
TWO PROBLEMS IN APPLIED TOPOLOGY
by

Nathanael Cox

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Department of Mathematics

West Lafayette, Indiana

August 2021

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Saugata Basu, Chair

Department of Mathematics and Computer Science

Dr. Andrei Gabrielov

Department of Mathematics

Dr. Hans Walther

Department of Mathematics

Dr. Tamal Dey

Department of Computer Science

Approved by:

Dr. Plamen Stefanov

Associate Head of Graduate Studies, Department of Mathematics

2

First and foremost, this thesis is dedicated to my wife, Alexia Cox, and my children.

Without their love and support this would not have been possible.

Without the guidance and encouragement of my parents and the rest of my family, I would

not be where I am and who I am today, so I dedicate this thesis to them.

Finally, I want to thank all my friends and colleagues for their continued support.

3

ACKNOWLEDGMENTS

Without the help of all the invaluable skills and knowledge I have learned from the many

teachers and mentors I have had, I would not be where I am today, and this document would

not be here. I especially want to thank my advisor, Dr. Saugata Basu, for his advice and

expertise through the years. His help was invaluable.

4

Contents

ABSTRACT . 7

1 INTRODUCTION . 8

1.1 Effective Quotient Algorithm . 8

1.2 Harmonic Chains . 12

2 EFFECTIVE DEFINABLE QUOTIENT ALGORITHM 14

2.1 Background and Preliminary Results . 14

2.1.1 Effective Quantifier Elimination . 20

2.1.2 Semi-Algebraic Triangulation Algorithm 22

2.2 Proof of Theorem 1 . 22

2.2.1 Preliminary Algorithms . 23

Partition of Unity Algorithm . 23

Semi-Algebraic Path Algorithm . 26

Extension Algorithm . 29

Completion Algorithm . 38

2.2.2 Quotient Algorithms . 42

First Gluing Quotient Algorithm . 42

Second Gluing Quotient Algorithm 47

General Quotient Algorithm . 52

2.2.3 Improved Bounds . 60

2.3 Conclusion . 61

3 HARMONIC CHAINS . 63

3.1 Background Definitions . 63

3.1.1 Linear Algebra Facts . 63

3.1.2 Persistent Homology . 64

3.2 Representative Cyles . 67

3.2.1 Prior Work . 67

5

3.2.2 Harmonic Chains . 68

3.3 Harmonic Chains and Persistence . 69

3.3.1 Practical applications . 71

3.3.2 Towards Proving Stability . 76

3.4 Conclusion . 82

REFERENCES . 83

VITA . 86

6

ABSTRACT

In this thesis, we present two main results in applied topology. In our first result, we

describe an algorithm for computing a semi-algebraic description of the quotient map of a

proper semi-algebraic equivalence relation given as input. The complexity of the algorithm

is doubly exponential in terms of the size of the polynomials describing the semi-algebraic

set and equivalence relation. In our second result, we use the fact that homology groups

of a simplicial complex are isomorphic to the space of harmonic chains of that complex to

obtain a representative cycle for each homology class. We then establish stability results on

the harmonic chain groups.

7

1. INTRODUCTION

In this thesis we present two results. The first result is an algorithm that makes effective in

the semi-algebraic category a result due to van den Dries, [1 , Theorem 10.2.15], that says

that if a definable equivalence relation E on a definable set X is definably proper over X

then X/E exists as a definably proper quotient of X. Our algorithm takes a semi-algebraic

description of X and E and returns a semi-algebraic description of X/E.

Our second result concerns persistent homology. We explore the space of the harmonic

chains on a simplicial complex K. We expand on ideas introduced by Beno Eckmann [2]. We

use the fact that the homology groups of K are isomorphic to the space of harmonic chains

to address the problem of determining a representative cycle for a homology class. Harmonic

chains give a natural canonical way to define representative cycles of homology classes. We

develop a theoretical framework to study “harmonic persistent homology subspaces.” We

define a distance on these chain groups and show that the distance is stable with respect to

the functions that generate the filtration on the simplicial complex. Finally, we show that

this stability is implied by the traditional bottleneck stability used for persistence diagrams.

These two sets of results, while seemingly coming from different fields, have motivations

arising from topological data analysis. Topological Data Analysis is a rich field of interesting

problems with applications in mathematics, computer science, medical imaging, astronomy

and more. A brief introduction to basic tools and applications of Topological data analysis

can be found in [3].

1.1 Effective Quotient Algorithm

Given a topological space X and an equivalence relation E ⊂ X ×X on X, the quotient

space of X by E, denoted X/E, is an important object of study in topology and algebraic

geometry.

However, quotients do not always behave nicely with their respective morphisms. It is

a well-known fact from elementary topology that quotients of Hausdorff spaces need not

remain Hausdorff. Similarly, simply connectedness, contractibility, and local compactness

are all properties that are not preserved in general under taking quotients. Hence, it is an

8

important problem to determine under what conditions a quotient space inherits a given

property from the original topological space. In the Hausdorff case, for example, we know

that the quotient space remains Hausdorff if and only if the kernel of the quotient map is

closed. A more substantial example from algebraic geometry is presented by Frances Kirwan

in [4]. We consider the action of SL(2) on complex projective space Pn, where we identify

Pn with the space of binary forms of degree n. Equivalently, consider the unordered sets

of n points on the projective line P1. The orbit in which all n points coincide is contained

in the closure of every other orbit, and hence the topological quotient cannot be given the

structure of a projective variety. Once again, we have a situation where the quotient space

does not in general inherit the desirable properties of the original space (in this case the

property is “being a variety”). To obtain a quotient space in this above example requires

determining which orbits are “bad” and omitting them (see the following introduction to

Geometric Invariant Theory due to Mumford for more information: [5]).

Our first result was motivated by prior work on Reeb spaces [6]. A Reeb graph is a

mathematical object first introduced by Georges Reeb in [7] as a tool in Morse Theory.

Given a topological space X and a function f : X → R, we define an equivalence relation

E on X as follows: (x1, x2) ∈ E if and only if f(x1) = y = f(x2) and x1, x2 are in the

same connected component of f−1(y). The quotient space X/E is called the Reeb graph of

f and is denoted Reebf . A natural generalization of the Reeb graph is to no longer require

im(f) ⊂ R. If instead f : X → Y , where Y is an arbitrary topological space, using a

similarly defined equivalence relation, we refer to X/ ∼ as the Reeb space of f , still denoted

Reebf .

Reeb spaces have been studied from both a theoretical and practical perspective. Mapper,

a concept introduced in [8], gives a discrete approximation of the Reeb space of a multivariate

mapping, allowing for more efficient computation of the underlying data structure. Munch

et. al. [9] define the interleaving distance for Reeb spaces to show the convergence between

the Reeb space and Mapper. Reeb spaces are often used in 3D graphics applications such

as data skeletonization, shape comparison and surface denoising, see [10], [11], and [12];

respectively. In [6] and [13], a bound on the first betti numbers of the reeb space in terms of

the defining space X is presented. This result is extended here, [14], to higher betti numbers.

9

Reeb spaces have been shown to be of great interest, and it was shown in [6 , Theorem

1] that if f is a definable map, then Reebf can be realized as a definably proper map. In

fact, [1 , Theorem 10.2.15] proves an entire class of quotients that inherit the property of

definablity from their originating space. Whenever the equivalence relation E is definable

and definably proper over X, then X/E will exist as a definably proper quotient of X. For

this reason, we expand our focus beyond just Reeb spaces and topological data analysis.

We focus more broadly on algorithmic semi-algebraic geometry to develop an algorithm to

produce quotients of this more general class of equivalence relations.

Algorithmic semi-algebraic geometry is a vast field in its own right. Looking at this prob-

lem from that perspective is also motivation enough to solve this problem. Semi-algebraic

algorithms use first-order formulae in the language of the reals and apply “a computational

procedure that takes an input and after a finite number of allowed operations produces an

output” [15]. Prior results in this field include a quantifier-elimination algorithm, which

takes a formula with quantifiers (∃,∀) and returns a quantifier free formula. This algorithm

is used to determine the validity of a formula in the language. The best known complexity of

quantifier elimination is doubly exponential in the number of quantifier alternations. How-

ever, if this number is fixed, the algorithm becomes singly exponential. Another algorithm

of interest and applicability produces a semi-algebraic description of a triangulation of a

semi-algebraic set. Triangulated spaces tend to have nice geometry and are easier to work

with. The most efficient triangulation algorithms rely on cylindrical decomposition algo-

rithms which are intrinsically doubly exponential. It is an open problem of some interest to

determine a singly exponential algorithm for triangulation. We rely on these two algorithms

frequently in our main result, however there are many more useful and powerful algorithms

that have been produced. The interested reader should see [15] for an introduction to this

area of study and for a much more comprehensive list of results. However, a general quo-

tienting algorithm has yet to be developed. As quotients are of considerable interest, we

choose to pursue a more general quotient algorithm in our paper.

There is a “meta theorem” in algorithmic semi-algebraic geometry that upper bounds on

topological complexity of objects are closely related to the worst case scenario complexity of

algorithms computing topological invariants of such objects. Hence, [6 , Theorem 1] hints at

10

the possibility that an algorithm to solve our problem exists that runs in singly-exponential

time. The technique in that paper is not suitable for this purpose, because the upper bound

comes from approximating the Reeb space as the E1-term of a spectral sequence converging

to it. This is not sufficient to describe the Reeb space itself unfortunately. Making effective

the steps of van den Dries’s proof, we use semi-algebraic triangulation to obtain the general

quotient space. While the geometric nature of Reeb spaces could allow for more efficient

computation using other methods, in this paper the lack of an existing general quotient

algorithm in semi-algebraic geometry motivates us to sacrifice potential efficiency for broader

applicability.

If the polynomials defining a semi-algebraic formula have coefficients in a domain D,

the complexity of an algorithm involving those polynomials is the number of arithmetic

operations that must be performed in D. For a general domain, these operations are addition,

subtraction, and multiplication. Over a real closed field R, the operations also include

division by nonzero elements and comparing elements by the natural ordering < on R. The

number of operations that are necessary tends to scale with the number of polynomials, their

degree bound, and the number of variables.

Presented formally, our first result is the following [16]:

Theorem 1. Let P1 ⊂ R[X1, . . . , Xm] and P2 ⊂ R[X1, . . . , X2m]. Given a P1-formula

ΦX , whose realization is a semi-algebraic set X, and a P2-formula ΦE, whose realization

is a proper semi-algebraic equivalence relation E ⊂ X × X, then there exist formulas Φf ,

describing the graph of the map from X to the semi-algebraic realization of X/E, and ΦX/E,

representing the semi-algebraic realization of X/E.

Moreover, there is an algorithm to determine these formulas. Let k1 = |P1|, d1 ≥ deg(P)

for all P ∈ P1, k2 = |P2| and d2 ≥ deg(P) for all P ∈ P2. This algorithm has complexity


(mkd)2O(m3) if k2O(m)

1 ≈ k2(≈ k) and d2O(m)
1 ≈ d2(≈ d)

(mk2d2)2O(m3) if k2 >> k2O(m3)
1 and d2 >> d2O(m)

1

(mk1d1)2O(m4) if k2O(m)
1 >> k2 and d2O(m)

1 >> d2

11

1.2 Harmonic Chains

In chapter 3 , we explore a different aspect of topological data analysis. Persistent ho-

mology is a way to study how topological features change over time and to observe which

topological features “persist.” This allows the user a means of determining which features

are more important/intrinsic to the space being studied. Based on the user’s application,

persistent homology is a valuable tool to handle noise in data. For an introduction to per-

sistent homology, with an eye toward computational applications, we direct the reader to

[17].

Given a filtration F on a topological space X, the p-th persistent homology groups of

X, denoted Hs,t
p (X) = im(is,t

p), where is,t
p : Hp(Xs) → Hp(Xt) is the map induced by the

inclusion is,t : Xs → Xt. Xs is the s-th space in the filtration F of X. The topological

features, in this case homology classes, that exist through multiple stages of the filtration

are said to persist. The user can filter out the classes that don’t persist long enough through

the filtrations, discarding them as noise.

We consider persistent homology on a simplicial complex K with coefficents in a field k.

In this case all the homology groups will be k-vector spaces. The barcode of a filtration on

K encodes the information about how long homology classes persist. A new homology class

that is “born” at a given time is defined modulo a certain subspace in the homology of the

complex. This quotienting makes identifying a given bar of the barcode with a particular ho-

mology class problematic. It has become an important problem in applications of persistent

homology to obtain a representative cycle for a given homology class. In applications, the

simplices of K often have special significance. As such one would then want to determine

how the these features are represented in the original data. See [18] and [19] for examples of

applications where simply knowing the persistence diagram was not enough; a representative

cycle was desired.

In this chapter, we briefly survey previous attempts to determine a representative cycle

before proposing our own method. We use the fact that homology groups are isomorphic to

the space of harmonic chains (chains on simplicial complexes whose boundary and cobound-

ary are both 0). Harmonic chains have a natural inner product that we use to determine

12

a cycle to represent each class as it is born. If the filtration is simplex-wise (i.e. only one

simplex is added at a time) then at most one cycle is either born or dies at any given time.

We are able to define a space of harmonic chains that are born at time s and die at time

t. When the filtration is simplex wise, this subspace is 1-dimensional. Therefore, up to

multiplication by a constant, we have a single chain that represents this cycle. See 3.3.1 .

If f : K → R induces a simplex-wise filtration, f also induces what we call a “persistence

function” of dimension p, definition 23 . For every p, F : R → qdGr(d, Cp(K)) such that F

maps a real number t to the set of harmonic chains of the simplicial complex f−1((−∞, t]).

By developing this theory, we provide a natural, canonical method of determining a

representative cycle of the persistent homology cycles of a simplicial complex. In addition

to developing the definitions, we have the following stability results that are reminiscent of

prior stability results [20]:

Theorem 2. Let K be a finite simplicial complex. For each p ≥ 0, there exists a c depending

only on K such that such that if F,G are persistence functions induced f, g, respectively, then

dh(F,G) ≤ c · |f − g|, where | · | is the L∞ norm.

Here dh(F,G) is a metric on the space of p-dimensional persistence functions, see equa-

tion 3.3.4 . We also prove the following association between persistence functions and persis-

tence diagrams.

Theorem 3. Each persistence function of dimension p can be associated with a distinct

p-dimensional barcode.

We finally prove a slightly different stability result relating the harmonic distance to the

traditional bottleneck distance on persistence diagrams.

Theorem 4. Let K be a finite simplicial complex. For each p ≥ 0, there exists a c = c(K)

depending only on K such that if F and G are persistence functions of dimension p then

dh(F,G) ≤ c ·W∞(Dgmp(F),Dgmp(G)).

Here, Dgmp(F) is the persistence barcode obtained from Theorem 3 , with the diagonal

added with infinite multiplicity, and W∞ is the bottleneck distance between persistence

diagrams.

13

2. EFFECTIVE DEFINABLE QUOTIENT ALGORITHM

2.1 Background and Preliminary Results

This chapter of the thesis is devoted to developing an algorithm which proves Theorem 1 .

Our algorithm makes effective in the semi-algebraic category the following theorem due to

van den Dries:

Theorem 5. [1 , Theorem 10.2.15] Suppose a definable equivalence relation E on a definable

set X is definably proper over X. Then X/E exists as a definably proper quotient of X.

We begin this chapter by providing background definitions and prior results that are

needed for our algorithm.

We begin with o-minimal structures, a set of “nice” subsets of real closed fields. For

details beyond what are mentioned here, the interested reader should consult [1], [21] for a

broad introduction to the theory of o-minimal structures.

Definition 1. An o-minimal structure on a real closed field (R, <) is a sequence S =

(S)m∈N such that for each m ≥ 0:

(i) Sm is a Boolean algebra of subsets of Rm.

(ii) If A ∈ Sm, then A×R,R × A ∈ Sm+1.

(iii) The set {(x1, . . . , xm) ∈ Rm|x1 = xm} is in Sm.

(iv) If A ∈ Sm+1 and π : Rm+1 → Rm is the projection onto the first m coordinates, then

π(A) ∈ Sm.

(v) The set {(x, y) ∈ R2|x < y} ∈ S2.

(vi) The sets in S1 are exactly the finite unions of intervals and points.

If A ∈ S, we say A is a definable set. A map f is called definable if the graph of f is a

definable set.

14

Examples of o-minimal structures on the real line include semi-linear sets, semi-algebraic

sets, and sub-analytic sets. The semi-algebraic sets, subsets of Rm defined by polynomial

equalities and inequalities, are of particular interest to us. Semi-algebraic sets can be de-

scribed as realizations of first order formulae in the language of the reals. We go into more

detail about such formulae below, but first we need a few more definitions from the theory

of o-minimal structures. We first consider quotients in the category of definable sets.

Definition 2. Given a set X, an equivalence relation E ⊂ X × X on X is a definable

equivalence relation if E is a definable set. Furthermore, E is definably proper if

either p1 : E → X or p2 : E → X is a definably proper map, where p1 and p2 represent the

restriction to E of the two projections from X ×X → X.

Given a map f : X → Y , between definable sets X and Y , we define an equivalence

relation Ef = {(x, y) ∈ X × X|f(x) = f(y)}. Ef is a definable equivalence relation.

Moreover, if f is continuous Ef is closed in X ×X.

Definition 3. Given a definable equivalence relation E on a definable set X, a definable

quotient of X by E is a pair (p, Y) consisting of a definable set Y and a definable continuous

surjective map p : X → Y such that:

(i) E = Ep, i.e. (x1, x2) ∈ E if and only if p(x1) = p(x2) for all x1, x2 ∈ X

(ii) p is “definably identifying”: for all definable K ⊂ Y , if p−1(K) is closed in X, then K

is closed in Y .

If p is definably proper, instead of simply definably identifying, then we say that (p, Y)

is a definably proper quotient of X by E. Given a definable quotient (p, Y) of X by E, Y

is unique up to definable isomorphism. We write Y = X/E and say X/E is the definable

quotient of X by E. In our next definition, we relate definable quotients to semi-algebraic

sets.

Definition 4. Given an equivalence relation E, a semi-algebraic map f : X → Y is a map

to the semi-algebraic realization of X/E if the following diagram commutes:

15

X

X/E Y

q f

h

where q is the standard quotient map, h is a homeomorphism, and Y is a semi-algebraic set.

We refer to Y in this case as the semi-algebraic realization of X/E.

We have two more concepts from o-minimal structures that we rely on in our algorithm:

disjoint sums and completions.

Definition 5. A disjoint sum of definable sets S1 ⊂ Rm1 , . . . , Sk ⊂ Rmk is a tuple

(h1, . . . , hk, T) consisting of a definable set T ⊂ Rn, for some n, and definable maps hi :

Si → T such that :

(i) hi is a homeomorphism onto hi(Si) and hi(Si) is open in T , for i = 1, . . . , k

(ii) T is the disjoint union of the sets h1(S1), . . . , hk(Sk)

Remark 1. Let n = 1 + max{mi|1 ≤ i ≤ k} and hi : Si → Rn by hi(x) = (x, i, . . . , i︸ ︷︷ ︸
n−mi

). Then

(h1, . . . , hk,∪ihi(Si)) is clearly a disjoint sum of S1, . . . , Sk. A disjoint sum is unique up to

isomorphism, so we use the above representation for our disjoint sums. We write S1q· · ·qSk

for T , and we identify Si with its image in S1 q · · · q Sk via hi.

