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ABSTRACT

For pedestrians and autonomous vehicles (AVs) to co-exist harmoniously and safely in

the real-world, AVs will need to not only react to pedestrian actions, but also anticipate

their intentions. In this thesis, we propose to use rich visual and pedestrian-environment

interaction features to improve pedestrian crossing intention prediction from the ego-view.

We do so by combining visual feature extraction, graph modeling of scene objects and their

relationships, and feature encoding as comprehensive inputs for an LSTM encoder-decoder

network.

Pedestrians react and make decisions based on their surrounding environment, and the

behaviors of other road users around them. The human-human social relationship has al-

ready been explored for pedestrian trajectory prediction from the bird’s eye view in stationary

cameras. However, context and pedestrian-environment relationships are often missing in

current research into pedestrian trajectory, and intention prediction from the ego-view. To

map the pedestrian’s relationship to its surrounding objects we use a star graph with the

pedestrian in the center connected to all other road objects/agents in the scene. The pedes-

trian and road objects/agents are represented in the graph through visual features extracted

using state of the art deep learning algorithms. We use graph convolutional networks, and

graph autoencoders to encode the star graphs in a lower dimension. Using the graph en-

codings, pedestrian bounding boxes, and human pose estimation, we propose a novel model

that predicts pedestrian crossing intention using not only the pedestrian’s action behaviors

(bounding box and pose estimation), but also their relationship to their environment.

Through tuning hyperparameters, and experimenting with different graph convolutions

for our graph autoencoder, we are able to improve on the state of the art results. Our context-

driven method is able to outperform current state of the art results on benchmark dataset

Pedestrian Intention Estimation (PIE). The state of the art is able to predict pedestrian

crossing intention with a balanced accuracy (to account for dataset imbalance) score of 0.61,

while our best performing model has a balanced accuracy score of 0.79. Our model especially

outperforms in no crossing intention scenarios with an F1 score of 0.56 compared to the state

of the art’s score of 0.36. Additionally, we also experiment with training the state of the

9



art model and our model to predict pedestrian crossing action, and intention jointly. While

jointly predicting crossing action does not help improve crossing intention prediction, it is

an important distinction to make between predicting crossing action versus intention.
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1. INTRODUCTION

1.1 Overview

The National Highway Traffic Safety Administration (NHTSA) reported 36,096 fatal-

ities due to motor vehicle traffic crashes for 2019 [1 ]. Of those fatalities, 6,205 of them

were pedestrians. Additionally, another 76,000 pedestrians were injured in traffic crashes.

Vulnerable road user fatalities continue to rise every year, while vehicle occupant fatalities

steadily decline. NHTSA reports that 9 out of 10 serious roadway crashes are caused by

human error. The develop of autonomous vehicle (AV) technology can reduce that number,

and save thousands of lives [2 ].

One autonomous driving technology that has increased safety for pedestrians on the

road is pedestrian automatic emergency braking. Pedestrian automatic emergency braking

combines pedestrian detection [3 ], and emergency braking to intervene on the driver’s behalf

if the vehicle detects a pedestrian in the vehicle’s path that could result in a collision. This

type of emergency braking is a reaction to an event that has already happened. To further

protect pedestrians from harm, simply reacting to events that have already happened is not

enough. We must develop AV technology that can predict pedestrian behavior such that

emergency braking is not the only solution for collision avoidance. Furthermore, accurately

predicting pedestrian behavior would facilitate meaningful communication between AVs and

pedestrians, and assist in the harmonious co-existence of both road users.

Artificial intelligence (AI) aims to simulate human intelligence in machines. The increas-

ing popularity of using neural networks to tackle this task was made possible through the

introduction of back-propagation [4 ] in 1986. Additionally, advancements in convolutional

neural networks (CNNs), and recurrent neural networks (RNNs) have been instrumental in

creating and validating AV solutions [5 ]–[7 ]. Predicting human behavior is one such area

that has benefited from neural network advancements.

In this thesis, we are primarily concerned with predicting pedestrian crossing intention to

avoid potential conflicts between the ego-vehicle and pedestrian. A recurrent neural network

solution that leverages visual and spatial reasoning across the temporal space is developed

to improve crossing intention prediction accuracy from the ego-view.
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1.2 Thesis Motivation

In the current research space, most of the state of the art in pedestrian trajectory or

intention prediction is centered around bird’s-eye view camera positions. This may not

translate well to AV applications due to two major discrepancies: (1) the camera angle

change, and (2) continuous changes to the relative distance, and scale between the camera

and our object of interest (i.e. pedestrians). Both of these discrepancies need to be addressed

to properly design a system for AV use.

In research that does address these discrepancies, the research discards valuable visual

contextual information obtained through the on-board cameras. As human drivers, we con-

tinuously absorb visual information from the road, and adjust our driving behavior from that

information. For example, we may slow down or anticipate pedestrian crossings at designated

crosswalks. All the rich visual information around the ego-vehicle not only dictates how the

driver will behave, but also other road user behavior. In the same example, a pedestrian at

a designated crosswalk may be more confident to cross even as vehicles approach compared

to in the middle of the road where there is no crosswalk.

Along the same vein, traffic objects and agents are all interconnected on the road, affecting

one another’s behavior. To accurately predict a pedestrian’s intention, we need to consider

how all the other road objects and agents could be affecting said pedestrian’s behavior.

Modeling the pedestrian’s spatio-temporal relationship to their surroundings could offer that

insight.

1.3 Thesis Objective

In this thesis, we train a neural network on a pedestrian-centric dataset that was collected

from the ego-view through naturalistic driving to more accurately predict pedestrian crossing

intention. Our key insight is to leverage the rich visual information, and spatio-temporal

pedestrian-environment relationships readily available in the dataset to improve intention

prediction accuracy by providing context around the pedestrian’s behavior.

Our proposal outperforms state of the art crossing intention prediction algorithms on

benchmark dataset Pedstrian Intention Estimation (PIE) . Our model especially excels at

12



predicting no crossing intention cases, and is not as negatively impacted by imbalanced

training data.

1.4 Organization

The remainder of this thesis is structured as follows. In Chapter 2 , we broadly review

the literature in human behavior estimation along with the various feature extraction, and

graph embedding methods we use to build our model. Additionally, we summarize datasets

that are focused on autonomous vehicle research. Chapter 3 , we present an overview of our

proposed model for predicting pedestrian crossing intention, and introduce PIE, the dataset

which we train and evaluate our model on. We also define the evaluation metrics we use

to evaluate our model’s performance. In Chapter 4 , we elaborate on the algorithms we

use to extract human pose estimation, and appearance features from the pedestrians and

traffic objects in PIE. Chapter 5 introduces graph modeling, and embedding of the scene.

We compare different graph convolutional networks (GCNs) for scene modeling, and graph

autoencoders (GAEs) for graph embedding. Chapter 6 is dedicated to predicting pedestrian

crossing intention. In this chapter, we compare our model with the state of the art. Finally,

in Chapter 7 , we summarize our results, and recommend future research directions.
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2. BACKGROUND AND RELATED WORK

In this chapter, we review prior work on human behavior estimation, and the various machine

learning methods we applied to our proposed method to create our own pedestrian intention

model. Section 2.1 summarizes the various types of human behavior estimation that are

studied today across many fields, such as surveillance, robotics, and autonomous driving. We

will primarily focus on camera-based approaches. Section 2.2 reviews two areas of computer

vision that are critical for our model: human pose estimation, and visual feature extraction.

We then review Graph Neural Networks (GNNs) as a means for applying neural networks

on unstructured data in Section 2.3 . In Section 2.4 , we summarize, and compare publicly

available datasets used for researching autonomous driving. Finally, we conclude the chapter

in Section 2.5 .

2.1 Human Behavior Estimation

The harmonious co-existence of intelligent machines and humans is dependent on cor-

rectly modeling human behavior for machines to interpret. Being able to track and predict

human behaviors plays an important role in achieving this goal. We break human behavior

estimation into three subset categories:

1. action anticipation and prediction

2. trajectory prediction

3. intention prediction

Human behavior is complicated and nuanced, often influenced by not only external stimu-

lants, but also internal stimulants. An example of this are the factors that influence aggres-

sive driving. Aggressive driving is often contributed to the driver’s personality, age or gender

(internal stimuli), but driving conditions are an equally important factor to be considered

[8 ]. As driving conditions worsen, e.g. road congestion, the rate of aggressive actions (i.e.

honking, cursing, and cutting other cars off) increases [9 ]. This is all to say comprehensive

human behavior modeling is not an easy feat, but there are many real-world applications we

work towards:
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• Autonomous vehicles: The safe deployment of AVs in urban environments depend on

their ability to anticipate, and react to other road users [10 ].

• Surveillance: Long-term video surveillance through stationary or aerial cameras [11 ]

using detection, and tracking in heavily populated or sensitive areas, such as airports,

and government buildings, can raise awareness of suspicious activity without constant

human monitoring [12 ].

• Robotics: Self service robots are automating the hospitality industry [13 ]. In robotics,

plan, activity, and intention recognition (PAIR) [14 ], are the guiding principles for

motion planning [15 ].

