
A TRANSFER LEARNING APPROACH TO OBJECT
DETECTION ACCELERATION FOR EMBEDDED

APPLICATIONS
by

Lauren M. Vance

A Thesis

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Master of Science

Department of Electrical and Computer Engineering

Indianapolis, Indiana

August 2021

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Lauren Christopher, Chair

Department of Electrical and Computer Engineering

Dr. Brian King

Department of Electrical and Computer Engineering

Dr. Maher Rizkalla

Department of Electrical and Computer Engineering

Approved by:

Dr. Brian King

2

This work is dedicated to my father, Tim Vance, for being both my role model and my

biggest fan. Thank you for everything.

3

ACKNOWLEDGMENTS

My deepest thanks to my advisor Dr. Lauren Christopher for being an inspiring mentor,

a great teacher, and for much encouragement during the constant coding struggles. I learned

a lot from you during this process and hope to have the opportunity to do the same for others

one day.

I would also like to thank the rest of our research group members for being wonderful to

work and interact with. Special thanks to Ashley Dale and Gregory Vaughn for lending your

knowledge when I needed it and for being so helpful and kind along the way.

I am also grateful to Sherrie Tucker for all of her hard work ensuring that ECE graduate

students have all the information they need to succeed. I have met few people more kind and

helpful than Sherrie, and her guidance made this entire process much easier.

Thank you to Dr. Maher Rizkalla for serving on my thesis committee. I greatly enjoyed

learning from you during my time at IUPUI and appreciate the energy and enthusiasm you

bring to the classroom.

I am greatly indebted in particular to Dr. Brian King, ECE Department Chair at IUPUI,

for your encouragement and support in applying to the IUPUI University Fellowship which

funded this work. I would have never considered myself capable of being awarded such an

honor, and it was a gentle reminder to never underestimate myself. Thank you for your

guidance and advice during my time here.

Finally, I extend my deepest gratitude to all of my friends and family for the support

and the joyful company during a whirlwind of a collegiate career. To my parents, thank you

for always being there for me in ways big and small. To my partner Luke, I truly could not

have done any of this without your support; through all of the ups and downs in this process

(including a pandemic and an untimely broken leg) you are a constant beam of light.

4

TABLE OF CONTENTS

LIST OF TABLES . 7

LIST OF FIGURES . 8

ABBREVIATIONS . 9

ABSTRACT . 10

1 INTRODUCTION . 11

1.1 The Role of Hardware in Deep Learning . 13

1.1.1 Current SOTA for CNN Deployment Hardware 13

1.2 Neural Networks for Object Detection . 14

1.2.1 You Only Look Once: Real-Time Object Detection 15

1.2.2 YOLOv4 . 18

2 OBJECT DETECTION DEPLOYMENT ON FPGAs 20

2.1 How Acceleration Works in FPGAs . 21

2.2 Why FPGAs for CNNs? . 22

2.2.1 Challenges of CNN Deployment . 23

2.2.2 FPGA Solutions in Comparison to General-Purpose Processors . . . 24

2.3 Literature Review . 25

3 METHODOLOGY . 28

3.1 Experimental Setup . 28

3.1.1 Hardware . 31

3.1.2 Data . 32

3.2 Performance Metrics . 33

3.2.1 Accuracy . 34

3.2.2 Speed . 36

3.2.3 Power . 37

4 RESULTS . 38

4.1 Output . 38

4.2 Performance . 39

4.2.1 Accuracy . 39

5

4.2.2 Speed . 40

4.2.3 Power . 43

4.3 Conclusion . 44

5 SUMMARY . 46

REFERENCES . 48

6

LIST OF TABLES

3.1 Train and Test Images per Class . 33

4.1 Sample of FPGA YOLOv4 Outputs: Classification and Confidence Scores for
Figure 4.2 . 38

4.2 Predicted Classification by Class for Each Test Setup 41

4.3 Average Classification Accuracy on 100-Image Test Deployment 41

4.4 FPGA Deployment Speed Breakdown . 42

4.5 Average Inference Speed . 43

4.6 Comparison of Power Consumption of GPU and FPGA During Deployment of
Transfer-Learned Model on 100-Image Test Set 43

7

LIST OF FIGURES

1.1 Model Architecture for YOLO [9], YOLOv2 [21], and YOLOv3 [22]. Each
model is a single-shot object detector, but underlying changes to the CNN
backbone allow for improvements in speed and accuracy with each iteration. 16

1.2 Model Architecture for YOLOv4 [28]. It consists of the CSPDarknet53 CNN
backbone, an SPP module for fixed-length outputs, and the same head used
in YOLOv3. 18

2.1 Relationship Between Training, Inference, and Deployment in CNN Development 20

2.2 Footprint of Possible FPGA Deep Learning Applications 24

3.1 Model mAP-50 and Loss versus Number of Training Iterations 30

3.2 Experimental Workflow . 31

3.3 FPGA Test Setup Hardware Block Diagram 32

3.4 Illustration of IoU for Detection Accuracy 35

4.1 Sample of GPU/CPU YOLOv4 Outputs . 39

4.2 Sample of FPGA YOLOv4 Outputs: Bounding Boxes 40

4.3 Comparison of Speed in FPS and DPU % Utilization to Number of DPU
Threads varied from 1 to 8 . 42

4.4 GPU Power Usage During Inference for 100-Image Test Set 44

4.5 Relationship of FPGA Power Consumption to FPS as the Number of Threads
is Increased During Deployment on FPGA 45

8

ABBREVIATIONS

AI Artificial Intelligence

CNN Convolutional Neural Network

CPU Central Processing Unit

DL Deep Learning

DNN Deep Neural Network

DPU Deep-learning Processor Unit

DSP Digital Signal Processor

FPGA Field Programmable Gate Array

FPS Frames Per Second

GPU Graphics Processing Unit

HDL Hardware Descriptive Language

ILSVRC Imagenet Large Scale Visual Recognition Challenge

IoT Internet of Things

IP Intellectual Property

PL Programmable Logic

PS Processor System

mAP Mean Average Precision

ML Machine Learning

MPSoC Multi-Processor System on Chip

MS-COCO Microsoft Common Objects in Context

YOLO You Only Look Once

9

ABSTRACT

Deep learning solutions to computer vision tasks have revolutionized many industries in

recent years, but embedded systems have too many restrictions to take advantage of current

state-of-the-art configurations. Typical embedded processor hardware configurations must

meet very low power and memory constraints to maintain small and lightweight packaging, and

the architectures of the current best deep learning models are too computationally-intensive

for these hardware configurations. Current research shows that convolutional neural networks

(CNNs) can be deployed with a few architectural modifications on Field-Programmable Gate

Arrays (FPGAs) resulting in minimal loss of accuracy, similar or decreased processing speeds,

and lower power consumption when compared to general-purpose Central Processing Units

(CPUs) and Graphics Processing Units (GPUs). This research contributes further to these

findings with the FPGA implementation of a YOLOv4 object detection model that was

developed with the use of transfer learning. The transfer-learned model uses the weights of

a model pre-trained on the MS-COCO dataset as a starting point then fine-tunes only the

output layers for detection on more specific objects of five classes. The model architecture

was then modified slightly for compatibility with the FPGA hardware using techniques such

as weight quantization and replacing unsupported activation layer types. The model was

deployed on three different hardware setups (CPU, GPU, FPGA) for inference on a test

set of 100 images. It was found that the FPGA was able to achieve real-time inference

speeds of 33.77 frames-per-second, a speedup of 7.74 frames-per-second when compared to

GPU deployment. The model also consumed 96% less power than a GPU configuration with

only approximately 4% average loss in accuracy across all 5 classes. The results are even

more striking when compared to CPU deployment, with 131.7-times speedup in inference

throughput. CPUs have long since been outperformed by GPUs for deep learning applications

but are used in most embedded systems. These results further illustrate the advantages of

FPGAs for deep learning inference on embedded systems even when transfer learning is used

for an efficient end-to-end deployment process. This work advances current state-of-the-art

with the implementation of a YOLOv4 object detection model developed with transfer

learning for FPGA deployment.

10

1. INTRODUCTION

Machine learning has proven to be an effective solution to a variety of intriguing computer

vision tasks in recent years. The full self-driving capabilities of autonomous vehicles are closer

than ever to revolutionizing the roadways [1]–[3] and medical imaging tasks can predict and

diagnose disease with a precision unmatched in humans [4], [5]. Convolutional neural networks

(CNN) have been the computer vision solution of choice since approximately 2012 [6], and

they have shown to provide great accuracy when applied to computer vision tasks. However,

with great accuracy comes great power: improvements in model accuracy have proven to

be inversely related to other performance metrics such as speed and power consumption,

and their computational complexity is to blame for this [7]. The current state-of-the-art

(SOTA) hardware configuration for CNN deployment (performing inference on an input image

or video) is the general-purpose graphics processing unit (GPU). Current available GPUs

are highly specialized to handle CNN architecture processing to reduce speed and increase

accuracy during deployment, but at the cost of high power consumption.

Due to this contrasting nature of performance to power, there are many limitations in

extending recent CNN advancements to potential embedded computer vision tasks. Embedded

systems differ from traditional general-purpose computer systems by their compact size, which

lends to major restrictions in memory and power. For example, unmanned aerial vehicles

(UAV) could be useful for implementing computer vision tasks at a birds’-eye-view, but

they have very low power and weight requirements to maintain flight that high-performance

machine learning models cannot meet with an embedded general-purpose processor. There

is a growing market for embedded and Internet of Things (IoT) devices with unique needs

that are not suitable for current machine learning deployment hardware configurations. High

performance GPUs are too power-hungry and not portable enough for these applications, but

smaller embedded processors do not have the necessary resources to host and deploy machine

learning models. Eventually, accuracy will no longer be the ideal performance metric for

CNNs if the system hardware cannot keep up with the increasing computational demand and

decreasing inference speed during deployment.

11

Currently available strategies of resource optimization for embedded CNN deployment

include strategic model design, network compression, and hardware choice [8]. Resource-

efficient model design takes optimization to the source by reducing the size and complexity of

CNN models for compatibility with the limitations of embedded devices. One such example,

called You Only Look Once (YOLO), performs inference very quickly even on embedded

devices by streamlining the prediction network to reduce computation time [9].

