# INVESTIGATION OF PROTEOMIC AND LIPIDOMIC MYCOBACTERIOPHAGE MASS SPECTROMETRY DATA

by

**Gillian Smith** 

A Thesis

Submitted to the Faculty of Purdue University In Partial Fulfillment of the Requirements for the degree of

**Master of Science** 



Department of Agricultural and Biological Engineering West Lafayette, Indiana August 2021

# THE PURDUE UNIVERSITY GRADUATE SCHOOL STATEMENT OF COMMITTEE APPROVAL

# Dr. Kari Clase, Chair

School of Agricultural and Biological Engineering

# Dr. Jackeline Marmolejo

Proteomics Senior Research Associate

# Dr. Ala Samarapungavan

School of Educational Studies

# Approved by:

Dr. Nathan S. Mosier

To my parents, for always encouraging me to try my hardest, do my best, and believe in my own abilities.

# ACKNOWLEDGMENTS

I would first like to thank my committee chair Dr. Kari Clase for her guidance and support throughout my time as a master's student. I am sincerely grateful for the opportunity to work for her and for the many opportunities she has bestowed upon me that have fostered my passion for research and leadership. I would also like to thank my committee member Dr. Jackeline Marmolejo and the Purdue Proteomics Facility for their constant advice, troubleshooting, and patience. The expertise they have imparted on me and my project is invaluable. I would also like to thank my committee member Dr. Ala Samarapungavan for her support as I navigated new research spaces.

Special thanks to Bruce Cooper and the Purdue Metabolite Profiling Facility for their expertise when processing my lipid data. I would also like to thank the Biotechnology Innovation and Regulatory Science (BIRS) Center for providing funding for my research and to the department of Agricultural and Biological Engineering for providing me with funding as a teaching assistant to a class that I have greatly enjoyed.

Lastly, I would like to thank my family and friends for their constant support and encouragement, for which I am extremely grateful.

# TABLE OF CONTENTS

| LIST OF TABLES                                                                | 8                  |
|-------------------------------------------------------------------------------|--------------------|
| LIST OF FIGURES                                                               |                    |
| ABSTRACT                                                                      |                    |
| CHAPTER 1. INTRODUCTION                                                       |                    |
| 1.1 Statement of Purpose                                                      |                    |
| 1.2 Research Questions                                                        |                    |
| 1.3 Scope                                                                     |                    |
| 1.4 Significance of Study                                                     |                    |
| 1.5 Assumptions                                                               |                    |
| 1.6 Limitations                                                               |                    |
| 1.7 Delimitations                                                             |                    |
| CHAPTER 2. REVIEW OF RELEVANT LITERATURE                                      |                    |
| 2.1 Bacteriophage Morphotypes and Life Cycles                                 |                    |
| 2.2 Mycobacteriophage Genomes                                                 |                    |
| 2.3 Purdue University Phages                                                  |                    |
| 2.3.1 Cluster A3                                                              |                    |
| 2.3.2 Cluster B1                                                              |                    |
| 2.3.3 Cluster C1                                                              |                    |
| 2.4 Applications of Phages                                                    |                    |
| 2.5 Bacteriophage-Host Interaction                                            |                    |
| 2.6 Mycobacteriophage Proteomics                                              |                    |
| 2.7 Mycobacteriophage Lipidomics                                              |                    |
| CHAPTER 3. METHODOLOGY                                                        |                    |
| 3.1 Growing M. smegmatis Cell Cultures and Determining M. smegmat             | tis Growth Curve31 |
| 3.2 Optimizing Protein and Lipid Extraction Protocols for <i>M. smegmatic</i> | is32               |
| 3.2.1 Sample Preparation and BCA Protein Assay                                |                    |
| 3.2.2 Acetone Extraction                                                      |                    |
| 3.2.3 Bligh-Dyer Extraction                                                   |                    |
| 3.2.4 Methyl-tert-Butyl Ether (MTBE) Extraction                               |                    |

| 3.   | .2.5 | Protein Reduction, Alkylation, and Digestion                              | 34 |
|------|------|---------------------------------------------------------------------------|----|
| 3.   | 2.6  | Protein Sample Clean-up                                                   | 34 |
| 3.3  | Pre  | paration of Mycobacteriophage Lysates                                     | 35 |
| 3.4  | Pha  | age Inoculation of <i>M. smegmatis</i> and Measuring Growth Curve         | 35 |
| 3.5  | Usi  | ng Optimal Protein and Lipid Extraction Methods on Phage-treated Samples  | 37 |
| 3.   | 5.1  | Sample Preparation and BCA Protein Assay                                  | 37 |
| 3.   | .5.2 | Lipid Extraction                                                          | 38 |
| 3.   | .5.3 | Protein Extraction                                                        | 38 |
| 3.6  | Liq  | uid Chromatography and Tandem Mass Spectrometry (LC-MS/MS)                | 39 |
| 3.7  | Dat  | ta Analysis                                                               | 41 |
| 3.   | 7.1  | Protein Data Analysis                                                     | 41 |
| 3.   | 7.2  | Lipid Data Analysis                                                       | 42 |
| 3.8  | Cle  | an-up and Archival of Previously Discovered Mycobacteriophages            | 43 |
| 3.9  | Usi  | ng Simulations to Investigate the Mycobacteriophage Cluster B1 Frameshift | 44 |
| 3.   | 9.1  | Choosing Proteins of Interest                                             | 44 |
| 3.   | .9.2 | Structural Comparisons                                                    | 45 |
| 3.   | .9.3 | Molecular Dynamics Simulations                                            | 46 |
| CHAF | PTER | R 4. RESULTS                                                              | 48 |
| 4.1  | М.   | smegmatis and Phage-treated Growth Curves                                 | 48 |
| 4.2  | Tes  | sting Multiple Protein Extraction Methods                                 | 50 |
| 4.3  | Tes  | sting Lipid Extraction Methods                                            | 53 |
| 4.4  | Exa  | amining Lipids from Phage-Treated Samples                                 | 54 |
| 4.5  | Pro  | teomic Data Analysis FrenchFry Case Study                                 | 61 |
| 4.6  | Arc  | chived Phage Samples                                                      | 68 |
| 4.7  | Му   | cobacteriophage Cluster B1 Frameshift Investigation                       | 70 |
| 4.   | 7.1  | Structural Comparisons                                                    | 70 |
| 4.   | 7.2  | Molecular dynamics simulations                                            | 75 |
| CHAF | PTER | 8.5. DISCUSSION                                                           | 84 |
| 5.1  | М.   | smegmatis Growth Curves                                                   | 84 |
| 5.2  | Tes  | sting Multiple Methods of Protein Extraction                              | 85 |
| 5.3  | Tes  | sting Multiple Methods of Lipid Extraction                                | 87 |

| 5.4  | Investigation of Lipids from Phage-treated M. smegmatis | 89  |
|------|---------------------------------------------------------|-----|
| 5.5  | Proteomic Data Analysis Case Study                      | 92  |
| 5.6  | Archival of Purdue University Phages                    | 93  |
| 5.7  | Investigation of Cluster B1 frameshift proteins         | 94  |
| 5.   | .7.1 Structural comparisons                             | 94  |
| 5.   | .7.2 Molecular Dynamics Simulations                     | 96  |
| CHAP | PTER 6. CONCLUSION                                      | 99  |
| APPE | NDIX                                                    | 101 |
| REFE | RENCES                                                  | 141 |

# LIST OF TABLES

Table 2-1. List of all mycobacteriophages isolated and sequenced at Purdue University as of 2020 alongside the year they were isolated, the year they were annotated, and their cluster.......25

Table 3-1. Two phages from diverse clusters selected to infected *M. smegmatis* cell cultures. ...35

 Table 4-1. PANTHER classifications of significant proteins in each extraction method according to the GO term cellular components.

 51

Table 4-5. List of significant lipids categorized by lipid class by MS-DIAL nomenclature standards over a range of statistical tests and indicating which are upregulated in each group when applicable. Significance was determined by a fold change greater than 1.5 or in the ANOVA tests, an adjusted p-value (FDR) cutoff of 0.05 was used and Fisher's LSD was used for post-hoc analysis. M indicates the control samples only containing *M. smegmatis*, P indicates the mycobacteriophage PotatoSplit treated samples, and Z indicates the mycobacteriophage Zalkecks treated samples. .60

Table 4-8. List of all mycobacteriophages that were either re-archived for Purdue University or sent to the HHMI Science Education Alliance-Phage Hunters Advancing Genomics and

Table 4-10. The consensus prediction of GO terms for tail assembly chaperone 1 among the top scoring templates. The GO-Score associated with each prediction is defined as the average weight of the GO term, where the weights are assigned based on Cscore<sup>GO</sup> of the template......70

Table 4-12. The consensus prediction of GO terms for tail assembly chaperone 2 among the top scoring templates. The GO-Score associated with each prediction is defined as the average weight of the GO term, where the weights are assigned based on Cscore<sup>GO</sup> of the template......72

# LIST OF FIGURES

| Figure 1-1. Process flow diagram of the bulk of experiments in this research project16                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 2-1. General structure of bacteriophages showing the capsid head, tail and tail fibers [5].                                                                                                                                                                                                                                                                                                                                                                                                          |
| Figure 2-2. The bacteriophage lytic life cycle [5]                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Figure 2-3. The bacteriophage lysogenic life cycle [5]                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Figure 2-4. Cluster and subcluster visualization of all mycobacteriophages [12]22                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Figure 2-5. Example of a translational frameshift in bacteriophages [5]23                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Figure 2-6. Different bacterial host strategies to defend against multiple stages of the bacteriophage lytic life cycle represented in red [26]27                                                                                                                                                                                                                                                                                                                                                           |
| Figure 2-7. Schematic of the cell envelope of <i>Mycobacteria</i> [47]30                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Figure 3-1. Overall methodology for testing different protein and lipid extraction protocols on <i>M. smegmatis</i> . Each protein and lipid extraction contained three technical replicates for statistical significance                                                                                                                                                                                                                                                                                   |
| Figure 3-2. Example calculation of finding the volume needed to achieve an MOI of 10                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Figure 3-3. Overall methodology for testing optimal protein and lipid extraction protocols on phage-treated samples. Each protein and lipid extraction contained three biological replicates for statistical significance                                                                                                                                                                                                                                                                                   |
| Figure 3-4. The DNA sequence of the suspected frameshift in the B1 Cluster, shown using DNA Master [32]. Tail assembly chaperone one is highlighted in yellow, in reading frame +1. Tail assembly chaperone two is highlighted in blue, in reading frame +3. The suspected area of the shift is boxed in blue, with the suspected slippery sequence boxed in red                                                                                                                                            |
| Figure 4-1. The average OD600 of <i>M. smegmatis</i> taken every two hours for 34 hours total with error bars indicating one standard deviation away from the average                                                                                                                                                                                                                                                                                                                                       |
| Figure 4-2. The average OD600 of each sample taken every four hours for 24 hours total with error bars indicating one standard deviation away from the average. Blue represents the control of only the host <i>M. smegmatis</i> , grey represents the sample of <i>M. smegmatis</i> treated with mycobacteriophage PotatoSplit, and orange represents the sample of <i>M. smegmatis</i> treated with mycobacteriophage Zalkecks. Each sample has three biological replicates for statistical significance. |
| Figure 4-3. Venn diagram indicating how many proteins of <i>M. smegmatis</i> were present in each of the three extraction methods                                                                                                                                                                                                                                                                                                                                                                           |
| Figure 4-4. Principal component analysis plots comparing the phage-treated samples (mycobacteriophage Zalkecks, Z, on the left and mycobacteriophage PotatoSplit, P, on the right) to the control sample of $M$ . smegmatis host. M represents the dataset of $M$ . smegmatis host. Each                                                                                                                                                                                                                    |

Figure 4-8. Number of significant FrenchFry proteins expressed in the statistical comparison of mycobacteriophage FrenchFry treated samples to the negative control of just *M. smegmatis* grouped by functional classifications. The FrenchFry proteins represented in blue are upregulated in the FrenchFry data while those represented in orange are downregulated. NKF indicates no known function, DNA R & T indicates those involved in DNA replication and translation. ......63

Figure 4-12. The fold enrichment of the DAVID pathway analysis functional annotation results based off the KEGG pathway terms of the statistically significant proteins determined by MetaboAnalyst in the comparison of the exponential and stationary phases of inoculation.......68

Figure 4-20. The RMSD of the Tail Assembly Chaperon 1 protein over 0.1 ns. Both simulations, Autoclave and Cell, are compared with the original crystal structure and the equilibrated structure. The Autoclave simulation has higher RMSD because the protein deteriorates at this temperature.

Figure 4-21. (A) the initial structure of the Tail Assembly Chaperone 1 protein. (B) The structure after 1.0 ns of the Cell simulation. (C) The structure after 0.1 ns of the Autoclave simulation....79

Figure 4-22. The RMSD of the Tail Assembly Chaperone 2 protein over 1.0 ns. Both simulations, Autoclave and Cell, are compared with the original crystal structure and the equilibrated structure. The Autoclave simulation has higher RMSD because the protein deteriorates at this temperature.

Figure 4-23. (A) the initial structure of the Tail Assembly Chaperone 2 protein. (B) The structure after 1.0 ns of the Cell simulation. (C) The structure after 1.0 ns of the Autoclave simulation....80

Figure 4-24. The RMSD of the Tail Assembly Chaperone 3 protein over 0.1 ns. Both simulations, Autoclave and Cell, are compared with the original crystal structure and the equilibrated structure. The Autoclave simulation has higher RMSD because the protein deteriorates at this temperature. 81

Figure 4-25. (A) the initial structure of the Tail Assembly Chaperone 3 protein. (B) The structure after 1.0 ns of the Cell simulation. (C) The structure after 0.1 ns of the Autoclave simulation....81

# ABSTRACT

Antibiotic resistance has been an increasing threat to humans since the inception of antibiotics. It can affect anyone, and the issue gets increasingly worse the more antibiotics are used over time. Bacteriophages are one potential way to fight back by harnessing their ability to infect and kill specific bacterial hosts, however, more needs to be studied about them before potential medical applications can be implemented.

The purpose of this research is to analyze the proteins and lipids being produced in the bacteriophage-host interaction to better understand their relationship through the use of mass spectrometry and bioinformatics tools. In this study, the bacterial growth curve of *Mycobacterium smegmatis* was measured to determine the time of ideal bacteriophage inoculation. Methods of protein and lipid extraction were then tested on *M. smegmatis* to determine the most effective protocols applicable to the bacterial host and thereby mycobacteriophages. With the ideal extraction protocols and time at which to inoculate the host, two phages were chosen, extraction was implemented, and mass spectrometry was performed on the proteins and lipids are produced as a result of bacteriophage inoculation over time and what that illuminates about the bacteriophage-host interaction. Through the use of modern methods of untargeted proteomics and lipidomics, one has the capability to fill these gaps of what is being produced by the bacteriophage and host in this interaction and expand upon potential bacteriophage functions to provide a more comprehensive understanding of the pathogenesis of the infection.

Proteomic analysis determined that the acetone method of extraction was the most applicable to *M. smegmatis* and was used for further phage-treated samples and the method of proteomic data analysis tested on readily available mycobacteriophage data. Lipidomic analysis determined that the Bligh Dyer method of extraction was the most applicable to *M. smegmatis* and was used for further phage-treated samples. The lipids extracted from the phage-treated samples were categorized according to classification and showed functions relating to the cell membrane and energy utilization. Specific lipids from the phage-treated samples also indicated involvement in the abortive infection mechanisms of the phage-host interaction.

# CHAPTER 1. INTRODUCTION

This chapter introduces the investigation of a proteomic and lipidomic mycobacteriophage mass spectrometry data research study. This chapter provides a statement of purpose of the research, research questions, scope, significance of the study, assumptions, limitations, and delimitations.

#### 1.1 Statement of Purpose

Antibiotic resistance is a huge medical issue facing people today. It can infect anyone, and the issue gets increasingly worse the more antibiotics are used over time. Bacteriophages are one potential way to fight back by harnessing their ability to infect and kill specific bacterial hosts. The purpose of this research is to analyze the proteins and lipids being produced in the bacteriophagehost interaction to better understand their relationship through the use of cutting-edge technology. As outlined in Figure 1-1. Process flow diagram of the bulk of experiments in this research project., the bacterial growth curve of *Mycobacterium smegmatis* was measured to determine the time of ideal bacteriophage inoculation. The method of protein and lipid extraction was then tested on *M. smegmatis* to determine the most effective protocols applicable to the bacterial host and thereby mycobacteriophages, the viruses that infect the specific host. With the ideal extraction protocols and time at which to inoculate the host, two phages were chosen, extraction was implemented, and mass spectrometry was performed on the proteins and lipids present. This exploratory study is then based on the data analysis done of the data, showing what proteins and lipids are produced as a result of bacteriophage inoculation over time and what that illuminates about the bacteriophagehost interaction.



Figure 1-1. Process flow diagram of the bulk of experiments in this research project.

Another goal of this research project is to present deliverables pertaining to the archival of Purdue University phages. Novel mycobacteriophages isolated from Purdue University students in the years 2018 and 2019 were contaminated and of low titer. Through the course of this study, they were cleaned of contamination, their titers amplified, and were properly archived for long-term storage.

The final goal of this research project is to investigate the bacteriophage cluster B1 frameshift using structural comparisons and simulations. Multiple bioinformatics programs were utilized to predict and compare protein structure as well as run simulations of protein behavior at two different temperatures and pressures. Through comparing the protein structure and behavior to knowns, one can speculate about the location of the cluster B1 frameshift.

#### **1.2 Research Questions**

- Can one extraction method be used to multiplex *Mycobacteria smegmatis* samples?
- Are there significant proteins and lipids being produced in the phage-host interaction?

#### 1.3 Scope

The scope of this study was a proteomic and lipidomic analysis of mycobacteriophages and their bacterial host using high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) and various data analysis tools. The research focused on the characterization of proteins and classifications of lipids to determine features of the bacteriophage-host relationship of a host that has relevant medical applications. Statistical significance of the data was determined through the bioinformatics tool MetaboAnalyst and significant proteins were further analyzed in the protein pathway analysis programs PANTHER and DAVID while lipids were groups based on their lipid classes.

#### 1.4 Significance of Study

Antibiotic resistance has been an increasing threat to humans since the inception of antibiotics in the 1940s. It is estimated that over 35,000 people in the United States die due to antibiotic resistant infections every year. One potential way to combat this widespread problem is with bacteriophages: viruses that infect and kill their bacterial hosts. Bacteriophages infect their host, use the host cell's metabolic machinery to propagate, and kill the cell in the process. They outnumber bacteria in population 10:1, however, not everything is known about bacteriophages. Before they are used in a wide range of applications, especially medical applications, the entirety of their genome needs to be understood to ensure safe and effective use. Through the use of modern methods of untargeted proteomics and lipidomics, one has the capability to fill these gaps of what is being produced by the bacteriophage and host in this interaction and expand upon potential bacteriophage functions to provide a more comprehensive understanding of the pathogenesis of the infection.

# **1.5** Assumptions

The following assumptions are inherent to the pursuit of the study:

- Mycobacterium smegmatis and mycobacteriophage samples do not contain contaminants.
- Protein and lipid profile data generated by mass spectrometry is accurate.
- The lipid database reliably matches the MS2 spectra of the lipids in the bacterial host and bacteriophage-treated samples.
- The method of protein and lipid extraction most appliable to the bacterial host is also the most applicable to the phages that infect it.

# 1.6 Limitations

The following limitations are inherent to the pursuit of the study:

- MS-DIAL was used to identify the lipids in the mass spectrometry samples.
- The length of time for the protein simulations was dependent upon the computing network. The size of the protein being run affected how long the simulation could be run without crashing.

# 1.7 Delimitations

The following delimitations are inherent to the pursuit of the study:

- MetaboAnalyst was the only program used to calculate statistical significance in the protein and lipid mass spectrometry samples.
- Only the programs PANTHER and DAVID were used for protein pathway analysis.

# CHAPTER 2. REVIEW OF RELEVANT LITERATURE

#### 2.1 Bacteriophage Morphotypes and Life Cycles

Bacteriophages (phages) are viruses that infect and kill bacterial hosts [1]. Currently, bacteriophages outnumber bacteria 10:1 and represent the majority of all organisms on the planet [2]. They have a basic structure of a capsid head containing its genome, a tail used for motility and transporting the phage DNA into that of the host, and tail fibers used for the attachment of the phage to the host as seen in Figure 2-1. General structure of bacteriophages showing the capsid head, tail and tail fibers [5].. Phages are often host specific, meaning they often only infect one species of bacterial host, though there are some that can infect different species or genera [2]. There is a great interest in mycobacteriophages, which infect the host *Mycobacteria*, because exploring their method of infection has led to a greater understanding of pathogenic hosts like *Mycobacterium tuberculosis* and *Mycobacterium lepare* [3]. Mycobacteriophages are also categorized into three morphotypes: *Myoviridae*, *Podoviridae*, and *Siphoviridae* with the distinction between being between the length of the tail and whether the tail is contractile [4].



Figure 2-1. General structure of bacteriophages showing the capsid head, tail and tail fibers [5].

Bacteriophages have two different life cycles. In the lytic life cycle, shown in Figure 2-2. The bacteriophage lytic life cycle [5]., the phage attaches to the cell wall of the host and inserts its

DNA inside. Once the lytic phage infects its selected host, the phage DNA circularizes to avoid detection from the host and uses the host's machinery to replicate pieces of itself. These replicated pieces are then assembled into more phages and cell lysis occurs when the phages produce an enzyme to break the cell wall, bursting the cell membrane [6].



Figure 2-2. The bacteriophage lytic life cycle [5].

In the lysogenic life cycle, used by temperate phages, the genes required for the lytic cycle are repressed, and instead the phage's genetic information is maintained within the host cell normally through homologous recombination [7]. Once integrated into the host cell's DNA, the phage DNA will be passed down to daughter cells. As seen in Figure 2-3. The bacteriophage lysogenic life cycle [5]., temperate phages also utilize the lytic life cycle when the lysogen is in the presence of a stressor, causing the host cell to eventually burst. In single-cell infections, phage will utilize the lytic life cycle 80-90% of the time [5].



Figure 2-3. The bacteriophage lysogenic life cycle [5].

#### 2.2 Mycobacteriophage Genomes

Mycobacteriophages display a wide range of genetic diversity. Their genomes are relatively small, ranging from 15 kb to 190 kb and densely packed with coding regions as well as display mosaic relationships between other phages [8]. Due to this relationship, phages are sorted into clusters and subclusters based on overall nucleotide similarity, the host that they infect, and physical characteristics [9]. These clusters have different unique characteristics that can be studied individually. Phages that belong to the same cluster or subcluster have a high level of genomic similarity and often share the same genome organization as seen in Figure 2-4. Cluster and subcluster visualization of all mycobacteriophages [12].. The architecture of the phage genome architectures is mosaic, meaning that it is assembled through horizontal gene transfer from segments of distinct evolutionary histories over time [10]. This leads to the creation of cassettes,

or regions of genes that are grouped typically by similar function. In many clusters, cassettes have a specific gene order, and these cassettes are conserved throughout most phages due to their necessity and their locations within the genome are extremely conserved within clusters [11]. A few examples would be a cassette containing all the genes needed for DNA replication, or all the genes necessary for lysing a host cell [8]. Knowledge of where a protein coding gene is located in relation to others with known functions can help identify what its possible function is.



Figure 2-4. Cluster and subcluster visualization of all mycobacteriophages [12].

Individual genes are also grouped together into phams based on basepair sequence. Because phage genomes are highly conserved, many genes are repeated throughout different phages and therefore some phams can contain over 50 members and these members can span over different clusters. If a gene is not placed into a pham due to the lack of similarity with other phams, it is considered an orpham until the database grows to include more similar genes like it [11]. The members of a pham have a highly conserved function due to their genomic similarity.

Though phams may have a conserved function, much more needs to be learned about the scope of bacteriophage functions before they can be used in wider applications. Currently, only

0.0001% of their genetic information is known [13]. More bacteriophages are studied every year, but many of the proteins found to have no known function.

Another feature in common with almost all clusters of phages is a gene that contains a frameshift. Translational frameshifting occurs when the ribosome encounters a "slippery" sequence in the mRNA, such as GGAAAA, and loses track of how to count to three [14]. It also occurs in the two tail assembly chaperone genes of most flexible non-contractile tailed phages and is intentionally programmed into the phage genome [11]. An example of frameshifting is shown in Figure 2-5. Example of a translational frameshift in bacteriophages [5]. The bacteriophage can therefore utilize the protein product of either the shorter or longer DNA sequence and it is a way for the phage to maximize the production of protein products in a small base pair region. These frameshifts have been confirmed in wet lab settings; however, the B1 Cluster has no known frameshift [11].



Figure 2-5. Example of a translational frameshift in bacteriophages [5].

#### 2.3 Purdue University Phages

Every year, Purdue University's bacteriophage archive is updated every year to include more novel mycobacteriophages found by Purdue University students as a part of the HHMI Science Education Alliance-Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) program. Those that are sequenced, as seen in Table 2-1, are annotated and their genomes are uploaded to GenBank.

| Phage Name     | Year Found | Year Annotated | Cluster    |
|----------------|------------|----------------|------------|
| AFIS           | 2014       | 2019           | A1         |
| Petp2012       | 2012       | 2019           | A1         |
| MrGordo        | 2010       | 2011           | A1         |
| Fibonacci      | 2012       | 2019           | A11        |
| PotatoSplit    | 2012       | 2019           | A3         |
| Lemur          | 2012       | 2019           | A4         |
| JewelBug       | 2012       | 2019           | A6         |
| Cosmolli16     | 2015       | 2019           | <b>B</b> 1 |
| Grand2040      | 2014       | 2019           | <b>B</b> 1 |
| Mesh1          | 2014       | 2019           | <b>B</b> 1 |
| Sophia         | 2012       | 2019           | <b>B</b> 1 |
| Waterdiva      | 2012       | 2019           | <b>B</b> 1 |
| Maru           | 2019       | 2020           | <b>B</b> 1 |
| FrenchFry      | 2015       | 2019           | B2         |
| Zalkecks       | 2017       | 2019           | C1         |
| Czyszczon1     | 2010       | 2019           | Е          |
| RiverMonster   | 2010       | 2018           | Е          |
| Cactus         | 2011       | 2020           | E          |
| MilleniumForce | 2012       | 2019           | F1         |
| Bobi           | 2010       | 2013           | F1         |
| Ochi17         | 2017       | 2019           | F1         |
| Royals2015     | 2015       | 2020           | F1         |
| EricMillard    | 2012       | 2019           | J          |
| Hughesyang     | 2014       | 2019           | J          |
| Krili          | 2018       | 2019           | 0          |
| NiebruSaylor   | 2019       | 2020           | 0          |
| VasuNzinga     | 2014       | 2018           | S          |

Table 2-1. List of all mycobacteriophages isolated and sequenced at Purdue University as of 2020 alongside the year they were isolated, the year they were annotated, and their cluster.

#### 2.3.1 Cluster A3

Cluster A3 is a subsection of Cluster A, which is the largest cluster of Actinobacteriophages, mainly consisting of mycobacteriophages [15]. Cluster A3 phages have a broad host range, which makes them of interest for medical applications, including *M. tuberculosis*, BCG, *Mycobacterium scrofulaceum*, *Mycobacterium fortuitum*, *Mycobacterium chelonae*, and some strains of both *Mycobacterium ulcerans* and *Mycobacterium avium*, in

addition to M. smegmatis [16]. Phages in this cluster are mostly temperate and are siphoviridae, with short-to-medium length flexible tails. There is currently only one A3 mycobacteriophage within the Purdue University sequenced archive as of 2020: PotatoSplit.

#### 2.3.2 Cluster B1

Cluster B1 is a subsection of Cluster B and consists of lytic phage, the results for which are experimental due to that any attempts to isolate lysogens have been unsuccessful [17]. Cluster B virions often contain a linear genome with terminally redundant and circularly permuted ends [11]. Their translational frameshift has also not been confirmed in wet lab [16].

#### 2.3.3 Cluster C1

Cluster C1 is a subsection of Cluster C and also consists of lytic phage, the results for which are experimental due to that any attempts to isolate lysogens have been unsuccessful [18]. All mycobacteriophages with the *Myoviridae* morphotype are contained within cluster C [11].

#### 2.4 Applications of Phages

Due to their ability to infect a wide range of bacterial hosts, bacteriophages have been of increasing interest in multiple fields for their potential applications including medical, food safety, and wastewater treatment. In terms of medical applications, there has been renewed interest in phages being used as potential treatments of antibiotic bacterial resistant infections. According to the World Health Organization, "antibiotic resistance is one the of the biggest threats to global health, food security, and development today" because as the use of antibiotics to treat non-lethal infections increases, the less effective they become at treating them [19]. Phage therapy has been one way to combat this problem and capitalizes on the use of lytic phage particles which are devoid of any metabolic machinery and do not possess an affinity for eukaryotic cells [20]. In recent years, phage therapy has been authorized by the FDA in a few cases as a last resort for bacterial infections that did not respond to antibiotics including *Mycobacterium abscessus* and *Mycobacterium tuberculosis* [21]. Phages are also being used in food safety applications to protect consumers from food-borne illnesses like *Salmonella enterica* and *Escherichia coli* [22]. They have been used to treat domesticated livestock to reduce intestinal colonization, to decontaminate surfaces in food-

processing facilities, and in direct sprays or washes of harvested foods [23]. Lastly, phages have been used to improve sludge and effluent emissions into the environment at wastewater treatment facilities by attacking *Salmonella enterica* and *Escherichia coli* [24]. In summary, phages have the potential to be utilized in a myriad of applications to manage bacterial populations.

#### 2.5 Bacteriophage-Host Interaction

The interaction between phages and their bacterial hosts is dynamically evolving. Bacteria are under enormous evolutionary pressure since they are outnumbered 10:1 and phages rely upon their hosts to propagate and must circumvent the many antiviral barriers the hosts put in place to do so [25]. Host bacteria have developed strategies at multiple stages of the bacteriophage lytic life cycle to defend against foreign invaders and often layer multiple for increased efficiency, as seen in Figure 2-6. Different bacterial host strategies to defend against multiple stages of the bacteriophage lytic life cycle represented in red [26]., while phages develop counter-strategies to overcome the blocks set forth by the host.



Figure 2-6. Different bacterial host strategies to defend against multiple stages of the bacteriophage lytic life cycle represented in red [26].

Bacteria have learned to develop strategies to defend against phage invaders and often layer multiple defense strategies to increase the likelihood that the bacterial lineage survives post phage

exposure [27]. One of the first lines of defense includes extracellular blocks like capsules that inhibit the phage from approaching the bacterial surface [27]. Bacteria also utilize adsorption resistance strategies that prevent the phage from binding to the surface of the bacteria cell by changing the surface receptors that phages target [28]. There are other intracellular blocks that the host can utilize including homoimmunity, the ability to recognize specific phage motifs, which enables blocking phage replication. Bacteria can also employ restriction-modification systems to detect restriction enzyme recognition sequences to cut the inserted phage genome [26]. This strategy is potentially risky in that if there are too many restriction enzyme recognition sequences being targeted, it increases the likelihood that the phage DNA is modified and can therefore evade recognition [27]. However, once recognized, bacteria can employ CRISPR/Cas systems to become phage resistant through attaining novel-to-host DNA sequences [29]. Lastly, if the host is infected, it can employ an abortive infection to kill phages even at the cost of its death [25]. By layering different phage-resistant strategies at different areas of the bacteriophage lytic life cycle, the host cell is able to increase its ability to detect and evade harmful pathogens.

Phages rely on counter-strategies to overcome the blocks put forth by the host to propagate. If bacterial hosts have employed extracellular blocks to mask their receptors with capsular polysaccharides, many phages contain degrading enzymes that can hydrolyze the capsule to access the binding receptor [28]. Phages also have the ability to modify their receptor-binding protein so that they can adsorb to the evolving host cell binding receptors and use diversity-generating retroelements to increase the amount of genetic diversity in the receptor-binding proteins to increase the likelihood of adsorbing to multiple host binding receptors [25]. Phages also deploy strategies for intracellular blocks from the host which mainly pertain to the host being able to target foreign DNA. To protect themselves from restriction-modification systems, phage with little amounts of restriction enzyme sites have a selective advantage [30]. The specific placement of restriction enzyme sites in the bacteriophage genome can play a role in how well the host can recognize foreign DNA as well. In some host systems, if the two sequences are not in a specific orientation or if the restriction enzyme sites are too far apart, the host will be unable to recognize them [31]. To protect themselves from CRISPR/Cas systems, phage can substitute a specific single nucleotide within the protospacer sequences to evade detection or interfere with the CRISPR/Cas system [28]. Phage can also contain their own CRISPR/Cas systems to allow the completion of the phage lytic life cycle and give the phage the ability to hijack the bacterial CRISPR/Cas systems

to promote their own propagation [28]. Phages also contain countermeasures to defend against abortive infection mechanisms which normally utilize toxins to kill both the invading phage and host. Phages mainly circumvent this hurdle by mutating specific genes to hijack the production of antitoxins that neutralize the bacterial toxin [28]. Overall, phages are constantly evolving ways to overcome the blocks set forth by the host to use the cell to propagate.

#### 2.6 Mycobacteriophage Proteomics

Currently, bacteriophage genomes are sequenced and annotated using bioinformatic tools and software such as DNA Master [32] and PECAAN [33] to gather information on the proteins being produced by the phage. By comparing the amino acid sequences of known coding regions to databases like pFam [34], PDB [35], Conserved Domain [36], SCOPe [37], and Non-Redundant [38], one can discern a potential function or general classification of function. However, using this method, a majority of bacteriophage functions are unknown; in all of the genomes annotated at Purdue University, about 69% of genes have no known function. Mass spectrometry has tried to address this gap by confirming the genome annotation, accurately identifying proteins through comparing to databases of protein sequences, and therefore giving more insight into potential functions [39]. Most of the known functions pertain to cassettes that perform well-known processes like lysis, replication, and structure [8,16].

#### 2.7 Mycobacteriophage Lipidomics

The field of lipidomics has been rapidly developing in recent years due to its importance in metabolism [40]. By applying methods of untargeted lipidomics to bacteriophages and their hosts, it can lead to a greater understanding of the role of lipid metabolism in infection pathogenesis [41], and lipids have already been found in mycobacteriophages D29 [42], DS6A [43], and R1 [44]. One main target area in bacteriophage lipidomics is to identify and study cellular receptors since not many are known. A specific peptidoglycolipid, mycoside C(sm), has been found in *M. smegmatis* lipidomic data to play a role in the binding of phage D4 [45] and it also been found that glycolipids may act as receptors for adsorption as found in mycobacteriophage Phlei [46]. It is also worthwhile to examine the lipids being produced within the host, many of which can be found in the cell envelope for *Mycobacterium smegmatis*, to see if levels of production change due to phage

infection to better understand the phage-host interaction. As seen in Figure 2-7. Schematic of the cell envelope of *Mycobacteria* [47]., the cell envelope of the host is a complex space with many types of lipids present, yet a high number of glycolipids can be seen [47]. Though there may not be information about individual lipids being produced in these interactions, classifying groups of lipids can lead to a greater understanding of the system.



Figure 2-7. Schematic of the cell envelope of Mycobacteria [47].

# CHAPTER 3. METHODOLOGY

#### 3.1 Growing M. smegmatis Cell Cultures and Determining M. smegmatis Growth Curve

The *M. smegmatis* strain mc<sup>2</sup> 155 cell culture was reconstituted from -80°C stock by streak plating on an LB agar plate and incubating at 37°C for 72 hours. A single colony was then used to create a Passage 1 From Frozen (P1FF) stock by inoculating 7H9 liquid medium containing 50 mL 7H9 Middlebrook broth supplemented with 0.05% Tween<sup>®</sup>80, 1 mM calcium chloride, 10% AD supplement, 0.02% glycerol, 50 ug/ml carbenicillin, and 10 ug/ml cycloheximide which was incubated for 72 hours at 37°C with constant agitation at 250 rpm. Then a 250 ml Passage 2 From Frozen (P2FF) stock was created by diluting the P1FF stock in 7H9 liquid medium without Tween<sup>®</sup>80 (P1FF:7H9 liquid medium = 1:1000) and incubated at 37°C with shaking at 250 rpm for 72 hours. The P2FF culture was also used for the preparation of mycobacteriophage lysates.

The OD600 of the *M. smegmatis* P2FF culture was determined every 2 hours for a total of 34 hours. The OD<sub>600</sub> values were then plotted and the growth curve of *M. smegmatis* was drawn. This P2FF culture at 48 hours of growth after the initial P1FF inoculation was used to test different protein and lipid extraction methods. Once the ideal extraction method for proteins and lipids was determined, another P2FF stock was created in the same process to be inoculated with different phages.

# M. smegmatis bacterial growth Acetone Bligh Dyer Mass spectrometry of protein and lipid phases of each extraction method

## 3.2 Optimizing Protein and Lipid Extraction Protocols for *M. smegmatis*

Figure 3-1. Overall methodology for testing different protein and lipid extraction protocols on *M. smegmatis*. Each protein and lipid extraction contained three technical replicates for statistical significance.

## 3.2.1 Sample Preparation and BCA Protein Assay

1 ml of the aforementioned *M. smegmatis* P2FF culture was collected, the cells were pelleted at 14,000 rpm for 10 min at 4°C, and the supernatant was removed. The pellet was then washed three times by resuspending it in 850  $\mu$ l of Phosphate Buffer Saline (PBS) pH 7.4, centrifuging at 14,000 rpm for 10 min, and then removing the supernatant. After the final wash, the pellet was resuspended in 1400  $\mu$ l of 100 mM Ammonium Bicarbonate (ABC) and was split into four precellys tubes [48] of equal volume due to the high concentration of cells. The precellys tubes were run at 6200 rpm for three rounds of 20 seconds to lyse the cells. They were then spun down, and the samples were taken out of the precellys tube and placed into microcentrifuge tubes. The BCA protein assay [49] was then used to determine the quantification of total protein in the samples. The was achieved by diluting each tube of the sample with double distilled water with a 1:10 dilution. 10  $\mu$ l of the diluted samples were placed in wells alongside the BCA standards. 200  $\mu$ l of BCA reaction mix (a 50:1 mixture of solutions A and B) was then added to each well of samples and standards. The plate was left to incubate for 30 minutes at 37°C before reading. With the reading of concentration, the volume of each tube to achieve 50 ug of protein was found and was used to test three different protein and lipid extraction methods: acetone, Bligh-Dyer, and Methyl-*tert*-Butyl Ether (MTBE).

#### **3.2.2** Acetone Extraction

For the acetone extraction method, the volume to achieve 50 ug of protein from the BCA protein assay was added to a 1.5 ml microcentrifuge tube. A volume of -20°C 100% acetone four times the amount to achieve 50 ug of protein was added to each replicate. Each sample was left for 12 hours at -20°C. The samples were then pelleted at 14,000 rpm for 10 minutes at 4°C. The supernatant containing lipids was removed and placed into a secondary microcentrifuge tube. Both the microcentrifuge tubes containing the protein pellet and the lipid supernatant were dried in a speedvac with no heat for 1-2 hours. The dried lipids were stored at -80°C until mass spectrometry could be performed on the lipids while the proteins needed further preparation. This process was performed three times to obtain technical replicates.

#### **3.2.3 Bligh-Dyer Extraction**

For the Bligh-Dyer extraction method, the volume to achieve 50 ug of protein from the BCA protein assay was first added to a 1.5 ml microcentrifuge tube. Double distilled water was added to bring the total volume up to 200  $\mu$ l and the mixture was homogenized. The sample was then mixed for 10 minutes with 250  $\mu$ l of chloroform and 500  $\mu$ l of methanol. 200  $\mu$ l of double distilled water was added and mixed gently. The sample was then centrifuged at 4000 rpm for 10 minutes and the three phases were collected separately into different microcentrifuge tubes. The upper phase (metabolites), middle phase (proteins), and bottom phase (lipids) were placed in a speedvac to dry with no heat for 1-2 hours. The dried metabolites and lipids were stored at -80°C until mass spectrometry could be performed on the lipids while the proteins needed further preparation. This process was performed three times to obtain technical replicates.

