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3.9 Validation for the imitation learning experiment in Fig.  3.6 . We preform motion
planing for each system in unseen conditions (new initial condition and new time
horizon) using the learned models. Results show that compared to the neural
policy cloning and inverse KKT [  34 ], PDP result can accurately plan the expert’s
trajectory in unseen settings. This indicates PDP can accurately learn the dy-
namics and control objective, and has the better generality than the other two.
Although policy imitation has lower imitation loss than inverse KKT, it has the
poorer performance in planing. This is because with limited data, the cloned pol-
icy can be over-fitting, while the inverse KKT learns a cost function, a high-level
representation of policies, thus has better generality to unseen conditions.  . . . . 139

3.10 Validation for the system identification experiment in Fig.  3.7 . We perform
motion prediction in unactuated conditions (u = 0) using the learned dynamics.
Results show that compared to neural-network dynamics training and DMDc,
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the effectiveness of the PDP in identifying dynamics models.  . . . . . . . . . . 139

3.11 Simulation of the learned policies in the control and planning experiment in Fig.
 3.8 . Fig.  3.11a - 3.11b are the simulations of the learned neural feedback policies on
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trajectory solved by an OC solver [ 50 ] for reference. From Fig.  3.11a - 3.11b , we
observe that PDP results in a trajectory that is much closer to the optimal one
than that of GPS; this implies that PDP has lower control loss (please check our
analysis on this in Appendix  3.10.4 ) than GPS. Fig.  3.11c is the planning results
for the quadrotor system using PDP, iLQR, and an OC solver [  50 ], where we have
used different degrees of Lagrange polynomial policies in PDP. The results show
that PDP can successfully plan a trajectory very close to the ground truth optimal
trajectory. We also observe that the accuracy of the resulting trajectory depends
on choice of the policy parameterization (i.e., expressive power): for example, the
use of polynomial policy of a higher degree N results in a trajectory closer to the
optimal one (the one using the OC solver) than the use of a lower degree. iLQR is
generally able to achieve high-accuracy solutions because it directly optimizes the
loss function with respect to individual control inputs (instead of a parameterized
policy), but this comes at the cost of high computation expense, as shown in Fig.

 3.4d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
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truth motion planning of the expert for reference. The results in (a) and (b) show
that the PDP can accurately learn the dynamics and control objective function
from demonstrations, and have good generalizability to novel situations. Please
find the video demo at  https://youtu.be/4RxDLxUcMp4 . . . . . . . . . . . . . . 141
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3.13 (a) Training process for identification of rocket dynamics: SysID loss versus itera-
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also plot the ground-truth motion (where we know the exact dynamics). The
results in (a) and (b) show that the PDP can accurately identify the dynamics
model of the rocket. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

3.14 (a) Training process of learning the optimal control policy for rocket powered
landing: the control loss versus iteration; here we have performed five trials
(labeled by different colors) with random initial guess of the policy parameter.
(b) Validation: we use the learned policy to simulate the rocket control trajectory;
here we also plot the ground-truth optimal control solved by an OC solver. The
results in (a) and (b) show that the PDP can successfully find the optimal control
policy (or optimal control sequence) to successfully perform the rocket powered
landing. Please find the video demo at  https://youtu.be/5Jsu772Sqcg  . . . . . . 142

4.1 Illustration of learning from sparse demonstrations. The red dots are the expert’s
sparse demonstration waypoints, from which the robot learns a control objective
function such that its reproduced trajectory (blue line) is closest to these way-
points. At first sight, the depicted robot’s reproduced trajectory (blue line) may
seem a result of using ‘curve fitting’ method (which inherently belongs to pol-
icy learning methods); however, a key difference from ‘curve fitting’ is that the
robot here learns a control objective function instead of imitating a trajectory,
and the learned control objective function is generalizable to unseen situations,
such as new initial conditions or longer time horizons. Please find video demos
at  https://wanxinjin.github.io/posts/lfsd .  . . . . . . . . . . . . . . . . . . . . . 146

4.2 Learning from sparse demonstrations for inverted pendulum using data in Table
 4.1 . Left: the loss value ( 4.38 ) versus the number of iterations. Right: the con-
vergence of the pendulum’s (time-warped) trajectory as iteration increases, where
the color from light to dark gray corresponds to increasing iteration number, and
the red dots are waypoints in Table  4.1 . . . . . . . . . . . . . . . . . . . . . . . 163

4.3 Parameter error ‖θk − θ∗‖2 versus iteration number. . . . . . . . . . . . . . . . 163

4.4 Learning from sparse demonstrations for inverted pendulum from data in Ta-
ble  4.2 . Left: the loss value ( 4.38 ) versus the number of iterations. Right: the
convergence of the pendulum’s (time-warped) trajectory as the number of itera-
tions increases, where the color from light to gray dark corresponds to increasing
iteration number, and the red dots are waypoints in Table  4.2 . . . . . . . . . . . 165

4.5 Learning from sparse waypoints with the objective function represented by a
neural network. Left: the loss value ( 4.38 ) versus the number of iterations, and
the loss finally converges to 0.346. Right: the learned time-warped trajectory,
where the red dots are waypoints in Table  4.3 . . . . . . . . . . . . . . . . . . . . 167

14

https://youtu.be/5Jsu772Sqcg
https://wanxinjin.github.io/posts/lfsd


4.6 Reproduced trajectories with a new time duration T = 2 (note that the demon-
stration data is with the duration T = 1). . . . . . . . . . . . . . . . . . . . . . 168

4.7 Comparison between the proposed method and numerical gradient descent. Left:
using the sparse demonstrations in Table  4.1 ; and right: using the sparse data in
Table  4.2 . Both methods use the same learning rate η = 10−2. . . . . . . . . . . 169

4.8 Learning from sparse demonstrations for 6-DoF quadrotor maneuvering. Left: the
loss function value L(ξθ,D) versus the number of iterations. Right: the quadrotor
trajectory before learning (red) and the quadrotor trajectory after learning (blue),
and green objects are the sparse demonstrations in Table  4.5 . . . . . . . . . . . 172

4.9 Quadrotor maneuvers in an environment with obstacles. The quadrotor’s aim is
to go through the two gates (from left to right) and finally land on the target
position in the upper right corner. The plotted trajectory is a simulation with
a random initial control objective function, which fails to achieve the goal (the
quadrotor may crash into the first gate, as seen from the top view).  . . . . . . . 173

4.10 6-DoF quadrotor learns to maneuver control in an environment with obstacles:
the quadrotor aims to start from the left position (−8,−8, 5), then go though
two gates, and finally land on a target position (8, 8, 0) on the right. In different
sub-figures, we use different number of waypoints from Table  4.6 . The waypoints
are labeled as red triangles. The motion trajectory reproduced by the learned
objective function is shown in blue curve. Please find the video demo at  https:
//wanxinjin.github.io/posts/lfsd .  . . . . . . . . . . . . . . . . . . . . . . . . . . 175

4.11 The loss versus number of iterations. The top-left panel is for experiment case (a)
in Fig.  4.10 , the top-right is for (b), the bottom-left is for (c), the bottom-right
is for (d).  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

4.12 The upper panels (a)-(d): reaching motion of a two-link robot arm using an
arbitrary initial objective function without accounting for the obstacles. Here
the obstacle is labeled by an orange object and the reaching target by a red star.
From the left to right, we plot the configuration of the robot arm at different time
instances during its motion with a random initial control objective function. The
second-row panels (e)-(h): reaching motion of the robot arm using the objective
function learned from the given waypoint in Table  4.7 . Here the waypoint q∗(τ1)
is shown in (e) by gray color. From left to right, we plot the configuration of
the arm at different time instances during its motion. Please also find the video
demo at  https://wanxinjin.github.io/posts/lfsd  . . . . . . . . . . . . . . . . . . . 178

4.13 Loss versus iteration for robot arm learning. . . . . . . . . . . . . . . . . . . . . 179

15

https://wanxinjin.github.io/posts/lfsd
https://wanxinjin.github.io/posts/lfsd
https://wanxinjin.github.io/posts/lfsd


5.1 Magnitude corrections v.s. directional corrections. The contour lines and the
optimal/satisfactory trajectory (black dot) of the human’s implicit cost function
J(θ∗) are plotted. (a): the green region (a sub-level set) shows all feasible mag-
nitude corrections āk that satisfy J(uθk
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ABSTRACT

The recent progress of machine learning, driven by pervasive data and increasing com-

putational power, has shown its potential to achieve higher robot autonomy. Yet, with

too much focus on generic models and data-driven paradigms while ignoring inherent struc-

tures of control systems and tasks, existing machine learning methods typically suffer from

data and computation inefficiency, hindering their public deployment onto general real-world

robots. In this thesis work, we claim that the efficiency of autonomous robot learning can

be boosted by two strategies. One is to incorporate the structures of optimal control theory

into control-objective learning, and this leads to a series of control-induced learning methods

that enjoy the complementary benefits of machine learning for higher algorithm autonomy

and control theory for higher algorithm efficiency. The other is to integrate necessary human

guidance into task and control objective learning, leading to a series of paradigms for robot

learning with minimal human guidance on the loop.

The first part of this thesis focuses on the control-induced learning, where we have made

two contributions. One is a set of new methods for inverse optimal control, which address

three existing challenges in control objective learning: learning from minimal data, learning

time-varying objective functions, and learning under distributed settings. The second is a

Pontryagin Differentiable Programming methodology, which bridges the concepts of optimal

control theory, deep learning, and backpropagation, and provides a unified end-to-end learn-

ing framework to solve a broad range of learning and control tasks, including inverse rein-

forcement learning, neural ODEs, system identification, model-based reinforcement learning,

and motion planning, with data- and computation- efficient performance.

The second part of this thesis focuses on the paradigms for robot learning with necessary

human guidance on the loop. We have made two contributions. The first is an approach

of learning from sparse demonstrations, which allows a robot to learn its control objective

function only from human-specified sparse waypoints given in the observation (task) space;

and the second is an approach of learning from human’s directional corrections, which enables

a robot to incrementally learn its control objective, with guaranteed learning convergence,

from human’s directional correction feedback while it is acting.
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1. INTRODUCTION

The past decades see the notable progress in development of autonomous robots, from high-

skilled legged robots, autonomous aerial and ground vehicles, to planetary/space platforms.

In the control system perspective, the behavior of an autonomous robot can be specified by

the following aspects: dynamics, which dictates the evolution rule of the robot states given

control inputs, a task objective, which encapsulates the goal or utility of the robot behavior; a

control policy, which defines how the control inputs are generated given the robot states, and

additional constraints imposed by the environments and task. These aspects constituting an

autonomous robot are schematically shown in Fig. 1.1 .

Policy

Dynamics
controlTask

objective
Behavioral
trajectory

Constraints

state

Figure 1.1. A schematical description of an autonomous robot.

Throughout this thesis, we adopt the following hierarchical perspective to understand

different aspects of an autonomous robot. First, a task objective can be thought of as

a high-level compact policy specification, which encodes task goal, control principle, and

other contextual information for the robot behavior. Second, a task objective and robot

dynamics jointly determine the robot specific policy, which finally leads to the robot spe-

cific behavioral trajectory. Towards higher robot autonomy, many research work in machine

learning and control fields focuses on how to automate the programming of different aspects

of an autonomous robot. Throughout this thesis, we call the general problem of obtaining

the mathematical specifications for different aspects of an autonomous robot from experi-

ence/demonstration data as autonomous robot learning.

Two different frameworks have been developed in machine learning and control fields

to formulate an autonomous robot. In machine learning, an autonomous robot is typically

studied under reinforcement learning framework [1 ], which provides a generic date-driven
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paradigm to enable a robot to find an optimal policy through its experience in environment

and rewarding signals. In control, an autonomous robot is usually studied based on optimal

control theory [2 ], which offers systematic tools to solve for the optimal behavioral trajectory

of a robot given the model specification of a task. The pros and cons for the above two

frameworks are complementary. Machine learning emphasizes more on experience data and

less on detailed structures of a control system. Thus, most learning algorithms enjoy the

high-level autonomy (i.e., requiring less human specifications), but suffer from huge data and

computation complexity especially for high-dimensional and continuous tasks. For optimal

control methods, while decades of successful applications have arguably demonstrated its

capability to handle challenging problems, most control algorithms are built upon the precise

specification of the system and task, such as dynamics, control architectures, optimization

formulations, etc, which requires practitioners to have high expertise and knowledge about

robot/task programming and thus may degrade the autonomy of the algorithm itself.

Given that the benefits of machine learning and control methods are largely complemen-

tary, this thesis is motivated to integrate the benefits of both for more efficient robot learning

algorithms. The first fundamental question to address is:

Question 1: can we incorporate the fundamental structures from optimal control theory

into the autonomous robot learning to maintain its autonomy while expedite its efficiency?

We claim to inject optimal control theory into the robot learning paradigm. Such an injection

can lead to a series of control-induced learning methods, which maintain high-level autonomy

(i.e., data-driven and without manually programming robots) like generic machine learning

algorithms, at the same time inheriting high efficiency and scalability from control methods

for handling high-dimensional challenging tasks.

Another way to improve the efficiency of autonomous robot learning is to involve human

guidance on the loop. Two sources of motivations can be identified. First, because humans

are generally adequate for high-level decision making and contextual rationality, human

guidance can be goal-and-policy informative, and thus, if properly leveraged, can inform

the robot’s search direction or reduce its search space during learning progress, potentially

increasing its efficiency. Second, with the ultimate goal of deploying robots into people’s
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daily life, autonomous robots are desired to have custom autonomy; learning with human’s

guidance enables a robot to quickly learn and adapt to human user’s preference. With these

motivations in mind, the second goal of this thesis is to answer the following question:

Question 2: how can we make the most of human guidance to boost the efficiency of

robot learning, while maintain the human’s burden in providing guidance as low as possible?

This thesis addresses the above question in two directions. First, we explore the learning

paradigm that enables a robot to learn only from human’s sparse inputs; and second, we

explore a robot learning paradigm that allows a human to provide guidance in his/her most

intuitive and natural way.

1.1 Summary of Research Contributions

The first portion of the thesis aim to answer Question 1 by developing some foundational

control-induced learning methodologies.

Chapter 2 presents a set of new methods for inverse optimal control, where the key prob-

lem of interest is to learn an objective function of an optimal control system given the system

trajectories subject to optimality principles. These new inverse optimal control methods ad-

dress the existing gaps in objective learning techniques. Specifically, Sections 2.2 and 2.3 

answer the questions of what is the relationship between an incomplete trajectory data and

the objective function parameters, and how to enable efficient objective learning from limited

data. Section 2.4 addresses the question of how to learn time-varying objective functions

underlying a long and continuous system trajectory. Section 2.5 addresses the question of

how to learn an objective function in the context where both data and computational re-

sources are distributed. Section 2.6 focuses on some novel applications of the developed

inverse optimal control methods, including human motion prediction and segmentation.

Chapter 3 proposes a Pontryagin Differentiable Programming (PDP) methodology. By

integrating the benefits of optimal control theory, deep learning, and backpropagation, PDP

establishes a unified framework to solve a broad class of learning and control tasks. PDP

distinguishes from existing methods by two novel techniques: first, we differentiate through

Pontryagin’s Maximum/Minimum Principle, and this allows to obtain the analytical deriva-
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tive of a trajectory with respect to tunable parameters within an optimal control system,

enabling end-to-end learning of dynamics, policies, or/and control objective functions; and

second, we propose an auxiliary control system in backward pass of learning, and the output

of this auxiliary control system is the analytical derivative of the original system’s trajectory

with respect to the parameters, which can be iteratively solved using standard control tools.

PDP is shown flexible enough to be customized for different learning and control problems,

including inverse reinforcement learning (inverse optimal control) [3 , 4 ], model-based rein-

forcement learning such as model-based policy optimization [5 , 6 ], motion planning (optimal

control) [7 , 8 ], learning neural ODEs (system identification) [9 , 10 ], and efficient enough to

solve high-dimensional and continuous-space problems.

The second potion of this thesis focuses on robot learning with necessary human guidance

on the loop, attempting to answer Question 2.

Chapter 4 develops the method of learning from sparse demonstrations. Learning from

demonstrations (LfD) empowers a non-expert human user to program a robot by only pro-

viding demonstrations. The proposed method addresses the gaps of existing LfD techniques

with the following fundamental features. First, the method enables a robot to learn an ob-

jective function only from human’s sparse demonstrations, which consist of a small number

of desired waypoints the human wants the robot trajectory to follow at some sparse time

instances. Second, the method finds an objective function within a given function set such

that the robot trajectory has minimum distance to the sparse demonstrations, even though

the sparse demonstrations may be sub-optimal or even are randomly given. Third, the

method allows for the time-inconsistency between demonstrations and robot dynamics, by

jointly learning a time-warping function to align the duration between the human’s sparse

demonstration and the feasible motion of the robot.

Chapter 5 develops the method of learning from directional corrections. This new learning

scheme enables a non-expert human user to teach a robot by improving the robot’s motion

while it is acting. For instance, consider a robot that plans its motion under a (random)

control objective function. While it is executing the motion, a human user who supervises

the robot finds the robot’s motion not satisfactory; thus, the human user applies a correction
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to the robot during its motion execution. Then, the robot leverages the correction to update

its control objective function. This process of planning-correction-update repeats until the

robot eventually achieves a control objective function such that its resulting trajectory agrees

with the human user’s expectation. In addition to the incremental learning capability, this

new method also has the following enabling features. First, the method only requires hu-

man’s directional corrections. For instance, to teach a mobile robot, the human’s directional

corrections are simply as ‘left’ or ‘right’ without dictating how far the robot should move.

Second, the human’s directional corrections to the robot’s motion can be sparse; that means

that the corrections can be applied only at sparse time instances within the time horizon of

the robot’s motion. Finally, the theoretical results are established to show the convergence

of the proposed learning algorithm.

1.2 Summary of Publications and Open Source Codes

The content of Chapter 2 appears in:

• Wanxin Jin, Dana Kulić, Shaoshuai Mou, and Sandra Hirche. “Inverse optimal
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PART I

CONTROL-INDUCED LEARNING
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2. NEW METHODS FOR INVERSE OPTIMAL CONTROL

This chapter focuses on the problem of inverse optimal control (IOC), which seeks to learn an

objective function of an optimal control system from its optimal trajectory. This is the key to

achieve higher robot autonomy, and its significance includes two aspects. First, IOC enables

a robot to automatically learns its control objective function (then from which deriving

its control policy) by observing a demonstration of the task, thus eliminating the need of

explicit robot programming. Second, since optimal control models achieve arguably success

in explaining human’s rational behavior, the ability of inferring control objective function

makes it possible to perform human-robot missions, where learning of objective functions is

the key for human motion prediction and human-robot coordination.

In this chapter, we present a series of new methods for inverse optimal control, including

incremental objective learning from limited data; learning multi-phase objective functions;

and distributed objective learning. The final section of this chapter presents some novel appli-

cations of the developed IOC methods in human motion analysis. The success of these inverse

optimal control methods is based on fully exploiting and integrating optimal control struc-

tures into the learning formulation, as we have mentioned in the introduction chapter. The

contents of this chapter have been published at [11 , 12 , 13 , 14 ]. The code developed for this

chapter can be accessed at https://github.com/wanxinjin/IOC-from-Incomplete-Trajectory-

Observations  .

2.1 Introduction

As described in Introduction (Section 1 ), the key aspects that characterize the behavior

of an autonomous robot includes control objective, dynamics, and policy. Such a robot is

typically modeled as an optimal control system [15 ] in the control field, and a reinforcement

learning agent [1 ] in machine learning field. In both fields, a large number of algorithms have

focused on enabling a robot to find its trajectory/policy that optimizes an given objective

function. Providing an appropriate control objective function is the first step and the key

to task accomplishment. However, finding a good objective function can be challenging—

desired robot behaviors can take hundreds of person-hours in objective parameter tuning, and
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this challenge is especially true when multi-attribute goals need to be harmonized. Therefore,

there is an urgent need for automating the process of designing a robot control objective

function. Another source that motivates the objective function learning is the need to analyze

the behavior of natural agents, such as human motor control [16 ], which has extensively

shown behavioral optimality [16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 ]. Discovering the control objective

functions underlying the observed behaviors will facilitate the understanding and prediction

of human motion and make it possible to achieve seamless human-robot autonomy. All these

practical needs motivate a fundamental problem: can we finding the underlying objective

function from optimal behavioral demonstrations?

In the control field, the above problem of finding objective functions is referred to as

inverse optimal control (IOC), which was firstly posed in [4 ]. In the machine learning field,

within the context of reinforcement learning, the above problem is referred to as inverse rein-

forcement learning (IRL), which was first studied in [3 ]. With the progress achieved in both

fields, the techniques of IOC and IRL have been successfully applied in various applications,

including learning from demonstrations (imitation learning) [24 , 25 ], where a learner mimics

an expert by inferring an objective function from the expert’s demonstrations, autonomous

driving [26 ], where human driving preference is learned and transferred to a vehicle controller,

human-robot systems [23 , 27 ], where the intentionality of a human partner is estimated to

enable motion prediction and smooth coordination, and human motion analysis [11 , 28 ],

where principles of human motor control are investigated.

Both IOC and IRL aim to achieve the same goal of learning objective, the main aspect

to distinguish each other is the context and description of the forward problem. IOC de-

scribes an autonomous robot using optimal control formulation, which is typically (dynamics)

model-based, while IRL using reinforcement learning framework, which can be data-driven

(some popular IRL algorithms [3 , 29 , 30 , 31 ] still directly or indirectly reply on dynamics

models for learning efficiency). Since the gist of this thesis is control-induced learning for

autonomous robots, we preferably use IOC to refer to the general objective learning. We

will not distinguish between both in the following literature review when how to solve the

forward problem is not important.
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2.1.1 Related work

The most common strategy in IOC/IRL is to parametrize an unknown objective function

as a weighted sum of relevant features (or basis functions) with unknown weights [3 , 22 , 29 ,

32 , 33 , 34 ]. Different approaches have been developed to estimate the weights given obser-

vations of the system optimal trajectory over a complete time horizon. Existing IOC/IRL

methods can be categorized based on whether the forward optimal control (or reinforcement

learning) problem needs to be solved during learning process.

The first category of existing work is based on a nested architecture, where the feature

weights are updated in an outer loop while the corresponding forward problem (optimal con-

trol or reinforcement learning) is solved in an inner loop. Different methods of this type focus

on different strategies to update the feature weights in the outer layer. Representative strate-

gies include feature matching [32 ], where the feature weights are updated towards matching

the feature values of the reproduced optimal trajectories with the demonstrations, maximum

margin [33 ], where the feature weights are solved by maximizing the margin between the

objective function value of the observed trajectories and the value of any simulated optimal

trajectories maximum entropy [29 ], where the feature weights are optimized such that the

probability distribution of system’s trajectories maximizes the entropy while matching the

empirical feature values of demonstrations; and direct loss minimization [22 , 35 ], where the

weights are learned by directly minimizing the distance between the reproduced trajectory

and demonstrations are minimized. The above nested IOC methods have been successfully

applied to humanoid locomotion [20 , 21 ] and arm motion [36 ], autonomous vehicles [26 ],

robot navigation [37 ], learning from human corrections [38 , 39 ], etc.

The nested IOC methods require to solve optimal control problems repeatedly at each

update of objective function parameters, thus those methods usually suffer from relatively

high computational cost. This motivates the direct IOC methods, which directly solve for

the unknown feature weights. A key idea used in the direct methods is to establish optimality

conditions which the observed optimal data must satisfy. For example, in [40 ], the Karush-

Kuhn-Tucker (KKT) optimality conditions [41 ] are established, based on which the feature

weights are then solved by minimizing a loss that quantifies the violation of such conditions by
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the observed data. In [42 ], the authors apply the KKT-based method to solve IOC problems

and study the control objective function for human locomotion. In [43 ], the Pontryagin’s

Minimum Principle [44 ] is utilized to formulate a residual optimization over the unknown

weights. These methods have been successfully applied to the locomotion analysis [42 , 45 ],

walking path generation [46 ], human motion segmentation [11 , 28 ], etc. In [34 ], the authors

propose an inverse KKT method to enable a robot to learn manipulation tasks. Recently,

along this direction, the recoverability for IOC problems has been investigated. For example,

when an optimal control system remains at an equilibrium point, although its trajectory still

satisfies the optimality conditions, it is uninformative for learning the objective function.

This issue is discussed in [47 , 48 ], where a sufficient condition for recovering weights from

full trajectory observations is proposed.

2.1.2 Challenges

Despite the significant progress of IOC/IRL techniques, these still exist the following

technical challenges unresolved.

(1) Requiring complete trajectory observations. To find the objective function, exist-

ing IOC/IRL techniques require as input complete episodes of trajectory demon-

strations. This brings out the following limitations. First, in some cases the full

episodes of demonstrations are not accessible due to such as limited sensing capa-

bilities or occlusions, and only part of episodes are available. Second, processing

full trajectory data always leads to large consumption of memory space and also

expensive computational costs. Third, by requiring full trajectory observation,

objective learning thus can not be performed in online settings.

(2) Assuming single-phase objective function. Existing IOC/IRL techniques assume

that the unknown objective function is static and not changing. Such assumption

might not be valid for the autonomous agents that perform complex and long-term

tasks. In such cases, the objective function adopted by an autonomous agent may

vary depending on different motion phases or contextual conditions. For example,
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the study of human motor motion has already shown various supporting evidences

in human motor control [16 , 28 ].

(3) Assuming centralized learning. Existing IOC/IRL techniques learn the objective

function in a centralized way, meaning that both data acquisition and compu-

tational process are performed by a single processor. This centralized learning

paradigm is restricted given limited processing and memory capacity of a single

processor. Thus, there is need to develop distributed learning algorithms that en-

able to distribute the learning task to multiple processors, in which each processor

only accounts for partial data and has computation.

2.1.3 Chapter Organization

In the following sections are organized as follows. Section 2.2 presents the basic for-

mulation for IOC problems, and then develop some foundational theories for solving IOC

problems. Section 2.3 presents the method and algorithm of IOC with incomplete trajectory

observations, which address the first research gap identified above. Section 2.4 presents the

method and algorithm of IOC for multi-phase objective functions, addressing the second

research gap identified above. Section 2.5 presents a distributed inverse optimal control

technique, which addresses the third technical challenge stated above. Finally, Section 2.6 

presents some novel applications of the developed IOC algorithms.

2.2 IOC and Recovery Matrix

In this section, we present the general formulation of inverse optimal control, and the

concept of recovery matrix, a key quantity that establishes the bridge between data and

the objective function parameters, which will serve as a foundation for developing efficient

inverse optimal control in later sections. Also, we will present the properties of the recovery

matrix, which will provide insights of objective learning process.
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2.2.1 IOC Problem Formulation

Consider an autonomous agent with the following dynamics and initial condition:

xk+1 = f(xk,uk), x0 ∈ Rn, (2.1)

where the vector function f : Rn × Rm 7→ Rn is differentiable; xk ∈ Rn is the system state;

uk ∈ Rm is the control input; and k = 0, 1, · · · is the time step. Suppose that the agent

trajectory of states and inputs over a horizon T , denoted as,

ξ = {ξk : k = 0, 1, ..., T} with ξk=(x∗k, u∗k), (2.2)

(locally) minimizes a control cost function

J(x0:T ,u0:T ) =
T∑
k=0
ω′φ

∗(xk,uk), (2.3)

where ω′φ∗(·, ·) is the running (stage) cost. Here φ∗ : Rn × Rm 7→ Rs is called a relevant

feature vector and defined as a column of a relevant feature set

F∗ = {φ∗1, φ∗2, · · · , φ∗s}, (2.4)

that is, φ∗ = col F∗, with φ∗i being the ith feature for the running cost, and ω ∈ Rs is called

the weight vector, with the ith entry ωi corresponding to φ∗i . This type of weighted-feature

objective function is commonly used in objective learning problems [29 , 32 , 48 ], and has been

successfully applied in a wide range of real-world applications [26 , 28 , 34 , 49 ].

The dynamics (2.1 ) and cost function (2.3 ) can represent different optimal control settings

as follows. (I) Finite-horizon free-end optimal control: the finite horizon T is given but the

final state xT+1 is free, i.e., no constraint on xT+1; (II) finite-horizon fixed-end optimal

control: both the finite horizon T and the final state xT+1 = xgoal are given; and (III)

infinite-horizon optimal control: T =∞. Besides, one can consider the finite-horizon optimal
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control, where the final state xT+1 is penalized using a final cost term added to (2.3 ), and

this case can be viewed as an extension similar to (II).

In IOC problems, one is given a relevant feature set F∗, the goal is to obtain an estimate

of the weights ω from observations of ξ. Note that ω can only be determined up to a non-

zero scaling factor [40 , 48 ], because any cω with c > 0 will lead to the same trajectory ξ.

Hence we say an estimate ω̂ is a successful estimate of ω if ω̂ = cω with c 6= 0, and the

specific c > 0 can be determined by normalization [34 , 40 ].

2.2.2 Recovery Matrix

In this part, we will introduce the key concept of the recovery matrix and show its

relationship to solving IOC. The recovery matrix is defined on a segment of the agent optimal

trajectory in (2.2 ),

ξt:t+l = {ξk : t ≤ k ≤ t+ l} ⊆ ξ, (2.5)

Here, ξt:t+l is a segment of ξ in (2.2 ) within the time interval [t, t+ l] ⊆ [0, T ], with t called

the starting time of the segment and l = 1, 2, · · · called the segment length, 0 ≤ t < t+ l ≤ T .

We first present the definition of the recovery matrix, then show its relationship to solving

IOC, which is also the motivation of the recovery matrix.

Definition 2.2.1. Let a segment of the trajectory, ξt:t+l ⊆ ξ in (2.5 ), and a candidate feature

set F = {φ1, φ2, · · · , φr} be given. Let φ = col F . Then the recovery matrix, denoted by

H(t, l), is defined as:

H(t, l) =
[
H1(t, l) H2(t, l)

]
∈ Rml×(r+n), (2.6)

with

H1(t, l) = F u(t, l)F−1
x (t, l)Φx(t, l) + Φu(t, l), (2.7)

H2(t, l) = F u(t, l)F−1
x (t, l)V (t, l). (2.8)
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Here, F x(t, l), F u(t, l), Φx(t, l), Φu(t, l) and V (t, l) are defined as

F x(t, l) =



I −∂f ′
∂x∗t+1

0 I
. . .
. . . −∂f ′

∂x∗
t+l-1

I


∈ Rnl×nl, Φx(t, l) =



∂φ
∂x∗t+1

∂φ
∂x∗t+2

· · ·
∂φ
∂x∗

t+l



′

∈ Rnl×r,

F u(t, l) =



∂f ′

∂u∗t
∂f ′

∂u∗t+1
. . .

∂f ′

∂u∗
t+l-1


∈ Rml×nl, Φu(t, l) =



∂φ
∂u∗t
∂φ

∂u∗t+1

· · ·
∂φ

∂u∗
t+l−1



′

∈ Rml×r,

V (t, l) =
[
0 0 · · · ∂f

∂x∗
t+l

]′
∈ Rnl×n,

(2.9)

respectively.

Before showing the relationship between the recovery matrix and IOC, we impose the

following assumption on the given candidate feature set F in Definition 2.2.1 .

Assumption 2.2.1. In Definition 2.2.1 , the candidate feature set F = {φ1, φ2, · · · , φr}

contains as a subset the relevant features F∗ in (2.4 ), i.e., F∗ ⊆ F .

Assumption 2.2.1 requires that the relevant features F∗ in (2.4 ) are contained by the given

candidate feature set F , which means that F also allows for including additional features that

are irrelevant to the optimal control system. Although restrictive for choice of features, this

assumption is likely to be fulfilled in implementation by providing a larger set including many

features when the knowledge of exact relevant features is not available. Under Assumption

2.2.1 , without loss of generality, we let

F = {φ∗1, φ∗2, · · · , φ∗s, φ̃s+1, · · · , φ̃r}, (2.10)
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that is, the first s elements are from F∗ in (2.4 ). Then we have

φ(x,u) = col F =

φ∗(x,u)

φ̃(x,u)

 ∈ Rr, (2.11)

where φ∗ ∈ Rs are the relevant feature vector in (2.3 ) while φ̃ ∈ R(r−s) corresponds to the

features that are not in F∗. We define a weight vector

ω̄ = col {ω,0} ∈ Rr (2.12)

corresponding to (2.11 ), where ω are the weights in (2.3 ) for φ∗. Based on (2.3 ), we can say

that the agent optimal trajectory ξ in (2.2 ) also (locally) minimize the cost function of

J(x0:T ,u0:T ) =
T∑
k=0
ω̄′φ(xk,uk), (2.13)

with the dynamics and initial condition in (2.1 ). Next, we will distinguish the three

optimal control settings, as described in the IOC problem formulation in the previous part,

and establish the relationship between the recovery matrix and the IOC problem solution.

Case I: Finite-Horizon Free-End Optimal Control

We first consider the optimal control setting with finite horizon T and free final state

xT+1. In this case, given the cost function (2.13 ) and the dynamics constraint (2.1 ), one can

define the following Lagrangian:

L = J(x0:T ,u0:T ) +
T∑
k=0
λ′k+1

(
f(xk,uk)− xk+1

)
, (2.14)

where λk+1 ∈ Rn, k = 0, 1, . . . , T , is Lagrange multipliers. According to the Karush-Kuhn-

Tucker (KKT) conditions [41 ], there exist multipliers λ∗1:T+1 = col {λ∗1,λ∗2, ...,λ∗T ,λ∗T+1},
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also referred to as costates, such that the optimal trajectory ξ must satisfy the following

conditions

∂L

∂x∗1:T+1
= 0, (2.15a)

∂L

∂u∗0:T
= 0. (2.15b)

Based on the definitions in (2.9 ), the equations in (2.15a ) and (2.15b ) can be written as

−F x(0, T )λ∗1:T+Φx(0, T )ω̄ = 0 = −V (0, T )λ∗T+1, (2.16a)

F u(0, T )λ∗1:T+Φu(0, T )ω̄ = 0, (2.16b)

respectively, where in (2.16a ), λ∗T+1 = 0 directly results from extending (2.15a ) at the final

state xT+1. The optimality equations in (2.16 ) are established for complete trajectory ξ.

Given any segment of the trajectory, say ξt:t+l ⊆ ξ in (2.5 ), the following equations can be

obtained by partitioning (2.16a ) and (2.16b ) in the corresponding rows,

−F x(t, l)λ∗t+1:t+l + Φx(t, l)ω̄ = −V (t, l)λ∗t+l+1, (2.17a)

F u(t, l)λ∗t+1:t+l + Φu(t, l)ω̄ = 0, (2.17b)

respectively. For the above (2.17 ), we note that when ξt:t+l = ξ0:T , i.e., when the observation

is the complete trajectory data ξ, (2.17 ) will become (2.16 ). Thus, a complete trajectory

observation can be viewed as a special case of an incomplete trajectory observation.

Case II: Finite-Horizon Fixed-End Optimal Control.

We next consider the optimal control setting with a finite horizon T and a given fixed

final state xT+1 = xgoal. Given the cost function (2.13 ), the dynamics (2.1 ), and the final

state constraint xT+1 = xgoal, one can define the following Lagrangian:

L=J(x0:T ,u0:T ) +
T∑
k=0
λ′k+1

(
f(xk,uk)−xk+1

)
+ λ′goal(xT+1−xgoal), (2.18)
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where the difference from (2.14 ) is that the term λ′goal(xT+1 − xgoal) is added since the final

state is subject to the given xgoal constraint, and λgoal ∈ Rn is the associated Lagrangian

multiplier. Following a similar derivation as in Case I, one obtains the same equations in

(2.17 ) for any segment data of the trajectory ξt:t+l ⊆ ξ. Here, the only difference from Case

I is that when ξt:t+l = ξ0:T , one usually has λ∗T+1 = λ∗goal 6= 0 in this case due to the fixed

final state constraint, while λ∗T+1 = 0 in Case I. In addition, for the finite-horizon optimal

control, in which the final state xT+1 is penalized using a final cost term added to (2.3 ), we

can derive the similar result of λ∗T+1 6= 0.

Case III: Infinite-Horizon Optimal Control.

For the infinite-horizon optimal control setting, the optimal trajectory ξ is more conve-

niently characterized by the Bellman optimality condition [2 ]:

V (x∗k) = ω̄′φ(x∗k,u∗k) + V (f(x∗k,u∗k)), (2.19)

where V (x∗k) is the (unknown) optimal cost-to-go function evaluated at state x∗k. Next, we

differentiate the Bellman optimality equation in (2.19 ) on both sides with respect to x∗k while

denoting λ∗k = ∂V (xk)
∂x∗

k
∈ Rn, and then obtain

λ∗k = ∂φ′

∂x∗k
ω̄ + ∂f ′

∂x∗k
λ∗k+1. (2.20)

Differentiating the Bellman optimality equation (2.19 ) on both sides with respect to u∗k yields

0 = ∂φ′

∂u∗k
ω̄ + ∂f ′

∂u∗k
λ∗k+1. (2.21)

For any available trajectory segment ξt:t+l ⊆ ξ, we stack equation (2.20 ) for all x∗t+1:t+l and

stack equation (2.21 ) for all u∗t:t+l−1, and obtain the same equations in (2.17 ).

From the above analysis, we conclude that, for any trajectory segment ξt:t+l ⊆ ξ, regardless

of the corresponding optimal control problem type, we can always use the segment data ξt:t+l
to establish the equations (2.17 ). Thus, in what follows, we do not distinguish the specific
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optimal control settings, and only focus on equations (2.17 ) to show the relationship between

the recovery matrix in Definition 2.2.1 and IOC problem solution.

By noticing that F x(t, l) in (2.17a ) is always invertible, we combine (2.17a ) with (2.17b )

and eliminate λ∗t+1:t+l, which then yields

(
F u(t, l)F−1

x (t, l)Φx(t, l) + Φu(t, l)
)
ω̄ +

(
F u(t, l)F−1

x (t, l)V (t, l)
)
λ∗t+l+1 = 0. (2.22)

Considering the definition of the recovery matrix in (2.6 )-(2.8 ), (2.22 ) can be written as

H1(t, l)ω̄ +H2(t, l)λ∗t+l+1 = H(t, l)

 ω̄

λ∗t+l+1

 = 0. (2.23)

Equation (2.23 ) reveals that the weights ω̄ and costate λ∗t+l+1 must satisfy a linear equation,

where the coefficient matrix is exactly the recovery matrix that is defined on the trajectory

segment ξt:t+l ⊆ ξ, and candidate feature set F . Here, the costate λ∗t+l+1 can be interpreted

as a variable encoding the unseen future information beyond the observational interval [t, t+

l]. In fact, from the discussions for Case III, we note that costate λ∗t+l+1 is the gradient of

the optimal cost-to-go function with respect to the state evaluated at x∗t+l+1.

In IOC problems, in order to obtain an estimate of the unknown weights ω̄ only using the

available segment data ξt:t+l, one also needs to account for the unknown λ∗t+l+1, as in (2.23 ).

The following lemma establishes a relationship between a trajectory segment ξt:t+l ⊆ ξ and

a successful estimate of the weights ω̄ for given candidate features F .

Lemma 2.2.1. Given a trajectory segment ξt:t+l ⊆ ξ, let the recovery matrix H(t, l) be

defined as in Definition 2.2.1 with the candidate feature set F satisfying Assumption 2.2.1 .

Let a vector col {ω̂, λ̂} 6= 0 satisfy col {ω̂, λ̂} ∈ kerH(t, l) with ω̂ ∈ Rr. If

rankH(t, l) = r + n− 1, (2.24)
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then there exists a constant c 6= 0 such that the ith entry of ω̂ satisfies

ω̂i =


cωi, if φi ∈ F∗

0, otherwise
, (2.25)

and vector col {ω̂i : φi ∈ F∗, i = 1, 2, · · · , r} = cω thus is a successful estimate of ω in (2.3 ).

Proof. Based on the equations in (2.17 ), we note that for a trajectory segment ξt:t+l ⊆ ξ,

there always exists λ∗t+l+1 ∈ Rn such that col {ω̄,λ∗t+l+1} satisfies (2.23 ), i.e., col {ω̄,λ∗t+l+1} ∈

kerH(t, l). Due to (2.24 ) which means that the kernel of H(t, l) is one-dimensional, any

nonzero vector col {ω̂, λ̂} ∈ kerH(t, l) will have ω̂ = cω̄ (c 6= 0). Thus, one can conclude

that ω̂ is a scaled version of ω̄, and that the entries in ω̂ corresponding to the relevant

features in F∗ will stack a successful estimate of ω (2.3 ). This completes the proof.

Remark. Lemma 2.2.1 states that the recovery matrix bridges trajectory segment data to

the unknown objective function parameter. First, the rank of the recovery matrix H(t, l)

indicates whether one is able to use the trajectory segment ξt:t+l ⊆ ξ to obtain a successful

estimate of weights ω̄ for the given candidate features F . In particular, if the rank condition

(2.24 ) for the recovery matrix H(t, l) is satisfied, then any nonzero vector col {ω̂, λ̂} in the

kernel of H(t, l) has that: the vector of the first r entries in col {ω̂, λ̂}, i.e., ω̂, satisfies

ω̂ = cω̄. Second, including additional irrelevant features in F will not influence the weight

estimate for the relevant features, since the weight estimates in ω̂ for these irrelevant features

will be zeros.

2.2.3 Properties of Recovery Matrix

Since the recovery matrix connects trajectory segment data to the unknown cost function

parameter, we next investigate the properties of the recovery matrix, which will provide us

a better understanding of how the data and the selected features are incorporated in IOC

process. We first present an iterative formula for the recovery matrix.
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Lemma 2.2.2 (Iterative Property). For a trajectory segment ξt:t+l ⊂ ξ and the subsequent

data point ξt+l+1 = {x∗t+l+1,u
∗
t+l+1}, one has

H(t, l + 1) =
[
H1(t, l + 1) H2(t, l + 1)

]
(2.26)

=

H1(t, l) H2(t, l)
∂φ′

∂u∗
t+l

∂f ′

∂u∗
t+l


 I 0

∂φ′

∂x∗
t+l+1

∂f ′

∂x∗
t+l+1

 ,

with H(t, 1) corresponding to ξt:t+1 = (x∗t:t+1,u
∗
t:t+1):

H(t, 1) =
[
H1(t, 1) H2(t, 1)

]
=
[
( ∂f ′
∂u∗t

∂φ′

∂x∗t+1
+ ∂φ′

∂u∗t
) ∂f ′

∂u∗t

∂f ′

∂x∗t+1

]
. (2.27)

Proof. Consider the recovery matrixH(t, l) for the trajectory segment ξt:t+l = (x∗t:t+l,u∗t:t+l).

When a subsequent point ξt+l+1 = (x∗t:t+l+1,u
∗
t:t+l+1) is observed, from Definition 2.2.1 , the

updated recovery matrix is H(t, l + 1) = [H1(t, l + 1),H2(t, l + 1)], where

H1(t, l+1) = F u(t, l+1)F−1
x (t, l+1)Φx(t, l+1) + Φu(t, l+1), (2.28)

and

H2(t, l+1) = F u(t, l+1)F−1
x (t, l+1)V (t, l+1). (2.29)

Here, F x(t, l+ 1), F u(t, l+ 1), Φx(t, l+ 1), Φu(t, l+ 1), and V (t, l+ 1), defined in (2.9 ), are

updated as follow:

Φu(t, l+1)=

Φu(t, l)
∂φ′

∂u∗
t+l

 , Φx(t, l+1)=

Φx(t, l)
∂φ′

∂x∗
t+l+1

 , F u(t, l+1)=

F u(t, l) 0

0 ∂f ′

∂u∗
t+l

 , (2.30a)

F−1
x (t, l+1) =

F x(t, l) −V (t, l)

0 I


−1

=

F−1
x (t, l) F−1

x (t, l)V (t, l)

0 I

 , (2.30b)

respectively. Here (2.30b ) is based on the fact

A B

C D


−1

=

A−1 + A−1BK−1CA−1 −A−1BK−1

−K−1CA−1 K−1


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with K = D − CA−1B being the Schur complement of the above block matrix with respect

to A. Combining (2.30 ), we have

H1(t, l + 1) = F u(t, l + 1)F−1
x (t, l + 1)Φx(t, l + 1) + Φu(t, l + 1)

=

F u(t, l)F−1
x (t, l)Φx(t, l)+Φu(t, l) + F u(t, l)F−1

x (t, l)V (t, l) ∂φ′

∂x∗
t+l+1

∂f ′

∂u∗
t+l

∂φ′

∂x∗
t+l+1

+ ∂φ′

∂u∗
t+l

 . (2.31)

According to (2.7 ) and (2.8 ), the above (2.31 ) becomes

H1(t, l + 1) =

H1(t, l) +H2(t, l) ∂φ′

∂x∗
t+l+1

∂f ′

∂u∗
t+l

∂φ′

∂x∗
t+l+1

+ ∂φ′

∂u∗
t+l

 . (2.32)

According to (2.8 ), we have

H2(t, l + 1) = F u(t, l + 1)F−1
x (t, l + 1)V (t, l + 1)

=

F u(t, l)F−1
x (t, l)V (t, l) ∂f ′

∂x∗
t+l+1

∂f ′

∂u∗
t+l

∂f ′

∂x∗
t+l+1

 =

H2(t, l) ∂f ′

∂x∗
t+l+1

∂f ′

∂u∗
t+l

∂f ′

∂x∗
t+l+1

 . (2.33)

Finally joining (2.32 ) and (2.33 ) and writing them in the matrix form lead to (2.26 ).

When l = 1, that is, ξt:t+1 = (x∗t:t+1,u
∗
t:t+1) is available, we have F x(t, 1) = I, F u(t, 1) =

∂f ′

∂u∗t
, Φx(t, 1) = ∂φ′

∂x∗t+1
, Φu(t, 1) = ∂φ′

∂u∗t
, and V (t, 1) = ∂f ′

∂x∗t+1
. According to the definition of

recovery matrix in (2.7 ) and (2.8 ), we thus obtain (2.27 ). This completes the proof.

The iterative property shows that the recovery matrix can be calculated by incrementally

integrating each subsequent data point ξt+1+1 into the current recovery matrix H(t, l). Due

to this property, the computation of matrix inversions in the recovery matrix in Definition

2.2.1 can be avoided.

The recovery matrix is defined on two components: one is the segment data ξt:t+l and

the other are the selected candidate features F . In what follows, we will show how these two

components affect the recovery matrix and further the IOC process. For data observations,
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we expect that including more data points into ξt:t+l may contribute to enabling the successful

estimation of the unknown weights. This is implied by the following lemma.