2.1.1 Action Anticipation and Prediction

Action anticipation is predicting an action before it happens. There is a wide range of

domains that use action anticipation so actions are defined by the application. In [16 ], Carl

et al. train deep neural networks to predict the visual representations of future frames in

unlabeled data. Then, because visual representations offer more semantic value than pixels,

they use action recognition algorithms to classify the visual representations. Aliakbarian et

al. in [17 ] use multi-stage long short-term memory (LSTM) cells to leverage context and

action features, and a novel loss function that encourages correct classification at the earliest

time possible. The authors in [18 ] use Dynamic Images [19 ] to represent human motion in a

generative model that uses dynamic, and classification losses. In [20 ], Gammulle et al. use a

recurrent generative adversarial network (GAN) for visual, and temporal feature synthesis.

The synthesis learning is jointly performed with early action anticipation to ensure the future

features are representative of future actions.

2.1.2 Trajectory Prediction

Trajectory prediction can be modeled as a sequence of observationsXobs = {x1, x2, . . . , xt},

and the network predicts a sequence, Ypred = {yt+1, yt+2, . . . , ytpred}, where tpred is the number

of time steps to predict, and Ypred is the future location of the pedestrian.
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Studies use different ways to measure pedestrian trajectory, but the two most common

methods are listed here [21 ]:

1. Single point xy-coordinate[22 ].

• A single point to mark the head, torso or center between both feet.

2. Bounding box coordinates [23 ], [24 ].

• Typically in the form of (xc, yc, h, w) or (xtl, ytl, xbr, ybr) where c, tl, and br are

for center, top left, and bottom right points of the bounding box, and h and w

are the height and width of the bounding box.

By encasing the non-occluded parts of a pedestrian in a box, bounding boxes offer more

context clues than single location markers, because bounding boxes not only show the change

in the relative distance from the moving ego-vehicle, but also show the relative size the

pedestrian is compared to other objects in the scene. Bounding box prediction is less accurate

than predicting a single point simply because there are more features to predict, but a single

point to represent a pedestrian in the ego-view will not suffice when the perspective of the

camera is constantly changing in a moving vehicle.

One of the earliest pedestrian motion prediction models, termed Social Force model [25 ],

theorized attractive and repulsive forces guide pedestrians to their desired goal. Since then,

many others have modified or extended the use of the Social Force model not only for path

prediction [26 ], but also to robotics [27 ], anomaly detection [28 ], multiple person tracking

[29 ], and activity recognition [30 ]. Similar approaches have been used that model human-

human interactions using cultural norms and behavior. This is prevalent in crowded scenes

[31 ]–[33 ] where the majority of external stimuli are from other humans. Social-LSTM [34 ]

introduces a ”Social” pooling layer that shares trajectory information between pedestrians

in close proximity. Social-GAN [35 ] builds on top of Social-LSTM by adding generative

adversarial training, and a ”global” pooling vector that shares LSTM hidden states among

all pedestrians in the scene. Algorithms based on social or crowd behavior are better suited

for prediction from the bird’s-eye view.
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Context-driven methods derive behavior affected by the scene to make trajectory pre-

dictions. Scene-LSTM [36 ] imposes a two-layer grid on the scene to learn the scene data

through coupled LSTM networks for the scene and the pedestrian. Social-Scene-LSTM [37 ]

uses three different LSTMs for person, social, and scene scale in a hierarchical LSTM net-

work. SoPhie [38 ] leverages both social and physical attention in GANs that injects scene

features into the physical attention. Liang et al. in [39 ] use rich visual features in LSTMs to

model person-scene and person-object relations for joint activity and trajectory prediction.

Others focus on the pedestrian themselves to gather cues for prediction. Hasan et al. in

[40 ] use head pose estimation to highlight the region of interest for object avoidance and

short-term destination prediction.

For autonomous vehicle applications, it is better to look at studies that were designed

with that application in mind as the angle of the ego-vehicle camera is completely different

than bird’s-eye view. Additionally, vehicle information, such as speed, and acceleration,

and road specific pedestrian behavior should be considered. Bhattacharyya et al. use a

two-stream architecture with Bayesian RNNs to jointly predict pedestrian trajectory from

bounding boxes, and ego-motion through the vehicle odometry. In [41 ], Mangalam et al. use

global, and local streams on human pose estimation sequences in a Quasi RNN to account

for depth and ego-motion. Along with the proposal of the PIE dataset [42 ], Rasouli et

al. use a network of LSTMs to use odometer and crossing intention prediction to improve

trajectory prediction. The same research group later in [43 ] jointly use multi-modal data,

and interaction modeling for multi-task prediction. TITAN [44 ] uses hierarchically ranked

action priors to provide environment-driven context to understand motion behavior.

2.1.3 Crossing Intention Prediction

In the context of AVs, intention prediction is centered around pedestrian crossing inten-

tion. Unlike trajectory prediction, where the pedestrian can be moving anywhere, intention

prediction is only concerned with the pedestrian crossing in front of the ego-vehicle.

The earliest intention prediction started with Joint Attention in Autonomous Driving

(JAAD) [45 ]. Rasouli et al. proposed a richly annotated dataset to study the effects of traffic
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scenes on pedestrian crossing behavior. Since then, many others have expanded upon their

work. Varytimidis et al. added environmental tags to JAAD in [46 ] to provide additional

context for their prediction model. Their prediction model uses CNNs to extract features of

the pedestrian head, and legs to estimate head orientation, and motion for crossing behavior

classification using support vector machines (SVMs). In [47 ], Gujjar and Vaughan directly

use images as inputs in an encoder-decoder network where the encoder is a spatio-temporal

network composed of convolutional layers, and the decoder convolutional LSTM layers. The

output is predicted future frame images, which are used for classifying crossing behavior.

Additionally, Fussi-Net [24 ] fuse bounding boxes and pose estimation in early, late, and

combined fusion mechanisms to reduce intention classification false positive errors. SPI-

Net [48 ] uses only pose estimation for an efficient and context-invariant model. SPI-Net is

made up of two branches: (1) the first focuses on the evolution of relative distance between

posture points over time, (2) the second focuses on the evolution of spatial coordinates of

posture points in the global Cartesian coordinate system. In [49 ], Rasouli et al. uses four

modalities: (1) semantic map of the scene, (2) image context around the pedestrian, (3)

pedestrian bounding boxes, and (4) ego-motion to generate visual, and dynamic encodings

for their hybrid architecture. In [50 ], Liu et al. introduce their own dataset, Stanford-TRI

Intent Prediction (STIP), and propose using graph convolution to construct a graph scene

for crossing prediction.

Rasouli et al. predicts pedestrian trajectory as its end goal in [42 ], but as a secondary

task predicts crossing intention using local context around the pedestrian to assist trajectory

prediction. Cao and Fu use a similar network architecture as [42 ] in their own work in

[51 ], but add a spatio-temporal graph module, HT-STGCN, to map pedestrian posture for

additional feature learning. Alvarez et al. take their experiments [52 ] into the real-world,

testing their pose, and GRU-based framework on real pedestrians. Similarly, [53 ] predicts

crossing using CNNs to estimate pose. SF-GRU [54 ] takes features of different modalities,

and stacks them with five GRUs. Lastly, Hoy et al. in [55 ] use variational recurrent neural

networks (VRNN) to learn how to track pedestrians for crossing prediction.
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2.2 Computer Vision Tasks for Visual Information

In the previous section, we reviewed many human behavior prediction methods. Many

of them use visual features that are not part of the original ground-truth annotations of

the dataset. To obtain these visual features, we must add computer vision tasks, such as

object detection, human pose estimation, and feature extraction, on top of human behavior

prediction. In this section, we will review recent works in human pose estimation, and visual

feature extraction as we use these features for our model.

2.2.1 Human Pose Estimation

Classical approaches [56 ]–[59 ] to human pose estimation phased out once deep neural net-

works became more mainstream. DeepPose [60 ], one of the earliest neural network methods,

uses cascading deep neural networks to regress the (x, y) coordinates of joints in a holistic

fashion. In [61 ], Tompson et al. joins a cascading convolutional network with a ”position

refinement” network to improve localization results. Convolutional Pose Machines (CPMs)

[62 ] incorporate pose machines [63 ] into convolutional networks in a sequential model. The

authors introduce intermediate supervision to address the vanishing gradient problem in

multi-stage networks. ”Stacked hourglass” is an convolutional network architecture proposed

in [64 ] where repeated bottom-up and top-down processing create an architecture shaped like

stacked hourglasses. The successive pooling and upsampling captures features at every scale,

which is supportive of joint localization and joint relationships. OpenPose [65 ] is the first

real-time, multi-person pose detection system that is able to detect not only body, but also

hand, facial, and foot keypoints. It uses features extracted from the VGG19 [66 ] network to

create confidence maps and Part Affinity Fields (PAFs) to learn to associate body parts with

persons in an image. HR-NET [67 ] uses parallel multi-resolution subnetworks to maintain a

high resolution representation throughout the network. The same research group proposes

HigherHR-NET [68 ] using HR-NET as the backbone to solve bottom-up multi-person pose

estimation with scale variation.
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2.2.2 Visual Feature Extraction

Feature extraction is used to obtain relevant information in an image, and represent

that information in a reduced dimension. If the features are carefully and correctly chosen,

the reduced representation can be used for object classification. Traditional techniques for

feature extraction started with corner detection [69 ], [70 ]. Those techniques were replaced

once CNNs were more commonplace. SuperPoint [71 ] is a fully convolutional network that

jointly computes interest point locations and descriptors in a single forward. D2-Net [72 ] uses

a single convolutional network to be both a dense feature descriptor and a feature detector.