#### 3.2.4 Methyl-tert-Butyl Ether (MTBE) Extraction

For the MTBE extraction method, the volume to achieve 50 ug of protein from the BCA protein assay was first added to a 1.5 ml microcentrifuge tube. The sample was then mixed for 10 minutes with 375  $\mu$ l of methanol and 1250  $\mu$ l MTBE. 312.5  $\mu$ l of double distilled water was added

and mixed gently. The sample was then centrifuged at 4000 rpm for 10 minutes and the three phases were collected separately into different microcentrifuge tubes. The upper phase (lipids), middle phase (metabolites), and bottom pellet (proteins) were placed in a speedvac to dry with no heat for 1-2 hours. The dried metabolites and lipids were stored at -80°C until mass spectrometry could be performed on the lipids while the proteins needed further preparation. This process was performed three times to obtain technical replicates.

#### 3.2.5 Protein Reduction, Alkylation, and Digestion

10  $\mu$ l of 8 M urea and 10 mM dithiothreitol (DTT) was added to each protein pellet from the three different extraction methods and was incubated for 1 hour at 37 °C with agitation at 800 rpm in a thermomixer. 10  $\mu$ l of TEP mix (97.5% Acetonitrile (ACN), 2% Iodoethanol, and 0.5% Triethylphosphine (TEP)) was added to each protein subsample and incubated 1 hour at 37 °C with agitation at 800 rpm in a thermomixer. The samples were then dried in a speedvac without heat for 2 hours.

Barocycler tubes were then rinsed with ACN and left to dry. For the trypsin digestion, trypsin [50] was dissolved in 25 mM ABC to make a 0.05 ug/µl concentration and 20 µl of enzyme mixture was added to each protein subsample to achieve an enzyme-to-substrate ratio of 1:50. The mixture was transferred to the clean barocycler tubes, which were then capped and loaded into the barocycler. A barocycler NEP2320 [51] ran the samples at 50°C for 60 cycles of 50 seconds at 20 kpsi and 10 seconds at atmospheric pressure.

#### 3.2.6 Protein Sample Clean-up

Nest columns [52] for each protein sample were conditioned by adding 100  $\mu$ l of ACN and centrifuging for 1 minute at 800 rpm, adding 100  $\mu$ l of double distilled water and centrifuging for 1 minute at 800 rpm, and adding 100  $\mu$ l of double distilled water and centrifuging for 1 minute at 1200 rpm. The protein subsamples were then loaded into their corresponding Nest columns [52] and centrifuged for 1 minute at 800 rpm, checking to see that the sample had run through the columns. The columns were then washed by adding 100  $\mu$ l of 0.1% formic acid in double-distilled water and centrifuging for 1 minute at 800 rpm, adding another 100  $\mu$ l of 0.1% formic acid in double-distilled water and centrifuging for 1 minute at 800 rpm, adding another 100  $\mu$ l of 0.1% formic acid in double-distilled water and centrifuging for 1 minute at 800 rpm, adding another 100  $\mu$ l of 0.1% formic acid in double-distilled water and centrifuging for 1 minute at 800 rpm, adding another 100  $\mu$ l of 0.1% formic acid in double-distilled water and centrifuging for 1 minute at 800 rpm, adding another 100  $\mu$ l of 0.1% formic acid in double-distilled water and centrifuging for 1 minute at 800 rpm, adding another 100  $\mu$ l of 0.1% formic acid in double-distilled water and centrifuging for 1 minute at 800 rpm, adding another 100  $\mu$ l of 0.1% formic acid in double-distilled water and centrifuging for 1 minute at 800 rpm, adding another 100  $\mu$ l of 0.1% formic acid in double-distilled water and centrifuging for 1 minute at 800 rpm.

rpm to remove any remaining liquid. The protein subsamples were then eluted out of the nest columns into new microcentrifuge tubes by adding 3 washes of 50  $\mu$ l of 80% ACN and 0.1% formic acid and centrifuging for 1 minute at 800, 1200, and 3000 rpm respectively. The protein subsamples were then dried at 45°C in the speedvac for about 3 hours. After the samples had dried, they were stored at -80°C until mass spectrometry was performed.

#### **3.3** Preparation of Mycobacteriophage Lysates

Two phages (Table 3-1) isolated at Purdue University were selected to infect *M. smegmatis* cell cultures based off their differing subclusters, life cycles, morphotypes, and potential proteins of interest in their genomes. Streaks of each phage lysate from -80°C stocks were plated on LB agar plates and were incubated for 48 hours at 37°C. A single plaque from each plate was used in a serial dilution using prepared phage buffer. 10 µl of each dilution was mixed with 250 µl of *M. smegmatis* P2FF culture and left to inoculate on the bench for 10 minutes. The mixture was then mixed with top agar, poured onto an LB agar plate, and incubated at 37°C for 48 hours. The dilution that created a webbed plate was selected and soaked with 5 ml of phage buffer and left for 12 hours at 4°C. The phage lysate was then collected and filtered with a 0.22 µm filter. Another serial dilution of each phage lysate was performed to calculate the phage forming unit per ml (pfu/ml) using the formula:  $\frac{number of plaques}{volume used} * 10^3 * dilution factor [5].$ 

| Phage       | Cluster | GC% Content | Life Cycle | Morphotype   |
|-------------|---------|-------------|------------|--------------|
| PotatoSplit | A3      | 64.0        | Temperate  | Siphoviridae |
| Zalkecks    | C1      | 64.7        | Lytic      | Myoviridae   |

Table 3-1. Two phages from diverse clusters selected to infected *M. smegmatis* cell cultures.

#### 3.4 Phage Inoculation of *M. smegmatis* and Measuring Growth Curve

The growth curve of *M. smegmatis* was determined and an OD600 of 1.0 was chosen as the indicator of the stationary growth phase. P1FF stock was added to 25 ml of 7H9 liquid medium without Tween<sup>®</sup>80 (P1FF:7H9 liquid medium = 1:1000) and incubated at 37°C till it reached an OD600 of around 0.7 for each subsample before it was inoculated with phage lysate. For the phage-treated subsamples, phage lysate was added into each cell culture subsample with a multiplicity of

infection (MOI) of 10, was mixed gently for 5 minutes to initiate adsorption of the phage to the host cell and was incubated for 24 hours at 37 °C with agitation at 250 rpm. The calculations for which can be found in Figure 3-2. Example calculation of finding the volume needed to achieve an MOI of 10. and the concentration of *M. smegmatis* cells per volume was taken from study that measured the population over time [53]. For the control samples, the cell culture subsamples were inoculated with phage buffer. The OD600 of the phage-bacteria and control mixtures were measured at hours 0, 1, 2, 4, 8, 12, 16, 20, and 24 using a nanophotometer NP80 [54] and plotted to obtain the growth curves. 7H9 liquid medium without Tween<sup>®</sup>80 was used as the standard. After 0, 4, 12, and 24 hours of phage infection, 1 ml of the subsamples were harvested and transferred into sterile microcentrifuge tubes for further protein and lipid extraction and 10  $\mu$ l of the subsamples were used in a serial dilution to validate phage infection. This was performed three times for each phage and for the control of just *M. smegmatis* to obtain biological triplicates.

$$MOI = \left(\frac{phage \ titer \ \left(\frac{pfu}{ml}\right) * volume \ of \ phage \ titer}{\left(\frac{M.\ smegmatis \ cells}{ml}\right) * volume \ of \ bacteria}\right)$$
$$10 = \frac{6.44E10 * x}{7.09E6 * 25} \rightarrow x = 27.5 \ \mu l$$

Figure 3-2. Example calculation of finding the volume needed to achieve an MOI of 10.
#### M. smegmatis bacterial host growth Inoculation of M. smegmatis with Inoculation of M. smegmatis with Mycobacteriophage Zalkecks Mycobacteriophage PotatoSplit Control of M. smegmatis $OD600 \cong 0.7, MOI = 10$ $OD600 \cong 0.7, MOI = 10$ Subsamples taken at hours 0, 4, 12, Subsamples taken at hours 0, 4, 12, Subsamples taken at hours 0, 4, 12, and 24 and 24 and 24 Protein and lipid extraction of every Protein and lipid extraction of every Protein and lipid extraction of every subsample subsample subsample Mass spectrometry of proteins and lipids for each phage sample at every time point

# 3.5 Using Optimal Protein and Lipid Extraction Methods on Phage-treated Samples

Figure 3-3. Overall methodology for testing optimal protein and lipid extraction protocols on phage-treated samples. Each protein and lipid extraction contained three biological replicates for statistical significance.

# 3.5.1 Sample Preparation and BCA Protein Assay

1 ml of the subsamples from the two different phage-bacteria mixtures and control at hours 0, 4, 12, and 24 were pelleted at 14,000 rpm for 10 min at 4°C and the supernatant were removed. The pellets were then washed three times by resuspending it in 850  $\mu$ l of Phosphate Buffer Saline (PBS) pH 7.4, centrifuging at 14,000 rpm for 10 min, and then removing the supernatant. After the final wash, the pellets were resuspended in 300  $\mu$ l of 100 mM Ammonium Bicarbonate (ABC) and sonicated for 3 min while the samples were on ice to lyse the cells. The BCA protein assay [49] was then used to determine the quantification of total protein in each of the subsamples. This was achieved by diluting each subsample with double distilled water with a 1:10 dilution. 10  $\mu$ l of the diluted samples were placed in wells alongside the BCA standards. 200  $\mu$ l of BCA reaction mix (a 50:1 mixture of solutions A and B) was then added to each well of samples and standards. The plate was left to incubate for 30 minutes at 37°C before reading. With the reading of concentration, the volume of each subsample to achieve 50 ug of protein was found. The volume to achieve 40 ug of protein was used for further protein extraction of the subsamples and the

volume to achieve 120 ug of protein was used for further lipid extraction of the subsamples, which was based on the results of the different protein and lipid extraction methods and was constrained by the total volume of the subsamples.

## 3.5.2 Lipid Extraction

For lipid extraction, the Bligh-Dyer extraction method was used, which was based on the previous findings of testing multiple lipid extraction methods. The volume to achieve 120 ug of protein from the BCA protein assay for each subsample was first added to 1.5 ml microcentrifuge tubes. Double distilled water was added to bring the total volume of each subsample up to 200  $\mu$ l and the mixtures were homogenized. The subsamples were then mixed for 10 minutes with 250  $\mu$ l of chloroform and 500  $\mu$ l of methanol. 200  $\mu$ l of double distilled water was added to each subsample and mixed gently. The subsamples were then centrifuged at 4000 rpm for 10 minutes and the bottom phase of lipids were collected separately into different microcentrifuge tubes and were placed in a speedvac to dry with no heat for 1-2 hours. The dried lipids were stored at -80°C until mass spectrometry could be performed. This process was performed for every phage-infected and uninfected subsample for a total of 36 subsamples.

## 3.5.3 Protein Extraction

For protein extraction, the acetone extraction method was used, which was based on the previous findings of testing multiple protein extraction methods. The volume to achieve 40 ug of protein from the BCA protein assay was added to a 1.5 ml microcentrifuge tube for every subsample. A volume of -20°C 100% acetone four times the amount to achieve 40 ug of protein was added to each subsample and was left for 12 hours at -20°C. The subsamples were then pelleted at 14,000 rpm for 10 minutes at 4°C. The supernatant containing lipids was removed and the protein pellets were dried in a speedvac with no heat for 1-2 hours. This process was performed for every phage-infected and uninfected subsample for a total of 36 subsamples.

 $10 \,\mu$ l of 8 M urea and 10 mM dithiothreitol (DTT) was added to each protein pellet from the three different extraction methods and was incubated for 1 hour at 37°C with agitation at 800 rpm in a thermomixer. 10  $\mu$ l of TEP mix (97.5% Acetonitrile (ACN), 2% Iodoethanol, and 0.5% Triethylphosphine (TEP)) was added to each protein subsample and incubated 1 hour at 37°C with

agitation at 800 rpm in a thermomixer. The samples were then dried in a speedvac without heat for 2 hours.

Barocycler tubes were then rinsed with ACN and left to dry. For the trypsin digestion, (Promega, 2021) Trypsin was dissolved in 25 mM ABC to make a 0.05 ug/µl concentration and 20 µl of enzyme mixture was added to each protein subsample to achieve an enzyme-to-substrate ratio of 1:50. The mixture was transferred to the clean barocycler tubes, which were then capped and loaded into the barocycler. A barocycler NEP2320 [51] ran the samples at 50°C for 60 cycles of 50 seconds at 20 kpsi and 10 seconds at atmospheric pressure.

Nest columns [52] for each protein sample were conditioned by adding 100  $\mu$ l of ACN and centrifuging for 1 minute at 800 rpm, adding 100  $\mu$ l of double distilled water and centrifuging for 1 minute at 1200 rpm. The protein subsamples were then loaded into their corresponding nest columns and centrifuged for 1 minute at 800 rpm, checking to see that the sample had run through the columns. The columns were then washed by adding 100  $\mu$ l of 0.1% formic acid in double-distilled water and centrifuging for 1 minute at 800 rpm, adding another 100  $\mu$ l of 0.1% formic acid in double-distilled water and centrifuging for 1 minute at 800 rpm, adding another 100  $\mu$ l of 0.1% formic acid in double-distilled water and centrifuging for 1 minute at 1200 rpm, and lastly centrifuging at 3000 rpm to remove any remaining liquid. The protein subsamples were then eluted out of the nest columns into new microcentrifuge tubes by adding 3 washes of 50  $\mu$ l of 80% ACN and 0.1% formic acid and centrifuging for 1 minute at 800, 1200, and 3000 rpm respectively. The protein subsamples were then dried at 45°C in the speedvac for about 3 hours. After the samples had dried, they were stored at -80°C until mass spectrometry was performed.

#### **3.6** Liquid Chromatography and Tandem Mass Spectrometry (LC-MS/MS)

The proteins in the *M. smegmatis* extraction method samples and the phage-treated samples were analyzed through reverse-phase high-performance liquid chromatography–electrospray ionization–tandem mass spectrometry (HPLC–ESI–MS/MS) using the Dionex UltiMate 3000 RSLC nano System [55] to the Q-Exactive High-Field (HF) Hybrid Quadrupole Orbitrap MS [56] and a Nano-electrospray Flex ion source [57]. Reverse phase peptide separation was accomplished using a trap column (300  $\mu$ m ID × 5 mm) packed with 5  $\mu$ m 100 Å PepMap C18 medium, and then separated on a reverse phase column (50-cm long × 75  $\mu$ m ID) packed with 2  $\mu$ m 100 Å PepMap C18 silica [58]. The column temperature was maintained at 50 °C.

Mobile phase solvent A was 0.1% formic acid (FA) in water and solvent B was 0.1% FA in 80% acetonitrile (ACN). Loading buffer was 98%% water/2% ACN/0.1% FA. Peptides were separated by reverse phase by loading into the trap column in a loading buffer for 5-min at 5 µL/min flow rate and eluted from the analytical column with a linear 82-min linear gradient of 6.5-27% of buffer B, then changing to 40% of B at 90 min, 100% of B at 97-min at which point the gradient was held for 7 min before reverting to 2% of B at 104-min. Peptides were separated from the analytical column at a flow rate of 300 nL/min. The mass spectrometer was operated in positive ion and standard data-dependent acquisition mode with Advanced Peak Detection function activated. The fragmentation of precursor ion was accomplished by higher energy collision dissociation at a normalized collision energy setting of 30%. The resolution of Orbitrap mass analyzer was set to 120,000 and 15,000 at 200 m/z for MS1 and MS2, respectively, with maximum injection time of 50 ms for MS1 and 20 ms for MS2. The dynamic exclusion was set at 60s to avoid repeated scanning of identical peptides and charge state was set at 2-7 with 2 as a default charge and mass tolerance of 10 ppm for both high and low masses. The full scan MS1 spectra were collected in the mass range of 375-1,500 m/z and MS2 in 300-1250 m/z. The spray voltage was set at 2 and Automatic Gain Control (AGC) target of 4e5 for MS1 and 5e4 for MS2, respectively. Three biological sample replicates from each treatment were utilized for LC-MS/MS, which was sufficient for good statistical power. Instrument optimization and recalibration was carried out at the start of each batch run using the Pierce calibration solution.

The lipids from the *M. smegmatis* extraction method samples and the phage-treated samples were dissolved in 50  $\mu$ l mixture which composed of 50% Eluent A (water, 10 mM ammonium acetate, 0.1% formic acid) and 50% Eluent B (isopropyl alcohol: acetonitrile, 10 mM ammonium acetate, 0.1% formic acid). After centrifuging to remove the remaining particles, the samples (8  $\mu$ l/sample) were loaded to Waters ACQUITY UPLC® BEH C18 1.7  $\mu$ m columns in Agilent 6545 Q-TOF [59] for mass spectrometry analysis. The raw data was analyzed using MS-DIAL [60]. The mass, retention time, and intensity of the compounds' positive ions [M+H]+ were obtained for both the extraction method samples and the phage-treated samples. The compounds' negative ions [M-H]- were obtained for the extraction method samples only.

### 3.7 Data Analysis

#### 3.7.1 Protein Data Analysis

For the protein data analysis, the raw MS/MS data (.raw files) were processed using MaxQuant (v1.6.0.16) [61] with its integrated Andromeda search engine searched the spectra against the Uniprot *M. smegmatis* FASTA file [62] in conjunction with a common contaminants database and a reverse-decoy database [63]. Data were searched using trypsin/P enzyme digestion allowing for up to 2 missed cleavages. MaxQuant search was set to 1% FDR (False Discovery Rate) both at the peptide and protein levels. The minimum peptide length required for database search was set to seven amino acids. Precursor mass tolerance of  $\pm$  10 ppm, MS/MS fragment ions tolerance of  $\pm$  20 ppm, alkylation of cysteine and oxidation of methionine was set as fixed and variable modifications, respectively. The "unique plus razor peptides" were used for peptide quantitation. Razor peptides are the non-redundant, non-unique peptides assigned to the protein group with most other peptides. LFQ intensity values were used for relative protein abundance measurement. Proteins detected with at least 1 unique peptide and at least 2 MS/MS counts were only included for the final analysis.

When filtering the MaxQuant data, proteins with reverse or contamination identification were first removed. Any MS/MS counts of one in any sample or counts of two if only appearing in one of the biological triplicates were removed. Then, proteins with no total MS/MS counts were filtered out of the dataset. Any proteins with multiple protein IDs were also limited to one to limit redundancy. When examining the proteins associated with testing different method of protein extraction, the MS/MS count was used for data analysis as a measure of quantitative abundance while the LFQ intensity was used as the primary quantitative measure of abundance for testing the phage-treated samples. The datasets were then normalized and Metaboanalyst (v5.0) was used to compute statistical analysis [64]. Depending on how many statistical groups were being tested, fold changes and t-tests or ANOVA was used to determine significant proteins. For fold change unpaired analysis, FCs are calculated as the ratios between two group means using data before column-wise normalization was applied and a fold change threshold of 1.5 was used. For t-test unpaired analysis, an equal group variance and a p-value threshold of 0.05 was used to compute significance. For ANOVA analysis, an adjusted p-value (FDR) cutoff of 0.05 was used and Fisher's LSD was used for post-hoc analysis.

For the investigation into the phage-treated samples, a case study was performed on previously isolated mycobacteriophage FrenchFry treated samples to explore the method of data analysis. First, MetaboAnalyst was used to determine significant proteins, using a fold change threshold of 1.5 and a t-test unpaired analysis with an equal group variance and a p-value threshold of 0.05. Significant proteins were analyzed through the PANTHER pathway analysis program [65]. PANTHER couples Gene Ontology terms to give an overall scope of function to the datasets [66]. and used the PANTHER pathway analysis program. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of significantly regulated proteins was also performed using DAVID (v6.8) [67,68]. The peptides in this case study were further analyzed by creating a Python (v3.9.5) script that searched the peptide sequence within the amino acid sequences of the FrenchFry coding regions to determine which proteins from its genome annotation were being expressed. Though the FrenchFry case study examined different research objectives, the method of data analysis shown can be applied to the phage-treated Zalkecks and PotatoSplit samples and is an effective method for using multiple bioinformatics tools to accumulate data.

### 3.7.2 Lipid Data Analysis

For the lipid data analysis, the raw MS/MS data (.raw files) were processed using MS-DIAL (v4) [60]. When testing the methods of extraction, both positive and negative ion modes were selected, while only positive ion mode was selected when analyzing the phage-treated samples. In data collection, an MS1 tolerance of 0.01 Daltons and an MS2 tolerance of 0.025 Daltons was used. The retention time was set to begin at 0.5 minutes and end at 16 minutes. The MS1 mass range was set to begin at 50 Daltons and end at 1200 Daltons. A max number of two charged molecules was used and the number of threads was set to four. In peak detection, the minimum peak height was set to an amplitude of 250. A mass slice width of 0.1 Daltons, a linear weight moving average smoothing method with a smoothing level of 3 and a minimum peak width of 5 was selected. In MS2 detection, a sigma window value of 0.1 and an MS/MS abundance cut off of 5 was used. In identification, all default setting were used. The following adducts were also selected for testing extraction methods: [M-H]-, [M-2H]2-, [M+CH3COO]-, [M+2H]2+, [M+H-H2O]+, [M+H]+, [M+Na]+, and [M+NH4]+. The following adducts were selecting when analyzing the phage-treated samples: [M+2H]2+, [M+H-H2O]+, [M+H]+, [M+Na]+, and

[M+NH4]+. The data was searched against an MS-DIAL internal lipid databases and an identification score cut off of 80% was set.

Results of MS-DIAL were then filtered further. Blanks and any result without MS2 spectra data was filtered out. Any result with an S/N below 20 was also filtered out. The rest of the peak data was cleaned so that the area under the peak was accurately represented for every mass spectrometry sample. For the phage-treated lipids samples only, any result without a reference match to the MS2 spectra data was further analyzed my MS-Finder to predict a chemical formula of the unknown lipid [69,70].

With the filtered lipid data, the area under the peak was used to determine significance through MetaboAnalyst (v5.0) [64]. Depending on how many statistical groups were being tested, fold changes and t-tests or ANOVA was used to determine significant lipids. For fold change unpaired analysis, FCs are calculated as the ratios between two group means using data before column-wise normalization was applied and a fold change threshold of 1.5 was used. For t-test unpaired analysis, an equal group variance and a p-value threshold of 0.05 was used to compute significance. For ANOVA analysis, an adjusted p-value (FDR) cutoff of 0.05 was used and Fisher's LSD was used for post-hoc analysis. Significant lipids were then grouped by their lipid subclass according to the MS-DIAL nomenclature to report what lipids are relevant in each of the different methods of extraction and potential insight into more comprehensive understanding of the pathogenesis of the infection.

#### **3.8** Clean-up and Archival of Previously Discovered Mycobacteriophages

As a part of the SEA-PHAGES program, Purdue University is required to send archive samples to the University of Pittsburgh and none of from 2018 and 2019 had been sent in. Purdue University phage lysates from 2018 and 2019 were therefore cleaned of contaminants, had their titers amplified to at least 5.0E9, and were re-archived as frozen to be stored at -80°C. A team of nine Purdue University undergraduates worked under supervision on 50 novel bacteriophages to archive or replace their archive samples at Purdue University and 16 novel bacteriophages to be archived for the SEA-PHAGES program. The common protocols used in this process were phage purification (protocol 6.1), serial dilutions (protocol 6.2), collecting plate lysates (protocol 6.3), making webbed plates from a known titer (protocol 7.1), and archiving a phage sample (protocol 7.3) all of which are contained within the SEA-PHAGES Discovery Guide [5].

### 3.9 Using Simulations to Investigate the Mycobacteriophage Cluster B1 Frameshift

## 3.9.1 Choosing Proteins of Interest

The bacteriophages used in this investigation were narrowed down to those isolated by Purdue University. Out of all bacteriophages isolated at Purdue University, six of the 27 sequenced phages are categorized as subcluster B1, as seen in Table 2-1. Maru's annotation was not finalized at the time of the experiment and was therefore not included in this investigation. The remaining five bacteriophages were chosen to be analyzed because they are the largest grouping of finalized, Purdue isolated phage within the same subcluster. They therefore have high genomic similarity between one another and findings about the chosen proteins will be applicable to the largest number of Purdue isolated phage.

With these five bacteriophages of interest, specific conserved proteins of no known function were chosen to be analyzed based on their location in the genome and knowledge about the B1 subcluster specifications. By targeting genes that are close to genes with known functions, there is a higher likelihood of finding relevant functional information about the gene [2]. The known and suspected tail assembly chaperones, as well as the frameshift, of the B1 cluster were investigated because cluster B is commonly known to not have its frameshift confirmed [11].

Within the B1 cluster, only one of the two tail assembly chaperones making up the translational frameshift has been confirmed. As seen in Figure 2-5. Example of a translational frameshift in bacteriophages [5]., the first tail assembly chaperone was analyzed in this investigation. The genes before and after the known tail assembly chaperone were run through the BLAST database in order to determine which would likely be the second tail assembly chaperone. The gene downstream of the known tail assembly chaperone was found to be related to different tail assembly chaperones with higher scores and therefore was the second tail assembly chaperone analyzed in this investigation.

After determining the suspected frameshift protein of the B1 Cluster, it had to be annotated to determine the shifted form of the protein. The slippery sequence was located by comparing to known translational frameshift sequences [71]. In Figure 3-4. The DNA sequence of the suspected frameshift in the B1 Cluster, shown using DNA Master [32]. Tail assembly chaperone one is highlighted in yellow, in reading frame +1. Tail assembly chaperone two is highlighted in blue, in reading frame +3. The suspected area of the shift is boxed in blue, with the suspected slippery

sequence boxed in red., the DNA sequence of the likely shift is showing the proteins moving from the +1 reading frame to the +3 reading frame nearing the end of the first protein. In the F1 and O clusters, the common slippery sequence was CTCGAAAA. In the F1 phage, there was a sequence of CTCGGG. While this was not a perfect match, it was the most likely option. All Purdue phage with +1 to +3 shifts had repeated a basepair, so the decision was made to repeat a basepair here. A "G" was repeated in the triplet code.

|       | R  | . 1 | N   | S  | Α  | 0   | 2 1 | R   | V   | V   | Т  | N   | 1   | D   | Ρ   | F   | R   | V   | R   | М   | 1   | Г    | * ] | P   | Т   | s   | L   | 7   | 7   |
|-------|----|-----|-----|----|----|-----|-----|-----|-----|-----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|
|       |    | A   | Т   | R  | 1  | R   | Ν   | Α   | S   | *   | r  | Ρ   | Т   | I   |     | L   | G   | С   | G   | 3   | ۲.  | L    | S   | R   | Ρ   | F   | 2   | W   | *   |
|       | Α  | Q   | L   |    | G  | A   | Т   | R   | F   | R   | D  | Q   | R   |     | 5   | S   | G   | 1   | A   | D   | D   | L    | A   | D   | ) ] | 1   | Α   | G   |     |
| 18762 | GC | GC  | AAC | TC | GG | CGC | AA  | CGC | GTO | GI  | GA | CCA | AAC | GA  | ГC  | CTO | CGG | GT( | GCO | GA  | TG2 | ACT: | TAG | CCG | ACO | CTC | GC  | TGG | FΤ  |
|       |    |     | :   |    | ۱. |     | :.  |     | 1   |     | :. |     | 1.  |     | . : |     | ••  |     | :   | ••• |     |      | :   |     | .1  |     | .:  |     | • • |
| 50217 | CG | CG  | TTG | AG | CC | GCO | TT  | GCG | CAG | GCA | CT | GGI | TG  | CT. | AG  | GAG | GCC | CA  | CGC | CT. | ACT | [GA] | ATC | GGC | TG  | GAG | CG. | ACC | A   |
|       |    | R   | L   | E  | 1  | A   | С   | R   | Т   | Т   |    | V   | L   | S   | . 0 | G   | R   | Т   | F   | 2   | I   | V    | *   | G   | V   | E   |     | S   | Т   |
|       | Н  | A   | V   |    | R  | R   | L   | A   | I   |     | Н  | G   | V   |     | I   | R   | P   | I   | H   | Ρ   | Н   | S    | L   | R   | (   | 3   | R   | Q   |     |
|       | A  | . ( | C   | S  | P  | 7   | 1 1 | V   | R   | R   | S  | W   | 1   | R   | D   | E   | Ξ   | P   | A   | S   | :   | 5 1  | K I | A   | S   | R   | A   | E   | 2   |

Figure 3-4. The DNA sequence of the suspected frameshift in the B1 Cluster, shown using DNA Master [32]. Tail assembly chaperone one is highlighted in yellow, in reading frame +1. Tail assembly chaperone two is highlighted in blue, in reading frame +3. The suspected area of the shift is boxed in blue, with the suspected slippery sequence boxed in red.

Once annotated, the protein sequence was run through NCBI BlastP. A match was found with a *Gordonia terrae* bacteriophage CloverMinnie [72]. CloverMinnie made the same frameshift annotation decisions that were made in this F1 annotation. Hereafter, Tail Assembly Chaperone 1 will refer to the known tail assembly chaperone, Tail Assembly Chaperone 2 will refer to the experimental found tail assembly chaperone that is not biologically produced by the phage and Tail Assembly Chaperone 3 will refer to the tail assembly chaperone containing the experimentally found translational frameshift.

# 3.9.2 Structural Comparisons

The sequences for both the individual tail assembly chaperones and the proposed frameshifted protein were then submitted to the software I-TASSER that predicts structures based on protein sequences [73]. I-TASSER outputs the top five model predictions with scores to help determine the best option. It also compares that structure with Protein Data Bank structures, locates possible ligand binding sites, and predicts Gene Ontology terms [74]. These results were analyzed

to determine a possible function classification for each of the NKF proteins selected, which was used to select matching PDB files to be used for structural comparison.

Using PyMOL, the top models of each protein were chosen, and structures examined [75]. The matching PDB files were superimposed on the NKF proteins to examine structural similarities. The MatchAlign score and RMSD were used to evaluate the best matches and multiple models were chosen in order to fully examine this annotation.

## **3.9.3** Molecular Dynamics Simulations

Simulations were carried out using GROMACs software [76]. GROMACs was used to simulate each protein in a box of water at two sets of temperatures and pressures. The values picked were based on the highest temperature in an autoclave and the ideal temperature for growing *M. smegmatis*. These temperatures are 394.1 K, hereafter referred to as Autoclave, and 310.15, hereafter referred to as Cell. The accompanying pressures are 1.03421 bar and 1.01325 bar respectively.

The process of the simulations began with the coordinate files produced by I-TASSER [73]. With these files, a GROMACs function was used to create a box with the protein placed in the center at least 1.0 nm from the edge. The size of the boxes varies for each protein based on the protein size. The box was then solvated and filled with water molecules. In order to use this software, the net charge of the system had to be neutral. Ions were added to achieve a net charge of 0. Na+ ions were added to raise charge and Cl- ions were added to lower charge.

After a box was created and solvated, the energy was minimized to ensure the structure had no inappropriate geometry or steric clashes. If the final energy was negative and stable, the simulation was continued. The step size was 0.01, with a maximum number of steps at 50,000. After energy minimization, the system was equilibrated.

The first equilibration step used was the NVT ensemble, which holds constant the Number of Particles, Volume, and Temperature. The temperature coupling method used was a Berendsen thermostat with a heat bath at the temperature for Autoclave or Cell. The Particle Mesh Ewald method was used for electrostatics, and the Verlet cutoff scheme used for buffered neighbor searching. The cut off value for the radius was adjusted for each box size. This was run for 100 picoseconds for each protein, then the temperature was graphed to ensure it had reached a plateau. If it had not, this step was run for another 100 picoseconds with velocity generation turned off.

The second equilibration used was NPT, which holds constant the Number of Particles, Pressure, and Temperature. Again, the Berendsen thermostat was used, along with PME and Verlet. The barostat used was Parrinello-Rahman, and velocity generation was again off. This was run for 100 picoseconds, then the average pressure was checked to make sure the system was equilibrated properly. If it was not within a close range of the desired pressure, this step was repeated for another 100 picoseconds.

Once the system was equilibrated, a production run of the simulation was run for one nanosecond and data collected. If the protein was too large to run for 1 nanosecond, it was run for 0.5 ns or 0.1 ns. The trajectory files were loaded into PyMOL to capture images and videos of the simulations, and the root mean square distance data was used to examine how the proteins changed over the course of the simulation. The RMSD was compared with the backbone of the molecule for equilibrated structure after the NPT step and the crystal structure.

Tail assembly chaperone 3 was further investigated and was run at the same simulation process listed above for 100 nanoseconds. The root mean square fluctuation (RMSF), which is the average RMSD per each atom of the protein, compared with the alpha carbons of the molecule was then plotted to examine potential stable and unstable portions of the protein.

# CHAPTER 4. RESULTS

4.1 *M. smegmatis* and Phage-treated Growth Curves



Figure 4-1. The average OD600 of *M. smegmatis* taken every two hours for 34 hours total with error bars indicating one standard deviation away from the average.



Figure 4-2. The average OD600 of each sample taken every four hours for 24 hours total with error bars indicating one standard deviation away from the average. Blue represents the control of only the host *M. smegmatis*, grey represents the sample of *M. smegmatis* treated with mycobacteriophage PotatoSplit, and orange represents the sample of *M. smegmatis* treated with mycobacteriophage Zalkecks. Each sample has three biological replicates for statistical significance.

# 4.2 Testing Multiple Protein Extraction Methods



Figure 4-3. Venn diagram indicating how many proteins of *M. smegmatis* were present in each of the three extraction methods.

|                                |                             |                                                       | Aceton    | e Specific | Bligh Dy  | er Specific | MTBE      | Specific   |
|--------------------------------|-----------------------------|-------------------------------------------------------|-----------|------------|-----------|-------------|-----------|------------|
| Level 1                        | Level 2                     | Level 3                                               | Sequences | Percentage | Sequences | Percentage  | Sequences | Percentage |
| cellular anatomical entity (GO | :0110165)                   |                                                       | 39        | 45.35      | 27        | 44.26       | 8         | 47.06      |
|                                | cytoplasm (GO:0005737)      |                                                       | 28        | 34.15      | 25        | 42.37       | 7         | 35         |
|                                |                             | plastid (GO:0009536)                                  | 1         | 3.45       | 2         | 11.76       | 1         | 12.5       |
|                                |                             | mitochondrion (GO:0005739)                            | 11        | 37.93      | 4         | 23.53       | 2         | 25         |
|                                |                             | microbody (GO:0042579)                                | 1         | 3.45       | 0         | 0           | 0         | 0          |
|                                |                             | cytosol (GO:0005829)                                  | 16        | 55.17      | 11        | 64.71       | 5         | 62.5       |
|                                | cell periphery (GO:0071944) |                                                       | 3         | 3.66       | 2         | 3.39        | 1         | 5          |
|                                |                             | plasma membrane (GO:0005886)                          | 3         | 100        | 2         | 100         | 1         | 100        |
|                                | membrane (GO:0016020)       |                                                       | 5         | 6.10       | 3         | 5.08        | 1         | 5          |
|                                |                             | membrane protein complex (GO:0098796)                 | 1         | 16.67      | 1         | 20          | 0         | 0          |
|                                |                             | plasma membrane (GO:0005886)                          | 3         | 50         | 2         | 40          | 1         | 100        |
|                                |                             | intrinsic component of membrane (GO:0031224)          | 2         | 33.33      | 0         | 0           | 0         | 0          |
|                                |                             | photosynthetic membrane (GO:0034357)                  | 0         | 0          | 1         | 20          | 0         | 0          |
|                                |                             | organelle membrane (GO:0031090)                       | 0         | 0          | 1         | 20          | 0         | 0          |
|                                | periplasmic space (GO:0042  | 597)                                                  | 2         | 2.44       | 1         | 1.69        | 1         | 5          |
|                                |                             | outer membrane-bounded periplasmic space (GO:0030288) | 2         | 100        | 1         | 100         | 1         | 100        |
|                                | membrane-enclosed lumen (C  | GO:0031974)                                           | 4         | 4.88       | 2         | 3.39        | 1         | 5          |
|                                |                             | organelle lumen (GO:0043233)                          | 4         | 100        | 2         | 100         | 1         | 100        |
|                                | intrinsic component of memb | orane (GO:0031224)                                    | 2         | 2.44       | 0         | 0           | 0         | 0          |
|                                |                             | integral component of membrane (GO:0016021)           | 2         | 66.67      | 0         | 0           | 0         | 0          |
|                                |                             | intrinsic component of plasma membrane (GO:0031226)   | 1         | 33.33      | 0         | 0           | 0         | 0          |
|                                | envelope (GO:0031975)       |                                                       | 2         | 2.44       | 2         | 3.39        | 1         | 5          |
|                                |                             | cell envelope (GO:0030313)                            | 2         | 100        | 1         | 50          | 1         | 100        |
|                                |                             | organelle envelope (GO:0031967)                       | 0         | 0          | 1         | 50          | 0         | 0          |
|                                | chloroplast stroma (GO:0009 | 9570)                                                 | 1         | 1.22       | 0         | 0           | 0         | 0          |
|                                | organelle (GO:0043226)      |                                                       | 19        | 23.17      | 11        | 18.64       | 3         | 15         |
|                                |                             | organellar ribosome (GO:0000313)                      | 3         | 6.12       | 0         | 0           | 0         | 0          |
|                                |                             | organelle lumen (GO:0043233)                          | 4         | 8.16       | 2         | 8.33        | 1         | 14.29      |
|                                |                             | intracellular organelle (GO:0043229)                  | 19        | 38.78      | 11        | 45.83       | 3         | 42.86      |
|                                |                             | non-membrane-bounded organelle (GO:0043228)           | 11        | 22.45      | 3         | 12.5        | 1         | 14.29      |
|                                |                             | membrane-bounded organelle (GO:0043227)               | 12        | 24.49      | 8         | 33.33       | 2         | 28.57      |
|                                | cytosol (GO:0005829)        |                                                       | 16        | 19.51      | 11        | 18.64       | 5         | 25         |
|                                |                             | cytosolic ribosome (GO:0022626)                       | 2         | 100        | 3         | 100         | 1         | 100        |
|                                | organelle subcompartment (G | GO:0031984)                                           | 0         | 0          | 1         | 1.69        | 0         | 0          |
|                                |                             | plastid thylakoid (GO:0031976)                        | 0         | 0          | 1         | 100         | 0         | 0          |
|                                | thylakoid (GO:0009579)      |                                                       | 0         | 0          | 1         | 1.69        | 0         | 0          |
|                                |                             | photosynthetic membrane (GO:0034357)                  | 0         | 0          | 1         | 50          | 0         | 0          |
|                                |                             | plastid thylakoid (GO:0031976)                        | 0         | 0          | 1         | 50          | 0         | 0          |

Table 4-1. PANTHER classifications of significant proteins in each extraction method according to the GO term cellular components.