Field-Programmable Gate Arrays (FPGAs) are a resource with great potential for em-

bedded deep learning tasks. FPGAs are low-power programmable devices that can replace

GPUs in deployment. In theory, this approach can maintain or improve inference speeds of

GPU deployment with minimal loss in accuracy while satisfying the low power, weight, and

size requirements of embedded systems.

In this work, transfer learning was used to re-purpose a pre-trained YOLO object detection

model to be used for detection and classification of images from a dataset of 5 classes. Transfer

learning is a model development method that has shown recent success in reducing training

time and overall computational resource requirements without sacrificing accuracy [10]–[12].

If the desired object classes to be detected during deployment are present in the object

classes of the pre-trained model, then it is advantageous to utilize the weights from the

pre-trained model and perform inference on the data immediately, skipping the training

process altogether. However, it is more often the case that a pre-trained model has been

trained on very similar information to the data intended to be used for inference but needs a

little more fine-tuning to create more specific output classifiers. In this case, transfer learning

can help lessen the impact of training while allowing for greater customization to the desired

task. The knowledge previously obtained by the model is used as a starting point for learning

new tasks, which greatly reduces training time and can result in greater accuracy. This is

done by ”freezing” (can no longer be updated during training) the weights on all layers of the

pre-trained model except for the output classification layer. The frozen layers then become

the convolutional base and the new classifier is trained from scratch to output custom classes.

The custom model was then deployed for inference using GPU, CPU, and FPGA hardware

to compare performance metrics such as accuracy, speed, and power. The model performance

was also compared to that of the pre-trained model. The primary contribution of this research

12

shows that transfer learning can be used to develop networks that maintain the accuracy of

traditional deep CNNs in FPGAs.

The following sections of this chapter discuss the differences in deploying a model on

different hardware configurations and an overview of state-of-the-art object detection model

architectures. The subsequent chapter describes the underlying FPGA hardware through the

lens of CNN architectures. This work also provides an in-depth comparison of the advantages

and disadvantages of using FPGAs for deep learning inference in contrast to GPUs. The

remaining chapters will describe the experimental setup of this work and present and discuss

the performance results for each deployment configuration.

1.1 The Role of Hardware in Deep Learning

Regarding inference with CNNs, there are two main sources of speed degradation: multiply-

accumulate (MAC) operations and large memory requirements [13]. MAC operations form

the basis of convolution, but are costly to implement in hardware. Furthermore, deep CNNs

achieve great accuracy but at the cost of a large number of parameters, which greatly increase

the number of required matrix multiplications. Additionally, more parameters require more

memory storage. Deep CNNs are so large that associated memory must be stored in multiple

places on the hardware architecture, leading frequent memory accesses that also contribute to

latency during inference [14]. There have been many recent advancements to optimize CNN

processing speeds by designing specialized hardware for handling these specific operations

and requirements, motivated by the need to increase inference speeds for practical computer

vision solutions.

1.1.1 Current SOTA for CNN Deployment Hardware

In 2006, Chellapilla et al. achieved the first CNN implementation on a GPU, and found

that speeds were up to 4 times faster than central processing units (CPU) [15]. The success of

GPUs in deep learning applications is primarily due to the ability to perform the convolutional

layer (MAC) operations in parallel, rather than sequentially like CPUs. The difference lies in

the design strategy of the underlying hardware architecture. CPUs are divided into several

13

cores, which can each take on a single task at a time. Combined with fast cache memory

for retrieval, this makes them very effective for serial processing tasks. In contrast, GPUs

are composed of hundreds of cores, all of which are dedicated to processing the same single

task. This narrowed focus allows the GPU to dedicate all of its resources to convolutional

operations, increasing inference throughput dramatically. These design features have led

the GPU to become the current hardware platform of choice for most machine learning

deployment applications

The success of GPUs over CPUs introduced the need for specialized hardware to handle

the computational complexity of current CNNs and allow development of better, faster

networks in the future. However, the advantages of the GPU come at a cost that may be

disadvantageous for some applications: they require a lot of power to run and often cost into

the thousands of dollars for a quality unit, which is insurmountable for tasks that require

low power and have limited resources to dedicate. In response, other specialized hardware

is available for computer vision tasks that improves upon some aspects where the GPU

lacks. Among these choices is the FPGA, which has several advantages over the GPU to be

discussed in Chapter 2. In short, the FPGA can be designed to parallelize CNN operations

for optimal deployment speed, while providing other advantages that are impossible with

GPUs.

1.2 Neural Networks for Object Detection

Object detection algorithms have two main tasks: detect and classify. To achieve

this, most object detection model architectures are comprised of two main components: a

CNN ”backbone” for feature extraction on the input image and a ”head” to output the

detection/classification prediction. In practice, there are two dominant categories for how

to implement the head of an object detection model [16]. The first is two-stage detection,

in which the tasks of detection and classification are divided into two separate phases. The

first phase compiles a set of proposed regions of interest (RoI) within the image, then passes

each of these proposals to a CNN which performs and outputs classification for each detected

object. Two-stage object detectors typically boast high localization and classification accuracy,

14

but are slow during inference. One example is Mask R-CNN [17], which is a progression

of earlier iterations R-CNN [18], Fast R-CNN [19], and Faster R-CNN [20]. In [17], it is

mentioned that Mask R-CNN achieves SOTA accuracy results but at the expense of inference

speeds that are not considered to be real-time.

In contrast, single-stage object detectors are designed for speed. A single CNN is applied

to the entire image at once to output bounding boxes and class predictions simultaneously.

This approach results in much faster outputs for real-time inference with minor sacrifices in

accuracy. As mentioned previously, this feature of single-stage detector model design is the

reason they are favored for embedded deep learning applications with limited resources to

improve speeds for real-time inference [8]. The following sections will focus on the YOLO

single-stage object detection architecture. A brief overview of the YOLO development history

is first presented, followed by a detailed explanation of the YOLOv4 architecture to be

deployed in this work.

1.2.1 You Only Look Once: Real-Time Object Detection

YOLO was first introduced in May 2016 by Redmon et al. as a “new approach to object

detection” [9]. It proposed an improvement upon existing object detection architectures by

simplifying the task with single-stage detection.

The YOLO model was inspired by the ability of humans to quickly and accurately come

to several conclusions about the nature of an image with a single glance. Likewise, YOLO

was designed to receive an input image and use a single CNN to simultaneously detect and

classify objects with a single glance. The CNN backbone architecture of YOLO was inspired

by GoogLeNet [23] and contains 24 convolutional layers plus two fully connected layers which

output the prediction. Its performance did not match that of the human visual system of

course, but it showed to make great strides toward achieving similar real-time inference on

visual input.

The main results of YOLO’s debut were two-fold. First, inference speeds were dramatically

increased when compared to other SOTA object detection algorithms (earning the real-time

designation by boasting less than 25 ms latency during video streaming). Quantitatively,

15

Figure 1.1. Model Architecture for YOLO [9], YOLOv2 [21], and YOLOv3
[22]. Each model is a single-shot object detector, but underlying changes to
the CNN backbone allow for improvements in speed and accuracy with each
iteration.

YOLO reported a throughput of 45 frames-per-second (FPS) for detection on the PASCAL

VOC 2007 dataset [24], a vast improvement on the lethargic R-CNN family of architectures

at 0.5-7 FPS. Second, these increased speeds did not come at a major expense to accuracy.

In fact, YOLO boasted a mean average precision (mAP) of 63.4 on the PASCAL VOC 2007

dataset in contrast to the 16.0-21.1 from other real-time architectures available at the time.

This was still slightly behind the less-than-real-time R-CNN family (at approximately 70

mAP), but a vast improvement that promoted YOLO to fast and practical. The YOLO

approach also gained an additional advantage of lower false positives on backgrounds, since

16

the single-stage approach (whole image) allows it to add contextual information to each

object’s identification. It showed an improvement on background error in comparison to Fast

R-CNN by 8.85%.

There were a few drawbacks to this first YOLO approach: while it achieved the goal of

being very fast, it struggled with precise object localization compared to other models. For

example, detection on the PASCAL VOC 2007 dataset with YOLO reported a impressive

10.4% increase in localization error compared to Fast R-CNN. It also was still lacking in overall

detection accuracy compared to SOTA object detection models of the time. Subsequent

redesigns improved upon these drawbacks to design models that increased both speed and

accuracy with each iteration.

In December 2016, Redmon et al. introduced YOLOv2 [21] as an improvement to YOLO’s

shortcomings and a faster, more accurate model overall. The first set of major changes

were aimed at improving localization accuracy while maintaining the classification accuracy

achieved with YOLO. Rather than aiming for a larger, deeper network (as is typical with

computer vision network improvements [25], [26]), other fine-tuning strategies were used

to improve learning while maintaining a simple network to ensure the detection is still

incredibly fast. A few example strategies used were adding batch normalization to all of

the convolutional layers and using higher input image resolution for classification (448x448

vs. 224x224). The second set of major changes aimed for increased speed, and resulted in

the design of a new CNN backbone called Darknet-19 with 19 convolutional layers and 5

maxpooling layers. The new network decreases the number of convolutional layers from the

original YOLO model, which resulted in fewer MAC operations for even better performance.

It was found that YOLOv2 now boasted 78.6 mAP on the PASCAL VOC 2007 dataset while

maintaining real-time inference speed, a vast improvement upon its predecessor and now a

contender against two-stage models in both speed and accuracy. However, YOLOv2 still

struggled with detection of small objects.

YOLOv3 [22] premiered from Redmon et al. in 2018 with some changes from YOLOv2,

including the development of the Darknet-53 CNN backbone for feature extraction and the

addition of 3 prediction heads. Darknet53 contains 53 convolutional layers as opposed to 19,

but achieved better accuracy than Darknet-19. Darknet-53 was also designed to maximize

17

the number of floating-point operations per second (FLOPs), which GPUs are specialized

to handle at the hardware level (see section 1.1.1). This results in better utilization of the

hardware for improved deployment speed despite its larger size. The 3 prediction heads

predict bounding boxes for the input image at three different scales using a method similar to

feature pyramid networks (FPN) [27], which lead to improvements in small object detection to

curb the main weakness of YOLOv2. Overall, these changes resulted in major improvements

in inference speeds, but still trailed just slightly behind other models in accuracy. Figure 1.1

illustrates a comparison of the model architectures of the first three YOLO iterations.