Zhang and Lee in [73 ] propose a novel method for feature matching by using GNNs to

transform feature points to local features. More commonly now, features are extracted using

trained object classification networks. A classification network has feature extraction layers

before classification layers. The classification and detection convolutional network, VGG16

[66 ], is used to extract features by taking the output of the last pooling layer of the network.

2.3 Graph Neural Networks

The bulk of advancements in neural networks have been centered around tasks that use

data represented in the Euclidean space. This poses a challenge for unstructured data that

are in the non-Euclidean domain. There are an increasing number of applications where the

data needs to be represented in graph form to map the interdependency and complicated

relationships between nodes. Some examples of applications that use graph representation

in neural networks:

1. Recommendation systems [74 ]: The relationship the user has with the products (e.g.,

online shopping or movies) that they click on or purchase can be used to make recom-

mendations on other products that could be of interest.

2. Optimization: Many optimization tasks are already in graph form, and can be easily

applied on GNNs, such as the traveling salesman problem [75 ].

3. Knowledge graphs: Completing missing information in a knowledge database [76 ].
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4. Chemistry: Molecules are very naturally represented in graph form, which has aided

in researching existing molecular structure and discovering new ones [77 ] for uses in

drug design [78 ].

2.3.1 Graph Convolutional Networks

Graph convolutional networks (GCNs) generalize the convolution operation from struc-

tured, grid-like data, to unstructured graph data. Figure 2.1a transforms an image into a grid

with the nodes representing image pixels. The red filter is the convolution operation taking

the average values of the red node and its neighbors, where the neighbors are determined

by filter size. In comparison, Figure 2.1b performs a similar operation on unstructured data

with the neighbors of the red node being determined by node edges.

(a) Convolution on 2-D data. The
filter, red rectangle, decides which
neighbors are aggregated onto the
current (red) node. The number of
neighboring nodes is a fixed number
determined by the filter size.

(b) Generalized convolution opera-
tion on unstructured data. Neigh-
boring nodes, determined by edge
connectivity, are aggregated on the
current (red) node. The number of
neighboring nodes vary from node to
node.

Figure 2.1. Convolution operation on structured, grid-like data, and unstruc-
tured, graph data. Image adapted from [79 ] © 2020 IEEE.

Figure 2.2 shows a basic GCN architecture with multiple, stacked graph convolutional

layers. Each convolutional layer aggregates the graph nodes’ feature information from their

neighbors to extract high-level node representations. A non-linear activation, typically
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ReLU, is applied to each hidden layer. The final output is the hidden representation of

each node, which can be used for node classification. By adding pooling, and softmax layers

to the architecture in Figure 2.2 , we can transform the GCN from a node classifier into a

graph classifier.

Figure 2.2. A two-layer graph convolutional network with ReLU activation
functions. The inputs are the features and adjacency matrix of the graph.
The output is the hidden representation of each node in the graph. Pooling
and softmax layers can be added after the convolution layers to get the hidden
representation of the graph.

Kipf and Welling in [80 ] remove assumptions on graph node similarity based on con-

nectivity by conditioning their model on both the data and adjacency matrix (A), and

introducing a renormalization trick to solve the the exploding/vanishing gradient problem.

The Adaptive Graph Convolution Network (AGCN) [81 ] learn the underlying relationships

between different nodes to learn a ”residual” graph in addition to the original. The learnable

graph convolutional network (LGCN) [82 ] aggregates neighbor node features by performing

max pooling, and then uses CNNs to on the results to compute hidden representations.

GraphSAGE [83 ] is an inductive framework that generates embeddings by sampling and

aggregating local neighborhood nodes. Graph wavelet neural network (GWNN) [84 ] works

by replacing the graph Fourier transform with a graph wavelet transform.
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2.3.2 Graph Autoencoders

In the previous section, we introduced convolution operations on graphs to create GCNs.

In this section, we show how GCNs can be used for building graph autoencoders (GAEs).

GAEs embed nodes into the latent space, and decode graph information from the embed-

dings. GAEs can be used for two goals, network embedding, and graph generation.

Kipf’s GAE proposed in [85 ] leverages GCNs to encode node structure, and feature

information simultaneously. The decoder in the model reconstructs the adjacency matrix

from the embedding matrix, but this could lead to overfitting. To solve this problem, Kipf

and Welling propose Variational Graph Autoencoder (VGAE) in the same paper, which

learns the distribution of data to limit overfitting. Adversarially Regularized Varational

Graph Autoencoder (ARVGA) [86 ] uses GANs to train generative models to learn an encoder

that produces a distribution of data similar to the prior distribution. Graph Variational

Autoencoder (GraphVAE) [87 ] models nodes, and edges as independent variables with a

convolutional encoder, and multi-layer perception as the decoder. Molecular Generative

Adversarial Network (MolGAN) employs convolutional layers, GANs, and reinforcement

learning to train the network to distinguish fake graphs from empirical data.

2.4 Datasets

Collecting and annotating datasets is a time and labor-intensive task, but annotated

datasets are vital to advancements in deep learning. Supervised learning methods rely heavily

on the annotation quality to produce good results. As AVs and deep learning methods

gain more traction in research and the public eye, more publicly available datasets are

being released to spur innovation. In this section, we will focus on AV datasets used in

the previously reviewed papers. Table 2.1 offers a comprehensive summary of the datasets

discussed here [21 ].

JAAD [45 ] is one of the first naturalistic datasets from the ego-view that contains rich

annotations not only for the pedestrian, but also for the video context. The annotations

for pedestrians include pedestrian bounding boxes, actions (e.g., walking, crossing, looking),

appearance (e.g., clothing, number of pedestrians in the group), and attributes (e.g., age
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group, gender, crossing location). Environment tags list infrastructure elements such as

traffic lights, crosswalks, and stop lights. On top of the previously mentioned annotations,

JAAD also has ego-vehicle action (e.g., slowing down, speeding up) annotated. JAAD’s

focus is the wide range of factors that contribute to crossing decisions. JAAD’s annotations

allow these factors to be considered when creating prediction models. However, JAAD’s

crossing annotations are crossing action labels that do not equate intention. In the simplest

example, a pedestrian wants to cross the street, but does not by the time the ego-vehicle

passes. The pedestrian action would be labeled as “not crossing,” and it would be incorrect

to infer that to intention.

The same team that created JAAD recognized the need for another dataset that measures

crossing/not crossing as a measured intention rather than just action recognition. To measure

intention, they conducted a study that aggregated human responses to pre-cut video clips of

pedestrian activity that was recorded in a similar method to JAAD. The subjects were asked

to view these clips up to a certain point, and then answer, “Does the pedestrian want to

cross?” The aggregated responses are used as a measurement of the probability the pedestrian

has crossing intention. The intention probability is only part of the annotations in their

dataset Pedestrian Intention Estimation (PIE). PIE also includes many of the same types

of annotations as in JAAD, and with more descriptors (e.g., stop light color). Additionally,

instead of ego-vehicle action labels, PIE has ground-truth ego-vehicle speed, gps coordinates,

and heading direction collected from the vehicle. PIE is the first of its like to propose a

method of measuring intention that is not annotating action labels. PIE’s proposal opens

up the discussion on how intention can be measured when collecting the ground-truth is not

a feasible task for naturalistic datasets. In Section 3.2 , we will further describe how crossing

intention is measured, and justify our choice to use this dataset for our model.

BDD-100K [88 ] is an enormous dataset with over 1,000 hours of diverse video, and anno-

tations that are not commonly seen in other datasets. While the dataset was not specifically

collected for pedestrian-vehicle interactions, the length and diversity of video collected guar-

antees all driving scenarios and environments are captured. Using BDD-100K would require

more pre-processing than either JAAD or PIE, because each video clip only has one frame

annotated. However, BDD-100K offers a different set of annotations compared to JAAD or
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PIE. In addition to pedestrian and road object bounding boxes, BDD-100K has lane mark-

ing, drivable area, and full frame segmentation. The segmentation annotations can be used

to guide preventative measures the ego-vehicle take to avoid dangerous vehicle-pedestrian

interactions.

Another massive dataset is STIP [50 ] with 900 hours of video footage. STIP is collected

for predicting pedestrian intention, so the videos are pedestrian dense. Being such a massive

dataset, pedestrian bounding boxes are annotated at 2 fps, and interpolated using an off-the-

shelf algorithm to get annotations for every frame. Like JAAD, the crossing/not crossing

actions are annotated for each frame. Unique to STIP, the video footage was collected using

three cameras covering the front, left, and right of the ego-vehicle. Having a wider range of

vision can increase observation lengths, which can assist in getting earlier predictions.