Lemma 2.2.3 (Rank Nondecreasing Property). For a trajectory segment ξt:t+l ⊂ ξ and any

F , one has

rankH(t, l) ≤ rankH(t, l + 1), (2.34)

if the new trajectory point ξt+l+1 = (x∗t+l+1,u
∗
t+l+1) has det( ∂f

∂x∗
t+l+1

) 6= 0.

Proof. From Lemma 2.2.2 , we have

rankH(t, l + 1) = rank

H1(t, l) H2(t, l)
∂φ′

∂u∗
t+l

∂f ′

∂u∗
t+l


 I 0

∂φ′

∂x∗
t+l+1

∂f ′

∂x∗
t+l+1

 . (2.35)

If det( ∂f
∂x∗

t+l+1
) 6= 0, the last block matrix in (2.35 ) is non-singular. Consequently

rankH(t, l + 1) = rank

H1(t, l) H2(t, l)
∂φ′

∂u∗
t+l

∂f ′

∂u∗
t+l


≥ rank

[
H1(t, l) H2(t, l)

]
= rankH(t, l). (2.36)

Note that both (2.35 ) and the inequality (2.36 ) are independent of the choice of φ. This

completes the proof.

We have noted in Lemma 2.2.1 that the rank of the recovery matrix is related to whether one

is able to use segment data ξt:t+l to achieve a successful estimate of the weights. Thus the

rank of the recovery matrix can be viewed as an indicator of the capability of the available

segment data ξt:t+l to reflect the unknown weights. Lemma 2.2.3 postulates that additional

data, if its Jacobian matrix of the dynamics is non-singular, tends to contribute to solving

the IOC problem by increasing the rank of the recovery matrix towards satisfying (2.24 ), or

at least will not make a degrading contribution. In the later experiments in Section 2.3.3 , we

will analytically and experimentally demonstrate in which cases the additional observation

data can increase the rank of the recovery matrix, and in which cases the additional data

points cannot increase (i.e. maintain the recovery matrix rank).
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The next lemma provides a necessary condition for the rank of the recovery matrix if the

candidate feature set F contains as a subset the relevant features F∗, i.e., F∗ ⊆ F .

Lemma 2.2.4 (Rank Upper Bound Property). If Assumption 2.2.1 holds, then for any

trajectory segment ξt:t+l ⊆ ξ,

rankH(t, l) ≤ r + n− 1 (2.37)

always holds. If there exists another relevant feature subset F̃ ⊆ F with corresponding

weights ω̃, here F̃ 6= F∗ or ω̃ 6= cω, then the above inequality (2.37 ) holds strictly:

rankH(t, l) < r + n− 1. (2.38)

Proof. We first prove (2.37 ). Without losing generality, we consider the feature set in (2.10 ).

For any trajectory segment ξt:t+l ⊆ ξ, from (2.23 ), we have known that there exists a costate

λ∗t+l+1 such that

H(t, l)

 ω̄

λ∗t+l+1

 = 0 (2.39)

holds, where ω̄ 6= 0 is defined in (2.12 ). Thus, the nullity of H(t, l) is at least one, which

means

rankH(t, l) ≤ r + n− 1.

We then prove (2.38 ). When another relevant feature subset F̃ exists in F with associated

weight vector ω̃, we can similarly construct a weight vector ω̆ corresponding to col F as in

(2.12 ); that is, the weights in ω̆ that correspond to F̃ are from ω̃ and zeros otherwise. Then

following the similar derivations as from (2.13 ) to (2.23 ), we can obtain that there exists

λ̆t+l+1 ∈ Rn such that

H(t, l)

 ω̆

λ̆t+l+1

 = 0. (2.40)
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Since F̃ 6= F∗ or ω̃ 6= c1ω implies ω̆ 6= c2ω̄ (c1 and c2 are some nonzero scalars), based on

(2.39 ) and (2.40 ), it follows that the nullity of H(t, l) is at least two, i.e.,

rankH(t, l) ≤ r + n− 2.

This completes the proof.

Lemma 2.2.4 states that if a candidate feature set contains as a subset the relevant features

under which the agent trajectory ξ is optimal, the kernel of the recovery matrix (for any data

segment) is at least one-dimensional. Moreover, when there exist more than one combination

of relevant features among the given candidate features, which means there exists another

subset of relevant features or another independent weight vector, then the rank condition

(2.24 ) in Lemma 2.2.1 is impossible to be fulfilled for the trajectory segment ξt:t+l regardless of

the observation length l and starting time t. This also implies that though Assumption 2.2.1 

is likely to be satisfied by using a larger feature set that covers all possible features, it may

also lead to the non-uniqueness of relevant features. On the other hand, if Assumption 2.2.1 

fails to hold, that is, the candidate feature set F does not contain a complete set of relevant

features, then, due to the rank non-decreasing property in Lemma 2.2.3 , the recovery matrix

is more likely to have rankH(t, l) = r + n after increasing the observation length. To sum

up, Lemma 2.2.4 can be leveraged to investigate whether the selection of candidate features

is proper or not.

2.2.4 Connection to Prior Work

We next discuss the relationship between the above recovery matrix and existing IOC

techniques [34 , 40 , 42 , 43 , 45 , 47 , 48 ]. In those methods, an observation of the agent complete

trajectory ξ is considered, for which a set of optimality equations, such as the KKT conditions

[41 ] or Pontryagin’s Minimum principle [44 ], is then established. As developed in [34 , 48 ],
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based on optimality conditions, a general form for using complete trajectory data to establish

a linear constraint on the unknown feature weights ω can be summarized as

M(ξ)ω = 0, (2.41)

where M(ξ) is the coefficient matrix that depends on the trajectory data ξ. An implicit

requirement by those methods is that the observed data ξ itself has to be optimal with respect

to the cost function, thus complete trajectory data ξ0:T is generally required (otherwise,

incomplete data ξt:t+l ⊆ ξ itself in general does not optimize the cost function).

Conversely, through the recovery matrix developed in this chapter, any trajectory segment

ξt:t+l ⊆ ξ poses a linear constraint on ω by

H(t, l)

 ω

λt+l+1

 = H1(t, l)ω +H2(t, l)λt+l+1 = 0. (2.42)

Comparing (2.41 ) with (2.42 ), we have the following comments.

1) If we consider the segment ξt:t+l = ξ0:T , i.e., given the complete trajectory ξ, then,

due to λT+1 = 0 (assuming the end-free optimal control setting), (2.42 ) becomes

H1(0, T )ω = 0. (2.43)

Comparing (2.43 ) with (2.41 ) we immediately obtain

H1(0, T ) = M(ξ). (2.44)

Thus, the coefficient matrix M (ξ) that is commonly used in existing IOC methods can be

considered as a special case of the recovery matrix when the available data is the complete

trajectory, i.e., ξt:t+l = ξ0:T .

2) However, as in (2.44 ), the coefficient matrix M (ξ) only corresponds to the first term

of the recovery matrix, i.e., H1(t, l). A key difference of the recovery matrix is its ability

to handle any incomplete data ξt:t+l ⊆ ξ. Since the incomplete data ξt:t+l itself may not be
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optimal with respect to the objective function when t+ l < T , the unseen future information

thus must be taken care of if one wants to successfully learn the unknown weights ω. As in

(2.42 ), the recovery matrix accounts for such unseen future information via its second term

H2(t, l) and the unknown costate λt+l+1.

3) In addition to the capability of dealing with incomplete observation data, the recovery

matrix can also provide the insights to the IOC process, as stated in Lemmas 2.2.3 and 2.2.4 ,

and an efficient (iterative) way to compute the coefficient matrix for solving IOC problems,

as stated in Lemma 2.2.2 . Such properties and computational advantages cannot be achieved

by existing IOC methods [34 , 40 , 42 , 43 , 45 , 47 , 48 ]. (Note that to compute M(ξ), existing

IOC methods typically require the inverse of a large matrix whose size is proportional to the

time horizon T ).

2.3 Incremental IOC with Incomplete Trajectory Observations

Based on the previous theories of the recovery matrix, in this section, we will address the

first research gap identified in Section 2.1.2 . We will present an incremental IOC algorithm

that enables to learn an objective function by automatically finding the minimal trajectory

observations.

2.3.1 Problem Formulation

Consider an optimal control agent with dynamics (2.1 ) and that its trajectory (2.2 )

optimizes an unknown cost function (2.3 ). Given a relevant feature set F∗ in (2.4 ), we aim

to develop technique to estimate ω only using an incomplete trajectory observation

ξt:t+l = {ξk : t ≤ k ≤ t+ l} ⊆ ξ, (2.45)

which is a segment of ξ within the time interval [t, t+ l] ⊆ [0, T ]. Here, t is called the

observation starting time and l = 1, 2, · · · called the observation length, with 0 ≤ t < t+ l ≤

T . Moreover, for any observation starting time t, we aim to find the minimal required

observation, denoted as lmin, to achieve a successful estimate of ω. Note that in the above
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problem setting, we only know that the data ξt:t+l is a segment of a system trajectory ξ;

we do not know the value of t (i.e., the observation starting time relative to the start of

the trajectory), and do not require knowledge of any other information about ξ such as the

time horizon T or which type of optimal control problem ξ is a solution to, as described in

Section 2.2.1 .

2.3.2 The Method and Algorithm

The following corollary states a method to use an observation of the incomplete trajectory

to achieve a successful estimate of weights for given relevant features.

Corollary 2.3.1 (IOC using Incomplete Trajectory Observations). For the optimal control

agent in (2.1 ), given an incomplete trajectory observation ξt:t+l ⊆ ξ in (2.45 ) and a relevant

feature set F = F∗ in (2.4 ), the recovery matrix H(t, l) is defined as in Definition 2.2.1 . If

rankH(t, l) = s+ n− 1, (2.46)

and a nonzero vector col {ω̂, λ̂} ∈ kerH(t, l) with ω̂ ∈ Rs, then ω̂ is a successful estimate

of ω, i.e., there must exist a non-zero constant c such that ω̂ = cω.

Proof. Corollary 2.3.1 is a special case of Lemma 2.2.1 .

Remark. Suppose that in Corollary 2.3.1 , (2.46 ) is not satisfied. According to Lemma 2.2.4 ,

rankH(t, l) < s+ n− 1 holds and thus dimension of kerH(t, l) is at least two. This means

that another weight vector, independent of ω, could be found in kerH(t, l), and the current

segment ξt:t+l may be generated by this different weight vector. In this case, true weights

are not distinguishable or recoverable with respect to ξt:t+l. The reason for this case can

be insufficient observations or low data informativeness, both of which may be remedied by

including additional data (i.e., increase l) according to Lemma 2.2.3 (we will illustrate this

later in experiments in Section 2.3.3 ).

Combining Lemma 2.2.1 and the properties of the recovery matrix, one has the following

conclusions: (i) as observations of more data points may contribute to increasing the rank of
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the recovery matrix (Lemma 2.2.3 ), which is bounded from above (Lemma 2.2.4 ), thus the

minimal required observation length lmin that reaches the rank upper bound can be found;

(ii) from Lemmas 2.2.3 and 2.2.4 , the minimal required observation length can be found

even if additional irrelevant features exist; and (iii) from Lemma 2.2.2 , the minimal required

observation length can be found efficiently. In sum, we have the following incremental IOC

approach.

Corollary 2.3.2 (Incremental IOC Algorithm). Given candidate features F satisfying As-

sumption 2.2.1 , the recovery matrix H(t, l), starting from t, is updated at each time step with

a new observed point ξt+l+1 = (x∗t+l+1,u
∗
t+l+1) via Lemma 2.2.2 . Then the minimal segment

length that suffices for a successful estimate of the feature weights is

lmin(t) = min
{
l | rankH(t, l) = |F|+ n− 1

}
. (2.47)

For any nonzero vector col {ω̂, λ̂} ∈ ker H(t, lmin(t)) with ω̂ ∈ R|F|, ω̂ is a successful

estimate of the weights for F with the weights for irrelevant features being zeros.

Proof. Corollary 2.3.2 is a direct application of Lemma 2.2.1 and Lemmas 2.2.2 -2.2.4 .

From Corollary 2.3.2 , we note that starting from time t, the minimal required observation

length lmin(t) to solve IOC problems is the one satisfying (2.47 ). As we will show later in

experiments in Section 2.3.3 , lmin(t) varies depending on the informativeness of data ξt:t+l
and the selected candidate features. Whatever influences lmin(t), one can always find a

necessary lower bound of the minimal required observation length due to the size of the

recovery matrix, H(t, l) ∈ Rml×(|F|+n), and matrix rank properties, that is,

lmin(t) ≥
⌈
|F|+ n− 1

m

⌉
, (2.48)

where d·e is the ceiling operation. (2.48 ) implies that including additional irrelevant features

to F will require more data in order to successfully solve IOC problems (as shown later in

experiments in Section 2.3.3 ).

In practice, directly checking the rank condition of the recovery matrix in (2.47 ) in

Corollary 2.3.2 is challenging due to (i) data noise; (ii) near-optimality of demonstrations,
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i.e., the observed trajectory slightly deviates from the optimal one; and (iii) computational

error. Thus, one can use the following strategies to evaluate the rank of the recovery matrix.

First, we perform a normalization of the recovery matrix before verifying its rank, this is

because when the observed data is of low magnitude, the recovery matrix may have the

entries rather close to zeros, which may affect the matrix rank evaluation due to computing

rounding error.

H̄(t, l) = H(t, l)
‖H(t, l)‖F

, (2.49)

where ‖·‖F is the Frobenius norm and we only consider the recovery matrix that is not a

zero matrix. Then

rank H̄(t, l) = rankH(t, l). (2.50)

Second, since we are only interested in whether the rank of the recovery matrix satisfies

rankH(t, l) = r+ n− 1, instead of directly investigating the rank, we choose to look at the

singular values of H̄(t, l) by introducing the following rank index

κ(t, l) =


0, if σ2(H̄(t, l)) = 0,

σ2(H̄)/σ1(H̄), otherwise.
(2.51)

The condition rankH(t, l) = r + n − 1 is thus equivalent to κ(t, l) = +∞. However, due

to data noise, κ(t, l) = +∞ usually cannot be reached and thus is a finite value (we will

demonstrate this in later experiments). We thus pre-set a threshold γ and verify

κ(t, l) ≥ γ (2.52)

to decide whether rankH(t, l) = r+n−1 is fulfilled or not. Later in experiments in Section

2.3.3 ), we will show how observation data and noise levels influence the rank index κ(t, l),

and how to accordingly choose a proper γ.
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The computation of a successful estimate in Corollary 2.3.2 can be implemented by

solving the following constrained optimization

ω̂ = arg min
ω,λ

∥∥∥∥∥∥H̄(t, lmin(t))

ω
λ


∥∥∥∥∥∥

2

, (2.53)

subject to ∑|F|
i=1 ωi = 1, (2.54)

where ‖·‖ denotes the l2 norm and H̄ is the normalized recovery matrix (see (2.49 )). Here,

to avoid trivial solutions, we add the constraint (2.54 ) to normalize the weight estimate to

have sum of one, as used in [34 ].

In sum, the implementation of the proposed incremental IOC approach in corollary 2.3.2 

is presented in Algorithm 1 . Algorithm 1 permits arbitrary observation starting time, and

the observation length is automatically found by checking the rank condition using (2.51 )

and (2.52 ). The algorithm can be viewed as an adaptive-observation-length IOC algorithm.

Algorithm 1: Incremental IOC Algorithm
Input: a candidate feature set F , a threshold γ;
Initial: Any observation starting time t;

Initialize l=1, H(t, l) with ξt:t+1=(x∗t:t+1,u
∗
t:t+1) via (2.27 );

while H(t, l) not satisfying (2.52 ) do
Obtain subsequent data ξt+l+1 = (x∗t+l+1,u

∗
t+l+1);

Update H(t, l) with ξt+l+1 via (2.26 );
l← l + 1;

end
minimal required observation length: lmin(t) = l ;
compute a successful estimate ω̂ via (2.53 )-(2.54 ).

2.3.3 Numerical Experiments

We evaluate the proposed method on two systems. First, on a linear quadratic regulator

(LQR) system, we demonstrate the rank properties of the recovery matrix, show its capability

of handling incomplete trajectory data by comparing with the related IOC methods, and
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demonstrate its capability to solve IOC for infinite-horizon LQR. Second, on a simulated

two-link robot arm, we evaluate the proposed techniques in terms of observation noise,

including irrelevant features, and parameter settings. Throughout evaluations, we quantify

the accuracy of a weight estimate ω̂ by introducing the following estimation error:

eω = inf
c>0

‖cω̂ − ω‖
‖ω‖

, (2.55)

where ‖·‖ denotes the l2 norm, ω̂ is the weight estimate, and ω is the ground truth. Obvi-

ously, eω = 0 means that ω̂ is a successful estimate of ω.

Evaluations on LQR Systems

Consider a finite-horizon free-end LQR system where the dynamics is

xk+1 =

−1 1

0 1

xk +

1

3

uk, (2.56)

with initial x0 = [2,−2]′, and quadratic cost function is

J =
T∑
k=0

(
x′kQxk + u′kRuk

)
, (2.57)

with the time horizon T = 50. Here, Q and R are positive definite matrices and assumed to

have the structure

Q =

q1 0

0 q2

 , R = r, (2.58)

respectively. In the feature-weight form (2.3 ), the cost function (2.57 ) corresponds to the

feature vector φ∗ = [x2
1, x

2
2, u

2]′ and weights ω = [q1, q2, r]′. We here set ω = [0.1, 0.3, 0.6]′

to generate the optimal trajectory of the LQR system, which is plotted in Fig. 2.1 . In IOC

problems, we are given the features φ∗; the goal is to solve a successful estimate of ω using

the optimal trajectory data in Fig. 2.1 .
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Figure 2.1. The optimal trajectory of a LQR system (2.56 )-(2.57 ) using the
weights ω = [0.1, 0.3, 0.6]′.

Minimal Required Observations for IOC. Based on the above LQR system, we

here illustrate how the recovery matrix can be used to check whether incomplete trajectory

data suffices for the minimal observation required for a successful weight estimation. Given

the features φ∗ = [x2
1, x

2
2, u

2]′, we set the observation starting time t = 0, and incrementally

increase the observation length l from 1 to horizon T = 50. For each observation length l,

we check the rank of the recovery matrix H(0, l) and solve the weights from the kernel of

H(0, l) (the weights are normalized to have sum of one). The results are plotted in Fig. 2.2 .

As shown in the upper panel in Fig. 2.2 , including additional trajectory data points, i.e.,

increasing the observation length l (from 1), leads to an increase of the rank of the recovery

matrix. When l = 4 rankH(0, l) reaches to 4, which is the rank upper bound n+ r− 1 = 4,

and then rankH(0, l) = 4 for all l ≥ 4. This illustrates the properties of the recovery matrix

in Lemma 2.2.3 and Lemma 2.2.4 . From the bottom panel in Fig. 2.2 , we see that when

l < 4, for which rankH(0, l) < 4, the weight estimate ω̂ is not a successful estimate of

ω. When rankH(0, l) < 4, since the dimension of the kernel of H(0, l) is at least 2 and

thus H(0, l)[ω̂,λ]′ = 0 has multiple solutions [ω̂,λ]′, we choose the solution ω̂ from the

kernel of H(0, l) randomly. After l ≥ 4 when rankH(0, l) = 4, the estimate converges to a

successful estimate, thus indicating the effectiveness of using the rank condition in (2.47 ) to

check whether an incomplete observation suffices for the minimal required observation.

Recovery Matrix Rank for Additional Observations. Based on the LQR system,

we next show how additional observations affect the rank of the recovery matrix. Here, we
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Figure 2.2. The rank of the recovery matrix and weight estimate when the
observation starts at t = 0 and the observation length l increases from 1 to T .
The upper panel shows the rank of the recovery matrix H(0, l) versus l; and
the bottom panel shows the corresponding weight estimate for each l. Note
that the given features are φ∗ = [x2

1, x
2
2, u

2]′ and the ground truth weights are
ω = [0.1, 0.3, 0.6]′. For l < 4, since the dimension of the kernel of H(0, l) is at
least 2 and thus H(0, l)[ω̂,λ]′ = 0 has multiple solutions of [ω̂,λ]′, we choose
the solution ω̂ from the kernel of H(0, l) randomly.

vary the observation starting time t and use different candidate feature sets F , and for each

case, we incrementally increase the observation length from l = 1 while checking the rank of

the recovery matrix until the rank reaches its maximum. The results are presented in Fig.

2.3 . For the first three cases in Fig. 2.3a -2.3c , we set the observation starting time at t = 5,

t = 28, and t = 30, respectively, and use a candidate feature set F = {x2
1, x

2
2, u

2, u3}; for the

fourth case in Fig. 2.3d , we set the observation starting time at t = 5 and use a candidate

feature set F = {x2
1, x

2
2, u

2, 2u2}. Based on the results, we have the following observations

and comments.

(1) From Fig. 2.3a , 2.3b , and 2.3c , we can see that additional observation (i.e., increasing

observation length l) increases or maintains the rank of the recovery matrix, as stated in

Lemma 2.2.3 , and that continuously increasing the observation length will lead to the upper

bound of the recovery matrix’s rank, as stated in Lemma 2.2.4 .

(2) Comparing Fig. 2.3a with Fig. 2.3d , we see that although the number of candidate

features for both cases are the same, i.e., |F| = r = 4, their corresponding maximum ranks

are different: the case in Fig. 2.3a achieves max rankH = 5 = r + n− 1 (which is the rank

condition (2.24 ) for a successful estimate), while in Fig. 2.3d the rank reaches max rankH =
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(c) t=30, F = {x2
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(d) t=5, F = {x2
1, x

2
2, u

2, 2u2}

Figure 2.3. The rank of the recovery matrix versus the observation length l.
For (a), (b), and (c), the observation starting time is at t = 5, t = 28, and t =
30, respectively, and the given candidate feature set is F = {x2

1, x
2
2, u

2, u3}. For
(d), the observation starting time is at t = 5 and the given candidate feature
set is F = {x2

1, x
2
2, u

2, 2u2}. In (d), since F contains two dependent features:
u2 and 2u2, thus multiple combinations of these features can be found in F to
characterize the optimal trajectory, that is, {x2

1, x
2
2, u

2} and {x2
1, x

2
2, 2u2}, and

the rank upper bound according to Lemma 2.2.4 is rankH(t, l) < r+n−1 = 5
and cannot reach 5.

4 < r + n − 1. This is because F = {x2
1, x

2
2, u

2, 2u2} used in Fig. 2.3d contains two

dependent features, i.e., u2 and 2u2, thus multiple combinations of features, e.g., {x2
1, x

2
2, u

2}

and {x2
1, x

2
2, 2u2}, can be found in F to characterize the optimal trajectory. Based on (2.38 )

in Lemma 2.2.4 , rankH(t, l) ≤ 4 for all t and l and the condition rankH(t, l) = 5 = r+n−1

for a successful recovery will never be fulfilled.

(3) Comparing Fig. 2.3b , Fig. 2.3c and Fig. 2.3a , we note that in some cases additional

observations will not increase the rank of the recovery matrix, e.g., when the observation
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length is l = 5, 6, 7, 8 in Fig. 2.3b and l = 5, 6 in Fig. 2.3c . This can be explained using the

following relations:

rankH(t, l + 1) = rank

H1(t, l) H2(t, l)
∂φ′

∂u∗
t+l

∂f ′

∂u∗
t+l


 I 0

∂φ′

∂x∗
t+l+1

∂f ′

∂x∗
t+l+1

 = rank

H1(t, l) H2(t, l)
∂φ′

∂u∗
t+l

∂f ′

∂u∗
t+l


≥ rank

[
H1(t, l) H2(t, l)

]
= rankH(t, l),

for which the first line is directly from (2.26 ), and the second line is due to det( ∂f ′

∂x∗
t+l+1

) =

det( −1 0
1 1 ) 6= 0 and matrix rank properties. The above equation says that the new observation

ξt+l+1 = (x∗t+l+1,u
∗
t+l+1) is incorporated into the recovery matrix H(t, l) in the form of

appending m row vectors [ ∂φ′

∂u∗
t+l

∂f ′

∂u∗
t+l

] ∈ Rm×(r+n) to the bottom of H(t, l). If the new

observed data point ξt+l+1 = (x∗t+l+1,u
∗
t+l+1) is non-informative, in other words, if the

appended rows in [ ∂φ′

∂u∗
t+l

∂f ′

∂u∗
t+l

] are dependent on the row vectors in H(t, l), then according

to the matrix rank properties, one will have rankH(t, l) = rankH(t, l + 1), thus the new

data ξt+l+1 will not increase the rank of the recovery matrix. Otherwise, if the appended

rows in [ ∂φ′

∂u∗
t+l

∂f ′

∂u∗
t+l

] are independent of the row vectors in H(t, l), that is, the new observed

data ξt+l+1 = (x∗t+l+1,u
∗
t+l+1) is informative, then this new ξt+l+1 will increase the rank of

the recovery matrix, i.e., rankH(t, l) < rankH(t, l + 1).

Comparison with Prior Work. We will show how the recovery matrix is able to

solve IOC problems using incomplete observations by comparing with a recent inverse-KKT

method developed in [34 ]. The idea of the inverse-KKT method is based on the optimality

equations similar to (2.41 ) using full trajectory data ξ. As suggested by [34 ], the weights are

estimated by minimizing

min
ω
‖M (ξ)ω‖2, (2.59)

subject to ∑
i ωi = 1. Although the inverse-KKT method [34 ] is developed based on full

trajectory data ξ, we here want to see its performance when only incomplete data ξt:t+l ⊆ ξ

is given.
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Figure 2.4. Comparison between the inverse-KKT method (2.61 ) and pro-
posed recovery matrix method (2.62 ) when given incomplete trajectory obser-
vation ξt:t+l. Different observation starting time t is used: t = 0 in (a), t = 2
in (b), and t = 40 in (c). For each case, we increase the observation length l
from 1 to the end of the horizon, i.e., t+ l = T , and for each l, the estimation
error eω for both methods is evaluated, respectively. Note that the estimation
error is defined in (2.55 ).

As analyzed in Section 2.2.4 , the coefficient matrix M (ξ) is a special case of the recovery

matrix when ξt:t+l = ξ0:T , that is,

M (ξ) = H1(0, T ). (2.60)

Recall that this is because the LQR in (2.56 )-(2.57 ) is a free-end optimal control system,

as analyzed in Section 2.2.2 , λT+1 = 0. Given incomplete observation data ξt:t+l ⊆ ξ,

comparing the inverse-KKT method

min
ω
‖M (ξt:t+l)ω‖2 s.t.

∑
i

ωi = 1, (2.61)

with the proposed recovery matrix method

min
ω,λ
‖H1(t, l)ω +H2(t, l)λ‖2 s.t.

∑
i

ωi = 1, (2.62)

can show us how the unseen future data influences learning of the cost function.

For the LQR trajectory in Fig. 2.1 , we use the feature set F = {x2
1, x

2
2, u

2}, set the

observation starting time t to be 0, 2, and 40, respectively, and for each observation starting
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time t, we increase the observation length l from 1 to the end of the trajectory, i.e., t +

l = T . With each observation ξt:t+l, we solve the weight estimate using the inverse-KKT

method (2.61 ) and the proposed method (2.62 ) and evaluate the estimation error eω in (2.55 ),

respectively. Results are shown in Fig. 2.4 , based on which we have the following comments.

(1) The inverse-KKT method is sensitive to the starting time of the observation sequence.

When the observation starts from t = 0 (Fig. 2.4a ), the inverse-KKT method achieves a

successful estimate after observation length l ≥ 30; when t = 2 (Fig. 2.4b ) and t = 40 (Fig.

2.4c ) only when l reaches the end of trajectory, can the inverse-KKT method obtain the

successful estimate.

(2) As we have analyzed in Section 2.2.4 , the success of the inverse-KKT method requires

that the given data ξt:t+l itself minimizes the cost function, which is only guaranteed when

the observation reaches the trajectory end, i.e., t + l = T . This explains the results in Fig.

2.4b and 2.4c . Given incomplete ξt:t+l (t + l < T ), although the inverse-KKT method still

achieves a successful estimate in Fig. 2.4a , such performance is not guaranteed and heavily

relies on ‘informativeness’ of the given incomplete data relative to unseen future information.

In Fig. 2.1 , since the trajectory data at beginning phase is more ‘informative’ than the rest,

the inverse-KKT method starting from t = 0 uses less data to converge (Fig. 2.4a ) than

starting from t = 2 (Fig. 2.4b ).

(3) In contrast, Fig. 2.4 shows the effectiveness of using the recovery matrix to deal

with incomplete observations. The proposed method guarantees a successful estimate after

a much smaller observation length (e.g., around l = 4 for all three cases). This advantage

is because the unseen future information is accounted for by H2(t, l) in the recovery matrix

and the related unknown future variable λt+l+1 is jointly estimated in (2.62 ).

In sum, we make the following conclusions. First, existing KKT-based methods generally

require a full trajectory, and cannot deal with incomplete trajectory data. Second, the

proposed recovery matrix method addresses this by jointly accounting for unseen future

information; and the recovery matrix presents a systematic way to check whether a trajectory

segment is sufficient to recover the objective function and if so, to solve it only using the

segment data. Third, existing KKT-based methods can be viewed as a special case of the

proposed recovery matrix method when the segment data is the full trajectory.
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IOC for Infinite-horizon LQR. We demonstrate the ability of the proposed method

to solve the IOC problem for an infinite-horizon control system. We still use the LQR system

in (2.56 )-(2.57 ) as an example, but here we set the time horizon T = ∞ (other conditions

and parameters remain the same). The optimal trajectory in this case is a result of feedback

control u = Kx with a constant control gain K solved by the algebraic Riccati equation [2 ].

For the above infinite-horizon LQR (with Q and R in (2.58 )), the control gain is solved as

K = [− 0.1472 − 0.1918].
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Figure 2.5. IOC results for infinite-horizon LQR system. The observation
starting time is t = 8 and the observation length l increases from l = 1 to 25.
The upper panel shows the rank of the recovery matrix versus increasing l, and
the bottom panel is the corresponding weight estimate for each l.

In IOC, suppose that we observe an arbitrary segment from the infinite-horizon trajectory;

here we use the segment data within the time interval [t, t + l] = [8, 33], namely, ξ8:33 with

t = 8 and l = 25. We set the candidate feature set F = {x2
1, x

2
2, u

2}. The IOC results

using Algorithm 1 are presented in Fig. 2.5 . Here we fix the observation starting time t = 8

while increasing l from 1 to the time interval end 25. The upper panel of Fig. 2.5 shows

rankH(8, l) versus increasing observation length l, and the bottom panel shows the weight

estimate ω̂ of each l solved from the kernel of the recovery matrix H(8, l). As shown in the

upper panel, with the observation length l increasing, rankH(8, l) quickly reaches the upper

bound rank r + n − 1 = 4 after l ≥ 4, indicting the successful estimate of the weights as

shown in the bottom panel. The results demonstrate the ability of the proposed method to

solve IOC problems for infinite-horizon optimal control systems.
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Evaluation on a Two-link Robot Arm

To evaluate the proposed method on a non-linear agent, we use a two-link robot arm

system which is given in Appendix A.2 . Based on the robot dynamics in (A.2 ), we have

θ̈ = M(θ)−1(−C(θ, θ̇)θ̇ − g(θ) + τ ), (2.63)

which can be further expressed in state-space representation

ẋ = f(x,u), (2.64)

with the system state and input defined as

x =
[
θ1 θ2 θ̇1 θ̇2

]′
, u =

[
τ1 τ2

]′
, (2.65)

respectively. We consider the following finite-horizon fixed-end optimal control for the above

robot arm system:

min
x1:T

T∑
k=0
ωφ∗(xk,uk),

s.t. xk+1 = xk + ∆f(xk,uk),

x0 = xstart,

xT+1 = xgoal,

(2.66)

where ∆ = 0.01s is the discretization interval. In (2.66 ), we specify the initial state xstart =

[0, 0, 0, 0]′, goal state xgoal = [π2 ,−
π
2 , 0, 0]′, the time horizon T = 100, and the feature vector

and the corresponding weights

φ∗ =
[
τ 2

1 τ 2
2 τ1τ2

]′
ω =

[
0.6 0.3 0.1

]′
, (2.67)

respectively. We solve the above optimal control system (2.66 ) using the CasADi software

[50 ] and plot the resulting trajectory in Fig. 2.6 .

59



0 20 40 60 80 100
-10

-5

0

5

0 20 40 60 80 100
Time

-20
0

20
40

Figure 2.6. The optimal trajectory of the two-link robot arm optimal control
system (2.66 ) with the cost function (2.67 ).

Observation Noise. We test the proposed incremental IOC approach (Algorithm 1 )

under different data noise levels. We add to the trajectory in Fig. 2.6 Gaussian noise of

different levels that are characterized by different standard deviations from σ = 10−5 to

σ = 10−1. In Algorithm 1 , we use F = {τ 2
1 , τ

2
2 , τ1τ2} and set γ = 45 (the choice of γ

will be discussed later in Section 2.3.3 ). We set the observation starting time t at all time

instants except for those near the trajectory end which can not provide sufficient subsequent

observation length. As an example, we present the experimental results for the case of noise

level σ = 10−2 in Fig 2.7 . Here, the upper panel shows the minimal required observation

length lmin(t) automatically found for each observation starting time t, and the bottom shows

the corresponding weight estimate using the minimal required observation data ξt:t+lmin(t).

From Fig. 2.7 , we see that the automatically-found minimal required observation length

lmin(t) varies depending on the observation starting time t. This can be interpreted by

noting that the trajectory data in Fig. 2.6 in different intervals has different informativeness

to reflect the cost function. For example, according to Fig. 2.7 , we can postulate that

the beginning and final portions of the trajectory data are more ‘data-informative’ than

other portions, thus needing smaller lmin(t) to achieve the successful estimate. This can be

understood if we consider that the beginning and final portions of the trajectory in Fig. 2.6 

has richer patterns such as curvatures than the middle which are more smooth. Using the

recovery matrix, the data informativeness about the cost function is quantitatively indicated

by the recovery matrix’s rank. Even under observation noise, the proposed method can
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Figure 2.7. IOC by automatically finding the minimal required observation
under noise level σ = 10−2. The x-axis is the different observation starting time
t. The upper panel shows the automatically-found minimal required observa-
tion length lmin(t) at different t, and the bottom panel shows the corresponding
estimate ω̂ via (2.53 ). Note that ground truth ω = [0.6, 0.3, 0.1]′.

adaptively find the sufficient observation length size such that the data is informative enough

to guarantee a successful estimate of the weights, as shown by both upper and bottom panels

in Fig. 2.7 .

Table 2.1. Results of incremental IOC (Algorithm 1 , γ = 45) under different noise levels.
Noise level σ Averaged lmin/T (%) † Averaged eω

†

σ = 10−5 8% 4.3× 10−4

σ = 10−4 8.1% 4.0× 10−3

σ = 10−3 12.61% 8.1× 10−3

σ = 10−2 33.8% 8.5× 10−3

σ = 10−1 70.0% 7.1× 10−3

† The average is calculated based on all successful estimations over all observation cases
(varying observation starting time).

We summarize all results under different noise levels in Table 2.1 . Here the minimal

required observation length is presented in percentage with respect to the total horizon T .

According to Table 2.1 , under a fixed rank index threshold (here γ = 45), we can see that

high noise levels, on average, will lead to larger minimal required observation length, but the

estimation error is not influenced too much. This is because the increased observation length
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can compensate for the uncertainty induced by data noise and finally produces a ‘neutralized’

estimate. Hence, the results prove the robustness of the proposed incremental IOC algorithm

against the small observation noise. We will later show how to further improve the accuracy

by adjusting γ.

Presence of Irrelevant Features. We here assume that exact knowledge of relevant

features is not available, and we evaluate the performance of Algorithm 1 given a feature set

including irrelevant features. We add all observation data with Gaussian noise of σ = 10−3.

In Algorithm 1 , we set γ = 45 and construct a feature set F based on the following candidate

features

{τ 2
1 , τ

2
2 , τ1τ2, τ

3
1 , τ

3
2 , τ1τ

2
2 , τ

2
1 τ2, τ

4
1 , τ

4
2 , τ

3
1 τ2, τ1τ

3
2 , τ

2
1 τ

2
2 }. (2.68)

Algorithm 1 is applied the same way as in the previous experiment: by starting the obser-

vation at all time instants except for those near the trajectory end. We provide different

candidate feature sets in the first column in Table 2.2 , and for each case we compute the

average of the minimal required observation length and the average of estimation error in

(2.55 ). The results are summarized in second and third columns in Table 2.2 .

Table 2.2. Results of incremental IOC (Algorithm 1 , γ = 45) with different
given feature sets.

Candidate feature set F Averaged lmin/T
1 Averaged eω

1

{τ 2
1 , τ

2
2 , τ1τ2} 12.18% 4.2× 10−3

{τ 2
1 , τ

2
2 , τ1τ2, τ

3
1 , τ

3
2 } 14.7% 9.7× 10−3

{τ 2
1 , τ

2
2 , τ1τ2, τ

3
1 , τ

3
2 , τ1τ

2
2 , τ

2
1 τ2} 25.69% 8.7× 10−3

{τ 2
1 , τ

2
2 , τ1τ2, τ

3
1 , τ

3
2 , τ1τ

2
2 , τ

2
1 τ2, τ

4
1 , τ

4
2 } 35.97% 8.6× 10−3

{τ 2
1 , τ

2
2 , τ1τ2, τ

3
1 , τ

3
2 , τ1τ

2
2 , τ

2
1 τ2, τ

4
1 , τ

4
2 , τ

3
1 τ2, τ1τ

3
2 , τ

2
1 τ

2
2 } 45.53% 9.1× 10−3

1 The average is calculated based on all successful estimations over all observation cases
(varying observation starting time).

Table 2.2 indicates that on average, the minimal required observation length increases as

additional irrelevant features are included to the feature set F . This can be understood if we

consider (2.47 ) and the rank non-decreasing property in Lemma 2.2.3 : when a certain number

of irrelevant features are added, the rank required for successful estimate will increase by the
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same amount, thus needing additional trajectory data points. Due to increased observation

length, the estimation accuracy is not much influenced by the additional irrelevant features.

Thus we conclude that the proposed incremental IOC algorithm applies to the presence of

irrelevant features.

Parameter Setting. We now discuss how to choose the rank threshold γ in Algorithm

1 . Since in Algorithm 1 the rank index (2.51 ) for the recovery matrix is used to find the

minimal required observation length, we first investigate how the rank index κ(t, l) changes

as the observation length l increases. We use the trajectory data in Fig. 2.6 with added

Gaussian noise of σ = 10−3, σ = 2 × 10−3, and σ = 10−2, respectively. The candidate

features set here is F = {τ 2
1 , τ

2
2 , τ1τ2}. We fix the observation start time t = 0 and increase

the observation length l from 1 to T . The rank index κ(t = 0, l) for different l is shown in

Fig. 2.8 .
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Figure 2.8. The rank index κ(0, l) in (2.51 ) versus different observation length
l under different noise levels.

From Fig. 2.8 , we can see that although κ(t, l) has different scales at different noise levels,

it in general increases as the observation length l increases. This can be understood if we

compare the above results to κ(t, l) in noise-free cases: when there is no data noise, according

to Lemma 2.2.3 and 2.2.4 , as l increases, κ(t, l) will first remain zero when l < lmin, then

increase to infinity after l ≥ lmin. In noisy settings, κ(t, l) however will increase to a large

finite value. From the plot, we can postulate that in practice choosing a larger threshold γ

will lead to a larger minimal required observation length lmin, thus more data points will be

included into the recovery matrix to compute the estimate of the weights, which may finally
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improve the estimation accuracy (similar to results in Table 2.1 ). In what follows, we will

verify this postulation by showing how γ affects the performance of Algorithm 1 .

0 500 1000 1500 2000
0
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0 500 1000 1500 2000
0
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1

Figure 2.9. Averaged lmin (upper panel) and averaged estimation error eω
(bottom panel) for different choices of γ.

We add Gaussian noise σ = 10−3 to the trajectory data in Fig. 2.6 , and apply Algorithm

1 by starting the observation at all possible time steps, as performed in previous experiments.

We vary γ to show its influence on the average of the minimal required observation length lmin

and the average of the estimation error eω. The results are shown in Fig. 2.9 , from which we

can observe that first, a larger γ will lead to larger minimal required observation length; and

second, due to the increased minimal required observation, the corresponding estimation

accuracy is improved because data noise or other error sources can be compensated by

additional observation data. These facts thus prove our previous postulation based on Fig.

2.8 . Moreover, Fig. 2.9 also shows as γ exceeds a certain value, e.g., 200, continuously

increasing γ will not improve the recovery accuracy significantly. This suggests that the

choice of γ is not sensitive to the performance if γ is large. Therefore, in practice it is possible

to find a proper γ without much manual effort such that both the estimation accuracy and

computational cost are balanced.
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2.4 IOC for Multi-phase Objective Functions

In this section, we will investigate the IOC problem for multi-phase cost functions, aiming

to address the second research gap identified in Section 2.1.2 . We consider the observed

trajectory as a concatenation of multiple phases of motion, where each phase is characterized

by a distinct cost function parameterized as a linear combination of given features with phase-

dependent cost weights. We focus on not only recovering the cost weights of each phase, but

also estimating the transition points between motion phases.

2.4.1 Problem Formulation

Consider an autonomous agent with dynamics and initial condition in (2.1 ). Suppose

that the agent trajectory of states and inputs over a horizon T in (2.2 ), rewritten here

ξ = {ξk : k = 0, 1, ..., T} with ξk=(x∗k, u∗k),

is a sequential concatenation of p phases, and each phase (locally) minimizes a different cost

function. The overall cost function is

J(x0:T ,u0:T ) =
p∑
j=1

Tj+1−1∑
k=Tj

C(j)(xk,uk), (2.69)

where C(j)(x,u) is the running cost in the jth-phase motion, and interval [Tj, Tj+1) is the

time horizon for the jth-phase motion with T1 = 0 and Tp+1 = T + 1. Here, we call Tj
(1 < j ≤ p) a phase transition point. We construct the jth-phase running cost as

C(j)(x,u) = ω(j)′φ(x,u), (2.70)
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where φ = [φ1, φ2, · · · , φr]′ ∈ Rr is called the union feature vector, and ω(j) ∈ Rr are the

cost weights of the jth-phase motion. We say that the feature

φi is


relevant if ω

(j)
i 6= 0

irrelevant otherwise
(2.71)

for the jth-phase motion. Here, ω(j)
i , i.e., the ith entry of ω(j), is the cost weight for φi,

i = 1, 2, · · · , r.

Given the observed trajectory ξ and the union feature vector φ, we aim to (i) recover

the cost weights ω(j) of each phase and (ii) estimate the location of the phase transition

points Tj (1 < j ≤ p). Note that the cost weights of each phase can only be recovered up to

a non-zero scaling. Thus, for the jth-phase motion (1 ≤ j ≤ p), we call the recovered cost

weights ω̂(j) a successful recovery if ω̂(j) = cω(j) with c > 0; specific c can be obtained by

normalization [40 ].

2.4.2 The Method and Algorithm

Before we develop the method for estimating a multi-phase objective function, we first

recall the learning of the cost function within a single phase using the technique of recovery

matrix developed in Section 2.2 .

Single-Phase Cost Function Recovery

Suppose a segment of the agent trajectory, denoted as ξt:t+l = (x∗t:t+l,u∗t:t+l), where t

represents the observation starting time and l is called the observation length, is from a

single phase, say the jth phase (that is, Tj ≤ t < t + l < Tj+1). Based on Corollary 2.3.2 ,

the lemma below provides a method for using the minimal observation length to recover the

cost weights within a single phase.

Lemma 2.4.1. Suppose that the observations of agent trajectory start from time t and

are within the jth phase, i.e., Tj ≤ t < t + l − 1 < Tj+1. The recovery matrix H(t, l)

is incrementally updated with new observations according to Lemma 2.2.2 . The minimal
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observation length required for a successful recovery of the jth phase cost weights ω(j), defined

as lmin(t), is

lmin(t) = min
{
l | rankH(t, l) = r + n− 1}. (2.72)

If a vector col {ω̂, λ̂} 6= 0 with ω̂ ∈ Rr is a solution to

H(t, lmin(t))

ω̂
λ̂

 = 0, (2.73)

then ω̂ is a successful recovery for ω(j).

Proof. Please refer to Corollary 2.3.2 for the proof.

In Lemma 2.4.1 , we implicitly assume that the horizon of the jth phase satisfies Tj+1−Tj−

1 ≥ lmin(t); and due to (2.2.3 ) and (2.2.4 ), rankH(t, lmin(t)) ≤ rankH(Tj, Tj+1 − Tj − 1) ≤

r + n− 1. We thus establish the following assumption for the cost weight ‘recoverability’ of

each phase.

Assumption 2.4.1. Given the union feature vector φ in (2.70 ) and the recovery matrix

defined in (2.2.1 ), the trajectory of states and inputs in the j-th phase ξTj :Tj+1−1 satisfies

rankH(Tj, Tj+1 − Tj − 1) = r + n− 1. (2.74)

for all j = 1, 2, . . . , p.

Assumption 2.4.1 provides the condition under which the cost weights of each phase can

at least be recovered using the whole phase horizon. The validity of this assumption depends

on the informativeness of the data in each phase, as analyzed in the previous Section 2.3 and

also the union feature set used. To understand this, we consider the following contradiction:

assume that given a very large union feature set, there exist non-unique feature combinations

which can be used to characterize the jth phase, i.e. there exist two independent cost weight

vectors, say ω(j) and ω̃(j), for which rankH(Tj, Tj+1−Tj−1) < r+n−1, as demonstrated in

Section 2.3.3 . Based on the previous discussions for the single-phase case, we now consider

multiphase cost function recovery.
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Multiple-phase Cost Function Recovery

Under Assumption 2.4.1 , the idea for recovering the multiphase cost function is to com-

pute the cost weights over time using an observation window moving along the trajectory

ξ = {x∗0:T ,u
∗
0:T}. The procedure includes two ingredients: first, a window, with the starting

position at time t with the adaptive length denoted as l(t), moves forward along the tra-

jectory while recovering the cost weights, denoted as ω̂(t), using the trajectory data within

that window via (2.73 ); second, in an inner loop, the window length l(t) is incrementally

determined by finding the minimal observation length lmin(t) defined in (2.72 ). Therefore,

the procedure is a recursive application of Lemma 2.4.1 along the trajectory, and the output

is the recovered weights ω̂(t). Note that the index t in ω̂(t) and l(t) is used to indicate where

the corresponding observation window starts. For the above process, we analyze the follow-

ing two cases: first, the observations and recovery are performed within the same phase, as

shown in Fig. 2.10 , and second, the observations are crossing a phase transition point, as

shown in Fig. 2.11 .