1.2.2 YOLOv4

After the release of YOLOv3, the YOLO project was taken over by Bochkovskiy et al.,

who developed YOLOv4 in early 2020 [28]. This newest iteration was shown to yet again

improve upon its predecessor, increasing mAP by 10% and speed by 12% to become a model

that is fully optimized for real-time detection and parallel computations. As of this writing,

YOLOv5 has been recently released; however, YOLOv4 [28] is the object detector of choice

for this work since it is more stable to work with and still maintains SOTA performance.

Figure 1.2. Model Architecture for YOLOv4 [28]. It consists of the CSPDark-
net53 CNN backbone, an SPP module for fixed-length outputs, and the same
head used in YOLOv3.

18

YOLOv4 improved upon YOLOv3 in several ways (see Figure 1.2). First, several new

features were added to the CNN backbone for accuracy improvements. The backbone was

renamed CSPDarknet53, named for the Darknet53 backbone architecture used in YOLOv3

and the addition of Cross-Stage-Partial-connections (CSP) [29], one of the features used to

improve CNN accuracy. Another feature used for improvement was the addition of a Spatial

Pyramid Pooling (SPP) [30] module over the CSPDarknet53 backbone. When added to the

top of the last convolutional layer of a CNN, SPP is used to generate fixed-length outputs

to feed into the head of the model, which eliminates the need for fixed-size input images

and improves CNN performance. Finally, the YOLOv4 model uses the same YOLOv3 head

described above following the SPP module for outputting predictions.

The Darknet53 backbone makes YOLOv4 a very favorable choice for real-time inference on

platforms that are specialized for parallel processing without much sacrifice in accuracy. This

work will focus on utilizing transfer learning with YOLOv4 by using weights from a different

pre-trained model as a starting point and re-training only the head to output predictions

for a new model with a different set of classes. This approach will allow for significantly

decreased training time and computational resources to produce a model of slightly lower,

but comparable, accuracy compared to training from scratch. This decreases the overall

burden that training has on the entire model development lifecycle and is a great tool for

embedded computer vision tasks.

19

2. OBJECT DETECTION DEPLOYMENT ON FPGAs

Today, there are many computer vision tasks that benefit from CNNs, but there are also

many options to consider for the best deployment setup. Developing a machine learning

model has two phases: training and inference (see Figure 2.1). Training is on the back-end

of the development process and can usually be completed on a typical desktop or cloud

computer with the use of a GPU as an effective setup. In this environment, the main goal

is to achieve high accuracy to ensure deployment of the model on new images is successful,

so speed is not of much concern and the setup does not need to be portable. However, for

the inference phase of deployment, unique considerations for each use-case often create a

trade-off between the most important considerations: speed, latency, power, and accuracy

[31]. Today, the most common hardware to utilize for inference are CPUs and GPUs, with a

major trade-off of speed versus cost and power. However, neither of these options are very

portable for use in embedded (on-the-field) system applications, as more compact embedded

hardware generally lacks the resources to employ these complex architectures.

Figure 2.1. Relationship Between Training, Inference, and Deployment in
CNN Development

This is where FPGAs come in: they are smaller than traditional CPU/GPU setups so they

can be utilized for embedded applications, can utilize parallel processing and high-bandwidth

20

memory for real-time inferencing, are reprogrammable to ensure flexibility as needs change,

and are more energy-efficient than GPUs [31]. The main problem with FPGA utilization

is due to the complexity of the hardware environment preparation. Despite their flexibility,

they are very complicated devices and there are not many programmers with the knowledge

to take advantage of this. For FPGA utilization to be realistic, there needs to be a way

for software developers to utilize the power of FPGAs without needing to understand the

underlying hardware details.

Xilinx introduced an answer to this problem in 2019 called Vitis AI, which is a development

platform that was specifically designed to provide a high-level way to port machine learning

programs in software to utilize the hardware on FPGA. Vitis AI can be used to deploy

custom machine learning models or ready-to-use models from their library onto supported

FPGAs. The goal of the platform is to abstract the details of the underlying hardware for

software engineers and programmers with little to no FPGA experience to make FPGAs

more attractive for deep learning inference applications. Therefore, embedded computer

vision tasks may become much simpler to develop without sacrificing performance. Vitis AI

is also free to download and use, can be easily set up for use with supported Xilinx boards or

configured for use with a custom board, and most of the software is available as open source.

There are many published works deploying pre-trained models for FPGAs and evaluating

their performance, but work is lacking in custom models that achieve higher accuracy for

specific tasks. Transfer learning helps bring these models to fruition without the need to

dedicate hours or even days to training on large amounts of data while preserving adequate

accuracy. The combination of transfer learning and FPGA deployment could be a relatively

quick and low-power solution for embedded computer vision tasks from end-to-end.

2.1 How Acceleration Works in FPGAs

The digital-signal processor (DSP) block is used on FPGAs for MAC operations. The

DSP block is only able to operate with fixed-point numerical representations for greater

computational efficiency [31], whereas typical CNN weights are stored in 32-bit floating-

point (FP32) format for higher precision. Deploying a CNN on FPGA therefore requires a

21

pre-processing step called quantization to compress the model size by converting the FP32

weights to fixed-point integer weights, typically at a width of 8 bits (INT8). Quantization

is accomplished by mapping the minimum/maximum value of FP32 weights to the mini-

mum/maximum of the INT8 range. It has been demonstrated that FP32 precision is not

required to maintain the same level of accuracy [32], [33], and this gives FPGAs the ability to

show speed and power improvement over GPUs in CNN deployment. Reducing the precision

of the weights to INT8 makes addition and multiplication operations less computationally

costly, increasing inference speeds and decreasing network size and power consumption [31].

The board used in this work is the Zynq UltraScale+ MPSoC ZCU102 from Xilinx [34].

It is a general-purpose evaluation board, which features the Zynq UltraScale+ XCZU9EG

MPSoC (multiprocessor system-on-chip). This MPSoC ontains (i) a processing system (PS),

with the Arm Cortex-A53 64-bit quad-core PCU and the Arm Cortex-R5 dual-core processor,

and (ii) a programmable logic (PL), where the Deep-learning Processor Unit (DPU) is

implemented with direct connections to the PS [35]. The DPU is an intellectual property (IP)

block that handles typical deep learning operations, such as pooling and convolutions, while

the PS handles all other program execution aspects, such as pre-/post-processing instructions.

In a way, the relationship of the DPU to the PS is analogous to that of the GPU and CPU: the

former is specialized for parallelization and dedicating many resources to a single task, and

the latter is better at serialization and quickly handling tasks that do not require extensive

resources.

2.2 Why FPGAs for CNNs?

As briefly introduced, the use of CNNs in computer vision has provided many break-

throughs but at a great cost to time and computing resources. In this section, the cause

of these challenges in context of CNN architectures are explored in more detail. These

details will then be used to illustrate why the use of FPGAs can be more beneficial for

CNN deployment than typical general-purpose processor setups in the context of embedded

computer vision tasks.

22

2.2.1 Challenges of CNN Deployment

In Alexnet [6], only 8 layers were used to achieve groundbreaking results at the time.

With further development came deeper and deeper networks: in 2015, the Visual Geometry

Group (VGG) model was developed and achieved a top-5 test error rate of 6.8 percent with

their 19-layer network [26], greatly improving upon the results in [6]. Unfortunately, this

increase in accuracy with model depth did not continue indefinitely and it was found that

accuracy eventually degrades after a certain number of layers [17]. The ResNet family of

CNNs was established in 2016 to solve this issue by introducing “shortcut connections” to the

CNN model [25]. It was shown in [25] that the ResNet architecture was able to circumvent

performance degradation and allow for continued increase in accuracy with increased depth

for models containing 34, 50, 101, and 152 layers, and outperformed the current SOTA models

to win the ILSVRC in 2015. Most popular CNNs used in image classification and object

detection backbones today utilize 50-100 layers.

The increase in SOTA network size leads to the creation of very large models that require

additional speed and power considerations during inference. Both GPUs and FPGAs can

create better speed efficiency during inference with parallelization of MAC operations in each

layer, and model architectures such as YOLOv4 have focused on streamlining the process

for real-time detection on such hardware. However, these models can also require a lot of

power to process during inference, as they require frequent memory accesses and utilize

high-precision arithmetic [36]. Additionally, SOTA CNN models are rapidly evolving, and

the hardware used for deployment may not be flexible enough to accommodate the types of

layers and structures that may appear in better networks of the future. Some deep CNN

applications may require or benefit from continued training in the field (known as Deep

Reinforcement Learning) which creates additional demand for resources and the need for

flexibility and portability in a CNN deployment system [37]. The challenges above are simply

expensive and impractical for GPUs to handle.

23

2.2.2 FPGA Solutions in Comparison to General-Purpose Processors

There are many FPGA features that are suitable for handling the challenges described

above. There is a wide variety available to suit specific needs, with low-cost options for simple

CNNs or higher-cost options for more complex CNNs which require more processing power.

FPGAs are also more flexible than general-purpose processors; they can be designed and

programmed at the hardware level to be optimal for specific networks and can be quickly

adapted for future CNN structures that are yet to be achieved. FPGAs are often used for

military applications because they typically have a longer lifespan than general-purpose

processors, providing another vector for future stability.

System design with FPGAs also allows for a smaller footprint than general-purpose

processors, because the same piece of silicon can host several IP blocks to integrate much, if

not all, of the required hardware for the entire deep learning application. This is particularly

useful in image processing applications, which can process input in real-time with the use

of cameras or other image capture hardware connected to the same system as the CNN

accelerator and post-processing operations, minimizing latency (see Figure 2.2). In comparison,

CPUs and GPUs are more limited in this regard, as they do not possess the same ability to

integrate other IP into their applications for seamless functionality.