TITAN [44 ] focuses on pedestrian and vehicle annotations using 50 labels to classify their

actions and attributes. The pedestrian action labels are grouped in a five-tier complexity

hierarchy that provides context to the motivation of pedestrians. The first tier describes

posture actions such as sitting, standing, and bending. The second tier includes actions such

as bicycling, exiting, and crossing that add context to the first tier labels. The third tier

are complex contextual actions that involve a sequence of basic actions. Lastly, the fourth,

and fifth tiers are transportive and communicative actions respectively. By knowing the

context of the pedestrian’s actions, there is more information to infer the motivation on the

pedestrian’s trajectory.

Daimler [89 ] is a smaller dataset that is collected in a controlled environment with de-

signed vehicle-pedestrian interactions. Actors are recorded portraying pedestrians perform-

ing a series of scripted actions in front of the ego-vehicle. Naturalistic interactions are

preferable for training networks that could be used on the road, but by directing the pedes-

trian’s actions, the Daimler dataset can unequivocally state the ground-truth intentions of

the pedestrian.
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2.5 Summary

In this chapter, we summarize the literature on human behavior estimation, human

pose estimation, image feature extraction, GNNs, and datasets used for predicting human

behavior from the ego-view. In the remaining chapters, we apply the methodology reviewed

here for our pedestrian crossing intention model, and compare our results with the state of

the art.
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3. BASIC FRAMEWORK OF CROSSING INTENTION

PREDICTION MODEL

In this chapter, we introduce our proposed algorithm model and methodology for predicting

pedestrian crossing intention from the ego-view. In Section 3.1 , we present a high-level

description of our model and its components. Then in Section 3.2 , we review the benchmark

dataset, PIE, that we used to train, and evaluate our model. This is followed by Section

3.3 which goes over the evaluation metrics used to evaluate the performance of our model.

Lastly, we conclude this chapter with Section 3.4 .

3.1 Network Architecture

As shown in Figure 3.1 , our model is broken up into these four major components:

• Pedestrian pose estimation embedding

• Traffic object/agent appearance embedding

• Graph autoencoder module

• Pedestrian crossing intention prediction module

Both the pose estimation, and traffic object/agent appearance embedding modules take

cropped images obtained through bounding box coordinates as input. For pose estimation,

only pedestrian bounding boxes are considered, whereas all traffic objects/agents are pro-

cessed for appearance embedding. A full list of annotated objects can be found in Section

4.2.2 . Since there have been significant performance advances in algorithms that complete

computer vision tasks, we use pre-trained models to help us pre-process our data. To estimate

pose, we use High Resolution Net (HR-NET) [67 ] pre-trained on the COCO dataset [90 ]. It

is open source, well documented on Github, used as the backbone of other architectures, and

has competitive results on pose estimation challenges. To obtain appearance embeddings,

we use VGG16 [66 ] pre-trained on ImageNet [91 ]. Keras, a Python deep learning API, has

a VGG16 deep learning model with pre-trained weights that makes applying VGG16 onto

PIE images a simple task. VGG16 is trained to be an image classifier, but we do not need
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Figure 3.1. Our proposed model for pedestrian crossing intention predic-
tion broken up into four modules: traffic object/agent appearance embed-
ding, pedestrian pose estimation embedding, graph autoencoder module, and
pedestrian crossing intention prediction module. Cropped images of traffic
objects/agents are inputs to the two embedding modules for visual feature
extraction. Label prediction can either be for only YI or YI and YC jointly.

to classify our cropped images, because we already have the ground truth labels. Instead,

we take the results of a dense layer before the classification layer as the object appearance

embedding.

Each annotated object in an image has its own appearance embedding based on the

cropped image of the object. Figure 3.2 shows a sample frame from PIE with the annotated

bounding boxes visualized. The objects are cropped according to the bounding boxes. The

appearance embeddings of each object in the image are translated into a star graph centered

around the pedestrian of interest. Figure 3.3 visualizes the pedestrian-centric star graph

with the cropped images in place of the embeddings. The star graph models the spatial

relationship the pedestrian has to its surrounding objects. Each frame has its own, unique

star graph so to increase the speed of our crossing intention prediction model, we reduce the

dimensionality of the star graphs. To do so, we use a GAE module to learn to reconstruct

the star graphs. The latent space embedding of the trained GAE module is then an accurate,

lower dimension representation of the star graphs.
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Figure 3.2. Sample frame from PIE with traffic agents’ and objects’ bounding
boxes annotated.

Figure 3.3. A pedestrian-centric star graph with the cropped images repre-
senting the features extracted using VGG16. Every object/agent in the image
is connected to the pedestrian.
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To predict crossing intention, we use an LSTM encoder-decoder configuration in the

crossing intention prediction module. The latent space embeddings from the GAE combined

with the LSTMs will model the spatiotemporal relationship of the traffic objects/agents in

the scene. Additionally, the pose estimation of the pedestrian will provide further context

to the pedestrian’s behavior and action. The LSTMs will observe 15 frames, and predict the

pedestrian’s crossing intention for the remaining of the sample length, which is 45 frames.

3.2 PIE Dataset

We choose to use the PIE dataset, because it is the first of its kind to provide a method

of quantifying, and labeling crossing intention as opposed to crossing action. As previously

mentioned in Section 2.4 , other existing benchmark datasets either annotate crossing action

or bounding box trajectory, neither of which indicate the pedestrian’s intention.

To measure crossing intention, Rasouli et al. conducted a subject survey framed around

the question ”Does this pedestrian want to cross the street?” Subjects were asked to view a

pre-sliced video clip that pauses at a pre-determined critical crossing point, and answer the

previously stated question. Subjects could answer the question on a 5-point scale with 5 and

1 being definitive ’yes’ and ’no’, respectively. The dataset contains 1,842 videos, which were

viewed in its entirely by 5 subjects. To gather more responses, Rasouli et al. crowdsourced

responses on Amazon Mechanical Turk (AMT) to gather another 10 responses per video.

In total, each video was viewed by 15 subjects. The responses were aggregated to produce

a crossing intention probability for each pedestrian. The closer the probability is to 1, the

more likely the pedestrian has crossing intention. This is the intention label our model will

predict on.

In addition to pedestrian crossing intention data, PIE also has rich pedestrian behavior,

and demographic annotations. Pedestrian behavior includes movement, gaze, hand gesture,

and crossing action. Demographics include age group, and gender. For the ego-view scene,

various traffic agents/objects that may be critical to the pedestrian’s crossing behavior are

annotated with bounding boxes. Figure 3.2 shows a sample frame from PIE with the anno-

tated bounding boxes. Any attributes of the traffic agent/object other than location are also
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noted. For example, the color of a traffic light since that will dictate right-of-way. While

not used in our algorithm, Rasouli et al. also calibrated the ego-vehicle’s sensor data (e.g.,

heading angle, latitude, longitude, speed) to include in PIE.

3.3 Evaluation Metrics

To evaluate our proposed model, we have to evaluate the performance of both the GAE,

and crossing intention prediction module. HR-NET and VGG16 are pre-trained, and state

of the art models so we do not need to evaluate them.

The goal of the GAE module is to find a lower dimension representation, H, of the visual

appearance star graphs, X. The closer the reconstruction results X ′ from H is to X, the

better H represents X. To measure the difference between X and X ′, we use mean squared

error (MSE) to evaluate n data points

MSE = 1
n

n∑
i=1

(Xi −X ′
i )2 (3.1)

The pedestrian crossing intention prediction module is trained to perform two types of

classifications. The first is a binary classifier that predicts pedestrian crossing intention, YI ,

as defined by PIE. YI has two labels: 0 for no crossing intention, and 1 for having crossing

intention. The second type of classification is a two-class multi-label prediction. In addition

to YI , this classifier jointly predicts crossing action, YC . YC is defined as the pedestrian’s

current crossing action, and also has two labels: 0 is not crossing, and 1 is crossing.

We evaluate the performance of both classifiers. The results of the binary classifier on

YI can be directly compared with the state of the art [42 ] using accuracy and F1 score. The

multi-class multi-label classifier is evaluated using the same metrics, but for its performance

on predicting YI and YC together, and separately for each class. The testing set is highly

imbalanced (1� 0), so we will additionally compare balanced accuracy, recall, and precision

scores of each label for each class. These evaluation metrics can be expressed in terms of

true positive (TP), false positives (FP), true negatives (TN), and false negatives (FN).

precision = TP

TP + FP
(3.2)
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recall/sensitivity = TP

TP + FN
(3.3)

specif icity = TN

TN + FP
(3.4)

accuracy = TP + TN

TP + FP + TN + FN
(3.5)

balanced accuracy = sensitivity + specif icity
2 (3.6)

F1 = 2 ∗ precision ∗ recall
precision+ recall (3.7)

3.4 Summary

This chapter outlines our proposed method, and lays the foundation for the next four

chapters. We summarize the different components of our model, and how they feed into

one another. This includes data preprocessing, and prediction tasks. We also describe the

benchmark dataset which we train and test our model on. Finally, we identify the evaluation

metrics we use to evaluate our proposed model’s performance.
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4. EXTRACTING RICH VISUAL FEATURES OF THE

TRAFFIC SCENE

This chapter outlines the steps we take to preprocess the images from PIE to extract mean-

ingful visual features from the scene. Human drivers follow traffic laws, and take cues from

the environment to make their driving decisions. Without such context, drivers would not

know how to behave on the road or be able to anticipate other road users’ actions. Based on

how human drivers make decisions, we theorize a context-driven model can improve pedes-

trian intention prediction. In Section 4.1 we describe the process of extracting 2-D pose

estimation from pedestrian images. Then in Section 4.2 we begin our description of the fea-

ture extraction process for traffic objects relevant to decision making. Finally, we conclude

this chapter in Section 4.3 .

