism cellular process 567 (4.39%)    

GO:0009617 response to bacterium 215 (4.30%)    

GO:0030234 enzyme regulator activity 318 (4.15%)    

GO:0033644 host cell membrane 150 (4.05%)    

GO:0042578 phosphoric ester hydrolase activity 231 (4.01%)    

GO:0008237 metallopeptidase activity 235 (3.78%)    

GO:0004175 endopeptidase activity 356 (3.75%)    

GO:0098542 defense response to other organism 237 (3.25%)    

GO:0003008 system process 231 (3.12%)    

GO:0070011 
peptidase activity acting on L-amino acid 
peptides 

450 (2.98%)    

GO:0005102 signaling receptor binding 260 (2.96%)    

GO:0008233 peptidase activity 452 (2.91%)    

GO:0006644 phospholipid metabolic process 344 (2.85%)    

GO:0065008 regulation of biological quality 843 (2.63%)    

GO:0051707 response to other organism 238 (2.57%)    

GO:0043207 response to external biotic stimulus 238 (2.57%)    

GO:0009607 response to biotic stimulus 238 (2.47%)    

GO:0016788 hydrolase activity acting on ester bonds 632 (2.34%)    

GO:0006629 lipid metabolic process 588 (2.24%)    

GO:0006811 ion transport 418 (2.19%)    

GO:0018995 host 181 (2.08%)    

GO:0033643 host cell part 167 (1.94%)    

GO:0043657 host cell 167 (1.92%)    

GO:0006950 response to stress 768 (1.76%)    

GO:0044712 catabolic process 386 (1.68%)    

GO:0048646 
anatomical structure formation involved in 

morphogenesis 
112 (1.66%)    

GO:0033036 macromolecule localization 344 (1.53%)    

GO:0005575 cellular_component 6268 (1.53%)    

GO:0044255 cellular lipid metabolic process 345 (1.47%)    

GO:0008150 biological_process 6497 (1.47%)    
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Table A2. Continued 

GO ID Function description 
Toxin 

Specificity 
Toxin Mode 1 Toxin Mode 2 Toxin Mode 3 

GO:0071702 organic substance transport 344 (1.44%)    

GO:0044765 transport 387 (1.44%)    

GO:1902578 localization 387 (1.36%)    

GO:0009605 response to external stimulus 283 (1.31%)    

GO:0016787 hydrolase activity 1179 (1.28%)    

GO:0050896 response to stimulus 872 (1.19%)    

GO:0065007 biological regulation 1023 (1.15%)    

GO:1901575 organic substance catabolic process 390 (1.04%)    

GO:0044403 symbiont process 122 (1.04%)    

GO:0009056 catabolic process 395 (1.00%)    

GO:0006810 transport 472 (0.86%)    

GO:0051234 establishment of localization 472 (0.85%)    

GO:0032501 multicellular organismal process 292 (0.84%)    

GO:0046872 metal ion binding 989 (0.83%)    

GO:0043169 cation binding 989 (0.83%)    

GO:0048583 regulation of response to stimulus 134 (0.80%)    

GO:0043167 ion binding 989 (0.79%)    

GO:0051179 localization 475 (0.77%)    

GO:0003674 molecular_function 3520 (0.76%)    

GO:0005515 protein binding 284 (0.66%)    

GO:0030154 cell differentiation 113 (0.60%)    

GO:0019637 organophosphate metabolic process 348 (0.58%)    

GO:0009653 anatomical structure morphogenesis 112 (0.53%)    

GO:0048519 negative regulation of biological process 131 (0.52%)    

GO:0006796 
phosphate-containing compound metabolic 
process 

353 (0.51%)    

GO:0006793 phosphorus metabolic process 353 (0.50%)    

GO:0005488 binding 1362 (0.43%)    

GO:0003824 catalytic activity 1266 (0.43%)    

GO:0048869 cellular developmental process 113 (0.40%)    

GO:0044699 biological_process 1000 (0.40%)    

GO:0071944 cell periphery 295 (0.39%)    

GO:0044710 metabolic process 631 (0.38%)    

GO:0050789 regulation of biological process 287 (0.35%)    