Observations within the Same Phase. Without loss of generality, we suppose

that a window with starting time t is in the jth phase, as illustrated in Fig.2.10 . When

the minimal observation window length lmin(t) (2.72 ) is successfully found within the same

phase, i.e. Tj ≤ t < t + lmin(t) < Tj+1, as shown in Fig. 2.10 , the recovery process is just

the single-phase case as discussed in the previous subsection.

!-th phase (!+1)-th phase(!-1)-th phase

#$ #$%&'

()*+ (')

Figure 2.10. An illustration where the minimal observation length is found
within the same phase. Here, the observation window is colored in red.

Observations over a Phase Transition Point. We now focus on the case where

the window (with the starting time t) is over a phase transition point, say Tj+1, as illustrated

in Fig. 2.11 . This case only happens when the observations from t to Tj+1 − 1 (i.e. the
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Figure 2.11. An illustration when the window is over a phase transition
point. The upper panel shows the case where the window ends at Tj+1; the
bottom panel shows that the window length increases to include the data of
the (j + 1)th phase.

corresponding observation length is Tj+1 − t − 1 as shown in the upper panel in Fig. 2.11 )

cannot reach the minimal observation length in (2.72 ), that is, rankH(t, Tj+1 − t − 1) <

n + r − 1. In what follows, based on the bottom panel in Fig. 2.11 , we fix the window

starting time t and discuss the rank values of H(t, l) while increasing l from (Tj+1 − t− 1).

First, we have the following lemma.

Lemma 2.4.2. Suppose that Assumption 2.4.1 holds, and the window starts at time t ∈

[Tj, Tj+1) which satisfies rankH(t, Tj+1− t−1) < n+r−1. Then there exists an observation

length l with

l ∈ [Tj+1 − t, Tj+1 − t+ lmin(Tj+1)] (2.75)

such that

rankH(t, l) ≥ r + n− 1 (2.76)

where lmin(Tj+1) denotes the minimal observation length from the starting time Tj+1 + 1.
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Proof. Proof by contradiction: assume that rankH(t, l) < r+ n− 1 holds for all Tj+1− t ≤

l ≤ Tj+1 − t+ lmin(Tj+1). However, due to the rank non-decreasing in (2.2.3 ), we have

rankH(t, Tj+1 − t+ lmin(Tj+1)) ≥ rankH(Tj+1, lmin(Tj+1)) = r + n− 1.

contradicting the assumption. This completes the proof.

Based on Lemma 2.4.2 , we consider the following two sub-cases when increasing l to

include the data of the next phase:

• Case A: if there exists l such that rankH(t, l) = r + n − 1 holds, we still can

compute non-trivial weights ω̂ through (2.73 ); however, such ω̂ may not be a

successful recovery of ω(j) as it is computed using the data from two phases, in

this case we call ω̂ a “degenerate recovery” ; and

• Case B: otherwise, increasing l will result in a direct jump to rankH(t, l) = r+n.

In this case, just from the rank value we can say that the window includes a phase

transition point.

From the above discussions, we note that when the observations from the previous phase

are not sufficient to produce a successful recovery (i.e. the window starting time t satisfying

rankH(t, Tj+1 − t − 1) < n + r − 1), increasing the window length to include the data of

the next phase may lead to rankH(t, l) = n+ r − 1 due to degenerate recoveries. This will

lead to a possible failure to detect the phase transition points by only observing the rank

condition of the recovery matrix (as we shall discuss in experiments, in practice we have not

encountered this issue). To circumvent the limitations due to degenerate recovery, we use

the cost weights computed at each window to facilitate the estimation of phase transition

points. Specifically, as the observation window moves along the trajectory, at any starting

time t ∈ [Tj, Tj+1), (1 ≤ j ≤ p), the cost weights, denoted as ω̂(t), are computed by:

• Case A: if increasing l results in rankH(t, l) = n+ r− 1, here denoted as lmin(t),

still compute the weights ω̂(t) via (2.73 ).
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• Case B: otherwise (increasing l only leads to rankH(t, l) = n+r, indicating that

the window includes a phase transition point), set ω̂(t) = ω̂(t− 1).

Consequently, by checking the changes of ω̂(t) over time t, the phase transition point

Tj+1 can be estimated. Considering the degenerate recovery that may happen in Case A,

the estimated phase transition point, denoted as T̂j+1, is always bounded by

t(j)max ≤ T̂j+1 ≤ Tj+1 (2.77)

where t(j)max is the last starting time in the jth phase such that rankH(t, Tj+1−t−1) = n+r−1

holds, that is,

t(j)max = arg max t

s.t. rankH(t, Tj+1 − t− 1) = n+ r − 1.

As we will demonstrate later, when the observation window includes a phase transition point,

degenerate recoveries happen infrequently. This is because in most cases the trajectory data

of the next phase always violates the optimality condition of the previous phase. Thus,

usually when the window includes a small number of data points of the next phase, the rank

of the recovery matrix immediately jumps to (n+ r).

Implementation

We first describe our implementation for checking the rank condition (2.72 ) and comput-

ing the weights in (2.73 ). To verify rankH(t, l) = n + r − 1, we can check the rank index

(2.52 ), as used in Section 2.3.2 , rewritten as below we check the metric

κ(t, l) = σ2(H̄(t, l))
σ1(H̄(t, l))

≥ γ. (2.78)
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The choice of γ has been discussed in Section 2.3.3 . To compute (2.73 ), we use

ω̂
λ̂

 = arg min
col {ω,λ}

∥∥∥∥∥∥H(t, lmin(t))

ω
λ


∥∥∥∥∥∥

2

s.t.
r∑
i=1

ωi = 1,

(2.79)

where ‖·‖ denotes the l2-norm.

Based on the above rules, we now consider the implementation of the recovery procedure

to obtain ω̂(t). Suppose that the window starts at time t. We increase its length l(t) while

examining the validity of (2.78 ):

• Case A: if (2.78 ) is fulfilled for a certain increased l(t), here, denoted as lmin(t),

then we compute ω̂(t) via (2.79 ).

• Case B: otherwise; if (2.78 ) cannot be fulfilled for any l(t) from 1 to T − t, set

ω̂(t) = ω̂(t− 1).

To reduce computational cost, in Case B we do not necessarily need to verify for all

1 ≤ l ≤ T − t; instead, we use a maximum window length lmax and only examine (2.78 ) for

l(t) from d r+n
m
e (d·e is ceiling operator) to lmax. Here, lmax should be larger than any phase

horizon, i.e.

lmax > Tj+1 − Tj, ∀ 1 ≤ j ≤ p. (2.80)

Thus, we summarize the computation of ω̂(t) as

ω̂(t) =


computed via (2.79 ), if lmin(t) < lmax

ω̂(t− 1), otherwise
(2.81)

where lmin(t) < lmax means that the window length satisfying (2.78 ) is found within lmax.

Note that in (2.81 ) the cost weights for the data points near the trajectory terminal, which

do not suffice for a minimal observation length, are also considered: their values remain the

same as the previous recovery results.
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The overall implementation for recovering the multiphase cost functions is presented in

Algorithm 2 . The choice of γ has been discussed in Section 2.3.3 .

Algorithm 2: IOC for multiphase cost functions
Input: trajectory observations (x∗1:T ,u∗1:T );

a union feature vector φ.
Output: recovered cost weights ω̂(t) at time t = 0, 2, · · · , T .
Parameter: rank index threshold γ (2.78 );

maximum window length lmax (2.80 ).
for t = 0 : T do

initialize observation length l(t)=d r+n
m
e;

initialize the recovery matrix H(t, l(t)) (2.26 -2.27 );
while l(t) < lmax and not satisfying (2.78 ) do

extend the observation size l(t) = l(t) + 1;
take the next observation (x∗t+l(t),u∗t+l(t));
update H(t, l(t)) (2.26 );
normalize to obtain H̄(t, l(t)) (2.78 );

end
compute the cost weights ω̂(t) via (2.81 ).

end

2.4.3 Numerical Experiments

We evaluate the proposed method on a two-link robot arm, given in Appendix A.2 . We

define the recovery error eω to quantify the multiphase IOC accuracy:

eω =

T∑
t=0

inf
c6=0
‖cω̂(t)− ω(t)‖

T
(2.82)

where T is the overall horizon, and true ω(t) = ω(j) for Tj ≤ t < Tj+1 with j = 1, 2, · · · , p.

The dynamics of a two-link arm is given in Appendix A.2 , also used in Section 2.3.3 . By

defining

x =
[
θ1 θ̇1 θ2 θ̇2

]′
and u = τ =

[
τ1 τ2

]′
, (2.83)
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Figure 2.12. Recovery of a three-phase cost function for the robot motion:
(a) the state trajectory of the two-link robot arm with the red dotted lines
indicating the phase transition points of ground-truth; the ground-truth cost
weights for each phase is ω(1) = [0.75, 0.25]′, ω(2) = [0.5, 0.5]′, and ω(3) =
[0.2, 0.8]′; and (b) shows the recovered results by the proposed method (blue
solid lines) and the KKT method [28 ] (red dotted/dashed lines).

we write (2.63 ) in state-space representation and further approximate it to the following

discrete-time form

xk+1 = xk + ∆ · f(xk,uk+1) (2.84)

where ∆ = 0.001s is the discretization interval.

The motion of the robot arm contains three phases, and each phase has different extents

and cost functions. The union feature vector is φ = [τ 2
1 , τ

2
2 ]′, where τ 2

i (i = 1, 2) denotes a

quadratic basis function of torque τi. In Phase I, the robot moves from x0 = xT1 = [0, 0, 0, 0]′

at T1 = 0 to xT2 = [ − π
6 , 0,−

π
3 , 0]′ at T2 = 1000 (1s) with cost weights ω(1) = [0.75, 0.25]′;

in Phase 2, from xT2 to xT3 = [π4 , 0,
π
2 , 0]′ at T3 = 2000 (2s) with ω(2) = [0.5, 0.5]′; and in

Phase 3, from xT3 to xT4 = [ − π
6 , 0,−

π
3 , 0]′ at T4 = 3000 (3s) with ω(3) = [0.2, 0.8]′. The

multiphase optimal control is solved by GPOPS [51 ] and the optimal state trajectories are

shown in Fig. 2.12a .

Given the union feature vector φ, we apply Algorithm 2 to recover the multiphase cost

weights from the trajectory given in Fig. 2.12a . We set γ = 100 and lmax = 1000. The results

ω̂(t) are plotted in Fig. 2.12b in blue solid lines. From Fig. 2.12b , we can see that the cost

weights of each phase and the phase boundaries are successfully recovered. For example, we
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observe that the first phase is from time 0 to 1001 with the average weights [0.7501, 0.2499]′

(by averaging ω̂(t) for 1 ≤ t ≤ 1001); the second phase from 1002 to 2000 with the average

weights [0.4998, 0.5002]′; and the third phase from 2001 to 3000 with the average weights

[0.1998, 0.8012]′.

Observation Noise. We evaluate the performance of the proposed method by adding

varying levels of white Gaussian noise to the trajectory data, and the results are listed in

Table 2.3 . From Table 2.3 , we can conclude that (i) the average minimum observation length

increases if the trajectory noise is high; and (ii) since the increased window length includes

more data points to mitigate noise, the recovery accuracy maintains high.

Table 2.3. Results of Multi-phase IOC (Algorithm 2 , γ = 100, lmax = 1000)
under different noise levels.

Noise level eω Avg. lmin
∗ T̂1 and T̂2 eω for KKT method ∗

1e− 4 0.0019 145.3 1004, 2000 0.15
1e− 3 0.0016 236.0 1004, 2000 0.15
1e− 2 0.0014 554.5 1004, 2002 0.18

∗ The averaged lmin is computed by averaging lmin(t) for 1 ≤ t ≤ T ; and eω for KKT
method is evaluated with window length L = 950.

Comparison with Related Work. We compare the proposed method with the KKT

method [28 ]. In [28 ], a window of manually-specified length moves along the trajectory, and

the weights are computed by minimizing the violation of KKT conditions. Here, we set

the window length L = 950 and L = 1000, and plot the corresponding recoveries in Fig.

2.12b using red dotted and red dashed lines, respectively. We also test the recovery error for

L = 950 under different noise levels and summarize the results in Table 2.3 .

The results illustrate that although being able to discriminate motion phases, the KKT

method does not consistently produce the correct cost weights (the recovery errors for L =

950 and L = 1000 are 0.18 and 0.15, respectively), and the estimated phase transition points

have high errors. We also find that the KKT method is sensitive to the choice of window

length: a larger window length will improve recovery accuracy, but may lead to inaccuracy

for the phase transition point estimation.
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This is because the KKT method only uses current window data and does not consider the

influence of future data beyond the window on the recovery, inevitably leading to a recovery

error. This future information is encoded in the costate λ in (2.73 ) in our formulation.

When the observed data is of ‘low richness’, e.g. of a small window length, the influence

of future information becomes relatively significant, thus leading to a large recovery error.

Thus, the KKT method always requires a large window, but this will potentially deteriorate

the accuracy of phase boundary detection. In Fig. 2.12b , we also observe that the KKT

method results in a detection delay for the first phase transition point. This may be because

when the window is over the transition point, the included data from the first phase is more

expressive compared to that of the second phase, thus contributing more to the computed

cost weight and making the results look more like the ones of the first phase.

2.5 Distributed IOC

As identified in Section 2.1.2 , existing IOC techniques are designed in a centralized way.

This limits their implementations to the practical situation when the data storage exceeds the

memory capacity of a single processor or the computational demand exceeds the capability of

the processor. For the former restriction, although the recovery matrix developed in Section

2.2 allows us to handle trajectory segments, it still requires a large chunk of consecutive

trajectory data to satisfy the rank condition. In this section, we address such challenges by

developing a distributed IOC approach, which enables the learning of an objective function

jointly by multiple processors, each of which only observes and processes smaller part of data

that could be much smaller than that required by the recovery matrix.

2.5.1 Problem Formulation

Consider an optimal control agent with dynamics and initial condition in (2.1 ), and its

trajectory, rewritten below,

ξ = {ξt, t = 0, 1, ..., T} with ξt = {x∗t ,u∗t},
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is (locally) minimizing a control cost function (2.3 ) with unknown weights ω.

Consider a number of N processors where each processor i only communicates with its

neighbors denoted as a set Ni (we here assume i ∈ Ni). Let a graph G = (V , E) denote the

communication graph of all processors, where the node set V = {1, 2, · · · , N} represents the

N processors, and the edge set E = {(i, j)} ⊂ V ×V represents the available communication

channels: there is an edge (i, j) ∈ E if and only if processors i and j are neighbors. We

consider that G is connected, undirected, and time-invariant. As shown in Fig. 2.13 , we

suppose each processor i observes a collection of si trajectory segments, i.e., si segments of

ξ, defined as

Si = {ξ
¯
tij :t̄ij

, j = 1, 2, ..., si}, (2.85)

where ξ
¯
tij :t̄ij

is the jth segment observed by processor i, with
¯
tij and t̄ij being its starting

and ending time, 0 ≤
¯
tij ≤ t̄ij ≤ T . Note that we do not put any restriction to Si, which

means that Si could include only one trajectory segment, i.e. si = 1, as shown by Processor

3 in Fig. 2.13 ; or even permit a segment of length of 1, i.e., si = 1 and t̄ij−¯
tij = 1, as shown

by Processor 2; Processors are also allowed to have overlaps in their trajectory segments as

shown by Processors N -1 and N .

Processor 2

Processor 1
Processor 3

Processor N-1
Processor N

… !

Figure 2.13. Illustration of distributed inverse optimal control.

Since the available trajectory segments Si for each processor i is usually not sufficient to

determine ω alone, the problem of interest is to develop a distributed IOC, which enables

all processors to collaboratively achieve ω by communicating with its neighbors. Note that

scaling ω by a positive non-zero constant does not affect the IOC because a scaled ω can

lead to the same ξ. Without losing generality, we here fix ω1 = 1, i.e., [1, 0, · · · , 0]ω = 1.
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2.5.2 The Method and Algorithm

In this part, we will first introduce the concept of IOC-effectiveness, a way to evaluate

whether a trajectory segment can contribute to IOC, and if so, such segment will impose

a liner constraint to the unknown objective function weights. We then establish IOC iden-

tifiability from trajectory segments. Finally, we develop a distributed algorithm to enable

all processors to collaboratively learn the objective function weights exponentially fast by

communicating with their neighbors.

IOC-Effective Trajectory Segments

According to the recovery matrix in Lemma 2.2.1 , for any trajectory segment ξ
¯
t,t̄ ⊆ ξ,

one directly has

H1(
¯
t, t̄−

¯
t)ω +H2(

¯
t, t̄−

¯
t)λt̄+1 = 0.

For clear exposition of data dependence, we write H1(
¯
t, t̄ −

¯
t) and H2(

¯
t, t̄ −

¯
t) as H1(ξ

¯
t:t̄)

and H2(ξ
¯
t:t̄), respectively, i.e.,

H1(ξ
¯
t:t̄)ω +H2(ξ

¯
t:t̄)λt̄+1 = 0 (2.86)

Equation (2.86 ) provides a relationship between any trajectory segment data ξ
¯
t:t̄, the weights

ω, and the costate λt̄+1. To further eliminate λt̄+1 and measure the contribution of ξ
¯
t:t̄ to

recovering ω, we define the following:

Definition 2.5.1 (IOC-Effective Trajectory Segment). Given the agent dynamics (2.1 ) and

an arbitrary segment of the trajectory, ξ
¯
t:t̄ ⊆ ξ, we say ξ

¯
t:t̄ is IOC-effective if

rankH2(ξ
¯
t:t̄) = n. (2.87)

Given an IOC-effective ξ
¯
t:t̄, one has the following result.

Lemma 2.5.1. For a trajectory segment ξ
¯
t:t̄ ⊆ ξ that is IOC-effective, ω must satisfy the

following linear equation:

R(ξ
¯
t:t̄)ω = 0, (2.88)
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where

R(ξ
¯
t:t̄) = H1 −H2

(
H2

′H2
)−1
H ′2H1 ∈ Rr×r. (2.89)

Proof. For an IOC-effective trajectory segment ξ
¯
t:t̄, it follows that H2(ξ

¯
t:t̄)
′H2(ξ

¯
t:t̄) is non-

singular. By multiplying H2
′ on both sides of (2.86 ), one has λt̄+1 = −

(
H2

′H2
)-1
H ′2H1ω,

which is then substituted back into (2.86 ), and this leads to (2.88 ). Thus Lemma 2.5.1 

holds.

Here, we would like to make a few comments on the above concept of the IOC-effectiveness

of trjectory segments. First, as suggested by (2.8 ), matrixH2(ξ
¯
t:t̄) is uniquely determined by

F x(ξ
¯
t:t̄), F u(ξ

¯
t:t̄) and V (ξ

¯
t:t̄) in (2.9 ), which only depend on the segment ξ

¯
t:t̄ and dynamics

f . Thus, whether a segment is effective or not is independent of the choices of features φ, but

is only determined by the data in the trajectory segment and the specific dynamics model.

Second, the data effectiveness condition (2.87 ) can be satisfied by including more state-

input points, as suggested by the iterative property of H2(ξ
¯
t:t̄+1) below.

Lemma 2.5.2. For any 1 ≤
¯
t < t̄ < T , one has

H2(ξ
¯
t:t̄+1) =

H2(ξ
¯
t:t̄)

∂f ′

∂u∗
t̄+1

 ∂f ′

∂x∗
t̄+1

, (2.90)

with H2(ξ
¯
t:t̄) = ∂f ′

∂u∗

¯
t

∂f ′

∂x∗

¯
t

for t̄ =
¯
t+ 1.

Proof. The proof can be found in the proof of Lemma 2.2.2 .

Lemma 2.5.2 implies

rankH2(ξ
¯
t:t̄+1) ≥ rankH2(ξ

¯
t:t̄), (2.91)

if ∂f ′

∂x∗
t̄+1

is non-singular. The above rank non-decreasing property suggests that the more data

a trajectory segment includes, the more likely it will be IOC-effective. As shown later in

simulation, a segment ξ
¯
t:t̄ can easily be IOC-effective if t̄−

¯
t ≥ d n

m
e ( d·e is ceiling operator)

due to the size of H2. Specifically, if m = n, even a segment with length of 1 (i.e. only

including two points) can be IOC-effective.
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Third, from Lemma 2.5.2 , an interesting observation is that the IOC effectiveness in Def-

inition 2.5.1 is equivalent to the controllability for liner time-invariant systems. Specifically,

suppose that the dynamics model in (2.1 ) is xt+1 = Axt +But and a trajectory segment ξ
¯
t:t̄

has the length t̄−
¯
t = n, then from Lemma 2.5.2 , one has

E(ξ
¯
t:t̄) =

[
An−1B An−2B · · · AB B

]′
, (2.92)

which is equivalent to the controllability matrix. This means that if the linear system is not

controllable, i.e., rankE(ξ
¯
t:t̄) < n, then any segment of its trajectory ξ

¯
t:t̄ will never be IOC-

effective regardless of how many state-input points it contains. Thus, the IOC effectiveness

depends on the specific dynamics model f .

IOC Identifiability

Based on Lemma 2.5.1 , we next present an important result stating the identifiability of

the cost function weights from trajectory segments.

Theorem 2.5.1. Given a collection of s trajectory segments S = {ξ
¯
tj :t̄j , j = 1, 2, · · · s},

define the matrix

R(S) = col {R(ξ
¯
tj ,t̄j

) | ξ
¯
tj ,t̄j
∈ S and ξ

¯
tj ,t̄j

is IOC-effective},

which is a stack of R(ξ
¯
tj ,t̄j

) for all IOC-effective ξ
¯
tj :t̄j with R(ξ

¯
tj ,t̄j

) in Lemma 2.5.1 . If

rankR(S) = r − 1, (2.93)

then the weights ω can be identified from S, meaning that any nonzero v ∈ kerR(S) is a

scaled version of ω, i.e., there exists a scalar c 6= 0 such that v = cw.

Proof. For any IOC-effective trajectory segment ξ
¯
t:t̄ ∈ S, since the cost function weights ω

must satisfy condition (2.88 ) by Lemma 2.5.1 , then R(S)ω = 0 and rankR(S) ≤ r − 1.

(2.93 ) indicates that the nullity of the matrix R(S) is one, and it follows that any non-zero

vector v ∈ kerR(S) will have v = cw with c 6= 0. This completes the proof.
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The above result states that given a set of trajectory segments S, if (2.93 ) is satisfied,

then the cost function weights ω can be ‘uniquely’ determined by S. Here the uniqueness

means that the obtained weights are a scaled version of true weights, and this is best we can

obtain because the scaled ω does not affect IOC.

A Distributed Algorithm for IOC

We now consider a graph G of N processors and each processor i has only access to a set

of trajectory segments Si as in (2.85 ). By Theorem 2.5.1 , one has

R(Si)ω = 0, i = 1, 2, ..., N. (2.94)

Specially, R(Si) = 0 if there is no IOC-effective trajectory segment in Si. Thus, each

processor i with trajectory segments Si only knows R(Si). Then all we need is to develop

distributed algorithms in [52 ] for N processors to cooperatively solve the group of linear

equations in (2.94 ). Note that these linear equations in (2.94 ) in practice may not have

exact solutions because of noises and violation of the optimalilty KKT condition. We will

instead develop a distributed algorithm for all processors to solve:

min
ω

1
2

N∑
i=1
‖R(Si)ω‖2

2 s.t. [1, 0, · · · , 0]ω = 1 (2.95)

In order to achieve the above least-square solution, we let each processor i control a state

vector ωi ∈ Rr, which can be viewed as a guess of the solution to (2.95 ). This leads to the

following distributed optimization problem.

min
{ω1,··· ,ωN}

∑N

i=1
1
2‖R(Si)ωi‖2

2 (2.96)

s.t. [1, 0, ..., 0]ωi = 1, i = 1, 2, · · · , N, (2.97)

ω1 = ω2 =, · · · ,= ωN . (2.98)

To solve (2.96 -2.98 ), one may use existing distributed optimization algorithms in [53 , 54 ],

which normally require all processors share a step-size. To remove the requirement of shared
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step-size while still achieving exponential convergence, we modify the algorithm in [55 ] and

develop a new distributed update. Here we introduce extra states µi ∈ R and υi ∈ Rr for

each processor i to account for the constraints (2.97 ) and (2.98 ), respectively, and propose

the following update (k is the iteration index):

ωi(k+1) = Giyi(k) +Gi

∑
j∈Ni

(
ωj(k) + υj(k)

)
,

µi(k+1) = µi(k) + 1
di
α′Gi

∑
j∈Ni

(
ωj(k) + υj(k)

)
+ 1
di
α′Giyi(k)− 1

di
,

υi(k+1) = υi(k) +Gi

∑
j∈Ni

(
ωj(k) + υj(k)

)
+Giyi(k)− 1

di

∑
j∈Ni

ωj(k)

(2.99)

where
Gi = (R(Si)′R(Si) + 1

di
αα′ + 2diIr)-1,

yi(k) = diωi(k)−αµi(k)− diυi(k) + 1
di
α,

(2.100)

with α = [1, 0, ..., 0]′ ∈ Rr and di = |Ni|, which is the cardinality of a set. Note that

the update rule in (2.99 for each processor is distributed in a sense that it only utilizes

information from its neighbors. Furthermore, we have the following result.

Theorem 2.5.2. Consider N processors that coordinates over a graph G, where each pro-

cessor i obtains a set of trajectory segments Si of the trajectory ξ. Given an arbitrary initial

state (and extra states) of each processor, the distributed update rule (2.99 ) enables all pro-

cessors to achieve the solution to (2.95 ) exponentially fast.

Proof. Let W ∈ RN×N denote the adjacency matrix for G. The corresponding Laplacian

matrix L is defined as L = D −W with D = diag {d1, ..., dN} and di = |Ni|. Define

D̄ = D ⊗ Ir, W̄ = W ⊗ Ir,

ω̄ = col {ω1, ...,ωN},

µ̄ = col {µ1, ...,µN}, ῡ = col {υ1, ...,υN},

R̄ = diag {R(S1), ...,R(SN)},

Ā = IN ⊗ [1, 0, ..., 0]′, L̄ = L⊗ Ir = D̄ − W̄ ,
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where ⊗ is the Kronecker product, and Ir ∈ Rr×r is the identity matrix. The compact form

for the distributed updates in (2.99 ) then can be equivalently written as

h(k+1) = Qh(k) + q, (2.101)

with h = col {ω̄, µ̄, λ̄}, and

Q =


D̄+R̄′R̄ Ā D̄

−Ā′ D 0

−D̄ 0 D̄



-1 
D̄ 0 W̄

−0′ D 0

−W̄ 0 D̄

 , (2.102)

q =


D̄+R̄′R̄ Ā D̄

−Ā′ D 0

−D̄ 0 D̄



-1 
0

−1N

0

 . (2.103)

Let h∗ = col {ω̄∗, µ̄∗, ῡ∗} denotes an equilibrium the linear time-invariant system (2.101 ),

namely, h∗ = Qh∗ + q. By following the similar argument to the distributed algorithm for

least-square solutions in [55 ], one is able to show there exists ω∗ ∈ Rr such that ω̄∗=1N⊗ω∗

globally minimizes (2.96 -2.98 ). Thus, we only need to prove that given any initial condition

h(0), h(k) governed by the dynamics (2.101 ) converges exponentially fast to the equilibrium

h∗.

To this end, we define the error e(k) = h(k)− h∗, and from (2.101 ) we have

e(k+1) = Qe(k). (2.104)

The above error dynamics (2.104 ) and matrix Q share the similar structure with the ones in

Lemma 2 in [55 ]. Thus, following a similar proof procedure, one can show that there exists

a matrix T such that

Q = T

I 0

0 P

T -1, (2.105)
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where P has the eigenvalue of the maximum magnitude satisfying ρ2 = max{|λ| : λ ∈

eig(P )} < 1. From (2.105 ) and (2.104 ), we can write e(k) = e∗ + η(k), where

e∗ = T

I 0

0 0

T -1e(0), η(k) = T

0 0

0 P k

T -1e(0).

Here e∗ satisfies Qe∗ = e∗, and η(k)→ 0 when k →∞ with a diminishing rate of ρk2 → 0.

Thus, when k → ∞, e(k) = h(k) − h∗ → e∗, yielding h(k) → (e∗ + h∗) = h̄
∗ with a

diminishing rate of ρk2 → 0. Since h̄∗ also is an equilibrium of (2.101 ), the theorem assertion

follows.

2.5.3 Numerical Experiments

We evaluate the proposed method on a simulated two-link robot arm given in Appendix

A.2 , with dynamics of a two-link arm in (A.2 ). Define the system state variable x =

[θ1, θ2, θ̇1, θ̇2]′ and control input u = [τ1, τ2]′, and discretize the dynamics by Euler method

with a time interval 0.05s. The arm is controlled to minimize (2.3 ) here with

φ = [τ 2
1 + τ 2

2 , (θ1−
π

2 )2, θ2
2, θ̇1

2 + θ̇2
2]′ and ω = [1, 5, 4, 1]′. (2.106)

The initial state x0 = [− π
2 , 0, 0, 0]′ and the overall horizon T = 100. The optimal trajectory

of the arm system is in Fig. 2.14 .
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Figure 2.14. Optimal trajectory of robot arm with ω = [1, 5, 4, 1]′.
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IOC Identifiability

We first demonstrate the IOC identifiability using segments. We arbitrarily choose a

trajectory segment ξ
¯
t:t̄ in Fig. 2.14 , [

¯
t, t̄] = [10, 20], and then check the rank of the corre-

sponding matrix R(ξ10:20), rankR(ξ10:20) = 3 = r−1. By Theorem 2.5.1 , this confirms that

the weights are identifiable from ξ10:20. Thus by solving the linear equation R(ξ10:20)ω = 0

and let ω1 = 1, we exactly obtain the true weight ω = [1.00, 5.00, 4.00, 1.00]′. In another

case we choose a trajectory segment in [
¯
t, t̄] = [10, 12], we check rankR(ξ10:12) = 2 < r − 1,

which indicates that we cannot obtain the true ω because ω is not identifiable from ξ10:12

according to Theorem 2.5.1 .

Distributed IOC

Table 2.4. Processor graph and segments (the overall time horizon T = 100)
Processor i Neighbors Ni Intervals [

¯
t, t̄] of segments

1 {1, 2, 3} [10, 15], [20, 25]
2 {2, 1, 4} [30, 31]
3 {3, 1, 4} [50, 52], [61, 65]
4 {4, 2, 3, 5} [65, 66]
5 {5, 4} [75, 78], [90, 97]

In distributed IOC problems, we consider N = 5 processors in a network cooperatively

solve the weights ω. For each processor, its neighbors are listed in Table 2.4 , and the time

intervals of the trajectory segments observed by each processor are also shown in Table 2.4 .

For each trajectory segment, the processor i checks its IOC-effectiveness by Definition 2.5.1 

before integrating it to the matrix R(Si). It shows that all trajectory segments in Table 2.4 

are effective. Here, we note that although the segments by Processors 2 and 4 each only has

length of 1 (i.e., only two trajectory points), which just reaches the necessary lower bound

length t̄ − t = 1, they are IOC-effective (obviously they cannot suffice to determine the

weights alone, as shown in the previous simulation). This indicates the mild requirement of

the effectiveness condition (2.87 ).
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Figure 2.15. Error index eω versus iteration k.

Each processor i (1 ≤ i ≤ 5) generates R(Si). Then we apply the proposed distributed

IOC approach in Theorem 2.5.2 to let all processors collaboratively solve the weights, given

an random initial guess of the states for each processor. To quantify recovery accuracy, we

define the following error

eω = 1
N

∑N

i=1‖ωi − ω‖
2
2. (2.107)

We plot the error versus iteration in Fig. 2.15 , from which we conclude that the weights

of each processor exponentially converge to the true ω = [1, 5, 4, 1]′. At 3 × 104th iter-

ation, eω = 4.1072× 10−6, and the average weights for all processors are ∑5
i=1ωi/5 =

[1.0000 4.998 3.999 1.000]′, which shows the effectiveness of the proposed method.

2.6 Applications

This section presents the applications of the previous developed IOC techniques in human

motion analysis. A well-justified assumption is that human motor control follows certain

optimality [17 , 56 ], and a common practice in biological movement and behavioral studies is

to use optimal control models to characterize human motor control (see [16 ] for an overview of

related work). Under such assumption, in this section, we use the IOC techniques developed

in the previous sections to perform human motion segmentation and prediction.
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2.6.1 Human Motion Segmentation

The first part of this section focuses on the application of human motion segmentation.

We segment a consecutive human motion trajectory into different phases by identifying the

different cost functions underlying the motion. Here, we apply the multi-phase objective

IOC technique developed in Section 2.4 , which enables to identify cost functions of different

motion phases and also estimate the phase transition points.

Data Collection

We apply the multi-phase objective IOC technique developed in Section 2.4 to a human

motion dataset. We choose the human squat motion [57 ] (Fig. 2.16a ) as it is a common and

full-body exercise studied in both athletics and rehabilitation [58 ]. The squat dataset was

collected from 6 (5M, 1F, µage = 26.2) healthy participants. Each participant performed

15 squats (Fig. 2.16a ) in 3 sets, with 5 repetitions in each set. All squats are recorded

in a single recording via the motion capture system, where an 80-marker model was used,

providing Cartesian positions. Joint angles were then computed via inverse kinematics [57 ]

and converted to a 3 DOF planar model, as shown in Fig. 2.16a , corresponding to qankle,

qknee, and qhip. The motion capture system has a sampling rate ∆ = 0.01s. The obtained

joint trajectories were smoothed by a moving Savitzky-Golay filter [59 ] (span 2s and degree

10). This allows to suppress noise and compute smooth trajectory derivatives. The joint

velocity and acceleration are then computed by numerical differentiation. Fig. 2.16b plots

the joint trajectories for a sample participant.

Body Dynamics Model and Feature Selection

As shown in Fig. 2.16a , the human body is modeled as a 3DOF (ankle-knee-hip joints)

fixed-base articulated system. The dynamics of the modeled human body [28 ] is given by

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ , (2.108)
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(a) A repetition of squat motion[28 ].
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(b) Joint trajectory of 15 squats.

Figure 2.16. Squat exercise and a sample trajectory for 15 squats.
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(a) 15 squats by Participant 1.
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(b) 5 squats by Participant 3.
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(c) 5 squats by Participant 5.

Figure 2.17. Multiphase cost function recovery for three sample participants.
Joint trajectory (filtered) of each participant is plotted in first row: (a) 15
squats in 3 sets by Participant 1; (b) one 5-squat set by Participant 3; and
(c) one 5-squat set by Participant 5. The corresponding recovery results are
shown below respectively, where ω̂1, ω̂2, and ω̂3 are the cost weights for the
acceleration φ1, joint jerk φ2, and power φ3 in Table 2.5 , respectively.

where q = [qankle, qknee, qhip]′ is the joint angle vector; M(q) ∈ R3×3 is the inertia matrix;

C(q, q̇) ∈ R3×3 is the Coriolis matrix; g(q) ∈ R3 is the gravity vector; and τ ∈ R3 are the

torques generated by each joint. The anthropometrics parameters [60 ] are used in (2.108 ).
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The torques (trajectories) are computed from (2.108 ). We represent (2.108 ) in state-space

form ẋ = f(x,u) with the state x and input u defined as

x =
[
q′, q̇′

]′
and u = τ , (2.109)

respectively, and then discretize it into xk+1 = xk + ∆ · f(xk,uk+1) with the discretization

interval ∆ = 0.01s (i.e. sampling rate of the motion capture system).

The unit feature vector φ in this experiment is chosen based on the previous work [28 ],

where the following features in Table 2.5 were demonstrated to play significant roles in human

squat motion [28 ]. Thus, φ = [φ1, φ2, φ3]′.

Table 2.5. The selected features for human motion segmentation [28 ]
Criterion Feature function (φi)

Joint acceleration φ1 = ∑3
i=1 q̈

2
i

Joint jerk φ2 = ∑3
i=1

...
q2
i

Joint power φ3 = ∑3
i=1(τiq̇i)2

q1, q2, and q3 correspond to qankle, qknee, and qhip, respectively.

Recovery Results

Note that for each participant, all 15 squats are in a single recording and we apply the

proposed method on the trajectory without manual segmentation. In Algorithm 2 , following

the rules given in Section V.A.3, we set γ = 6 (as described before, the value of γ in practice

is always smaller because of the imperfection of union feature set selection); since in each

motion set (around 6s) the number of phases is estimated around 10, we set lmax = 60 (that

is, (6s)/10/(0.01s)).

We use the data from Participant 1 (P1), Participant 3 (P3), and Participant 5 (P5) as

examples to demonstrate the recovery results. In Fig. 2.17 , the joint trajectories of P1, P3,

and P5 are shown in the first row; here, we present the entire motion data (i.e. 3 sets and a

total of 15 squats) for P1 and only one set (5 squats) for P3 and P5 to show both overall and
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Table 2.6. Motion segmentation and multiphase cost function recovery for all
participants. Active-squat phases and between-squats phases are segmented
by ωth, and the corresponding segmentation accuracy is computed. Using suc-
cessful segmentations, the average cost weights for both phases are computed.
The results by the KKT method [28 ] are also compared.

Participant Average ω̂ for active-squat phases Average ω̂ for between-squats phases Segmentation accuracy [%]

ωth = 0.8 ωth = 0.9 ωth = 0.8 ωth = 0.9 ωth = 0.8 ωth = 0.9 KKT method [28 ]

1 [0.98, 0.00, 0.02] [0.98, 0.00, 0.01] [0.55, −0.01, 0.45] [0.61, −0.01, 0.40] 96.88% 96.88% 89.54%
2 [0.97, 0.00, 0.03] [0.98, 0.00, 0.02] [0.63, −0.01, 0.38] [0.69, −0.01, 0.32] 100.0% 100.0% 83.51%
3 [0.98, 0.00 , 0.02] [0.99, 0.01, 0.00] [0.56, −0.01, 0.44] [0.63, −0.01, 0.38] 96.67% 96.67% 85.80%
4 [0.96, 0.00, 0.03] [0.98, 0.01, 0.01] [0.62, −0.01, 0.38] [0.70, −0.01, 0.31] 94.44% 100.0% 67.62%
5 [0.98, 0.00, 0.02] [0.98, 0.00, 0.01] [0.64, −0.01, 0.37] [0.65, −0.01, 0.36] 92.89% 93.33% 76.39%
6 [0.98, 0.01, 0.02] [0.98, 0.01, 0.01] [0.69, −0.01, 0.31] [0.73, −0.01, 0.27] 91.15% 90.00% 89.05%

local details of the recovery results. Corresponding to the motion data, the recovered cost

weights ω̂(t) are presented in the panels below; here, cost weight ω̂1, ω̂2, and ω̂3 correspond

to φ1, φ2, and φ3 in Table 2.5 , respectively. We have the following observations:

(a) Overall, Fig. 2.17a shows a reliable multiphase cost function recovery performance.

During each squat repetition (i.e. standing-squatting-standing in Fig. 2.16a ), the cost

weights ω̂(t) remain at the value around [1, 0, 0], which indicates that one squat belongs to

the same phase in terms of sharing the same cost function. Between two squats where a par-

ticipant is near (approaching) standing position, the weights change to (around) [0.6, 0, 0.4],

indicating that the participants switch to a different control strategy after finishing one

squat but before starting the next. Fig. 2.17a also shows that the cost weights in between

two motion sets (where the participants are in the standing position) are around [0.8, 0, 0.2].

(b) Recovery results in Fig. 2.17b and Fig. 2.17c show in more detail the changes of the

cost weights within a 5-squat set. Below, we use Fig. 2.17c for analysis. As labeled by the

dotted black (vertical) lines, we divide a squat repetition into two motion phases according

to different cost functions used:

• Active-Squat (AS): between the first and second dotted lines, during which the

participant is flexing hips and knees (to squatting position) and then extending

the hips and knees. The recovered results show that the control objective of this

phase is to minimize the joint acceleration φ1 (as both ω̂2 and ω̂3 are near zeros).
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• Between-Squats (BS): between the second and third dotted lines, during which

the participant is finishing the hip and knee extension from the previous active

squat and then preparing for next one. The cost function to be minimized for this

phase is (approximately) 0.6φ1 + 0.4φ3.

Segmentation Results

In order to automate the segmentation of the active-squat phase and the between-squats

phase in each motion set, we define a segmentation threshold ωth for ω̂1(t) (the most influential

weight), and then the segmentation is performed using the following rules: if ω̂1(t) > ωth;

the current phase is classified as active-squat; otherwise, as between-squats. We evaluate

the segmentation accuracy by
(
0.5 × ( TAS

TAS+FBS
+ TBS

TBS+FAS
)
)
[28 ], where TAS is the count of

the cases where a true active-squat phase is segmented into active-squat (True Positive);

TBS when a true between-squats phase is segmented into between-squats (True Negative),

FAS when a true active-squat phase is classified as between-squats (False Positive), and FBS
when a true between-squats phase is segmented into active-squat (False Negative).

The segmentation results for all participants are summarized in Table 2.6 . Here, two

thresholds ωth = 0.8 and ωth = 0.9 are used, and the average cost weights for active-squat

and between-squats are computed based on all successful segmentations. It can be seen that

the proposed method demonstrates a high reliability and accuracy in segmenting different

motion phases. The difference in the average cost weights of between-squats phase for two

thresholds is due to the fact that the actual period of a between-squats phase is small (Fig.

2.17c ), thus is more likely to be affected by segmentation threshold values.

Using ωth = 0.9, we summarize the average cost weights for active-squat and for between-

squats over all participants in Fig. 2.18a and 2.18b , respectively. It shows that all partici-

pants adopt a similar control policy in squat exercise: during active squat, participants focus

on minimizing the joint acceleration, while in between squats, they adopt a balanced control

policy minimizing both joint acceleration and power. This finding is consistent with previous

human motion studies [22 , 28 , 36 ].
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(b) Between-squats phase.

Figure 2.18. Recovery results over all participants for active-squat and
between-squats phases. Bars denote the mean cost weights, and top line seg-
ments denote the standard deviation.

For comparison, we also perform the motion segmentation using the KKT method [28 ],

as shown in Table 2.5 . The proposed method can achieve a segmentation accuracy above

90%, which is higher than that of the KKT method [28 ] with average accuracy 81.99%.

Result Validation

To validate the recovery and segmentation results, we simulate the trajectory of each

segmented phase by solving the optimal control problem based on the recovered cost func-

tions. Considering the consistency of the recovery among different squat repetitions (Fig.

2.17 ) and different participants (Fig. 2.18 ), we just use one squat repetition of a sample

participant for illustration. We consider one squat repetition performed by Participant 5 as

labeled by the black dotted lines in Fig. 2.17c . Under segmentation threshold ωth = 0.9, the

active-squat phase is from time 3.46s to 5.62s with the average cost weights [0.99, 0.00, 0.00]

(by averaging ω̂(t) within this active-squat phase), and the between-squats is from 5.62s to

6.33s with average cost weights [0.62,−0.01, 0.39]. We solve the optimal control problem

using these cost functions for both phases [51 ] and plot the results in Fig. 2.19 . The results

show that the simulated trajectory using the recovered cost functions fits well the real data,

indicating the validity of the recovered cost functions in reproducing squat motion.
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Figure 2.19. Simulated trajectory using the recovered multiphase cost func-
tions. Solid lines are real motion data (second squat repetition in Fig. 2.17c ):
red for the active-squat phase and yellow for the between-squats phase. Dotted
lines are the simulated motion: blue for the active-squat phase and brown for
the between-squats phase.

2.6.2 Human Motion Prediction

In this application, we will develop an on-the-fly human motion prediction approach

based on the incremental inverse optimal control method developed in Section 2.3 . Given

an observed ongoing human motion, the approach recovers the cost function from early

observations of the human motion and then predicts the remaining motion based on the

recovered cost function. The whole framework can be directly applied to predict a single

ongoing motion, as opposed to [27 , 61 , 62 ] which requires a dedicated offline process to learn

a prediction model a priori.

On-the-fly Human Motion Prediction Method

As shown in Fig. 2.20 , our human motion prediction framework consists of two stages.

The first stage is to apply the incremental IOC algorithm (Algorithm 1 ) to recover the

cost function (the unknown weights ω of a given feature vector φ ∈ R|F|) from the early

observations of the ongoing motion ξ0:Tc
; here the observation length Tc is determined by the
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minimal observation length, i.e., Tc = lmin(0). The second stage is to predict the remaining

trajectory using an optimal control planner with the obtained cost function, that is,

ξTc:T = arg min
{xTc:T ,uTc:T }

T∑
k=Tc

ω′φ(xk,uk)

s.t. ẋk = f(xk,uk) given xTc ,

xT = xgoal,

(2.110)

where we consider the total motion horizon T and goal state xgoal are given.

Figure 2.20. The paradigm of the on-the-fly human motion predication.

Data Collection

We still use the human squat exercise data, as shown in Fig. 2.16a . The squat exercise

data was collected from 10 (6 M, 4 F, µage = 23.8) participants [63 ] from the University

of Waterloo. All participants were healthy and had no lower body injuries for six months

prior to the data collection. The experiment was approved by the University of Waterloo

Research Ethics Board, and signed consent was obtained from all participants. Prior to the

data collection, the participants were verbally instructed on how to conduct exercise. Each

participant conducted squat exercise around 8 repetitions. The inverse kinematics computing

the joint angles from the Cartesian marker data were obtained using a Kalman filter estimator

[64 ]. The joint angles in each exercise are defined in Fig. 2.16a . The initially obtained

joint sequence for each motion was fitted using 5th order polynomials [28 ], which not only

suppressed capture noise but also provided smooth first-derivative (joint angular velocity)

and second-derivative (joint acceleration) trajectories. The trajectory sample time for all
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motions is 0.1s and the joint angular velocity and acceleration are obtained by numerical

differentiation.

Body Dynamics Model and Feature Selection

As shown in Fig. 2.16a , the human body is modeled as a 3 DoF (ankle-knee-hip joints)

fixed-base articulated system, with the dynamics model in (2.108 ) and state and input defined

in (2.109 ). The anthropometrics parameters [65 ] for each participant are generated according

to [60 ]. Since inverse optimal control requires the control inputs, the joint torques in each

motion are calculated via the body (inverse) dynamics. The features used for the motion

prediction is given in Table 2.7 .

Table 2.7. The selected features for human motion prediction.
Criterion Feature function (φi)

Joint acceleration φ1 = ∑T
k=1

∑n
i=1 q̈

2
i,k

Joint jerk φ2 = ∑T
k=1

∑n
i=1

...
q2
i,k

End-effector acceleration φ3 = ∑T
k=1(ẍ2

k + ÿ2
k)

Power φ4 = ∑T
k=1

∑n
i=1 (τiq̇i)2

q1, q2, and qn=3 correspond to qankle, qknee, and qhip, respectively.