4.1 2-D Human Pose Estimation of Pedestrians

There are two approaches to human pose estimation, bottom-up or top-down. In the

bottom-up approach, keypoints are found first, and then mapped to different human bodies

in the image. As opposed to the top-down approach where humans are first detected through

bounding boxes, and then the keypoints are estimated within the bounding box. In our

experiments, we use HR-NET for human pose estimation, which is a top-down method that

uses Faster R-CNN [92 ] for object detection.

Currently, the top-down method is the preferred approach for tackling human pose es-

timation tasks. However, due to top-down methods needing a separate object detection

network on top of the pose estimation network, top-down methods are computationally in-

tensive. This is opposed to a faster bottom-up method that localizes identity-free keypoints

through anatomical heatmaps, and then groups the points together to form a pose estima-

tion. While top-down may be slower than bottom-up, top-down generally performs better

due to its ability to normalize bodies to the same scale from the results of the object detec-

tion step. When there are scale variations between persons in the same image, bottom-up

methods cannot account for the differences.
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4.1.1 HR-NET Architecture

Sun et al. proposed HR-NET in IEEE’s 2019 Computer Vision and Pattern Recognition

(CVPR) conference. It immediately broke records in three COCO benchmarks: keypoint

detection, multi-person pose estimation, and pose estimation. While HR-NET was primarily

proposed for pose estimation, it can also be applied to a wide range of computer vision tasks,

such as image classification, scene segmentation, object detection, and facial landmark.

The novelty of HR-NET lies in that fact that it is a parallel structure that can maintain

high resolution representations throughout the network. At the time of HR-NET’s proposal,

most methods were connected in series, and high resolution representations were obtained

from the low resolution representations in a high-to-low resolution network. The redrawn

HR-NET architecture in Figure 4.1 shows the high resolution representation branch (1×)

calculated in parallel as the lower resolution representation branches (2×, and 4×). For

the parallel branches to receive information from one another, Sun et al. introduce ”ex-

change units” that fuse multi-resolution representations repeatedly, thus maintaining a high

resolution representation.

Figure 4.1. Network architecture of HR-NET. The high resolution branches
are in parallel with the lower resolution branches to maintain a high resolution
representation throughout the network. Redrawn from [67 ] © 2019 IEEE.
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HR-NET is trained on the COCO keypoint detection dataset, and the MPII Human Pose

dataset. For our purposes, we used the open-source implementation of HR-NET trained

on the COCO keypoint detection dataset. PIE annotations included pedestrian bounding

boxes so we directly used the ground-truth data instead of implementing an object detection

algorithm. The 17 keypoints predicted for each pedestrian bounding box is in Table 4.1 .

Figure 4.2 shows some of the images in the COCO keypoint detection dataset with the

ground-truth human pose estimation on top.

Table 4.1. Definition of COCO human keypoint estimation joints. There are
17 joints that are explicitly defined in COCO.

Index Keypoint
0 nose
1 left eye
2 right eye
3 left ear
4 right ear
5 left shoulder
6 right shoulder
7 left elbow
8 right elbow
9 left wrist
10 right wrist
11 left hip
12 right hip
13 left knee
14 right knee
15 left ankle
16 right ankle

4.1.2 Results

In PIE, we processed 740,901 unique poses for about 1,800 pedestrians. Figure 4.3 shows

some examples of the human pose prediction results. We can see from the results that the

poses are descriptive of what the pedestrians are doing. The poses not only provide context

for movement behavior (standing or walking), but also further context for higher-level actions

such as Figure 4.3 (b) where the pedestrian is looking down at their phone.
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Figure 4.2. Human keypoint illustrations from COCO keypoint estimation
dataset. Images are copied from © 2015 COCO Consortium.

Figure 4.3. Samples of keypoint estimation results from PIE using HR-NET
to estimate human pose. (a) Side view of a pedestrian standing, and pushing
a stroller. (b) Angled front view of a pedestrian standing at a transit station
while looking down at their phone. (c) Front view of a pedestrian standing.
(d) Side view of a pedestrian crossing the street.
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4.2 Feature Extraction of Traffic Objects

At its core, feature extraction of an image is a dimension reduction technique that pre-

serves the relevant information of the image. On the computer, images are stored as 3-D

arrays defining the red, green, and blue (RGB) components of each pixel. This is how hu-

man eyes view images, but it is not the most efficient way for machines to store, and ”see”

images in neural networks. Feature extraction removes redundant information, and keeps

the important features to be used for computer vision tasks such as object recognition.

In our experiment, we use a VGG16 network pretrained on ImageNet [91 ] for image

classification to extract visual features. We do not need to classify the traffic objects so

instead of getting the results from the last layer (softmax layer) of VGG16, where it will

be classified into 1 of the 1,000 classes in Imagenet, we retrieve the results from an earlier

layer of the network. Figure 4.4 shows the various convolution, and fully connected layers of

VGG16.

4.2.1 VGG16 Architecture

Simonyan and Zisserman submitted VGG16 to the ImageNet Large Scale Visual Recog-

nition Challenge (ILSVRC) 2014. While VGG16 was only the runner-up model in that year’s

image classification challenge, it was the first model to get an error rate under 10% in the

history of the competition. It is still a widely used model that is made available through

Keras Applications with pre-trained weights.

As seen in Figure 4.4 , VGG16 takes images that are resized to size (224, 224, 3) as

network inputs. Each convolution layer has filters of size 3×3 with a stride of 1, and each

max pooling layer has filters of size 2×2 with strides of 2. This pattern holds until the fully

connected layers followed by the softmax layer. In total, VGG16 has 16 layers with weights,

and the network has approximately 138 million parameters.

To extract the visual features of traffic objects/agents in PIE, we use the ground-truth

bounding box annotations to crop, and resize the images to the required dimensions for

VGG16. We directly took the 1×4096 vector from layer f̈c6” to be the feature representation.

Each traffic object/agent has its own feature representation for every frame it is in.
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Figure 4.4. Network architecture of VGG16.

4.2.2 Traffic Objects of Interest and Results

The traffic objects and agents that we are interested in for feature extraction are listed

in Table 4.2 . These are annotated in PIE with bounding boxes, and additional attributes

that provide more context. Figure 4.5 shows image samples of traffic objects/agents with

their bounding boxes annotated around them. Table 4.3 shows the number of traffic objects

and agents in PIE that are processed for visual feature extraction using VGG16.
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Table 4.2. Summary of traffic objects/agents annotated with bounding boxes in PIE.
Label Additional Attributes

pedestrian

action: standing, walking
gesture: hand ack, hand yield, hand rightofway, node, other

look: looking, not looking
cross: cross, not crossing, crossing irrelevant

vehicle type: car, truck, bus, train, bicycle, bike

traffic light
type: regular, transit, pedestrian

state: red, yellow, green

sign
type: ped blue, ped yellow, ped white, ped text, stop sign,

bus stop, train stop, construction, other
crosswalk None

transit station type: bus, streetcar

Table 4.3. Number of traffic object/agent instances with features extracted
using VGG16.

Label Number of Instances
pedestrian 725,763

vehicle 526,439
traffic light 310,143

sign 49,621
crosswalk 135,717

transit station 13,207
Total 1,760,890
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Figure 4.5. Samples of bounding box annotations in PIE.(a) traffic light
(green). (b) pedestrian (standing). (c) two pedestrians (walking) at a cross-
walk. (d) sign (stop). (e) sign (bus stop). (f) pedestrian (standing) at a transit
station. (g) vehicle (car). (h) vehicle (train).
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4.3 Summary

In this chapter, we walk through our two main processes for obtaining rich visual features

for the ego-view scene. For pose estimation, we use HR-NET trained on the COCO keypoint

detection dataset, because it is a top-down method that performs well on PIE. To extract

visual appearance features for traffic objects, we use a pre-trained VGG16 network, and

retrieve feature vectors from one of the fully connected layers of the model. Pose estimation

provides context to the behavior of the pedestrian, while appearance features provide context

to the scene. Both of these visual features will be used to predict on pedestrian crossing

intention in later chapters.
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5. GRAPH MODELING OF THE TRAFFIC SCENE

In the previous chapter, we introduced VGG16, and described the process for extracting

rich visual features of traffic objects/agents that impact driving decisions, and pedestrian

behavior. The appearance features by themselves are not sufficient to represent the scene

as a whole. In this chapter, we use the appearance features on GCNs [80 ] to model the

spatial relationships between the traffic objects. Our goal is to find an effective, and efficient

method for modeling spatial relationships in a lower dimension embedding than the feature

vectors extracted from VGG16. To get a lower dimension embedding, we use an autoencoder

variant of GCNs that can learn a lower dimension representation of the graph embedding.