Now that we have the concept of a disjoint sum in the definable category, we would like

to construct quotients on these sums. We take definable sets X ⊂ Rm and Y ⊂ Rn, with a

definable map f : A→ Y for some definable A ⊂ X. We would like to describe the quotient

space obtained by attaching X to Y via f . Let ∆(X) and ∆(Y) denote the diagonals of X

and Y , respectively. Then

E(f) = ∆(X) ∪∆(Y) ∪ {(a, f(a))|a ∈ A}

∪{(f(a), a)|a ∈ A} ∪ {(a1, a2) ∈ A× A|f(a1) = f(a2)}

is the smallest equivalence relation on XqY such that each a ∈ A is equivalent to f(a) ∈ Y .

If the definable quotient of X q Y by E(f) exists (the quotient exists if E(f) is definably

proper over X), we denote it by X qf Y .

16

Definition 6. A completion of a definable set S ⊂ Rm is a pair (h, Sj) consisting of a

closed and bounded definable set S∗ ⊂ Rn (for some n) and a definable map h : S → S∗ such

that h is a homeomorphism from S onto h(S) and h(S) is dense in S∗.

Informally we say h : S → S∗ is a completion of S. Note that completions for a definable

set always exist and they are not necessarily unique.

Definition 7. Given f : S → T , a definable continuous map between definable sets S ⊂ Rm

and T ⊂ Rn, a completion of f : S → T is a triple consisting of a completion i : S → S∗

of S and j : T → T ∗ and a definable continuous map f ∗ : S∗ → T ∗ such that f ∗ ◦ i = j ◦ f .

In other words, we obtain the following commutative diagram, which we call a completion

diagram of f : S → T :

S S∗

T T ∗

i

f f∗

j

As with completions of a set, completion diagrams always exist.

As mentioned before, our algorithm relies on semi-algebraic triangulation to obtain our

desired output. Here we discuss basic simplicial complex definitions necessary for triangula-

tion.

Definition 8. Let a0, . . . , ak ∈ Rn be an affine independent tuple. We say

(a0, . . . , ak) =
{∑

tiai|ti ≥ 0,
∑

ti = 1
}
⊂ Rn

is a k-simplex in Rn. In the case where k = n−1 and a0 = (1, 0, . . . , 0), a1 = (0, 1, 0, . . . , 0),

. . . , an−1 = (0, . . . , 0, 1), we say that (a0, . . . , an−1) is the standard n − 1-simplex in Rn.

The standard n−1 simplex is homeomorphic to an arbitrary n−1 simplex, and any k-simplex

in Rn can be embedded in the standard n− 1 simplex.

A face of (a0, . . . , ak) is any simplex spanned by a nonempty subset of {a0, . . . , ak}.

Definition 9. A simplicial complex K in Rn is a finite collection K of simplicies in Rn

such that for all simplicies σ = (a0, . . . , ak) and τ = (b0, . . . , bl) of K either σ ∩ τ = ∅ or

σ ∩ τ = γ ∈ K.

17

Triangulations can be defined more generally, but for our purposes it is sufficient just to

consider definable triangulations.

Definition 10. Let X ⊂ Rm be a definable set. A triangulation in Rn of X is a pair

(Φ, K) consisting of a complex K in Rn and a definable homeomorphism Φ : X → |K|,

where |K| is the union of the simplices of K in Rn. Without loss of generality, we may

assume that K is a subset of the standard n− 1 simplex.

Consider Φ−1(K) = {Φ−1(σ)|σ ∈ K}, a partition of X. Given a subset A ⊂ X,

(Φ|A,Φ|A(A)) is a triangulation of A in Rn if A is is a union of elements of Φ−1(K).

We finish our preliminary definitions by defining first order formulae in the language of

the reals.

Definition 11. We begin by defining formulae and the set of free variables of those formulae:

• P = 0 and P 6= 0, for P ∈ R[X1, . . . , Xm] are formulae with set free variables

Free(P = 0) = Free(P 6= 0) = {X1, . . . , Xm}.

• If Φ1 and Φ2 are formulae, then Φ1∧Φ2 and Φ1∨Φ2 are formulae with Free(Φ1∨Φ2) =

Free(Φ1 ∧ Φ2) = Free(Φ1) ∪ Free(Φ2)

• If Φ is a formula, then ¬Φ is a formula with Free(¬Φ) = Free(Φ)

• If Φ is a formula and X ∈ Free(Φ), then (∃X)Φ and (∀X)Φ are formulae with

Free((∃X)Φ) = Free((∀X)Φ) = Free(Φ) \ {X}.

A formula is quantifier free if no quantifiers, neither ∃ nor ∀, appear.

The realization of a formula Φ with Free(Φ) = {Y1, . . . , Ym} is the set Reali(Φ) = {y ∈

Rm|Φ(y) is true}.

Two formulae Φ and Ψ such that Free(Φ) = Free(Ψ) are equivalent if Reali(Φ) =

Reali(Ψ).

Definition 12. We say a formula is written in prenex normal form if it is of the form

(Q1X1) · · · (QmXm)Ψ(X1, . . . , Xm, Y1, . . . , Yk),

18

where Qi ∈ {∃,∀} and Ψ is a quantifer free formula. All formulae are equivalent to a formula

written in prenex normal form.

For a more in-depth explanation of formulae and logic, see Introduction to Mathematical

Logic by Elliott Mendelson [22].

With the definitions out of the way, we finish this section by introducing some common

formulae and shorthand that will be used in the presented algorithms.

(1.) Given a formula ΦX , whose realization is a semi-algebraic set X, set

Φ̃cl(X)(Y)← ∀ε > 0∃X(ΦX(X) ∧ ||X − Y ||2 < ε2),

a formula whose realization is the semi-algebraic closure of X. We will let Φcl(X)(Y)

denote an equivalent quantifier free formula describing the semi-algebraic closure of X.

(2.) For each i, set Φ∆i(λ0, . . . , λi) ←
∑
λj = 1 ∧

i∧
j=0

λj > 0 a formula whose realization is

the standard i-simplex.

(3.) Given formulae ΦX and ΦY , whose realizations are semi-algebraic sets X and Y with

X ⊂ Y , let

ΦdX,Y
(Y, t)← ∀X[ΦX(X) ∧ ΦY (Y)

⇒ ||X − Y ||2 ≥ t2] ∧ [∃X ′ΦX(X ′) ∧ ||X ′ − Y ||2 = t2]

be a formula whose realization is the graph of the distance function of all elements in

Y from the set X. We will need this formula written in prenex normal form:

ΦdX,Y
(Y, t) = ∃X ′∀X[ΦX(X) ∧ ΦY (Y)

⇒ ||X − Y ||2 ≥ t2 ∧ ΦX(X ′) ∧ ||X ′ − Y ||2 = t2].

19

(4.) Throughout we use the following convention: Given a formula in prenex normal form

ΦX(X), we let MX(X,Z1, . . . , Zn) denote the quantifier free portion of the formula

ΦX , where Z1, . . . , Zn are the quantified variables of ΦX . In other words,

ΦX(X) = Q1Z1, . . . , QnZnMX(X,Z1, . . . , Zn),

where Qi ∈ {∃,∀}.

In our algorithm, we use several well known algorithms in algorithmic algebraic geometry.

We describe effective quantifier elimination and semi-algebraic triangulation below. The

complexity of quantifier elimination is doubly exponential in terms of the number of quantifier

alternations in the formula. However, if the number of alternations is fixed, the complexity

becomes singly exponential. Semi-algebraic triangulation is doubly exponential in terms of

the input variables. Algorithmic algebraic geometry relies heavily on these two algorithms,

so in general one expects algorithms of these complexity. The most efficient method of

performing semi-algebraic triangulation requires a cylindrical decomposition of the input

formula. Cylindrical Decomposition is intrinsically doubly exponential in the number of

variables, so one could not expect better from triangulation. It is an open problem of

considerable interest to obtain an algorithm to triangulate a space in singly exponential

time.

2.1.1 Effective Quantifier Elimination

Given a formula Φ, an important question to ask is whether or not we obtain a quantifier

free formula Ψ that is equivalent to Φ. We then want to know, if such a Ψ exists, is there

an algorithmic way to determine Ψ. If Φ is equivalent to a quantifier free formula, we say

that the realization of Φ is a constructible set. In complete generality, not every formula is

constructible. However the theory of real closed fields admits quantifier elimination in the

language of ordered fields as shown below:

Theorem 6. [15 , Theorem 2.77] Let Φ(Y) be a formula in the language of ordered fields

with coefficients in an ordered ring D contained in the real closed field R. Then there is a

20

quantifier free formula Ψ(Y) with coefficients in D such that for every y ∈ Rk, the formula

Φ(y) is true if and only if the formula Ψ(y) is true.

In particular, this theorem shows that every formula defined in terms of polynomial

equalities and inequalities with coefficients in R is equivalent to a quantifier free formula.

The next challenge is to obtain an algorithm which produces a quantifier free formula given

a quantified formula. This method is described in Algorithm 14.5 of [15]. The result is

described in the following theorem.

Theorem 7. [15 , Theorem 14.16] Let P be a set of at most k polynomials each of degree

at most d in n + m variables with coefficients in a real closed field R, and let Π denote

a partition of the list of variables (X1, . . . , Xn) into blocks, X[1], . . . , X[ω], where each block

X[i] has size ni for 1 ≤ i ≤ ω. Given Φ(Y), a (P ,Π)-formula, there exists a quantifier free

formula

Ψ(Y) =
I∨

i=1

Ji∧
j=1

Ki,j∨
k=1

sign(Pijk(Y)) = σijk


where Pijk(Y) are polynomials in the variables Y , σijk ∈ {0, 1,−1},

I ≤ s(nω+1)···(n1+1)(m+1)dO(nω)···O(n1)O(m),

Ji ≤ s(nω+1)···(n1+1)(m+1)dO(nω)···O(n1),

Kij ≤ dO(nω)···O(n1),

and the degrees of the polynomials Pijk(y) are bounded by dO(nω)···O(n1). Morever, there is an

algorithm to compute Ψ(Y) with complexity

k(nω+1)···(n1+1)(m+1)dO(nω)···O(n1)O(m)

in D, where D is the ring generated by the coefficients of P .

We use this result extensively in the algorithm that proves our main theorem.

21

2.1.2 Semi-Algebraic Triangulation Algorithm

Triangulation is an important topological tool. Triangulating a space is useful because

working with simplicial complexes can be easier than working with a general semi-algebraic

set. There exists an algorithm that will produce a semi-algebraic triangulation from a P-

semi-algebraic set. We see below that the ease that comes from working with a simplicial

complex has a steep computational complexity cost.

Theorem 8. [23 , Theorem 4.5] Let S ⊂ Rm be a closed and bounded semi-algebraic set, and

let S1, . . . , Sk be semi-algebraic subsets of S. There exists a simplicial complex K in Rm and

a semi-algebraic homeomorphism h : |K| → S such that each Sj is the union of images by h

of open simplices of K. Moreover, the vertices of K can be chosen with rational coordinates.

Moreover, if S and each Sj are P-semi-algebraic sets, for some P ⊂ R[X1, . . . , Xm] contain-

ing k polynomials bounded by degree at most d, the the semi-algebraic triangulation (K,h)

can be computed in time (kd)2O(m).

Our main algorithm uses a triangulation, and we rely on triangulation in our algorithm

that extends a semi-algebraic function. Therefore, our algorithm will end up having doubly

exponential complexity.

2.2 Proof of Theorem 1

We prove theorem 1 with an algorithm that follows the proof of theorem 5 . We present

here a brief summary of the steps in the proof of theorem 5 . We reference the corresponding

algorithms that line up with each step.

Proof. The effective steps of the proof of theorem 5 are contained in the General Quotient

Algorithm 2.2.2 unless otherwise noted. We input a space X and equivalence relation E ⊂

X ×X on X that is definably proper. We proceed by induction on the dimension of X. If

dim(X) ≤ 0, then X is finite, and the theorem holds trivially. For dim(X) = d > 0, we

generate a subset of X that has dimension less than d. In the General Quotient Algorithm

2.2.2 , this set, call it X ′, is the realization of the formula ΦX′ , described [here] . Next we define

a formula ΦE′ whose realization is E ′ = E ∩ (X ′ ×X ′). E ′ is definably proper over X ′ and

22

dim(X ′) < d, so we may apply our inductive hypothesis. Algorithmically, this translates to

applying the General Quotient Algorithm 2.2.2 again, [shown here] . We obtain f ′ : X ′ → Y ′

onto a definable set Y ′ with E ′ = Ef ′ . From here we need to construct Y = X/E. We do

this by “gluing” another subset of X, which we call cl(SD) defined [here] , to Y ′ with theorem

10.2.12 in [1] (which in our case is the Second Gluing Quotient Algorithm). The Second

Gluing Quotient Algorithm 2.2.2 relies on both the First Gluing Quotient Algorithm 2.2.2

and the Completion Algorithm 2.2.1 . Both of these rely on the Extension Algorithm 2.2.1 ,

which uses the Semi-Algebraic Path Algorithm 2.2.1 , which in turn relies on the Partition of

Unity Algorithm 2.2.1 . After this chain of algorithms finishes, we will have obtained a space

Y = X/E as a definably proper quotient of c(Sd)q Y ′ via the map p : c(Sd)q Y ′ → Y .

We now have the desired quotient space Y , but obviously the domain of p is not X, so

we need to obtain a new map. The remaining steps of the General Quotient Algorithm 2.2.2

define this new map whose domain is X and we are done, see [here] .

Now that the general direction of the proof has been explained, we can define the algo-

rithms that will construct a quotient space. We build our algorithm from the ground up.

Presenting first the basic algorithms, we build up to the more complex algorithms that rely

on these first results.

2.2.1 Preliminary Algorithms

Partition of Unity Algorithm

In our first algorithm, we input a P-formula ΦB and a family of n P-open-formulae

{ΦUi}n
i=1, describing a semi-algebraic set B and a semi-algebraic open cover {Ui} of B such

that Ui ⊂ B for i = 1, . . . , n. From this we produce a family of formulae Φf1 , . . . ,Φfn , which

describe the graphs of semi-algebraic functions f1, . . . , fn which are a definable partition of

unity for the covering U1, . . . , Un.

Partition of Unity Algorithm

Input(P ⊂ R[X1, . . . , Xm], ΦB a P-formula describing a semi-algebraic set B, a family of P-

open-formulae {ΦUi}n
i=1 describing a family of semi-algebraic subsets {Ui} of B that cover B)

23

Output(Q ⊂ R[X1, . . . , Xm+1], Φf1 , . . . ,Φfn a family of Q-formulae which describe the

graphs of semi-algebraic functions which form a partition of unity for the covering {Ui})

Procedure:

(1) For i = 1 to n do the following:

(a) Set ΦA0 ← ΦB ∧ (¬ΦUi) and ΦA1 ← ΦB ∧ ¬

i−1∨
j=1

ΦVj ∨
n∨

k=i+1
ΦUk

.

(b) Set

Φ̃Vi(X)← ∃X1, X2, t1, t2∀X3, X4(ΦB(X)

∧MdA0,B
(X, t1, X1, X3) ∧MdA1,B

(X, t2, X2, X4) ∧ t2 < t1).

(c) Let Q0 = ∅. Apply theorem 7 with inputs

(P ∪Qi−1 ⊂ R[X1, . . . , Xm, X
′
1, . . . , X

′
4m, t1, t2],

Π = [(X1, . . . , Xm), (X ′
1, . . . , X

′
2m, t1, t2), (X ′

2m+1, . . . , X
′
4m)], Φ̃Vi)

to obtain a set of polynomials Qi ⊂ R[X1, . . . , Xm] and an equivalent quantifier free

Qi-formula ΦVi .

(d) Set ΦV C
i

(X)← ΦB(X) ∧ (¬ΦVi(X)).

(e) Set

Φ̃gi(X, t)← ∃X1, X2, ∃t′ > 1,∀X3, X4

[(t ≤ 1 ∧Md
V C

i ,B
(X, t,X1, X2)) ∨ (t = 1 ∧Md

V C
i ,B

(X, t′, X2, X4))].

(f) Apply theorem 7 with inputs

(P ∪Qi ⊂ R[X1, . . . , Xm+1, X
′
1, . . . , X

′
4m, t

′],

Π = [(X1, . . . , Xm+1), (X ′
1, X

′
2m, t

′), (X ′
2m+1, . . . , X

′
4m)], Φ̃gi)

to obtain a set of polynomials Q′
i ⊂ R[X1, . . . , Xm+1] and an equivalent quantifier

free Q′
i-formula Φgi .

24

(2) Set Q′ =
n⋃

i=1
Q′

i.

(3) For i = 1 to n, set

Φ̃fi(X, t)← ∃t1, . . . , tn

 n∧
j=1

Φgj(X, tj) ∧ t ·
∑

j
tj

 = ti

 .

(4) For i = 1 to n, apply theorem 7 with inputs

(Q′ ⊂ R[X1, . . . , Xm+1, t1, . . . , tn],Π = [(X1, . . . , Xm+1), (t1, . . . , tn)], Φ̃fi)

to obtain a set of polynomials Ti ⊂ R[X1, . . . , Xm+1] and an equivalent quantifier free

Ti-formula Φfi .

(5) Let Q =
n⋃

i=1
Ti ⊂ R[X1, . . . , Xm+1].

(6) return(Q,Φf1 , . . . ,Φfn).

Complexity Analysis for Partition of Unity Algorithm:

We input a family of k polynomials P ⊂ R[X1, . . . , Xm] of degree at most d. In addition,

we input a family of n P-formulae.

(1) In step (1) we loop from i = 1 to n to obtain formulae ΦVi and Φgi . Each iteration

applies theorem 7 twice, returning two sets of polynomials Qi and Q′
i. Each formula

and set of polynomials depends on the iteration prior, so we estabilish a reccurence

relation. Let qi = |Qi| and q′
i = |Q′

i|. Let di and d′
i bound the degrees of the polynomials

of Qi and Q′
i, respectively. From the complexity analysis in [15] of Algorithm 14.5,

qi(k, d) ∼ [qi−1(k, d)di−1(k, d)]m
O(c) . Similarly di(k, d) = di−1(k, d)mO(c) . From here, we

must solve the reccurence relation. Noting the initial condition q1(k, d) = (kd)mO(c) and

d1(k, d) = dmO(c) , we have that qi(k, d) = (kd)mO(ci) and di(k, d) = dmO(ci) . With this, we

see that q′
i(k, d) = (qi(k, d)di(k, d))(m+1)O(c) = (kd)mO(ci) and d′

i(k, d) = di(k, d)(m+1)O(c) =

dmO(ci) . The computational complexity of step (1) of the algorithm is (kd)O(mn).

(2) In step (4), we apply theorem 7 n times. Each application inputs the set of polynomials

Q′ ⊂ R[X1, . . . , Xm+1] and contains on the order of q′
n(k, d) = (kd)mO(cn) polynomials

25

whose degrees are bounded by d′
i(k, d) = dmO(cn) . Applying quantifier elimination has

complexity (kd)mO(cn) and returns a set of polynomials in m+1 variables of size (kd)mO(cn)

whose degrees are bounded by dmO(cn) .

(3) The total complexity of the algorithm is dominated by the final step, which occurs n

times, and so is

(kd)mO(n)
.

Proof of Correctness for Partition of Unity Algorithm: The correctness follows

from Lemma 6.3.7 of [1] and from the correctness of Algorithm 14.5 from [15].