Figure 2.2. Footprint of Possible FPGA Deep Learning Applications

Finally, FPGAs provide better speed and power profiles than typical general-purpose

processors. It is well-known that GPUs outperform CPUs for inference because they excel

24

at performing the data operations required by the convolutional layers of CNNs; FPGAs

also excel at this, so they outperform CPUs as well. Additionally, hardware programming

on the FPGA allows for parallelism; this can accelerate CNN processing, particularly in the

convolutional layers where each convolution operation can be done in parallel. FPGAs are

also well-known for their power efficiency, while GPUs are not. Several studies have shown

that FPGAs have proven to be capable of comparable or better speedup and performance

than GPUs while consuming 10-28 percent less power [38]–[40].

2.3 Literature Review

There has been much recent work done to implement a variety of deep learning algorithms

on FPGAs and evaluate the performance. Most of the work done so far uses hardware

description languages (HDLs) and design tools (such as Vivado by Xilinx) to program the

FPGAs for deep learning inference and subsequently deploy the pre-trained models for

inference and performance evaluation. Some research focuses on the hardware and makes

conclusions on the relative performance of FPGAs to GPUs, and some focuses on the software

to propose algorithm adjustments to speedup FPGA inference or compare performance

between existing deep learning models. However, there is not much work illustrating an

end-to-end development of a custom model utilizing strategies such as transfer learning for

subsequent deployment and evaluation on relatively small datasets. This approach is more

realistic for embedded applications and is worth investigating further.

An example of relatively early work in 2017, [41] implements an LSTM model for speech

recognition on an FPGA using pruning and quantization for compression. They noted that

they used LSTM in their work because it is “the most complex” recurrent neural network

model for speech recognition due to high computational complexity, memory footprint, and

power consumption. The focus of their work was in reducing the high memory footprint to

speed up inference. Their results reported that their hardware architecture, titled Efficient

Speech Recognition Engine (ESE), performed 43-times faster than a CPU and 3-times faster

than a GPU while maintaining 40-times and 11.5-times higher energy efficiency (power

consumption) than the CPU and GPU, respectively.

25

A similar approach was proposed in [42] to make the case for quantizing model weights

from floating-point to fixed-point to speed up inference in neural networks. The inspiration

for their work is neural network design for mobile devices with limited resources, and although

there are mobile neural networks available for use, they still use floating-point weights and

calculations. The authors suggest quantizing these pre-trained mobile neural networks and

moving the computations to hardware (FPGA) and methods for how to design neural network

for improved performance with fixed-point calculations. They also present their hardware

design and implementation, reporting a processing speed of 150 frames per second (FPS);

they do not compare their performance to any other architecture.

The work presented in [43] explores how to modify an existing object detection algorithm

(tinyYOLO) to run more efficiently on an FPGA. This was done by (i) making several

modifications to the network architecture and (ii) again using quantization to compress the

model. They compared the performance of their model for inference on FPGA, CPU, and

GPU for speed, accuracy, and power, and found that the GPU was still faster than the FPGA

(while the FPGA was 44.9-times faster than the CPU), but the GPU consumed 18.9-times

more power than the FPGA, an important consideration for embedded systems. Finally, the

model was slightly less accurate than both the CPU and GPU, but only by approximately

3-4 percent, respectively. This work illustrates that there can still be a variety of outcomes

when deploying a deep learning model on FPGA, but the results are still comparable and the

great decrease in power consumption is very favorable for embedded systems applications.

There are also many examples comparing the performance of several SOTA object detection

algorithms on FPGA implementations. The results in these studies can serve as a baseline for

future performance evaluations. In [44], an early open-source tool from Xilinx called Python

Productivity for ZYNQ (PYNQ), which is intended to ease the hardware design process

of Xilinx ZYNQ SoCs, was used to deploy several object detection models on a ZCU104

FPGA. The models evaluated were SSD with MobileNetv1 backbone, SSD with Inceptionv2

backbone, Faster-RCNN with Inceptionv2 backbone, and SSD with MobileNetv1 and FPN

backbone. The performance of each model was evaluated for latency, accuracy, and ease of

implementation. They found that across all evaluation metrics, the SSD with Inceptionv2

model was the most suitable for their setup.

26

Another study [45] took this a step further and compared performance of object detection

algorithms SSD, Faster R-CNN, and YOLO when deployed for inference on FPGA on two

different hardware setups. Their strategy to improve performance was to add an Intel Neural

Compute Stick (NCS) to the hardware setup alongside the FPGA, which is a co-processor used

to implement and accelerate DNNs. The performance of each of the three object detection

algorithms (FPS, runtime, and accuracy) was evaluated for both hardware setups: FPGA

with and without NCS. They found that the addition of the NCS to the FPGA improved

results in all three categories across all three models. Across the three algorithms on the NCS

configuration, the fastest runtime went to YOLO, the highest FPS went to SSD, and the

highest accuracy went to Faster-RCNN, illustrating each selection’s strengths and weaknesses.

Finally, there are a few examples of published works which utilize software development

stacks like Vitis AI to aid in the deployment of existing SOTA computer vision models on

FPGAs. One such example in [46] illustrates an end-to-end implementation of an autonomous

driving system on FPGA. These tools allow for integration of the DPU for deep learning

deployment on the FPGA without the need for hardware design knowledge. There are

currently still many constraints for using these, such as limited model and device support,

but overall results have been promising. Another good example is given in [47], which used

these development tools to implement object detection and semantic segmentation on FPGA

for future use in an Advanced Driver Assistance System (ADAS). Their system was deployed

successfully, and the algorithms were evaluated against CPU and GPU, and they found that

both speed and power consumption were improved with only a slight decrease in accuracy.

These findings use models trained on large, popular datasets to show that FPGA usage in

embedded machine learning development can be practical with little sacrifice with the aid of

software development tools. This work takes that a step further by using these pre-trained

models as a starting point, then using transfer learning to re-purpose that knowledge for

use on smaller, custom datasets for FPGA deployment with the aid of the development

tools. The result is a practical machine learning solution that is suitable for embedded device

applications without sacrificing the positives of GPU deployment.

27

3. METHODOLOGY

This chapter begins by describing the experimental setup of this work. The details of the

software and hardware configurations used to prepare and deploy the models and the image

dataset used during training and testing will be discussed. Lastly, the performance metrics

that are used to evaluate the test results will be defined, along with a detailed explanation of

how they were obtained for each configuration.

3.1 Experimental Setup

Two tests were performed to analyze and compare the performance of a YOLOv4 object

detection model that was developed using transfer learning on a custom 5-class dataset. The

first test deployed the model for inference on a GPU with the use of Google Colaboratory

[48] and a laptop CPU (Intel Core i7). The second test deployed the model for inference on

an FPGA with the aid of the Xilinx Vitis AI development environment. For each deployment

test setup, inference was performed on 100 images and the performance metrics of each

configuration were recorded and tabulated for comparison. An extra 150 images (30 per class)

were added to the test set to be used for the accuracy tests to get a better evaluation of the

average classification accuracy.

The model was developed with the use of the Darknet repository [49], which hosts the

code used to develop and deploy YOLOv4 models. The configuration file used to create the

neural network had to be modified slightly from the base YOLOv4 network to (i) modify

the output layers for a 5-class dataset and (ii) be compatible for deployment on the DPU.

The DPU does not support the activation functions used in the base model, so they were

replaced by the Leaky Rectified Linear Unit (ReLU) activation function. Leaky ReLU is a

modification of the ReLU activation function (Equation 3.1), in which the function defines

negative inputs as a very small linear component of the input rather than zero (Equation

3.2). This modification solves a common issue with ReLU called ”dying ReLU” [50] by giving

28

an output (albeit very small, but not zero) for negative values so that the associated neurons

are not deactivated.

f(x) = max(0, x) (3.1)

f(x) = max(0.01 ∗ x, x) (3.2)

Another required modification was the number of kernels used in two of the max pooling

layers of the base model. The maximum kernel size supported by the DPU is 8, but the base

model used 9 and 13, so these were changed to 6 and 8 to be compatible with the DPU. The

code used to prepare the model and configuration file for FPGA deployment was modified

from [51].

After configuration, the model was trained for approximately 6800 iterations on the data

described in 3.1.2 below. According to [49], the general recommendation for number of

training iterations can be found with Equation 3.3 .

iterations = 2000 ∗ (number of classes) (3.3)

For the five classes in this case, the model would be expected to train for 10000 iterations.

However, due to transfer learning the model achieves an mAP-50 of 92.64% at around 6800

iterations. Figure 3.1 shows the mAP-50 and loss values (using the Focal Loss function [52])

recorded for each iteration of the training process; the process was stopped at around 7500

iterations as it was clear the mAP was leveling off.

The deployment process for each test setup is illustrated in Figure 3.2 . After training

completes, the model can be immediately deployed on the GPU and CPU with the use of

[49] deployment code and the test images. For FPGA use, the deployment process requires 3

main steps after training (see the orange block in Figure 3.2):

1) Model Conversion: quantization requires a Tensorflow graphdef file that

has had its weights frozen (no longer trainable or modifiable). This requires

the Darknet weights file produced during training to first be converted to a

29

Figure 3.1. Model mAP-50 and Loss versus Number of Training Iterations

Keras-style h5 file, then converted into a protobuf (pb) frozen graph.

2) Quantization: the frozen graph is used as input to the quantizer along

with a calibration dataset. The calibration dataset is a subset of the images used

to train the model, used to calibrate the conversion process from FP32 weights

to INT8 weights. The output is a pb file that represents the model with INT8

weights that is compatible for DPU deployment.

3) Compilation: the quantized model is used as input to produce an xmodel

file, which contains the necessary hardware information for mapping the model to

the FPGA for deployment. The xmodel file generated during compilation is used

in tandem with the deployment software to deploy inference on the desired data.

30

Figure 3.2. Experimental Workflow

Once the xmodel file has been generated, it is copied onto the board and utilized by

the deployment program to perform inference (from [53]). The deployment code is a C++

program that performs image pre-processing, inputs the image to the model for detection

and classification, then performs post-processing to output bounding boxes, class predictions,

and probabilities.