| protein-containing complex (GC | ):0032991)                      |                                                                                        | 12 | 13.95 | 8  | 13.11 | 2 | 11.76 |
|--------------------------------|---------------------------------|----------------------------------------------------------------------------------------|----|-------|----|-------|---|-------|
|                                | mitochondrial protein complex   | (GO:0098798)                                                                           | 3  | 21.43 | 2  | 22.22 | 0 | 0     |
|                                |                                 | mitochondrial large ribosomal subunit (GO:0005762)                                     | 3  | 100   | 0  | 0     | 0 | 0     |
|                                |                                 | inner mitochondrial membrane protein complex (GO:0098800)                              | 0  | 0     | 1  | 100   | 0 | 0     |
|                                | ribonucleoprotein complex (G    | D:1990904)                                                                             | 10 | 71.43 | 3  | 33.33 | 1 | 100   |
|                                |                                 | ribosomal subunit (GO:0044391)                                                         | 10 | 100   | 3  | 100   | 1 | 100   |
|                                | membrane protein complex (G     | O:0098796)                                                                             | 1  | 7.14  | 1  | 11.11 | 0 | 0     |
|                                |                                 | proton-transporting two-sector ATPase complex (GO:0016469)                             | 1  | 50    | 1  | 50    | 0 | 0     |
|                                |                                 | proton-transporting two-sector ATPase complex, proton-transporting domain (GO:0033177) | 1  | 50    | 0  | 0     | 0 | 0     |
|                                |                                 | inner mitochondrial membrane protein complex (GO:0098800)                              | 0  | 0     | 1  | 50    | 0 | 0     |
|                                | catalytic complex (GO:190249    | 4)                                                                                     | 0  | 0     | 3  | 33.33 | 0 | 0     |
|                                |                                 | peptidase complex (GO:1905368)                                                         | 0  | 0     | 1  | 50    | 0 | 0     |
|                                |                                 | transferase complex (GO:1990234)                                                       | 0  | 0     | 1  | 50    | 0 | 0     |
| intracellular (GO:0005622)     |                                 |                                                                                        | 35 | 40.70 | 26 | 42.62 | 7 | 41.18 |
|                                | cytoplasm (GO:0005737)          |                                                                                        | 28 | 58.33 | 25 | 64.10 | 7 | 70    |
|                                |                                 | plastid (GO:0009536)                                                                   | 1  | 3.45  | 2  | 11.76 | 1 | 12.5  |
|                                |                                 | mitochondrion (GO:0005739)                                                             | 11 | 37.93 | 4  | 23.53 | 2 | 25    |
|                                |                                 | microbody (GO:0042579)                                                                 | 1  | 3.45  | 0  | 0     | 0 | 0     |
|                                |                                 | cytosol (GO:0005829)                                                                   | 16 | 55.17 | 11 | 64.71 | 5 | 62.5  |
|                                | proton-transporting ATP synth   | nase complex (GO:0045259)                                                              | 1  | 2.08  | 1  | 2.56  | 0 | 0     |
|                                |                                 | proton-transporting ATP synthase complex, coupling factor F(o) (GO:0045263)            | 1  | 100   | 0  | 0     | 0 | 0     |
|                                |                                 | mitochondrial proton-transporting ATP synthase complex (GO:0005753)                    | 0  | 0     | 1  | 100   | 0 | 0     |
|                                | intracellular organelle (GO:004 | 43229)                                                                                 | 19 | 39.58 | 11 | 28.21 | 3 | 30    |
|                                |                                 | intracellular organelle lumen (GO:0070013)                                             | 4  | 14.81 | 2  | 13.33 | 1 | 25    |
|                                |                                 | intracellular non-membrane-bounded organelle (GO:0043232)                              | 11 | 40.74 | 3  | 20    | 1 | 25    |
|                                |                                 | intracellular membrane-bounded organelle (GO:0043231)                                  | 12 | 44.44 | 8  | 53.33 | 2 | 50    |
|                                |                                 | organelle envelope (GO:0031967)                                                        | 0  | 0     | 1  | 6.67  | 0 | 0     |
|                                |                                 | organelle subcompartment (GO:0031984)                                                  | 0  | 0     | 1  | 6.67  | 0 | 0     |
|                                | proteasome complex (GO:000      | 0502)                                                                                  | 0  | 0     | 1  | 2.56  | 0 | 0     |
|                                | thylakoid (GO:0009579)          |                                                                                        | 0  | 0     | 1  | 2.56  | 0 | 0     |
|                                |                                 | photosynthetic membrane (GO:0034357)                                                   | 0  | 0     | 1  | 50    | 0 | 0     |
|                                |                                 | plastid thylakoid (GO:0031976)                                                         | 0  | 0     | 1  | 50    | 0 | 0     |

# 4.3 Testing Lipid Extraction Methods

Table 4-2. List of fold change significant lipids for *M. smegmatis* in each lipid extraction method categorized by lipid class by MS-DIAL nomenclature standards. A fold change greater than 1.5 was used to determine statistical significance. The term upregulated denotes which test the lipid group was concentrated in and was derived from MetaboAnalyst.

|   |                                             |       | Acetone vs M | ITBE        | A     | Acetone vs Blig | gh Dyer     | ]     | Bligh Dyer vs MTBE |             |  |  |
|---|---------------------------------------------|-------|--------------|-------------|-------|-----------------|-------------|-------|--------------------|-------------|--|--|
|   |                                             |       | Acetone      | MTBE        |       | Acetone         | Bligh Dyer  |       | Bligh Dyer         | MTBE        |  |  |
|   | Lipid Class                                 | Total | Upregulated  | Upregulated | Total | Upregulated     | Upregulated | Total | Upregulated        | Upregulated |  |  |
|   | FA01: Fatty acids and Conjugates            | 8     | 2            | 6           | 8     | 5               | 3           | 10    | 8                  | 2           |  |  |
|   | FA07: Fatty esters                          | 2     | 0            | 2           | 2     | 0               | 2           | 2     | 2                  | 0           |  |  |
|   | FA08: Fatty amides                          | 8     | 5            | 3           | 13    | 4               | 9           | 12    | 7                  | 5           |  |  |
|   | GL00: Other Glycerolipids                   | 17    | 10           | 7           | 17    | 9               | 8           | 19    | 10                 | 9           |  |  |
|   | GL01: Monoradylglycerols                    | 1     | 0            | 1           | 2     | 0               | 2           | 2     | 2                  | 0           |  |  |
|   | GL02: Diradylglycerols                      | 11    | 9            | 2           | 19    | 10              | 9           | 18    | 8                  | 10          |  |  |
|   | GL03: Triradylglycerols                     | 20    | 19           | 1           | 31    | 14              | 17          | 31    | 17                 | 14          |  |  |
|   | GL05: Glycosyldiradylglycerols              | 5     | 3            | 2           | 7     | 3               | 4           | 7     | 4                  | 3           |  |  |
|   | GP00: Other Glycerophospholipids            | 0     | 0            | 0           | 1     | 1               | 0           | 1     | 0                  | 1           |  |  |
| Ś | GP01: Glycerophosphocholines                | 4     | 3            | 1           | 12    | 8               | 4           | 13    | 5                  | 8           |  |  |
| 0 | GP02: Glycerophosphoethanolamines           | 27    | 24           | 3           | 48    | 1               | 47          | 49    | 47                 | 2           |  |  |
|   | GP04: Glycerophosphoglycerols               | 17    | 12           | 5           | 23    | 12              | 11          | 24    | 12                 | 12          |  |  |
|   | GP06: Glycerophosphoinositols               | 8     | 5            | 3           | 11    | 9               | 2           | 9     | 1                  | 8           |  |  |
|   | GP10: Glycerophosphates                     | 0     | 0            | 0           | 1     | 1               | 0           | 1     | 0                  | 1           |  |  |
|   | GP12: Glycerophosphoglycerophosphoglycerols | 2     | 0            | 2           | 2     | 2               | 0           | 2     | 0                  | 2           |  |  |
|   | PR01: Isoprenoids                           | 0     | 0            | 0           | 2     | 2               | 0           | 2     | 0                  | 2           |  |  |
|   | PR02: Quinones and hydroquinones            | 1     | 1            | 0           | 1     | 0               | 1           | 1     | 1                  | 0           |  |  |
|   | SP01: Sphingoid bases                       | 16    | 15           | 1           | 21    | 9               | 12          | 21    | 10                 | 11          |  |  |
|   | SP02: Ceramides                             | 13    | 7            | 6           | 21    | 12              | 9           | 19    | 9                  | 10          |  |  |
|   | SP03: Phosphosphingolipids                  | 10    | 6            | 4           | 17    | 15              | 2           | 17    | 1                  | 16          |  |  |
|   | SP05: Neutral glycosphingolipids            | 7     | 5            | 2           | 8     | 5               | 3           | 7     | 2                  | 5           |  |  |
|   | SP06: Acidic glycosphingolipids             | 5     | 2            | 3           | 9     | 8               | 1           | 9     | 1                  | 8           |  |  |
|   | ST00: Other Sterol lipids                   | 5     | 4            | 1           | 7     | 6               | 1           | 7     | 1                  | 6           |  |  |

# 4.4 Examining Lipids from Phage-Treated Samples



Figure 4-4. Principal component analysis plots comparing the phage-treated samples (mycobacteriophage Zalkecks, Z, on the left and mycobacteriophage PotatoSplit, P, on the right) to the control sample of *M. smegmatis* host. M represents the dataset of *M.* smegmatis host. Each plot represents the first principal component on the x-axis and the second principal component on the y-axis each with their corresponding percentage of variance.



Figure 4-5. Principal component analysis plots comparing different time points of the phagetreated samples (mycobacteriophage Zalkecks on the left and mycobacteriophage PotatoSplit on the right). Bacteria heavy indicates the time points 0 and 4 hours which closely followed the OD600 of the control, *M. smegmatis*, while phage heavy indicates the time points 12 and 24 hours in which the presence of phage had a significant impact on OD600 compared to the control. Each plot represents the first principal component on the x-axis and the second principal component on the y-axis each with their corresponding percentage of variance



Figure 4-6. Heatmap of all significant ANOVA lipids found in mycobacteriophage PotatoSplit treated samples at each time point taken.



Figure 4-7. Boxplots of a significant lipid in the Zalkecks treated samples (left) and PotatoSplit treated samples (right).

| Table 4-3. List of significant lipids in mycobacteriophage Zalkecks treated samples categorized       |
|-------------------------------------------------------------------------------------------------------|
| by their abundance over time. To determine significance, ANOVA with an adjusted p-value               |
| (FDR) cutoff of 0.05 was used and Fisher's LSD was used for post-hoc analysis. The list of each       |
| pattern over time was cross-referenced with the control samples of just <i>M. smegmatis</i> over time |
| and any lipids found in both groups were removed.                                                     |

| Zalkecks Lipids                                                                                                   |                      |                      |                      |  |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|----------------------|--|--|--|--|--|--|--|--|
| Increases at Each Time Point Decreases at Each Time Point Increases in 0 and 4 hours Increases in 12 and 24 hours |                      |                      |                      |  |  |  |  |  |  |  |  |
| RIKEN P-VS1 ID-10248                                                                                              | RIKEN P-VS1 ID-5826  | RIKEN P-VS1 ID-5826  | RIKEN P-VS1 ID-10784 |  |  |  |  |  |  |  |  |
| RIKEN P-VS1 ID-7426                                                                                               | PG 34:2 PG 16:1_18:1 | RIKEN P-VS1 ID-8424  | RIKEN P-VS1 ID-10248 |  |  |  |  |  |  |  |  |
| RIKEN P-VS1 ID-8167                                                                                               | TG 15:1_15:1_34:9    | PG 34:2 PG 16:1_18:1 | RIKEN P-VS1 ID-7426  |  |  |  |  |  |  |  |  |
| RIKEN P-VS1 ID-8905                                                                                               |                      | TG 15:1_15:1_34:9    | RIKEN P-VS1 ID-8167  |  |  |  |  |  |  |  |  |
| RIKEN P-VS1 ID-9219                                                                                               |                      | Cer 16:0;2O/16:0     | RIKEN P-VS1 ID-8905  |  |  |  |  |  |  |  |  |
| RIKEN P-VS1 ID-9717                                                                                               |                      | Cer 34:0;4O          | RIKEN P-VS1 ID-9219  |  |  |  |  |  |  |  |  |
| CerP 20:1;2O/28:6                                                                                                 |                      | DG 40:6              | RIKEN P-VS1 ID-9717  |  |  |  |  |  |  |  |  |
| DGGA 11:0_17:0                                                                                                    |                      | DG 64:17             | PG 30:1 PG 14:0_16:1 |  |  |  |  |  |  |  |  |
| DGGA 12:0_18:1                                                                                                    |                      | PE 32:1 PE 16:0_16:1 | PG 35:2 PG 16:1_19:1 |  |  |  |  |  |  |  |  |
| DGGA 17:0_14:1                                                                                                    |                      | PE 32:2 PE 16:1_16:1 | DG 32:1              |  |  |  |  |  |  |  |  |
| PE 14:0_24:5                                                                                                      |                      | PE 34:2 PE 16:1_18:1 | MGDG O-15:4_17:4     |  |  |  |  |  |  |  |  |
| PE 31:1 PE 14:0_17:1                                                                                              |                      | PE 36:2 PE 18:1_18:1 | PI 54:8              |  |  |  |  |  |  |  |  |
| PE 33:1                                                                                                           |                      | PE 38:0              | PI-Cer 35:2;2O       |  |  |  |  |  |  |  |  |
| PE 33:1 PE 16:0_17:1                                                                                              |                      | PI 55:8              | SL 13:2;O/30:6;O     |  |  |  |  |  |  |  |  |
| PE 36:1                                                                                                           |                      | PI 55:9              | CerP 20:1;2O/28:6    |  |  |  |  |  |  |  |  |
| PE 36:2 PE 17:1_19:1                                                                                              |                      |                      | DGGA 11:0_17:0       |  |  |  |  |  |  |  |  |
| PG 36:2                                                                                                           |                      |                      | DGGA 12:0_18:1       |  |  |  |  |  |  |  |  |
| PI-Cer 33:2;2O                                                                                                    |                      |                      | DGGA 17:0_14:1       |  |  |  |  |  |  |  |  |
| PI-Cer 35:3;2O                                                                                                    |                      |                      | PE 14:0_24:5         |  |  |  |  |  |  |  |  |
| SL 12:1;O/28:5;O                                                                                                  |                      |                      | PE 31:1 PE 14:0_17:1 |  |  |  |  |  |  |  |  |
| SL 12:1;O/30:6;O                                                                                                  |                      |                      | PE 33:1              |  |  |  |  |  |  |  |  |
| SL 13:1;O/28:6;O                                                                                                  |                      |                      | PE 33:1 PE 16:0_17:1 |  |  |  |  |  |  |  |  |
| SL 15:3;O/30:6;O                                                                                                  |                      |                      | PE 36:1              |  |  |  |  |  |  |  |  |
| SL 16:3;O/30:6;O                                                                                                  |                      |                      | PE 36:2 PE 17:1_19:1 |  |  |  |  |  |  |  |  |
| SM 12:1;2O/28:6                                                                                                   |                      |                      | PG 36:2              |  |  |  |  |  |  |  |  |
| SM 39:8;3O                                                                                                        |                      |                      | PI-Cer 33:2;2O       |  |  |  |  |  |  |  |  |
| TG 15:4_15:4_15:4                                                                                                 |                      |                      | PI-Cer 35:3;2O       |  |  |  |  |  |  |  |  |
| TG 8:0_14:1_36:10                                                                                                 |                      |                      | SL 12:1;O/28:5;O     |  |  |  |  |  |  |  |  |
|                                                                                                                   |                      |                      | SL 12:1;O/30:6;O     |  |  |  |  |  |  |  |  |
|                                                                                                                   |                      |                      | SL 13:1;O/28:6;O     |  |  |  |  |  |  |  |  |
|                                                                                                                   |                      |                      | SL 15:3;O/30:6;O     |  |  |  |  |  |  |  |  |
|                                                                                                                   |                      |                      | SL 16:3;O/30:6;O     |  |  |  |  |  |  |  |  |
|                                                                                                                   |                      |                      | SM 12:1;2O/28:6      |  |  |  |  |  |  |  |  |
|                                                                                                                   |                      |                      | SM 39:8;3O           |  |  |  |  |  |  |  |  |
|                                                                                                                   |                      |                      | TG 15:4_15:4_15:4    |  |  |  |  |  |  |  |  |
|                                                                                                                   |                      |                      | TG 8:0_14:1_36:10    |  |  |  |  |  |  |  |  |

Table 4-4. List of significant lipids in mycobacteriophage PotatoSplit treated samples categorized by their abundance over time. To determine significance, ANOVA with an adjusted p-value (FDR) cutoff of 0.05 was used and Fisher's LSD was used for post-hoc analysis. The list of each pattern over time was cross-referenced with the control samples of just *M. smegmatis* over time and any lipids found in both groups were removed.

| PotatoSplit Lipids           |                              |                            |                              |  |  |  |  |  |  |  |
|------------------------------|------------------------------|----------------------------|------------------------------|--|--|--|--|--|--|--|
| Increases at Each Time Point | Decreases at Each Time Point | Increases in 0 and 4 hours | Increases in 12 and 24 hours |  |  |  |  |  |  |  |
| RIKEN P-VS1 ID-8167          | RIKEN P-VS1 ID-5423          | RIKEN P-VS1 ID-5453        | RIKEN P-VS1 ID-8167          |  |  |  |  |  |  |  |
| PE 14:0_24:5                 | RIKEN P-VS1 ID-5453          | RIKEN P-VS1 ID-5826        | RIKEN P-VS1 ID-10784         |  |  |  |  |  |  |  |
| TG 8:0_15:4_18:5             | RIKEN P-VS1 ID-5826          | RIKEN P-VS1 ID-5423        | PI-Cer 35:2;2O               |  |  |  |  |  |  |  |
|                              | RIKEN P-VS1 ID-5903          | RIKEN P-VS1 ID-5903        | TG 8:0_15:4_18:5             |  |  |  |  |  |  |  |
|                              | RIKEN P-VS1 ID-8424          | RIKEN P-VS1 ID-8424        | PE 14:0_24:5                 |  |  |  |  |  |  |  |
|                              | RIKEN P-VS1 ID-9165          | RIKEN P-VS1 ID-9165        | PG 30:1 PG 14:0_16:1         |  |  |  |  |  |  |  |
|                              | BMP 9:0_26:4                 | BMP 9:0_26:4               | PI-Cer 33:2;2O               |  |  |  |  |  |  |  |
|                              | CAR 27:1                     | CAR 27:1                   | PI-Cer 33:2;2O               |  |  |  |  |  |  |  |
|                              | DG 42:6                      | PG 32:0 PG 16:0_16:0       |                              |  |  |  |  |  |  |  |
|                              | DGTS 18:5_18:5               | DG 42:6                    |                              |  |  |  |  |  |  |  |
|                              | Hex2Cer 16:1;2O/16:1         | DGTS 18:5_18:5             |                              |  |  |  |  |  |  |  |
|                              | HexCer 17:1;3O/20:4;(2OH)    | Hex2Cer 16:1;20/16:1       |                              |  |  |  |  |  |  |  |
|                              | MGDG O-15:4_7:0              | HexCer 17:1;3O/20:4;(2OH)  |                              |  |  |  |  |  |  |  |
|                              | PC 19:3_19:3                 | MGDG O-15:4_7:0            |                              |  |  |  |  |  |  |  |
|                              | PE 32:1                      | PC 19:3_19:3               |                              |  |  |  |  |  |  |  |
|                              | PE 34:2 PE 16:1_18:1         | PE 32:1                    |                              |  |  |  |  |  |  |  |
|                              | PE 34:3                      | PE 34:2 PE 16:1_18:1       |                              |  |  |  |  |  |  |  |
|                              | PE 36:2 PE 18:1_18:1         | PE 34:3                    |                              |  |  |  |  |  |  |  |
|                              | PE 36:3 PE 18:1_18:2         | PE 36:2 PE 18:1_18:1       |                              |  |  |  |  |  |  |  |
|                              | PE P-37:2 PE P-16:1_21:1     | PE 36:3 PE 18:1_18:2       |                              |  |  |  |  |  |  |  |
|                              | PG 32:0 PG 16:0_16:0         | PE P-37:2 PE P-16:1_21:1   |                              |  |  |  |  |  |  |  |
|                              | PG 34:2 PG 16:1_18:1         | PG 34:2 PG 16:1_18:1       |                              |  |  |  |  |  |  |  |
|                              | PS 33:1                      | PS 33:1                    |                              |  |  |  |  |  |  |  |
|                              |                              | DG 40:6                    |                              |  |  |  |  |  |  |  |
|                              |                              | PE 32:1 PE 16:0_16:1       |                              |  |  |  |  |  |  |  |
|                              |                              | PE 34:0 PE 16:0_18:0       |                              |  |  |  |  |  |  |  |

Table 4-5. List of significant lipids categorized by lipid class by MS-DIAL nomenclature standards over a range of statistical tests and indicating which are upregulated in each group when applicable. Significance was determined by a fold change greater than 1.5 or in the ANOVA tests, an adjusted p-value (FDR) cutoff of 0.05 was used and Fisher's LSD was used for post-hoc analysis. M indicates the control samples only containing *M. smegmatis*, P indicates the mycobacteriophage PotatoSplit treated samples, and Z indicates the mycobacteriophage Zalkecks treated samples.

| Statsitcal Test           | FA07 | FA08 | GL00 | GL01 | GL02 | GL03 | GL05 | GP01 | GP02 | GP04 | GP06 | <b>PR01</b> | PR02 | SP01 | SP02 | SP03 | SP05 | SP06 | ST00 |
|---------------------------|------|------|------|------|------|------|------|------|------|------|------|-------------|------|------|------|------|------|------|------|
| MvP all hours             | 0    | 5    | 1    | 0    | 2    | 3    | 1    | 0    | 10   | 1    | 1    | 1           | 0    | 2    | 1    | 7    | 2    | 3    | 0    |
| M upregulated             | 0    | 4    | 0    | 0    | 0    | 2    | 0    | 0    | 0    | 0    | 1    | 1           | 0    | 1    | 0    | 3    | 0    | 1    | 0    |
| P upregulated             | 0    | 1    | 1    | 0    | 2    | 1    | 1    | 0    | 10   | 1    | 0    | 0           | 0    | 1    | 1    | 4    | 2    | 2    | 0    |
| MvP 0-4 hours             | 0    | 2    | 1    | 0    | 4    | 6    | 0    | 0    | 9    | 1    | 1    | 1           | 0    | 0    | 2    | 5    | 1    | 2    | 1    |
| M upregulated             | 0    | 1    | 0    | 0    | 1    | 2    | 0    | 0    | 0    | 0    | 0    | 0           | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| P upregulated             | 0    | 1    | 1    | 0    | 3    | 4    | 0    | 0    | 9    | 1    | 1    | 1           | 0    | 0    | 2    | 5    | 1    | 2    | 1    |
| MvP 12-24 hours           | 0    | 5    | 3    | 0    | 3    | 2    | 1    | 4    | 9    | 3    | 3    | 1           | 0    | 5    | 5    | 5    | 3    | 3    | 0    |
| M upregulated             | 0    | 4    | 2    | 0    | 1    | 1    | 0    | 4    | 0    | 2    | 2    | 1           | 0    | 3    | 1    | 3    | 2    | 1    | 0    |
| P upregulated             | 0    | 1    | 1    | 0    | 2    | 1    | 1    | 0    | 9    | 1    | 1    | 0           | 0    | 2    | 4    | 2    | 1    | 2    | 0    |
| P Hours ANOVA             | 1    | 0    | 1    | 0    | 6    | 1    | 1    | 1    | 10   | 7    | 2    | 0           | 0    | 0    | 1    | 3    | 2    | 0    | 0    |
| P 0-4 hours v 12-24 hours | 1    | 3    | 7    | 0    | 12   | 9    | 3    | 7    | 35   | 12   | 9    | 0           | 0    | 15   | 11   | 13   | 4    | 8    | 0    |
| 0-4 upregulated           | 1    | 1    | 2    | 0    | 7    | 4    | 1    | 7    | 21   | 7    | 5    | 0           | 0    | 6    | 6    | 6    | 3    | 5    | 0    |
| 12-24 upregulated         | 0    | 2    | 5    | 0    | 5    | 5    | 2    | 0    | 14   | 5    | 4    | 0           | 0    | 9    | 5    | 7    | 1    | 3    | 0    |
| MvZ all hours             | 1    | 4    | 7    | 1    | 3    | 4    | 3    | 1    | 8    | 2    | 3    | 1           | 1    | 3    | 3    | 4    | 2    | 2    | 0    |
| M upregulated             | 0    | 3    | 0    | 0    | 2    | 2    | 0    | 1    | 3    | 0    | 3    | 1           | 1    | 0    | 0    | 1    | 0    | 0    | 0    |
| Z upregulated             | 1    | 1    | 7    | 1    | 1    | 2    | 3    | 0    | 5    | 2    | 0    | 0           | 0    | 3    | 3    | 3    | 2    | 2    | 0    |
| MvZ 0-4 hrs               | 0    | 0    | 0    | 0    | 1    | 6    | 1    | 4    | 3    | 0    | 1    | 0           | 1    | 0    | 0    | 1    | 0    | 0    | 0    |
| M upregulated             | 0    | 0    | 0    | 0    | 1    | 3    | 0    | 4    | 2    | 0    | 1    | 0           | 1    | 0    | 0    | 1    | 0    | 0    | 0    |
| Z upregulated             | 0    | 0    | 0    | 0    | 0    | 3    | 1    | 0    | 1    | 0    | 0    | 0           | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| MvZ 12-24hrs              | 1    | 5    | 9    | 1    | 7    | 3    | 3    | 1    | 10   | 5    | 6    | 1           | 1    | 4    | 5    | 5    | 2    | 2    | 0    |
| M upregulated             | 0    | 4    | 1    | 0    | 4    | 1    | 0    | 1    | 5    | 0    | 6    | 1           | 1    | 0    | 1    | 1    | 0    | 0    | 0    |
| Z upregulated             | 1    | 1    | 8    | 1    | 3    | 2    | 3    | 0    | 5    | 5    | 0    | 0           | 0    | 4    | 4    | 4    | 2    | 2    | 0    |
| Z Hours ANOVA             | 0    | 1    | 3    | 0    | 8    | 6    | 2    | 0    | 18   | 8    | 5    | 0           | 0    | 8    | 4    | 6    | 0    | 0    | 0    |
| Z 0-4 hours v 12-24 hours | 1    | 1    | 15   | 1    | 13   | 8    | 4    | 2    | 37   | 9    | 9    | 0           | 0    | 11   | 11   | 12   | 5    | 5    | 0    |
| 0-4 upregulated           | 0    | 0    | 3    | 0    | 7    | 3    | 1    | 2    | 21   | 3    | 5    | 0           | 0    | 1    | 6    | 4    | 3    | 2    | 0    |
| 12-24 upregulated         | 1    | 1    | 12   | 1    | 6    | 5    | 3    | 0    | 16   | 6    | 4    | 0           | 0    | 10   | 5    | 8    | 2    | 3    | 0    |

# 4.5 Proteomic Data Analysis FrenchFry Case Study

Table 4-6. List of FrenchFry peptides found in mass spectrometry data along with their corresponding gene number, annotated function, and the frequency of how often they were counted in the data. The protein ID indicates the original label from the MaxQuant search.

| Protein ID | Gene<br>Number | Annotated Function                             | Peptide<br>Frequency |
|------------|----------------|------------------------------------------------|----------------------|
| FrenchFry  | 1              | helix-turn-helix DNA binding domain protein    | 24                   |
| FrenchFry  | 2              | queuine-tRNA ribosyltransferase                | 26                   |
| FrenchFry  | 3              | QueC-like queosine biosynthesis protein        | 4                    |
| FrenchFry  | 4              | QueD-like queosine biosynthesis protein        | 6                    |
| FrenchFry  | 5              | QueE-like queosine biosynthesis protein        | 11                   |
| FrenchFry  | 6              | GTP cyclohydrolase I                           | 7                    |
| FrenchFry  | 7              | terminase                                      | 16                   |
| FrenchFry  | 14             | hypothetical protein                           | 2                    |
| FrenchFry  | 15             | major capsid protein                           | 29                   |
| FrenchFry  | 17             | hypothetical protein                           | 11                   |
| FrenchFry  | 19             | hypothetical protein                           | 2                    |
| FrenchFry  | 20             | hypothetical protein                           | 5                    |
| FrenchFry  | 21             | major tail protein                             | 10                   |
| FrenchFry  | 24             | head-to-tail adaptor                           | 6                    |
| FrenchFry  | 25             | hypothetical protein                           | 3                    |
| FrenchFry  | 26             | hypothetical protein                           | 8                    |
| FrenchFry  | 27             | tail assembly chaperone                        | 5                    |
| FrenchFry  | 28             | hypothetical protein (tail assembly chaperone) | 8                    |
| FrenchFry  | 29             | tape measure protein                           | 59                   |
| FrenchFry  | 30             | major tail protein                             | 13                   |
| FrenchFry  | 31             | minor tail protein                             | 13                   |
| FrenchFry  | 32             | minor tail protein                             | 17                   |
| FrenchFry  | 33             | minor tail protein                             | 6                    |
| FrenchFry  | 34             | hypothetical protein                           | 4                    |
| FrenchFry  | 35             | hypothetical protein                           | 2                    |
| FrenchFry  | 36             | hypothetical protein                           | 5                    |
| FrenchFry  | 37             | hypothetical protein                           | 1                    |
| FrenchFry  | 38             | hypothetical protein                           | 9                    |
| FrenchFry  | 39             | hypothetical protein (minor tail protein)      | 17                   |
| FrenchFry  | 40             | hypothetical protein                           | 4                    |
| FrenchFry  | 42             | hypothetical protein                           | 5                    |
| FrenchFry  | 43             | hypothetical protein                           | 12                   |

# Table 4-6 continued

| Mycobacterium:False | 44 | helix-turn-helix DNA binding domain protein                 | 5  |
|---------------------|----|-------------------------------------------------------------|----|
| Mycobacterium:False | 45 | helix-turn-helix DNA binding domain protein                 | 6  |
| Mycobacterium:False | 46 | hypothetical protein                                        | 5  |
| FrenchFry           | 47 | lysin A                                                     | 23 |
| FrenchFry           | 48 | holin                                                       | 2  |
| Mycobacterium:False | 49 | hypothetical protein                                        | 10 |
| Mycobacterium:False | 50 | hypothetical protein                                        | 11 |
| Mycobacterium:False | 51 | DNA helicase                                                | 14 |
| Mycobacterium:False | 54 | hypothetical protein                                        | 13 |
| Mycobacterium:False | 55 | DNA primase/helicase                                        | 34 |
| Mycobacterium:False | 57 | DNA polymerase I                                            | 20 |
| Mycobacterium:False | 60 | hypothetical protein                                        | 7  |
| Mycobacterium:False | 62 | hypothetical protein                                        | 3  |
| FrenchFry           | 64 | hypothetical protein                                        | 9  |
| FrenchFry           | 66 | hypothetical protein (helix-turn-helix DNA binding protein) | 3  |
| FrenchFry           | 67 | DNA binding protein                                         | 8  |
| FrenchFry           | 68 | hypothetical protein                                        | 4  |
| FrenchFry           | 69 | hypothetical protein                                        | 3  |
| FrenchFry           | 70 | hypothetical protein (DNA binding protein)                  | 4  |
| Mycobacterium:False | 76 | hypothetical protein                                        | 4  |
| Mycobacterium:False | 77 | hypothetical protein                                        | 3  |
| Mycobacterium:False | 78 | hypothetical protein                                        | 2  |
| Mycobacterium:False | 83 | hypothetical protein                                        | 10 |
| Mycobacterium:False | 85 | hypothetical protein                                        | 8  |
| Mycobacterium:False | 86 | hypothetical protein                                        | 8  |
| Mycobacterium:False | 90 | hypothetical protein                                        | 5  |
| Mycobacterium:False | 91 | hypothetical protein                                        | 3  |
| Mycobacterium:False | 93 | hypothetical protein                                        | 9  |



Figure 4-8. Number of significant FrenchFry proteins expressed in the statistical comparison of mycobacteriophage FrenchFry treated samples to the negative control of just *M. smegmatis* grouped by functional classifications. The FrenchFry proteins represented in blue are upregulated in the FrenchFry data while those represented in orange are downregulated. NKF indicates no known function, DNA R & T indicates those involved in DNA replication and translation.

Table 4-7. Number of fold change significant (fold change greater than 1.5) and t-test significant (p-value lower than 0.05) proteins in each statistical test. E indicates the proteins present in the samples infected at the exponential phase of bacterial growth while S indicates the proteins present in the samples infected at the station phase of bacterial growth. Hour 4 indicates the samples taken after four hours of inoculation with phage FrenchFry and hour 10 indicates the samples taken after ten hours of inoculation with phage FrenchFry. FF indicates the FrenchFry-treated samples while NC indicates the negative control of just *M. smegmatis*.

| Test                  | Number of Fold Change<br>Significant Proteins | Number of T-test<br>Significant Proteins |
|-----------------------|-----------------------------------------------|------------------------------------------|
| E vs S                | 1429                                          | 909                                      |
| E vs S (hour 4)       | 1358                                          | 1035                                     |
| E vs S (hour 10)      | 1415                                          | 779                                      |
| 4 vs 10 (exponential) | 1244                                          | 61                                       |
| 4 vs 10 (stationary)  | 567                                           | 1                                        |
| FF vs NC              | 317                                           | 0                                        |



Figure 4-9. PANTHER pathway analysis of statistically significant proteins from the comparison of the exponential and stationary phases of inoculation based on the Gene Ontology terms corresponding to molecular function. The largest categories of binding and catalytic activity were broken into subcategories. Each category and subcategory listed contains the number of sequences applicable to the category.



Figure 4-10. PANTHER pathway analysis of statistically significant proteins from the comparison of the exponential and stationary phases of inoculation based on the Gene Ontology terms corresponding to biological process. The largest categories of cellular process and metabolic process were broken into subcategories. Each category and subcategory listed contains the number of sequences contained within it.



Figure 4-11. PANTHER pathway analysis of statistically significant proteins from the comparison of the exponential and stationary phases of inoculation based on the Gene Ontology terms corresponding to protein class. The largest category of metabolite interconversion enzyme was broken into subcategories. Each category and subcategory listed contains the number of sequences contained within it.



Figure 4-12. The fold enrichment of the DAVID pathway analysis functional annotation results based off the KEGG pathway terms of the statistically significant proteins determined by MetaboAnalyst in the comparison of the exponential and stationary phases of inoculation.

# 4.6 Archived Phage Samples

Table 4-8. List of all mycobacteriophages that were either re-archived for Purdue University or sent to the HHMI Science Education Alliance-Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) program at the University of Pittsburgh for long-term storage. Phages in this list that were not sent into HHMI had already been previously archived with the program.

| Phage        | Year<br>Isolated | Re-archived at<br>Purdue | Sent for HHMI<br>Archival |
|--------------|------------------|--------------------------|---------------------------|
| AlpineSix    | 2019             | Yes                      | Already Archived          |
| Apartment5   | 2019             | Yes                      | Already Archived          |
| Astoria      | 2019             | Yes                      | Already Archived          |
| Cloudy       | 2018             | Yes                      | Yes                       |
| CoffeeAlways | 2019             | Yes                      | Already Archived          |
| ColdWork     | 2019             | Yes                      | Already Archived          |
| Devastated   | 2018             | Yes                      | Yes                       |
| Elsie        | 2018             | Yes                      | Already Archived          |
| Fliddinger   | 2019             | Yes                      | Already Archived          |
| Gem1         | 2018             | Yes                      | Yes                       |
| Gillian      | 2018             | Yes                      | Yes                       |

Table 4-8 continued

| GTdaves        | 2019 | Yes | Already Archived |  |
|----------------|------|-----|------------------|--|
| Gylpye         | 2018 | Yes | Yes              |  |
| HapyZ          | 2019 | Yes | Already Archived |  |
| HonkyTonkAngel | 2019 | Yes | Already Archived |  |
| Izajani        | 2018 | Yes | Yes              |  |
| JakeTheDog     | 2018 | Yes | Yes              |  |
| JernigCza      | 2018 | Yes | Already Archived |  |
| JuliusCaesar   | 2019 | Yes | Already Archived |  |
| Krili          | 2018 | Yes | Already Archived |  |
| Levi           | 2019 | Yes | Already Archived |  |
| Lizzokovich    | 2018 | Yes | Already Archived |  |
| Maru           | 2019 | Yes | Already Archived |  |
| Meemlordius    | 2019 | Yes | Already Archived |  |
| MegsJr         | 2019 | Yes | Already Archived |  |
| Murai          | 2019 | Yes | Already Archived |  |
| NashYanlok     | 2018 | Yes | Already Archived |  |
| NiebruSaylor   | 2019 | Yes | Already Archived |  |
| NiQu           | 2018 | Yes | Already Archived |  |
| Orca           | 2018 | Yes | Yes              |  |
| Oromis         | 2018 | Yes | Already Archived |  |
| Possibility    | 2019 | Yes | Already Archived |  |
| Poyo           | 2018 | Yes | Already Archived |  |
| Prongs         | 2019 | Yes | Yes              |  |
| PVRamachandran | 2019 | Yes | Already Archived |  |
| Raid51         | 2019 | Yes | Already Archived |  |
| Redacted       | 2019 | Yes | Already Archived |  |
| Redwood        | 2019 | Yes | Already Archived |  |
| RetimsGems     | 2018 | Yes | Already Archived |  |
| RomeoNJuliet   | 2019 | Yes | Yes              |  |
| SilverDipper   | 2019 | Yes | Already Archived |  |
| Squidward      | 2018 | Yes | Yes              |  |
| Sydolivia      | 2019 | Yes | Yes              |  |
| Tanming        | 2018 | Yes | Yes              |  |
| Thalatta       | 2018 | Yes | Already Archived |  |
| TLMidnight     | 2019 | Yes | Already Archived |  |
| TreeDirt       | 2019 | Yes | Already Archived |  |
| WALC           | 2018 | Yes | Yes              |  |
| Wendell        | 2018 | Yes | Yes              |  |
| Yoosorrell     | 2018 | Yes | Yes              |  |

# 4.7 Mycobacteriophage Cluster B1 Frameshift Investigation

# 4.7.1 Structural Comparisons

Table 4-9. Top 5 PDB results for tail assembly chaperone 1. RMSD is the root-mean-square deviation and is the measure of the average distance between the atoms of superimposed proteins. Identity is the percentage sequence identity in the structurally aligned region. Coverage is the coverage of the alignment by TM-align and is equal to the number of structurally aligned residues divided by the length of the query protein.

| Rank | Classification        | RMSD | Identity | Coverage |
|------|-----------------------|------|----------|----------|
| 1    | Metal Binding Protein | 3.01 | 0.084    | 0.757    |
| 2    | Unknown Function      | 3.01 | 0.067    | 0.736    |
| 3    | Metal Binding Protein | 2.9  | 0.07     | 0.707    |
| 4    | Unknown Function      | 3.32 | 0.037    | 0.757    |
| 5    | Transport Protein     | 3.32 | 0.058    | 0.729    |

Table 4-10. The consensus prediction of GO terms for tail assembly chaperone 1 among the top scoring templates. The GO-Score associated with each prediction is defined as the average weight of the GO term, where the weights are assigned based on Cscore<sup>GO</sup> of the template.

| Type Function      |                                       | GO Score |
|--------------------|---------------------------------------|----------|
|                    | electron transfer activity            | 0.08     |
| Molecular Function | cytochrome-c oxidase activity         | 0.08     |
|                    | heme binding                          | 0.08     |
|                    | NADH dehydrogenase (quinone) activity | 0.07     |
|                    | ferric iron binding                   | 0.07     |
|                    | transport                             | 0.08     |
|                    | electron transport chain              | 0.08     |
| Biological Process | aerobic respiration                   | 0.08     |
|                    | cellular iron ion homeostasis         | 0.07     |
|                    | protein-containing complex assembly   | 0.07     |
|                    | mitochondrial inner membrane          | 0.08     |
|                    | respirasome                           | 0.08     |
| Cellular Component | integral component of membrane        | 0.08     |
|                    | plasma membrane                       | 0.07     |
|                    | cytosol                               | 0.07     |



Figure 4-13. The secondary structure of tail assembly chaperone 1 superimposed on the secondary structure of bacteriophage HK97 tail assembly chaperone (PDB ID: 20B9). The structure in cyan is the I-TASSER predicted structure while the rest is the HK97 tail assembly chaperone coloring for different secondary structures.