Semi-Algebraic Path Algorithm

In the next algorithm, we present a way to generate a “path” between semi-algebraic

sets. In other words, we input a P-formula ΦB, representing a semi-algebraic set B, and

two P-closed-formulae ΦA0 and ΦA1 representing disjoint closed semi-algebraic subsets A0

and A1 of B. The algorithm produces a formula Φf , representing the graph of a continuous

semi-algebraic function f : B → [0, 1] such that f−1(0) = A0 and f−1(1) = A1. In other

words we produce a semi-algebraic path that starts at A0 and ends at A1.

Semi-Algebraic Path Algorithm

Input(P ⊂ R[X1, . . . , Xm], ΦB a P-formula describing a semi-algebraic set B, P-closed-

formulae ΦA0 and ΦA1 describing disjoint closed semi-algebraic sets A0, A1 ⊂ B)

Output(Q ⊂ R[X1, . . . , Xm+1], Φf a Q-formula representing the graph of a semi-algebraic

map f from B to the interval [0, 1] with the property that f−1(0) = A0 and f−1(1) = A1)

Procedure:

(1) Set

Φ̃U0(X)← ∃t, t′, X0, X1∀X ′
0, X

′
1(ΦB(X)

∧MdA0,B
(X, t,X0, X

′
0) ∧MdA1,B

(X, t′, X1, X
′
1) ∧ t < t′).

26

(2) Set

Φ̃U1(X)← ∃t, t′, X0, X1∀X ′
0, X

′
1(ΦB(X)

∧MdA0,B
(X, t,X0, X

′
0) ∧MdA1,B

(X, t′, X1, X
′
1) ∧ t′ < t).

(3) Apply theorem 7 with inputs

(P ⊂ R[X1, . . . , Xm, X
′
1, . . . , X

′
4m, t1, t2],

Π = [(X1, . . . , Xm), (X ′
1, . . . , X

′
2m, t1, t2), (X ′

2m+1, . . . , X
′
4m)], Φ̃U0)

and

(P ⊂ R[X1, . . . , Xm, X
′
1, . . . , X

′
4m, t1, t2],

Π = [(X1, . . . , Xm), (X ′
1, . . . , X

′
2m, t1, t2), (X ′

2m+1, . . . , X
′
4m)], Φ̃U1)

to obtain sets of polynomials Q1 and Q2 and an equivalent quantifier free Q1-formula

ΦU0 and an equivalent quantifier free Q2-formula ΦU1 , respectively. Let Q′ = Q1 ∪Q2 ⊂

R[X1, . . . , Xm].

(4) Apply the Partition of Unity Algorithm 2.2.1 with inputs

(P ∪Q′,ΦB, {ΦUi}1
i=0,ΦB ∧ ¬(ΦA0 ∨ ΦA1))

to obtain a set of polynomials Q3 ⊂ R[X1, . . . , Xm+1] and Q3-formulae Φf0 ,Φf1 ,Φf2 .

(5) Set

Φ̃f (X, t)← ∃t1, t2, t3, t4, t5, Y1, Y2∀Y ′
1 , Y

′
2

(Φf0(X, t1) ∧MdA0,B
(X, t2, Y1, Y

′
1) ∧ Φf1(X, t3)

∧MdA1,B
(X, t4 −

1
2 , Y2, Y

′
2) ∧ Φf2(X, t5) ∧ t = t1t2 + t3t4 + 1

2t5).

(6) Apply theorem 7 with inputs

(P ∪Q3 ⊂ R[X1, . . . , Xm+1, X
′
1, . . . , X

′
4m, t1, t2, t3, t4, t5],

27

Π = [(X1, . . . , Xm+1), (X ′
1, . . . , X

′
2m, t1, t2, t3, t4, t5),

(X ′
2m+1, . . . , X

′
4m)], Φ̃f)

to obtain a set of polynomials Q ⊂ R[X1, . . . , Xm+1] and an equivalent quantifier free

Q-formula Φf .

(7) return(Q, Φf).

Complexity Analysis for Semi-Algebraic Path Algorithm:

We input a family of k polynomials P ⊂ R[X1, . . . , Xm] of degree at most d.

(1) In step (3) we apply quantifier elimination (theorem 7) to Φ̃U0 and Φ̃U1 . In each case,

the complexity is on the order (kd)mO(c) . Let Q1 and Q2 be the two sets of polynomials

returned. Set Q′ = Q1 ∪Q2 ⊂ R[X1, . . . , Xm] containing at most (kd)mO(c) polynomials

whose degrees are bounded by dmO(c) .

(2) In step (4) we apply the Partition of Unity Algorithm 2.2.1 with n = 3 and set of

polynomials P ∪ Q′. This has complexity (kd)mO(c) . This returns a set of polynomials

Q′′ ⊂ R[X1, . . . , Xm] of size (kd)mO(c) with degrees bounded by dmO(c) .

(3) In step (6) we apply quantifier elimination to Φ̃f . This step in the algorithm has com-

plexity (3kd)mO(c) , returning a set of polynomials Q ⊂ R[X1, . . . , Xm] of size (kd)mO(c)

whose degrees are bounded by dmO(c) .

(4) Therefore the total complexity of the algorithm is

(kd)mO(c)
.

Proof of Correctness of Semi-Algebraic Path Algorithm: The correctness of this

algorithm follows from the proof of Lemma 6.3.8 in [1], and from the correctness of Algorithm

14.5 in [15] and the correctness of the Partition of Unity Algorithm 2.2.1 .

28

Extension Algorithm

From here, we use the preceding algorithm to help implement an algorithm that will

extend a semi-algebraic function f . In this case, we input three sets of polynomials P1,P2,

and P3. We input P1-formulae ΦX and ΦA, representing a semi-algebraic set X and a

closed subset A, and a P2-formula Φϕ, representing the graph of a semi-algebraic contraction

ϕ : B(n) → {0}, and a P3-formula Φf , representing the graph of a semi-algebraic function

f : A → Y , where Y is a space that we never need to directly reference so its formula is

not needed as an input. The formula for Y can of course be obtained by projecting onto the

last coordinates of Φf , if needed. We output a formula Φf ′ , which represents the graph of a

semi-algebraic map f ′ : X → Y such that f ′|A = f .

This algorithm is more complicated (in the colloquial sense of the word) than the previous

two algorithms, so we preface it with some explanation. We first present the three results

from [1] that we are making a effective. We then provide a brief summary of the proofs,

linking to the appropriate corresponding lines in the algorithm.

We also will need a few more definitions to describe objects utilized in this algorithm.

Definition 13. Let K be a simplicial complex. Given a definable set A ⊂ |K|. We define the

star of A in K, denoted stK(A) to be the union of all simplices σ ∈ K such that σ ∩A 6= ∅.

Definition 14. Let K be a complex.

For σ = (a0, . . . , am) ∈ K, the barycenter of σ is the point

b(σ) = 1
m+ 1(a0 + · · ·+ am)

A K-flag is a sequence

F : σ0 < σ1 < · · · < σm

of simplices of K such that each σi is a proper face of σj whenever i < j.

To each K-flag F we associate an f -simplex b(F) := (b(σ0), . . . , b(σm)) whose vertices are

the barycenters of the simplices of F. If F1 and F2 are distinct flags, then b(F1) and b(F2 are

29

disjoint. The (first) barycentric subdivision of K is the complex K ′ whose simplices are the

simplices b(F) for each K-flag.

Theorem 9 (Theorem 8.3.3 [1]). Let K be a complex and L a subcomplex of K, closed in

K. Let K ′ denote the first barycentric subdivision of K. Then there is a definable retraction

r : stK′(|L|)→ |L| such that for each x ∈ stK′(|L|)− |L| the open line interval (x, r(x)) lies

entirely in the simplex of K ′ that contains the point x.

Theorem 10 (Theorem 8.3.9 [1]). Let A be a definable closed subset of the definable set

B ⊂ Rm. Then there are a definable open subset U of B containing A, and a definable

retraction r : cl(U) ∩B → A.

Theorem 11 (Theorem 8.3.10 [1]). Let A be a definable closed subset of the definable set

B ⊂ Rm, for some m. Let f : A → C be a definable continuous map into a definable set

C ⊂ Rn, for some n, that is definably contractible to a point c ∈ C. Then f can be extended

into a definable continuous function f̃ : B → C.

We begin by triangulating A and B into simplicial complexes L and K, respectively, in

[line 1] . In this algorithm we will need the spaces K ′ (the first barycentric subdivision of K)

and its simplices, and stK′(|L|), which we define in [line 2] . We also need to define several

functions. First, for each vertex e ∈ Vert(K), we define λe : |K| → [0, 1] as follows: for

x ∈ (e0, . . . , ek), where (e0, . . . , ek) a k-simplex of K set

λe(x) =

 0 e /∈ {e0, . . . , ek}

λi e = e1

,

where λi is the i-th barycentric coordinate of x. Now if {b(σ)|σ ∈ K} is the set of vertices

of K ′, we similarly define λb(σ) : |K ′| → [0, 1]. For convenience, we denote this as λσ for σ

a simplex of K. Next for each σ a simplex of K, we define a function ωσ : |K| → [0, 1] as

follows: ωσ(x) =

 1 σ ∈ L

0 σ ∈ K − L
. We now define for each σ a simplex of K the function

µσ : |K| → [0, 1] given by µσ(x) = ωσ(x)λσ(x), we define µσ (indirectly defining ωσ and

λσ) in [line 6] . It is important to note here that µσ is both definable and continuous. Now

30

we are ready to define the retraction promised by theorem 9 : let r(x) : stK′(|L|) → |L|

by r(x) =

∑
σ⊂cl(K)
σsimplex

µσ(x) · b(σ)∑
σ⊂cl(K)
σ simplex

µσ(x) which we define in [line 8] . This retraction has all the

properties stated in the conclusion of theorem 9 . We can use theorem 6.3.5 applied to L and

K − stK′(L) to obtain a definable U open in K containing L such that cl(U)∩K ⊂ stK′(L),

see [lines 10-13] . To finish the proof of theorem 10 , we restrict the retraction function from

above to cl(U) ∩ K, [line 14] . To obtain the function from theorem 11 we take the U and

r that we found and begin by defining a function λ : B → [0, 1] such that λ−1(0) = A and

λ−1(1) = B − U . The space C is contractible, so let φ denote a contraction. We define

f̃ : B → C by

f̃(x) =

 φ(f(r(x)), λ(x)) x ∈ cl(U) ∩B

c x ∈ B − U

[line 15]

Extension Algorithm

Input(P1 ⊂ R[X1, . . . , Xm], ΦX a P1-formula representing a space X, ΦA a P1 -closed-

formula representing a closed subset A of X, P2 ⊂ R[X1, . . . , X2m+1], Φϕ a P2-formula

representing the graph of a semi-algebraic contraction ϕ, P3 ⊂ R[X1, . . . , X2m], Φf a P3-

formula representing the graph of a semi-algebraic map f from A to a set Y)

Output(Q ⊂ R[X1, . . . , X2m], Φf ′ a Q-formula representing the graph of a semi-algebraic

map f ′ from X to Y which extends f)

Procedure:

(1) Apply theorem 8 (semi-algebraic triangulation) with inputs (P1,ΦX ,ΦA) to obtain a

triangulation (h,K) of X compatible with A. Let L = h|A(A). We obtain sets of

polynomials Qσ and Qσ-formulae ΦK,σ, for each simplex σ of K.

By restricting to A, we also obtain formulae ΦL,σ for each σ ∈ L. Let Q1 =
⋃
σ

Qσ ⊂

R[X1, . . . , X2m+1].

31

(2) Given σ = (v0, . . . , vp), let b(σ) = 1
p+1(v0 + · · ·+ vp). For τ = (r0, . . . , rq) ∈ K ′, the first

barycentric subdivision of K, with dim(τ) = q, set

Φ̃K′,τ (s0, . . . , sq, X) = ∃t0, . . . , tm

m∨
jq=q

∨
σ0⊂···⊂σq∈K
σi=(u0,...,uji)
uk∈Vert(K)
j0≤j1≤···≤jq

ΦK,σq(t0, . . . , tjq , X)∧

q∧
i=0
ri = b(σi) ∧ s0r0 + · · ·+ sqrq = t0u0 + · · ·+ tjqujq

Similarly for τ = (r0, . . . , rq) ∈ L′, the first barycentric subdivision of L, with dim(τ) = q,

set

Φ̃L′,τ (s0, . . . , sq, X) = ∃t0, . . . , tm
m∨

jq=q

∨
σ0⊂···⊂σq∈L
σi=(u0,...,uji)
uk∈Vert(L)
j0≤j1≤···≤jq

ΦL,σq(t0, . . . , tjq , X)∧

q∧
i=0
ri = b(σi) ∧ s0r0 + · · ·+ sqrq = t0u0 + · · ·+ tjqujq .

(3) Apply theorem 7 for each σ ∈ K ′ and each σ ∈ L′ with inputs:

(
Q1 ⊂ R[X1, . . . , X2m+1, X

′
1, . . . , X

′
m+1],

Π = [(X1, . . . , X2m+1), (X ′
1, . . . , X

′
m+1)], Φ̃K′,σ

)
and (

Q1 ⊂ R[X1, . . . , X2m+1, X
′
1, . . . , X

′
m+1],

Π = [(X1, . . . , X2m+1), (X ′
1, . . . , X

′
m+1)], Φ̃L′,σ

)
to obtain several sets of polynomials. Let Q2 denote the union of all sets of polyno-

mials obtained for each simplex of K ′, and Q3 for each simplex in L′. Then Q2,Q3 ⊂

32

R[X1, . . . , X2m+1] and for each σ ∈ K ′ we obtain equivalent quantifier free Q2-formulae

ΦK′,σ. Similarly for each σ ∈ L′, we obtain equivalent quantifer free Q3-formulae ΦL′,σ.

(4) Set

Φ̃stK′ (L)(X)← ∃t0, . . . tm, s0, . . . , sm, w0, . . . , wm, Y

m∨
i=0

∨
σ∈K′

dim(σ)=i

ΦK′,σ(t0, . . . , ti, X)

∧
i−1∨
j=0

∨
σ′<σ

dim(σ′)=j

ΦK′,σ′(s0, . . . , sj, Y)

∧
m∨

k=0

∨
γ∈L

dim(γ)=k

ΦL,γ(w0, . . . , wk, Y).

(5) Apply theorem 7 with inputs

(
Q1 ∪Q2 ⊂ R[X1, . . . , Xm, X

′
1, . . . , X

′
4m+3],

Π = [(X1, . . . , Xm), (X ′
1, . . . , X

′
4m+3)], Φ̃stK′ (L)

)
to obtain a set of polynomials Q4 ⊂ R[X1, . . . , Xm] and an equivalent quantifier free

Q4-formula ΦstK′ (L).

(6) For σ ∈ K − L, set Φµσ,K,L
(X, t) = (t = 0).

For σ = (v0, . . . , vp) ∈ L, set

Φµσ,K,L
(X, t) = ∃t0, . . . , tm

m∨
i=0

∨
σ′∈L′

dim(σ′)=i
σ′=(v′

0,...,v′
i)

ΦL′,σ′(t0, . . . , ti, X)

∧

 i∨
j=0

v′
j = 1

p+ 1(v0 + · · ·+ vp) ∧ t = tj

 ∨ t = 0
 .

33

(7) For σ ∈ L, apply theorem 7 with inputs

(Q3 ⊂ R[X1, . . . , X2m+1, X,1 , . . . , X
′
m+1],

Π = [(X1, . . . , Xm(m+1)), (X ′
1, . . . , X

′
m+1)], Φ̃µσ,K,L

)

to obtain a set of polynomials Q5 ⊂ R[X1, . . . , Xm+1] and equivalent quantifier free

Q5-formulae Φµσ,K,L
.

(8) As before, given σ = (v0, . . . , vp), let b(σ) = 1
p+1(v0 + · · ·+ vp). We set

Φ̃r′(X,Y)← ∃t0, . . . tm, s0, . . . , sm

m∨
i=0

 ∨
τ∈K′

dim(τ)=i

ΦK′,τ (s0, . . . , si, X)∧

i∧
j=0

∧
σj∈K

b(σj)∈τ

Φµσj,K,L
(X, tj) ∧ Y ·

∑
tj =

∑
(tj · b(σj))

 .

(9) Apply theorem 7 with inputs

(
Q5 ⊂ R[X1, . . . , Xm+1, X

′
1, . . . , X

′
2m+2],

Π = [(X1, . . . , Xm+1), (X ′
1, . . . , X

′
2m+2)], Φ̃r′(X,Y)

)
to obtain a set of polynomials Q6 ⊂ R[X1, . . . , X2m] and an equivalent quantifier free

Q6-formula Φr′(X,Y).

(10) Set ΦK−stK′ (L)(X)← ΦK(X) ∧ ¬ΦstK′ (L)(X).

(11) Set

Φ̃U(X)← ∃t0, . . . , tm, s, s′, X ′
1, Y

′
1∀X ′

2, Y
′

2

m∨
i=0

∨
σ∈K

dim(σ)=i

ΦK,σ(t0, . . . , ti, X) ∧MdK−stK′ (L),X
(X, s,X ′

1, X
′
2)

∧MdA,X
(X, t′, Y ′

1 , Y
′

2) ∧ (t′ < t).

34

(12) Apply theorem 7 with inputs

(P1 ∪Q1 ∪Q4 ⊂ R[X1, . . . , Xm, X
′
1, . . . , X

′
4m, t, t

′],

Π = [(X1, . . . , Xm), (X ′
1, . . . , X

′
2m, t, t

′), (X ′
2m+1, . . . , X

′
4m)], Φ̃U

)
to obtain a set of polynomials Q7 ⊂ R[X1, . . . , Xm] and an equivalent quantifier free

Q7-formula ΦU .

(13) Apply the Semi-Algebraic Path Algorithm 2.2.1 with inputs

(P1 ∪Q7,ΦX ,ΦA,ΦX ∧ (¬ΦU))

to obtain a set of polynomials Q8 ⊂ R[X1, . . . , Xm+1] and a Q8-formula Φg(X, t) repre-

senting the graph of a semi-algebraic map from X to [0, 1].

(14) Set

Φr(X,Y)← ∀ε > 0∃X ′(Φr′(X,Y) ∧Mcl(U)(X, ε,X ′) ∧ ΦX(X)).

(15) Set

Φ̃f ′(X,Y)← ∃Z1, Z2, t∀ε > 0∃X ′

[(Mr(X,Z1, ε,X
′) ∧ Φg(X, t) ∧ Φf (Z1, Z2) ∧ Φϕ(Z2, t, Y))

∨(ΦX(X) ∧ ¬ΦU(X) ∧ Y = 0)].

(16) Apply theorem 7 with inputs

(P1 ∪ P2 ∪ P3 ∪Q6 ∪Q7 ∪Q8 ⊂ R[X1, . . . , X2m, X
′
1, . . . , X

′
3m, t, ε],

Π = [(X1, . . . , X2m), (X ′
1, . . . , X

′
2m, t), (ε), (X ′

2m+1, . . . , X
′
3m)], Φ̃f ′

)
to obtain a set of polynomials Q9 ⊂ R[X1, . . . , X2m] and an equivalent quantifier free

Q9-formula Φf ′ .

35

(17) return(Q9, Φf ′(X,Y)).

Complexity Analysis for Extension Algorithm: We input three families of polyno-

mials: P1 ⊂ R[X1, . . . , Xm] of size k1 whose degrees are bounded by d1, P2 ⊂ R[X1, . . . , X2m+1]

of size k2 whose degrees are bounded by d2, and P3 ⊂ R[X1, . . . , X2m] of size k3 whose degrees

are bounded by d3.