3.1.1 Hardware

The GPU used for inference in Google Colaboratory was the NVIDIA Tesla T4. This

GPU was designed for high-performance inference, with 320 Tensor cores and 2560 CUDA

cores for a total of 2880 cores to utilize for parallel processing operations. Tensor Cores

operate concurrently alongside CUDA cores to enable mixed-precision processing designed

to further increased inference speeds on neural networks [54]. This GPU also lists a single

precision (FP32) performance of 8.1 tera-FLOPs (floating-point operations per second). With

a relatively small form-factor and a maximum power rating of 70 Watts, the Tesla T4 boasts

significantly lower power consumption than other typical GPUs employed for computer vision

31

tasks [55]. The model developed for this work can be deployed for inference on the GPU

directly after training with the use of the Darknet deployment code.

The ZCU102 was chosen for this work because (i) it was already available for use and (ii)

it is explicitly supported by Vitis AI for the most efficient deployment process that does not

require any additional hardware programming. Booting the ZCU102 from the system image

allows for interfacing via either the UART (Universal Asynchronous Receiver/Transmitter)

serial port or via the Ethernet interface/SSH service of the host computer. Deployment

on the FPGA requires extra processing steps compared to the GPU. The host computer is

responsible for all steps illustrated in Figure 3.2 . After the model is compiled, the output files

can be transferred to the FPGA for deployment; the ZCU102 utilizes three DPU cores during

the deployment process. The resulting FPGA hardware test setup can be seen in Figure 3.3 .

Figure 3.3. FPGA Test Setup Hardware Block Diagram

3.1.2 Data

A custom dataset was used to analyze the performance of each of the models described

above. It consists of 5 classes: eagle, glider, kite, plane, and quadcopter. The dataset

contains a mix of real-world photographs and virtual-world (computer-generated) images of

each object; more information on this dataset can be found in [56]. The real-world images

were used for testing because that is a more practical application of object detection, but

the virtual-world images were used to train the YOLOv4 model during transfer learning.

32

Table 3.1 illustrates in detail how the dataset was used for this work, resulting in a split of

approximately 82% train and 21% validation.

Table 3.1. Train and Test Images per Class

Class Train Test
Eagle 1629 200
Glider 1015 200
Kite 289 200
Plane 432 200
Quadcopter 1323 200

Total 4688 1000

The YOLOv4 model used in this test setup was pre-trained on the Microsoft Common

Objects in Context (MS-COCO) dataset [57], with 80 different object classes. Released in

2015, the goal was to provide image training data that showcased less “iconic” view of objects

to provide more robust data for computer vision tasks. They argue that most available

object images are too perfectly arranged in profile at or near the center of the image, with

no occlusion or competing background noise. The pre-trained model is useful for utilizing

transfer learning as described in Chapter 1 : the features learned from several of the 80 object

classes in the MS-COCO dataset are similar enough to the objects in the five-class dataset

that they can be frozen and re-purposed. The Darknet backbone of the pre-trained model

was configured with the same considerations described in Section 3.1 for compatibility with

the ZCU102 FPGA.

3.2 Performance Metrics

When the YOLOv4 model runs inference on an input image, it returns a class label (from

Table 3.1), a confidence score (between 0 and 1) corresponding to a probability that the

detected object belongs to the predicted class, and a set of coordinates which correspond to

a rectangular bounding box for all detected objects. The model assigns confidence scores (0

to 1) to all available class labels on which it has been trained, and the prediction assigned to

each object is the one which has the highest confidence score. The inference process requires

33

the input image to traverse through the model, and for reasons previously discussed this step

is generally the bottleneck of the deployment process.

Three performance metrics were used to evaluate the models: accuracy, inference speed,

and power consumption. The rest of this chapter will discuss how these metrics were evaluated,

what they mean, and how each of them were used for comparison.

3.2.1 Accuracy

There are several methods for evaluating model accuracy in deep learning. Some examples

are classification accuracy, mAP, and F1-score. Classification accuracy refers to the simple

percentage of correct predictions over the total number of predictions, where prediction refers

to the classification of the object detected during inference. This metric has been criticized

as being misleading for certain applications due to an imbalance in class occurrences during

inference. Due to this, other metrics were developed for a more precise evaluation of model

accuracy.

mAP is used to quantify the accuracy of the predicted bounding box by calculating the

Intersection over Union (IoU) of the ground-truth box and the predicted box. IoU is found

by Equation 3.4 below, where Aoverlap is the area of overlap between the two boxes and Atotal

is the total area occupied by the two boxes (see Figure 3.4). It returns a value between 0 and

1 which corresponds to the percentage of overlap between the two boxes. IoU is also paired

with a threshold, which is used to determine whether the prediction is a True Positive, True

Negative, False Positive, or False Negative; for example, mAP-50 uses a IoU threshold of 0.5

(50% overlap) to classify a prediction as a True Positive. These assignments are used to find

two values called Precision and Recall, which are shown in Equations 3.5 and 3.6 . These two

values are plotted as a Precision-Recall curve and the area beneath the curve corresponds to

the Average Precision (AP) of each class; the mean AP over all classes results in the mAP

(from 0 to 1). This is a useful method to use during training because the ground-truth of

each object’s bounding box has already been given in order to train the model. However, for

34

testing accuracy on new images, the ground-truth information is not necessarily given and

would have to be manually embedded for each test image to calculate the mAP.

IoU = Aoverlap

Atotal

(3.4)

Precision = TruePositives

TruePositives + FalsePositives
(3.5)

Recall = TruePositives

TruePositives + FalseNegatives
(3.6)

Figure 3.4. Illustration of IoU for Detection Accuracy

The F1-score method also utilizes Precision and Recall by the equation shown in 3.7 .

However, unlike mAP the number of True/False Positives/Negatives in Equations 3.5 and

3.6 are obtained from the classification outputs of the detected objects (like Classification

Accuracy) rather than from IoU. The F1-score was developed to create a balance between

precision and recall in cases where there is an uneven class distribution, to solve the major

issue with Classification Accuracy.

F1 = 2 ∗ Precision ∗ Recall

Precision + Recall
(3.7)

The number of class occurrences in the test set used for deployment has already been

balanced with an equal number of images per class, so Classification Accuracy is not going to

35

be a misleading metric to use in this case. If those numbers were off-balance (for example,

if dramatically more eagles are witnessed in a test environment than quadcopters), one of

the other two metrics may be more suitable for measuring model accuracy. For all tests

performed in this setup, the top-1 (greatest confidence score) classification of each test image

was recorded and the Classification Accuracy was averaged across all classes for each of

the three hardware configurations. Note that the main objective for this work was not to

explicitly find the best accuracy of each, but rather to observe how well accuracy is retained

from the model that uses floating-point weights (GPU and CPU) to the model that has had

its weights quantized to fixed-point (FPGA). This process is expected to result in a slight

loss in accuracy [51] due to the nature of the process as discussed in Chapter 2 .

3.2.2 Speed

The speed of the models was evaluated as the average (mean) time in milliseconds (ms) it

takes to perform inference on a single image. This value can also be converted to FPS by

Equation 3.8 , where the number of frames is equal to one for a single image.

FPS = Number of Frames
Processing Time in Seconds

(3.8)

The GPU and CPU deployment code outputs a run-time for inference on each image

by default (prediction only, excluding any image pre-/post-processing), and this time was

averaged across all 100 test images to find the mean inference time. The FPGA deployment

code can evaluate and output the mean inference run-time for all 100 test images as both

end-to-end (E2E) run-time (pre-processing, DPU, and post-processing; see Section 3.1) and

DPU run-time. The number of DPU threads (1-8) to use during deployment can also be

selected for desired FPGA performance. First, a thorough comparison of inference speeds

observed with each number of threads on the FPGA was performed. Then, one of the results

was selected for comparison to the CPU run-time, GPU run-time, and the COCO pre-trained

model run-time on the FPGA for the same number of threads.

36

3.2.3 Power

The final evaluation metric for this test setup was the power consumption of the hardware

used for each test setup while performing inference on the 100-image test set. The purpose of

this metric is to compare power consumption during model deployment in consideration of

the strict power constraints for embedded systems. Power in this case is defined by Equation

3.9 , where P is the power in Watts, V is the voltage in Volts, and I is the current in Amps

used by the hardware during inference.

P = V ∗ I (3.9)

The GPU power consumption from the Google Colaboratory test setup was recorded

with the aid of a tool called Weights and Balances [58] which integrates with the deployment

environment to output GPU power consumption over the time the program is running. The

evaluation program was initiated prior to starting inference on the 100-image test set and

ended after the last image was evaluated. The power consumption is then reported as the

maximum value recorded during this time period and the idle power recorded when inference

was not running. Likewise, the power consumption of the FPGA was recorded during the

entire inference period for the 100-image test set with the use of [59]. The program outputs

the power consumed by the PL, PS, and total power (PL + PS) at one-second intervals

during the test. The PL consumes the most power during this process as it is the source of

MAC operations during inference. The power consumption was also evaluated while varying

the number of DPU threads used. DPU multi-threading can be used for higher performance

(FPS) but greater power consumption [60], so there is a trade-off for each of these values

depending on the application. The power consumption was then reported as the maximum

value recorded during this time period (for each number of threads) and the idle power, and

compared to that of the GPU deployment.

37

4. RESULTS

In this chapter, the results of the experimental setup described in Chapter 3 are presented.

First, a sample of the most accurate outputs for each configuration are shown, including the

bounding boxes overlaid on the images and the object classifications. Then, the performance

will be evaluated according to the three performance metrics discussed in Section 3.2 . Finally,

the chapter concludes with a discussion that analyzes the results in the context of embedded

model deployment and highlights the advantages of FPGAs for such tasks in comparison to

the other hardware considered.

4.1 Output

Because the CPU and the GPU both utilize the same model and deployment setup,

the outputs for each are identical, so they are presented together in this section (the main

difference between the two is deployment speed, and this will be discussed in the following

section). Figure 4.1 shows a sample of outputs (one per class) obtained after inference with

the transfer-learned model. The top-1 classification and its corresponding confidence score

are included with the bounding box that outlines the detected object. Additionally, the color

of the bounding box corresponds to the class of the detected object.