Cost Function Recovery Stage

We choose Participant S1’s squat motion data to illustrate the cost function recovery.

The joint angle trajectories of 8 repetitions of S1’s squat motion are plotted in Fig. 2.21a .

For each trajectory in Fig. 2.21a , we perform incremental IOC by increasing the observation

length l from 1 to T while solving the weights via (2.53 ) and (2.54 ). The incremental recovery

results for all trajectories in Fig. 2.21a are shown in Fig. 2.21b , where κ is the rank index

(2.51 ) for the corresponding recovery matrix. From the incremental results in Fig. 2.21b ,

we note that the weights can be successfully recovered when the observation length reaches

16% of the entire horizon when κ ≥ 4. Thus, we set γ = 4 in Algorithm 1 to determine

the minimal required observation length lmin(0) = Tc throughout the following experiments.
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For all trajectories in Fig. 2.21a , the recovered weights recovered by applying Algorithm 1 

are summarized in Fig. 2.21c , where the bar bars denote their mean values and the red line

segments represent the standard deviations. From Fig. 2.21c , the recovered weights show a

good consistency over different repetitions.
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Figure 2.21. IOC results for one participant: (a) the trajectories of partic-
ipant S1’s squat trajectories over 8 repetitions; (b) incremental IOC results,
and κ is the rank index in (2.51 ); (c) summary of the recovered weights by ap-
plying Algorithm 1 with γ = 4: bars denote the mean values, top line segments
denote the standard deviation;

Motion Prediction Stage

Using the cost function obtained at the cost function recovery stage, we predict the

remaining motion trajectory by solving the optimal control problem in (2.110 ) while assuming

that the time horizon T and the goal state xgoal are known. In our experiment case, the goal

state xgoal = [π/2, 0, 0] (standing status), and T = 2 ≈ 2.4s.

We take one trajectory in Fig.2.21a for illustration. The minimal observation length

for the cost function recovery stage is Tc = 0.12s (given by Algorithm 1 with γ = 4), and

the recovered weights are ω = [0.33, 0.00, 0.35, 0.32]′. By solving (2.110 ), we generate the

trajectory from Tc to T and plot the results (green lines) in Fig. 2.22a and 2.22b . The actual

trajectory for the remaining motion is shown in red dash lines. The prediction results show

that the weights recovered by Algorithm 1 in the cost function recovery stage can achieve
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Figure 2.22. Motion prediction for one trajectory of Participant S1. The
red solid lines denote the trajectory segment used for IOC in the cost function
recovery stage; the red dash lines denote the human actual trajectory of the
remaining motion; the green lines are the predicted trajectory based on the
recovered cost function.

high accuracy of predicting the remaining human motion (the prediction error in (2.111 ) is

0.25).

Next, we will investigate the performance of the human prediction approach across differ-

ent participants. We use the squat motion data from the 10 participants with each conduct-

ing for around 8 repetitions. For each motion trajectory of each participant, Algorithm 1 is

used to recovered the cost function weights with γ = 4. Then based on the recovered cost

function, the trajectory data after the recovery convergence point is predicted by solving the

optimal control in (2.110 ). To evaluate the quality of a predicted trajectory with respect to

actual motion, we define the prediction error

e =
∑T
k=Tc
‖xpred

k − xactual
k ‖

T − Tc
, (2.111)

where Tc is the recovery convergence point; ‖ · ‖ is the l2 norm; xpred
k and xactual

k are the

predicted and captured states at the time k, respectively. Table 2.8 summarizes results for

each participant. From Table 2.8 , one can observe that (i) on average, the cost function

recovery stage needs 19.22% (i.e., Tc/T ) of the trajectory data to recover the weights; (ii)
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Table 2.8. Prediction results for human squat motions
Par. ω1 ω2 ω3 ω4 average Tc/T average e

S1 0.336±0.010 0.002±0.004 0.327±0.007 0.335±0.012 13.65% 0.264
S2 0.301±0.091 0.000±0.000 0.347±0.038 0.352±0.053 17.55% 0.306
S3 0.332±0.004 0.000±0.000 0.337±0.002 0.331±0.005 19.73% 0.317
S4 0.333±0.000 0.000±0.000 0.333±0.000 0.333±0.000 19.29% 0.272
S5 0.294±0.006 0.000±0.000 0.340±0.009 0.367±0.123 24.58% 0.268
S6 0.282±0.124 0.000±0.000 0.388±0.111 0.331±0.183 18.24% 0.511
S7 0.331±0.004 0.000±0.000 0.335±0.003 0.335±0.002 15.31% 0.407
S8 0.335±0.004 0.000±0.000 0.335±0.004 0.329±0.007 20.48% 0.455
S9 0.330±0.010 0.000±0.000 0.335±0.005 0.335±0.005 24.15% 0.312
S10 0.339±0.006 0.000±0.000 0.339±0.006 0.323±0.012 19.09% 0.176

Note that the weights in the table are computed using the minimal observation length Tc =
lmin(0).

the recovered cost function weights have small variation among different participants; and

(iii) on average, the motion prediction stage has the prediction error of 0.329. Those results

demonstrate the efficacy of the on-the-fly motion prediction approach.

2.7 Conclusions

In this chapter, we have developed a series of new theories and approaches to addressing

the technical gaps in existing IOC techniques towards efficient objective learning. First, we

introduce the concept of the recovery matrix and present its proprieties and relationship to

solving IOC. Based on the recovery matrix, we present the incremental IOC method to enable

learning an objective function by finding the minimal observations. Next, we present the IOC

method for learning multi-phase objective functions. Then, we develop a distribution IOC

approach to enable efficient objective learning in the case where both data and computation

are distributed. Finally, we present some novel applications of the developed IOC techniques,

including human motion segmentation and on-the-fly human motion prediction.
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3. PONTRYAGIN DIFFERENTIABLE PROGRAMMING

In Chapter 1 , we characterize an autonomous robot as a decision-making system (agent)

consisting of the aspects of task objective, dynamics, and policies, as in Fig. 1.1 . Many ma-

chine learning and control topics have been focused on how to automate the programming

of different aspects of a decision-making system. Recently, both fields have begun to explore

the complementary benefits of each other: control theory may provide abundant models

and structures that allow for efficient or certificated algorithms for high-dimensional tasks,

while learning enables to obtain these models from data, which are otherwise not readily

attainable via classic control tools. Examples that enjoy both benefits include model-based

reinforcement learning [66 , 67 ], where dynamics models are used for sample efficiency; and

Koopman-operator control [68 , 69 ], where via learning, nonlinear systems are lifted to a

linear observable space to facilitate control design. Inspired by those, this chapter aims

to exploit the advantage of integrating learning and control to develop a Pontryagin Dif-

ferentiable Programming (PDP) methodology – a unified end-to-end framework capable of

efficiently solving a wide range of learning and control problems. The content of this chap-

ter appears in [35 ]. The code and experiments developed for this chapter is available at

https://github.com/wanxinjin/Pontryagin-Differentiable-Programming .

3.1 Introduction and Background

While both machine learning and control communities are working towards higher robot

autonomy, method developments in both fields seem largely disjoint, as listed below.

Table 3.1. Topic connections between control theory and machine learning
UNKNOWNS IN A SYSTEM MACHINE LEARNING CONTROL METHODS

Dynamics xt+1=fθ(xt,ut) Markov decision processes System identification
Policy ut = πθ(t,xt) Reinforcement learning (RL) Optimal control (OC)
Control objective J=∑

t cθ(xt,ut) Inverse RL Inverse OC

Learning Dynamics. This is usually referred as to as system identification in the

control field, which typically considers linear systems represented by transfer functions [10 ].
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For nonlinear systems, the Koopman theory [70 ] provides a way to lift states to a linear

observable space [68 , 71 ]. In machine learning, dynamics is characterized by Markov decision

proceses and implemented using linear regression [72 ], observation-transition modeling [73 ],

latent-space modeling [74 ], (deep) neural networks [75 ], Gaussian process [5 ], transition

graphs [76 ], etc. Most of these methods need to trade off between data efficiency and long-

term prediction accuracy. Towards achieving both, physically-informed learning [77 , 78 , 79 ,

80 ] injects physics laws into learning models, but they mainly focus on mechanical systems.

Recently, a trend of work starts to use dynamical systems to explain (deep) neural networks,

and some new algorithms [9 , 81 , 82 , 83 , 84 , 85 , 86 , 87 ] have been proposed.

Learning Optimal Polices. In machine learning, it relates to reinforcement learning

(RL). Model-free RL provides a general-purpose framework to learn policies directly from

interacting with environments [88 , 89 , 90 ], but usually suffers from high data complexity.

Model-based RL [91 , 92 ] focuses on first learning a dynamics model from experience and

then integrating such model to policy improvement. Specifically, the learned model can be

used for generating (simulating) the experience data [93 , 94 ], performing back-propagation

through time [5 ], or testing before deployment. Many studies [5 , 66 , 74 , 95 , 96 , 97 , 98 ] have

shown that model-based RL is generally more data- and computation- efficient than model-

free RL. Some challenges are still not well-addressed in existing model-based RL techniques

[91 ]. For example, how to efficiently leverage imperfect models [6 ], and how to maximize the

joint benefit by combining policy learning and motion planning [97 , 99 ], where a policy has

the advantage of execution coherence and fast deployment while the trajectory planning has

the competence of adaption to unseen or future situations.

The counterpart topic in the control field is optimal control (OC), which is more con-

cerned with characterizing optimal trajectories in presence of dynamics models. As in RL,

the main strategy for OC is based on dynamic programming, and many valued-based meth-

ods are available, such as HJB [100 ], differential dynamical programming (DDP) [101 ] (by

quadratizing dynamics and value function), and iterative linear quadratic regulator (iLQR)

[7 ] (by linearizing dynamics and quadratizing value function). The second strategy to solve

OC is based on the Pontryagin’s Maximum/Minimal Principle (PMP) [44 ]. Derived from

calculus of variations, PMP can be thought of as optimizing directly over trajectories, thus
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avoiding solving for value functions. Popular methods in this vein include shooting methods

[102 ] and collocation methods [51 ]. OC methods based on PMP are essentially open loop

control and thus susceptible to model errors or disturbances in deployment. To address these,

model predictive control (MPC) [103 ] generates controls given the system current state by

repeatedly solving an OC problem over a finite prediction horizon (only the first optimal

input is executed), leading to a closed-loop control strategy. Although MPC has dominated

across many industrial applications [104 ], developing fast MPC implementations is still an

active research direction [105 ].

Learning Control Objective Functions. In machine learning, this relates to inverse

reinforcement learning (IRL), whose goal is to find a control objective function to explain the

given optimal demonstrations. The unknown objective function is typically parameterized

as a weighted sum of features [29 , 32 , 33 ]. Strategies to learn the unknown weights include

feature matching [32 ] (matching the feature values between demonstrations and reproduced

trajectories), maximum entropy [29 ] (finding a trajectory distribution of maximum entropy

subject to empirical feature values), and maximum margin [33 ] (maximizing the margin of

objective values between demonstrations and reproduced trajectories). The learning update

in the above IRL methods is preformed on a selected feature space by taking advantage

of linearity in feature weights, and thus cannot be directly applied to learning objective

functions that are nonlinear in parameters. The counterpart topic in the control field is

inverse optimal control (IOC) [11 , 12 , 22 , 40 ]. With knowledge of system dynamics models,

IOC focuses on more efficient learning paradigms. For example, by minimizing the viola-

tion of optimality conditions by the observed demonstration data, [11 , 12 , 34 , 40 ] directly

compute feature weights without repetitively solving the OC problems. Despite the effi-

ciency, minimizing optimality violation does not directly assure the closeness between the

final reproduced trajectory and the observed demonstrations.

Unified Perspective to Look at Learning Dynamics/Policy/Objective. Consider

a decision-making agent that consists of aspects of dynamics, control policy, and control

objective function. In a unified perspective, learning dynamics, policies, or control objective

functions can be viewed as the instantiations of the same learning problem but with (i)
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different unknown (parameterized) aspects and (ii) different losses. For example, for learning

dynamics, a differential/difference equation is parameterized and the loss function can be

defined as the prediction error between the model output and physical data; for learning

policies, the unknown parameters are in a feedback policy and the loss function is just the

control objective function; and for learning control objective, the control objective function is

parameterized and the loss function can be the discrepancy between the reproduced optimal

trajectory and the observed demonstrations. This unified perspective will motivate the

formulation of PDP in Section 3.4 .

3.2 Contributions of PDP

This chapter develops an end-to-end learning framework, named as Pontryagin Differen-

tiable Programming (PDP), that is flexible enough to be customized for different learning

and control tasks and capable enough to efficiently solve high-dimensional and continuous-

space problems. The proposed PDP framework borrows the idea of ‘end-to-end’ learning

[106 ] and chooses to optimize a loss function directly with respect to the tunable parameters

in the aspect(s) of an optimal control system, including the dynamics, policy, or/and control

objective function. The key contribution of the PDP is that we inject the optimal control

theory as an inductive bias into the learning process to expedite the learning efficiency.

Specifically, the PDP framework centers around the system’s trajectory and differentiates

the trajectory through Pontryagin Maximum/Minimum Principle, and this allows us to ob-

tain the analytical derivative of the trajectory with respect to the tunable parameters, a key

quantity for end-to-end learning of (neural) dynamics, (neural) policies, and (neural) control

objective functions. Furthermore, we introduce an auxiliary control system in backward pass

of the PDP framework, and its output trajectory is exactly the derivative of the trajectory

with respect to the parameters, which can be iteratively solved using standard control tools.

The PDP framework can be customized for solving different types of learning and control

problems. For each specialized application, we emphasize the advantage of PDP over existing

methods in Section 3.1 as below.
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• PDP has a special mode for learning dynamics. Compared to the system identifi-

cation techniques in control, PDP allows for learning nonlinear dynamics models—

either physical dynamics with unknown parameters or neural ordinary difference

equations; and second, compared to existing machine learning techniques, PDP

integrates the structures of optimal control theory into learning process, which

leads to improved data- and computation- efficiency, as shown later in Section

3.7 .

• PDP has a special mode for model-based policy optimization tasks. Such a mode

can be viewed as a complement to classic open-loop OC methods, because, al-

though derived from PMP (which is an open loop control strategy), PDP is able

to learn a feedback/closed-loop control policy. Depending on the specific policy

parameterization, PDP can also be used for motion planning. All these features

will provide new perspectives for model-based RL or MPC control.

• PDP has a special mode for IOC/IRL tasks. PDP addresses the technical gaps of

existing IOC/IRL techniques (see Section 3.1 ) and have the following advantages.

First, it enables to learn complex control objective functions, e.g., neural objective

functions. Second, it directly minimizes the distance between the reproduced tra-

jectory and given demonstrations; thus, even though the given demonstrations are

sub-optimal, PDP can still find a control objective function such that the repro-

duced trajectory has the closest distance to the demonstrations. Third, compared

to existing IOC/IRL techniques, PDP integrates the structure of optimal con-

trol theory into learning process, thus is more data- and computation- efficient,

especially for handling high-dimensional tasks, as shown later in Section 3.7 .

3.3 Related Work

3.3.1 End-to-End Differentiable Learning

Two lines of recent work in the machine learning field are related to PDP. One is the

recent work [107 , 108 , 109 , 110 , 111 ] that seeks to replace a layer within a deep neural
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network by an argmin layer, in order to capture the information flow characterized by a

solution of an optimization. Similar to the idea of PDP, these methods differentiate the

argmin layer through KKT conditions, but they are not directly applicable to dynamical

systems since these methods mainly deal with static optimization without time evolution.

The second line is the recent RL development [112 , 113 , 114 , 115 ] that embeds an implicit

planner within a policy. The idea is analogous to MPC, because predictive OC systems (i.e.,

embedded planner) leads to better adaption to unseen situations. The key problem in these

methods is to learn an OC system, which is similar to our formulation. We details their

difference from PDP below.

Path Integral Network. [112 ] and [113 ] develop a differentiable end-to-end frame-

work to learn path-integral optimal control systems [116 ], which are a special category of op-

timal control systems—dynamics is affine in control input and control objective is quadratic

in control input. This framework adopts the ‘unrolling’ strategy, which means that the for-

ward pass of solving optimal control is extended as a graph of multiple steps of applying

gradient descent, and the solution of optimal control is considered as the output of the final

step of the gradient descent operations. The advantage of this unrolling (gradient descent)

computational graph is that it can immediately apply automatic differentiation techniques

such as TensorFlow [117 ] to obtain the gradient in backward pass, but it needs to store and

traverse all intermediate results throughout the gradient descent steps, which can be both

memory- and computationally- expensive. We have provided its complexity comparison with

PDP later in Section 3.8.1 (see Table 3.3 ).

Universal Planning Network. In [115 ], the authors develop an end-to-end imitation

learning framework consisting of two layers: the inner layer is a planner, which is formulated

as an optimal control system in a latent space and is solved by gradient descent, and an

outer layer to minimize the imitation loss between the output of inner layer and expert

demonstrations. This framework is also based on the ‘unrolling’ strategy. Specifically, the

inner planning layer using gradient descent is considered as a large computation graph,

which chains together the sub-graphs of each step of gradient descent. In the backward pass,

the gradient derived from the outer layer back-propagates through the entire computation

graph. Similar to the previous Path Integral Network, this unrolled learning strategy will
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incur higher memory and computation costs in implementation. Please find its complexity

analysis in Table 3.3 in Section 3.8.1 

Different from the above ‘unrolling’ methods [112 , 113 , 115 , 118 ], PDP handles the

learning of optimal control systems in a ‘direct and compact’ manner. Specifically, in forward

pass, PDP only obtains and stores the final solution of the optimal control system and does

not care about the intermediate process of how such solution is obtained. Thus, the forward

pass of PDP accepts any external optimal control solver such as CasADi [50 ]. Using the

solution in the forward pass, PDP then automatically builds the auxiliary control system,

based on which, the exact analytical gradient is solved efficiently in backward pass. Such

features guarantee that the complexity of the PDP framework is only linearly scaled up to

the time horizon of the system, which is more efficient than the above ‘unrolling’ methods.

See the detailed analysis in Section 3.8.1 .

Differentiable MPC. [114 ] develops an end-to-end differentiable MPC framework to

jointly learn the system dynamics model and control objective function of an optimal control

system. In forward pass, it uses iLQR [7 ] to solve optimal control and find a fixed point, and

then approximates the optimal control system by a LQR at the fixed point. In backward

pass, the gradient is obtain by differentiating the LQR approximation. This process may

have two limitations: first, since the differentiation in backward pass is conducted on the

LQR approximation instead of on the original system, the obtained gradient thus may not

be accurate due to approximation discrepancy; and second, computing the gradient of the

LQR requires the inverse of a coefficient matrix of size T ×T with T the time horizon, which

can cause high computational cost when handling systems with longer time horizon T .

Compared to differentiable MPC, the first advantage of PDP is that the differentiation

in backward pass is directly performed on the parameterized optimal control system (by

differentiating through Pontryagin Maximum/Minimum Principle). Second, we develop the

auxiliary control system in backward pass, whose trajectory is exactly the gradient of the

system trajectory. The gradient then is iteratively solved using control tools with the com-

plexity onlyO(T ). Those proposed techniques enables the PDP to have significant advantage

in computational efficiency over differentiable MPC. To illustrate this, we will later compare

the algorithm complexity between PDP and differentiable MPC in Section 3.8.1 .
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3.3.2 Adaptive Control

The idea of PDP of automatically tuning a control system for a specific task is similar

to the idea of adaptive control techniques.

The general adaptive control design is to find an adaption rule for a system controller to

cope with the variations in environmental conditions and system itself [119 ]. One popular

adaptive control technique is the Model-Reference Adaptive Control (MRAC) [120 , 121 ], for

which the design goal is to force the controlled system to behave like a reference model by

adjusting the controller parameters. MRAC measures the error between the actual output of

the system and that of the reference model and then feed the error back to an adaption law

to modify the controller parameters [122 ]. The adaption law here can be the MIT rule [123 ,

124 ], where the idea is to decrease the distance between the actual output of the system and

that of the reference model at current time, or the Lyapunov Rule [125 ], which aims to make

the error dynamics stable and converge to zeros. The above adaptive control techniques

are fundamentally different from PDP in both problem formulation and methodologies, as

detailed below.

1) Different update mechanisms. Adaptive control is an online adaption mechanism in

a sense that the adjustment of the control parameters and the execution of the resulting

controlled system are synchronized and coupled; the goal of adaptive control is to guarantee

that the output error between the actual system and reference model converge to zeros as the

system execution time goes to infinity. Instead, PDP is an iterative learning mechanism—

PDP tunes system parameters by executing the optimal control system repetitively, and the

system parameters are updated only after the finish of each execution (i.e., each pass of time

horizon) and before the next one. At each update, PDP improves the system performance

based on the previous execution. Thus, PDP is not an online parameter tuning framework.

2) Different design goal. The goal of adaptive control is to guarantee the asymptotic

stability of the tracking error of the controlled system as it executes, and such stability

does not guarantee that the cumulative error between the system trajectory and reference

model trajectory over entire time horizon is minimal. Instead, the formulation of PDP is to

minimize the loss defined on the system trajectory over entire time horizon. Thus, adaptive
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control is more concerned about the ‘stability’ of the system tuning, while PDP focused on

the ‘optimality’ of system tuning.

3) Different tunable aspects. Adaptive control only focuses on tuning controller parame-

ters in a general (linear) closed-loop system, in order to achieve the desired performance of

the closed-loop system. The formulation of PDP focuses on tuning a general optimal control

system, where all aspects of the optimal control system can be set tunable, including system

dynamics, control policies, and control objective functions. Therefore, in addition to tuning

control policies, PDP can be applied to tuning system dynamics (system identification ) and

control objective function (inverse optimal control), which cannot be achieved using adaptive

control techniques.

3.4 PDP Problem Formulation

We begin with formulating a base problem and then discuss how to accommodate the base

problem to specific applications. Consider a class of optimal control systems Σ(θ), which is

parameterized by a tunable θ ∈ Rr in both dynamics and control (cost) objective function:

Σ(θ) :
dynamics: xt+1 = f(xt,ut,θ) with given x0,

control objective: J(θ) =
∑T−1

t=0 ct(xt,ut,θ) + h(xT ,θ).
(3.1)

Here, xt ∈ Rn is the system state; ut ∈ Rm is the control input; f : Rn × Rm × Rr 7→ Rn

is the dynamics model, which is assumed to be twice-differentiable; t = 0, 1, · · · , T is the

time step with T being the time horizon; and J(θ) is the control objective function with

ct : Rn × Rm × Rr 7→ R and h : Rn × Rr 7→ R denoting the stage/running and final costs,

respectively, both of which are twice-differentiable. For a choice of θ, Σ(θ) will produce a

trajectory of state-inputs:

ξθ={xθ0:T ,u
θ
0:T−1} ∈ arg min{x0:T ,u0:T -1} J(θ)

subject to xt+1=f(xt,ut,θ) for all t given x0

, (3.2)

that is, ξθ optimizes J(θ) subject to the dynamics constraint f(θ). For many applications

(we will show next), one evaluates the above ξθ using a scalar-valued differentiable loss
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L(ξθ,θ). Then, the problem of interest is to tune the parameter θ, such that ξθ has the

minimal loss:

min
θ
L(ξθ,θ) subject to ξθ is in (3.2 ). (3.3)

Under the above base formulation, for a specific learning or control task, one only needs to

accordingly change precise details of Σ(θ) and define a specific loss function L(ξθ,θ), as we

discuss below.

IRL/IOC Mode. Suppose that we are given optimal demonstrations ξd = {xd
0:T ,u

d
0:T−1}

of an expert optimal control system. We seek to learn the expert’s dynamics and control

objective function from ξd. To this end, we use Σ(θ) in (3.1 ) to represent the expert, and

define the loss in (3.3 ) as

L(ξθ,θ) = l(ξθ, ξd), (3.4)

where l is a scalar function that penalizes the inconsistency of ξθ with ξd, e.g., l(ξθ, ξd) =

‖ξθ−ξd‖2. By solving (3.3 ) with (3.4 ), we can obtain a Σ(θ∗) whose trajectory is consistent

with the observed demonstrations. It should be noted that even if the demonstrations

ξd significantly deviate from the optimal ones, the above formulation still finds the ‘best’

control objective function (and dynamics) within the parameterized set Σ(θ) such that its

reproduced ξθ in (3.2 ) has the minimal distance to ξd.

SysID Mode. Suppose that we are given data ξo = {xo
0:T ,u0:T−1} collected from, say,

a physical system (here, unlike ξd, ξo is not necessarily optimal), and we wish to identify

the system’s dynamics. Here, u0:T−1 are usually externally supplied to ensure the physical

system is of persistent excitation [126 ]. In order for Σ(θ) in (3.1 ) to only represent dynamics

(as we do not care about its internal control law), we set J(θ) = 0. Then, ξθ in (3.2 ) accepts

any uθ0:T−1 = u0:T−1 as it always optimizes J(θ)=0. In other words, by setting J(θ) = 0,

Σ(θ) in (3.1 ) now only represents a class of dynamics models:
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Σ(θ) : dynamics: xt+1 = f(xt,ut,θ) with x0 and uθ0:T−1 = u0:T−1. (3.5)

Now, Σ(θ) produces ξθ = {xθ0:T ,u
θ
0:T−1} subject to (3.5 ). To use (3.3 ) for identifying θ, we

define

L(ξθ,θ) = l(ξθ, ξo), (3.6)

where l is to quantify the prediction error between ξo and ξθ under the same inputs u0:T−1.

Control/Planning Mode. Consider a system with its dynamics learned in the above

SysID. We want to obtain a feedback controller or trajectory such that the system achieves a

performance of minimizing a given cost function. To that end, we specialize Σ(θ) in (3.1 ) as

follows: first, set f as the learned dynamics and J(θ) = 0; and second, through a close-loop

link, we connect the input ut and state xt via a parameterized policy block ut = u(t,xt,θ)

(reminder: unlike SysID Mode with ut supplied externally, the inputs here are from a policy

via a feedback loop). Σ(θ) now becomes

Σ(θ) :
dynamics: xt+1 = f(xt,ut) with x0,

control policy: ut = u(t,xt,θ).
(3.7)

Now, Σ(θ) produces a trajectory ξθ = {xθ0:T ,u
θ
0:T−1} subject to (3.7 ). We set the loss in

(3.3 ) as

L(ξθ,θ) =
∑T−1

t=0 l(x
θ
t ,u

θ
t ) + lf (xθT ), (3.8)

where l and lf are the stage and final costs, respectively. Then, (3.3 ) is an optimal control

or planning problem: if ut=u(t,xt,θ) (i.e., feedback policy explicitly depends on xt), (3.3 )

is a model-based policy optimization problem; otherwise if ut=u(t,θ) (e.g., polynomial pa-

rameterization), (3.3 ) is an open-loop motion planning problem. This mode can also be used

as a component to solve (3.1 ) in IRL/IOC Mode.
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3.5 An End-to-End Learning Framework

To solve the generic problem in (3.3 ), the idea of end-to-end learning [106 ] seeks to
optimize the loss L(ξθ,θ) directly with respect to the tunable parameter θ, by applying the
gradient descent

θk+1 = θk − ηk
dL

dθ

∣∣∣
θk

with dL

dθ

∣∣∣
θk

= ∂L

∂ξ

∣∣∣
ξθk

∂ξθ
∂θ

∣∣∣
θk

+ ∂L

∂θ

∣∣∣
θk

. (3.9)

Here, k = 0, 1, · · · is the iteration index; dL
dθ

∣∣∣
θk

is the gradient of the loss with respect to θ

evaluated at θk; and ηk is the learning rate. From (3.9 ), we can draw a learning architecture

in Fig. 3.1 . Each update of θ consists of a forward pass, where at θk, the corresponding

trajectory ξθk
is solved from Σ(θk) and the loss is computed, and a backward pass, where

∂L
∂ξ

∣∣∣
ξθk

, ∂ξθ
∂θ

∣∣∣
θk

, and ∂L
∂θ

∣∣∣
θk

are computed.

In the forward pass, ξθ is obtained by solving an optimal control problem in Σ(θ) using

any available OC methods, such as iLQR or Control/Planning Mode, (note that in SysID

or Control/Planning modes, it is reduced to integrating difference equations (3.5 ) or (3.7 )).

In backward pass, ∂L
∂ξ

and ∂L
∂θ

are easily obtained from the loss function L(ξθ,θ). The main

challenge, however, is to solve ∂ξθ
∂θ

, i.e., the derivative of a trajectory with respect to the

parameters in the system. Next, we will analytically solve ∂ξθ
∂θ

by proposing two techniques:

differential PMP and auxiliary control system.

Loss

Auxiliary control system Chain rule

Update Parameterized control system
System trajectory

Figure 3.1. PDP end-to-end learning framework.

3.6 Key Contributions: Differential PMP & Auxiliary Control System

We first recall the discrete-time Pontryagin’s Maximum/Minimum Principle (PMP) [44 ].

For the optimal control system Σ(θ) in (3.1 ) with a fixed θ, PMP describes a set of optimality
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conditions which the trajectory ξθ = {xθ0:T ,u
θ
0:T−1} in (3.2 ) must satisfy. To introduce these

conditions, we first define the following Hamiltonian,

Ht = ct(xt,ut;θ) + f(xt,ut;θ)′λt+1, (3.10)

where λt ∈ Rn (t = 1, 2, · · · , T ) is called the costate variable, which can be also thought of

as the Lagrange multipliers for the dynamics constraints. According to PMP, there exists

a sequence of costates λθ1:T , which together with the optimal trajectory ξθ = {xθ0:T ,u
θ
0:T−1}

satisfy

dynamics equation: xθt+1 = ∂Ht

∂λθt+1
= f(xθt ,uθt ;θ), (3.11a)

costate equation: λθt = ∂Ht

∂xθt
= ∂ct

∂xθt
+ ∂f ′

∂xθt
λθt+1, (3.11b)

input equation: 0 = ∂Ht

∂uθt
= ∂ct

∂uθt
+ ∂f ′

∂uθt
λθt+1, (3.11c)

boundary conditions: λθT = ∂h

∂xθT
, xθ0 = x0. (3.11d)

For notation simplicity, ∂g
∂xt

means the derivative of function g(x) with respect to x evaluated

at xt.

3.6.1 Differential PMP

To begin, recall that our goal (in Section 3.5 ) is to obtain ∂ξθ
∂θ

, that is,

∂ξθ
∂θ

=
{
∂xθ0:T
∂θ

,
∂uθ0:T−1
∂θ

}
. (3.12)
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To this end, we are motivated to differentiate the PMP conditions in (3.11 ) on both sides

with respect to θ. This leads to the following differential PMP:

differential dynamics equation: ∂xθt+1
∂θ

= Ft
∂xθt
∂θ

+Gt
∂uθt
∂θ

+ Et, (3.13a)

differential costate equation: ∂λθt
∂θ

= Hxx
t

∂xθt
∂θ

+Hxu
t

∂uθt
∂θ

+ F ′t
∂λθt+1
∂θ

+Hxe
t , (3.13b)

differential input equation: 0 = Hux
t

∂xθt
∂θ

+Huu
t

∂uθt
∂θ

+G′t
∂λθt+1
∂θ

+Hue
t , (3.13c)

differential boundary: ∂λθT
∂θ

= Hxx
T

∂xθT
∂θ

+Hxe
T ,

∂xθ0
∂θ

= ∂x0
∂θ

= 0. (3.13d)

Here, to simplify notations and distinguish knowns and unknowns, the coefficient matrices
in the above differential PMP (3.13 ) are defined as follows:

Ft=
∂f

∂xθt
, Gt=

∂f

∂uθt
, Hxx

t = ∂2Ht

∂xθt ∂x
θ
t

, Hxe
t = ∂2Ht

∂xθt ∂θ
, Hxu

t = ∂2Ht

∂xθt ∂u
θ
t

=(Hux
t )′, (3.14a)

Et=
∂f

∂θ
, Huu

t = ∂2Ht

∂uθt ∂u
θ
t

, Hue
t = ∂2Ht

∂uθt ∂θ
, Hxx

T = ∂2h

∂xθT∂x
θ
T

, Hxe
T = ∂2h

∂xθT∂θ
, (3.14b)

where we use ∂2g
∂xt∂ut

to denote the second-order derivative of a function g(x,u) evaluated

at (xt,ut). Since the trajectory ξθ = {xθ0:T ,u
θ
0:T−1} is obtained in the forward pass (recall

Fig. 3.1 ), all matrices in (3.14 ) are thus known (note that the computation of these matrices

also requires λθ1:T , which can be obtained by iteratively solving (3.11b ) and (3.11d ) given

ξθ). From the differential PMP in (3.13 ), we note that to obtain ∂ξθ
∂θ

in (3.12 ), it is sufficient

to compute the unknowns
{
∂xθ0:T
∂θ

,
∂xθ0:T−1
∂θ

,
∂λθ1:T
∂θ

}
in (3.13 ). Next we will show that how these

unknowns are elegantly solved by introducing a new system.

3.6.2 Auxiliary Control System

One important observation to the differential PMP in (3.13 ) is that it shares a similar

structure to the original PMP in (3.11 ); so it can be viewed as a new set of PMP equations

corresponding to an ‘oracle control optimal system’ whose the ‘optimal trajectory’ is exactly

(3.12 ). This motivates us to ‘unearth’ this oracle optimal control system, because by doing
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so, (3.12 ) can be obtained from this oracle system by an OC solver. To this end, we first

define the new ‘state’ and ’control’ (matrix) variables:

Xt = ∂xt
∂θ
∈ Rn×r, Ut = ∂ut

∂θ
∈ Rm×r, (3.15)

respectively. Then, we ‘artificially’ define the following auxiliary control system Σ(ξθ):

Σ(ξθ) :

dynamics: Xt+1 = FtXt +GtUt + Et with X0 = 0,

control objective: J̄ = Tr
T−1∑
t=0

(
1
2

Xt

Ut


′ Hxx

t Hxu
t

Hux
t Huu

t


Xt

Ut

+

Hxe
t

Hue
t


′ Xt

Ut


)

+ Tr
(1

2X
′
T H

xx
T UT + (Hxe

T )′XT

)
.

(3.16)

Here, X0 = ∂x0
∂θ

= 0 because x0 in (3.1 ) is given; J̄ is the defined control objective function

which needs to be optimized in the auxiliary control system; and Tr denotes matrix trace.

Before presenting the key results, we make some comments on the above auxiliary control

system Σ(ξθ). First, its state and control variables are both matrix variables defined in

(3.15 ). Second, its dynamics is linear and control objective function J̄ is quadratic, for which

the coefficient matrices are given in (3.14 ). Third, its dynamics and objective function are

determined by the trajectory ξθ of the system Σ(θ) in forward pass, and this is why we

denote it as Σ(ξθ). Finally, we have the following important result.

Lemma 3.6.1. Let {Xθ
0:T , U

θ
0:T−1} be a stationary solution to the auxiliary control system

Σ(ξθ) in (3.16 ). Then, {Xθ
0:T , U

θ
0:T−1} satisfies Pontryagin’s Maximum Principle of Σ(ξθ),

which is (3.13 ), and

{Xθ
0:T , U

θ
0:T−1} =

{
∂xθ0:T
∂θ

,
∂uθ0:T−1
∂θ

}
= ∂ξθ

∂θ
. (3.17)
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Proof. To prove Lemma 3.6.1 , we just need to show that the Pontryagin’s Maximum Principle

for the auxiliary control system Σ(ξθ) in (3.16 ) is exactly the differential PMP in (3.13 ). To

this end, we define the following Hamiltonian for the auxiliary control system Σ(ξθ):

H̄t = Tr

1
2


Xt

Ut


′ 
Hxx
t Hxu

t

Hux
t Huu

t



Xt

Ut

+


Hxe
t

Hue
t


′ 
Xt

Ut


)

+ Tr
(
Λ′t+1(FtXt +GtUt + Et)

)
, (3.18)

with t = 0, 1, · · · , T − 1. Here Λt+1 ∈ Rn×r denotes the costate (matrix) variables for the

auxiliary control system. Based on Section 3 in [127 ], there exists a sequence of costates

Λθ1:T , which together the stationary solution {Xθ
0:T , U

θ
0:T−1} to the auxiliary control system

must satisfy the following the matrix version of PMP (we here follow the notation style used

in (3.11 )).

The dynamics equation:

∂H̄t

∂Λθt+1
=
∂ Tr

(
Λ′t+1(FtXt +GtUt + Et)

)
∂Λt+1

∣∣∣∣∣Λt+1=Λθt+1
Xt=Xθt
Ut=Uθt

= FtX
θ
t +GtU

θ
t + Et = 0. (3.19a)

The costate equation:

∂H̄t

∂Xθ
t

=
∂ Tr (1

2X
′
tH

xx
t Xt) + ∂ Tr (U ′tHux

t Xt) + ∂ Tr (Hex
t Xt) + ∂ Tr (Λ′t+1FtXt)

∂Xt

∣∣∣∣∣Λt+1=Λθt+1
Xt=Xθt
Ut=Uθt

= Hxx
t Xθ

t +Hxu
t Uθt +Hxe

t + F ′tΛθt+1 = Λθt . (3.19b)

Input equation:

∂H̄t

∂Uθt
=
∂ Tr (1

2U
′
tH

uu
t Ut) + ∂ Tr (U ′tHux

t Xt) + ∂ Tr (Heu
t Ut) + ∂ Tr (Λ′t+1GtUt)

∂Ut

∣∣∣∣∣Λt+1=Λθt+1
Xt=Xθt
Ut=Uθt

= Huu
t Uθt +Hux

t Xθ
t +Hue

t +G′tΛθt+1 = 0. (3.19c)

And boundary conditions:

ΛθT =
∂ Tr(1

2X
′
TH

xx
T XT ) + ∂ Tr((Hxe

T )′XT )
∂XT

∣∣∣∣∣
XT =XθT

= Hxx
T Xθ

T +Hxe
T , (3.19d)
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and Xθ
0 = 0. Note that in the above derivations, we used the following matrix calculus [127 ]:

∂ Tr(AB)
∂A

= B′,
∂f(A)
∂A′

=
[
∂f(A)
∂A

]′
,

∂ Tr(X ′HX)
∂X

= HX +H ′X, (3.20)

and the following matrix trace properties:

Tr(A) = Tr(A′), Tr(ABC) = Tr(BCA) = Tr(CAB), Tr(A+B) = Tr(A) + Tr(B).

(3.21)

Since the above obtained PMP equations (3.19 ) are the same with the differential PMP

in (3.13 ), we thus can conclude that the Pontryagin’s Maximum Principle of the auxiliary

control system Σ(ξθ) in (3.16 ) is exactly the differential PMP equations (3.13 ), and thus

(3.17 ) holds. This completes the proof.

Lemma 3.6.1 states two assertions. First, the PMP condition for the auxiliary control

system Σ(ξθ) is exactly the differential PMP in (3.13 ) for the original system Σ(θ); and

second, importantly, the trajectory {Xθ
0:T , U

θ
0:T−1} produced by the auxiliary control system

Σ(ξθ) is exactly the derivative of trajectory of the original system Σ(θ) with respect to the

parameter θ. Based on Lemma 3.6.1 , we can obtain ∂ξθ
∂θ

from Σ(ξθ) efficiently by the lemma

below.

Lemma 3.6.2. If Huu
t in (3.16 ) is invertible for all t = 0, 1 · · · , T − 1, define the following

recursions

Pt = Qt + A′t(I + Pt+1Rt)−1Pt+1At, (3.22a)

Wt = A′t(I + Pt+1Rt)−1(Wt+1+P t+1Mt) +Nt, (3.22b)

with PT = Hxx
T and WT = Hxe

T . Here, I is identity matrix, At=Ft − Gt(Huu
t )-1Hux

t , Rt =
Gt(Huu

t )-1G′t,Mt=Et−Gt(Huu
t )-1Hue

t , Qt=Hxx
t −Hxu

t (Huu
t )-1Hux

t , Nt=Hxe
t −Hxu

t (Huu
t )-1Hue

t are
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all known given (3.14 ). Then, the stationary solution {Xθ
0:T , U

θ
0:T−1} in (3.17 ) can be obtained

by iteratively solving the following equations from t = 0 to T − 1 with Xθ
0 = X0 = 0:

Uθt = −(Huu
t )-1

(
Hux
t Xθ

t +Hue
t +Gt

′(I + Pt+1Rt)−1
(
Pt+1AtX

θ
t + Pt+1Mt +Wt+1

))
, (3.23a)

Xθ
t+1 = FtX

θ
t +GtU

θ
t + Et. (3.23b)

Proof. Based on Lemma 3.6.1 and its proof, we known that the PMP of the auxiliary control

system, (3.19 ), is exactly the differential PMP equations (3.13 ). Thus below, we only look at

the differential PMP equations in (3.19 ). From (3.19c ), we solve for Uθt (if Huu
t invertible):

Uθt = −(Huu
t )−1

(
Hux
t Xθ

t +G′tΛθt+1 +Hue
t

)
. (3.24)

By substituting (3.24 ) into (3.19a ) and (3.19b ), respectively, and considering the definitions

of matrices At, Rt,Mt, Qt and Nt in (3.22 ), we have

Xθ
t+1 = AtX

θ
t −RtΛθt+1 +Mt, (3.25)

Λθt = QtX
θ
t + A′tΛθt+1 +Nt, (3.26)

for t = 0, 1, . . . , T − 1, and also the boundary condition in (3.19d )

ΛθT = Hxx
T Xθ

T +Hxe
T ,

for t = T . Next, we prove that there exist matrices Pt and Wt such that

Λθt = PtX
θ
t +Wt. (3.27)

Proof by induction: (3.19d ) shows that (3.27 ) holds for t = T if PT = Hxx
T and WT = Hxe

T .

Assume (3.27 ) holds for t+ 1, then by manipulating (3.25 ) and (3.26 ), we have

Λθt =
(
Qt + A′t(I + Pt+1Rt)−1Pt+1At

)
︸ ︷︷ ︸

Pt

Xθ
t + A′t(I + Pt+1Rt)−1(Wt+1+P t+1Mt) +Nt︸ ︷︷ ︸

Wt

, (3.28)
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which indicates (3.27 ) holds for t, if Pt and Wt satisfy (3.22a ) and (3.22b ), respectively.

Substituting (3.27 ) to (3.26 ) and also considering (3.24 ) will lead to (3.23a ). (3.23b ) directly

results from (3.19a ). We complete the proof.

Lemma 3.6.2 states that the trajectory of the above auxiliary control system Σ(ξθ) can be

obtained by two steps: first, iteratively solve (3.22 ) backward in time to obtain matrices Pt
andWt (all other coefficient matrices are known given Σ(ξθ)); second, calculate {Xθ

0:T , U
θ
0:T−1}

by iteratively integrating a feedback-control system (3.23 ) forward in time. In fact, these

two steps constitute the standard procedure to solve general finite-time LQR problems [128 ].

As a conclusion to the techniques developed in Section 3.6 , in Algorithm 3 we summarize

the procedure of computing ∂ξθ
∂θ via the introduced auxiliary control system. Algorithm 3 

serves as a key component in the backward pass of the PDP learning framework, as shown

in Fig. 3.1 .

Algorithm 3: Solving ∂ξθ
∂θ

using Auxiliary Control System
Input: the trajectory ξθ generated by the system Σ(θ)

Compute the coefficient matrices (3.14 ) to obtain the auxiliary control

system Σ(ξθ) in (3.16 );

def Auxiliary Control System Solver ( Σ(ξθ) ): . Lemma 3.6.2 

Set PT = Hxx
T and WT = Hxe

T ;

for t← T to 0 by −1 do

Update Pt and Wt using equations (3.22 ); . backward in time

end

Set Xθ
0 = 0;

for t← 0 to T by 1 do

Update Xθ
t and Uθt using equations (3.23 ); . forward in time

end

Return: {Xθ
0:T , U

θ
0:T−1}

Return: ∂ξθ
∂θ

= {Xθ
0:T , U

θ
0:T−1}
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3.7 Applications

We investigate three learning modes of PDP, as described in Section 3.4 . For each mode,

we demonstrate its capability in four environments listed in Table 3.2 . The environments are

described in Appendix A . For each application mode of PDP, a baseline and a state-of-the-art

learning/control methods are compared.

Table 3.2. Experimental environments
Systems Dynamics parameter θdyn Control objective θobj

Cartpole cart mass, pole mass and length
c=‖θ′obj(x− xg)‖2+‖u‖2
h = ‖θ′obj(x− xg)‖2

Two-link robot arm length and mass for each link
6-DoF quadrotor maneuvering mass, wing length, inertia matrix
6-DoF rocket powered landing mass, rocket length, inertia matrix

We fix the unit weight to ‖u‖2, because estimating all weights will incur ambiguity [40 ]; xg is the
goal state. Results for 6-DoF rocket landing is in Section 3.10 )

3.7.1 IRL/IOC Mode

Algorithm 4: Algorithm of PDP in IRL/IOC Mode
Data: Expert demonstrations {ξd}
Parameterization: The parameterized optimal control system Σ(θ) in (3.1 )
Loss: L(ξθ,θ) in (3.4 )
Initialization: θ0, learning rate {ηk}k=0,1,···
for k = 0, 1, 2, · · · do

Solve ξθk
from the optiaml control system Σ(θk) ; . using any OC solver

Obtain ∂ξθ
∂θ

∣∣∣
θk

using Algorithm 3 given ξθk
; . using Algorithm 3 

Obtain ∂L
∂ξ

∣∣∣
ξθk

from the given loss function L(ξθ,θ) ;

Apply the chain rule (3.9 ) to obtain dL
dθ

∣∣∣
θk

;

Update θk+1 ← θk − ηk dLdθ
∣∣∣
θk

;
end
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As formulated in Section 3.4 , in the IRL/IOC mode of PDP, the parameterized Σ(θ) is

in (3.1 ) and the loss in (3.4 ). In the forward pass of PDP, ξθ is solved from Σ(θ) by any

OC solver. In the backward pass, ∂ξθ
∂θ is computed from the auxiliary control system Σ(ξθ)

in (3.16 ) using Algorithm 3 . The full algorithm is depicted in Algorithm 4 .

Experiment: Imitation Learning. We use IRL/IOC Mode to solve imitation learn-

ing in environments in Table 3.2 . The true dynamics is parameterized, and control objective

is parameterized as a weighted distance to the goal, θ = {θdyn,θobj}. The dataset of ex-

pert demonstrations {ξd} is generated by solving an expert optimal control system with the

expert’s dynamics and control objective parameter θ∗ = {θ∗dyn,θ
∗
dyn} given. We generate

a number of five trajectories, where different trajectories ξd = {xd
0:T ,u

d
0:T−1} have differ-

ent initial conditions x0 and time horizons T (T ranges from 40 to 50). Set imitation loss

L(ξθ,θ)=‖ξd − ξθ‖2. Two other methods are compared: (i) neural policy cloning, and (ii)

inverse KKT [34 ]. We set learning rate η = 10−4 and run five trials given random initial

θ0. The results in Fig. 3.2a -3.2c show that PDP significantly outperforms the policy cloning

and inverse-KKT for a much lower training loss and faster convergence. In Fig. 3.2d , we

apply the PDP to learn a neural control objective function for the robot arm using the same

demonstration data in Fig. 3.2b , and we also compare with the GAIL [129 ]. Results in Fig.