Table 4-11. Top 5 PDB results for tail assembly chaperone 2. RMSD is the root-mean-square deviation and is the measure of the average distance between the atoms of superimposed proteins. Identity is the percentage sequence identity in the structurally aligned region. Coverage is the coverage of the alignment by TM-align and is equal to the number of structurally aligned residues divided by the length of the query protein.

| Rank | Classification   | RMSD | Identity | Coverage |
|------|------------------|------|----------|----------|
| 1    | Membrane Protein | 2.4  | 0.075    | 0.827    |
| 2    | Lyase            | 2.46 | 0.121    | 0.827    |
| 3    | Cold-Activity    | 2.75 | 0.106    | 0.867    |
| 4    | Membrane Protein | 3.38 | 0.097    | 0.92     |
| 5    | Lyase            | 2.51 | 0.061    | 0.827    |

Table 4-12. The consensus prediction of GO terms for tail assembly chaperone 2 among the top scoring templates. The GO-Score associated with each prediction is defined as the average weight of the GO term, where the weights are assigned based on Cscore<sup>GO</sup> of the template.

| Туре               | Function                                        | Go Score |
|--------------------|-------------------------------------------------|----------|
|                    | signaling receptor activity                     | 0.23     |
| Molecular Function | chloride ion binding                            | 0.13     |
|                    | solute:proton antiporter activity               | 0.13     |
|                    | voltage-gated chloride channel activity         | 0.13     |
|                    | transferase activity, transferring acyl groups, |          |
|                    | acyl groups converted into alkyl on transfer    | 0.12     |
|                    | multi-organism process                          | 0.46     |
| Biological Process | obsolete intracellular part                     | 0.46     |
| Cellular Component | integral component of membrane                  | 0.33     |



Figure 4-14. The secondary structure of tail assembly chaperone 2 superimposed on the secondary structure of bacteriophage HK97 tail assembly chaperone (PDB ID: 20B9). The structure in magenta is the I-TASSER predicted structure while the rest is the HK97 tail assembly chaperone coloring for different secondary structures.
Table 4-13. Top 5 PDB results for the supposed frameshift tail assembly chaperone. RMSD is the root-mean-square deviation and is the measure of the average distance between the atoms of superimposed proteins. Identity is the percentage sequence identity in the structurally aligned region. Coverage is the coverage of the alignment by TM-align and is equal to the number of structurally aligned residues divided by the length of the query protein.

| Rank | Classification | RMSD | Identity | Coverage |
|------|----------------|------|----------|----------|
| 1    | Transferase    | 2.45 | 0.086    | 0.907    |
| 2    | Transferase    | 2.78 | 0.07     | 0.902    |
| 3    | Transferase    | 3.21 | 0.101    | 0.803    |
| 4    | Transferase    | 3.3  | 0.078    | 0.806    |
| 5    | Transferase    | 3.69 | 0.072    | 0.78     |

Table 4-14. The consensus prediction of GO terms for supposed frameshift tail assembly chaperone among the top scoring templates. The GO-Score associated with each prediction is defined as the average weight of the GO term, where the weights are assigned based on Cscore<sup>GO</sup> of the template.

| Туре                      | Function                                   | Go Score |
|---------------------------|--------------------------------------------|----------|
|                           | adenyl ribonucleotide binding              | 0.35     |
| Molecular Function        | purine ribonucleoside triphosphate binding | 0.35     |
|                           | nucleotidyltransferase activity            | 0.31     |
|                           | glucose metabolic process                  | 0.1      |
|                           | immune response                            | 0.09     |
| <b>Biological Process</b> | transcription, DNA-templated               | 0.09     |
|                           | mRNA polyadenylation                       | 0.09     |
|                           | snoRNA polyadenylation                     | 0.09     |
| Cellular Component        | intracellular membrane-bounded organelle   | 0.35     |



Figure 4-15. The secondary structure of the supposed annotated frameshift superimposed on the secondary structure of bacteriophage HK97 tail assembly chaperone (PDB ID: 20B9). The structure in cyan is the I-TASSER predicted structure while the rest is the HK97 tail assembly chaperone coloring for different secondary structures.



Figure 4-16. The secondary structure of the supposed annotated frameshift superimposed on the predicted structure of the annotated frameshift from *Gordonia terrae* phage CloverMinnie. The structure in blue is the I-TASSER predicted structure while the rest is the CloverMinnie frameshift, coloring for different types of secondary structures.

## 4.7.2 Molecular dynamics simulations

#### Simulation validation

The energy minimization step of each protein was evaluated by graphing potential energy against time. Figure 4-17. The potential energy curve for the energy minimization step of the simulation when running the Tail Assembly Chaperone 1 protein. The energy drops and reaches a plateau, meaning the energy has been properly minimized. shows the potential energy curve of the Tail Assembly Chaperone 1 protein. It reaches a plateau, meaning the energy has been properly minimized. This step was repeated for the other two proteins and those graphs can be seen in Figures 1 and 2 in the Appendix. Energy minimization only had to be done once for each structure, as the same minimized structure was used for the Autoclave and Cell simulations.



Figure 4-17. The potential energy curve for the energy minimization step of the simulation when running the Tail Assembly Chaperone 1 protein. The energy drops and reaches a plateau, meaning the energy has been properly minimized.

After the NVT step, the temperatures were plotted to ensure the system was stable on the correct reference temperature. Figure 4-18. The temperature curves for the Tail Assembly Chaperone 1 protein during the Autoclave simulation (blue) and the Cell simulation (orange). The

autoclave reference temperature is 394.15 K, while the cell reference temperature is 310.15 K. shows the temperature graphs for Autoclave and Cell temperatures for the Tail Assembly Chaperone 1 protein. The temperature fluctuates around the reference values, but the average temperatures were always within 10 K of the expected value. For the Autoclave, the temperature of the heat bath was set to 394 K. For the Cell, the temperature was set to 310 K. Figures 3 and 4 in the Appendix shows the temperature curves for the other two proteins simulated.



Figure 4-18. The temperature curves for the Tail Assembly Chaperone 1 protein during the Autoclave simulation (blue) and the Cell simulation (orange). The autoclave reference temperature is 394.15 K, while the cell reference temperature is 310.15 K.

After the NVT step, the pressure was analyzed to ensure it remained around the constant value. There is expected variation in the pressure at each time step, but the average was within 10 bar of the expected value. Figure 4-19 shows the pressures for each simulation of the Tail Assembly Chaperone 1 protein, as well as the running 10 picosecond average. The reference pressure is also shown in red, as it was 1.03 for both systems. Figures 5 and 6 in the Appendix contains the graphs for the other two proteins.

The average density was checked as well, but not plotted. The expected density for the Cell Simulation was near 1,000 kg/m3, however it was lower for the higher temperature. This is expected because temperature and density are inversely related.



Figure 4-19. The pressure curves for the Tail Assembly Chaperone 1 protein during the Autoclave simulation and the Cell simulation. The Autoclave Data is shown in blue while the 10 ps running average is in green. The Cell Data is shown in yellow while the 10 ps running average is in purple. The reference pressure is shown in red.

## Simulation results



Figure 4-20. The RMSD of the Tail Assembly Chaperon 1 protein over 0.1 ns. Both simulations, Autoclave and Cell, are compared with the original crystal structure and the equilibrated structure. The Autoclave simulation has higher RMSD because the protein deteriorates at this temperature.



Figure 4-21. (A) the initial structure of the Tail Assembly Chaperone 1 protein. (B) The structure after 1.0 ns of the Cell simulation. (C) The structure after 0.1 ns of the Autoclave simulation.



Figure 4-22. The RMSD of the Tail Assembly Chaperone 2 protein over 1.0 ns. Both simulations, Autoclave and Cell, are compared with the original crystal structure and the equilibrated structure. The Autoclave simulation has higher RMSD because the protein deteriorates at this temperature.



Figure 4-23. (A) the initial structure of the Tail Assembly Chaperone 2 protein. (B) The structure after 1.0 ns of the Cell simulation. (C) The structure after 1.0 ns of the Autoclave simulation.



Figure 4-24. The RMSD of the Tail Assembly Chaperone 3 protein over 0.1 ns. Both simulations, Autoclave and Cell, are compared with the original crystal structure and the equilibrated structure. The Autoclave simulation has higher RMSD because the protein deteriorates at this temperature.



Figure 4-25. (A) the initial structure of the Tail Assembly Chaperone 3 protein. (B) The structure after 1.0 ns of the Cell simulation. (C) The structure after 0.1 ns of the Autoclave simulation.



Figure 4-26. The root mean square fluctuation of the Tail Assembly Chaperone 3 protein after 100 ns of simulation across the entirety of the protein. Blue represents the Autoclave simulation while orange represents the Cell simulation. The red circle indicates the area of the protein containing the translational frameshift.



Figure 4-27. The root mean square fluctuation of the Tail Assembly Chaperone 3 protein after 100 ns of simulation within the beginning of the frameshifted region of the protein. Blue represents the Autoclave simulation while orange represents the Cell simulation. The datapoints in yellow represent the amino acid of the frameshift.

## CHAPTER 5. DISCUSSION

#### 5.1 *M. smegmatis* Growth Curves

The OD600 of *M*. smegmatis was plotted over the span of 34 hours to determine its bacterial growth curve, as seen in Figure 4-1. From this curve, *M. smegmatis* reaches the height of its peak around 24 hours and stays in its stationary phase thereafter. By plotting the bacterial growth curve, the ideal time at which to infect the host with mycobacteriophages can be determined. Wanting to capture the stationary phase in the mass spectrometry samples, the host should be inoculated before reaching the peak of its OD600 values. Therefore, it was found that an OD600 of 0.7 at the time of about 16 hours was ideal to inoculate the bacterial host with mycobacteriophages to ensure capturing the entirety of the stationary phase of the bacteria. By targeting the stationary phase of the bacteria, one can establish a strong population of bacteria for the phages to interact with to capture a robust sample for protein and lipid extraction.

When including mycobacteriophages Zalkecks and PotatoSplit, the OD600 was again measured for the control of *M. smegmatis* and each phage-treated sample, as seen in Figure 4-2. The amplitude of the bacterial growth curve significantly decreased in this measurement, most likely due to the shape and volume of the vessel containing the samples. A smaller volume of host bacteria was needed for these tests and therefore the incubation vessel changed from a 250 mL vented Erlenmeyer flask to a 50 mL vented conical tube. Though the proportions of the materials stayed the same, when agitated at 250 rpm, the surface area of the sample in contact with air decreased with the smaller vessel and therefore changed the growth rate of the bacteria. The bacteria samples were still inoculated around an OD600 of 0.7, yet the time at which this happened was at 13.5 hours of bacterial growth instead of the measured 16 hours from the previous experiment. From Figure 4-2, one can also see that the peaks of the samples at 4 hours and 14 hours of stable stationary phase were captured.

The phage-treated samples are also within the same OD600 range as the control, showing that the number of phage particles used to inoculate was not too high, which would kill the host bacteria too quickly before acquiring samples, and was not too low, ensuring that sufficient phage proteins and lipids are being measured. When comparing the phage-treated samples to the control of just bacterial host, the phage-treated samples start to deviate from the control at around 8 hours.

From there, they follow the trend of the control sample, but at a lower OD600. This indicates two distinct groups in the samples that were extracted for mass spectrometry: hours 0 and 4, which are similar to the bacterial growth curve, and hours 12 and 24 which deviate from the bacterial growth curve. From this observation, it is clear that the phages have a larger impact in the 12 and 24 hour samples, suggesting that these samples are more concentrated in phage proteins and lipids being expressed when compared to hours 0 and 4. The deviation from the bacterial growth curve at around 8 hours is most likely due to a combination of the phage killing the host bacteria, resulting in a drop in OD600, and due to the energy utilization of the nutrients supplied in the samples. The bacteria are using up more of the nutrients supplied in the samples to either create proteins and lipids to ward off against the phages or due to the phage infection, where the bacteria's metabolic machinery is being used to increase the production of phage particles. Because the existing cells present are using up more nutrients, the nutrients supplied in the samples were a limiting factor on how large the population was.

From Figure 4-2, one can see that mycobacteriophage Zalkecks had a lower OD600 stable stationary phase than mycobacteriophage PotatoSplit, which may be because of the way they interact with the host due to their different life cycles. Zalkecks is a lytic phage while PotatoSplit is temperate, meaning that it can switch between the lytic and lysogenic life cycles due to stressors. This may explain why its OD600 values of PotatoSplit were not as low as that of Zalkecks, either it wasn't as effective at killing or interacting with the host. Samples from the following time points were taken to perform protein and lipid extraction and eventually mass spectrometry: 0 hours, 4 hours, 12, hours, and 24 hours.

#### 5.2 Testing Multiple Methods of Protein Extraction

By comparing the protein phases from the lipid extraction methods MTBE and Bligh Dyer to the proteins of the standard acetone, the purpose was to investigate if M. smegmatis samples could be multiplexed. In other words, if the protein phases from the traditionally lipid extraction methods were comparable to or outperformed the proteins from the standard acetone protein extraction method, then one extraction method could potentially be used to gather both proteins and lipid in future experiments. The criterion for comparison of the proteins from each method were which method was able to capture the widest range of significant proteins. Figure 4-3 illustrates the number of proteins found through each method of protein extraction. Acetone was the method that captured the greatest number of proteins, only missing 25 that were exclusive to the Bligh Dyer extraction method. All the proteins present in the MTBE extraction method were also contained within the acetone extraction method. In terms of significant proteins, all are listed in Appendix Table 1. When comparing acetone vs Bligh Dyer, 128 significant proteins were more concentrated in acetone while only 54 significant proteins were more concentrated in Bligh Dyer. When comparing acetone to MTBE, 303 significant proteins were more concentrated in acetone while only 60 significant proteins were more concentrated in MTBE.

The significant proteins were then examined by the PANTHER Pathway Analysis program and their cellular component GO terms are listed in Table 4-1, which lists three levels of Gene Ontology terms of increasing specificity, how many sequences are contained within that category, and their percentage within each subcategory. For example, level 1 shows the cellular anatomical entity of the cellular component GO terms. Within this category there are 28 protein sequences specific to the acetone extraction method (which is ~34% of the cellular anatomical entities) that correspond to the cytoplasm. Furthermore, within this level 2 category there are 11 sequences specific to the acetone extraction method (or ~38% of the sequences in the cytoplasm) that correspond to the mitochondrion. By investigating the cellular components of the proteins present in the extraction methods, one can see if the methods of extraction target specific regions of the host cell, which could better inform future experiments that want to target specific areas of the host cell. It should be noted that Gene Ontology terms, key words that describe the knowledge of biological domains, are applied to a wide range of models and using them for a specific bacterial model to make direct comparisons of components would be misleading. However, analyzing the general classifications of the results can lead to a better understanding of the cellular locations of these proteins. From the results in Table 4-1, the acetone extraction method contains the most sequences present in almost all of the levels. There are a few level 2 subcategories pertaining specifically to the Bligh Dyer extraction method, such as organelle subcomponent, thylakoid, catalytic complex, and proteasome complex. However, these contain an extremely low number of sequences each, which does not make a significant impact on cellular location when compared to the acetone extraction method. The MTBE extraction method resulted in the least number of unique subcategories and was outperformed by both of the other extraction methods. Between the different extraction methods, many of the GO terms stayed consistent, but depending on the extraction method, the number of sequences reported for each differed. Based on this information,

all three of the extraction methods are targeting the same wide range of cellular locations but differ in how many proteins they extract from each place. This is mainly due to the simplistic nature of *M. smegmatis*, it does not produce an extensively wide range of types of proteins and therefore each extraction method was able to extricate proteins from most cellular locations.

Based on the number of proteins present and significant proteins analyzed in terms of their cellular location, the acetone extraction method was the most successful in capturing a wide range of significant *M. smegmatis* proteins. It contained the most proteins out of any extraction method and the significant proteins ranged over various cellular locations while reporting significantly more sequences when compared to Bligh Dyer and MTBE. Therefore, the protein phases from the MTBE and Bligh Dyer methods severely underperformed against the standard acetone extraction method and the only path to multiplex *M. smegmatis* samples was if the lipid phase of the acetone extraction method was comparable to the standard.

## 5.3 Testing Multiple Methods of Lipid Extraction

By comparing the lipid phases of the acetone protein extraction method and the MTBE lipid extraction method to the lipids of the standard Bligh Dyer lipid extraction method, the purpose was to investigate if *M. smegmatis* samples could be multiplexed. Specifically, if the lipids from the acetone and MTBE extraction methods were comparable to or outperformed the lipids from the Bligh Dyer extraction method, then one extraction method could potentially be used to collect proteins and lipids in future phage-treated experiments. The criterion for this comparison of lipids was to determine which extraction method supplied the widest range of significant lipids. In this investigation, positive and negative ESI-MS with tandem-MS was performed to see which were also more applicable to *M. smegmatis* and therefore mycobacteriophages. Based on the type of data, lipids could not be classified into specific extraction methods without statistical analysis due to that there is area under the peak present in every lipid for each extraction method. In terms of significant lipids, all are listed in Appendix Table 2. When comparing Bligh Dyer vs acetone, 184 significant lipids were more concentrated in Bligh Dyer while 171 significant lipids were more concentrated in acetone. When comparing Bligh Dyer to MTBE, 183 significant lipids were more concentrated in acetone while 170 significant lipids were more concentrated in MTBE. MS-DIAL was also not able to find reference MS2 spectra data for every lipid present in the samples and their retention time and mass to charge ratio can be found in Appendix Table 3. However, it should

be noted that many of these unnamed lipids came back as significant in the statistical tests performed, especially those significantly upregulated in the Bligh Dyer extraction method, showing the lack of database robustness for microbial lipids, especially those related to M. *smegmatis*.

The significant lipids were then grouped by their general structural lipid class, taken from the MS-DIAL nomenclature listed in Table 4-2. Table 4-2 lists how many significant lipids came back in each lipid class to better show the range of lipids present through each one of the extraction methods, and which out of the total were more concentrated in each extraction method. By investigating the groups of lipids present in the extraction methods, one can see which methods of extraction target specific groups of lipids, which are often present in specific areas of the cell, which could better inform future experiments that want to target specific areas in the host cell. The Bligh Dyer extraction method contained the most significant lipids especially in the categories of glycerophosphoethanolamines (GP02), triradylglycerols (GL03), and glycerophosphoinositols (GP06). Phosphatidylethanolamines (PE), a subcategory that was present in the glycerophosphoethanolamines, have been identified in *Mycobacterium* as polar lipids that are found within the cell envelope [77]. Lysophosphatidylethanolamines (LPE), also a subcategory that was present in the glycerophosphoethanolamines, have been found as components of the cell membrane [78]. Triacylglycerols (TG), a subcategory that was present in the triradylglycerols, have been found as main apolar intracellular lipids within *M. tuberculosis* and can serve as a longterm energy reserve [47]. Phosphatidylinositols (PI), a subcategory that was present in the glycerophosphoinositols, are major glycerophospholipids in both *M. tuberculosis* and *M.* smegmatis [47] and can be catabolized via lysophosphatidylinositol (LPI) [78].

Similar to the proteins, the lipid classes did not drastically differ between extraction methods. Lipid classes that were unique to their extraction method contained very few results. Among the different extraction methods, they targeted mainly the cell membrane and those involved in energy utilization. Again, this may be due to the simplistic nature of *M. smegmatis*, which does not produce an extensively wide range of classes of lipids and therefore each extraction method was able to extricate proteins from most cellular locations. However, the Bligh Dyer extraction method able to get the most significant results back from the widest range of lipid classes.

MS-DIAL also compared the lipid mass spectrometry results to the RIKEN MetaDatabase as a part of its internal lipids package [79]. It should be noted that many of the RIKEN MetaDatabase matches to MS2 spectra data were to models outside the scope of this research and using them for a specific bacterial model to make direct comparisons of components would be misleading. However, utilizing the match to analyzing general classifications of the results can lead to a better understanding of the lipids being produced by the bacterial host.

Based on the number of significant lipids analyzed, the Bligh Dyer extraction method was the most successful in capturing *M. smegmatis* lipids. It contained the most significant lipids out of any extraction method and the significant lipids ranged over many lipid classes when compared to Bligh Dyer and MTBE. Therefore, because the lipids gathered from the standard Bligh Dyer extraction method outperformed the lipids from the acetone and MTBE methods, one should not multiplex *M. smegmatis* samples because there is not one method that outperforms the others for both proteins and lipids. Instead, individual extraction methods should be used.

## 5.4 Investigation of Lipids from Phage-treated M. smegmatis

With the data retrieved from mass spectrometry and after being filtered, different statistical tests were run through MetaboAnalyst to determine significant lipids within the context of the testing groups, all of which can be seen in Table 4-5. Multiple testing groups were used due to the similarity of the samples being run. From Figure 4-4, when comparing the phage-treated samples to the control containing only the host *M. smegmatis*, there is significant overlap in the data due to that *M. smegmatis* is contained within both samples. However, by breaking down the testing groups into smaller subcategories, one can create distinct groups to draw conclusions upon, as seen in Figure 4-5. Testing groups analyzing different time points and phages were prioritized to draw conclusions about what is being produced, or not produced, at different time points after infection, by each phage. For example, Figure 4-5 represents the differences between 0 and 4 hours compared to 12 and 24 hours in the Zalkecks treated samples and the PotatoSplit treated samples respectively. The most distinctive groups in principal component analysis with the greatest percentage of variance came from comparing different time points of the phage-treated samples, indicating that at different times after infection there are distinct, specific lipids being, or not being, produced. Through all these tests, the amount of significant lipids increased in the tests containing only Zalkecks or PotatoSplit treated samples, reiterating that these specific testing groups are the most impactful to draw conclusions from. The significant lipids from each test were then grouped by their general lipid class, taken from the MS-DIAL nomenclature listed in Table 4-5, as well as which lipids were upregulated by each group when applicable. Some areas to note are the lipid groups that are GP02: Glycerophosphoethanolamines, which were almost all exclusive to the host in comparison to the PotatoSplit treated samples but were significantly present in both the Zalkecks treated samples and the host in their respective comparison.

Relating to the OD600 values of the bacterial growth curves in Figure 4-2, the first two time points of the phage-treated samples closely followed the bacterial host while the last two time points deviated in their OD600 values, which is also reinforced by the statistical tests performed. When performing ANOVA tests on the different hours after infection of the individual phagetreated samples, clear patterns emerged. As seen in Figure 4-6, specific lipids only showed up in the time points that closely followed the bacterial growth curve (hours 0 and 4) while others showed up in the time points that were heavily infected with phages (hours 12 and 24). These lists of significant lipids in both Zalkecks and PotatoSplit also had distinct patterns within themselves. Most fell under the categories of increasing over every time point or decreasing over every time point, as seen in Figure 4-7, or increasing at the phage-heavy time points of 12 and 24 hours or increasing at the bacteria-heavy time points of 0 and 4 hours. These significant lipids were grouped into these four categories for both the mycobacteriophage Zalkecks and mycobacteriophage PotatoSplit treated samples and were then cross-referenced against the lipids with the same patterns within the control sample. The list of remaining lipids can be seen in Table 4-3 for Zalkecks treated samples and Table 4-4 for PotatoSplit treated samples. Within these two tables, one can see that the majority of significant Zalkecks treated lipids increased over each time point or increased at the phage-heavy time points while the majority of the significant PotatoSplit treated lipids decreased over time or decreased at the phage-heavy time points. This is a strong indicator of how each phage interacts with the host, which is heavily influenced by the life cycle of the phage. The impact of Zalkecks, a lytic phage, can be seen in specific lipids being produced at time points heavily influenced by phage infection most likely due to the host cell trying to defend against the phage infection or, having been hijacked by the phage, being used in phage propagation. This was reinforced by the general cellular location and function of the lipids found with these patterns being located in the cell membrane and those involved in energy utilization [47,78]. However, in the samples treated with PotatoSplit, many of the lipids within this interaction significantly occurred within the first four hours of inoculation. PotatoSplit, a temperate phage, interacts with its host by integrating its genetic information into the host's and lying dormant within the host until triggered by a stressor, which may explain why there is little activity at the later time points of 12 and 24 hours. The lipids being produced in this interaction, mainly Phosphatidylethanolamines (PE), also have been identified in *Mycobacterium* as polar lipids that are found within the cell envelope and likely account for the initial confrontation of phage and host within the first four hours [77].

Delving into the specific results from these tests, potential functions can also be extrapolated from this data. Many of the lipids identified by MS-DIAL were grouped into classifications, which on their own cannot give a definitive function. However, those that were compared to the RIKEN MetaDatabase [79] were able to be investigated when the model matched the scope of this research. For example, RIKEN P-VS1 ID-5826 corresponded to Homodestruxin B, a fungal phytotoxin, and was shown as decreasing at every time point in both the Zalkecks and PotatoSplit treated samples [80]. This lipid production could be explained through the context of abortive infection mechanisms which normally utilize toxins to kill both the invading phage and host. Phages mainly circumvent this hurdle by mutating specific genes to hijack the production of antitoxins that neutralize the bacterial toxin, which could explain the decrease in its production over time in both phage samples [28]. Another lipid of note was RIKEN P-VS1 ID-8167 which corresponded to Ergokonin C, an antibiotic and antifungal agent that has been propagated in grampositive *Bacillus subtilis* for its use as a steroid and was present as increasing with every time point in both the Zalkecks and PotatoSplit treated samples [81]. This may also have a role in abortive infection mechanisms where the phages are neutralizing the bacterial toxins to hijack the host cell. RIKEN P-VS1 ID-10784, identified as sturin, has been linked to T2 phage transfection of E. coli spheroplasts and was present in both the Zalkecks and PotatoSplit treated samples as increasing in the phage-heavy time points [82]. Other interesting lipids found in the Zalkecks samples at hours 12 and 24 were Cribrostatin 2 (RIKEN P-VS1 ID-9219) which has been linked to having antibacterial properties for gram-positive bacteria [83] and Altromycin D (RIKEN P-VS1 ID-7426) which also display gram-positive antibiotic properties [84]. Besides these specific cases, no other lipid identified through the RIKEN MetaDatabase that had a model relatable to the scope of the experiment, again showing the lack of database robustness for microbial lipids, especially those related to *M. smegmatis*.

#### 5.5 Proteomic Data Analysis Case Study

The method for proteomic data analysis was tested upon previously acquired protein mass spectrometry data which analyzed different time points of mycobacteriophage FrenchFry inoculation of the *M. smegmatis* host. The purpose of using this data was to test the method of using alternative bioinformatics tools to analyze the mass spectrometry data and then apply it to the mycobacteriophage Zalkecks and PotatoSplit mass spectrometry proteins. In this method, the peptides were first searched using a Python script to validate the MaxQuant search, which originally assigned all proteins a protein ID of "FrenchFry". The code searched all the peptides present in the raw mass spectrometry data against the genome file of FrenchFry and found alternative proteins that were associated with the FrenchFry genome, all of which were labeled as "Mycobacterium:False". The Python script printed the gene number of the match, the associated annotated function, and counted how many peptides were present in the raw data, as seen in Table 4-6. From these results, 222 peptides show up with unknown function being listed as hypothetical protein, showing the lack of database knowledge surrounding phage proteins. One can also see other proteins like the major capsid head having a high number of peptides present and their high frequency may be due to that these proteins are very large and are necessary for are assembling phage particles. The protein data was then filtered and ran through MetaboAnalyst to determine significant proteins of interest. Due to that there is bacterial host within the negative control and the phage-treated samples of this data, multiple statistical tests were run, as seen in Table 4-7, to create distinct groups from the data. The statistical test comparing the exponential and stationary points of phage inoculation covered all of the data and resulted in the most significant fold change proteins and was therefore used to further protein pathway analysis. The mycobacteriophage FrenchFry proteins that were significant in this test were plotted according to which functional classification they fell under in Figure 4-8, showing many being upregulated in the samples, which is expected due to the phage interacting with the host and therefore producing phage proteins. Specifically, the phage proteins pertaining to structure and DNA replication and translation were the largest groups of known function and show that the phage is infecting and using the host to propagate. In addition, the highest group of expressed proteins were of no known function, which are listed as NKF, showing the lack of database knowledge surrounding function of phage proteins.

The significant proteins from this statistical test were also examined through the pathway analysis programs, PANTHER and DAVID. By using the significant proteins as the input for the

pathway analysis programs, it decreases the amount of noise present in the data to focus on the important pathways present. PANTHER grouped the Gene Ontology terms associated with the significant proteins based on their molecular function (Figure 4-9), biological process (Figure 4-10), and protein class (Figure 4-11). By using PANTHER, the major functional pathways were found in the data and the proteins involved in each were noted. For example, many of the pathways under biological process are involved in energy utilization like ATP Metabolic process, NADP Metabolic Process, and Catabolic Process. DAVID examined the KEGG pathway terms associated with the proteins and reported the function annotation results while showing how significant they are, as seen in Figure 4-12. Highlighting a specific result, proteins involved in bacterial chemotaxis had the highest relevance to this data indicating potential functions of cell to cell signaling of toxic environments that may occur due to the host using abortive mechanisms to avoid phage propagation. To compare, the interface of PANTHER makes it an intuitive program that easily relays the important functional information while DAVID has access to a wider range of database information. By using multiple pathway analysis programs that have different types of outputs, one can widen the scope of function present possible in the data, which is necessary for an uncommon model like mycobacteriophage and *M. smegmatis*.

#### 5.6 Archival of Purdue University Phages

Table 4-8 displays all of the mycobacteriophages from 2018 and 2019 that were re-archived for Purdue University and sent to the HHMI Science Education Alliance-Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) program at the University of Pittsburgh for long-term archival. With the archival of these phages, Purdue University has no outstanding submissions that need to be sent in for archival.

#### 5.7 Investigation of Cluster B1 frameshift proteins

### 5.7.1 Structural comparisons

#### Tail Assembly Chaperone 1

I-TASSER compared the amino acid sequence for the known tail assembly chaperone with those in the Protein Data Bank and deduced protein function based on ligand binding sites and Gene Ontology (GO) terms. As seen in Table 4-9, no tail assembly chaperones appear which is most likely due to that there are very few tail assembly chaperones within the PDB database. The function reported by COFACTOR and COACH ligand binding site programs on the biological annotations of the target protein only had one result with a confidence interval higher than 0.8, which was electron transport/photosynthesis. Lastly, as seen in Table 4-10, there is nothing directly related to tail assembly chaperones for the GO terms. This is most likely due to that there are no GO terms for tail assembly chaperone protein, so if the others come back with similar results, it alludes to them also being tail assembly chaperones.

The top structural results reported from I-TASSER had a C-score of -4.19, an estimated TM-score of 0.27±0.08, and an estimated RMSD of 14.5±3.7Å. This structure was then analyzed in PyMOL and superimposed onto the secondary structure of a known tail assembly chaperone taken from the PDB database (Figure 4-13. The secondary structure of tail assembly chaperone (PDB ID: 20B9). The structure in cyan is the I-TASSER predicted structure while the rest is the HK97 tail assembly chaperone coloring for different secondary structures.). It has a MatchAlign score of 90.598 and an RMSD of 0.833, indicating a high level of structural similarity. While the I-TASSER results seemed to not be relevant to that of tail assembly chaperones, the structural comparison showed a distinct level of similarity. Knowing that this protein sequence is from a known tail assembly chaperone, this calibrated the understanding of this data to weigh the structural comparisons over than the I-TASSER predicted functions when it comes to predicting protein function.

## Tail Assembly Chaperone 2

I-TASSER compared the amino acid sequence for the second half of the tail assembly chaperone with those in the Protein Data Bank and deduced protein function based on ligand binding sites and Gene Ontology (GO) terms. As seen in Table 4-11, no tail assembly chaperones appear in the PDB hits, which again is most likely due to that there are very few tail assembly chaperones within the PDB database. The function reported by COFACTOR and COACH ligand binding site programs on the biological annotations of the target protein did not have any results with a confidence interval higher than 0.8. Lastly, as seen in Table 4-12, there is nothing directly related to tail assembly chaperones for the GO terms, due to that there are no GO terms of tail assembly chaperone, there is very little evidence to prove this as a tail assembly chaperone. However, this amino acid sequence would not be produced in reality because it is missing the initial sequence of the annotation frameshift. Referring to Figure 2-5, the amino acid sequence is the equivalent to the third protein product that would not be made. Therefore, the results for this section are valid in that this protein in reality does not exist and the scores reflect that.

The top structural results reported from I-TASSER had a C-score of -2.74, an estimated TM-score of 0.40±0.13, and an estimated RMSD of 9.2±4.6Å. This structure was then analyzed in PyMOL and superimposed onto the secondary structure of a known tail assembly chaperone taken from the PDB database (Figure 4-14). It has a MatchAlign score of 131.694 and an RMSD of 8.739, indicating a low level of structural similarity. Again, due to that this protein sequence would not exist in reality, these scores seem valid.

## Tail Assembly Chaperone 3

I-TASSER compared the amino acid sequence for the supposed frameshift tail assembly chaperone with those in the Protein Data Bank and deduced protein function based on ligand binding sites and Gene Ontology (GO) terms. As seen in Table 4-13, no tail assembly chaperones appear in the PDB hits, which again is most likely due to that there are very few tail assembly chaperones within the PDB database. The function reported by COFACTOR and COACH ligand binding site programs on the biological annotations of the target protein did not have any results with a confidence interval higher than 0.8. Lastly, as seen in Table 4-14, there is nothing directly related to tail assembly chaperones for the GO terms, due to that there are no GO terms of tail

assembly chaperones. Based on the comparison of these scores to those of the known tail assembly chaperone, there is very little evidence to prove this as a tail assembly chaperone.

The top structural results reported from I-TASSER had a C-score of -3.21, an estimated TM-score of 0.36±0.12, and an estimated RMSD of 14.3±3.8Å. This structure was then analyzed in PyMOL and superimposed onto the secondary structure of a known tail assembly chaperone taken from the PDB database (Figure 4-15). It has a MatchAlign score of 127.315 and an RMSD of 7.084, indicating a low level of structural similarity. However, it should be noted that there are very few bacteriophage tail assembly chaperones located in the PDB and those that are listed do not specify if they are the translational frameshift. Therefore, these results should not exclusively determine if the predicted frameshift has been located correctly.

This predicted protein structure for the supposed frameshift was also compared to the predicted I-TASSER structure of a known annotated frameshift from Gordonia terrae phage CloverMinnie. Gordonia terrae phage CloverMinnie, classified in the DR cluster, was chosen based on its initial high scores when running the previous tail assembly chaperones through the BLAST database. The supposed B1 frameshift was superimposed onto the predicted structure of Gordonia terrae phage CloverMinnie, as seen in Figure 4-16, and had a MatchAlign score of 97.686 and an RMSD of 0.798, indicating an extremely high level of structural similarity compared to previous comparisons. Based on the previous tail assembly chaperone results, the structural similarity was weighed higher than the I-TASSER scores in terms of significance. The comparison between the supposed B1 frameshift and Gordonia terrae phage CloverMinnie also are from phage that attacks different hosts with B1 infecting Mycobacterium smegmatis and CloverMinnie infecting Gordonia terrae, which may allude to some of the inconsistencies of the structural comparison. However, despite the fact that the proteins of these two phages infect different hosts, there is a strong structural comparison between the two proteins. Other studies would need to be done to definitively determine that this is the annotated frameshift, especially when it comes to determining the exact slippery sequence, but this gives strong evidence that this is the correct location of the frameshift in the B1 cluster.

#### 5.7.2 Molecular Dynamics Simulations

The results from the simulation will be discussed by each protein. For every protein, the Root Mean Square Distance was plotted based on the original Equilibrated Structure or the Crystal Structure. Additionally, simulations were analyzed in PyMOL. For all proteins considered, the structure deteriorates more at the high temperature of the Autoclave, which was the expected result. All proteins had average RMSD distances of near 0.5 nm for the Autoclave and 0.3 for the Cell.

#### Tail Assembly Chaperone 1

The first tail assembly chaperone had an average RMSD of 0.30 nm for the Autoclave simulations, and 0.25 nm for the Cell simulations over a time course of 0.1 ns. The results are shown in Figure 4-20. It is difficult to tell over time how the Autoclave simulation protein will continue to deteriorate but based on comparisons to the other phage proteins simulated for longer periods of time, this protein seems to follow its initial trend. The same principle applies to the Cell simulation, which is expected to remain relatively stable after the first 0.1 ns. The protein could not be simulated in either temperature for longer than 0.1 ns without the program crashing due to how large the protein was. The conformation changes of the tail assembly chaperone 1 protein can be seen in Figure 4-21. Their changes are not drastic in this protein and harder to notice visually. The alpha helices have turned outward, and the molecule has stretched in width, more so for the Autoclave simulation than the Cell simulation.

## Tail Assembly Chaperone 2

The second tail assembly chaperone had an average RMSD of 0.43 nm for the Autoclave simulations, and 0.29 nm for the Cell simulations over a time course of 1.0 ns. The results are shown in Figure 4-22. While the Autoclave simulation continues to deteriorate over time, the Cell simulation remains relatively stable after the first 0.1 ns. This is expected, as the natural production of the protein would be at this temperature. The RMSD of 0.29 is lower than many of the other proteins in this study, which could be due to its small size. The conformation changes of the tail assembly chaperone two protein can be seen in Figure 4-23. Their changes are not drastic in this protein and harder to notice visually. The alpha helices have turned slightly in different directions from each and the molecule has stretched in width.

## Tail Assembly Chaperone 3

The annotated B1 frameshift had an average RMSD of 0.33 nm for the Autoclave simulations, and 0.22 nm for the Cell simulations over a time course of 0.1 ns. The results are shown in Figure 4-24. It is difficult to tell over time how the Autoclave simulation protein will continue to deteriorate but based on comparisons to the other phage proteins simulated for longer periods of time, this protein seems to follow its initial trend. The same principle applies to the Cell simulation, which is expected to remain relatively stable after the first 0.1 ns. The protein could not be simulated in either temperature for longer than 0.1 ns without the program crashing due to how large the protein was. The conformation changes of the supposed frameshift tail assembly chaperone protein can be seen in Figure 4-25. Their changes are not drastic in this protein and harder to notice visually. The alpha helices have turned outward, and the molecule has stretched in width, more so for the Autoclave simulation than the Cell simulation.

When examining the further analysis of the frameshifted protein, the root mean square fluctuation shows distinct areas of stability within the protein, as shown in Figure 4-26. The increase in RMSF is expected at the Autoclave simulation because there is an increase in movement as temperature and pressure increases. However, when inspecting the area of the protein around the translational frameshift in Figure 4-27, the amino acid change resulting from the frameshift is highly stable in that there is little change in RMSF between the Cell and Autoclave simulations. The amino acids before the frameshift also result in minimal change in RMSF between the Cell and Autoclave simulations indicating high stability of this portion of the protein. High stability of the frameshifted area may have biological significance in that it is vital that this portion of the protein remain stable in order to correctly utilize the translational frameshift to produce both protein products.

## CHAPTER 6. CONCLUSION

Through this research project, the relationship between bacteriophages and their host was examined using mass spectrometry and bioinformatics tools to analyze what significant proteins and lipids are being produced. In order to gather data for this exploratory study, multiple methods of protein and lipid extraction were explored to determine if *M. smegmatis* samples could be multiplexed in order to create a more efficient way to extract proteins and lipids. Through the use of modern methods of untargeted proteomics and lipidomics, one has the capability to fill these gaps of what is being produced by the bacteriophage and host in this interaction and expand upon potential bacteriophage functions to provide a more comprehensive understanding of the pathogenesis of the infection. Also in this research study, the archival of novel Purdue University mycobacteriophages and the investigation of the cluster B1 frameshift using molecular dynamic simulations is explored to add to the database knowledge currently known about bacteriophages.

Through this study, the proteomic analysis of mass spectrometry data determined that the acetone method of extraction was the most applicable to *M. smegmatis* and was used for further phage-treated samples. In addition, the lipidomic analysis of mass spectrometry determined that the Bligh Dyer method of extraction was the most applicable to *M. smegmatis* and was used for further phage-treated samples. Based on this information, *M. smegmatis* samples should not be multiplexed because there was not one extraction method that outperformed the others for both proteins and lipids. The lipids extracted from the phage-treated samples were categorized according to classification and showed functions relating to the cell membrane and to energy utilization. Specific lipids from the phage-treated samples also indicated involvement in the abortive infection mechanisms of the phage-host interaction. The mass spectrometry data analysis methodology was also applied to a case study of mycobacteriophage FrenchFry to show how the use of alternative bioinformatics tools can define function for an uncommon model of mycobacteriophages were sent in for archival and the potential translational frameshift was identified.