Similar to the GPU/CPU, the FPGA outputs a bounding box that is colored according

to the predicted classification of the detected object (as shown in Figure 4.2). However, the

deployment code does not embed the classification and confidence score into the bounding

box on the output image, so this information is located in Table 4.1 .

Table 4.1. Sample of FPGA YOLOv4 Outputs: Classification and Confidence
Scores for Figure 4.2

Image Classification Confidence
a Eagle 0.84
b Glider 0.68
c Kite 0.52
d Plane 0.87
e Quadcopter 0.44

38

(a) Eagle (b) Glider (c) Kite

(d) Plane (e) Quadcopter

Figure 4.1. Sample of GPU/CPU YOLOv4 Outputs

The bounding boxes for both outputs do fairly well at object localization, but the GPU

seems to do slightly better at this than the FPGA. The GPU also tends to return slightly

higher confidence scores than the FPGA, which may be the result of weight quantization.

4.2 Performance

4.2.1 Accuracy

The classification results for each model is summarized in Table 4.2 . For the purposes

of computing Classification Accuracy, the data in Table 4.2 is reduced to two prediction

categories per class: Correct or Incorrect. This information was then used to find the

Classification Accuracy for each of the model deployment tests by dividing the number of

”Correct” classifications by the total number of images tested for all five classes. These five

39

(a) Eagle (b) Glider (c) Kite

(d) Plane (e) Quadcopter

Figure 4.2. Sample of FPGA YOLOv4 Outputs: Bounding Boxes

values were then used to compute an average Classification Accuracy across all five classes.

The results are shown in Table 4.3 . It is observed that the Classification Accuracy does drop

during conversion from the floating-point weights (GPU/CPU) to the fixed-point weights

(FPGA), although the drop in average Classification Accuracy is not enough to be significant.

4.2.2 Speed

First, model inference speed was evaluated on the FPGA with varying number of threads

to analyze the change in performance. These values were cross-referenced with the DPU

utilization (%) to select the thread count with the best relative performance for further

comparison. The DPU utilization is an important metric because it contributes to the bulk

of the inference run-time. To illustrate this, Table 4.4 shows the breakdown of the model

40

Table 4.2. Predicted Classification by Class for Each Test Setup

Ground Truth Prediction CPU GPU FPGA

Eagle
Eagle 50 50 49

Not Eagle 0 0 1

Glider
Glider 49 49 43

Not Glider 1 1 7

Kite
Kite 16 16 11

Not Kite 34 34 39

Plane
Plane 44 44 41

Not Plane 6 6 9

Quadcopter
Quadcopter 31 31 37

Not Quadcopter 19 19 13

Table 4.3. Average Classification Accuracy on 100-Image Test Deployment

Class CPU GPU FPGA

Eagle 1.00 1.00 0.98

Glider 0.98 0.98 0.86

Kite 0.32 0.32 0.22

Plane 0.88 0.88 0.82

Quadcopter 0.62 0.62 0.74

All 0.76 0.76 0.72

average inference speed in ms/image when one thread is used. E2E speed refers to how long

it takes for the entire inference process to run from pre-processing to post-processing in all

locations on the board. The DPU speed shows the run-time of the steps that are handled by

the DPU, and everything else from E2E is handled by the CPU. As 96.7% of the E2E speed,

the DPU is clearly contributing to the bulk of the deployment latency.

41

Table 4.4. FPGA Deployment Speed Breakdown

Location Speed (ms/image)

E2E_MEAN 73.220

DPU_MEAN 70.794

CPU_MEAN 2.426

The relationship of thread count to speed and DPU utilization is shown in Figure 4.3 .

The graph shows the speed leveling off rather quickly once three threads are used, and

this observation corresponds with the number of DPU cores available for utilization. The

utilization was only recorded for 1-5 threads in Figure 4.3 after observing the performance

leveling off. From these observations, the 3-thread deployment option was chosen for further

comparison to the other hardware setups.

Figure 4.3. Comparison of Speed in FPS and DPU % Utilization to Number
of DPU Threads varied from 1 to 8

42

The average inference speed per image is shown in Table 4.5 . Upon observing these values,

it is clear that using the CPU for inference is simply impractical for any application that aims

for real-time performance, at over ten seconds per image. The other three results are above or

near real-time inference speeds of ≥30 FPS. The FPGA model with transfer learning resulted

in the best inference run-time of all configurations, at 7.74 FPS faster than the GPU. Further,

when comparing the model pre-trained on 80 COCO classes and the transfer-learned model

trained on 5 classes, the speedup is 0.3 ms/image. This result illustrates a slight advantage

of transfer learning during deployment in which there are fewer model output layers for more

specific detection tasks and a slightly faster run-time per image as a result.

Table 4.5. Average Inference Speed

Unit CPU GPU FPGA (TL, 3 Threads) FPGA (COCO, 3 Threads)

ms/image 10502.30 38.41 29.61 29.91

FPS 0.095 26.03 33.77 33.43

4.2.3 Power

The power consumption during GPU deployment of the 100-image test set is shown in

Figure 4.4 . Numerical values for the idle and maximum power during this period are also

given in Table 4.6 . The idle power of the GPU was found at the beginning of the recorded

outputs. The maximum power was found at the highest peak of the recorded outputs. The

power values seem to average between 25-30 W during the entire run-time.

Table 4.6. Comparison of Power Consumption of GPU and FPGA During
Deployment of Transfer-Learned Model on 100-Image Test Set

Total Power (W) GPU FPGA

Idle 9.96 0.142

Maximum 36.3 1.43

43

Figure 4.4. GPU Power Usage During Inference for 100-Image Test Set

In contrast, the FPGA power consumption during deployment of the 100-image test

set is shown in Figure 4.5 and summarized in Table 4.6 . As discussed in Chapter 3 , the

graph also includes the power output for varying DPU thread count (from 1 to 5) versus the

resulting change in FPS. As expected, the power output and FPS are both proportional to

the amount of processing required by increased thread count, leveling off around 5 threads.

This shows that a real-time deployment (≥30 FPS) can be achieved by this model on the

FPGA when greater than 2 DPU threads are used, in exchange for a small but increased

power consumption. Finally, it is obvious from Table 4.6 that the power consumption is

greatly reduced during deployment on the FPGA in comparison to the GPU, even with

increased DPU thread count.

4.3 Conclusion

The results discussed in this chapter solidify three main takeaways: (i) accuracy does not

significantly degrade during quantization of a transfer-learned model, (ii) transfer learning

allows for real-time inference speeds and contributes to a speedup when a more specific

detection task is utilized versus a general pre-trained model, and (iii) the power consumption

of FPGA deployment is dramatically less than that of the GPU deployment.

44

Figure 4.5. Relationship of FPGA Power Consumption to FPS as the Number
of Threads is Increased During Deployment on FPGA

These findings can be used to illustrate the advantages of FPGA versus general-purpose

processors for embedded object detection tasks. For those tasks that require real-time

inference, this model can be deployed with 3 or more DPU threads to achieve this without

excessive power consumption during the process. Additionally, CPU inference speeds at over

10 ms/image further illustrate that typical embedded CPUs would not be capable of real-time

inference for object detection tasks. Accuracy can be maintained for these applications from

the required model quantization, although the model itself could use additional work in

evaluating how to increase overall accuracy. Power constraints may be the most important

consideration for embedded systems to maintain small size and portability, and the FPGA

results show superior advantages during model deployment.

45

5. SUMMARY

A YOLOv4 object detection model developed with the use of transfer learning was successfully

deployed and analyzed on three different hardware configurations. The model utilized a

different model pre-trained on the MS-COCO dataset (80 object classes) to redirect the

knowledge to a new, more application-specific set of object classifications (5 object classes).

The model was then evaluated over a test set of 100 images equally distributed to each of

the five classes, and evaluated using accuracy, speed, and power metrics for CPU, GPU, and

FPGA deployment.

It was found that the FPGA provided favorable deployment metrics with the use of the

transfer-learned model. Accuracy did degrade slightly during the required weight quantization

process by an average of 4%, but this was expected as a byproduct of reducing the precision

of the model weights. FPGA deployment speed was 7.74 FPS faster than the GPU, and

the average inference run-time slightly increased from the COCO pre-trained model to

the transfer-learned model for the same test set of images on the FPGA. Finally, power

consumption during the 100-image inference test was clearly a major advantage for FPGA

deployment, with a 96% improvement over the GPU.

In conclusion, these findings illustrate the effectiveness of FPGA deployment in consid-

eration of embedded applications even with the use of transfer learning. The CPU, which

is typically used in embedded systems, does not have the means to deploy deep networks

due to the lack of parallelization capability at the hardware level. In contrast, the GPU

is built specifically for parallelization and as a result is powerful and fast for deep CNN

deployment. However, this power literally becomes its critical disadvantage in embedded

deployment. Filling in the gap between the two general-purpose processors is the FPGA,

which provides major design flexibility with a low power, real-time deployment configuration

without sacrificing much in accuracy. Further, recent development in tools such as Vitis

AI abstract the details of the FPGA model deployment process to eliminate the need to

understand the underlying hardware design or learn HDL to implement it. This work therefore

advances the SOTA in this area by successfully deploying a transfer-learned YOLOv4 object

detection model on an FPGA.

46

Future work should include further evaluation of the training setup for this model to

achieve better results in overall accuracy across all classes. The results showed that the

model performed well when detecting the Eagle, Glider, and Plane classes, but had very poor

Classification Accuracy for the Kite and Quadcopter classes across all three configurations.

This may be due to several factors, including a large variability in kite and quadcopter

features that could be improved by introducing greater variety during training. Further

investigation would be beneficial for overall model performance. Finally, these results could

be extended by developing a physical embedded object detection test setup using this model

and an FPGA to analyzing how well it performs in the field to identify the five flying object

classes and maintain real-time speeds and low-power requirements.

47

REFERENCES
[1] Z. V. Ilyichenkova, S. M. Ivanova, A. I. Volkov, and A. Y. Ermakova, “The usage of

neural networks for motion prediction of autonomous objects,” in 2019 Systems of
Signals Generating and Processing in the Field of on Board Communications, 2019,
pp. 1–5. doi: 10.1109/SOSG.2019.8706752 .