(1) In step (1) we apply the triangulation algorithm, theorem 8 , once. This has complexity

(k1d1)2O(m) . From this, we obtain a set of polynomials Q1 ⊂ R[X1, . . . , Xm] of size

(k1d1)2O(m) whose degrees are bounded by d2O(m)
1 .

(2) In step (3) we apply quantifier elimination to Φ̃K′,τ and Φ̃L′,τ for each τ ∈ K and L,

respectively. Each application has complexity (k1d1)2O(m)mO(c) . The number of simplices

of K is bounded above by (k1d1)2O(m) . Each simplex of K and L, contributes up to

mO(m) simplices to K ′ and L′. There fore K ′ and L′ contain at most (k1d1)2O(m)
mO(m)

simplices. Since we apply quantifier elimination for each simplex of K ′ and L′, this step

has complexity

mO(m)(k1d1)2O(m)
.

Let Q2,Q3 ⊂ R[X1, . . . , X2m+1] denote the unions of the polynomials obtained from

each τ ∈ K ′ and L′, respectively. Therefore Q2 and Q3 contain at most

mO(m)(k1d1)2O(m) polynomials with degrees bounded by (d1)2O(m) .

(3) In step (5) we apply quantifier elimination to Φ̃stK′ (L). This has complexity

(mk1d1)2O(m)
.

We return a set of polynomials Q4 ⊂ R[X1, . . . , Xm] of size

(mk1d1)2O(m) whose degrees are bounded by (d1)2O(m) .

(4) In step (7), we apply quantifier elimination for each σ ∈ L. For each iteration, this has

complexity (mk1d1)2O(m) . The number of simplices in L is bounded above by the number

36

of simplices in K, so we perform this step at most (k1d1)2O(m) times. Hence the total

complexity of this step is

(mk1d1)2O(m)
.

Each iteration returns a set of polynomials. Let Q5 ⊂ R[X1, . . . , Xm+1] denote the union

of these polynomials. Then Q5 contains at most (mk1d1)2O(m) polynomials of degree at

most (d1)2O(m) .

(5) In step (9) we apply quantifier elimination to Φ̃r′ . This has complexity

(mk1d1)2O(m)
.

We obtain a set of polynomials Q6 ⊂ R[X1, . . . , X2m] containing at most

(mk1d1)2O(m)mO(c) polynomials whose degrees are bounded by (d1)2O(m) .

(6) In step (12) we apply quantifier elimination to Φ̃U . This has complexity

(mk1d1)2O(m) and returns a set of polynomials Q7 ⊂ R[X1, . . . , Xm] containing at most

(k1d1)2O(m) polynomials whose degrees are bounded by (d1)2O(m) .

(7) In step (13), we apply the Semi-Algebraic Path Algorithm 2.2.1 with P1 ∪ Q7 as the

set of polynomials. This has complexity (mk1d1)2O(m) and returns a set of polynomials

Q8 ⊂ R[X1, . . . , Xm+1] containing at most (mk1d1)2O(m) polynomials whose degrees are

bounded by (d1)2O(m) .

(8) In step (16) we apply quantifier elimination to Φ̃f ′ . This has complexity

(
(k2)mO(c) + (k3)mO(c) + (mk1d1)2O(m)) (

dmO(c)

2 + dmO(c)

3 + d2O(m)

1

)
.

It returns a set of polynomials Q9 ⊂ R[X1, . . . , X2m] containing at most

(
(k2)mO(c) + (k3)mO(c) + (mk1d1)2O(m)) (

dmO(c)

2 + dmO(c)

3 + d2O(m)

1

)
.

polynomials whose degrees are bounded by
(
dmO(c)

2 + dmO(c)
3 + d2O(m)

1

)
.

37

(9) The last step dominates the complexity of the other steps, so the total complexity of

Algorithm 8.3 is bounded above by

(
(k2)mO(c) + (k3)mO(c) + (mk1d1)2O(m)) (

dmO(c)

2 + dmO(c)

3 + d2O(m)

1

)

Proof of Correctness of Extension Algorithm: The correctness of the algorithm

follows from the proofs of Proposition 8.3.3, Corollary 8.3.9, and Corollary 8.3.10 in [1],

and from the correctness of Algorithm 14.5 [15], the triangulation algorithm, and the Semi-

Algebraic Path Algorithm.

Completion Algorithm

From here, the next step is to create a specific completion diagram for a given function.

We input two sets of polynomials P1 and P2. We input three P1-formulae, ΦX ,ΦA, and

ΦY , representing semi-algebraic sets X,A, and Y , respectively, such that A ⊂ X and Y

is bounded. We input a single P2-formula, Φf , representing the graph of a semi-algebraic

map f : A → Y . Because Y is bounded, j : Y → cl(Y) is a completion of Y . Using this

completion, we are able to obtain a completion diagram of f :

A A′

Y cl(Y)

f

i

f ′

j

These sets are outputted by our algorithm as formulae Φf ′ and ΦA′ , representing the graph of

f ′ and the semi-algebraic set A′, respectively. We will generate a formula ΦX′ , representing

X ′ the image of completion of X, that we will need in the next algorithm.

Completion Algorithm

Input(P1 ⊂ R[X1, . . . , Xm], ΦX a P1-formula describing a semi-algebraic set X, ΦA a P1-

closed-formula describing a semi-algebraic subset A of X, ΦY a P1 bounded formula describ-

ing a semi-algebraic set Y , P2 ⊂ R[X1, . . . , X2m], Φf a P2-formula representing the graph of

a semi-algebraic map from A to Y)

38

Output(Q ⊂ R[X1, . . . , X2m] , ΦX′ a Q-formula describing a completion X ′ of X, ΦA′ a

Q-formula describing a completion A′ of A, Q′ ⊂ R[X1, . . . , X3m], Φf ′ a Q′-formula describ-

ing a map from A′ to cl(Y))

Procedure:

(1) For any r, set ΦB(r)(X)← ||X||2 ≤ r2.

(2) Apply Algorithm 14.3 from [15] with input

(P1 ⊂ R[X1, . . . , Xm, X
′
1, . . . , X

′
2m, ε],

Π = [(X1, . . . , Xm), (X ′
1, . . . , X

′
m), (ε), (X ′

m+1, . . . , X
′
2m)],

∀Y ∃ε > 0∀X(ΦY (X) ∧ ||X − Y ||2 < ε2 → ΦB(r)(Y))
)

for increasing values of r = 1, 2, . . . until the algorithm returns true. Set n equal to the

first value that returns true.

(3) Set Φϕ(X, t, Y)← ΦB(n)(X) ∧ 0 ≤ t ≤ 1 ∧ [Y = X · (1− t)], representing the graph of a

semi-algebraic contraction from B(n) to {0}.

(4) Apply the Extension Algorithm 2.2.1 with inputs

(P1,ΦX ,ΦA,P1(X) ∪ P1(Y) ⊂ R[X1, . . . , Xm, t, Y1, . . . , Ym],Φϕ,P2,Φf)

to obtain a set of polynomials Q1 ⊂ R[X1, . . . , X2m] and a Q1-formula Φf∗ representing

the graph of a semi-algebraic map from X to B(n).

(5) Set Φµ(X1, . . . , Xm, Y1, . . . , Ym)←
m∧

i=1

(
(2XiYi + 1)2 = 1 + 4X2

i

)
, a formula representing

the graph of a semi-algebraic homeomorphism from Rm → (−1, 1)m.

(6) Set

Φ̃X′((X,Y))← ∀ε > 0∃A,B,C

(ΦX(A) ∧ ΦB(n)(Y) ∧ Φµ(A,B) ∧ Φf∗(A,C) ∧ ||(B,C)− (X,Y)||2 < ε2).

39

(7) Apply theorem 7 with inputs

(Q1 ∪ P1 ⊂ R[X1, . . . , X2m, X
′
1, . . . , X

′
3mε],

Π = [(X1, . . . , X2m), (X ′
1, . . . , X

′
3m), (ε)], Φ̃X′)

to obtain a set of polynomials Q2 ⊂ R[X1, . . . , X2m] and an equivalent quantifier free

Q2-formula ΦX′ .

(8) Set Φf ′′((X,Y), Z)← (ΦX′((X,Y)) ∧X = Z).

(9) Set Φh(X, (Y, Z))← Φµ(X,Y) ∧ Φf∗(X,Z) ∧ ΦX(X) ∧ ΦB(n)(Z).

(10) Set

Φ̃A′(Y)← ∀ε > 0∃Z1, Z2(ΦA(Z1) ∧ Φh(Z1, Z2) ∧ ||Y −X2||2 < ε2 ∧ ΦX′(Y)).

(11) Apply theorem 7 with inputs

(P1 ∪Q1 ∪Q2 ⊂ R[X1, . . . , X2m, ε,X
′
1, . . . , X

′
2m],

Π = [(X1, . . . , X2m), (ε), (X ′
1, . . . , X

′
2m)], Φ̃A′)

to obtain a set of polynomials Q3 ⊂ R[X1, . . . , X2m] and an equivalent quantifier free

Q3-formula ΦA′ .

(12) Set Φf ′(X,Y)← ΦA′(X) ∧ Φf ′′(X,Y).

(13) Set Φ̃Xnew((X,Y))← ∃A(ΦX(A) ∧ Φµ(A,X) ∧ Φf∗(A, Y)).

(14) Apply theorem 7 with inputs

(Q1 ⊂ R[X1, . . . , X2m, X
′
1, . . . , X

′
m],

Π = [(X1, . . . , X2m), (X ′
1, . . . , Xm)], Φ̃Xnew)

40

to obtain a set of polynomials Q4 ⊂ R[X1, . . . , X2m] and an equivalent quantifier free

Q4-formula ΦXnew .

(15) return(Q2 ∪Q3 ∪Q4,ΦXnew ,ΦX′ ,ΦA′ ,Q2(X) ∪Q3(Y) ⊂ R[X1, . . . , X3m],Φf ′).

Complexity Analysis for Completion Algorithm: We input two families of poly-

nomials: P1 ⊂ R[X1, . . . , Xm] of size k1 whose degrees are bounded by d1, and P2 ⊂

R[X1, . . . , X2m] of size k2 whose degrees are bounded by d2.

(1) In step (2) we apply a general decision algorithm n times. This has complexity on the

order of n(k1d1)mO(c) .

(2) In step (4) we apply the Extension Algorithm 2.2.1 . This step has complexity

(
(k2)mO(c) + (mk1d1)2O(m)) (

dmO(c)

2 + d2O(m)

1

)
.

This returns a set of polynomials Q1 ⊂ R[X1, . . . , X2m] containing at most(
(k2)mO(c) + (mk1d1)2O(m)

) (
dmO(c)

2 + d2O(m)
1

)
polynomials whose degrees are bounded by

(dmO(c)
2 + (d1)2O(m)).

(3) In step (7) we apply quantifier elimination to Φ̃X′ . This has complexity

(
(k2)mO(c) + (mk1d1)2O(m)) (

dmO(c)

2 + d2O(m)

1

)

and returns a set of polynomials Q2 ⊂ R[X1, . . . , X2m] containing at most(
(k2)mO(c) + (mk1d1)2O(m)

) (
dmO(c)

2 + d2O(m)
1

)
polynomials whose degrees are bounded by

(dmO(c)
2 + (d1)2O(m)).

(4) In step (11) we apply quantifier elimination to Φ̃A′ . This has complexity

(
(k2)mO(c) + (mk1d1)2O(m)) (

dmO(c)

2 + d2O(m)

1

)

and returns a set of polynomials Q3 ⊂ R[X1, . . . , X2m] containing at most(
(k2)mO(c) + (mk1d1)2O(m)

) (
dmO(c)

2 + d2O(m)
1

)
polynomials whose degrees are bounded by

(dmO(c)
2 + (d1)2O(m)).

41

(5) In step (13) we apply quantifier elimination to Φ̃Xnew . This has complexity

(
(k2)mO(c) + (mk1d1)2O(m)) (

dmO(c)

2 + d2O(m)

1

)

and returns a set of polynomials Q4 ⊂ R[X1, . . . , Xm] containing at most(
(k2)mO(c) + (mk1d1)2O(m)

) (
dmO(c)

2 + d2O(m)
1

)
polynomials whose degrees are bounded by

(dmO(c)
2 + (d1)2O(m)).

(6) Therefore the entire algorithm has complexity

(
(k2)mO(c) + (mk1d1)2O(m)) (

dmO(c)

2 + d2O(m)

1

)
.

Proof of Correctness of Completion Algorithm: The correctness of this algorithm

follows from Lemma 10.2.7 in [1], and from the correctness of Algorithms 14.3 and 14.5 in

[15] and the Extension Algorithm.

2.2.2 Quotient Algorithms

First Gluing Quotient Algorithm

While we need the Completion Algorithm to obtain quotient spaces of more general

situations, the Extension Algorithm is itself enough to generate a quotient in certain in-

stances. In the following algorithm, we input two sets of polynomials P1 and P2. We need

three P1-formulae, ΦX ,ΦA, and ΦY , representing three semi-algebraic sets X,A, and Y such

that A is a closed subset of X. We need a single P2-formula Φf describing the graph of

a semi-algebraic map f : A → Y . With these inputs, we are able to generate a formula

ΦZ , a formula whose realization Z is semi-algebraically homeomorphic to the quotient space

X qf Y , and a formula Φp describing the graph of a map p : X q Y → Z.

As we did with the Extension Algorithm, we state van den Dries’s theorem with a brief

proof, linking to the corresponding steps in the algorithm.

42

Theorem 12 (Theorem 10.2.11 [1]). Let X ⊂ Rm and Y ⊂ Rn be definable sets. Let

A ⊂ X be definable, closed, and bounded in the ambient space Rm of X. Let f : A → Y be

a definable continuous map. Then X qf Y exists as a definably proper quotient of X q Y .

Proof. First if A = ∅, the identity map X q Y → X q Y is a sufficient definably proper

quotient of XqY by E(f), lines [1-2] . Otherwise, we let RM be the ambient space of XqY

(so M = max{m,n}+ 1). We identify X, A, and Y with their images in X qY , noting that

then A is closed and bounded in RM , line [6] . Let f̃ : X → RM be a definable continuous

extension of f : A → Y , line [5,7] and let dA : RM → R be the distance function on A.

Finally, we define a map p : X q Y → R2M+1 by the formula

p(x) =

 (f̃(x), dA(x) · x, dA(x)) x ∈ X

(x, 0, 0) x ∈ Y
,

[line 8] . Let Z = p(X q Y), [line 10] , then (p, Z) is the desired definable quotient of X q Y

by E(f).

First Gluing Quotient Algorithm

Input(P1 ⊂ R[X1, . . . , Xm], ΦX a P1-formula describing a semi-algebraic set X, ΦA a P1

-closed-formula describing a semi-algebraic subset A of X, ΦY a P1-formula describing a

semi-algebraic set Y , P2 ⊂ R[X1, . . . , X2m], Φf a P2-formula representing a semi-algebraic

map from A to Y)

Output(Q ⊂ R[X1, . . . , X2m+3], ΦZ a Q1-formula describing the quotient space X qf Y ,

Q′ ⊂ R[X1, . . . , X3m+4], Φp a formula describing the graph of the quotient map p from

X q Y to X qf Y)

Procedure:

(1) Apply Algorithm 14.3 from [15] with inputs

(P1 ⊂ R[X1, . . . , X2m],Π = [(X1, . . . , Xm), (Xm+1, . . . , X2m)],∃XΦA(X))

to determine if A is empty or not.

43

(2) If A = ∅, return

(P1,ΦX ∨ ΦY ,P1(X1, . . . , Xm) ∪ P1(Xm+1, . . . , X2m) ⊂ R[X1, . . . , X2m],

Φid(X,Y)← (X = Y)).

(3) If A 6= ∅, set M = m+ 1.

(4) Set Φϕ(X, t, Y)← 0 ≤ t ≤ 1 ∧ Y = X · (1− t).

(5) Apply the Extension Algorithm 2.2.1 with inputs

(P1,ΦX ,ΦA,P1(X) ∪ P1(Y) ⊂ R[X1, . . . , Xm, Y1, . . . , Ym, t],Φϕ,P2,Φf)

to obtain a set of polynomials Q1 ⊂ R[X1, . . . , X2m] and a Q1-formula Φf ′ representing

the graph of a semi-algebraic map f ′ from X to Rm.

(6) We need to identify X,Y, and A with their images in X q Y . To this end we define

formulae whose realizations are subsets of RM as follows:

i. ΦX′(X ′)← ∃XΦX(X) ∧X ′ = (X, 1)

ii. ΦY ′(Y ′)← ∃Y ΦY (Y) ∧ Y ′ = (Y, 2)

iii. ΦA′(A′)← ∃AΦA(A) ∧ A′ = (A, 1)

(7) We also need to redefine f ′ on the sets we have just defined:

Φf ′′(X ′, Y ′)← ∃X,Y

(ΦX′(X ′) ∧ ΦY ′(Y ′) ∧X ′ = (X, 1) ∧ Y ′ = (Y, 2) ∧ Φf ′(X,Y)).

(8) Set

Φ̃p(X,Z)← ∀X4∃X1, X2, X3, Y1, Y2, Y3, t, A,X5, X6

[(MX′(X,X1) ∧Mf ′′(X,Y1, X2, Y2) ∧ (MA′(X4, A) ∧MX′(X,X5)⇒

44

||X4 −X||2 ≥ t2 ∧MX′(X3, X6)||X3 −X||2 = t2)

∧Z = (Y1, X · t, t)) ∨ (MY ′(X,Y3) ∧ Z = (X, 0, 0))].

(9) Apply theorem 7 with inputs

(P1 ∪Q1 ⊂ R[(X1, . . . , X2m, X
′
1, . . . , X

′
10m+4],

Π = [(X1, . . . , X2m), (X ′
1, . . . , X

′
m+1), (X ′

m+2, . . . , X
′
10m+4)], Φ̃p)

to obtain a set of polynomials Q2 ⊂ R[X1, . . . , X3M+1] and an equivalent quantifier free

Q2-formula Φp.

(10) Set Φ̃Z(Z)← ∃XΦp(X,Z).

(11) Apply theorem 7 with inputs

(Q2 ⊂ R[X1, . . . , X3M+1, X
′
1, . . . , X

′
m+1],

Π = [(X1, . . . , X3M+1), (X ′
1, . . . , X

′
m+1)], Φ̃Z)

to obtain a set of polynomials Q3 ⊂ R[X1, . . . , X2M+1] and an equivalent quantifier free

Q3-formula ΦZ .

(12) return(Q3,ΦZ ,Q2,Φp).

Complexity Analysis for First Gluing Quotient Algorithm: We input a set of

polynomials P1 ⊂ R[X1, . . . , Xm] of size k1 whose degrees are bounded by d1, and we input

a set of polynomials P2 ⊂ R[X1, . . . , X2m] of size k2 whose degrees are bounded by d2.

(1) In step (1) we apply a decision algorithm to determine if the set A, described by the

P1-formula ΦA, is empty or not. This has complexity (kd)O(m). If A is empty, we are

done and this is the entire complexity of the algorithm.