By investigating the products of the phage-host interaction, one can understand their potential risks and ensure safety in their applications. However, more needs to be studied in order for real world applications of phages to be used widely including further analysis of the protein products and delving into discovery of potential function of the proteins of no known function. Specifically for this study, the application of the protein data analysis methodology should be implemented on the mycobacteriophage Zalkecks and PotatoSplit proteins retrieved through mass spectrometry. In the molecular dynamics simulations, the comparison to known proteins at simulation times longer than what were achieved through this project should be completed to create a deeper understanding of function in the system.

# APPENDIX

Appendix Table 1. All significant proteins according to fold change and p-value, with their corresponding values, in the 3 methods of protein extraction when comparing to the standard: acetone. A fold change above 1.5 and a p-value less than 0.05 were considered significant. Log2 fold changes in pink indicate the lipid is upregulated in the acetone extraction method, blue indicates upregulation in the Bligh Dyer extraction method, green indicates upregulation in the MTBE extraction method, and black indicates no significance (NS). Proteins are listed by their UniProt Accession ID.

|         | Acetone vs Bligh Dyer |        | Acetone vs MTI   | BE     |
|---------|-----------------------|--------|------------------|--------|
| Protein | Log2 Fold Change      | P-Val  | Log2 Fold Change | P-Val  |
| A0QND6  | NS                    | NS     | 2.6921           | 0.0022 |
| A0QND7  | 3.0110                | NS     | 3.0110           | 0.0109 |
| A0QNE2  | 1.2224                | NS     | 1.2224           | NS     |
| A0QNF5  | -0.8672               | NS     | 1.9619           | NS     |
| A0QNF6  | NS                    | NS     | -0.6738          | NS     |
| A0QNG7  | NS                    | NS     | 2.9925           | 0.0181 |
| A0QNJ5  | -2.7890               | NS     | NS               | NS     |
| A0QNJ6  | -2.3760               | 0.0000 | NS               | NS     |
| A0QNJ7  | NS                    | NS     | 2.6690           | 0.0149 |
| A0QNQ9  | 1.8881                | NS     | 1.8881           | NS     |
| A0QNZ3  | NS                    | NS     | 2.6690           | 0.0149 |
| A0QP06  | NS                    | NS     | 2.6521           | 0.0015 |
| A0QP11  | NS                    | NS     | 2.4696           | 0.0002 |
| A0QP20  | NS                    | NS     | -1.4888          | NS     |
| A0QP27  | 2.4381                | 0.0000 | 2.4381           | 0.0000 |
| A0QP89  | 2.6662                | NS     | -1.4031          | NS     |
| A0QP93  | NS                    | NS     | 2.9596           | 0.0177 |
| A0QPE7  | NS                    | NS     | 2.5052           | 0.0002 |
| A0QPE8  | 0.6372                | NS     | 3.0964           | 0.0158 |
| A0QPH5  | NS                    | NS     | 2.4230           | 0.0002 |
| A0QPV4  | 2.4381                | 0.0000 | 2.4381           | 0.0000 |
| A0QPV9  | 2.1534                | NS     | 2.1534           | NS     |
| A0QPZ5  | 2.8670                | NS     | 2.8670           | 0.0054 |
| A0QQ61  | NS                    | NS     | -0.7994          | NS     |
| A0QQ62  | 2.4885                | 0.0012 | 2.4885           | 0.0012 |
| A0QQ65  | NS                    | NS     | -1.7853          | NS     |
| A0QQ72  | NS                    | NS     | -2.6321          | NS     |
| A0QQC1  | NS                    | NS     | 2.7578           | 0.0194 |

| A0QQC8 | NS      | NS | 2.3809  | 0.0000 |
|--------|---------|----|---------|--------|
| A0QQF0 | NS      | NS | 2.3018  | NS     |
| A0QQJ4 | NS      | NS | 2.5567  | 0.0011 |
| A0QQJ6 | NS      | NS | 3.0894  | NS     |
| A0QQS3 | 2.0854  | NS | 2.0854  | NS     |
| A0QQU5 | NS      | NS | -1.1967 | 0.0005 |
| A0QQW5 | NS      | NS | 2.3890  | 0.0000 |
| A0QQW8 | -0.8397 | NS | 2.7600  | 0.0063 |
| A0QQX7 | NS      | NS | 2.6921  | 0.0022 |
| A0QR00 | NS      | NS | 2.5742  | 0.0005 |
| A0QR29 | NS      | NS | -0.9954 | NS     |
| A0QR33 | 2.0697  | NS | 2.0697  | NS     |
| A0QR46 | 1.8881  | NS | 1.8881  | NS     |
| A0QR51 | 1.2224  | NS | 1.2224  | NS     |
| A0QR89 | 1.2427  | NS | 2.4287  | 0.0001 |
| A0QRB0 | -0.7357 | NS | 2.6690  | 0.0149 |
| A0QRB1 | NS      | NS | 2.4885  | 0.0012 |
| A0QRD4 | 1.8881  | NS | 1.8881  | NS     |
| A0QRE7 | NS      | NS | 2.6921  | 0.0022 |
| A0QRN7 | 1.9619  | NS | 1.9619  | NS     |
| A0QRS0 | NS      | NS | 2.5198  | 0.0006 |
| A0QRX4 | -0.9378 | NS | -2.3185 | NS     |
| A0QRZ8 | NS      | NS | 1.8881  | NS     |
| A0QS45 | NS      | NS | -2.0426 | NS     |
| A0QS46 | NS      | NS | -1.4140 | NS     |
| A0QS62 | 2.6706  | NS | 2.6706  | 0.0080 |
| A0QS63 | NS      | NS | 2.5305  | 0.0004 |
| A0QS66 | NS      | NS | -0.8270 | 0.0238 |
| A0QS72 | NS      | NS | 2.6706  | 0.0080 |
| A0QS90 | NS      | NS | 2.8706  | 0.0146 |
| A0QS98 | NS      | NS | -1.7055 | NS     |
| A0QSB1 | NS      | NS | 1.9474  | NS     |
| A0QSD0 | NS      | NS | 2.4381  | 0.0000 |
| A0QSD1 | 2.6998  | NS | 2.6998  | 0.0062 |
| A0QSD2 | 3.1972  | NS | 3.1972  | 0.0173 |
| A0QSD3 | NS      | NS | 2.4381  | 0.0000 |
| A0QSD4 | NS      | NS | -2.2104 | NS     |
| A0QSD5 | 1.9619  | NS | 1.9619  | NS     |
| A0QSD6 | 1.4895  | NS | 2.5939  | 0.0007 |
| A0QSD8 | 1.9619  | NS | 1.9619  | NS     |

| A0QSD9 | 2.2586  | NS     | 2.2586  | NS     |
|--------|---------|--------|---------|--------|
| A0QSE0 | 2.7377  | 0.0025 | 2.7377  | 0.0025 |
| A0QSF9 | 1.2402  | NS     | -1.0392 | NS     |
| A0QSG0 | 2.6521  | 0.0015 | -0.6667 | NS     |
| A0QSG1 | NS      | NS     | 2.4381  | 0.0000 |
| A0QSG2 | 2.4885  | 0.0012 | 2.4885  | 0.0012 |
| A0QSG3 | NS      | NS     | 2.6252  | 0.0009 |
| A0QSG4 | 0.8932  | NS     | 2.6061  | 0.0032 |
| A0QSG6 | NS      | NS     | -1.0930 | NS     |
| A0QSG7 | 2.6662  | NS     | 2.6662  | 0.0064 |
| A0QSG8 | 2.6706  | NS     | 2.6706  | 0.0080 |
| A0QSH8 | -1.2224 | NS     | NS      | NS     |
| A0QSJ0 | NS      | NS     | 2.6690  | 0.0149 |
| A0QSJ2 | NS      | NS     | 0.7349  | NS     |
| A0QSK7 | 2.4381  | 0.0000 | 2.4381  | 0.0000 |
| A0QSL1 | -0.6896 | NS     | -2.2083 | NS     |
| A0QSL5 | NS      | NS     | 2.4696  | 0.0002 |
| A0QSL6 | 1.9474  | NS     | 1.9474  | NS     |
| A0QSL7 | NS      | NS     | -1.3480 | NS     |
| A0QSL9 | NS      | NS     | 2.4885  | 0.0012 |
| A0QSN7 | NS      | NS     | -0.6429 | NS     |
| A0QSN8 | 0.8536  | NS     | 2.5972  | 0.0030 |
| A0QSP0 | 2.8169  | NS     | 2.8169  | 0.0054 |
| A0QSP1 | 0.8108  | NS     | 2.4321  | 0.0001 |
| A0QSP2 | 2.8706  | NS     | 2.8706  | 0.0146 |
| A0QSP8 | NS      | NS     | 2.7349  | 0.0131 |
| A0QSP9 | 0.6075  | NS     | 2.5084  | 0.0004 |
| A0QSR5 | NS      | NS     | 2.8551  | NS     |
| A0QSS3 | NS      | NS     | -1.0088 | 0.0002 |
| A0QSS4 | NS      | NS     | -1.3631 | NS     |
| A0QSU3 | NS      | NS     | -2.6276 | NS     |
| A0QSU4 | NS      | NS     | 2.2586  | NS     |
| A0QSX4 | -0.9796 | NS     | 1.2224  | NS     |
| A0QSZ1 | NS      | NS     | 2.5017  | 0.0003 |
| A0QSZ3 | NS      | NS     | NS      | 0.0080 |
| A0QT01 | 0.7330  | NS     | 2.5244  | 0.0021 |
| A0QT04 | NS      | NS     | 2.4885  | 0.0012 |
| A0QT08 | NS      | NS     | 2.3196  | NS     |
| A0QT14 | 2.4381  | 0.0000 | 2.4381  | 0.0000 |
| A0QT17 | NS      | NS     | 1.0839  | NS     |

| A0QT18 | NS      | NS     | -0.7885 | NS     |
|--------|---------|--------|---------|--------|
| A0QT19 | NS      | NS     | -0.7789 | 0.0132 |
| A0QT20 | NS      | NS     | 2.4421  | 0.0001 |
| A0QT21 | NS      | NS     | -1.5898 | NS     |
| A0QT22 | -0.8249 | NS     | 2.0854  | NS     |
| A0QT42 | 1.4905  | NS     | 2.5567  | 0.0011 |
| A0QT50 | -0.6899 | NS     | 2.8657  | 0.0072 |
| A0QT92 | 2.4381  | 0.0000 | 2.4381  | 0.0000 |
| A0QT98 | NS      | NS     | 2.4230  | 0.0002 |
| A0QTA4 | -2.4165 | NS     | NS      | NS     |
| A0QTE1 | NS      | NS     | -0.7110 | NS     |
| A0QTE3 | NS      | NS     | 2.6489  | 0.0025 |
| A0QTE7 | NS      | NS     | 2.4918  | 0.0010 |
| A0QTF4 | NS      | NS     | 2.4287  | 0.0001 |
| A0QTK2 | -1.2224 | NS     | NS      | NS     |
| A0QTS8 | 0.6221  | NS     | 2.4381  | 0.0000 |
| A0QTS9 | NS      | NS     | -0.6462 | NS     |
| A0QTT7 | -2.6230 | NS     | NS      | NS     |
| A0QTV1 | NS      | NS     | 0.6222  | NS     |
| A0QTV4 | NS      | NS     | -0.6716 | NS     |
| A0QU00 | 1.9619  | NS     | 1.9619  | NS     |
| A0QU07 | 1.9474  | NS     | 1.9474  | NS     |
| A0QU51 | NS      | NS     | -1.3172 | NS     |
| A0QU52 | NS      | NS     | -1.1836 | 0.0015 |
| A0QU54 | -0.7368 | NS     | 1.9474  | NS     |
| A0QUA6 | NS      | NS     | 2.4381  | 0.0000 |
| A0QUG7 | NS      | NS     | 2.8294  | NS     |
| A0QUH9 | NS      | NS     | -2.4445 | NS     |
| A0QUM7 | NS      | NS     | 2.8706  | 0.0146 |
| A0QUV6 | NS      | NS     | 2.5337  | 0.0006 |
| A0QUY2 | -1.1097 | NS     | -1.1856 | NS     |
| A0QUY3 | 0.6221  | NS     | 2.4381  | 0.0000 |
| A0QUY7 | NS      | NS     | 2.2760  | NS     |
| A0QUZ0 | NS      | NS     | 2.4381  | 0.0000 |
| A0QV09 | -0.7017 | NS     | 2.1866  | NS     |
| A0QV10 | NS      | NS     | 2.6648  | 0.0048 |
| A0QV12 | NS      | NS     | 2.8933  | NS     |
| A0QV14 | 2.2586  | NS     | 2.2586  | NS     |
| A0QV17 | 1.9474  | NS     | 1.9474  | NS     |
| A0QV42 | 2.9596  | NS     | 2.9596  | 0.0177 |

| A0QV51 | NS      | NS     | 2.6557  | 0.0012 |
|--------|---------|--------|---------|--------|
| A0QV52 | 0.6818  | NS     | 2.5354  | 0.0004 |
| A0QVB8 | 0.6072  | NS     | -1.5137 | NS     |
| A0QVB9 | NS      | NS     | 2.5512  | 0.0039 |
| A0QVC7 | NS      | NS     | 2.4381  | 0.0000 |
| A0QVE0 | NS      | NS     | 2.5941  | 0.0022 |
| A0QVK0 | NS      | NS     | 2.5337  | 0.0006 |
| A0QVK3 | -1.9456 | NS     | NS      | NS     |
| A0QVL2 | NS      | NS     | 2.3890  | 0.0000 |
| A0QVM0 | 2.6921  | 0.0022 | 2.6921  | 0.0022 |
| A0QVQ3 | NS      | NS     | 2.5512  | 0.0039 |
| A0QVQ5 | NS      | NS     | 2.3983  | 0.0000 |
| A0QVR3 | 2.0854  | NS     | 2.0854  | NS     |
| A0QVU2 | NS      | NS     | 2.5017  | 0.0003 |
| A0QVV5 | 2.6706  | NS     | 2.6706  | 0.0080 |
| A0QVX3 | NS      | NS     | 2.5182  | 0.0004 |
| A0QVX4 | NS      | NS     | -2.9397 | NS     |
| A0QVX6 | NS      | NS     | 2.0624  | NS     |
| A0QVY4 | NS      | NS     | 2.0697  | NS     |
| A0QVY9 | NS      | NS     | 2.6585  | 0.0015 |
| A0QVZ3 | NS      | NS     | 1.9980  | NS     |
| A0QW02 | NS      | NS     | -2.3092 | 0.0003 |
| A0QWG2 | 1.2224  | NS     | 1.2224  | NS     |
| A0QWH1 | 2.4381  | 0.0000 | 2.4381  | 0.0000 |
| A0QWN3 | NS      | NS     | -0.8712 | NS     |
| A0QWQ5 | -0.6473 | NS     | 1.9474  | NS     |
| A0QWS8 | NS      | NS     | -1.5238 | NS     |
| A0QWT3 | NS      | NS     | 2.4823  | 0.0001 |
| A0QWU8 | 2.0854  | NS     | 2.0854  | NS     |
| A0QWV1 | 1.2224  | NS     | 1.2224  | NS     |
| A0QWW2 | NS      | NS     | -0.6196 | NS     |
| A0QWW3 | NS      | NS     | 2.4951  | 0.0002 |
| A0QWW4 | 1.0202  | NS     | 2.4885  | 0.0012 |
| A0QWX6 | NS      | NS     | 2.5017  | 0.0003 |
| A0QWX8 | NS      | NS     | -0.8316 | NS     |
| A0QWY3 | NS      | NS     | 2.3890  | 0.0000 |
| A0QX20 | NS      | 0.0044 | NS      | NS     |
| A0QX24 | -1.2692 | NS     | 1.9619  | NS     |
| A0QX32 | NS      | NS     | 1.2224  | NS     |
| A0QX35 | NS      | NS     | 2.9738  | NS     |
|        |         |        |         |        |

| A0QX36 | NS      | NS     | 2.8339  | 0.0122 |
|--------|---------|--------|---------|--------|
| A0QXA3 | NS      | NS     | 0.6982  | NS     |
| A0QXD0 | 2.5339  | NS     | 2.5339  | NS     |
| A0QXS8 | NS      | NS     | -1.3522 | NS     |
| A0QXX7 | NS      | NS     | 0.7309  | NS     |
| A0QXY0 | 2.4381  | 0.0000 | 2.4381  | 0.0000 |
| A0QXZ5 | NS      | NS     | 2.4381  | 0.0000 |
| A0QY21 | NS      | NS     | 2.8670  | 0.0054 |
| A0QY55 | 2.6585  | 0.0015 | 2.6585  | 0.0015 |
| A0QY58 | 2.8169  | NS     | 2.8169  | 0.0054 |
| A0QY79 | 2.5337  | 0.0006 | 2.5337  | 0.0006 |
| A0QY95 | NS      | NS     | 3.4657  | NS     |
| A0QYA9 | 1.2224  | NS     | 1.2224  | NS     |
| A0QYB5 | 0.9229  | NS     | 2.7377  | 0.0025 |
| A0QYD3 | NS      | NS     | 2.7112  | 0.0029 |
| A0QYD5 | NS      | NS     | 2.8632  | NS     |
| A0QYD6 | 2.8706  | NS     | 2.8706  | 0.0146 |
| A0QYE0 | 2.4381  | 0.0000 | 2.4381  | 0.0000 |
| A0QYE7 | NS      | NS     | 0.8046  | NS     |
| A0QYF5 | NS      | NS     | 3.6197  | NS     |
| A0QYF7 | NS      | NS     | -0.7261 | NS     |
| A0QYG2 | 2.4885  | 0.0012 | 2.4885  | 0.0012 |
| A0QYG3 | 2.8651  | NS     | 2.8651  | 0.0102 |
| A0QYL9 | NS      | NS     | 2.3196  | NS     |
| A0QYN8 | 3.3398  | NS     | 3.3398  | 0.0247 |
| A0QYN9 | 2.4381  | 0.0000 | 2.4381  | 0.0000 |
| A0QYQ7 | NS      | NS     | 2.0697  | NS     |
| A0QYS6 | NS      | NS     | 2.6585  | 0.0015 |
| A0QYU6 | 2.1622  | NS     | 2.1622  | NS     |
| A0QYU8 | -1.4521 | NS     | 1.9619  | NS     |
| A0QYY6 | NS      | NS     | -0.8977 | NS     |
| A0QZ34 | -0.7360 | NS     | 1.9474  | NS     |
| A0QZ37 | 0.6025  | NS     | 3.1972  | 0.0173 |
| A0QZ46 | NS      | NS     | 2.5354  | 0.0004 |
| A0QZ47 | NS      | NS     | 2.8981  | 0.0063 |
| A0QZ48 | 0.5955  | NS     | 2.3683  | 0.0000 |
| A0QZ96 | NS      | NS     | 1.9619  | NS     |
| A0QZB3 | NS      | NS     | 2.9596  | 0.0177 |
| A0QZW2 | NS      | NS     | -2.7836 | NS     |
| A0QZX6 | NS      | NS     | -2.7836 | NS     |

| A0R006 | NS      | NS     | 2.8499  | 0.0055 |
|--------|---------|--------|---------|--------|
| A0R012 | 1.2224  | NS     | 1.2224  | NS     |
| A0R048 | 0.9926  | NS     | 2.5512  | 0.0039 |
| A0R050 | NS      | NS     | 2.4381  | 0.0000 |
| A0R057 | -0.7386 | NS     | 2.6521  | 0.0015 |
| A0R066 | NS      | NS     | 2.8632  | NS     |
| A0R067 | NS      | NS     | 3.1972  | 0.0173 |
| A0R069 | NS      | NS     | -0.8760 | NS     |
| A0R072 | NS      | NS     | -2.1678 | NS     |
| A0R083 | -1.9456 | NS     | NS      | NS     |
| A0R0A1 | NS      | NS     | 2.4230  | 0.0002 |
| A0R0B0 | NS      | NS     | 2.7359  | 0.0025 |
| A0R0B3 | NS      | NS     | -1.4525 | NS     |
| A0R0B4 | NS      | NS     | 2.4885  | 0.0012 |
| A0R0B5 | 1.2369  | NS     | 2.6286  | 0.0065 |
| A0R0C7 | NS      | NS     | 2.6690  | 0.0149 |
| A0R0C8 | 1.9474  | NS     | 1.9474  | NS     |
| A0R0F4 | 1.9699  | NS     | 2.4287  | 0.0001 |
| A0R0G8 | 2.4885  | 0.0012 | 2.4885  | 0.0012 |
| A0R0I8 | NS      | NS     | 2.5354  | 0.0004 |
| A0R0R9 | -1.2224 | NS     | NS      | NS     |
| A0R0W7 | NS      | NS     | 2.4709  | 0.0008 |
| A0R0W9 | NS      | NS     | 1.9619  | NS     |
| A0R0X1 | 0.9716  | NS     | 3.4797  | NS     |
| A0R102 | -0.6923 | NS     | 1.9619  | NS     |
| A0R111 | 1.9474  | NS     | 1.9474  | NS     |
| A0R151 | 2.5972  | 0.0030 | 2.5972  | 0.0030 |
| A0R183 | 2.6921  | 0.0022 | 2.6921  | 0.0022 |
| A0R197 | -2.3218 | NS     | NS      | NS     |
| A0R198 | NS      | NS     | 2.5017  | 0.0003 |
| A0R1A7 | -1.2224 | NS     | NS      | NS     |
| A0R1B3 | -0.6269 | NS     | 2.3442  | 0.0000 |
| A0R1B5 | NS      | NS     | 2.5337  | 0.0006 |
| A0R1B6 | 2.4381  | 0.0000 | 2.4381  | 0.0000 |
| A0R1C3 | NS      | NS     | 2.8339  | 0.0122 |
| A0R1D3 | NS      | NS     | 2.6845  | 0.0018 |
| A0R1D4 | -1.9456 | NS     | NS      | NS     |
| A0R1D7 | 1.2224  | NS     | 1.2224  | NS     |
| A0R1D9 | NS      | NS     | -1.3165 | NS     |
| A0R1H5 | 0.8353  | NS     | 2.4230  | 0.0002 |

| A0R1H7 | NS      | NS     | 3.1129  | 0.0160 |
|--------|---------|--------|---------|--------|
| A0R1J4 | 2.4381  | 0.0000 | 2.4381  | 0.0000 |
| A0R1Y2 | 1.8881  | NS     | 1.8881  | NS     |
| A0R1Y7 | NS      | NS     | 2.6690  | 0.0149 |
| A0R201 | -2.3760 | 0.0000 | NS      | NS     |
| A0R204 | 2.6585  | 0.0015 | 2.6585  | 0.0015 |
| A0R218 | NS      | NS     | 2.6521  | 0.0015 |
| A0R220 | -0.7154 | NS     | 2.6845  | 0.0018 |
| A0R221 | 1.2224  | NS     | 1.2224  | NS     |
| A0R234 | NS      | NS     | 1.9619  | NS     |
| A0R239 | NS      | NS     | 2.7600  | 0.0063 |
| A0R248 | 2.4230  | 0.0002 | 2.4230  | 0.0002 |
| A0R2B1 | NS      | NS     | 2.4885  | 0.0012 |
| A0R2C0 | 1.2224  | NS     | 1.2224  | NS     |
| A0R2E1 | NS      | NS     | 2.4885  | 0.0012 |
| A0R2E3 | NS      | NS     | 2.9750  | 0.0093 |
| A0R2G5 | NS      | NS     | 2.8169  | 0.0054 |
| A0R2H8 | -0.6432 | NS     | 2.3890  | 0.0000 |
| A0R2J4 | 1.9474  | NS     | 1.9474  | NS     |
| A0R2K7 | NS      | NS     | 2.4885  | 0.0012 |
| A0R2P1 | NS      | NS     | 2.4381  | 0.0000 |
| A0R2Q7 | -1.2224 | NS     | NS      | NS     |
| A0R2Q7 | -1.2224 | NS     | NS      | NS     |
| A0R2T3 | 1.9619  | NS     | 1.9619  | NS     |
| A0R2U7 | NS      | NS     | 2.4381  | 0.0000 |
| A0R2U8 | NS      | NS     | 2.4389  | 0.0002 |
| A0R2V7 | NS      | NS     | 2.4885  | 0.0012 |
| A0R2X1 | 3.0398  | NS     | 3.0398  | 0.0154 |
| A0R2X3 | 2.4381  | 0.0000 | 2.4381  | 0.0000 |
| A0R2X8 | 1.0072  | NS     | 2.8605  | 0.0160 |
| A0R2Y1 | NS      | NS     | 0.6553  | NS     |
| A0R2Y5 | -1.9456 | NS     | NS      | NS     |
| A0R305 | NS      | NS     | 1.2224  | NS     |
| A0R310 | NS      | NS     | 2.6921  | 0.0022 |
| A0R342 | NS      | NS     | 2.3878  | 0.0000 |
| A0R349 | 2.4381  | 0.0000 | 2.4381  | 0.0000 |
| A0R352 | 1.9619  | NS     | 1.9619  | NS     |
| A0R365 | -1.5893 | NS     | 1.2224  | NS     |
| A0R3A6 | NS      | NS     | -2.0331 | NS     |
| A0R3C8 | NS      | NS     | 3.0110  | 0.0109 |
| A0R3D2 | -1.2224 | NS     | NS      | NS     |
|--------|---------|--------|---------|--------|
| A0R3D9 | -1.9456 | NS     | NS      | NS     |
| A0R3I9 | NS      | NS     | 2.4381  | 0.0000 |
| A0R3L1 | -1.3021 | NS     | 2.2586  | NS     |
| A0R3L4 | 0.6614  | NS     | 2.7442  | 0.0085 |
| A0R3M3 | NS      | NS     | -0.9295 | NS     |
| A0R3M4 | NS      | NS     | 0.8093  | NS     |
| A0R3N8 | NS      | NS     | 2.4381  | 0.0000 |
| A0R3N9 | NS      | NS     | 2.5307  | 0.0003 |
| A0R3Y5 | NS      | NS     | 2.4381  | 0.0000 |
| A0R409 | NS      | NS     | 2.6648  | 0.0048 |
| A0R417 | NS      | NS     | 2.4287  | 0.0001 |
| A0R425 | 2.5512  | 0.0039 | 2.5512  | 0.0039 |
| A0R429 | NS      | NS     | 2.4381  | 0.0000 |
| A0R449 | 1.2224  | NS     | 1.2224  | NS     |
| A0R452 | NS      | NS     | 2.5941  | 0.0022 |
| A0R461 | NS      | NS     | 3.2720  | 0.0218 |
| A0R462 | NS      | NS     | 1.2224  | NS     |
| A0R467 | 1.2305  | NS     | 2.5590  | 0.0015 |
| A0R478 | 2.2586  | NS     | 2.2586  | NS     |
| A0R4B1 | 1.8881  | NS     | 1.8881  | NS     |
| A0R4C9 | 1.2056  | NS     | 2.7377  | 0.0025 |
| A0R4D0 | -1.2224 | NS     | NS      | NS     |
| A0R4D7 | 2.4381  | 0.0000 | 2.4381  | 0.0000 |
| A0R4G4 | NS      | NS     | 2.6521  | 0.0015 |
| A0R4H0 | 0.6217  | NS     | 2.8657  | 0.0072 |
| A0R4H3 | 2.4381  | 0.0000 | 2.4381  | 0.0000 |
| A0R4J1 | -1.9456 | NS     | NS      | NS     |
| A0R4K5 | NS      | NS     | 1.8881  | NS     |
| A0R4S6 | 1.9474  | NS     | 1.9474  | NS     |
| A0R4S7 | 1.2224  | NS     | 1.2224  | NS     |
| A0R4Y7 | 2.4381  | 0.0000 | 2.4381  | 0.0000 |
| A0R566 | NS      | NS     | 2.6585  | 0.0015 |
| A0R574 | NS      | NS     | -1.5820 | 0.0159 |
| A0R581 | -1.9467 | NS     | NS      | NS     |
| A0R5C5 | NS      | NS     | 2.4381  | 0.0000 |
| A0R5D9 | NS      | NS     | 2.1866  | NS     |
| A0R5E1 | 1.0529  | NS     | -0.9898 | NS     |
| A0R5G1 | NS      | NS     | 2.6113  | 0.0085 |
| A0R5H1 | -0.8998 | NS     | 2.5145  | NS     |

| A0R5H3 | 1.9619  | NS     | 1.9619  | NS     |
|--------|---------|--------|---------|--------|
| A0R5J3 | 0.9270  | NS     | 2.8294  | NS     |
| A0R5J4 | NS      | NS     | 2.5017  | 0.0003 |
| A0R5L3 | 0.9180  | NS     | 2.5070  | 0.0003 |
| A0R5M3 | NS      | NS     | -1.3119 | 0.0002 |
| A0R5N8 | 2.3196  | NS     | 2.3196  | NS     |
| A0R5X8 | 1.9980  | NS     | 1.9980  | NS     |
| A0R5Y1 | -2.3760 | 0.0000 | NS      | NS     |
| A0R5Z8 | 2.1866  | NS     | 2.1866  | NS     |
| A0R616 | NS      | NS     | 3.0353  | NS     |
| A0R618 | -0.6196 | NS     | 2.6648  | 0.0048 |
| A0R623 | NS      | NS     | -1.7591 | NS     |
| A0R638 | -1.9456 | NS     | NS      | NS     |
| A0R656 | NS      | NS     | 2.7719  | 0.0035 |
| A0R678 | NS      | NS     | 0.8593  | NS     |
| A0R692 | NS      | NS     | 2.7391  | 0.0052 |
| A0R6D2 | NS      | NS     | 2.5722  | 0.0023 |
| A0R6E9 | NS      | NS     | 2.5939  | 0.0007 |
| A0R6I9 | NS      | NS     | 2.0854  | NS     |
| A0R6N9 | -2.7977 | 0.0041 | NS      | NS     |
| A0R6Q7 | NS      | NS     | 2.7733  | 0.0032 |
| A0R716 | -0.7436 | NS     | 2.6706  | 0.0080 |
| A0R727 | NS      | NS     | -2.6611 | 0.0110 |
| A0R729 | -0.5917 | NS     | -1.3940 | 0.0203 |
| A0R742 | 1.8881  | NS     | 1.8881  | NS     |
| A0R760 | NS      | NS     | 1.9474  | NS     |
| A0R761 | 1.2224  | NS     | 1.2224  | NS     |
| A0R773 | NS      | NS     | 2.3683  | 0.0000 |
| A0R788 | 2.4381  | 0.0000 | 2.4381  | 0.0000 |
| A0R7F7 | 2.4381  | 0.0000 | 2.4381  | 0.0000 |
| A0R7F9 | NS      | NS     | 2.6662  | 0.0064 |
| A0R7G8 | -2.5120 | NS     | NS      | NS     |
| O85501 | NS      | NS     | 2.8670  | 0.0054 |
| P0CH00 | -1.2224 | NS     | NS      | NS     |
| P0CH37 | NS      | NS     | 3.0110  | 0.0109 |
| P48354 | -0.7649 | NS     | 2.6662  | 0.0064 |
| P60281 | NS      | NS     | -1.0796 | NS     |
| P71534 | 1.9619  | NS     | 1.9619  | NS     |
| Q3I5Q7 | 2.4885  | 0.0012 | 2.4885  | 0.0012 |
| Q59560 | -0.8411 | NS     | -2.9397 | NS     |

| Q9AFI5 | 0.8623 | NS | 2.7908  | 0.0035 |
|--------|--------|----|---------|--------|
| Q9X5M0 | NS     | NS | 2.5339  | NS     |
| Q9ZHC5 | NS     | NS | -1.4085 | 0.0002 |

Appendix Table 2. All significant lipids according to fold change and p-value, with their corresponding values, in the 3 methods of lipid extraction when comparing to the standard: Bligh Dyer. A fold change above 1.5 and a p-value less than 0.05 were considered significant. Log2 fold changes in pink indicate the lipid is upregulated in the acetone extraction method, blue indicates upregulation in the Bligh Dyer extraction method, green indicates upregulation in the MTBE extraction method, and black indicates no significance (NS). The positive or negative sign in the far left column indicates whether the lipid was found through positive or negative ESI-Mass Spectrometry with tandem-Mass Spectrometry.

|   |                                                               | Acetone vs I        | Bligh Dyer | Bligh Dyer          | vs MTBE |
|---|---------------------------------------------------------------|---------------------|------------|---------------------|---------|
|   | Lipid Name                                                    | Log2 Fold<br>Change | P-Value    | Log2 Fold<br>Change | P-Value |
| - | RIKEN N-VS1 ID-6019 from<br>Mouse_AdrenalGlands_fads2KO_N_Ctr | 8.2352              | 0.0138     | 6.8296              | 0.0141  |
| - | FA 21:4;(2OH)                                                 | 8.2229              | 0.0000     | -0.9073             | 0.0246  |
| - | SHexCer 36:3;20                                               | 6.5641              | 0.0000     | 5.9760              | 0.0000  |
| - | PI-Cer 12:1;20/22:1                                           | 6.4239              | 0.0000     | 6.6357              | 0.0000  |
| - | SL 22:3;O/36:4;O                                              | 6.2983              | 0.0002     | 7.4614              | 0.0002  |
| - | FA 16:4                                                       | 6.2665              | 0.0014     | 3.3773              | 0.0020  |
| - | PC O-19:0_28:4                                                | 5.9915              | 0.0117     | 8.0431              | 0.0112  |
| - | FA 15:4                                                       | 5.9340              | 0.0001     | 4.2112              | 0.0001  |
| - | SHexCer 35:2;20                                               | 5.8385              | 0.0000     | 4.3695              | 0.0000  |
| - | SHexCer 35:3;20                                               | 5.7371              | 0.0015     | 7.5448              | 0.0014  |
| + | TG 8:0_15:2_38:10                                             | 5.3613              | 0.0139     | 6.1493              | 0.0134  |
| + | BMP 19:1_18:3                                                 | 5.2275              | 0.0009     | 6.5276              | 0.0008  |
| + | DGCC 18:5_18:5                                                | 5.2142              | 0.0000     | 4.2842              | 0.0000  |
| - | Cer 12:0;20/16:4;(30H)(FA 22:6)                               | 5.1112              | 0.0003     | 4.8564              | 0.0004  |
| + | SHexCer 25:1;2O/28:0                                          | 4.9341              | 0.0000     | 5.1995              | 0.0000  |
| - | RIKEN N-VS1 ID-1766 from<br>Mouse_SmallIntestine_WT_N_F1      | 4.9066              | 0.0009     | 3.3743              | 0.0012  |
| - | SL 21:3;O/36:4;O                                              | 4.8729              | 0.0001     | 5.1238              | 0.0001  |
| + | PI-Cer 34:2;20                                                | 4.8652              | 0.0002     | 0.9709              | 0.0031  |
| - | PC O-21:0_28:4                                                | 4.8248              | 0.0050     | 6.0886              | 0.0046  |
| + | SM 40:5;20(FA 22:6)                                           | 4.8132              | 0.0000     | 4.9012              | 0.0000  |
| - | AAHFA 20:4/8:0;O                                              | 4.7782              | 0.0110     | 3.1979              | 0.0163  |
| + | SM 57:9;2O                                                    | 4.7270              | 0.0001     | 4.9685              | 0.0001  |
| + | TG 8:0_14:1_36:10                                             | 4.7181              | 0.0105     | 5.3792              | 0.0100  |
| - | Cer 13:0;2O/24:5;(3OH)(FA 22:6)                               | 4.7155              | 0.0001     | 4.7241              | 0.0001  |

| + | TG 8:0_8:0_20:5;1O(FA 14:0)                                   | 4.7098 | 0.0000 | 4.8469  | 0.0000 |
|---|---------------------------------------------------------------|--------|--------|---------|--------|
| - | Cer 12:0;2O/24:5;(3OH)(FA 22:6)                               | 4.6466 | 0.0007 | 4.6657  | 0.0007 |
| - | PE O-26:6_15:2                                                | 4.6210 | 0.0002 | 4.4089  | 0.0002 |
| + | MGDG O-19:2_28:5                                              | 4.6206 | 0.0014 | 5.3014  | 0.0013 |
| + | ADGGA (O-24:0)12:0_20:4                                       | 4.5384 | 0.0000 | 4.3923  | 0.0000 |
| + | ASG 29:2;O;Hex;FA 28:5                                        | 4.4725 | 0.0000 | 5.6972  | 0.0000 |
| - | PC O-18:0_28:3                                                | 4.4473 | 0.0000 | 4.6832  | 0.0000 |
| + | NAGly 22:6;O(FA 21:5)                                         | 4.3598 | 0.0000 | 4.2506  | 0.0000 |
| - | RIKEN N-VS1 ID-2948 from<br>Mouse_Brain_WT_N_F1               | 4.3130 | 0.0001 | 3.4219  | 0.0001 |
| + | RIKEN P-VS1 ID-13211 from<br>Mouse_Macrophage_WT_N_F1         | 4.2698 | 0.0000 | 2.4010  | 0.0001 |
| + | TG 10:0_21:3_20:4                                             | 4.1897 | 0.0002 | 4.2224  | 0.0001 |
| + | PI 56:1                                                       | 4.1800 | 0.0001 | 5.6101  | 0.0001 |
| - | RIKEN N-VS1 ID-2593 from<br>Mouse_AdrenalGlands_fads2KO_N_Ctr | 4.1292 | 0.0004 | 3.2272  | 0.0005 |
| - | PC 0-10:0_22:3;10                                             | 4.0944 | 0.0072 | 3.5319  | 0.0079 |
| + | DGTS 15:3_17:4                                                | 4.0544 | 0.0000 | 2.3367  | 0.0001 |
| - | PC 0-14:0_18:2;10                                             | 4.0320 | 0.0206 | 3.7265  | 0.0218 |
| + | DG 38:8                                                       | 4.0183 | 0.0000 | 4.7736  | 0.0000 |
| + | NAGIY 20:5;0(FA 16:2)                                         | 3.9458 | 0.0000 | 4.2564  | 0.0000 |
| - | PC 0-14:1_16:2;10                                             | 3.9146 | 0.0004 | 4.1712  | 0.0004 |
| - | SHexCer 36:2;20                                               | 3.9074 | 0.0086 | 3.0168  | 0.0118 |
| + | Cer 12:2;20/19:5                                              | 3.8733 | 0.0006 | 4.7326  | 0.0005 |
| + | SL 12:1;0/17:3                                                | 3.8208 | 0.0000 | 4.6255  | 0.0000 |
| + | BMP 8:0_28:4                                                  | 3.7993 | 0.0001 | 3.6210  | 0.0001 |
| - | ST 29:2;0;S                                                   | 3.7689 | 0.0289 | 3.3153  | 0.0319 |
| + | ASG 27:1;0;Hex;FA 17:2                                        | 3.7509 | 0.0001 | 3.8472  | 0.0001 |
| + | TG 9:0_26:6_38:10                                             | 3.7144 | 0.0000 | 4.7821  | 0.0000 |
| - | RIKEN N-VS1 ID-5527 from<br>Mouse_AdrenalGlands_WT_N_Ctr      | 3.6829 | 0.0002 | 2.9401  | 0.0002 |
| - | CL 12:0_12:0_16:0_22:6                                        | 3.6696 | 0.0035 | 1.0753  | NS     |
| + | SL 16:0;0/26:4;0                                              | 3.6556 | 0.0000 | 4.6270  | 0.0000 |
| + | PI-Cer 36:3;20                                                | 3.6082 | 0.0001 | 4.5322  | 0.0001 |
| + | SL 12:1;0/20:3;0                                              | 3.5632 | 0.0001 | 4.5108  | 0.0000 |
| + | DG 26:3_15:4                                                  | 3.5573 | 0.0000 | 3.6517  | 0.0000 |
| + | TG 8:0_17:2_38:10                                             | 3.5508 | NS     | 5.5260  | NS     |
| + | RIKEN P-VS1 ID-11326 from<br>Mouse_Aorta_ApoEKO_N_F1EPA       | 3.5393 | NS     | -4.4317 | 0.0001 |
| + | BMP 22:0_28:3                                                 | 3.5174 | 0.0151 | 4.5856  | 0.0129 |
| + | NAOrn 19:0;O                                                  | 3.4943 | 0.0001 | 4.0606  | 0.0000 |
|   |                                                               |        |        |         |        |