[2] E. Talpes, D. D. Sarma, G. Venkataramanan, P. Bannon, B. McGee, B. Floering,
A. Jalote, C. Hsiong, S. Arora, A. Gorti, and G. S. Sachdev, “Compute solution for
Tesla’s full self-driving computer,” IEEE Micro, vol. 40, no. 2, pp. 25–35, 2020. doi:
10.1109/MM.2020.2975764 .

[3] Y. Li, L. Ma, Z. Zhong, F. Liu, M. A. Chapman, D. Cao, and J. Li, “Deep learning
for lidar point clouds in autonomous driving: A review,” IEEE Transactions on Neural
Networks and Learning Systems, pp. 1–21, 2020. doi: 10.1109/TNNLS.2020.3015992 .

[4] S. Roy, W. Menapace, S. Oei, B. Luijten, E. Fini, C. Saltori, I. Huijben, N. Chen-
nakeshava, F. Mento, A. Sentelli, E. Peschiera, R. Trevisan, G. Maschietto, E. Torri,
R. Inchingolo, A. Smargiassi, G. Soldati, P. Rota, A. Passerini, R. J. G. van Sloun,
E. Ricci, and L. Demi, “Deep learning for classification and localization of COVID-19
markers in point-of-care lung ultrasound,” IEEE Transactions on Medical Imaging,
vol. 39, no. 8, pp. 2676–2687, 2020. doi: 10.1109/TMI.2020.2994459 .

[5] L. Zhang, L. Lu, X. Wang, R. M. Zhu, M. Bagheri, R. M. Summers, and J. Yao, “Spatio-
temporal convolutional LSTMs for tumor growth prediction by learning 4D longitudinal
patient data,” IEEE Transactions on Medical Imaging, vol. 39, no. 4, pp. 1114–1126,
2020. doi: 10.1109/TMI.2019.2943841 .

[6] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification with deep convo-
lutional neural networks,” Neural Information Processing Systems, vol. 25, Jan. 2012.
doi: 10.1145/3065386 .

[7] K. He and J. Sun, “Convolutional neural networks at constrained time cost,” in 2015
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 5353–
5360. doi: 10.1109/CVPR.2015.7299173 .

[8] J. Chen and X. Ran, “Deep learning with edge computing: A review,” Proceedings of
the IEEE, vol. 107, no. 8, pp. 1655–1674, 2019. doi: 10.1109/JPROC.2019.2921977 .

[9] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified,
real-time object detection,” Jun. 2016, pp. 779–788. doi: 10.1109/CVPR.2016.91 .

[10] H.-C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. Mollura, and
R. M. Summers, “Deep convolutional neural networks for computer-aided detection:
Cnn architectures, dataset characteristics and transfer learning,” IEEE Transactions on
Medical Imaging, vol. 35, no. 5, pp. 1285–1298, 2016. doi: 10.1109/TMI.2016.2528162 .

[11] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell,
DeCAF: A deep convolutional activation feature for generic visual recognition, 2013.
arXiv: 1310.1531 [cs.CV] .

48

https://doi.org/10.1109/SOSG.2019.8706752
https://doi.org/10.1109/MM.2020.2975764
https://doi.org/10.1109/TNNLS.2020.3015992
https://doi.org/10.1109/TMI.2020.2994459
https://doi.org/10.1109/TMI.2019.2943841
https://doi.org/10.1145/3065386
https://doi.org/10.1109/CVPR.2015.7299173
https://doi.org/10.1109/JPROC.2019.2921977
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/TMI.2016.2528162
https://arxiv.org/abs/1310.1531

[12] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on Knowledge
and Data Engineering, vol. 22, no. 10, pp. 1345–1359, 2010. doi: 10.1109/TKDE.2009.
191 .

[13] J. Chang, Y. Choi, T. Lee, and J. Cho, “Reducing MAC operation in convolutional
neural network with sign prediction,” in 2018 International Conference on Information
and Communication Technology Convergence (ICTC), 2018, pp. 177–182. doi: 10.1109/
ICTC.2018.8539530 .

[14] A. Stoutchinin, F. Conti, and L. Benini, Optimally scheduling CNN convolutions for
efficient memory access, 2019. arXiv: 1902.01492 [cs.NE] .

[15] K. Chellapilla, S. Puri, and P. Simard, “High performance convolutional neural networks
for document processing,” Oct. 2006.

[16] L. Jiao, F. Zhang, F. Liu, S. Yang, L. Li, Z. Feng, and R. Qu, “A survey of deep
learning-based object detection,” IEEE Access, vol. 7, pp. 128 837–128 868, 2019. doi:
10.1109/ACCESS.2019.2939201 .

[17] K. He and J. Sun, “Convolutional neural networks at constrained time cost,” Dec. 2014.
[18] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Region-based convolutional networks

for accurate object detection and segmentation,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 38, no. 1, pp. 142–158, 2016. doi: 10.1109/TPAMI.2015.
2437384 .

[19] R. B. Girshick, “Fast R-CNN,” CoRR, vol. abs/1504.08083, 2015. arXiv: 1504.08083 .
[Online]. Available: http://arxiv.org/abs/1504.08083 .

[20] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: towards real-time object
detection with region proposal networks,” CoRR, vol. abs/1506.01497, 2015. arXiv:
1506.01497 . [Online]. Available: http://arxiv.org/abs/1506.01497 .

[21] J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,” Jul. 2017, pp. 6517–
6525. doi: 10.1109/CVPR.2017.690 .

[22] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,” CoRR, 2018.
arXiv: 1804.02767 . [Online]. Available: http://arxiv.org/abs/1804.02767 .

[23] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, “Going deeper with convolutions,” CoRR, vol. abs/1409.4842,
2014. arXiv: 1409.4842 . [Online]. Available: http://arxiv.org/abs/1409.4842 .

[24] M. Everingham, S. M. Eslami, L. Gool, C. K. Williams, J. Winn, and A. Zisserman,
“The pascal visual object classes challenge: A retrospective,” Int. J. Comput. Vision,
vol. 111, no. 1, pp. 98–136, Jan. 2015, issn: 0920-5691. doi: 10.1007/s11263-014-0733-5 .
[Online]. Available: https://doi.org/10.1007/s11263-014-0733-5 .

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
CoRR, vol. abs/1512.03385, 2015. arXiv: 1512.03385 . [Online]. Available: http://arxiv.
org/abs/1512.03385 .

[26] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image
recognition,” CoRR, vol. abs/1409.1556, 2015.

49

https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/ICTC.2018.8539530
https://doi.org/10.1109/ICTC.2018.8539530
https://arxiv.org/abs/1902.01492
https://doi.org/10.1109/ACCESS.2019.2939201
https://doi.org/10.1109/TPAMI.2015.2437384
https://doi.org/10.1109/TPAMI.2015.2437384
https://arxiv.org/abs/1504.08083
http://arxiv.org/abs/1504.08083
https://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1506.01497
https://doi.org/10.1109/CVPR.2017.690
https://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842
https://doi.org/10.1007/s11263-014-0733-5
https://doi.org/10.1007/s11263-014-0733-5
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385

[27] T. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and S. J. Belongie, “Feature
pyramid networks for object detection,” CoRR, vol. abs/1612.03144, 2016. arXiv:
1612.03144 . [Online]. Available: http://arxiv.org/abs/1612.03144 .

[28] A. Bochkovskiy, C. Wang, and H. M. Liao, “YOLOv4: Optimal speed and accuracy
of object detection,” CoRR, vol. abs/2004.10934, 2020. arXiv: 2004.10934 . [Online].
Available: https://arxiv.org/abs/2004.10934 .

[29] C. Wang, H. M. Liao, I. Yeh, Y. Wu, P. Chen, and J. Hsieh, “CSPnet: A new backbone
that can enhance learning capability of CNN,” CoRR, vol. abs/1911.11929, 2019. arXiv:
1911.11929 . [Online]. Available: http://arxiv.org/abs/1911.11929 .

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convolutional
networks for visual recognition,” CoRR, vol. abs/1406.4729, 2014. arXiv: 1406.4729 .
[Online]. Available: http://arxiv.org/abs/1406.4729 .

[31] E. Delaye, A. Sirasao, C. Dudha, and S. Das, “Deep learning challenges and solutions
with Xilinx FPGAs,” Nov. 2017, pp. 908–913. doi: 10.1109/ICCAD.2017.8203877 .

[32] T. Dettmers, “8-bit approximations for parallelism in deep learning,” CoRR, 2016.
[33] P. Gysel, M. Motamedi, and S. Ghiasi, “Hardware-oriented approximation of convolu-

tional neural networks,” CoRR, vol. abs/1604.03168, 2016. arXiv: 1604.03168 . [Online].
Available: http://arxiv.org/abs/1604.03168 .

[34] ZCU102 evaluation board user guide, English, version Version 1.6, Xilinx, Jun. 12, 2020,
125 pp.

[35] Zynq DPU v3.2 product guide, English, version Version 3.2, Xilinx, Jul. 7, 2020, 57 pp.
[36] R. Andri, L. Cavigelli, D. Rossi, and L. Benini, “YodaNN: An ultra-low power convolu-

tional neural network accelerator based on binary weights,” CoRR, vol. abs/1606.05487,
2016. arXiv: 1606.05487 . [Online]. Available: http://arxiv.org/abs/1606.05487 .

[37] G. Dulac-Arnold, D. J. Mankowitz, and T. Hester, “Challenges of real-world reinforce-
ment learning,” CoRR, vol. abs/1904.12901, 2019. arXiv: 1904.12901 . [Online]. Available:
http://arxiv.org/abs/1904.12901 .

[38] K. Ovtcharov, O. Ruwase, J.-Y. Kim, J. Fowers, K. Strauss, and E. Chung, “Accelerating
deep convolutional neural networks using specialized hardware,” Microsoft Research,
Feb. 2015. [Online]. Available: https://www.microsoft.com/en-us/research/publication/
accelerating-deep-convolutional-neural-networks-using-specialized-hardware/ .