3.2d show that the PDP successfully learns a neural objective function and the imitation loss

of PDP is much lower than that of GAIL. It should note that because the demonstrations

are not strictly realizable (optimal) under the parameterized neural objective function, the

final loss for the PDP is small but not zero. This indicates that given sub-optimal demon-

strations, PDP can still find the ‘best’ control objective function within the function set J(θ)

such that its reproduced ξθ has the minimal distance to the demonstrations. Please refer to

Section 3.10 for more experiment details and additional validations.

3.7.2 SysID Mode

In the SysID mode, Σ(θ) is (3.5 ) and loss is (3.6 ). PDP is greatly simplified: in forward

pass, ξθ is solved by integrating the difference equation (3.5 ). In the backward pass, Σ(ξθ)

is reduced to
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Figure 3.2. (a-c) imitation loss v.s. iteration, (d) PDP learns a neural objec-
tive function and comparison.

Σ(ξθ) : dynamics: Xθ
t+1 = FtX

θ
t + Et with X0 = 0. (3.29)

This is because Σ(θ) in (3.5 ) results from letting J(θ) = 0, (3.13b -3.13d ) and J̄ in (3.16 ) are

then trivialized, and due to u0:T−1 given, Uθt = 0 in (3.13a ). The algorithm is in Algorithm

5 .

Algorithm 5: Algorithm of PDP in SysID Mode
Data: Input-state data {ξo}
Parameterization: The parameterized dynamics model Σ(θ) in (3.5 )
Loss: L(ξθ,θ) in (3.6 )
Initialization: θ0, learning rate {ηk}k=0,1,···
for k = 0, 1, 2, · · · do

Obtain ξθk
by iteratively integrating Σ(θk) in (3.5 ) for t = 0, ..., T − 1;

Compute the coefficient matrices (3.14 ) to obtain the auxiliary control system
Σ(ξθ) in (3.29 );

Obtain ∂ξθ
∂θ

∣∣∣
θk

by iteratively integrating Σ(ξθk
) in (3.29 ) for t = 0, ..., T − 1;

Obtain ∂L
∂ξ

∣∣∣
ξθk

from the given loss function in (3.6 );

Apply the chain rule (3.9 ) to obtain dL
dθ

∣∣∣
θk

;

Update θk+1 ← θk − ηk dLdθ
∣∣∣
θk

;
end

Experiment: System Identification. We use the SysID Mode to identify the

dynamics parameter θdyn for the systems in Table 3.2 . We collect a total number of five

trajectories from systems (in Table 3.2 ) with dynamics known, wherein different trajectories
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ξo = {xo
0:T ,u0:T−1} have different initial conditions x0 and horizons T (T ranges from 10

to 20), with random inputs u0:T−1 drawn from uniform distribution. Set the SysID loss

L(ξθ,θ) = ‖ξo − ξθ‖2. Two other methods are compared: (i) learning a neural network

(NN) dynamics model, and (ii) DMDc [130 ]. For all methods, we set learning rate η = 10−4,

and run five trials with random θ0. The results are in Fig. 3.3 . Fig. 3.3a -3.3c show an

obvious advantage of PDP over the NN baseline and DMDc in terms of lower training loss

and faster convergence speed. In Fig. 3.3d , we compare PDP and Adam [131 ] (here both

with η = 10−5) for training the same neural dynamics model for the robot arm. The results

again show that PDP outperforms Adam for faster learning speed and lower training loss.

Such advantages are due to that PDP has injected an inductive bias of optimal control into

learning, making it more efficient for handling dynamical systems. More experiments and

validations are in Section 3.10 .
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Figure 3.3. (a-c) SysID loss v.s. iteration, (d) PDP learns a neural dynamics model.

3.7.3 Control/Planning Mode

The parameterized system Σ(θ) is (3.7 ) and loss is (3.8 ). PDP for this mode is also

simplified. In forward pass, ξθ is solved by integrating a (controlled) difference equation

(3.7 ). In backward pass, J̄ in the auxiliary control system (3.16 ) is trivialized because we

have considered J(θ) = 0 in (3.7 ). Since the control is now given by ut = u(t,xt,θ), Uθt is

obtained by differentiating the policy on both side with respect to θ, that is, Uθt = Ux
t X

θ
t +U e

t

with Ux
t = ∂ut

∂xt
and U e

t = ∂ut

∂θ
. Thus,
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Σ(ξθ) :
dynamics: Xθ

t+1 = FtX
θ
t +GtU

θ
t with X0 = 0,

control policy: Uθt = Uxt X
θ
t + U et .

(3.30)

Integrating the above auxiliary control system in (3.30 ) from t = 0 to T leads to {Xθ
0:T , U

θ
0:T−1} =

∂ξθ
∂θ . The whole algorithm is in Algorithm 6 .

Algorithm 6: Algorithm of PDP in Control/Planning Mode
Parameterization: The parameterized-policy system Σ(θ) in (3.7 )

Loss: L(ξθ,θ) in (3.8 )

Initialization: θ0, learning rate {ηk}k=0,1,···

for k = 0, 1, 2, · · · do

Obtain ξθk
by iteratively integrating Σ(θk) in (3.7 ) for t = 0, ..., T − 1;

Compute the coefficient matrices (3.14 ) to obtain the auxiliary control system

Σ(ξθ) in (3.30 );

Obtain ∂ξθ
∂θ

∣∣∣
θk

by iteratively integrating Σ(ξθk
) in (3.30 ) for t = 0, ..., T − 1;

Obtain ∂L
∂ξ

∣∣∣
ξθk

from the given loss function L(ξθ,θ) in (3.8 );

Apply the chain rule (3.9 ) to obtain dL
dθ

∣∣∣
θk

;

Update θk+1 ← θk − ηk dLdθ
∣∣∣
θk

;

end

Experiment: Control and Planning. Based on identified dynamics, we learn

policies of each system to optimize a control objective with given θobj. We set loss (3.8 )

as the control objective (below called control loss). To parameterize policy (3.7 ), we use a

Lagrange polynomial of degree N (for planning) or neural network (for feedback control).

iLQR [7 ] and guided policy search (GPS) [98 ] are compared. We set learning rate η=10−4

or 10−6 and run five trials for each system. Fig. 3.4a -3.4b are learning neural network

feedback policies for the cart-pole and robot arm, respectively. The results show that PDP

outperforms GPS for having lower control loss. Fig. 3.4c is motion planning for quadrotor

using a polynomial policy. It shows that PDP achieves a competitive performance with iLQR.
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Compared to iLQR, PDP minimizes over polynomial policies instead of input sequences, and

thus has a higher final loss which depends on the expressiveness of the polynomial: e.g., the

polynomial of degree N=35 has a lower loss than that of N=5. Since iLQR can be viewed

as ‘1.5-order’ method (discussed in Section 3.1 ), it has faster converging speed than PDP

which is only first-order, as shown in Fig. 3.4c . But iLQR is computationally extensive,

PDP, instead, has a huge advantage of running time, as illustrated in Fig. 3.4d . Due to

space constraint, we put detailed analysis between GPS and PDP in Section 3.10 .
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Figure 3.4. (a-c) control loss v.s. iteration, (d) comparison for running time
per iteration.

3.8 Discussion

3.8.1 Complexity of PDP

We consider the algorithm complexity of different learning modes of PDP, and suppose

that the time horizon of the parameterized system Σ(θ) is T .

IRL/IOC Mode (Algorithm 4 ): in forward pass, PDP needs to obtain and store the

optimal trajectory ξθ of the optimal control system Σ(θ) in (3.1 ), and this optimal trajectory

can be solved by any (external) optimal control solver. In backward pass, PDP first uses

ξθ to build the auxiliary control system Σ(ξθ) in (3.16 ) and then computes ∂ξθ
∂θ

by Lemma

3.6.2 , which takes 2T steps.

SysID Mode (Algorithm 5 ): in forward pass, PDP needs to obtain and store the trajectory

ξθ of the original dynamics system Σ(θ) in (3.5 ). Such trajectory is simply a result of iterative

integration of (3.5 ), which takes T steps. In backward pass, PDP first uses ξθ to build the
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auxiliary control system Σ(ξθ) in (3.29 ) and then computes ∂ξθ
∂θ

by iterative integration of

(3.29 ), which takes T steps.

Control/Planning Mode (Algorithm 6 ): in forward pass, PDP needs to obtain and store

the trajectory ξθ of the controlled system Σ(θ) in (3.7 ). Such trajectory is simply a result

of iterative integration of (3.7 ), which takes T steps. In backward pass, PDP first uses ξθ to

build an auxiliary control system Σ(ξθ) in (3.30 ) and then computes ∂ξθ
∂θ

by integration of

(3.30 ), which takes T steps.

Therefore, we can summarize that the memory- and computational- complexity for the

PDP framework is only linear to the time horizon T of the parameterized system Σ(θ). This

is significantly advantageous over existing end-to-end learning frameworks, as summarized

in Table 3.3 (discussed in Section 3.3.1 ).

Table 3.3. Complexity comparison for different end-to-end learning frameworks
Learning

frameworks

Forward pass Backward pass

Method and accuracy Complexity
(linear to) Method Complexity

(linear to)

PI-Net [112 ]
N -step unrolled graph
using gradient descent;
accuracy depends on N

computation: NT
memory: NT

Back-propagation over
the unrolled graph

computation: NT
memory: NT

UPN [115 ]
N -step unrolled graph
using gradient descent;
accuracy depends on N

computation: NT
memory: NT

Back-propagation over
the unrolled graph

computation: NT
memory: NT

Diff-MPC [114 ] iLQR finds fixed points;
can achieve any accuracy

computation: —
memory: T

Differentiate the LQR
approximation and
solve linear equations

computation: T 2

memory: T 2

PDP Accept any OC solver;
can achieve any accuracy

computation: —,
memory: T Auxiliary control system computation: T ,

memory: T
*Here T denotes the time horizon of the system; N (usually large) is the number of steps of

applying gradient descent until the convergence of the trajectory solution to the optimal control
problem.

In Fig. 3.5 , we have also compared the running time of PDP with that of differentiable

MPC [114 ]. Compared to differentiable MPC, the first advantage of the PDP framework

is that the differentiation in the backward pass is directly performed on the parameterized

optimal control system (by differentiating through PMP). Second, we develop the auxiliary

control system in the backward pass of PDP, whose trajectory is exactly the gradient of

the system trajectory in the forward pass. The gradient then is iteratively solved using the
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auxiliary control system by Lemma 3.6.2 (Algorithm 3 ). Those proposed techniques enables

the PDP to have significant advantage in computational efficiency over differentiable MPC.

To illustrate this, we have compare the algorithm complexity for both PDP and differentiable

MPC in Table 3.3 and provide an experiment in Fig. 3.5 .

Figure 3.5. Runtime (per iteration) comparison between the PDP and dif-
ferentiable MPC [114 ] for different time horizons of a pendulum system. Note
that y-axis is log-scale, and the runtime is averaged over 100 iterations. Both
methods are implemented in Python and run on the same machine using CPUs.
The results show that the PDP runs 1000x faster than differentiable MPC.

3.8.2 Convergence of PDP

PDP is a First-Order Method. We observe that (i) all gradient quantities in PDP

are analytical and exact; (ii) the development of PDP does not involve any second-order

derivative/approximation of functions or models (note that PMP is a first-order optimality

condition for optimal control); and (iii) PDP minimizes a loss function directly with respect

to unknown parameters in a system using gradient descent. Thus, we conclude that PDP

is a first-order gradient-descent based optimization framework. Specifically for the SysID

and Control/Planning modes of PDP, they are also first-order algorithms. When using these

modes to solve optimal control problems, this first-order nature may bring disadvantages

of PDP compared to high-order methods, such as iLQR which can be considered as 1.5-

order because it uses second-order derivative of a value function and first-order derivative of

dynamics, or DDP which is a second-order method as it uses the second-order derivatives of

both value function and dynamics. The disadvantages of PDP have already been empirically

shown in Fig. 3.4c , where the converging speed of PDP in its planning mode is slower than
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that of iLQR. For empirical comparisons between first- and second-order techniques, we refer

the reader to [132 ].

Convergence to Local Optima. Since PDP is a first-order gradient-descent based

algorithm, PDP can only achieve local minima for general non-convex optimization problems

in (3.3 ). Furthermore, we observe that the general problem in (3.3 ) belongs to a bi-level

optimization framework. As explored in [133 ], under certain assumptions such as convexity

and smoothness on models (e.g., dynamics model, policy, loss function and control objective

function), global convergence of the bi-level optimization can be established. But we think

such conditions are too restrictive in the context of dynamical control systems. As a future

direction, we will investigate mild conditions for good convergence by resorting to dynamical

system and control theory, such as Lyapunov theory.

Parameterization Matters for Convergence. Although PDP only achieves local

convergence, these still exists a question of how likely PDP can obtain the global convergence.

In our empirical experiments, we find that how models are parameterized matters for good

convergence performance. For example, in IOC/IRL mode, we observe that using a neural

network control objective function (in Fig. 3.2d ) is more likely to get trapped in local

minima than using the parameterization of weighted distance objective functions (in Fig.

3.2a -3.2c ). In control/planning mode, using a deeper neural network policy (in Fig. 3.4a -

3.4b ) is more like to result in local minima than using a simpler one. Also in the motion

planning experiment, we use the Lagrange polynomial to parameterize a policy instead of

using standard polynomials, because the latter can lead to poor conditioning and sensitivity

issues (a small change of polynomial parameter results in large change in performance) and

thus more easily get stuck in local minima. One high-level explanation is that more complex

parameterization will bring extreme non-convexity to the optimization problem, making

the algorithm more easily trapped in local minima. Again, how to theoretically justify those

empirical experience and find the mild conditions for global convergence guarantee still needs

to be investigated in future research.
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3.9 Conclusions

This chapter presents a Pontryagin differentiable programming (PDP) methodology to

establish an end-to-end learning framework for solving a range of learning and control tasks.

The key contribution in PDP is that we incorporate the knowledge of optimal control theory

as an inductive bias into the learning framework. Such combination enables PDP to achieve

higher efficiency and capability than existing learning and control methods in solving many

tasks including inverse reinforcement learning, system identification, and control/planning.

We envision the proposed PDP could benefit to both learning and control fields for solving

many high-dimensional continuous-space problems.

3.10 Supplementary: Experiments Details

3.10.1 System/Environment Setup

Dynamics Discretization. All the experimental environments/systems involved are

described in Appendix A . The continuous-time dynamics of all experimental systems in Table

3.2 are discretized using the Euler method: xt+1 = xt + ∆ · f(xt,ut) with the discretization

interval ∆ = 0.05s or ∆ = 0.1s.

Simulation Environment Source Codes. We have made different simulation en-

vironments/systems in Table 3.2 as a standalone Python package, which is available at

https://github.com/wanxinjin/Pontryagin-Differentiable-Programming  . This environment

package is easy to use and has user-friendly interfaces for customization.

3.10.2 Experiment of Imitation Learning

Data Acquisition. The dataset of expert demonstrations {ξd} is generated by solving

an expert optimal control system with the expert’s dynamics and control objective param-

eter θ∗ = {θ∗dyn,θ
∗
dyn} given. We generate a number of five trajectories, where different

trajectories ξd = {xd
0:T ,u

d
0:T−1} have different initial conditions x0 and time horizons T (T

ranges from 40 to 50).
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Inverse KKT Method. We choose the inverse KKT method [34 ] for comparison

because it is suitable for learning objective functions for high-dimensional continuous-space

systems. We adapt the inverse KKT method, and define the KKT loss as the norm-2 violation

of the KKT conditions [41 ] by the demonstration data ξd, that is,

min
θ,λ1:T

∣∣∣∣∣
∣∣∣∣∣ ∂L

∂x0:T
(xd

0:T ,u
d
0:T−1)

∣∣∣∣∣
∣∣∣∣∣
2

+
∣∣∣∣∣
∣∣∣∣∣ ∂L

∂u0:T -1
(xd

0:T ,u
d
0:T−1)

∣∣∣∣∣
∣∣∣∣∣
2
 , (3.31)

where ∂L
∂x0:T

(·) and ∂L
∂u0:T−1

(·) are the derivatives of Lagrangian L with respect to state and

control sequences, respectively, and θ={θdyn,θdyn}. We minimize the above KKT-loss with

respect to the unknown θ and the costate variables λ1:T .

Note that to illustrate the inverse-KKT learning results in Fig. 3.2 , we plot the imitation

loss L(ξθ,θ) = ‖ξd − ξθ‖2 instead of the KKT loss (3.31 ), because we want to guarantee that

the comparison criterion is the same across different methods. Thus for each iteration k in

minimizing the KKT loss (3.31 ), we use the parameter θk to compute the optimal trajectory

ξθk
and obtain the imitation loss.

Neural Policy Cloning. For the neural policy cloning (similar to [134 ]), we directly

learn a neural-network policy u = πθ(x) from the dataset using supervised learning, that is

min
θ

∑T−1
t=0 ‖u

d
t − πθ(xd

t )‖2. (3.32)

Learning Neural Control Objective Functions. In Fig. 3.2d , we apply PDP

to learn a neural objective function of the robot arm. The neural objective function is

constructed as

J(θ) = Vθ(x) + 0.0001‖u‖2, (3.33)

with Vθ(x) a fully-connected feed-forward network with n-n-1 layers and tanh activation

functions, i.e., an input layer with n neurons equal to the dimension of state, n, one hidden

layer with n neurons and one output layer with 1 neuron. θ is the neural network parameter.

We separate the input cost from the neural network because otherwise it will cause instability

when solving OC problems in the forward pass. Also, in learning the above neural objective

function, we fix the dynamics because otherwise it will also lead to instability of solving OC.
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In the comparing GAIL method [129 ], we use the following hyper-parameters: the pol-

icy network is a fully-connected feed-forward network with n-400-300-m layers and relu

activation functions; the discriminator network is a (n+m)-400-300-1 fully-connected feed-

forward network with tanh and sigmoid activation functions; and the policy regularizer λ

is set to zero.

Results and Validation. In Fig. 3.6 , we show more detailed results of imitation loss

versus iteration for three systems (cart-pole, robot arm, and quadrotor). On each system, we

run five trials for all methods with random initial guess, and the learning rate for all methods

is set as η = 10−4. In Fig. 3.9 , we validate the learned models (i.e., learned dynamics and

learned control objective) by performing motion planning of each system in unseen settings.

Specifically, we set each system with new initial state x0 and horizon T and plan the control

trajectory using the learned models, and we also show the corresponding true trajectory of

the expert.

3.10.3 Experiment of System Identification

Data Acquisition. In the system identification experiment, we collect a total number

of five trajectories from systems (in Table 3.2 ) with dynamics known, wherein different

trajectories ξo = {xo
0:T ,u0:T−1} have different initial conditions x0 and horizons T (T ranges

from 10 to 20), with random inputs u0:T−1 drawn from uniform distribution.

DMDc Method. The DMDc method [130 ], which can be viewed as a variant of

Koopman theory [70 ], estimates a linear dynamics model xt+1 = Axt + But, using the

following least square regression

min
A,B

∑T−1
t=0 ‖x

o
t+1 − Axo

t −But‖2. (3.34)

Neural Network Baseline. For the neural network baseline, we use a neural network

fθ(x,u) to represent the system dynamics, where the input of the network is state and
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control vectors, and output is the state of next step. We train the neural network by

minimizing the following residual

min
θ

∑T−1
t=0 ‖x

o
t+1 − fθ(xo

t ,ut)‖2. (3.35)

Learning Neural Dynamics Model. In Fig. 3.3d , we compare the performance

of PDP with Adam [131 ] for learning the same neural dynamics model for the robot arm

system. Here, the neural dynamics model is a fully-connected feed-forward neural network

with (m+n)-(2m+2n)-n layers and tanh activation functions, that is, an input layer with

(m+n) neurons equal to the dimension of state, n, plus the dimension of control m, one

hidden layer with (2m+2n) neurons and one output layer with (n) neurons. The learning

rate for the PDP and the PyTorch Adam is both set as η = 10−5.

Results and Validation. In Fig. 3.7 , we show more detailed results of SysID loss

versus iteration for the three systems (cart-pole, robot arm, and quadrotor). On each system,

we run five trials with random initial guess, and we set the learning rate as η = 10−4

for all methods. In Fig. 3.10 , we use the learned dynamics model to perform motion

prediction of each system in unactuated conditions (i.e., ut = 0), in order to validate the

effectiveness/correctness of the learned dynamics models.

3.10.4 Experiment of Control/Planning

We use the dynamics identified in the system ID part, and the specified control objec-

tive function is set as weighted distance to the goal, as given in Table 3.2 (θobj is given).

Throughout the optimal control/planning experiments, we use the time horizons T ranging

from 20 to 40.

Learning Neural Network Policies. On the cart-pole and robot-arm systems (in

Fig. 3.4a and Fig. 3.4b ), we learn a feedback policy by minimizing given control objective

functions. For both systems, we parameterize the policy using a neural network. Specifically,

we use a fully-connected feed-forward neural network which has a layer structure of n-n-m

with tanh activation functions, i.e., there is an input layer with n neurons equal to the
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dimension of state, one hidden layer with n neurons and one output layer with m neurons. The

policy parameter θ is the neural network parameter. We apply the PDP Control/Planning

mode in Algorithm 6 and set the learning rate η = 10−4. For comparison, we apply the

guided policy search (GPS) method [98 ] (its deterministic version) to learn the same neural

policy with the learning rate η = 10−6 (η in GPS is used to update the Lagrange multipliers

for the policy constraint and we choose η = 10−6 because it achieves the most stable results).

Motion Planning with Lagrange Polynomial Policies. On the 6-DoF quadrotor,

we use PDP to perform motion planning, that is, to find a control sequence to minimize the

given control cost (loss) function. Here, we parameterize the policy ut = u(t,θ) as N -degree

Lagrange polynomial [135 ] with N + 1 pivot points evenly populated over the time horizon,

that is, {(t0,u0), (t1,u1), · · · , (tN ,uN)} with ti = iT/N , i = 0, · · · , N . The analytical form

of the parameterized policy is

u(t,θ) =
N∑
i=0
uibi(t) with bi(t) =

∏
0≤j≤N,j 6=i

t− tj
ti − tj

. (3.36)

Here, bi(t) is called Lagrange basis, and the policy parameter θ is defined as

θ = [u0, · · · ,uN ]′ ∈ Rm(N+1). (3.37)

The above Lagrange polynomial parameterization has been normally used in some trajectory

optimization method such as [51 , 136 ]. In this planning experiment, we have used different

degrees of Lagrange polynomials, i.e., N = 5 and N = 35, respectively, to show how policy

expressiveness can influence the final control loss (cost). The learning rate in PDP is set as

η = 10−4. For comparison, we also apply iLQR [7 ] to solve for the optimal control sequence.

Results. In Fig. 3.8 , we show the detailed results of control loss (i.e. the value

of control objective function) versus iteration for three systems (cart-pole, robot arm, and

quadrotor). For each system, we run five trials with random initial parameter θ0. In Fig.

3.11 , we apply the learned neural network policies (for cart-pole and robot arm systems)

and the Lagrange polynomial policy (for quadrotor system) to simulate the corresponding
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system. For reference, we also plot the optimal trajectory solved by an OC solver [50 ] (which

corresponds to the minimal control cost).

Comments on the Results Between GPS [98 ] and PDP. In learning feedback

policies, comparing the results obtained by the guided policy search (GPS) [98 ] and PDP in

Fig. 3.8 and in Fig. 3.11 , we have the following remarks.

(1) PDP outperforms GPS in terms of having lower control loss (cost). This can be seen

in Fig. 3.8 and Fig. 3.11 (in Fig. 3.11 , PDP results in a simulated trajectory which is

closer to the optimal one than that of GPS). This can be understood from the fact that GPS

considers the policy as constraint and updates it in a supervised learning step during the

learning process. Although GPS aims to simultaneously minimize the control cost and the

degree to which the policy is violated, it does not necessarily mean that before the learning

researches convergence, when strictly following a pre-convergence control policy, the system

will have a cost as minimal as it can possibly achieve.

(2) Instead, PDP adopts a different way to synchronize the fulfillment of policy constraints

and the minimization of the control cost. In fact, throughout the entire learning process,

PDP always guarantees that the policy constraint is perfectly respected (as the forward

pass strictly follows the policy). Therefore, the core difference between PDP and GPS is

that PDP does not simultaneously minimize two aspects—the policy violation and control

cost, instead, it enforces that one aspect—policy—is always respected and only focuses on

minimizing the other—control cost. The benefit of doing so is that at each learning step,

the control cost for PDP is always as minimal as it can possibly achieve. This explains why

PDP outperforms GPS in terms of having lower control cost (loss).

3.10.5 Experiment of Rocket Powered Landing Problems

As a final part in experiments, we will demonstrate the capability of PDP to solve the

more challenging 6-DoF rocket powered landing problems.

We here omit the description of mechanics modeling for the 6-DoF powered rocket system,

and refer the reader to Page 5 in [137 ] for the rigid body dynamics model of a rocket system
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(the notations and coordinates used below follows the ones in [137 ]). The state vector of the

rocket system is defined as

x =
[
m r′I v′I q′B/I ω′B

]′
∈ R14, (3.38)

where m ∈ R is the mass of the rocket; rI ∈ R3 and vI ∈ R3 are the position and velocity of

the rocket (center of mass) in the inertially-fixed Up-East-North coordinate frame; qB/I ∈ R4

is the unit quaternion denoting the attitude of rocket body frame with respect to the inertial

frame (also see the description in the quadrotor dynamics in Appendix 3.10.1 ); and ωB ∈ R3

is the angular velocity of the rocket expressed in the rocket body frame. In our simulation, we

only focus on the final descending phase before landing, and thus assume the mass depletion

during such a short phase is very slow and thus ṁ ≈ 0. We define the control input vector

of the rocket, which is the thrust force vector

u = T B = [Tx, Ty, Tz]′ ∈ R3, (3.39)

acting on the gimbal point of the engine (situated at the tail of the rocket) and is expressed

in the body frame. Note that the relationship between the total torque MB applied to the

rocket and the thrust force vector T B is MB = rI,B × T B, with rI,B ∈ R3 being constant

position vector from the center-of-mass of the rocket to the gimbal point of the engine. The

continuous dynamics is discretized using the Euler method: xt+1 = xt + ∆ · f(xt,ut) with

the discretization interval ∆ = 0.1s.

For the rocket system, the unknown dynamics parameter, θdyn, includes the rocket’s

initial mass m0, and the moment of inertia JB ∈ R3×3, and the rocket length `, thus,

θdyn = {m0,JB, `} ∈ R8.

For the control objective (cost) function, we consider a weighted combination of the

following aspects:

• distance of the rocket position from the target position, with weight w1;

• distance of the rocket velocity from the target velocity, with weight w2;
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• penalty of the excessive title angle of the rocket, with weight w3;

• penalty of the side effects of the thrust vector, with weight w4;

• penalty of the total fuel cost, with weighted w5.

So the parameter of the control objective function, θobj =
[
w1, w2, w3, w4, w5

]′
∈ R5. In

sum, the overall parameter for the 6-DoF rocket powered landing control system is

θ = {θdyn, θobj} ∈ R13. (3.40)

Imitation Learning. We apply the IRL/IOC mode of PDP to perform imitation

learning of the 6-DoF rocket powered landing. The experiment process is similar to the

experiments in Appendix 3.10.2 , where we collect five trajectories from an expert system with

dynamics and control objective function both known (different trajectories have different time

horizons T ranging from 40 to 50 and different initial state conditions). Here we minimize

imitation loss L(ξθ,θ)=‖ξd − ξθ‖2 over the parameter of dynamics and control objective, θ

in (3.40 ). The learning rate is set to η = 10−4, and we run five trials with random initial

parameter guess θ0. The imitation loss L(ξθ,θ) versus iteration is plotted in Fig. 3.12a .

To validate the learned models (the learned dynamics and the learned objective function),

we use the learned models to perform motion planing of rocket powered landing in unseen

settings (here we use new initial condition and new time horizon). The planing results are

plotted in Fig. 3.12b , where we also plot the ground truth for comparison.

System Identification. We apply the SysID mode of PDP to identify the dynamics

parameter θdyn of the rocket. The experiment process is similar to the experiments in

Appendix 3.10.3 , where we collect five trajectories with different initial state conditions,

time horizons (T ranges from 10 to 20), and random control inputs. We minimize the SysID

loss L(ξθ,θ) = ‖ξo − ξθ‖2 over θdyn in (3.40 ). The learning rate is set to η = 10−4, and we

run five trials with random initial parameter guess for θdyn. The SysID loss L(ξθ,θ) versus

iteration is plotted in Fig. 3.13a . To validate the learned dynamics, we use it to predict the

motion of rocket given a new sequence of control inputs. The prediction results are in Fig.

3.13b , where we also plot the ground truth for reference.
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Optimal Powered Landing Control. We apply the Control/Planning mode of PDP

to find an optimal control sequence for the rocket to perform a successful powered landing.

The experiment process is similar to the experiments performed for the quadrotor system in

Appendix 3.10.4 . We set the time horizon as T = 50, and randomly choose an initial state

condition x0 for the rocket. We minimize the control loss function, which is now a given

control objective function with θobj known. The control policy we use here is parameterized

as the Lagrangian polynomial, as described in (3.36 ) in Appendix 3.10.4 , here with degree

N = 25. The control loss is set as the control objective function learned in the previous

imitation learning experiment. The learning rate is set to η = 10−4, and we run five trials

with random initial guess of the policy parameter. The the control loss L(ξθ,θ) versus

iteration is plotted in Fig. 3.14a . To validate the learned optimal control policy, we use it to

simulate the motion (control trajectory) of the rocket landing, and compare with the ground

truth optimal trajectory obtained by an OC solver. The validation results are in Fig. 3.14b .
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Figure 3.6. Experiments for PDP IRL/IOC Mode: imitation loss versus
iteration. For each system, we run five trials starting with random initial
guess θ0, and the learning rate is η = 10−4 for all methods. The results
show a significant advantage of the PDP over the neural policy cloning and
inverse-KKT [34 ] in terms of lower training loss and faster convergence speed.
Please see Appendix Fig. 3.9 for validation. Please find the video demo at
https://youtu.be/awVNiCIJCfs  .
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Figure 3.7. Experiments for PDP SysID Mode: SysID loss versus iteration.
For each system, we run five trials with random initial guess θ0, and set the
learning rate η = 10−4 for all methods. The results show a significant advantage
of the PDP over neural-network dynamics and DMDc in terms of lower training
loss and faster convergence speed. Please see Fig. 3.10 for validation. Please
find the video demo at https://youtu.be/PAyBZjDD6OY  .
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Figure 3.8. Experiments for PDP Control/Planning Mode: control loss (i.e.,
objective function value) versus iteration. For the cart-pole (top panel) and
robot arm (middle panel) systems, we learn neural feedback policies, and com-
pare with the GPS method [98 ]. For the quadrotor system, we perform motion
planning with a Lagrange polynomial policy (we use different degree N), and
compare with iLQR and an OC solver [50 ]. The results show that for learning
feedback control policies, PDP outperforms GPS in terms of having lower con-
trol loss (cost); and for motion planning, iLQR has faster convergence speed
than PDP. Please find the video demo at https://youtu.be/KTw6TAigfPY  .
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Figure 3.9. Validation for the imitation learning experiment in Fig. 3.6 .
We preform motion planing for each system in unseen conditions (new initial
condition and new time horizon) using the learned models. Results show that
compared to the neural policy cloning and inverse KKT [34 ], PDP result can
accurately plan the expert’s trajectory in unseen settings. This indicates PDP
can accurately learn the dynamics and control objective, and has the better
generality than the other two. Although policy imitation has lower imitation
loss than inverse KKT, it has the poorer performance in planing. This is
because with limited data, the cloned policy can be over-fitting, while the
inverse KKT learns a cost function, a high-level representation of policies,
thus has better generality to unseen conditions.
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Figure 3.10. Validation for the system identification experiment in Fig. 3.7 .
We perform motion prediction in unactuated conditions (u = 0) using the
learned dynamics. Results show that compared to neural-network dynamics
training and DMDc, PDP can accurately predict the motion trajectory of each
systems. This indicates the effectiveness of the PDP in identifying dynamics
models.
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Figure 3.11. Simulation of the learned policies in the control and planning
experiment in Fig. 3.8 . Fig. 3.11a -3.11b are the simulations of the learned
neural feedback policies on the cart-pole and robot arm systems, respectively,
where we also plot the optimal trajectory solved by an OC solver [50 ] for refer-
ence. From Fig. 3.11a -3.11b , we observe that PDP results in a trajectory that
is much closer to the optimal one than that of GPS; this implies that PDP has
lower control loss (please check our analysis on this in Appendix 3.10.4 ) than
GPS. Fig. 3.11c is the planning results for the quadrotor system using PDP,
iLQR, and an OC solver [50 ], where we have used different degrees of Lagrange
polynomial policies in PDP. The results show that PDP can successfully plan
a trajectory very close to the ground truth optimal trajectory. We also observe
that the accuracy of the resulting trajectory depends on choice of the policy
parameterization (i.e., expressive power): for example, the use of polynomial
policy of a higher degree N results in a trajectory closer to the optimal one
(the one using the OC solver) than the use of a lower degree. iLQR is generally
able to achieve high-accuracy solutions because it directly optimizes the loss
function with respect to individual control inputs (instead of a parameterized
policy), but this comes at the cost of high computation expense, as shown in
Fig. 3.4d .
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Figure 3.12. (a) Training process for imitation learning of 6-DoF rocket
powered landing: the imitation loss versus iteration; here we have performed
five trials (labeled by different colors) with random initial parameter guess.
(b) Validation: we use the learned models (dynamics and control objective
function) to perform motion planning of the rocket powered landing in un-
seen settings (i.e. given new initial state condition and new time horizon re-
quirement); here we also plot the ground-truth motion planning of the expert
for reference. The results in (a) and (b) show that the PDP can accurately
learn the dynamics and control objective function from demonstrations, and
have good generalizability to novel situations. Please find the video demo at
https://youtu.be/4RxDLxUcMp4 .

0 500 1000 1500 2000
Iteration

10 22

10 16

10 10

10 4

102

Sy
sID

 L
os

s

Dynamics identification

(a) Training

0 10

10

0

v x

0 10
0.00

0.25

0.50

v y

0 10
0.0

0.2

0.4

v z truth
PDP

0 10
Time

0.1

0.0

0.1

x

0 10
Time

0.0

0.2y

0 10
Time

0.2

0.0

z

Prediction using learned dynamics

(b) Validation

Figure 3.13. (a) Training process for identification of rocket dynamics: SysID
loss versus iteration; here we have performed five trials (labeled by different
colors) with random initial parameter guess. (b) Validation: we use the learned
dynamics model to perform motion prediction of the rocket given a new control
sequence; here we also plot the ground-truth motion (where we know the exact
dynamics). The results in (a) and (b) show that the PDP can accurately
identify the dynamics model of the rocket.
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Figure 3.14. (a) Training process of learning the optimal control policy for
rocket powered landing: the control loss versus iteration; here we have per-
formed five trials (labeled by different colors) with random initial guess of the
policy parameter. (b) Validation: we use the learned policy to simulate the
rocket control trajectory; here we also plot the ground-truth optimal control
solved by an OC solver. The results in (a) and (b) show that the PDP can
successfully find the optimal control policy (or optimal control sequence) to
successfully perform the rocket powered landing. Please find the video demo
at https://youtu.be/5Jsu772Sqcg  .
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PART II

LEARNING WITH HUMAN-ON-THE-LOOP
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4. LEARNING FROM SPARSE DEMONSTRATIONS

Starting from this chapter, we focus on the robot learning with human guidance. To boost

efficiency of robot learning while maintaining high-level autonomy, we aim to develop the

innovative robot learning paradigms that make the most use of human guidance while main-

taining the human burden as low as possible in providing such guidance.

In this chapter, we focus on human guidance in the form of behavioral demonstrations.

We will develop a new method which allows a robot to learn an objective function from

human’s sparse demonstrations. The sparse demonstrations are given by a small number

of sparse waypoints, which are desired outputs of the robot’s trajectory at certain time

instances, sparsely located within a demonstration time horizon. The proposed method

learns an objective function by directly minimizing a trajectory loss, which quantifies the

discrepancy between a robot’s reproduced trajectory and the observed sparse demonstrations.

The content of this chapter appears in [138 ], and the code and experiments for this chapter

can be accessed at https://github.com/wanxinjin/Learning-from-Sparse-Demonstrations .

4.1 Introduction

The appeal of learning from demonstrations (LfD) lies in its capability to facilitate robot

programming by simply providing demonstrations from an expert. It circumvents the need

for expertise in controller design and coding, which is required by traditional robot pro-

gramming, and empowers non-experts to program a robot as needed [139 ]. LfD has been

successfully applied to various scenarios such as manufacturing [140 ], assistive robots [141 ],

and autonomous vehicles [26 ].

LfD techniques can be broadly categorized based on what to learn from the observed

demonstrations. A branch of LfD focuses on learning a policy [142 , 143 , 144 , 145 , 146 ],

which directly maps from the robot’s states, environment, or raw observation information

to the robot’s actions, based on supervised machine learning techniques. While effective in

many situations, policy learning typically requires a considerable amount of demonstration

data, and the learned policy may generalize poorly to unseen or long horizon tasks [139 ]. To

alleviate this, another direction of LfD research focuses on learning control objective (e.g.,
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cost or reward) functions from demonstrations [32 ], based on which the optimal policies or

trajectories are derived. These methods assume the optimality of demonstrations and use

inverse reinforcement learning (IRL) [3 ] or inverse optimal control (IOC) [147 ] to estimate

the control objective function. Since an objective function is a more compact and high-level

representation of a task, LfD via learning objective functions has demonstrated advantage

over policy learning in terms of better generalization to unseen situations [148 ] and relatively

lower sample complexity [32 ]. Despite significant progress along this direction, LfD based

on objective learning still inherits some limitations from the core IRL and IOC techniques,

which are summarized below.

(i) Most IOC/IRL techniques require entire demonstrations of a complete task [22 ,

29 , 33 , 34 , 40 , 42 ]. Such requirements make it challenging to collect demonstration

data, especially obtaining demonstration of high degree-of-freedom systems such

as humanoid robots.

(ii) The majority of existing IOC and IRL methods [22 , 29 , 33 , 34 , 40 , 42 ] assume

an objective function as a linear combination of selected features, and their algo-

rithms are designed in the feature space by taking advantage of the linearity of

the feature weights [12 ]. Those approaches typically do not directly minimize the

discrepancy between the robot’s reproduced trajectory and the demonstrations in

trajectory space, and cannot be readily extended to non-linear parameterization

of an objective function.

(iii) There might exist time-scale discrepancy between expert’s demonstrations and

the actual actuation of the robot [149 ]. For instance, consider a robot that learns

from human motion. The duration of the human demonstration may not reflect

the dynamics constraint of a robot, as the robot may be actuated by a weak servo

motor and cannot move as fast as the human.

In recognition of these limitations, in this chapter we present a new method to learn from

sparse demonstrations, which has the following advantages over existing methods:
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waypoint 1

waypoint 2

waypoint 3

Robot
trajectory

Obstacle
Obstacle

Figure 4.1. Illustration of learning from sparse demonstrations. The red dots
are the expert’s sparse demonstration waypoints, from which the robot learns
a control objective function such that its reproduced trajectory (blue line) is
closest to these waypoints. At first sight, the depicted robot’s reproduced tra-
jectory (blue line) may seem a result of using ‘curve fitting’ method (which
inherently belongs to policy learning methods); however, a key difference from
‘curve fitting’ is that the robot here learns a control objective function instead
of imitating a trajectory, and the learned control objective function is gen-
eralizable to unseen situations, such as new initial conditions or longer time
horizons. Please find video demos at https://wanxinjin.github.io/posts/lfsd  .

• First, the proposed method learns an objective function using only sparse demon-

stration data, which consists of a small number of desired outputs of the robot’s

trajectory at some sparse time instances within a time horizon, as shown in

Fig. 4.1 . The given sparse demonstrations do not necessarily contain control input

information.

• Second, the proposed method learns an objective function over a parameterized

function set by directly minimizing the distance between the robot’s reproduced

trajectory and the sparse demonstrations. Even though the demonstrations may

not correspond to an exact objective function within the parameterized function

set, e.g., demonstrations are not optimal or even randomly given, the method can

still find a ‘best’ objective function within the parameterized function set such

that the reproduced trajectory is closest to the given demonstrations in Euclidean

distance, as shown in Fig. 4.1 .

• Third, since the time requirement associated with the sparse waypoints may not be

achievable with the robot actuation, in addition to learning an objective function,

the proposed method jointly learns a time-warping function, which maps from
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the demonstration time axis to the robot execution time axis. This addresses the

potential issue of time misalignment for existing IOC/IRL methods.

4.1.1 Background and Related Work

Since the theme of the method devised in this chapter belongs to the category of LfD

based on learning objective functions, here we mainly focus on the related work of IRL/IOC

methods, which share the same goal of learning objective functions from demonstrations.

For the other types of LfD methods, e.g., policy learning, or the comparison between them,

we refer the reader to recent surveys [139 ] and [150 ] for more details.

Over the past decades, various IRL and IOC techniques have been proposed, with dif-

ferent work emphasizing different formulations to infer an objective function. The early

IRL/IOC techniques include feature matching [32 ], maximum margin [33 ], and maximum

entropy [29 ]. Recently, a new line of IOC/IRL research [11 , 12 , 34 , 40 , 42 ] directly solves

for the objective function parameters by establishing optimality conditions, such as Karush-

Kuhn-Tucker conditions [151 ] or Pontryagin’s maximum principle [44 ]. The key idea is that

the demonstration data is assumed to be optimal and thus must satisfy the optimality condi-

tions. By directly minimizing the violation of the optimality conditions by the demonstration

data over objective function parameters, one can obtain an estimate of the objective func-

tion. The benefits of doing so is that these methods can avoid repetitive solving of the direct

optimal control or reinforcement learning problems in each iteration.

All the above IOC and IRL techniques assume a linear combination of selected features as

their parameterized objective functions with unknown feature weights. Learning objective

functions is not formulated on a trajectory space, that is, they do not directly minimize

discrepancy between the reproduced trajectory and demonstrations. Instead, they design

algorithms in the selected feature space by taking advantage of the linearity of the feature

weights. For example, the maximum margin IRL [33 ] and feature matching IRL [32 ] focus

on maximizing and equaling the feature values between the given demonstrations and the

reproduced trajectories, respectively. While the recent work in [152 ] formulates the IOC

problem as minimization of direct loss, the algorithm is still similar to the maximum margin
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approach in a selected-feature space. In [22 ], the authors use a double-layer optimization to

solve the IOC problem and directly minimize a trajectory loss function. In the upper layer

of updating the objective function, a derivative-free method [153 ] is used by approximating

the loss function with a quadratic function. This involves multiple evaluations of the loss

and thus requires solving the optimal control problem repetitively in each update, which

is computationally expensive. Also, the derivative-free method has inherent limitations for

handling problems of large size [154 ]. For the second line of IOC methods which solve the

feature weights by minimizing the violation of the optimality conditions, they still indirectly

consider trajectory error.

Learning objective functions in a linear feature space may facilitate the design of learning

algorithms (such as by taking advantage of linearity of feature weights), but their perfor-

mance relies on the choice of features. While many IOC approaches [34 , 40 , 42 ] assume

the optimality of demonstration data; that is, the observed demonstrations are a result of

optimizing the parameterized objective functions, this assumption is subject to observation

noise and good feature selection.

The other challenges of existing IOC and IRL techniques are listed below. First, existing

methods require as input the continuous demonstration data of an entire task; in other words,

a given demonstration needs to be a complete trajectory over the entire course of execution

time. Thus, demonstration data needs to be carefully collected from an expert, which can be

burdensome especially for high-dimensional systems. Instead, it is relatively easier to provide

only sparse demonstrations. Although [12 ] proposes a method to solve IOC from incomplete

trajectory data, it still requires a trajectory segment to be long enough to satisfy a recovery

condition and thus cannot handle very sparse demonstrations as shown in Fig. 4.1 . In [155 ],

the authors develop a method for learning from keyframe demonstrations. This method is a

policy learning technique: it learns a kinematic trajectory model (Gaussian mixture models)

instead of learning an objective function. The unseen motion between keyframes is handled

by interpolation. Such a process leads to poor generalization and high sample complexity (we

will show this later in experiments). Another limitation of existing IOC and IRL methods

is that they rarely account for the time misalignment between the demonstrations and the

feasible actuation capabilities of a robot. This is critical in practical implementation. For
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example, consider a humanoid robot that learns to imitate a human demonstrator. The

robot may be actuated by a weak servo motor which may not move as fast as human. The

demonstrations thus cannot be directly used for objective function learning. To address this,

[149 ] learns a time-warping function between a robot and a demonstrator, but this method is

used to align the time of a demonstrated trajectory for optimal tracking instead of learning

objective functions.

4.1.2 Contributions

We propose a new approach to learn objective functions from sparse demonstrations.

The contributions of the method relative to existing IRL/IOC methods are listed below.

(1) The proposed method learns an objective function by directly minimizing a tra-

jectory loss, which quantifies the discrepancy between a robot’s reproduced tra-

jectory and the observed demonstrations. Different from [22 ] using derivative-free

techniques [153 ], the proposed approach is a gradient based optimization method,

which can handle high-dimensional systems.

(2) The proposed method accepts a general parameterization of objective functions

(e.g., nonlinear in function parameters such as neural networks), which is not

necessarily a linear combination of features. The algorithm finds an objective

function within the given function set such that the reproduced trajectory has

minimum Euclidean distance to demonstrations, even though the demonstrations

may not be optimal and the exact corresponding objective function does not exist

in the function set.

(3) The learning algorithm permits sparse demonstrations, which consists of a small

number of desired outputs of the robot’s trajectory at sparse time instances. The

algorithm will find an objective function such that the reproduced trajectory gets

closest to the given waypoints in Euclidean distance. In addition to learning the

objective function, the method jointly learns a time-warping function to align the

duration between the expert’s demonstration and the feasible motion of the robot.
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The organization of this chapter is as follows: Section 4.2 formulates the problem. Section

4.3 discusses the time-warping technique and reformulates the problem under a unified time

axis. Section 4.4 proposes the learning algorithm. Experiments are provided in Sections 4.5 

and 4.6 . Section 4.7 gives discussion to the method, and finally Section 4.8 draws conclusions.