| -      | RIKEN N-VS1 ID-8218 from                            | 3.4903    | 0.0019 | 3.1300           | 0.0022 |
|--------|-----------------------------------------------------|-----------|--------|------------------|--------|
| _      | Cer 12:0:20/26:5:(30H)(FA 22:6)                     | 3 / 822   | 0.0002 | 3 7533           | 0.0001 |
| +      | SM 30:5:20                                          | 3.4647    | 0.0002 | 2 0292           | 0.0001 |
| '<br>+ | PI-Cer 35:2:20                                      | 3 4 5 9 4 | 0.0005 | 2.0292<br>4.2452 | 0.0012 |
| -      | RIKEN N-VS1 ID-2765 from                            | 3.4227    | NS     | -4.1697          | 0.0012 |
|        | Mouse_Aorta_w I_N_Ctr                               | 2 4202    | 0.0000 | 4 2220           | 0 0000 |
| +      | D040.0                                              | 3.4203    | 0.0000 | 4.3389           | 0.0000 |
| +      | VAE 10.2                                            | 3.3923    | 0.0000 | 5.9557<br>2.5002 | 0.0000 |
| +      | VAE 19.5                                            | 3.3085    | 0.0000 | 3.5002           | 0.0000 |
| +      | DCTS 15-2 22-6                                      | 3.2597    | 0.0000 | 2.1931           | 0.0000 |
| +      | DG13 15.5_22.0<br>DL Corr 22:1:20                   | 3.2334    | 0.0002 | 5.8994           | 0.0001 |
| +      | FI-Cer 55:1;20                                      | 3.2019    | 0.0004 | 0.7732           | 0.0107 |
| +      | TC 0 16:2_30:10                                     | 3.1648    | 0.00/1 | 4.6/30           | 0.0053 |
| +      | IG 0-16:2_8:0_8:0                                   | 3.1521    | 0.0001 | 3.5405           | 0.0001 |
| +      | BMP 19:0_8:0                                        | 3.0690    | 0.0001 | 1.0290           | 0.0027 |
| +      | DGGA 20:0_8:0                                       | 3.0676    | 0.0001 | 3.2100           | 0.0001 |
| -      | PC 0-12:0_17:2;20                                   | 3.0340    | NS     | 3.0976           | NS     |
| +      | BMP 8:0_28:3                                        | 3.0313    | 0.0001 | 3.3428           | 0.0001 |
| +      | Cer 13:2;20/36:6                                    | 3.0066    | 0.0002 | 3.9051           | 0.0001 |
| +      | RIKEN P-VS1 ID-6547 from                            | 2.9965    | 0.0000 | 5.2088           | 0.0000 |
|        | Mouse_Muscle_WT_CTX0_Ctr                            | 2 0002    | 0.0001 | 0.0000           | 0.0004 |
| -      | PI 0-8:0_19:0                                       | 2.8992    | 0.0001 | 2.0992           | 0.0004 |
| +      | BMP 8:0_20:4                                        | 2.8842    | 0.0007 | 3.5528           | 0.0004 |
| +      | IG 8:0_13:1_36:10                                   | 2.8767    | 0.0119 | 3.9191           | 0.0090 |
| +      | Mouse_Lung_WT_N_F1                                  | 2.8701    | 0.0002 | 3.1181           | 0.0002 |
| +      | AHexCer (O-16:2)21:0;20/18:4;O                      | 2.8319    | 0.0351 | 4.3244           | 0.0257 |
| -      | PE-Cer 12:1;2O/21:2                                 | 2.7992    | 0.0087 | 2.2273           | 0.0139 |
| +      | ASG 28:2;O;Hex;FA 28:6                              | 2.7954    | 0.0130 | 3.4342           | 0.0105 |
| +      | PI-Cer 35:3;2O                                      | 2.7576    | 0.0033 | 3.6631           | 0.0021 |
| +      | RIKEN P-VS1 ID-5863 from<br>Mouse Adipose WT N F1AA | 2.7469    | 0.0307 | 3.4100           | 0.0253 |
| +      | TG 8:0_13:1_38:10                                   | 2.7322    | 0.0044 | 4.0978           | 0.0029 |
| +      | Cer 12:0;20/22:6                                    | 2.7318    | 0.0000 | 3.8547           | 0.0000 |
| -      | MLCL 15:2_12:0_12:0                                 | 2.6594    | 0.0017 | 1.2009           | 0.0067 |
|        | RIKEN P-VS1 ID-7250 from                            | 2 6207    | 0.0040 | NC               | NIC    |
| +      | Mouse_Muscle_WT_CTX0_Ctr                            | 2.0307    | 0.0040 | IN2              | IN2    |
| +      | PC O-37:6                                           | 2.5978    | 0.0000 | 2.6291           | 0.0001 |
| +      | RIKEN P-VS1 ID-8110 from<br>Mouse Liver WT N F1DHA  | 2.5678    | 0.0005 | 3.8316           | 0.0004 |
| +      | DG O-19:5_19:3                                      | 2.5282    | 0.0002 | 3.7462           | 0.0000 |

| + | ST 27:2;O                                                | 2.5142 | 0.0115 | 4.1328  | 0.0034 |
|---|----------------------------------------------------------|--------|--------|---------|--------|
|   | Triphenylphosphine oxide (also known                     | 2 5138 | 0.0001 | 2 1213  | 0.0001 |
| т | as chemical regent)                                      | 2.3130 | 0.0001 | 2.4243  | 0.0001 |
| + | TG 8:0_14:1_38:10                                        | 2.4905 | 0.0022 | 4.5411  | 0.0009 |
| + | HexCer 16:1;30/14:0;(20H)                                | 2.3881 | 0.0011 | 3.0015  | 0.0000 |
| + | AHexCer (0-22:6)12:1;20/20:0;0                           | 2.3873 | 0.0340 | 2.7412  | 0.0290 |
| + | NAOrn 10:0;O(FA 11:0)                                    | 2.3611 | 0.0000 | 2.2427  | 0.0000 |
| + | SM 20:1;20                                               | 2.3527 | 0.0000 | 2.3051  | 0.0000 |
| - | PI 6:0_34:4                                              | 2.3460 | NS     | 1.5568  | NS     |
| + | DG 37:7                                                  | 2.3382 | 0.0001 | 3.7016  | 0.0000 |
| - | PE-Cer 12:1;20/19:4                                      | 2.2386 | 0.0001 | 1.1209  | 0.0006 |
| + | SM 33:4;2O                                               | 2.1981 | 0.0011 | 1.8557  | 0.0020 |
| + | SL 21:3;O/15:1;O                                         | 2.1974 | 0.0011 | 2.0264  | 0.0014 |
| + | ASG 28:2;O;Hex;FA 26:6                                   | 2.1901 | 0.0082 | 3.3176  | 0.0050 |
| + | RIKEN P-VS1 ID-3167 from<br>Mouse_SmallIntestine_WT_N_F1 | 2.1781 | 0.0015 | 3.5693  | 0.0000 |
| + | TG 8:0_15:2_36:10                                        | 2.1442 | 0.0136 | 2.9673  | 0.0087 |
| - | LPA 22:2                                                 | 2.1255 | NS     | 2.1543  | NS     |
| + | RIKEN P-VS1 ID-6116 from<br>Mouse_AdrenalGlands_WT_N_Ctr | 2.1064 | 0.0001 | 2.6869  | 0.0001 |
| + | RIKEN P-VS1 ID-7906 from<br>Mouse_Macrophage_WT_N_F1AA   | 2.1059 | NS     | -3.2303 | NS     |
| - | PI 6:0_34:3                                              | 2.0981 | 0.0080 | 1.8601  | 0.0089 |
| + | DG 46:12                                                 | 2.0974 | 0.0008 | 2.4213  | 0.0007 |
| + | BMP 8:0_26:3                                             | 2.0967 | 0.0024 | 3.5225  | 0.0008 |
| + | DGGA 21:0_8:0                                            | 2.0821 | 0.0009 | 2.7665  | 0.0004 |
| + | DG 45:12                                                 | 2.0785 | 0.0015 | 2.5611  | 0.0006 |
| - | GM3 46:5;20                                              | 2.0206 | 0.0001 | 2.2118  | 0.0000 |
| + | RIKEN P-VS1 ID-6301 from<br>Mouse_Feces_WT_N_Ctr         | 1.9920 | 0.0001 | 3.6857  | 0.0000 |
| - | MGDG 10:0_22:2                                           | 1.9903 | NS     | 3.6167  | 0.0372 |
| + | VAE 17:3                                                 | 1.9901 | 0.0000 | 2.1591  | 0.0000 |
| + | RIKEN P-VS1 ID-7005 from<br>Mouse_Macrophage_WT_N_F1AA   | 1.9818 | 0.0017 | 0.7579  | 0.0182 |
| + | AHexCer (O-22:5)12:1;2O/15:0;O                           | 1.9368 | 0.0039 | 2.5400  | 0.0025 |
| - | RIKEN N-VS1 ID-4305 from<br>Mouse_Macrophage_WT_N_F1AA   | 1.8975 | 0.0011 | NS      | NS     |
| + | SL 13:2;O/28:6;O                                         | 1.8878 | 0.0006 | 2.4693  | 0.0003 |
| + | RIKEN P-VS1 ID-7491 from<br>Mouse_Macrophage_WT_N_F1AA   | 1.8384 | 0.0000 | 2.6521  | 0.0000 |
| + | SM 28:0;2O                                               | 1.8277 | 0.0030 | 1.8772  | 0.0007 |
| + | SL 12:2;O/26:6                                           | 1.8041 | 0.0002 | 2.1924  | 0.0001 |
|   |                                                          |        |        |         |        |

| - | RIKEN N-VS1 ID-5305 from                                                | 1.7782 | 0.0004 | 1.4934 | 0.0010 |
|---|-------------------------------------------------------------------------|--------|--------|--------|--------|
| + | TG 8:0 18:5 22:6                                                        | 1 7695 | 0.0001 | 2 6053 | 0.0001 |
| + | BMP 20:0 28:3                                                           | 1.7206 | 0.0233 | 3.6764 | 0.0084 |
| _ | HBMP 22:6_19:5_22:6                                                     | 1.7140 | 0.0343 | 1.2309 | NS     |
| - | Pentaerythritol tetrakis(3,5-di-tert-butyl-<br>4-hydroxyhydrocinnamate) | 1.6310 | 0.0331 | 0.9849 | NS     |
| + | RIKEN P-VS1 ID-1009 from<br>Mouse Muscle WT CTX0 Ctr                    | 1.6305 | 0.0278 | NS     | NS     |
| + | RIKEN P-VS1 ID-5923 from<br>Mouse Feces WT N Ctr                        | 1.6216 | 0.0017 | 1.5366 | 0.0033 |
| + | TG 21:4_22:6_22:6;1O                                                    | 1.6181 | 0.0028 | 1.6938 | 0.0022 |
| - | RIKEN N-VS1 ID-7968 from<br>Mouse_AdrenalGlands_fads2KO_N_Ctr           | 1.5850 | 0.0039 | 1.2140 | 0.0101 |
| - | RIKEN N-VS1 ID-5118 from<br>Mouse_Feces_WT_ABX_Ctr                      | 1.5257 | 0.0004 | 1.6974 | 0.0003 |
| + | BMP 22:0_28:4                                                           | 1.5247 | NS     | 3.0542 | 0.0198 |
| + | Diisodecyl phthalate (also known as the production of plastic)          | 1.4810 | 0.0002 | 0.8567 | 0.0006 |
| + | RIKEN P-VS1 ID-7082 from<br>Mouse_Macrophage_WT_N_F1AA                  | 1.4303 | 0.0001 | 2.2662 | 0.0000 |
| + | RIKEN P-VS1 ID-3120 from<br>Mouse_Aorta_WT_N_Ctr                        | 1.4129 | NS     | NS     | NS     |
| + | DG 25:3                                                                 | 1.4111 | 0.0054 | 2.1667 | 0.0020 |
| - | RIKEN N-VS1 ID-8792 from<br>Mouse_Macrophage_WT_N_F1AA                  | 1.3918 | 0.0016 | NS     | NS     |
| + | PI 57:13                                                                | 1.3364 | 0.0029 | 3.1941 | 0.0004 |
| + | RIKEN P-VS1 ID-3065 from<br>Mouse_Macrophage_WT_N_F1AA                  | 1.3082 | 0.0003 | NS     | 0.0340 |
| + | SL 13:1;0/24:3;0                                                        | 1.3068 | 0.0006 | 2.1044 | 0.0004 |
| + | Dioctyl phthalate (also known as the production of plastic)             | 1.2858 | 0.0156 | 0.6877 | NS     |
| - | PI 35:0 PI 16:0_19:0                                                    | 1.2678 | 0.0056 | 1.2848 | 0.0031 |
| + | RIKEN P-VS1 ID-2808 from<br>Mouse_Macrophage_WT_N_F1AA                  | 1.2614 | 0.0002 | NS     | 0.0152 |
| + | DG 47:11                                                                | 1.2182 | 0.0098 | 2.2746 | 0.0027 |
| + | RIKEN P-VS1 ID-12693 from<br>Cell_C2C12_WT_N_24h50AA                    | 1.2157 | 0.0001 | NS     | NS     |
| + | SM 29:5;2O                                                              | 1.2080 | 0.0191 | 2.3756 | 0.0008 |
| + | RIKEN P-VS1 ID-134 from<br>Mouse_Macrophage_WT_N_F1AA                   | 1.2035 | 0.0002 | NS     | 0.0063 |
| - | ADGGA 20:5_20:5_20:5                                                    | 1.1775 | 0.0180 | NS     | NS     |
| + | DG 36:0 DG 18:0_18:0                                                    | 1.1669 | NS     | NS     | NS     |
| - | DGDG O-26:7_26:7                                                        | 1.1588 | 0.0076 | 0.6550 | NS     |

| + | RIKEN P-VS1 ID-208 from<br>Mouse Macrophage WT N F1AA    | 1.1221 | 0.0003 | NS      | 0.0157 |
|---|----------------------------------------------------------|--------|--------|---------|--------|
| + | ADGGA (O-15:0)16:0_17:0                                  | 1.1204 | NS     | 2.0327  | NS     |
| + | BMP 9:0_24:2                                             | 1.1037 | 0.0002 | 1.6623  | 0.0003 |
| + | SHexCer 19:1;20/28:6                                     | 1.0642 | 0.0339 | 1.4693  | 0.0158 |
| - | PI 9:0_18:1;3O                                           | 0.9972 | 0.0010 | NS      | NS     |
| + | PI 40:3                                                  | 0.9960 | NS     | 1.5806  | 0.0205 |
| - | RIKEN N-VS1 ID-2002 from<br>Mouse_Feces_WT_N_Ctr         | 0.9891 | 0.0002 | 3.0796  | 0.0000 |
| + | RIKEN P-VS1 ID-7635 from<br>Mouse_Aorta_WT_N_Ctr         | 0.9797 | 0.0212 | -4.8462 | 0.0021 |
| + | RIKEN P-VS1 ID-18829 from<br>Mouse_Macrophage_WT_N_F1AA  | 0.9752 | 0.0089 | 1.2351  | 0.0099 |
| - | FA 16:0                                                  | 0.9741 | NS     | NS      | NS     |
| + | Cer 12:0;20/15:0;0                                       | 0.9486 | 0.0001 | NS      | NS     |
| + | CE 18:1(d7)                                              | 0.9339 | NS     | -3.1627 | NS     |
| - | HBMP 18:5_13:1_18:5                                      | 0.9261 | 0.0015 | 0.7660  | 0.0036 |
| + | SHexCer 19:1;20/28:6;0                                   | 0.9241 | 0.0285 | 1.6391  | 0.0089 |
| - | PMeOH 22:6_26:7                                          | 0.9109 | 0.0075 | 0.6590  | NS     |
| - | RIKEN N-VS1 ID-2273 from<br>Mouse_Feces_WT_ABX_Ctr       | 0.8986 | 0.0220 | NS      | 0.0007 |
| + | DGTS 13:0_22:5                                           | 0.8811 | 0.0003 | NS      | NS     |
| + | Cer 12:1;20/21:5                                         | 0.8617 | 0.0000 | 0.6498  | 0.0003 |
| + | HexCer 17:3;30/26:6;(20H)                                | 0.8122 | NS     | -4.4099 | 0.0002 |
| - | RIKEN N-VS1 ID-763 from<br>Mouse_Macrophage_WT_N_F1AA    | 0.7852 | 0.0085 | -1.3798 | 0.0011 |
| + | PI 45:7                                                  | 0.7829 | NS     | 3.9198  | NS     |
| + | RIKEN P-VS1 ID-17134 from<br>Mouse_Plasma_ApoEKO_N_F1EPA | 0.7631 | NS     | 1.7431  | 0.0219 |
| + | RIKEN P-VS1 ID-6683 from<br>Mouse_Muscle_WT_CTX5_Ctr     | 0.7612 | 0.0064 | 3.2125  | 0.0000 |
| - | FA 20:0;4O                                               | 0.6484 | NS     | -0.6187 | NS     |
| + | RIKEN P-VS1 ID-4398 from<br>Mouse_Aorta_WT_N_Ctr         | 0.6297 | NS     | -4.7939 | 0.0002 |
| + | Cer 12:2;30/10:0;(20H)                                   | 0.5867 | 0.0123 | -4.0374 | 0.0000 |
| + | SL 13:2;O/12:0                                           | NS     | NS     | 1.5596  | 0.0004 |
| + | SL 12:1;O/15:1;O                                         | NS     | NS     | 1.5253  | 0.0007 |
| + | RIKEN P-VS1 ID-5858 from<br>Mouse_Plasma_ApoEKO_N_F1DHA  | NS     | NS     | 1.3067  | 0.0003 |
| + | RIKEN P-VS1 ID-16235 from<br>Mouse_Plasma_ApoEKO_N_Ctr   | NS     | NS     | 1.2197  | 0.0258 |
| + | SPB 29:1;20                                              | NS     | 0.0054 | 1.0178  | 0.0002 |
| + | ADGGA (O-20:5)20:5_20:5                                  | NS     | NS     | 1.0095  | 0.0037 |
|   |                                                          |        |        |         |        |

| + | NAGly 22:6;O(FA 18:1)                                  | NS      | 0.0089 | 0.8436  | 0.0021 |
|---|--------------------------------------------------------|---------|--------|---------|--------|
|   | RIKEN P-VS1 ID-6352 from                               | NC      | 0.0066 | 0.7700  | 0.0002 |
| + | Mouse_Macrophage_WT_N_F1AA                             | IND     | 0.0000 | 0.7790  | 0.0085 |
| + | ADGGA (O-22:6)20:4_22:6                                | NS      | NS     | 0.7404  | 0.0145 |
| + | PE 68:13                                               | NS      | NS     | 0.6811  | NS     |
| - | FA 15:1;(2OH)                                          | NS      | NS     | NS      | 0.0212 |
| - | RIKEN N-VS1 ID-1521 from<br>Mouse_Spleen_WT_N_F1AA     | NS      | NS     | -0.6321 | 0.0040 |
| - | FA 24:1;10                                             | NS      | NS     | -0.6539 | 0.0142 |
| - | FA 42:5                                                | NS      | NS     | -0.7384 | 0.0045 |
| - | FA 18:0                                                | NS      | NS     | -1.0468 | 0.0068 |
| - | RIKEN N-VS1 ID-4759 from<br>Mouse_Macrophage_WT_N_F1AA | NS      | NS     | -1.0679 | 0.0118 |
| + | RIKEN P-VS1 ID-5453 from<br>Mouse_Macrophage_WT_N_F1AA | NS      | NS     | -1.0803 | 0.0212 |
| + | BMP 16:0_28:2                                          | NS      | NS     | -1.0950 | NS     |
| + | HBMP 22:1_12:0_12:0                                    | NS      | NS     | -1.1176 | NS     |
| - | RIKEN N-VS1 ID-765 from<br>Mouse_Macrophage_WT_N_F1AA  | NS      | NS     | -1.1758 | NS     |
| - | PG 36:2 PG 17:1_19:1                                   | NS      | NS     | -1.3444 | 0.0084 |
| + | PC O-36:2                                              | NS      | NS     | -1.4891 | NS     |
| + | PE 6:0_35:1                                            | NS      | NS     | -1.5285 | NS     |
| - | RIKEN N-VS1 ID-787 from<br>Mouse_Macrophage_WT_N_F1AA  | NS      | NS     | -1.8352 | 0.0356 |
| - | Dodecylbenzenesulfonic acid                            | NS      | NS     | -2.0485 | NS     |
| - | Norethisterone acetate                                 | NS      | NS     | -2.2042 | NS     |
| + | DGGA 12:0_13:0                                         | NS      | NS     | -3.1922 | 0.0003 |
| + | TG 8:0_8:0_28:1                                        | NS      | NS     | -3.8229 | 0.0107 |
| + | LDGTS 14:1                                             | NS      | 0.0023 | -4.8638 | 0.0001 |
| - | PE 17:0_16:2;1O                                        | -0.6480 | 0.0066 | NS      | NS     |
| + | HexCer 16:1;3O/16:4;(2OH)                              | -0.6644 | 0.0011 | 2.0683  | 0.0000 |
| - | PG 32:1 PG 16:0_16:1                                   | -0.6695 | 0.0055 | NS      | NS     |
| + | Cer 13:2;2O/34:6                                       | -0.6811 | NS     | -1.6570 | NS     |
| - | FA 40:5                                                | -0.7134 | 0.0384 | -0.8170 | 0.0088 |
| - | PG 14:0_16:0                                           | -0.7410 | 0.0024 | NS      | NS     |
| + | RIKEN P-VS1 ID-15917 from<br>Mouse_Macrophage_WT_N_F1  | -0.7442 | NS     | 0.7167  | 0.0275 |
| + | NAE 16:2                                               | -0.7679 | 0.0056 | -2.4822 | 0.0002 |
| + | CAR 17:3                                               | -0.7817 | NS     | -2.5872 | 0.0058 |
| - | PC O-9:0_22:5;1O                                       | -0.7879 | 0.0146 | -1.1161 | 0.0051 |
| - | SHexCer 34:4;20                                        | -0.7908 | 0.0091 | -0.9389 | 0.0000 |
| + | Cer 12:0;20/17:4                                       | -0.7921 | NS     | -2.5549 | 0.0063 |
|   |                                                        | 1       |        | I.      |        |

| - | PG 35:2 PG 16:1_19:1                                     | -0.8025 | NS     | -0.6258 | NS     |
|---|----------------------------------------------------------|---------|--------|---------|--------|
|   | RIKEN P-VS1 ID-5931 from                                 | 0.8202  | NC     | 1 2540  | 0.0000 |
| + | Mouse_Macrophage_WT_N_F1AA                               | -0.8203 | IND    | -1.2340 | 0.0090 |
| - | PC O-12:0_22:6;10                                        | -0.8794 | NS     | -1.2007 | 0.0128 |
| - | PG 14:0_16:1                                             | -0.9519 | 0.0068 | -0.6600 | NS     |
| + | TG 9:0_9:0_18:0                                          | -0.9660 | NS     | -1.4386 | 0.0029 |
| + | DGTS 8:0_8:0                                             | -0.9702 | 0.0059 | -5.4965 | 0.0000 |
| + | NAGly 8:0;O(FA 13:0)                                     | -0.9770 | 0.0001 | -0.9393 | 0.0141 |
| + | Cer 15:3;20/18:5                                         | -0.9806 | NS     | -6.2930 | 0.0001 |
| + | SL 12:1;O/28:1                                           | -0.9838 | 0.0023 | -1.7261 | 0.0220 |
| - | LPE-N (FA 16:0)16:0                                      | -0.9959 | 0.0310 | -1.0730 | 0.0146 |
| + | RIKEN P-VS1 ID-9017 from<br>Mouse_Heart_WT_N_F1EPA       | -1.0035 | NS     | -1.9971 | 0.0006 |
| + | DG 18:0                                                  | -1.0097 | 0.0015 | -0.9455 | 0.0089 |
| + | NAOrn 18:1;O                                             | -1.0190 | 0.0001 | NS      | NS     |
| + | Cer 12:1;30/22:1;(20H)                                   | -1.0248 | 0.0307 | -2.8050 | 0.0119 |
| - | PG 32:0 PG 16:0_16:0                                     | -1.0339 | 0.0191 | -1.8891 | 0.0002 |
| + | DG 9:0_9:0                                               | -1.0352 | 0.0031 | -0.8543 | NS     |
| - | SL 13:2;O/28:5;O                                         | -1.0557 | 0.0011 | NS      | NS     |
| + | MGDG O-15:2_6:0                                          | -1.0558 | NS     | -6.0523 | 0.0003 |
| - | PE 17:0_15:1;1O                                          | -1.0780 | 0.0022 | -0.7366 | 0.0196 |
| - | PE 16:1_22:4;2O                                          | -1.1137 | 0.0198 | -1.3207 | 0.0028 |
| + | Cer 12:2;30/11:0;(20H)                                   | -1.1246 | 0.0006 | NS      | NS     |
| - | PE O-14:0_17:2;2O                                        | -1.1286 | 0.0008 | -0.9084 | 0.0116 |
| - | FA 44:5                                                  | -1.1349 | 0.0026 | -1.4055 | 0.0001 |
| - | PE 18:0_17:1;1O                                          | -1.1823 | 0.0052 | -0.6315 | NS     |
| + | ST 29:1;O                                                | -1.1925 | NS     | -3.2137 | 0.0005 |
| - | PE 16:0_17:1                                             | -1.2109 | 0.0016 | -0.8655 | 0.0101 |
| - | PG 35:1 PG 16:0_19:1                                     | -1.2284 | 0.0091 | -0.8883 | NS     |
| - | PE O-17:0_15:1;2O                                        | -1.2292 | 0.0141 | -2.3302 | 0.0002 |
| + | RIKEN P-VS1 ID-1776 from<br>Mouse_AdrenalGlands_WT_N_Ctr | -1.2388 | 0.0000 | -0.7964 | 0.0013 |
| + | TG 18:0_18:0_18:0                                        | -1.2405 | 0.0264 | -0.8130 | NS     |
| + | MGDG 8:0_15:1                                            | -1.2589 | 0.0056 | -4.0938 | 0.0012 |
| - | PC O-8:0_22:5;1O                                         | -1.2627 | 0.0045 | -1.5616 | 0.0003 |
| + | MGDG O-19:2_3:0                                          | -1.2858 | 0.0025 | -0.8035 | 0.0262 |
| + | DG 40:2                                                  | -1.2987 | 0.0222 | -1.3104 | 0.0022 |
| - | PE 17:0_18:2;1O                                          | -1.3108 | 0.0002 | -1.0825 | 0.0002 |
| - | SL 12:2;O/34:5;O                                         | -1.3155 | 0.0021 | -1.1559 | 0.0070 |
| + | DG 44:11                                                 | -1.3203 | 0.0005 | 2.0787  | 0.0000 |
|   |                                                          |         |        |         |        |

| + | RIKEN P-VS1 ID-10288 from<br>Mouse Macrophage WT N F1 | -1.3295 | NS     | NS      | NS     |
|---|-------------------------------------------------------|---------|--------|---------|--------|
| + | DGTS 15:4_19:5                                        | -1.3418 | 0.0009 | -0.7364 | 0.0337 |
| + | TG 16:0_18:0_18:0                                     | -1.3448 | 0.0022 | -0.7663 | NS     |
| + | Cer 12:2;20/22:6                                      | -1.3578 | 0.0018 | -0.8307 | 0.0038 |
| + | DGTS 8:0_9:0                                          | -1.3602 | 0.0001 | -0.7505 | 0.0018 |
| + | DGGA 18:0_8:0                                         | -1.3647 | 0.0013 | -0.6440 | 0.0269 |
| - | PE 17:1_19:1                                          | -1.3754 | NS     | -1.5286 | 0.0107 |
| - | PE 37:1 PE 18:0_19:1                                  | -1.3840 | NS     | -0.8123 | NS     |
| - | PE 18:0_15:1;1O                                       | -1.4007 | 0.0002 | -1.0887 | 0.0001 |
| - | SL 13:2;O/26:4;O                                      | -1.4066 | 0.0021 | -1.0192 | 0.0003 |
| - | PE 14:0_17:1                                          | -1.4174 | 0.0085 | -1.5684 | 0.0100 |
| + | RIKEN P-VS1 ID-3577 from<br>Mouse_Aorta_WT_N_Ctr      | -1.4697 | 0.0004 | NS      | 0.0167 |
| + | DG O-25:0_16:1                                        | -1.4711 | 0.0003 | -1.0490 | 0.0001 |
| + | SL 13:1;O/24:5                                        | -1.4774 | 0.0001 | -0.8969 | 0.0100 |
| + | DG 40:6 DG 16:0_24:6                                  | -1.4841 | 0.0002 | -0.9059 | 0.0003 |
| - | PE 16:0_16:0;1O                                       | -1.4849 | 0.0037 | -2.1237 | 0.0020 |
| - | PE 17:1_18:1                                          | -1.4856 | 0.0050 | -1.3397 | 0.0019 |
| + | TG 16:0_16:0_18:0                                     | -1.4862 | 0.0004 | -0.9763 | 0.0284 |
| + | Cer 57:4;20 Cer 21:0;20/36:4                          | -1.5042 | 0.0110 | -0.9141 | 0.0152 |
| + | TG 16:0_18:1_18:2                                     | -1.5065 | 0.0001 | -1.0231 | 0.0005 |
| - | PE 16:1_17:1                                          | -1.5165 | 0.0063 | -1.5620 | 0.0027 |
| + | RIKEN P-VS1 ID-12070 from<br>Mouse_Muscle_WT_N_F1EPA  | -1.5272 | NS     | -6.2969 | 0.0073 |
| - | PE 17:0_17:2;10                                       | -1.5278 | 0.0000 | -1.1436 | 0.0136 |
| - | PE 18:1_19:1                                          | -1.5357 | 0.0324 | -1.0931 | 0.0083 |
| + | NAE 20:1                                              | -1.5404 | NS     | -3.1103 | NS     |
| + | NAOrn 15:1;O                                          | -1.5412 | 0.0003 | NS      | 0.0003 |
| + | TG 16:0_16:1_16:1                                     | -1.5450 | 0.0004 | -0.9921 | 0.0039 |
| + | Cer 30:2;20/23:1                                      | -1.5488 | 0.0004 | -0.9305 | 0.0217 |
| - | PE 16:1_18:1                                          | -1.5629 | 0.0045 | -1.3017 | 0.0016 |
| + | RIKEN P-VS1 ID-4994 from<br>Mouse_Muscle_WT_CTX0_Ctr  | -1.5799 | 0.0025 | -1.0785 | 0.0000 |
| + | TG 18:0_18:0_18:1                                     | -1.5809 | 0.0001 | -1.1317 | 0.0012 |
| - | FA 22:1;20                                            | -1.6448 | 0.0003 | -0.8522 | 0.0001 |
| + | TG 14:0_16:0_16:0                                     | -1.6518 | 0.0035 | -1.1648 | 0.0028 |
| - | PE 16:0_19:1                                          | -1.6588 | NS     | -1.0362 | NS     |
| + | TG 48:0 TG 16:0_16:0_16:0                             | -1.6662 | 0.0015 | -1.0093 | 0.0248 |
| + | LDGCC 15:2                                            | -1.6714 | NS     | -6.2182 | NS     |
| + | PG 36:2 PG 17:1_19:1                                  | -1.6996 | 0.0026 | -0.6002 | 0.0176 |

| - | PE 32:1 PE 16:0_16:1        | -1.7138 | 0.0014 | -1.5721 | 0.0006 |
|---|-----------------------------|---------|--------|---------|--------|
|   | RIKEN P-VS1 ID-5423 from    | 1 7159  | 0.0000 | 0 8777  | 0.0002 |
| Ŧ | Mouse_Plasma_ApoEKO_N_F1DHA | -1./130 | 0.0000 | -0.0777 | 0.0002 |
| + | SM 32:7;30                  | -1.7262 | 0.0001 | 1.1863  | 0.0004 |
| + | PE 36:2                     | -1.7315 | 0.0012 | -1.1531 | 0.0001 |
| + | TG 16:0_16:1_18:1           | -1.7458 | 0.0001 | -1.1034 | 0.0003 |
| + | RIKEN P-VS1 ID-1478 from    | -1 8471 | NS     | -0 6741 | NS     |
|   | Mouse_Aorta_WT_N_Ctr        | 1.0171  | 110    | 0.0711  | 110    |
| + | PG 30:1 PG 14:0_16:1        | -1.8757 | 0.0020 | -1.0604 | 0.0021 |
| + | PE 37:3                     | -1.9043 | 0.0004 | -1.2599 | 0.0001 |
| + | TG 16:0_16:0_18:1           | -1.9223 | 0.0001 | -1.0256 | 0.0043 |
| + | SM 36:7;30                  | -1.9361 | 0.0014 | -0.8753 | 0.0000 |
| + | PG 35:2 PG 16:1_19:1        | -1.9391 | 0.0002 | -1.0901 | 0.0051 |
| + | TG 52:1 TG 16:0_18:0_18:1   | -1.9544 | 0.0005 | -1.0662 | 0.0018 |
| + | DG 40:6                     | -2.0003 | 0.0000 | -1.3334 | 0.0000 |
| + | PE 13:0_22:4                | -2.0224 | 0.0080 | -1.6054 | 0.0002 |
| + | DGGA 12:0_17:1              | -2.0505 | 0.0020 | -0.9365 | 0.0034 |
| + | TG 18:1_18:1_18:1           | -2.0799 | 0.0001 | -1.4710 | 0.0139 |
| + | CAR 18:0                    | -2.1173 | 0.0093 | -2.9689 | 0.0049 |
| - | PE 18:1_18:1;1O             | -2.1219 | 0.0149 | -1.1589 | NS     |
| + | Cer 12:0;20/17:0;O          | -2.1234 | 0.0005 | -1.1407 | 0.0007 |
| - | PE O-17:0_17:2;2O           | -2.1488 | 0.0006 | -1.7754 | 0.0000 |
| + | HexCer 17:2;20/16:4;0       | -2.1735 | 0.0005 | NS      | NS     |
| + | PG 32:1 PG 16:0_16:1        | -2.1764 | 0.0000 | -1.0577 | 0.0025 |
|   | RIKEN N-VS1 ID-4656 from    | 2 1765  | 0.0015 | 1 7/9/  | 0.0006 |
| - | Mouse_Feces_WT_N_Ctr        | -2.1703 | 0.0015 | -1./404 | 0.0000 |
| + | TG 19:5_24:6_26:7           | -2.2082 | 0.0017 | -1.0844 | 0.0022 |
| + | SL 13:1;O/28:6;O            | -2.2206 | 0.0004 | -1.2963 | 0.0004 |
| + | PE 32:2 PE 16:1_16:1        | -2.2299 | 0.0019 | -1.1491 | 0.0327 |
| + | PE 36:2 PE 17:1_19:1        | -2.2332 | 0.0007 | -1.2130 | 0.0006 |
| + | SPB 22:0;2O                 | -2.2565 | 0.0013 | -1.5749 | 0.0192 |
| + | MG 18:0                     | -2.2889 | 0.0000 | -2.0131 | 0.0001 |
| + | PE 30:1 PE 14:0_16:1        | -2.3205 | 0.0033 | -1.2791 | NS     |
| + | MG 15:1                     | -2.3482 | 0.0063 | -5.9813 | NS     |
| + | PE 35:2 PE 17:1_18:1        | -2.3527 | 0.0002 | -1.5316 | 0.0003 |
|   | RIKEN P-VS1 ID-1950 from    | 2 25/2  | 0.0000 | 2 0979  | 0.0001 |
| Ŧ | Mouse_Macrophage_WT_N_F1AA  | -2.3343 | 0.0000 | -2.00/0 | 0.0001 |
| + | SL 12:1;O/32:6;O            | -2.3936 | 0.0000 | -1.5151 | 0.0002 |
| + | RIKEN P-VS1 ID-2880 from    | -2.3958 | NS     | -0.6840 | NS     |
|   | Mouse_Muscle_WT_CTX0_Ctr    |         | ~      |         |        |
| + | SL 13:1;0/34:6;0            | -2.3994 | 0.0032 | NS      | NS     |