[39] J. Cong, Z. Fang, M. Lo, H. Wang, J. Xu, and S. Zhang, “Understanding performance
differences of FPGAs and GPUs,” 2018 IEEE 26th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), pp. 93–96, 2018. doi:
10.1145/3174243.3174970 .

[40] E. Nurvitadhi, G. Venkatesh, J. Sim, D. Marr, R. Huang, J. O. G. Hock, Y. T. Liew,
K. Srivatsan, D. J. M. Moss, S. Subhaschandra, and G. Boudoukh, “Can FPGAs beat
GPUs in accelerating next-generation deep neural networks?” Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 2017.

50

https://arxiv.org/abs/1612.03144
http://arxiv.org/abs/1612.03144
https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/1911.11929
http://arxiv.org/abs/1911.11929
https://arxiv.org/abs/1406.4729
http://arxiv.org/abs/1406.4729
https://doi.org/10.1109/ICCAD.2017.8203877
https://arxiv.org/abs/1604.03168
http://arxiv.org/abs/1604.03168
https://arxiv.org/abs/1606.05487
http://arxiv.org/abs/1606.05487
https://arxiv.org/abs/1904.12901
http://arxiv.org/abs/1904.12901
https://www.microsoft.com/en-us/research/publication/accelerating-deep-convolutional-neural-networks-using-specialized-hardware/
https://www.microsoft.com/en-us/research/publication/accelerating-deep-convolutional-neural-networks-using-specialized-hardware/
https://doi.org/10.1145/3174243.3174970

[41] S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo, S. Yao, Y. Wang, H. Yang,
and W. J. Dally, “ESE: efficient speech recognition engine with compressed LSTM
on FPGA,” CoRR, vol. abs/1612.00694, 2016. arXiv: 1612.00694 . [Online]. Available:
http://arxiv.org/abs/1612.00694 .

[42] R. Solovyev, A. Kustov, D. Telpukhov, V. Rukhlov, and A. Kalinin, “Fixed-point
convolutional neural network for real-time video processing in FPGA,” 2019 IEEE
Conference of Russian Young Researchers in Electrical and Electronic Engineering
(EIConRus), Jan. 2019. doi: 10 . 1109/eiconrus . 2019 . 8656778 . [Online]. Available:
http://dx.doi.org/10.1109/EIConRus.2019.8656778 .

[43] Z. Li and J. Wang, “An improved algorithm for deep learning YOLO network based
on Xilinx Zynq FPGA,” in 2020 International Conference on Culture-oriented Science
Technology (ICCST), 2020, pp. 447–451. doi: 10.1109/ICCST50977.2020.00092 .

[44] A. Sharma, V. Singh, and A. Rani, “Implementation of CNN on Zynq based FPGA
for real-time object detection,” in 2019 10th International Conference on Computing,
Communication and Networking Technologies (ICCCNT), 2019, pp. 1–7. doi: 10.1109/
ICCCNT45670.2019.8944792 .

[45] S. P. Kaarmukilan, S. Poddar, and A. Thomas K., “FPGA based deep learning models
for object detection and recognition comparison of object detection comparison of
object detection models using FPGA,” in 2020 Fourth International Conference on
Computing Methodologies and Communication (ICCMC), 2020, pp. 471–474. doi:
10.1109/ICCMC48092.2020.ICCMC-00088 .

[46] T. Wu, W. Liu, and Y. Jin, “An end-to-end solution to autonomous driving based on
Xilinx FPGA,” in 2019 International Conference on Field-Programmable Technology
(ICFPT), 2019, pp. 427–430. doi: 10.1109/ICFPT47387.2019.00084 .

[47] S. Fang, L. Tian, J. Wang, S. Liang, D. Xie, Z. Chen, L. Sui, Q. Yu, X. Sun, Y. Shan,
and Y. Wang, “Real-time object detection and semantic segmentation hardware system
with deep learning networks,” in 2018 International Conference on Field-Programmable
Technology (FPT), 2018, pp. 389–392. doi: 10.1109/FPT.2018.00081 .

[48] T. Carneiro, R. V. Medeiros Da NóBrega, T. Nepomuceno, G. Bian, V. H. C. De
Albuquerque, and P. P. R. Filho, “Performance analysis of Google Colaboratory as a
tool for accelerating deep learning applications,” IEEE Access, vol. 6, pp. 61 677–61 685,
2018. doi: 10.1109/ACCESS.2018.2874767 .

[49] Alexey, J. Redmon, S. Sinigardi, cyy, T. Hager, V. Zhang, M. Maaz, IlyaOvodov,
P. Kahn, J. Veitch-Michaelis, A. Dujardin, duohappy, acxz, J. Aughey, E. Özipek,
J. White, D. Smith, Aven, T. K. C. Shibata, M. Giordano, G. Daras, HagegeR, B.
Gąsiorzewski, A. Babaei, H. Vhavle, E. Arends, D. Cho, C.-H. Lin, A. Baranski, and 7FM,
Alexeyab/darknet: YOLOv4 pre-release, version darknet_yolo_v4_pre, May 2020. doi:
10.5281/zenodo.3829035 . [Online]. Available: https://doi.org/10.5281/zenodo.3829035 .

[50] L. Lu, “Dying relu and initialization: Theory and numerical examples,” Communications
in Computational Physics, vol. 28, no. 5, pp. 1671–1706, Jun. 2020, Global Science
Press, issn: 1991-7120. doi: 10.4208/cicp.oa-2020-0165 . [Online]. Available: http:
//dx.doi.org/10.4208/cicp.OA-2020-0165 .

51

https://arxiv.org/abs/1612.00694
http://arxiv.org/abs/1612.00694
https://doi.org/10.1109/eiconrus.2019.8656778
http://dx.doi.org/10.1109/EIConRus.2019.8656778
https://doi.org/10.1109/ICCST50977.2020.00092
https://doi.org/10.1109/ICCCNT45670.2019.8944792
https://doi.org/10.1109/ICCCNT45670.2019.8944792
https://doi.org/10.1109/ICCMC48092.2020.ICCMC-00088
https://doi.org/10.1109/ICFPT47387.2019.00084
https://doi.org/10.1109/FPT.2018.00081
https://doi.org/10.1109/ACCESS.2018.2874767
https://doi.org/10.5281/zenodo.3829035
https://doi.org/10.5281/zenodo.3829035
https://doi.org/10.4208/cicp.oa-2020-0165
http://dx.doi.org/10.4208/cicp.OA-2020-0165
http://dx.doi.org/10.4208/cicp.OA-2020-0165

[51] Xilinx, YOLOv4 tutorial, version 1.3.0, Apr. 2021. [Online]. Available: https://github.
com/Xilinx/Vitis-Tutorials/tree/master/Machine_Learning/Design_Tutorials/07-
yolov4-tutorial (visited on 05/31/2021).

[52] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal loss for dense object
detection,” in Proceedings of the IEEE International Conference on Computer Vision
(ICCV), Oct. 2017.

[53] Xilinx, Vitis AI, version 1.3.0, 2020. [Online]. Available: https://github.com/Xilinx/Vitis-
AI (visited on 05/31/2021).

[54] S. Markidis, S. W. D. Chien, E. Laure, I. B. Peng, and J. S. Vetter, “NVIDIA tensor
core programmability, performance precision,” in 2018 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), 2018, pp. 522–531. doi:
10.1109/IPDPSW.2018.00091 .

[55] Z. Jia, M. Maggioni, J. Smith, and D. P. Scarpazza, “Dissecting the NVIDIA turing T4
GPU via microbenchmarking,” CoRR, vol. abs/1903.07486, 2019. arXiv: 1903.07486 .
[Online]. Available: http://arxiv.org/abs/1903.07486 .

[56] A. Dale, “3D object detection using virtual environment assisted deep network training,”
Master’s thesis, Indiana University-Purdue University Indianapolis, 2020.

[57] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D.
Ramanan, C. L. Zitnick, and P. Dollár, Microsoft COCO: Common objects in context,
2015. arXiv: 1405.0312 [cs.CV] .

[58] L. Biewald, Experiment tracking with weights and biases, Weights and Biases, 2020.
[Online]. Available: https://www.wandb.com/ (visited on 05/31/2021).

[59] Parker-Xilinx, Xilinx linux power utility, 2019. [Online]. Available: https://github.com/
parker-xilinx/xilinx-linux-power-utility (visited on 05/31/2021).

[60] Vitis AI user guide, English, version 1.3, Xilinx, Dec. 17, 2020, 231 pp.

52

https://github.com/Xilinx/Vitis-Tutorials/tree/master/Machine_Learning/Design_Tutorials/07-yolov4-tutorial
https://github.com/Xilinx/Vitis-Tutorials/tree/master/Machine_Learning/Design_Tutorials/07-yolov4-tutorial
https://github.com/Xilinx/Vitis-Tutorials/tree/master/Machine_Learning/Design_Tutorials/07-yolov4-tutorial
https://github.com/Xilinx/Vitis-AI
https://github.com/Xilinx/Vitis-AI
https://doi.org/10.1109/IPDPSW.2018.00091
https://arxiv.org/abs/1903.07486
http://arxiv.org/abs/1903.07486
https://arxiv.org/abs/1405.0312
https://www.wandb.com/
https://github.com/parker-xilinx/xilinx-linux-power-utility
https://github.com/parker-xilinx/xilinx-linux-power-utility

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	ABSTRACT
	INTRODUCTION
	The Role of Hardware in Deep Learning
	Current SOTA for CNN Deployment Hardware

	Neural Networks for Object Detection
	You Only Look Once: Real-Time Object Detection
	YOLOv4

	OBJECT DETECTION DEPLOYMENT ON FPGAs
	How Acceleration Works in FPGAs
	Why FPGAs for CNNs?
	Challenges of CNN Deployment
	FPGA Solutions in Comparison to General-Purpose Processors

	Literature Review

	METHODOLOGY
	Experimental Setup
	Hardware
	Data

	Performance Metrics
	Accuracy
	Speed
	Power

	RESULTS
	Output
	Performance
	Accuracy
	Speed
	Power

	Conclusion

	SUMMARY
	REFERENCES