4.2 Problem Formulation

Consider a robot with the following continuous dynamics:

ẋ(t) = f(x(t),u(t)) with x(0), (4.1)

where x(t) ∈ Rn is the robot state; u(t) ∈ Rm is the control input; vector function f : Rn×

Rm 7→ Rn is assumed to be twice-differentiable, and t ∈ [0,∞) is time. Suppose the robot

motion over a time horizon tf > 0 is controlled by optimizing the following parameterized

objective function:

J(p) =
∫ tf

0
c(x(t),u(t),p)dt+ h(x(tf ),p), (4.2)

where c(x,u,p) and h(x,p) are the running and final costs, respectively, both of which are

assumed twice-differentiable; and p ∈ Rr is a tunable parameter vector. For a fixed choice

of p, the robot produces a trajectory of states and inputs

ξp = {ξp(t) | 0 ≤ t ≤ tf} with ξp(t) = {xp(t),up(t)}. (4.3)

which optimizes the objective function (4.2 ). Here the subscript in ξp indicates that the

trajectory implicitly depends on p.

The goal of learning from demonstrations is to estimate the objective function parameter

p based on the observed demonstrations of an expert (usually a human operator). Here, we

suppose that an expert provides demonstrations through a known output function

y = g(x,u), (4.4)
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where g : Rn×Rm → Ro defines a map from the robot’s state and input to an output y ∈ Ro.

The expert’s demonstrations include (i) an expected time horizon T , and (ii) a number of

N waypoints, each of which is a desired output for the robot to reach at an expected time

instance, denoted as

D = {y∗(τi) | τi ∈ [0, T ], i = 1, 2, · · · , N}. (4.5)

Here, y∗(τi) is the ith waypoint demonstrated by the expert, and τi is the expected time

instance at which the expert wants the robot to reach the waypoint y∗(τi). As the expert

can freely provide the number of N waypoints and choose the positions of expected time

instances τi relative to the expected horizon T , we refer to D as sparse demonstrations. As

will be shown later in simulations, N here can be small.

Note that both the expected time horizon T and the expected time instances τi are in

the time axis of the expert’s demonstrations. This demonstration time axis may not be

identical to the actual time axis of execution of the robot; in other words, the given times

T and τi may not be achievable by the robot. For example, when the robot is actuated

by a weak servo motor, its motion inherently cannot meet the time step τi required by a

human demonstrator. To accommodate the misalignment of duration between the robot and

expert’s demonstrations, we introduce a time warping function

t = w(τ), (4.6)

which defines a map from the expert’s demonstration time axis τ to the robot time axis t.

We make the following reasonable assumption: w is strictly increasing for the range of [0, T ]

and continuously differentiable function with w(0) = 0.

Given the sparse demonstrations D, the problem of interest is to find an objective

function parameter p and a time-warping function w such that the following trajectory loss

is minimized:

min
p,w

∑N

i=1 l
(
y∗(τi), g

(
ξp(w(τi))

))
, (4.7)
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where l(a, b) is a given differentiable scalar function to quantify a point distance metric

between vectors a and b, e.g., l(a, b) = ‖a − b‖2. Minimizing the loss in (4.7 ) means that

we want the robot to find the ‘best’ objective function within the parameterized objective

function set (4.2 ), together with a time-warping function, such that its reproduced trajectory

is as close to the given sparse demonstrations as possible.

4.3 Problem Reformulation by Time Warping

In this section, we present the parameterization of the time-warping function, and then

re-formulate the problem of interest presented in the previous section under a unified time

axis.

4.3.1 Parametric Time Warping Function

To facilitate learning of an unknown time-warping function, we parameterize the time-

warping function. Suppose that a differentiable time-warping function w(τ) satisfies w(0) = 0

and is strictly increasing in the range [0, T ]. Then the derivative

v(τ) = dw(τ)
dτ

> 0 (4.8)

for all τ ∈ [0, T ]. We use a polynomial time-warping function:

t = wβ(τ) =
s∑
i=1

βiτ
i, (4.9)

where β = [β1, β2, · · · , βs]′ ∈ Rs is the coefficient vector of the polynomial. Since wβ(0) = 0,

there is no constant (zero-order) term in (4.9 ) (i.e., β0 = 0). Due to the requirement

dwβ/dτ = vβ(τ) > 0 for all τ ∈ [0, T ] in (4.8 ), one can always obtain a feasible (e.g.

compact) set for β, denoted as Ωβ, such that dwβ(τ)
dτ

> 0 for all τ ∈ [0, T ] if β ∈ Ωβ.
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4.3.2 Equivalent Formulation under a Unified Time Axis

Substituting the parametric time-warping function wβ in (4.9 ) into both the robot’s

dynamics (4.1 ) and the control objective function (4.2 ), we obtain the following time-warped

dynamics
dx

dτ
= dwβ

dτ
f
(
x(wβ(τ)),u(wβ(τ))

)
with x(0), (4.10)

and the time-warped objective function

J(p,β) =
∫ T

0

dwβ
dτ

cp(x(wβ(τ)),u(wβ(τ)))dτ + hp(x(wβ(T ))). (4.11)

Here, the left side of (4.10 ) is due to chain rule: dx
dτ

= ẋ dt
dτ

, and the time horizon satisfies

tf = wβ(T ) (note that T is specified by the expert). For notation simplicity, we write
dwβ
dτ

= vβ(τ), x(w(τ)) = x(τ), u(w(τ)) = u(τ), and dx
dτ

= ẋ(τ). Then, the above time-

warped dynamics (4.10 ) and time-warped objective function (4.11 ) are rewritten as:

ẋ(τ) = vβ(τ)f(x(τ),u(τ)) with x(0) (4.12a)

and

J(p,β) =
∫ T

0
vβ(τ)c(x(τ),u(τ),p)dτ + h(x(T ),p), (4.12b)

respectively. We concatenate the unknown objective function parameter vector p and un-

known time-warping function parameter vector β as

θ = [p,β]′ ∈ Rr+s. (4.13)

For a choice of θ, the time-warped optimal trajectory resulting from solving the above time-

warped optimal control system (4.12 ) is rewritten as

ξθ = {ξθ(τ) | 0 ≤ τ ≤ T}, (4.14)
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with ξθ(τ) = {xθ(τ),uθ(τ)}. The trajectory distance loss in (4.7 ) to be minimized can now

be defined as

L(ξθ,D) =
N∑
i=1

l
(
y∗(τi), g

(
ξθ(τi)

))
. (4.15)

Minimizing the above loss function in (4.15 ) over the unknown parameter vector θ is a process

of simultaneously learning the control objective function J(p) in (4.2 ) and the time-warping

function t = wβ(τ) in (4.9 ).

In summary, the problem of interest is reformulated as an optimization problem of jointly

learning the objective function J(p) in (4.2 ) and time-warping function t = wβ(τ) in (4.9 ):

min
θ∈Θ

L(ξθ,D)

s.t. ξθ is produced by optimal control system (4.12 ).
(4.16)

Here Θ defines a feasible domain of variable θ, Θ = Rr×Ωβ; the constraint in optimization

(4.16 ) says that ξθ is an optimal trajectory generated by the optimal control system (4.12 )

with the control objective function (4.12b ) and dynamics (4.12a ). In the next section, we

will focus on developing a new learning algorithm to efficiently solve the above optimization

problem.

4.4 Proposed Learning Algorithm

4.4.1 Algorithm Overview

To solve the optimization (4.16 ), we start with an arbitrary initial guess θ0 ∈ Θ, and

apply the gradient descent

θk+1 = ProjΘ
(
θk − ηk

dL

dθ

∣∣∣∣
θk

)
, (4.17)

where k is the iteration index; ηk is the step size (or learning rate); ProjΘ is a projection

operator to guarantee the feasibility of θk in each update, e.g., ProjΘ(θ) = arg minz∈Θ‖θ −
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z‖; and dL
dθ

∣∣∣
θk

denotes the gradient of the given loss function (4.15 ) directly with respect to

θ evaluated at θk. Applying the chain rule to the gradient term, we have

dL

dθ

∣∣∣∣
θk

=
N∑
i=1

∂l

∂ξθ(τi)

∣∣∣∣
ξθk

(τi)

∂ξθ(τi)
∂θ

∣∣∣∣
θk

, (4.18)

where ∂l
∂ξθ(τi)

∣∣∣
ξθk

(τi)
is the gradient of the single point distance loss defined in (4.15 ) with

respect to the τi-time trajectory point, ξθ(τi), evaluated at point ξθk
(τi), and ∂ξθ(τi)

∂θ

∣∣∣
θk

is

the gradient of the τi-time trajectory point, ξθ(τi), with respect to the parameter vector θ

evaluated at value θk. From (4.17 ) and (4.18 ), we can note that at each iteration k, the

update of the parameter θk includes the following three steps:

Step 1: With the current parameter estimate θk, generate the optimal trajectory ξθk
in (4.14 )

by solving the optimal control problem in (4.12 );

Step 2: Compute the gradients ∂l
∂ξθ(τi)

∣∣∣
ξθk

(τi)
and ∂ξθ(τi)

∂θ

∣∣∣
θk

; apply the chain rule (4.18 ) to com-

pute dL
dθ

∣∣∣
θk

;

Step 3: Update θk using (4.17 ) for the next iteration.

The interpretation of the above procedure is straightforward: In each update k, first, with

the current parameter estimate θk, the optimal control system (4.12 ) produces an optimal

trajectory ξθk
, and the corresponding trajectory loss L(ξθk

,D) (that is, the distance to the

given sparse demonstrations) is computed; second, the current gradient of the trajectory loss

with respect to θ, dL
dθ

∣∣∣
θk

, is solved; finally, this gradient dL
dθ

∣∣∣
θk

is used to update the current

estimate θk for the next iteration k + 1.

In Step 1 of the learning procedure, the optimal trajectory ξθk
for the current parameter

estimate θk is solved using any available optimal control solvers such as Casadi [50 ]. In

Step 2, the gradient quantities ∂L
∂ξθ(τi) can be readily computed by directly differentiating the

given trajectory loss function (4.15 ). The main challenge, however, lies in how to obtain

the gradient ∂ξθ
∂θ

∣∣∣
θk

, that is, the gradient of the system optimal trajectory ξθ with respect to

the parameter θ for the optimal control system (4.12 ). In what follows, we will show how
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to efficiently compute it by proposing the technique of differential Pontryagin’s Maximum

Principle. In the following, we suppress the iteration index k for notation simplicity.

4.4.2 Differential Pontryagin’s Maximum Principle

Consider the system optimal trajectory ξθ in (4.14 ) produced by the optimal control

system (4.12 ) under a fixed choice of θ. The Pontryagin’s Maximum Principle [44 ] states an

optimality condition that the optimal trajectory ξθ must satisfy. To present Pontryagin’s

Maximum Principle, we define the Hamiltonian:

H(τ)=vβ(τ)cp(x(τ),u(τ))+λ(τ)′vβ(τ)f(x(τ),u(τ)), (4.19)

where λ(τ) ∈ Rn is called the costate or adjoint variable for 0 ≤ τ ≤ T . According to

Pontryagin’s Maximum Principle, there exists a costate trajectory

{λθ(τ) | 0 ≤ τ ≤ T}, (4.20)

which is associated with the optimal trajectory ξθ in (4.14 ), such that the following conditions

hold:

ẋθ(τ) = ∂H

∂λθ
(xθ(τ),uθ(τ),λθ(τ)), (4.21a)

−λ̇θ(τ) = ∂H

∂x
(xθ(τ),uθ(τ),λθ(τ)), (4.21b)

0 = ∂H

∂u
(xθ(τ),uθ(τ),λθ(τ)), (4.21c)

λθ(T ) = ∂hp
∂x

(xθ(T )). (4.21d)

In fact, given ξθ one can always solve the corresponding costate trajectory {λθ(τ)} by

integrating the ODE equation (4.21b ) backward in time with the end condition given by

(4.21d ).

Recall that our technical challenge in the previous part is to obtain the gradient ∂ξθ
∂θ

.

Towards this goal, we differentiate the above Pontryagin’s Maximum Principle equations in
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(4.21 ) on both sides with respect to the parameter θ, which yields the following differential

Pontryagin’s Maximum Principle

d

dτ
(∂xθ
∂θ

) = F (τ)∂xθ
∂θ

+G(τ)∂uθ
∂θ

+E(τ), (4.22a)

− d

dτ
(∂λθ
∂θ

) = Hxx(τ)∂xθ
∂θ

+Hxu(τ)∂uθ
∂θ

+F (τ)′∂λθ
∂θ

+Hxe(τ), (4.22b)

0 = Hux(τ)∂xθ
∂θ

+Huu(τ)∂uθ
∂θ

+G(τ)′∂λθ
∂θ

+Hue(τ), (4.22c)

∂λθ
∂θ

(T ) = Hxx(T )∂xθ
∂θ

+Hxe(T ). (4.22d)

Here the coefficient matrices in (4.22 ) are defined as

F (τ)= ∂2H

∂λθ∂xθ
, G(τ)= ∂2H

∂λθ∂uθ
, E(τ)= ∂2H

∂λθ∂θ
, (4.23a)

Hxx(τ)= ∂2H

(∂xθ)2 , Hxu(τ)= ∂2H

∂xθ∂uθ
, Hxe(τ)= ∂2H

∂xθ∂θ
, (4.23b)

Hux(τ)=H ′xu(τ), Huu(τ)= ∂2H

(∂uθ)2 , Hue(τ)= ∂2H

∂uθ∂θ
, (4.23c)

Hxx(T )= ∂2hp
∂xθ∂xθ

, Hxe(T )= ∂2hp
∂xθ∂θ

. (4.23d)

Once we obtain the optimal trajectory {ξθ} and the associated costate trajectory {λθ(τ)}

in (4.20 ), all the above coefficient matrices in (4.23 ) are known and their computation is

straightforward. Using these matrices (4.23 ) and (4.22 ), the lemma below presents an itera-

tive method to solve the gradient ∂ξθ(τ)
∂θ

.

Lemma 4.4.1. If Huu(τ) in (4.23c ) is invertible for all 0 ≤ τ ≤ T , define the following

differential equations for matrix variables P (τ) ∈ Rn×n and W (τ) ∈ Rn×(r+s):

−Ṗ = Q(τ) + A(τ)′P + PA(τ)− PR(τ)P, (4.24a)

Ẇ = PR(τ)W − A(τ)′W − PM(τ)−N(τ), (4.24b)
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with P (T ) = Hxx(T ) and W (T ) = Hxe
T . Here, I is identity,

A(τ) = F −G(Huu)−1Hux, (4.25a)

R(τ) = G(Huu)−1G′, (4.25b)

M(τ) = E −G(Huu)−1Hue, (4.25c)

Q(τ) = Hxx −Hxu(Huu)−1Hux, (4.25d)

N(τ) = Hxe −Hxu(Huu)−1Hue, (4.25e)

are all known given (4.23 ). Then, the gradient of the optimal trajectory at any time instance

0 ≤ τ ≤ T , denoted as
∂ξθ(τ)
∂θ

=
(
∂xθ
∂θ

(τ), ∂uθ
∂θ

(τ)
)

(4.26)

is obtained by integrating the following equations up to τ :

d

dτ

(
∂uθ
∂θ

)
= −(Huu(τ))-1

(
Hux(τ) +G(τ)′W (τ) +Hue(τ) +G(τ)′P (τ)∂xθ

∂θ
(τ)
)
, (4.27a)

d

dτ

(
∂xθ
∂θ

)
= F (τ)∂xθ

∂θ
(τ) +G(τ)∂uθ

∂θ
(τ) + E(τ), (4.27b)

with ∂xθ
∂θ

(0) = 0 (because x(0) is given), where the matrices {P (τ)} and {W (τ)} are the

solutions to the differential equations in (4.24a ) and (4.24b ), respectively.

Proof. Consider the differential equations of the Pontryagin’s Maximum Principle in (4.22 ),
which we rewrite as below:

d

dτ
(∂xθ
∂θ

) = F (τ)∂xθ
∂θ

+G(τ)∂uθ
∂θ

+E(τ), (4.28a)

− d

dτ
(∂λθ
∂θ

) = Hxx(τ)∂xθ
∂θ

+Hxu(τ)∂uθ
∂θ

+F (τ)′∂λθ
∂θ

+Hxe(τ), (4.28b)

0 = Hux(τ)∂xθ
∂θ

+Huu(τ)∂uθ
∂θ

+G(τ)′∂λθ
∂θ

+Hue(τ), (4.28c)

∂λθ
∂θ

(T ) = Hxx(T )∂xθ
∂θ

+Hxe(T ). (4.28d)
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Consider that Huu(τ) in (4.23c ) is invertible for all 0 ≤ τ ≤ T , we can solve the ∂uθ
∂θ

from

(4.28c ):
∂uθ
∂θ

=−H−1
uu (τ)

(
Hux(τ)∂xθ

∂θ
+G(τ)′∂λθ

∂θ
+Hue(τ)

)
. (4.29)

Substituting (4.29 ) into both (4.28a ) and (4.28b ) and combining the definition of matrices

in (4.25 ), we have

d

dτ
(∂xθ
∂θ

) = A(τ)∂xθ
∂θ
−R(τ)∂λθ

∂θ
+M(τ), (4.30a)

− d

dτ
(∂λθ
∂θ

) = Q(τ)∂xθ
∂θ

+ A(τ)′∂λθ
∂θ

+N(τ). (4.30b)

Motivated by (4.28d ), we assume

∂λθ
∂θ

= P (τ)∂xθ
∂θ

+W (τ), (4.31)

with introduced P (τ) ∈ Rn×n and W (τ) ∈ Rn×(s+r) are two time-varying matrices for 0 ≤

τ ≤ T . Of course, the above (4.31 ) holds for τ = T , if

P (τ) = Hxx(T ) and W (τ) = Hxe(T ). (4.32)

Substituting (4.31 ) to (4.30b ) and (4.30b ), respectively, to eliminate ∂xθ
∂θ

, we obtain the

following

d

dτ
(∂xθ
∂θ

)=(A−RP )∂xθ
∂θ

+ (−RW +M), (4.33a)

−Ṗ d

dτ
(∂xθ
∂θ

)=(Q+Ṗ+A′P )∂xθ
∂θ

+(A′W+N+Ẇ ), (4.33b)
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where Ṗ = dP (τ)
dτ

, Ẇ = dW (τ)
dτ

, and we here have suppressed the dependence on time τ for all

time-varying matrices. By multiplying (−Ṗ ) on both sides of (4.33a ), and equaling the left

sides of (4.33a ) and (4.33b ), we have

(−PA+ PRP )∂xθ
∂θ

+ (PRW − PM)

=(Q+ Ṗ + A′P )∂xθ
∂θ

+ (A′W +N + Ẇ ). (4.34)

The above equation holds if

−PA+ PRP = Q+ Ṗ + A′P, (4.35a)

PRW − PM = A′W +N + Ẇ, (4.35b)

which directly are (4.24 ). Substituting (4.31 ) into (4.29 ) yields (4.27a ), and (4.27b ) directly

results from (4.28a ). This completes the proof.

Lemma 4.4.1 states that for the optimal control system (4.12 ), the gradient of its optimal

trajectory ξθ (the trajectory satisfying Pontryagin’s Maximum Principle) with respect to

parameter θ can be obtained in two steps: first, integrate (4.24 ) backward in time to obtain

matrices {P (τ)} and {W (τ)} for 0 ≤ τ ≤ T ; and second, obtain∂ξθ
∂θ

(τ) by integrating (4.27 ).

With the differential Pontryagin’s maximum principle, Lemma 4.4.1 states an efficient way

to obtain the gradient of the optimal trajectory with respect the unknown parameters in an

optimal control system. By Lemma 4.4.1 , one can obtain the derivative of any trajectory

point ξθ(τ), for any 0 ≤ τ ≤ T , along the optimal trajectory ξθ, with respect to the

parameter θ, ∂ξθ
∂θ

(τ).

Based on Lemma 4.4.1 , we summarize the overall algorithm to solve the optimization

problem (4.16 ) in Algorithm 7 .

4.5 Numerical Examples

We demonstrate the proposed approach using two systems: (i) an inverted pendulum,

and (ii) 6-DoF maneuvering quadrotor. We compare the proposed method with related work.
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Algorithm 7: Learning from Sparse Demonstrations
Input: Sparse demonstrations D in (4.5 ) and learning rate {ηk}.
Initialization: initial parameter guess θ0,
for k = 0, 1, 2, · · · do

Obtain the optimal trajectory ξθk
by solving the optimal control problem in (4.12 )

with currnet parameter θk;
Obtain the costate trajectory {λθk

(τ)} using by integrating (4.21b ) given (4.21d );

Compute ∂ξθ(τi)
∂θ

∣∣
θk

using Lemma 4.4.1 for i = 1, 2, · · ·N ;

Comopute ∂l
∂ξθ(τi)

∣∣
ξθk

(τi) from (4.15 );

Compute dL
dθ |θk

using the chain rule (4.18 );

Update θk+1 ← ProjΘ
(
θk − ηk dLdθ

∣∣
θk

)
;

end

4.5.1 Inverted Pendulum

The dynamics of an inverted pendulum is given in Appendix A.1 . We define the state

and control variables of the pendulum system as x = [α, α̇]′ and u = u, respectively, and set

the initial state x(0) = [0, 0]′. For the inverted pendulum control, we set the parameterized

cost function in (4.2 ) as

c(x,u,p) = p1(α− π)2 + p2α̇
2 + 0.1u2,

h(x,p) = p1(α− π)2 + p2α̇
2,

(4.36)

with the parameter vector p = [p1, p2]′ to be determined. For the parametric time-warping

function (4.9 ), we simply use a linear function:

t = wβ(τ) = βτ, (4.37)

with β ∈ Ωβ = {β : β > 0} (we will discuss the use of more complex time-warping functions

later). The overall parameter vector to be determined is θ = [p′, β]′ ∈ R3.
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The output function (4.4 ) is set as α = y = g(x,u), which means that the expert only

provides the position information, not including the velocity information. For the trajectory

loss function in (4.15 ), we use the l2 norm to quantify the distance measure:

L(ξθ,D) =
N∑
i=1
‖y∗(τi)− g

(
ξθ(τi)

)
‖2. (4.38)

Known Ground Truth

First, we generate sparse demonstrations D to test the proposed method when the true

objective function and time-warping function are both known. Specifically, we set the true

parameter θ∗ = [1, 1, 2]′, based on which we generate the trajectory by solving the optimal

control problem (4.12 ). Then, we pick some points as the sparse demonstrations D, listed

in Table 4.1 . We want to see if the proposed method can correctly learn θ∗ from these

sparse points. Given the sparse waypoints in Table 4.1 , we apply Algorithm 7 to learn the

parameter θ by solving (4.16 ). In Algorithm 7 , we set the learning rate η = 10−2, and

initialize the parameter θ randomly.

Table 4.1. Sparse demonstrations D for inverted pendulum.
Demonstration time instance τi waypoints y∗(τi)

τ1 = 0.1s α∗(τ1) = 0.371
τ2 = 0.3s α∗(τ2) = 1.372
τ3 = 0.6s α∗(τ3) = 2.286
τ4 = 0.7s α∗(τ4) = 2.475
τ5 = 1.0s α∗(τ5) = 2.785

Time horizon T = 1s

We plot the loss value L(ξθ,D) in (4.38 ) versus the number of iterations in Fig. 4.2 .

The result shows that as the iteration number increases, the loss diminishes fast and finally

converges to zero. This indicates that the trajectory gradually gets close to the sparse

demonstrations and finally passes through them. This convergence is also illustrated by

the right panel of Fig. 4.2 , where we plot the pendulum’s (time-warped) trajectory in each
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Figure 4.2. Learning from sparse demonstrations for inverted pendulum using
data in Table 4.1 . Left: the loss value (4.38 ) versus the number of iterations.
Right: the convergence of the pendulum’s (time-warped) trajectory as iteration
increases, where the color from light to dark gray corresponds to increasing
iteration number, and the red dots are waypoints in Table 4.1 .

iteration, where the color going from light to dark gray corresponds to increasing iteration

number, and the red dots indicate the sparse demonstrations. As shown by the results,

the initial trajectory (lightest gray) is far away from the sparse demonstrations, and as θ

updates, the trajectory (with increasingly dark colors) approaches and finally passes through

the waypoints (i.e., the converged loss is zero). To illustrate whether the parameters converge

to the ground truth θ∗ = [1, 1, 2]′, we define the following parameter error: eθ = ‖θ − θ∗‖2,

and plot the parameter error versus the number of iterations in Fig. 4.3 , from which we

note that as the number of iterations increases, eθ converges to zero, indicating that the true

parameter θ∗ of the objective and time-warping functions is successfully learned.
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Figure 4.3. Parameter error ‖θk − θ∗‖2 versus iteration number.
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Non-realizable Case

In this case, we use random sparse demonstrations, where the waypoints here are sampled

from a uniform distribution with the centers being the ones in Table 4.1 . The randomness

of the given sparse demonstrations means that an exact objective function (whose optimal

trajectory exactly passes through the sparse demonstrations) may not exist within the given

parameterized function set in (4.36 ) because of limited expressive power. The random sparse

demonstrations are listed in Table 4.2 , and the other settings are the same as the previous

case. The learning results are shown in Fig. 4.4 . The results show that as the number of

iterations increases, the loss value (4.38 ) is decreasing and converging to a value of 0.391 but

not zero. This is because the waypoints are randomly given, thus there does not exist θ∗ such

that the corresponding system trajectory exactly passes through these given waypoints. It

shows that the proposed method can always find the ‘best’ objective function and the ‘best’

time-warping function within the parametric function sets, which finally leads the reproduced

trajectory to be closest to the waypoints in a sense of having the minimal distance loss (4.7 ),

as shown in the right panel of Fig. 4.4 .

Table 4.2. Sparse demonstrations D for pendulum system.
Demonstration time instance τi waypoints y∗(τi)

τ1 = 0.1s α∗(τ1) = 0.5
τ2 = 0.3s α∗(τ2) = 1.8
τ3 = 0.6s α∗(τ3) = 2.0
τ4 = 0.7s α∗(τ4) = 2.9
τ5 = 0.9s α∗(τ5) = 3.1

Time horizon T = 1s

Different Parametric Time-Warping Functions

In this case, we test the performance of the method using different parametric time-

warping functions. The sparse demonstrations D are in Table 4.3 , where the demonstration

time labels τk are infeasible for the pendulum actuation. The other experimental settings are
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Figure 4.4. Learning from sparse demonstrations for inverted pendulum from
data in Table 4.2 . Left: the loss value (4.38 ) versus the number of iterations.
Right: the convergence of the pendulum’s (time-warped) trajectory as the
number of iterations increases, where the color from light to gray dark corre-
sponds to increasing iteration number, and the red dots are waypoints in Table
4.2 .

the same as the previous cases, except that we use the parametric polynomial time-warping

function (4.9 ) with different degrees s. We summarize in Table 4.4 the learned time-warping

function and the obtained minimal loss value of (4.38 ), i.e., minL(ξθ,D).

Table 4.3. Sparse demonstrations D for pendulum system.
Demonstration time instance τi waypoints y∗(τi)

τ1 = 0.02s α∗(τ1) = 0.5
τ2 = 0.06s α∗(τ2) = 1.8
τ3 = 0.12s α∗(τ3) = 2.0
τ4 = 0.14s α∗(τ4) = 2.9
τ5 = 0.18s α∗(τ5) = 3.1

Time horizon T = 0.2s

As shown in Table 4.4 , more complex time-warping functions lead to a lower minimal

loss value of L(ξθ,D). This is understandable because using a higher-degree polynomial

will introduce additional degrees of freedom, which contribute to further decreasing the

loss L(ξθ,D) in terms of generating a ‘more-deformed’ time axis. Also from a system per-

spective, if we look at the entire parameterized optimal control system (4.12 ), use of a
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Table 4.4. Different polynomial time-warping functions
Learned time-warping function t = w(τ) minL(ξθ,D)

t=4.656τ 0.423
t=4.826τ + 0.167τ 2 0.413
t=5.094τ+0.171τ 2 + 0.016τ 3 0.400
t=5.200τ+0.177τ 2+0.018τ 3+0.004τ 4 0.395

higher-degree polynomial time-warping function will make the parameterized system more

expressive, achieving a lower loss on the same training data.

From Table 4.4 , we further observe that the first-order terms in all learned time-warping

polynomials are approximately the same, and the higher-order terms are relatively small

compared to the first-order term and they do not significantly contribute to lowering the

final training loss. This indicates that the first-order term dominates the time scale difference

between the demonstration and robot’s execution, because T here is small and the higher-

order terms thus are not significant compared to the first-order term. In the following

experiments, we therefore only use the first-order polynomial time-warping functions.

Neural Objective Functions

Instead of using parameterization (4.36 ), we here represent the objective function using

a neural network and aim to learn a neural objective function. We test this still using the

inverted pendulum system. Specifically, the parameterized objective function is represented

as
c(x,u,p) = V (x,p) + 0.0001‖u‖2,

h(x,p) = V (x,p),
(4.39)

where V (x,p) is a 2-2-1 fully-connected neural network with tanh activation functions [156 ]

(i.e., 2-neuron input layer, 2-neuron hidden layer, and 1-neuron output layer), and p ∈ R9 is

the parameter vector of the neural network, that is, the weight matrices and bias vectors. The

time-warping polynomial is first-order as in (4.37 ) and the loss function is (4.38 ). We use the

sparse demonstration data in Table 4.3 , and the learning rate is set as η = 10−2. We plot the
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learning results in Fig. 4.5 , which shows that the proposed approach can successfully learn a

neural objective function from sparse demonstrations, such that the pendulum’s reproduced

trajectory is close to the given waypoint in Euclidean distance.
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Figure 4.5. Learning from sparse waypoints with the objective function rep-
resented by a neural network. Left: the loss value (4.38 ) versus the number
of iterations, and the loss finally converges to 0.346. Right: the learned time-
warped trajectory, where the red dots are waypoints in Table 4.3 .

In the left panel of Fig. 4.5 , the converged loss is 0.346, which is lower than the loss

of 0.423 in Table 4.4 for the weighted distance parameterization (4.36 ). This difference can

be also seen by comparing the right panel of Fig. 4.5 with the one in Fig. 4.4 . The lower

loss here is because neural network representation is more expressive than weighted distance

parameterization. The results in Fig. 4.5 demonstrate the capability of the proposed method

to learn complex parametric objective functions, and it shows the utility of the method when

the knowledge-based parametric objective function is not readily available.

However, despite the convenience of using universal neural network objective functions,

how to choose appropriate structure and hyper-parameters for a neural network (such as the

number of layers/neurons and the type of activation functions) still needs to be specified. Our

empirical experience also finds the other drawbacks of neural objective functions, including

a lack of physical interpretability for the learned results, more iterations needed to reach

convergence as empirically shown in left panel of Fig. 4.5 , and a tendency of getting trapped

in locally optimal solutions. In Section 4.7 , we will provide a further analysis for the choice

of parametric objective functions.
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4.5.2 Comparison with other Methods

Comparison with Learning From KeyFrames [155 ]

We first compare the proposed method with the method of learning from keyframe demon-

strations developed in [155 ]. As discussed in the related work, this is a policy-learning based

method: a Gaussian mixture model (GMM) is first learned from keyframe demonstrations,

based on which a trajectory is then reproduced using Gaussian mixture regression (GMR).

In this comparison experiment, we use the inverted pendulum system with the same setting

as in Section 4.5.1 . Here, we provide 20 waypoints (with the time instances evenly populated

over [0, 1]; we find that a smaller number of waypoints leads to failure of the GMM method).

During trajectory reproduction, we set a new time duration T = 2 (note that the training

data uses T = 1) to test the generalization performance of each method. Comparison results

are plotted in Fig. 4.6 , where we also plot the ground-truth for reference.
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Figure 4.6. Reproduced trajectories with a new time duration T = 2 (note
that the demonstration data is with the duration T = 1).

From Fig. 4.6 , we observe that under unseen information (here with a longer time

horizon), our method produces a trajectory much closer to the ground truth than [155 ].

This indicates better generalization of the proposed method to unseen settings (or long

horizon tasks). In fact, better generalization is generally one of the advantages of objective

function learning over policy learning, as discussed in [148 ].
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Comparison with Numerical Gradient Descent

Here, we compare the proposed method with direct gradient descent, where the gradient

is estimated numerically. Specifically, in each update we use the numerical differentiation

to approximate the gradient dL
dθ

. The experiment uses the pendulum system with the same

settings as Section 4.5.1 . Here we have tried two cases: the first case uses the sparse demon-

stration data in Table 4.1 , and the second case uses the sparse demonstration data in Table

4.2 . The comparison results are shown in Fig. 4.7 .
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Figure 4.7. Comparison between the proposed method and numerical gra-
dient descent. Left: using the sparse demonstrations in Table 4.1 ; and right:
using the sparse data in Table 4.2 . Both methods use the same learning rate
η = 10−2.

From Fig. 4.7 , we can observe that the proposed method has an obvious advantage in

terms of lower training loss and faster convergence speed. The numerical gradient descent

is effective for this case but has a lower accuracy due to the error induced during gradient

approximation. Because of this approximation error, the loss does not descend along the

‘steepest’ direction, thus leading to a slower convergence. Here, the optimization variable

θ ∈ R3 is low-dimensional, the numerical gradient is thus relatively easier to compute, and

the numerical gradient descent works. For high dimensional tasks, as we will show below,

we found that the numerical gradient descent is prone to fail due to inaccuracy of gradient

estimation.
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4.5.3 Experiment on 6-DoF Maneuvering Quadrotor

We here show the effectiveness of the proposed method on a more complex 6-DoF ma-

neuvering quadrotor. The equation of motion of a quadrotor flying in SE(3) (full position

and attitude) space is given in Appendix A.3 . We define the state variable

x =
[
rI vI qB/I ωB

]
∈ R13. (4.40)

and define the control variable

u =
[
T1 T2 T3 T4

]′
∈ R4. (4.41)

To achieve SE(3) maneuvering control, we need to carefully design the attitude error. As

in [157 ], we define the attitude error between the quadrotor’s current attitude q and goal

attitude qg as

e(q, qg) = 1
2trace(I −R′(qg)R(q)), (4.42)

where R(q) ∈ R3×3 is the direction cosine matrix corresponding to the quaternion q (see

[158 ] for more details).

The parameterized cost function in (4.2 ) is set as

c(p) = ‖p′r(rI − r
g
I)‖2 + ‖p′v(vI − v

g
I)‖2 + pqe(qB/I , q

g
B/I)+‖p′ω(ωB − ωg

B)‖2+0.1‖u‖2,

(4.43a)

h(p) = ‖p′r(rI − r
g
I)‖2 + ‖p′v(vI − v

g
I)‖2 + pq · e(qB/I , q

g
B/I)+‖p′ω(ωB − ωg

B)‖2. (4.43b)

Here, rg
I = 0, vg

I = 0, qg
B/I = [1, 0, 0, 0]′, and wg

B = 0 are the goal position, velocity,

orientation, and angular velocity, respectively; the objective function parameter vector here

is

p = [pr, pv, pq, pω]′ ∈ R10. (4.44)
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For the parametric time-warping function, we use the first-degree polynomial as in (4.37 ).

The total parameter vector to be determined is

θ = [p, β]′ ∈ R11. (4.45)

We set the output function in (4.4 ) as

y = [rI , qB/I ] = g(x,u), (4.46)

which means that the expert can only provide the position and attitude demonstrations for

quadrotor maneuvering (not including velocity information).

Table 4.5. Sparse demonstrations D for quadrotor maneuvering.
time instance τi waypoints y∗(τi)

τ1 = 0.13s r∗I(τ1) = [-8.20, -2.47, 8.42] q∗B/I(τ1) = [0.97, -0.16, -0.12, 0.04]

τ2 = 0.40s r∗I(τ2) = [-7.35, -4.90, 5.10] q∗B/I(τ2) = [0.91, -0.38, 0.14, -0.12]

τ3 = 0.80s r∗(τ3) = [-3.85, -2.85, 2.35] q∗B/I(τ3) = [0.99, 0.05, -0.09, -0.10]

τ4 = 1.33s r∗I(τ4) = [-1.09-0.71, 0.82] q∗B/I(τ4) = [0.99, 0.07, -0.07, -0.09]

τ5 = 1.73s r∗I(τ5) = [-0.48, -0.32, 0.37] q∗B/I(τ5) = [0.99, 0.02, -0.03, -0.08]

Time horizon T = 2s

The sparse demonstrations are in Table 4.5 . The loss function L(ξθ,D) is defined using

Euclidean distance as in (4.38 ). In Algorithm 7 , we set the learning rate n = 10−2. We plot

the learning results in Fig. 4.8 . The results show that, as the parameter θ is updated at each

iteration, the loss value L(ξθ,D) diminishes to zero quickly, meaning that the quadrotor’s

reproduced trajectory gets closest to the sparse demonstrations in Table 4.5 . The right

panel of Fig. 4.8 shows the final reproduced trajectory, which exactly passes through the

given sparse demonstrations. This indicates the capability of the method in handling more

complex systems.
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Figure 4.8. Learning from sparse demonstrations for 6-DoF quadrotor maneu-
vering. Left: the loss function value L(ξθ,D) versus the number of iterations.
Right: the quadrotor trajectory before learning (red) and the quadrotor tra-
jectory after learning (blue), and green objects are the sparse demonstrations
in Table 4.5 .

4.6 Application: Learning for Obstacle Avoidance

In this section, we apply the proposed method to learning robot motion control in an en-

vironment with obstacles. Here, a human provides few waypoints in the vicinity of obstacles

in an environment, and the robot learns a control objective function from those waypoints

such that its resulting motion can get around the obstacles. We experiment on two systems:

a 6-DoF maneuvering quadrotor and a two-link robot arm.

4.6.1 6-DoF Maneuvering Quadrotor

We still use the 6-DoF quadrotor system in Section 4.5.3 . For the parameterized control

objective function (4.2 ), instead of using the weighted distance to the goal state, we here use

a general second-order polynomial parameterization as follows:

c(x,u,p) = p1r
2
x + p2rx + p3r

2
y + p4ry + p4r

2
z + p5rz + 0.1‖u‖2, (4.47a)

h(x) = ‖rI − rg
I‖2 + 10‖vI‖2 + 100e(qB/I , q

g
B/I) + 10‖wB‖2, (4.47b)

where rI = [rx, ry, rz]′ is the position of the quadrotor expressed in the world coordinate

frame, and we have fixed the final cost h(x) (i.e., no tunable parameters) since we always

want the quadrotor to finally land on a target position given by rg
I . Here the tunable objective
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function parameter is p = [p1, p2, p3, p4, p5]′ in the running cost c(x,u,p) as it determines

how the quadrotor reaches the target (i.e., the specific path of the quadrotor).
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Figure 4.9. Quadrotor maneuvers in an environment with obstacles. The
quadrotor’s aim is to go through the two gates (from left to right) and finally
land on the target position in the upper right corner. The plotted trajectory
is a simulation with a random initial control objective function, which fails to
achieve the goal (the quadrotor may crash into the first gate, as seen from the
top view).

As shown in Fig. 4.9 , we aim for the quadrotor to fly from the left position rI(0) =

[− 8,−8, 5]′, go through two gates (as depicted in Fig. 4.10 ), and finally land on the target

position on the right rg
I = [8, 8, 0]′. In Fig. 4.9 , we draw the trajectory of the quadrotor

for a random initial objective function parameter p. It can be seen that here the quadrotor,

although finally landing on the target position, does not meet the requirement of going

through the two gates. We also note that the quadrotor may crash into the first gate (as

seen from the top view). In the following, we will train the quadrotor by providing few sparse

waypoints.

We provide the waypoints listed in Table 4.6 . Note that we here only provide the position

information for the quadrotor (The output function in (4.4 ) is now is rI = y = g(x,u)).

Also note that we do not know whether these waypoints correspond to an exact objective

function within the parameterized function set; we also do not know if the given time label for

each waypoint and time horizon are achievable, i.e. if there exist an exact objective function

and time-warping function such that the resulting trajectory exactly passes through the

waypoints exactly at the given time instances.
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Table 4.6. Sparse waypoints D for quadrotor maneuvering.
Demonstration time instance τi waypoints y∗(τi)

τ1 = 0.07s rI(τ1) = [− 4,−6, 4]
τ2 = 0.2s rI(τ2) = [1,−5, 3]
τ3 = 0.4s rI(τ3) = [1,−1, 4]
τ4 = 0.47s rI(τ4) = [− 1, 1, 4]
τ5 = 0.67s rI(τ5) = [2, 3, 4]

Time horizon T = 1s

We divide the experiment into four cases, and for each case we use a different number of

waypoints from Table 4.6 to learn an objective function and a time-warping function. The

parametric time-warping function is first-order polynomial as in (4.37 ), and the loss function

L(ξθ,D) is set as (4.38 ). The learning rate is set as η = 10−2.

We plot the results in Fig. 4.10 , where the quadrotor’s trajectory reproduced by the

learned objective function in different cases is shown. Specifically, in Fig. 4.10a , we only

use one waypoint r∗I(τ1) in Table 4.6 to learn the objective function (and time-warping

function). The results in Fig. 4.10a illustrate that the learned objective function enables

the quadrotor to reproduce a trajectory passing through the given waypoint and landing on

the target position, but clearly the learned objective function fails to meet the requirement

of going through the two gates. In Fig. 4.10b , we learn the objective function using two

waypoints r∗I(τ1) and r∗I(τ2) in Table 4.6 , where r∗I(τ2) is placed because we want to guide

the quadrotor to go through the first (left) gate. The results in Fig. 4.10b show that the

quadrotor successfully learns an objective function to go through the first gate, and then

land on the target position, but it fails to go through the other gate. In Fig. 4.10c , we only

place two waypoints r∗I(τ2) and r∗I(τ3) between the two gates, where the waypoint r∗I(τ2)

accounts for the quadrotor to go through the first gate while the other waypoint r∗I(τ3) is

used to account for the navigation between two gates. The corresponding results show that

the learned objective function successfully enables the quadrotor to go through the first

gate, pass through the second waypoint, and finally land on the target position. However,

as shown in top view in Fig. 4.10c , the quadrotor may crash into the frame of the second
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(a) Learning from only one waypoint r(τ1)
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(b) Learning from two waypoints r(τ1) and r(τ2)
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(c) Learning from two waypoints r(τ2) and r(τ3)
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(d) Learning from five waypoints from r(τ1) to
r(τ5)

Figure 4.10. 6-DoF quadrotor learns to maneuver control in an environment
with obstacles: the quadrotor aims to start from the left position (−8,−8, 5),
then go though two gates, and finally land on a target position (8, 8, 0) on
the right. In different sub-figures, we use different number of waypoints from
Table 4.6 . The waypoints are labeled as red triangles. The motion trajectory
reproduced by the learned objective function is shown in blue curve. Please
find the video demo at https://wanxinjin.github.io/posts/lfsd  .

gate. Compared to Fig. 4.10c , in Fig. 4.10d we provide two additional waypoints r∗I(τ4)

and r∗I(τ5) in order to correctly guide the quadrotor to go through the second gate, and also

one additional waypoint r∗I(τ1) to the first gate. The results in Fig. 4.10d show that with

these five waypoints, the quadrotor learns an objective function that successfully leads it to

go through the two gates and finally land on the target position. In Fig. 4.11 , we also plot

the loss versus the number of iterations for each of the experiment cases.

The above experimental results demonstrate the effectiveness of the proposed method to

learn objective functions from sparse demonstrations. It illustrates that the proposed method
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Figure 4.11. The loss versus number of iterations. The top-left panel is for
experiment case (a) in Fig. 4.10 , the top-right is for (b), the bottom-left is for
(c), the bottom-right is for (d).

significantly simplifies the process of robot programming for motion planning/control tasks

in environments with obstacles.

4.6.2 Two-link Robot Arm

In this part, we apply the proposed method to control a two-link robot arm in an envi-

ronment with obstacles. The dynamics of the robot arm system are given in Appendix A.2 .

The state and control variables for the robot arm control system are x = [q, q̇]′ and u = τ ,

respectively. Here all the parameters in the dynamics are set as units. We consider the cost

function in (4.2 ) specifically as

c(x,u,p) = p1q
2
1 + p2q1 + p3q

2
2 + p4q2 + 0.5‖u‖2, (4.48a)

h(x) = 10‖q − qg‖2 + 100‖q̇‖2, (4.48b)
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where the running cost c(x,u,p) is of a polynomial type with the tunable parameter p =

[p1, p2, p3, p4]′, and we also fix the final cost h(x) because we aim the arm to finally reach

the goal configuration given by qg. Here qg = [π2 , 0]′.

As shown in Fig. 4.12a , the robot arm is initially in state x(0) = [ − π/2, 0, 0, 0, 0]′ and

we want the robot arm to reach and stop at the goal configuration qg while avoiding collision

with an obstacle depicted by an orange block on its right side. Initially, we set the robot arm

with an arbitrary initial running cost cp(x,u) and the resulting robot motion at different

time instances is shown in Fig. 4.12a to 4.12d , respectively. Obviously, the robot arm has

crashed into the obstacle during its motion (as seen from Fig. 4.12c ).

Table 4.7. Sparse waypoints D for robot arm reaching.
Demonstration time instance τi waypoints y∗(τi)

τ1 = 0.3s q∗(τ1) = [− π
4 ,

2π
3 ]

Time horizon T = 1s

Next, we give only one waypoint to the robot arm, which is in Table 4.7 (The output

function (4.4 ) is q = y = g(x,u)). Here the waypoint is away from the obstacle, as shown in

gray in the second row of Fig. 4.12 , since if the robot arm successfully follows the waypoint

it could avoid crashing into the obstacle. Note that we do not know whether the given

waypoint and the associated time are realizable or not (i.e. if there exist an exact objective

function and time-warping function such that the resulting trajectory exactly pass through

the waypoints at the given time instance). We apply the proposed method to learn both an

objective function and time-warping function within the parameterized function set (4.48 ).

The parametric time-warping function is the first-order polynomial given in (4.37 ), and the

loss function L(ξθ,D) is set as (4.38 ). The learning rate is set as η = 10−2.