GO:0009987 cellular process 1343 (0.34%)    

GO:0043232 
intracellular non-membrane-bounded 

organelle 
252 (0.33%)    

GO:0043228 non-membrane-bounded organelle 252 (0.33%)    

GO:0016020 membrane 394 (0.32%)    

GO:0048856 anatomical structure development 117 (0.31%)    

GO:0044767 developmental process 117 (0.30%)    
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Table A2. Continued 

GO ID Function description 
Toxin 

Specificity 
Toxin Mode 1 Toxin Mode 2 Toxin Mode 3 

GO:0044763 cellular process 671 (0.29%)    

GO:0032502 developmental process 117 (0.29%)    

GO:0031224 intrinsic component of membrane 233 (0.29%)    

GO:0016021 integral component of membrane 233 (0.29%)    

GO:0050794 regulation of cellular process 203 (0.26%)    

GO:0044425 membrane part 234 (0.25%)    

GO:0044238 primary metabolic process 740 (0.25%)    

GO:0071704 organic substance metabolic process 748 (0.22%)    

GO:0044444 cytoplasmic part 284 (0.21%)    

GO:0008152 metabolic process 752 (0.21%)    

GO:0043229 intracellular organelle 278 (0.18%)    

GO:0043226 organelle 279 (0.18%)    

GO:0044237 cellular metabolic process 455 (0.14%)    

GO:0019538 protein metabolic process 117 (0.11%)    

GO:0005737 cytoplasm 297 (0.11%)    

GO:0044424 intracellular part 298 (0.10%)    

GO:0005622 intracellular 298 (0.10%)    

GO:0044464 cell part 338 (0.09%)    

GO:0005623 cell 339 (0.09%)    

GO:0043170 macromolecule metabolic process 131 (0.07%)    

GO:0044260 cellular macromolecule metabolic process 102 (0.05%)    

GO:0006807 nitrogen compound metabolic process 102 (0.04%)    

The labels of the modes of toxin are: 

C: Cardiotoxin 

EN: Enterotoxin 

N: Neurotoxin 

IC: Ion channel impairing toxin 

M:  Myotoxin 

D: Dermonecrotic toxin 

H: Hemostasis impairing toxin 

GCR: G-protein coupled receptor impairing toxin 

CS: Complement system impairing toxin 

CA: Cell adhesion impairing toxin 

V: Viral exotoxin 
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Table A3. Results of the mode of action prediction for individual categories using UniProtKB 

GO annotations. 

Mode of Action Precision Recall F1 score Total  Number 

of  Proteins 

Cardiotoxin 0.031 0.125 0.050 8 

Enterotoxin 0.267 0.334 0.296 12 

Neurotoxin 0.736 0.670 0.702 100 

Ion channel impairing toxin 0.819 0.797 0.808 74 

Myotoxin 0.135 0.227 0.169 22 

Dermonecrotic toxin 0 0 0 4 

Hemostasis impairing toxin 0.774 0.579 0.663 95 

G-protein coupled receptor 

impairing toxin 

0.413 0.788 0.542 33 

Complement system 

impairing toxin 

0 0 0 6 

Cell adhesion impairing toxin 0.146 0.334 0.203 18 

Viral exotoxin 0 0 0 4 
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Table A4. Results of the mode of action prediction for individual categories. using PFP 

predictions. 

Mode of Action Precision Recall F1 score Total Number 

of Proteins 

Cardiotoxin 0 0 0 8 

Enterotoxin 0.109 0.583 0.184 12 

Neurotoxin 0.630 0.750 0.685 100 

Ion channel impairing toxin 0.674 0.865 0.757 74 

Myotoxin 0.109 0.455 0.175 22 

Dermonecrotic toxin 0 0 0 4 

Hemostasis impairing toxin 0.721 0.463 0.564 95 

G-protein coupled receptor 

impairing toxin 

0.184 0.485 0.267 33 

Complement system 

impairing toxin 

0 0 0 6 

Cell adhesion impairing 

toxin 

0.300 0.667 0.414 18 

Viral exotoxin 0 0 0 4 
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