| DGGA 12:0_14:0                                           | -2.4157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.4811                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TG 15:3_15:4_15:4                                        | -2.4458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.4146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TG 16:4_16:4_34:9                                        | -2.4512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.6802                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| NAE 20:2                                                 | -2.4520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -4.2307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PE P-28:6_13:1                                           | -2.5076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.9150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PE 34:2 PE 16:1_18:1                                     | -2.5162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.5506                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PE 33:1 PE 16:0_17:1                                     | -2.5309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.9253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| NAGly 18:5;O                                             | -2.5664                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.4546                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SL 13:1;O/30:6;O                                         | -2.5931                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.5381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| DGDG O-8:0_12:0                                          | -2.5948                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.9040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PE 32:0 PE 16:0_16:0                                     | -2.5953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.5303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PE 38:0                                                  | -2.5990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.4048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SL 12:1;O/30:5;O                                         | -2.6046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.9244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| RIKEN P-VS1 ID-1609 from                                 | -2.6548                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.6042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Mouse_Aorta_WT_N_Ctr                                     | 2.0210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 110012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RIKEN P-VSI ID-8135 from<br>Mouse Lung WT N E144         | -2.6610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.8255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| DGGA 14:1_19:1                                           | -2.6658                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.5525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| RIKEN P-VS1 ID-10243 from                                | 2 6707                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 6249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Mouse_AdrenalGlands_fads2KO_N_Ctr                        | -2.0707                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.0248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SL 19:0;O/22:5;O                                         | -2.6753                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.6956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| DG 44:6 DG 18:0_26:6                                     | -2.7145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -2.1874                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PE 33:2 PE 16:1_17:1                                     | -2.7169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.2996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RIKEN P-VS1 ID-9069 from<br>Mouse_AdrenalGlands_WT_N_Ctr | -2.8028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -2.3815                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| HexCer 16:3;30/22:6;(20H)                                | -2.8111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -5.6959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PE 31:1 PE 14:0_17:1                                     | -2.8991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.7434                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PE 32:1 PE 16:0_16:1                                     | -2.8995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -2.0231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| DG 44:6                                                  | -2.9952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -2.3797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| RIKEN P-VS1 ID-2092 from<br>Mouse_Macrophage_WT_N_F1AA   | -3.0192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -3.7874                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PE 35:0                                                  | -3.0273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.6816                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PG 32:0 PG 16:0_16:0                                     | -3.0656                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -2.1433                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PC O-52:11                                               | -3.1180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.4048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PE 34:1 PE 16:0_18:1                                     | -3.1481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -2.2243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PE 37:2                                                  | -3.1644                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.8757                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| NAGlySer 15:2;O(FA 24:6)                                 | -3.2481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -2.1599                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| RIKEN P-VS1 ID-9303 from<br>Mouse_Feces_WT_N_Ctr         | -3.2773                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -2.3035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PE P-28:1_9:0                                            | -3.5050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -2.1501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0081                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SL 12:1;O/30:6;O                                         | -3.5982                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -2.6429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CoQ8                                                     | -3.6295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -2.2249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                          | TG 15:3_15:4_15:4<br>TG 16:4_16:4_34:9<br>NAE 20:2<br>PE P-28:6_13:1<br>PE 34:2 PE 16:1_18:1<br>PE 33:1 PE 16:0_17:1<br>NAGly 18:5;0<br>SL 13:1;0/30:6;0<br>DGDG 0-8:0_12:0<br>PE 32:0 PE 16:0_16:0<br>PE 38:0<br>SL 12:1;0/30:5;0<br>RIKEN P-VS1 ID-1609 from<br>Mouse_Aorta_WT_N_Ctr<br>RIKEN P-VS1 ID-8135 from<br>Mouse_Lung_WT_N_F1AA<br>DGGA 14:1_19:1<br>RIKEN P-VS1 ID-10243 from<br>Mouse_AdrenalGlands_fads2KO_N_Ctr<br>SL 19:0;0/22:5;0<br>DG 44:6 DG 18:0_26:6<br>PE 33:2 PE 16:1_17:1<br>RIKEN P-VS1 ID-9069 from<br>Mouse_AdrenalGlands_WT_N_Ctr<br>HexCer 16:3;30/22:6;(20H)<br>PE 31:1 PE 14:0_17:1<br>PE 32:1 PE 16:0_16:1<br>DG 44:6<br>RIKEN P-VS1 ID-2092 from<br>Mouse_Macrophage_WT_N_F1AA<br>PE 35:0<br>PG 32:0 PG 16:0_16:0<br>PC 0-52:11<br>PE 34:1 PE 16:0_18:1<br>PE 37:2<br>NAGlySer 15:2;0(FA 24:6)<br>RIKEN P-VS1 ID-9303 from<br>Mouse_Feces_WT_N_Ctr<br>PE P-28:1_9:0<br>SL 12:1;0/30:6;0<br>CoQ8 | TG 15:3_15:4_15:4   -2.4458     TG 16:4_16:4_34:9   -2.4512     NAE 20:2   -2.4520     PE P-28:6_13:1   -2.5076     PE 34:2 PE 16:1_18:1   -2.5162     PE 33:1 PE 16:0_17:1   -2.5309     NAGly 18:5;0   -2.5664     SL 13:1;0/30:6;0   -2.5931     DGGO 0-8:0_12:0   -2.5948     PE 32:0 PE 16:0_16:0   -2.5953     PE 38:0   -2.5990     SL 12:1;0/30:5;0   -2.6046     RIKEN P-VS1 ID-1609 from   -2.6548     Mouse_Aorta_WT_N_Ctr   -2.6610     Mouse_Aota_WT_N_F1AA   -2.6610     DGGA 14:1_19:1   -2.6658     RIKEN P-VS1 ID-10243 from   -2.66753     Mouse_AdrenalGlands_fads2KO_N_Ctr   -2.6707     SL 19:0;0/22:5;0   -2.6753     DG 44:6 DG 18:0_26:6   -2.7145     PE 33:2 PE 16:1_17:1   -2.8028     Mouse_AdrenalGlands_WT_N_Ctr   -2.8028     HexCer 16:3;30/22:6;(20H)   -2.8111     PE 32:1 PE 16:0_16:1   -2.8991     PE 32:1 PE 16:0_16:1   -2.8991     PE 32:1 PE 16:0_16:0   -3.0192     Mouse_Macrophage_WT | TG 15:3_15:4_15:4   -2.4137   0.0002     TG 15:3_15:4_15:4   -2.4458   0.0000     TG 16:4_16:4_34:9   -2.4512   0.0016     NAE 20:2   -2.4520   NS     PE P-28:6_13:1   -2.5076   0.0001     PE 34:2 PE 16:1_18:1   -2.5162   0.0008     PE 33:1 PE 16:0_17:1   -2.5309   0.0002     SL 13:1;0/30:6;O   -2.5948   0.0002     PE 32:0 PE 16:0_16:0   -2.5953   0.0000     PE 32:0 PE 16:0_16:0   -2.5953   0.0001     PE 32:0 PE 16:0_16:0   -2.6548   0.0001     RIKEN P-VS1 ID-1609 from<br>Mouse_Aorta_WT_N_Ctr   -2.6610   0.0013     RIKEN P-VS1 ID-10243 from<br>Mouse_AdrenalGlands_fads2KO_N_Ctr   -2.6777   0.0000     SL 19:0;O/22:5;O   -2.6753   0.0010     PE 33:2 PE 16:1_17:1   -2.7169   0.0020     RIKEN P-VS1 ID-9069 from<br>Mouse_AdrenalGlands_MT_N_Ctr   -2.8028   0.0004     PE 31:1 PE 14:0_17:1   -2.8991   0.0020     PE 32:1 PE 16:0_16:1   -2.8995   0.0000     PE 32:0PG 16:0_16:0   -3.0656   0.0001     PE 32:1 PE 16:0_16:1   -2.8995 <td< th=""><th>Fight 12.5   1.2.413   0.0002   -1.4146     TG 15:3_15:4_15:4   -2.4458   0.0000   -1.4146     TG 16:4_16:4_34:9   -2.4512   0.0016   -1.6802     NAE 20:2   -2.4520   NS   -4.2307     PE P-28:6_13:1   -2.5076   0.0001   -1.9150     PE 34:21PE 16:1_18:1   -2.5162   0.0008   -1.5306     PE 33:11PE 16:0_17:1   -2.509   0.0005   -1.9253     NAGly 18:5;0   -2.5644   0.0002   -1.4446     SL 13:1;0/30:6;0   -2.5948   0.0002   -1.9040     PE 32:0PE 16:0_16:0   -2.5953   0.0000   -1.5381     DGDG 0-8:0_12:0   -2.5948   0.0001   -1.9244     RIKEN P-VS1 ID-1609 from   -2.6548   0.0001   -1.9244     Mouse_Aorta_WT_N_Ctr   -2.6610   0.0013   -1.8255     RIKEN P-VS1 ID-1609 from   -2.6658   0.0015   -1.5525     RIKEN P-VS1 ID-1609 from   -2.6610   0.0013   -1.6248     SL 19:0;0/22:5;0   -2.6777   0.0000   -1.6248     SL 19:0;0/22:5;0   -2.6753   0.0010   -1.6956 <!--</th--></th></td<> | Fight 12.5   1.2.413   0.0002   -1.4146     TG 15:3_15:4_15:4   -2.4458   0.0000   -1.4146     TG 16:4_16:4_34:9   -2.4512   0.0016   -1.6802     NAE 20:2   -2.4520   NS   -4.2307     PE P-28:6_13:1   -2.5076   0.0001   -1.9150     PE 34:21PE 16:1_18:1   -2.5162   0.0008   -1.5306     PE 33:11PE 16:0_17:1   -2.509   0.0005   -1.9253     NAGly 18:5;0   -2.5644   0.0002   -1.4446     SL 13:1;0/30:6;0   -2.5948   0.0002   -1.9040     PE 32:0PE 16:0_16:0   -2.5953   0.0000   -1.5381     DGDG 0-8:0_12:0   -2.5948   0.0001   -1.9244     RIKEN P-VS1 ID-1609 from   -2.6548   0.0001   -1.9244     Mouse_Aorta_WT_N_Ctr   -2.6610   0.0013   -1.8255     RIKEN P-VS1 ID-1609 from   -2.6658   0.0015   -1.5525     RIKEN P-VS1 ID-1609 from   -2.6610   0.0013   -1.6248     SL 19:0;0/22:5;0   -2.6777   0.0000   -1.6248     SL 19:0;0/22:5;0   -2.6753   0.0010   -1.6956 </th |

| + | PE 35:1 PE 16:0_19:1       | -3.7233 | 0.0052 | -2.4693   | 0.0000 |
|---|----------------------------|---------|--------|-----------|--------|
| Т | RIKEN P-VS1 ID-1429 from   | -3 7672 | 0.0002 | -1.0511   | 0.0001 |
| Т | Mouse_Muscle_WT_CTX3_Ctr   | -3.7072 | 0.0002 | -1.0311   | 0.0001 |
| - | PS 8:0_20:3;3O             | -3.9146 | 0.0005 | -1.6902   | 0.0327 |
|   | RIKEN P-VS1 ID-8905 from   | 4.0147  | 0.0015 | 2 0077    | 0.0004 |
| Ŧ | Mouse_Feces_WT_N_Ctr       | -4.0147 | 0.0015 | -3.0977   | 0.0004 |
| + | LPE 19:1                   | -4.1120 | 0.0077 | -2.0107   | 0.0019 |
| + | NAE 17:0                   | -4.4572 | 0.0090 | -2.1683   | 0.0004 |
|   | RIKEN P-VS1 ID-9613 from   | 4 4920  | 0.0046 | 5 2 1 9 1 | 0.0066 |
| + | Mouse_Aorta_ApoEKO_N_F1DHA | -4.4039 | 0.0040 | -3.3464   | 0.0000 |
| + | LPE 17:1                   | -4.4981 | 0.0020 | -2.6308   | 0.0002 |
| - | PS 8:0_18:3;3O             | -4.5852 | 0.0099 | NS        | NS     |
| - | LPE 16:0                   | -5.1486 | 0.0101 | -3.5578   | 0.0016 |
| + | LPE 16:0                   | -5.9305 | 0.0083 | -4.0819   | 0.0001 |
|   | RIKEN P-VS1 ID-12664 from  | 6 1977  | 0.0020 | 6 15 12   | 0.0220 |
| + | Cell_C2C12_WT_N_12h50AA    | -0.40// | 0.0050 | -0.4343   | 0.0550 |
| + | TG 15:2_18:5_18:5          | -6.9889 | 0.0015 | NS        | NS     |

Appendix Table 3. List of lipids when testing different methods of extraction that were detected by mass spectrometry but did not match any database references. Reported is whether they were found in positive or negative ESI-Mass Spectrometry with tandem-Mass Spectrometry, the average retention time (Rt) in minutes, and the average mass-to-charge ratio (M/Z).

| ESI-MS   | Average Rt<br>(min) | Average<br>M/Z | ESI-MS   | Average Rt<br>(min) | Average<br>M/Z |
|----------|---------------------|----------------|----------|---------------------|----------------|
| Positive | 6.949               | 955.59253      | Positive | 7.258               | 381.29758      |
| Positive | 6.625               | 943.41864      | Positive | 1.815               | 380.2301       |
| Positive | 7.142               | 915.70978      | Positive | 6.7                 | 378.35944      |
| Positive | 10.617              | 906.25476      | Positive | 2.957               | 378.21103      |
| Positive | 6.621               | 902.39764      | Positive | 2.905               | 376.25772      |
| Positive | 6.623               | 885.36737      | Positive | 1.07                | 376.23001      |
| Positive | 9.439               | 857.4848       | Positive | 1.318               | 375.21182      |
| Positive | 3.572               | 851.39453      | Positive | 5.051               | 373.29318      |
| Positive | 3.971               | 851.39349      | Positive | 0.833               | 372.2384       |
| Positive | 5.942               | 831.33075      | Positive | 7.176               | 371.31311      |
| Positive | 3.921               | 823.38513      | Positive | 1.013               | 370.21979      |
| Positive | 9.659               | 819.58728      | Positive | 4.104               | 369.18317      |
| Positive | 7.113               | 815.34137      | Positive | 5.107               | 369.12299      |
| Positive | 10.03               | 802.60419      | Positive | 8.126               | 366.37292      |
| Positive | 9.586               | 787.55756      | Positive | 7.713               | 365.35394      |
| Positive | 10.396              | 785.61774      | Positive | 1.29                | 364.23114      |
| Positive | 9.628               | 775.55231      | Positive | 1.594               | 363.20895      |

| Positive | 9.002  | 765.53339 | Positive | 2.484 | 362.21497 |
|----------|--------|-----------|----------|-------|-----------|
| Positive | 9.304  | 761.53192 | Positive | 6.7   | 361.32797 |
| Positive | 2.903  | 751.51068 | Positive | 7.794 | 360.32388 |
| Positive | 8.495  | 749.5025  | Positive | 5.061 | 355.36575 |
| Positive | 7.975  | 745.35388 | Positive | 5.045 | 355.28183 |
| Positive | 8.654  | 739.52289 | Positive | 6.181 | 353.3428  |
| Positive | 6.073  | 727.38068 | Positive | 6.539 | 353.2648  |
| Positive | 8.081  | 723.48853 | Positive | 8.28  | 352.35547 |
| Positive | 9.435  | 721.51013 | Positive | 4.273 | 343.15656 |
| Positive | 9.138  | 719.49463 | Positive | 7.252 | 341.30246 |
| Positive | 6.521  | 716.25458 | Positive | 5.053 | 339.37521 |
| Positive | 8.074  | 711.49622 | Positive | 4.92  | 339.28696 |
| Positive | 7.735  | 711.34918 | Positive | 5.776 | 336.32657 |
| Positive | 6.452  | 711.33154 | Positive | 7.197 | 336.32635 |
| Positive | 8.201  | 707.45355 | Positive | 6.282 | 336.32605 |
| Positive | 7.38   | 702.21521 | Positive | 6.734 | 334.31357 |
| Positive | 6.395  | 701.35388 | Positive | 1.349 | 334.18597 |
| Positive | 6.521  | 699.23181 | Positive | 5.149 | 332.33145 |
| Positive | 5.734  | 697.41217 | Positive | 6.542 | 331.2861  |
| Positive | 8.495  | 695.45251 | Positive | 2.838 | 329.18756 |
| Positive | 5.942  | 695.36121 | Positive | 7.806 | 326.34052 |
| Positive | 6.077  | 691.31024 | Positive | 2.393 | 324.14523 |
| Positive | 10.743 | 681.60095 | Positive | 7.795 | 321.31409 |
| Positive | 8.647  | 681.474   | Positive | 1.152 | 320.20453 |
| Positive | 7.108  | 679.36523 | Positive | 5.735 | 319.28342 |
| Positive | 6.073  | 669.3371  | Positive | 1.036 | 318.19107 |
| Positive | 8.07   | 653.44019 | Positive | 1.807 | 316.17786 |
| Positive | 6.452  | 653.28235 | Positive | 1.395 | 315.10956 |
| Positive | 8.208  | 649.40002 | Positive | 4.941 | 313.35663 |
| Positive | 8.564  | 637.40527 | Positive | 6.542 | 313.27252 |
| Positive | 7.12   | 621.30975 | Positive | 3.385 | 313.2355  |
| Positive | 7.982  | 609.38116 | Positive | 4.111 | 313.1185  |
| Positive | 5.214  | 605.3255  | Positive | 7.658 | 312.32364 |
| Positive | 8.779  | 605.3175  | Positive | 5.432 | 311.29276 |
| Positive | 6.165  | 597.30664 | Positive | 7.089 | 310.31134 |
| Positive | 9.931  | 593.55231 | Positive | 1.208 | 306.18958 |
| Positive | 9.784  | 591.5332  | Positive | 4.376 | 304.29898 |
| Positive | 9.293  | 589.51642 | Positive | 1.431 | 304.1723  |
| Positive | 5.678  | 589.32404 | Positive | 1.031 | 299.14795 |
| Positive | 6.953  | 587.39539 | Positive | 4.826 | 298.34698 |

| Positive | 4.497  | 583.23059 | Positive | 3.578 | 295.11963 |
|----------|--------|-----------|----------|-------|-----------|
| Positive | 8.878  | 575.49866 | Positive | 0.909 | 295.09512 |
| Positive | 4.673  | 570.21344 | Positive | 4.199 | 294.20569 |
| Positive | 7.979  | 568.35748 | Positive | 4.421 | 294.19366 |
| Positive | 6.337  | 567.45972 | Positive | 0.931 | 294.18713 |
| Positive | 8.851  | 565.48492 | Positive | 0.871 | 290.1575  |
| Positive | 7.114  | 565.24536 | Positive | 1.074 | 288.18222 |
| Positive | 5.208  | 564.29315 | Positive | 2.566 | 286.24969 |
| Positive | 9.32   | 563.50458 | Positive | 5.488 | 284.32852 |
| Positive | 8.774  | 561.48737 | Positive | 6.449 | 282.28049 |
| Positive | 6.133  | 553.44043 | Positive | 5.035 | 281.24734 |
| Positive | 3.967  | 553.24561 | Positive | 3.578 | 281.13708 |
| Positive | 8.382  | 551.55414 | Positive | 0.888 | 278.15945 |
| Positive | 9.472  | 551.5061  | Positive | 4.34  | 277.17999 |
| Positive | 7.982  | 551.32825 | Positive | 0.937 | 274.16617 |
| Positive | 12.248 | 549.48694 | Positive | 1.383 | 274.08099 |
| Positive | 8.946  | 549.48645 | Positive | 0.923 | 272.15018 |
| Positive | 5.678  | 548.30444 | Positive | 4.514 | 269.25    |
| Positive | 8.355  | 547.46979 | Positive | 0.896 | 269.13626 |
| Positive | 8.727  | 547.39777 | Positive | 7.252 | 267.26843 |
| Positive | 5.235  | 547.26874 | Positive | 1.37  | 267.16052 |
| Positive | 4.498  | 542.21033 | Positive | 4.421 | 264.17993 |
| Positive | 6.27   | 539.42883 | Positive | 5.678 | 263.13062 |
| Positive | 6.165  | 539.26001 | Positive | 0.899 | 260.14938 |
| Positive | 9.102  | 538.55249 | Positive | 1.39  | 257.05856 |
| Positive | 6.813  | 537.44745 | Positive | 4.688 | 256.30081 |
| Positive | 8.326  | 535.51642 | Positive | 6.337 | 256.26157 |
| Positive | 8.77   | 535.46844 | Positive | 2.66  | 255.1945  |
| Positive | 6.651  | 531.33331 | Positive | 0.88  | 255.12251 |
| Positive | 5.688  | 531.27826 | Positive | 2.25  | 244.19273 |
| Positive | 5.652  | 525.41388 | Positive | 6.641 | 244.189   |
| Positive | 4.498  | 525.17633 | Positive | 4.835 | 242.28485 |
| Positive | 7.779  | 524.51825 | Positive | 4.421 | 234.16975 |
| Positive | 6.521  | 524.45569 | Positive | 4.1   | 230.24498 |
| Positive | 8.943  | 523.47357 | Positive | 2.548 | 228.19395 |
| Positive | 8.376  | 521.45947 | Positive | 6.558 | 228.19337 |
| Positive | 7.926  | 514.51855 | Positive | 3.277 | 227.20218 |
| Positive | 5.407  | 511.39587 | Positive | 2.265 | 226.18147 |
| Positive | 7.195  | 511.3649  | Positive | 6.497 | 226.1769  |
| Positive | 6.598  | 510.40375 | Positive | 2.57  | 225.14868 |

| Positive | 6.191 | 509.42014 | Positive | 3.863 | 221.11617  |
|----------|-------|-----------|----------|-------|------------|
| Positive | 7.739 | 508.45264 | Positive | 4.177 | 221.11607  |
| Positive | 5.113 | 497.38208 | Positive | 7.437 | 219.17235  |
| Positive | 8.446 | 496.51166 | Positive | 0.952 | 211.13037  |
| Positive | 7.668 | 495.48755 | Positive | 6.497 | 209.15062  |
| Positive | 5.954 | 495.40359 | Positive | 1.632 | 205.08102  |
| Positive | 6.293 | 495.4035  | Positive | 1.332 | 195.13948  |
| Positive | 3.967 | 495.18784 | Positive | 0.982 | 183.09976  |
| Positive | 5.76  | 492.32095 | Positive | 0.833 | 173.08986  |
| Positive | 1.864 | 485.34375 | Positive | 0.949 | 169.08749  |
| Positive | 5.603 | 481.38394 | Positive | 0.941 | 167.10664  |
| Positive | 6.817 | 480.42175 | Positive | 0.983 | 165.08888  |
| Positive | 3.921 | 480.18689 | Positive | 4.267 | 163.07405  |
| Positive | 8.439 | 479.48218 | Positive | 1.901 | 163.07365  |
| Positive | 8.322 | 477.46274 | Positive | 4.298 | 161.09798  |
| Positive | 6.631 | 473.28012 | Positive | 1.383 | 159.08109  |
| Positive | 3.582 | 473.2663  | Positive | 7.097 | 149.02155  |
| Positive | 4.855 | 471.3342  | Positive | 4.659 | 149.0215   |
| Positive | 5.568 | 467.3725  | Positive | 3.578 | 147.06532  |
| Positive | 6.507 | 466.409   | Positive | 3.578 | 129.0522   |
| Positive | 3.146 | 466.17783 | Positive | 1.078 | 123.07935  |
| Positive | 6.27  | 464.39594 | Positive | 9.053 | 1193.77844 |
| Positive | 5.855 | 461.35992 | Positive | 1.14  | 113.05937  |
| Positive | 6.473 | 459.2623  | Positive | 0.949 | 109.06334  |
| Positive | 4.367 | 457.24814 | Positive | 5.695 | 1078.57214 |
| Positive | 7.051 | 455.33606 | Positive | 8.495 | 1074.63599 |
| Positive | 4.331 | 455.25589 | Positive | 9.535 | 1073.73938 |
| Positive | 3.575 | 453.17102 | Positive | 3.562 | 107.08674  |
| Positive | 2.716 | 452.25027 | Positive | 9.725 | 1061.73572 |
| Positive | 7.058 | 450.37857 | Negative | 8.941 | 159.08627  |
| Positive | 4.673 | 449.14697 | Negative | 2.705 | 166.06165  |
| Positive | 3.136 | 449.14676 | Negative | 0.926 | 168.98695  |
| Positive | 3.925 | 445.24353 | Negative | 2.867 | 193.08559  |
| Positive | 7.672 | 437.43591 | Negative | 2.705 | 223.13161  |
| Positive | 3.585 | 437.19061 | Negative | 3.35  | 239.12907  |
| Positive | 3.909 | 437.19009 | Negative | 2.262 | 242.17421  |
| Positive | 6.885 | 436.40182 | Negative | 1.774 | 291.12234  |
| Positive | 6.337 | 434.34677 | Negative | 1.099 | 297.13239  |
| Positive | 1.251 | 433.25104 | Negative | 1.627 | 298.94058  |
| Positive | 3.941 | 429.22549 | Negative | 2.888 | 327.17294  |

| Positive | 4.807 | 427.30771 | Negative | 1.11  | 343.13623 |
|----------|-------|-----------|----------|-------|-----------|
| Positive | 4.104 | 427.23605 | Negative | 5.398 | 347.16931 |
| Positive | 5.632 | 423.34482 | Negative | 6.512 | 365.24319 |
| Positive | 1.795 | 421.25464 | Negative | 2.973 | 369.98154 |
| Positive | 2.602 | 419.2421  | Negative | 6.618 | 395.24161 |
| Positive | 2.467 | 418.24451 | Negative | 3.694 | 395.24173 |
| Positive | 3.79  | 416.21201 | Negative | 3.921 | 421.15302 |
| Positive | 7.058 | 415.34479 | Negative | 7.105 | 431.14136 |
| Positive | 4.323 | 414.22556 | Negative | 3.916 | 431.18466 |
| Positive | 5.724 | 413.37445 | Negative | 2.455 | 435.95471 |
| Positive | 6.263 | 412.39093 | Negative | 7.112 | 447.33014 |
| Positive | 2.33  | 412.15894 | Negative | 3.921 | 448.17136 |
| Positive | 6.019 | 411.16953 | Negative | 6.349 | 449.31271 |
| Positive | 5.815 | 410.37219 | Negative | 3.684 | 459.20517 |
| Positive | 6.216 | 408.37125 | Negative | 7.045 | 475.32828 |
| Positive | 1.278 | 408.22369 | Negative | 7.048 | 477.34232 |
| Positive | 6.338 | 407.34418 | Negative | 2.921 | 488.23892 |
| Positive | 5.933 | 406.35431 | Negative | 3.922 | 499.168   |
| Positive | 5.116 | 403.23193 | Negative | 4.492 | 569.1698  |
| Positive | 3.299 | 401.19299 | Negative | 8.013 | 580.2135  |
| Positive | 4.367 | 399.194   | Negative | 9.763 | 591.57452 |
| Positive | 7.874 | 398.40085 | Negative | 8.584 | 608.24139 |
| Positive | 5.782 | 397.38016 | Negative | 6.284 | 615.35486 |
| Positive | 4.91  | 397.33932 | Negative | 9.132 | 636.27765 |
| Positive | 5.676 | 397.20172 | Negative | 5.011 | 639.14917 |
| Positive | 3.572 | 397.20172 | Negative | 3.79  | 645.11377 |
| Positive | 6.885 | 395.41223 | Negative | 3.794 | 655.15186 |
| Positive | 6.937 | 395.39075 | Negative | 9.644 | 664.30365 |
| Positive | 2.33  | 395.13684 | Negative | 9.61  | 664.31256 |
| Positive | 2.91  | 393.28381 | Negative | 5.948 | 671.26086 |
| Positive | 1.299 | 392.22757 | Negative | 3.794 | 672.13922 |
| Positive | 6.309 | 391.3396  | Negative | 5.918 | 681.29364 |
| Positive | 1.145 | 389.22839 | Negative | 5.945 | 698.284   |
| Positive | 6.438 | 388.39648 | Negative | 9.498 | 748.51282 |
| Positive | 3.923 | 387.19302 | Negative | 3.794 | 749.15527 |
| Positive | 4.104 | 386.20642 | Negative | 6.089 | 771.98523 |
| Positive | 4.936 | 383.27762 |          |       |           |

\_\_\_\_

Appendix Table 4. List of lipids when testing bacteriophage-treated *M. smegmatis* that were detected by mass spectrometry but did not match any database references. Reported is the average retention time (Rt) in minutes, and the average mass-to-charge ration (M/Z), and the chemical formula predicted by MS-Finder. All lipids were found through positive ESI-Mass Spectrometry with tandem-Mass Spectrometry.

| Average<br>Rt<br>(min) | Average<br>M/Z | Chemical Formula | Average<br>Rt<br>(min) | Average<br>M/Z | Chemical Formula |
|------------------------|----------------|------------------|------------------------|----------------|------------------|
| 5.661                  | 1078.5695      |                  | 5.104                  | 453.3544       | C27H48O5         |
| 4.816                  | 242.3040       |                  | 6.363                  | 510.4041       | C27H51N5O4       |
| 4.277                  | 163.0757       | C10H10O2         | 13.137                 | 563.4984       | C27H62N8O4       |
| 1.979                  | 163.0759       | C10H10O2         | 11.055                 | 1021.7352      | C27H89N32O8P     |
| 2.053                  | 163.0762       | C10H10O2         | 10.553                 | 1191.8278      | C27H96N46O4P2    |
| 1.384                  | 257.0568       | C10H12N2O4S      | 5.911                  | 655.3367       | C28H107N28O16P7  |
| 1.384                  | 274.0851       | C10H12N2O4S      | 3.612                  | 437.1909       | C28H24N2O3       |
| 0.932                  | 165.0916       | C10H12O2         | 7.14                   | 509.1871       | C28H28O9         |
| 0.961                  | 165.0922       | C10H12O2         | 4.094                  | 427.2369       | C28H30N2O2       |
| 0.939                  | 167.1060       | C10H14O2         | 4.456                  | 429.2541       | C28H32N2O2       |
| 0.989                  | 183.1037       | C10H14O3         | 3.862                  | 523.2372       | C28H34N4O4S      |
| 0.749                  | 261.1027       | C10H16N2O6       | 5.644                  | 531.2714       | C28H38N2O8       |
| 1.384                  | 159.0787       | C11H10O          | 3.558                  | 531.2725       | C28H38N2O8       |
| 1.086                  | 179.1054       | C11H14O2         | 8.108                  | 551.3062       | C28H38N8O4       |
| 1.094                  | 179.1066       | C11H14O2         | 5.615                  | 423.3433       | C28H39NO         |
| 1.214                  | 238.1196       | C11H15N3O3       | 2.264                  | 469.3108       | C28H40N2O4       |
| 0.893                  | 213.1121       | C11H16O4         | 5.449                  | 423.3436       | C28H42N2O        |
| 6.241                  | 239.1497       | C11H18N4O2       | 5.742                  | 475.2988       | C28H42O6         |
| 5.875                  | 239.1501       | C11H18N4O2       | 5.742                  | 492.3236       | C28H42O6         |
| 5.537                  | 239.1510       | C11H18N4O2       | 4.9                    | 397.3447       | C28H44O          |
| 0.736                  | 239.1513       | C11H18N4O2       | 5.363                  | 591.3408       | C28H48NO9P       |
| 0.736                  | 256.1772       | C11H18N4O2       | 6.341                  | 448.3713       | C28H49NO3        |
| 0.678                  | 214.1432       | C11H19NO3        | 5.423                  | 467.3726       | C28H50O5         |
| 6.047                  | 251.0453       | C12H11O4P        | 6.336                  | 481.4385       | C28H53N3O2       |
| 0.938                  | 209.1200       | C12H16O3         | 7.032                  | 529.4310       | C28H56N4O5       |
| 1.35                   | 195.1382       | C12H18O2         | 6.109                  | 553.4423       | C28H57NO8        |
| 1.373                  | 211.1330       | C12H18O3         | 7.18                   | 915.7136       | C28H87N26O6P     |
| 0.938                  | 211.1346       | C12H18O3         | 3.864                  | 465.1778       | C29H24N2O4       |
| 0.923                  | 227.1292       | C12H18O4         | 3.867                  | 482.2038       | C29H24N2O4       |
| 2.857                  | 273.1252       | C12H20N2O3S      | 3.956                  | 553.2466       | C29H36N4O5S      |
| 1.362                  | 213.1475       | C12H20O3         | 4.787                  | 496.2652       | C29H37NO6        |
| 0.699                  | 261.1309       | C12H20O6         | 4.851                  | 513.2981       | C29H40N2O6       |

| 0.867 | 260.1480 | C12H23NO6    | 5.027  | 561.2764 | C29H40N2O9    |
|-------|----------|--------------|--------|----------|---------------|
| 0.855 | 278.1600 | C12H23NO6    | 4.569  | 561.2858 | C29H40N2O9    |
| 6.613 | 228.2071 | C12H25N3O    | 1.877  | 485.3445 | C29H41NO4     |
| 6.185 | 283.1734 | C12H26O7     | 4.434  | 515.3117 | C29H42N2O6    |
| 0.741 | 300.1999 | C12H26O7     | 6.759  | 422.3488 | C29H43NO      |
| 0.964 | 183.0836 | C13H10O      | 4.211  | 518.3154 | C29H43NO7     |
| 5.182 | 189.1300 | C13H16O      | 6.961  | 529.3444 | C29H46N4O6    |
| 4.162 | 221.1187 | C13H16O3     | 5.763  | 397.3799 | C29H50O       |
| 1.386 | 315.1083 | C13H18N2O5S  | 5.697  | 481.3848 | C29H52O5      |
| 1.098 | 223.1352 | C13H18O3     | 5.075  | 497.3824 | C29H52O6      |
| 0.98  | 239.1297 | C13H18O4     | 5.115  | 559.3944 | C29H54N2O8    |
| 0.908 | 255.1225 | C13H18O5     | 7.62   | 435.4211 | C29H54O2      |
| 0.908 | 272.1485 | C13H18O5     | 7.718  | 437.4351 | C29H56O2      |
| 6.47  | 226.1811 | C13H20O2     | 6.504  | 524.4554 | C29H57N5O3    |
| 1.114 | 258.1726 | C13H20O4     | 10.344 | 563.5068 | C29H74N2OS3   |
| 5.843 | 283.1743 | C13H22N4O3   | 6.616  | 473.2814 | C30H36N2O3    |
| 6.47  | 228.1976 | C13H22O2     | 6.308  | 434.3466 | C30H43NO      |
| 6.627 | 244.1927 | C13H22O3     | 5.982  | 451.3761 | C30H43NO      |
| 0.831 | 290.1620 | C13H23NO6    | 6.308  | 451.3766 | C30H43NO      |
| 1.872 | 401.1103 | C13H25N2O8PS | 5.575  | 467.3732 | C30H43NO2     |
| 2.558 | 228.1969 | C13H25NO2    | 4.914  | 529.3279 | C30H44N2O6    |
| 0.944 | 316.1786 | C13H27N5O3S  | 6.249  | 452.3969 | C30H46N2      |
| 0.711 | 262.1983 | C13H27NO4    | 9.482  | 605.3176 | C30H46N4O10   |
| 2.432 | 369.0890 | C14H16N4O6S  | 4.788  | 484.3843 | C30H49N3O2    |
| 2.435 | 386.1103 | C14H16N4O6S  | 7.035  | 472.4235 | C30H53N3O     |
| 4.397 | 249.1099 | C14H16O4     | 5.394  | 511.3975 | C30H54O6      |
| 4.093 | 313.1179 | C14H20N2O4S  | 9.056  | 535.4703 | C30H58N6O2    |
| 1.048 | 253.1443 | C14H20O4     | 9.424  | 765.5401 | C30H82N10O2S4 |
| 0.908 | 269.1418 | C14H20O5     | 4.945  | 593.1671 | C31H28O12     |
| 0.705 | 236.1662 | C14H21NO2    | 4.945  | 610.1940 | C31H28O12     |
| 1.276 | 271.1522 | C14H22O5     | 5.067  | 507.2386 | C31H30N4O3    |
| 0.94  | 294.1942 | C14H23N5O2   | 3.568  | 609.2387 | C31H36N4O7S   |
| 2.64  | 237.2029 | C14H24N2O    | 4.919  | 572.2887 | C31H41NO9     |
| 0.95  | 301.1718 | C14H24N2O5   | 8.114  | 551.3288 | C31H42N4O5    |
| 3.3   | 227.2005 | C14H26O2     | 5.451  | 463.3163 | C31H42O3      |
| 1.186 | 306.1887 | C14H27NO6    | 4.218  | 559.3377 | C31H46N2O7    |
| 4.102 | 230.2481 | C14H31NO     | 6.616  | 531.3342 | C31H46O7      |
| 2.047 | 261.1085 | C15H16O4     | 5.196  | 605.3188 | C31H48N4O4S2  |
| 4.093 | 263.1270 | C15H18O4     | 9.134  | 605.3194 | C31H48N4O4S2  |
| 4.537 | 263.1278 | C15H18O4     | 7.94   | 519.3704 | C31H50O6      |

| 4.296 | 263.1280  | C15H18O4       | 8.231  | 519.3706 | C31H50O6     |
|-------|-----------|----------------|--------|----------|--------------|
| 3.981 | 263.1286  | C15H18O4       | 6.455  | 654.3736 | C31H51N5O10  |
| 5.641 | 263.1292  | C15H18O4       | 9.652  | 705.4737 | C31H64N10O6S |
| 3.559 | 295.1173  | C15H18O6       | 6.146  | 539.2611 | C32H34N4O4   |
| 3.328 | 295.1174  | C15H18O6       | 6.275  | 478.3714 | C32H47NO2    |
| 4.015 | 295.1175  | C15H18O6       | 6.831  | 480.3920 | C32H49NO2    |
| 3.559 | 281.1349  | C15H20O5       | 5.075  | 603.4232 | C32H54N6O5   |
| 3.434 | 297.1338  | C15H20O6       | 6.113  | 584.4757 | C32H57N9O    |
| 2.121 | 219.1749  | C15H22O        | 8.487  | 477.4638 | C32H60O2     |
| 9.303 | 219.1750  | C15H22O        | 8.045  | 514.5228 | C32H67NO3    |
| 7.498 | 219.1761  | C15H22O        | 6.36   | 565.2467 | C33H32N4O5   |
| 2.094 | 251.1659  | C15H22O3       | 7.139  | 565.2486 | C33H32N4O5   |
| 1.012 | 283.1579  | C15H22O5       | 5.911  | 581.2463 | C33H32N4O6   |
| 1.079 | 299.1462  | C15H22O6       | 5.194  | 564.2943 | C33H38O7     |
| 2.4   | 253.1814  | C15H24O3       | 7.357  | 631.3216 | C33H46N2O10  |
| 1.491 | 267.1581  | C15H24O5       | 8.114  | 568.3582 | C33H46N2O3S  |
| 2.647 | 237.1823  | C15H26O3       | 8.114  | 609.3824 | C33H48N6O5   |
| 2.649 | 255.1983  | C15H26O3       | 8.936  | 547.3997 | C33H54O6     |
| 1.935 | 271.1911  | C15H26O4       | 15.683 | 521.4511 | C33H60O4     |
| 0.693 | 310.2253  | C15H27N5O2     | 15.874 | 521.4594 | C33H60O4     |
| 1.449 | 302.1972  | C15H27NO5      | 8.604  | 521.4595 | C33H60O4     |
| 2.753 | 341.2303  | C15H28N6O3     | 7.867  | 507.4797 | C33H62O3     |
| 3.954 | 240.2327  | C15H29NO       | 9.303  | 523.4745 | C33H62O4     |
| 4.896 | 228.2690  | C15H33N        | 9.324  | 550.4949 | C33H63N3O3   |
| 4.615 | 279.1567  | C16H22O4       | 2.576  | 579.1637 | C34H26O9     |
| 1.369 | 334.1857  | C16H23N5O3     | 4.336  | 565.2810 | C34H36N4O4   |
| 0.931 | 313.1628  | C16H24O6       | 6.512  | 523.4346 | C34H51NO2    |
| 7.679 | 1147.8740 | C16H25N11O38P6 | 4.732  | 575.3941 | C34H54O7     |
| 0.638 | 332.2041  | C16H29NO6      | 9.184  | 607.3875 | C34H54O9     |
| 6.327 | 256.2650  | C16H33NO       | 5.069  | 542.4278 | C34H55NO4    |
| 4.824 | 242.2829  | C16H35N        | 4.429  | 595.2903 | C35H38N4O5   |
| 4.996 | 258.2782  | C16H35NO       | 6.445  | 670.2797 | C35H43NO12   |
| 4.03  | 327.0769  | C17H14N2O3S    | 5.642  | 589.3260 | C35H44N2O6   |
| 4.676 | 313.1176  | C17H16N2O4     | 5.211  | 655.3187 | C35H46N2O10  |
| 1.134 | 345.0859  | C17H16N2O4S    | 5.027  | 619.3306 | C35H46N4O4S  |
| 3.911 | 331.1279  | C17H18N2O5     | 7.304  | 653.3377 | C35H48N4O6S  |
| 5.096 | 369.1241  | C17H20O9       | 8.385  | 611.3666 | C35H50N2O7   |
| 1.09  | 318.1899  | C17H23N3O3     | 9.978  | 607.3876 | C35H50N4O5   |
| 4.162 | 294.2037  | C17H24O3       | 6.846  | 537.4484 | C35H53NO2    |
| 1.131 | 320.2044  | C17H25N3O3     | 7.704  | 651.3768 | C35H54O11    |