This chapter is organized as follows. We start by introducing GNNs, and how to transform

them into Graph Convolutional Networks (GCNs) in Section 5.1 . We then introduce two

GCN models: GCNConv [80 ] and GraphConv [93 ] for the basis of our autoencoder in Sections

5.2 and 5.3 , respectively. We evaluate the autoencoders’ performance in Section 5.4 . Finally,

we conclude the chapter with Section 5.5 

5.1 Graph Neural Networks

Typical neural networks such as CNNs or RNNs are not well-suited to work on arbitrary

data structures, such as graphs and networks. As a result, GNNs were developed to generalize

neural network methods on irregular structures. GCNs being one of the variants of GNNs.

GCNs have a similar convolution operation as CNNs do, hence the word ”convolutional” in

GCNs. The convolution operation in CNNs take a filter and slides it across the entire image

to learn the features. This is similarly done in GCNs to learn the features of neighbor nodes,

the only difference being GCNs are generalized for unstructured data.

In a GCN model, graph G = (V , E) takes as input:

• Feature matrix X in shape N ×D (N : number of nodes, D number of input features)

such that xi is the feature description for node i

• Adjacency matrix A to structure the graph in matrix form
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and produce feature matrix Z in shape N ×F (F : number of output features for each node)

at the node level. Then we can generalize each neural network layer as

H(l+1) = f(H(l), A), (5.1)

where L is the number of layers, and H(0) = X and H(L) = Z.

GCNs can be categorized into two major categories: spectral GCNs, and spatial GCNs.

Spectral GCNs are based on spectral graph theory [94 ], which is theorized on graph signal

processing. This means we perform an Eigen decomposition on the Laplacian matrix in the

Fourier space. This is a costly, and inefficient method compared to spatial GCNs [95 ] that

look to its neighbor nodes to understand the node’s properties. Typically spatial GCNs are

preffered due to its flexibility and low computational costs.

5.2 GCNConv

While typically spatial GCNs are preferred due to its flexibility, and low computation

cost, we will focus on the spectral-based GCN implementation proposed in [80 ]. Kipf and

Welling propose GCNConv, a simplified approach that achieves faster training time, and

higher prediction accuracy through adjusting the convolution operation.

Using the same notations as Equation 5.1 , we define layer propagation as

f(H(l), A) = σ(AH(l)W (l)) (5.2)

where W (l) is the weight matrix for layer l, and σ is a non-linear activation function. In [80 ],

the authors slightly adjust Equation 5.2 to

f(H(l)), A) = σ(D̂−1
2 ÂD̂

−1
2 H(l)W (l)) (5.3)

where Â = A+ I (I is the identity matrix), and D̂ is the diagonal degree matrix of Â. The

adjustments are to account for the limitations in Equation 5.2 :
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• Add the identity matrix to A so that the sum of the neighboring feature vectors include

the node itself

• Symmetric normalization of A to scale all multiplication operations

5.2.1 Autoencoder Architecture

In Chapter 4.2 , we summarized how we extract size (1×4096) feature vectors from traffic

objects using VGG16. To construct the feature matrix X, we concatenated the feature

vectors xi along the y-axis to create an (N×4096) matrix. The maximum number of objects

in a frame in PIE is 32, so N can be any value between 1-32. Later on, Xs that are smaller

than (32×4096) are padded with zeros to ensure all input tensors are the same shape. Matrix

A is constructed by connecting all objects in the scene to the pedestrian we are predicting

intention on.

For our GCNConv autoencoder, we propose a 2-layer GCN, which performs two propaga-

tions (Equation 5.3 ) in the forward pass to embed our Xs from (N × 4096)→ (N × 512)→

(N×256) encodings. Figure 5.1 shows our proposed GAE with GCNConv layers, and ReLU

activations.

5.3 GraphConv

In [93 ], Morris et al. propose a generalization of GNNs (k dimension-GNNs), based on

k-Weisfeiler-Leman (WL), that takes higher-order graph structures at multiple scales into

account so we can exploit the hierarchical organization of most real-world graphs. We name

their GNN network as GraphConv. Since our graphs are in relatively simple star shapes, we

utilize 1-k-GNNs for neighborhood aggregation with a simple skip connection.

5.3.1 Autoencoder Architecture

For our autoencoder using GraphConv as our convolutional layers, we propose a 3-layer

GCN with mean aggregation of neighborhood nodes at each layer, and ReLU activation

functions after the first two layers. The embedding of the input data, X, in the encoder will
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Figure 5.1. Network architecture of GAE with GCNConv layers. The en-
coder portion of the GAE embeds the input data into a lower dimensionality
using GCNConv convolutional layers. The decoder attempts to reconstruct
the encoded data back into the original input. Through convolution and learn-
ing, the encoded data becomes a lower dimension representation of the original
input data.

transform from (N ×4096)→ (N ×512)→ (N ×512)→ (N ×256). A symmetrical decoder

is used to calculate the reconstruction error for X ′.

5.4 Experimental Results

In this section, we will only compare the results of the autoencoder reconstruction of X.

We will compare the crossing intention prediction results using the autoencoder encoding

later in Section 6.3 . Here, we want to minimize the MSE between the input data, and
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reconstructed data so that the autoencoder encoding is an accurate representation of the

input data.

The only parameter that needs to be tuned for the autoencoders is the learning rate. Both

GCNConv, and GraphConv autoencoders use a learning rate of 0.001. Figure 5.2 compares

the training and testing results for our best GCNConv, and GraphConv autoencoder models.

GCNConv was trained for 50 epochs, while GraphConv was only trained for 15 epochs,

because GraphConv plauteaus smoothly starting at epoch 15, but GCNConv has a sporadic

testing curve. GCNConv was trained longer to see how the testing curve would behave

in the longer training environment. For both the training, and testing sets, GraphConv

beats out GCNConv in data reconstruction accuracy. The rate as which MSE plateaus is

similar for GraphConv, and GCNConv, but GraphConv starts at a much lower MSE value

than GCNConv. Computation time-wise, to train 15 epochs, GraphConv took 80 minutes

whereas GCNConv took 68 minutes. The difference in training time is not impactful enough

to negate better results GraphConv achieves.

5.5 Summary

In this chapter, we present convolutional layers GCNConv and GraphConv for building

GCNs. We use GCNConv and GraphConv separately in two GAEs to encode our scene

features X. Through the comparison of MSE for reconstruction error of X from X ′, we

know our GraphConv GAE is a better model for graph encoding. Later in Chapter 6 , we

will use results from both GAEs to predict pedestrian crossing intention.
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(a) Training set MSE for GCNConv, and GraphConv GAE.

(b) Testing set MSE for GCNConv, and GraphConv GAE.

Figure 5.2. Training and testing error for GCNConv, and GraphConv GAEs.
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6. PREDICTING PEDESTRIAN CROSSING INTENTION

In the previous chapters, we walked through the steps we took to process the raw images

of PIE to prepare the visual features that we will use for predicting pedestrian crossing

intention. In this chapter, we will use those visual features as inputs to an LSTM prediction

model configured in an encoder-decoder configuration.

The organization of this chapter is as follows. In Section 6.1 , we will review the overall

network of our prediction model, integrating the modules discussed in previous chapters

with the prediction module presented here. This will be followed by Section 6.2 , which will

define the prediction targets for the LSTM network. Then, in Section 6.3 we will present

our prediction results. Finally, we conclude the chapter with Section 6.4 .

6.1 Spatiotemporal Model For Prediction

Our proposed intention prediction module, shown in Figure 6.1 , consists of an encoder

LSTM layer connected to a fully connected layer followed by the decoder LSTM connected

to another fully connected layer. The last fully connected layer makes the classification. The

encoder LSTMs only return the last cell state, and its hidden states, ct and ht, which are

used to initialize the LSTM decoder cells.

Three visual features are used as inputs in our prediction model. The pedestrian-centric

graph embeddings that model pedestrian-environment relationships from Chapter 5 are the

inputs to the encoder LSTM cells. For each observed frame (15 for each sample), there

is an array of size (32 × 256) that represents the graph embedding for that frame. 32 is

the maximum number of objects/agents in an image in PIE, and for images that have less

than 32 objects/agents, we pad the extra nodes with zeros. 256 is the size of the feature

vector from the GAE’s latent space. The graph embedding needs to be flattened into shape

(1×8192) before we can use them in the LSTM cells. For 15 observed frames, we then have an

array of shape (15× 8192) that represents the temporally changing pedestrian-environment

relationship.

The other two visual features are pedestrian bounding boxes, and human pose estimation.

Each observed frame has one pedestrian bounding box, and one human pose estimation for
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the pedestrian that we are predicting crossing intention on. The pedestrian bounding box is

represented with (xtl, ytl, xbr, ybr), so a bounding box is shape (1×4). Human pose estimation

is represented with 17 keypoint joints with xy-corrdinates each, so a pose is shape (1× 34).