45

(2) If A is not empty, we apply the Extension Algorithm 2.2.1 in step (5). This has com-

plexity (
(k2)mO(c) + (mk1d1)2O(m)) (

dmO(c)

2 + d2O(m)

1

)
and returns a set of polynomials Q1 ⊂ R[X1, . . . , X2m] containing at most

(
(k2)mO(c) + (mk1d1)2O(m)) (

dmO(c)

2 + d2O(m)

1

)

polynomials whose degrees are bounded by (dmO(c)
2 + (d1)2O(m)).

(3) In step (9) we apply quantifier elimination to Φ̃p. This has complexity

(
(k2)mO(c) + (mk1d1)2O(m)) (

dmO(c)

2 + d2O(m)

1

)

and returns a set of polynomialsQ2 ⊂ R[X1, . . . , X3m+4] containing at most
(
(k2)mO(c) + (mk1d1)2O(m)

) (
dmO(c)

2 + d2O(m)
1

)
polynomials whose degrees are bounded by (dmO(c)

2 + (d1)2O(m)).

(4) In step (11) we apply quantifier elimination to Φ̃Z . This has complexity

(
(k2)mO(c) + (mk1d1)2O(m)) (

dmO(c)

2 + d2O(m)

1

)

and returns a set of polynomials Q3 ⊂ R[X1, . . . , X2m+3] containing at most(
(k2)mO(c) + (mk1d1)2O(m)

) (
dmO(c)

2 + d2O(m)
1

)
polynomials whose degrees are bounded by

(dmO(c)
2 + (d1)2O(m)).

(5) Therefore the total complexity of the algorithm is bounded by

(
(k2)mO(c) + (mk1d1)2O(m)) (

dmO(c)

2 + d2O(m)

1

)

Proof of Correctness of the First Gluing Quotient Algorithm: The correctness

of the algorithm follows from Lemma 10.2.11 in [1], and from the correctness of Algorithms

14.3 and 14.5 in [15] and the Extension Algorithm 2.2.1 .

46

Second Gluing Quotient Algorithm

By taking the above algorithm and applying the Completion Algorithm 2.2.1 , we can

obtain an algorithm that applies to a more general class of inputs. With this we obtain our

second quotient algorithm that uses gluing. In this case, we input two sets of polynomials

P1 and P2. We input the P1-formulae ΦX , ΦA, and ΦY , representing semi-algebraic sets

X,A, and Y , with A ⊂ X (here notice that A does not have to be closed). We input the

P2-formula Φf , representing the graph of a semi-algebraic map f : A → Y . Applying the

previous algorithms we are able to obtain formulae ΦZ , whose realization is a semi-algebraic

set Z that is semi-algebraically homeomorphic to X qf Y , and Φp, representing the graph

of the semi-algebraic map p : X q Y → Z.

We again present the statement of the corresponding theorem from van den Dries with

a brief summary of the proof with appropriate links to the steps in the algorithm.

Theorem 13 (Theorem 10.2.12 [1]). Suppose A is closed in X and f : A→ Y is definably

proper. Then X qf Y exists as a definably proper quotient of X q Y .

We begin by applying lemma 10.2.7 from [1] to assume that X and Y are bounded in their

ambient spaces and to extend f to a definable continuous map cl(f) : cl(A) → cl(Y), line

[4] . In order to apply lemma 10.2.7, we need a completion of Y , which we call (µ, Ybounded)

in lines [1-2] . From 10.2.7, we obtain a function f ′ and sets Xnew, X
′ and A′, where X ′

is a completion of X, Xnew and A′ are the images of X and A, respectively, in X ′, and

f ′ : A′ → cl(Ybounded) extends f . We apply theorem 10.2.11 with inputs X ′, A′, cl(Ybounded),

and f ′. We obtain a space Z ′ and a quotient map p′ : X ′ q cl(Ybounded) → Z ′, line [5] . We

view Xnew q Ybounded as a subset of X ′ q cl(Ybounded) and define Z = p′(Xnew q Ybounded),

line [6] . Now p′−1(Z) = Xnew q Ybounded and E(f ′) ∩ (Xnew q Ybounded)2 = E(f). Therefore

p := p′|XnewqYbounded
: Xnew q Ybounded → Z, line [8] , is a definably proper quotient of X q Y

by E(f).

Second Gluing Quotient Algorithm

Input(P1 ⊂ R[X1, . . . , Xm], ΦX a P1-formula describing a semi-algebraic set X, ΦA a P1-

formula describing a semi-algebraic subset A of X, ΦY a P1-formula describing a semi-

algebraic set Y , P2 ⊂ R[X1, . . . , X2m], Φf a P2-formula representing the graph of a semi-

47

algebraic map f from A to Y)

Output(Q1 ⊂ R[X1, . . . , X4m+3], ΦZ a Q1-formula describing a semi-algebraic quotient Z of

X q Y , Q2 ⊂ R[X1, . . . , X6m+4], Φp a Q2-formula describing the graph of the quotient map

from X q Y to X qf Y = Z)

Procedure:

(1) Set Φµ(X1, . . . , Xm, Y1, . . . , Ym)←
m∧

i=1

(
(2XiYi + 1)2 = 1 + 4X2

i

)
, a formula representing

the graph of a semi-algebraic homeomorphism from Rm → (−1, 1)m.

(2) Set Φ̃Ybounded
(Y)← ∃X(ΦY (X) ∧ Φµ(X,Y)).

(3) Apply theorem 7 with inputs

(P1 ⊂ R[X1, . . . , Xm, X
′
1, . . . , X

′
m],

Π = [(X1, . . . , Xm), (X ′
1, . . . , X

′
m)], Φ̃Ybounded

)

and

(P1 ⊂ R[X1, . . . , Xm, ε,X
′
1, . . . , X

′
m],

Π = [(X1, . . . , Xm), (ε), (X ′
1, . . . , X

′
m)], ˜Φcl(Ybounded))

to obtain two sets of polynomials. Let Q1 ⊂ R[X1, . . . , Xm] be the union of these sets of

polynomials. We obtain equivalent quantifier free Q1-formulae ΦYbounded
and Φcl(Ybounded),

respectively.

(4) Apply the Completion Algorithm 2.2.1 with inputs

(P1 ∪Q1,ΦX ,ΦAΦYbounded
,P2,Φf)

to obtain a set of polynomials Q2 ⊂ R[X1, . . . , X2m] and Q2-formulae ΦXnew , ΦX′ and

ΦA′ , and a set of polynomials Q3 ⊂ R[X1, . . . , X3m] and a Q3-formula Φf ′ , representing

the graph of a semi-algebraic map from r(ΦA′) to r(Φcl(Ybounded)).

48

(5) Apply the First Gluing Quotient Algorithm 2.2.2 with inputs

(Q1 ∪Q2,ΦX′ ,ΦA′ ,Φcl(Ybounded),Q3 ⊂ R[X1, . . . , X4m],Φf ′)

to obtain a set of polynomials Q4 ⊂ R[X1, . . . , X4m+3] and a Q4-formula ΦZ′ and a set

of polynomials Q5 ⊂ R[X1, . . . , X6m+4] and a Q5-formula Φp′ representing the graph of

a semi-algebraic map from X ′ q cl(Y) to r(ΦZ′).

(6) Set

Φ̃Z(Z) = ∃X,Y [(ΦXnew(X) ∧ Φp′(X, 1, Z))

∨(ΦYbounded
(Y) ∧ Φp′(Y, 2, . . . , 2︸ ︷︷ ︸

m+1

, Z))

 .
(7) Apply theorem 7 with inputs

(Q1 ∪Q2 ∪Q5 ⊂ R[X1, . . . , X6m+4, X
′
1, . . . , X

′
3m],

Π = [(X1, . . . , X6m+4), (X ′
1, . . . , X

′
3m)], Φ̃Z)

to obtain a set of polynomials Q6 ⊂ R[X1, . . . , X4m+3] and an equivalent quantifier free

Q6-formula ΦZ .

(8) Set

Φ̃p(X,Z)← ∃X ′, Y ′(Φp′(X ′, 1, Z) ∧ ΦXnew(X ′)

∧X = (X ′, 1)) ∨ (Φp′(X,Z) ∧ ΦYbounded
(Y ′) ∧X = (Y ′, 2, . . . , 2︸ ︷︷ ︸

m+1

)).

(9) Apply theorem 7 with inputs

(Q1 ∪Q2 ∪Q5 ⊂ R[X1, . . . , X6m+4, X
′
1, . . . , X

′
3m],

Π = [(X1, . . . , Xm), (X ′
1, . . . , X

′
3m)], Φ̃p)

49

to obtain a set of polynomials Q7 ⊂ R[X1, . . . , X6m+4] and an equivalent quantifier free

formula Φp.

(10) return (Q6,ΦZ ,Q5,Φp).

Complexity Analysis for the Second Gluing Quotient Algorithm: We input a

set of polynomials P1 ⊂ R[X1, . . . , Xm] of size k1 whose degrees are bounded by d1, and we

input a set of polynomials P2 ⊂ R[X1, . . . , X2m] of size k2 whose degrees are bounded by d2.

(1) In step (3) we apply quantifier elimination to Φ̃Ybounded
and ˜Φcl(Ybounded). Each appli-

cation adds complexity (k1d1)mO(c) and returns a set of polynomials. We let Q1 ⊂

R[X1, . . . , Xm] be the union of the two returned sets of polynomials. Q1 contains at

most (k1d1)mO(c) polynomials whose degrees are bounded by dmO(c)
1 .

(2) In step (4) we apply the Completion Algorithm 2.2.1 . This adds complexity

(
(k2)mO(c) + (mk1d1)2O(m)) (

dmO(c)

2 + d2O(m)

1

)

and returns two set of polynomials. First Q2 ⊂ R[X1, . . . , X2m] containing at most(
(k2)mO(c) + (mk1d1)2O(m)

) (
dmO(c)

2 + d2O(m)
1

)
polynomials of degree at most (dmO(c)

2 +(d1)2O(m)).

Second Q3 ⊂ R[X1, . . . , X3m] with the same cardinality and degree bounds as Q2.

(3) In step (5) we apply the First Gluing Quotient Algorithm 2.2.2 . Let k∗
1, k

∗
2, d

∗
1, d

∗
2 equal

the number of polynomials in Q2 and Q3 and their respective degree bounds. Then

k∗
1 = k∗

2 =
(
(k2)mO(c) + (mk1d1)2O(m)) (

dmO(c)

2 + d2O(m)

1

)

and d∗
1 = d∗

2 =
(
dmO(c)

2 + d2O(m)
1

)
. Applying this algorithm has complexity

(
(k∗

2)mO(c) + (mk∗
1d

∗
1)2O(m)) ((d∗

2)mO(c) + (d∗
1)2O(m))

50

Because k∗
1 = k∗

2 and d∗
1 = d∗

2, this complexity simplifies to (mk∗
1d

∗
1)2O(m) . Substituting

the values for k∗
1 and d∗

1 gives the following, after some simplification:

(
(k2)mO(c) + (mk1d1)2O(m))2O(m) (

dmO(c)

2 + d2O(m)

1

)2O(m)

This returns two sets of polynomials: Q4 ⊂ R[X1, . . . , X4m+3] andQ5 ⊂ R[X1, . . . , X6m+4].

Both sets of polynomials have cardinality on the order(
(k2)mO(c) + (mk1d1)2O(m)

)2O(m) (
dmO(c)

2 + d2O(m)
1

)2O(m)

with degrees bounded by
(
dmO(c)

2 + d2O(m)
1

)2O(m)

.

(4) In step (7) we apply quantifier elimination to Φ̃Z . This adds complexity

(
(k2)mO(c) + (mk1d1)2O(m))2O(m) (

dmO(c)

2 + d2O(m)

1

)2O(m)

and returns a set of polynomials Q6 ⊂ R[X1, . . . , X4m+3] containing at most

(
(k2)mO(c) + (mk1d1)2O(m))2O(m) (

dmO(c)

2 + d2O(m)

1

)2O(m)

polynomials whose degrees are bounded by
(
dmO(c)

2 + d2O(m)
1

)2O(m)

.

(5) In step (9) we apply quantifier elimination to Φ̃p. This adds complexity

(
(k2)mO(c) + (mk1d1)2O(m))2O(m) (

dmO(c)

2 + d2O(m)

1

)2O(m)

and returns a set of polynomials Q7 ⊂ R[X1, . . . , X6m+4] containing at most

(
(k2)mO(c) + (mk1d1)2O(m))2O(m) (

dmO(c)

2 + d2O(m)

1

)2O(m)

polynomials whose degrees are bounded by
(
dmO(c)

2 + d2O(m)
1

)2O(m)

.

(6) Therefore the entire algorithm has complexity

(
(k2)mO(c) + (mk1d1)2O(m))2O(m) (

dmO(c)

2 + d2O(m)

1

)2O(m)

51

Proof of Correctness of the Second Gluing Quotient Algorithm: The correctness

of the algorithm follows from Proposition 10.2.12 in [1], and from the correctness of Algorithm

14.5 [15], the Completion Algorithm 2.2.1 , and the First Gluing Quotient Algorithm 2.2.2 .

General Quotient Algorithm

Finally, with all these preliminary algorithms out of the way, we have the tools we need

to present our final algorithm. This algorithm is able to take any semi-algebraic set X

and any semi-algebraically proper equivalence relation E on X and produces the quotient

space X/E. More specifically, we input two sets of polynomials P1 and P2. We input a

P1-formula ΦX , describing a semi-algebraic set X, and a P2-formula ΦE, representing a

semi-algebraically proper equivalence relation E on X. We are able to produce a formula

ΦX/E, whose realization is semi-algebraically homeomorphic to the quotient space X/E, and

a formula Φf , representing the graph of a semi-algebraic map f from X to the realization of

ΦX/E.

Recall that this algorithm makes effective theorem 5 .

General Quotient Algorithm

Input(P1 ⊂ R[X1, . . . , Xm], ΦX a P1-formula describing a semi-algebraic set X, P2 ⊂

R[X1, · · ·X2m], ΦE a P2-formula describing an equivalence relation E ⊂ X ×X on X)

Output(Q1 ⊂ R[X1, . . . ,], Φf a Q1-formula describing the graph of the map from X to

the semi-algebraic realization of X/E, Q2 ⊂ R[X1, . . . ,], ΦX/E a Q2-formula describing

semi-algebraic realization of the quotient space of X under the equivalence relation E)

Procedure:

(1) Apply Algorithm 4 from [24] with inputs (P1,ΦX) to calculate D = dim(X).

(2) If D = 0, perform the following:

(a) Set Φ̃f (X,Y)← ∀Z(ΦE(X,Y) ∧ ¬(ΦE(X,Z) ∧ Z < Y).

52

(b) Apply theorem 7 with inputs

(P2 ⊂ R[X1, . . . , X2m, X
′
1, . . . , X

′
m],

Π = [(X1, . . . , X2m), (X ′
1, . . . , X

′
m)], Φ̃f)

to obtain a set of polynomials Q1 ⊂ R[X1, . . . , X2m] and an equivalent quantifier

free Q1-formula Φf .

(c) Set Φ̃X/E(Y)← ∃XΦf (X,Y).

(d) Apply theorem 7 with inputs

(Q1 ⊂ R[X1, . . . , Xm, X
′
1, . . . , X

′
m],

Π = [(X1, . . . , Xm), (X ′
1, . . . , X

′
m)], Φ̃(X/E))

to obtain a set of polynomials Q2 ⊂ R[X1, . . . , Xm] and an equivalent quantifier free

Q2-formula ΦX/E.

(e) return (Q1,Φf ,Q2,ΦX/E).

(3) If D > 0, perform the following:

(a) Apply the triangulation algorithm, theorem 8 with inputs (P1,ΦX) to obtain a

triangulation (h,K) of X. We obtain sets of polynomials Qσ and Qσ-formulae ΦK,σ,

for each simplex σ of K. Let Q2 =
⋃
σ

Qσ ⊂ R[X1, . . . , X2m+1].

(b) Set ΦS(X)← ∀Z(ΦE(X,Z)⇒ X ≤ Z).

(c) Set Φ̃SD
(X)← ∃t0, . . . , tD∀Z

∨
σ∈K

dim(σ)=D

ΦK,σ(t0, . . . , tD, X) ∧MS(X,Z).

(d) Apply theorem 7 with inputs

(P2 ∪Q2 ⊂ R[X1, . . . , X2m, X
′
1, . . . , X

′
m+D+1],

Π = [(X1, . . . , X2m), (X ′
1, . . . , X

′
m), (X ′

m+1, . . . , X
′
m+D+1)], Φ̃SD

)

53

to obtain a set of polynomials Q3 ⊂ R[X1, . . . , Xm] and an equivalent quantifier free

Q3-formula ΦSD
.

(e) Set Φ̃X′(X)← ∀ε > 0∃X ′(Mcl(S)(X,X ′, ε) ∧ ¬ΦSD
(X)).

(f) Apply theorem 7 with inputs

(P2 ∪Q3 ⊂ R[X1, . . . , X2m, X
′
1, . . . , X

′
m, ε],

Π = [(X1, . . . , X2m), (X ′
1, . . . , X

′
m), (ε)], Φ̃X′)

to obtain a set of polynomials Q4 ⊂ R[X1, . . . , Xm] and an equivalent quantifier free

Q4-formula ΦX′ .

(g) Set ΦE′(X,Y)← ΦE(X,Y) ∧ ΦX′(X) ∧ ΦX′(Y).

(h) Apply the General Quotient Algorithm 2.2.2 with inputs

(Q4,ΦX′ ,P2 ∪Q4 ⊂ R[X1, . . . , X2m],ΦE′)

to obtain two sets of polynomials Q5 ⊂ R[X1, . . . , X4D−1m+4D−1−1] and

Q6 ⊂ R[X1, . . . , X(4D−1+1)m+4D−1−1] and a Q5-formula ΦY ′ and a Q6-formula Φf ′ ,

representing the graph of the semi-algebraic quotient map from X ′ → Y ′.

(i) Apply theorem 7 with inputs

(P1 ∪Q3 ⊂ R[X1, . . . , Xm, X
′
1, . . . , X

′
m, ε],

Π = [(X1, . . . , Xm), (X ′
1, . . . , X

′
m), (ε)],

∀ε > 0∃X ′Mcl(SD)(X,X ′, ε) ∧ ΦX(X)]

to obtain a set of polynomials Q7 ⊂ R[X1, . . . , Xm] and an equivalent quantifer free

formula Φcl(SD).

(j) Set ΦA(X)← Φcl(SD)(X) ∧ ΦX′(X).

(k) Set Φf ′′(X,Y)← Φf ′(X,Y) ∧ ΦA(X).

54

(l) Apply the Second Gluing Quotient Algorithm 2.2.2 with inputs

(Q4 ∪Q5 ∪Q7,Φcl(SD),ΦA,ΦY ′ ,Q6 ∪Q7,Φf ′′)

to obtain two sets of polynomials Q8 ⊂ R[X1, . . . , X4Dm+4D−1] and

Q9 ⊂ R[X1, . . . , X2(4Dm+4D−1)] and a Q8-formula ΦX/E and a Q9-formula Φp, repre-

senting the graph of the semialgebraic quotient map from cl(SD)qY ′ to the quotient

space X/E = cl(SD)qf ′′ Y ′.

(m) Set

Φg(X,Y)← ∃Z((Φcl(SD)(X) ∧ Φp(X, 1, . . . , 1, Y))

∨(ΦX′(X) ∧ Φf ′(X,Z) ∧ Φp(Z, 2, Y))).

(n) Set

Φ̃f (X,Y)← ∃S, Z[ΦX(X) ∧ ΦX/E(Y)

∧ΦS(S) ∧ ΦE(X,S) ∧Mg(S, Y, Z)].