| 1.327 | 311.1870 | C17H26O5     | 6.959  | 587.3970 | C35H54O7     |
|-------|----------|--------------|--------|----------|--------------|
| 3.133 | 326.1950 | C17H27NO5    | 6.149  | 540.4490 | C35H57NO3    |
| 4.493 | 269.2485 | C17H32O2     | 8.658  | 603.4330 | C35H58N2O6   |
| 4.85  | 268.2616 | C17H33NO     | 5.779  | 570.4614 | C35H59N3O3   |
| 3.974 | 301.2854 | C17H36N2O2   | 15.499 | 547.4720 | C35H62O4     |
| 4.675 | 256.2978 | C17H37N      | 8.625  | 547.4725 | C35H62O4     |
| 6.143 | 509.4215 | C17H45N15O2  | 9.176  | 547.4732 | C35H62O4     |
| 3.118 | 393.0844 | C18H16O10    | 15.608 | 549.4877 | C35H64O4     |
| 3.351 | 315.1207 | C18H18O5     | 9.891  | 549.4877 | C35H64O4     |
| 3.328 | 453.1709 | C18H24N6O8   | 8.886  | 565.4862 | C35H64O5     |
| 1.068 | 320.1908 | C18H25NO4    | 9.34   | 565.4863 | C35H64O5     |
| 2.756 | 309.2083 | C18H28O4     | 10.016 | 551.4990 | C35H66O4     |
| 3.346 | 313.2402 | C18H32O4     | 10.557 | 551.5001 | C35H66O4     |
| 2.648 | 313.2459 | C18H32O4     | 8.938  | 681.4688 | C35H69O10P   |
| 6.453 | 303.2914 | C18H38O3     | 6.553  | 659.2897 | C36H42N4O6S  |
| 5.764 | 336.3112 | C18H38O4     | 10.136 | 605.3111 | C36H44O8     |
| 4.081 | 270.3154 | C18H39N      | 6.342  | 669.3317 | C36H48N2O10  |
| 5.499 | 283.1724 | C19H22O2     | 8.807  | 637.3991 | C36H52N4O6   |
| 2.324 | 395.1296 | C19H22O9     | 6.31   | 567.4604 | C36H55NO3    |
| 2.335 | 412.1588 | C19H22O9     | 8.401  | 649.4022 | C36H56O10    |
| 2.855 | 329.1869 | C19H24N2O3   | 9.137  | 561.4896 | C36H64O4     |
| 1.06  | 376.2305 | C19H29N5O3   | 9.662  | 561.4902 | C36H64O4     |
| 0.756 | 432.2812 | C19H37N5O6   | 9.841  | 563.5067 | C36H66O4     |
| 5.486 | 379.3196 | C19H39NO5    | 10.014 | 565.5201 | C36H68O4     |
| 4.887 | 329.3179 | C19H40N2O2   | 6.504  | 716.2585 | C37H38N4O6S2 |
| 5.998 | 333.3008 | C19H40O4     | 10.223 | 621.3105 | C37H40N4O5   |
| 6.005 | 350.3261 | C19H40O4     | 7.137  | 638.3403 | C37H43N5O5   |
| 7.89  | 411.3805 | C19H47N5OS   | 6.039  | 669.3309 | C37H48O11    |
| 6.51  | 719.2593 | C19H66N4O5S9 | 6.44   | 637.3362 | C37H48O9     |
| 3.446 | 469.0328 | C20H12N4O6S2 | 5.914  | 831.3345 | C37H50N8O12S |
| 3.465 | 486.0600 | C20H12N4O6S2 | 5.711  | 639.3539 | C37H50O9     |
| 2.57  | 337.1486 | C20H20N2O3   | 5.36   | 555.4209 | C37H56O2     |
| 2.712 | 452.1035 | C20H20O7P2   | 6.68   | 581.4722 | C37H57NO3    |
| 4.595 | 339.1706 | C20H22N2O3   | 5.283  | 617.4388 | C37H60O7     |
| 5.811 | 327.2003 | C20H26N2O2   | 9.316  | 575.4998 | C37H66O4     |
| 6.146 | 327.2007 | C20H26N2O2   | 9.293  | 575.5029 | C37H66O4     |
| 5.456 | 327.2010 | C20H26N2O2   | 15.328 | 575.5103 | C37H66O4     |
| 3.461 | 375.1915 | C20H26N2O5   | 9.52   | 593.5118 | C37H68O5     |
| 4.337 | 451.1643 | C20H26N4O6S  | 6.44   | 653.2850 | C38H40N2O8   |
| 4.82  | 314.2141 | C20H27NO2    | 7.911  | 621.3445 | C38H44N4O4   |

| 4.72  | 337.2762 | C20H33NO2    | 6.555  | 695.3554  | C38H50N2O10    |
|-------|----------|--------------|--------|-----------|----------------|
| 1.128 | 352.2313 | C20H33NO2S   | 5.931  | 695.3557  | C38H50N2O10    |
| 2.278 | 352.2315 | C20H33NO2S   | 7.156  | 815.3362  | C38H54O19      |
| 4.726 | 399.2496 | C20H34N2O6   | 9.594  | 661.4394  | C38H60O9       |
| 5.1   | 403.2312 | C20H34O8     | 9.801  | 589.5198  | C38H68O4       |
| 2.962 | 410.2733 | C20H35N5O4   | 10.431 | 591.5355  | C38H70O4       |
| 1.437 | 427.2997 | C20H35N5O4   | 9.582  | 719.4904  | C38H71O10P     |
| 5.405 | 311.2968 | C20H38O2     | 10.638 | 593.5546  | C38H72O4       |
| 4.946 | 313.3563 | C20H41N      | 10.542 | 593.5550  | C38H72O4       |
| 7.745 | 312.3294 | C20H41NO     | 5.393  | 865.6003  | C39H100N4OS7   |
| 6.324 | 347.3171 | C20H42O4     | 7.929  | 679.4030  | C39H54N2O8     |
| 6.335 | 364.3424 | C20H42O4     | 8.678  | 607.5749  | C39H74O4       |
| 5.598 | 363.3076 | C20H42O5     | 5.502  | 468.3884  | C39H99N16O7P   |
| 5.585 | 380.3381 | C20H42O5     | 3.561  | 107.0838  | C3H10N2O2      |
| 4.351 | 457.2499 | C20H42O7P2   | 3.33   | 107.0842  | C3H10N2O2      |
| 4.82  | 298.3457 | C20H43N      | 4.359  | 105.0687  | C3H8N2O2       |
| 7.144 | 335.1776 | C21H22N2O2   | 9.185  | 665.4459  | C40H60N2O6     |
| 2.435 | 427.1425 | C21H22N4O4S  | 7.597  | 563.5132  | C40H66O        |
| 4.094 | 369.1833 | C21H24N2O4   | 9.283  | 747.5222  | C40H75O10P     |
| 4.093 | 386.2067 | C21H24N2O4   | 6.442  | 695.3930  | C41H54N6S2     |
| 4.679 | 386.2069 | C21H24N2O4   | 8.228  | 653.4445  | C41H56N4O3     |
| 2.712 | 493.1280 | C21H24N4O6S2 | 5.392  | 600.4725  | C41H61NO2      |
| 4.362 | 405.1570 | C21H24O8     | 8.186  | 711.4644  | C41H62N2O8     |
| 4.453 | 371.1985 | C21H26N2O4   | 8.733  | 749.5069  | C41H75O8P      |
| 3.911 | 387.1923 | C21H26N2O5   | 9.702  | 773.5466  | C41H76N2O11    |
| 3.91  | 404.2182 | C21H26N2O5   | 9.323  | 549.4896  | C42H112N32O2   |
| 5.031 | 371.1987 | C21H28N2O5   | 11.339 | 1093.7127 | C42H132N4OS12  |
| 1.592 | 363.2161 | C21H30O5     | 6.504  | 699.2263  | C42H34O10      |
| 5.568 | 509.1869 | C21H32O14    | 3.512  | 659.4309  | C42H58O6       |
| 5.642 | 397.2015 | C21H32O5S    | 9.794  | 735.5196  | C42H66N6O5     |
| 3.557 | 397.2022 | C21H32O5S    | 4.301  | 414.2241  | C42H66O16      |
| 3.659 | 413.1983 | C21H32O6S    | 5.091  | 767.5374  | C42H73N3O30P14 |
| 2.903 | 393.2840 | C21H36N4O3   | 10.016 | 551.4998  | C43H116N30O3   |
| 4.362 | 304.2978 | C21H37N      | 8.612  | 723.4177  | C43H54N4O6     |
| 5.126 | 409.3286 | C21H37N5O2   | 4.297  | 397.2001  | C43H56N2O12    |
| 4.899 | 321.2806 | C21H38O3     | 7.281  | 903.5777  | C43H74N12O9    |
| 4.897 | 339.2914 | C21H38O3     | 7.034  | 903.5794  | C43H74N12O9    |
| 4.42  | 355.2868 | C21H38O4     | 3.911  | 795.3607  | C44H52N4O11    |
| 7.214 | 371.3183 | C21H39NO3    | 6.402  | 853.3885  | C44H52N8O10    |
| 6.679 | 361.3348 | C21H44O4     | 5.711  | 697.4063  | C44H56O7       |

| 6.68   | 378.3587  | C21H44O4        | 7.679  | 709.4360  | C44H60N4S2       |
|--------|-----------|-----------------|--------|-----------|------------------|
| 9.438  | 1193.7760 | C21H47N7O8P4S17 | 8.337  | 842.4764  | C44H67N5O9S      |
| 6.291  | 408.3702  | C21H50N3O2P     | 9.986  | 857.4825  | C44H73O14P       |
| 7.137  | 622.3131  | C21H79N40O20P   | 9.389  | 791.5519  | C44H81O8P        |
| 3.118  | 449.1466  | C22H24O10       | 10.049 | 793.5698  | C44H83O8P        |
| 4.266  | 433.1505  | C22H24O9        | 10.634 | 853.5793  | C44H85O13P       |
| 5.679  | 433.1521  | C22H24O9        | 6.039  | 727.3843  | C45H50N4O5       |
| 5.628  | 435.1691  | C22H26O9        | 7.066  | 881.4235  | C45H60N4O14      |
| 4.428  | 433.1813  | C22H28N2O5S     | 9.224  | 759.5252  | C45H77O8P        |
| 4.6    | 397.2208  | C22H28N4O3      | 3.769  | 851.4002  | C45H81N68O6P     |
| 4.009  | 416.2180  | C22H29N3O5      | 3.309  | 473.2655  | C46H72N8O13      |
| 4.475  | 525.1763  | C22H29N4O9P     | 4.016  | 473.2667  | C46H72N8O13      |
| 4.474  | 542.2024  | C22H29N4O9P     | 10.48  | 1061.7311 | C47H119N2O10P3S3 |
| 4.89   | 542.2033  | C22H29N4O9P     | 10.345 | 705.5298  | C47H70O3         |
| 4.435  | 450.2013  | C22H31N3O5S     | 5.048  | 837.5648  | C47H81O10P       |
| 5.971  | 394.3532  | C22H40N4O       | 5.176  | 895.6071  | C47H82N4O12      |
| 5.072  | 339.3745  | C22H43N         | 2.903  | 376.2577  | C48H66N2O5       |
| 6.074  | 406.3550  | C22H47NO5       | 6.834  | 833.5398  | C48H72N4O8       |
| 11.919 | 1121.7423 | C22H48N3O2PS22  | 9.782  | 761.5374  | C48H72O7         |
| 3.118  | 914.3127  | C22H84N6OS14    | 6.618  | 761.4893  | C49H64N2O5       |
| 2.723  | 435.0742  | C23H14O9        | 8.473  | 900.5158  | C49H73NO14       |
| 1.871  | 418.1393  | C23H19N3O5      | 5.644  | 119.0872  | C4H10N2O2        |
| 3.794  | 447.1710  | C23H26O9        | 0.758  | 107.0625  | C4H10OS          |
| 4.422  | 481.1720  | C23H28O11       | 0.829  | 198.9912  | C4H6O7S          |
| 4.523  | 400.2169  | C23H29NO5       | 4.364  | 133.0668  | C4H8N2O3         |
| 5.241  | 447.1718  | C23H30N2O3S2    | 2      | 105.0336  | C4H8OS           |
| 0.754  | 388.2538  | C23H30O4        | 3.561  | 851.3978  | C51H54N4O8       |
| 3.913  | 445.2434  | C23H32N4O5      | 10.453 | 1087.7527 | C52H118N2O10P4S  |
| 0.671  | 347.2991  | C23H38O2        | 3.913  | 823.3793  | C52H54O9         |
| 4.813  | 443.3130  | C23H39NO6       | 9.85   | 805.5708  | C52H78O5         |
| 0.639  | 365.3005  | C23H40O3        | 7.345  | 847.5576  | C54H74N2O6       |
| 5.346  | 397.2985  | C23H40O5        | 11.332 | 785.6222  | C54H82O2         |
| 5.142  | 332.3302  | C23H41N         | 5.846  | 482.4101  | C55H110O12       |
| 7.781  | 365.3550  | C23H44N2O       | 5.637  | 548.2980  | C55H86N2O20      |
| 6.149  | 353.3422  | C23H44O2        | 11.996 | 1095.7253 | C55H98N8O14      |
| 8.506  | 352.3546  | C23H45NO        | 10.727 | 1075.7588 | C57H106N2O16     |
| 3.116  | 897.2918  | C23H81N2O10PS10 | 4.037  | 851.3984  | C57H54O7         |
| 10.756 | 1180.6950 | C23H84N45O6P3   | 8.682  | 1016.5998 | C57H85N5O7S2     |
| 3.717  | 867.3723  | C23H86N4O8S10   | 8.009  | 917.5982  | C58H80N2O7       |
| 5.062  | 449.1835  | C24H24N4O5      | 7.42   | 917.6007  | C58H80N2O7       |

| 2.479 | 362.2146 | C24H27NO2    | 7.137  | 621.3131  | C58H96O28     |
|-------|----------|--------------|--------|-----------|---------------|
| 2.479 | 362.2152 | C24H27NO2    | 5.884  | 438.3770  | C58H98O5      |
| 2.945 | 378.2102 | C24H27NO3    | 7.809  | 903.5799  | C59H74N4O4    |
| 4.605 | 397.2006 | C24H28O5     | 5.277  | 485.3463  | C59H88N2O8    |
| 3.953 | 495.1883 | C24H30O11    | 4.02   | 135.0962  | C5H14N2S      |
| 4.145 | 447.2080 | C24H30O8     | 3.316  | 135.0966  | C5H14N2S      |
| 4.92  | 514.2387 | C24H31N7O6   | 0.991  | 101.0590  | C5H8O2        |
| 4.435 | 491.2331 | C24H34N4O5S  | 0.952  | 101.0627  | C5H8O2        |
| 5.559 | 491.2341 | C24H36N4O6S  | 4.61   | 149.0232  | C5H8O3S       |
| 4.457 | 377.3106 | C24H40O3     | 2.725  | 197.0013  | C5H8O4S2      |
| 7.875 | 360.3221 | C24H41NO     | 0.738  | 181.0266  | C5H9O5P       |
| 6.305 | 391.3386 | C24H42N2O2   | 0.739  | 198.0512  | C5H9O5P       |
| 1.859 | 528.3511 | C24H42N6O6   | 10.092 | 1073.7372 | C60H96N8O9    |
| 4.723 | 395.3160 | C24H42O4     | 10.558 | 1165.8146 | C64H112N2O16  |
| 5.542 | 429.3185 | C24H44O6     | 10.411 | 1166.6754 | C65H103N3O7S4 |
| 8.224 | 366.3727 | C24H47NO     | 10.659 | 1101.7653 | C65H104N4O8S  |
| 4.101 | 459.4916 | C24H58N8     | 6.232  | 539.4272  | C65H113N4O6P  |
| 7.009 | 498.4411 | C24H59N5O3S  | 5.899  | 1116.6078 | C67H81N5O10   |
| 1.885 | 459.1663 | C25H22N4O5   | 10.395 | 1152.6694 | C67H89N7O10   |
| 3.116 | 466.1778 | C25H24N2O4S  | 8.795  | 1074.6360 | C69H87NO9     |
| 3.657 | 430.2216 | C25H24N4O2   | 3.56   | 147.0623  | C6H10O4       |
| 1.246 | 392.2288 | C25H29NO3    | 0.748  | 133.0873  | C6H12O3       |
| 4.981 | 612.1937 | C25H33N5O11S | 0.772  | 164.0926  | C6H13NO4      |
| 4.567 | 520.2602 | C25H34N4O5S  | 0.785  | 135.0923  | C6H14O3       |
| 4.374 | 443.2542 | C25H36N2O6   | 6.004  | 151.0972  | C6H14O4       |
| 5.233 | 441.3202 | C25H44O6     | 0.705  | 116.1070  | C6H15NO2      |
| 6.332 | 465.3864 | C25H45N5O2   | 0.919  | 105.0492  | C6H6N2O       |
| 7.034 | 440.3832 | C25H49N3O3   | 0.916  | 123.0590  | C6H6N2O       |
| 6.895 | 453.4433 | C25H57NO2S   | 1.379  | 141.0673  | C6H8N2O2      |
| 5.982 | 411.1698 | C26H22N2O3   | 3.559  | 129.0533  | C6H8O3        |
| 4.405 | 427.2142 | C26H26N4O2   | 11.254 | 1119.7229 | C70H94N4O8    |
| 3.822 | 437.1905 | C26H28O6     | 10.379 | 1192.6934 | C72H89N9O7    |
| 3.329 | 437.1906 | C26H28O6     | 11.732 | 1107.7266 | C78H96N2O4    |
| 4.017 | 437.1969 | C26H28O6     | 6.334  | 151.0976  | C7H10N4       |
| 4.3   | 455.2548 | C26H34N2O5   | 0.959  | 127.0741  | C7H12O3       |
| 4.336 | 524.2510 | C26H34O10    | 0.802  | 144.1014  | C7H13NO2      |
| 3.586 | 473.2666 | C26H36N2O6   | 1.062  | 179.0920  | C7H14O5       |
| 2.34  | 485.3057 | C26H44O8     | 3.451  | 197.0013  | C7H4N2O3S     |
| 6.351 | 407.3507 | C26H46O3     | 0.925  | 109.0659  | C7H8O         |
| 6.649 | 479.4079 | C26H47N5O2   | 6.194  | 583.4561  | C81H116N2O3   |

|   | 6.274  | 495.4041  | C26H47N5O3       | 3.863 | 135.0971 | C8H10N2    |
|---|--------|-----------|------------------|-------|----------|------------|
|   | 6.807  | 393.3719  | C26H48O2         | 0.975 | 123.0850 | C8H10O     |
|   | 6.258  | 464.3956  | C26H49N5O2       | 0.916 | 151.0909 | C8H12N2O2  |
|   | 5.541  | 424.3618  | C26H49NOS        | 0.91  | 213.0980 | C8H12N4O3  |
|   | 5.928  | 495.4032  | C26H50N6O3       | 1.036 | 141.0918 | C8H12O2    |
|   | 6.893  | 395.3912  | C26H50O2         | 0.987 | 139.0765 | C8H12O3    |
|   | 6.765  | 466.4167  | C26H51N5O2       | 0.769 | 184.1143 | C8H13N3O2  |
|   | 9.184  | 1179.7606 | C26H53NO4S23     | 7.498 | 203.1435 | C8H18N4O2  |
|   | 6.591  | 510.3970  | C26H56NO6P       | 0.734 | 195.1240 | C8H18O5    |
|   | 8.398  | 707.4583  | C26H82N4O2S7     | 0.817 | 130.1598 | C8H19N     |
|   | 6.778  | 815.5329  | C26H90N10O3S7    | 7.093 | 149.0231 | C8H6O4     |
|   | 7.164  | 679.3687  | C27H106N38O13P6  | 2.577 | 201.0438 | C8H8O6     |
|   | 3.074  | 518.0869  | C27H12N6OS2      | 0.96  | 121.1024 | C9H12      |
|   | 2.582  | 557.1798  | C27H28N2O11      | 0.918 | 169.0860 | C9H12O3    |
|   | 3.771  | 628.1808  | C27H30O16        | 3.02  | 247.0789 | C9H14N2O4S |
|   | 10.466 | 1101.7618 | C27H34N3O10P3S14 | 0.704 | 217.1025 | C9H16N2O2S |
|   | 4.572  | 503.2282  | C27H34O9         | 0.922 | 274.1647 | C9H16N6O3  |
|   | 4.859  | 472.2739  | C27H37NO6        | 0.711 | 172.1335 | C9H17NO2   |
|   | 6.328  | 466.4096  | C27H48N2O3       | 1.373 | 171.1510 | C9H18N2O   |
|   | 1.871  | 163.0407  | C9H6O3           | 0.705 | 156.1373 | C9H19NO2   |
| _ | 3.348  | 149.0613  | C9H8O2           | 0.702 | 192.1608 | C9H21NO3   |



Appendix Figure 1. The potential energy curve for the Tail Assembly Chaperone 2.



Appendix Figure 2. The potential energy curve for the Tail Assembly Chaperone 3.



Appendix Figure 3. The temperature curves for Tail Assembly Chaperone 2 during the Autoclave simulation (blue) and the Cell simulation (orange). The autoclave reference temperature is 394.15 K, while the cell reference temperature is 310.15 K.



Appendix Figure 4. The temperature curves for Tail Assembly Chaperone 3 during the Autoclave simulation (blue) and the Cell simulation (orange). The autoclave reference temperature is 394.15 K, while the cell reference temperature is 310.15 K.



Appendix Figure 5. The pressure curves for Tail Assembly Chaperone 2 during the Autoclave simulation and the Cell simulation. The Autoclave Data is shown in blue while the 10 ps running average is in green. The Cell Data is shown in yellow while the 10 ps running average is in purple. The reference pressure is shown in red.



Appendix Figure 6. The pressure curves for Tail Assembly Chaperone 3 during the Autoclave simulation and the Cell simulation. The Autoclave Data is shown in blue while the 10 ps running average is in green. The Cell Data is shown in yellow while the 10 ps running average is in purple. The reference pressure is shown in red.

## REFERENCES

- 1. Moineau S. Bacteriophage. Brenner's Encyclopedia of Genetics: Second Edition [Internet]. Elsevier Inc.; 2013 [cited 2021 May 14]. p. 280–3. Available from: https://www.ncbi.nlm.nih.gov/books/NBK493185/
- 2. Hatfull GF, Hendrix RW. Bacteriophages and their genomes. Current Opinion in Virology. 2011.
- 3. Jacobs WR. Advances in Mycobacterial Genetics: New Promises for Old Diseases. Immunobiology. 1992;184.
- 4. Ackermann HW, Prangishvili D. Prokaryote viruses studied by electron microscopy. Archives of Virology. 2012.
- 5. Poxleitner M, Pope W, Jacobs-Sera D, Sivanathan V, Hatfull G. Phage Discovery Guide. Howard Hughes Medical Institute. 2018.
- 6. Clokie MRJ, Millard AD, Letarov A v., Heaphy S. Phages in nature. Bacteriophage. 2011;1.
- 7. Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB. Lysogeny in nature: Mechanisms, impact and ecology of temperate phages. ISME Journal. 2017.
- 8. Hatfull GF. Mycobacteriophages: Genes and genomes. Annual Review of Microbiology. 2010.
- Hatfull GF, Jacobs-Sera D, Lawrence JG, Pope WH, Russell DA, Ko CC, et al. Comparative Genomic Analysis of 60 Mycobacteriophage Genomes: Genome Clustering, Gene Acquisition, and Gene Size. Journal of Molecular Biology. Academic Press; 2010;397:119– 43.
- 10. Hendrix RW. Bacteriophages: Evolution of the Majority. Theoretical Population Biology. Academic Press Inc.; 2002;61:471–80.
- 11. Hatfull GF. The Secret Lives of Mycobacteriophages. Advances in Virus Research. Academic Press Inc.; 2012. p. 179–288.
- 12. Bioinformatics Guide [Internet]. [cited 2021 May 14]. Available from: https://seaphagesbioinformatics.helpdocsonline.com/home
- Bibby K. Improved Bacteriophage Genome Data is Necessary for Integrating Viral and Bacterial Ecology. Microbial Ecology [Internet]. Springer Science and Business Media, LLC; 2014 [cited 2021 May 15];67:242–4. Available from: https://pubmed.ncbi.nlm.nih.gov/24253663/

- 14. Xu J, Hendrix RW, Duda RL. Conserved translational frameshift in dsDNA bacteriophage tail assembly genes. Molecular Cell [Internet]. Mol Cell; 2004 [cited 2021 May 15];16:11– 21. Available from: https://pubmed.ncbi.nlm.nih.gov/15469818/
- 15. The Actinobacteriophage Database | Cluster A Phages [Internet]. [cited 2021 May 15]. Available from: https://phagesdb.org/clusters/A/
- 16. Hatfull GF. Molecular Genetics of Mycobacteriophages. Molecular Genetics of Mycobacteria [Internet]. wiley; 2015 [cited 2021 May 15]. p. 81–119. Available from: /pmc/articles/PMC4199240/
- 17. The Actinobacteriophage Database | Cluster B Phages [Internet]. [cited 2021 May 15]. Available from: https://phagesdb.org/clusters/B/
- 18. The Actinobacteriophage Database | Cluster C Phages [Internet]. [cited 2021 May 15]. Available from: https://phagesdb.org/clusters/C/
- 19. Antibiotic resistance [Internet]. [cited 2021 May 17]. Available from: https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance
- 20. Harada LK, Silva EC, Campos WF, del Fiol FS, Vila M, Dąbrowska K, et al. Biotechnological applications of bacteriophages: State of the art [Internet]. Microbiological Research. Elsevier GmbH; 2018 [cited 2021 May 17]. p. 38–58. Available from: https://pubmed.ncbi.nlm.nih.gov/29853167/
- 21. Dedrick RM, Guerrero-Bustamante CA, Garlena RA, Russell DA, Ford K, Harris K, et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nature Medicine [Internet]. Nature Publishing Group; 2019 [cited 2021 May 17];25:730–3. Available from: https://doi.org/10.1038/s41591-019-0437-z
- 22. Moye ZD, Woolston J, Sulakvelidze A. Bacteriophage applications for food production and processing [Internet]. Viruses. MDPI AG; 2018 [cited 2021 May 17]. Available from: https://pubmed.ncbi.nlm.nih.gov/29671810/
- 23. Sulakvelidze A. Using lytic bacteriophages to eliminate or significantly reduce contamination of food by foodborne bacterial pathogens [Internet]. Journal of the Science of Food and Agriculture. John Wiley & Sons, Ltd; 2013 [cited 2021 May 17]. p. 3137–46. Available from: www.soci.org
- 24. Withey S, Cartmell E, Avery LM, Stephenson T. Bacteriophages Potential for application in wastewater treatment processes [Internet]. Science of the Total Environment. Sci Total Environ; 2005 [cited 2021 May 17]. p. 1–18. Available from: https://pubmed.ncbi.nlm.nih.gov/15740754/
- 25. Hampton HG, Watson BNJ, Fineran PC. The arms race between bacteria and their phage foes [Internet]. Nature. Nature Research; 2020 [cited 2021 May 15]. p. 327–36. Available from: https://doi.org/10.1038/s41586-019-1894-8

- 26. Seed KD. Battling Phages: How Bacteria Defend against Viral Attack [Internet]. PLoS Pathogens. Public Library of Science; 2015 [cited 2021 May 15]. p. e1004847. Available from: https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1004847
- 27. Abedon ST. Bacterial 'immunity' against bacteriophages. Bacteriophage [Internet]. Informa UK Limited; 2012 [cited 2021 May 14];2:50–4. Available from: /pmc/articles/PMC3357385/
- 28. Samson JE, Magadán AH, Sabri M, Moineau S. Revenge of the phages: Defeating bacterial defences [Internet]. Nature Reviews Microbiology. Nature Publishing Group; 2013 [cited 2021 May 14]. p. 675–87. Available from: www.nature.com/reviews/micro
- 29. Garneau JE, Dupuis MÈ, Villion M, Romero DA, Barrangou R, Boyaval P, et al. The CRISPR/cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature [Internet]. Nature Publishing Group; 2010 [cited 2021 May 15];468:67–71. Available from: https://www.nature.com/articles/nature09523
- 30. Tock MR, Dryden DTF. The biology of restriction and anti-restriction. Current Opinion in Microbiology. Elsevier Current Trends; 2005. p. 466–72.
- 31. Krüger DH, Barcak GJ, Reuter M, Smith HO. EcoRII can be activated to cleave refractory DNA recognition sites. Nucleic Acids Research [Internet]. Oxford Academic; 1988 [cited 2021 May 15];16:3997–4008. Available from: https://academic.oup.com/nar/article/16/9/3997/2377751
- 32. Lawrence J. DNA Master. 2007.
- 33. PECAAN [Internet]. [cited 2021 May 17]. Available from: https://discover.kbrinsgd.org/evidence/summary
- 34. Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, et al. Pfam: The protein families database in 2021. Nucleic Acids Research [Internet]. Oxford University Press; 2021 [cited 2021 May 17];49:D412–9. Available from: https://covid-19.
- 35. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank [Internet]. Nucleic Acids Research. Oxford University Press; 2000 [cited 2021 May 17]. p. 235–42. Available from: http://www.rcsb.org/pdb/status.html
- 36. Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, et al. CDD: A Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Research [Internet]. Oxford Academic; 2011 [cited 2021 May 17];39:D225–9. Available from: https://academic.oup.com/nar/article/39/suppl\_1/D225/2507607
- 37. Fox NK, Brenner SE, Chandonia JM. SCOPe: Structural Classification of Proteins -Extended, integrating SCOP and ASTRAL data and classification of new structures. Nucleic Acids Research [Internet]. Oxford Academic; 2014 [cited 2021 May 17];42:D304–9. Available from: http://scop.berkeley.

- 38. Pruitt KD, Tatusova T, Maglott DR. NCBI Reference Sequence (RefSeq): A curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Research [Internet]. Oxford Academic; 2005 [cited 2021 May 17];33:D501–4. Available from: http://www.ncbi.nlm.nih.gov/RefSeq/collaborators.
- 39. Lavigne R, Ceyssens PJ, Robben J. Phage proteomics: applications of mass spectrometry. Methods in molecular biology (Clifton, NJ) [Internet]. Methods Mol Biol; 2009 [cited 2021 May 17];502:239–51. Available from: https://pubmed.ncbi.nlm.nih.gov/19082560/
- 40. Stephenson DJ, Hoeferlin LA, Chalfant CE. Lipidomics in translational research and the clinical significance of lipid-based biomarkers [Internet]. Translational Research. Mosby Inc.; 2017 [cited 2021 May 17]. p. 13–29. Available from: /pmc/articles/PMC5659874/
- 41. Kumar NG, Contaifer D, Baker PRS, Ekroos K, Jefferson KK, Wijesinghe DS. Untargeted lipidomic analysis to broadly characterize the effects of pathogenic and non-pathogenic staphylococci on mammalian lipids. PLoS ONE [Internet]. Public Library of Science; 2018 [cited 2021 May 17];13:e0206606. Available from: https://doi.org/10.1371/journal.pone.0206606
- 42. Tokunaga T, Kataoka T, Suga K. Phage inactivation by an ethanol-ether extract of Mycobacterium smegmatis. American Review of Respiratory Disease. 1970;101.
- 43. Bowman BU, Newman HA, Moritz JM, Koehler RM. Properties of mycobacteriophage DS6A. II. Lipid composition. American Review of Respiratory Disease [Internet]. Am Rev Respir Dis; 1973 [cited 2021 May 17];107:42–9. Available from: https://pubmed.ncbi.nlm.nih.gov/4630313/
- 44. Fay D, Bowman BU. Structure of native and chloroform-methanol-treated mycobacteriophage R1. Journal of Virology [Internet]. American Society for Microbiology; 1978 [cited 2021 May 17];27:432–5. Available from: https://pubmed.ncbi.nlm.nih.gov/691117/
- 45. Furuchi A, Tokunaga T. Nature of the receptor substance of Mycobacterium smegmatis for D4 bacteriophage adsorption. Journal of Bacteriology. 1972;111.
- 46. Bisso G, Castelnuovo G, Nardelli MG, Orefici G, Arancia G, Lanéelle G, et al. A study on the receptor for a mycobacteriophage : phage phlei. Biochimie. 1976;58.
- 47. Jackson M. The mycobacterial cell envelope-lipids. Cold Spring Harbor Perspectives in Medicine [Internet]. Cold Spring Harbor Laboratory Press; 2014 [cited 2021 May 17];4. Available from: /pmc/articles/PMC4200213/
- 48. Precellys Tissue Homogenizer, Lysing Kits [Internet]. [cited 2021 May 14]. Available from: https://www.bertin-corp.com/tissue-homogenizer/39-precellys-lysing-kits-vk05.html
- 49. Pierce<sup>TM</sup> BCA Protein Assay Kit [Internet]. [cited 2021 May 14]. Available from: https://www.thermofisher.com/order/catalog/product/23225#/23225
- 50. Trypsin Gold, Mass Spectrometry Grade | Trypsin Digestion [Internet]. [cited 2021 May 14]. Available from: https://www.promega.com/products/mass-spectrometry/trypsin/trypsingold-mass-spectrometry-grade/?catNum=V5280
- 51. Barocycler 2320EXT Pressure BioSciences, Inc. [Internet]. [cited 2021 May 24]. Available from: https://products.pressurebiosciences.com/products/barocycler-2320ext
- 52. ID Biologics Kits Price List [Internet]. [cited 2021 May 14]. Available from: https://www.nestgrp.com/prices/id-bio\_p/idbp.shtml
- 53. Gonzalez-y-Merchand JA, Zaragoza-Contreras R, Guadarrama-Medina R, Helguera-Repetto AC, Rivera-Gutierrez S, Cerna-Cortes JF, et al. Evaluation of the cell growth of mycobacteria using Mycobacterium smegmatis mc2 155 as a representative species. Journal of Microbiology [Internet]. J Microbiol; 2012 [cited 2021 May 15];50:419–25. Available from: https://pubmed.ncbi.nlm.nih.gov/22752905/
- 54. NP80 Implen [Internet]. [cited 2021 May 14]. Available from: https://www.implen.de/product-page/implen-nanophotometer-np80-microvolume-cuvettespectrophotometer/
- 55. UltiMate<sup>TM</sup> 3000 RSLCnano System [Internet]. [cited 2021 May 16]. Available from: https://www.thermofisher.com/order/catalog/product/ULTIM3000RSLCNANO#/ULTIM30 00RSLCNANO
- 56. Thermo Scientific Q Exactive HF-X hybrid quadrupole-Orbitrap mass spectrometer Pushing the leading edge in protein analysis.
- 57. Nanospray Flex<sup>TM</sup> Ion Sources [Internet]. [cited 2021 May 16]. Available from: https://www.thermofisher.com/order/catalog/product/ES071#/ES071
- 58. Acclaim<sup>TM</sup> PepMap<sup>TM</sup> 100 C18 HPLC Columns [Internet]. [cited 2021 May 16]. Available from: https://www.thermofisher.com/order/catalog/product/164567#/164567
- 59. 6545 Quadrupole Time-of-Flight LC/MS, LC/Q-TOF MS | Agilent [Internet]. [cited 2021 May 24]. Available from: https://www.agilent.com/en/product/liquid-chromatography-mass-spectrometry-lc-ms/lc-ms-instruments/quadrupole-time-of-flight-lc-ms/6545-lc-q-tof
- 60. Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, Ikeda K, et al. MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nature Methods [Internet]. Nature Publishing Group; 2015 [cited 2021 May 19];12:523–6. Available from: /pmc/articles/PMC4449330/
- 61. Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.range mass accuracies and proteome-wide protein quantification. Nature Biotechnology [Internet]. Nature Publishing Group; 2008 [cited 2021 May 24];26:1367–72. Available from: http://www.nature.com/naturebiotechnology

- 62. Mycolicibacterium smegmatis (strain ATCC 700084 / mc(2)155) (Mycobacterium smegmatis) [Internet]. [cited 2021 May 16]. Available from: https://www.uniprot.org/proteomes/UP000000757
- 63. Tyanova S, Temu T, Cox J. The MaxQuant computational platform for mass spectrometrybased shotgun proteomics. Nature Protocols [Internet]. Nature Publishing Group; 2016 [cited 2021 May 16];11:2301–19. Available from: https://thermo.flexnetoperations.com/control/
- 64. Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, et al. MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Research [Internet]. Oxford University Press; 2018 [cited 2021 May 16];46:W486–94. Available from: http://old.metaboanalyst.ca
- 65. Mi H, Ebert D, Muruganujan A, Mills C, Albou LP, Mushayamaha T, et al. PANTHER version 16: A revised family classification, tree-based classification tool, enhancer regions and extensive API. Nucleic Acids Research [Internet]. Oxford University Press; 2021 [cited 2021 May 16];49:D394–403. Available from: http://www.
- 66. Mi H, Thomas P. PANTHER pathway: an ontology-based pathway database coupled with data analysis tools. Methods in molecular biology (Clifton, NJ) [Internet]. NIH Public Access; 2009 [cited 2021 May 16];563:123–40. Available from: /pmc/articles/PMC6608593/
- 67. Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Research [Internet]. Nucleic Acids Res; 2009 [cited 2021 May 16];37:1–13. Available from: https://pubmed.ncbi.nlm.nih.gov/19033363/
- 68. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols [Internet]. Nat Protoc; 2009 [cited 2021 May 16];4:44–57. Available from: https://pubmed.ncbi.nlm.nih.gov/19131956/
- 69. Lai Z, Tsugawa H, Wohlgemuth G, Mehta S, Mueller M, Zheng Y, et al. Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics. Nature Methods [Internet]. Nature Publishing Group; 2018 [cited 2021 May 20];15:53–6. Available from: http://prime.psc.riken.jp/
- 70. Tsugawa H, Kind T, Nakabayashi R, Yukihira D, Tanaka W, Cajka T, et al. Hydrogen Rearrangement Rules: Computational MS/MS Fragmentation and Structure Elucidation Using MS-FINDER Software. Analytical Chemistry [Internet]. American Chemical Society; 2016 [cited 2021 May 20];88:7946–58. Available from: http://prime.psc.riken.jp/.
- 71. Annotating a Gene with a Programmed Translational Frameshift [Internet]. [cited 2021 May 15]. Available from: https://seaphagesbioinformatics.helpdocsonline.com/article-54
- 72. Gordonia phage CloverMinnie, complete genome Nucleotide NCBI [Internet]. [cited 2021 May 15]. Available from: https://www.ncbi.nlm.nih.gov/nuccore/MN234196

- 73. Roy A, Kucukural A, Zhang Y. I-TASSER: A unified platform for automated protein structure and function prediction. Nature Protocols [Internet]. Nature Publishing Group; 2010 [cited 2021 May 15];5:725–38. Available from: http://zhanglab.ccmb.med.
- 74. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER suite: Protein structure and function prediction [Internet]. Nature Methods. Nature Publishing Group; 2014 [cited 2021 May 15]. p. 7–8. Available from: http://zhanglab.ccmb.med.umich.edu/I-TASSER/
- 75. The PyMOL Molecular Graphics System. Schrödinger, LLC.;
- 76. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, et al. Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. Elsevier B.V.; 2015;1–2:19–25.
- 77. Eulenburg G, Higman VA, Diehl A, Wilmanns M, Holton SJ. Structural and biochemical characterization of Rv2140c, a phosphatidylethanolamine-binding protein from Mycobacterium tuberculosis. FEBS Letters [Internet]. FEBS Lett; 2013 [cited 2021 May 20];587:2936–42. Available from: https://pubmed.ncbi.nlm.nih.gov/23907008/
- 78. Robins DC. PHOSPHATIDYLETHANOLAMINE AND LYSOPHOSPHATIDYLETHANOLAMINE [Internet]. Journal of Pharmacy and Pharmacology. Oxford Academic; 1963 [cited 2021 May 20]. p. 701–22. Available from: https://academic.oup.com/jpp/article/15/1/701/6216867
- 79. Kobayashi N, Kume S, Lenz K, Masuya H. RIKEN MetaDatabase: A database platform for health care and life sciences as a microcosm of linked open data cloud. International Journal on Semantic Web and Information Systems [Internet]. IGI Global; 2018 [cited 2021 May 20];14:140–64. Available from: https://dl.acm.org/doi/abs/10.4018/IJSWIS.2018010106
- 80. Pedras MSC. In planta sequential hydroxylation and glycosylation of a fungal phytotoxin: Avoiding cell death and overcoming the fungal invader. Proceedings of the National Academy of Sciences [Internet]. Proceedings of the National Academy of Sciences; 2001 [cited 2021 May 23];98:747–52. Available from: /pmc/articles/PMC14659/
- 81. New 13-carboxy-sterol cpd. ergokonin C useful as antibiotic and antifungal agent, and as intermediate for steroid synthesis - Patent DE-4115490-A1 - PubChem [Internet]. [cited 2021 May 23]. Available from: https://pubchem.ncbi.nlm.nih.gov/patent/DE-4115490-A1
- 82. Henner WD, Kleber I, Benzinger R. Transfection of Escherichia coli Spheroplasts III. Facilitation of Transfection and Stabilization of Spheroplasts by Different Basic Polymers. Journal of Virology. American Society for Microbiology; 1973;12:741–7.
- 83. Pettit RK, Fakoury BR, Knight JC, Weber CA, Pettit GR, Cage GD, et al. Antibacterial activity of the marine sponge constituent cribrostatin 6. Journal of Medical Microbiology [Internet]. Microbiology Society; 2004 [cited 2021 May 23];53:61–5. Available from: https://www.microbiologyresearch.org/content/journal/jmm/10.1099/jmm.0.05250-0

84. Brill GM, McAlpine JB, Whittern DN, Buko AM. Altromycins, novel pluramycin-like antibiotics: II. Isolation and elucidation of structure. The Journal of Antibiotics [Internet]. J Antibiot (Tokyo); 1990 [cited 2021 May 23];43:229–37. Available from: https://pubmed.ncbi.nlm.nih.gov/2324008/