The pedestrian’s bounding box and pose estimation are concatenated to form an array of

shape (1×38). Just like graph embeddings, for 15 observed frames, we then have an array of

shape (15× 38). This array is concatenated with the output from the fully connected layer

of the encoder LSTMs to become the input for the decoder LSTMs. The decoder LSTMs are

initialized with the hidden states of the last encoder LSTM cell. The LSTM cells have 128

hidden units, softsign activation, 0.4 dropout, and 0.2 recurrent dropout. These parameter

values are determined later in Section 6.3.3 when we tune parameters on our model. After

the LSTM decoder is a fully connected layer that is used to classify pedestrian crossing

intention.

Figure 6.2 combines the traffic object/agent appearance embedding module, pedestrian

pose estimation embedding module, graph autoencoder module, and pedestrian crossing

intention prediction module in a full model architecture illustration.
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Figure 6.1. Network architecture of our proposed crossing intention predic-
tion module. The graph embeddings from our graph autoencoder module is
the input for the LSTM encoder cells. Pedestrian bounding box coordinates,
pose estimation, and the output of the LSTM encoder concatenated together
are the inputs to the LSTM decoder cells. 15 frames are observed for each
sample. ⊕ denotes concatenation of features, ct is the LSTM cell state, and
ht is the LSTM hidden states.
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6.2 Binary vs. Multi-Label Classification

For our pedestrian crossing intention prediction task, we attempt prediction using our

model trained for two types of classification. The first is binary classification of pedestrian

crossing intention, YI , as defined by PIE. This is the same classification as [42 ], which we

will compare with as a baseline method. The second is jointly predicting pedestrian crossing

action, YC , with YI using multi-class multi-label classification. As defined by PIE, we will

use 15 frames of observed data, one LSTM cell for each frame, to predict the pedestrian’s

crossing intention for the next 45 frames.

6.2.1 Binary Classification With Crossing Intention

Crossing intention is defined by PIE through the subject study their research team con-

ducted. Subjects were asked to view video clips up to a critical point, and answer the

question ”Does this pedestrian want to cross the street?” with a 5-point scale. All responses

for the same video clip were aggregated, and normalized between [0, 1]. The normalized

score is the crossing intention probability for the pedestrian in the video. The probability is

converted into binary values for classification purposes where

• 0 - no crossing intention

• 1 - has crossing intention

6.2.2 Multi-Label Classification With Crossing Action And Crossing Intention

To use labels that provide more meaning to the pedestrian’s behavior, and intent, we

combine the action, and intent labels to turn this into a multi-class classification. We change

the crossing actions defined by PIE:

• 0 - not crossing in the path of the ego-vehicle

• 1 - crossing in the path of the ego-vehicle

• -1 - crossing irrelevant, because crossing is not in front of ego-vehicle
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to convert all -1 labels to 0. Combining the crossing action, and intention labels into [YCYI ]

gives us four new labels:

• [00]: no crossing action + no crossing intention

• [01]: no crossing action + crossing intention

• [10]: crossing action + no crossing intention

• [11]: crossing action + crossing intention

The existence of scenario [10] would mean the crossing intention label was incorrectly as-

signed. Fortunately, out of the 1,842 videos clips in PIE, only two of them have been labeled

as [10]. That means the subjects were very good at determining crossing intention when there

was crossing action. However, this particular disagreement scenario between the observers,

and the pedestrian creates a dangerous situation. In an AV application, this disagreement

could cause the vehicle to crash into the pedestrian.

6.3 Experimental Results

In this section, we present the results of our binary, and multi-class multi-label classifica-

tion experiments. Additionally, we analyze the dataset, and take into consideration any class

imbalances the dataset may have. The results are compared between the baseline model,

PIE, and our model using evaluation metrics discussed in Section 3.3 .

6.3.1 Dataset Imbalance

PIE has 1,842 video clips (or 1,842 pedestrians) with crossing intention annotated. Table

6.1 breaks down the number of video clips belonging to each label, and shows that there are

many more pedestrians with crossing intention than without in this dataset.

The videos clips are split into train, val, and test sets with ratio 50%, 10%, and 40%,

respectively. We use the same data split for our experiments. A sliding window is applied to

each video clip so that samples are 60 frames in length. Table 6.2 breaks down the number
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Table 6.1. Distribution of video clips in PIE using multi-class multi-label classification.
Label Number of Video Clips

no crossing behavior + no crossing intention 430
no crossing behavior + crossing intention 898
crossing behavior + no crossing intention 2

crossing behavior + crossing intention 512

of samples that are in the train, val, and test sets by label. Again, the dataset is imbalanced

with 1� 0 for crossing intention.

Table 6.2. Number of samples in train, validation, and test set of PIE using
multi-label classification.

Label Train Set Val Set Test Set
no crossing behavior + no crossing intention 2,623 715 8,772

no crossing behavior + crossing intention 4,000 1,278 25,971
crossing behavior + no crossing intention 0 32 132

crossing behavior + crossing intention 2,607 568 14,917

To account for the imbalance in the dataset, we will not only compare accuracy, and

F1-scores, but also balanced accuracy, recall, and precision. Additionally, we will perform

stratified random sampling on the prediction results to compare accuracy, and F1-scores for

a balanced dataset.

6.3.2 Baseline Model

The baseline model we compare our network prediction results with is the PIE Intention

Prediction module in [42 ]. It is the state of the art method for intention prediction on the

PIE dataset. The PIE Intention Prediction module, shown in Figure 6.3 , has two inputs for

their prediction model. The first are the bounding boxes around the pedestrian. The second

are the visual features of the image cropped around the pedestrian to 2× the size of the

bounding box. VGG16 trained on ImageNet is used to extract the features of the cropped

image. Rather than cropping the image around the bounding box, by cropping the image to
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2× the size of the bounding box there is more context to the area immediately surrounding

the pedestrian.

Figure 6.3. Network architecture of PIE Intention Prediction module. The
encoder extracts features using VGG16 from a cropped image of the pedestrian.
The decoder concatenates the encoder output with the pedestrian’s bounding
box coordinates to predict their crossing intention. Redrawn from [42 ] © 2019
IEEE.

The encoder in this configuration are the Convolutional LSTM (ConvLSTM) cells that

use 64 filters, and kernel size 2 × 2 with stride 1. The decoders are LSTM cells with 128

hidden units, tanh activiation, 0.4 dropout, and 0.2 recurrent dropout. This baseline model

predicts crossing intention with accuracy of 0.79 and F1-score of 0.87.

6.3.3 Parameter Tuning on Binary Crossing Intention Prediction

To train our LSTM network for binary crossing intention prediction, we start by tuning

three parameters to compare with the baseline model: (1) regularizer value, (2) number of

hidden units, and (3) activation function.

Tables 6.3 and 6.4 compare the results of PIE, and our model with three different regu-

larizer values. The highest value for each evaluation metric is in bold for easy comparison.
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Comparing just our models, Ours-1,2,3, we see that our model greatly benefits from hav-

ing a regularizer value of 0.0001 or smaller. Across all evaluation metrics, Ours-2,3 beat

Ours-1, which has a regularization value of 0.001. Between Ours-2 and Ours-3, the only

noticeable difference is that Ours-2 performs five percentage points better in recall on the

negative label. PIE outperforms our best model Ours-2 in both accuracy and F1 score.

However, to properly evaluate the results, we look at evaluation metrics in Table 6.4 that

account for imbalanced datasets. By comparing those metrics, Ours-2 beats state of the art

PIE in balanced accuracy, 0.79 to 0.61. Ours-2 outperforms PIE by almost 20 percentage

points when we account for the dataset imbalance. The F1 scores for the positive, and neg-

ative labels explain why Ours-2 is able to outperform PIE by so much. PIE has a slightly

higher F1 score for the positive label, but Ours-2 increases the F1 score on the negative

label from 0.36 to 0.55. So while PIE can classify cases with crossing intention slightly

better, Ours-2 improves the classification of cases with no crossing intention significantly,

even with less data samples for the negative label.

In Tables 6.5 and 6.6 , we tune the number of hidden units in the LSTM cells. Since we

previously concluded a regularizer value of 0.0001 gives us our best performing models, all of

our models compared here will use 0.0001. Comparing just our models Ours-2,4,5, we see

that changing the number of hidden units in the LSTM cells does not change the performance

of our model much. We can say Ours-2 with 128 hidden units slightly outperforms Ours-

4,5 with 256, and 512 hidden units, respectively, but only very slightly. Since Ours-2 is still

our best performing model, the comparisons with PIE’s performance still holds.

Our last parameter to tune, activation function, is reported in Tables 6.7 and 6.8 . Ours-

2 uses tanh, and Ours-6 uses softsign. Comparing accuracy and balanced accuracy, they

both are the same at 0.76 and 0.79. If we compare the F1 score for each label, Ours-6

outperforms Ours-2 by one percentage point in both, thus Ours-6 is now our best perform-

ing model. Considering the closeness in performance between Ours-2 and Ours-6, Ours-6

compares the same to PIE as Ours-2 does. The difference between Ours-2 and Ours-7

is Ours-2 uses GCNConv convolutional layers for its GAE, while Ours-7 uses GraphConv

convolutional layers in its GAE. In Section 5.4 , when we compared the reconstruction error

for the two types of convolutional layers used in our GAE, GraphConv had lower MSE.
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However, here in Tables 6.7 and 6.8 , Ours-2 using GCNConv layers outperforms Ours-7 in

every metric by significant amounts. GCNConv is better suited for our GAE to get better

intention prediction results.