The learning results are in the second-row panels in Fig. 4.12 , where we also show the

demonstrated waypoint q∗(τ1) in Fig. 4.12e with gray color. The results show that with

the learned objective function (and the learned time-warping function), the robot arm can

successfully avoid the obstacle in its reaching motion. This demonstrates the effectiveness

of the proposed method: even with only a single demonstration waypoint, the robot can
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Figure 4.12. The upper panels (a)-(d): reaching motion of a two-link robot
arm using an arbitrary initial objective function without accounting for the
obstacles. Here the obstacle is labeled by an orange object and the reaching
target by a red star. From the left to right, we plot the configuration of
the robot arm at different time instances during its motion with a random
initial control objective function. The second-row panels (e)-(h): reaching
motion of the robot arm using the objective function learned from the given
waypoint in Table 4.7 . Here the waypoint q∗(τ1) is shown in (e) by gray
color. From left to right, we plot the configuration of the arm at different
time instances during its motion. Please also find the video demo at https:
//wanxinjin.github.io/posts/lfsd .

successfully learn a valid control objective function for its motion to avoid obstacles. In Fig.

4.13 , we also plot the loss value L(ξθ,D) versus the number of iterations.

4.7 Discussion

In this section, we provide further discussion about the proposed learning method in terms

of sparse demonstration data, objective function parameterization, and learning convergence.
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Figure 4.13. Loss versus iteration for robot arm learning.

4.7.1 Why do sparse demonstrations suffice?

As shown in both Sections 4.5 and 4.6 , the proposed approach enables to learn a control

objective function from only a few sparse demonstrations. We below provide one explanation

of why use of sparse data can successfully recover an objective function.

Consider the problem in (4.16 ). For the optimal trajectory ξθ produced by the time-

warped optimal control system in (4.12 ), since we are only interested in the trajectory points

ξθ(τi) at the specified time instances τi (1 ≤ i ≤ N), we discretize the time horizon of the

optimal control system at these given time instances, and obtain the following discretized

system [51 ]:

dynamics: xi+1 = f̄(xi, ūi,θ), x0 = x(0), (4.49a)

objective: J(θ) =
N−1∑
i=0

c̄(xi, ūi,θ) + h̄(xN , ūN ,θ), (4.49b)

where we denote xi = x(τi), and discrete-time f̄ satisfies

xi+1 = f̄(xi, ūi,θ) = xi +
∫ τi+1

τi

vβ(τ)f(x(τ),u(τ))dτ,
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and the discrete-version of objective function satisfies

c̄(xi, ūi,θ) =
∫ τi+1

τi

vβ(τ)cp(x(τ),u(τ))dτ,

h̄(xN , ūN ,θ) =
∫ T

τN

vβ(τ)cp(x(τ),u(τ))dτ + hp(x(T )).

Here the discrete input ūi ∈ Rd in f̄ may not necessarily has the same dimension as the

control u(τ) ∈ Rn of the original system f , e.g., ūi contains all possible controls over the

time range [τi, τi+1], as [51 ]. The resulting optimal sequence {x0:N , ū0:N} of the discrete-time

optimal control system (4.49 ) satisfies the KKT conditions:

xi+1 = f̄(xi, ūi,θ), i = 0, · · ·N − 1, (4.50a)

λi = ∂c̄

∂xi
+ ∂f̄ ′

∂xi
λi+1, i = 1, · · ·N − 1, (4.50b)

0 = ∂c̄

∂ūi
+ ∂f̄ ′

∂ūi
λi+1, i = 0, · · ·N − 1, (4.50c)

λN = ∂h̄

∂xN
,

∂h̄

∂ūN
= 0 i = N. (4.50d)

The output of the discrete-time system (4.49 ) can be overloaded by y(τi) = g(xi, ūi).

To simplify analysis, we further assume that the sparse demonstrations D in (4.5 ) corre-

spond to an exact objective function (and time-warping function) with parameter θ, i.e.,

minL(ξθ,D) = 0. Then,

y∗(τi) = g(xi, ūi). (4.51)

Given the sparse demonstrations D in (4.5 ), we can consider the recovery of an objective

function to be a problem of solving a set of non-linear equations in (4.50 ) and (4.51 ), where

the unknowns are {x1:N , ū0:N ,λ1:N ,θ} ∈ R2Nn+(N+1)d+(r+s), and the total number of con-

straints are 2Nn+ (N + 1)d+No. Here (r+ s) is the dimension of θ and o is the dimension

of y. Thus, a necessary condition to compute {x1:N , ū0:N ,λ1:N ,θ} uniquely requires the

number of constraint equations to be no less than the number of unknowns, which leads to

N ≥ r + s

o
. (4.52)
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This has been empirically shown by experiments in Section 4.5.1 , where the number of

sparse demonstrations satisfy the above condition. On the other hand, if (4.52 ) is not

fulfilled or the given sparse data D is of lower excitation (conceptually think of the persistent

excitation in system identification), the unknowns then cannot be uniquely determined,

which means that there might exist multiple θ such that the trajectory passes through the

sparse demonstrations. This has been shown in experiment in Sections 4.6.2 or 4.6.1 , where

we only provide one waypoint.

Note that the above discussion uses a perspective different from the technical development

of this chapter to explain why sparse demonstrations can recover an objective function. This

explanation however is limited as it fails to explain the case where sparse demonstrations are

not realizable, i.e., minL(ξθ,D) > 0, such as sub-optimal data, as demonstrated in Section

4.6.1 and 4.5.1 . We leave this as a direction for future work, where we could formulate the

problem in stochastic settings and explain data sparsity from the perspective of probability

or information theory.

4.7.2 Choice of Parametric Objective Functions

We here discuss the choice of parametric objective functions based on different application

scenarios.

Learning for Robot Motion Control

As shown in Section 4.5 , when a robot learns from demonstrations for its motion control,

a parameterized objective function can be selected as a weighted distance to the goal/target

state together with the penalty for control efforts. This type of objective function is com-

monly used in tracking control problems [149 ] and model predictive control problems [103 ].

Learning for Obstacle Avoidance

As shown in Section 4.6.1 , when a robot learns from sparse demonstrations in order to

plan/control its motion for obstacle avoidance, the unknown objective function is set as a

general parametric function that can represent global positions. For example, in (4.47a )
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and (4.48a ), we use general polynomial functions of states to represent the running cost

function. The learned polynomial objective function will finally encode the information

of the obstacles’ global positions, based on which the robot then generates its motion to

successfully avoid obstacles. Also, in these obstacle avoidance scenarios, the final cost (see

(4.47b ) and (4.48b )) is set to include the target/goal position that the human operator wants

the robot to finally reach. However, this formulation will not allow a robot to generalize to

dynamic environments, where obstacle locations may change over time. To handle dynamic

environments, the cost function input must explicitly include information about obstacles,

such as relative distance.

Using Universal Neural Network Objective Functions

When a human operator has little prior knowledge about the robot tasks and its dy-

namics constants, a universal method to represent a learnable objective function is to use

a (deep) neural network, as we have demonstrated in Section 4.5.1 . Despite its representa-

tion convenience, our experimental experience finds the following drawbacks of using neural

network objective functions: (i) the great effort needed to specify the proper structure and

hyper-parameters of a neural network, such as the number of layers or neural nodes and the

type of activation functions, (ii) the lack of physical interpretability for the learned results,

(iii) the relatively slower convergence in general, as empirically shown in Section 4.5.1 , and

(iv) the tendency of getting trapped in locally optimal solutions, which means that one has

to carefully choose initial conditions for parameters of a neural network.

4.7.3 Choices of Sparse Demonstrations

Based on the applications in Sections 4.6.2 and 4.6.1 , we have noted that few waypoints

are sufficient to train a robot to accomplish the task of obstacle avoidance. However, it is

also worth noting that a human demonstrator has to provide these few waypoints wisely in

order to successfully teach the robot to learn to move around obstacles. For example, in the

robot arm experiment in Section 4.6.2 , if the single waypoint is placed too close to the initial

or target configuration, the robot arm, even though it can still learn to pass through the
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waypoint, will in other places crash into the obstacle. Thus, a wise choice of fewer waypoints

requires the demonstrator’s understanding of both the task and robot constraints in specific

applications.

4.7.4 Convergence of the Proposed Learning Algorithm

The proposed learning algorithm is to solve the optimization problem in (4.16 ) using

(projected) gradient descent. Generally, such a problem belongs to non-convex optimization,

e.g., when one utilizes a deep neural network to represent the unknown objective function.

For general non-convex optimization problems, it is known that finding the global minimum

is generally difficult (if it is not impossible)[159 ], and (projected) gradient descent, with

an appropriate step size (e.g., using the Armijo rule [159 ]), can provably converge to a

stationary/critical point, i.e., a point at which the gradient of the loss function is zero, [159 ].

A stationary point could be global minima, local minima, or saddle points with worst-case

initialization. Due to difficulty of finding global minima, the past research in non-convex

optimization are mainly focused on how to overcome the convergence to saddle points. Very

recently, new progress [160 , 161 , 162 ] in non-convex optimization shows that, under a very

mild regularity, e.g., adding noise to data, convergence to saddle points is almost impossible,

and gradient descent always converges to (local) minimizers for any random initialization.

When we pose further requirements, such as (strong) convexity and smoothness, on both

the loss function (4.15 ) and the parametric optimal control system (4.12 ) with respect to

both the system state-input trajectory and the parameter θ, convergence of the proposed

learning algorithm to global minima could be guaranteed. This is because the proposed

learning method is suited to the category of bi-level programming [163 ], where here the

inner level is to solve an optimal control problem in (4.12 ) and the outer level to minimize

the loss function (4.15 ); and [133 ] gives a proof of convergence to global minima for general

bi-level programs. However, to prove global minima of our case, the convex and smooth

requirements for the optimal control system (4.12 ) is too limited. As a future direction

of this work, we will try to explore milder conditions that can ensure the global minima
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convergence of the method, probably using the perspective of dynamical system or control

theory.

4.8 Conclusions

In this chapter, we present an approach to learn an objective function from sparse demon-

strations of an expert. The sparse demonstrations are given as few desired outputs of the

robot’s trajectory at some sparsely-located time instances specified by a human user. The

proposed method enables the robot to jointly learn an objective function and a time-warping

function such that its reproduced trajectory has minimal distance to the sparse demonstra-

tions. The proposed technique of differential Pontryagin’s Maximum Principle allows us to

simultaneously learn a control objective function and a time-warping function by directly

minimizing the Euclidean distance between the robot’s reproduced trajectory and the given

sparse demonstrations. The effectiveness and capability of the proposed method are demon-

strated using multiple scenarios, including obstacle avoidance for a robot arm and a 6-DoF

quadrotor maneuvering control. The results show that using only few sparse waypoints, a

robot is able to learn a valid objective function to control its motion to successfully avoid

obstacles.
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5. LEARNING FROM DIRECTIONAL CORRECTIONS

Learning from demonstrations is an offline process: a human user first provides a robot with

behavioral demonstrations in a onetime manner, then the robot learns a control policy or

a control objective function off-line from the demonstrations. In this chapter, we develop a

technique that enables a non-expert human user to teach a robot by incrementally improving

the robot’s motion. For instance, consider the example of a robot that plans motion under

a (random) control objective function. While it is executing the motion, a human user

who supervises the robot will find the robot’s motion is not satisfactory; thus, the human

user applies a correction to the robot during its motion execution. Then, the robot uses

the correction to update its control objective function. This process of planning-correction-

update repeats until the robot eventually achieves a control objective function such that its

resulting trajectory agrees with the human user’s expectation. In this learning procedure,

the human’s each correction does not necessarily move the robot to the optimal motion,

but merely an incremental improvement of the robot’s current motion towards the human’s

expectation, thus reducing the workload of a nonexpert user compared to learning from

demonstrations

In this chapter, we present a new technique which enables a robot to learn a control

objective function incrementally from human user’s corrections. The human’s corrections

can be as simple as directional corrections—corrections that indicate the direction of a

control change without indicating its magnitude—applied at some time instances during

the robot’s motion. We only assume that each of the human’s corrections, regardless of

its magnitude, points in a direction that improves the robot’s current motion relative to

an implicit objective function. The proposed method uses the direction of a correction to

update the estimate of the robot control objective function. We establish the theoretical

results to show that this process of incremental correction and update guarantees conver-

gence of the learned objective function to the implicit one. The content of this chapter

appears in [39 ], and the code and experiments developed for this chapter can be accessed at

https://github.com/wanxinjin/Learning-from-Directional-Corrections .
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5.1 Introduction

For tasks where robots work in proximity to human users, a robot is required to not

only guarantee the accomplishment of a task but also complete it in a way that a human

user prefers. Different users may have difference preferences about how the robot should

perform the task. Such customized requirements usually lead to considerable workload of

robot programming, which requires human users to have expertise to design and repeatedly

tune robot’s controllers until achieving satisfactory robot behaviors.

To circumvent the expertise requirement in traditional robot programming, learning from

demonstrations (LfD) empowers a non-expert human user to program a robot by only pro-

viding demonstrations. In existing LfD techniques [139 ], a human user first provides a robot

with behavioral demonstrations in a one-time manner, then the robot learns a control pol-

icy or a control objective function off-line from the demonstrations. Successful examples

include autonomous driving [26 ], robot manipulation [34 ], and motion planning [138 ]. In

some practical cases, the one-time and offline nature of LfD can introduce challenges. For

example, when the demonstrations are insufficient to infer the objective function due to low

data informativeness [12 ] or significant deviation from the optimal data [164 ], new demon-

strations have to be re-collected and the robot has to be re-trained. Importantly, acquiring

an optimal demonstration in a one-shot fashion for the systems of high degree-of-freedoms

can be challenging [164 ], because the human demonstrator has to move the robot in all

degrees-of-freedom in a spatially and temporally consistent manner.

In this work, we address the above challenges by developing a new programming scheme

that enables a non-expert human user to program a robot by incrementally improving the

robot’s motion. For instance, consider the example of a robot that plans motion under a

(random) control objective function. While it is executing the motion, a human user who

supervises the robot will find the robot’s motion is not satisfactory; thus, the human user

applies a correction to the robot during its motion execution. Then, the robot uses the

correction to update its control objective function. This process of planning-correction-

update repeats until the robot eventually achieves a control objective function such that its

resulting trajectory agrees with the human user’s expectation. In this learning procedure,
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the human’s each correction does not necessarily move the robot to the optimal motion,

but merely an incremental improvement of the robot’s current motion towards the human’s

expectation, thus reducing the workload of a non-expert user when programming a robot

compared to LfD. In addition to the incremental learning capability, the proposed learning

from directional corrections technique in this work also has the following highlights.

1) The proposed method only requires human’s directional corrections. A directional

correction is a correction that only contains directional information and does not necessarily

need to be magnitude-specific. For instance, for teaching a mobile robot, the directional

corrections are simply as ‘left’ or ‘right’ without dictating how far the robot should move.

2) The human’s directional corrections to the robot’s motion can be sparse. That means

that the corrections can be applied only at sparse time instances within the time horizon

of the robot’s motion. The learning is performed directly based on the sparse corrections,

without attaining/retaining any intermediate corrected trajectory that may introduce inac-

curacy.

3) Both theoretical results and experiments are established to show the convergence of

the proposed learning algorithm. Specifically, we validate the method on two human-robot

games and the results show that the proposed method enables a robot to efficiently learn a

control objective function for the desired motion with few human’s directional corrections.

5.1.1 Related Work

Offline Learning from Demonstrations

To learn a control objective function from demonstrations, the available approaches in-

clude inverse optimal control [11 , 42 , 147 ] and inverse reinforcement learning [3 , 29 , 33 ],

where given optimal demonstrations, an objective function that explains such demonstra-

tions is inferred and used for motion control and planning. Despite the significant progress

achieved in theory and applications [13 , 26 , 34 , 35 , 141 ], LfD approaches could be incon-

venient in some practical situations. First, demonstrations in LfD are usually given in a

one-time manner and the learning process is usually performed offline after the demonstra-

tions are obtained. In the case when the given demonstration data is insufficient to learn
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the objective function from, such as low data informativeness as discussed in [12 ], or the

demonstrations significantly deviates from the optimal ones, the data has to be re-collected

and the whole learning process has to be re-run. Second, existing LfD techniques [3 , 11 , 29 ,

33 , 42 ] normally assume optimality of the demonstration data, which is challenging to obtain

for robots with high degree-of-freedoms. For example, when producing demonstrations for

a humanoid robot, a human demonstrator has to account for the motion in all degrees in a

spatially and temporally consistent manner. [164 ].

Online Learning from Feedback or Physical Corrections

Compared to offline LfD, learning from corrections or feedback enables a human user

to incrementally correct the robot’s current motion, making it more accessible for the non-

expert users who cannot provide optimal demonstrations in a one-time manner [165 ]. The

key assumption for learning from corrections or feedback is that the corrected robot’s motion

is better than that before the correction. Under this assumption, [164 ] proposes a co-active

learning method, in which a robot receives human’s feedback to update its objective function.

The human’s feedback includes the passive selection of a top-ranked robot trajectory or the

active physical interference for providing a preferred robot trajectory. By defining a learning

regret, which quantifies the average misalignment of the score values between the human’s

intended trajectory and robot’s trajectory under the human’s implicit objective function,

the authors show the convergence of the regret. Since the regret is an average indicator over

the entire learning process, one still cannot explicitly tell if the learned objective function is

actually converging towards the human’s implicit one.

Very recently, the authors in [38 , 166 , 167 ] approach learning from corrections from

the perspective of a partially observable Markov decision process (POMDP), where human’s

corrections are viewed as the observations about the unknown objective function parameters.

By approximating the observation model and applying maximum a posteriori estimation,

they obtain a learning update that is similar to the co-active learning [164 ]. To handle

the sparse corrections that a human user applies only at sparse time instances during the

robot’s motion, these methods apply the trajectory deformation technique [168 ] to interpret
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each single-time-step correction through a human indented trajectory, i.e., a deformed robot

trajectory. Although achieving promising results, choosing the hyper-parameters in the

trajectory deformation is challenging, which can affect the learning performance [166 ]. In

addition, these methods have not provided any convergence guarantee of the learning process.

Both the above co-active learning and POMDP-based learning require a dedicated setup

or process to obtain the human indented/feedback trajectories. Specifically, in co-active

learning, a robot is switched to the screening and zero-force gravity-compensation modes to

obtain a human feedback trajectory, and in the POMDP-based method, the human intended

trajectory is obtained by deforming the robot’s current trajectory based on a correction

using trajectory deformation method. These intermediate steps may introduce inaccurate

artificial aspects to the learning process, which could lead to failure of the approach. For

example, when a user physically corrects a robot, the magnitude of a correction, i.e., how

much the correction should be, can be difficult to determine. If not chosen properly, the

given correction may be overshot, i.e., too much correction. Such a overshooting correction

can make the obtained human feedback trajectory violate the assumption of improving the

robot’s motion. In fact, as we will demonstrate in Sections 5.2 and 5.5.3 , the more closer

the robot is approaching to the expected trajectory, the more difficult the choice of a proper

correction magnitude will be, which can lead to learning inefficiency. Also, for POMDP-based

methods, when one applies the trajectory deformation, the choice of hyper-parameters will

determine the shape of the human intended trajectory and thus finally affect the learning

performance, as discussed in [166 ].

5.1.2 Contributions

This chapter develops a new method to learn a robot objective function incrementally

from human’s directional corrections. Compared to the existing methods above, the distinc-

tions and contributions of the proposed method are stated as follows.

(1) The proposed method learns a robot control objective function only using the

direction information of human’s corrections. It only requires that a correction,

regardless of magnitude, has a direction of incrementally improving robot’s current
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motion. As we will later show in Sections 5.2 and 5.5.3 , the feasible corrections

that satisfy such a requirement always account for half of the entire input space,

making it more flexible for a human user to choose corrections from.

(2) Unlike existing learning techniques which usually require an intermediate setup

to obtain a human indented trajectory, the proposed method learns a control

objective function directly from directional corrections. The directional corrections

can be sparse, i.e., the corrections only applied at some time instances within the

time horizon of robot’s motion.

(3) The proposed learning algorithm is developed based on the cutting plane tech-

nique, which has a straightforward intuitive geometric interpretation. We have

established the theoretical results to show the convergence of the learned objec-

tive function to the human’s implicit one.

The proposed method is validated by two human-robot games based on a two-link robot arm

and a 6-DoF quadrotor maneuvering system, where a human player, by applying directional

corrections, teaches the robot for motion control in environments with obstacles. The ex-

periment results demonstrate that the proposed method enables a non-expert human player

to train a robot to learn an effective control objective function for desired motion with few

directional corrections.

In the following, Section 5.2 describes the problem. Section 5.3 proposes the main al-

gorithm outline. Section 5.4 provides theoretical results of the algorithm and its detailed

implementation. Numerical simulations and comparison are in Section 5.5 . Section 5.6 

presents the experiments on two human-robot games. Conclusions are drawn in Section 5.8 .

5.2 Problem Formulation

Consider a robot with the following dynamics:

xt+1 = f(xt,ut), with x0, (5.1)
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where xt ∈ Rn is the robot state, ut ∈ Rm is the control input, f : Rn × Rm 7→ Rn is

differentiable, and t = 1, 2, · · · is the time step. As commonly used by objective learning

methods such as [3 , 11 , 12 , 29 , 33 , 38 , 164 , 165 , 166 , 167 ], we suppose that the robot control

cost function obeys the following parameterized form

J(u0:T ,θ) =
∑T

t=0 θ
′φ(xt,ut) + h(xT+1), (5.2)

where φ : Rn × Rm 7→ Rr is a vector of the specified features (or basis functions) for the

running cost; θ ∈ Rr is a vector of weights, which are tunable; and h(xT+1) is the final cost

that penalizes the final state xT+1. For a given choice of θ, the robot chooses a sequence

of inputs u0:T over the time horizon T by optimizing (5.2 ) subject to (5.1 ), producing a

trajectory

ξθ =
{
xθ0:T+1,u

θ
0:T

}
. (5.3)

For the purpose of readiablity, we occasionally write the cost function (5.2 ) as J(θ).

For a specific task, suppose that a human’s expectation of the robot’s trajectory corre-

sponds to an implicit cost function J(θ∗) in the same form of (5.2 ) with θ∗. Here, we call

θ∗ the expected weight vector. In general cases, a human user may neither explicitly write

down the value of θ∗ nor demonstrate the corresponding optimal trajectory ξθ∗ to the robot,

but the human user can tell whether the robot’s current trajectory is satisfactory or not. A

trajectory of the robot is satisfactory if it minimizes J(θ∗); otherwise, it is not satisfactory.

In order for the robot to achieve J(θ∗) (and thus generates a satisfactory trajectory), the

human user is only able to make corrections to the robot during its motion, based on which

the robot updates its guess of θ towards θ∗.

The process for a robot to learn from human’s corrections is iterative. Each iteration

basically includes three steps: planning, correction and update. Let k = 1, 2, 3, · · · , denote

the iteration index and let θk denote the robot’s weight vector guess at iteration k. At

k = 1, the robot is initialized with an arbitrary weight vector guess θ1. At iteration k =

1, 2, 3, · · · , the robot first performs trajectory planning, i.e. achieves ξθk
by minimizing the

cost function J(θk) in (5.2 ) subject to its dynamics (5.1 ). During robot’s execution of ξθk
,
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the human user gives a correction denoted by atk ∈ Rm to the robot in its input space. Here,

tk ∈ {0, 1, · · · , T}, called correction time, indicates at which time step within the horizon T

the correction is made. After receiving atk , the robot then performs update, i.e. change its

guess θk to θk+1 according to an update rule to be developed later.

Each human’s correction atk is assumed to satisfy the following condition:

〈
−∇J(uθk

0:T ,θ
∗), āk

〉
> 0, k = 1, 2, 3, · · · . (5.4)

Here

āk =
[
0′ · · · a′tk · · · ,0

′
]′
∈ Rm(T+1), (5.5)

with atk being the tk-th entry and 0 ∈ Rm else; 〈·, ·〉 is the dot product; and −∇J(uθk
0:T ,θ

∗)

is the gradient-descent of J(θ∗) with respect to u0:T evaluated at robot’s current ξθk
=

{xθk
0:T+1,u

θk
0:T }. Note that the condition in (5.4 ) does not require a specific value to the

magnitude of atk but requires its direction roughly around the gradient-descent direction

of J(θ∗). Such correction aims to guide the robot’s trajectory ξθk
towards reducing its

cost under J(θ∗) unless the trajectory is satisfactory. Thus, we call atk satisfying (5.4 ) the

incremental directional correction.

The problem of interest is to develop a rule to update the robot’s weight vector guess

θk to θk+1 such that θk converges to θ∗ as k = 1, 2, 3, · · · , with the human’s directional

corrections atk under the assumption (5.4 ).

Remark. We assume that human user’s corrections atk ∈ Rm are in the robot’s input space,

which means that atk can be directly added to the robot’s input utk . This can be satisfied in

some cases such as autonomous driving, where a user directly manipulates the steering angle

of a vehicle. For other cases where the corrections are not readily in the robot’s input space,

this requirement could be fulfilled through certain human-robot interfaces, which translate the

correction signals into the input space. Then, atk denotes the translated correction. The

reason why we do not consider the corrections in the robot’s state space is that 1) the input

corrections may be easier in implementation, and 2) the corrections in the state space can be

infeasible for some under-actuated robot systems [169 ].
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Figure 5.1. Magnitude corrections v.s. directional corrections. The con-
tour lines and the optimal/satisfactory trajectory (black dot) of the human’s
implicit cost function J(θ∗) are plotted. (a): the green region (a sub-
level set) shows all feasible magnitude corrections āk that satisfy J(uθk

0:T +
āk,θ

∗)<J(uθk
0:T ,θ

∗). (b): the orange region (half of the input space) shows all
feasible directional corrections āk that satisfy 〈−∇J(uθk

0:T ,θ
∗), āk〉>0.

Remark. The assumption in (5.4 ) on human’s correction atk is less restrictive than the one

in [38 , 164 , 166 , 167 ], which requires the cost of the corrected robot’s trajectory uθk
0:T + āk

is lower than that of original uθk
0:T , i.e., J(uθk

0:T + āk,θ
∗)<J(uθk

0:T ,θ
∗). As shown in Fig. 5.1 ,

this requirement usually leads to constraints in corrections’ magnitudes. This is because to

guarantee J(uθk
0:T + āk,θ∗)<J(uθk

0:T ,θ
∗), ‖āk‖ has to be chosen from the J(uθk

0:T ,θ
∗)-sublevel set

of J(θ∗), as marked by the green region. Furthermore, this region will shrink as it gets close

to the optimal trajectory (in black dot), thus making ‖āk‖ more difficult to choose when the

robot’s trajectory is near satisfactory one. In contrast, the directional corrections satisfying

(5.4 ) always account for half of the entire input space. A human can choose any correction

as long as its direction lies in the half space with gradient-descent of J(θ∗). Thus, (5.4 ) is

more likely to be satisfied especially for non-expert users.

5.3 Algorithm Outline and Geometric Interpretation

In this section, we will present the outline of the proposed main algorithm for a robot

to learn from human’s incremental directional corrections and then provide a geometric
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interpretation of the main algorithm. First, we present further analysis on the directional

corrections.

5.3.1 Equivalent Conditions for Directional Corrections

Before developing the learning procedure, we will show that the assumption in (5.4 ) is

equivalent to a linear inequality posed on the unknown expected weight vector θ∗, as stated

in the following lemma.

Lemma 5.3.1. Suppose that the robot’s current weight vector guess is θk, and its motion

trajectory ξθk
={xθk

0:T+1,u
θk
0:T} is a result of minimizing the cost function J(θk) in (5.2 ) sub-

ject to dynamics in (5.1 ). For ξθk
, given a human’s incremental directional correction atk

satisfying (5.4 ), one has the following inequality equation:

〈hk,θ∗〉+ bk < 0, k = 1, 2, 3 · · · , (5.6)

with

hk = H ′1(xθk
0:T+1,u

θk
0:T )āk ∈ Rr, (5.7a)

bk = ā′kH2(xθk
0:T+1,u

θk
0:T )∇h(xθk

T+1) ∈ R. (5.7b)

Here, āk is defined in (5.5 ); ∇h(xθk
T+1) is the gradient of the final cost h(xT+1) in (5.2 )

evaluated at xθk
T+1; H1(xθk

0:T+1,u
θk
0:T ) and H2(xθk

0:T+1,u
θk
0:T ) are the coefficient matrices defined

as follows:

H1(xθk
0:T+1,u

θk
0:T )=

F uF
−1
x Φx+Φu

∂φ′

∂u
θk
T

 ∈ Rm(T+1)×r, (5.8a)

H2(xθk
0:T+1,u

θk
0:T )=

F uF
−1
x V

∂f ′

∂u
θk
T

 ∈ Rm(T+1)×n, (5.8b)
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with

F x=



I −∂f ′

∂x
θk
1
· · · 0 0

0 I · · · 0 0
... ... . . . ... ...

0 0 · · · I −∂f ′

∂x
θk
T -1

0 0 · · · I


, Φx=



∂φ′

∂x
θk
1

∂φ′

∂x
θk
2

...

∂φ′

∂x
θk
T


, (5.9a)

F u=



∂f ′

∂u
θk
0

0 · · · 0

0 ∂f ′

∂u
θk
1
· · · 0

... ... . . . ...

0 0 · · · ∂f ′

∂u
θk
T -1


, Φu=



∂φ′

∂u
θk
0

∂φ′

∂u
θk
1

...

∂φ′

∂u
θk
T -1


, (5.9b)

V =
[
0 0 · · · 0 ∂f

∂x
θk
T

]′
. (5.9c)

In above, the dimensions of the matrices are F x ∈ RnT×nT , F u ∈ RmT×nT , Φx ∈ RnT×r,

Φu ∈ RmT×r, V ∈ RnT×n. For a general differentiable function g(x) and a specific x∗, ∂g
∂x∗

denotes the Jacobian matrix of g(x) evaluated at x∗.

Proof. The proof of Lemma 5.3.1 consists of two steps: first, we will derive the explicit form

of the gradient quantity ∇J(uθk
0:T ,θ

∗), and second, we will show that (5.4 ) can be re-written

as (5.3.1 ).

Consider the robot’s current trajectory ξθk
={xθk

0:T+1,u
θk
0:T}, which satisfies the robot dy-

namics constraint in (5.1 ). For any t = 0, 1, · · · , T , define the infinitesimal increments

(δxt, δut) at the state and input (xθk
t ,u

θk
t ), respectively. By linearizing the dynamics (5.1 )

around (xθk
t ,u

θk
t ), we have

δxt+1 = ∂f

∂xθk
t

δxt + ∂f

∂uθk
t

δut, (5.10)
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where ∂f

∂x
θk
t

and ∂f

∂u
θk
t

are the Jacobian matrices of f with respect to xt and ut, respectively,

evaluated at (xθk
t ,u

θk
t ). By stacking (5.10 ) for all t = 0, 1, · · · , T and also noting δx0 = 0

(because xθk
0 is given), we have the following compact matrix from

−A′δx1:T+1 +B′δu0:T = 0, (5.11)

with δx1:T+1=[δx′1, · · · , δx′T+1]′, δu1:T=[δu′1, · · · , δu′T ]′,

A =

F x −V

0 I

 , and B =

F u 0

0 ∂f ′

∂u
θk
T

 . (5.12)

Here I is n×n identity matrix, F x and F u are defined in (5.9 ). Due to the increments δx1:T+1

and δu1:T , the change of the value of the cost J(uθk
0:T ,θ

∗) in (5.2 ), denoted as δJ(θ∗), can be

written as

δJ(θ∗) = C ′δx1:T+1 +D′δu0:T , with (5.13)

C =

Φxθ
∗

∂h′

∂x
θk
T +1

 and D =

 Φuθ
∗

∂φ′

∂u
θk
T

θ∗

 , (5.14)

with Φx and Φu are defined in (5.9 ). Considering A is always invertible, we solve for δx1:T+1

from (5.11 ) and then submit it to (5.13 ), yielding

δJ(θ∗) = C ′δx1:T+1 +D′δu0:T =
(
C ′(A−1)′B′ +D′

)
δu0:T . (5.15)

Thus, we have

∇J(uθk
0:T ,θ

∗) = BA−1C +D. (5.16)
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The above (5.16 ) can be further written as

∇J(uθk
0:T ,θ

∗) = BA−1C +D =

F u 0

0 ∂f ′

∂u
θk
T


F x −V

0 I


−1 Φxθ

∗

∂h′

∂x
θk
T +1

+

 Φuθ
∗

∂φ′

∂u
θk
T

θ∗



=


F uF

−1
x Φxθ

∗+Φuθ
∗+F uF

−1
x V

∂h′

∂x
θk
T +1

∂φ′

∂u
θk
T

θ∗+ ∂f ′

∂u
θk
T

∂h′

∂x
θk
T +1

 , (5.17)

where we have used Schur complement to compute the inverse of the block matrix A. Using

the definition in (5.8 ), (5.17 ) can be rewritten as

∇J(uθk
0:T ,θ

∗) = H1(xθk
0:T+1,u

θk
0:T )θ∗ +H2(xθk

0:T+1,u
θk
0:T )∇h(xθk

T+1). (5.18)

Substituting (5.18 ) into the assumption (5.4 ) and also considering the definitions in (5.7 ),

we obtain 〈
∇J(uθk

0:T ,θ
∗), āk

〉
= 〈hk,θ∗〉+ bk < 0, (5.19)

which leads to (5.6 ). This completes the proof.

In Lemma 5.3.1 , hk and bk in (5.7 ) are known and depend on both human’s correction

atk and robot’s motion trajectory ξθk
={xθk

0:T+1,u
θk
0:T}. The above Lemma 5.3.1 states that

each incremental directional correction atk can be equivalently converted to an inequality

constraint on the unknown θ∗.

Remark. H1(xθk
0:T+1,u

θk
0:T ) and H2(xθk

0:T+1,u
θk
0:T ) in Lemma 5.3.1 also appear in Chapter 2 

and [12 ], in which they are shown to be efficiently computed iteratively based on (xθk
t ,u

θk
t ),

t = 0, 1, · · · , T . Specifically, Define and initialize

H1(xθk
0:1,u

θk
0:1) = ∂f ′

∂uθk
0

∂φ′

∂xθk
1

+ ∂φ′

∂uθk
0
,

H2(xθk
0:1,u

θk
0:1) = ∂f ′

∂uθk
0

∂f ′

∂xθk
1
,

(5.20a)
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Perform the iteration with each next state-input (xθk
t+1,u

θk
t+1) until t = T − 1

H1(xθk
0:t+1,u

θk
0:t+1)=


H1(xθk

0:t,u
θk
0:t)+H2(xθk

0:t,u
θk
1:t)

∂φ′

∂x
θk
t+1

∂f ′

∂u
θk
t

∂φ′

∂x
θk
t+1

+ ∂φ′

∂u
θk
t

 ,

H2(xθk
0:t+1,u

θk
0:t+1)=


H2(xθk

0:t,u0:t) ∂f ′

∂x
θk
t+1

∂f ′

∂u
θk
t

∂f ′

∂x
θk
t+1

 ,
(5.20b)

Finally for t = T ,

H1(xθk
0:T+1,u

θk
0:T )=

H1(xθk
0:T ,u

θk
0:T−1)

∂φ′

∂u
θk
T

 ,

H2(xθk
0:T+1,u

θk
0:T )=

H2(xθk
0:T ,u

θk
0:T−1)

∂f ′

∂u
θk
T

 .
(5.20c)

The above iterative property facilitates the computation of H1 and H2 by avoiding the inverse

of the large matrix F x in (5.8 ), significantly reducing computational cost in solving for (5.8 ).

5.3.2 Outline of the Main Algorithm

In order to achieve θ∗, at each iteration k, we let Ωk ⊆ Θ denote a weight search space

such that θ∗ ∈ Ωk and θk ∈ Ωk for all k = 1, 2, 3, · · · . This Ωk can be thought of as the

possible location of θ∗, and θk as a weight vector guess to θ∗. Rather than a rule to guide θk
towards θ∗, we will develop a rule to update Ωk to Ωk+1 such that a useful scalar measure

of the size of Ωk will converge to 0.

Main Algorithm (Outline): In the proposed main algorithm, we initialize the weight

search space Ω0 to be

Ω0 = {θ ∈ Rr | −
¯
ri ≤ [θ]i ≤ r̄i, i = 1, · · · , r}, (5.21)

where
¯
ri and r̄i are non-negative constants denoting the lower bound and upper bound for

the ith entry in θ denoted as [θ]i, respectively. Here,
¯
ri and r̄i can be chosen large enough
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to include θ∗ ∈ Ω0. The learning proceeds with each iteration k = 1, 2, · · · , including the

following steps:

Step 1: Choose a weight vector guess θk ∈ Ωk−1 from the weight search space Ωk−1 (We

will discuss how to choose such θk ∈ Ωk−1 in Section 5.4 ).

Step 2: The robot restarts and plans its motion trajectory ξθk
by solving an optimal control

problem with the cost function J(θk) and dynamics in (5.1 ). While the robot is

executing ξθk
, a human user applies a directional correction atk at time tk. Then,

a hyperplane 〈hk,θ〉+ bk = 0 is obtained by (5.6 )-(5.7 ).

Step 3: Update the weight search space Ωk−1 to Ωk:

Ωk = Ωk−1 ∩ {θ ∈ Θ | 〈hk,θ〉+ bk < 0} . (5.22)

We provide a few remarks to the above outline of the main algorithm. For initialization in

(5.21 ), we allow entries of θ to have different lower and upper bounds, which may come from

the robot’s rough pre-knowlege about the range of each weight. Simply but not necessarily,

one could initialize

Ω0 = {θ ∈ Rr | ‖θ‖∞ ≤ R}, (5.23)

where

R = max{
¯
ri, r̄i, i = 1, · · · , r}. (5.24)

In Step 1, one chooses θk ∈ Ωk−1. Soon we will show θ∗ ∈ Ωk for all k = 1, 2, 3, · · · . Thus,

one will expect θk to be closer to θ∗ if the main algorithm could make Ωk smaller. In fact,

the weight search space Ωk is non-increasing because Ωk ⊆ Ωk−1 by (5.22 ) in Step 3. A

careful choice of θk to guarantee the strict reduction of a size measure of Ωk will be given

in Section 5.4 . In Step 2, the robot’s trajectory planning is performed by solving an optimal

control problem with the cost function J(θk) in (5.2 ) and the dynamics constraint in (5.1 ).

This can be done by many trajectory optimization methods such as [7 ] or existing optimal

control solvers such as [50 ]. With the robot’s trajectory ξθk
and the human’s directional
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correction atk , the hyperplane 〈hk,θ〉+ bk = 0 can be obtained by (5.6 )-(5.7 ). The detailed

implementation of the main algorithm with the choice of θk and termination criterion will

be presented in next section.

The proposed main algorithm also leads to the following lemma:

Lemma 5.3.2. Under the proposed main algorithm, one has

〈hk,θk〉+ bk = 0, ∀ k = 1, 2, 3, · · · (5.25)

and

θ∗ ∈ Ωk, ∀ k = 1, 2, 3, · · · (5.26)

Proof. First, we prove (5.25 ). From Step 2 in the main algorithm, we know that the robot’s

current trajectory ξθk
= {xθk

0:T+1,u
θk
0:T} is a result of minimizing the cost function J(θk).

This means that ξθk
must satisfy the optimality condition (i.e., first order condition) of

the optimal control problem with the cost function J(θk) in (5.2 ) and dynamics in (5.1 ).

Following a similar derivation from (5.11 ) to (5.18 ) in the proof of Lemma 5.3.1 , we can

obtain

0 = ∇J(uθk
0:T ,θk) = H1(xθk

0:T+1,u
θk
0:T )θk +H2(xθk

0:T+1,u
θk
0:T )∇h(xθk

T+1). (5.27)

It is worth mentioning that the above optimality condition (5.27 ) is derived in [12 ]. Thus,

0 =
〈
∇J(uθk

0:T ,θk), āk
〉

=
〈
H1(xθk

0:T+1,u
θk
0:T )θk, āk

〉
+
〈
H2(xθk

0:T+1,u
θk
0:T )∇h(xθk

T+1), āk
〉

= 〈hk,θk〉+ bk, (5.28)

where the second line is due to the definition of hyperplane in (5.7 ). This completes the

proof of (5.25 ).
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Next, we prove (5.26 ). We use proof by induction. By the main algorithm, we know

θ∗ ∈ Ω0 for k = 0. Assume that θ∗ ∈ Ωk−1 holds for the (k−1)-th iteration. According to

Step 3 in the main algorithm, we have the relationship

Ωk = Ωk−1 ∩ {θ ∈ Θ | 〈hk,θ〉+ bk < 0} . (5.29)

In order to prove θ∗ ∈ Ωk we only need to show that

〈hk,θ∗〉+ bk < 0, (5.30)

which is true according to (5.6 ) in Lemma 5.3.1 . Thus, θ∗ ∈ Ωk also holds at the kth

iteration. Thus, we conclude that (5.26 ) holds. This completes the proof of Lemma 5.3.2 .

Lemma 5.3.2 has intuitive geometric explanations. Note that (5.25 ) suggests θk is always

in the hyperplane 〈hk,θ〉 + bk = 0. Moreover, (5.26 ) suggests that although the proposed

algorithm directly updates the weight search space Ωk, the expected weight vector θ∗ always

lies in Ωk. Intuitively, the smaller the search space Ωk is, the closer θ∗ is to θk.

5.3.3 Geometric Interpretation to Updating Search Space

In this part, we will provide an interpretation of the proposed main algorithm through a

geometric perspective. For simplicity of illustrations, we assume θ ∈ R2 in this subsection.

!"#$

%"!"

⟨ℎ", ⟩% + +" = 0

(a) At k-th iteration

!"#$

%"!"
%"&$

!"&$

⟨ℎ", ⟩% + ," = 0

⟨ℎ"&$, ⟩% + ,"&$ = 0

(b) At (k + 1)-th iteration

Figure 5.2. Illustration of updating Ωk.
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At kth iteration in Fig. 5.2a , a weight vector guess θk (colored in red) is picked from

the current weight search space Ωk−1 (colored in light blue), i.e., θk ∈ Ωk−1. By Step 2 in

the main algorithm, we obtain a hyperplane 〈hk,θ〉 + bk = 0 (in black dashed line), which

cuts through the weight search space Ωk−1 into two portions. By (5.25 ) in Lemma 5.3.2 , we

know that θk also lies on this hyper-plane because 〈hk,θk〉+ bk = 0. By Step 3 in the main

algorithm, we only keep one of the two cut portions, which is the interaction space between

Ωk−1 and the half space 〈hk,θ〉 + bk < 0, and the kept portion will be used as the weight

search space for the next iteration, that is, Ωk = Ωk−1 ∩ {θ | 〈hk,θ〉+ bk < 0}, as shown in

the blue region in Fig. 5.2a . The above procedure repeats also for iteration k + 1, as shown

in the right panel of Fig. 5.2b , and finally produces a smaller search space Ωk+1 colored in

the darkest blue in Fig. 5.2b . From (5.22 ), one has Ω0 ⊇ · · ·Ωk−1 ⊇ Ωk ⊇ Ωk+1 ⊇ · · · .

Moreover, by (5.26 ) in Lemma 5.3.2 , we note that the expected weight vector θ∗ is always

inside Ωk whenever k is.

!"#$

%"

!"

⟨ℎ", ⟩% + +" = 0

(a) A large cut from Ωk−1

!"#$

%"

⟨ℎ", ⟩% + +" = 0

!"

(b) A small cut from Ωk−1

Figure 5.3. Illustration of how different directional corrections atk affect the
reduction of the weight search space Ωk−1.

Besides the above geometric illustration, we also have the following observations:

(1) The key idea of the proposed main algorithm is to cut and remove the weight search

space Ωk−1 as each directional correction atk is given. Thus, we always expect that

Ωk−1 can quickly diminish to a very small space as k increases, because thereby

we can say that the robot’s current guess θk is close to the expected weight vector

θ∗. As shown in Fig. 5.2 , the reduction rate of Ωk−1 depends on two factors: the

human’s directional correction atk , and how to choose θk ∈ Ωk−1.
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(2) From (5.7 ), we note that the human’s directional correction atk determines hk,

which is the normal vector of hyperplane 〈hk,θ〉+ bk = 0. When fixing the choice

of the weight vector guess θk, we can think of the hyperplane rotates around θk
with different choices of atk , which finally results in different removals of Ωk−1, as

illustrated in Fig. 5.3 .

(3) How to choose θk from Ωk−1 defines the specific position of the hyperplane

〈hk,θ〉+ bk = 0, because the hyperplane is always passing through θk by Lemma

5.3.2 . Thus, θk also affects how Ωk−1 is cut and removed. This can be illustrated

by comparing Fig. 5.2a with Fig. 5.3a .

Based on the above discussions, the convergence of the proposed main algorithm is deter-

mined by the reduction of the weight search space Ωk−1. This depends on both the human’s

directional corrections atk (hard to be predicted by the robot) and the robot’s choice of the

weight vector guess θk ∈ Ωk−1. In the next section, we will present a way for robot to choose

θk to guarantee the convergence of the proposed algorithm.

5.4 Algorithm Implementation with Convergence Analysis

In this section, we will specify the choice of θk, provide the convergence analysis of

the main algorithm, and finally present a detailed implementation of the algorithm with

termination criterion.

5.4.1 Choice of Search Space Center

Under the proposed main algorithm, at each iteration k, the weight search space Ωk−1 is

updated according to (5.22 ), i.e.,

Ωk = Ωk−1 ∩ {θ ∈ Θ | 〈hk,θ〉+ bk < 0} .

In order to evaluate the reduction of the weight search space, it is straightforward to use the

volume of the (closure) weight search space Ωk, denoted as Vol(Ωk), and the zero volume

implies the convergence of the search space [170 ]. By Ωk ⊆ Ωk−1 in (5.22 ), we know that
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Vol(Ωk) is non-increasing. In the following we will further develop a way such that Vol(Ωk)

is strictly decreasing under the proposed algorithm; i.e., there exists a constant 0 ≤ α < 1

such that

Vol(Ωk) ≤ αVol(Ωk−1). (5.31)

In order to achieve (5.31 ), we note that different choices of θk ∈ Ωk−1 will lead to

different reduction of Ωk−1: as indicated in Fig. 5.3a , a large volume reduction from Ωk−1

to Ωk is achieved while the choice of θk in Fig. 5.3b leads to a very small volume reduction.

This observation motivates us that to avoid a very small volume reduction, one intuitively

chooses θk at the center of the weight search space Ωk−1. Specifically, we use the center of

the maximum volume ellipsoid inscribed within the search space as defined below.

Definition 5.4.1 (Maximum Volume inscribed Ellipsoid [41 ]). Given a compact convex set

Ω, the maximum volume ellipsoid (MVE) inscribed within Ω, defined as E, is represented

by

E = {B̄θ + d̄ | ‖θ‖2 ≤ 1}. (5.32)

Here, B̄ ∈ Sr++ (i.e., a r × r positive definite matrix); d̄ ∈ Rr is called the center of E; and

B̄ and d̄ solve the optimization:

maxd,B∈Sr
++

log detB

s.t. sup‖θ‖2≤1 IΩ(Bθ + d) ≤ 0,
(5.33)

where IΩ(θ) = 0 for θ ∈ Ω and IΩ(θ) =∞ for θ /∈ Ω.