(o) Apply theorem 7 with inputs

(P1 ∪ P2 ∪Q6 ∪Q7 ∪Q8 ∪Q9

⊂ R[X1, . . . , X2(4Dm+4D−1), X
′
1, . . . , X

′
(4D+1)m+4D−1],

Π = [(X1, . . . , X2(4Dm+4D−1)), (X ′
1, . . . , X

′
(4D+1)m+4D−1)], Φ̃f)

to obtain a set of polynomials Q10 ⊂ R[X1, . . . , X(4D+1)m+4D−1] and an equivalent

quantifier free Q10-formula Φf .

(p) return (Q8,ΦX/E,Q10,Φf).

Complexity Analysis for the General Quotient Algorithm:

We input a set P1 of k1 polynomials in m variables with degree at most d1 and a set P2

of k2 polynomials in 2m variables with degree at most d2.

55

(1) In step (1) we compute the dimension of our space X. This step has complexity

(k1d1)mO(c) .

(2) If dim(X) = D = 0, then the only thing we have to do is apply quantifier elimination

twice. We do this in step (2):

• In step (2b), we apply quantifier elimination to Φ̃f . This step has complexity

(k2d2)mO(c) and returns a set of polynomials Q1 ⊂ R[X1, . . . , X2m] containing at

most (k2d2)mO(c) polynomials of degree at most dmO(c)
2 .

• In step (2d), we apply quantifier elimination to Φ̃X/E. This step has complexity

(k2d2)mO(c) and returns a set of polynomials Q2 ⊂ R[X1, . . . , X2m] containing at

most (k2d2)mO(c) polynomials of degree at most dmO(c)
2 .

(3) In the case where D > 0, we must first generate spaces that are homeomorphic to

subspaces of X of lower dimension, until we generate a space of dimension 0, then we

can apply the previous line.

(4) In step (3a), we apply the triangulation algorithm to (P1,ΦX). This step has complexity

(k1d1)2O(m) and returns a set of polynomials Q2 ⊂ R[X1, . . . , X2m+1] containing at most

(k1d1)2O(m) polynomials of degree at most d2O(m)
1 .

(5) In step (3d), we apply quantifier elimination to Φ̃SD
. Since D ≤ m, this has complexity

[
(k2 + k2O(m)

1)(d2 + d2O(m)

1)
]mO(c)

and returns a set of polynomials Q3 ⊂ R[X1, . . . , Xm] containing at most[
(k2 + k2O(m)

1)(d2 + d2O(m)
1)

]mO(c)

polynomials whose degrees are bounded by

(d2 + d2O(m)
1)mO(c) .

(6) In step (3f), we apply quantifier elimination to Φ̃X′ This step has complexity

[
(k2 + k2O(m)

1)(d2 + d2O(m)

1)
]mO(c)

56

and returns a set of polynomials Q4 ⊂ R[X1, . . . , Xm] containing at most[
(k2 + k2O(m)

1)(d2 + d2O(m)
1)

]mO(c)

polynomials whose degrees are bounded by

(d2 + d2O(m)
1)mO(c) .

(7) In step (3h) we apply the General Quotient Algorithm on a space of dimension at most

D − 1, inputting the set of polynomials Q4 ⊂ R[X1, . . . , Xm] containing[
(k2 + k2O(m)

1)(d2 + d2O(m)
1)

]mO(c)

polynomials with degrees bounded by (d2 + d2O(m)
1)mO(c)

and the set of polynomials P2 ∪ Q4 ⊂ R[X1, . . . , X2m] with the same cardinality and

degree bound. In applying the General Quotient Algorithm, we first apply items (4-6) up

to D times (because each call of the General Quotient Algorithm will call the General

Quotient Algorithm after only completing items (4-6)). If we apply items (4-6) with

k∗
1 = k∗

2 = |Q4| and d∗
1 = d∗

2 = the degree bounds of Q4, then we have complexity:

(k∗
1d

∗
1)2O(m)

Plugging in the values of k∗
1 and d∗

1 gives:

[
(k2 + k2O(m)

1)(d2 + d2O(m)

1)
]2O(m)

From this analysis, we see that with each iteration through the first part of the algorithm

we end up with another copy of 2O(m) in the exponent. Hence, after up to D iterations

of items (4-6) the complexity will be

[
(k2 + k2O(m)

1)(d2 + d2O(m)

1)
]2O(Dm)

≤
[
(k2 + k2O(m)

1)(d2 + d2O(m)

1)
]2O(m2)

At this point, we will have two sets of polynomials (call them R,S) in m and 2m

variables, respectively. They will both contain

[
(k2 + k2O(m)

1)(d2 + d2O(m)

1)
]2O(m2)

57

polynomials with degrees bounded by

(d2 + d2O(m)

1)2O(m2)
.

From here we have reached a space of dimension 1 and can apply the rest of the algorithm

up to D times to finish the application of the General Quotient Algorithm on the space

of dimension D − 1. The first step is to apply quantifier elimination to Φ̃cl(S1). At

each iteration, the complexity of this step is dominated by the complexity of the first

half of iterating on the General Quotient Algorithm, so we omit its complexity (we

will see below what affect this step has on the original space). From here we must

apply the Second Gluing Quotient Algorithm with sets of polynomials that have the

same order of polynomials and degree bounds as R,S. Now let k∗
1 = k∗

2 = |R| and

d∗
1 = d∗

2 = degree bounds of R. Then this step has complexity:

(mk∗
1d

∗
1)2O(2m)

If we plug in the value for k∗
1 and d∗

1, we see that the complexity for the Second Gluing

Quotient Algorithm in the first iteration is:

(
m(k2 + k2O(m)

1)2O(m2)(d2 + d2O(m)

1)2O(m2)
]2O(2m)

We then finish the iteration by applying quantifier elimination to Φ̃f . This doesn’t affect

the order of the complexity. From this, we see that each iteration increase the exponents

2O(m) on the m term, the (k2 + k2O(m)
1) term, and the (d2 + d2O(m)

1) term. In addition,

if we input polynomials in m variables into the Second Gluing Quotient Algorithm, we

output a polynomial in 4m+3 variables. Hence after up to D iterations, our polynomials

will be in 4Dm + 4D − 1 ∼ O(4Dm) variables. Therefore, the total complexity after up

to D iterations of reapplying algorithm 10.2.15 will be:

C = (4Dm)2O(Dm)(k2 + k2O(m)

1)2O(m2D)(d2 + d2O(m)

1)2O(m2D)

58

In addition, this will return two sets of polynomials Q5 ⊂ R[X1, . . . , X4D−1m+4D−1−1]

and Q6 ⊂ R[X1, . . . , X(4D−1+1)m+4D−1−1] each containing on the order of C polynomials

of degree bounded by (d2 + d2O(m)
1)2O(Dm2) .

(8) In step (3i) we apply quantifier elimination to the formula

∀ε > 0∃X ′Mcl(SD)(X,X ′, ε) ∧ ΦX(X).

This has complexity [
(k2 + k2O(m)

1)(d2 + d2O(m)

1)
]mO(c)

and returns a set of polynomials Q7 ⊂ R[X1, . . . , Xm] containing at most[
(k2 + k2O(m)

1)(d2 + d2O(m)
1)

]mO(c)

polynomials with degrees bounded by (d2 +d2O(m)
1)mO(c) .

This shows that, as we stated above, the complexity of this step will pail in comparison

to the complexity of the previous step for any D.

(9) In step (3l) we apply the Second Gluing Quotient Algorithm one final time. As we

saw in our previous analysis, this will just add factors of 2O(m), so the complexity of

this step is still C. It returns a set of polynomials Q8 ⊂ R[X1, . . . , X4Dm+4D−1] and

Q9 ⊂ R[X1, . . . , X2(4Dm+4D−1)] containing on the order of C polynomials of degree at

most (d2 + d2O(m)
1)2O(Dm2) .

(10) In step (3o) we apply quantifier elimination to Φ̃f . Again this still has complexity on the

order C and returns a set of polynomials Q10 ⊂ R[X1, . . . , X(4D+1)m+4D−1] containing C

polynomials whose degrees are bounded by

(d2 + d2O(m)
1)D2mO(D2)2O(D2m) .

(11) Therefore the entire complexity of the algorithm is

(4Dm)2O(Dm)(k2 + k2O(m)

1)2O(m2D)(d2 + d2O(m)

1)2O(m2D)

59

(12) To simplify this, we can use the fact that D ≤ m, and separate into the cases where

k2 ≈ k2O(m)
1 and d2 ≈ d2O(m)

1 , or k2 >> k2O(m)
1 and d2 >> d2O(m)

1 , or k2 << k2O(m)
1 and

d2 << d2O(m)
1 . After simplification, an upper bound on the complexity becomes:


(mkd)2O(m3) if k2O(m)

1 ≈ k2(≈ k) and d2O(m)
1 ≈ d2(≈ d)

(mk2d2)2O(m3) if k2 >> k2O(m3)
1 and d2 >> d2O(m)

1

(mk1d1)2O(m4) if k2O(m)
1 >> k2 and d2O(m)

1 >> d2

Proof of Correctness of the General Quotient Algorithm: The correctness of

the algorithm follows from the proof Theorem 10.2.15 in [1] and from the correctness of

Algorithm 4 in [24], Algorithm 14.5 in [15], and the Second Gluing Quotient Algorithm

2.2.2 .

2.2.3 Improved Bounds

As has been stated before, it is often the case that upper bounds on topological complexity

of objects are closely related to the worst case scenario complexity of algorithms computing

topological invariants of such objects. In light of this correlation, we present in this section

an argument that would imply that a singly exponential algorithm to compute quotients

exists. Finding such an algorithm is left for future work.

Definition 15. For two maps f1 : X1 → Y and f2 : X2 → Y , the fibred product of X1

and X2 is defined as

X1 ×Y X2 := {(x1, x2) ∈ X1 ×X2|f1(x1) = f2(x2)}

Gabrielov et. al. were able to prove the following complexity bound on fibred products

when f1 = f2.

Theorem 14. [25 , Theorem 1] Let f : X → Y be a closed surjective cellular map. There

exists a spectral sequence Er
p,q converging to H∗(Y) with

E1
p,q = Hq(Wp)

60

where

Wp = X ×Y · · · ×Y X︸ ︷︷ ︸
p+1 times

.

In particular,

bk(Y) ≤
∑

p+q=k

bq(Wp)

for all k.

For our purposes, let f = π : X → X/E be the standard quotient map. If E is a definably

proper equivalence relation, then π is a proper map. Therefore by Theorem 14 , we have for

any k

bk(π(X)) = bk(X/E) ≤
∑

p+q=k

bq(X ×X/E · · · ×X/E X).

Let X ⊂ Rn be defined by a P-formula φ(·), for some set of polynomials P , and E ⊂ Rn×Rn

be defined by a Q-formula ψ(·, ·). Using these formulae, X ×π · · · ×π X︸ ︷︷ ︸
p+1 times

is defined by the

formula ∧
0≤i<p

ψ(x(i), x(i+1)) ∧
p∧

i=0
φ(x(i))

where there are p polynomials in P and q polynomials in Q, and the degrees of the polyno-

mials in P and Q are both bounded by d. It would then take pq + (p + 1)q polynomials of

degree less than or equal to d in (p+ 1)n variables to describe X ×π · · · ×π X︸ ︷︷ ︸
p+1 times

. Using results

from [26] and [25], we get a betti number bound for the fibred product, and hence for X/E,

as

b(X/E) ≤ O(nsd)(n+1)n.

This bound is singly exponential, as desired, which leads one to suspect that a singly expo-

nential algorithm to compute quotient spaces is possible.

2.3 Conclusion

In this chapter, we have shown that the given a P1-formula ΦX , representing a semi-

algebraic set X, and a P2-formula ΦE, representing an equivalence relation on E, there exists

a formula ΦX/E with complexity that is doubly exponential in dim(X), |P1|, |P2|, the degree

61

bounds of P1 and P2, and in the number of variables in P1 and P2. We have presented

algorithms that make effective the method of obtaining this formula. However, doubly

exponential complexity is never desirable if it can be avoided, so future work in this area

can explore the possibility of finding an algorithm that runs in singly exponential time.

62

3. HARMONIC CHAINS

3.1 Background Definitions

This chapter of the thesis is devoted to developing a theoretical framework to using the

harmonic chains of a simplicial complex as a means of determining a cycle to represent a

homology class. We proceed to applying this framework to persistent homology. We use

harmonic chains as a means to associate cycles with each bar of the persistent bar code.

We finish by proving two stability results on functions that represent the space of harmonic

chains.

3.1.1 Linear Algebra Facts

We begin this chapter by recalling some basic facts about linear algebra. Let V be a

finite dimensional vector space over R. We denote the dual of V by V ∗ = HomR(V,R). For

any subspace W ⊂ V , we denote

W o = {v∗ ∈ V ∗ | v∗(w) = 0, for all w ∈ W}.

If U is an R-vector space and L : U → V a linear map, then

Im(L)o = ker(tL) ⊂ V ∗. (3.1.1)

If V is a Euclidean space equipped with an inner product 〈·, ·〉, for any subspace W ⊂ V ,

we let W⊥ denote the orthogonal complement of W in V . projW : V → W shall denote the

orthogonal projection to V .

There exists an isomorphism φV : V ∗ → V which maps v∗ ∈ V ∗ to the uniquely defined

v ∈ V , such that v∗(v) = 〈v, v〉 for every v ∈ V .

If A = {e1, . . . , en} is an orthonormal basis of V , and A∗ = {e∗
1, . . . , e∗

n} denotes the basis

of V ∗ dual to A, then for any v ∈ V , the coordinate [v]A ∈ Rn of v with respect to the

basis A, equals the coordinate [φ−1
V (v)]A∗ ∈ Rn of φ−1

V (v) with respect to the basis A∗. In

particular, the matrix of φV with respect to the bases A∗ and A is the n×n identity matrix.

63

It is easy to see that for any subspace W ⊂ V , φV (W o) = W⊥.

Thus identifying V and V ∗ using the isomorphism φ, we can for any subspace W ⊂ V ,

identify W o ⊂ V ∗ with W⊥ ⊂ V .

Using (3.1.1), for any linear map L : U → V ,

Im(L)⊥ = φV (ker(tL)).

The following two lemmas in linear algebra will prove useful later, so we record them here

for reference.

Lemma 1. For any subspace W ⊂ V , there exists a canonically defined isomorphism

V/W → W⊥, defined by

v +W 7→ projW ⊥(v).

Lemma 2. If W1,W2 ⊂ V are subspaces with W1 ⊂ W2, then for any w ∈ W2, projW ⊥
1

(w) ∈

W2.

3.1.2 Persistent Homology

We transition now to an introduction to persistent homology. [17] is a good source

for the interested reader to learn more about persistent homology and its applications in

computational topology. Persistent homology can be defined on more general topological

spaces, but for our purposes we restrict our spaces to simplicial complexes.

Definition 16 (Filtrations). Let S be an ordered set and K be a finite simplicial complex.

The tuple F = (Ks)s∈S of subcomplexes of K such that whenever s < t, Ks ⊂ Kt, is called

a filtration of K.

Furthermore suppose K is equipped with a map f : K → R such that f(σ) < f(τ)

whenever σ is a face of τ . Enumerate the simplices of K, {σs1 , . . . , σsn}si∈S, such that for

s ≤ t, f(σs) ≤ f(σt). Set Ks = f−1(−∞, f(σs)]. The conditions on f guarantee that Ks is

a subcomplex of K for each s. The sequence

∅ = K0 ⊆ K1 ⊂ · · · ⊂ Kn = K

64

is a filtration induced by f and we denote it by Ff . If f is injective, then Ks \Ks−1 = {σs}

for each s ∈ {1, . . . , n}. In this case, we say Ff is a simplex-wise filtration.

In the case of simplex-wise filtrations, a common choice of function is to have f(σs) = s

for each s ∈ S. Useful filtrations for applications are Čech and alpha complexes and lower

star filtrations. We do not consider these filtrations, so the reader is directed to [17 , Chapters

3 and 4] for more information.

Given a filtration, the inclusion maps, Ks ↪→ Kt for s ≤ t, between the complexes induce

maps on homology. Thus, a filtration corresponds to the following sequence of homology

groups for each p ≥ 0:

0 = Hp(K0)→ Hp(K1)→ · · · → Hp(Kn) = Hp(K)

Definition 17 (Persistent Homology Groups). Given a filtration F on a simplicial complex

K, let is,t
p : Hp(Ks)→ Hp(Kt) be the map induced by the inclusion Ks ↪→ Kt for each s ≤ t

and p ≥ 0. The p-th persistent homology groups of a simplicial complex K are the

images of is,t
p , denoted Hs,t

p (F) = im(is,t
p). The p-th persistent Betti numbers are the

dimensions of these groups: bs,t
p = dim(Hs,t

p (F)).

Note that Hs,t
p (F) ⊂ Hp(Kt) and that for s = t, Hs,s

p (F) = Hp(Ks).

As the dimension of the homology groups in the sequence change, homology classes

appear and disappear. We refer to this as the birth and death of a homology class and define

these ideas more rigorously below.

Definition 18 (Birth and Death). For s ≤ t ∈ S and p ≥ 0, let γ ∈ Hp(Ks). We say

that γ is born at Ks if γ /∈ Hs−1,s
p . Furthermore if γ is born at Ks, it dies entering Kt if

is,t−1
p (γ) /∈ Hs−1,t−1

p but is,t
p (γ) ∈ Hs−1,t

p .

Remark 2. Note that the homology classes that are born at time s, and those that are born

at time s and die entering time t, as defined above are not subspaces of Hp(Ks). In order to

be able to associate a “multiplicity” to the set of homology classes which are born at time

s and dies at time t we interpret them as classes in certain subquotients of H∗(Ks) in what

follows.

65

First observe that it follows from Definition 17 that for all s′ ≤ s ≤ t and p ≥ 0, Hs′,t
p (F)

is a subspace of Hs,t
p (F), and both are subspaces of Hp(Kt). This is because the homomor-

phism is′,t
p = is,t

p ◦ is′,s
p , and so the image of is′,t

p is contained in the image of is,t
p . It follows

that, for s ≤ t, ⋃s′<s H
s′,t
p (F) is an increasing union of subspaces, and is itself a subspace of

Hp(Kt). In particular, setting t = s, ⋃s′<s H
s′,s(F) is a subspace of Hp(Ks).

The following definition is taken from [27]. With the same notation as above:

Definition 3.1.1. For s ≤ t, and p ≥ 0, we define

Ls
p(F) = Hp(Ks)/

⋃
s′<s

Hs′,s
p (F),

M s,t
p (F) =

⋃
s′<s

(is,t
p)−1(Hs′,t

p (F)),

N s,t
p (F) =

⋃
s′<s≤t′<t

(is,t′

p)−1(Hs′,t′

p (F)),

P s,t
p (F) = M s,t

p (F)/N s,t
p (F),

P s,∞
p (F) = Hp(Ks)/

⋃
s≤t

M s,t
p (F).

(Note that that for every fixed s ∈ S, M s,t
p (F) is a subspace of Hp(Ks) and M s,t

p (F) ⊂

M s,t′
p (F) for t ≤ t′.)

We will call

1. Ls
p(F) the space of p-dimensional cycles born at time s;

2. P s,t
p (F) the the space of p-dimensional cycles born at time s and which died at

time t; and

3. P s,∞
p (F) the the space of p-dimensional cycles born at time s and which never

dies.