In additional to using evaluation metrics that account for the dataset imbalance in PIE,

we also performed stratified sampling of the test set to create a balanced dataset. We

included all 8,904 negative samples with no crossing intention in the balanced dataset. Then

we randomly sampled 8,904 positive samples that have crossing intention to add to the

negative samples. This creates a balanced dataset with 17,808 samples. We randomly

sampled 10 times to create 10 balanced datasets, and then predicted on those datasets using

PIE and Ours-6. The average accuracy and F1 score from those predictions are reported in

Table 6.9 . Ours-6 ourperforms PIE in both accuracy and F1 score. Ours-6 has an average

accuracy of 0.79, and average F1 score of 0.78. PIE has an average accuracy of 0.62, and

average F1 score of 0.70. The average accuracy calculated for prediction on the balanced

datasets for both these models are similar to the balanced accuracy reported in Table 6.7 

where the prediction was on the imbalanced dataset. So either using balanced accuracy on

the imbalanced dataset or accuracy on a balanced dataset is sufficient to account for the

dataset imbalance.

Through tuning parameters, we conclude Ours-6 with LSTM regularizer value 0.0001,

128 hidden units, and softsign activation function is our best performing model. Ours-6

is able to outperform the state of the art PIE, because Ours-6 is stronger at predicting

scenarios where there is no crossing intention. In an imbalanced dataset such as PIE, it’s

important to use evaluation metrics that can account for the imbalance or use a sampling

method to create a balanced dataset to ensure fair comparisons. In the next section, we

will use Ours-6’s parameters for our multi-class multi-label classifier to predict YI and YC

jointly.
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Table 6.9. Evaluation results from stratified sampling to create a balanced
dataset. The dataset was randomly sampled 10 times, and the average accuracy
and F1 score are reported here.

Model Accuracy F1 Score
PIE 0.62 0.70

Ours-6 0.79 0.78

6.3.4 Multi-Class Multi-Label Classification

In Section 6.2.2 , we defined our multi-class multi-label classification task. In this section,

we train new models using the best parameters found in the previous section to predict YI

and YC jointly. We train both our model and PIE for this. Additionally, we compare three

optimizers, RMSprop, Adam, and SGD to find the best optimizer for our model.

Table 6.10 compares the results of our models with PIE-2, which has the same ar-

chitecture and parameters as PIE only trained to predict both YI and YC for multi-label

classification. Of our three models listed in Table 6.10 , only two of them are valid classifiers.

Ours-10, which uses an SGD optimizer, predicts every sample to be label [0 1]. Of course,

Ours-10 is a terrible classifier, but we show its results to further demonstrate how class

imbalances in this dataset can skew evaluation metrics. For predicting pedestrian crossing

action, and intention jointly, our model Ours-9 with an Adam optimizer outperforms PIE-2

in every evaluation metric in Table 6.10 . Ours-9 has an accuracy score of 0.59, while PIE-

2’s is 0.54. Additionally, Ours-9 has a weighted F1 score of 0.79, while PIE-2 is only 0.68.

Our model is much better suited for more complicated predictions that involve pedestrian

actions, and intentions.

In Tables 6.11 and 6.12 , we separate the predictions on Y − I and YC , and compare them

individually. Table 6.11 evaluates just the crossing action prediction, YC . With F1 scores

close to 0, and balanced accuracy at 0.5, we can see both PIE-2 and Ours-10 are poor

action prediction models. They both predict all or the majority of scenarios as not crossing

actions. Comparing recall and precision for positive labels for all the models in Table 6.11 ,

it is clear that predicting positive crossing action is a more difficult task.
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In Table 6.12 , we can compare prediction results for crossing intention, YI . Comparing

just accuracy and F1 score, PIE-2 outperforms all our models, and PIE. However, we have

previously proven high accuracy and F1 score on an imbalanced dataset does not necessarily

make a better classifier. Additionally, given that we know Ours-10 is a bad classifier, high

performance in accuracy and F1 score is all the more proven to be bad evaluation metrics for

this dataset. Comparing balanced accuracy, Ours-8 has the best performance for intention

prediction with 0.65, while PIE and PIE-2 both are 0.61. Predicting YI and YC jointly

did not improve the prediction results on YI compared to our best binary classifier model

Ours-6. However, our models are able to outperform the state of the art re-trained to do

the same. Since crossing action and intent are different, it is important that we distinguish

them in our classification tasks. While the main goal of this thesis is to predict crossing

intention, it is imperative that we start thinking about this joint classification task.
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6.4 Summary

In this chapter we evaluate our proposed model for pedestrian crossing intention predic-

tion against the state of the art. Our key insights are:

• Our best performing model, Ours-6, is trained to use 0.0001 regularizer value, 128

hidden units, and softsign activation on the LSTM cells.

• Ours-6 outperforms the state of the art PIE on predicting pedestrian crossing inten-

tion with balanced accuracy 0.79 compared to PIE’s 0.61.

• Our models greatly outperform the state of the art in predicting no crossing intention

cases. Ours-6 has an F1 score of 0.56 on the negative intention label, while PIE has

an F1 score of 0.36 on the same labels.

• When we account for dataset imbalance, both our binary intention classifier, and

multi-class multi-label classifier outperform the state of the art. Our best multi-class

multi-label classifier Ours-9 predicts with an accuracy of 0.59 and F1 score of 0.79,

while PIE-2 has an accuracy of 0.54 and F1 score of 0.68.

• Accuracy and F1 score are not adequate evaluate metrics for imbalanced datasets, as

evidenced by Ours-10. Balanced accuracy is a better metric to use.

• Sampling the imbalanced dataset to create a balanced dataset is also a useful method

for evaluating performance with accuracy correctly.

• The embeddings from our GraphConv GAE has lower reconstruction error, but per-

forms worse when used for intention prediction. Ours-6 with GCNConv layers has

balanced accuracy of 0.79, while Ours-7 with GraphConv layers has balanced accuracy

of 0.74.
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7. CONCLUSIONS AND FUTURE WORK

In this thesis, we present our deep learning based approach to predicting pedestrian crossing

intention from the ego-view. Our main belief is pedestrian behavior on the road is heavily

impacted by other road objects and agents. Deep learning solutions that are trained on

videos and images from a static, bird’s eye view camera are not appropriate for use on an

onboard camera. The angle change from top-down to perpendicular affects how trajectory is

predicted. The constantly changing perspective, and distance between road objects and the

ego-vehicle are also not considered in top-down camera approaches. To that end, we train

our network on naturalistic driving dataset, PIE, which is collected from an onboard camera

from the ego-view perspective.

We model pedestrian-environment relationships using GCNs, and then utilize GAEs to

encode those relationships in a lower dimension. Additionally, we use state of the art feature

extraction techniques to embed visual representations of road objects and agents to encourage

relationship learning from rich visual features. With our LSTM encoder-decoder crossing

intention prediction framework, we use bounding box coordinates, pose estimation, and

graphical pedestrian-environment visual feature encodings to improve on state of the art

pedestrian intention prediction.

Using our best performing binary pedestrian crossing intention prediction model, Ours-

6, we are able to predict crossing intention with balanced accuracy of 0.79, an F1 score on the

positive label of 0.84, and an F1 score on the negative label of 0.56. This is compared with

PIE which predicts crossing intention with balanced accuracy of 0.61, an F1 score on the

positive label of 0.87, and an F1 score on the negative label of 0.36. We use balanced accuracy

and F1 scores on both labels to compare the performance, because PIE is an imbalanced

dataset heavily skewed towards the positive labels. While PIE slightly outperforms Ours-6

in positive intention prediction, Ours-6 is much stronger in predicting negative intention

labels.

We also train the state of the art model and our model to predict pedestrian crossing

action, YC , and pedestrian crossing intention, YI jointly. The best overall model is Ours-9

with an accuracy of 0.59, and weighted F1 score 0.79. Our model beats the state of the art
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trained on this classification. PIE-2 predicts with an accuracy score of 0.54, and F1 score

0.68. While this multi-class multi-label classification isn’t able to predict crossing intention

with better performance than our binary classifier, it is helpful for expanding on future work

that can predict crossing action, and intention jointly with a high degree of accuracy.

Further future work include data collection for more scenarios where the pedestrian has

no crossing intention will be necessary for training algorithms that can perform equally well

on both crossing and no crossing intention interactions. The capability to predict accurately

on either case will not only improve pedestrian safety on the road, but also communication

between the pedestrian and the ego-vehicle to ensure fluid traffic movement.

Finally, to further improve the quality of feature extraction, and expand visual feature

representation, scene segmentation can be used to extract visual features from the entire

image. Scene segmentation is a costly process, and with the rapidly changing scenes of an

ego-vehicle camera, it might prove difficult to implement this process for real-time processing.
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