Based on Definition 5.4.1 , we let Ek denote the MVE inscribed within Ωk with dk denoting

the center of Ek. For the choice of θk+1 at iteration k+ 1, we choose the weight vector guess

θk+1 = dk (5.34)

as illustrated in Fig. 5.4 . Other choices for θk+1 as a center of the search space are discussed

in Section 5.7 .
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Figure 5.4. Illustration of choosing weight vector guess θk+1 as the center of
MVE Ek inscribed in weight search space Ωk.

We now present a computational method to achieve dk, i.e., the center of MVE Ek

inscribe within Ωk. Recall that in the proposed main algorithm, the initialization of Ω0 in

(5.21 ) is

Ω0 = {θ ∈ Rr | −
¯
ri ≤ [θ]i ≤ r̄i, i = 1, · · · , r},

with [θ]i the ith entry of θ. This can be equivalently rewritten as a set of linear inequalities:

Ω0 =

θ
∣∣∣∣∣∣∣
〈ei,θ〉 − r̄i ≤ 0

−〈ei,θ〉 −¯
ri ≤ 0

, i = 1, · · · , r

 , (5.35)

where ei is the unit vector with the ith entry equal to 1. Then, following the update in

(5.22 ), Ωk is also a compact polytope, which can be written as

Ωk =


θ

∣∣∣∣∣∣∣∣∣∣∣∣

〈ei,θ〉 − r̄i ≤ 0, i = 1, · · · , r;

− 〈ei,θ〉 −¯
ri ≤ 0, i = 1, · · · , r;

〈hj,θ〉+ bj < 0, j = 1, · · · , k


. (5.36)

As a result, in (5.33 ), solving the center dk of the MVE Ek inscribed within Ωk becomes a

convex programming [41 ], as stated by the following lemma.
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Lemma 5.4.1. For a polytope Ωk in (5.36 ), the center dk of the MVE Ek inscribed within

Ωk can be solved by the following convex optimization:

mind,B∈Sr
++
− log detB

s.t. ‖Bei‖2 + 〈d, ei〉 ≤ r̄i, i=1, · · · r,

‖Bei‖2 − 〈d, ei〉 ≤ ¯
ri, i=1, · · · r,

‖Bhj‖2+ 〈d,hj〉 ≤ −bj, j=1, · · · k.

(5.37)

The proof of the above lemma can be found in Chapter 8.4.2 in [41 , pp.414]. The above

convex optimization can be efficiently solved by existing solver e.g. [171 ]. In practical imple-

mentation of solving (5.37 ), since the number of linear inequalities grows as the iteration k

increases, which can increase computational cost, the mechanism for dropping some redun-

dant inequalities in (5.36 ) can be adopted [170 ]. Dropping redundant inequalities does not

change Ωk and its volume reduction (convergence). Please see how to identify the redundant

inequalities in [170 ].

5.4.2 Exponential Convergence and Termination Criterion

In this part, we will investigate convergence of the volume of Ωk following the proposed

main algorithm and its termination criterion for practical implementation.

Note that the convergence of the proposed algorithm relies on the reduction of Vol(Ωk),

which can be guaranteed by the following lemma:

Lemma 5.4.2. Let θk ∈ Rr be chosen as the center of the MVE Ek−1 inscribed within Ωk−1.

Then, the update (5.22 ) leads to

Vol(Ωk)
Vol(Ωk−1) ≤ (1− 1

r
). (5.38)

Lemma 5.4.2 is a direct theorem from [172 ]. Lemma 5.4.2 indicates

Vol (Ωk) ≤ (1− 1
r

)k Vol (Ω0).
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Thus, Vol (Ωk)→ 0 exponentially fast, that is, its convergence speed is as fast as (1− 1
r
)k → 0

as k →∞.

In order to implement the main algorithm in practice, we will not only need the expo-

nential convergence as established by Lemma 5.4.2 , but also a termination criterion, which

specifies the maximum number of iterations for a given requirement in terms of Vol (Ωk).

Thus we have the following theorem.

Theorem 5.4.1. Suppose Ω0 is given by (5.21 ), and at iteration k, θk is chosen as the

center dk−1 of MVE Ek−1 inscribed in Ωk−1. Given a termination condition

Vol (Ωk) ≤ (2ε)r

with ε a user-specified threshold, the main algorithm runs for k ≤ K iterations, namely, the

algorithm terminates at most K iterations, where

K = r log(R/ε)
− log(1− 1/r) , (5.39)

with R given in (5.24 ).

Proof. Initially, we have Vol (Ω0) ≤ (2R)r. From Lemma 5.4.2 , after k iterations, we have

Vol (Ωk) ≤ (1− 1
r

)k Vol (Ω0) ≤ (1− 1
r

)k(2R)r, (5.40)

which yields to

log Vol (Ωk) ≤ k log(1− 1
r

) + log(2R)r. (5.41)

When k = r log(R/ε)
− log(1−1/r) ,

log Vol (Ωk) ≤ −r log(R/ε) + log(2R)r. (5.42)

The above equation is simplified to

log Vol (Ωk) ≤ log(2ε)r, (5.43)
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which means that the termination condition Vol (Ωk) ≤ (2ε)r is satisfied. This completes

the proof.

On the above Theorem 5.4.1 we have the following comments.

Remark. Since both θ∗ and θk are always within Ωk for any k = 1, 2, 3 · · · by Lemma 5.3.2 ,

the user-specified threshold ε in the termination condition Vol (Ωk) ≤ (2ε)r can be understood

as an indicator of a distance between the expected weight vector θ∗ (usually unknown in

practice) and the robot’s weight vector guess θk. The threshold ε is set based on the desired

learning accuracy.

5.4.3 Implementation of the Main Algorithm

By the termination criterion in Theorem 5.4.1 and the choice of θk in (5.34 ), one could

implement the main algorithm in details as presented in Algorithm 8 .

Algorithm 8: Learning from incremental directional corrections
Input: Specify a termination threshold ε and use it to compute the maximum iteration K

by (5.39 ).
Initialization: Initial weight search space Ω0 in (5.21 ).
for k = 1, 2, · · · ,K do

Choose a weight vector guess θk ∈ Ωk−1 by Lemma 5.4.1 ;
Restart and plan a robot trajectory ξθk

by solving an optimal control problem with
the cost function J(θk) in (5.2 ) and the dynamics in (5.1 );

Robot executes the trajectory ξθk
while receving the human directional correction atk ;

Compute the coefficient matrices H1(xθk
0:T+1,u

θk
0:T ) and H2(xθk

0:T+1,u
θk
0:T ) based on

(5.20 ), and generate the hyperplane and half space 〈hk,θ〉+ bk < 0 by (5.6 )-(5.7 );
Update the weight search space by Ωk = Ωk−1 ∩ {θ ∈ Θ | 〈hk,θ〉+ bk < 0} by (5.22 );

end
Output: θK .

5.5 Numerical Examples

In this section, we perform numerical simulations on an inverted pendulum and a two-link

robot arm to validate the proposed algorithm and provide comparison with related work.
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5.5.1 Inverted Pendulum

The dynamics of a pendulum is given in Appendix A.2 . We discretize the continuous

dynamics by the Euler method with a fixed time interval ∆ = 0.2s. The state and control

vectors of the pendulum system are defined as x = [α, α̇]′ and u = u, respectively, and the

initial condition is x0 = [0, 0]′. In the cost function (5.2 ), we set the weight-feature running

cost as

φ = [α2, α, α̇2, u2]′ ∈ R4, (5.44a)

θ = [θ1, θ2, θ3, θ4]′ ∈ R4, (5.44b)

and set the final cost term as h(xT+1) = 10(α− π)2 + 10α̇2, since our goal is to control the

pendulum to reach the vertical position. The time horizon is set as T = 30.

In numerical examples, we generate “human’s directional corrections” by simulation.

Suppose that the expected weight vector is known explicitly: θ∗=[0.5, 0.5, 0.5, 0.5]′. Then,

at iteration k, the “human’s” directional corrections atk is generated using the sign of the

gradient of the true cost function J(θ∗), that is,

atk = −sign
([
∇J(uθk

0:T ,θ
∗)
]
tk

)
∈ R. (5.45)

Here,
[
∇J(uθk

0:T ,θ
∗)
]
tk

denotes the tkth entry of ∇J , and the correction time tk is randomly

chosen (evenly distributed) within horizon [0, T ]. Obviously, the above “human’s directional

corrections” satisfies the assumption in (5.4 ).

The initial weight search space Ω0 is set as

Ω0 = {θ | 0 ≤ [θ]i ≤ 5, i = 1, 2, 3, 4}. (5.46)

In Algorithm 8 , we set the termination parameter as ε = 10−1, and the maximum learning

iteration solved by (5.39 ) is K = 55. We apply Algorithm 8 to learn the expected weight

vector θ∗. To illustrate results, we define the guess error eθ = ‖θ − θ∗‖2 (i.e., the distance

square between the weight vector guess and the expected weight vector θ∗), and plot the
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guess error eθ versus the number of iterations k in the top panel of Fig. 5.5 . In the bottom

panel of Fig. 5.5 , we plot the directional correction atk applied at each iteration k, where

+1 and −1 bar denote positive and negative sign (direction) of the correction atk in (5.45 ),

respectively, and the number inside the bar denotes the correction time tk that is randomly

picked from {0, 1, · · · , T}.
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Figure 5.5. Learning a pendulum cost function from incremental directional
corrections. The upper panel shows the guess error eθ = ‖θ − θ∗‖2 versus
iteration k, and the bottom panel shows the directional correction atk (i.e.,
positive or negative) applied at each iteration k, and the value inside each bar
is tk that is randomly picked within the time horizon [0, 30].

Based on the results in Fig. 5.5 , we can see that as the learning iteration k increases, the

weight vector guess θk converges to the expected weight vector θ∗ = [0.5, 0.5, 0.5, 0.5]′. This

shows the validity of the method, as guaranteed by Theorem 5.4.1 .

5.5.2 Two-link Robot Arm System

Here, we test the proposed method on a two-link robot arm. The dynamics of the robot

arm (moving horizontally) is given in Appendix A.2 . The state and control variables for the

robot arm control system are defined as x = [q, q̇]′ ∈ R4 and u = τ ∈ R2, respectively. The

initial condition of the robot arm is set as x0 = [0, 0, 0, 0]′. All parameters in the dynamics
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are set as units. We discretize the continuous dynamics using the Euler method with a fixed

time interval ∆ = 0.2s. In the cost function (5.2 ), we set the weight-feature cost as

φ = [q2
1, q1, q

2
2, q2, ‖u‖2]′ ∈ R5, (5.47a)

θ = [θ1, θ2, θ3, θ4, θ5]′ ∈ R5, (5.47b)

and set the final cost h(xT+1) = 100
(
(q1− π

2 )2 + q2
2 + q̇2

1 + q̇2
2

)
, as we aim to control the robot

arm to finally reach and stop at the configuration of q = [π2 , 0]′. The time horizon is set to

be T = 50.

We still use simulation to generate “human’s directional corrections”, as similar to the

previous experiment. Suppose that we explicitly know the expected weight vector θ∗ =

[1, 1, 1, 1, 1]′. Then, at each iteration k, the simulation generates a directional correction atk
by the sign of the gradient of the true cost function J(θ∗), that is,

atk = −sign
([
∇J(uθk

0:T ,θ
∗)
]

2tk:2tk+1

)
∈ R2, (5.48)

where [∇J(uθk
0:T ,θ

∗)]2tk:2tk+1 denotes the entries in ∇J at positions from 2tk to 2tk + 1

(because the input dimension is m = 2), and the correction time tk is randomly (in an even

distribution) chosen from the time horizon [0, T ]. Note that the sign operator is applied to

its augment entry-wise.
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Figure 5.6. eθ = ‖θ − θ∗‖2 versus iteration k in learning a robot-arm cost
function from incremental directional corrections.
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The initial weight search space Ω0 is given by

Ω0 = {θ | 0 ≤ [θ]i ≤ 4, i = 1, 2, · · · , 5}. (5.49)

We set the termination parameter ε = 10−1, then the maximum learning iteration is K = 83

by (5.39 ). We apply Algorithm 8 to learn the expected weight vector θ∗ = [1, 1, 1, 1, 1]′.

To illustrate results, we define the guess error eθ = ‖θ − θ∗‖2 and plot eθ versus iteration

k in Fig. 5.6 . We also plot the directional correction atk = [atk,1, atk,2]′ applied at each

iteration k in Fig. 5.7 , where the value inside the bar is the correction time tk. Based on the

results, we can see that as the iteration increases, the weight vector guess θk converges to the

expected weight vector θ∗, as guaranteed by Theorem 5.4.1 . This result again demonstrates

the effectiveness of the proposed method.
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Figure 5.7. The directional correction atk = [atk,1, atk,2]′ applied at each
iteration k during the learning of the robot-arm cost function. The number
inside the bar is the correction time tk randomly picked within the time horizon
[0, 50].

5.5.3 Comparison with Related Work

In this part, we compare the proposed method with two related work [38 , 164 ] based on

the inverted pendulum system. The dynamics settings and parameters follow the experiment

in Section 5.5.1 , and the weight-feature cost function is set as (5.44 ). According to [38 ], for

each of the human’s corrections, we first utilize the trajectory deformation technique [166 ]
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to obtain the corresponding human intended trajectory. Specifically, given a correction ak,

the human intended trajectory, denoted as ξ̄θk
= {x̄θk

0:T+1, ū
θk
0:T}, can be solved by

ūθk
0:T = uθk

0:T +M−1āk, (5.50)

where ξθk
= {xθk

0:T+1,u
θk
0:T} is the robot’s current trajectory; M is a matrix that smoothly

propagates the local correction augmented vector in (5.5 ) along the rest of the trajectory

[168 ]; and x̄θk
0:T+1 in ξ̄θk

is obtained from the robot dynamics in (5.1 ) given ūθk
0:T . For both

[164 ] and [38 ], the learning update is

θk+1 = θk + α
(
φ(ξ̄θk

)− φ(ξθk
)
)
, (5.51)

where φ(ξ̄θk
) and φ(ξθk

) are the vectors of feature values for the human intended trajectory

ξ̄θk
and the robot’s original trajectory ξθk

, respectively. In this comparison experiment,

we set M in (5.50 ) as the finite differencing matrix [166 ], and α is 0.0006 (for having best

performance). For all methods, the simulated human’s corrections are the same, as shown

in Fig. 5.8 . To illustrate performance, we still use the guess error eθ = ‖θ − θ∗‖2.
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Figure 5.8. The correction atk at each iteration k. The value labeled inside
the bar is the randomly chosen correction time tk.

We draw the guess error versus iterations for both [38 , 164 ] and the proposed method in

Fig. 5.9 . By comparing both results, we can see a clear advantage of the proposed method

over [164 ] [38 ] in terms of higher learning accuracy. As we have discussed in the related

work, the learning update (5.51 ) used in [38 , 164 ] only guarantees the convergence of the

regret, which is defined as the averaged error of the cost values between the human intended
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trajectory and the robot’s trajectory under J(θ∗) over the entire learning process. Thus, it

does not directly lead to the convergence of θk towards θ∗, as illustrated in Fig. 5.9 . In

contrast, Fig. 5.9 illustrates that using the proposed approach, the learned cost function

quickly converges to J(θ∗), as guaranteed by Theorem 5.4.1 .
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e

the related work in [6] or [17]
the proposed method

Figure 5.9. Comparison between [38 , 164 ] and the proposed method. The
figure shows eθ = ‖θ − θ∗‖2 v.s. iteration k.

Throughout the experiment, we find that the methods [38 , 164 ] are not robust against

the corrections atk of very larger magnitude. Given a correction atk with a larger magni-

tude, [164 ] and [38 ] are more likely to diverge especially. This is because larger correction

magnitude ‖atk‖ can be overshot (i.e., too large), which thus violates their assumption of

improving the robot’s motion, i.e., J(ūθk
0:T ,θ

∗) < J(uθk
0:T ,θ

∗). We also find that the correc-

tion overshooting is more likely to happen at the end of learning process when the robot

motion gets close to the optimal one, as we have explained in Section 5.2 . This issue has

also been illustrated in Fig. 5.9 . At the iteration k = 35 in Fig. 5.9 , we see that eθ in-

stead becomes increased as we use a constant correction magnitude throughout the learning

process. In contrast, the proposed method only leverages the direction of atk (negative or

positive) regardless of ‖atk‖; thus there is no overshooting issue with the proposed method,

This shows more flexibility of the proposed method than [38 ] and [164 ] in terms of choosing

proper corrections.
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5.6 Human-Robot Games

In this section, we develop two human-robot games, where a real human player online

teaches a robot for motion planning through directional corrections. These games are used

to validate the effectiveness of the proposed approach in practice. The games are developed

on two robot systems/environments: a two-link robot arm and a 6-DoF quadrotor system,

respectively. For each environment, a human player visually inspects robot’s motion on a

computer screen, meanwhile providing directional corrections through a keyboard. The goal

of each game is to train a robot to learn an effective control objective function such that the

robot successfully avoids obstacles and reaches a target position.

We have released all codes of the two games for the readers to have hands-on experience

with. Please access at https://github.com/wanxinjin/Learning-from-Directional-Corrections .

5.6.1 Two-link Robot Arm Game

System Setup

In this game, the dynamics of a two-link robot arm and its parameters follow those in

Section 5.5.2 . The initial state of the arm is x = [ − π
2 , 0, 0, 0]′, as shown in Fig. 5.10 . For

the parameterized cost function J(θ) in (5.2 ), we set the weight-feature running cost as

φ = [q2
1, q1, q

2
2, q2, ‖u‖2]′ ∈ R5, (5.52a)

θ = [θ1, θ2, θ3, θ4, θ5]′ ∈ R5. (5.52b)

Here, the weight-feature cost θ′φ is a general second-order polynomial function. It is worth

noting that in practice, if one has no prior knowledge/experience about how to choose good

features, the general polynomial features are always a good choice. For the final cost h(xT+1)

in J(θ) in (5.2 ), we set

h(xT+1) = 100
(
(q1 −

π

2 )2 + q2
2 + q̇2

1 + q̇2
2

)
, (5.53)
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because we aim the robot arm to finally reach and stop at the target vertical pose, i.e.,

qtarget
1 = π

2 and qtarget
2 = 0, as depicted in Fig. 5.10 . It is also worth noting that in practice,

the final cost function h(xT+1) in (5.2 ) can always be set as the distance to the target state.

The time horizon in this robot arm game is set as T = 50 (that is, 50∆ = 10s).
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Figure 5.10. The robot arm game. The goal is to let a human player teach
the robot arm to learn a valid cost function (i.e., the expected weight vector
θ∗) by applying incremental directional corrections, such that it successfully
moves from the initial condition (current pose) to the target (upward pose)
while avoiding the obstacle.

Since we choose the polynomial features in (5.52a ), different weight vector θ leads to

different robot’s trajectories to the target pose. As shown in Fig. 5.10 , we place an obstacle

(colored in orange) in the workspace of the robot arm. Without human’s intervention, the

robot will move and crash into the obstacle. The goal of the game is to let a human player

make directional corrections to the robot arm while it is moving, until the robot arm learns

a valid cost function J(θ∗) (i.e., the expected weight vector θ∗) to successfully avoid the

obstacle and reach the target.

Human Correction Interface

For the above robot arm game, we use keyboards as the interface for a human player to

provide directional corrections. We customize the (up, down, left, right) keys in a keyboard
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and associate them with the directional corrections as listed in Table 5.1 . During the game,

at each iteration, a human player is allowed to press one or multiple keys from (up, down,

left, right), and the keyboard interface is listening to which key(s) the human player hits

and recording the time step of the keystroke(s). The recorded information, i.e., the pressed

keys and stroke time, is translated into the directional correction atk in the robot’s input

space according to Table 5.1 . For example, at iteration k, while the robot arm is graphically

executing the trajectory ξθk
, a human player hits the up and left keys simultaneously at the

time step 10; then the corresponding correction information is translated into atk = [1, 1]′

with tk = 10 according to Table 5.1 .

Table 5.1. Correction interface for the robot arm game.
Keys Directional correction Interpretation of correction

up a = [1, 0] add counter-close-wise torque to Joint 1
down a = [− 1, 0] add close-wise torque to Joint 1
left a = [0, 1] add counter-close-wise torque to Joint 2

right a = [0,−1] add close-wise torque to Joint 2

Game Procedure

The procedure of this robot arm game is as follows. By default, the robot’s initial weight

search space Ω0 is set as

Ω0={θ | θ1, θ3 ∈ [0, 1], θ2, θ4 ∈ [− 3, 3], θ5 ∈ [0, 0.5]}. (5.54)

As stipulated by the main algorithm, at each iteration k, the robot arm first chooses a weight

vector guess θk ∈ Ωk−1 by Lemma 5.4.1 and then plans the corresponding motion trajectory

ξθk
(by minimizing the cost function J(θk) subject to the robot’s dynamics). While the robot

arm is graphically executing the planned trajectory ξθk
on the computer screen, a human

player inspects the ongoing motion ξθk
and provides the directional correction atk via the

keyboard interface based on the rules in Table 5.1 . Each time the keyboard interface detects

the humans player’s directional correction atk , the robot arm incorporates such correction
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atk to update the weight search space from Ωk−1 to Ωk by Step 3 in the main algorithm.

This planning-correction-update procedure repeats until the robot arm successfully avoids

the obstacle and reaches the target and then the human player will not intervene the robot

arm any more—mission accomplished.
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Figure 5.11. An illustrative result for the robot arm game. The goal of this
game is to let a human player to correct the robot arm while it is acting, until
the robot arm learns a valid control objective function (i.e., expected θ∗) for
successfully avoiding the obstacle and reaching the target pose. Corresponding
to the above sub-figures, the robot’s weight vector guess θk and the player’s
directional correction ak at each iteration k are listed in Table 5.2 . In (a), and
the robot arm randomly chooses an initial weight vector guess θ1 ∈ Ω0 and its
resulting motion crashes into the obstacle. In (d), the robot arm successfully
learns a valid cost function (i.e., the expected θ∗) to avoid the obstacle and
reach the target—mission accomplished.

Table 5.2. An illustrative result for the robot arm game.
Iteration k Robot’s current weight vector guess θk A human player’s directional correction atk and correction time tk

k = 1 θk = [0.50, 0.00, 0.50,−0.00, 0.25]′ atk = [0, 1] (i.e., left key pressed) and tk = 11
k = 2 θk = [0.50, 0.00, 0.50,−1.50, 0.25]′ atk = [0, 1] (i.e., left key pressed) and tk = 16
k = 3 θk = [0.50, 0.00, 0.34,−2.03, 0.25]′ atk = [− 1, 0] (i.e., down key pressed) and tk = 34
k = 4 θk = [0.50, 1.48, 0.36,−2.00, 0.25]′ Mission accomplished! θ∗ = θk

Results and Analysis

We present an illustrative result in Fig. 5.11 , where we show that the robot arm can

learn a valid cost function after only four rounds of human’s directional corrections (i.e.,

four iterations). At each iteration k, the robot’s current weight vector guess θk and the
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player’s correction atk are in Table 5.2 . From Table 5.2 and Fig. 5.11 , we observe that

the robot arm has successfully learned an effective cost function to avoid the obstacle and

reach the target after four rounds of human’s directional corrections. These results indicate

that the effectiveness of the proposed method for real human users to train a robot through

directional corrections. We also have the following comments.

(i) Throughout the game, we find that the successful teaching of the robot does not

require a human player to have prior experience or much practice with the game. The result

shown in Table 5.2 and Fig. 5.11 is just one of many examples, and a novice player can

readily provide another sequence of corrections, such as using different combinations of keys

and corrections times, to successfully train the robot arm within few iterations.

(ii) We emphasize that the human’s corrections for the robot arm is very intuitive. For

example, in Fig. 5.11a , at first iteration, as we see that the robot arm is crashing into the

obstacle, the human correction could be a counter-clock-wise torque applied to joint 2 in

order to make the second link bend inward. Thus, we need to press the left key according to

Table 5.1 . For another example, in Fig. 5.11c , since the first joint is shown moving too fast

in counter-clock-wise, the human correction needs to give a clock-wise toque to the first joint

in order to make it slow down, and thus the player needs to press the down key according to

Table 5.1 . To gain a better understanding of the method and the game, we encourage the

reader to download the game codes and have hand-on experience with the robot arm game.

5.6.2 6-DoF Quadrotor Maneuvering Game

System Setup

The dynamics of a quadrotor drone flying in SE(3) (i.e., full position and attitude) space

is given in Appendix A.3 . We define the state vector for the quadrotor as

x =
[
rI vI qB/I ωB

]
∈ R13, (5.55)
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and define the control input vector as

u =
[
T1 T2 T3 T4

]′
∈ R4. (5.56)

We discretize the above continuous dynamics of the quadrotor by the Euler method with a

fixed time interval ∆ = 0.1s. To achieve SE(3) control for a quadrotor, we need to carefully

design the attitude error. As in [157 ], we define the attitude error between the quadrotor’s

attitude q and a target attitude qtarget as

e(q,qtarget) = 1
2trace(I −R′(qtarget)R(q)), (5.57)

where R(q) ∈ R3×3 is the direction cosine matrix corresponding to q (see [158 ] for more

details).

In the cost function in (5.2 ), we set the final cost h(xT+1) as

h(xT+1) = ‖rI − rtarget
I ‖2 + 10‖vI‖2 + 100e(qB/I , q

target
B/I ) + 10‖wB‖2, (5.58)

because we always want the quadrotor to finally land on a target position given by rtarget
I in

a target attitude qtarget
B/I . Here, rI = [rx, ry, rz]′ is the position of the quadrotor expressed in

the world frame. We set the weight-feature cost in (5.2 ) as

φ =
[
r2
x rx r2

y ry r2
z rz ‖u‖2

]′
∈ R7, (5.59a)

θ =
[
θ1 θ2 θ3 θ4 θ5 θ6 θ7

]′
∈ R7. (5.59b)

Here, feature vector φ consists of general polynomial features and different weight vectors

θ = [θ1, θ2, θ3, θ4, θ5, θ6, θ7]′ will determine how the quadrotor reaches the target (that is, the

specific path of the quadrotor). It is again worth noting that in practical situations, if one

has no prior knowledge/experience about how to choose good features, general polynomial

features are always a good choice, as in (5.59a ).

As shown in Fig. 5.12 , the goal of this quadrotor game is to let a human player teach the

quadrotor to fly from the initial position rI(0) = [−8,−8, 5]′ (bottom left), passing through a

gate (colored in brown), and finally land on a specified target position rtarget
I = [8, 8, 0]′ (upper
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Figure 5.12. The 6-DoF quadrotor game. The goal of this game is to let
a human player to teach a 6-DoF quadrotor system to learn a valid control
cost function (i.e., the expected weight vector θ∗) by providing directional
corrections, such that it can successfully fly from the initial position (in bottom
left), pass through a gate (colored in brown), and finally land on the specified
target (in upper right).

right) with the target attitude qtarget
B/I = [1, 0, 0, 0]′. The initial attitude of the quadrotor is

qB/I(0) = [1, 0, 0, 0]′ and initial velocity quantities are zeros. The game time horizon is set

as T = 50, that is, T∆ = 5s.

Human Correction Interface

In the 6-DoF quadrotor game, we use keyboards as the interface for a human player to

provide directional corrections. Specifically, we use the (‘up’, ‘down’, ‘w’, ‘s’, ‘a’, ‘d’) keys

and associate them with specific directional correction signals, as listed in Table 5.3 . During

the game (i.e., algorithm progress), a human player is allowed to press one or multiple

combinations of the keys in Table 5.3 . The interface is listening to the keystrokes from

the human player, and once detected, the keystrokes are translated into the directional

corrections according to Table 5.3 . Together with the pressed keys, the time step at which

a key is hit is also recorded, as the correction time tk. For example, suppose that while

the computer screen is graphically playing the quadrotor executing the trajectory ξθk
(at

iteration k), the human player presses ‘s’ key at the time step 5; then, according to Table 5.3 ,

the translated human correction will be atk = [0,−1, 0, 1]′ with the correction time tk = 5.
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Table 5.3. Correction interface for 6-DoF quadrotor game.
Keys Directional correction Interpretation of correction

‘up’ T1=1, T2=1, T3=1, T4=1 Upward force applied at COM

‘down’ T1=− 1, T2=− 1, T3=− 1, T4=− 1 Downward force applied at COM

‘w’ T1=0, T2=1 T3=0, T4= −1 Negative torque along body-axis x

‘s’ T1=0, T2=− 1 T3=0, T4=1 Positive torque along body-axis x

‘a’ T1=1, T2=0 T3=− 1, T4=0 Negative torque along body-axis y

‘d’ T1=− 1, T2=0 T3=1, T4=0 Positive torque along body-axis y

Game Procedure

The procedure of playing the 6-DoF quadrotor game is as follows. By default, the initial

weight research space Ω0 is set as

Ω0={θ | θ1, θ3, θ5 ∈ [0, 1], θ2, θ4, θ6 ∈ [− 8, 8], θ7 ∈ [0, 0.5]}. (5.60)

As stated by the main algorithm, at each iteration k, the quadrotor chooses a weight vector

guess θk ∈ Ωk−1 by Lemma 5.4.1 and plans a motion trajectory ξθk
by minimizing the

cost function J(θk) subject to the dynamics constraint in (A.3 ). While the quadrotor is

graphically executing ξθk
on the computer screen, the keyboard interface is listening to

player’s directional corrections. Once detecting a player’s correction atk , the quadrotor uses

such correction to update the weight search space from Ωk−1 to Ωk following Step 3 in

the main algorithm. This planning-correction-update procedure repeats until the quadrotor

successfully flies through the gate and lands on the target position, and then the human

player will not intervene the quadrotor any more—mission accomplished.
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Figure 5.13. An illustrative result for the 6-DoF quadrotor game. The goal of
this game is to let a human player, through providing directional corrections,
to teach a 6-DoF quadrotor to learn a valid control cost function (i.e., expected
θ∗) for successfully flying from the initial position, passing through a gate, and
finally landing on the target position. Corresponding to each iteration k in the
above sub-figures, we also list the robot’s current weight vector guess θk and
the human player’s directional correction ak in Table 5.4 . In (a), at iteration
k = 1, the quadrotor chooses an initial weight vector guess θ1 ∈ Ω0. In (c),
at iteration k = 3, since the human player does not provide any correction,
the quadrotor’s trajectory at this iteration is the same with the one in (d)
(iteration k = 4). In (f), at iteration k = 6, the quadrotor successfully flies
through the gate and lands on the target position, which means that a valid
quadrotor cost function is successfully learned—mission accomplished.
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Table 5.4. An illustrative result for the 6-DoF quadrotor game.
Iteration k quadrotor’s current weights guess θk A human player’s directional corrections atk and correction time steps tk

k = 1 θk = [0.50, 0.00, 0.50,−0.00, 0.50, −0.00, 0.25]′ atk = [1, 1, 1, 1] (i.e., up key pressed) and tk = 8
atk = [1, 1, 1, 1] (i.e., up key pressed) and tk = 20

k = 2 θk = [0.50, −0.00, 0.50,−0.00, 0.50, −3.99, 0.25]′ atk = [− 1,−1,−1,−1] (i.e., down key pressed) and tk = 14

k = 3 θk = [0.50, −1.70, 0.50,−1.70, 0.52, −1.89, 0.25]′ No correction provided (because the human player hesitated)

k = 4 θk = [0.50, −1.70, 0.50,−1.70, 0.52, −1.89, 0.25]′ atk = [0,−1, 0, 1] (i.e., ’s’ key pressed) and tk = 13

k = 5 θk = [0.50, −2.76, 0.50,−2.45, 0.60, −2.22, 0.25]′ atk = [0,−1, 0, 1] (i.e., ’s’ key pressed) and tk = 19

k = 6 θk = [0.50, −3.11, 0.50, 4.89, 0.65 − 2.67, 0.25]′ Mission accomplished! θ∗ = θk

Results and Analysis

We present one illustrative result in Fig. 5.13 and Table 5.4 . Fig. 5.13 illustrates the

execution of the quadrotor’s trajectory ξθk
at different iterations k. Table 5.4 presents the

weight vector guess θk and the human player’s correction atk at each iteration k. The results

show that within five rounds of directional corrections (i.e., five iterations), the quadrotor

is able to learn a valid cost function to successfully fly through the given gate and land on

the target landing position. The results again demonstrate the efficiency of the proposed

method for a human user to train a robot through directional corrections. Also, we have the

following comments.

(i) It is worth mentioning that the successful teaching of the quadrotor in the above

game does not require a human player to have prior experience or much practice with the

game. The above result is just one of the many results, and a new player can choose another

sequence of corrections and quickly teach the quadrotor to learn a valid cost function for

accomplishing the task.

(ii) The choice of the directional corrections is very intuitive and straightforward. For

example, as in Fig. 5.13a , the quadrotor is flying too low, the player thus has pressed up

key (Table 5.4 ) to let the quadrotor fly higher according to Table 5.3 . Also, as in Fig. 5.13d 

the quadrotor is flying too left relative to the gate, the player thus have pressed ‘s’ key (i.e.,

a positive torque along the quadrotor’s body x-axis) to let the quadrotor tilt right towards

the gate. We encourage the reader to have hands-on experience with the above quadrotor

game.
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5.7 Other Choices of Search Space Center

For the search space Ωk ⊂ Rr, we choose θk as the center of Maximum Volume Ellipsoid

(MVE) inscribe Ωk. Other choices for θk could be the center of gravity [173 ], the Chebyshev

center [174 ], the analytic center [175 ], etc.

Center of Gravity. The center of gravity for a polytope Ω is defined as

θcg =
∫

Ω θdθ∫
Ω dθ

. (5.61)

As proven by [176 ], the volume reduction rate using the center of gravity is

Vol(Ωk+1)
Vol(Ωk)

≤ 1− 1
e
≈ 0.63, (5.62)

which may lead to faster convergence than the rate (1 − 1/r) using the center of MVE in

Section 5.4 when the parameter space is high dimensional (i.e., r large). However, for a

polytope described by a set of linear inequalities, it requires much higher computational cost

to obtain the center of gravity in (5.61 ) than solving the center of MVE inscribed in Ωk

[170 ].

Chebyshev Center. Chebyshev center is defined as the center of the largest Euclidean

ball that lies inside the polytope Ω. The Chebyshev center for a polytope can be computed

by solving a linear program [41 ], which is also efficient. But the Chebyshev center is not

affinely invariant to the transformations of coordinates [170 ]. Therefore, a linear mapping of

features may lead to an inconsistent weight vector estimation.

Analytic Center. Given a polytope Ω = {θ | 〈hi,θ〉 + bi < 0, i = 1, · · · ,m}, the

analytic center is defined as

θac = min
θ
−

m∑
i=1

log(bi − h′iθ). (5.63)

As shown by [177 , 178 ], using the analytic center achieves a good trade-off in terms of

simplicity and practical performance, which however does not easily lead to the volume

reduction analysis in Lemma 5.4.2 as choosing the center of MVE.
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5.8 Conclusions

In this chapter, we have proposed an approach which enables a robot to learn an ob-

jective function incrementally from human user’s directional corrections. The directional

corrections, applied by a human user at certain time steps during the robot’s motion, can

be any input correction as long as it points in a direction of improving the robot’s current

motion under an implicit objective function. The proposed learning method is based on

the cutting plane technique, which only utilizes the direction of a correction to update the

objective function guess. We establish the theoretical results to show the convergence of

the learned objective function towards the implicit one. We demonstrate the effectiveness of

the method using numerical simulations and two human-robot games. The results show the

proposed method outperforms the state of the art, and that it enables a non-expert human

user to teach a robot to learn an effective control objective function for satisfactory motion

with few directional corrections.
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6. SUMMARY AND FUTURE DIRECTIONS

6.1 Summary

This thesis considers learning and control in autonomous robots. Towards efficient auton-

omy, the first portion of this thesis proposes to embed optimal control theory into learning

paradigms, which lead to a series of new control-induced learning methods. The contribu-

tions of this potion lie in two directions.

Contribution 1: New methods for Inverse Optimal Control. (I) We have

developed the IOC method for learning objective function from incomplete trajectory ob-

servations. First, we show the relationship between any segment data of trajectory and the

unknown objective function (parameter); second, we show the iterative property of IOC and

analyze how additional data points and features are incorporated in the IOC process; and

third, we give necessary conditions for the minimal observation length required for IOC. The

proposed method enables to learn an objective function incrementally by finding the minimal

required observations. (II) We have developed a multi-phase IOC method for learning the

phase-dependent objective functions. For a trajectory resulting from optimizing multi-phase

objective functions, the method not only recovers the underlying control objective function

for each motion phase, but also estimates the time transition of each phase (i.e., at which

time step the objective function has changed). (III) We have developed a distributed IOC

algorithm which enables to learn an objective function with both data and computation

distributed. (IV) We have provided some novel applications of the above new methods,

including human motion prediction and segmentation.

Contribution 2: Pontryagin Differentiable Programming Methodology. Our

contribution to both machine learning and control fields is an innovative methodology, named

as Pontryagin differentiable programming (PDP), which provides an end-to-end framework

that is able to solve a broad range of learning and control takes, including inverse rein-

forcement learning, system identification, policy optimization, and planning, etc. This PDP

framework has the following new features. First, we unify the problems of learning objec-

tive functions, dynamics models, and control policies within the same formulation based on

optimal control models, where different tasks differ only in different unknown aspects (param-
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eterized models) and different loss function. Second, we differentiate through Pontryagin’s

Maximum Principle, and this allows to obtain the analytical derivative of a trajectory with

respect to tunable parameters in an optimal control system, enabling end-to-end learning of

dynamics, policies, or/and control objective functions; and third, we propose an auxiliary

control system in backward pass of the PDP framework, and the output of this auxiliary

control system is the analytical derivative of the original system’s trajectory with respect to

the parameters, which can be iteratively solved using standard control tools.

The second portion of this thesis focuses on the innovative robot learning paradigm with

human guidance on the loop. We seek to answer the question of how to take the advantage of

the human guidance to boost the efficiency in robot learning, while maintaining the burden

of human providing guidance as low as possible? We have two contributions.

Contribution 3: Learning from Sparse Demonstrations. We have presented an

approach which enables a robot to learn an objective function from sparse demonstrations

of an expert. The demonstrations are given by a small number of sparse waypoints; the

waypoints are desired outputs of the robot’s trajectory at certain time instances, sparsely

located within a demonstration time horizon. The duration of the expert’s demonstration

may be different from the actual duration of the robot’s execution. The proposed method

is able to jointly learn an objective function and a time-warping function such that the

robot’s reproduced trajectory has minimal distance to the sparse demonstration waypoints.

Unlike existing inverse reinforcement learning techniques, the proposed approach, based

on Pontryagin Differentiable Programming, directly minimizes of the distance between the

robot’s trajectory and the sparse demonstration waypoints and allows simultaneous learning

of an objective function and a time-warping function.

Contribution 4: Learning from Directional Corrections. We have developed a

new learning scheme that enables a robot to learn a control objective function incrementally

from human user’s corrections. The human’s corrections can be as simple as directional

corrections—corrections that indicate the direction of a control change without indicating

its magnitude—applied at some time instances during the robot’s motion. We only assume

that each of the human’s corrections, regardless of its magnitude, points in a direction that
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improves the robot’s current motion relative to an implicit objective function. The proposed

method uses the direction of a correction to update the estimate of the objective function

based on the cutting plane technique. We establish the theoretical results to show that this

process of incremental correction and update guarantees convergence of the learned objective

function to the implicit one.

6.2 Future Directions

The following will provide a brief outlook of future research directions at the intersection

of control, learning, and optimization.

Topic 1: Control Perspective on Deep Learning

One important research trend in deep learning community is to achieve the explainability

of artificial intelligence. Our belief is that control theory can contribute to this goal by

providing abundant modeling or analysis tools. Representative examples include the recent

attempt to leverage optimal control theory to explain deep neural network [179 ], which leads

to new insights of deep learning and new training algorithms, and use of Koopman theory

to facilitate the training of the deep neural networks [180 ]. It is fair to say that a wide range

of learning tasks can find their counterparts problem in control fields, as we have discussed

in [35 ]. Thus, control theory is expected to provide a fundamental understanding of deep

learning and potentially bring out new results and learning algorithms.

Topic 2: End-to-End Differentiable Control

Modern control theory provides standardized approaches for control analysis, design, and

optimizations. However, due to their mathematical complexity, model control theories seem

largely incomprehensible to engineers who are not skilled in the art. Furthermore, many

control methods require practitioners’ high expertise and experience for model selection and

specification (such as finding Lyapunov functions, shaping cost functions). All these diffi-

culties motive a question: can we automate the process of control modeling/design/analysis

through machine learning by taking advantage of history data (e.g., design data, experi-
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mental data, and demonstration data)? The answer to this question can potentially make

modern control approaches more accessible to the general public. In the previous Pontrya-

gin Differentiable Programming work, we have made initial progress towards the end-to-end

differentiable control. We have borrowed the concept of end-to-end learning and developed

a ‘supervised’ way to train models by directly optimizing a design index with respect to the

control model of interest. Such a prototype provides a promising set of future directions.

Topic 3: Safe/Certificated Learning and Control

Deploying a learning agent from simulation to real word will potentially lead to safety or

robustness concerns. This can be caused by 1) discrepancy between computational models

and real-word environments, 2) inherent uncertainty of environments and training process,

3) excessive search strategies, and 4) exogenous disturbances to and malicious attacks in

observation data. These challenges are particularly urgent in human-involved tasks. On the

other hand, robustness and safety are at the core of control research, where many theories and

tools (such as invariant set, reachable set, certificate functions, set membership approaches,

robust control, differential game theories) are available. Hence, in the future, it is worth

exploring how to leverage these control tools to develop new theoretical foundations for safe

learning [181 , 182 ].

Topic 4: Learning with Humans on the Loop

Our previous research focuses on the methodologies that utilize minimal human guidance

for efficient robot learning. But such techniques still emphasize the dominance of human

role in robot learning, which thus may cause burden on the human user. The future research

could consider how to leverage the active role of a robot in its learning progress or how do

develop a more natural and efficient human-robot interaction scheme that enables a smooth

switch of dominance between human and robot control. One interesting question in these

topics is how to define and evaluate the robot’s confidence in a learning/control task such

that the human guidance is given only on request.
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[11] Wanxin Jin, Dana Kulić, Jonathan Feng-Shun Lin, Shaoshuai Mou, and Sandra
Hirche. “Inverse optimal control for multiphase cost functions”. In: IEEE Transac-
tions on Robotics 35.6 (2019), pp. 1387–1398.
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A. EXPERIMENTAL ENVIRONMENTS

This appendix describes the experimental systems (environments) which has been used for

evaluations of the methods developed in the previous sections in this thesis. We have made

different simulation environments/systems in Table 3.2 as a standalone Python package,

which is available at https://github.com/wanxinjin/Pontryagin-Differentiable-Programming  .

This environment package is easy to use and has user-friendly interfaces for customization.

A.1 Inverted Pendulum

The dynamics of the pendulum is

α̈ = −g
l

sinα− d

ml2
α̇ + u

ml2
(A.1)

with α being the angle between the pendulum and direction of gravity, u being the torque

applied to the pivot, l = 1m, m = 1kg, and d = 0.1 being the length, mass, and damping

ratio of the pendulum, respectively; gravity constant g = 10m/s2.

A.2 Two-link Robot Arm

Figure A.1. Two-link robot arm with coordinate definitions

As shown in Fig. A.1 , the dynamics of the two-link arm [183 ] is

M(θ)θ̈ + C(θ, θ̇)θ̇ + g(θ) = τ , (A.2)
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where θ = [θ1, θ2]′ ∈ R2 is the joint angle vector; M(θ) ∈ R2×2 is the positive-definite

inertia matrix; C(θ, θ̇) ∈ R2×2 is the Coriolis matrix; g(θ) ∈ R2 is the gravity vector; and

τ = [τ1, τ2]′ ∈ R2 are the input torques applied to each joint. The parameters of the two-link

robot arm in Fig. A.1 are as follows. The mass of each link is m1 = 1kg, m2 = 1kg; the

length of each link is l1 = 1m, l2 = 1m; the distance from the joint to the center of mass for

each link is r1 = 0.5m, r2 = 0.5m; the moment of inertia with respect to the center of mass

for each link is I1 = 0.5kgm2, I2 = 0.5kgm2; and the gravity constant g = 10m/s2. When

the robot moves horizontally, g(θ) = 0.

A.3 6-DoF Maneuvering Quadrotor

The equation of motion of a quadrotor flying in SE(3) (i.e., full position and attitude)

space is

ṙI = v̇I , (A.3a)

mv̇I = mgI + f I , (A.3b)

q̇B/I = 1
2Ω(ωB)qB/I , (A.3c)

JBω̇B = τB − ωB × JBωB. (A.3d)

Here, subscripts B and I denote quantities expressed in the quadrotor’s body frame and world

frame, respectively; m is the mass of the quadrotor; rI ∈ R3 and vI ∈ R3 are its position

and velocity, respectively; JB ∈ R3×3 is its moment of inertia expressed in the body frame;

ωB ∈ R3 is its angular velocity; qB/I ∈ R4 is the unit quaternion [158 ] describing the attitude

of the quadrotor’s body frame with respect to the world frame; (A.3c ) is the time derivative

of the quaternion with Ω(ωB) the matrix form of ωB used for quaternion multiplication [158 ];

τB ∈ R3 is the torque vector applied to the quadrotor; and f I ∈ R3 is the total force vector

applied to the its center of mass (COM). The total force magnitude ‖f I‖ = f ∈ R (along
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the z-axis of the quadrotor’s body frame) and the torque τB = [τx, τy, τz] are generated by

thrusts [T1, T2, T3, T4] of the four rotating propellers, which has the following relation



f

τx

τy

τz


=



1 1 1 1

0 −lw/2 0 lw/2

−lw/2 0 lw/2 0

c −c c −c





T1

T2

T3

T4


, (A.4)

with lw denoting the quadrotor’s wing length and c a fixed constant, here c = 0.1. In the

dynamics, gravity constant ‖gI‖ is set as 10m/s2 and the other parameters are units.

A.4 Cartpole

The equation of the motion for the cartpole system is

ẍ = u+mp sin θ(lθ̇2 − g cos θ)
mc +mp(sin θ)2 , (A.5a)

θ̈ = u cos θ +mplθ̇
2 cos θ sin θ − (mc +mp)g ∗ sin θ
l(mc +mp(sin θ)2) , (A.5b)

with the constants set as mc = 0.5kg, mp = 0.5kg, g = 10m/s2, l = 1m.
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