We will denote for s ∈ S, t ∈ S ∪ {∞},

µs,t
p (F) = dimP s,t

p (F), (3.1.2)

66

and call µs,t
p (F) the persistent multiplicity of p-dimensional cycles born at time s

and dying at time t if t 6=∞, or never dying in the case t =∞.

Finally, we will call the set

Bp(F) = {(s, t, µs,t
p (F)) | µs,t

p (F) > 0}

the p-dimensional barcode associated to the filtration F .

It is well-known, see [17], that for s < t and for all p ≥ 0

µs,t
p = (bs,t−1

p − bs,t
p)− (bs−1,t−1

p − bs−1,t
p).

Persistence diagrams encode all necessary information about persistent homology groups.

Persistence has many practical applications because barcodes can be computed efficiently.

[17] uses sparse matrix representations of a boundary matrix to calculate persistence dia-

grams in O(m3) time, where m is the number of simplices of K. For a survey of major

computational results in persistent homology, we refer the reader to [28].

3.2 Representative Cyles

3.2.1 Prior Work

Given a homology class, it is an important problem in applications to determine a chain of

simplices to represent that class. In applications, the simplices of the complex have inherent

meaning to the data being analyzed. This importance has led to several prior means to

determine a representative cycle.

A natural area to explore is to minimize the number of simplices in the given cycle.

Volume-optimal cycles were proposed by Obayashi in [29]. Volume-optimal cycles are cycles

of a homology class with the fewest number of simplices, and they can be found as solutions

to a linear programming optimization problem. Volume-optimal cycles focus on minimizing

the size of a cycle; an alternative approach is to determine which simplices are necessary for

the cycle and using them to represent the cycle. Such simplices are called “essential,” and

67

they were introduced by Basu et. al. ([30]). In addition, the authors present an algorithmic

means to determine which simplices are essential. Similar to volume-optimal cycles, Dey

et. al. ([31], [32]) define and present an algorithm to determine optimal one-cycles that

have a minimal weight, in some sense of weight. They give a polynomial time algorithm to

compute “meaningful” persistent one-cycles. These cycles are not stable under perturbations

with respect to the Hausdorff distance or the measure of using cycle length. Finally, in [33],

Gamble et. al. obtain a representative cycle by tracking when the addition or removal of a

simplex causes a class to be born or die. Their method works with standard persistence as

well as zigzag persistence.

3.2.2 Harmonic Chains

In this section, we describe a new method of determining a representative cycle of a

homology class. We use the fact that the p-th homology group of a simplicial complex is

isomorphic to the space of p-dimensional harmonic chains in that simplicial complex [2].

This isomorphism allows us to associate to each homology class a specific harmonic chain

representing that class. We begin by defining harmonic chains.

Definition 19 (Harmonic Chains). Let p ≥ 0. Given a simplicial complex K, let Cp(K) =

Cp(K,R) denote the R-vector space of p-dimensional chains of K. Let ∂p : Cp(K) →

Cp−1(K) be the standard boundary map. We let Zp = ker(∂p) and Bp = im(∂p+1). An

element of Zp is called a cycle, and an element of Bp is called a boundary. We can make

Cp(K) into an Euclidean space by defining an inner product such that

〈σ, σ〉 = δσ,σ′ , σ, σ′ ∈ K(p)

Under this inner product we denote hp(K) = Zp(K)∩Bp(K)⊥. An element of hp(K) is called

a harmonic chain.

Remark 3. We note that in the literature it is common to use the coefficient field Z2. However,

we cannot have a well-defined inner product over a finite field. To define an inner product

on p-chains on K, it is necessary to have F = R.

68

Proposition 3.2.1. The map fp(K) defined by z+Bp(K)→ projBp(K)⊥(z) gives an isomor-

phism

fp(K) : Hp(K)→ hp(K).

Proof. Observe using lemma 2 and the fact thatBp(K) ⊂ Zp(K), we have that for z ∈ Zp(K),

projBp(K)⊥(z) ∈ Zp(K), and so fp(K) is well-defined. Injectivity and surjectivity follow

immediately.

In terms of matrices, we have the following description of hp(K) as a subspace of Cp(K).

We denote by Ap(K) the orthonormal basis {σ|σ ∈ K(p)} for each p ≥ 0, and by Mp(K)

the matrix of ∂p with respect to the basis Ap(K) of Cp(K), and the basis Ap−1(K) of

Cp−1(K). Then, hp(K) can be identified as the subspace of Cp(K) which is is equal to the

intersection of the nullspaces of the two matrices Mp(K) and tMp+1(K). More precisely,

z ∈ hp(K)⇔ [z]Ap(K) ∈ null(Mp(K)) ∩ null(tMp+1(K)).

3.3 Harmonic Chains and Persistence

For this section, let K be a simplicial complex of dimension n. Let F be a simplex-wise

filtration on K indexed by an ordered set S. We use the fact that homology groups are

isomorphic to the set of harmonic chains to obtain the following commutative diagram for

each dimension p:

Hp(K0) Hp(K1) · · · Hp(Km)

hp(K0) hp(K1) · · · hp(Km)

∼= ∼= ∼= ∼=

we define the above maps as follows:

is,t
p : Hp(Ks)→ Hp(Ks+1) x+Bp(Ks) 7→ x+Bp(Ks+1) (3.3.1)

fp(Ks) : Hp(Ks)→ hp(Ks) x+Bp(Ks) 7→ projBp(Ks)⊥(x) (3.3.2)

is,t
p : hp(Ks)→ hp(Ks+1) x 7→ projBp(Ks+1)⊥(x) (3.3.3)

Proposition 1. The above diagram, with the given maps, is commutative.

69

Proof. We begin by noting that is,t
p is well-defined. For x ∈ Zp(Ks) ⊂ Zp(Ks+1) and

Bp(Ks+1) ⊂ Zp(Ks+1), it follows almost immediately from the definitions that projBp(Ks+1)⊥(x) ∈

Zp(Ks+1).

We can now prove the diagram is commutative. Let x+Bp(Ks) ∈ Hp(Ks). In one direc-

tion, we have that x+Bp(Ks) 7→ x+Bp(Ks+1) 7→ projBp(Ks+1)⊥(x). In the other direction, we

have x+Bp(Ks) 7→ projBp(Ks)⊥(x) 7→ projBp(Ks+1)⊥(projBp(Ks)⊥(x)). Equality follows from the

fact that if A ⊂ B are two subspaces of a vector space V , then projA(projB(x)) = projA(x)

for all x ∈ V and from the fact that Bp(Ks) ⊂ Bp(Ks+1) implies Bp(Ks+1)⊥ ⊂ Bp(Ks)⊥.

Remark 4. This construction is analogous to a similar construction in de Rham cohomology.

In this case, the “p-chains” are differential p-forms. The kernel of the appropriate “cobound-

ary operator” on p-forms can be quotiented by the image to obtain de Rham cohomology.

In this setting one can define harmonic forms, differential forms in the kernel of the Laplace

operator on p-forms. As in our case on harmonic chains, these harmonic forms are isomor-

phic to the de Rham cohomology groups of the same dimension. For more information on

the connection between de Rham cohomology and harmonic forms see [34].

Definition 20 (Harmonic Persistent Homology Subspace). For each p ≥ 0 and s ≤ t ∈ S,

let hs,t
p (F) = im(is,t

p). We call hs,t
p (F) a harmonic persistent homology subspace.

We now define the harmonic analogue of definition 3.1.1 . The following are all subspaces

of hp(K).

Definition 3.3.1. For s ≤ t, and p ≥ 0, we define

Ls
p(F) = hp(Ks) ∩

 ⋃
s′<s

hs′,s
p (F)

⊥

,

Ms,t
p (F) =

⋃
s′<s

(is,t
p)−1(hs′,t

p (F)),

Ns,t
p (F) =

⋃
s′<s≤t′<t

(is,t′

p)−1(hs′,t′

p (F)),

Ps,t
p (F) = Ms,t

p (F) ∩Ns,t
p (F)⊥,

Ps,∞
p (F) = hp(Ks) ∩

⋂
s≤t

Ms,t
p (F)⊥.

70

Finally, we will call the set

Bp(F) = {(s, t,Ps,t
p (F)) | Ps,t

p (F)) 6= 0}

the p-dimensional harmonic barcode associated to the filtration F .

3.3.1 Practical applications

One of our motivations behind our definition of harmonic barcodes comes from applica-

tions. In applications of topological data analysis the simplices of the simplicial complexes

are significant and it is useful to be able to label the bars of a persistent diagram by a repre-

sentative cycle. There is no obvious choice for such a cycle and several different suggestions

exist in the literature.

The harmonic bar codes give a natural solution to the above problem. Suppose for a

given filtration F , and for all s ∈ T, t ∈ T ∪ {∞}, s ≤ t, p ≥ 0, 0 ≤ µs,t
p (F) ≤ 1. This will be

true if the filtration is induced by a ‘generic’ real valued function on the simplices of K.

Suppose, µs,t
p (F) = 1. Then, the coresponding subspace Ps,t

p (F) is one dimensional. Let

zs,t
p = ∑

σ∈K(p) aσσ ∈ Cp(K) be an element such that {zs,t
p } is an orthonormal basis of Ps,t

p (F)

(i.e. ||zs,t
p || = 1, zs,t

p ∈ Ps,t
p (F)).

We will denote by ws,t
p (F) = (|aσ|)σ∈K(p) the weight vector corresponding to the bar with

end points s, t.

We continue by discussing an example below.

Example 1. Let K = {(a), (b), (c), (d), (a, b), (a, c), (a, d)(b, c), (c, d)}. Let F be the follow-

ing simplex-wise filtration on K:

K0 = ∅ ⊂ K1 = (a) ⊂ K2 = K1 ∪ (b) ⊂ K3 = K2 ∪ (c) ⊂ K4 = K3 ∪ (d)

⊂ K5 = K4 ∪ (a, b) ⊂ K6 = K5 ∪ (a, c) ⊂ K7 = K6 ∪ (a, d)

⊂ K8 = K7 ∪ (b, c) ⊂ K9 = K8 ∪ (c, d) = K

71

We consider 1-dimensional chains in this problem. The spaces of harmonic chains are:

h1(Ks) = 0 for s ≤ 7

h1(K8) = span{(a, b) + (b, c)− (a, c)} = span{z1}

h1(K9) = span{(a, b) + (b, c)− (a, c),−(a, d) + (c, d) + (a, c)} = span{z1, z2}

where z1 is the chain (a, b) + (b, c)− (a, c) and z2 is the chain −(a, d) + (c, d) + (a, c).

The harmonic persistent homology subspaces are

hs,t
1 (F) = span{z1} s = 8, t = 9

hs,t
1 (F) = 0 otherwise

We first determine the space of 1-dimensional harmonic chains that are born at time s.

It is clear that Ls
1(F) = 0 for s ≤ 7 and:

L8
1(F) = h1(K8) ∩

 ⋃
s′<8

hs′,8
1 (F)

⊥

= span{z1} ∩ (0)⊥

= span{z1}

L9
1(F) = h1(K9) ∩

 ⋃
s′<9

hs′,9
1 (F)

⊥

= span{z1, z2} ∩
(
h8,9

1 (F)
)⊥

= span{z1, z2} ∩ (span{z1})⊥

= span{z1}⊥

= span{(a, b) + 2(a, c)− 3(a, d) + (b, c) + 3(c, d)}

72

We proceed to calculate Ms,t
1 . It is clear that Ms,t

1 (F) = 0 if s ≤ 8 because hs′,t
1 (F) = 0

for s′ < s ≤ 8. The only nonzero space is

M9,9
1 (F) =

⋃
s′<9

(i9,9
1)−1(hs′,9

1 (F))

=
⋃

s′<9
hs′,9

1 (F))

= h8,9
1 (F)

= span{z1}

The subspaces Ns,t
1 (F) = 0 for all s and t because the only nonzero harmonic persistent

homology subspace is h8,9
1 (F), but s′ < s < t ≤ 9 implies s′ < 8 and so hs′,t

1 (F) = 0.

All that remains is to calculate Ps,t
1 (F). It is clear that if t is finite, Ps,t

1 (F) = 0, because

Ms,t
1 (F) = 0 for s 6= t. Ps,∞

1 (F) = 0 for s < 8 because h1(Ks) = 0 for s < 8. We determine

the subspace for s = 8 and s = 9:

P8,∞
1 = h1(K8) ∩

⋂
8≤t

M8,t
1 (F)⊥

= span{z1} ∩ (0)⊥

= span{z1}

P9,∞
1 = h1(K9) ∩M9,9

1 (F)⊥

= span{z1, z2} ∩ (span{z1})⊥

= span{(a, b) + 2(a, c)− 3(a, d) + (b, c) + 3(c, d)}

In the barcode, we use the unit vector to represent the subspaces Ps,∞
1 :

B1(F) =
{(

8,∞, span
{

1√
3

(a, b) + 1√
3

(b, c) + 1√
3

(a, c)
})

,

(
9,∞, span

{
1√
24

(a, b) + 2√
24

(a, c)− 3√
24

(a, d) + 1√
24

(b, c) + 3√
24

(c, d)
})}

.

73

Example 2 (Complete Graph on 5 vertices). Let K be the complete graph on 5 vertices,

labeled a, b, c, d, e. Let F be the following simplex-wise filtration on K:

K0 = ∅ ⊂ · · ·Here the 0-simplices can be added in any order · · ·

⊂ K6 = {(a), (b), (c), (d), (e), (a, b)} ⊂ K7 = K6 ∪ (b, c)

⊂ K8 = K7 ∪ (c, d) ⊂ K9 = K8 ∪ (d, e) ⊂ K10 = K9 ∪ (a, e) ⊂ K11 = K10 ∪ (a, c)

⊂ K12 = K11 ∪ (a, d) ⊂ K13 = K12 ∪ (b, d) ⊂ K14 = K13 ∪ (b, e) ⊂ K15 = K14 ∪ (c, e) = K

Notice that H1(K10) ∼= R, H1(K11) ∼= R2, . . . , H1(K15) ∼= R6. Hence dim(h1(Ki)) = i− 9

for i = 9, . . . , 15. This gives the following bases for each harmonic chain group:

h1(K10) = span{(a, b) + (b, c) + (c, d) + (d, e)− (a, e)} = span{z1}

h1(K11) = span{z1, (a, b) + (b, c)− (a, c)} = span{z1, z2}

h1(K12) = span{z1, z2, (a, c) + (c, d)− (a, d)} = span{z1, z2, z3}

h1(K13) = span{z1, z2, z3, (a, b) + (b, d)− (a, d)} = span{z1, z2, z3, z4}

h1(K14) = span{z1, z2, z3, z4, (b, d) + (d, e)− (b, e)} = span{z1, z2, z3, z4, z5}

h1(K15) = span{z1, z2, z3, z4, z5, (b, c) + (c, e)− (b, e)} = span{z1, z2, z3, z4, z5, z6}

Notice that hs,t
1 (F) = 0 whenever s ≤ 9 because h1(Ks) = 0 for s ≤ 9. The nonzero

harmonic persistent homology subspaces are:

74

s \ t 10 11 12 13 14

10 span{z1} span{z1} span{z1} span{z1} span{z1}

11 - span{z1, z2} span{z1, z2} span{z1, z2} span{z1, z2}

12 - - span{z1, z2, z3} spn{z1, z2, z3} span{z1, z2, z3}

13 - - - span{z1, z2, z3, z4} span{z1, z2, z3, z4}

14 - - - - span{z1, z2, z3, z4, z5}

15 - - - - -

s t = 15

10 span{z1}

11 span{z1, z2}

12 span{z1, z2, z3}

13 span{z1, z2, z3, z4}

14 span{z1, z2, z3, z4, z5}

15 span{z1, z2, z3, z4, z5, z6}
The next step is to determine the values of Ls

1. We again note that this space is 0 for

s ≤ 9. Hence we have:

L10
1 (F) = span{z1}

L11
1 (F) = span{z1}⊥ = span {3(a, b) + 3(b, c)− 2(c, d)− 2(d, e) + 2(a, e)− 5(a, c)}

L12
1 (F) = span{z1, z2}⊥ = span{2(a, b) + 2(b, c) + 6(c, d)− 5(d, e) + 5(a, e) + 4(a, c) + 11(a, d)}

L13
1 (F) = span{z1, z2, z3}⊥

= span{11(a, b)− 10(b, c)− 9(c, d) + 4(d, e)− 4(a, e) + (a, c)− 8(a, d) + 21(b, d)}

L14
1 (F) = span{z1, z2, z3, z4}⊥

= span{−3(a, b) + 2(b, c) + (c, d) + 4(d, e) + 4(a, e)− (a, c) + 3(b, d)− 8(b, e)}

L15
1 (F) = span{z1, z2, z3, z4, z5}⊥ = span{(b, c)− (c, d)− (d, e)− (a, e) + (a, c)− (b, e) + 3(c, e)}

75

Because every cycle that is born at a given time s never dies, we have Ls
1(F) = Ps,∞

1 (F)

for each s. Hence the barcode for this filtration, after normalizing the above vectors and

sorting the simplices in “alphabetical” order, is

B1(F) = {(10,∞, span{ 1√
5
z1},

(11,∞, span{ 3√
55

(a, b)− 5√
55

(a, c) + 2√
55

(a, e) + 3√
55

(b, c)− 2√
55

(c, d)− 2√
55

(d, e)}),

(12,∞, span{ 2√
231

(a, b) + 4√
231

(a, c) + 11√
231

(a, d) + 5√
231

(a, e)

+ 2√
231

(b, c) + 6√
231

(c, d)− 5√
231

(d, e)}),

(13,∞, span{ 11√
840

(a, b) + 1√
840

(a, c)− 8√
840

(a, d)− 4√
840

(a, e)

− 10√
840

(b, c) + 21√
840

(b, d)− 9√
840

(c, d) + 4√
840

(d, e)}),

(14,∞, span{− 3√
120

(a, b)− 1√
120

(a, c) + 4√
120

(a, e) + 2√
120

(b, c)

+ 3√
120

(b, d)− 8√
120

(b, e) + 1√
120

(c, d) + 4√
120

(d, e)}),

(15,∞, span{ 1√
15

(a, c)− 1√
15

(a, e) + 1√
15

(b, c)− 1√
15

(b, e)− 1√
15

(c, d)

+ 3√
15

(c, e)− 1√
15

(d, e)}}

We won’t list the weight of every element of B1(F), but as one example,

wp(11,∞,Ps,∞
1 (F)) =

(
3√
55
,

5√
55
, 0, 2√

55
,

3√
55
, 0, 0, 2√

55
, 0, 2√

55

)
.

3.3.2 Towards Proving Stability

A desirable quality that we would like to have is that the barcodes/persistent diagrams of

these persistent harmonic chain groups are stable under small perturbations. A traditional

distance used to measure stability between persistence diagrams is the bottleneck distance.

Given a filtration F on a simplicial complex K, for each p ≥ 0 we shall denote by

Dgmp(F) the multiset of points in R2 ∪ {∞} containing the points (s, t) with multiplicity

76

µs,t
p (F) for every (s, t, µs,t

p) ∈ Bp(F) union the set of points {(s, s)}s∈R with infinite multi-

plicity.

Definition 21 (Bottleneck Distance). Let F and F ′ be two filtrations on a simplicial complex

K. Let X = Dgmp(F) and Y = Dgmp(F ′). The bottleneck distance, denoted W∞,

between X and Y is:

W∞(X,Y) = inf
η:X→Y

sup
x∈X
|x− η(x)|∞

where η is taken over all possible bijections between X and Y and | · |∞ represents the L∞-

norm.

Edelsbruner and Harer prove that persistence diagrams are stable with respect to the

bottleneck distance in the sense described in the theorem below.

Theorem 3.3.1 (Bottleneck Stability). [17] Let K be a simplicial complex and f, g : K → R

be two functions that induce filtrations on K. For each dimension p, we have

W∞(Dgmp(Ff), Dgmp(Fg)) ≤ |f − g|∞.

We prove a stability result on harmonic chain groups using persistence functions (defini-

tion 23). To define these functions we need the Grassmannian of a vector space.

Definition 22 (Grassmannian). Let V be a p-dimensional vector space over a field F. The

k-dimensional Grassmannian of V is the space of all k-dimensional subspaces of V .

The doubly infinite Grassmannian, Gr(∞,∞), is the disjoint union of all d dimensional

subspaces of a p-dimensional vector space over F, for every d ≤ p ∈ N.

For our purposes, we take V = Cp(K) and F = R. we can now define persistence

functions.

Definition 23 (Persistence Function). Let f : K → R be a function that induces a simplex-

wise filtration Ff on K. For each dimension p and each time t, we obtain a harmonic chain

group hp(Kt), where Kt = f−1(−∞, t] (note that Kt will be equal to a subcomplex of K in

77

the filtration Ff for each t). This allows us to define the following new functions induced by

f on R for each p:

Fp : R→ qdGr(d, Cp(K))

s
Fp7→ hp(Ks)

We call Fp a persistence function of dimension p.

Remark 5. Let Fp be a persistence function of dimension p. Then Fp has the following

properties:

1. Fp is piecewise constant

2. Fp has finitely many discontinuities at times {t1, . . . , tN}

3. | dim(Fp(ti))− dim(Fp(ti+1))| ≤ 1 for i = 1, . . . , N − 1

4. Fp(t) = 0 for all t < t1

Any function F : R → Gr(∞,∞) with these properties we will also call a persistence

function.

Remark 6. Notice that Fp contains all the information of persistent homology. Once Fp is

known, for s ≤ t we have projFp(t)(Fp(s)) = hs,t
p (K) ∼= Hs,t

p (K). With this in mind we can

translate definition 3.3.1 as:

Ls
p(Fp) = Fp(s) ∩

⋃
s′<s

(
projFp(s)(Fp(s′))

)⊥

Ms,t
p (Fp) =

⋃
s′<s

(is,t
p)−1(projFp(t)(Fp(s′))

Ns,t
p (Fp) =

⋃
s′<s≤t′<t

(is,t′

p)−1(projFp(t)(Fp(s′))

Ps,t(Fp) = Ms,t
p (Fp) ∩ (Ns,t

p (Fp)⊥

Ps,∞(Fp) = Fp(s) ∩
⋂
s≤t

Ms,t
p (Fp)⊥

78

To determine the stability of the harmonic spaces, we need a notion of distance on the

Grassmannian. From Lim and Ye [35], we having the following metric on Gr(∞,∞) for

A ∈ Gr(k, n),B ∈ Gr(l, n) with k, l ≤ n:

dGr(∞,∞)(A,B) =
|k − l|π2

4 +
min{k,l}∑

i=1
θ2

i

1/2

where θi is the i-th principal angle between A and B. To determine θi, let A and B be

matrices of the appropriate dimension whose columns are orthonormal bases of A and B. We

may use singular value decomposition to write ATB = UΣV T , where Σ =

Σ1 0

0 0

 ∈ Rk×l.

Here Σ1 = diag(σ1, . . . , σmin{k,l}), and we have that θi = cos−1(σi) for i = 1, . . . ,min{k, l}.

Note that because singular value decomposition is obtainable algorithmically, determining

the distance between subspaces is straightforward to compute.

From remark 6 since Fp contains all the information on persistence harmonic subspaces,

we can determine the distance between the set of harmonic subspaces by defining a distance

between two persistence functions of dimension p Fp and Gp induced by functions f and g,

respectively. We define this distance as

dh(Fp, Gp) =
∫
R
dGr(∞,∞)(Fp(t), Gp(t))dt. (3.3.4)

The fact that dh is a metric follows from the fact that dGr(∞,∞) is a metric. There are

several metrics on Gr(∞,∞) listed in [35]. The following results will hold for each metric,

except the Martin metric, just with a different constant c in the case of Theorems 15 and

17 . The Martin metric fails because subspaces of different dimensions are defined to have

infinite distance between each other, and our arguments don’t hold in that case.

Theorem 15. Let K be a finite simplicial complex. For each p ≥ 0, there exists a c depending

only on K such that such that if F,G are persistence functions induced f, g, respectively, then

dh(F,G) ≤ c · |f − g|, where | · | is the L∞ norm.

Proof. Let m be the number of p dimensional simplices of K. There are only finitely many

disjoint intervals {[xi, yi)}M
i=1, for some M ≤ m, where F (t) and G(t) are constant and

79

different.This is because F and G differ at time t if and only if hp(Kf
t) 6= hp(Kg

t). This

happens when the p dimensional simplices are added in different order and/or at different

times by f and g. There are only finitely many p dimensional simplices to add, and all such

simplices are eventually added, so F and G can only differ on a set of finitely many disjoint

intervals. Secondly, we can obtain an upper bound on max
i
{yi − xi} as follows. Because

|f − g| < ε, |f(σ) − g(σ)| < ε for all p-dimensional simplices σ ∈ K. The images of F and

G are determined by the values f and g take on each simplex. Hence in total, F and G can

only ever differ over an interval of length at most m · ε. Therefore we have that

dh(F,G) =
M∑
i=1

∫ yj

xj
dGr(∞,∞)(F (t), G(t))dt =

M∑
i=1

(yi − xi)dGr(∞,∞)(F (xi), G(xi))

because F and G are piecewise constant. From here, using the definition of dGr(∞,∞), we see

that

dh(F,G) ≤
M∑
i=1

(m · ε)
| dim(F (xi))− dim(G(xi))|

π2

4 +
min{dim(F (xi)),dim(G(xi))}∑

j=1
θ2

j

 1
2

Because θj is a principal angle, 0 ≤ θj ≤ π

2 for all j. We assume there are m p-dimensional

simplices, so | dim(F (xi))− dim(G(xi))| ≤ m. Therefore:

dh(F,G) ≤
M∑
i=1

(m · ε)
mπ2

4 +
m∑

j=1

(
π

2

)2
 1

2

=
M∑
i=1

(m · ε)
(
mπ2

4 + mπ2

4

) 1
2

≤
(
m2√mπ√

2

)
· ε

Setting c = m2√
mπ√
2 , we have proven the claim, since c depends only on the number of p

dimensional simplices of K.

The above theorem proves that the harmonic distance between two persistence functions

is stable with respect to the L∞-norm of the functions that induce the persistence functions.

The next theorem shows that persistence function of f contains all the information of Bp(Ff).

80

Theorem 16. Each persistence function of dimension p can be associated with a distinct

p-dimensional barcode.

Proof. Let F be a persistence function of dimension p with discontinuities {t1, . . . , tN}. Each

point ti where dim(F (ti)) > dim(F (ti−1) corresponds to the birth of a new harmonic chain

at time ti. Each point tj where dim(F (tj)) < dim(F (tj−1)) corresponds to the death of a

harmonic chain at time tj. Pair each death with the most recent birth (i.e. if there is a death

at t5 and births at t2 and t4, pair t5 with t4). Note that conditions (3) and (4) in remark 5

guarantee that for each death there is always a prior birth to pair with. If there are unpaired

births, pair them with +∞. For each pairing (ti, tj), where tj may be infinity, create a tuple

(ti, tj,Pti,tj
p (F)), where P

ti,tj
p (F) is as defined in remark 6 . It is clear that the set of all such

tuples is a p-dimensional harmonic barcode.

Remark 7. We denote by Bp(F) the barcode obtained from a p-dimensional persistence

function F . If F is induced by a function f : K → R, then Bp(Ff) = Bp(F). This is

because the discontinuities of F are determined by the filtration Ff induced by f . Hence

the birth and death times of the harmonic chains from Ff will be the same as the birth and

death times from Theorem 16 and Ps,t
p (F) = Ps,t

p (Ff).

We connect persistence functions to the traditional bottleneck distance by proving that

the harmonic distance between persistence functions is stable with respect to the traditional

bottleneck distance between persistence diagrams. As before, to define the bottleneck dis-

tance, we add the diagonal to the barcodes with infinite multiplicity and denote this by

Dgmp(F).

Theorem 17. Let K be a finite simplicial complex. For each p ≥ 0, there exists a c = c(K)

depending only on K such that if F and G are persistence functions of dimension p then

dh(F,G) ≤ c ·W∞(Dgmp(F),Dgmp(G)).

Proof. Let m be the number of p simplices of K. Let {s1, . . . , sn} and {t1, . . . , tn} be the

points of discontinuity of F and G, respectively. For every birth-death pair (si1 , si2) in

Dgmp(F), one of two things happen. Either there exists a birth-death pair (tj1 , tj2) in

Dgmp(G) such that max{|si1 − tj1|, |si2 − tj2|} < ε, or |si2 − si1| < ε. In either case, F (t)

81

differs from G(t) on an interval of length at most ε. Since there are only m p simplices, the

total length of intervals where F and G can differ is bounded above by m ·ε. Let {[xi, yi)}M
i=1

be the intervals where F and G differ. We proceed similarly to the proof of theorem 15 .

dh(F,G) =
M∑
i=1

∫ yj

xj
dGr(∞,∞)(F (t), G(t))dt =

M∑
i=0

(yi − xi)dGr(∞,∞)(F (xi), G(xi))

≤
M∑
i=1

(m · ε)
| dim(F (xi))− dim(G(xi))|

π2

4 +
min{dim(F (xi)),dim(G(xi))}∑

j=1
θ2

j

 1
2

≤
M∑
i=1

(m · ε)
(
mπ2

2

) 1
2

≤
(
m2√mπ√

2

)
· ε

Setting c = m2√
mπ√
2 , we have proven the claim, since c depends only on the number of p

dimensional simplices of K.

3.4 Conclusion

In this chapter, we examined the problem of determining representative cycles of ho-

mology classes. We explored previous results in this area, before suggesting using harmonic

chains as a means to solve the problem. Harmonic chains have a natural inner product that

works well for determining a chain to represent the homology class. By codifying the infor-

mation of persistent harmonic chain groups into persistence functions, we are able to prove

a stability of these representations. This stability implies that harmonic chains are a natural

choice as representatives of the homology classes. We have mainly focused on developing the

theory of harmonic persistent homology subspaces as representative cycles. It is useful in

applications to have representative cycles to represent persistent homology classes. Future

work in this area should be applying the techniques described here to real world data sets.

82

REFERENCES

[1] L. van den Dries, Tame Topology and O-minimal Structures, ser. London Mathematical
Society Lecture Note Series. Cambridge: Cambridge University Press, 1998, vol. 248,
pp. x+180, isbn: 0-521-59838-9.

[2] B. Eckmann, “Harmonische funktionen und randwertaufgaben in einem komplex”,
Commentarii Mathematici Helvetici, vol. 17, no. 1, pp. 240–255, 1944.

[3] E. Munch, “A user’s guide to topological data analysis”, Journal of Learning Analytics,
vol. 4, no. 2, pp. 47–61, 2017.

[4] F. Kirwan, “Rational intersection cohomology of quotient varieties”, Inventiones math-
ematicae, vol. 86, no. 3, pp. 471–505, Oct. 1986.

[5] D. Mumford, F. Kirwan, and J. Fogarty, Geometric Invariant Theory, 3rd. Berlin:
Springer-Verlag, 1994.

[6] S. Basu, N. Cox, and S. Percival, On the reeb spaces of definable maps, 2020.

[7] G. Reeb, “Sur les points singuliers d’une forme de pfaff complètement intégrable ou
d’une fonction numérique”, Comptes Rendus de l’Académie des Sciences, vol. 222,
pp. 847–849, 1946.

[8] G. Singh, F. Mémoli, and G. Carlsson, “Topological methods for the analysis of high
dimensional data sets and 3d object recognition”, Eurographics Symposium of Point-
Based Graphics, 2007.

[9] E. Munch and B. Wang, “Convergence between categorical representations of Reeb
space and Mapper”, in 32nd International Symposium on Computational Geometry
(SoCG 2016), S. Fekete and A. Lubiw, Eds., ser. Leibniz International Proceedings in
Informatics (LIPIcs), vol. 51, Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2016, 53:1–53:16, isbn: 978-3-95977-009-5. doi: 10.4230/LIPIcs.SoCG.
2016.53 . arXiv: 1512.04108 .

[10] X. Ge, I. Safa, M. Belkin, and Y. Wang, “Data skeletonization via reeb graphs”, in
Advances in Neural Information Processing Systems, J. Shawe-Taylor, R. Zemel, P.
Bartlett, F. Pereira, and K. Q. Weinberger, Eds., vol. 24, 2011.

[11] M. Hilaga, Y. Shinagawa, T. Kohmura, and T. L. Kunii, “Topology matching for
fully automatic similarity estimation of 3d shapes”, in Proceedings of the 28th Annual
Conference on Computer Graphics and Interactive Techniques, ser. SIGGRAPH ’01,
New York, NY, USA: Association for Computing Machinery, 2001, pp. 203–212.

83

https://doi.org/10.4230/LIPIcs.SoCG.2016.53
https://doi.org/10.4230/LIPIcs.SoCG.2016.53
https://arxiv.org/abs/1512.04108

[12] Z. Wood, H. Hoppe, M. Desbrun, and P. Schröder, “Removing excess topology from
isosurfaces”, ACM Trans. Graph., vol. 23, no. 2, pp. 190–208, 2004.

[13] T. K. Dey, F. Mémoli, and Y. Wang, “Topological analysis of nerves, reeb spaces,
mappers, and multiscale mappers”, Proceedings of International Symposium of Com-
putational Geometry, 2017.

[14] N. Cox, “A bound on the higher dimensional betti numbers of the reeb space”, preprint.

[15] S. Basu, R. Pollack, and M.-F. Roy, Algorithms in Real Algebraic Geometry, 2nd.
Springer, 2006, vol. 10.

[16] N. Cox, “Effective semi-algebraic quotient algorithm”, Effective Methods in Algebraic
Geometry (MEGA), 2021.

[17] H. Edelsbrunner and J. L. Harer, Computational topology. American Mathematical
Society, Providence, RI, 2010, pp. xii+241, An introduction, isbn: 978-0-8218-4925-5.

[18] K. Emmett, B. Schweinhart, and R. Rabadan, “Multiscale topology of chromatin fold-
ing”, in Proceedings of the 9th EAI international conference on bio-inspired information
and communications technologies, ICST, 2016, pp. 177–180.

[19] P. Wu, C. Chen, Y. Wang, S. Zhang, C. Yuan, Z. Qian, D. Metaxas, and L. Axel,
“Optimal topological cycles and their application in cardiac trabeculae restoration”,
in International Conference on Information Processing in Medical Imaging, Springer,
Ed., 2017, pp. 80–92.

[20] S. Basu and N. Cox, “Harmonic persistent homology”, preprint.

[21] M. Coste, An introduction to o-minimal geometry. Pisa: Istituti Editoriali e Poligrafici
Internazionali, 2000, Dip. Mat. Univ. Pisa, Dottorato di Ricerca in Matematica.

[22] E. Mendelson, Introduction to Mathematical Logic, Sixth. CRC Press, 2015.

[23] S. Basu, Algorithmic semi-algebraic geometry and topology - recent progress and open
problems, Sep. 2007.

[24] S. Basu, R. Pollack, and M.-F. Roy, “Computing the dimension of a semi-algebraic
set”, Journal of Mathematical Sciences, vol. 134, no. 5, pp. 2346–2353, 2006.

[25] A. Gabrielov, N. Vorobjov, and T. Zell, “Betti numbers of semialgebraic and sub-
Pfaffian sets”, Journal of the London Mathematical Society, vol. 69, no. 1, pp. 27–43,
2004.

84

[26] S. Basu, “On bounding the betti numbers and computing the euler characteristic of
semi-algebraic sets”, Discrete Computational Geometry, vol. 22, no. 1, pp. 1–18, 1999.

[27] S. Basu and N. Karisani, Efficient simplicial replacement of semi-algebraic sets and
applications, arXiv, 2020.

[28] N. Otter, M. Porter, U. Tillmann, P. Grindrod, and H. A. Harrington, “A roadmap
for the computation of persistent homology”, EPJ Data Science, vol. 6, no. 17, 2017.

[29] I. Obayashi, “Volume-optimal cycle: Tight representative cycle of a generator in per-
sistent homology”, SIAM Journal on Applied Algebra and Geometry, vol. 2, no. 4,
pp. 508–534, 2018.

[30] S. Basu, F. Utro, and L. Parida, “Essential simplices in persistent homology and sub-
tle admixture detection”, in 18th International Workshop on Algorithms in Bioinfor-
matics, L. Parida and E. Ukkonen, Eds., ser. Leibniz International Proceedings in
Informatics, vol. 113, Schloss Dagstuhl, 2018, 14:1–14:10.

[31] T. K. Dey, T. Hou, and S. Mandal, “Persistent 1-cycles: Definition, computation, and
its application”, CoRR, 2018.

[32] T. K. Dey, T. Hou, and S. Mandal, “Computing minimal persistent cycles: Polynomial
and hard cases”, in Proceedings ACM-SIAM Sympos. Discrete Algorithms (SODA20),
2019.

[33] J. Gamble, H. Chintakunta, and H. Krim, “Adaptive tracking of representative cycles
in regular and zigzag persistent homology”, CoRR, 2014.

[34] R. Bott and L. W. Tu, Differential Forms in Algebraic Topology, ser. Graduate Texts
in Mathematics. Springer, New York, 1982.

[35] L.-H. Lim and K. Ye, “Schubert varieties and distances between subspaces of differ-
ent dimensions”, SIAM Journal on Matrix Analysis and Applications, vol. 37, no. 3,
pp. 1176–1197, 2016.

85

VITA

My academic journey began at Penn High School in Mishawaka, IN. After I graduated

in 2010, I moved to St. Olaf College in Northfield, MN. At St. Olaf, I double majored in

Math and Physics. It was my time at St. Olaf that kindled my interested in mathematics

and inspired me to pursue a doctorate degree. My academic journey as a student ends at

Purdue University, but the skills and knowledge I have learned here will continue to guide

me throughout my life.

86

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	ABSTRACT
	INTRODUCTION
	Effective Quotient Algorithm
	Harmonic Chains

	EFFECTIVE DEFINABLE QUOTIENT ALGORITHM
	Background and Preliminary Results
	Effective Quantifier Elimination
	Semi-Algebraic Triangulation Algorithm

	Proof of Theorem 1
	Preliminary Algorithms
	Partition of Unity Algorithm
	Semi-Algebraic Path Algorithm
	Extension Algorithm
	Completion Algorithm

	Quotient Algorithms
	First Gluing Quotient Algorithm
	Second Gluing Quotient Algorithm
	General Quotient Algorithm

	Improved Bounds

	Conclusion

	HARMONIC CHAINS
	Background Definitions
	Linear Algebra Facts
	Persistent Homology

	Representative Cyles
	Prior Work
	Harmonic Chains

	Harmonic Chains and Persistence
	Practical applications
	Towards Proving Stability

	Conclusion

	REFERENCES
	VITA

